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Editorial on the Research Topic
Power systemoperation and optimization considering high penetration of
renewable energy

As the global energy landscape undergoes a transformative shift towards sustainability,
the integration of renewable energy sources (RES) into power systems has become a pivotal
imperative. The high penetration of RES, characterized by their intermittency and
unpredictability, introduces a myriad of challenges to the traditional operation and
optimization paradigms of power systems. In this Research Topic, we have curated a
Research Topic of original research articles that delve into the complexities and propose
innovative solutions for the operation and optimization of power systems in the context of
high RES penetration.

Yu et al. initiate our exploration by presenting a carbon metering method for
distribution networks that accounts for harmonic influences. Recognizing the increased
consumption of power equipment and the questioning of carbon measurement accuracy
due to harmonics, their research underscores the necessity for accurate carbon verification
in the face of distorted power quality. This work is crucial for the establishment of a fair
carbon trading market and the construction of precise carbon verification systems.

Zhou et al. further the discourse by introducing a time-synchronized carbon flow
metering scheme for electric power transmission, transformation, and distribution
networks. Their study elucidates the impact of time deviation on carbon metering,
proposing a satellite synchronization method to enhance the accuracy of carbon flow
allocation and measurement. This contribution is vital for future research ideas and
technical routes that aim to achieve more precise carbon accounting in power systems.

Dai et al. shift the focus to the prediction challenges posed by distributed photovoltaic
(PV) generation systems. They propose a spatio-temporal prediction method based on a
deep learning neural networkmodel, demonstrating higher prediction accuracy through the
CNN-LSTM approach. This method is particularly significant for enhancing PV power
generation technology and optimizing energy structure amidst environmental concerns.

Li et al. address the operational challenges in power systems caused by the increasing
penetration of intermittent renewable energy. They propose a multi-regional
interconnected transmission network optimization method based on the analytical
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target cascading (ATC) approach. This method not only tackles the
coupling nonlinear problems effectively but also promotes the
consumption of renewable energy, offering a robust solution for
complex transmission network optimization.

In the realm of energy storage systems, Sun et al. propose a
switching control strategy based on multi-level logic judgment.
Their research aims to improve the utilization rate and economic
benefits of energy storage systems, ensuring safe and stable
operation of power grids. This strategy is particularly relevant for
power systems with high proportions of renewable energy
integration, where energy storage plays a critical role in
maintaining grid stability.

Zhang et al. present a novel phasor measurement method that
utilizes soft synchronization with temporal pulse signals. Their
software-based approach offers a simpler and cost-effective
alternative to traditional hardware-based phasor measurement
units (PMUs), advancing the practices of synchronized phasor
measurement in power grid monitoring.

Shen et al. tackle the Research Topic of time delay in ancillary
services of distribution photovoltaic generation systems. They
propose a data-driven time-delay compensation strategy using
the long short-term memory (LSTM) method, which
significantly improves the frequency performance of PV
ancillary services and demonstrates strong generalization ability
for varying delay times.

Li et al. introduce a power system data-driven dispatch method
that integrates an improved scenario generation model considering
time-series correlations and “N-1” security. Their approach, which
leverages a time-generative adversarial network (GAN), ensures the
effective training of agents in handling “N-1” branch contingencies
and addresses the limitations of traditional data-driven methods.

Xu et al. present a Stackelberg game-based three-stage optimal
pricing and planning strategy for hybrid shared energy storage
(HSES). Their model addresses the pricing and planning
Research Topic for HSES operators, aiming to increase revenues
in the context of new energy stations (NESs) facing the challenges of
intermittency and volatility.

Chen and Chen develop a nonparametric probabilistic
forecasting based stochastic scheduling approach for integrated
electricity and gas systems (IEGS). Their method integrates the
advantages of nonparametric probabilistic forecasting to address the
randomness of wind power, establishing a stochastic optimal
scheduling model that is efficient and reliable.

Wei et al. propose a novel multistage planning-operation model
for HVDC-connected two-area systems. Their approach aims to
unlock the potential flexibility in the HVDC transmission system
and increase renewable penetration, offering a robust and non-
anticipative solution to accommodate uncertainty in renewable
generation.

Deng et al. construct a bi-layer wind-CCUS-battery expansion
stochastic planning framework that considers a source-load
bilateral carbon incentive mechanism based on the carbon
emission flow theory. Their research provides a reference for
the future carbon emission reduction path of the power system,
particularly for the quantitative analysis of carbon emission
reduction of CCUS.

Hua et al. introduce a smart home load scheduling system that
integrates solar photovoltaic generation and demand response in

smart grids. Their comprehensive demand response model, which
includes an energy consumption scheduler (ECS), optimizes the
operation of smart appliances using various optimization
algorithms, enhancing the efficiency of smart home energy
management.

Li et al. propose an adaptive ADMM-based entire-process
distributed restoration method for transmission and distribution
systems considering CVaR. Their method aims to maximize the
total restoration benefits of TSs and DSs while addressing multiple
uncertainties during the restoration process, ensuring faster
convergence and higher restoration benefits.

Ye et al. present a novel robust optimization method for new
distribution systems based on adaptive data-driven polyhedral sets.
Their approach reduces conservatism and enhances the robustness
of optimization results in the face of renewable energy output
uncertainty.

Xiao et al. explore the strategic behavior of renewable energy
companies equipped with private energy storage (ES) systems in
market competition. They introduce a bilevel strategic behavior
model to examine the impacts of strategic pricing and constraints on
market equilibria, revealing the potential widespread adoption of
strategic constraints among RE companies.

Hu et al. propose a service scheduling strategy for microservice
and heterogeneous multi-cores-based edge computing apparatus
in smart grids with high renewable energy penetration. Their
strategy addresses the challenges of service scheduling for edge
computing apparatus (ECA), ensuring efficient utilization of
computing resources and reduced service response time.

Ai et al. introduce a novel flexibility assessment model
for power grids with high renewable energy penetration. Their
study addresses the uncertainty associated with wind and PV,
proposing an improved cohesive hierarchical cluster analysis
method and developing models for flexibility resources
and demands.

Luo et al. present a dynamic reconfiguration model and method
for load balancing in the snow-shaped distribution network (SDN).
Their strategy considers distributed generators (DGs) and an energy
storage system (ESS) to mitigate load unbalanced conditions and
reduce active power loss.

Du et al. introduce a data-driven adaptive load frequency control
(DD-ALFC) approach for isolated microgrids, proposing a priority
replay soft actor critic (PR-SAC) algorithm to implement DD-
ALFC. Their method achieves higher adaptability and robustness
in complex microgrid environments, improving both frequency
control and economic efficiency.

Cai et al. propose a two-stage low-carbon optimization
scheduling method for power systems that considers demand
response under multiple uncertainties. Their approach effectively
reduces operating costs and carbon emissions while balancing the
economic and environmental aspects of power system operation.

Wu et al. introduce an adaptive compound power quality
disturbance (PQD) detection framework for renewable energy
systems. They develop optimal mode decomposition (OMD) and
an improved attention convolutional neural network (IACNN) to
enhance the detection of PQDs, demonstrating high accuracy and
real-time performance.

He et al. analyze and quantitatively evaluate the frequency
support capabilities of wind turbines in power systems. Their
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research focuses on the inertia support and primary frequency
regulation capabilities of wind turbines, proposing key metrics to
assess the transient frequency support capability.

Fu et al. propose a station-network cooperative planning
method for urban integrated energy systems (UIES) based on
an energy flow model. Their bi-level model optimizes the siting
and sizing of energy stations and the topology of supply
networks, with a solution method based on the Karush-Kuhn-
Tucker condition.

Wang et al. present an optimal operation strategy for
flexible interconnected distribution grids based on improved
virtual synchronous control techniques. Their approach
addresses the challenges posed by the randomness of
distributed photovoltaic power, enhancing DC bus voltage
stability and proposing power coordination optimization
strategies.

In summary, this Research Topic provides a comprehensive
examination of the challenges and opportunities in the operation
and optimization of power systems with high RES penetration. The
diverse research presented here offers innovative strategies and tools
that are essential for the successful integration of renewable energy
into the power grid, paving the way for a more sustainable and
efficient energy future.
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Switching control strategy for an
energy storage system based on
multi-level logic judgment

Sun Donglei1, Sun Yi1, Sun Yuanyuan2*, Liu Rui1, Wang Xian1 and
Wang Yao1

1Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan,
China, 2School of Electrical Engineering, Shandong University, Jinan, China

Energy storage is a new, flexibly adjusting resource with prospects for broad
application in power systems with high proportions of renewable energy
integration. However, energy storage systems have spare capacity under stable
working conditions and may be idle for some periods. These actions are primarily
selected for peak shaving and valleyfilling, frequency regulation, and voltage regulation
as the only control target; thus, energy storage cannot be used effectively, which
weakens the effect of energy storage on grid support. To improve the utilization rate
and economic benefits of the energy storage system and enhance the support
performance of energy storage for the safe operation of the power grid, this article
proposes a switching control strategy for an energy storage system based on multi-
layer logic judgment to maximize energy storage benefits and ensure safe and stable
power grid operation. First, this study analyzed the potential multi-ancillary service
operation requirements of the energy storage system, combined with the auxiliary
compensationbenefits of the energy storagepower station.Using this information, the
study proposed a comprehensive index that considers the economy of the energy
storage system and the stable operation of the power grid to support the evaluation
needs of energy storage control. Based on this, the study then pre-set multi-layer
judgment logic for the operation control of the energy storage system. A multi-
objective judgment and smooth switching strategy for the coordinated operation of
the energy storage systemwas proposed based on the typical operating conditions of
the energy storage system participating in the grid peak shaving and valley filling,
frequency regulation, and voltage regulation. This switching controlmethodeffectively
utilized the idle capacity of the energy storage system and improved the energy
storage system’s support effect on the power grid. Through the improved energy
storage control model based on MATLAB/Simulink, this study also verified the
effectiveness of theproposed smooth switching strategyof the energy storage system.

KEYWORDS

energy storage, multi-objective control, toggle control, energy storage utilization,
economic benefits

1 Introduction

The rapid scale-up of new energy power generation and the reduction of the proportion
of non-clean energy have improved the green and low-carbon levels of the energy industry
(Zhu et al., 2022; Sun et al., 2021a). The intermittency, volatility, and uncertainty of
renewable energy generation bring new problems to the safe and reliable operation of
the power grid (Xiao et al., 2022). To address the challenge of high-efficiency utilization of
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new energy with high proportions and power replacement with high
proportions under the background of carbon peak (Sun et al.,
2021b), the demand for power systems for auxiliary power
services such as peak and frequency regulation has increased
significantly in recent years (Ma et al., 2021). Energy storage
systems can further enhance the regulation potential of existing
resources through bidirectional power and energy storage
characteristics. Meanwhile, energy storage systems can support
safe and stable power grid operation by using their flexible and
rapid adjustment ability for active power and non-function, which
can be widely used for frequency modulation (Li et al., 2019; Yan
et al., 2021; Jiang et al., 2020), peak cutting and valley filling (Ma
et al., 2022), and voltage regulation (Chen et al., 2021; Guo et al.,
2019; Xu et al., 2017) of the power grid, and other scenarios (Huang
et al., 2021).

At present, research on control strategies in energy storage
systems has mainly focused on the fields where the energy
storage converter is the control object and peaking and valley
cutting or frequency and voltage regulation are the control
objectives. In terms of peak cutting and valley filling, Zhou et al.
(2021) proposed an optimization model and algorithm for a battery
energy storage system based on the traditional constant power
control strategy. The authors reported a real-time constant power
charge and discharge strategy of the battery through the secondary
analysis and processing of predicted load data. Regarding the energy
storage involved in the frequency modulation of the power grid, Ma
et al. (2019) and Li et al. (2017), reported the influence of
characteristics including virtual sagging and virtual inertia
control on power grid frequency and proposed an optimization
control method. Based on the frequency regulation requirements of
the power system, the optimal control strategy is selected to allow
the coordinated operation and complementary advantages of the
two control strategies. In terms of energy storage participation in the
voltage regulation of the power grid, Wang et al. (2021) proposed a
control strategy given the improvement of the power grid voltage
quality and utilization rate of the energy storage system. The strategy
adopted a timing coordination method to coordinate the
participation of reactive power sources and energy storage power
stations for power grid voltage regulation. Chen et al. (2022)
proposed a division method and switching index for different
working conditions of peak regulation and frequency modulation
based on the state of charge of the energy storage system. This
method proposed a coordinated control strategy to allow ES
switching between peak regulation and frequency modulation
control to improve the utilization rate of the energy storage
system. Shi et al. (2017) proposed an economic optimization
model of the joint peaking benefit and frequency regulation
benefit of the energy storage system, proving that the benefit of
joint peaking and frequency regulation control was greater than the
sum of the two individual benefits, and analyzed the feasibility of
peaking and frequency regulation cooperative control from the
perspective of economics. However, the authors did not consider
the specific control strategy. Although control strategies for energy
storage peak regulation and frequency modulation, as well as voltage
regulation, have been partially applied in demonstration projects,
the multi-objective control strategy of the energy storage system is
still early-stage research as the control of a single objective (Li and
Wang, 2021). Thus, the idle capacity of the energy storage system

cannot be maximized during operation and the supporting effect of
energy storage on the power grid is weakened. Moreover, the
economic benefits of energy storage systems are lost.

Therefore, to address the problems of the current energy storage
system, such as poor system benefits and weak power grid support
caused by single-control objectives, this article proposed a smooth
switching control strategy for energy storage systems based on
multi-layer logic judgment to achieve real-time optimal control
of energy storage systems. First, demand analysis was carried out
for different grid auxiliary service scenarios in which energy storage
participated in frequency modulation, peak regulation, and voltage
regulation to clarify the operation state of energy storage under
different control objectives. Second, considering the auxiliary
compensation income and safe and stable operation requirements
of the energy storage power station, a comprehensive index system
was proposed, which considers the economy of the energy storage
system and the stable operation of the power grid to support the
evaluation requirements of the energy storage switching control.
Finally, based on the typical operating conditions of the energy
storage system participating in power grid peaking and valley filling,
frequency modulation, and voltage regulation, the multi-layer
judgment logic of the energy storage system under different
operating conditions was preset, and a smooth switching control
strategy of the energy storage system based on the multi-layer logic
judgment was proposed.

2 Basic operation principle and demand
analysis of the energy storage system

2.1 Operation principle of the power
conversion system

The power conversion system (PCS) allows the two-way interaction
of DC power-side energy storage andAC grid-side energy, in addition to
the charging and discharging of DC power on the energy storage side,
tracking of grid-side load power, and operation mode switching control
by changing the control strategy. As the interface device between the
energy storage medium and grid and load, the PCS realizes the control
function of the energy storage medium and is the core part of the energy
storage system. PCS references the phase voltage vector on the AC
network side. It changes the phase relationship between the phase voltage
and the phase current on the AC network side by controlling the voltage
vector on the AC network side to realize the four-quadrant operation of
PCS (Yin et al., 2023). Figure 1 describes the vector diagram when PCS
presents different load characteristics.

As shown in Figure 1, the energy storage system can be presented
with four characteristics: pure inductance, pure capacitance, positive
resistance, and negative resistance, by changing the control strategy to
meet the system requirements. As shown in Figure 1A, the voltage phase
at the AC network side is the same as that of the electromotive force of
the power network, and the phase current lags the voltage by 90°. PCS
absorbs reactive power, showing pure inductance characteristics. As
shown in Figure 1B, the phase current is in the same phase as the
electromotive force of the grid. PCS absorbs active power from the AC
busbar on the grid side, showing positive resistance characteristics, and
the energy storage system is charging. As shown in Figure 1C, the phase
current is 90° ahead of the grid voltage, and PCS releases reactive power,
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showing pure capacitance characteristics. As shown in Figure 1D, the
phase of the grid-side phase current is opposite to the electromotive force
of the grid. PCS transmits active power from the AC bus at the grid side,
showing negative resistance characteristics, and the energy storage
system is in a discharged state (Xiao et al., 2021; Li et al., 2023a).

2.2 Demand analysis and control principle
of ESS

As an emerging flexible regulation resource, energy storage can
further enhance the regulation potential of existing resources and
better support the power grid to adapt to the rapid development of
new energy through its bidirectional power characteristics. It has a
broad application prospect in new power systems and can play an
essential role in new systems with high proportions of renewable
energy access (Sun et al., 2020).

2.2.1 Peak shaving and valley filling
In recent years, the proportion of new energy installations with

intermittency and uncertainty, such as wind power and photovoltaic
sources, has been growing, increasing the pressure of system peaking
and the difficulty of grid operation control. Currently, the task of
peaking in the power system is mainly undertaken by traditional
generating units such as thermal power. Still, many challenges could
be solved with conventional units for peaking, mainly including 1)

operational safety, in which the sudden load change caused by the
traditional unit output changes results in an abnormal loss of unit
components, affecting the stable operation of the unit. 2) Cost-
effectiveness, in which the peaking cost of thermal power units is
higher, including the fuel consumed by frequent start-up and
shutdown and the operating energy consumed by prolonged
rotating standby. 3) Peaking performance, in which thermal
power units cannot quickly increase output power, resulting in
long regulation response times and affecting regulation
performance (Sun et al., 2022).

Due to the huge peak-to-valley differences in the demand for
electricity between times and seasons, energy storage can effectively
provide demand-side management with its good charging and
discharging capability. Energy storage can allow direct profit through
low storage and high generation. Moreover, energy storage also reduces
system operation costs, saves investment in peaking units, improves the
daily load rate of the power system, and significantly improves the
utilization rate of power generation equipment. By reducing system
operating costs and saving investments in peaking units, the daily load
rate of the power system is improved, and the utilization rate of power
generation equipment is greatly enhanced, thus improving the overall
operating efficiency of the power grid, reducing the cost of power supply,
and generating considerable economic benefits. The energy storage
system can also participate in grid peaking by using a constant
power charging and discharging control strategy; that is, the battery
storage system makes charging and discharging rules according to the

FIGURE 1
Vector diagram of the different load characteristics. E: Grid voltage; I:AC network side phase current; U:AC net-side voltage; UL:Load Voltage;
O: zero point of the coordinate system; A,B,C,D: The critical working point of the four quadrants. (A) PCS absorbs reactive power, showing pure
inductance characteristics. (B) PCS absorbs active power from the AC busbar on the grid side, showing positive resistance characteristics. (C) PCS releases
reactive power, showing pure capacitance characteristics. (D) PCS transmits active power from the AC bus at the grid side, showing negative
resistance characteristics.
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historical load curve and provides continuous power to charge and
discharge the grid, independent of the real-time load changes.

2.2.2 Frequency regulation
Under the current trend of large-scale grid-connected development

of highly proportional distributed energy sources, the imbalance between
power supply and demand due to forecast errors and other factors has
become more significant and the traditional frequency regulation
method based on automatic generation control (AGC) systems to
adjust generator output are facing substantial challenges, including 1)
rapid output changes to accurately track load changes; 2) small response
power reservemargins; 3) battery storage power in response to frequency
fluctuations in floating charge state, compared to the peak and valley
load of the power grid in depressed areas require deep battery charging
and discharging, with limited impact on battery life.

As a high-quality flexible resource, participation in system fast
frequency regulation is an important application scenario for energy
storage. The droop control strategy shown in Eq. 1 can be used for the
participation of an energy storage system in grid-assisted frequency
regulation. When the system frequency deviation crosses the set
regulation dead zone, the energy storage starts to work and adjusts
the power in real time, according to the charging and discharging rules,
to maintain frequency stability. In contrast, the energy storage system is
idle and does not work when the system frequency deviation is within
the dead zone (Stroe et al., 2017; Wu et al., 2015).

P � P0 + k Δf − f0( ), Δf>f0( ),
P0 + k Δf + f0( ), Δf< − f0( ),{ (1)

where P is the charging and discharging power of the battery
storage; k is the gain factor of the battery storage, Δf is the frequency
deviation of the system; f0 is the set deadband value, in which the
battery storage does not work; and P0 is the charging power of the
battery storage at the set regulation deadband.

2.2.3 Voltage regulation
Energy storage has millisecond power response speeds, four-

quadrant power regulation capability, and high-power regulation
accuracy. It can effectively control the system voltage, and its
emitting/absorbing reactive power occupies only the PCS capacity
without affecting the charge state of the energy storage system. Thus,
the use of energy storage to participate in grid voltage regulation
when there is remaining PCS capacity can improve the utilization
rate of energy storage power plants.

Few measures are available on the grid side to manage voltage
transients. These usually rely on the user side to install management
devices to alleviate voltage transients. By moderately charging
reactive power through energy storage, the demand for reactive
power compensation can bemet while ensuring that the voltage does
not cross the limit, which provides a new idea for transient voltage
management on the grid side.

UPCC � US + P − PL( )R + Q − QL( )X
US

, (2)

Qref � UPCCN

X
UPCCN − U2( ) + PR + QX

UPCCN
− PR + QX

U2
( )[ ]. (3)

First, the power flow analysis of the parallel network of the
energy storage system, considering that the voltage transverse

component is much smaller than its longitudinal component, is
used to obtain the voltage of a similar network as in Eq. 2. A sizeable
reactive power shortage or fault occurring in the grid will cause PCC
bus voltage fluctuation and affect the regular grid operation. When
the PCC bus voltage is transformed to U2, the reactive power
quantity Qref required to support the PCC point voltage to
recover to the rated value UPCCN is shown in Eq. 3, where UPCC,
UPCCN, andUS are the energy storage grid point voltage, grid voltage
rating, and system voltage, respectively. U2 is the grid connection
voltage, P and Q are the active and reactive powers issued by the
energy storage system, and PL and QL are the active and reactive
powers of the load, respectively. When the grid has a reactive power
shortage, or a fault occurs, if the energy storage emits the
corresponding reactive power as in Eq. 3, it can precisely
compensate for the missing reactive power of the grid and
support the PCC parallel network voltage to restore the rated
value (Lee et al., 2017).

3 Multi-target judgment and smooth
switching control

Based on the participation of the energy storage system in typical
operating conditions such as peak shaving, frequency regulation,
and voltage regulation, the multi-layer judgment logic of energy
storage system operation control under different operating
conditions was preset. A multi-objective judgment and smooth
switching strategy was proposed, as shown in Figure 2, which
effectively utilized the idle capacity of the energy storage system,
improved the grid power quality, and provided the optimal control
of energy storage that considered both technical and economic
aspects.

3.1 Multi-level logic judgment

The energy storage systemmainly applies to active power output
scenarios such as peak shaving, valley filling, and fluctuation
smoothing. Therefore, energy storage and peak regulation were
the original control targets. The multi-layer logic judgment was
made through the constructed energy storage and grid connection
evaluation index to determine the optimal control target of energy
storage and complete the control strategy switching.

3.1.1 First level of judgment
First, the output data of energy storage units and grid connection

status were collected and analyzed to determine the actual demand
for energy storage from the grid and obtain the power command of
energy storage by intelligent algorithm prediction (Li et al., 2023b;
Sun et al., 2023; Sun et al., 2021a). The first layer of judgment aimed
to quickly identify whether the voltage and frequency of the energy
storage grid connection are in normal condition and assess the need
for emergency energy storage support. In this case, if the voltage or
frequency is in the emergency support state, the corresponding
control strategy is switched without regard for the economic index,
as the capacity allows.

The real-time voltage and frequency deviation is selected as the
first level judgment index for switching the control strategy of the
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energy storage system. The energy storage has fast power output and
accurate tracking capability, which can make up for the response
speed and regulation capability of traditional units and address the
sudden change in system frequency. By detecting the real-time
voltage and frequency deviation of the energy storage parallel
network, energy storage was classified into two working states
(emergency support and non-emergency support) based on the
deviation value. The first level of evaluation was performed by
the first level of the judgment index. When the real-time
deviation value exceeded the grid standard, the energy storage
system directly switched the control strategy to regulate grid
voltage or frequency. Eq. 4 shows that the first level of evaluation
indicators were set according to the real-time deviation value to
determine whether the grid voltage and frequency required
emergency support, i.e., when the energy storage system cannot
meet the grid standards. If there is an indicator in the voltage or the
frequency for the emergency support state, the energy storage
system switches to the corresponding active support control.

Δu t( ) � u t( ) − uPCC,
Δf t( ) � f t( ) − fPCC.

{ (4)

3.1.2 Second level of judgment
When the voltage and frequency of the energy storage grid

connection point meet the grid connection criteria, a second layer of
judgment must be constructed through economic and stability
assessment indexes to obtain the optimal control target that
simultaneously considers the economic benefits and the grid
connection status of energy storage.

First, the stability assessment index of the grid-connected
operation state of energy storage was defined: the deviation
coefficient of the voltage and frequency of the grid-connected
network of energy storage relative to the international standard

of grid-connected, in which the larger the deviation coefficient, the
weaker the support ability of the system, and the higher the priority
of voltage/frequency regulation.

Su �
												
u t( ) − uref( )2

udead
,

√
(5)

Sf �
												
f t( ) − fref( )2

fdead
,

√
(6)

where udead indicates the voltage regulation deadband, Su the voltage
regulation stability index, and uref the rated energy storage voltage to
the grid. fdead indicates the frequency regulation deadband, Sf the
frequency regulation stability index, and fref the rated frequency of
energy storage to the grid.

The economic index of energy storage is defined as considering
the compensation standard of auxiliary services under different
revenue modes in the power market, comprehensively comparing
the economic benefits of energy storage under peak regulation,
frequency regulation, and voltage regulation, and providing
economic evaluation criteria for achieving optimal control of
energy storage.

In terms of peak and valley shaving, the energy storage system
buys and stores electricity from the grid in the low valley, releases
electricity, and sells it to customers in the peak, using the peak–valley
price difference to realize arbitrage and gain income from
differences between the purchase and sale prices (Zhao et al.,
2022). At present, Europe, including Germany, the
United Kingdom, France, and other countries, has introduced
carbon-neutral policies to provide opportunities to develop
energy storage to allow energy storage to participate in the
scoring mechanism. Grid companies are similarly reducing the
threshold of the wholesale power and power balancing markets.
The United States introduced a relevant decree in 2018 to support

FIGURE 2
Block diagram of the energy storage system converters for multi-objective control.
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the participation of energy storage companies in the wholesale
power market, laying the foundation for developing energy
storage business models.

Taking a Chinese province as an example, the government has
constructed an energy storage market with a peak-to-valley tariff,
where the peak tariff reaches 0.5 RMB/kWh. The valley tariff reaches
0.4 RMB/kWh, and I1 is defined as the revenue from the
participation of energy storage in peaking, C1 is defined as the
peaking service capacity in MWh, B1 is the paid peaking of the price
of energy storage facilities in peak hours, B2 as the paid peaking of
the price of energy storage facilities in trough hours, ηd is the

discharge efficiency of the energy storage system, t1 is the
peaking time of energy storage in peak hours, and t2 is the
peaking time of energy storage in trough hours.

I1 � ∑T

t�1 B1 Pc + Pdηd( )t1 + B2 Pc + Pdηd( )t2[ ], (7)

where Pc and Pd denote the average power of the energy storage
system during charging or discharging periods, respectively.

The main compensation of frequency regulation includes
mileage and capacity compensations, which are mainly calculated
based on the frequency regulation mileage and the calling capacity,

FIGURE 3
Flow chart of the control strategy for energy storage system switching.
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respectively. This article analyzed mileage compensation as an
example (Liu et al., 2021).

I2 � ∑T

t�1 MDt

			
Kt

√
Bf( ), (8)

where I2 is defined as the revenue brought by the participant of
energy storage in frequency regulation, Bf is the paid frequency
regulation clearing price of energy storage facilities, Dt is the
frequency regulation mileage, Kt is the frequency regulation
performance index, and M is the regulation factor, adjusted
according to the market operation, tentatively M = 1.

The economic benefits of energy storage participation in grid
voltage regulation are mainly capacity compensation benefits,
including the compensation obtained from the reduction of
active output and the savings obtained from the removal of
reactive power compensation equipment. When a voltage

warning occurs on the grid, the grid company will release the
grid-connected active limit Cpmax, compensation tariff B3, a
reactive power demand absorbed or issued by the storage system,
and the reactive power tariff BQ. When the active output of the
storage system is greater than the active limit, it will not receive the
auxiliary service benefit of active reduction; on the contrary, the
storage system will receive the corresponding benefit according to
the active reduction. The energy storage system emits or absorbs
reactive power according to the actual grid demand and obtains the
reactive auxiliary service revenue I3.

I3 � B3 CPmax − CP( )t3 + BQCQt3, (9)
where CP, CQ, and t3 are the stored active output capacity, reactive
output capacity, and the time involved in voltage regulation,
respectively.

The energy storage involved in frequency regulation of the
dispatching active output and participation in voltage regulation
of the reactive production due to the existence of the peaking
plan is not an algebraic superposition of the binding
relationship; the need to participate in frequency regulation
of energy storage and peaking auxiliary service active output
coupling calculation, and then further analysis of the coupling of
energy storage involved in voltage regulation of the available
PCS capacity. When the absolute value of the active output
decreases after superposition, the reactive margin of the energy
storage increases, which is beneficial to voltage regulation; in
contrast, when the absolute value of the active output increases
after superposition, the reactive margin of the energy storage
decreases, thus reducing the voltage regulation capacity. The
final actual active power output and actual reactive power output
of the energy storage are related to the PCS capacity; therefore,
the capacity index of the energy storage system should also be
considered.

ηC � 1
T
∫T

0

												
Preal + Qreal( )2

√
SPCS

, (10)												
Preal + Qreal( )2

√
≤ SPCS, (11)

where ηC denotes the capacity indicator, Preal and Qreal denote the
energy storage system’s active and reactive output values,
respectively, and SPCS is the PCS capacity.

The comprehensive evaluation index is defined as a
comprehensive index that considers the system economy, the
state of energy storage on the grid, and the utilization rate of
energy storage capacity to obtain stable and economic grid
operation. First, the hierarchical analysis method sets the
influence weights of the three graded indicators on the
comprehensive evaluation index of peak regulation. Based on an
in-depth analysis of the problem, the objectives at each level, the
system benefits considered, the technical factors, and the control
objects are decomposed into different hierarchical structures. The
priority weights of each element of each level on the previous level
are then obtained by solving the judgment matrix eigenvectors.
Finally, the final weights of the indicators at each level to the
integrated target are determined by weighted summation (Jafari
et al., 2019). According to the comparison of the influence degree of
each index, the comparison matrix A is obtained as follows:

TABLE 1 Pseudo-code and control schemes for multi-layered logical judgment.

Algorithm 1: Energy storage switching control scheme

Input: Energy storage grid-connected state

Output: Optimal control of energy storage

If Δf(t)<f1 and Δu(t)<u1 then

return Strategy I

elseif Δf(t)>=f2 and Δu(t)>=u2 then

if Sf>Su, then

return Strategy II

else

return Strategy III

end

elseif Δf(t)<f2 and Δu(t)<u2

if s1>s2 >s3

return Strategy IV

elseif s1>s3 >s2

return Strategy V

elseif s2>s1>s3

return Strategy VI

elseif s2>s3>s1

return Strategy VII

elseif s3>s1>s2

return Strategy VIII

elseif s3>s2>s1

return Strategy IX

end

end

end
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A �
a11 a12
a21 a22

a13 a14
a23 a24

a31 a32
a41 a42

a33 a34
a43 a44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where aii = 1, aij = 1/aji (i,j = 1, 2, 3, 4). After the consistency test
of the judgment matrix, we can obtain the coefficients that satisfy
each weighting coefficient of the test index.

S1, S2, and S3 are defined as the comprehensive evaluation
indexes of energy storage with peak regulation, frequency
regulation, and voltage regulation as the control objectives,
respectively. λ denotes the impact weight of indicators at each level.

S1 � λ1,pSf + λ2,pSu + λ3,pI1 + λ4,pηC, (13)
S2 � λ1,fSf + λ2,fSu + λ3,fI2 + λ4,fηC, (14)
S3 � λ1,uSf + λ2,uSu + λ3,uI3 + λ4,uηC. (15)

3.2 Control strategy for energy storage
system switching

With the participation of energy storage in peaking as the
conventional operation scenario, from the long timescale, the
energy storage system is divided into two operation scenarios:
peaking and non-peaking. The short timescale of frequency
regulation and peaking output is considered on this basis.
However, due to the different control principles in different
operation scenarios, direct switching between different control
modes will usually lead to large disturbances or unsuccessful
switching. To achieve smooth switching between different control
modes, based on the proposed comprehensive index considering the
stable and economic operation of the power grid, multi-objective
priority ranking was performed using multi-layer judgment logic to
obtain the control logic under nine operating conditions to provide
multi-objective control and smooth switching of the energy storage
system. The flow chart is shown in Figure 3.

(1) By judging Δf(t), Δu(t), identify whether the grid needs
emergency active and reactive power support. If so, go to
step (2); otherwise, go to step (3).

(2) If either the grid voltage or frequency requires emergency
support, switch the response control strategy directly; if both
voltage and frequency require emergency support, judge the
comprehensive assessment and switch the response control
strategy.

(3) Select the optimal control strategy for the stable and economic
operation of the grid by judging the comprehensive index.

(4) Judging the capacity margin index, identify whether the energy
storage can continue to work. If the capacity is sufficient, enter
step (1). If the capacity is insufficient, stop working.

TABLE 2 Control strategy descriptions.

Control strategy Strategy description

Strategy I Energy storage with peak regulation as the target. When the voltage and frequency are in the normal ranges and meet the grid connection
criteria, the energy storage system operates with peak regulation as the target

Strategy II Energy storage with frequency regulation as the target, when the voltage is normal and meets the grid standard. Frequency is in an
emergency, urgent active support, energy storage system operates with frequency regulation as the target

Strategy III Energy storage aims to regulate voltage when the frequency is standard and meets the criteria for grid connection. The voltage is in an
emergency state and reactive power support is urgently needed, and the energy storage system is operated to regulate the voltage

Strategy IV When voltage and frequency do not need emergency support, and the comprehensive index of peak regulation is better than frequency and
voltage regulation, energy storage prioritizes peak and auxiliary frequency regulation

Strategy V When the comprehensive index of peak regulation is better than that of frequency and voltage regulation, then energy storage gives priority
to peak and auxiliary voltage regulation

Strategy VI The comprehensive index of frequency regulation is better than that of peak and voltage regulation when energy storage is given priority over
frequency and auxiliary peak regulation

Strategy VII The comprehensive index of frequency regulation is better than peak and voltage regulation when energy storage takes priority over
frequency and auxiliary voltage regulation

Strategy VIII The comprehensive index of voltage regulation is better than frequency and peak regulation when energy storage takes priority over voltage
and auxiliary peak regulation

Strategy IX The comprehensive index of voltage regulation is better than frequency and peak regulation when energy storage is given priority over
voltage and auxiliary frequency regulation

TABLE 3 Simulation parameter table.

Parameter Value

The reference value of active power for ESS/KW 20

The reference value of reactive power for ESS/KVar 0

Discharge efficiency of ESS (η) 90%

Peak-hour tariffs for ESS (RMB/KWh) 0.5

Low-hour tariffs for ESS (RMB/KWh) 0.4

Benefits of ESS for frequency regulation (RMB/MW) 6

Frequency modulation performance index (K) 2

Benefits of ESS for voltage regulation (RMB/MVarh) 1
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The upper layer system switches the control strategy of the
energy storage system according to different working conditions;
therefore, the energy storage application scenario is specifically
divided into nine working conditions, as shown in Table 1
according to the proposed two-layer judgment index. The
corresponding energy storage output scheme is provided as
pseudo-code.

The control strategies proposed in Table 1 are shown in
Table 2.

4 Discussion

4.1 Simulation analysis

Through MATLAB/Simulink, a simulation model of switching
control of the energy storage system based on multi-layer judgment
logic was built, as shown in Figure 2. The energy storage system was
mainly involved in grid peaking as the long-timescale energy storage
control target. The optimal control target was selected in real time

FIGURE 4
Active and reactive power output curve of energy storage.

FIGURE 5
Grid frequency fluctuation curve.
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based on a comprehensive evaluation index. The power curve, grid
voltage, and frequency fluctuation curve of energy storage were
selected for analysis. The parameters are shown in Table 3.

First, we simulated the operation status of the energy storage
system under normal operating conditions when the voltage and
frequency aligned with the grid standard. The real-time power of the

energy storage system is shown in Figure 4. At this time, the energy
storage takes peak-shaving and valley-filling as the control target
and runs according to the set power, and the energy storage runs in
the constant power control mode.

To verify the frequency regulation effect of the energy storage
system when frequency fluctuations occur in the power system, such

FIGURE 6
Active and reactive power output curve of energy storage under frequency fluctuations.

FIGURE 7
Grid voltage fluctuation curve.
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fluctuations in the actual power grid were simulated by load
throwing and cutting. The frequency fluctuations are shown in
Figure 5, in which the proposed control method has a
suppression effect on the system frequency fluctuations, and the
maximum and average values of the frequency fluctuations are
reduced.

At 0.5 s, the system experiences large frequency fluctuations due
to load throwing and cutting; the energy storage system judges the
switching control target according to the comprehensive index and
operates in frequency modulation mode, the PCS uses virtual sag
control, and the real-time power is as shown in Figure 6. The
traditional constant power control under peaking conditions does
not allow adjustment of the system frequency by changing the
energy storage power output for frequency fluctuations in the
system. In contrast, the method in the present study can switch

the strategy in real time and change the energy storage power when
the system frequency fluctuates to support the system frequency.

To verify the voltage regulation effect of the energy storage
system during voltage fluctuations in the power system, voltage
fluctuations in the actual grid were simulated by load throwing. For a
load at 0.5 s, the grid voltage deviation is shown in Figure 7,
indicating that the proposed method of control has a suppression
effect on the system voltage fluctuation.

Currently, the energy storage system takes voltage regulation as
the control target, and the PCS adopts reactive-voltage droop
control, the reactive power output of which is shown in Figure 8.
For the traditional constant power control under the peaking
condition, when voltage fluctuation occurs in the system, no
timely response is possible to allow the energy storage to
participate in the regulation of the system voltage; however, the

FIGURE 8
Reactive power output curve of energy storage.

FIGURE 9
Energy storage power output when multiple voltage and frequency fluctuations occur in the system.
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strategy proposed in the present study can change the reactive power
output of the energy storage in real-time to support the grid voltage
according to the proposed index.

As shown in Figure 8, in this situation, the energy storage active
power output according to the established plan, at 0.5 s due to the
grid voltage fluctuations, switches to the voltage regulation mode,
while the grid network voltage switches back to the grid standard
and then to the peak regulation mode. Figure 9 shows the active and
reactive power output of the energy storage system when the grid
voltage and frequency fluctuate several times. The grid fluctuates at
0.35 s, 0.45 s, and 0.55 s, respectively, and the energy storage system
switches the control target with the grid fluctuation of the power grid
to change the power output of energy storage in real-time to
effectively support the voltage and frequency of the system and
realize real-time optimal control.

4.2 Economic benefit analysis

Using the actual power output data of a local energy storage
power station as an example, the power station was charged and
discharged at 0:00 and 10:00 to participate in grid peaking, charged
with 100 MW power for 1 h at 0:00, and discharged with 85 MW to
the grid for 1 h at 10:00. At other times, the power station energy
storage was not working. In the actual engineering application,
energy storage was not working most of the time, which led to a
waste of energy storage resources. The switching control based on
multi-layer logic judgment proposed in this article considered the
short timescale conditions of frequency and voltage regulation,
assuming that the energy storage was dispatched once every
5 min and the call ratio was 80%. In this article, although the
energy storage frequency and voltage regulation occupied peak

TABLE 4 Economic performance index.

Single target control/(RMB) Method proposed in the present study/(RMB)

Time Peak shaving
and valley filling

Frequency
modulation

Voltage
modulation

Peak shaving
and valley filling

Frequency
modulation

Voltage
modulation

Total
revenue

1:00 15,000 0 0 14,593 72 81 14,747

2:00 0 0 0 0 72 81 153

3:00 0 0 0 0 72 81 153

4:00 0 0 0 0 72 81 153

5:00 0 0 0 0 72 81 153

6:00 0 0 0 0 72 81 153

7:00 0 0 0 0 72 81 153

8:00 0 0 0 0 72 81 153

9:00 0 0 0 0 72 81 153

10:00 0 0 0 0 72 81 153

11:00 11,475 0 0 11,068 72 81 153

12:00 0 0 0 0 72 81 153

13:00 0 0 0 0 72 81 153

14:00 0 0 0 0 72 81 153

15:00 0 0 0 0 72 81 153

16:00 0 0 0 0 72 81 153

17:00 0 0 0 0 72 81 153

18:00 0 0 0 0 72 81 153

19:00 0 0 0 0 72 81 153

20:00 0 0 0 0 72 81 153

21:00 0 0 0 0 72 81 153

22:00 0 0 0 0 72 81 153

23:00 0 0 0 0 72 81 153

24:00 0 0 0 0 72 81 153

Total 26,475 0 0 25,662 1732 1951 29,346
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capacity during peak hours, the frequency and voltage regulation
services improved the total economic benefits of the energy storage
system in short timescales during non-peak hours, which provided
compensation benefits in the electricity market for the energy
storage system. The results are shown in Table 4. Comparison
with economic index I showed that the proposed method
improved the economy of the energy storage system, with an
approximately 10.8% increase in economic gain compared to the
single-target control strategy, which only participates in grid
peaking. In addition, the energy storage was deployed for grid
frequency and voltage regulation during non-peak hours, which
effectively utilized the idle capacity of the energy storage system and
improved the energy storage utilization rate.

5 Conclusion

To meet the control requirements of energy storage systems
under different power grid operating conditions, improve the energy
storage utilization rate, and enhance the support role of energy
storage in the power grid, this paper proposes a switching control
strategy for an energy storage system based on multi-layer logic
judgment to achieve the maximum benefit of energy storage and safe
and stable operation of the power grid. First, we analyzed the current
situation of multiple auxiliary services demanded by the energy
storage system and proposed a comprehensive evaluation index to
support switching control of energy storage by considering the
economics of the energy storage system and the safe and stable
operation of the power grid. Using this information, we proposed a
multi-objective judgment and smooth switching strategy based on
the participation of an energy storage system in typical operating
conditions such as peak-shaving, frequency, and voltage regulation
of the grid. The simulation results showed that compared with the
traditional energy storage single-target control strategy, the
proposed strategy allowed the energy storage system to switch its
operation mode according to the real-time voltage and frequency
states, which enhanced the support role of energy storage on grid
voltage and frequency, improved the power quality of the grid, and
effectively reduced the idle rate of the energy storage system to
significantly improve the utilization rate of the energy storage
system in typical operating conditions such as grid peak shaving,
frequency regulation, and voltage regulation. The results of the
analysis of the economic benefits showed that the proposed
method improved the economic benefit by approximately 10.8%
compared with those of the energy storage plant only for peak and
valley reduction, which significantly improved the economic
benefits of the energy storage system.

The economic efficiency of the energy storage system is an
essential factor for its optimal control. This study focused on the
benefit analysis of the energy storage system from two aspects:
the whole life cycle cost of the energy storage system and the
compensation income of the energy storage plant. However, the

continuous switching of the energy storage control strategy will
inevitably increase the energy storage system loss and its
operation cost. Additional studies are needed to quantify the
losses generated by this switching and fully consider the
additional costs generated by energy storage in operation to
meet the demand for the comprehensive benefits of energy
storage containing a high percentage of renewable energy to
the grid.
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To obtain higher accuracy of PV prediction to enhance PV power generation
technology. This paper proposes a spatio-temporal prediction method based
on a deep learning neural network model. Firstly, spatio-temporal correlation
analysis is performed for 17 PV sites. Secondly, we compare CNN-LSTM with
a single CNN or LSTM model trained on the same dataset. From the evaluation
indexes such as lossmap, regressionmap, RMSE, andMAE, theCNN-LSTMmodel
that considers the strong correlation of spatio-temporal correlation among the
17 sites has better performance. The results show that our method has higher
prediction accuracy.

KEYWORDS

CNN-LSTM, spatio-temporal, deep learning, distributed PV generation system, PV
prediction

1 Introduction

Traditional energy sources like coal and oil have proven insufficient to meet the needs
of modern society, leading to an increase in global environmental pollution. Consequently,
there is a pressing need to develop renewable energy generation techniques. Solar energy is
particularly promising due to its green, safe, and abundant nature, and it is expected to play
a crucial role in addressing the energy crisis and optimizing our energy structure.

Currently, PV power generation systems can be divided into distributed PV power
generation systems and centralized PV power generation systems based on their installation
form. Centralized photovoltaic power generation systems are primarily located in the
remote region, where solar radiation conditions are optimal, and construction costs are
low. However, the remote region has poor load-consumption capacity, resulting in high
construction costs and line losses when transmitting excess power over long distances. In
contrast, the application prospects for distributed power generation systems are broader,
making them the primary form of photovoltaic power generation system Karalus et al.
(2023).

The uncertain nature of photovoltaic power generation systems, coupled with
their sensitivity to environmental factors such as solar irradiance and temperature,
makes output power prediction crucial. Prediction methods generally fall into three
categories: physical methods, statistical methods, and machine learning methods. Physical
methods model the relationship between irradiance and PV output power based
on geographic and meteorological data. However, physical methods have limitations
in terms of accuracy, anti-interference ability, and robustness Stüber et al. (2021).
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Statistical prediction methods, such as time-series analysis,
regression analysis, grey theory, fuzzy theory, and spatio-temporal
correlation analysis, explore historical data to establish data
models for photovoltaic power generation prediction. While
statistical methods have the advantage of being simple to
model and generalizable across different regions, they also
require large amounts of data and complex computational
processing, leading to difficulties in achieving ultra-short-term
forecasting.

Machine learning methods, such as deep neural networks, can
effectively extract high-dimensional complex nonlinear features
and directly map them to the output, making them a commonly
used method for PV power prediction Kollipara et al. (2022);
Voyant et al. (2017). Deep neural networks include models such
as convolutional neural networks (CNN), deep belief networks
(DBN), superposition denoising autoencoders (SDAE), and long-
term memory (LSTM). Machine learning-based prediction models
can integrate temporal and nonlinear features of time-series data
to discover complex data associations from large amounts of data
with better performance and robustness. Hybrid models, which
combine the strengths of different models, often show superior
performance. A multitasking RNN(MT-RNN) hybrid model that
performs knowledge transfer among different tasks to improve
the prediction accuracy of each task has been demonstrated to
be sufficiently superior in terms of prediction accuracy, compared
to a single LSTM and GRU Li et al. (2022). The hybrid model
combines Pearson correlation coefficient (PCC), ensemble empirical
modal decomposition (EEMD), sample entropy (SE), sparrow
search algorithm (SSA), and long short-term memory (LSTM)
has been verified to have the smallest prediction error compared
to PCC-EEMD-LSTM, SSA-LSTM and other models Song et al.
(2023).

The combined deep learning model is an effective hybrid
model that can extract complex features using CNN and learn
temporal information using LSTM, resulting in higher prediction
accuracy Khan et al. (2022). Previous studies have demonstrated
the effectiveness of this model in predicting the power production
of self-consumption PV plants Gupta and Singh (2022) and daily-
ahead PV power forecasting Agga et al. (2022). A combined CNN-
LSTM model that combines the ability of CNN to extract complex
features with LSTM to extract temporal features has been shown
to yield very good prediction results Kim and Cho (2019). One
hybrid CNN-LSTM model were proposed to effectively predict the
power production of a self-consumption PVplant Agga et al. (2021).
Based on the advantages of the combinedmodel, this paper proposes
a deep learning model-based spatio-temporal prediction method
for distributed PV systems. This method can effectively utilize the
strongly correlated multi-machine spatial correlation and is suitable
for predicting Distributed PV generation systems. The training
data used in this study is from the Oahu Island PV generation
system provided by the National Renewable Energy Laboratory
(NREL). Experimental results are compared with a single CNN
and LSTM model to demonstrate the effectiveness of the proposed
model.

2 Materials and methods

2.1 Spatio-temporal correlation analysis of
distributed PV systems

Time series predictive analysis involves using past event
characteristics to predict future event characteristics, but it is a
complex problem that is different from regression analysis models.
Time series models are dependent on the sequence of events, and
before using a time series forecastingmodel, the time series needs to
be made smooth. A time series is smooth if it has a constant mean,
constant variance, and constant autocorrelation. Time series can be
classified as smooth series, those with periodicity, seasonality, and
trend in the variance and mean that do not change over time, and
non-smooth series.

Analyzing the relevant characteristics of PV power, it can be
found that the data of the PV power varies with time and shows
typical time series characteristics. The aim of PV power prediction
is to find the nonlinear relationship between input variables and
PV power generated by a single sample. With the continuous
advancement of machine learning algorithms, machine learning
methods have achieved remarkable results in the fields of image
power output and data analysis, which are beneficial for predicting
PV power. The traditional methods of building time series models
include moving average method and exponential average method,
and the more commonly used ones are Auto Regressive and Moving
Average. Modern forecasting methods mainly use machine learning
methods and deep learning methods. For deep learning methods,
recurrent neural network (RNN) is the most commonly used and
suitable for solving this type of problem, but convolutional neural
network (CNN) and the new spatial convolutional network (TCN)
can also be tried. Ortiz et al. (2021).

The temporal correlation refers to the degree of correlation
between values taken before and after the same time series, while
spatial correlation refers to the degree of correlation between
values taken from different time series obtained from multiple
locations Liao et al. (2022). Strong correlation can lead to significant
synchronization of trends between moments before and after the
sequence itself or between multiple sequences. In this paper,
the auto-correlation function (ACF) and partial auto-correlation
function (PACF) are used to describe the temporal correlation
of the amplitude parameters, which is used to characterize the
correlation of the peak solar radiation/output available at the same
PV plant location during different days. The spatial correlation
of the amplitude parameters is also described by the correlation
function, which is used to characterize the correlation of the
available solar radiation/peak output at different sites on the same
date.

The autocorrelation function and the partial autocorrelation
function are commonly used to characterize the correlation between
the moments before and after a single time series, and they are
defined as shown in (1) and (2), respectively:

ρk = {E[(Zi − μi)(Zi+k − μi+k)]}/σ
2 (1)
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FIGURE 1
The classical LSTM module.

FIGURE 2
Connection of two different LSTM modules.
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|

(2)

where, Zi is the amplitude parameter series, μi and σ are the mean
and variance of the series, ρk is the autocorrelation coefficient of k-
order time delay, and Pk is the partial autocorrelation coefficient of
k-order time delay.

The correlation number is used to characterize the correlation
between multiple time series, and is expressed as follows:

ρ12 =
E[(Z1,i − μ1,i)(Z2,i − μ2,i)]

√D (Z1) ⋅D (Z2)
(3)

where, D (Z1) and D (Z2) are the variances of the sequences Z1 and
Z2.

It is generally accepted that two sequences with an
interrelationship number greater than 0.7 have strong
interrelationships and very synchronized changes. Solar irradiation
conditions of PV plants in the same area or in close proximity are
expected to be similar, while the solar irradiation correlation is
weaker between PV plants farther apart. Therefore, the close spatial
locations of PV plants lead to a strong mutual correlation of the
amplitude parameter series, and vice versa.

Frontiers in Energy Research 03 frontiersin.org25

https://doi.org/10.3389/fenrg.2023.1204032
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Dai et al. 10.3389/fenrg.2023.1204032

FIGURE 3
The proposed deep learning network structure.

Solar irradiance has a strong diurnal periodicity, and the
irradiance curves in different regions have similar shapes on clear
sky days. When the spatial distance between different points is
small, the amplitude and phase of solar irradiance curves outside the
atmosphere are closer and have stronger similarity Liu et al. (2022b).
Meteorological factors such as temperature and humidity are also
closer, and clouds become the main factor affecting irradiance
fluctuations. With the movement of clouds, the solar irradiance
received by different PV plants in the same area may produce
similar fluctuations successively. Therefore, differences in the solar
irradiance curvesmay be due to the spatial distance between the two
locations and the time delay caused by fluctuations in themovement
speed of the clouds.

The correlation between the total solar irradiance at different PV
stations in a region and the delay between the irradiance sequences
can be analyzed using correlation coefficients Jiao et al. (2021). Let
R1(t) and R2(t) be the total solar irradiance sequences received by
two PV stations in the region. The Pearson correlation coefficient
ρR1R2 (t = t1 − t2) is used to describe the correlation between R1 (t1)
and R2 (t2), as shown in the following equation:

ρR1R2 (t = t1 − t2) =
σ2
R1R2
(t1, t2)

σR1
σR2

(4)

where σ2
R1R2
(t1, t2) is the mutual covariance of series R1 (t1) and

R2 (t1), and σR1
and σR2

are the autocovariance functions of R1 (t1)
and R2 (t1), respectively.

2.2 The proposed deep learning model for
PV System’s spatio-temporal prediction

The proposed model mainly consists of convolutional neural
networks (CNN) exlopring distributed PV’s spatial correlations and
long short-term memory (LSTM) that can efficiently mine the time-
series information.

CNN is a class of feedforward neural networks with
convolutional computation and deep structure, which is one of
the representative algorithms of Deep Learning. CNN is widely
used in the fields of time series analysis, computer vision, and
natural language processing. It mainly consists of a data input
layer, convolutional layer, rectified linear unit (ReLU) layer,
pooling layer, and fully connected layer Sim and Lee (2020);
BANDARRA FILHO et al. (2023).

In CNN, the original data is first preprocessed through the data
input layer, such as de-meaning, normalization, and PAC. The data
is then convolved in the convolutional layer using filters to extract
local features. After that, the pooling layer performs downsampling
to reduce the amount of data and the number of parameters,
preserve important information, and reduce the computational cost
of the CNN network to prevent overfitting Jurado et al. (2023). The
activation function layer uses ReLu function, which is widely used
because the previous activation functions, such as tanh function
and sigmoid function, converge slowly and suffer from gradient
disappearance. The specific expression of ReLu is shown below:

f (x) =max (0,x) (5)

Finally, the fully connected layer combines all local features into
global features.The fully connected layer can operate efficiently only
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TABLE 1 The specific parameters settings of the proposedmodel.

Proposed model

Conv1D1 filters 32

Kernel size 3

activation relu

Stride 2

Padding 3

Conv1D2 filters 64

Kernel size 3

activation relu

Stride 3

Padding 3

Maxpooling Pool size 3

LSTM1 Hidden Node 256

activation relu

time steps 10

LSTM2 Hidden Node 512

activation relu

time steps 10

after the convolutional layer and the pooling layer have reduced the
dimensionality of the data. Otherwise, the data volume is too large,
which increases the computational cost and reduces efficiency.

The LSTM neural network is a variant of recurrent neural
network (RNN) with powerful dynamic properties. The general
network structure of LSTM, as shown in Figure 1, splits the original
RNN structure into a finer structure by introducing forgetting
gates, input gates, and output gates, and three gating units to make
the “cell state” (Ct) more dynamic Haputhanthri et al. (2021). This
helps avoid the vanishing gradient problem, and allows the (Ct) to
retain important information.TheLSTMselectively forgets the input
passed in from the previous node through the forgetting gate. The
information from the previous state ht−1 and the current input xt
are input to the sigmoid function at the same time. The output of
the sigmoid function is in the range [0,1]. If the output value is 0,
the historical information is completely deleted. If the output value
is 1, all the original information is kept. The equations used for the
forgetting gate, input gate, and cell update are as follows:

ft = σ(W f ⋅ [ht−1,xt] + b f) (6)

it = σ(Wi ⋅ [ht−1,xt] + bi) (7)

C̃t = tanh(Wi ⋅ [ht− 1,xt] + bi) (8)

where, ht−1 denotes the output of the previous cell, xt denotes
the input of the current cell, and σ denotes the sigmoid activation
function.

Next, the LSTM determines which information is stored in the
cell state through the input gate sigmoid layer for selective memory.
A new vector C̃t is created by the tanh layer to receive the hidden

FIGURE 4
(A) Comparison of the training process. (B) Comparison of the
validation process.

states and current inputs. The tanh layer and the sigmoid layer are
then combined to update the state of the cell Liu et al. (2022a);
Gruber and Jockisch (2020).

After that, the LSTM updates the old cell state Ct−1 to Ct to
determine how to update the information:

Ct = ftCt−1 + itC̃t (9)

Finally, the LSTM outputs the state features of the cell through
the output gate sigmoid layer and passes the cell state through
the tanh layer to obtain a vector between −1 and 1. This vector is
multiplied with the output weights obtained from the output gate to
obtain the final output of the LSTM unit.

ot = σ(Wo [ht−1,xt] + bo) (10)

ht = ot * tanh(Ct) (11)

Different LSTM modules can be stacked together to form a
multi-layer LSTM, and by adding depth to the network, the training
efficiency can be improved. Figure 2 briefly shows the connection
states of different LSTM modules.

The proposed deep neural network structure in this paper
is shown in Figure 3. It consists of two main parts: the upper
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FIGURE 5
Prediction results of solar radiation on Oahu Island on 5 November 2011, using the proposed model.

part is a CNN, and the lower part is an LSTM. First, the CNN
extracts and integrates features from the historical light data of each
distributed power plant through convolutional kernels. However,
due to filter limitations, the temporal correlation in the input
variables cannot be obtained. Second, the LSTM neural network,
with the introduction of gating units, can learn the dependent
features before and after the input data sequence to obtain the
temporal correlation, whichmakes up for the deficiency of the CNN.
Therefore, in this paper, CNNandLSTMare cascaded to form a deep
neural network spatiotemporal prediction model. Finally, the LSTM
memorizes and filters the integrated features, fits the prediction,
and outputs the prediction results through the fully connected

layer Ozcanli and Baysal (2022); Dolatabadi et al. (2021); Sinha et al.
(2021).

3 Experimental tests

3.1 Experimental data

The data used in this study were obtained from the Oahu
Island PV plant data provided by the National Renewable Energy
Laboratory (NREL). Oahu Island is located at latitude 21.31°N and
longitude 158.08°W.There are 17 distributed PVplants on the island,
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FIGURE 6
Regression plots for 17 sites predicted by the proposed model.

and the data is collected at a frequency of one sample per second,
recording the solar radiation from 5:00 a.m. to 8:00 p.m., spanning
the period from March 2010 to October 2011. Before training the
original data, the dataset was randomly shuffled and divided into
three parts: 70% for training, 20% for validation, and 10% for testing.

3.2 Experiment design and evaluation
criteria

In this study, the next data point is predicted using the first
ten data points, i.e., the model uses the first 10 seconds of data to
predict the next data point. The accuracy of the model prediction
is evaluated using three error evaluation criteria, namely mean
absolute error (MAE), root mean square error (RMSE), and the
coefficient of determination (R2). A smaller difference between the
predicted and actual values indicates a better model prediction
result.

TheMAE indicates the average of the absolute error between the
predicted and actual values, whereas the RMSE reflects the degree of

TABLE 2 Performance comparison of Models.

Models RMSE MAE R2

LSTM 9.6702 4.9380 0.9993

CNN 9.0209 4.4816 0.9994

Proposed Model 7.3021 3.0730 0.9996

deviation from the forecast. The R2 statistically assesses the overall
goodness of fit of the model, and a value closer to 1 indicates a
better fit. The formulae for calculating the three error metrics are as
follows:

RMSE = √ 1
N

N

∑
n=1
(ŷ (n) − y (n))2 (12)

MAE = 1
N

N

∑
n=1
|ŷ (n) − y (n)| (13)
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FIGURE 7
RMSE comparison.

FIGURE 8
MAE comparison.
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FIGURE 9
Error histograms comparison among the models.

FIGURE 10
R2 value histogram comparison among the models.

R2 = 1−
∑N

n=1
(ŷ (n) − y (n))2

∑N
n=1
(ŷ (n) − ȳ (n))2

(14)

where, ŷ(n), y(n), and ȳ(n) are the predicted, actual, and mean solar
radiation values, respectively, and N is the total number of samples.

3.3 Model structure and hyperparameters

The model has a total of 14 layers of network, the CNN part
has 9 layers of network, the first layer is the input layer, the second
to the seventh layer are two iterations of convolution, activation

and regularization layers. Since the convolution is performed on
time series data, both convolutional layers are 1-D convolutional
layer, The dimensions of the input data and output data are
both two-dimensional, The size of the convolution kernel is 3
and moves in one direction only, the number of convolutional
kernels is 32, 64, the step size is 2, 3, and the patch is 2. The
activation function of both activation layers is ReLU, and both
normalization layers are layerNormalizationLayer (LN). The eighth
layer is the pooling layer, and the maximum pooling is chosen
to prevent overfitting with size x. The ninth layer is the fully
connected layer, which is used to connect to the LSTMnetwork.The
10th layer is layerNormalizationLayer, LN acts as a normalization.
Both batchNormalizationLayer (BN) and LN can suppress gradient
disappearance and gradient explosion relatively well, but LN is more
suitable for sequential networks like LSTM. the LSTM part of the
network has 4 layers. Since increasing the depth of the network
and the number of hidden cells can help improve the prediction
accuracy, the 11th and 12th layers are set as LSTM layers with 256
and 512 hidden cells respectively. The 13th layer is a fully connected
layer. Finally, the predicted values are output by regressionLayer.The
regression layer calculates the semi-mean-square error loss of the
regression task. For regression problems, this layer must be located
after the final fully connected layer.

To address the issue of slow convergence and low model
accuracy, the model parameters were tuned. The training period
was initially set to 80 rounds with 295 iterations per round. The
Adam optimizer was used instead of the traditional SGD optimizer
to prevent gradient saturation, as it combines the characteristics
of AdaGrad and RMSProp to balance the gradient direction and
learning rate step. The initial learning rate was set to 0.005, and the
activation function used was ReLU or Leaky ReLU. After several
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experiments, the training period was extended to 100 rounds, the
learning rate was reduced to 0.003, and the ReLU activation function
was selected.

The specific parameter settings of the model proposed in this
paper are displayed in Table 1.

3.4 Comparison of the experimental results

Figure 4 illustrates the dynamic loss of the three models during
training and validation.The loss decreases as the number of training
cycles increases, indicating an improvement in the prediction
accuracy of the models. In DNN model training, the number of
epochs determines how many times the model works on the entire
dataset, and each epoch signifies that the model has undergone a
forward andbackward propagation.As seen in Figure 4,The training
losses of all three models have an overall decreasing trend but
fluctuate, which is due to the fact that the direction of gradient
descent in each round of the training process of the neural network
is not necessarily the overall optimal solution, so the losses do not
necessarily decrease compared to the previous round. The proposed
model’s loss convergence is faster than the LSTM and CNN models,
and the final loss value is smaller than the other models for both the
training and validation datasets. This is an intuitive demonstration
of the dominance of our proposed model.

In order to verify the superior performance of the hybrid model,
this study selected the solar radiation data from 5 November 2011,
for model training. The prediction results of the 17 distributed PV
plants on Oahu Island are shown in Figure 5. The prediction time
spanned from 5:00 a.m. to 8:00 p.m. The predicted curve fits well
with the actual value curve, indicating that the proposed model has
a better prediction effect.

Figure 6 shows the regression plots for the 17 sites,
demonstrating the degree of fit between the data and the regression
line. It can be seen that only a few data points deviate slightly
from the regression line, and the rest of the data points are evenly
distributed on both sides of the regression line, descending along
a 45-degree line. The R-value of each site reaches 0.99, further
demonstrating the superior prediction effect of the proposed
model.

To compare the performance of LSTM, CNN, and the proposed
model, they were validated using the same dataset for training.
Table 2 shows their respective errors, from which it can be seen
that the LSTM model has the largest error, and the proposed
model is significantly better than the other two models. The reason
behind this is that LSTM lacks temporal learning, and its before-
and-after feedback mechanism can only extract some data features,
resulting in poorer prediction accuracy. On the other hand, the
proposed model adds the CNN structure, which extracts and filters
temporal features, discards useless information, enhances useful
information, and fully extracts features, thus improving prediction
accuracy.

In order to make the comparison more rigorous, we added a set
of comparisons by inputting the data of 17 sites into the LSTM for
training. From Figure 7 and Figure 8, we can see that the LSTM
is significantly worse than our proposed model, thus illustrating
that the existence of strong spatial correlation among 17 sites can
improve the prediction accuracy. In addition, we also used a single

CNN and LSTM model for training on the same dataset, and from
the results, our proposed CNN-LSTM model is superior. Figure 9
and Figure 10 shows the comparison between the proposed model
and other models evaluation indexes.

4 Conclusion

In this paper, a spatio-temporal prediction scheme based on a
deep learning model is proposed to capture the strongly correlated
spatial relationships among distributed PV generation systems.
The proposed model leverages long and short-term memory
networks and convolutional neural network models to extract
spatio-temporal features from historical data and integrate them
using neural networks. Compared with single CNN and LSTM
models, the proposed model achieves significant improvements in
RMSE and MAE of 19% and 31%, and 24% and 38%, respectively,
demonstrating its effectiveness in improving prediction accuracy
for practical engineering applications. Future work may explore
other combined models and compare their performance with the
proposed deep learning model.
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Harmonics brought about by a large number of impulsive and non-linear loads
connected to the grid has led to new challenges in regional carbon emission
management. The existence of harmonics increases the consumption of power
equipment, and the transformation of signal forms makes the accuracy of
carbonmeasurement questioning, which damages fairness and is not conducive
to a carbon trading market construction and the purpose of precise carbon
verification. This paper proposes that the harmonic level of each node is
monitored during carbon metering of the distribution network; carbon metering
results are corrected based on the correction amount of harmonic carbon.
Harmonic separation and electric carbon conversion of the current-containing
harmonic source are conducted on the IEEE-33 node. The results show that
harmonic carbon does exist. Carbon metering results are affected when the
power quality is seriously distorted, which is not conducive to establishing a
carbon metering trading market.

KEYWORDS

carbon metering, distribution network, harmonic carbon, IEEE-33, regional carbon
emission management

1 Introduction

Global warming is one of the challenges human society is facing today. The role of CO2
in the global warming effect caused by greenhouse gases is as high as 77% (Kweku et al.,
2018). Therefore, reducing CO2 emissions is an urgent issue. Over the past decades, various
countries have been making efforts to reduce carbon emissions, and China has released an
action plan to reach the peak of CO2 emissions by 2030 (Fang et al. 2019). Specifically, the
power industry accounts for a huge share of carbon emissions, and therefore, accurate carbon
emission metering is crucial.

Generally, the existing carbon emission calculation methods (Zhang et al. 2021a) are
based on the statistics of energy consumption. Specifically, carbon emission data are obtained
by multiplying power generation and carbon emission factors. It has the advantages of
simple calculation and practical methods. However, this approach cannot reflect the low
carbon characteristics of the power system.The power system carbon emission flow (PSCEF)
(Kang et al., 2012; Sun K et al., 2023; Kang et al., 2015; Sun et al., 2017) is defined as a virtual
network flow that is dependent on the power flow (PF), and it is used to characterize the
carbon emissions that maintain the power flow in either branch. Specifically, the PSCEF
is equivalent to labeling the current on each branch with carbon emissions. In the power
system, the carbon emission flow starts from the power plant, enters the power system from

Frontiers in Energy Research 01 frontiersin.org34

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1228114
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1228114&domain=pdf&date_stamp=2023-07-13
mailto:phoenixyjc@126.com
mailto:phoenixyjc@126.com
mailto:kuanrongh@sina.com
mailto:kuanrongh@sina.com
https://doi.org/10.3389/fenrg.2023.1228114
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1228114/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1228114/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1228114/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yu et al. 10.3389/fenrg.2023.1228114

the power plant’s feeder, follows the power in the system, and finally,
flows to the customerterminal on the customer side.

The PSCEF effectively maps the relationship between electricity
and carbon conversion. Based on this, scholars have conducted
research and improvements. Wang et al. (2022) proposed a demand
response (DR)-based low-carbon optimal-scheduling model for
carbon intensity control. Meanwhile, a data-driven approach based
on deep learning (Qin et al. 2022) is utilized for carbon emission
flow (CEF)modeling to cope with the shortcomings of conventional
emission calculations. Cheng et al. (2018) proposed a carbon
emission stream analysis model for multi-energy management
systems to quantify the carbon emissions associated with energy
transport and conversion processes. An optimal scheduling model
of an integrated energy system is proposed to verify the impact of
carbon emissions on system scheduling and LMP (Jiang et al., 2018).
However, the aforementioned theories and their improvement
methods are only on how to make mapping more realistic. In
real applications, the construction of carbon markets (Zhou and
Li, 2019) involving user transactions cannot be separated from
accurate carbon measurement methods. Although the accuracy
of carbon flow calculations has been improving all the time,
this does not guarantee the accuracy of carbon measurement
results. With a low-carbon goal, a large amount of new energy
generation and power electronics are connected to the grid,
making the power quality unreliable. Correlated regional loads and
unpredictable renewable energies in the power systemmake regional
carbon emission management (RCEM) increasingly challenging
and necessary (Wang et al., 2015). The degraded power data will
inevitably lead to errors in carbon measurement results (Suo et al.,
2022). Furthermore, carbon measurement results affected by
harmonics will be questioned by many parties when it comes to
low-carbon responsibility delineation and metering transactions.

Currently, harmonic PF calculations in distribution networks
(Sun H et al., 2023) are emerging. Lundquist and Bollen (2000)
were the first to show the principle that harmonic active power
in radial low- and medium-voltage distribution systems varies
due to the interaction between the load and the power system.
Zhang and Wang (2014) proposed a forward/backward sweeping
distribution system harmonic power flow algorithm based on the
output impedance model considering the interaction between the
DG and the grid. Some scholars also proposed a harmonic power
flow calculation method for distribution networks based on a
general model of harmonic sources based on the network topology
(Zhang et al., 2021b). In summary, the harmonic source is regarded
as a single-port unknown network, and the voltage–current
relationship in the time domain is converted into an expression
in the frequency domain. Using the superposition theorem and
triangular relations, matrix relations of the general model of the
harmonic source are established. The harmonic derivative equation
and the harmonic source model equation of the system are also
solved to obtain the harmonic power flow of the system.

In order to investigate the effect of harmonics on carbon
metering in distribution networks, this paper proposes a correction
method for carbon flow calculations combined with harmonic PF
calculations. Specifically, first, the carbon emission factor at the
beginning of distribution network nodes is obtained by the main
network carbon flow calculation.Then, the harmonic currents of the
distribution network are calculated using the decoupling method

(Ulinuha et al. 2007; Canesin et al. 2014) to obtain the harmonic
distortion rate of each node. Finally, the correction measurement of
harmonic carbon is carried out for nodes whose distortion crosses
the limit.

2 Harmonic power flow

In the case where the distribution network contains non-linear
loads or non-linear substation equipment, the power flow in the
system consists of the fundamental power flow and harmonic power
flow. Unlike the fundamental power flow, the harmonic power flow
is derived from non-linear loads and substation equipment.

In order to analyze the effect of harmonics on the carbon
flow in power systems, it is necessary to analyze the carbon flow
corresponding to harmonics. To analyze the harmonic carbon flow,
first, the harmonic source should be reasonably simplified and
modeled and the parameters of the harmonic source should be
determined through an analysis; after that, the distribution of the
harmonic power flow in the system is required, and the harmonic
carbon flow analysis is carried out on the basis of the distribution of
the harmonic power flow.

In the actual system, the presence of harmonics derives
metering results from the ideal power flow default for carbon flow
calculations, resulting in inaccurate node carbonmeasurements.The
formula for the power signal without the DC component is shown in
Eq. 1. Assuming that the fundamental wave is the first harmonic, the
power signal consists of the fundamental and each high-frequency
harmonic and Gaussian white noise.

f (t) =
∞

∑
h=1

Ahcos(2π fht+φh) + noise, (1)

where Ah, fh, and φh are the magnitude, frequency, and phase of the
harmonic signal, respectively.

2.1 Harmonic source model

To characterize the harmonic current generated by a harmonic
source, the harmonic source needs to be modeled. The harmonic
currents generated can be expressed as a function of the node voltage
and load control parameters.484 (IEEE, 1996)

Ik = Fk (U1,U2,…Un,C1,C2,…Cn) , (2)

where k = 1,3,5,…,n, and n is the number of harmonics; Ik is
the kth-harmonic current generated by the non-linear load; U1,
U2, …, Un are the fundamental and harmonic component of the
node voltage of the non-linear load; C1, C2, …, Cn are the load
control parameters. They are the circuit structure and control
parameters of the device for the first category of harmonic sources
and the parameters characterizing the voltammetric characteristics
for the second category of harmonic sources. Theoretically, Eq. 2
is an accurate model of harmonic sources, but the model is too
complicated for calculation, which limits its application in harmonic
analysis and calculation.

In this study, the Norton model is used to characterize the
current characteristics of the harmonic source. The basic idea of the
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Norton harmonic source model is to consider the non-linear load
as a harmonic current source, which can be described as a current
source in series with an equivalent impedance. In this model, the
harmonic current source is considered to exist independently in
the power system and is not influenced by voltage variations. The
equivalent impedance of the harmonic current source is determined
by the non-linear load and system impedance in parallel with it.

Ik = Ik0 +
Uk

Zk
. (3)

Ik0 is determined by the fundamental voltage at the node where
the harmonic source is located. Uk and Zk are the kth-harmonic
voltage and kth-harmonic impedance, respectively. Zk and Ik0 are
calculated by Eqs. 4, 5, respectively, and i and j represent the
measurement results of different operating conditions of the system.

ZK = |
Vk,i −Vk,j

Ik,i − Ik,j
| , (4)

Ik0 = Ik,i +
VK,i

Zk
. (5)

2.2 Harmonic power flow calculation

Due to the coupling relationship between the fundamental
power flow and harmonic power flow, the influence of the
fundamental power flow on the harmonic power flow is large.
However, the influence of the harmonic power flow on the
fundamental power flow is small. Therefore, the analysis of the
fundamental power flow is the main aspect. The fundamental power
flow is calculated first, and the harmonic current is solved later. The
effect of the harmonic power flow is not considered in the calculation
of the fundamental power flow, and its effect on the harmonic power
flow is known after the calculation of the fundamental power flow.
In this way, the decoupling of the fundamental and harmonic power
flow is achieved.

Because the decoupling algorithm ignores the effect of each
harmonic voltage on the fundamental current of the harmonic
source, fundamental and harmonic currents of the harmonic source
can be expressed, respectively, as follows:

I1 = F1 (U1) , (6)

In = Fn (U1,U2,…) ;n = 2,3…. (7)

When the decoupling algorithm calculates the fundamental
power flow, for the linear load bus, its fundamental injection power
is dependent on the bus where it is located. For the harmonic
source bus, the amplitude and phase of its fundamental current
can be derived using Eq. 6, and then, its fundamental active and
reactive power can be calculated. Since the fundamental voltage
is continuously updated during the iteration of the fundamental
current, the fundamental current should be recalculated using
Eq. 6 for all iterations of the fundamental current to update the
fundamental active and reactive power absorbed by the harmonic
source.

After the calculation of the fundamental power flow is
completed, the fundamental voltage U1 is known. In Eq. 7, if each

harmonic voltage is zero, then the initial value of each harmonic
current injected into the grid by the harmonic power flow can be
found. According to the bus voltage equation,

In = YnUn. (8)

From the aforementioned equation, the harmonic voltage of
each bus of the system can be obtained, and then, the harmonic
voltage is substituted into Eq. 7 to obtain the correction value
of each harmonic current of the harmonic source. The new
harmonic voltages are obtained by substituting the corrected values
of harmonic currents into Eq. 8. This iteration is repeated until a
given convergence accuracy is satisfied.

3 Carbon flow theory and the
harmonic carbon flow

The carbon flow theory is proposed to quantify the state of
carbon emissions in a power system based on the distribution
of the power flow. The power system carbon flow is a kind of
virtual network flow that depends on the power flow and is used to
characterize the carbon emission distribution in the power system.
The power system carbon flow is equivalent to labeling each PF with
carbon emissions. The carbon flow in the power system originates
in the power plant and eventually enters load nodes via the power
grid. Similar to electricity, the carbonflow is generated by generators.
It is consumed by electricity consumers through the carbon flow.
Correspondingly, the harmonic carbon flow is a measure of carbon
emissions based on harmonics in the power system to correct the
emissions of each load in each branch of the system.

3.1 Concepts to describe carbon emissions

The calculation of the carbon flow is used to measure the
production, consumption, and transmission of carbon in the power
system. Some basic concepts of the carbon flow are introduced as
follows, including the carbon flow, carbon flow rate, and carbon
flow density (CFD). The CFD is defined to describe the relationship
between the carbon flow and active power in power systems.
Furthermore, the CFD is divided into two categories according to
the branch and node, namely, the branch carbon flow density and
the node carbon potential, respectively.

3.1.1 Carbon flow and the carbon flow rate
The carbon flow is a basic concept in the carbon flow theory.

The carbon flow characterizes the magnitude of the carbon flow in a
branch or load, which is represented by F.The carbon flow is defined
as the cumulative amount of carbon emissions in a given branch
or load. The international unit of carbon emissions is generally
expressed in tCO2 or kgCO2.

The carbon flow rate is defined as the carbon flow that passes
the branch or flows into the load per unit time, represented by R, at
a value equal to the derivative of the carbon flow rate with respect to
time as shown in the following equation:

R = dF
dt
. (9)
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FIGURE 1
Framework of precise carbon metering considering harmonics.

FIGURE 2
IEEE-33 standard system.

3.1.2 Branch carbon flow density
Given that the carbon emission flow of the power system

is dependent on the PF, it is necessary to combine the carbon
emission flow with the PF. Furthermore, the carbon emission in the
power system is mainly related to active power. To characterize the
combination of them both, the ratio of the carbon flow rate of any
branch to active power is defined as the branch carbon flow density
(BCFD).

ρ = R
P
, (10)

where ρ represents the ratio of the CFR of any branch to the active
PF in the power system.

The unit of the carbon flow density is gCO2/(kWh). In generator
nodes, the BCFD is equal to the carbon emission intensity of the
generator. In the load, the BCFD is equal to the carbon emission
value of the generation side caused by the consumption of unit
power transmitted by the branch line.

3.1.3 Node carbon potential
The carbon flow theory defines the physical quantity that

describes the carbon emission intensity of nodes by the carbon
emission flow, named the node carbon potential (NCP). en is used
to describe the NCP of node n.

en =
∑

i∈N+
Piρi

∑
i∈N+

Pi
=
∑

i∈N+
Ri

∑
i∈N+

Pi
, (11)

where the unit of the NCP is gCO2/(kWh), the same as that of the
BCFD. The NCP equals the weighted average of BCFD ρit of all
branches flowing into node n concerning active power Pit .

The physical meaning of the NCP is the value of carbon
emissions caused by the consumption of a unit of electricity on that
bus. For a power plant bus, its nodal carbon potential is equal to the
real-time generation carbon emission intensity of a power plant.
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FIGURE 3
THDU for all nodes.

TABLE 1 Branch connection and the fundamental carbon flow (KgCO2/s).

Branch From bus To bus RBF Branch From bus To bus RBF

1 1 2 5137.934 17 17 18 0.934

2 2 3 4509.401 18 2 19 474.625

3 3 4 3056.576 19 19 20 356.199

4 4 5 2862.666 20 20 21 236.520

5 5 6 2749.768 21 21 22 118.207

6 6 7 1332.148 22 3 23 1238.919

7 7 8 1066.503 23 23 24 1114.743

8 8 9 796.366 24 24 25 553.704

9 9 10 711.439 25 6 26 1269.095

10 10 11 627.574 26 26 27 1185.153

11 11 12 567.744 27 27 28 1099.751

12 12 13 487.814 28 28 29 998.392

13 13 14 405.694 29 29 30 825.210

14 14 15 247.342 30 30 31 554.906

15 15 16 168.277 31 31 32 354.830

16 16 17 89.342 32 32 33 78.776

3.2 Node carbon potential vector

The primary goal of carbon emission flow calculations in a
power system is to calculate the carbon potential of all nodes. To
calculate the fundamental node carbon potential vector (FNCPV),
three matrices should be constructed first. Specifically, these
matrices are the fundamental node active flux matrix (PNF),
fundamental branch power flow distribution matrix (PBF), and

generator injection distribution matrix (PG). Furthermore, they are
constructed from power flow calculation results. To calculate the
harmonic carbon potential vector (HNCPV), three matrices should
be constructed as well; they are the harmonic node active fluxmatrix
(PNH), harmonic branch power flow distribution matrix (PBH), and
harmonic source injection distribution matrix (PHS). The FNCP
and HNCP of the power system can be calculated based on the
aforementioned results.

• PNF and PNH are N-order diagonal matrices that describe the
contribution of the generator set and other nodes to the NCP
of a node in the system; the subscripts here and later F and H
denote the terms fundamental and harmonic, respectively.
• PBF and PBH are used to describe the active power flow

distribution of the power system. This matrix contains the
topology structure information of the power network and the
steady-state active power flow distribution information.
• PG is K times the N matrix. It is defined to describe the

connection between all generating sets and the power system. In
addition, it represents the active power injected into the system
by the unit.
• EG and EHS are vectors representing the carbon potential

of all generators and harmonic sources in a power system,
respectively.

ENF = (PNF − P
T
BF)
−1PTGEG, (12)

ENH = (PNH − P
T
BH)
−1PTHSEHS. (13)

3.3 Total harmonic distortion of carbon

Once the amount of the harmonic carbon flow is calculated,
it can be used to correct the fundamental carbon flow to obtain
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TABLE 2 RBH of all branches (gCO2/s).

Branch All branches’ carbon flow of each harmonic (RBH,N) Total

3rd 5th 7th 9th 11th 13th

1 −457.419 −174.867 −82.056 −60.774 −32.237 −20.177 −827.530

2 −2911.950 −1113.861 −522.796 −387.239 −205.422 −128.579 −5269.847

3 −3375.294 −1269.009 −585.957 −443.029 −240.178 −152.345 −6065.811

4 −4514.431 −1685.487 −773.095 −583.694 −316.179 −200.105 −8072.990

5 −5012.536 −1819.635 −812.094 −610.299 −329.721 −209.949 −8794.234

6 −1261.253 −264.188 −89.160 −43.477 −12.926 −1.385 −1672.389

7 −1470.722 −322.618 −115.935 −63.314 −23.765 −8.273 −2004.626

8 −1763.242 −401.129 −151.810 −89.816 −38.266 −17.493 −2461.756

9 −2029.544 −471.047 −184.293 −113.969 −51.581 −25.993 −2876.427

10 −2124.211 −502.694 −199.644 −125.696 −58.064 −30.145 −3040.454

11 −2228.633 −529.002 −211.573 −134.455 −62.865 −33.199 −3199.727

12 −2597.753 −618.958 −252.427 −164.414 −79.330 −43.684 −3756.566

13 410.883 169.813 89.447 72.259 41.225 26.982 810.608

14 334.392 145.921 78.606 64.217 36.868 24.224 684.229

15 226.860 86.305 42.238 32.449 17.909 11.463 417.224

16 154.443 57.484 27.874 21.319 11.738 7.502 280.360

17 82.797 29.043 13.716 10.354 5.660 3.602 145.172

18 1.773 0.861 0.437 0.335 0.181 0.115 3.701

19 1.329 0.645 0.327 0.251 0.136 0.086 2.773

20 0.882 0.428 0.217 0.167 0.090 0.057 1.840

21 0.440 0.214 0.108 0.083 0.045 0.028 0.919

22 −742.404 −294.951 −143.513 −98.423 −47.823 −28.030 −1355.144

23 41.508 18.123 9.022 6.752 3.583 2.251 81.239

24 20.589 8.985 4.472 3.346 1.776 1.115 40.284

25 −3985.662 −1649.445 −764.416 −598.211 −333.697 −219.321 −7550.751

26 −4254.467 −1764.327 −814.434 −636.043 −353.969 −232.207 −8055.448

27 −5207.080 −2171.330 −990.660 −769.239 −425.276 −277.538 −9841.123

28 −5972.923 −2502.667 −1135.507 −879.105 −484.230 −315.053 −11289.485

29 −6523.283 −2736.690 −1237.431 −956.150 −525.505 −341.283 −12320.341

30 −7538.871 −3164.382 −1422.412 −1095.765 −600.214 −388.751 −14210.395

31 377.287 167.603 76.749 58.653 31.698 20.179 732.169

32 63.998 26.159 11.629 8.770 4.706 2.984 118.246

accurate carbon measurement results. RBC is the corrected branch
carbon flow rate, and it is calculated as follows:

RBC = RBF +
N

∑
2
RBH,N, (14)

where N represents the number of harmonics.
In the previous carbonmeteringmethods, only the fundamental

carbon flow was considered and the problems caused by harmonics

and their generated carbon flowswere not considered. By calculating
the harmonic carbon flow and summing it with the fundamental
carbon flow, all the carbon flow that actually flows in each branch
is calculated accurately. THDCF is a parameter used to measure the
effect of the harmonic carbon flow on the fundamental carbon flow,
indicating the ratio of the harmonic carbon flow to the harmonic
carbon flow. THDCF and THDI are calculated by Eqs. 15, 16,
respectively, where N stands for the number of harmonics. THDI
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FIGURE 4
Total harmonic distortion of the current and the carbon flow for all branches.

TABLE 3 Correction of the branch carbon flow rate (KgCO2/s).

Branch RBF ∑N2RBH,N RBC Branch RBF ∑N2RBH,N RBC

1 5137.934 −0.828 5137.107 17 0.934 0.145 1.079

2 4509.401 −5.270 4504.131 18 474.625 0.004 474.628

3 3056.576 −6.066 3050.510 19 356.199 0.003 356.202

4 2862.666 −8.073 2854.593 20 236.520 0.002 236.522

5 2749.768 −8.794 2740.974 21 118.207 0.001 118.207

6 1332.148 −1.672 1330.476 22 1238.919 −1.355 1237.564

7 1066.503 −2.005 1064.499 23 1114.743 0.081 1114.825

8 796.366 −2.462 793.905 24 553.704 0.040 553.744

9 711.439 −2.876 708.563 25 1269.095 −7.551 1261.544

10 627.574 −3.040 624.534 26 1185.153 −8.055 1177.098

11 567.744 −3.200 564.544 27 1099.751 −9.841 1089.910

12 487.814 −3.757 484.057 28 998.392 −11.289 987.102

13 405.694 0.811 406.504 29 825.210 −12.320 812.890

14 247.342 0.684 248.026 30 554.906 −14.210 540.696

15 168.277 0.417 168.694 31 354.830 0.732 355.562

16 89.342 0.280 89.622 32 78.776 0.118 78.895

is the total harmonic distortion of the current.

THDCF =
∑N

2
RBH,N

RBF
, (15)

THDI = √
N

∑
2
(
IN
I1
)

2
. (16)

4 Calculation framework of the
harmonic carbon flow

This section proposes a calculation model to analyze the effect
of harmonics on the carbon flow in a power system containing
harmonics. The framework of this paper is shown in Figure 1, where
the original nodal power signal is considered as a combination of
fundamental and harmonic signals. First, the calculation computes
the carbon potential of each node by carbon flow calculations. At
the same time, harmonic distortion rate monitoring is executed
to determine the harmonic level of the signal. If the threshold
value is exceeded, the harmonic power flow is executed to calculate
the harmonic energy. The harmonic energy is multiplied with the
node carbon potential to obtain the harmonic carbon correction
amount. Finally, the accurate carbon measurement value is obtained
by summing fundamental carbon and harmonic carbon. EG and
EHS are boundary conditions for the model; the carbon intensity
of the generators, EG, should be initialized; EHS is the boundary
condition for the harmonic carbon flow calculation determined
after the fundamental harmonic carbon flow. Before the calculation,
the carbon intensity of the generators should be initialized. Then,
the following steps should be performed to calculate the harmonic
carbon flow:

1. The first step is the decomposition of power system signals into
fundamental and harmonics

2. The system fundamental power flow is calculated, and based on
the active power distribution, we establish PNF , PBF , and PG

3. If PNF–PBF is invertible, we go to step 5; otherwise, which means
that the power system is not connected or there are siloed nodes,
we go to step 4

4. Unconnected and siloed nodes are eliminated, and we go to step
1

5. We calculate ENF for all nodes, RBF for all branches,
and ENF of nodes where harmonic sources are located,
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which is the carbon emission intensity of harmonic
sources

6. The harmonic power flow is calculated, and based on the active
power distribution, we establish PNH , PBH , and PHS

7. We calculate ENH for all nodes and RBH,N for all branches
8. We correct the branch carbon flow rate (RBC) to get accurate

carbon measurement results

5 Results and discussion

To demonstrate the proposed method and model, a case study
based on the IEEE-33 bus system is presented without considering
the network loss and assuming that the system has no power
exchange with the main grid. This system has two generators, one
burns fossil fuels located on bus 1 and another is a new energy
generator located on bus 18, which is also a harmonic source. A total
of 32 buses carry a load, and there is only one voltage level for the
whole system.

As shown in Figure 2, the harmonic source is located in node
5, node 13, node 23, and node 31. Harmonic sources generate the
third, fifth, seventh, ninth, eleventh, and thirteenth harmonics. The
magnitude of harmonics decreases as the number of harmonics
increases. Given that G1 is a thermal power generator, its carbon
potential is at a high level, while the new energy generator has
a low carbon potential. We initialize the carbon potential of the
thermal generator and new energy generator as 845 gCO2/kWh and
0 gCO2/kWh, respectively, which means EG = [875,0]. The carbon
potential of harmonic sources depends on the carbon potential of
the bus where they are located, so EHS needs to be determined after
the calculation of the fundamental carbon flow.

According to the calculation framework, the fundamental power
flow and fundamental carbon flow are calculated first. The total
harmonic distortion of voltage (THDU) at each node is shown in
Figure 3. The harmonic distortion of the 30th to 33rd nodes is the
most serious, with a total distortion rate of more than 12%, and the
distortion of all nodes is less than 15%.

Table 1 shows branch connections and fundamental carbon flow
RBF . The bus-to-bus flow is used to describe the branch connection
and specify the direction of the branch, such as the carbon flow
and power flow. If the carbon flow and power flow are the same
as the direction, then the carbon flow or power flow values are
positive; otherwise, they are negative. According to fundamental
harmonic carbon flow calculation results, initial conditions for
the calculation of the harmonic carbon flow, the harmonic source
carbonpotential (EHS) is determined,EHS = [875,875,875,875].This
is because the power emitted by the generator is much greater than
that of the distributed power source, so ENF of the nodes far from
the distributed power source is closer to EG of the generator.

Along with the flow of each harmonic through branches of
the system, the carbon flow in the branch will also consist of the
corresponding carbon flow of each harmonic. Table 2 shows the
harmonic carbon flow rate for all branches in the system. Since the

power injected by harmonic sources decreases as the number of
harmonics increases, the corresponding harmonic carbon flow also
decreases as the number of harmonics increases. Since harmonic
sources are located in a different location than the generators, the
harmonic carbon flow does not flow in the same direction as the
fundamental carbon flow in branches.

As shown in Table 3,∑N2 RBH,N is the total carbon flow generated
by the harmonic carbon flow. RBC is the corrected carbon flow of all
branches. In the 17th branch,∑N2 RBH,N andRBC are in the same order
of magnitude. Harmonics have a significant impact on the carbon
flow in this branch.

Figure 4 shows the total harmonic distortion of current (THDI)
and the total harmonic distortion of carbonflow (THDCF). Although
the calculation of the carbon flow is closely related to the
active power of the branches, this system has only one voltage
level; so this relationship can be seen as a relationship with the
current. The distribution of the harmonic carbon flow distortion
and harmonic current distortion in branches is not the same;
the current distortion rate is very large, while the carbon flow
distortion rate may still be very small. Therefore, the analysis of
the branch harmonic carbon flow distortion cannot simply be
considered as the branch current harmonic distortion, where the
distortion of the current is not severe, but carbon flow distortions
can be very serious, which can have a significant impact on
the establishment of carbon markets and the fairness of carbon
trading.

6 Conclusion

This paper provides a novel analytical model for the carbon
emission flow in the power system that contains harmonics. The
model can improve the accuracy of power system carbon emission
measurement and clarify the effect of harmonics on the carbon
flow. The carbon flow exists as a virtual network flow dependent
on the power flow, generated in the generator and transmitted in
the transmission network. Due to the large number of new energy
sources connected to the grid and the increase of non-linear power
electronic equipment loads, the harmonic problem of the power
systemhas becomemore andmore evident.The issue of the accuracy
of carbon measurement and the fairness of carbon trading has
also arisen. The harmonic carbon flow calculation model calculates
the distribution of the harmonic carbon flow for power systems
containing harmonics and is able to make corrections to the carbon
flow of the power system. The model is verified by the IEEE-33 bus
system.
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Optimal transmission switching
for power system integrating
renewable energy based on
analytical target cascading
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The penetration rate of intermittent renewable energy in power system is
gradually increasing, which brings challenges to the optimal dispatch of power
system. To solve these problems, a multi-regional interconnected transmission
network optimization method based on analytical target cascading is proposed.
Firstly, the reactive power regulation characteristics of renewable energy is
investigated, and the models of wind turbine and photovoltaic generation are
established. Secondly, the power system is decomposed into multiple sub-
systems using bus tearing method, and an optimal transmission switching
(OTS) model with renewable energies is established. Then, the analytical target
cascading (ATC) approach is employed to decompose the model into the main
problem and several sub-problems for parallel computation to achieve
coordinated optimization of the complex transmission network. Finally, the
IEEE 14-bus system and the IEEE 118-bus system are used to verify the
proposed model. The results show that the proposed method can deal with
the coupling nonlinear problem well and promote the consumption of renewable
energy.

KEYWORDS

multi-regional interconnected transmission, analytical target cascading, renewable
energy, optimal transmission switching, optimal power flow

1 Introduction

In the context of the Energy Internet, the interconnections of the power grid facilitate the
long-distance transmission of electrical energy and the improvement of energy utilization
efficiency, which in turn supports the optimal management of high-capacity and high-
efficiency units. However, the increasing contradiction of source–load imbalance and various
intermittent renewable energy sources account for an increasing proportion of power
generation, which makes it difficult to predict the uncertainties at the grid side and the
contradictions of the source network become prominent (Gao et al., 2023). In addition,
information transmission between dispatching centers of different transmission networks is
often inaccurate and untimely, which brings some difficulties to the development of the
power transmission plan of boundary nodes, network blockage, and other problems that
often occur during transmission grid operation (Ostrowski et al., 2014). Therefore, it is of
great significance to enhance interconnection and non-homology effects between regions of
the power system.
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The non-synchronous phenomenon in the power transmission
network can be alleviated to a certain extent by optimal transmission
switching (OTS) through line cut-off and open-loop operation of the
electromagnetic loop network on the strength of the practical working
conditions of the power network, without additional investment in
power transmission network construction. This can eliminate network
congestion, alleviate conflicts between sources, networks, and loads, and
improve the flexibility and economy of the system. Based on this, OTS
has become an effective method to change the tide distribution by
changing the opening and closing states of some lines in the power
system (Khanabadi et al., 2013). Some scholars have studied the OTS,
and in Huang et al. (2020), the OTS based on the generalized short-
circuit ratio sensitivity analysis was proposed, which helps reconcile the
conflict between system strength and short-circuit current levels. In Li
et al. (2021), an SSDS system framework of the UHV power grid
considering the risk of the communication systemwas proposed, which
is profitable in improving the stability of the UHV system. The
economic scheduling model considering OTS involves mixed-integer
programing, which introduces a significant number of discrete variables
into the model, resulting in increased complexity when solving the
model. While previous studies have demonstrated the effectiveness of
OTS in improving system economy, there is a lack of research on
optimizing the solving speed of the model.

In order to improve the efficiency of solving, many scholars have
carried out thorough research around the solving algorithm. In Eresghs
et al. (2014), the distributed optimal power flow (OPF) calculation for
alternating current systems was achieved by using the alternating
direction method of multipliers (ADMM). The ADMM is cannot
eliminate the drawbacks of the first-order algorithm because it is
based on the augmented Lagrange multiplier and the proximal point
algorithm (Bai et al., 2015). The distributed interior point algorithmwas
applied inWei et al. (2011) to decentralize the solution of theOPF of the
grid and to achieve simultaneous iterations in each region. In Wang
et al. (2022), the synchronousADMMwas used to solve the coordinated
optimization of numerous sub-systems, and then the overall
optimization was determined. In Liu et al. (2017), based on the
research of vulnerability analysis of critical nodes in the complex
network, a cascading fault model was established. In Li et al. (2023),
an energy trading model based on stochastic programing (SP) was
established, and it used distributed alternating search procedures to
accelerate the calculation process of the Nash equilibrium. The
aforementioned research optimization algorithms can effectively
improve the speed of the model solution but do not consider the
complexity of the power system network, which is affected by zonal
management and non-sharing of information, thus making it hard to
set up a general solution of multi-regional interconnected transmission.

Analytical target cascading (ATC) is a distributed algorithm
suitable for solving interconnection and coupling problems. It does
not depend on additional information input, can be solved
efficiently and accurately only by decoupling variables of the
initial problem, and can be used to handle the large-scale
renewable energy grid of entropy increase, accelerating the use of
centralized ways to work out the majorization of the large-scale
optimization process. In Zhai et al. (2021), ATC is applied to seek the
optimal plan for day-ahead scheduling. During iteration, only the
voltage and phase angle of the boundary are shared between the
main problem and sub-problems. As a result, the amount of data
exchanged per iteration is reduced. In Li et al. (2019), a double-deck

scheduling solution was established by ATC, and then, a linearized
optimization model for active distribution networks is established
due to existence of interaction variables between the upper and
lower layers. The aforementioned research provides a good reference
for this work to conduct OTS.

In addition, the large-scale grid integration of renewable energy
gradually changes the balance pattern of load generation in the
traditional grid, and its related research discusses methods of
optimizing the consumption rate of renewable energy in the power
system (Sahri et al., 2021; Srivastava et al., 2021; Dashtdar et al., 2022).
A large number of studies on OTS that consider renewable energy
sources have been conducted. In Liu et al. (2022), an OTS model with
renewable energy considering structural optimization was proposed,
which reduces the system operation cost and cost of loss due to
network blockage after failure by OTS. In Ogundairo et al. (2022), a
two-stage stochastic optimization model that considers OTS and
energy storage allocation was constructed to improve the economy
of the power grid by incorporating renewable energy sources. In
Ahmed et al. (2021), to reduce the fluctuation influence of large-scale
wind power in the grid, an OTS model for integration of large-scale
renewable energy based on probabilistic power flow was proposed,
and the superiority of which has been verified by numerical examples.
However, the aforementioned studies do not consider the reactive
voltage characteristics of wind and photovoltaic generators, cannot
realize the deep excavation of renewable energy consumption capacity
of the power system, and have certain limitations. As fossil energy
generation gradually gives way to renewable energy generation, on the
one hand, the active power balance gets worse regularly and
absorption capacity of the renewable energy becomes insufficient.
On the other hand, the proportion of synchronous generators with
active excitation regulation in the system decreases, while the
asynchronous power generation forms such as wind power and
photovoltaic that consist of voltage support increase. Therefore,
reactive power voltage regulation resources in the system should
be fully tapped to support the consumption of renewable energy.
In Naga Sai Kalyan et al. (2023), an optimization model based on the
fruit fly optimization technique (FFOT) is established, which solves
the coupling problem of output adjustment of multi-area and multi-
renewable energy power. The advantages of ATC over the
aforementioned research are that it allows for a systematic step-by-
step approach to address the interdependencies between different
components or sub-systems. By breaking down the problem into
smaller and more manageable goals, it becomes easier to identify and
address the specific coupling issues. This method also promotes
modularity and flexibility, as changes or updates in an area can be
made without affecting the entire system. Ultimately, the goal-
oriented cascade method helps to reduce complexity and improve
overall system performance.

To tap the renewable energy consumption potential of multi-
regional interconnected power systems and design a model that
conforms to the dispatching mode, an OTS model with renewable
energy based on ATC is established. The main contributions are as
follows:

1) The ATC-based model can effectively enhance the economic
efficiency of operating interconnected grids, fully leverage the
system’s flexible operational capabilities, and optimize resource
utilization across the entire network.
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2) An OTS model considering wind and photovoltaic energy is
proposed, and the reactive voltage regulation characteristics of
wind and photovoltaic are considered to measure uncertainty
caused by the change of entropy, and then the renewable energy
generation component model is established. By incorporating
binary variables that indicate the status of the lines into the
decision variables, the operation economy of power system with
wind and photovoltaic generations can be improved by
optimizing the power transmission network structure and the
power output of the generators.

3) For the model of multi-regional interconnected transmission, the
bus-tearing method is used to divide the electrical grids into
separate zones, and independent economic dispatch is
performed within each zone. ATC is used to solve the
proposed model, which can partly reduce the difficulty of
calculation. The applicability of the proposed model is verified
based on numerical studies.

2 Renewable energy generation model

To deal with the uncertainty caused by the entropy increase of
the interconnected grid such as renewable energy, it is crucial to take
the development status and output characteristics of renewable
energy generator components into account, mainly wind
generators and photovoltaic, and realize their fine modeling, so
as to provide effective guarantee for the resource allocation of OTS.
Section 2 considers the characteristics of the current power system
application technology development to build renewable energy
generator models.

2.1 Doubly fed induction wind turbine

One of the key advantages of the doubly fed wind turbine is that
its rotor winding has an additional power supply that can adjust the
amplitude and phase angle, which can carry out the regulation of
reactive power and emit reactive power. At the same time, the
control of active and reactive power can be separated by regulating
the excitation current of the rotor. The operating limit of the doubly

fed induction wind generator is shown in Figure 1, where Pw
max

represents the maximum active power output by the doubly fed
induction wind generator under a certain wind speed. The area
surrounded by ABCD in the figure is the safe operation area of the
unit. Similar to the synchronous generator, the regulation radius of
the doubly fed induction wind turbine gradually increases with the
active power output and decreases with the reactive power
regulation range.

The doubly fed induction wind turbine is a popular model, as it
uses a double PWM fully controlled converter to regulate the
excitation current, allowing for variable speed and constant
frequency operation. This type of wind turbine can adjust its
active and reactive power output by modifying the amplitude and
phase of the excitation current. Its power characteristics can be
summarized as follows:

0≤Pw ≤Pw
max, (1)

Qw ≥ − V2
w

Xs +Xm
, (2)

Pw

1 − s
( )2

+ Q2
w ≤ VwIs

max( )2, (3)
Pw

1 − s
( )2

+ Qw + V2
w

Xs +Xm
( )2

≤
XM

Xs +Xm
VwIr

max( )2

, (4)

S min ≤ S≤ S max. (5)

2.2 Photovoltaic generation

Photovoltaic generation output limits are shown in Figure 2. OA
and OB correspond to the power factor constraint, and the
photovoltaic generation can operate safely in the area surrounded
by OABC within the condition of satisfying the maximum active
output constraint. Under a certain active output, the reactive power
regulation capability depends on the systemmaximum capacity. The
grid-connected photovoltaic generator system has a poor reactive
voltage support capacity, and the system has a higher possibility of
voltage crossing limits and voltage instability.

The output limits of photovoltaic generation can be described as

0≤PPV ≤PPV
max, (6)

P2
PV + Q2

PV ≤ VPVIPV
max( )2, (7)

PPV/SPV ≥ cos ϕ max. (8)

3 Analytical target cascading

In ATC, the coupled information in the upper system is first
passed to the sub-systems, and then each sub-system is solved
separately to acquire the optimal solution (Shayesteh et al., 2015).
Similar to the ADMM and auxiliary problem principle (APP) (Li
et al., 2022), APP and ADMM methods utilize duality and penalty
functions to decompose the primary optimization problem into
multiple sub-problems. While the entire system is decomposed into
multiple sub-systems by ATC, the constraint relaxation is utilized to
enable information interconnection between sub-systems, and each
problem is solved in parallel (Kargarian et al., 2017).

FIGURE 1
Safe operating limit of the doubly fed induction wind generator.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2023.1239232

45

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1239232


To ensure the effectiveness of the amount of information shared
between interconnected regions, in this work, the inter-regional tie line
exchange power and voltage phase angle are selected as the shared
information variables, and the shared information between adjacent
layers ismodeled by setting the target and response variables to form the
objective function and constraints associated with each independent
region. The objective variable is the shared information transmitted
from the upper layer (main problem layer) to the lower layer (sub-
problem layer), and response variables are the shared information
transmitted from the lower layer to upper layer.

min ϕ xsys,Rsys( ) +∑N
i�1

wR
sub,i R

sys
sub,i − Rsub

sub,i( )




 




22 +∑N
i�1

wy
sub,i y

sys
sub,i − ysubsub,i( )




 




22,

s.t. Rsys � Rsys xsys,R
sys
sub( ),

g sys xsys,Rsys( )≤ 0,
hsys xsys,Rsys( ) � 0,

(9)
min wR

sub,i R
sys
sub,i − Rsub

sub,i( )




 




22 + wy
sub,i y

sys
sub,i − ysubsub,i( )




 




22,

s.t. Rsys
sub,i � Rsys

sub,i xsub,i, y
sub
sub,i( ),

g sub,i xsub,i, y
sub
sub,i ,R

sub
sub,i( )≤ 0,

hsub,i xsub,i, ysubsub,i,R
sub
sub,i( )≤ 0.

(10)

4 OPF model with renewable energy
based on ATC

Considering that the economic dispatch of renewable energy
and OPF is a non-linear optimization of complex networks, for this
reason, the OTS model is established based on the bus-tearing
method and ATC. Without loss of generality, this work divides
the system into three parts by the bus-tearing method and builds a
corresponding OPF model. This section takes region A as an
example to construct a multi-regional economic dispatch model
of the transmission grid based on ATC, and similarly, the models of
region B and region C can be established.

4.1 Objective function

The objective function is to minimize the operation cost of the
generators.

min ∑
g∈ΩA

G

CA
g PA

g( ) + ∑
g∈ΩB

G

CB
g PB

g( ) + ∑
g∈ΩC

G

CC
g PC

g( )⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭. (11)

FIGURE 2
Safe operating limit of photovoltaic generation.

FIGURE 3
Decomposition of upper and lower systems.
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4.2 Constraints

(1) Power flow constraints

zl,t · V2
i,tGl − Vi,tVj,t Gl cos θij,t + Bl sin θij,t( )( ) − Pl,t � 0, (12)

zl,t · V2
i,tBl + Vi,tVj,t Gl sin θij,t − Bl sin θij,t( )( ) + Ql,t � 0, (13)

θij,t � θi,t − θj,t,∀l ∈ NL,∀t ∈ NT. (14)

(2) Transmission line current constraints

Il,t
∣∣∣∣ ∣∣∣∣≤ Il max,∀l ∈ NL,∀t ∈ NT,

Il,t �
��������
P2
l,t + Q2

l,t

Vi,t

√
,∀l ∈ NL,∀t ∈ NT.

(15)

(3) Generator output constraints

PA,min
g ≤PA

g ≤PA,max
g ,∀g ∈ ΩA

G, (16)
Rdn
g · Δt≤PA

g,t+Δt − PA
g,t ≤Rup

g · Δt,∀g ∈ ΩA
G. (17)

(4) Branch power constraints

bAl θAi − θAj( ) − PA
l + 1 − zAl( )MA

l ≥ 0,∀l ∈ ΩA
L , (18)

bAl θAi − θAj( ) − PA
l − 1 − zAl( )MA

l ≤ 0,∀l ∈ ΩA
L , (19)

−PA,max
l zAl ≤P

A
l ≤PA,max

l zAl ,∀l ∈ ΩA
L . (20)

(5) Voltage phase angle constraints

θA
i
≤ θAi ≤ �θ

A
i . (21)

(6) Node power balance constraints∑
g∈ΩA

G,i

PA
g + ∑

w∈ΩA
W,i

PA
w + ∑

v∈ΩA
V,i

PA
v − ∑

d∈ΩA
D,i

PA
d � ∑

l∈ΩA
L,i

PA
l,ij − ∑

l∈ΩA
L,i

PA
l,ji.

(22)

(7) Region-coupled constraints

PA
ij � Pij1,∀A,∀B ∈ ΔA,∀ i, j1( ) ∈ ΓA,B, (23)
θAij � θij1,∀A,∀B ∈ ΔA,∀ i, j1( ) ∈ ΓA,B, (24)∑

l∈ΩA
L

1 − zAl( )≤ JA. (25)

In addition, constraints (1)–(8) related to wind and
photovoltaic generations are also included in the proposed
OPF model.

4.3 Model simplification

The proposed model is decomposed by taking the upper and
lower systems shown in Figure 3. As seen in Figure 3A, to pursue the
minimization of the total system operation cost, the upper–lower
system information transfer variables are optimized iteratively. As
shown in Figure 3, to illustrate the solution process of the proposed
model, the relationship of each area in ATC is depicted with area A
as the upper system.

To facilitate the description of ATC, the matrix function of the
model is established as follows:

min FA x, t1, t2...tn( ) + ∑
n∈N

FB
n y, r1, r2...rn, t1

′, t2
′...t′m( )⎧⎨⎩ ⎫⎬⎭, (26)

s.t.
gA x, t1, t2...tn( )≤ 0,
hA x, t1, t2...tn( ) � 0,

{ (27)

s.t.
gBn y, r1, r2...rn, t1′, t2′...t′m( )≤ 0,
hB
n y, r1, r2...rn, t1′, t2′...t′m( ) � 0,

⎧⎨⎩ (28)

c � t − r � 0. (29)

FIGURE 4
Optimization solution flow of OTS based on ATC.

FIGURE 5
Three-regional interconnection system.
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5 Model transformation and solution

5.1 Objective function

To facilitate the formation of objective functions and constraints
about each region, two sets of variables were set. According to the
structural characteristics of ATC, constraint (29) is solved in the
upper and lower system models.

ζ c( ) � λ ⊙ t − r( ) + μ ⊙ t − r( )



 



22. (30)

The optimization model of the upper–lower system can be
described as follows:

minFA x, t1, t2...tn( ) + ∑
n∈N

ζ c( ),

s.t. gA x, t1, t2...tn( )≤ 0,
hA x, t1, t2...tn( ) � 0,

{ (31)

minFB
n y, r1, r2...rn, t1′, t2′...t′m( ) + ∑

n∈N
ζ c( ),

s.t.
gB
n y, r1, r2...rn, t1′, t2′...t′m( )≤ 0,

hBn y, r1, r2...rn, t1′, t2′...t′m( ) � 0.

⎧⎨⎩ (32)

By relaxing the coupling constraints through (30)–(32), to
ensure the convergence of the upper and lower layer problems,
the penalty term which includes the augmented Lagrangian function
is added to the relevant objective function, by which, only the
regional constraints and regional decision variables that have to

be satisfied in the regional variables remain in the whole system, thus
realizing the decoupling process.

5.2 Decoupled model

The objective function in optimal scheduling of the
interconnected grid based on ATC can be described as follows:

minFA +∑N
n�1

λn ⊙ tn − r*n( ) +∑N
n�1

μn ⊙ tn − r*n( )



 



22 . (33)

When region A of the upper layer solves its own model, it
transfers the optimized value tn* of virtual load tn to the lower layer
system in the form of parameters. When updating the upper layer
system, it is necessary to optimize the linkage of virtual load and
optimize the virtual generators in each area.

It can be seen from (30) that similar to the upper system, when
the lower system is independently optimized, it is necessary to
combine virtual generator rn and virtual load tn for optimization,
relax the coupling constraint by introducing penalty function, and
add it into the objective function of the lower system. The objective
function of the lower system in region B can be described as follows:

minFB
n +∑N

n�1
λn ⊙ t*n − rn( ) +∑N

n�1
μn ⊙ t*n − rn( )



 



22 . (34)

TABLE 1 IEEE 14-bus generator parameters.

Unit Upper limit of output (MW) Lower limit of output (MW) Generator cost factor ($/MWh)

GA1 285 0 1.06

GA2 90 0 5.25

GA3 85 0 3.12

GB1 150 0 1.724

GB2 285 0 2.011

GC1 200 0 3.561

TABLE 2 IEEE 14-bus line parameters.

Sub-
region

Transmission
line

Reactance
(p.u.)

Transmission
capacity (MW)

Sub-
region

Transmission
line

Reactance
(p.u.)

Transmission
capacity (MW)

B 1–2 0.1739 150 A 1–2 0.0592 80

1–3 0.171 200 1–101 0.223 70

2–4 0.0421 150 2–101 0.198 80

3–5 0.2091 70 101–201 0.1763 150

3–6 0.5562 150 C 1–3 0.1558 150

301–1 0.252 150 2–3 0.1303 60

102–301 0.1989 150 202–1 0.1762 60

- - - 202–2 0.11 150
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By updating multipliers, the objective function meets the
convergence condition and tends to be optimal. At this point, the
upper and lower systems can be updated and solved
independently.

5.3 Convergence criterion

The convergence criterion of the proposed model based on ATC
is as follows:

tnk − rnk| |≤ ε1, (35)

FA
k + ∑N

n�1
FB
nk − FA

k−1 + ∑N
n�1

FB
n k−1( )( )

FA
k + ∑N

n�1
FB
nk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣≤ ε2. (36)

If both (35) and (36) cannot be satisfied, the multipliers are
updated according to (37).

λnk � λn k−1( ) + 2μ k−1( ) ⊙ μ k−1( ) ⊙ tn k−1( ) − rn k−1( )[ ]
μ2
nk � βμn k−1( )

{ . (37)

5.4 Optimization process of ATC

The optimization processes of the transmission network
structure based on ATC are shown in Figure 4. The approach
steps are as follows:

Step 1: Set the iteration limit of the ATC model as k′, set current
iteration k � 1, input the thermal generator parameters, and

TABLE 3 IEEE 14-bus load parameters.

Sub-region Node number Load (MW) Sub-region Node number Load (MW)

B 1 80 A 1 150

2 24 2 60

3 24 101 70

4 60 201 60

5 30 C 1 30

6 30 2 50

102 50 3 40

301 50 202 60

TABLE 4 Wind generator parameters.

Node number Region A (Node 2) Region B (Node 2) Region C (Node 2)

Maximum output (MW) 60 50 60

Minimum output (MW) 0 0 0

TABLE 5 Photovoltaic power generator parameters.

Node number Region A (Node 1) Region B (Node 4) Region C (Node 3)

Maximum output (MW) 60 50 60

Minimum output (MW) 0 0 0

TABLE 6 Results of different algorithms.

Algorithm Operating cost ($) Number of iterations Iteration time (s)

ATC 18,394.46 34 7.71

APP 18,212.23 43 8.97

ALR 18,103.25 35 10.31
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initialize the values of each optimization variables and penalty
function multipliers.

Step 2: Solve the lower system variables. According to (28) and
(34), parallel optimization is conducted for each region, and the
power obtained from the solution is transferred to the upper system.

Step 3: Solve the upper layer system variables. Optimization is
conducted according to (27) and (33), and the power obtained is
transferred to the lower system.

Step 4: Determine whether (35) and (36) are satisfied. If not,
evolve according to the update policy with regard to (37), set the
number of iterations k � k + 1, and finally, return to Step 2; or
else, terminate the iteration and output the results. If k is greater
than the maximum number of iterations k′ of the ATC model,
record that this iteration fails to converge and terminate the
calculation.

6 Numerical studies

The improved IEEE 14-bus and IEEE 118-bus systems are used
to simulate the model, and optimization of the results are analyzed.
The computer is configured with Intel i7-6300 processor and 8 G
memory. The GAMS software is used for programing, and the
CPLEX tool is used to solve the model. The detailed line parameters
are shown in Tables 1–5.

6.1 IEEE 14-bus system

There are five generators and 20 lines in the IEEE 14-bus system,
and the other parameters are given in Appendix A. Considering the
randomness of photovoltaic and wind power generation, the
random variables in the upper and lower limits of their output
are selected for testing. The system is decomposed into a three-zone
system by the busbar-tearing method, as shown in Figure 5. In
addition, the number of open power lines in region A and region
B is 1.

6.1.1 Algorithm effectiveness
The results obtained aim to verify the solving advantages of the

adopted ATC algorithm in comparison with the APP algorithm and
augmented Lagrange relaxation (ALR) algorithm, as shown in
Table 2 and Figure 6.

As shown in Table 6 and Figure 6, the operating costs of the
solution using the APP algorithm and ALR algorithm are
$18,212.23 and $18,103.25, respectively, while the operating cost
obtained by the ATC algorithm is $18,394.46. The reason for the
operating cost of the ATC algorithm being a little higher than that of
the APP algorithm and ALR algorithm is because of the setting of the
initial parameters and the change in the network topology. The
number of iterations and convergence time of the ATC algorithm
are less than that of the APP algorithm and ALR algorithm, which
are 34 times and 7.71 s, respectively, indicating that the ATC
algorithm has a better convergence performance. In addition, the
complexity of the OTS problem itself makes it difficult for the APP
algorithm and ALR algorithm to obtain a high-precision solution. It
is evident that the ATC algorithm is highly scalable and can be well
adapted to the OTS optimization problem of the system.

6.1.2 OTS and renewable energy access impact
analysis

In this study, the following four cases are set up and compared
for analysis in order to demonstrate the effect of OTS and the impact
of wind power and photovoltaic power generation on system
operation.

Case 1:No consideration of OTS and renewable energy generation.

Case 2: Without considering OTS and considering renewable
energy generation.

TABLE 7 Operating results of case 1 and case 2.

Region Units Case 1 Case 2

Cost ($) Output power (MW) Cost ($) Output power (MW)

Region A GA1 8,476.62 86.01 6,783.88 118.65

GA2 79.34 33.44

GA3 85.00 85.00

Region B GB1 7,363.38 63.00 7,261.27 63.00

GB2 185.00 185.00

Region C GC1 4,363.69 126.41 4,369.31 129.96

FIGURE 6
Comparison of algorithm results.
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Case 3: Considering OTS without considering renewable energy
generation.

Case 4: Considering both OTS and renewable energy generation.

1) Analysis of the impact of not considering OTS

When OTS is not considered, case 1 and case 2 are compared
in order to certify the impact of renewable energy access on
transmission grid operation, and the generator output and
operating costs for each region are shown in Table 7.

From Table 7, due to the consideration of renewable energy
generation access, case 2 greatly releases the generation capacity of
GA1, which increases the output of GA1 with a better economy and
reduces the output of GA2 with the worst economy. The cost of each

region in case 1 is $8,476.62, $7,363.38, and $4,363.69. The operating
cost of each region in case 2 is reduced by 19.97%, 1.39%,
and −0.13% when compared with case 1, where the cost of
region A is reduced more, while the cost of region B and region
C remain less changed. This indicates that the lower region B and
region C can achieve distribution autonomy by virtue of their own
generation resources, thus greatly reducing the power relief of the
upper region A and making the economy of region A significantly
improved.

2) Impact analysis of OTS

To prove the effect of considering the OTS when accessing
renewable energy, the operating results of case 2 and case 4 are
shown in Table 8 and Table 9.

As shown in Table 8, when compared with case 2 without
considering OTS, the output of GA1 in case 4 increases by 43.27%
and the output of GA2, which has the worst economy, decreases by
35.27%, which indicates that considering OTS can realize the
interplay of source output pattern and grid structure, making the
generation resources reasonably allocated. In terms of the
economics, the operating costs of each region in case 4 are
$5,814.34, $6,086.17, and $4,261.58, which are 14.29%, 16.18%,
and 2.47%, respectively, lower than that in case 2. The
aforementioned results show that considering OTS economic
scheduling mode can alleviate network congestion and improve
system operation economy.

As shown in Table 9, when OTS is considered, the system can
optimally regulate the transmission line status through the load
pattern. During the regulation process, the branch 1-101 in
region A undergoes outage state, reducing the transmission
blockage and resulting in a significant increase in the
transmission power of transmission line 1-2. The results
further demonstrate that the simultaneous application of
renewable energy access and operating transmission line
measures to grid dispatch can increase the system’s operating
economy with effect and thus achieve greater synergistic
source–grid dispatch. The operating lines for case 3 and case
4 are 2-101, 202-2 and 1-101, 2022, which indicate that the status
of the transmission lines can make several rectifications
according to the corresponding load patterns after considering
OTS, thus effectively improving the flexibility of the grid
operation.

TABLE 8 Operating results of case 2 and case 4.

Regions Units Case 1 Case 2

Cost ($) Output power (MW) Cost ($) Output power (MW)

Region A GA1 6,783.88 118.65 5,814.34 169.99

GA2 33.44 21.64

GA3 85.00 85.00

Region B GB1 7,261.27 63.00 6,086.17 69.00

GB2 185.00 166.00

Region C GC1 4,369.31 129.96 4,261.58 121.00

TABLE 9 Transmission line operation considering OTS.

Region Transmission line Transmission power (MW)

Case 2 Case 3 Case 4

Region A 1-2 67.34 58.88 89.49

1-101 41.65 34.90 0.00

2-101 3.35 0.00 28.59

101-201 56.72 61.65 56.38

Region B 1-2 84.00 77.00 77.00

1-3 −150.00 −110.00 −110.00

2-4 60.00 54.00 54.00

3-5 70.00 70.00 70.00

3-6 60.00 54.00 54.00

301-1 −86.00 −91.00 −91.00

102-301 −40.66 −47.33 −43.63

Region C 1-3 90.00 68.77 93.89

2-3 −50.00 −57.58 −59.15

202-1 −26.41 −31.14 −32.40

202-2 0.00 0.00 0.00
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6.2 IEEE 118-bus system

The IEEE 118-bus system structure diagram and partitions are
shown in Figure 7 in the Appendix, and the system generator set
characteristics data, transmission line data, and system load data are
shown in Ji et al. (2021).

FIGURE 7
IEEE 118-bus structure diagram.

FIGURE 8
Optimization results of algorithms with different convergence
accuracies.

TABLE 10 Results of different cases.

Case Cost ($)

Region A Region B Region C In total

Case 1 64,348.42 77,384.13 59,244.67 200,977.22

Case 2 61,694.56 76,478.54 58,536.23 197,709.33

Case 3 48,324.48 66,536.32 52,135.30 166,996.10

Case 4 47,311.34 63,384.13 52,117.87 162,813.34
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6.2.1 Algorithm performance comparison
In the IEEE 118-bus system, ATC, APP, and ALR are compared

in order to testify ATC in the large-scale system. The results are
shown in Figure 8.

As shown in Figure 8, in the wake of improvement in
convergence accuracy, ATC tends to the optimum at the fastest
speed, showing good convergence performance. In addition, the
number of iterations increases with increase of convergence
accuracy. When compared with APP and ALR, ATC always
maintains a good convergence performance and optimization
results under any accuracy requirement. This shows that the
ATC still has good applicability to large-scale systems.

6.2.2 Comparison of optimization results
For the IEEE 118-bus system, the aforementioned four schemes

are used to test the proposed model, and the results are shown as
follows:

Table 10 shows that the total cost of case 4 decreases by
18.99%, 17.65%, and 2.50% when compared with cases 1–3,
respectively, and the operating costs of the three regions are
$47,311.34, $63,384.13, and $52,117.87, all of which have
different degrees of reduction when compared to cases 1–3.
This shows that OTS can not only ensure the safe operation of
the system but also improve the acceptance level of renewable
energy and economy of system operation. The operating cost of
region A and region B in case 4 decreases more than that of region
C when compared with cases 1–3, which is due to the more
serious blockage in region A and region B, so the cost saving
accounts for the more obvious. In summary, the simultaneous
application of renewable energy and open transmission lines in
the grid to realize the cooperation between system regions can
reduce the cost of power generation and heighten the utilization
efficiency of electric energy, thus enhancing flexibility and
economy of overall system operation.

7 Conclusion

In this study, research was conducted on the optimization
problem of multi-regional complex network system dispatching,
and an OTS model based on the ATC that was proposed to account
for renewable energy. The conclusions are as follows:

1) The ATC adopted in this study has a fast convergence speed,
which has notable efficiency advantages when applied to the
distributed solution of multi-regional interconnected
transmission. It can also realize the decoupling of
interconnected information, which not only ensures the
privacy requirement of multi-agent operation mode but also
has good adaptability to large-scale systems. The ATC-based
model can effectively improve the economy of the operation of
the interconnected grid, bring the flexible operation capability of

the system into full play, and efficiently utilize the resources of
the whole network.

2) The proposed model adopts OTS in the system containing
renewable energy generation, improves the distribution of
power flow in transmission networks to optimize the
entropies of complex networks, and actively cooperates with
renewable energy generators that do not have controllability to
realize source–grid co-optimization, which is a proven solution
to improve renewable energy consumption capacity and system
voltage level.

3) The proposed model adds discrete variables, indicating whether
the transmission lines are operating or not, which can be
transferred to the dispatch center as decidable information,
making it possible to reasonably decide the required
transmission grid architecture of the system. The combination
of grid structure optimization, renewable energy, and ATC
greatly frees up the transmission capacity of the grid and
improves the generality of the model.

Future research can focus on enhancing the computational
efficiency and accuracy of the model.
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Nomenclature

Sets

gsys(·) Inequality constraint vectors of the system

hsys(·) Equation constraint vectors of the system

gsub,i(·) Inequality constraint vectors of the sub-system

hsub,i(·) Equation constraint vectors of the sub-system

ΩA
G Thermal generators in region A

ΩB
G Thermal generators in region B

ΩC
G Thermal generators in region C

NL Transmission lines

NT Time periods

ΩA
L Branches of region A

ΩA
G,i Thermal generators of the grid in region A

ΩA
W,i Wind generators of the grid in region A

ΩA
V,i Photovoltaic generators of the grid in region A

ΩA
D,i Branch nodes of the grid in region A

ΩA
L,i Loads of the grid in region A

ΔA Adjacent regions of region A

ΓA,B Tie lines of region A and B

(i, j1) ∈ ΓA,B First and last nodes of tie lines of regions A and B

gA Inequality constraints to be satisfied by region A in the upper system

hA Equation constraints to be satisfied by region A in the upper system

gB
n Inequality constraints of the lower system n

hBn Equality constraints of the lower system n

c Coupling constraints between upper system region variables and lower system n region variables

A Local variables in region A

B Local variables in region B

C Local variables in region C

Pw
max Maximum active power output by the doubly fed generator w

Xs Stator reactance

Xm Excitation reactance

Smax Upper limits of the slew rate

Smin Lower limits of the slew rate

Is max Maximum values of the stator currents

Ir max Maximum values of the rotor currents

PPV
max Maximum active power output by photovoltaic generator

IPV max Maximum current output by photovoltaic generator

ϕ max Minimum power factor allowed

wR
i Positive weight coefficients for the response variables

Frontiers in Energy Research frontiersin.org13

Li et al. 10.3389/fenrg.2023.1239232

55

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1239232


wy
i Positive weight coefficients for the coupling variables

g Index of generators

i Index of first nodes of line l

j Index of last nodes of line l

l Index of line

t Index of time

Gl Conductance parameters of line l

Bl Susceptance parameters of line l

n Minimum technical output power of generator g

Il max Maximum allowable thermal current of transmission line l

PA,max
g Upper limits of the output power of generator g in region A

PA,min
g Lower limits of the output power of generator g in region A

Rup
g Ramp-up rates of generator g

Rdn
g

Ramp-down rates of generator g

Δt Allowable ramp time of the generator

bAl Susceptance of branch l in region A

MA
l A very large constant and MA

l ≥ 2bAl �θ
A
ij

PA,max
l

Maximum transmission capacity of line l in region A

�θ
A
i

Maximum voltage phase angle of node i

θ A
i

Minimum voltage phase angle of node i

JA Maximum allowed number of line openings in region A

⊙ Hadamard product

Pw Active power output by wind generator w

Qw Reactive power output by wind generator w

Vw Voltage at the machine end of wind generator w

S Slew rate

PPV Active power of the photovoltaic generator

QPV Reactive power of the photovoltaic generator

VPV Output voltage of the photovoltaic system

xsys Upper system design variables

Rsys Upper system responses

ϕ(·) Deviation between the objective and response of system

‖ · ‖ Euclidean parametrization, which can be chosen to calculate the difference between the objective
and response

‖ · ‖22 Deviation calculated using 2-parametrization

xsub,i Sub-system design variables

CA
g (·) Cost functions of generator g in region A

CB
g (·) Cost functions of generator g in region B

CC
g (·) Cost functions of generator g in region C

PAg Generator g output power in region A

PBg Generator g output power in region B
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PCg Generator g output power in region C

zl,t Binary variable about the operating status of line l at time t

Vd,t Voltage amplitude of node d in time t

θd,t Voltage phase angle of node d in time t

Pl,t Active power of line l in time t

Ql,t Reactive power of line l in time t

Il,t Amplitude of the current flowing on the transmission line l in time t

θAi Voltage phase angle of node i in region A

θAj Voltage phase angle of node j in region A

zAl Binary variable corresponding to the state of branch l in region A

PAl Active power of branch l in region A

PAw Values of wind generator output in region A

PAv Values of photovoltaic generator output in region A

PAd Active load of node d in region A

PAl,ij Active power in the positive direction of branches

PAl,ji Active power in the negative direction of branches

Pij1 Power differences of tie lines

θij1 Phase angle differences of tie lines

x Decision variables of the upper layer except tie line

x, t1 , t2...tn Regional variables of the upper layer

y Regional constraints to be satisfied by the variables of the lower system n

y, r1 , r2...rn , t1′ , t2′ ...t′m Regional variables of the lower system n

λ Multipliers of first terms of penalty function ζ

μ Multipliers of second terms of penalty function ζ

ζ Penalty function about relaxing coupling constraints

λn Multipliers of the Lagrangian primary terms

μn Multipliers of the Lagrangian second terms

rnk Virtual generator of the lower system

tnk Virtual load of the upper system

Frontiers in Energy Research frontiersin.org15

Li et al. 10.3389/fenrg.2023.1239232

57

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1239232


TYPE Original Research
PUBLISHED 29 August 2023
DOI 10.3389/fenrg.2023.1257354

OPEN ACCESS

EDITED BY

Yuqing Dong,
The University of Tennessee,
United States

REVIEWED BY

Jay Zarnikau,
The University of Texas at Austin,
United States
He Yin,
The University of Tennessee,
United States
Qiu Tang,
Hunan University, China

*CORRESPONDENCE

Jicheng Yu,
phoenixyjc@126.com

RECEIVED 12 July 2023
ACCEPTED 03 August 2023
PUBLISHED 29 August 2023

CITATION

Zhou F, Yu J, Yin X, Yue C and Liang S
(2023), Time-synchronized carbon flow
metering scheme for electric power
transmission, transformation, and
distribution networks.
Front. Energy Res. 11:1257354.
doi: 10.3389/fenrg.2023.1257354

COPYRIGHT

© 2023 Zhou, Yu, Yin, Yue and Liang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Time-synchronized carbon flow
metering scheme for electric
power transmission,
transformation, and distribution
networks

Feng Zhou, Jicheng Yu*, Xiaodong Yin, Changxi Yue and
Siyuan Liang

China Electric Power Research Institute, Wuhan, China

Faced with the pressure of energy conservation and emission reduction, the
power industry is urgently requires low-carbon transformation. The carbon
flow calculation theory redistributes the actual carbon generated by the
power plant to the branch and loads customers with the power flow. This
paper first introduces the theory of carbon flow calculation and the carbon
metrics corresponding to the electricity metrics. Second, a time-synchronous
technology is introduced for the carbon flow calculation of transmission,
transformation, and distribution networks, and a time-synchronous-based
carbon metering system is conceived. The impact of time deviation on carbon
metering is elucidated through simulation experiments of IEEE14 standard nodes,
and finally, relevant suggestions are made for future research ideas and technical
routes.

KEYWORDS

carbon flow, carbon metering, power flow, time deviation, time-synchronous

1 Introduction

Given the energy crisis and global warming, various countries around the world are
making efforts to save energy and reduce emissions in various ways. Coal-fired power
generation is the main source of CO2 generation in the power industry, so renewable
new energy generation represented by wind power and photovoltaic power generation is
currently entering the power system in high proportion. Although new energy generation
can significantly reduce the production of CO2, this type of power generation is unstable.
Therefore, the power industry cannot be zero carbon and coal-fired power generation cannot
be replaced entirely. Carbon measurement and carbon trading are currently the promising
management approaches used to achieve carbon reduction. Drawing on the cyclic transfer
of carbon elements in ecology (Richey et al., 1978), some scholars have now proposed the
concept and theory of carbon emission streams for the power industry (Xu et al., 2019) and
(Sun et al., 2022).

Carbon emission is calculated by using the energy consumption and statistical
emission factors of different fossil fuels, which is mainly attributed to the source
side of direct emission, which is calculated based on statistically empiric methods.
However, these carbon emission accounting methods have insufficient theoretical basis
with irrationality and unfairness, and it is difficult to promote multi-party carbon
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reduction while only the direct carbon emission source is
responsible (Hu et al., 2022). An increasing number of researchers
are becoming aware of the need to look at carbon emissions
from the perspective of the whole system, taking into account
the actual characteristics of the power system, and have proposed
many corresponding methods to deal with the problem. In order
to account for carbon emissions from the consumption-based
perspective, Zhou et al. (2012) and Kang et al. (2012) proposed the
carbon emission theory to distribute the responsibility of carbon
emission to the load side by tracking the whole process from the
source to the load. Zhou et al. (2012)define some basic concepts of
carbon emission flow in power networks. An analytical model for
carbon emission flow is proposed in Kang et al. (2015) to quantify
the carbon emission accompanying the power delivery process.
The model of the carbon emission flow can take into account the
operational characteristics and the network features of the power
system and elaborately characterize the relationship between power
delivery and carbon emission flow. A calculation model for the
carbon emission flow is also proposed in the article. A directed
graph-based method for tracing the carbon flow is proposed in
Sun et al. (2016). Yan et al. (2021) put forward a real-time carbon
flow algorithm of the electrical power system based on the network
power decomposition and solve the limitations of the current
method and problems given as follows: the hidden carbon flow
was unevenly allocated and the carbon reduction contribution of
the new energy units cannot be quantified. A data-driven approach
conducted with the Bayesian interference regression is proposed by
Wang et al. (2021) to carry out the carbon emission flow model to
cope with the drawbacks of the conventional emission calculation.
Qin et al. (2022) present a deep reinforcement learning-based
multi-objective optimal carbon emission flow solving method that
handles the generator dispatching scheme by utilizing the current
power system state parameters as known quantities. Cheng et al.
(2018b), Wei et al. (2022), Cheng et al. (2018a), and Huang et al.
(2022) propose different analytical models and calculation methods
for carbon emission flow in multiple energy systems or integrated
energy stations. Zhang et al. (2021) and Yang et al. (2023) establish
the carbon emission analysis model of the distribution systems with
prosumers which combinedwith the perfect system power flow (PF)
theory and considered the network loss and prosumers.

Although the theory of carbon flow measurement has been
established and widely promoted in recent years, the assurance of
carbon measurement accuracy is still topic reqiring urgent study. In
this paper, the influence of time deviation on the error of carbon
flow measurement is studied. A satellite synchronization method to
add time labels to the carbon flow calculation data is proposed to
make the carbon flow allocation in transmission and distribution
and the carbon flow measurement on the load side more accurate.
In this study, we use the IEEE-14 standard system to realize the
carbon flow distribution and measurement of power transmission,
transformation, and distribution. First, based on the carbon flow
measurement theory, a single-carbon flow calculation is performed.
Second, the load fluctuation data of a typical day at 24 points per day
are input into the IEEE-14 standard system for continuous carbon
flow simulation calculation. Then, based on the 24-point load data,
data sets of 48 points per day and 96 points per day are generated for
calculation again. Finally, the deviation analysis of the loaded carbon
flow under three different sets of conditions is carried out.

2 Carbon flow theory

2.1 Basic theory of the transformation of
electricity to carbon

The basic principle of the transformation of electricity to carbon
is carbon flow theory (CFT). In addition, themain idea is to quantify
the state of carbon emissions in a power system based on the
distribution of PF. A power system carbon flow is a virtual network
flow that exists on the PF and is used to characterize the carbon
emissions in the power system that maintains the PF on any branch.
A power system carbon flow is equivalent to labeling each PF with
carbon emission. The carbon flow in the power system originates in
the power plant and eventually enters the load nodes via the power
grid. Similar to electricity generation, carbon flow is generated by
generators. It is consumed by electricity consumers through the
carbon flow.

The CFT is based on the PF tracking theory. There are some
differences between carbon emission flow analysis and PF analysis.
On one hand, the initial conditions for the calculation of the carbon
emission parameters of power systems are derived from the results
of PF calculation. Therefore, all the factors affecting the distribution
of system PF will affect the distribution of carbon emission flow,
such as the topology of the power system forms the same basic
constraints in carbon emission flow analysis as in PF calculation; on
the other hand, carbon emission flow is also related to the carbon
emission characteristics of the power plant with unique boundary
conditions. In addition, the carbon emission flow is mainly affected
by the distribution of the active power since the energy consumption
is mainly related to the active power. Although the reactive power
affects the active power loss in the grid, which has an impact on the
distribution of system carbon emissions, the carbon emission flow
can be approximated to be affected by the active power of the system
only when the net loss is neglected.

2.2 Concepts of electricity-to-carbon
transformation in power systems

Calculations of electricity-to-carbon transformation are used
to measure the production, consumption, and transmission of
carbon in the power system. Some vital basic concepts of electricity
transforming to carbon are introduced as follows: carbon flow,
carbon flow rate, and carbon flow density (CFD). CFD describes
the relationship between carbon flow and active power in power
systems. CFD is divided into two categories according to the branch
and node, namely, branch carbon flow density and node carbon
potential, respectively.

2.2.1 Carbon flow
Carbon flow is a basic concept inCFT. Carbon flow characterizes

the magnitude of carbon flow in a branch or load. The carbon flow
is defined as the cumulative amount of carbon emissions in a given
branch or load in a certain time range. The unit of carbon flow is
the same as that of carbon emission. Currently, the international
unit of carbon emissions is generally expressed in tCO2 or kgCO2,
which means that the mass of carbon dioxide is used as the basis for
calculating the mass of greenhouse gases in the gas being emitted.
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2.2.2 Carbon flow rate
The carbon flow rate (CFR) is defined as the carbon flow that

passes along with the PF per unit of time, at a value equal to the
derivative of the CFR with respect to time, as shown in (1).

CFR = dF
dt
. (1)

2.2.3 Branch carbon flow density
The carbon emission flow of the power system is dependent on

the PF. Therefore, it is necessary to combine the carbon emission
flowwith the PF. Furthermore, carbon emission in the power system
is mainly related to active power. To characterize the combination of
both, the ratio of the CFR of any branch of the power system to the
active power is defined as branch carbon flow density (BCFD).

ρ = CFR
P
, (2)

where ρ represents the ratio of the CFR of any branch to the active
PF in the power system.

The unit of carbon flow density is kgCO2/(kWh). In the
generator nodes, the BCFD is equal to the carbon emission intensity
of the generator. In the load nodes, the BCFD is equal to the carbon
emission value of the generation side caused by the consumption of
unit power transmitted by the branch line.

2.2.4 Node carbon potential
The CFT defines the physical quantity that describes the carbon

emission intensity of nodes by carbon emission flow, named node
carbon potential (NCP). ent is used to describe the NCP of node n at
time t.

ent =
∑

i∈N+
Pitρit

∑
i∈N+

Pit
=
∑

i∈N+
Rit

∑
i∈N+

Pit
, (3)

where the unit of NCP is kgCO2/(kWh), the same as that of BCFD.
NCP equals the weighted average of the BCFD ρit of all branches
flowing into node n with respect to the active power Pit.

The physical meaning of the NCP is the value of carbon
emissions caused by the consumption of a unit of electricity at that
node. For a power plant node, its NCP is equal to the real-time
generation carbon emission intensity of the power plant.

2.3 Node carbon potential vector
Theprimary goal of carbon emission flow calculation in a power

system is to calculate the carbon potential of all nodes. To calculate
the node carbon potential vector (NCPV), three matrices should
be constructed first which are the node active flux matrix (PN),
the branch PF distribution matrix (PB), and the generator injection
distribution matrix (PG). In addition, they are constructed from
the PF calculation results. According to (4), the NCP of the power
system can be calculated as follows:

• PN is an N-order diagonal matrix that describes the
contribution of the generator set and other nodes to the NCP
of a node in the system.
• PB is used to describe the active power flow distribution of

the power system. This matrix contains the topology structure
information of the power network and the steady-state active
power flow distribution information.

• PG is a K×N matrix. It is defined to describe the connection
between all generating sets and the power system. In addition,
it represents the active power injected into the system by the
unit.
• EG is a vector representing the carbon potential of the system

generator. As a known condition for the calculation of the
carbon emission flow, subsequent calculations are carried out.

EN = (PN − P
T
B)
−1PTGEG. (4)

3 Time-synchronized measurement
carbon system

Figure 1 shows a transmission and distribution carbon
metering system based on time synchronization. The metrics
of the PF calculation are time-stamped by configuring satellite
synchronization signals to the power measurement devices of the
transmission and distribution. After the carbon flow is calculated, it
is measured and recorded by the timemarker alignment.This allows
for more accurate carbon flow calculations in order to provide
credibility for the carbon trading market and other subsequent
expansion applications.

Considering the time factor, the equation of carbon
measurement is rewritten as (5) according to the CFT.

RL = ∑
t∈ΦT

EN (t)PL (t) , (5)

ΔRL = ∑
t∈ΦT

EN (t±Δt)PL (t±Δt) − ∑
t∈ΦT

EN (t)PL (t) . (6)

4 Carbon flow calculation framework
for power systems

The time deviation calculation framework of the carbon
emission flow in the power system based on the matrix analysis
method is shown in Figure 2, and the carbon flow calculation times
k and typical load matrix P within a certain time are initialized
first. We then perform the following four steps for carbon flow
calculation. Error analysis was carried out after the aforementioned
calculation.

1. The distribution of the active power flow at time i is calculated,
and the matrices PN, PB, and PG are established;

2. It is determined whether magnetic flux matrix PN satisfies the
following conditions: |PN| ≠ 0. If it is not satisfied, the node
corresponding to the row is removed in which the diagonal
element of PN is 0, and the group and line are connected to it from
the system. Otherwise, we proceed to the next step.

3. The carbon potential EN of all nodes in the power system is
calculated first.Then, the distributionmatrix of the branch carbon
flow rate and load carbon flow rate vector is obtained based on the
results.

4. The program judges whether the current cycle count i is equal to
the preset count k. If not, we proceed to step 1. Otherwise, the
calculation is finished.
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FIGURE 1
Carbon metering system based on the time synchronization technique. The calculated data in the carbon metering system are time-stamped by
satellite synchronization and stored to the server. The error impact of time deviation on carbon measurement is corrected by time alignment when the
carbon measurement verification work is performed.

5 Results and discussions

The IEEE-14 node standard model is used to validate the
time-synchronized carbon metering scheme proposed in this
paper. Without considering network losses, the DC PF calculation
method is used for solving. The previously mentioned simplified
considerations are mainly used to illustrate the calculation results
of the time deviation affecting carbon metering in transmission and
distribution networks.

5.1 Carbon flow calculation simulation in
the IEEE-14 standard system

As shown in Figure 3, it is assumed that G1 is a thermal power
generator with high carbon potential, G2 and G4 are gas-fired
generators with relatively low carbon potential, and G3 and G5 are
new energy power plants (wind power or hydropower), where the
generators do not produce CO2 and have zero-carbon potential.
We initialize the carbon potential vector EG = [875,525,0,520,0] of
the generator set, and the carbon potential unit of the generator
set is gCO2/kWh. Table 1 shows the results of standard carbon flow
calculations, including Node active flux, node carbon potential and
carbon flow rate. Specifically, the Node active flux represents the

active power at the node, the node carbon potential represents the
ability to generate carbon emissions at the node, and the carbon flow
rate represents the rate at which carbon emissions flow through the
node.

5.2 Carbon metering at different time
scales

Figure 4 shows the load carbon flow rate of 11 loads in the
IEEE-14 standard system. The CFR is different for each load, and
we can see from the graph that the third load user produces CO2
at a significantly higher rate than the other load users due to the
difference in electricity consumption. It is evident that the trend of
the CFR for each load is almost the same as the trend of the load.
This indicates that carbon emissions are related to the intensity of
electricity consumption. The carbon emission stream reflects the
rate of CO2 production by customers using electricity. In order to
calculate the amount of CO2 produced by a load user in a fixed
period of time, the CFR needs to be integrated for that period of
time. Therefore, for more accurate carbon metering, the time factor
must be taken into account.

In practical engineering applications, the integral approach to
carbon measurement is replaced by cumulative sums. Suppose that
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FIGURE 2
Flow chart of the continuous carbon flow calculation incorporating time factor.

FIGURE 3
IEEE-14 standard system.
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FIGURE 4
Load carbon flow rate visualization results for IEEE-14 standard systems.

TABLE 1 Standard system carbon emission flow calculation results.

Node Node active flux (MW) Nodal carbon potential [gCO2/(kWh)] Load carbon flow rate (tCO2/h)

1 120 875 0

2 110.5,932,544 748.1,632,733 10.93,814,706

3 73.57,501,109 129.1,414,292 5.596,679,603

4 89.88,505,434 568.0052428 14.3,555,373

5 88.0852,264 819.1,536,971 7.499,515,928

6 76.01,341,889 745.1,278,433 7.785,691,809

7 56.99,832,813 375.7,372,018 0

8 20 0 0

9 82.16,043,468 435.0483,994 7.658,418,003

10 10.98,703,683 511.427,293 4.783,890,898

11 10.46,265,415 745.1,278,433 5.449,268,944

12 15.01,662,534 745.1,278,433 6.501,985,561

13 43.7,689,606 745.1,278,433 8.852,416,829

14 82.78,371,069 547.722,066 3.462,479,812

the calculation of the ith carbonflow calculation is executed at ti time
and repeated at the next ti+1 time, then the CO2 generated by the
load user at that time is the product of the CFR at time i and the step
size at that timeCFR× (ti+1 − ti).Therefore, we investigated the effect
of different time-scale carbon flow calculations on load-side CO2
metering. The time scales were set to three groups, 24 points/day,
48 points/day, and 96 points/day for a typical day. Based on the 24
points/day data, two additional control groups were generated by
interpolation to ensure consistent load trends. In addition, a random
fluctuation of ±0.5% of the load was added to the control group data
generation to represent the real random fluctuation of the load.

The CO2 measurement results for a typical day are calculated for
each load user, and theCO2 measurement results and corresponding

measurement errors are shown for the 48 points/day and 96
points/day settings for the corresponding load users. As shown
in Table 2, the majority of load users have larger CO2 metering
values with more points calculated than in the 24 points/day
case, which is due to the finer time scale and the fact that the
metering result values are closer to the integral value performance.
Furthermore, the CO2 measurement results for a typical day are
calculated for each load user, and the CO2 measurement results
and corresponding measurement errors are shown for the 48
points/day and 96 points/day settings for the corresponding load
users. From Table 2, it can be seen that the majority of load users
have larger CO2 metering values with more points than in the 24
points/day case because the time scale is finer and the metering
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TABLE 2 Results of carbon flow data by load of the IEEE-14 standard system under different time granularity values (±0.5% fluctuation).

Load user 24 48 96 Error of 48 points/day Error of 96 points/day

1 185.2981 185.2052 185.0922 −0.0929 −0.2059

2 111.8478 111.9578 112.0965 0.11 0.2487

3 293.0119 293.0698 293.1193 0.0579 0.1074

4 200.9887 200.8009 200.7386 −0.1878 −0.2501

5 210.5182 210.5315 210.5837 0.0133 0.0655

6 148.1337 148.1408 148.1347 0.0071 0.001

7 91.01507 91.05984 91.07082 0.04477 0.05575

8 167.3023 167.4886 167.5051 0.1863 0.2028

9 194.6604 194.7532 194.7933 0.0928 0.1329

10 249.5946 249.7856 249.8115 0.191 0.2169

11 79.02887 78.92707 78.85742 0.8982 0.82855

total 1931.4 1931.72 1931.803 0.32 0.403

TABLE 3 Carbonmetering experiments with different load fluctuation
percentages.

Load user Referencing data
Percentage of load fluctuation

±0.5% ±1% ±2%

1 248.1146 248.0958 247.9399 248.0634

2 150.546 150.5783 150.5102 150.229

3 370.7626 370.7491 370.8202 371.1662

4 222.8634 222.7915 222.8891 222.7419

5 229.3166 229.4014 229.2723 229.2059

6 187.2176 187.2272 186.9811 187.0954

7 112.9285 112.9538 112.9642 113.1269

8 185.0045 184.9278 184.9069 184.6272

9 211.9663 212.0297 212.0135 212.1763

10 271.9932 271.971 272.0274 271.8747

11 93.09391 93.11448 93.05235 93.03928

Total 2,283.807 2,283.84 2,283.377 2,283.346

result values are closer to the integral values. However, we also
note that the CO2 metering results for some load users are small
in the control group, such as the first load user and the fourth
load user. During the execution of the simulation experiment, the
loads added random fluctuations, leading to such unpredictable
results. The occurrence of this phenomenon suggests that it is
necessary to add time synchronization to the carbon metering
system for synchronous alignment of the time scale. Finally, we
also found that the CO2 metering values generated by all load
users in the IEEE-14 standard system on a typical day under the
simulation arithmetic of this experiment are 0.403 and 0.32 tons
of CO2, which are larger than the results of the baseline case for
the 96-point/day case and the 48-point/day case, respectively. If

TABLE 4 Absolute error in carbonmetering for different load fluctuation
percentages.

Load user
Percentage of load fluctuation

±0.5% ±1% ±2%

1 0.018734 0.174,671 0.051192

2 −0.03238 0.035722 0.316,917

3 0.013465 −0.05761 −0.40366

4 0.071867 −0.02578 0.121,498

5 −0.0848 0.044379 0.110,702

6 −0.00951 0.236,506 0.122,285

7 −0.02533 −0.03569 −0.19843

8 0.076695 0.097592 0.377,364

9 −0.06343 −0.04718 −0.20996

10 0.02225 −0.03415 0.118,494

11 −0.02057 0.041561 0.054638

Total 0.033 −0.43 −0.461

time synchronization is ignored, the cumulativemeasurement errors
over time will lead to questionable accuracy and fairness of carbon
metering.

5.3 Error analysis of load fluctuation at the
96 points/day time scale

Based on the analysis in subsection 5.2, we concluded that the
carbon measurement accuracy at high sampling rates is closest to
reality. This sub-section explores the impact of data bias at a time
granularity of 96 points/day. The results of the load carbon flow are
shown in Table 3, and the absolute errors of the error data and the
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original data are shown in Table 4. The data units in Table 3 and
Table 4 are tCO2.

As shown in Table 4, the size of the random fluctuation of the
data causes the absolute error of the total carbon emission of the
system in a single day to be less than 0.5tCO2. However, as the
fluctuation increases, the absolute error also increases. For a single
load node, the absolute error caused at ±2% data fluctuation is
an order of magnitude higher in the total carbon flow for more
than 70% of the loads compared to the results for ±1% as well
as ±0.5%. However, the carbon flow results for loads caused by
±0.5% and ±1% fluctuations are not significantly different in order
of magnitude. In addition, there is even an absolute error in the
total load carbon flow caused by ±0.5% data deviation, which is
greater than the absolute error in the total load carbonflow caused by
±1% fluctuation.

6 Conclusion

This paper introduces the time synchronization technique to
power system carbon flow calculations and provides relevant work
for more accurate carbon flow measurement. Carbon flow in
transmission, transformation, and distribution accompanies the PF
calculation. Considering that the source follows the loadmovement,
the deviation of the load monitoring can lead to an error in carbon
flow measurement. The necessity of introducing time-synchronous
technology into carbon flowmetering is illustrated by combining the
arithmetic example of the IEEE14 node. The findings of this study
are summarized in the following three points:

1. There aremeasurement errors in carbonmeasurement at different
time granularities, and the finer the time granularity, the closer the
carbon measurement results are to the true value.

2. In the case of the high sampling rate of the carbon metering
system, the magnitude of load fluctuation also has an impact on
the carbon metering error.

3. Time synchronization technology should be included in
the technical scope of carbon metering for transmission,
transformation, and distribution grids to improve the credibility
of carbon verification.

Future work can focus on data-driven carbon flow prediction
based on data to further improve the stability of this system’s work.
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Stackelberg game-based
three-stage optimal pricing and
planning strategy for hybrid
shared energy storage
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Inspired from sharing economy and advanced energy storage technologies,
hybrid shared energy storage (HSES), as an innovative business model, can
provide flexible storage leasing services to new energy stations (NESs) and
bring additional profits to the energy storage owner. Under this business
model, pricing and planning issues are the main focus of the HSES operator to
increase revenues but are rarely considered in current studies. Therefore, a
Stackelberg game-based three-stage optimal pricing and planning strategy of
HSES is formulated for the operator. First, an HSES model considering two leasing
options is developed to provide two kinds of short-term use rights of energy
storage resources for NESs. Then, the interactions between selfish NESs and the
HSES operator are characterized as a Stackelberg game, and a bi-level pricing and
planning strategy optimization model is developed to help the HSES operator
make optimal decisions. Finally, considering different characteristics in each stage
of the Stackelberg game, a three-stage solution method based on the genetic
algorithm (GA) and mixed-integer linear programming (MILP) models is proposed
to solve the optimization problem. Case studies on six NESs in a certain region are
taken to verify the effectiveness of the proposed strategy. Simulation results show
that the HSES operator can obtain maximum profit under the proposed pricing
and planning strategy. In addition, the proposed HSES leasing model can provide
additional benefits to both the operator and NESs.

KEYWORDS

hybrid shared energy storage, planning strategy, pricing strategy, Stackelberg game, new
energy station

1 Introduction

Driven by energy transition and the decarbonization goal, new energy sources such as
photovoltaic and wind power have developed rapidly in the last decade, and the high
penetration of new energy sources will be the typical characteristics of future power systems
(Liu et al., 2021a; Zhang et al., 2022a). Therefore, new energy generators will gradually
replace conventional units, and new energy stations (NESs) will become the major players in
the electricity market (Yang et al., 2021; Ma et al., 2022). However, due to the intermittency,
volatility, and uncertainty of wind power and photovoltaic power, the deviation assessment
mechanism of the energy market introduces deviation penalties for NESs, and there exists
the problem of wind and photovoltaic curtailment (Ahmed et al., 2020; Zhang and Qi, 2020).
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Energy storage, as one of the crucial flexible regulation
resources, shows great advantages in mitigating the fluctuations
of new energy output and supporting the grid connection of new
energy sources (Kebede et al., 2022; Yang et al., 2022). For NESs, the
utilization of energy storage resources can help cope with output
fluctuations, mitigate energy deviation penalty, improve the
consumption rate of new energy, realize price arbitrage, and
obtain additional market revenue (Liu et al., 2020). Nevertheless,
the high construction and maintenance costs of energy storage
devices usually bring high financial risks to NESs (Rahman et al.,
2020). In addition, the traditional single-user single-storage
investment and operation mode results in low equipment
utilization rate and poor economic efficiency (Sun et al., 2019),
which restrict the large-scale commercial application of energy
storage in power systems.

To address the aforementioned issues, the concept of shared
energy storage (SES) is proposed with the development of sharing
economy and Internet of Things technology. The superiority of the
SES business model is mainly reflected in the following aspects. For
energy storage owners, the sharing of idle energy storage resources
can help improve the equipment utilization rate and shorten the cost
recovery cycle (Wang et al., 2018; Kong et al., 2023). For energy
storage demanders, SES can provide a lower barrier for obtaining the
use rights of energy storage resources without great financial
pressure to participate in energy-sharing and obtain additional
benefits (Zhang et al., 2022b).

From the perspective of the sharing mode, current research
about SES can be classified into three categories, i.e., the co-
construction sharing mode, the interconnected sharing mode,
and the energy storage operator leasing mode. Under the first
sharing mode, multiple subjects cooperate as an alliance to invest
and utilize a large energy storage system jointly (Chen et al., 2022).
Du et al. (2022) and Li et al. (2021) proposed joint planning
strategies for SES systems among multiple micro-grids to obtain
maximum profits during the planning period. Li et al. (2022)
proposed an energy storage sharing scheme among prosumers
and established an optimal SES planning model for higher energy
market revenue. Liu et al. (2021b) analyzed the benefit of the SES for
several electricity retailers in the forward electricity market and
formulated an optimal joint planning strategy to minimize the
electricity purchase costs of retailers. The economic benefits of
SES in the residential community were thoroughly analyzed by
Walker and Kwon. (2021), and co-construction SES strategies for
residential communities and industrial parks were studied by Xie
et al. (2022) and Long et al. (2022). Even though the co-construction
sharing mode of energy storage can help each cooperator reduce the
investment risks and bring complementarity benefits, the ownership
of SES belongs to all cooperators, thus leading to problems in the
allocation of cooperation cost/profit and the coordination of energy
storage use rights. In practice, complex relationships among
cooperators make this type of sharing mode difficult to be
implemented. Under the second sharing mode, the distributed
energy storage resources existing within different subjects are
interconnected to enable mutual access. Zheng et al. (2022) and
Zhang et al. (2022c) utilized the distributed energy storage systems
of each residential user and wind power generator as the medium for
energy sharing. Cao et al. (2021) investigated energy interaction
strategies between multiple micro-grids to achieve energy

complementarity with the help of energy storage resources inside
the micro-grids. However, the premise of interconnected sharing
requires each participant to have independently configured energy
storage equipment, i.e., the ability of bidirectional energy transfer,
and is more suitable for those subjects who have already installed
distributed energy storage systems. In other words, this type of
sharing mode shows great limitations in practice.

Different from the first two modes, the operator leasing mode of
SES is more flexible in practice. Under this mode, demanders can
flexibly obtain the use rights of energy storage resources according to
their short-term demands from an independent SES aggregator
under clear leasing rules, without considering the negotiation and
coordination challenges that need to be encountered in the
cooperation. Liu et al. (2017) first proposed the concept of cloud
energy storage to provide virtual use rights of energy storage
resources for demand-side users, which is one of the forms of
this leasing mode. However, the pricing problem was not
discussed. Zhang et al. (2023) set SES leasing prices based on
real-time electricity prices, but the profit of the SES operator was
ignored. Gong et al. (2022) divided the use rights of SES into energy
use rights and power use rights for leasing, but the rationality needs
to be further explored. Brijs et al. (2016) proposed a novel pricing
strategy of SES through competitive bidding, but the model is too
complex to be promoted and applied in the actual leasing market.

All the aforementioned research works have made great
contributions to the application and promotion of SES, but there are
still some limitations and research gaps that need to be considered. First,
the leasing models of SES, in the majority of existing studies, are
developed based on a single time scale and a single type of energy
storage, and the superiority of hybrid energy storage and the
coordination between different leasing time scales are ignored. In
fact, coordination between multiple types of energy storage
(i.e., hybrid energy storage) and the diversity of leasing time scales
can bring additional benefits to both the operator and demanders.
Second, most studies did not develop pricing strategies from the
perspective of the energy storage owner and did not analyze the
rationality of leasing prices in detail. For the operator, deciding the
leasing price based on demand is the key to enhancing its own revenue,
and thus the rationality of the pricing strategy should be well-concerned.
Third, most of the existing works about the pricing strategy ignored the
planning problem, which is also a main focus of investors. Therefore,
developing a planning strategy based on leasing requirements along with
the pricing strategy is also an urgent issue that needs to be addressed by
the operator.

Given this background, a Stackelberg game-based three-stage
optimal pricing and planning strategy of the hybrid shared energy
storage (HSES) is proposed in this work to address the
aforementioned issues for the operator, and the main
contributions are summarized as follows.

1) An HSES model considering two leasing options is first
developed to provide two kinds of short-term use rights of
energy storage resources for NESs on different time scales.
Compared with the commonly used daily leasing model, the
proposed model is more flexible and can provide additional
benefits to both the provider and demanders.

2) A novel Stackelberg game-based HSES pricing and planning
strategy is formulated on the basis of the bi-level optimization
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model to help the HSES operator make optimal decisions. In this
model, the preferences and selfishness of both the “leader”
operator and “followers”NESs are well-considered and balanced.

3) A three-stage optimization solution approach based on genetic
algorithm and mixed-integer linear programming (MILP)
models is proposed to efficiently solve the bi-level
optimization problem.

The rest of this paper is organized as follows. First, the
sharing model of HSES and the interaction model between HSES
and NESs are elaborated upon in Section 2. On this basis, a
Stackelberg game-based bi-level pricing and planning
optimization model is proposed for the HSES operator in
Section 3. Then, a three-state optimization-based solution
method is introduced to solve the bi-level problem in Section
4. Finally, case studies are carried out in Section 5, and the
conclusions are summarized in Section 6.

2 Model formulation of hybrid shared
energy storage

2.1 The sharing model of a hybrid energy
storage system

In this work, HSES is invested and maintained by the energy
storage operator, providing leasing services to energy storage
demanders, i.e., NESs. The sharing model of the proposed HSES
system is presented in Figure 1.

As shown in Figure 1, NESs can obtain the use rights of energy
storage resources from the operator through leasing. During the
leasing period, NESs are allowed to freely dispatch the energy storage
within the physical constraints to mitigate energy deviations and
achieve price arbitrage in the energy market.

Due to the large variety of energy storage technologies with
different properties, hybrid energy storage will become an essential
means to meet the diversified and flexible demands of future power
systems (Hajiaghasi et al., 2019). Therefore, as shown in Figure 1,
based on the single-type SES system with a daily leasing period, an
additional short-term energy storage leasing option with a leasing
period of 4 h is introduced in this work so as to provide more
diversified choices for the NESs of wind power and photovoltaic.
The two types of SES models are introduced as follows:

1) 24 h-type daily SES (D-SES): D-SES is the dominant form of the
current SES, i.e., the SES providing leasing services on a 24-h
cycle. NESs make day-ahead decisions for their energy storage
using demands in the following 24 h based on day-ahead market
prices and forecasts of new energy generation. They submit their
energy storage leasing requirements for the next day to the
operator to obtain the use rights of energy storage and bid in
the day-ahead energy market. Then, in the real-time market,
NESs can freely dispatch the leased D-SES within physical
constraints to address the uncertainty and fluctuations in new
energy generation, thereby reducing penalties from energy
market deviation assessment. Additionally, the NESs can
leverage the right to use the leased D-SES to capitalize on
price differentials in the energy market and achieve greater
market revenues. It is worth mentioning that, considering
practical usage requirements, D-SES systems typically employ
energy storage units with a low power-to-capacity ratio.
Therefore, the lithium-ion energy storage system with 0.5 C is
employed in this work.

2) 4 h-type hourly SES (H-SES): Considering the volatility and
intermittency of new energy generation, leasing D-SES may
not be the most economical option for some NESs. To
address this issue, the H-SES with a leasing cycle of 4 h is
further utilized in this work, providing NESs with more
flexible choices. Thus, NESs can evaluate the benefits of
leasing D-SES and H-SES and then formulate the optimal
leasing strategy. In this way, NESs can lease H-SES or D-SES
independently, and they can also choose to lease D-SES and
utilize H-SES to compensate for the lack of flexibility resources
during certain time periods. Since the H-SES with a 4-h leasing
cycle is typically taken to handle short-term output fluctuations,
the requirement for energy storage duration is relatively small.
Therefore, the lithium-ion energy storage system with 2 C is
utilized in this work.

2.2 Interaction model between HSES and
NESs

As mentioned in Section 2.1, NESs can obtain the use rights of
energy storage from the HSES operator. During the leasing period,
NESs can charge and discharge the leased energy storage within the
leasing capacity limits. However, due to physical constraints, such as
geographical location and power transmission, NESs cannot directly
access the physical energy storage devices. Therefore, in this work,
the use rights obtained by NESs are virtual use rights of the energy
storage, while the actual dispatch control rights of the energy storage
devices remain with the HSES operator.

FIGURE 1
Sharing model of the proposed HSES.
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The HSES operator determines the centralized hybrid energy
storage system’s actual charging and discharging decisions based on
the aggregated demand from all NESs. Additionally, under this
business model, the HSES operator acts as an agent on behalf of the
NESs in market settlements. In other words, the operator
participates in the energy market after aggregating all the NESs
that have leased energy storage as a whole and pays the agent
electricity revenue to NESs based on the market rules and the day-
ahead energy market bids and real-time scheduling decisions
declared by the NESs. The interactions between HSES, NESs, and
the grid are illustrated in Figure 2.

2.2.1 New energy stations
Upon receiving information about energy market prices and

HSES leasing prices, NESs make day-ahead decisions on the HSES
capacities to be leased and the energy bids in the energy market.
Subsequently, based on the actual output of new energy during
intraday operations, they make decisions on the real-time energy
base points and energy storage dispatch demands. As shown in
Figure 2, NESs submit the information of all decisions to the HSES
operator via an information flow, and the operator acts on their
behalf to participate in the energy market. Energy flow #3 represents
the actual power generation of NESs, which is measured directly by
smart meters and is integrated by the operator to participate in the
energy market. Under this model, the operator can utilize Energy
flow #3 for charging (i.e., Energy flow #3 → #5) or for selling
(i.e., Energy flow #3→ #1). Since NESs entrust the HSES operator to
participate in the market settlement, the net profits from the energy
market are paid to NESs by the HSES operator, which is represented
as Cash flow #5. The HSES leasing fee of NESs is represented by
Cash flow #4.

2.2.2 HSES operator
The HSES operator owns independent energy storage

systems and presets the leasing price of the HSES for NESs.
Cash flow #3 represents the leasing revenue, which is the
primary profit source of the HSES operator. Energy flows
#1 and #2 represent the energy interchange between the
operator and the power grid. Correspondingly, Cash flows
#1 and #2 represent the energy-selling profit and the energy-
purchasing cost, respectively. As the HSES operator represents

NESs in the dispatch of energy storage and participates in energy
market transactions, the complementary effects of the charging
and discharging needs of various types of NESs bring additional
revenue. Based on the charging and discharging decisions of the
NESs, the operator collects the information of all stations and
acts on behalf of the stations in market bidding. Hence, Cash
flow #4 represents the net profit that needs to be paid to the NESs
based on their decisions. Cash flow #5 represents the energy
deviation penalty of the HSES operator.

It is noteworthy that both the HSES operator and the NESs
implement the samemarket policies. The determination of the HSES
leasing prices and capacities for the operator and the management of
the HSES in a manner that renders profitability for both the operator
and the NESs are the primary focal points of this work.

2.3 Objectives of the HSES operator and
NESs

2.3.1 New energy stations
Each NES aims to maximize its daily net profit, which is the

difference between the net revenue from the energy market and the
cost of leasing HSES. To this end, NESs need to establish a rational
HSES leasing strategy and energy market bidding strategy in the
day-ahead phase, based on the HSES operator’s leasing prices,
forecasted energy market prices, and the anticipated output from
new energy to maximize their expected returns.

2.3.2 HSES operator
The operator’s objective is to maximize the total lifecycle

revenue of HSES, which is the difference between leasing revenue
and agency benefits, minus the costs of energy storage construction,
operation, andmaintenance. To this end, it is urgent for the operator
to establish reasonable leasing prices in response to the demand
changes from the NESs and subsequently optimize the energy
storage dispatch strategy to make capacity planning decisions.
The operator’s profit includes revenue from leasing virtual energy
storage use rights to NESs and income from acting as an agent for
NESs in energy trading. The costs include payments to the grid for
energy purchases, deviation penalty costs, and energy storage
investment and maintenance costs.

FIGURE 2
Interactions between the operator and NESs under the proposed HSES model.
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3 Stackelberg game-based bi-level
pricing and planning optimization
model of HSES

The study presented in this work involves two groups pursuing
different objectives: The NESs prefer lower HSES leasing prices in
order to lease more energy storage use rights and store more energy
during non-peak periods for use during peak periods, thereby
securing more arbitrage profits. In contrast, the HSES operator
prefers higher leasing prices in order to generate greater revenue
from NESs. Consequently, these two groups have conflicting
interests in the HSES leasing price setting, which can be resolved
through a Stackelberg game. Therefore, a bi-level optimization
model is utilized to capture the Stackelberg game problem
between the selfish operator and NESs.

The objective of the upper-level optimization problem is to
maximize the earnings of the leader in the game, specifically the
annualized profit of the HSES operator. The upper-level leader
determines the leasing prices for the use rights of energy storage
and announces the information to the lower-level followers.
Similarly, the objective of the lower-level optimization problem is
to maximize the earnings of each follower, specifically the net profits
from the energy market for the NESs. The lower-level followers
make decisions on the leasing strategy and the operation strategy
based on the price signal transmitted from the upper level and then
feed the optimization results back to the upper level. In response, the
upper-level leader schedules the centralized energy storage and
decides on the construction capacity for the HSES based on the
feedback information from the lower-level followers. The
interaction of information between the upper and lower levels in
this bi-level optimization model is presented in Figure 3.

3.1 Lower-level model: maximizing the net
profit of an NES

The goal of themarket operationmodel forNESs at the lower level is
to maximize the net profit for each NES over the dispatch period. The
decision variables comprise two parts: the first part is related to the
leasing strategy for energy storage use rights, specifically the leased
capacity of the HSES. The second part involves day-ahead bidding and

real-time operation decisions, i.e., day-ahead energy bids, real-time
energy base points, and energy storage dispatch decisions. The
objective function for the NES s is presented as follows:

maxRNES
s � 365∑Nn

n�1
γn · Re,bid

n,s + Re,rt
n,s − Ce,pun

n,s − Clea
n,s( ), (1)

where γn denotes the probability of scenario n. Re,bid
n,s represents the

bidding revenue of NES s under scenario n. Re,rt
n,s signifies the real-

time market revenue of NES s under scenario n. Ce,pun
n,s refers to the

energy market deviation penalty of NES s under scenario n. Clea
n,s

denotes the HSES leasing cost of NES s under scenario n.
The HSES leasing cost of NES s is determined by its leasing

decisions and the unit leasing prices, which can be expressed as
follows:

Clea
n,s � El,lea

n,s · ρl,lea ·∑Nt

t�1

cen,t
Nt

+ ∑Np

p�1
Es,lea
n,s,p · ρs,lea ·∑Nk

k�1

cen,4p−3+k
Nt/Np

, (2)

where El,lea
n,s signifies the capacity of D-SES leased by NES s under

scenario n. Es,lea
n,s,p represents the capacity of H-SES leased by NES s in

the pth phase under scenario n. cen,t and c
e
n,4p−3+k represent the energy

market prices at time t and time 4p-3+k under scenario n,
respectively. Nt denotes the number of time periods. Np denotes
the number of H-SES leasing phases, which is set as 6 in this work.
Nk represents the number of time periods within phase p. ρl,lea and
ρs,lea are the price coefficients of D-SES and H-SES, respectively.

The day-ahead bidding profit of NES s is determined by the day-
ahead bidding decisions and market prices, which can be expressed
as follows:

Re,bid
n,s � ∑Nt

t�1
cen,t · Pe,bid

n,s,t · Δt, (3)

where Pe,bid
n,s,t represents the bidding volume of the NES s at time

period t under scenario n.
The real-timemarket revenue of NES s is determined by the real-

time energy base points and can be represented as

Re,rt
n,s � ∑Nt

t�1
cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,s,τ − Pe,bid

n,s,t( ) · Δτ, (4)

where Pe,rt
n,s,τ is the real-time energy base point submitted by the NES s

to the HSES operator.
The energy deviation penalty for NES s is determined by the

difference between its reported day-ahead energy bids and real-time
energy base points and can be expressed as

Ce,pun
n,s � ∑Nt

t�1
π ·( ) · cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,s,τ − Pe,bid

n,s,t

∣∣∣∣ ∣∣∣∣ · Δτ, (5)

where π(·) denotes the energy market penalty coefficient, which is
positive when the output exceeds the upper limit and negative when
it falls below the lower limit.

Then, the constraints of the lower level are summarized as
follows.

1) The energy continuity constraint of the leased HSES:

Es
n,s,p,τ � Es

n,s,p,τ−1 + Ps,ch
n,s,p,τ · ηs,ch − Ps,dis

n,s,p,τ/ηs,dis( ) · Δτ, (6)

FIGURE 3
Interactions between the two levels of the optimization model.
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El
n,s,τ � El

n,s,τ−1 + Pl,ch
n,s,τ · ηl,ch − Pl,dis

n,s,τ/ηl,dis( ) · Δτ, (7)

where Es
n,s,p,τ and E

s
n,s,p,τ−1 are the remaining energy at time τ and τ-1

of the H-SES leased by NES s, respectively. ηs,ch and ηs,dis represent
the charging and discharging efficiency of H-SES, respectively.
Similarly, El

n,s,τ and El
n,s,τ−1 denote the remaining energy at time

τ and τ-1 of the D-SES leased by NES s, respectively. ηl,ch and ηl,dis are
the charging and discharging efficiency of D-SES, respectively.
Ps,ch
n,s,p,τ and Ps,dis

n,s,p,τ are the charging and discharging power of the
H-SES leased by NES s, respectively. Pl,ch

n,s,τ and Pl,dis
n,s,τ refer to the

charging and discharging power of the D-SES leased by NES s,
respectively.

2) The power balance constraint of NES s:

Pe,rt
n,s,τ � Pre

n,s,τ + Pl,dis
n,s,τ − Pl,ch

n,s,τ + Ps,dis
n,s,τ − Ps,ch

n,s,τ , (8)
where Pre

n,s,τ represents the actual output of the NES s at time τ in
scenario n.

3) The power constraint of the leased HSES:

0≤Pl,ch
n,s,τ , P

l,dis
n,s,τ ≤Pl,lea

n,s , (9)
0≤Ps,ch

n,s,p,τ , P
s,dis
n,s,p,τ ≤Ps,lea

n,s,p, (10)

where Pl,lea
n,s and Ps,lea

n,s,p are the power capacities of the leased D-SES
and HSES, respectively.

4) The remaining energy constraint of the leased HSES:

Es,lea
n,s,p · Ss,min

OC ≤Es
n,s,p,τ ≤Es,lea

n,s,p · Ss,max
OC , (11)

El,lea
n,s · Sl,min

OC ≤El
n,s,τ ≤El,lea

n,s · Sl,max
OC , (12)

where Ss,min
OC and Ss,max

OC are the lower and upper thresholds allowed
for the state of charge of HSES, respectively. Similarly, Sl,min

OC and
Sl,max
OC are the lower and upper thresholds allowed for the state of
charge of D-SES, respectively.

5) The initial and final consistency constraints of the leased HSES:

El
n,s,0 � El

n,s,te
, (13)

Es
n,s,4p−3 � Es

n,s,4p, p � 1, 2, ..., Np, (14)

where El
n,s,0 and El

n,s,te
represent the remaining energy of the D-SES

leased by NES s at the initial and final states of the scheduling cycle,
respectively. Similarly, Es

n,s,4p−3 and Es
n,s,4p are the remaining energy

of the H-SES leased by NES s at the initial and final states of the
phase p, respectively.

6) The charging/discharging state constraint of the leased HSES:

Bl,ch
n,s,τ + Bl,dis

n,s,τ ≤ 1
Bs,ch
n,s,p,τ + Bs,dis

n,s,p,τ ≤ 1
0≤Pl,ch

n,s,τ ≤Bl,ch
n,s,τ · Pl,lea

s

0≤Pl,dis
n,s,τ ≤Bl,dis

n,s,τ · Pl,lea
s

0≤Ps,ch
n,s,p,τ ≤Bs,ch

n,s,p,τ · Ps,lea
n,s,p

0≤Ps,dis
n,s,p,τ ≤Bs,dis

n,s,p,τ · Ps,lea
n,s,p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

where Bs,ch
n,s,p,τ and Bs,dis

n,s,p,τ are auxiliary binary variables of charging
and discharging states for H-SES at time τ for NES s, respectively.

Similarly, Bl,ch
n,s,τ and Bl,dis

n,s,τ are auxiliary binary variables of charging
and discharging states for D-SES at time τ for NES s, respectively.
The aforestated constraints ensure the unidirectionality of charging
and discharging of energy storage-invoked NESs.

7) The power-to-capacity ratio constraint of the leased HSES:

Es,lea
n,s � θs · Ps,lea

n,s , (16)
El,lea
n,s � θl · Pl,lea

n,s , (17)
where θs and θl represent the power-to-capacity ratios of H-SES and
D-SES, respectively. The power and capacity of the leased HSES
must adhere to physical constraints.

8) The new energy output constraint of the NES:

Pre
n,s,τ ≤Pre,pre

n,s,τ , (18)
where Pre,pre

n,s,τ represents the forecasted output of the NES s at time τ
in scenario n.

3.2 Upper-level model: maximizing the net
profit of the HSES operator

The goal of the objective function in the upper-level
optimization model is to maximize the annual net profit RHSES of
the HSES operator. The decision variables of the model consist of
two parts: the first part includes pricing and planning decisions,
i.e., the construction capacities Es,inv and El,inv of HSES and the
leasing price coefficients ρs,lea and ρl,lea of HSES; the second part
includes operation and scheduling decisions, i.e., day-ahead energy
biding and real-time scheduling strategies. Note that the operation
and scheduling decisions correspond to different scenarios, while
pricing and planning decisions are fixed values.

maxRHSES � 365∑Nn

n�1
γn · Rlea

n + Re,bid
n + Re,rt

n − Ce,pun
n( ) − Cmt − Cinv

− Cnes,

(19)
where Rlea

n refers to the leasing revenue of the operator in scenario n.
Re,bid
n and Re,rt

n represent the day-ahead bidding profit and real-time
energy market profit for the operator in scenario n, respectively.
Ce,pun
n represents the energy deviation penalty for the operator in

scenario n.Cnes represents the net energymarket revenue paid by the
operator to the NESs. Cinv stands for the investment cost of HSES.
Cmt denotes the operation and maintenance cost of HSES.

The annualized investment cost Cinv of HSES is determined by
the type of energy storage and invested capacities, which can be
expressed as

Cinv � r · cs,inv · Es,inv

1 − 1 + r( )−Ys + r · cl,inv · El,inv

1 − 1 + r( )−Yl , (20)

where r denotes the discount rate. Ys and Yl represent the lifespan of
H-SES and D-SES, respectively.

The operation and maintenance cost Cmt of HSES can be
calculated as follows:
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Cmt � cmt · Ps,inv + Pl,inv( ), (21)

where Ps,inv and Pl,inv represent the rated power capacities of the
constructed H-SES and D-SES, respectively. cmt represents the
annual unit operation and maintenance cost of the energy storage.

The leasing revenue of the operator is determined by the leasing
demands of NESs, which can be expressed as

Rlea
n � ∑Ns

s�1
Clea

n,s. (22)

The proxy market revenue paid by the HSES operator to all the
NESs is obtained based on the optimal operation results of NESs,
which can be expressed as

Cnes � ∑Ns

s�1
RNES
s . (23)

The aforementioned equation represents the settlement of NESs
by the operator in accordance with the energy market rules. In other
words, the relationship between each new energy power station and
the operator is merely agency-based rather than a cooperative one.

The day-ahead bidding revenue of the HSES operator is
determined by the day-ahead bidding volume, which can be
expressed as

Re,bid
n � ∑Nt

t�1
cen,t · Pe,bid

n,t · Δt, (24)

where Pe,bid
n,t denotes the bidding volume of the operator at time t in

scenario n.
The real-time market revenue of the HSES operator is

determined by the real-time output, which can be expressed as

Re,rt
n � ∑Nt

t�1
cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,τ − Pe,bid

n,t( ) · Δτ, (25)

where Pe,rt
n,τ denotes the real-time energy base points submitted to the

grid by the HSES operator. It is worth mentioning that the real-time
energy base points declared by the operator incorporate the actual
output of the NESs it aggregates. In other words, after acting as an
agent for each NES, the operator participates in the energy market as
a unified entity.

The energy market deviation penalty for the operator is
determined by the difference between the day-ahead bidding
volume and the real-time energy base point. It can be expressed
as follows:

Ce,pun
n � ∑Nt

t�1
π ·( ) · cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,τ − Pe,bid

n,t

∣∣∣∣ ∣∣∣∣ · Δτ. (26)

In the upper-level model, the operator coordinates the
centralized energy storage systems based on the real-time output
of new energy and the storage requirements of each NES. The model
constraints are summarized as follows.

1) The power balance constraint of the HSES:

Pe,rt
n,τ � ∑Ns

s�1
Pre
n,s,τ + Ps,dis

n,τ + Pl,dis
n,τ − Ps,ch

n,τ + Pl,ch
n,τ , (27)

where Pl,ch
n,τ and Pl,dis

n,τ represent the charging and discharging power
of the centralized D-SES invoked by the operator at time τ in
scenario n, respectively. Ps,ch

n,τ and Ps,dis
n,τ represent the charging

and discharging power of the centralized H-SES invoked by the
operator at time τ in scenario n, respectively.

2) The capacity constraint of the HSES:

Es,inv ≥max Es,lea
n,s,p

∣∣∣∣∣∀n, s, p{ }, (28)
El,inv ≥max El,lea

n,s

∣∣∣∣∀n, s{ }, (29)

The aforestated constraints ensure that the maximum capacity
of the HSES leased by each NES does not exceed the capacity of the
centralized HSES, preventing violations of physical limits during the
leasing process.

3) The energy continuity constraint of the HSES:

Es
n,τ � Es

n,τ−1 + Ps,ch
n,τ · ηs,ch − Ps,dis

n,τ /ηs,dis( ) · Δτ, (30)
El
n,τ � El

n,τ−1 + Pl,ch
n,τ · ηl,ch − Pl,dis

n,τ /ηl,dis( ) · Δτ, (31)

where Es
n,τ and E

s
n,τ−1 represent the remaining energy of the H-SES at

time τ and τ-1, respectively. Similarly, El
n,τ and El

n,τ−1 represent the
remaining energy of D-SES at time τ and τ-1, respectively.

4) The remaining energy constraint of the HSES:

Es,inv · Ss,min
OC ≤Es

n,τ ≤Es,inv · Ss,max
OC , (32)

El,inv · Sl,min
OC ≤El

n,τ ≤El,inv · Sl,max
OC , (33)

5) The initial and final consistency constraints of the leased HSES:

El
n,0 � El

n,te
, (34)

Es
n,0 � Es

n,te
, (35)

where El
n,0 and El

n,te
represent the remaining energy of the D-SES at

the initial and final states of the scheduling cycle, respectively.
Similarly, Es

n,0 and Es
n,te

are the remaining energy of the H-SES at
the initial and final states of the scheduling cycle, respectively.

6) The charging/discharging state constraint of the HSES:

Bl,ch
n,τ + Bl,dis

n,τ ≤ 1
Bs,ch
n,τ + Bs,dis

n,τ ≤ 1
0≤Pl,ch

n,τ ≤Bl,ch
n,τ · Pl,inv

0≤Pl,dis
n,τ ≤Bl,dis

n,τ · Pl,inv

0≤Ps,ch
n,τ ≤Bs,ch

n,τ · Ps,inv

0≤Ps,dis
n,τ ≤Bs,dis

n,τ · Ps,inv,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(36)

where Bs,ch
n,τ and Bs,dis

n,τ are auxiliary binary variables of charging and
discharging states for H-SES at time τ, respectively. Similarly, Bl,ch

n,τ

and Bl,dis
n,τ are auxiliary binary variables of charging and discharging

states for D-SES at time τ, respectively.

7) The charging/discharging power constraint of the HSES:

0≤Ps,dis
n,τ , Ps,ch

n,τ ≤Ps,inv , (37)
0≤Pl,dis

n,τ , P
l,ch
n,τ ≤P

l,inv, (38)
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8) The power-to-capacity ratio constraint of the HSES:

Es,inv � θs · Ps,inv , (39)
El,inv � θl · Pl,inv. (40)

4 Three-stage optimization-based
solution method for the Stackelberg
game model

The bi-level optimization model given in Section 3 is an NP-
hard problem, which is difficult to solve directly. Moreover, the
interaction between the upper and lower levels in the bi-level
optimization model greatly increases the difficulty of the solution.
To this end, the effective solution to this problem is explored from
the essence of the Stackelberg game problem in this work.

In practice, the planning of the HSES should be referenced by
the storage demands of the game participants. Therefore, the HSES
planning decisions should be made after the followers declare the
storage leasing requirements and dispatching requirements.
Therefore, the bi-level optimization problem in this work can be
extended to a three-stage optimization problem. In this three-stage
optimization problem, the operator first decides the leasing price of
the HSES. After receiving the leasing price signal, NESs make HSES
leasing, market bidding, and real-time scheduling decisions and then
feedback the optimization results to the operator. Upon receiving
the detailed information from NESs, the operator makes HSES
planning decisions.

In the first and second stages of the game, the storage leasing
demands of the followers are influenced by the leasing prices, and
the leasing demands in turn affect the pricing strategy by affecting
the operator’s profit. Then, in the second and third stages of the
game, the HSES planning strategy of the operator is influenced by
the leasing and dispatching demand of each follower, and the storage
planning decisions will further affect the operator’s total profit,
thereby affecting the operator’s initiative in the decision-making of
the pricing strategy. Therefore, although the planning decision is
made in the last stage, the decisions of these three stages will affect
each other, so it is necessary to extend the original bi-level model
into a unified three-stage Stackelberg game problem.

For the constructed multi-stage Stackelberg game, which is a
large-scale mixed-integer programming problem, the number of
stages and integer variables makes it difficult to be simplified into a
single-layer mixed-integer linear programming (MILP) problem
using traditional model transformation methods such as the
Karush–Kuhn–Tucker (KKT) conditions or the dual theory.
However, adopting the genetic algorithm (GA) for price decision-
making can help effectively reduce the complexity of the model.
Meanwhile, during the decision-making process at the middle and
lower levels, each participant can utilize MILP to enhance the speed
and precision of the solution. In addition, while the upper level
employs the GA, the middle and lower levels utilize MILP based on
information from the upper level and their own profit models. Only
price signals and demand signals need to be transferred between
different optimization levels, which can well-simulate the
independent decision-making process by each participant in a
competitive market based on public information. Note that this

method can also help ensure the privacy and security of equipment
parameters and other sensitive information from all parties.

To sum up, a three-stage solution method based on
GA–MILP–MILP is adopted in this work, and the solution
process of the method is shown in Figure 4.

As shown in Figure 4, the proposed GA–MILP–MILP solution
algorithm involves the following steps:

1) Initially, generate the corresponding leasing price population of
HSES, i.e., the decision-making in the first stage.

2) Then, under each pricing population, solve the MILP problems
of all NESs by the commercial CPLEX solver and obtain the
optimal operation and leasing decisions, i.e., the decision-making
in the second stage.

3) After all followers complete optimization, their leasing and
dispatching demands can be aggregated. On this basis, the
operator makes a decision on the optimal planning strategy of
HSES, i.e., the decision-making in the third stage. Note that this
MILP problem can also be solved by the CPLEX solver. Then, the
operator’s profit, which serves as the fitness function in the GA, is
obtained.

4) Based on the result of the fitness function, the population
undergoes selection, crossover, and mutation to produce a
new generation population. The procedure returns to step 1)
and continues until it reaches equilibrium or exits the iteration
limit.

FIGURE 4
Flowchart of the proposed GA–MILP–MILP algorithm.
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Since the models in the middle and lower levels are MILP
problems, the optimal solutions obtained in the second and third
stages are subgame perfect equilibriums. When the best pricing
strategy found by the GA at the upper level is identical or converges
between two consecutive generations (i.e., the first stage reaches
optimality), it can be concluded that all participants reach optimality
at all stages, and the multi-stage Stackelberg game achieves a
subgame perfect equilibrium.

5 Case studies

5.1 Experimental settings

In this work, case studies are performed in a region with six
NESs, i.e., three wind power stations and three photovoltaic power
stations, to verify the effectiveness and superiority of the proposed
pricing and planning strategy. The rated capacities of these six NESs
are set as 25 MW, 15 MW, 10 MW, 25 MW, 13 MW, and 12 MW.
The typical scenario sets of wind power and photovoltaic power are
generated by the historical RES data from the NREL dataset and the
stochastic programming method based on the typical scenario
generation technique, as shown in Figure 5. Meanwhile, the
historical market data of PJM are taken to generate the price
scenario of the energy market, and all subjects in this work are
assumed as price-takers.

The other parameters are set as follows: Three typical scenarios
are set for summer, winter, and transition seasons. The parameters
of hybrid energy storage systems are summarized in Table 1. The
discount rate r is set as 0.05. The deviation penalty coefficients of the
energy market, π+ and π−, are set as 0.8.

The simulation is carried out on a 64-bit server with 2 Intel Xeon
Gold 2.00-GHz CPUs and 64-GB RAM on the MATLAB platform.
The proposed optimization problems are solved by the GA

algorithm and the commercial solver CPLEX in the YALMIP
toolbox.

5.2 Analysis of the pricing and planning
results for the HSES operator

5.2.1 The simulation results under the optimal HSES
pricing and planning strategy

To explore the impact of leasing price on the profits of NESs and
the HSES operator, the results under optimal pricing and planning
strategies of HSES based on the proposed Stackelberg game-based
method are analyzed in this subsection. Through the
GA–MILP–MILP solution method, the optimal price coefficients
for HSES are obtained as ρl,lea = 1.02 and ρs,lea = 0.22. Then, the
optimization results under the optimal pricing strategy are
summarized in Table 2.

5.2.1.1 For NESs
The HSES provides a new method for these entities to access

flexible and adjustable energy storage resources. By leasing D-SES
and H-SES, they can obtain the rights to use short-term energy
storage resources, which in turn allows them to reduce penalties
associated with energy market deviation assessments and enhance
their market profits. Taking NES#1 as an example, as shown in
Table 2, its original profit is 5.83 × 106 $ when participating in the
energy market without energy storage. After leasing the use rights of
HSES, NES#1 is required to pay the leasing fee of 6.17 × 105 $.
However, its net profit increases to 5.92 × 106 $, an increase of 1.5%
compared to the original earnings.

5.2.1.2 For the HSES operator
First, it can be observed from Table 2 that, under the optimal

pricing strategy, the optimal energy storage construction
capacities can be obtained as 21.3197 MWh for D-SES and
15.8138 MWh for H-SES, with an annualized total investment
cost of 1.14 × 106 $. It is apparent that the total leasing profit of
the HSES operator (i.e., 2.01 × 106 $) notably outweighs the
construction costs, and the net profit (i.e., 1.65 × 106 $) equates
to 145% of the annualized total investment costs. This allows for
an approximate calculation of the investment cost recovery
period, which is around 4.1 years. In addition, as depicted in
Table 2, if the operator does not lease the energy storage use
rights to NESs and participates in the market independently, it
would not be able to recover the investment cost, resulting in a
negative original profit (i.e., −0.32 × 106 $). In contrast, under
the proposed HSES model, the operator can garner substantial
additional profits by leasing virtual use rights of HSES to NESs,
effectively shortening the cost recovery period. It is noteworthy
that as the actual control rights of energy storage belong to the
operator, the construction capacity of the HSES is less than the
total demand capacity of the NESs. In other words, the operator
can reduce the investment cost by accommodating the
complementary demands of NESs.

To sum up, for NESs, obtaining short-term use rights of D-SES
and H-SES through the leasing market can help them deal with
energy deviation and obtain additional market revenues. For the
energy storage operator, profits from the leasing market can help

FIGURE 5
Three typical scenarios of wind and photovoltaic power. (A)Wind
power. (B) Photovoltaic power.

Frontiers in Energy Research frontiersin.org09

Xu et al. 10.3389/fenrg.2023.1273929

75

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273929


increase the energy storage utilization rate and shorten the
investment recovery cycle.

5.2.2 Profits of the HSES operator under different
leasing price coefficients

To investigate the impact of different pricing strategies on the
revenue of the HSES operator, the profits of the HSES operator
under different leasing price coefficients are analyzed in this
subsection. In this case, the price coefficient of D-SES ranges
from 1 to 1.2, and the price coefficient of H-SES ranges from
0.1 to 0.5. The changes in the HSES operator’s profit are shown
in Figure 6.

As observed from Figure 6, when the leasing price coefficient of
D-SES remains constant, the profit of the operator generally
increases first and then decreases as the leasing price coefficient
of H-SES increases. The reason for this phenomenon can be
explained as follows: when the leasing price of H-SES is relatively
low, the NESs lease as much H-SES as possible under the established
leasing rules to gain additional market revenue. Nevertheless, the
low leasing price forces the operator to forfeit substantial revenue.
As the leasing price increases, the reduction rate of the NESs’ leased
capacity is slower than the growth rate of the leasing price; therefore,
the operator’s profit exhibits an upward trend. As the leasing price
further increases, the hefty leasing costs force the NESs to lower their
leasing demands for H-SES, resulting in decreased revenue for the
operator.

Similarly, when the leasing price coefficient of H-SES is kept
constant, as the leasing price coefficient of D-SES increases, the
operator’s profit presents a similar trend. The underlying
reasons are congruent with the previous analysis and will not
be reiterated here.

Interestingly, as can be clearly observed from Figure 6, the
operator’s profit experiences a precipitous drop within the range
of 1–1.05. The reason can be elucidated as follows: since D-SES is
leased on a daily basis when the price coefficient is lower than a
certain threshold, the marginal revenue for NESs from leasing
D-SES significantly exceeds the leasing cost. This encourages
NESs to lease as much D-SES as possible, thereby bringing
substantial revenue for the operator. However, once this
threshold is exceeded, NESs need to weigh the benefits of
reducing deviation assessment penalties and the high-generation
benefits associated with low storage against leasing as much D-SES
as possible. This consideration leads to a sharp decline in the
operator’s profit.

In summary, the leasing price coefficients show a large impact
on the leasing demands of NESs and the benefit of the operator; thus,
the operator should set the price coefficient reasonably according to
the demand changes to maximize its own benefit.

5.2.3 Leasing results of HSES under different
leasing price coefficients

To further investigate and explain the phenomena observed in
Section 5.2; Section 5.2.2, the HSES leasing demands under different
leasing price coefficients are analyzed in this subsection. With the
price coefficient of D-SES fixed (i.e., 1.02), the leasing results under
different price coefficients of H-SES (i.e., 0.16–0.30) are depicted in
Figure 7. Similarly, with the price coefficient of H-SES held constant
(i.e., 0.22), the leasing results under different price coefficients of
D-SES (i.e., 1–1.14) are shown in Figure 8.

As shown in Figure 7, when the leasing price coefficient of D-SES
is fixed and that of H-SES is adjusted, the low leasing price
coefficients of D-SES encourage NESs to lease as much D-SES as

TABLE 1 Basic parameters of HSES systems.

θ ηdis/ch SOCmin SOCmax cinv ($/Wh) cmt ($/MW) Y (yr)

D-SES 2 0.95 0.10 0.90 0.2083 15.7 10

H-SES 0.5 0.95 0.10 0.90 0.2778 16.3 10

TABLE 2 Optimization results under the optimal HSES pricing and planning strategy.

Maximum
leased

capacity/MWh

Construction
capacity/MWh

Leasing cost/105 $ Leasing profit/106 $ Net profit/106 $ Original profit/106 $

D-SES H-SES D-SES H-SES

NES#1 19.1478 15.8138 — — 6.17 — 5.92 5.83

NES#2 11.4887 9.4883 — — 3.70 — 3.55 3.50

NES#3 7.6591 6.3255 — — 2.47 — 2.37 2.33

NES#4 21.3197 14.4775 — — 3.85 — 1.96 1.91

NES#5 11.0863 7.5283 — — 2.00 — 1.02 0.99

NES#6 10.2335 6.9492 — — 1.85 — 0.94 0.92

HSES Operator — — 21.3197 15.8138 — 2.01 1.65 −0.32
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possible under the leasing rules; thus, the maximum leasing
capacities of D-SES are same at 0.16 and 0.18. However, as the
leasing price coefficient of H-SES increases, the total leasing capacity
of H-SES generally decreases. Consequently, since the initial
increase in price coefficient does not significantly impact the
leasing capacity, the operator’s total leasing profit demonstrates a
trend of initial growth followed by a decrease, which aligns with the
phenomenon observed in the previous subsection.

Similarly, when the leasing price coefficient of H-SES is held
constant and that of D-SES varies, due to the low leasing price of
H-SES, NESs also lease as much H-SES as possible under the rules at
1 and 1.02, resulting in a constant maximum leasing capacity of
H-SES. Furthermore, as can be observed from Figure 8, the leasing
capacity of D-SES decreases abruptly at 1.02 and 1.04, a
phenomenon that corresponds with the one observed in the
previous subsection. This is because when the price coefficient
exceeds a certain threshold, NESs have to consider the marginal
benefits of energy storage instead of leasing blindly, thus causing the
abrupt change. Correspondingly, the curve of the operator’s leasing
revenue exhibits the same characteristic.

5.3 Comparisons between the cases under
different energy storage utilizing modes

5.3.1 Results for the operator under different
energy storage utilizing modes

To validate the advantages of the proposed HSES model and the
optimal pricing and planning strategy, the results under different
energy storage utilization modes are analyzed in this subsection.
Table 3 presents the results for the operator under different energy
storage utilizing modes. Note that “HSES” in the table represents the
original case in this work, “only D-SES” represents the case where
the operator only invests and leases the D-SES, “only H-SES”
represents the case where the operator only invests and leases the
H-SES, and “no leasing” represents the case where the operator
utilizes the energy storage systems itself.

As shown in Table 3, under the “no leasing” case, the
operator cannot profit from participating in the energy
market independently, with the total net profit less than 0,
making it impossible to recover the investment costs within the
planning period. In contrast, in the three cases considering

FIGURE 6
Profits of the HSES operator under different leasing price coefficients.

FIGURE 7
Leasing results under different leasing price coefficients of H-SES
and fixed leasing price coefficient of D-SES.

FIGURE 8
Leasing results under different leasing price coefficients of D-SES
and fixed leasing price coefficient of H-SES.
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shared energy storage, the operator’s net profits are all greater
than 0. This indicates that the shared energy storage model can
help the operator gain substantial revenue. In the “HSES” case,
the total net profit of the operator is maximized, compared to
the “no leasing” case, the “only D-SES” case, and the “only
H-SES” case increased by 1.97 × 106 $, 0.18 × 106 $, and 1.40 ×
106 $, respectively. It is not difficult to find that although the
concurrent configuration of D-SES and H-SES brings
additional investment costs, the substantial increase in
leasing profit can bring greater benefits. Additionally, even
though the return on investment of HSES is lower than that
of “only D-SES,” the operator can still recover investment costs
in the short term.

To sum up, compared with other energy storage utilizing modes,
the proposed HSES model shows better economics. It can make up
for the shortcomings of the traditional energy storage usage model in
terms of slow cost recovery speed and can further improve the
operator’s revenue compared with the traditional single-type
sharing model.

5.3.2 Results for new energy stations under
different energy storage utilizing modes

To further explore the impact of the model proposed in this
work on NESs, this subsection takes NES#1 as an example to analyze
the economic benefits of NESs under different energy storage
utilization modes. The results of NES#1 under different energy
storage utilization modes are shown in Table 4. Note that “self-
built ES” represents the case where NES#1 invests and utilizes the
energy storage system itself and “no ES” represents the case where
NES#1 participates in the energy market without energy storage
resources.

As shown in Table 4, when no energy storage resources are
utilized, the energy deviation penalty of NES#1 is as high as 1.59 ×
106 $, thereby affecting its net market profit. When investing and
utilizing energy storage devices independently, the high investment
cost of energy storage brings additional expenditure to NES#1.
However, the flexible regulation capability provided by the
energy storage device significantly reduces the energy market
deviation penalty (i.e., 1.48 × 106 $), enhancing NES#1’s market
profit. Therefore, compared to the scenario without using energy
storage resources, the net profit of NES#1 in the self-built energy
storage case increased by 0.05 × 106 $.

It can be observed in Table 4 that the mode of leasing shared
energy storage can further improve the net profit of NES#1, among
which the additional profit brought by leasing both D-SES and
H-SES is the highest. As can be seen from Table 4, although the
annual leasing costs are higher than the annual investment cost, the
net profits are higher than that of self-built energy storage due to the
larger amount of energy storage resources that NES#1 can utilize
under the shared energy storage model. It is worth mentioning that
leasing shared energy storage can also reduce the investment risk of
NESs. In practice, if future market policies and its own power
generation scale change, the NES can freely adjust the capacity of
leased energy storage, which is more flexible and less risky compared
to self-built energy storage.

Above all, the model proposed in this work shows the following
advantages: for NESs, the HSES leasing market provides them with a
flexible way to obtain adjustable resources. They can obtain the
short-term use rights of hybrid energy storage resources without
having to configure energy storage equipment themselves. In
addition, compared to traditional single-type SES, NESs can lease
both H-SES and D-SES according to their additional needs in certain

TABLE 3 Results for the operator under different energy storage utilizing modes.

Different cases HSES Only D-SES Only H-SES No leasing

Construction capacity/MWh D-SES 21.32 21.32 — 21.32

H-SES 15.81 — 15.81 15.81

Annual construction cost/106$ 1.14 0.58 0.57 1.14

Annual leasing profit/106 $ 2.01 1.50 0.53 —

Total net profit/106 $ 1.65 1.47 0.25 −0.32

Return on annual investment 145% 253% 44% −28%

TABLE 4 Results for NES#1 under different energy storage utilizing modes.

Different cases HSES Only D-SES Only H-SES Self-built ES No ES

Leased capacity/MWh D-SES 19.15 19.15 — — —

H-SES 15.81 — 15.81 — —

Construction capacity/MWh — — — 8.36 —

Annual penalty cost/106$ 0 0.04 0.01 0.10 1.59

Annual leasing cost/106$ 0.62 0.44 0.19 — —

Annual construction cost/106$ — — — 0.11 —

Total net profit/106 $ 5.92 5.90 5.91 5.88 5.83
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periods to further reduce deviations. To sum up, leasing HSES can
help NESs reduce energy deviations and increase market revenues.
For the operator, leasing the virtual use rights of HSES to NESs can
help obtain considerable leasing profit, thereby shortening the
recovery period of investment costs. Moreover, compared to the
traditional single-type leasing mode, the proposed leasing mode of
HSES can bring more additional profit.

6 Conclusion

Pricing and planning of energy storage systems are urgent issues
that need to be addressed for the energy storage owners. Therefore, a
Stackelberg game-based three-stage optimal pricing and planning
strategy of hybrid shared energy storage is formulated in this work
for the operator to maximize the profit during the whole planning
cycle. In addition, the three-stage GA–MILP–MILP algorithm is
proposed to efficiently solve the Stackelberg game-based model. The
effectiveness and advantages of the proposed strategy are verified
through the case studies, and the following conclusions and
suggestions are drawn for the HSES operator and NESs.

1) Compared to the traditional single-type leasing model, the
proposed hybrid shared energy storage model considering two
leasing options can bring additional profits for both the operator
and NESs.

2) The proposed Stackelberg game-based pricing and planning
strategy takes the preferences and selfishness of both the
“leader” operator and “followers” new energy stations into
consideration and can help the operator make optimal
decisions with maximum profit.

3) For new energy stations, obtaining short-term use rights of
D-SES and H-SES through the leasing market can help them
deal with energy deviation and obtain additional market
revenues.

4) For the energy storage operator, profits from the leasing market
can help increase the energy storage utilization rate and shorten
the investment recovery cycle.

In future works, NESs utilizing the HSES to participate in the
joint energy and frequency regulation market will be studied, and
the battery degradation will be considered in the pricing model.
Moreover, the energy storage demander can be extended to include
demand-side users, prosumers, integrated energy systems, etc.
Furthermore, more flexible leasing options and more types of
energy storage will be considered to perfect the business model
of energy storage.
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Nomenclature

Abbreviations

HSES Hybrid shared energy storage

NES New energy station

GA Genetic algorithm

D-SES Daily SES

H-SES Hourly SES

KKT KarushKuhnTucker

Sets and indices

t ∈ Nt Hourly time horizon, Δt = 1 h

τ ∈ [t, t+Δt] 15-min time horizon, Δτ = 15 min

s ∈ Ns Index of the new energy station

n ∈ Nn Index of the typical scenario

p ∈ Np Index of the H-SES leasing phase

k ∈ Nk Index of the time period within leasing phase p

Parameters

γn Probability of scenario n

cen,t The energy market price at time t under scenario n

π+/π- Coefficient of energy deviation penalty for positive deviation/
negative deviation

ηs,ch/ηs,dis Charging/discharging efficiency of H-SES

ηl,ch/ηl,dis Charging/discharging efficiency of D-SES

Ss,min
OC / Ss,max

OC
Lower/upper threshold allowed for the state of charge of H-SES

Sl,min
OC / Sl,max

OC
Lower/upper threshold allowed for the state of charge of D-SES

θs/θl Power-to-capacity ratio of H-SES/D-SES

Pre,pre
n,s,τ Forecasted output of the NES s at time τ in scenario n

Ys/Yl Lifespan of H-SES/D-SES

cmt Annual unit operation and maintenance cost of the energy storage

Variables

RNES
s Annual net profit of the NES n

RHSES Annual net profit of the HSES operator

Re,bid
n,s

Bidding revenue of NES s under scenario n

Re,rt
n,s Real-time market revenue of NES s under scenario n

Rlea
n

Leasing revenue of the operator in scenario n

Re,bid
n

Day-ahead bidding profit of the operator in scenario n

Re,rt
n Real-time energy market profit of the operator in scenario n

Ce,pun
n,s Energy market deviation penalty of NES s under scenario n

Clea
n,s

HSES leasing cost of NES s under scenario n

Ce,pun
n Energy deviation penalty for the operator in scenario n

Cnes Net energy market revenue paid by the operator to the NESs

Cinv Investment cost of HSES

Cmt Operation and maintenance cost of HSES

Ps,inv/Pl,inv Rated power capacity of the constructed H-SES/D-SES

El,lea
n,s

Capacity of D-SES leased by NES s under scenario n

Es,lea
n,s,p

Capacity of H-SES leased by NES s in the pth phase under
scenario n

ρl,lea/ρs,lea Price coefficient of D-SES/H-SES

Pe,bid
n,s,t

Bidding volume of NES s at time period t under scenario n

Pe,rt
n,s,τ Real-time energy base point submitted by NES s to the HSES

operator at time τ under scenario n

Pe,bid
n,t

Bidding volume of the operator at time t in scenario n

Pe,rt
n,τ Real-time energy base points submitted to the grid by the HSES

operator at time τ under scenario n

Es
n,s,p,τ / E

s
n,s,p,τ−1 Remaining energy at time τ/τ-1 under scenario n of the H-SES

leased by NES s

El
n,s,τ / E

l
n,s,τ−1 Remaining energy at time τ/τ-1 under scenario n of the D-SES

leased by NES s

Es
n,τ / E

s
n,τ−1 Remaining energy of the H-SES at time τ/τ-1

El
n,τ / E

l
n,τ−1 Remaining energy of the D-SES at time τ/τ-1

Ps,ch
n,s,p,τ / P

s,dis
n,s,p,τ

Charging/discharging power of the H-SES leased by NES s at time
τ under scenario n

Pl,ch
n,s,τ / P

l,dis
n,s,τ

Charging/discharging power of the D-SES leased by NES s at time
τ under scenario n

Pl,ch
n,τ / P

l,dis
n,τ

Charging/discharging power of the centralized D-SES invoked by
the operator at time τ in scenario n

Ps,ch
n,τ / P

s,dis
n,τ

Charging/discharging power of the centralized H-SES invoked by
the operator at time τ in scenario n

Pre
n,s,τ Actual output of NES s at time τ in scenario n

Pl,lea
n,s / P

s,lea
n,s,p

Power capacity of the leased D-SES/H-SES of NES s in scenario n

El
n,s,0/ E

l
n,s,te

Remaining energy of the D-SES leased by NES s at the initial/final
state of the scheduling cycle

Es
n,s,4p−3/ E

s
n,s,4p Remaining energy of the H-SES leased by NES s at the initial/final

state of the phase p

El
n,0/ E

l
n,te

Remaining energy of the D-SES at the initial/final state of the
scheduling cycle

Es
n,0/ E

s
n,te Remaining energy of the H-SES at the initial/final state of the

scheduling cycle

Bs,ch
n,s,p,τ / B

s,dis
n,s,p,τ

Auxiliary binary variable of the charging/discharging state for
H-SES at time τ for NES s

Bl,ch
n,s,τ / B

l,dis
n,s,τ

Auxiliary binary variable of the charging/discharging state for
D-SES at time τ for NES s

Bs,ch
n,τ / B

s,dis
n,τ

Auxiliary binary variable of the charging/discharging state for
H-SES at time τ

Bl,ch
n,τ / B

l,dis
n,τ

Auxiliary binary variable of the charging/discharging state for
D-SES at time τ
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Nonparametric probabilistic
forecasting based stochastic
optimal scheduling of integrated
electricity and gas systems

Jinyu Chen and Dawei Chen*

State Grid Fujian Electric Power Research Institute, Fuzhou, China

The volatility and sporadic availability of renewable energy create significant
challenges to the optimal scheduling of integrated electricity and gas systems
(IEGS). This paper develops a nonparametric probabilistic forecasting based
stochastic scheduling approach of IEGS. The quantile at a series of quantile
levels can be generated by direct quantile regression method. Given the set of
predicted quantiles, a set of representative scenarios for wind power uncertainty
can be obtained by using Monte Carlo simulation method and scenario reduction
approach. Based on the implicit finite difference scheme, the original partial
differential equations of the gas network are discretized to establish an
algebraic model, which provide possibility for efficient solution. Then, the
nonconvexity caused by the momentum equation is eliminated by the second-
order core relaxation. Finally, the stochastic optimal scheduling model is
reformulated as a second-order core programming problem. Numerical
simulations are performed to showcase the superiority of the established
stochastic optimal scheduling model.

KEYWORDS

probabilistic forecasting, stochastic, optimal scheduling, integrated electricity and gas
systems, second-order core programming, direct quantile regression

1 Introduction

With the rapid development of natural gas power generation and power-to-gas
technology, the power system has established a strong coupling relationship with the gas
system (Chen et al., 2021a). Coordinated optimization of integrated electricity and gas
systems (IEGS) is of great significance for improving energy efficiency. Besides, natural gas-
fired units (NGUs) have the advantage of convenient regulation, which provides a new way
to deal with the volatility and intermittency of renewable energy (Shao et al., 2017).

Recently, both academia and industry have been studying the coordinated optimization
of IEGS. A dynamic optimal power and gas flow model is developed (Fang et al., 2018) to
account for the cushion effects of gas dynamics. By considering the reserve scheduling and
renewable uncertainties, a scheduling model of IEGS is formulated (Liu et al., 2019), which
focus on enhancing the economic and security of IEGS. A unit commitment model of hybrid
power and gas system is proposed (Chen et al., 2019), of which convex envelopes are applied
to relax the nonlinear momentum equation. A non-isothermal optimal power and gas flow
model is presented (Chen et al., 2021b) to reveal the effects of gas thermodynamics on the
power system operation. A model for optimal power and gas flow that takes into account
security constraints is developed in (Correa-Posada and Sánchez-Martın, 2014), where linear
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sensitivity factors are used to conduct a quick calculation of N-1
contingency of gas pipeline. A model considering operation
constraints for unit commitment is put forward in (Liu et al.,
2009), of which the benders decomposition method is employed
to separately solve the optimization problems of hybrid power and
gas systems.

Clean energy, particularly wind power, has made rapid
progress with the transformation of the global energy
landscape. However, the random changes in wind speed result
in strong fluctuations in wind power generation, seriously
threatening the stable operation of IEGS. Reference
(Alabdulwahab et al., 2017) presents a stochastic dispatch
method for hybrid power and gas system that considers the
uncertainty of renewable energy and component contingency. A
robust dispatch model of IEGS is developed in (Yang et al., 2018),
of which a standard gas network method is proposed to consider
gas dynamics. A stochastic optimal scheduling approach for IEGS
is established in (Zhang and Shahidehpour, 2016) considering
hourly electricity demand response. The studies mentioned above
all make the assumption that the forecast error of wind power
generation conforms to a specific distribution.

However, the stochastic dispatch model of IEGS mainly adopted
the point prediction results or the wind power historical data to
obtain wind power probability distribution, making it difficult to
accurately quantify the time-varying non-stationary wind power
prediction uncertainty. Nonparametric probabilistic forecasting can
accurately quantify the wind power uncertainty and does not depend
on a assumptions regarding the distribution of errors in wind power
forecasts, which outperforms parametric probabilistic forecasting
with respect to reliability and accuracy (Wan et al., 2014; Wan et al.,
2020).

To this end, this paper establishes a stochastic optimal
scheduling approach for IEGS, which integrates the advantages of
nonparametric probabilistic forecasting to address the randomness
of wind power. The method of direct quantile regression (DQR) is
applied to generate the quantile at a series of quantile levels. A
combination of Monte Carlo simulation and scenario reduction
approach is employed to provide a set of representative scenarios by
using the predictive quantile. Every representative scenario
represents a conglomerate of numerous analogous scenarios.
Then, the original partial differential equations of the natural
network model are discretized by the implicit finite difference
scheme to establish an algebraic model of the natural gas
network. The proposed implicit finite difference scheme has
second-order accuracy in both space and time, which provides an
accurate approximation of the partial differential equations. The
second-order core relaxation eliminates the nonconvexity of the
momentum equation, allowing the stochastic optimal scheduling
problem to be formulated as a second-order core programming
(SOCP) model. This model can be efficiently solved by well-
established optimization software. Case studies based on a test
system validate the superiority of the developed stochastic
scheduling method.

The remainder is organized as follows. The model of IEGS is
proposed in Section 2. In Section 3, the formulation of the stochastic
scheduling model is presented. The simulation results are shown in
Section 4. The paper concludes in Section 5.

2 Model of IEGS

2.1 Natural gas network model

The flow of natural gas in pipelines is determined by both the
momentum equation and the continuity equation. The momentum
equation is a description of Newton’s second law (Antenucci and
Sansavini, 2018), given as

∂ ρv2( )
∂x

+ ∂ ρv( )
∂t

+ ∂p

∂x
+ εv2

2d
ρ + gρ sin θ � 0 (1)

where v, ρ and p represent the velocity, density, and pressure of the
gas, respectively; ε and d represent the friction factor and the
diameter of the pipeline, respectively.

The continuity equation indicates that the natural gas travels
continuously along the pipeline (Clegg and Mancarella, 2015),
shown as

∂ρ

∂t
+ ∂f

S∂x
� 0 (2)

where f indicates the mass flow rate of pipeline, S represents the
pipeline area.

The state equation expresses the connection between density
and pressure, given as

p � ρc2 (3)
where c is the speed of sound, which is determined by

c2 � ZRT (4)
where Z is the compressibility factor; R refers to the gas constant; T
indicates the gas temperature.

Based on the steady-state condition, the state variables do not
change with time. Thus, the partial differential terms with respect to
time equal to 0 and themomentum Eq. 1 as well as the continuity Eq.
2 become (Correa-Posada and Sanchez-Martin, 2015)

∂ ρv( )
∂t

+ ∂p

∂x
+ εv2

2d
ρ � 0 (5)

∂ρ

∂t
+ ∂f

S∂x
� 0 (6)

However, solving Eqs 5, 6 efficiently is challenging due to the
form of partial differential. Therefore, the implicit finite difference
scheme is introduced to transform the partial differential equations
to algebraic equations. The difference scheme is proposed in
(Kiuchi, 1994), shown as

∂G

∂x
� Gt+1

i+1 − Gt+1
i

Δx + O Δx2( ) (7)

where G represents the state variables (pressure p and mass flow rate
f); Δt and Δx denote the temporal and spatial resolution,
respectively.

The individual term G is approximated by

G � Gt+1
i+1 + Gt+1

i

2
+ O Δx2( ) (8)

By substituting Eqs 7, 8 into Eqs 5, 6, the algebraic equations of
the natural gas network are formulated as
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fi � fj � fp (9)

f2
p −

2S2d
εlTRZ

· p2
i − p2

j( ) � 0 (10)

The flow rate of gas within the pipeline should meet the specified
capacity limits.

fp
min ≤fp,t ≤fp

max (11)
where fp

min and fp
max determine the range of mass flow rate for

pipeline p.
The nodal pressure is constrained by

pi
min ≤pi,t ≤pi

max (12)
where pi

min and pi
max determine the range of pressure of node i.

The output of gas supplier is limited by

fs,min
i ≤fs

i,t ≤f
s,max
i (13)

where fs
i,t is the output of gas supplier i; f

s,min
i and fs,max

i determine
the range of the output for gas supplier i.

Moreover, the gas demand and the gas consumption of NGUs
are satisfied by the gas supplier, given as (Zhang et al., 2018)

∑
t

∑
i

fs
i,t � ∑

t

∑
j

fde
j,t +∑

j

fG
k,t +∑

p

fcon
p,t

⎛⎝ ⎞⎠ (14)

where fde
j,t indicates the gas demand of node j; fG

k,t indicates the gas
consumption for natural gas-fired unit k.

The operational pressure of NGUs has restrictions, shown as

pG,min
i ≤pG

i,t ≤p
G,max
i (15)

where pG
i,t is the pressure of NGU i at time t; pG,min

i and pG,max
i

determine the range of pressure for NGU i.
The proposed natural gas network model contains nonconvex

quadratic constraint (10), which poses challenges to solving the
model. Thus, second-order cone relaxation is employed to convexify
the quadratic constraint (10), given as

f2
p ≤

2S2d
εlTRZ

· p2
i − p2

j( ) (16)

Eq. 20 can be transformed into standard SOC form:

fp

2S2d
εlTRZ · pj

����������
����������2 ≤ 2S2d

εlTRZ
· pi (17)

The application of the second-order cone relaxation technique
transforms the proposed natural gas network model into a convex
form, allowing for efficient solutions.

In a natural gas system, a gas compressor is assigned to
compensate for pressure caused by friction loss in the pipeline
(Abbaspour et al., 2005), depicted as

HPcom
p � χpf

com
p

pi

pj
( )]n

− 1[ ] (18)

GHV · fco
p � γpHPcom

p (19)
kp
min ≤

pi

pj
≤ kp

max (20)

fcom,min
p ≤fcom

p ≤fcom,max
p (21)

where HPcom
p is the horsepower of compressor cross pipeline p at

time t; χp and ]n denote the horsepower constants of compressor p;
GHV indicates the gross heating value of natural gas; γp refers to the
energy conversion coefficient of compressor p; kpmin and kpmax

determine the range of compression ratio of compressor p,
respectively; fcom,min

p and fcom,max
p determine the range of mass

flow rate of compressor p, respectively.

2.2 Power system model

The DC power flow model is adopted in this paper to consider
the scheduling of active power, expressed as

Pk,t � Bk φi,t − φj,t( ) (22)

where Pk,t indicates the active power flow of the transmission line k
at time t; Bk indicates the susceptance of transmission line k; φi,t and
φj,t denote the voltage angle of bus i and j, respectively.

In the power system, the power requirements are satisfied by
coal-fired generators (CGs) and NGUs, given as

∑
t

∑
i

PC
i,t +∑

j

PG
j,t

⎛⎝ ⎞⎠ � ∑
t

∑
q

Pde
q,t (23)

where PC
i,t indicates the active power output of CG i; PG

j,t indicates the
active power output ofNGU j;Pde

q,t is the power demand of bus q at time t.
The output of CG should satisfy the capacity limit, shown as

PC,min
i ≤PC

i,t ≤PC,max
i (24)

where PC,min
i and PC,max

i determine the range of active power output
of CG i.

The power output of NGU should also meet the capacity limit,
given as

PG,min
i ≤PG

i,t ≤PG,max
i (25)

where PG,min
i and PG,max

i determine the range of active power output
of NGU i.

The transmission line imposes constraints on the flow of active
power.

Pk
min ≤Pk,t ≤Pk

max (26)
where Pk

min and Pk
max determine the range of active power flow

through transmission line k.
Voltage phase angle is limited by

φi
min ≤φi,t ≤φi

max (27)
where φi

min and φi
max determine the range of voltage phase angle of

bus i.

3 Nonparametric probabilistic
forecasting based stochastic
scheduling of IEGS

3.1 Objective function

The stochastic optimization algorithm takes into account the
probability distribution of uncertain parameters and typically
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utilizes the probability density function to depict their variations
(Qadrdan et al., 2014). Afterwards, various scenarios can be
generated at random through techniques such as Monte Carlo
simulation.

The primary goal of the stochastic scheduling model is to
minimize the anticipated overall operational cost of IEGS,
expressed as

min∑
z

ϕz × ∑
t�1

∑
i�1

ai,tP
C
i,t,z +∑

j�1
bj,tf

s
j,t,z

⎛⎝⎡⎢⎢⎣ ⎤⎥⎥⎦ (28)

where ϕz is the occurrence probability of wind power scenario z; ai,t
and bj,t indicate the cost factors of CG i and gas supplier j,
respectively.

3.2 Nonparametric probabilistic forecasting
method

The volatility and sporadic availability of renewable energy
create significant challenges to the optimal scheduling of IEGS.
The utilization of probabilistic forecasting for wind power can offer
critical insights for scheduling of power system in the presence of a
substantial amount of wind power.

Typically, probabilistic forecasting methods encompass both
parametric and nonparametric approaches. Parametric probabilistic
forecasting relies on assumptions regarding the distribution of errors in
wind power forecasts. Nonparametric probabilistic forecasting,
however, can accurately measure the uncertainty of wind power and
is not reliant on a specific probability distribution of forecasting errors,
resulting in better reliability and accuracy.

In this paper, the DQR method is utilized to quantify the
uncertainty of wind power. The quantile qωt can be defined by

Pr xt ≤ qωt( ) � ω (29)
qωt � Y−1

t ω( ) (30)
where Pr () denotes the probability operator; Yt denotes the
cumulative distribution function of wind power; xt indicates the
random variable of wind pwoer; ω indicates quantile level of the
quantile.

Based on the obtained quantile qωt , a set of predicted quantiles
for wind power can be obtained through the nonparametric
probability prediction method of DQR, expressed as

Ŷt+k|t � q̂ωi
t+k|t

∣∣∣∣∣0≤ω1 <ω2 </<ωn ≤ 1{ } (31)

where q̂ωi
t+k|t is the approximation of real quantile qωt+k|t; Ŷt+k|t

indicates the predicted quantile with proportions within the
range of 0–1, yt indicates the probability density function; Yt

indicates the cumulative distribution function.
The DQR method based on the extreme learning machine can

transform the probabilistic forecasting into a linear programming
model that can be efficiently solved. By introducing the DQR
method, the predictive quantile series with proportions can be
easily obtained. Given a set of predicted quantiles, the scenarios
of wind power output can be obtained by Monte Carlo Simulation.
Nevertheless, the straightforward implementation of a significant
number of uncertainty scenarios would significantly prolong the

computation time. Therefore, the scenario reduction method (Jiang
et al., 2020) is applied to reduce the number of scenarios. As an
effective tool for the scenario reduction, SCENRED provided by the
General Algebraic Modelling System (Zhang et al., 2016) is applied
in this paper.

Moreover, for deterministic method that do not consider the
probabilistic information involved in wind power uncertainty,
spinning reserve should be deployed to address the wind power
uncertainty, given as

SRt � ∑
k

PC,max
k − PC

k,t( )≥ SR min (32)

where SRt denotes the reserve that can be scheduled; SRmin indicates
the minimum reserve of the IEGS.

3.3 Model summary

Figure 1 displays the flowchart of the stochastic scheduling
model for IEGS. First, a set of predicted quantiles can be
obtained by the DQR method. Afterwards, numerous wind
power scenarios are created using the Monte Carlo simulation.
The scenario reduction method clusters the generated scenarios
into several representative scenarios. The nonconvex constraints of
gas network are relaxed based on the SOC relaxation. In conclusion,
the stochastic scheduling model of IEGS can be expressed as a SOCP
model that can be efficiently solved.

4 Case study

4.1 System configuration

The topology of the test system is given in Figures 2, 3. The
testing system is made up of a gas system with 6 nodes and a power

FIGURE 1
The flowchart of the stochastic scheduling model.
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system with 6 buses. The power demands of the test system are
satisfied by 1 wind farm, 1 NGU and 1 CG. The wind farm is situated
on bus 6, while the NGU is positioned on bus 1 in the power system
and node 5 in the natural gas system. The CG is installed at bus 2. All
simulations are performed on CPLEX-MATLAB solver on a PCwith
Inter Core i7 3.60GHz and 32GB RAM. To demonstrate the

effectiveness of the proposed stochastic scheduling model for
IEGS, two cases are considered.

Case 1: Optimal scheduling of IEGS without stochastic
condition.

Case 2: Nonparametric probabilistic forecasting based stochastic
optimal scheduling of IEGS.

Case 1 is a deterministic scenario in which spinning reserve is
necessary to mitigate the uncertainty of the wind power. In Case 2,
the consideration of wind power uncertainty includes the
incorporation of probabilistic information.

4.2 Simulation results

Case 1: The method of single-point wind forecasting can be
used to obtain wind power generation. The scheduling results for
Case 1 are presented in Figure 4. It can be observed that the power
demands are satisfied by the CG, NGU, and wind power
generation. The CG and NGU adjust their output to ensure

FIGURE 2
Topology of the 6-bus power system.

FIGURE 3
Topology of the 6-node natural gas system.

FIGURE 4
The scheduling results of Case 1.

FIGURE 5
Mass flow rate of each pipeline in Case 1.

FIGURE 6
Representative scenarios of wind power generation in Case 2.
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that the wind power can be fully consumed. The natural gas
system and the power system are coupled by the NGUs. Hence,
the power generation of NGUs has an impact on the equilibrium
of the natural gas system. Figure 5 displays the rate of mass flow
within pipeline for Case 1. It can be seen that the incoming gas
equals to the outgoing gas at each node.

Case 2: The security and economy of IEGS face significant
challenges due to the volatility and sporadic availability of
renewable energy. The probabilistic information involved in wind
power generation is considered in Case 2 to address the uncertainty
of renewable energy. Based on the set of predicted quantiles,
3,000 wind power generation scenarios are obtained by Monte
Carlo simulation. To reduce computational burden,

3,000 scenarios are reduced to a total of 7 representatives by the
scenario reduction method. Seven scenarios are capable of
approximating original model.

The obtained 7 representative scenarios of wind power generation
are given in Figure 6. The power output of wind farms differs in every
scenario. Table 1 lists the probability and total costs of IEGS in different
scenario. It can be seen that the total costs of IEGS in scenarios are
different from each other. This is due to the fact that every
representative scenario is comprised of a combination of comparable
scenarios. By utilizing the nonparametric probability forecasting
method, the secure operation of power system with high penetration
of wind power can be can guaranteed.

The comparison of results for different cases is depicted in
Table 2. Due to the different output of wind farm, it can be seen that
the operation costs in scenario S2, S3, and S5 are higher than the
expected total operation cost. Moreover, it can be easily observed
that the expected total operation cost for 7 representative scenarios is
$739,172, which is almost 1% lower that of Case 1, validating the
significance of stochastic method in cost reduction. Given the

TABLE 1 Comparison of results for different scenarios in Case 3.

Scenario S1 S2 S3 S4 S5 S6 S7

Probability 15.6% 14.95% 12.4% 14.05% 14.0% 13.55% 15.45%

Obj (105$) 7.3846 7.4299 7.4673 7.3516 7.4049 7.3602 7.3534

TABLE 2 Comparison of results for different cases.

Case Case 1 Case 2

Obj (105$) 7.4861 7.3917

FIGURE 7
IEEE 118-bus test system.
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probability information of wind power uncertainty, the operation
strategy of IEGS has better economy and security.

4.3 Larger test system

A larger system composed of a gas system with 40 nodes and a
power system with 118 buses is given in Figures 7, 8. Detailed
topology data can be found in (Chen et al., 2021b). The Monte Carlo
simulation method generates 5,000 stochastic scenarios. The
scenario reduction method reduces all stochastic scenarios to
7 representative scenarios.

The probably and total costs of the 7 scenarios are presented in
Table 3. The total operation cost is seen to differ across different
scenarios. The operation costs in scenario S1, S4, S5 and S6 are
higher than the expected total operation cost because the wind
power fluctuations in these scenarios are stronger than other
scenarios.

The total operation cost in various scenarios is provided in
Table 4. The expected total operation cost in Case 2 is $4,935,092,
which is 0.94% lower than that of Case 1. By considering the
stochastic condition, the IEGS can operate more economically.

5 Conclusion

To address the volatility and sporadic availability of wind power,
this paper presents a nonparametric probabilistic forecasting based
stochastic optimal scheduling approach for IEGS. The DQR method is
used to generate predictive quantile series for wind power. Given a set of
predicted quantiles, a combination of Monte Carlo simulation and
scenario reduction approach is employed to provide a set of
representative scenarios. The original partial differential equations of
the natural network model are discretized by the implicit finite
difference scheme to establish an algebraic model of the gas
network. The nonconvexity of the momentum equation is
eliminated by the second-order core relaxationF, and the proposed
stochastic optimal scheduling problem is cast into a SOCP model. The
simulation results validate that the proposed stochastic scheduling
model outperforms the deterministic model, achieving a nearly 1%
reduction in total operation cost. The proposed stochastic scheduling
model offers even greater benefits in large systems, opening up a new

FIGURE 8
40-node natural gas test system.

TABLE 3 Comparison of results for different cases.

Scenario S1 S2 S3 S4 S5 S6 S7

Probability 14.24% 15.05% 13.28% 16.15% 13.72% 14.96% 12.6%

Obj (106$) 4.9399 4.9174 4.9261 4.9408 4.9462 4.9577 4.9136

TABLE 4 Comparison of results for different cases.

Case Case 1 Case 2

Obj (105$) 4.9818 4.9350
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path towards secure and cost-effective operation of a significant
percentage of renewable energy power systems.
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A data-driven time-delay
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ancillary service of the distribution
photovoltaic generation system
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With the increasing integration of distributed photovoltaic (PV) generation, the
distribution network has met many challenges in operation and control. Ancillary
services on PV generation systems become a necessary function to enhance the
distribution network operating stability and resilience. However, due to the
complexity of the control framework and the outer data dependency, the time
delay on the measured data may bring a significant influence on the effectiveness
of the PV system ancillary service. To solve the time delay influence, in this paper, a
data-driven time-delay compensation strategy via the long short-term memory
(LSTM) method is proposed. The proposed compensation strategy could realize
the measured data compensation caused by the communication or calculation
delay to maintain the accuracy of measured data that is input into the PV system
ancillary service. Besides the LSTM-based method, the data-driven time-delay
compensation strategy also includes a LSTM activation control to realize the
smooth activation of the compensation strategy into the PV generation system. A
modified IEEE 123 bus system with multiple distributed PV generation systems
integration is conducted to verify the performance of the proposed compensation
strategy. The simulation results indicate that the proposed data-driven time-delay
compensation strategy could significantly improve the frequency performance of
the PV ancillary service. In addition, the simulation results also show that the LSTM
has a strong generalization ability for delay time constant and can deal with the
random time delay caused by communication and disturbances in distribution
systems.

KEYWORDS

PV, time delay, frequency control, LSTM, time-delay compensation strategy

1 Introduction

The booming development of distributed energy resources brings many opportunities in
the power and energy field (Liang et al., 2023; Zhou et al., 2023). The power system is
experiencing significant changes with the growth in renewable energy, and the development
of the demand-side and energy storage (Sun et al., 2021b; 2023). Especially the rapid increase
of renewable energies in the distribution network has challenged the traditional operation
and control framework (Sun et al., 2021a).

In the conventional distribution network, the main component is load (Sun et al.,
2022). In addition, the power transmission direction in the distribution network is fixed,
which is from the transformer to the users. However, with the integration of distributed
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renewable energies into the distribution network, such as
photovoltaic (PV) system integration, everything is changed
(Raiker et al., 2021; Pranith et al., 2022). Due to most of the
PV systems being connected to distribution networks, the
composition of the distribution network is changed from
mainly based on the load to the mix of load and generations
(Ku et al., 2019; Zeraati et al., 2019). The largest change in the
distribution network operation caused by the composition
change is the power flow direction. Especially for the
distribution networks with highly proportional PV system
integration, the solar power generation from the PV system
will continuously flow to the transformer and be sent to a
high voltage level power system when the load demand in the
distribution network is significantly insufficient. This
phenomenon is called “backward power” and may cause many
operation problems in protection devices, transformers, and
other electric components because the design of these devices
never considers this operation condition (Bellinaso et al., 2019).

To overcome these issues, the distribution system operators
have developed many effective solutions. The most
straightforward method for addressing these issues is to
upgrade the existing conductors and distribution network
transformers by replacing with larger ones. However, this
method is expensive and may take a long time for
construction. Some anti-backflow current facilities are also
developed and have been equipped in the distribution network
to prevent the occurrence of reverse power from the PV system.
These advanced devices are effective, but they need to configure
at a specific place to maximize the effect. However, the available
place is precious in the distribution network, so it is difficult to
satisfy all requirements. Therefore, the most economical method
that may cover all the requirements is adding additional control
to the PV system (Singh et al., 2022).

Much effective research has been conducted to provide
additional control on the PV system (Jahan et al., 2021; Harag
et al., 2022; Yang et al., 2022), which generally can be classified
into voltage control (Varma and Salehi, 2017; Yi et al., 2018; Al-
Saffar and Musilek, 2020; Wang et al., 2020; Zhang et al., 2022),
and frequency control (Peng et al., 2020; Varma and Akbari,
2020; Li et al., 2021; Su et al., 2021). To enhance the PV system
voltage stability, a multi-objective hierarchically coordinated
VVC method with droop-controlled PV inverters is proposed
to maximize benefits of the inverter-based voltage control in (Xu
et al., 2022). In (Akagi et al., 2018), a comprehensive scheme to
determine a suitable method and timing is proposed for
upgrading the voltage control method. Voltage control
methods are expected to be upgraded in accordance with the
PV penetration in distribution systems. In (Callegari et al., 2021),
a minimum dc-link voltage control for efficiency and reliability
improvement of two-stage grid-connected PV inverters is
proposed. In (Jain and Singh, 2017), a two-stage circuit
topology is proposed, wherein the first stage is a boost
converter, which serves for maximum power point tracking,
and the second stage is a grid tied voltage source converter
(VSC), which not only feeds extracted solar PV energy into
the three-phase distribution system but also serves for
harmonics mitigation, reactive power compensation, and grid
current balancing. In (Karbouj et al., 2021), a self-adaptive

voltage controller is proposed to enable solar PV power plant
participation in voltage control ancillary service based on the
reactive power capability estimation. In (Prasad et al., 2019), a
method to optimize dc-link voltage of distribution static
compensator based on load compensation requirement using
reduced switch count multilevel converter integrated with PV
system, which is capable of compensating reactive power,
unbalance, and harmonics demanded by three-phase
unbalanced and nonlinear loads connected to the distribution
side, leading to improvement of power quality. In (Procopiou and
Ochoa, 2017), a generic and practical remote voltage estimation
method for the end points of low voltage feeders is proposed to
substitute the need of remote monitoring without compromising
performance and, hence, avoid the corresponding investment.
For the frequency control (Li et al., 2021), proposes a novel
sliding mode control based adaptive power point tracking control
strategy to provide bi-directional primary frequency regulation
of an AC microgrid. In (Quan et al., 2020), a novel ac coupled
solution that transforms an existing grid-following PV system to
a grid-forming one without any hardware and software
modification of the PV inverter is proposed. In (Jampeethong
and Khomfoi, 2020), a new coordination of electric vehicle (EV),
wind farm, and photovoltaic for microgrid frequency regulation
is proposed, where the proposed adaptive proportional integral
(PI) controller is developed by using practical PI controllers. In
(Li and Baran, 2020), a novel controller for large-scale PV plants
is proposed, which uses a tracking linear quadratic regulator-
based controller to help the system frequency effectively track
that of a designed reference system with given inertia and droop
constants. In (Hoke et al., 2017), a predictive PV inverter control
method for very fast and accurate control of active power is
proposed, which will increase the effectiveness of various higher-
level controls designed to mitigate grid frequency contingency
events, including fast power-frequency droop, inertia emulation,
and fast frequency response, without the need for energy storage.
In (Pandey et al., 2021), a robust frequency cascaded adaptive
complex filter control for the grid interactive PV system is
proposed.

However, the influence of time delay on the signal
transmission loop has not been fully addressed in these
control strategies. The phasor measurement unit (PMU) plays
a more and more important role in PV control, where the time
delay is inevitable resulting from the time consumption of the
measurement, calculation, and communication. Additionally, the
time delay may vary from tens to hundreds of milliseconds due to
the various communication distance and performance of PMU.
With the occurrence of time delay in the measurement process
and the communication process between PMU and control
center (Huang et al., 2016), the connected PV may bring
destabilizing influence to the system. With the expansion of
the distribution system, the conventional PV controller
without considering communication time delay is
inappropriate for distribution system with high penetration
level. Most of the developed time delay compensation methods
are based on known system models. While the actual system is
under continuous adjustment with different types of generators
and load put into the operation or retirement. The model-driven
methods may have some limitation and is not appropriate for the
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current developing power system. For data-driven time delay
compensation methods, Long Short-Term Memory (LSTM)
networks offer significant advantages, especially when dealing
with sequential data and time series analysis. Some key
advantages of using LSTM networks includes: ability to
handling long-term dependencies and sequential data,
capability of capturing non-linear relationships, adaptability to
changing patterns and dynamics, robustness to noise, and
availability of pre-trained models (Sherstinsky, 2020).

With the aim of reducing the control deviation caused by time
delay, a data-driven time-delay compensation strategy for PV
controller is proposed. The main contributions of this
manuscript includes.

(1) Establishment of rate of change of frequency (RoCoF)
calculation block. To reduce the risk of system instability
caused by the time delay, a RoCoF calculation block is
established and deployed before the measured frequency
signal goes into the frequency controller.

(2) Raise of the data-driven time-delay compensation strategy.
Based on the Long Short-Term Memory (LSTM) network
and the RoCoF calculation block, a data-driven time-delay
compensation strategy for PV controller is proposed to
correct the delayed frequency accurately.

(3) Comparison of the control performance. For comprehensive
verification, the control effect of the proposed time-delay
compensation strategy is tested in a PV integrated IEEE
123 bus system and compared with traditional Recurrent
Neural Network (RNN) network.

2 Basic knowledge

The typical structure of a grid-connected photovoltaic power
generation system is shown in Figure 1 (Mohammed Benaissa et al.,
2017). The system includes solar array, DC/DC, DC/AC,
transformer, AC load and other components. The photovoltaic
arrays in the grid-connected photovoltaic power generation
systems can convert solar energy into electrical energy and
output direct current. After the DC voltage is boosted by the
DC/DC converter, the DC/AC inverter converts the DC into AC.
Through the control system, the AC output from the inverter can be
controlled to have the same amplitude and frequency as the grid
side. After passing through the transformer, the transmission of
electric energy to the grid is realized.

The commonly used grid inverter control mode is the current
control mode, which is composed with current closed-loop
control to control the AC inductive current. At the same time,
in order to control the DC voltage of the inverter, a voltage loop is
added to control the DC voltage of the inverter, so the overall
control strategy is the voltage and current double closed-loop
control. Figure 2.

i*d � KP1 udc
* − udc( ) +KI1 ∫ udc

* − udc( )dt (1)

v*d � KP2 i*d − id( ) +KI2 ∫ i*d − id( )dt (2)

v*q � KP3 i*q − iq( ) +KI3 ∫ i*q − iq( )dt (3)

As shown in Equations 1 and Eq. 2, and Eq. 3, the specific
process of the double closed-loop control can be described as
follows: The current ia, ib, ic and the voltage ua, ub, uc can be
obtained from the power grid sampling. The voltage can be
obtained from the DC side sampling. The voltage phase angle
can be obtained from the grid voltage, by the abc/αβ coordinate
transformation. The sampled DC voltage value udc is compared
with the voltage reference value u*dc, and the output i*d is
controlled by the difference value through the PI regulator.
Then the i*d value is compared with the active current under
the synchronous rotating coordinate system dq which is obtained
from the sampling current on the network side after abc/αβ/dq
coordinate transformation, and the difference value can also
control the output D-axis voltage e*d by PI regulator. After
the coordinate transformation, the grid side current
component iq of Q-axis is compared with the reactive current
reference value i*q, and the difference can control the output
voltage signal e*q of Q-axis by the PI regulator. The D-axis
voltage signal e*d and the Q-axis voltage signal e*q can
transform to the D-axis reference voltage quantity v*d and the
Q-axis reference voltage quantity v*q. Finally, the D-axis
reference voltage v*d and Q-axis reference voltage v*q can
transform to the switch signal Sa, Sb, Sc of the inverter.

Considering the frequency drop after an event, it is necessary to
use an appropriate controller to adjust the active power output of the
PV to keep the system frequency at the nominal frequency, as shown
in Figure 3. Targeting at frequency response control, the measured
frequency is transmitted to calculate the frequency deviation.
Passing through a PI control, the output will be added to the
active power reference for power reallocation, so the system
frequency can be gradually restored.

In the normal operation process, there will inevitably be
corresponding communication delay and operation delay from
voltage transformer, current transformer to data processor,
resulting that the control of the grid-connected photovoltaic
power generation system is not strictly real-time control. In this
case, if such a long delay occurs in a distributed system, the
operation of the system will be greatly impacted. In addition, due
to the delay of system control, when the system is disturbed, the
system cannot timely intervene the disturbance. In serious cases, the
control behavior of the control system will even have the opposite
result, reducing the stability of the system. Thus, a reliable time-
delay compensation strategy is required in the PV penetrated system
when providing ancillary frequency service.

FIGURE 1
Grid-connected photovoltaic power generation system.
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3 Data-driven time-delay
compensation strategy

The time delay compensation strategy is based on LSTM
networks, which have a strong capability of dealing with time
series data. This section will demonstrate the basic idea of LSTM
network, and the establishment of the data-driven time-delay
compensation strategy based on LSTM.

3.1 Preliminaries on LSTM

To improve the numerical instability of RNNs, several tricks such as
new structure design are developed and implemented in the sophisticated
sequence models. LSTM is one of the promising models that solves the
problem of preserving the long-term information and skipping short-
term input (She et al., 2022). Figure 4 shows the basic cell of LSTM. Apart
from the typical input and output, the cell also includes a few gates

FIGURE 2
The double closed-loop control of the inverter.

FIGURE 3
The time delay in the control system.
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recurrent units (GRUs), memory, candidate memory and hidden state.
They are illustrated as follows.

3.1.1 Gate recurrent units
There are three gate recurrent units utilized in LSTM: i). Input

gate It is to decide whether to read data into the cell; ii). output gate
Ot is responsible for reading out the entries from the cell; and iii).
Forget gate Ft is designed for resetting the content of the cell. The
hidden states and the input data are fed to the three units and
processed by fully-connected layers with sigmoid activation
functions. The output of the three GRUs are calculated as follows.

It+1 � σ Xt+1Wxi +HtWni + bi( )
Ft+1 � σ Xt+1Wxf +HtWnf + bf( )
Ot+1 � σ Xt+1Wxo +HtWno + bo( )

⎧⎪⎨⎪⎩ (4)

WhereWxi,Wxf,Wxo,Wni,Wnf, andWno are weight parameters, and
bi, bf, and bi are bias parameters.

3.1.2 Memory and candidate memory
LSTM can choose to remember or forget the information from the

last time slot, leveraging the input gate and forget gate. First, candidate
memory is generated using a tanh function as activation function.

~Ct+1 � tanh Xt+1Wxc +HtWnc + bc( ) (5)
where ~Ct+1 is the output of candidate memory. Then, the current cell
memory is generated through fusing the past cell memory and
candidate memory as follows.

Ct+1 � Ft+1 ⊙ Ct + It+1 ⊙ ~Ct+1 (6)
Where ⊙ is the Hadamard (elementwise) robust operator. The
combination of past cell memory and candidate memory enables the
pass of cell memory and thus alleviates the vanishing gradient problem.

3.1.3 Hidden state
As shown in (13), hidden stateHt is calculated by integrating the

current memory into the last hidden state. Ht belongs to [-1, 1]
because it is processed by tanh before passed to the next cell.

Ht � Ot ⊙ tanh Ct( ) (7)
With the special designs above, LSTM can finally capture the

dependencies from historical data and predict the future value
accurately.

3.2 Delay compensation strategy with LSTM

This subsection dives into the implementation of LSTM for
delay compensation of frequency regulation of PV. Basically, the
strategy can be split into two steps: the offline training and the online
compensation. Details are demonstrated in the following
subsections.

3.2.1 Offline training
As introduced in Section 3.1, the LSTM network is capable of

predicting future data trend based on the historical data, so large sets
of data need to be trained offline in advance. In the case of PV
penetrated distribution system, various scenarios are simulated to
feed the training, with different steady states and transient states.
The steady state will cover different PV penetration and delay time
constant, while the transient state will handle different load change
amount and load change location. These scenario settings can cover
most of the possibilities in the real world when the PV provides the
frequency regulation under load variations, since severe
contingencies will cause the PV to be cut off, in which case time
delay can no longer take the major effect.

For each scenario, the Power System Computer Aided Design
(PSCAD) performs the simulation and stores the PV bus frequency
with and without time delay. The delayed bus frequency will be
packaged as the input for the LSTM training, while the undelayed
bus frequency will be the output.

3.2.2 Online compensation
After the offline training, the trained LSTM network is ready for

the online compensation purpose. Figure 5 shows the overall
structure of the time-delay compensation strategy. In a grid-tied
PV system, the voltage and current are measured from the local PCC
point. The PMU at the same bus collects the frequency magnitude as
well as the phase angle. Typically, the time delay happens from the
PMU to the frequency control inside the PV. With different
disturbance types, the delay constant varies from dozens to
hundreds of milliseconds. The trained LSTM is deployed before
the measured frequency signal goes into the frequency controller so
that the negative impact of the naturally-existed time delay can be
reduced.

Considering the normal system conditions without any event, a
threshold is designed to limit the redundant operation of the
compensation control. An activation control is proposed to start
or end the delay compensation strategy, which can be described in
Eq. 8.

Activation � 1, RoCoF> 0.5Hz/s
0, RoCoF< 0.005Hz/s{ (8)

where RoCoF is the rate of change of frequency, which is the time
derivative of the power system frequency, as shown in Eq. 9.

FIGURE 4
Basic cell of LSTM.
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RoCoF � df

dt
(9)

In the activation control, a RoCoF calculation block is
equipped to receive the measured frequency and output the
RoCoF value under same sampling rate. It is assumed that,
when RoCoF is larger than 0.5 Hz/s, then the activation signal

jumps to 1, indicating the LSTM compensation strategy is started.
When RoCoF is smaller than 0.005 Hz/s, the activation signal
becomes 0, which means the compensation block is deactivated.
The starting and ending threshold avoid the frequent operation
of the compensation block, since it is hard to predict the
fluctuation of the frequency waveform under a normal system
condition.

FIGURE 5
Time delay compensation strategy.

FIGURE 6
The topology of the modified IEEE 123 bus system.
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4 Case study

4.1 Model description

The IEEE 123 bus system is a widely used test model for research
in distribution systems. As shown in Figure 6, the IEEE 123 bus
system is divided into 5 sub-networks for location diversity. To
observe the frequency response more clearly, the original voltage
source connected to node 150 is replaced by a conventional
generator. Two different buses are picked to be connected to the
PV station: PV1 and PV2 are connected to node 151 and node
54 respectively. The modified IEEE 123 bus test model is established
in PSCAD.

4.2 LSTM training design

Before implementing the offline LSTM training, the dataset
generation should be carefully designed to guarantee the
sufficiency and comprehensiveness of the training data.

For each steady-state or transient-state variable, the training
dataset is generated within certain range, listed in Table 1.
Basically, ten points of each variable are picked as candidate
training scenarios, so there are 1e4 groups of datasets in total. It is
noted that for the two PV stations, the delay time in each PV may
be same or different. If taking the delay time difference into
account, there would be numerous possibilities. Therefore, it is
critical to verify the generalization of the delay time constant,
especially the different delay time constants in the two PVs of the
untrained scenario.

The input of the LSTM is the delayed bus frequencies of PV1 and
PV2, while the output of the LSTM is the original frequencies of the
two PVs, which can be also considered as the expected compensated
frequency signals.

After designing the training scenario and generating the
datasets, the LSTM is conducted with the hyperparameters listed

in Table 2. Then the well-trained LSTM can be applied in the
compensation strategy in Figure 5 to predict and update the
frequency signals in both PVs.

4.3 Simulation results

To better validate the effectiveness of the LSTM base delay
compensation strategy, two cases with different PV penetration,
delay time constant, load change amount and load change
location are designed in Table 3. The datasets for validation
are distinguishable from the training datasets. In Case 1, the delay
time constant is 100 m for both PV1 and PV2; while in Case 2, the
delay time constant is 80 m for PV1 and 110 m for PV2. The two
cases correspond to the trained (same time delay for each PV)
and untrained (different time delay for each PV) scenarios,
respectively.

The simulation results are compared with the traditional
RNN network, which is the parent category of the LSTM
network. Except the additional RoCoF calculation block as
well as the LSTM activation control, all the input and output
training data keep the same for RNN and the proposed time-
delay compensation strategy.

Case 1: 1000 kW load increase at node 105 at t = 1s.
Figure 7 shows the dynamic response of the frequency signals at

each PV station. The frequencies without delay, with delay and with
two compensated strategies are compared in one diagram. From
Figure 7, several observations can be carried out.

• The time delay degrades the performance of the frequency
control from the following three aspects: 1) The frequency
response delays 100 m for both two PVs when the contingency
occurs; 2) Oscillation arises right after the load increase; 3) The
frequency nadir is 0.004 Hz lower than the signal without
delay for each PV.

• The frequency with the proposed compensated strategy can
enhance the control effect with respect of both the starting
period and the frequency nadir. When the frequency begins to
drop after the load increase, the oscillation occurring in the
delayed signal is diminished. In addition, the frequency nadir
after the compensation is increased and very close to that of
the frequency without delay. The frequency behavior indicates
that the LSTM has a high prediction accuracy on the validating
dataset.

• At the very beginning of the frequency drop, the compensated
frequency is not fully tracked with the frequency without
delay. Due to the LSTM activation control, the proposed delay

TABLE 1 Datasets design.

Variable type Variable Data range Explanation

Steady-state variable PV penetration [0.100%] Pick 1 point every 10%

Delay time constant [0 m, 100 m] Pick 1 point every 10 m

Transient-state variable Load change amount [0kW, 2000 kW] Pick 1 point every 200 kW

Load change location Nodes in 5 areas Pick 2 nodes in every area

TABLE 2 LSTM hyperparameters.

Hyperparameter Value

Optimizer Adam

Initial learning rate 0.005

Learning rate decaying 0.2

Learning rate decaying 125

Maximum episode 200
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compensation strategy will not be switched on until obvious
RoCoF is detected. Therefore, the compensated frequency
follows the delayed frequency for 100 m in both PVs. Based
on this reason, the first cycle of frequency spike will be skipped
since the duration of which is very short.

• Compared with the traditional RNN method, the proposed
time-delay compensation strategy performs better to track the
undelayed frequency signal in terms of the steady states and
the key points, resulting from the LSTM activation control and
the superior attributes of the LSTM network itself.

Case 2: 1200 kW load increase at node 18 at t = 1s.
Case 2 is designed under a bigger contingency, with a larger PV

penetration (40%), a larger load increase amount (1200 kW), and an
event location more adjacent to the generator. In addition, to verify
the generalization of the different delay time constant in PV1 and
PV2, the time delay in PV1 is 80 m and 110 m in PV2.

The dynamic response of frequency at each PV station is shown
in Figure 8.

From Figure 8, the frequency without delay, with delay and with
compensation are clearly compared. The following conclusions can
be drawn in Case 2.

• With the different time delay in PV1 and PV2, the impact is
still obvious but with some difference in the two PVs: 1) In
PV1 (above), the delayed frequency lags 80 m to the frequency
without delay; while in PV2 (below), the delayed frequency
lags longer (110 m) than in PV1. 2) The nadir of the delayed
frequency is 0.003 Hz lower than that of the frequency without
delay at PV1; The nadir difference rises to 0.005 Hz at PV2. 3)
In both PVs, the delayed frequency has oscillation after the
load increase happens.

• Although the difference of delay time constant is not included
in the training dataset, better performance can be achieved in
both PV1 and PV2 when the delayed frequency is corrected
with the compensation strategy. The oscillation at the
contingency beginning period can be alleviated. The
frequency nadir can be improved and close to that of
frequency without delay.

• Similar drawbacks still exist regarding the first cycle of the
frequency spike, which cannot be fully tracked by the
compensated signal generated by the proposed
compensation strategy. However, the frequency
performance in the beginning and the nadir is still better
compared to the RNN method.

TABLE 3 Validation cases.

Case no. PV penetration (%) Delay time constant Load change amount (kW) Load change location

Case 1 20 100 m for PV1 1,000 Area 5: Node 105

100 m for PV2

Case 2 40 80 m for PV1 1,200 Area 1: Node 18

110 m for PV2

FIGURE 7
Frequency at PV1 and PV2 in case 1.

Frontiers in Energy Research frontiersin.org08

Shen et al. 10.3389/fenrg.2023.1271738

97

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1271738


To make the comparison more clearly, the compensation errors
of the two methods are calculated according to (10) and listed in
Table 4.

CE � ∑
time

fcom − fund

∣∣∣∣ ∣∣∣∣ (10)

where CE is the compensation error. Fcom is the compensated
frequency while fund is the undelayed frequency.

It can be concluded that the proposed time delay compensation
strategy shows less error when predicting the undelayed frequency
signal. Besides, the CE of Case 2 is larger than Case 1 for the
following two reasons: the frequency deviates larger in Case 2 since
the event is designed to be bigger; The scenario with different time
delay constant in PV1 and PV2 is not trained, whichmay bringmore
error.

In general, the well-trained LSTM can provide accurate
correction signals for frequency control. It has strong
generalization ability for delay time constant, which is
beneficial to its employment in real system. In addition, since
LSTM method is inherently robust to noisy data, it can filter out
noise and focus on the underlying patterns, which improves its
feasibility for real-world data that often contains various sources

of noise. With the delay compensator, the frequency control can
address the random time delay and improve its control
performance significantly.

5 Conclusion

In a modern distribution system with PV integration providing
ancillary frequency regulation, the time delay issue in the measured
frequency can degrade the performance of the frequency control in
PV station and even results in instability. To address this issue, this
paper further proposed a data-driven time-delay compensation
strategy, which leverages an LSTM network and an LSTM
activation control based on RoCoF calculation. The performance
has been verified in a modified IEEE 123 bus system, and compared
with traditional RNN network. In general, the proposed time-delay
compensation strategy performs better to correct the delayed
frequency signal in terms of the steady states and the key points,
benefiting from the LSTM activation control and the superior
attributes of the LSTM network. In addition, LSTM has a strong
generalization ability for delay time constant and can deal with the
random time delay caused by communication and disturbances in
distribution systems. After employing the delay compensation
approach, the performance of PV frequency regulation is
improved significantly.
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FIGURE 8
Frequency at PV1 and PV2 in case 2.

TABLE 4 Compensation error of each case.

Case no. RNN Proposed strategy

PV1 PV2 PV1 PV2

Case 1 0.4857 0.5094 0.0625 0.0884

Case 2 1.0737 1.3787 0.1660 0.1515

Frontiers in Energy Research frontiersin.org09

Shen et al. 10.3389/fenrg.2023.1271738

98

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1271738


Author contributions

MS: Conceptualization, Project administration,
Writing–original draft. YD; Data curation, Methodology,
Writing–original draft. KS: Funding acquisition, Investigation,
Writing–original draft. K-JL: Supervision, Writing–review and
editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Shandong Provincial Natural Science
Foundation, China (ZR2022QE117).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akagi, S., Takahashi, R., Kaneko, A., Ito, M., Yoshinaga, J., Hayashi, Y., et al. (2018).
Upgrading voltage control method based on photovoltaic penetration rate. IEEE Trans.
Smart Grid 9, 3994–4003. doi:10.1109/TSG.2016.2645706

Al-Saffar, M., and Musilek, P. (2020). Reinforcement learning-based distributed BESS
management for mitigating overvoltage issues in systems with high PV penetration.
IEEE Trans. Smart Grid 11, 2980–2994. doi:10.1109/TSG.2020.2972208

Bellinaso, L. V., Figueira, H. H., Basquera, M. F., Vieira, R. P., Gründling, H. A., and
Michels, L. (2019). Cascade control with adaptive voltage controller applied to
photovoltaic boost converters. IEEE Trans. Industry Appl. 55, 1903–1912. doi:10.
1109/TIA.2018.2884904

Callegari, J. M. S., Cupertino, A. F., Ferreira, V. de N., and Pereira, H. A. (2021).
Minimum DC-link voltage control for efficiency and reliability improvement in PV
inverters. IEEE Trans. Power Electron. 36, 5512–5520. doi:10.1109/TPEL.2020.
3032040

Harag, N., Imanaka, M., Kurimoto, M., Sugimoto, S., Bevrani, H., and Kato, T. (2022).
Autonomous dual active power-frequency control in power system with small-scale
photovoltaic power generation. J. Mod. Power Syst. Clean Energy 10, 941–953. doi:10.
35833/MPCE.2020.000700

Hoke, A. F., Shirazi, M., Chakraborty, S., Muljadi, E., and Maksimovic, D. (2017).
Rapid active power control of photovoltaic systems for grid frequency support.
IEEE J. Emerg. Sel. Top. Power Electron. 5, 1154–1163. doi:10.1109/JESTPE.2017.
2669299

Huang, C., Li, F., Ding, T., Jiang, Y., Guo, J., and Liu, Y. (2016). A bounded model of
the communication delay for system integrity protection schemes. IEEE Trans. Power
Deliv. 31, 1921–1933. doi:10.1109/TPWRD.2016.2528281

Jahan, S., Biswas, S. P., Haq, S., Islam, Md. R., Mahmud, M. A. P., and Kouzani, A.
Z. (2021). An advanced control scheme for voltage source inverter based grid-tied
PV systems. IEEE Trans. Appl. Supercond. 31, 1–5. doi:10.1109/TASC.2021.
3094446

Jain, C., and Singh, B. (2017). An adjustable DC link voltage-based control of
multifunctional grid interfaced solar PV system. IEEE J. Emerg. Sel. Top. Power
Electron. 5, 651–660. doi:10.1109/JESTPE.2016.2627533

Jampeethong, P., and Khomfoi, S. (2020). Coordinated control of electric vehicles and
renewable energy sources for frequency regulation in microgrids. IEEE Access 8,
141967–141976. doi:10.1109/ACCESS.2020.3010276

Karbouj, H., Rather, Z. H., and Pal, B. C. (2021). Adaptive voltage control for large
scale solar PV power plant considering real life factors. IEEE Trans. Sustain. Energy 12,
990–998. doi:10.1109/TSTE.2020.3029102

Ku, T.-T., Lin, C.-H., Chen, C.-S., and Hsu, C.-T. (2019). Coordination of transformer
on-load tap changer and PV Smart inverters for voltage control of distribution feeders.
IEEE Trans. Industry Appl. 55, 256–264. doi:10.1109/TIA.2018.2870578

Li, Q., and Baran, M. E. (2020). A novel frequency support control method for PV
plants using tracking LQR. IEEE Trans. Sustain. Energy 11, 2263–2273. doi:10.1109/
TSTE.2019.2953684

Li, Z., Cheng, Z., Si, J., Zhang, S., Dong, L., Li, S., et al. (2021). Adaptive power point
tracking control of PV system for primary frequency regulation of AC microgrid with
high PV integration. IEEE Trans. Power Syst. 36, 3129–3141. doi:10.1109/TPWRS.2021.
3049616

Liang, Y., Ding, Z., Zhao, T., and Lee, W.-J. (2023). Real-time operation management
for battery swapping-charging system via multi-agent deep reinforcement learning.
IEEE Trans. Smart Grid 14, 559–571. doi:10.1109/TSG.2022.3186931

Mohammed Benaissa, O., Hadjeri, S., and Zidi, S. A. (2017). Modeling and simulation
of grid connected PV generation system using matlab/simulink. IJPEDS 8, 392. doi:10.
11591/ijpeds.v8.i1.pp392-401

Pandey, S. K., Kumar, S., and Singh, B. (2021). Robust frequency cascaded adaptive
complex filter control for grid interactive PV system. IEEE Trans. Industry Appl. 57,
130–138. doi:10.1109/TIA.2020.3034285

Peng, Q., Yang, Y., Liu, T., and Blaabjerg, F. (2020). Coordination of virtual inertia
control and frequency damping in PV systems for optimal frequency support. CPSS
Trans. Power Electron. Appl. 5, 305–316. doi:10.24295/CPSSTPEA.2020.00025

Pranith, S., Kumar, S., Singh, B., and Bhatti, T. S. (2022). Improved Gaussian filter
based solar PV-bes microgrid with PLL based islanding detection and seamless transfer
control. IEEE Trans. Industrial Electron. 69, 5815–5825. doi:10.1109/TIE.2021.3088365

Prasad, K. K., Myneni, H., and Kumar, G. S. (2019). Power quality improvement and
PV power injection by DSTATCOM with variable DC link voltage control from RSC-
MLC. IEEE Trans. Sustain. Energy 10, 876–885. doi:10.1109/TSTE.2018.2853192

Procopiou, A. T., and Ochoa, L. F. (2017). Voltage control in PV-rich LV networks
without remote monitoring. IEEE Trans. Power Syst. 32, 1224–1236. doi:10.1109/
TPWRS.2016.2591063

Quan, X., Yu, R., Zhao, X., Lei, Y., Chen, T., Li, C., et al. (2020). Photovoltaic
synchronous generator: architecture and control strategy for a grid-forming PV energy
system. IEEE J. Emerg. Sel. Top. Power Electron. 8, 936–948. doi:10.1109/JESTPE.2019.
2953178

Raiker, G. A., Loganathan, U., and Reddy, B. S. (2021). Current control of boost
converter for PV interface with momentum-based perturb and observe MPPT. IEEE
Trans. Industry Appl. 57, 4071–4079. doi:10.1109/TIA.2021.3081519

She, B., Dong, Y., and Liu, Y. (2022). Time delay of wide area damping control in
urban power grid: model-based analysis and data-driven compensation. Front. Energy
Res. 10. doi:10.3389/fenrg.2022.895163

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. Phys. D. Nonlinear Phenom. 404, 132306. doi:10.
1016/j.physd.2019.132306

Singh, Y., Singh, B., and Mishra, S. (2022). Control of single-phase distributed PV-
battery microgrid for smooth mode transition with improved power quality. IEEE
Trans. Industry Appl. 58, 6286–6296. doi:10.1109/TIA.2022.3178388

Su, Y., Li, H., Cui, Y., You, S., Ma, Y., Wang, J., et al. (2021). An adaptive PV frequency
control strategy based on real-time inertia estimation. IEEE Trans. Smart Grid 12,
2355–2364. doi:10.1109/TSG.2020.3045626

Sun, K., Li, K.-J., Zhang, Z., Liang, Y., Liu, Z., and Lee, W.-J. (2022). An
integration scheme of renewable energies, hydrogen plant, and logistics center
in the suburban power grid. IEEE Trans. Industry Appl. 58, 2771–2779. doi:10.
1109/TIA.2021.3111842

Sun, K., Qiu, W., Dong, Y., Zhang, C., Yin, H., Yao, W., et al. (2023). WAMS-based
HVDC damping control for cyber attack defense. IEEE Trans. Power Syst. 38, 702–713.
doi:10.1109/TPWRS.2022.3168078

Sun, K., Qiu, W., Yao, W., You, S., Yin, H., and Liu, Y. (2021a). Frequency injection
based HVDC attack-defense control via squeeze-excitation double CNN. IEEE Trans.
Power Syst. 36, 5305–5316. doi:10.1109/TPWRS.2021.3078770

Sun, K., Xiao, H., Pan, J., and Liu, Y. (2021b). VSC-HVDC interties for urban power
grid enhancement. IEEE Trans. Power Syst. 36, 4745–4753. doi:10.1109/TPWRS.2021.
3067199

Frontiers in Energy Research frontiersin.org10

Shen et al. 10.3389/fenrg.2023.1271738

99

https://doi.org/10.1109/TSG.2016.2645706
https://doi.org/10.1109/TSG.2020.2972208
https://doi.org/10.1109/TIA.2018.2884904
https://doi.org/10.1109/TIA.2018.2884904
https://doi.org/10.1109/TPEL.2020.3032040
https://doi.org/10.1109/TPEL.2020.3032040
https://doi.org/10.35833/MPCE.2020.000700
https://doi.org/10.35833/MPCE.2020.000700
https://doi.org/10.1109/JESTPE.2017.2669299
https://doi.org/10.1109/JESTPE.2017.2669299
https://doi.org/10.1109/TPWRD.2016.2528281
https://doi.org/10.1109/TASC.2021.3094446
https://doi.org/10.1109/TASC.2021.3094446
https://doi.org/10.1109/JESTPE.2016.2627533
https://doi.org/10.1109/ACCESS.2020.3010276
https://doi.org/10.1109/TSTE.2020.3029102
https://doi.org/10.1109/TIA.2018.2870578
https://doi.org/10.1109/TSTE.2019.2953684
https://doi.org/10.1109/TSTE.2019.2953684
https://doi.org/10.1109/TPWRS.2021.3049616
https://doi.org/10.1109/TPWRS.2021.3049616
https://doi.org/10.1109/TSG.2022.3186931
https://doi.org/10.11591/ijpeds.v8.i1.pp392-401
https://doi.org/10.11591/ijpeds.v8.i1.pp392-401
https://doi.org/10.1109/TIA.2020.3034285
https://doi.org/10.24295/CPSSTPEA.2020.00025
https://doi.org/10.1109/TIE.2021.3088365
https://doi.org/10.1109/TSTE.2018.2853192
https://doi.org/10.1109/TPWRS.2016.2591063
https://doi.org/10.1109/TPWRS.2016.2591063
https://doi.org/10.1109/JESTPE.2019.2953178
https://doi.org/10.1109/JESTPE.2019.2953178
https://doi.org/10.1109/TIA.2021.3081519
https://doi.org/10.3389/fenrg.2022.895163
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/TIA.2022.3178388
https://doi.org/10.1109/TSG.2020.3045626
https://doi.org/10.1109/TIA.2021.3111842
https://doi.org/10.1109/TIA.2021.3111842
https://doi.org/10.1109/TPWRS.2022.3168078
https://doi.org/10.1109/TPWRS.2021.3078770
https://doi.org/10.1109/TPWRS.2021.3067199
https://doi.org/10.1109/TPWRS.2021.3067199
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1271738


Varma, R. K., and Akbari, M. (2020). Simultaneous fast frequency control and power
oscillation damping by utilizing PV solar system as PV-STATCOM. IEEE Trans.
Sustain. Energy 11, 415–425. doi:10.1109/TSTE.2019.2892943

Varma, R. K., and Salehi, R. (2017). SSR mitigation with a new control of PV solar
farm as STATCOM (PV-STATCOM). IEEE Trans. Sustain. Energy 8, 1473–1483.
doi:10.1109/TSTE.2017.2691279

Wang, Y., Zhao, T., Ju, C., Xu, Y., andWang, P. (2020). Two-level distributed volt/var
control using aggregated PV inverters in distribution networks. IEEE Trans. Power
Deliv. 35, 1844–1855. doi:10.1109/TPWRD.2019.2955506

Xu, R., Zhang, C., Xu, Y., Dong, Z., and Zhang, R. (2022). Multi-objective hierarchically-
coordinated volt/var control for active distribution networks with droop-controlled PV
inverters. IEEE Trans. Smart Grid 13, 998–1011. doi:10.1109/TSG.2021.3126761

Yang, J., Tushar, W., Saha, T. K., Alam, M. R., and Li, Y. (2022). Prosumer-driven
voltage regulation via coordinated real and reactive power control. IEEE Trans. Smart
Grid 13, 1441–1452. doi:10.1109/TSG.2021.3125339

Yi, Z., Dong, W., and Etemadi, A. H. (2018). A unified control and power
management scheme for PV-Battery-Based hybrid microgrids for both grid-
connected and islanded modes. IEEE Trans. Smart Grid 9, 5975–5985. doi:10.1109/
TSG.2017.2700332

Zhou, Y., Ding, Z., Wen, Q., and Wang, Y. (2023). Robust load forecasting towards
adversarial attacks via bayesian learning. IEEE Trans. Power Syst. 38, 1445–1459. doi:10.
1109/TPWRS.2022.3175252

Zeraati, M., Hamedani Golshan, M. E., and Guerrero, J. M. (2019). A consensus-based
cooperative control of PEV battery and PV active power curtailment for voltage
regulation in distribution networks. IEEE Trans. Smart Grid 10, 670–680. doi:10.
1109/TSG.2017.2749623

Zhang, Z., Dou, C., Yue, D., Zhang, Y., Zhang, B., and Zhang, Z. (2022). Event-
triggered hybrid voltage regulation with required BESS sizing in high-PV-
penetration networks. IEEE Trans. Smart Grid 13, 2614–2626. doi:10.1109/TSG.
2022.3168440

Frontiers in Energy Research frontiersin.org11

Shen et al. 10.3389/fenrg.2023.1271738

100

https://doi.org/10.1109/TSTE.2019.2892943
https://doi.org/10.1109/TSTE.2017.2691279
https://doi.org/10.1109/TPWRD.2019.2955506
https://doi.org/10.1109/TSG.2021.3126761
https://doi.org/10.1109/TSG.2021.3125339
https://doi.org/10.1109/TSG.2017.2700332
https://doi.org/10.1109/TSG.2017.2700332
https://doi.org/10.1109/TPWRS.2022.3175252
https://doi.org/10.1109/TPWRS.2022.3175252
https://doi.org/10.1109/TSG.2017.2749623
https://doi.org/10.1109/TSG.2017.2749623
https://doi.org/10.1109/TSG.2022.3168440
https://doi.org/10.1109/TSG.2022.3168440
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1271738


Power system data-driven
dispatch using improved scenario
generation considering
time-series correlations

Peng Li1, Wenqi Huang1, Lingyu Liang1, Zhen Dai1, Shang Cao1*,
Huanming Zhang1, Xiangyu Zhao1, Jiaxuan Hou1, Wenhao Ma2

and Liang Che2

1Southern Power Grid Digital Grid Research Institute, Guangzhou, China, 2College of Electrical and
Information Engineering, Hunan University, Changsha, China

Reinforcement learning (RL) is recently studied for realizing fast and adaptive
power system dispatch under the increasing penetration of renewable energy. RL
has the limitation of relying on samples for agent training, and the application in
power systems often faces the difficulty of insufficient scenario samples. So,
scenario generation is of great importance for the application of RL. However,
most of the existing scenario generation methods cannot handle time-series
correlation, especially the correlation over long time scales, when generating the
scenario. To address this issue, this paper proposes an RL-based dispatch method
which can generate power system operational scenarios with time-series
correlation for the agent’s training. First, a time-generative adversarial network
(GAN)-based scenario generation model is constructed, which generates system
operational scenarios with long- and short-time scale time-series correlations.
Next, the “N-1” security is ensured by simulating “N-1” branch contingencies in the
agent’s training. Finally, the model is trained in parallel in an actual power system
environment, and its effectiveness is verified by comparisons against benchmark
methods.

KEYWORDS

power system dispatch, scenario generation, reinforcement learning, time series,
generative adversarial network

1 Introduction

In 2022, the global installed capacity of renewable energy has increased by nearly
295GW, and renewables accounted for 40% of global installed power capacity
(IRENA, 2023). Renewable energy generation has uncertainty and volatility, and
the high penetration of multiple renewable energies exacerbates the uncertainty,
strong coupling, and non-linearity of the power system. Although traditional model-
based optimization methods (Ji et al., 2018; Huang et al., 2021; López-Garza et al.,
2022) with certainty have strong interpretability, they are difficult to handle the
dispatch problems of renewable energy generation with uncertainty (Han et al.,
2023).

Artificial intelligence can reduce the dependence on physical modeling and
efficiently process multi-dimensional complex information (Wang and Ouyang,
2022; Chen et al., 2023a). Therefore, data-driven methods based on artificial
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intelligence have gradually demonstrated superior control
advantages, especially the RL-based dispatch method in data-
driven models has been researched recently due to its advantages
of fast decision-making, balancing long-term and short-term
benefits, and solving non-convex and non-linear problems
(Tang et al., 2022). Han et al. (2023) proposed deep-RL based
on soft actor-critic autonomous control, which is used to cope
with large-scale renewable energy dispatch scenarios. Wei et al.
(2022) proposed a dispatch method based on RL to optimize the
utilization rate of renewable energy. Luo et al. (2023) combined
the Kullback–Leibler (KL) divergent penalty factor with RL to
maximize the absorption of renewable energy.

Although RL has been investigated in power system dispatch,
it has the disadvantage of low sample utilization (Seo et al., 2019),
which means that the agent needs a long time to randomly
explore the environment and collect sufficient samples for
learning the optimal policy. The power system may encounter
extreme operational scenarios such as contingencies, mismatch
between generation and load, and fast changes of load or
renewables. These extreme scenarios typically have much
lower occurrence possibility than normal scenarios and thus
have the problem of insufficient samples. This will aggravate
the low sample utilization issue and negatively impact the agent’s
capability to learn the optimal dispatch policy when applying RL
(He et al., 2023).

To address the aforementioned issue, scenario generation is
one of the important means, which mainly includes statistics
methods (Goh et al., 2022; Krishna and Abhyankar, 2023) and
artificial intelligence methods (Bagheri et al., 2022; Goh et al.,
2022; Krishna and Abhyankar, 2023). The uncertainty features of
renewable energy can be explicitly modeled using statistical
methods. It is difficult to model energy systems with
significant differences, complexity, and high-dimensional non-
linear features. Considering that generative adversarial network
(GAN) has the advantages of flexibility, simple structure, and
simulating the complex distribution of high-dimensional data,
Bagheri et al. (2022) used GAN to generate photovoltaic
generation and load scenarios, Qian et al. (2022) applied GAN
to generate wind and solar scenarios, and Tang et al. (2023)
proposed an improved GAN to generate scenarios for wind
farms. To ensure the effectiveness and accuracy of scenario
generation, the time-series correlation among the generated
scenarios should be well-considered. Fraccaro et al. (2016)
proposed a time variational auto-encoder (Time-VAE)-based
method, using an encoder to extract time-series data features
for generating hidden variables, and a decoder to decode the
hidden variables into time-series data, thus achieving time-series
scenario generation. However, these existing methods only
ensure the time-series correlation between adjacent time
instants but cannot handle the time-series correlation for
relatively long-time scales. The root cause is that they lack the
mechanisms of time-series correlation evaluation and generator
network auxiliary updates. This will negatively impact the
performance of the RL-based dispatch model. Moreover, all
the existing scenario generation methods ignore the “N-1”
security, which is critical in power system dispatch.

To address the aforementioned issues, this paper proposes an
RL-based dispatch method that integrates an improved

operational scenario generation considering long time scale
time-series correlation and “N-1” security. The contributions
are as follows.

1) Existing scenario generation methods ignore the scenarios’ time-
series correlation over relatively long-time scales. To address this
issue, a Time-GAN-based scenario generation method is
proposed using the mechanism of time-series correlation
evaluation and GAN-based generator auxiliary update. The
proposed method can generate operational scenarios with
time-series correlation over long and short time scales.

2) To overcome the limitation of traditional data-driven methods that
have not addressed the “N-1” security, the proposedmethod ensures
the “N-1” security by simulating “N-1” branch contingencies during
the agent’s training when generating the scenarios.

The rest of this paper is organized as follows: Section 2
introduces the framework of data-driven dispatch with scenario
generation. Sections 3 and 4 propose the Time-GAN-based scenario
generation model and the RL-based dispatch model, respectively.
Section 5 introduces the training and execution processes. Section 6
provides the simulation. Finally, Section 7 concludes the paper.

2 Framework of data-driven dispatch
with scenario generation

To enhance the policy accuracy of data-driven dispatch models
under extreme operational scenarios, a framework of data-driven
dispatch with scenario generation is introduced, as shown in
Figure 1. The scenario generation model based on Time-GAN
(Yoon et al., 2019) serves as the data support for the
construction of the power system dispatch model based on the
proximal policy optimization (PPO) algorithm (Yang et al., 2020)
and the dispatch model as algorithmic support for online execution.

(a) A scenario generation model based on Time-GAN. First, the
real scenario data on the grid are normalized and

FIGURE 1
Framework of data-driven dispatch with scenario generation.
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preprocessed. Then, Time-GAN is trained and evaluated
using the preprocessed data. Finally, the scenario
generation model that has completed the training is
obtained. To mine typical extreme scenarios and improve
the generation effect of uncertain scenarios, it is necessary to
scenario clustering before scenario generation. The
combination of the scenario generation model with RL is
focused, and numerous scholars have proposed different
methods for scenario clustering. A Gaussian mixture
model (Jang et al., 2021) is used for scenario clustering
and will not focus on this topic in this paper.

(b) A power system dispatch model based on the PPO algorithm.
The construction of the model mainly includes two parts: the
construction of a dispatch model based on PPO and parallel
offline training. The construction of the model is to
transform the actual operating rules of the power system
into a simulation environment of RL. It mainly includes state
space, action space, and reward function design. Parallel
offline training uses parallel methods to accelerate the
training process of the model.

(c) Online execution. For system dispatch tasks, power system
operation status data are input into the trained RL dispatch
model to achieve real-time dispatch.

3 Time-GAN-based scenario
generation

Based on the framework of data-driven dispatch with scenario
generation in Section 1, a Time-GAN-based scenario generation
model is constructed in this section. A scenario generation model
based on Time-GAN is constructed to solve the problem of
insufficient samples in data-driven models. It provides data
support for the data driven distribution model in Section 3.

3.1 Scenario generation

The scenario generation process based on Time-GAN is
shown in Figure 2, which is mainly divided into the following
four steps.

(a) Preprocessing real scenarios. To obtain the distribution features
of the data, the real scenarios obtained are subjected to data
cleaning and normalization.

(b) Training Time-GAN for scenario generation. The Time-GAN
parameters are set, including the sampling time step, the
maximum training step, the hyperparameter, and batch size,
and training the Time-GAN model.

(c) Generating renewable energy generation and load scenarios.
The trained scenario generation network and test data are
utilized for scenario generation.

(d) Evaluating the quality of scenario generation. The distribution
features and spatiotemporal correlation of the generated scenarios
are evaluated.

3.2 Scenario generation based on Time-GAN

For Time-GAN, while preserving the structure of the generator and
discriminator of GAN, AEN was added for joint training to achieve
adversarial and supervised training, enabling the model to learn time-
series data that conform to the feature distribution of the real data, as
shown in Figure 3.

First, S is defined as the static feature vector, representing
renewable energy or load data at a certain time. Furthermore, X
is defined as the dynamic feature vector, representing renewable
energy or load data at a certain node at a certain period, and it is the
variable information in the scenarios. We assume (S,X1: T) follows a
certain joint distribution p, where T is the length of the time series.
The training sample set is � (Sn, Xn

1: T){ }Nn�1, and n � (1, . . . , N) is
the n-th training sample; the total number is N.

FIGURE 2
Flow of scenario generation based on Time-GAN.

FIGURE 3
Time-GAN model structure.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2023.1267713

103

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1267713


Second, the real scenarios obtained will be used as the training
set, and it will be normalized as follows:

x*
t �

xt − x min

x max − x min
, (1)

where xt is the value at time t; x*t is the normalized value at time t;
and xmax and x min are the maximum and minimum values of the
sample before normalization, respectively.

Third, the real data on renewable energy or load containing both
static and dynamic features are reconstructed in the autoencoder.
The embedding function and recover function are given as follows:

Hs � Es S( )
Ht � Et Hs,Ht−1, Xt( ),{ (2a)

~S � Rs Hs( )
~Xt � Rt Ht( ),{ (2b)

where (2. a) maps S to a low-dimensional feature vector. Thus, the
key feature vector is obtained, which is the latent encoding.
Moreover, by (2.b), the low-dimensional vector is restored to the
real high-dimensional vector. Hs is the low-dimensional static
feature vector after embedding function mapping; Ht is the low-
dimensional dynamic feature vector at time t after passing through
the embedded function; Xt is the real high-dimensional dynamic
feature vector at time t; ~S and ~Xt are the high-dimensional static and
dynamic feature vectors recovered by the recovery function,
respectively; and E and R are embedding functions and
reconstruction functions, respectively. To optimize AEN, the loss
function LossR of AEN is expressed as follows:

LossR � ES,X1: T ~ p S − ~S
���� ����2 +∑

t
Xt − ~Xt

���� ����2[ ]. (3)

Meanwhile, the discriminator is used to determine whether the
generated data are similar to the real data. The generator and
discriminator are given as follows:

Ĥs � Gs ZS( )
Ĥt � Gt Ĥs, Ĥt−1, Zt( ),{ (4a)

ŷS � Ds Ĥs( )
ŷt � Dt Ût, Xt( ),⎧⎨⎩ (4b)

where Ĥs and Ĥt are static and dynamic feature vectors generated,
respectively. ŷS and ŷt are the classification results generated by
static and dynamic features, respectively. Ût is the joint encoding
output result; and G and D are generator and discriminator
functions, respectively. To improve Time-GAN, the joint loss
function LossE of the generator and discriminator is given as follows:

LossE � LossG + LossD, (5a)
LossG � ES,X1: T ~p̂

log 1 − ŷS( ) +∑t(1 − logŷt)[ ]
LossD � ES,X1: T ~ p logyS + ∑tlogyt[ ],{ (5b)

where yS and yt are the classification results of the original dynamic
and static feature data, respectively.

Finally, defining the supervised loss function LossS between the
generator and the real data evaluates the time-series correlation
learning ability of the generator as follows:

LossS � ES,X1: T ~ p ∑
t
Ht − Gs Hs,Ht−1, Zt( )‖ ‖2[ ]. (6)

3.3 Scenario generation quality assessment

To verify the effectiveness of the scenario generation model
based on Time-GAN, this paper uses t-SNE (Wang et al., 2022) to
evaluate the data distribution features, the autocorrelation
coefficient method (Chen et al., 2018) to evaluate time-series
correlation, and the Pearson method (Burgund et al., 2023) to
evaluate spatial correlation.

(a) Data distribution feature evaluation based on t-SNE. t-SNE can
display clear boundaries in low-dimensional space while
preserving the original information on the data, making the
visualization results more intuitive. Therefore, t-SNE is used to
evaluate the effectiveness of the scenario generationmodel based
on Time-GAN in this paper. The algorithm steps are listed as
follows:

1) In a high-dimensional space, assume xi is the clustering center.
The probability Pj|i of other samples xj in this category is
measured by the Gaussian probability density function as
follows:

Pj|i �
exp − xi−xj‖ ‖2

2σ2i
( )

∑k≠iexp − xi−xj‖ ‖2
2σ2i

( ), (7a)

Pi|j �
Pi|j + Pj|i

2K
, (7b)

where xi and xj are high-dimensional data; σ i is the variance of
the Gaussian distribution; and K is the total number of data
points.

2) In a low-dimensional space, the low-dimensional representation
of xi is yi, and the low-dimensional representation of xj is yj.
Assuming yi is the cluster center, the probability of other data
points yj belonging to this class Qi|j is measured using the
t-distribution function:

Qi|j �
1 + yi − yj

���� ����2( )−1∑
k≠i

1 + yi − yj

���� ����2( )−1. (8)

3) The cost function C can be obtained using the KL distance, and
the visualization results of high-dimensional data can be
obtained as follows:

C � KL P Q‖( ) � ∑
i
∑

j
Pj|ilog

Pj|i
Qi|j

, (9)

where P and Q are the joint probability distribution of samples in
high-dimensional and low-dimensional spaces, respectively.

(b) Time-series correlation evaluation based on the
autocorrelation coefficient method. The autocorrelation
coefficient represents the correlation between moments,
which can provide a very intuitive understanding of the
relationship between time-series variables. Therefore, the
autocorrelation coefficient method is used to analyze the
time-series correlation of scenarios. The autocorrelation
coefficient of scenarios is given as follows:

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2023.1267713

104

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1267713


F � ∑n−h
i�1

xi − �x( ) xi+h − �x( )∑n
i�1 xi − �x( )2 , (10)

where xi is the i-th value of set x, �x is the mean of the overall sample
x, and i� 1, . . . ,n − h.

(c) Spatial correlation evaluation based on the Pearson coefficient
method. The advantage of using the Pearson coefficient method
to evaluate the correlation of spatial sequences is that it can
quickly measure the degree of correlation between two spatial
sequences, to better understand the relationship between
scenarios. The spatial correlation of scenarios is analyzed
using the Pearson method; the Pearson coefficient of
scenarios is expressed as follows:

ρ � E x − �x( ) y − �y( )[ ]�����������∑n
i�1 xi − �x( )2

√ �����������∑n
i�1 yi − �y( )2√ , (11)

where xi and yi are the i-th values of x and y, respectively. �x and �y
are the mean values of the sets x and y, respectively, and i� 1, . . . ,n.

4 Data-driven dispatch model
considering “N-1” security

The high proportion of renewable energy penetration
significantly enhances the uncertainty of the power system, and
multiple energy sources bring strong coupling and non-linearity. It
results in difficultly for traditional methods to model and achieve
rapid optimization solutions. RL can enhance decision-making and
reduce dependence on physical modeling. Therefore, based on
scenario generation in the previous section, a data-driven
dispatch model was constructed, which is implemented by the
RL algorithm.

4.1 Model formulation

4.1.1 Objective
The objective function includes minimizing the total operating

cost of the units and maximizing the consumption of renewable
energy.

1) Operating cost objective is given as follows:

F1 � min∑N

i�1∑T

t�1 Fit Pit( )*Uit( ), (12)

where Fit(Pit) � ai + bi*Pit + ci*P2
it, and ai, bi, and ci are,

respectively, the constant term, primary term, and secondary
term coefficients of the operating cost of the i-th unit. Pit is the
unit output of the i-th unit at time t; Uit is the starting and stopping
statuses of the i-th unit at time t;N is the number of units; and T is
the operating time of the unit.

2) Renewable energy consumption objective is given as follows:

F2 � max
∑Nr

i�1∑Tr
t�1PNit∑Nr

i�1∑Tr
t�1PNit

max
, (13)

where PNit and PNit
max are the actual and maximum output power

of the i-th renewable energy unit at time t, respectively; andNr and
Tr are the number and operating time of the renewable energy unit,
respectively.

4.1.2 Constraints
1) The alternating current power flow constraint is given as follows:

Pit − PLit � Vit∑n
j�1Vjt Gij cos δijt + Bij sin δijt( )

Qit − QLit � Vit∑n
j�1Vjt Gij sin δijt − Bij cos δijt( ),⎧⎨⎩ (14)

where Pit andQit are the active and reactive power of the i-th unit at
time t, respectively; PLit andQLit are the active and reactive power of
the i-th unit during the t-th period, respectively; Vit is the voltage
modulus of the i-th node; δit is the phase angle difference between
two nodes; and Gij and Bij are the conductivity and admittance
between nodes i and j, respectively.

2) The unit generating capacity constraint is given as follows:

PTit
min*Uit ≤PTit ≤PTit

max*Uit, (15)
where PTit

min and PTit
max are the generating capacity down and up

limits of the i-th thermal unit at time t, respectively; and PTit is the
actual out power of the i-th thermal unit at time t.

3) The renewable energy generating capacity constraint is given as
follows:

PNit ≤PNit
max*Uit. (16)

4) The unit operating ramping constraint is given as follows:

PTit
min*r≤PTit − PTi t−1( ) ≤PTit

max*r, (17)
where r is the operating ramping rate of the unit PTit.

5) The swing-bus unit generating capacity constraint is given as
follows:

After the power flow calculation, the output power of the swing-
bus unit is less than 110% of the up limit or greater than 90% of the
down limit.

PBit
min*0.9≤PBit ≤PBit

max*1.1, (18)
where PBit is the output power of the i-th swing-bus unit at time t;
PBit

min and PBit
max are the generating capacity down and up limits

of the i-th swing-bus unit at time t, respectively.

6) “N-1” security constraint is given as follows:

In this paper, the operational risk of the power system “N-1”
is considered. The voltage of adjacent nodes with line
disconnection can neither be greater than the up limit of the
voltage of that node nor can it be less than the lower limit of the
voltage of that node.

Vmin
i ≤Vi ≤Vmax

i

Vmin
j ≤Vj ≤Vmax

j ,{ (19)
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where Vi and Vj are the node voltages at both ends of line Lij,
respectively; and Vi

min and Vj
min are the down and up limits of

node voltages at both ends of line Lij, respectively.

4.2 Solution based on the RL algorithm

The aforementioned dispatch problem would be transformed
into a RL power system dispatch model based on the data-driven
approach, specifically including the design of state space, action
space, and reward function.

4.2.1 State space
The information that can be obtained by the agent in actual

environments will be considered due to the limitations of physical
communication systems and data privacy. The influence of the
large-scale state space on model convergence speed is also
considered. The agent obtains the state space St at time t is set to

St � Pt, PLt, Pt+1, PLt+1, PNt
max, Vt{ }, (20)

where Pt is the output power of the unit at time t; PLt is the load of
each node at time t; Pt+1 is output power of the unit at time t+1;
PLt+1 is the load of each node at time t+1; PNt

max is the predicted
maximum output power of the renewable energy unit at time t; and
Vt is the node voltages at time t.

4.2.2 Action space
In the dispatch model based on RL, the output of the agent at

time t is Pit. At is the action of the agent at time t. The joint action at
the time t is expressed as follows:

At � P1t, P2t, . . . , Pit{ }. (21)

4.2.3 Reward function
Reward function used to describe environmental evaluation

agent action At. The reward functions are set:

1) Reward function for line power exceeding limit is expressed as
follows:

r1t � 1
nline

∑nline

l�1 rholt, (22)

where nline is the number of power grid branches and rholt is the
current load rate of branch l at time t.

2) Reward function for renewable energy consumption is expressed
as follows:

r2t � ∑Nr
i�1PNit∑Nr

i�1PNit
max

. (23)

3) Reward function for swing-bus units exceeding limit is expressed
as follows:

r3t � −∑nbalanced

i�1 ΔPBit, (24a)

ΔPBit �

PBit − PBit
max

Pmax
Bit

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ PBit
max <PBit < 1.1*PBit

max

PBit − PBit
max

PBit
max

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ 0.9*PBit

max <PBit <PBit
max

0 others,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(25b)

where nbalanced is the number of swing-bus units.

4) The unit operating cost reward function is expressed as follows:

r4t � −∑N

i�1 ai + bi*Pit + ci*P
2
it( )Uit. (26)

5) Reward function for line node voltage exceeding limit is
expressed as follows:

r5t � −∑nsub

i�1 ΔVi, (27a)

ΔVi �

Vi − Vi
max

Vmax
i

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ Vi >Vi
max

Vi − Vi
min

Vi
min

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ Vi <Vi
max

0 others,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(27b)

where nsub is the number of nodes.
The reward functions r3t, r4t, and r5t are normalized:

r � er−1. (28)
In summary, the domain values of r1t, r2t, and r5t are [0, 1],

while the domain values of r3t and r4t are [−1, 0]. The total reward
functions are given as follows:

Rt � α1r1t + α2r2t + α3r3t + α4r4t + α5r5t, (29)
where rit is the i-th reward function at time t; αi is the coefficient of
the i-th reward function; i� 1, 2, . . . , 5.

FIGURE 4
Offline training and online execution process.
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5 Offline training and online execution

Based on the scenario generation model in Section 2 and the
dispatch model in Section 3, the process of offline training and
online execution of the dispatch model is discussed in this section
and shown in Figure 4.

5.1 Offline training process

Compared to other RL methods, the PPO algorithm adopts
important sampling technology to effectively utilize historical data,
avoiding the problem of large variance and being able to handle the
problem of continuous action space. So the PPO algorithm is chosen
to study the power system dispatch problem.

First, the policy network and value network make actionsAt and
calculate the value function Vμ(St) based on St, respectively. Then,
At is input into the environment, and the action reward Rt and the
new environment state St+1 are obtained. Finally, the sample data
(St, At, Rt, St+1) are stored in the sample batches (Huang and Wang,
2020).

For value network updates, (St, At, Rt, St+1) is obtained from the
sample batches, and Vμ(St) is calculated. According to the loss
function (31) and gradient function (30), the value network is
gradient-updated.

μ � μ − lμ∇L
V μ( ), (30)

LV μ( ) � E Rt + γVμ St+1( ) − Vμ St( )( )2, (31)

where μ and lμ are the parameter and learning rate of the value
network, respectively; ∇LV(μ) is the gradient of value network loss
function LV(μ) with respect to μ; and E(·) is the expectation.

Unlike the parameter update of the value network, the
performance of the policy network is improved according to the
advantage function Â(St, At) (Chen et al., 2023b). The parameter
update formula of the policy network is given as follows:

θ � θ − lθ∇Â, (32)
Â St, At( ) � Qμ St, At( ) − Vμ St( ), (33)

Qμ St, At( ) � E Rt|St, At; π( )
Vμ St( ) � E Rt|St; π( ),{ (34)

where θ and lθ are the parameter and learning rate of the policy
network, respectively; ∇Â is the gradient of the loss function Â of the
policy network with respect to θ; Qμ(St, At) is the expected reward
value of At based on policy π in St, which is the action value
function; andVμ(St) is the expected reward value obtained by taking
all possible actions according to π in St, which is the state value
function. To improve the training speed, a parallel training method
is adopted to train the PPO algorithm.

5.2 Online execution process

As shown in Figure 4, in the online execution process, the
dispatch policy of the power system only relies on the trained policy
network and does not require the participation of the value network.
When the dispatch task arrives, the dispatch actionAt is made based

on St by the agent, and the environment executes this action and
transfers to the next state St+1, while the reward value Rt is
calculated. Then, The load demand and environmental status are
continued to be collected at the next moment until the execution
process for the total T period is completed.

6 Simulation

The environment is constructed based on a real power system in
a province in south China, which includes 748 nodes, 845 branches,
and 187 units (55 renewable energy generation, 131 thermal units,
and 1 swing-bus unit). The dispatch interval is 15 min. The sampling
time step in Time-GAN is 96, the maximum training step is 35,000,
the hyperparameter γ is 1, and the batch size is 32. In RL, the
learning rate is 10–5, the maximum training episode is 107, and the
number of parallel environments is 88; the mini-batch is 128. All
simulations are based on Python 3.6 and PyTorch 1.6.

6.1 Scenario generation example analysis

The aforementioned grid structure historical scenario is used to
build a scenario generation model based on Time-GAN, and the
scenario generation effect of the model is verified. The real scenario
contains 2000 scenario section data, and the ratio of training and
testing scenarios is 4:1.

(a) Analysis of the distribution of scenario generation. To test the
performance of the algorithm, the scenarios generated by Time-
GAN and Time-VAE were compared and analyzed. The feature
distribution between the generated scenarios and the real
scenarios was visualized using t-NSE, as shown in Figure 5.
It can be seen that the feature distribution of Time-VAE-
generated scenarios is significantly different from that of the
real scenarios, and a large number of scenarios that deviate from
the distribution features of the real scenarios were generated. It
indicates that its effectiveness in generating scenarios is not
high. The feature distribution of scenarios generated by Time-
GAN is relatively close to that of real scenarios, fitting the
feature distribution of the real scenarios. It indicates that Time-
GAN is more effective in generating scenarios than Time-VAE.

(b) Analysis of scenario time-series correlation features based on
the autocorrelation coefficient. To study the correlation between
generated scenarios and real scenarios in terms of time-series
correlation features, autocorrelation coefficients are introduced.
The autocorrelation coefficients of scenarios are shown in
Figure 6. Within the lag range of 0–20 h, the autocorrelation
coefficients of the generated renewable energy and the real
scenarios are consistent. This indicates that the generated
scenarios can accurately simulate and preserve the
correlation features of time series in real scenarios. The long-
time scale time-series correlation features of the generated
scenarios meet the requirements of the time-series
correlation features of the real scenarios.

(c) Analysis of the scenario spatial correlation based on the Pearson
coefficient method. To study the correlation between generated
scenarios and real scenarios in terms of spatial features, the
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Pearson coefficient method is introduced. The Pearson
coefficient results of renewable energy and load are shown in
Tables 1–4. It can be seen that the spatial correlation between
the renewable energy and load scenarios generated by this
method and real scenarios is relatively close. The overall
generated scenarios comply with the correlation rule of real
scenarios. This shows that the renewable energy and load
scenario generation method in this paper can learn the
complex coupling between renewable energy and loads, and
has a good generalization effect.

6.2 Analysis of power system dispatch
results

A data-driven power system dispatch model is constructed
based on the aforementioned scenario generation. First, the
original 2000 section scenarios are expanded to 10,000 section
scenarios through the scenario generation model. Second, the
dispatch model is training. Finally, the trained dispatch model
was tested using actual real sample scenarios to verify its
effectiveness.

FIGURE 5
t-SNE visualization of Time-GAN-based renewable energy scenarios (A). Time-VAE-based renewable energy scenarios (B). Time-GAN-based load
scenarios (C). Time-VAE-based load scenarios (D).

FIGURE 6
Autocorrelation coefficients of renewable energy scenarios (A) and load scenarios (B).
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6.2.1 Analysis of RL convergence
This paper not only compares the training effects of the dispatch

model before and after scenario generation but also compares the
PPO algorithm with other RL methods. The reward convergence of
model training is shown in Figure 7. “O-PPO” represents the
convergence curve of the PPO algorithm training based on real

scenarios, and “G-PPO, G-A3C, G-A2C, G-DDPG, and G-APPO”
represents the convergence curve of training based on scenario
generation. From Figure 7, the following can be observed:

(a) Comparing the convergence curves of O-PPO and G-PPO, it
can be seen that scenario generation can improve the training
effect of the dispatch model based on the PPO algorithm. From
the perspective of the average reward value, the overall training
effect of G-PPO has improved by 607.49% compared to O-PPO.
This means that by using scenarios generated by the scenario
generation model for training, the data-driven dispatch model
can be better optimized and its performance improved. A key
advantage of using scenario generation models for training is
that it can generate a large amount of rich and diverse scenario
data, which expands the diversity of the training dataset. Due to
the possible differences between the generated scenario data and
the real scenario, the model can learn a wider range of situations
and coping methods, thus possessing stronger generalization
ability. This demonstrates the importance of scenario
generation in improving the performance of the data-driven
dispatch model.

(b) Comparing the convergence curves of G-PPO with other RL
algorithms (G-A3C, G-A2C, G-DDPG, and G-APPO), it can be
seen that the average reward convergence effect of the PPO
algorithm is better. The dispatch model based on the PPO
algorithm is more suitable for optimizing dispatch execution in
this scenario.

6.2.2 Analysis of dispatch results
(a) Analysis of output power of units. A certain section is selected as

the testing scenario, and the method proposed is used for real-time
dispatch. The dispatch results are shown in Figure 8. In the time
sections numbered 1–28, when output power of renewable energy
is low, the method proposed achieves load demand by increasing
the output of thermal power units in this paper. This method
prioritizes using renewable energy to meet the load and reduce
output power of thermal power units. In the time sections of 44–96,
when output power of renewable energy is high, this method

TABLE 1 Correlation of real renewable energy scenarios.

Unit 1 2 3 4 5 6

1 1.00 0.83 0.92 0.83 0.81 0.70

2 0.83 1.00 0.83 0.87 0.91 0.74

3 0.92 0.83 1.00 0.84 0.84 0.76

4 0.83 0.87 0.84 1.00 0.90 0.89

5 0.81 0.91 0.84 0.90 1.00 0.85

6 0.70 0.74 0.76 0.89 0.85 1.00

TABLE 2 Correlation of renewable energy scenarios generated.

Unit 1 2 3 4 5 6

1 1.00 0.86 0.93 0.84 0.87 0.72

2 0.86 1.00 0.76 0.70 0.74 0.62

3 0.93 0.76 1.00 0.86 0.90 0.64

4 0.84 0.70 0.86 1.00 0.95 0.74

5 0.87 0.74 0.90 0.95 1.00 0.73

6 0.72 0.62 0.64 0.74 0.73 1.00

TABLE 3 Correlation of real load scenarios.

Load 1 2 3 4 5 6

1 1.00 0.85 0.95 0.37 −0.23 0.90

2 0.85 1.00 0.84 0.62 −0.51 0.65

3 0.95 0.84 1.00 0.41 −0.18 0.93

4 0.37 0.62 0.41 1.00 −0.43 0.17

5 −0.23 −0.51 −0.18 −0.43 1.00 −0.04

6 0.90 0.65 0.93 0.17 −0.04 1.00

TABLE 4 Correlation of load scenarios generated.

Load 1 2 3 4 5 6

1 1.00 0.84 0.92 0.47 −0.05 0.94

2 0.84 1.00 0.88 0.56 −0.43 0.86

3 0.92 0.88 1.00 0.50 −0.13 0.96

4 0.47 0.56 0.50 1.00 −0.42 0.48

5 −0.05 −0.43 −0.13 −0.42 1.00 −0.14

6 0.94 0.86 0.96 0.48 −0.14 1.00

FIGURE 7
Curve of reward function during the training process.
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prioritizes using renewable energy to meet the load demand and
reduce output power of thermal power units. In the time sections of
29–43, when the load demand and the renewable energy output
power are low, this method makes a reasonable dispatch plan for
output power of thermal power units to meet the load demand. At
the same time, output power of the swing-bus unit is always
maintained between 300 and 800MW (the generating capacity up
limit of the swing-bus unit is 878.9 MW), meeting the real-time
safety regulation margin of the swing-bus unit.

(b) Analysis of the consumption of renewable energy. The
consumption of renewable energy has always been a key
issue in the operation and planning of the power system.
The method proposed in this paper aims to achieve the
actual output power of renewable energy as close as possible
to its maximum power through reasonable dispatch of the
system. The maximum power, actual output power, and
consumption rate of renewable energy power are shown in
Figure 9. In this paper, 100% renewable energy consumption
cannot be guaranteed using the method proposed, but the
overall renewable energy consumption rate reaches 94.06%.
Based on Figure 8, it can be seen that a high level of
renewable energy consumption can also be ensured during
the large-scale development of renewable energy. This is of
great significance for promoting the development of renewable
energy and improving the sustainability of the power system.

(c) Analysis of node voltage exceeding the limit for “N-1”. At the
same time, the aforementioned dispatch plan was verified using
alternating current power flow through “N-1” safety
verification, and the node voltage at different times under
any fault was obtained, as shown in Figure 10. By comparing
voltage values with the set safety range, it can be determined
whether the system is experiencing abnormal or overload
situations. From Figure 9, it is observed that the node
voltage remains within a safe range, indicating that the
dispatch scheme ensures the stability and safety of the power
system under the “N-1” fault state. The power system dispatch
plan based on RL can ensure the stability of node voltage in the

event of a fault, which is crucial for the operation of the power
system and thus ensures the reliable power supply of the power
system.

(d) Comparative analysis with traditional methods. To further
verify the rationality and effectiveness of the method
proposed in this paper, the convex optimization problem
(OPT) (Tejada-Arang et al., 2017) is used for comparative
analysis, and the Gurobi solver was used for the solution.
The comparison results of cross-section scenarios A and B
are shown in Table 5. Due to the large scale of the
optimization problem in this paper, although the training
speed of the method in this paper is slow, the online
solution time is reduced by more than 99% compared to
traditional OPT methods. At the same time, neither the
method proposed in this paper nor traditional OPT methods
can fully guarantee 100% renewable energy consumption
throughout the entire time period. However, compared to
the OPT method, this method can also provide a higher level
of the renewable energy consumption rate. In summary, the
method proposed in this paper not only has fast dispatch

FIGURE 8
Dispatch results of units by the PPO algorithm.

FIGURE 9
Output power and consumption rate of renewable energy.

FIGURE 10
Node voltage under “N-1” faults.
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decision-making speed but also can achieve high renewable
energy consumption.

7 Conclusion

To ensure the effectiveness of the data-driven dispatch under
insufficient scenario samples, a data-driven dispatch method with
time-series correlated scenario generation is proposed. The results
verify that the performance can be effectively improved by scenario
generation. The proposed dispatch model can bring significant
economic benefits and renewable energy consumption. It can also
ensure the security under “N-1″ contingencies. Compared with
traditional optimization-based methods, the proposed method
reduces the online solution time by more than 99%.

Future research can focus on the action of safety and
interpretability issues when applying RL in power systems.
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Phasor measurement method
based on soft synchronized
sampling with temporal pulse
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Introduction: Phasormeasurement is crucial for themonitoring andmanagement
of power grids. Traditional hardware-based phasor measurement units (PMUs) are
effective but often complex and expensive. This paper introduces a software-
based phasor measurement method that utilizes soft synchronization with
temporal pulse signals from GPS and mobile communication stations, offering
a simpler and cost-effective alternative.

Methods: The proposed method synchronizes the local oscillator with Pulse Per
Second (PPS) signals from GPS and primary synchronization signals from mobile
communication bases. Raw data affected by the local oscillator’s instability are
transformed into calibrated data using B-Spline interpolation to emulate an ideal
sampling rate. The calibrated data are then subjected to a Recursive Discrete
Fourier Transform (RDFT) algorithm for synchronized phasor measurement.

Results: The method’s performance was assessed in compliance with the
C37.118.1 standard. Key performance indicators, such as frequency, phase, and
Total Vector Error (TVE), were evaluated. The proposed software-based approach
demonstrated high accuracy in synchronized phasor measurements.

Discussion: The results confirm that the proposed method can serve as a highly
accurate and simpler alternative to conventional hardware-based solutions. Its
application promises to advance synchronized phasor measurement practices in
power grid monitoring, enhancing reliability and reducing complexity and costs.

KEYWORDS

B-spline interpolation, synchronized sampling, synchrophasor estimation, temporal
pulse, sampling time error
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1 Introduction

Synchronized sampling is fundamental in power grid monitoring
and is crucial for applications such as situational awareness (Appasani
et al., 2021), fault location (Dashtdar et al., 2023), and oscillation
monitoring (Almunif and Fan, 2019). This technique works by
aligning the clocks in analog-to-digital converters (ADCs) with a
universal time reference. Most often, this reference comes from Pulse
Per Second (PPS) signals provided by Global Positioning Systems
(GPS) (Pardo-Zamora et al., 2020), the IEEE 1588 Precision Time
Protocol (PTP) (Ahmad Khan and Hayes, 2020), or the Network
Time Protocol (NTP) (Park H. et al., 2021). Recently, synchronization
signals from 5G networks have also been used (Xiao et al., 2021).

However, a persistent and yet unresolved challenge is observed in
achieving consistent synchronization accuracy for all sampled data
points within each standard 1-s timing interval (Qiu et al., 2021).While
synchronization of the first sample in each interval across different
monitoring devices is generally successful, subsequent samples exhibit
diminished accuracy (Yao et al., 2016a). This degradation in
synchronization is attributed to the inherent asynchrony between
the local oscillators that govern the ADCs and the universal time
references such as PPS signals (Jiang et al., 2000). The resultant
Sampling Time Errors (STEs) not only accumulate but also
significantly impair the performance and reliability of applications
that are contingent upon high-fidelity synchronized data (Yao et al.,
2016b). Thus, the motivation for this study is to explore an economical
and effective solution to this pressing issue.

Various methods have been tried to improve the accuracy of
synchronized sampling in power grids. One notable approach uses
an external Phase Locked Loop (PLL) (Mellino et al., 2017). While
this method improves time resolution, it has downsides such as high
costs and long setup times, limiting its practical use (Gentile, 2009;
Bondarev et al., 2022).

Another technique, called Variable Sampling Interval Control
with Operating Frequency Monitoring (VSI-OFM), directly adjusts
the ADC’s sampling times (Yao et al., 2016b). This approach does
reduce errors but makes the system more complicated, limiting its
applications.

Lastly, high-precision clocks like chip-scale atomic clocks
(CSACs) (Zhan et al., 2016) and Double-Oven Controlled
Oscillators (DOXO) (Yao et al., 2019) have been explored. These
provide stable frequencies but come with challenges like high costs
and complexity, and in the case of DOXO, higher power
consumption, making them less practical for wide use.

In summary, traditional hardware-focused methods like PLL,
VSI-OFM, CSAC, and DOXO have their merits but also come
with challenges such as cost, complexity, and limited applicability.
These issues make it important to explore other, more flexible and
cost-effective solutions.

One such promising alternative is soft synchronized sampling.
This approach corrects timing errors between two consecutive PPS
signals using interpolation techniques, eliminating the need for
frequent adjustments of the ADC. While earlier methods like two-
point interpolation (Ge and Zhang, 2021) and polynomial
interpolation (Park S. H. et al., 2021) have been tried, they often
fall short in terms of flexibility and accuracy. That’s where this study
comes in. We use B-Spline interpolation (Taghipour and Aminikhah,
2022) for its benefits like better curve fitting, smoothness, and low

computational needs (Greco and Cuomo, 2013). This makes it ideal
for real-time applications that demand both accuracy and efficiency.
Therefore, our paper introduces a new soft synchronized sampling
method based on B-Spline interpolation. The contributions of this
paper are summarized as follows:

(1) A streamlined yet effective sampling methodology based on
B-Spline interpolation is introduced. The need for frequent
adjustments to the ADC is thus eliminated, resulting in a
simplified sampling process.

(2) A comprehensive analysis is provided that illustrates the advantages
of B-Spline interpolation over traditional interpolationmethods. Its
suitability for high-fidelity synchronized sampling in power grid
monitoring is thereby demonstrated.

(3) The proposed methodology is rigorously validated against the
C37.118.1 standard. Key performance indicators, such as
frequency, phase, and Total Vector Error (TVE), are evaluated,
confirming the method’s practicality and advanced capabilities.

The remainder of this paper is organized as follows: Section 1 delves
into the theoretical underpinnings of the proposed soft synchronized
sampling scheme, elucidating the mechanics of B-Spline interpolation
in the context of STE correction. Section 2 presents the experimental
setup and methodology employed to validate the proposed approach,
adhering to the C37.118.1 standard. Section 3 discusses the results
obtained from both simulation and hardware experiments, evaluating
key performance indicators such as frequency, phase, and Total Vector
Error (TVE). Finally, Section 4 offers concluding remarks and outlines
potential avenues for future research.

2 Methodology

2.1 Characteristics of PPS signals and local
oscillator monitoring

Pulse Per Second (PPS) signals, commonly generated by systems
such as Global Positioning Systems (GPS) and Precision Time
Protocol (PTP), serve as a universal time reference for achieving
synchronized sampling. These square-wave signals typically operate
at a frequency of 1 Hz and have a pulse width ranging from 100 ms
to 200 ms. The level type for these signals is generally TTL
(Transistor-Transistor Logic). The mathematical representation of
the PPS signal can be expressed as:

PPS t( ) � A · sgn sin πft( )( ) (1.1)
whereA is the amplitude, sgn(x) is the signum function, andf is the
frequency, which is 1 Hz for PPS.

The PPS signal serves as a critical reference for monitoring the
local oscillator, which drives the Analog-to-Digital Converter
(ADC) during the sampling process. Accurate sampling is
contingent upon the precise frequency of this local oscillator. To
monitor the local oscillator’s frequency, a microcontroller unit
(MCU) typically controls a timer, which counts the number of
oscillations between two consecutive PPS signals. The frequency of
the local oscillator is then calculated as:

flocal � Ncounts

Tinterval
(1.2)
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where flocal is the frequency of the local oscillator, Ncounts is the
number of timer counts, and Tinterval is the time interval between two
consecutive PPS signals, usually 1 s.

By using the PPS signal as a reference, the MCU can accurately
determine the frequency of the local oscillator, setting the stage for
subsequent calibration steps to mitigate Sampling Time Errors (STEs).

2.2 Sampling data correction based on
B-spline interpolation

Upon obtaining the actual frequency flocal of the local oscillator
through the method described in the section “Characteristics of PPS
Signals and Local OscillatorMonitoring,” the next pivotal step is to utilize
B-spline interpolation techniques to rectify the sampling time errors
(STEs) that occur within each 1-s interval between two PPS signals.

B-spline interpolation was chosen for its capacity to produce
smooth curves while allowing local control over curve shape, thus
offering a balance between accuracy and flexibility. This method is
also computationally less intensive compared to others such as
kriging, making it well-suited for handling the large datasets that
were critical for this study. Its computational efficiency is
complemented by its robustness to noise, an essential feature
given the noisy nature of the data used in our experiments.
Furthermore, B-spline interpolation provides the versatility
required for our study, as it can be adapted to handle both one-
dimensional and two-dimensional data efficiently. Alternative
methods like cubic interpolation and kriging were initially
considered but were ruled out due to their computational
intensity and lower robustness to noise.

The actual to ideal sampling interval ratio R serves as a crucial
parameter for the B-spline interpolation technique. To elaborate, the
B-spline interpolation function can be mathematically
represented as:

f x( ) � ∑n
i�0
Pi ·Ni,k x( ) (1.3)

Here, f(x) stands for the interpolating function that provides an
approximation of the original data. The variables Pi denote the
control points, which are instrumental in shaping the curve,Ni,k(x)
are the B-spline basis functions of degree k and n indicates the total
number of control points used for interpolation. The B-spline basis
functions Ni,k(x) are recursively defined as:

Ni,0 x( ) � 1, ifxi ≤ x< xi+1

0, otherwise

⎧⎨⎩
Ni,k x( ) � x − xi

xi+k − xi
·Ni,k−1 x( ) + xi+k+1 − x

xi+k+1 − xi+1
·Ni+1,k−1 x( )

(1.4)

Ni,k(x) and Ni+1,k−1 are the previous degree B-spline basis
functions. The terms x−xi

xi+k−xi and xi+k+1−x
xi+k+1−xi+1 serve as weighting

factors, determining how much influence the previous degree
basis functions have on the current function. The breakpoints xi

and xi+1 decide the intervals over which the weighting factors and
the basis functions are defined.

The control points Pi play a pivotal role in the curve-fitting
process. Their determination is rooted in the actual to ideal sampling
interval ratio, denoted as R. This ratio R is defined as:

R � Ta

Ti
(1.5)

where Ta represents the actual sampling interval and Ti stands for
the ideal sampling interval. From the ratio R, the control points Pi

can be directly calculated as a product of R and a coefficient αi.
Specifically, each control point is given by:

Pi � R · αi (1.6)
where αi are pivotal parameters that are optimized to minimize the
error between the interpolated and actual data points. In essence,
these coefficients are responsible for ensuring that the B-spline
interpolation aligns closely with the actual data. This error
minimization is achieved through a least-squares optimization
process. The objective function for this optimization is expressed as:

min
α

∑m
j�0

f xj( ) − yj( )2 (1.7)

In this equation, yj are the actual data points andm is the number
of data points. By employing this detailed B-spline interpolation
technique, the algorithm can effectively calibrate the STEs based on
themonitored frequency of the local oscillatorflocal, thereby achieving a
higher degree of accuracy in synchronized sampling.

2.3 Phasor measurement based on
corrected sampled data

To validate the effectiveness of the proposed algorithm, this
study employs the calibrated samples to perform synchronized
phasor computation in the power grid. The method chosen for
this purpose is the Recursive Discrete Fourier Transform (DFT)
algorithm. The principal theory behind this algorithm is as follows:

X k[ ] � 1 − λ( ) · X k−1[ ] + x k[ ] −X k −N[ ]( ) (1.8)
Where X[k] is the DFT output at the kth sample, x[k] is the kth

sample of the input signal, N is the window length, and λ is the
forgetting factor. The magnitude |X[k]| and phase ∠X[k] of the
DFT output can be calculated as:

X k[ ]| | �





















Re X k[ ]( )2 + Im X k[ ]( )2

√
∠X k[ ] � atan 2 Im X k[ ]( ),Re X k[ ]( )( ) (1.9)

Subsequently, the synchronized phasor P can be derived from
X[k] as follows:

P � A · ejϕ � X k[ ]| | · ej∠X k[ ] (1.10)
To quantify the accuracy of the phasor estimation, the concept

of Total Vector Error (TVE) is introduced as a technical indicator
for the subsequent experimental section. TVE is defined as:

TVE �




















Pestimated − Pactual| |

Pactual| |( )2

√√
(1.11)

Here, Pestimated is the estimated phasor and Pactual is the actual
phasor. A lower TVE indicates a higher accuracy in phasor
estimation.
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By employing the Recursive DFT algorithm on the calibrated
samples obtained through B-spline interpolation, the system
achieves high-accuracy phasor estimation, thereby enhancing the
reliability and effectiveness of power grid monitoring systems.

3 Performance evaluation

To substantiate the efficacy of the proposed B-spline
interpolation technique coupled with Recursive DFT for
synchronized phasor estimation, a series of simulation
experiments were conducted. The experiments were designed
to emulate real-world scenarios encountered in power grid
monitoring.

The simulation experiments are performed using a dedicated
experimental setup to ensure the study’s reproducibility and
credibility. The hardware and software configurations are
explicitly stated as follows:

• Software Environment: The simulations are conducted using
MATLAB/Simulink, which incorporates the IEEE
C37.118.1 standard for performance evaluation.

• Hardware Configuration: While the specific hardware setup is
not critical for the MATLAB/Simulink-based simulations, it is
noted that a computer with at least an Intel Core i7 processor
and 16 GB RAM is used to ensure smooth execution of the
simulations.

• Signal Specifications: A 50 Hz sinusoidal signal serves to
simulate the voltage and current waveforms in the power grid.

• Local Oscillator Frequency: The local oscillator frequency is
adjusted to vary within a range of ±100 ppm to emulate the
frequency drift commonly observed in real-world
applications.

For comparative analysis, the proposed B-spline interpolation
technique is rigorously benchmarked against traditional
interpolation methods, including two-point interpolation and
polynomial interpolation.

For comparative analysis, the proposed B-spline interpolation
technique was benchmarked against traditional interpolation
methods, specifically two-point interpolation and polynomial
interpolation.

3.1 Steady-state conditions testing

Fundamental Frequency Offset Testing: In the conducted
experiment, the frequency setting range for the power system is
established between 45 Hz and 55 Hz, with an incremental step of
0.1 Hz. The thresholds for Total Vector Error (TVE), Frequency
Error (FE), and Rate of Frequency Error (RFE) are set at 1%, 5 mHz,
and 0.01 Hz/s, respectively.

As evidenced by Figure 1, all three algorithms under
investigation satisfy the criteria delineated by the
C37.118.1 standard. Notably, the proposed algorithm
demonstrates superior performance in terms of both total phasor
error and frequency measurement error, with average values
recorded at 2 × 10−4% and 2.5 × 10−5 Hz, respectively. In the

FIGURE 1
C37.118.1 fundamental frequency offset testing.
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context of measuring the rate of frequency change, the performance
across the three algorithms is observed to be comparable, with errors
not exceeding 1E-4 Hz/s.

Harmonic Distortion Test: In the present experiment, the
focus is on evaluating the algorithm’s measurement performance
under the influence of harmonic interference. Harmonics
ranging from the second to the 50th are added to the
fundamental component for this purpose. According to the
standard, the maximum allowable Total Vector Error (TVE) is
set at 1%, while the thresholds for Frequency Error (FE) and Rate
of Frequency Error (RFE) are established at 25 mHz and 0.1 Hz/s,
respectively.

As corroborated by Figure 2, all three algorithms under scrutiny
successfully meet the stipulated standard criteria. Importantly, the
proposed algorithm exhibits superior performance in both TVE and
FE metrics when compared to the other two algorithms under
investigation.

Out-of-band interference test: In the experiment focused on out-
of-band interference (OOBI), OOBI signals are superimposed onto
the test signal within the frequency ranges of 10–45 Hz and
55–100 Hz. The frequency is incremented in steps of 0.1 Hz,
and the amplitude of the interference is set at 10% of the
fundamental component. According to the IEEE standard, the
allowable limits for Total Vector Error (TVE), Frequency Error
(FE), and Rate of Frequency Error (RFE) are defined as 1.3%,
10 mHz, and 0.1 Hz/s, respectively.

As substantiated by Figure 3, the performance metrics for all
three algorithms under evaluation are nearly identical. This
uniformity in performance is attributed to the significant
degradation in measurement accuracy induced by OOBI. In this

specific scenario, the error resulting from sampling rate offset is
markedly overshadowed by the error introduced by OOBI.
Consequently, any efforts to enhance measurement accuracy
should primarily focus on refining the synchronized phasor
measurement algorithm.

3.2 Dynamic conditions testing

Amplitude Modulation Test: For the purpose of evaluating
the efficacy of the proposed method in the context of small
oscillations within power systems, tests are conducted under
both amplitude-modulated and phase-modulated conditions.
The modulated signal employed for these tests is represented
in its general form as follows:

Xa � Xm 1 + kx cos 2πfmt( )[ ] × cos 2πf0t + ϕ( ) (1.12)
where kx represent the amplitude modulation depths. fm and f0 is
the modulation frequency and nominal power system frequency
respectively. Xm is the amplitude of the input signal. At reporting
time tags t � nT (where n is an integer and T is the phasor reporting
interval) the PMU shall produce a synchrophasor measurement of:

X nT( ) � Xm/ 

2

√{ } 1 + kx cos 2πfmnT( )[ ]∠ϕ (1.13)

From the results in Figure 4, it is observed that the measurement
error exhibits a proportional increase with the escalation of
modulation frequency. Notably, the proposed algorithm maintains
commendable measurement performance even under amplitude
modulation testing conditions at a modulation frequency of 5 Hz.

FIGURE 2
C37.118.1 harmonic distortion testing.
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Furthermore, when evaluated against the Frequency Error (FE) index,
the proposed algorithm demonstrates a marked superiority over the
other two algorithms employed for comparative analysis.

Phase Modulation Test: To assess the performance of the proposed
method under small oscillations in power systems, behaviors under
either amplitude or phase-modulated conditions are:

FIGURE 3
C37.118.1 out-of-band interference testing.

FIGURE 4
C37.118.1 amplitude modulation testing.
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Xa � Xm × cos 2πf0t + ka cos 2πfmt − π( )[ ] (1.14)
The parameters delineated in Eq. 1.14 bear identical significance

to those in Eq. 1.12. Correspondingly, the phasor associated with the
input signal is represented as follows:

X nT( ) � Xm/ 

2

√{ }∠ ka cos 2πfmnT − π( ){ } (1.15)
Based on the experimental data shown in the Figure 5, it is

evident that the performance disparities among the three algorithms
are minimal in the context of phase modulation testing. However,

FIGURE 5
Phase angle modulation testing.

FIGURE 6
Frequency ramp testing.
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the proposed algorithm exhibits a marginal superiority when
assessed against the Total Vector Error (TVE) index.

Frequency Ramp Test: Given that the frequency of the power
system is inherently variable, it becomes imperative to evaluate the
measurement performance of the methods under conditions of
frequency fluctuations. For this analysis, the system frequency is
still assumed to be 50 Hz; however, any alteration in frequency is
mathematically considered as a change in the phase angle. The
input signals for this scenario can be mathematically represented
as follows:

Xa � Xm cos 2πf0t + πRft
2[ ] (1.16)

where Xm is the amplitude of the input signal, and Rf is the frequency
ramp rate in Hz/s. Its corresponding phasor at time nT is:

X nT( ) � Xm/ 

2

√{ }∠ πRf nT( )2{ } (1.17)

The IEEE Standard limits for this test are 1%, 10 mHz, and
0.1 Hz/s, respectively. Clearly, the proposed method fully
satisfies the IEEE Standard requirements. Furthermore, based
on the Total Vector Error (TVE) outcomes, it is evident that the
proposed algorithm is more effective in mitigating the sampling
time error within the collected data. In contrast, the other two
algorithms under evaluation exhibit inadequate efficacy in
eliminating such errors, thereby leading to residual sampling
time errors. This observation is substantiated by the results
presented in Figure 6.

4 Conclusion

In the realm of power grid monitoring, this study introduces a
pioneering soft synchronization-based phasor measurement
method. Leveraging time pulse signals from GNSS or mobile
stations, the local oscillator is meticulously observed. This is
followed by the B-spline interpolation which refines the raw
data, bringing it in line with an ideal sampling rate.
Subsequently, the synchrophasor is extracted using a recursive
DFT algorithm.

Beyond the technical advancements, the practical significance
of this research lies in its potential to seamlessly integrate into
existing power grid systems. By validating the method against the
C37.118.1 standard and juxtaposing it w both two-point and
polynomial interpolations, it has been demonstrated that the
proposed approach not only simplifies the phasor measurement
process but also augments accuracy. This suggests a shift towards
a more cost-effective and efficient means of monitoring, reducing
the reliance on more complex hardware-based solutions. As
power grid infrastructures continue to evolve, this method
holds promise in enhancing the reliability and efficiency of
real-world applications.
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Adaptive ADMM-based
entire-process distributed
restoration of transmission and
distribution systems
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Electrical Engineering, Zhejiang University, Hangzhou, China

In the event of amajor power outage in the power systems, there is an urgent need
to investigate entire-process coordinated restoration strategies for the
transmission systems (TSs) and distribution systems (DSs), aiming to accelerate
the restoration speed of generating units, network reconfiguration, and load
restoration. Furthermore, it is imperative to address the multiple uncertainties
that arise during the restoration process to mitigate potential security risks
associated with the restoration. Hence, an adaptive ADMM-based entire-
process distributed restoration method of TSs and DSs considering CVaR is
proposed in this paper. Firstly, an entire-process distributed restoration model
of TSs and DSs considering CVaR is proposed to maximize the total restoration
benefits of TSs and DSs. Then, an adaptive ADMM-based distributed solving
algorithm for the coordinated restoration model of the TSs and DSs is
introduced, which incorporates adaptive penalty parameter adjustments,
leading to faster convergence compared to the standard ADMM. Finally, case
studies on an improved 179-bus transmission system are employed to verify that
the proposed restoration method can achieve higher restoration benefits and
faster convergence speed compared to existing restoration models.

KEYWORDS

power system restoration, entire-process restoration, adaptive ADMM, distributed
solving, transmission system, distribution system

1 Introduction

In recent years, power system blackouts have become increasingly frequent on a global
scale, with various natural and man-made disasters affecting the security and stable
operation of power systems (Chen et al., 2021). Power system blackouts have significant
impacts on society and people, so it is necessary to investigate restoration strategies after
blackouts to effectively guide the power systems restoration and reduce corresponding
economic losses (Chen Y. et al., 2023).

Power systems can be divided into transmission systems (TSs) restoration and
distribution systems (DSs) restoration (Chen et al., 2022a). So far, many studies have
separately explored the restoration strategies for TSs and DSs. In terms of TSs restoration, an
extended black-start restoration optimization approach for TSs is introduced in (Wang et al.,
2017) to maximize the restored power and loads. A network reconfiguration methodology is
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presented in (Sun et al., 2019) to effectively balance the impacts of
generators, transmission lines, and loads during the reconfiguration
of the network. A loop-network reconfiguration optimization
strategy for TSs is proposed in (Li et al., 2022), which establishes
regional loop-network structures to alleviate transmission line
overloads. In (Shen et al., 2018), a triple-stage TSs load
restoration model is presented, formulating load restoration
strategies based on TSs status and three-stage objective functions.
A distributed and coordinated restoration technique for TSs with
wind power integration is investigated in (Zhao et al., 2020a), and
the robust method is incorporated into the wind power output
uncertainty. Regarding DSs restoration, note that DSs typically lack
large thermal power units, thus lacking a black-start stage. In
(Sekhavatmanesh and Cherkaoui, 2020), a multi-step
reconfiguration model for DSs is introduced, taking into account
the startup strategy of distributed generators. The objective here is to
maximize load restoration while minimizing switching operations.
A network reconfiguration method for DSs is proposed in (Shi et al.,
2021), which also considers the scheduling of distributed energy
resources to expedite load restoration. A distributed load restoration
optimization model for unbalanced active DSs is established in
(Roofegari and Sun, 2019), utilizing convex triple-phase
unbalanced power flow constraints to account for their inherent
imbalance. A bi-level service restoration strategy for active DSs is
proposed in (Li et al., 2020), considering the coordination of various
energy supply sources, including distributed generators and energy
storage systems, to maximize the number of restored blackout loads.
A modified Viterbi algorithm is proposed in (Yuan et al., 2017) to
derive an optimal and resilient restoration strategy for the DS,
accompanied by a case study that analyzes the impact of
integrating distributed energy sources and microgrids. A novel
load restoration method for DSs is proposed in (Ghasemi et al.,
2019), which employs a decision-making tree algorithm tomaximize
load restoration power while minimizing switching operations.

In practice, a tightly coupled relationship exists between
transmission and distribution systems, necessitating coordinated
restoration efforts rather than isolated approaches (Fan et al., 2022).
Therefore, investigating coordinated restoration strategies for
transmission and distribution systems is of paramount practical
significance. In this context, a distributed black-start optimization
model of coupled transmission and distribution systems is proposed
in (Zhao et al., 2021), aiming to minimize blackout-related costs. An
innovative distributed load restoration model of coupled
transmission and distribution systems is proposed in (Zhao et al.,
2019), establishing an iterative framework that bridges both systems
using a modified triple-loop analytical target cascading algorithm. A
load restoration approach for coupled transmission and distribution
systems based on the conditional value at risk (CVaR) theory is
proposed in (Zhao et al., 2020b), employing a receding horizon
control algorithm to manage uncertainties arising during the
restoration process. In (Zhao et al., 2020c), a novel load
restoration optimization model designed for integrated
transmission and distribution systems with wind power
integration is proposed, employing the alternating direction
method of multipliers (ADMM) algorithm to achieve a
distributed solution.

The above-mentioned studies have made significant
contributions to the research on power systems restoration.

However, there are still some shortcomings in existing studies.
Firstly, most existing research tends to separate the study of
black-start, network restoration, and load restoration, whereas in
reality, these aspects are interrelated. For instance, black-start
procedures require network reconfiguration, and prioritizing the
restoration of critical loads necessitates the restoration of certain
parts of the power network. Furthermore, when gradually restoring
the network, it is also essential to restore some loads to maintain the
frequency stability of power systems (Hao et al., 2022). Therefore,
there is a need to explore entire-process restoration strategies for
power systems. Additionally, the TSs and DSs are under the
jurisdiction of different dispatching entities, and due to
incomplete data and information sharing, it is necessary to
separately construct optimization models and perform distributed
solving for the TSs and DSs. Most existing studies primarily employ
traditional ADMM algorithms for distributed solving, and if the
parameter settings are not appropriate, it may lead to convergence
difficulties.

Hence, an adaptive ADMM-based entire-process distributed
restoration method of TSs and DSs considering CVaR is
proposed in this paper to address the abovementioned issues.
The contributions of this paper are summarized as follows.

1) An entire-process restoration model of TSs and DSs considering
CVaR is proposed. Firstly, the CVaR is employed to quantify the
conditional value at risk of multiple uncertainties during the
entire restoration process. Subsequently, an entire-process
restoration strategy of TSs and DSs considering CVaR is
formulated to maximize the total restoration benefits of TSs
andDSs. The proposedmodel provides restoration strategies that
enable the entire-process restoration of the TSs and DSs,
achieving higher generated power and load restoration benefits.

2) An adaptive ADMM-based distributed solving algorithm for the
coordinated restoration model of the TSs and DSs is introduced,
in which the interacted power at coupling buses between the TS
and DS is utilized as the interaction variable to realize distributed
solving. This algorithm incorporates adaptive penalty parameter
adjustments, leading to faster convergence speed compared to
the standard ADMM.

The rest of this paper is organized as follows: Section 2
establishes the entire-process restoration model of TSs and DSs
considering CVaR; Section 3 establishes an adaptive ADMM-based
distributed solving algorithm for the coordinated restoration model
of the TSs and DSs; case studies and corresponding conclusions are
presented in Sections 4, 5, respectively.

2 Entire-process restoration model of
TSs and DSs considering CVaR

In this section, the CVaR theory is first employed to quantify the
conditional risk value of multiple uncertainties, i.e., wind and solar
power output forecasts, load prediction, and buses and lines
restoration failure probabilities, in the entire restoration process.
Subsequently, an entire-process restoration model of TSs and DSs
considering CVaR is established to maximize the total restoration
benefits of TSs and DSs.
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2.1 Quantifying the CVaR of multiple
uncertainties during the entire restoration
process

During the entire restoration process of TSs and DSs, various
uncertainties such as wind and solar power output forecasts, load
predictions, and buses and lines restoration failure probabilities
exist. If these uncertainties are not addressed properly, it may lead to
restoration strategies that do not meet the security requirements of
the system’s restoration. Therefore, this paper employs CVaR theory
to assess the conditional risk value of multiple uncertainties during
the entire restoration process.

CVaR is defined as the average loss incurred when the risk loss of
an investment portfolio exceeds the value at risk (VaR) at a given
confidence level within a certain investment horizon (Rockafellar
and Stanislav, 2002), whose specific expression is represented by

VCVaR � E fR Z, λ( ) fR Z, λ( )>∣∣∣∣ VVaR[ ] (1)

where Z is the optimization variable matrix, which corresponds to the
restoration strategy in this work; VCVaR and VVaR are the CVaR and
VaR, respectively; λ is continuous random variables that represent
multiple uncertainties; E[·] is the mathematical expectation; fB

CVaR is
the net restoration benefit of the TSs and DSs considering CVaR of
multiple uncertainties, whose specific expression is presented by

fB
CVaR �fB − ∑Tstep

t�1
pRES
t ΔPRES

t

∣∣∣∣ ∣∣∣∣+pL
t ΔPL

t

∣∣∣∣ ∣∣∣∣+pline
t ∑Nline

l�1
ρRF,linel,t +pbus

t ∑Nbus

n�1
ρRF,busl,t

⎛⎝ ⎞⎠
(2)

where fB is the restoration benefit of TSs and DSs without considering
CVaR, and its specific expression will be illustrated in Section 2.2; Tstep

is the number of restoration time step; pRES
t and pL

t are the unit
restoration risk costs associated with wind and solar power output
forecasts errors and load prediction errors, respectively;ΔPRES

t andΔPL
t

are the errors in wind and solar power output forecasts and load
predictions during the restoration process, respectively; pline

t and pbus
t

are the unit restoration risk costs resulting from line and node
restoration failures, respectively; ρRF,linel,t and ρRF,busl,t are the
restoration failure probabilities of lines and buses, respectively; Nline

and Nbus are the total numbers of lines and buses, respectively.
On this basis, the CVaR and VaR for the multiple uncertainties

during the restoration process can be simultaneously obtained by
solving Eq. 3.

min VCVaR � VVaR +
∑NSCE

n�1
Pr,n fB

CVaR,n − VVaR , 0[ ]+
1 − β

(3)

where βCVaR is the confidence level of CVaR; [fB
CVaR,n − VVaR , 0]+ is the

maximum between fB
CVaR,n − VVaR and 0; NSCE is the number of

operation scenarios; Pr,n is the occurred probability of the nth scenario.

2.2 Objective function of the proposed
model

The objective function of the proposed model is to maximize the
entire-process generation and load power restoration benefits of the
TSs and DSs, as shown in (4).

fB � max ∑NTDS

z�1
∑Nz
bus

n�1
∫Tstep

0
Pz
NBS,n,tdt + bzL,n∑Tstep

t�1
Pz
L,n,tΔt⎛⎝ ⎞⎠ (4)

where NTDS is the number of TSs and DSs; Nz
bus is the number of

buses in the zth power system; bzL,n is the unit restoration benefit of
the nth bus in the zth power system; Pz

NBS,n,t and Pz
L,n,t are the

restored generation and load power of the nth bus in the zth power
system at time step t; Δt is the duration of each time step. Note that
the linearization method for generation power restoration refers to
reference (Zhao et al., 2018), and the linearized expression is
represented by (5).

Pz,max
NBS,nT

z,rp
NBS,n − Pz,st

NBS,n Tz,rp
NBS,n + Tz,sp

NBS,n( )
2

+ Pz,max
NBS,n − Pz,st

NBS,n( )
× Tstep − Tz,sp

NBS,n − Tz,rp
NBS,n( ) − Tz,st

NBS,n Pz,max
NBS,n − Pz,st

NBS,n( ) (5)

where Pz,max
NBS,n and Pz,st

NBS,n are the rated power and auxiliary
consumption power of non-black-start units at the bus n in the
zth power system, respectively; Tstep is the number of time steps;
Pz,st
NBS,n, T

z,sp
NBS,n and Tz,rp

NBS,n are the start time, start duration and ramp
duration, respectively.

2.3 Constraints of the proposed model

The constraints of the proposed model consist of the entire-
process restoration constraints for the TSs and DSs. The unique and
general constraints for the TSs and DSs are described as follows.

1) Unique constraints of the TS

The TS typically includes large thermal power units that are not
black-start capable, so when a major power outage occurs, these
units need to be black-started initially using black-start units.
Therefore, the unique constraints for the TSs encompass the
black-start-related constraints. More specifically, the relationship
between the restoration power and time step for non-black-start
units is expressed as 6); the relationship between the start-up time
step of non-black-start units and bus restoration status is presented
as 7); the constraints on the start-up time step of non-black-start
units concerning cold start and hot start time step are expressed
as 8).

PTS
NBS,n,t �

0, t< t1
t − t1( )RTS

NBS,n − PTS,st
NBS,n, t1 ≤ t< t2

PTS,max
NBS,n − PTS,st

NBS,n, t≥ t2

⎧⎪⎨⎪⎩ (6)

∑Tstep

t�1 1 − BTS
bus,n,t( )≤TTS,st

NBS,n (7)
TTS,st,min
NBS,n ≤TTS,st

NBS,n ≤TTS,st,max
NBS,n (8)

where PTS
NBS,n,t, P

TS,st
NBS,n, and P

TS,max
NBS,n are the restored generation power,

auxiliary consumption power, and rated power of non-black-start
units at the bus n in time step t, respectively; RTS

NBS,n is the ramping
rate of non-black-start units; t1 and t2 are the time steps when non-
black-start units restart and reach their rated power, respectively;
BTS
bus,n,t is a binary variable indicating the restoration status of the bus

where the non-black-start unit is located; TTS,st,max
NBS,n and TTS,st,min

NBS,n are
the upper and lower bounds on the black-start time of non-black-
start units.
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2) Unique constraints of the DS

DSs typically do not have large non-black-start units, but they
directly manage the loads connected to them. Therefore, the unique
constraints for DSs encompass load restoration-related constraints.
More specifically, restored non-flexible loads cannot be
disconnected again, as represented by Eq. 9). Flexible loads can
be subject to demand response and partial disconnection after being
restored, as represented by Eq. 10). Considering practical factors like
power flow limits and system frequency security, the load restored in
each time step should not exceed a certain value, as expressed in Eq.
11). The load at bus n can only be restored after its bus has been
restored, as expressed in Eq. 12). Note that some buses in the TS also
have high-voltage level loads connected to them, so they also need to
follow these load restoration constraints as well.

0≤PDS,L
n,t−1 ≤PDS,L

n,t ≤PDS,L,max
n ,∀n ∈ ΩDS,NFL

bus (9)
0≤PDS,L

n,t ≤PDS,L,max
n ,∀n ∈ ΩDS,FL

bus (10)
PDS,L
n,t − PDS,L

n,t−1 ≤ΔPDS,L,max
n,t (11)

BDS,L
bus,n,t ≤BDS

bus,n,t−1 (12)
where PDS,L

n,t and PDS,L,max
n are the already restored load at bus n and

the maximum load, respectively; ΩDS,NFL
bus andΩDS,FL

bus are sets of non-
flexible and flexible load buses; ΔPDS,L,max

n,t is the upper limit of the
restorable load for each time step, which is related to power flow
limits and system frequency security; BDS,L

bus,n,t is the load restoration
state variable for the bus n.

3) General constraints for the TSs and DSs

The general constraints for the TSs and DSs include network
restoration constraints and power balance constraints. More
specifically, the restored buses and lines will not experience
another power outage, as represented by Eqs 13, 14), respectively;
the necessary but not sufficient condition for line restoration is that
both of its start and terminal buses have been restored, as represented
by Eq. 15); the necessary condition for bus restoration is that at least
one connected line has been restored, as represented by Eq. 16);
considering practical factors such as manual operations and line
charging time, if the adjacent lines of a specific line have not been
restored in a given time step, that line cannot be restored in that time
step, as represented by (17); the operation constraints of energy
storage systems refer to reference (Chen C. et al., 2023).

BT D( )S
bus,n,t ≥BT D( )S

bus,n,t−1 (13)
BT D( )S
line,l,t ≥BT D( )S

line,l,t−1 (14)
BT D( )S
bus,n,t ≥B

T D( )S
line,l,t ,∀l ∈ ΩT D( )S

line,busn (15)
BT D( )S
bus,n,t ≤ ∑

l∈ΩT D( )S
line,busn

BT D( )S
line,l,t (16)

BT D( )S
line,p,t ≤ ∑

q∈ΩT D( )S
line,linep

BT D( )S
line,q,t−1 (17)

where BT(D)S
bus,n,t and BT(D)S

line,l,t are Boolean variables reflecting the
restoration status of bus n and line l, respectively, with a value of
1 indicating that the bus or line has been restored; ΩT(D)S

line,busn is the set
of lines connected to bus n, while ΩT(D)S

line,linep is the set of lines
connected to line l.

Both TSs and DSs need to consider power balance constraints, as
represented by Eqs 18, 19), respectively. It can be seen from Eqs 18,
19 that the power balance constraints in the DS are less complex
than those in the TS, as they do not involve the power of black-start
and non-black-start units. Besides, power interaction between TSs
and DSs can occur through the transmission-distribution coupling
buses.∑

n∈ΩTS
bus

PTS
NBS,n,t + PTS

BS,n,t + PTS
RES,n,t + PTS

ES,n,t( ) � ∑
n∈ΩTS

bus

PTS
L,n,t + PTS

DS,n,t( )
(18)

PTS
DS,n,t + ∑

x∈ΩDS,n
bus

PDS,n
RES,x,t + PDS,n

ES,x,t( ) � ∑
x∈ΩDS,n

bus

PDS,n
L,x,t (19)

where ΩTS
bus and ΩDS,n

bus are the sets of buses in the TS and its
connected DS under bus n, respectively; PTS

BS,n,t, PTS
RES,n,t, and

PTS
ES,n,t are the power generation of black-start units, renewable

energy units, and energy storage devices at bus n in the TS,
respectively; PTS

L,n,t is the load power at bus n in the TS; PTS
DS,n,t is

the interaction power provided by the TS to the connected DS at its
bus n, with positive values indicating supply from the TS to the DS;
PDS,n
RES,x,t, P

DS,n
ES,x,t, and PDS,n

L,x,t are the power generation of renewable
energy units and energy storage devices, as well as the load power at
bus x in the TS connected under bus n in the TS.

Both TSs and DSs are subject to power flow constraints. More
specifically, the TS typically has a meshed structure, so AC power
flow constraints as shown in Eqs 20, 23) need to be considered. On
the other hand, the DS is typically radial in structure, allowing the
use of DistFlow DC power flow constraints as in Eqs 24–29). Since
both TSs and DSs power flow constraints involve non-convex and
non-linear terms, they are linearized separately using the
approximate linearization methods proposed in references (Zhao
et al., 2021; Chen et al., 2022b).

PTS
i,t � ∑

i,j( )∈ΩTS
line

PTS
i,j,t (20)

QTS
i,t � ∑

i,j( )∈ΩTS
line

QTS
i,j,t (21)

PTS
i,j,t � UTS

i,t( )2GTS
i,j,t − UTS

i,t U
TS
j,t GTS

i,j,t cos θ
TS
i,j,t + BTS

i,j,t sin θ
TS
i,j,t( ) (22)

QTS
i,j,t� − UTS

i,t( )2BTS
i,j,t − UTS

i,t U
TS
j,t GTS

i,j,t sin θ
TS
i,j,t − BTS

i,j,t cos θ
TS
i,j,t( ) (23)

∑
p∈ΩDS

line,n+

PDS
p,t − ∑

q∈ΩDS
line,n−

PDS
q,t − IDSq,t( )( 2

RDS
q,j) � PDS

n,t,out (24)

UDS
j,t � UDS

i,t − IDSi,j,tR
DS
i,j (25)

PDS
i,j,t � UDS

i,t I
DS
i,j,t (26)

PDS
i,j,t

∣∣∣∣∣ ∣∣∣∣∣≤PDS,max
i,j (27)

IDSi,j,t
∣∣∣∣∣ ∣∣∣∣∣≤ IDS,max

i,j (28)
0≤UDS

i,t ≤U
DS,max
i (29)

where PTS
i,t andQ

TS
i,t are the total injected active and reactive power at

bus i, respectively; PTS
i,j,t andQ

TS
i,j,t are the active and reactive power on

line ij, respectively;ΩTS
line is the set of lines in the TS;U

TS
i,t is the voltage

at bus i. GTS
i,j,t, B

TS
i,j,t, and θTSi,j,t are the conductance, susceptance, and

phase angle of line ij in the TS, respectively; ΩDS
line,n+ and ΩDS

line,n− are
the set of lines in the DS that start from and end at bus n,
respectively; PDS

q,t , IDSq,t , and RDS
q,j are the power, current, and
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resistance of bus i in the DS, respectively; PDS
n,t,out is the power flowing

out of bus n in the DS; UDS
i,t is the voltage at bus i in the DS; PDS,max

i,j ,
IDS,max
i,j , andUDS,max

i are the upper limits for line power, current, and
bus voltage in the DS, respectively.

3 Adaptive ADMM-based distributed
solving algorithm for the coordinated
restoration model of the TSs and DSs

Due to the separate jurisdiction of TSs and DSs and the
incomplete sharing of data and information, it is challenging to
directly establish the unified optimization model as presented in
Section 2 and solve it in a centralized manner in practical
applications. Therefore, the original optimization model is
transformed into two distributed optimization models.
Subsequently, by treating the power exchange between the TSs and
DSs as coupling variables, an adaptive ADMM algorithm is employed
for iterative convergence, enabling the distributed solving of the
entire-process restoration of the TSs and DSs. Note that the
solution time and optimal solution of the standard ADMM are
significantly affected by the initial penalty factor. Inappropriately
setting the initial penalty factor may lead to convergence to local
optima and an increase in solution time. On the contrary, the utilized
adaptive ADMM can adjust the step size dynamically according to the
primal residue and dual residue during the iterative process, thereby
achieving a faster convergence rate than that of standard ADMM.

3.1 Distributed restoration optimization
models for TSs and DSs

Considering the objective function and constraints of the unified
restoration optimization model for the TSs and DSs shown in Eq. 4),
the augmented Lagrangian function is introduced to formulate the
distributed restoration optimization models for the TSs and DSs, as
represented by (30) and (31), respectively.

fTS � max fTS,B
CVaR + ∑NTS

bus,DS

x�1
∑Tstep

t�1
λTSDS,x,t PTS

DS,x,t − PDS,x
TS,t( )[ ]

+ ∑NTS
bus,DS

x�1

ρTSDS,x
2

∑Tstep

t�1
PTS
DS,x,t − PDS,x

TS,t( )2⎡⎢⎣ ⎤⎥⎦ (30)

s.t. (6)–(8), (13)–(18), (20)–(23)

fDS,n � max fDS,n,B
CVaR + ∑Tstep

t�1
λDS,nTS,t PTS

DS,n,t − PDS,n
TS,t( )[ ]

+ ρDS,nTS

2
∑Tstep

t�1
PTS
DS,n,t − PDS,n

TS,t( )2 (31)

s.t. (9)–(12), (13)–(18), (24)–(29).
where fTS and fDS,n are the augmented objective functions for the
TS and the nth DS, respectively; λTSDS,x,t and ρTSDS,x are the Lagrange
multipliers and penalty factors for the TS, while λDS,xTS,t and ρDS,xTS are
the Lagrange multipliers and penalty factors for the nth DS,
respectively; fTS,B

CVaR and fDS,n,B
CVaR are the restoration benefits for the

TSs and DSs considering CVaR, and their specific expressions are
represented by Eqs 32, 33), respectively.

fTS,B
CVaR � ∑NTS

bus

n�1
∫Tstep

0
PTS
NBS,n,tdt + bTSL,n∑Tstep

t�1
PTS
L,n,tΔt⎛⎝ ⎞⎠ (32)

fDS,n,B
CVaR � ∑NDS,n

bus

m�1
bDS,nL,m ∑Tstep

t�1
PDS,n
L,m,tΔt (33)

3.2 Distributed solving process based on the
adaptive ADMM

The adaptive ADMM-based distributed solving process for the
previously constructed distributed optimization models for the TSs
and DSs is utilized, as outlined below.

Step 1: Set the maximum iteration number kmax, primal residual
convergence threshold δP, dual residual convergence threshold δD,
and initial iteration counter k = 1.

Step 2: The TS collects the desired transmission-distribution
interaction power strategy matrix PDS,n,k

TS,t from each DS. Then, it
solves the distributed restoration model for the TS as represented by
(30) to obtain the desired transmission-distribution interaction
power strategy matrix PTS,k+1

DS,n,t for the TS. Set n = 1.

Step 3: The nth DS receives PTS,k+1
DS,n,t from the TS. Then, it solves the

distributed restoration model for the nth DS as represented by (31)
to obtain the desired transmission-distribution interaction power
strategy matrix PDS,n,k+1

TS,t . n = n+1.

Step 4: Check if n > NTS
bus,DS? If yes, proceed to Step 5, otherwise,

return to Step 3.

Step 5: According to the previous description, the utilized adaptive
ADMM can adjust the step size dynamically according to the primal
residue and dual residue during the iterative process, thereby
achieving a faster convergence rate than that of standard ADMM.
More specifically, according to the dual-update acceleration iteration
strategy, if the primal residual is greater than a certain threshold,
update the penalty factors according to (34)–(35) and update the
Lagrange multipliers according to (36)–(37); otherwise, when the
primal residual is equal to or less than a certain threshold at iteration
k*, keep the penalty factors unchanged and update the Lagrange
multipliers according to (38)–(39).

ρTS,k+1DS,n �

ρTS,kDS,n/ 1 + lg
dTS,k,D
DS,n

pTS,k,P
DS,n

( )[ ], dTS,k,D
DS,n

δD
( )≥

10pTS,k,P
DS,n

δP

ρTS,kDS,n 1 + lg
pTS,k,P
DS,n

dTS,k,D
DS,n

( )[ ], pTS,k,P
DS,n

δP
( )≥

10dTS,k,D
DS,n

δD

ρTS,kDS,n, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(34)

ρDS,n,k+1TS �

ρDS,n,kTS / 1 + lg
dDS,n,k,D
TS

pDS,n,k,P
TS

( )[ ], dDS,n,k,D
TS

δD
( )≥

10pDS,n,k,P
TS

δP

ρDS,n,kTS 1 + lg
pDS,n,k,P
TS

dDS,n,k,D
TS

( )[ ], pDS,n,k,P
TS

δP
( )≥

10dDS,n,k,D
TS

δD

ρDS,n,kTS , otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(35)
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λTS,k+1DS,n,t � λTS,kDS,n,t + ρTS,k+1DS,n PTS,k+1
DS,n,t − PDS,n,k+1

TS,t( ) (36)

λDS,n,k+1TS,t � λDS,n,kTS,t + ρDS,n,k+1TS,t PTS,k+1
DS,n,t − PDS,n,k+1

TS,t( ) (37)

λTS,k+1DS,n,t � λTS,kDS,n,t + ρTS,k+1DS,n PTS,k+1
DS,n,t − PDS,n,k+1

TS,t( )
+ KD PTS,k+1

DS,n,t − PDS,n,k+1
TS,t( ) − PTS,k

DS,n,t − PDS,n,k
TS,t( )[ ]

+ KI ∑k
m�k*

PTS,m+1
DS,n,t − PDS,n,m+1

TS,t( ) (38)

λDS,n,k+1TS,t � λDS,n,kTS,t + ρDS,n,k+1TS,t PTS,k+1
DS,n,t − PDS,n,k+1

TS,t( )
+KD PTS,k+1

DS,n,t − PDS,n,k+1
TS,t( ) − PTS,k

DS,n,t − PDS,n,k
TS,t( )[ ]

+KI ∑k
m�k*

PTS,m+1
DS,n,t − PDS,n,m+1

TS,t( ) (39)

where KD and KI are the integral and double residual control
parameters, respectively; pTS,k,P

DS,n = pDS,n,k,P
TS and dTS,k,DDS,n = dDS,n,k,DTS

are the primal and dual residuals for the kth iteration, whose specific
expressions are represented by Eqs 40, 41).

pTS,k,P
DS,n � pDS,n,k,P

TS � ∑Tstep

t�1
PTS,k+1
DS,n,t − PDS,n,k+1

TS,t( )2 (40)

dTS,k,D
DS,n � dDS,n,k,D

TS

� max ∑Tstep

t�1
PTS,k+1
DS,n,t − PTS,k

DS,n,t( )2, ∑Tstep

t�1
PDS,n,k+1
TS,t − PDS,n,k

TS,t( )2⎡⎢⎣ ⎤⎥⎦
(41)

Step 6:Determine the convergence of the primal and dual residuals
according to (42). If (42) is satisfied or k ≥ kmax, terminate the
iterations. Otherwise, k = k+1 and return to Step 2.

pTS,k,P
DS,n ≤ δP ∩ dTS,k,D

DS,n ≤ δD� 1 (42)

According to the above process, it can realize distributed solving
for the TSs and DSs and obtain their respective optimal restoration
strategies. The distributed optimization models are established using
the YALMIP platform in MATLAB R2021a software and the
distributed solving can be realized through the GUROBI 10.0 solver.

4 Case studies

In this work, an improved 179-bus TS is employed for analysis,
whose topology is shown in Figure 1. Some main technique

FIGURE 1
Topology of the improved 179-bus TS.
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parameters of this case are set as follows: Tstep = 30, Δt = 5min, buses
14, 35, and 42 are equipped with black-start units, buses 26 and
81 are connected to wind power generators, and buses 28 and
110 have photovoltaic units. Each bus in the TS is connected to
an IEEE 33-bus DS, and the feeders connected to each bus of the DS
are not considered in this work. The bus voltages of the TS and DS
are 220 kV and 110kV, respectively. The other technique parameters
of this case refer to reference (Liu et al., 2023). Three blackout
scenarios are considered as follows: Scenario 1 occurs at 2:00 with

only wind power output; Scenario 2 occurs at 10:00 with both wind
and photovoltaic power output, and Scenario 3 occurs under
typhoon disasters with neither wind nor photovoltaic power output.

Taking Scenario 2 as an example, the black-start and network
restoration process for the TS is illustrated in Figure 2. It can be seen
from Figure 2 that in the first time step, black-start units from buses
14, 35, and 42, wind power generators at buses 26 and 81, a pumped
hydro storage unit at bus 25, and photovoltaic units at buses 28 and
110 initiate the network reconfiguration process by expanding

FIGURE 2
(Continued).
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FIGURE 2
(Continued). Black-start and network restoration process for the TS.

TABLE 1 Network reconfiguration strategy of DS connected with bus 66 under three disaster scenarios.

Time step
Scenarios

0 1 2 3 4 5 6 7 8 9 10

S1 12,16 11,13,15,17,22 9,10,14,18,21 8,20,33 7,19,32 2,6,31 1,3,5,26,30 4,23,27,29 24,25,28 11,13,15,17,22 —

S2 5,12,16 4,6,11,13,15,17,22 3,7,9,10,14,18,21,26 2,8,20,23,27,33 1,19,24,28,32 25,29,31 30 — — — —

S3 12 11,13,22 10,14,21 8,9,15,20 7,16,19 2,6,17 1,3,5,18,26 4,23,27,33 24,28,32 25,29,31 30
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outward, gradually restoring non-black-start units. In the second
and third time steps, non-black-start units located at buses 76 and
147 begin their black-start processes, respectively. During these time
steps, it is also necessary to restore a portion of the load to maintain
system frequency stability. By the fourth time step, 63.7% of the
network has been reconfigured, 26.9% of non-black-start units have
entered black-start status, and 61.4 p.u. of the load (representing
12.2% of the total load) has also been restored to maintain system
frequency stability. The black-start and network reconfiguration
processes for the TS are completed by the eighth time step.

Taking the DS under bus 66 as an example, its network
reconfiguration strategy under three disaster scenarios is shown
in Table 1. It can be seen from Table 1 that there is no photovoltaic
output in Scenario 1, only the wind power and energy storage units
at buses 12 and 16 serve as black-start units for the DS’s network
restoration, taking a total of 9 time steps to complete the network
reconfiguration. In Scenario 2, except for wind power and energy
storage units, the photovoltaic power unit at bus 5 also acts as a black
start unit to participate in the DS’s network reconfiguration. This
accelerates the network reconfiguration process, which takes only
6 time steps to complete network reconfiguration. In Scenario 3, due
to the typhoon disaster, both wind and photovoltaic power units
have no output power, so only the energy storage unit can be used as
a black-start unit for black-starting, completing the network
reconfiguration in 10 time steps.

Figure 3 illustrates the power balance of the TS under three
different disaster scenarios. It can be seen from Figure 3 that during
the early restoration process, i.e., the first 5 time steps, non-black-
start units have not fully restored to their rated power, as a result, the
renewable energy output has a significant proportion of the total
output power of the TS. Then, the system has also restored a portion
of the load to maintain system frequency stability. In the mid to late
restoration process (i.e., 6–25 time steps), as non-black-start units
gradually restore their generated power, and the network undergoes
reconfiguration, the loads also restore rapidly.

To better illustrate the impact of different disaster scenarios on
the entire-process restoration of the TS, Figure 4 presents the power
generation and load power restoration under the three scenarios. It
can be seen from Figure 4 that Scenario 2 occurs at 10:00 when both
wind and photovoltaic units are active, making them available as
black-start units. Consequently, Scenario 2 exhibits the highest
restoration rates of generated power and load among the three
scenarios. Scenario 1, occurring at 2:00 with only wind power output
and no photovoltaic output, has a slightly slower black-start process
than Scenario 2, resulting in slightly lower rates of power generation
and load power restoration. Scenario 3 represents a typhoon disaster
where rainy conditions lead to no photovoltaic output, and the high
wind speeds exceed the wind turbine cut-off power. Therefore, the
wind power unit is also inactive. In this context, only the energy
storage unit is available as black-start units, resulting in a 22.35%

FIGURE 3
Power balance of the TS under three different disaster scenarios.
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and 24.11% lower generated power restoration compared to
Scenarios 1 and 2, respectively, and load restoration is 20.55%
and 22.12% lower compared to Scenarios 1 and 2, respectively.

To analyze the advantages of the proposed entire-process
distributed restoration model of TSs and DSs considering CVaR
(RM-TS-CVaR) compared to other restoration models, Table 2
presents a comparison among the proposed RM-TS-CVaR, the
entire-process distributed restoration model that does not consider
CVaR (RM-TS), and the entire-process restoration model that does
not consider transmission-distribution systems coordination (RM-I-
CVaR) under Scenario 2. It can be seen from Table 2 that the RM-TS
tends to be optimistic when formulating restoration strategies, failing
to account for the security risks posed by various uncertainties during
the restoration process. Consequently, the restoration benefits of the
RM-TS are 1.44 billion CNY and 1.09 billion CNY higher than those
of the proposed RM-TS-CVaR, respectively. However, when there are

deviations between the actual values of renewable energy output and
load forecasts and their predicted values, the TSs and DSs may incur
additional security risk costs due to the lack of reserved power in
advance, potentially leading to over-limit system frequencies and
voltages. As a result, after deducting the additional security risk
costs, the total restoration benefits of the RM-TS are 3.93 billion
CNY less than those of the proposed RM-TS-CVaR. In the RM-I-
CVaR, the TSs and DSs independently conduct restoration, failing to
fully exploit their energy mutual support capabilities. This may lead to
situations where power-deficient systems do not receive power
support, while power-surplus systems need to curtail wind and
photovoltaic power. Consequently, the restoration benefits of the
TS, DS, and the overall benefits of the RM-I-CVaR are 1.55%,
52.4%, and 10.61% less than those of the proposed RM-TS-CVaR,
respectively. In summary, our proposed RM-TS-CVaR exhibits
advantages in enhancing system restoration benefits.

FIGURE 4
Power generation and load power restoration under the three scenarios.

TABLE 2 Comparison among the proposed RM-TS-CVaR, RM-TS and RM-I-CVaR under Scenario 2.

Models Restoration benefit of the TS/
107 CNY

Restoration benefit of the DS/
107 CNY

Total restoration benefits considering CVaR/
107 CNY

RM-TS-
CVaR

4423.5 580.5 4935.8

RM-TS 4437.9 591.4 4896.5

RM-I-CVaR 4355.1 276.3 4412.6

TABLE 3 Comparison between the adaptive ADMM and the standard ADMM.

Algorithms Initial penalty factor Total restoration benefits of the TSs and DSs Iteration number Solution time/s

Adaptive ADMM 1 4935.8 13 15,169

5 4936.7 14 15,881

10 4935.1 12 13,032

Standard ADMM 1 4845.9 27 28,343

5 4901.3 22 23,276

10 4885.6 15 15,982
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To verify the effectiveness of the adaptive ADMM algorithm
employed in this paper, the results obtained by the adaptive ADMM
are compared with those of a standard ADMM, as shown in Table 3. It
can be seen from Table 3 that the solution time and optimal solution of
the standard ADMM are significantly affected by the initial penalty
factor. Inappropriately setting the initial penalty factor may lead to
convergence to local optima and an increase in solution time. The
average solution time for the adaptive ADMM used in three scenarios
is 7,840 s shorter than that of the standard ADMM, while the
maximum restoration benefits of the adaptive ADMM exceed
those of the standard ADMM by 0.72%. This is because the
ADMM algorithm employed in this paper can dynamically adjust
penalty factors based on the results of each iteration, which accelerates
the convergence rate of the distributed solution and enhances the
practicality of the proposed RM-TS-CVaR.

5 Conclusion

An adaptive ADMM-based entire-process distributed
restoration method of TSs and DSs considering CVaR is
proposed in this work. The case study based on an improved
179-bus transmission system is conducted to test the effectiveness
and advantages of the proposed method, and the following
conclusions are drawn from the simulation.

1) The entire-process restoration strategy of TSs and DSs
considering CVaR is formulated to maximize the total
restoration benefits of TSs and DSs, which achieves higher
generated power and load restoration benefits compared to
the entire-process distributed restoration model that does not
consider CVaR and the entire-process restoration model that
does not consider transmission-distribution systems
coordination.

2) The proposed adaptive ADMM achieves approximately equal
restoration benefits of the TSs and DSs compared to the
standard ADMM, while reducing by over 50% iteration
number and corresponding 13,174 s of solution time
compared to the standard ADMM. Hence, the proposed
adaptive ADMM accelerates the convergence rate of the
distributed solution and enhances the practicality of the
proposed entire-process distributed restoration model of TSs
and DSs considering CVaR.

The detailed restoration strategies for the feeders connected to
each bus of DSs are not considered in this paper, which will be
further studied in future work.
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The rapid development of low-carbon energy technologies and energy storage
technologies has provided an important and feasible path to decarbonizing the
power system. In this context, there is an increasing number of studies on
renewable energy, carbon capture, utilization and storage (CCUS) and energy
storage expansion planning. However, most of the existing studies attribute the
carbon responsibilities to the source side and a small number to the load side.
Expansion planning studies that consider the overall carbon emissions of the
system to be shared between the source and the load side are still relatively few.
Therefore, it is necessary for the source and the load side to share the
responsibility for the total system carbon emissions. To fill this research gap,
this paper proposes a source-load bilateral carbon incentivemechanism for wind-
CCUS-battery power systems based on the carbon emission flow theory. Besides,
a bi-layer wind-CCUS-battery expansion stochastic planning framework
considering wind and load uncertainties is constructed. The first layer takes the
minimum expectation of power generation costs, fixed investment costs of wind
turbines and CCUS units and carbon incentive costs as the objective function from
a source-side perspective. The second layer takes the minimum battery
investment cost and the expectation of electricity purchasing costs and load-
side carbon incentive costs as the objective function from a load-side perspective.
Finally, the proposed model is tested on the IEEE 24 bus power system for validity
and advantage. The results show that the current high investment cost is not
favorable to CCUS construction. At this time, the bilateral carbon incentive
mechanism is more conducive to promoting system carbon reduction than the
unilateral carbon incentive mechanism. In the future, as the cost of CCUS
decreases, the source-side carbon incentive mechanism is more conducive to
system carbon reduction than the bilateral carbon incentive mechanism. Due to
the consideration of the stochastic uncertainty of wind turbines and loads, the
research in this paper is closer to the reality, which can provide a reference for the
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future carbon emission reduction path of the power system, especially for the
quantitative analysis of carbon emission reduction of CCUS, which is an important
guiding significance for the promotion of the engineering practice of CCUS.

KEYWORDS

bi-layer expansion stochastic planning, carbon emission flow theory, carbon emission
reduction, source-load bilateral carbon incentive mechanism, wind-CCUS-battery power
systems

1 Introduction

Climate change is a common challenge faced by mankind, and
the Paris Agreement, adopted at the Paris Climate Change
Conference in 2015, signals the urgency of addressing the climate
crisis to all countries in the world by setting targets (Ostberg et al.,
2018; Wang Y. et al., 2022; Meinshausen et al., 2022). To cope with
global warming, countries are advocating a “low-carbon economy”,
such as China has put forward the goal of “carbon peak and carbon
neutrality”, committing to strive to peak carbon dioxide emissions
by 2030, and strive for carbon neutrality by 2060 (Zhuo et al., 2022).
In 2021, the European Commission announced a climate package
called “Fit for 55”, committing to a 55% reduction in greenhouse gas
emissions by the end of 2030 compared to 1990 (Sun et al., 2022a).
Russian claimed a carbon emission reduction of 30% by 2030 (Guo
et al., 2022). As a main fossil fuel industry, the carbon emissions
from the power sector account for about 40% of the total carbon
emissions from energy consumption in China (Guo et al., 2022).
With the rapid development of electric vehicles and smart homes in
recent years, electricity carbon emissions are expected to account for
a higher proportion of the total energy carbon emissions in the
future. Therefore, carbon emission reduction in the power sector is
of great significance to carbon emission reduction in the whole
energy system. Carbon emissions from the power sector come
mainly from coal-fired and gas-fired power plants, while clean
energy power generation, such as wind power, solar power,
hydroelectric power and nuclear power, produces almost no
carbon dioxide emissions. Thus, there are three main carbon
reduction pathways for the power sector (Algarni et al., 2021;
Deng et al., 2023): the first is to reduce the use of coal-fired
generators, the second is to increase the generation of electricity
from renewable energy sources, and the third is to impose carbon
capture, utilization and storage (CCUS) technology on coal-fired
power plants. Since coal-fired generators usually meet baseload,
reducing the use of coal-fired generators has risk implications for
power system security, and morever there is limited scope for
reducing coal consumption per unit of electricity generation.
Thus, the latter two pathways are more worthy of study. In
addition, renewable energy sources with intermittent output drive
the development of energy storage. The time-shift characteristic of
energy storage facilitates the system accommodation of renewable
energy, which in turn reduces system carbon emissions (Li et al.,
2019; Pourakbari-Kasmaei et al., 2020; Li et al., 2021; Guo et al.,
2022). Therefore, low-carbon oriented coordinated planning of
renewable energy, energy storage and CCUS is a direction worth
exploring.

Currently, the expansion planning for renewable energy mainly
focuses on two aspects: capacity expansion planning and incentive
policy. In terms of renewable energy capacity expansion planning,

Moreira et al. (2017) proposed a two-stage min-max-min model for
co-optimizing the expansion of the transmission system and
renewable generation capacity to meet renewable targets under
high security standards and renewable uncertainty. A large
number of studies have focused on the optimal planning of
integrated energy systems (Huang et al., 2019; Gabbar et al.,
2020; Liu and Wang, 2020; Shi et al., 2020; Liu et al., 2021; Lin
et al., 2022). Huang et al. (2019) proposed a two-stage mixed-integer
linear programming approach for multi-energy system planning
considering distributed renewable energy integration. Liu et al.
(2021) proposed a novel multi-objective interval optimization
framework for the energy hub planning problem from the
perspective of source-load synergy, taking into account the
supply- and demand-side uncertainty. Gabbar et al. (2020)
studied the optimal planning of nuclear-renewable micro-hybrid
energy system. Liu and Wang (2020) developed a two-stage
optimization model to study the energy storage and renewable
energy planning, with the investment, operation, and
maintenance costs of energy storage and wind turbines, as well
as the annual network loss costs as the objective function. Shi et al.
(2020) proposed a hierarchical optimization algorithm to
simultaneously optimize the capacity of renewable energy and
energy storage capacity. Lin et al. (2022) established a multi-
scenario stochastic programming model of an integrated energy
system by considering the multiple uncertainties of wind and solar
power output, load demands, energy prices, and pollutant emission
factors. It can be seen that the above studies basically take the
economic cost sucn as investment cost, operation and maintenace
cost as the objective function, and part of the literature also takes
into account the utilization rate of renewable energy, renewable
energy power generation, annual network loss costs and other
indexes in the objective function. But basically they do not take
into account the environmental benefits of renewable energy, and
they do not consider the emission reduction benefits of new energy
access to the system from the perspective of “low-carbon power”.

Since the cost of renewable energy generation is higher than the
cost of conventional energy generation, incentive policies are
essential in renewable energy generation expansion planning. To
promote the development of clean energy, each country has adopted
certain supportive policies, mainly of two kinds: one is to give
certain subsidies to support, and the other is to promote through
market-oriented trading incentives. The first policy is mainly
realized in the form of subsidies or tax breaks. Helm and Mier
(2021) studied the optimal subsidies and tax policies for renewable
energy and storage energy. Martelli et al. (2020) proposed a
renewable energy subsidy and carbon tax optimization method
for multi-energy systems based on bilevel planning, and
determined the optimal renewable energy subsidy and carbon tax
for small-mediummulti-energy systems. Masoumzadeh et al. (2020)
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proposed a novel interactive tax/subsidy incentive framework on
both emission reduction and resource adequacy in competitive
electricity markets. Wu et al. (2020) and Luo et al. (2021)
studied the impact of government subsidies on renewable energy
generation based on actual data in China.

Government subsidies are more common in the early stage of
renewable energy development, and with the rapid development of
renewable energy, government subsidy policy is not sustainable (Wu
et al., 2020). The design of market-oriented carbon trading incentive
mechanisms to promote the development of renewable energy has
received more and more attention. Since carbon emissions are
directly related to power generation, traditional research on
power system carbon trading incentive mechanisms focuses on
the power generation side. Tan et al. (2021) and Wang R. et al.
(2022) have studied carbon trading incentive mechanisms for the
expansion planing of new energy units on the power generation side.
In recent years, with the in-depth study of demand-side response,
some scholars have put forward the theory of carbon emission flow,
then the carbon emission of loads can be quantitatively analyzed, so
as to establish a carbon trading incentive mechanism on the load
side. Feng and Zhou (2022) and Yan et al. (2023) have studied the
carbon trading incentive mechanism on the load side. It can be seen
that the current design of the carbon trading incentive mechanism is
mainly for the generation side or the load side. However, in the
power system, both generators and loads have the potential to
reduce carbon emissions. Designing carbon trading incentive
mechanism only on one side cannot fully stimulate the carbon
reduction potential of both sides. Nan et al. (2022a); Nan et al.
(2022b). also established two-side carbon trading mechanisms, but
did not consider the effect of CCUS on carbon emission reduction.
While as the current energy structure of the power system is still
dominated by coal-fired power units with high carbon emissions,
and the low-carbon operational potential of the integrated energy
system cannot be fully tapped through carbon trading incentives
alone. As a result, retrofit technologies such as Carbon Capture and
Storage Utilization (CCUS) for high carbon emitting coal-fired units
are receiving increasing attention.

CCUS technology is currently the only key technology that can
realize the low-carbon use of fossil energy (Liu Z. X. et al., 2023; Liu E.
et al., 2023). The Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report concluded that if there is no CCUS, then the
vast majority of climate routes will not be able to achieve the 1.5°C/2°C
temperature control target (Li et al., 2022). Hence, research on CCUS
has received increasing attention. Current research on CCUS mainly
focuses on the analysis of investment cost. Yang et al. (2019) used the
real option approach to compare the impacts of different subsidy
schemes on the investment benefit of CCUS projects in China. Yao
et al. (2023) analyzed the cost and benefit of applying CCUS to
thermal power units. Gowd et al. (2023) analyzed the sustainable
development of CCUS at the economic and policy insights. Liu S. et al.
(2023) quantitatively evaluated the techno-economic feature and
potential of CCUS in China Energy Group by using systematical
source-sink matching and carbon reduction contribution methods. It
can be seen that the existing studies mainly focus on the modeling,
operation mechanism and investment benefit analysis of CCUS itself,
and there are fewer studies on the quantitative analysis of CCUS to
promote carbon emission reduction, and even fewer studies on the
renewable energy expansion planning considering CCUS. At present,

the studies on renewable energy expansion planning basically do not
take into account the carbon emission reduction effect of CCUS, and
there are no studies on the capacity planning of CCUS.

Tomake up for the shortcomings of the above studies, this paper
proposes a bilateral carbon incentive (BCI) mechanism, which
equally shares the responsibility of carbon emissions to the
generation side and load side. Meanwhile, a bi-layer wind-CCUS-
battery expansion stochastic planning framework is constructed.
The main contributions are as follows:

1) A bi-layer wind-CCUS-battery expansion stochastic planning
framework considering both wind and load uncertainties is built.
The model co-plans the capacity of wind turbine generators
(WTG), CCUS devices retrofitted to coal-fired units, and
demand-side battery (DSB).

2) Based on the carbon emission flow theory, a bilateral step-type
carbon incentive mechanism is proposed. The incentive
mechanism takes into account the carbon responsibility of
both the generating units and the loads to fully stimulate the
carbon reduction potential of both the source and the load side.

3) The constructed bi-layer planning framework is transformed
into a mixed integer linear programming problem. The model is
solved by invoking the Gurobi optimization solver and the
validity and superiority of the model is verified by case analysis.

The article is organized as follows: Section 2 presents the
problem description. Section 3 describes uncertainty modeling,
CCUS modeling and bilateral carbon incentive mechanism.
Section 4 illustrates the proposed bi-layer stochastic planning
framework. Section 5 demonstrates the case analysis. Finally, the
work of this paper is summarized in Section 6.

2 Problem description

The schematic diagram of the system studied in this paper is
shown in Figure 1, where the source side consists of coal-fired
power plant and wind power plant, and the load side consists of
loads and demand-side batteries. From the perspective of carbon
emissions, coal-fired power plants emit large amounts of carbon
dioxide through the combustion of coal, while some coal-fired
power plants retrofitted with CCUS have reduced net carbon
emissions because some of the carbon dioxide produced is
absorbed. Wind power plants produce clean energy with no
carbon emissions. According to the carbon emission flow
theory, there is a dependency relationship between the carbon
flow and power flow. Virtual carbon emission flows can be
viewed as accompanying the power flow from the power plant
through the electricity network to the consumer side. Thus,
physically, the carbon emissions of the entire system are net
emissions from the power plants and are not directly related to
the users. However, in terms of carbon liability, demand-side
consumption of electric energy drives the generation of carbon
emissions from power plants. Therefore, both the demand side
and the source side should share the responsibility for system
carbon emissions.

Based on the carbon emission flow theory, this paper shares the
system carbon emission responsibility between the source side and
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the demand side, and constructs a bilateral carbon incentive
mechanism. Then, this paper simultaneously considers wind
power and load uncertainties, and a bi-layer stochastic planning
framework with the proposed bilateral carbon incentive mechanism
is constructed to determine the wind turbine and CCUS device
capacities at the source side, and the battery storage capacities at the
load side. The main challenges faced in the research of this paper
(Meinshausen et al., 2022): wind and load uncertainty modeling, and
CCUS modeling (Ostberg et al., 2018); bilateral carbon incentive
mechanism construction (Wang Y. et al., 2022); capacity synergistic
planning of wind turbines, CCUS devices, and demand-side
batteries. These are elaborated upon subsequently.

3 Modeling methodology

3.1 Stochastic uncertainty model of wind
power and load

The output of generators is adjusted in real time according to
the load demand, and the output of wind turbines is subject to
the change of wind speed. Since both wind speed and load
demand have a large uncertainty, to study the capacity
planning of the wind turbine, demand-side energy storage
and CCUS, it is necessary to model the uncertainty of wind
speed and load.

FIGURE 1
Wind-CCUS-battery expansion planning system structure diagram.

FIGURE 2
CCUS model diagram.
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3.1.1 Stochastic fuzzy modelling of wind power
Since wind speed is usually affected by season, temperature,

atmosphere, geographical location and other natural laws with
strong randomness, the probability distribution parameters of
wind speed are fuzzy due to the restriction of finite wind speed
statistics. To effectively solve the problem that the traditional
wind speed uncertainty model is unable to take into account the
coexistence of randomness and fuzzy, a stochastic fuzzy
uncertainty model of daily wind speed is adopted in this paper
(Ma Rui et al., 2015; Chen et al., 2021). The shape parameter k
and scale parameter c of the probability distribution of daily wind
speed are defined as fuzzy variables, where the parameters k can
be represented by triangular fuzzy variables ξk � (ξ1k, ξ2k, ξ3k) and

the parameters c can be represented by trapezoidal fuzzy
variables, and their corresponding affiliation functions are
represented as Eqs 1, 2, respectively. The daily wind speed is
defined as a stochastic fuzzy variable ξv and its chance measure
distribution function is obtained as Eq. 3.

uk k( ) �

k − ξ1k
ξ2k − ξ1k

, ξ1k ≤ k≤ ξ
2
k

ξ3k − k

ξ3k − ξ2k
, ξ2k ≤ k≤ ξ

3
k

ξ3k − k

ξ3k − ξ2k
, else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

FIGURE 3
Bi-layer co-optimization framework.
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uc c( ) �

c − ξ1c
ξ2c − ξ1c

, ξ1c ≤ k≤ ξ2c

1, ξ2c ≤ c≤ ξ3c

ξ4c − c

ξ4c − ξ3c
, ξ3c ≤ c≤ ξ4c

0, else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

F ξv( ) � Ch v< ξv( )� 1−exp − ξv
ξc

( )ξk⎡⎣ ⎤⎦ (3)

Then invert (Wang Y. et al., 2022) to obtain the value of the
stochastic fuzzy variable wind speed.

v � c −ln 1 − F v( )( )[ ] 1
k

(4)

After obtaining the value of wind speed v, the output of the wind
turbine can be obtained through the relationship function between
the output of the wind turbine PWTG

max and the wind speed v, as shown
in Eq. 5. Through the above equations, the 24-h output curve of wind
turbines can be obtained by simulation.

FIGURE 4
The modified IEEE 24-bus power system.
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TABLE 1 Parameters of each generator.

Generator no. Type Capacity/(MW) Cost coefficient/(USD/MWh) Carbon intensity/(tCO2/MWh)

G1 Wind turbine — 15 0

G2 Coal-fired 192 38 1.31

G3 Coal-fired 300 42 1.25

G4 Coal-fired 591 42 1.25

G5 Coal-fired 215 38 1.31

G6 Wind turbine — 15 0

G7 Coal-fired 400 42 1.25

G8 Coal-fired 400 42 1.25

G9 Coal-fired 300 38 1.31

G10 Wind turbine — 15 0

TABLE 2 Parameters of the WTG, CCUS and DSB to be planned.

WTG CCUS DSB

Parameter Value Parameter Value Parameter Value

vci 3 m/s acmax 0.9 (α max, α min) (90%,10%)

vr 7 m/s η1 0.8 (ηcha, ηdis) (95%,95%)

vco 25 m/s η2 0.6 γloss 20%/month

(ζ1k, ζ2k, ζ3k) (1.14,1.75,3.64) α1 0.01 cP 100 USD/kW

(ζ1c , ζ2c , ζ3c ) (3.77,5.22,6.22) α2 0.01 cC 250 USD/kWh

cWI 1095 USD/kW Mmax 2000 NY,DSB 8 Years

NY,WTG 20 Years cCCUS 60 USD/t CO2 Γ 8

PWTG
N,max 500 MW

FIGURE 5
Wind speed simulation results. (A) thewind speed variation before and after scenario for one day. (B) thewind power output of reduced scenarios for
one day.
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PWTG
max �

0, v< vci or v≥ vco;

v3 − v3ci
v3r − v3ci

Pwt,r, vci ≤ v≤ vr

Pwt,r, v> vr

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (5)

where vci, vco and vr are the cut-in wind speed, cut-out wind speed
and rated wind speed of the WTGs, respectively, m/s. Pwt,r is the
rated power of a single wind turbine, MW.

3.1.2 Uncertainty modelling of power load
For load modeling, typical daily load curves are usually used in

conventional planning optimizationmodels without considering the load
uncertainty. To model load uncertainty more accurately, random load
deviations that satisfy the normal distribution are taken into account. The
stochastic power demand curve can be obtained from Eq. 6.

PLoad � PLoad,Typical+ΔPLoad

ΔPLoad ~ N 0, σ2( ){ (6)

FIGURE 6
Power load simulation results.

TABLE 3 The benchmark data of each power load.

Load no. L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Bus 3 4 5 6 7 8 9 10 14 15 19 20

Load power/(MW) 180 74 71 136 125 171 175 195 194 317 181 128

TABLE 4 Time-of-use tariffs and parameters of the proposed BCI mechanism.

Time-of-use tariffs Carbon incentive price

Period Electricity price/(USD/kWh) Carbon responsibility range/t CO2 Carbon incentive price/(USD/t CO2)

0:00–8:00 0.036 0——RALL,i λ1� −4

8:00–22:00 0.125 RALL,i——(1 + α)RALL,i λ2� 6

22:00–24:00 0.036 (1 + α)RALL,i——(1 + 2α)RALL,i λ3� 9

(1 + 2α)RALL,i——∞ λ4� 12

TABLE 5 The carbon allowances allocated for source side and load side.

Source-side carbon allowance/t CO2

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 92.0 79.1 196.2 105.6 0 68.8 71.9 147.4 0

Load-side carbon allowance/t CO2

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

71.3 29.4 28.5 53.4 47.9 65.7 67.4 75.0 76.1 125.6 71.1 49.7
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where PLoad, PLoad,Typical and ΔPLoad are the stochastic power load,
typical daily power load and random power load deviation; σ2 is the
variance of normal distribution of power load deviation.

3.1.3 Scenario generation
Scenario-based analysis is a common method to solve the

uncertainty problem, including two steps: scenario generation
and scenario reduction. According to the chance measure
distribution function of wind power and probability distribution
function of load deviations, scenarios can be generated by stochastic
simulation. To improve the solving efficiency, the backward scenario
reduction is adopted to obtain representative scenarios. The specific
steps of the scenario generation and reduction methods adopted in
this paper are as follows:

1) Scenario generation
a) Based on Latin hypercube sampling and affiliation functions

as (Meinshausen et al., 2022) and (Ostberg et al., 2018),
randomly obtain N sets of stochastic fuzzy variables θk and
θc. The chance measure of corresponding N sets of Weibull
distribution parameters is as Eq. (7).

Poss � Pos θk, θc{ } � Pos θk{ } ∧ Pos θc{ } � min uk θk( ), uc θc( ){ } (7)

b) By Latin hypercubic sampling, F(v) that satisfies a Weibull
distribution function is sampled T times between [0,1].

c) Based on the inverse transformation shown as Eq. 5, the wind
speeds at T different moments inN scenarios are obtained, which
is denoted as S � S1, S2,/,SN{ }. Any scenario of S is denoted as
Si � (vi0, vi1,/,vit,/viT), which occurs with probability Pi. The
sum of the probability densities of the N scenarios is equal to 1.

2) Scenario reduction

The backward scenario reduction method is adopted in this
paper to obtain the most representative fewer scenarios. According
to theN scenarios of wind power obtained in first step, the Euclidean
distances between each scenario can be calculated as:

d Si, Sj( ) �
����������
∑T
t�0

vit − vjt( )2
√√

(8)

The probabilistic distance between scenarios Si and Sj is:

Pd Si, Sj( ) � Pi × d Si, Sj( ) (9)

a) Calculate the sum of probability distances between each scenario
and the remaining scenarios. The sum of probability distances
between scenario i and the set of remaining scenarios J is as
follows:

Pd Si( ) � Pi × ∑
j∈J

d Si, Sj( ) (10)

Then find the scenario in which the probability distance sum is
the smallest, denoted as Sk, then that scenario is the one to be
eliminated.

b) Find the scenario with the smallest Euclidean distance from
scenario Sk, denoted as So, then the scenario So is the alternative
scenario of scenario Sk.

c) Eliminate the scenario Sk and accumulate the probabilities of the
scenarios Sk to the alternative scenario So to form a new set of
scenarios.

d) Repeat the above steps and keep iteratively eliminating the scenarios
until the number of scenarios satisfying the requirements, and a new
set of scenarios So � So,1, So,2,/,So,Ns{ } is obtained.
Using the same method described above, the corresponding

loaded scenes can be obtained.

TABLE 6 Results of WTG, CCUS and DSB capacity planning in three different
carbon incentive mechanisms.

Capacity Carbon incentive mechanism

Case 1 Case 2 Case 3

WTG/(MW) G1 500 500 0

G6 0 219.5 0

G10 449.4 0 331.5

Total 949.4 719.5 331.5

CCUS/(t CO2) G2 0 0 0

G5 0 0 0

G9 0 0 0

Total 0 0 0

DSB/(MWh) L1 438.6 0 452.2

L2 135.3 0 142.7

L3 163.8 0 133.1

L4 219.3 0 324.6

L5 218.1 0 311.1

L6 396.3 0 427.1

L7 391.1 0 434.8

L8 468.8 0 494.8

L9 408.5 0 471.5

L10 581.4 0 780.8

L11 404.1 0 436.7

L12 320.4 0 312.7

Total 4146.5 0 4722.1

TABLE 7 Investment costs and carbon reduction of three cases.

Optimized results Carbon-trading mechanism

Case 1 Case 2 Case 3

System daily total cost (106 USD) 5.2326 5.2411 5.2691

Carbon reduction (103 t CO2) 6.428 4.987 1.911
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3.2 CCUS modeling

CCUS device can capture and separate CO2 from the flue gas
emitted by coal power units, including three links: CO2 capture,
utilization and storage, is currently the key technology to achieve
low-carbon coal power units. Although the current cost of CCUS
technology is very high, it can be foreseen that with the large-scale
application in the future, the cost of the CCUS device will be
reduced, which can significantly reduce the overall emission
reduction costs of power plants (Liu Z. X. et al., 2023; Han
et al., 2023). To this end, this paper analyzes the emission
reduction effect of CCUS using the post-combustion capture
method installed in traditional thermal power plants. This
paper focuses on the carbon capture link, the principle of which
is shown as Figure 2:

The mathematical model is as follows:

1) The actual carbon emissions from thermal power units at
moment t are:

Mnet,t � 1 − αc,t( )Mems,t (11)
Mems,t � eG × PGen,t (12)

where Mnet,t is the net carbon emission of the thermal power
unit, i.e., the amount of CO2 emitted after CCUS capture;
Mems,t is the initial carbon emission of the thermal power
unit; αc,t is the carbon capture rate of the CCUS equipment
at time t; eG is the carbon emission intensity of the thermal
power unit; PGen,t is the power generation output of the thermal
power unit. And the amount of carbon captured at time t can be
obtained by Eq. 13.

Min,t � αc,t × Mems,t (13)

2) The carbon dioxide content in the lean-rich liquid storage at
time t is:

Mt � Mt−1 + Min,t−1 +Mout,t−1( )×Δt (14)

where Mt is the carbon dioxide content in the depleted liquid
storage at moment t; Mt−1 is the carbon dioxide content in the
depleted liquid memory at the previous moment; Min,t−1 is the
amount of carbon captured at the previous moment, which can be
obtained by Eq. 13; Mout,t−1 is the amount of carbon utilized or
storage at the previous moment; Δt is the time interval.

3) Power consumption of the CCUS device at moment t:

PCCUS,t � α1 × Min,t + α2 × Mout,t (15)
This equation represents the power consumed by the CCUS in

relation to the amount of carbon in and out at a given moment; α1
and α2 are power consumption coefficients.

4) The net power output of the thermal unit to the system at
time t is:

Pout
Gen,t � PGen,t − PCCUS,t (16)

FIGURE 8
Optimized system daily total costs and carbon reduction in three
cases.

FIGURE 7
Capacity planning results of WTG, CCUS and DSB in three cases.
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5) The cost of carbon capture equipment deployment is:

Cos tCCUS � cu × Mmax (17)
where cu is the investment cost coefficient of the CCUS device.

3.3 Bilateral carbon incentive trading
mechanisms

3.3.1 Carbon flow theory
In the power system, the carbon emission is emitted in the

generation side along with the electric power generation.

However, the production of electric power is caused by power
consumption at the load side. Therefore, in a sense, the load is the
source of carbon emissions from generating units. In order to
incentivize load-side users to consume more low-carbon
electricity, it is necessary to let the users understand the
composition of the sources of electricity they consume and the
corresponding carbon emission responsibility. For this purpose,
it is necessary to find the relationship between the carbon
emissions and the power flow in the power system. This
problem can be solved by the carbon emission flow theory
(Wang C. et al., 2022; Liu et al., 2022; Huang et al., 2023),
which establishes the correspondence between the carbon
emission responsibilities and the flow of each bus and branch
in the power system, as follows:

FIGURE 9
Bus carbon intensity before and after the expansion planning. (A) The carbon intensity before expansion planning. (B) The carbon intensity in case1
with source-load BCI. (C) The carbon intensity in case2 with source-side UCI. (D) The carbon intensity in case3 with load-side UCI.
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According to the theory of flow tracing, each load is supplied by
all the power sources in the network based on the principle of
“proportional sharing”, and then we can get the power contribution
of any generating unit to any outgoing line load. For carbon
emission flow analysis as well, the carbon emission flow of each
incoming line of the node is uniformly mixed at the node, and the
carbon emission flowing through each outgoing line is a
proportional mix of each incoming line with equal branch
carbon intensity. Thus, the power contribution from any
generating unit to any load can be obtained by constantly tracing
the power flow, as shown in Eq. 18).

PD� B· E − A( )−1 · PG� T·PG (18)

Aij � Pji/PB
i , j ∈ i+;

0, else
{ (19)

Bij � PL
i /PB

i , i � j;
0, i ≠ j;

{ (20)

Pi � ∑
j∈i+

Pji + Pout
Gen,i (21)

where PG denotes the output power column vector of the power
generators, which in the model of this paper refers to the net power
output from the generators to the grid as shown in Eq. 16; PD is the
column vector of the power demand; T is the allocation matrix from
generators to loads; PB

i is the power flux at bus i, which is defined as
Eq. 21.

By the same token, based on the analogous relationship between
carbon flow rate in carbon emission flow analysis and active power
in flow analysis, the relationship between generator carbon flow rate
and load carbon flow rate can be obtained:

RD � TCEF · RG (22)
TCEF� T (23)

Therefore, by calculating the carbon emission responsibility of
each generator, the carbon emission responsibility of each load can
be obtained by utilizing Eq. 22. The carbon emission responsibility
of generators is calculated as Eq. 24.

RG� 0.5·eG · PG·Δt (24)
As Eq. 24 shows, the carbon emission responsibility of

generators is equal to the carbon emission factor of the
generating unit multiplied by the output of the generating unit.
In this paper, since some thermal power units are installed with
CCUS equipment, the carbon emissions of thermal power units are
net carbon dioxide emissions, which can be calculated by Eq. 11.
Because the source and load side play equally important roles in
carbon emission reduction under the bilateral carbon incentive
mechanism, the carbon emission responsibility of the source and
load side is shared equally in this paper, i.e., the source and load side
each share 50% of the carbon emission responsibility.

To further characterize the carbon emission of each bus in the
system, the bus carbon flow rate can be obtained through Eq. 25,
then the carbon emission intensity of each node is shown in
Eq. 26.

RB � E − A( )−1 · RG (25)
eBi � RB

i

PB
i

(26)

3.3.2 Carbon emission allowance at source and
load side

To get the carbon emission quota for the source and load
side, this paper firstly obtains original carbon emissions
through economic dispatch after planning. According to the
principle of equalization, the source side and the load side share
50% of the carbon emission respectively. Then obtains the
carbon emissions Xi of both the source side and the load
side can be obtained based on the carbon emission flow
theory, Xi which can be used as the carbon quota of each
unit or load. The free carbon allowances of each unit and
load are obtained through Eq 27.

RALL,i � ψALL∑T
t�1
Xi,t/T (27)

where ψALL is the free carbon allowance factor.

FIGURE 10
Carbon reduction and system daily total cost with different CCUS
invest in the two different carbon incentive mechanisms.

FIGURE 11
Optimized system daily total costs and carbon reduction in case
1 and 2.
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3.3.3 Bilateral stepped carbon incentive
mechanism

This paper proposes a double-end stepped carbon incentive
mechanism. Compared with the traditional single-end carbon
incentive mechanism, the proposed double-end stepped carbon
incentive mechanism shares the carbon emissions equally
between the source side and the load side, and carry out
carbon incentive at both sides. The details are as follows:
firstly, the net carbon emission of each generating unit is
calculated under the planning model, and the responsibility
of carbon emission is equally shared by the source side and load
side. Then, based on the carbon emission flow theory, the
carbon emission responsibility of each load is obtained to
participate in the carbon trading market. Finally, the carbon
emission of the source side and load side participate in the
stepped carbon incentive respectively. Under the stepped
carbon incentive mechanism, the carbon emissions trading
volume is divided into multiple intervals. The more carbon
emission responsibility, the higher the corresponding carbon
incentive price. When the carbon emission responsibility is
lower than the free carbon allowance, the power plant can
make a profit in the carbon trading market; When the
carbon emission responsibility is higher than the free carbon
allowance, the power plant will pay for the carbon incentive
cost. The carbon incentive cost of a unit or load is calculated as
follows:

CCT�
λ1 Ri−RALL( ),0≤Ri≤RALL

λ2 Ri−RALL( ),RALL≤Ri≤ 1+a( )RALL

λ2aRALL+λ3 Ri− 1+a( )RALL( ), 1+a( )RALL≤Ri≤ 1+2a( )RALL

λ2+λ3( )aRALL+λ4 Ri− 1+2a( )RALL( ),Ri≥ 1+2a( )RALL

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(28)

where Ri is the carbon emission responsibility of the generators or
loads to participate in the carbon trading market; λ1/λ2/λ3/λ4 are
stepped carbon trading prices; a is the coefficient of carbon
responsibility step.

4 Two-layer stochastic source-load
expansion planning model

The planning problem studied in this paper involves both
wind power capacity and CCUS capacity expansion planning at
the source side and energy storage capacity expansion planning at
the load side, and the connection between the source end and the
load end is established through the carbon emission flow theory.
To solve such planning problems, a two-layer stochastic source-
load expansion planning model is proposed in this paper. The
two-layer cooperative planning is used to achieve the optimal
arrangement of the capacity of wind turbines, CCUS and energy
storage. The source-side optimization results are obtained
through the optimization of the upper layer, and then through
the carbon emission flow theory, the carbon emission
responsibility of the load side is obtained, which in turn
participates in the lower layer optimization model. The details
are described as follows: the upper layer optimizes the installed
capacity of wind power and CCUS with the objective of
minimizing the total cost of wind power investment cost,

CCUS investment cost, power generation cost and carbon
incentive cost at the source side. The actual carbon emission
of each generator at the source side is also obtained after the
optimization of the upper layer. Then the carbon emission
intensities of the load is determined based on the carbon
emission flow theory, which is then entered into the lower
layer. The lower layer aims to minimize the total cost of
energy storage investment cost, power purchase cost and load-
side carbon incentive cost, obtains the optimal energy storage
capacity, and returns the charging and discharging power of the
energy storage device as the load demand response to the upper
layer. Then the next loop of optimization is carried out in the
upper layer. Finally, the optimal planning results are obtained
through repeated optimization of the upper and lower layers until
the results converge. The convergence condition of the proposed
model is that the difference between the demand responses after
two consecutive optimizations is smaller enough and small than a
predefined threshold parameter. Based on the two-layer
stochastic source-load expansion planning model developed in
this paper, the economic operation of the whole system and
carbon emission reduction targets can be achieved by optimally
configure wind power, CCUS and energy storage capacities.

4.1 Upper layer: source-side wind turbine
and, CCUS capacity planning model

4.1.1 Objective function
The upper layer is mainly to optimize the wind power capacity

and CCUS capacity at the source end. According to Section 3.1.1, it
can be seen that the wind turbine at the source end is a stochastic
fuzzy uncertain model, for this reason, the upper layer
optimization belongs to the stochastic optimization model,
which is divided into two phases: tactical layer and operational
layer. The upper layer takes the total economic cost at the source
side as the objective function, including the investment cost of
wind power, the investment cost of CCUS, and the expected value
of power generation cost and carbon incentive cost. The decision
variables of the tactical layer are the capacities of the WTG and
CCUS. The decision variables of the operational layer are the
outputs of each generator, and the objective is to minimize the
expected value of power generation cost and carbon incentive cost.
The complete objective function of the upper level can be
expressed as Eqs 29, 30.

ObjCost source � min Ε b PWTG
N,w , s( )[ ] + ∑NW

w�1
cWP

WTG
N,w +∑Nu

u�1
cuM

CCUS
u

⎛⎝ ⎞⎠
(29)

b PWTG
N,w , s( ) � minP s( ) ∑

s∈SW

poss ∑T
t�0

∑NG

g�1
cgP

G
g,t,s + CCT

g,t,s( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (30)

where cW is the investment cost coefficient of wind turbine
generators; PWTG

N,w is the maximum capacity of WTG; cu is the
investment cost coefficient of CCUS; MCCUS

u is the maximum
capacity of CCUS; cg is the cost per unit of power generation;
PG
g,t,s is the output power of each generator; CCT

g,t,s is the carbon
incentive cost of each generator.
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4.1.2 Constraints
In this paper, the DC power flow model is adopted to model the

power system constraints:

1) Power flow constraints

PG
g,s � PCCUS

i,s + ∑
j∈Ωi

Pij,s + PL
i,s, g ∈ ΩG (31)

Pij,s � θij,s
xij

(32)

Pij,min ≤Pij,s ≤Pij,max (33)
where PG

g,s, P
CCUS
i,s , Pij,s, PL

i,s are the output power of generator, power
consumption of CCUS device, power flow of branch i − j and power
load at node i respectively; θij,s and xij are the phase angle difference
and reactance of branch i − j; Pij,max and Pij,min are maximum and
minimum transmission capacity limits.

2) Generator output constraints

PG
g,min ≤P

G
g,s ≤P

G
g,max, g ∈ ΩG (34)

0≤PG
g,s ≤P

WTG
s,max, g ∈ ΩW (35)

where PG
g,min, P

G
g,max are the minimum and maximum capacity of

generator output; PWTG
s,max is the maximum capacity WTG; ΩG and

ΩW are set of generators and wind turbines.

3) Phase angle constraints

θij, min ≤ θij,s ≤ θij, max (36)
θref,s� 0 (37)

where θij, max, θij, min, θref,s are the maximum, minimum phase angle
difference and phase angle of the slack bus.

4) Wind power capacity constraints

0≤PWTG
N,w ≤PWTG

N,max (38)

5) CCUS operational constraints
a) Carbon capture equipment capacity constraints

0≤Mt ≤Mmax (39)

b) Incoming and outgoing carbon constraints

0≤Min,t ≤ η1 × Mtmax −Mt( )
0≤Mout,t ≤ η2 × Mt

{ (40)

where η1 and η2 are coefficients, i.e., the amount of incoming carbon
during each hour is positively correlated with the remaining space of
carbon dioxide the CCUS device, and the amount of outgoing
carbon during each hour is positively correlated with the carbon
dioxide amount in the CCUS device.

c) Carbon capture rate limitations

0≤ αc ≤ αcmax

αc + σ × Mt ≤ 1
{ (41)

where the carbon capture rate αc is negatively correlated with the
amount of CCUS stored at any moment, where αcmax is the upper
limit of the carbon capture rate and σ is the coefficient.

FIGURE 12
Bus carbon intensity in case 1, 2. (A) The carbon intensity in case1 with source-load BCI. (B) The carbon intensity in case2 with source-side UCI.
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4.2 Lower level: load-side energy storage
capacity planning model

4.2.1 Objective function
The lower layer is mainly to plan the energy storage capacity at

the load side. According to the previous analysis, it is known that the
load also has stochastic uncertainty, so like the source-side planning,
the planning of the load side is also divided into two stage: tactical
level and operational level. The objective function is to minimize the
total economic cost at the load side, which includes the investment
cost of energy storage, the expected value of power purchase cost and
carbon incentive cost at the load side. The decision variables of the
tactical layer are the energy storage capacity configured for each
load. The decision variables of the operational layer are the charging
and discharging power of the storage device, and the objective is to
minimize the expected value of power purchase cost and carbon
incentive cost. The complete objective function of the lower level can
be expressed as Eqs 42, 43.

ObjCost load � min Ε f PDSB
N,i , S( )[ ] +∑NL

i

cpP
DSB
N,i + ccE

DSB
N,i( )⎛⎝ ⎞⎠

(42)

f PDSB
N,i , S( ) � minPDSB s( ) ∑

s∈SL

Poss × ⎛⎝∑T
t�0
⎛⎝∑NL

i�1
(celet (PL

i,t,s + PDSB,cha
i,t,s

−PDSB,dis
i,t,s ) + CCT

i,t,s)⎞⎠⎞⎠ (43)

where cp/cc is the power/capacity investment cost coefficient of the
DSB; PDSB

N,i /E
DSB
N,i is the rated power of DSB/capacity of DSB; celet is

the electricity purchasing price; PDSB,cha
i,t,s /PDSB,dis

i,t,s is the charge/
discharge power of DSB; CCT

i,t,s is the carbon incentive cost.

4.2.2 Constraints
1) energy storage state of charge constraints

EDSB
t+1,s � 1 − γloss( )EDSB

t,s + ηchaP
DSB,cha
t,s − PDSB,dis

t,s /ηdis( )·Δt (44)
E0,s � ET,s (45)

where γloss is the self-discharge rate of the DSB; ηcha/ηdis is the charge
and discharge efficiency.

2) Upper and lower limits of charge/discharge rate constraints

α minE
DSB
N,i ≤EDSB

i,t,s ≤ α maxE
DSB
N,i (46)

0≤PDSB,cha
i,t,s ≤Bcha

i,t,sP
DSB
N,i (47)

0≤PDSB,dis
i,t,s ≤Bdis

i,t,sP
DSB
N,i (48)

where αmin/α max it the minimum and maximum operation depth of
DSB; Bcha

i,t,s/B
dis
i,t,s is the charge/discharge state variables.

3) Charging and discharging state constraints

The energy storage device cannot be in the charging state and the
discharging state at the same time. The constraints can be expressed
as the following equations, which are nonlinear constraints that need
to be linearized by big-M method (Xue et al., 2022).

0≤Bcha
i,t,s + Bdis

i,t,s ≤ 1 (49)
Bcha
i,t,s, B

dis
i,t,s ∈ 0, 1{ } (50)

4) The ratio of rated capacity to rated power constraints

Γ � EDSB
N,i

PDSB
N,i

(51)

4.3 Optimization procedure for bi-layer co-
optimization

Sections 4.1 and 4.2 introduce the optimization models at the
source and load sides, respectively. The bi-layer co-optimization
optimization procedure of both two sides is elaborated in this section
as follows:

Step 1: Initial parameter setting: Firstly, set the initial system
parameters, and then generate the wind power load scenario
through the methods introduced in 3.1.1 and 3.1.2.

Step 2: Upper layer planning model: source-side wind power capacity
and CCUS capacity optimization. Based on the planning model
introduced in Section 4.1, the optimized capacities of wind turbines
and CCUS are obtained, and the initial carbon emission profile and net
carbon emission profile of each generator at the source side are calculated.

Step 3: Load bus carbon intensity calculation: Based on the step 2,
the bus carbon intensity of each load can be calculated according to
the carbon emission flow theory introduced in Section 3.3.1.

Step 4: Lower level planning model: Through the planning model
introduced in Section 4.2, the optimized capacity of the load-side
energy storage device is obtained, and the charging and discharging
quantity situation of the energy storage device is calculated.

Step 5: Demand-side response: The energy storage charging and
discharging amount obtained in step 4 is taken as the demand-side
response and returned to the upper optimization model in step 2,
and go to the next loop.

Step 6: Iterative optimization: The convergence condition of the
optimization is that the change in the demand-side response
between two times is less than a given threshold. Then the
optimization procedure is terminated, and the termination
condition is as shown in Eq. 52.

P
DSB,cha q( )
i,t,s − P

DSB,dis q( )
i,t,s( ) − P

DSB,cha q−1( )
i,t,s − P

DSB,dis q−1( )
i,t,s( )∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣

P
L q( )
i,t,s + P

DSB,cha q( )
i,t,s − P

DSB,dis q( )
i,t,s

≤ ε

(52)

Step7: Output the final optimal planning results.
The flowchart of the whole optimization model is shown in

Figure 3.
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5 CASE studies

In this section, cases with different carbon incentive
mechanisms and working condition were tested on the IEEE
24 bus power system for validity and advantage. The wind-
CCUS-battery power system planning framework with source-
load bilateral carbon incentive mechanism was optimized on the
MATLAB and YALMIP platform with Gurobi solver.

5.1 Basic parameters

The modified IEEE 24-bus power system is shown in Figure 4
(Zimmerman et al., 2011). The modified power system contains
10 generators, 24 buses, 34 transmission branches and 12 power
loads, in which including seven coal-fired power generators and
three expansion planning wind turbine generators. Besides, the
expansion planning CCUS will be placed at three predetermined
coal-fired power plants, and DSB are placed at each load bus. The
predetermined positions of WTG and CCUS are shown in Figure 4.
The parameters for each device are set as follows.

5.1.1 Equipment parameters
The detailed parameters of each generator such as generator

type, capacity, cost coefficient, can carbon emission intensity are
shown in Table 1 (Zimmerman et al., 2011; Nan et al., 2022a). The
parameters of the WTG, CCUS and DSB to be planed are shown in
Tables 2 (Mei et al., 2021; Zhong et al., 2021; Sun et al., 2022b; Gowd
et al., 2023).

5.1.2 Operating parameters
As described in Section 3, the wind power output can be

obtained by wind speed, and the wind speed can be simulated by
stochastic fuzzy modelling and scenario generation method. It is
known that in order to solve the computational time and
efficiency problems caused by large-scale scenarios, the
scenario reduction approach is used to obtain several typical
scenarios so as to achieve the effect of reducing the
computational complexity. In the simulation analysis of this
paper, the target number of scenes is set to 5 in order to
reduce the computation time. The number of target scenes can
also be set to other values as needed. Thus we can simulate the
wind speed variation curve for 1 day by using the method
described earlier, as shown in Figure 5A. Then the power
output curve can be obtained, as shown in Figure 5B. The
power load deviations before and after the scenario reduction
can be simulated by applying the same method, as shown in
Figure 6A. The per-unit power load curves of reduced scenarios
are shown in Figure 6B. Table 3 represents the benchmark power
for all loads.

5.1.3 Time-of-use tariffs and carbon incentive
parameters

The time-of-use tariffs and parameters of the proposed bilateral
carbon incentive (BCI) mechanism are shown in Table 4. Besides, the
carbon allowances allocated for source side can obtained by the initial
economic dispatch results, and load-side carbon allowances can be
obtained based on carbon emission flow theory, are shown in Table 5.

5.2 Analysis of results under different carbon
incentive mechanisms

To illustrate the effectiveness of the bilateral carbon incentive
(BCI) mechanism proposed in this paper, this paper compares and
analyzes the carbon emission reduction under three incentive
mechanisms, which are source-load bilateral carbon incentive
mechanism (source-load BCI), source-side unilateral carbon
incentive mechanism (source-side UCI), and load-side unilateral
carbon incentive mechanism (load-side UCI), as follows:

Case 1: source-load BCI, i.e., the carbon emissions responsibility of
the generators is shared equally by the power generation side and the
load side, with each side bearing 50% of the carbon emissions
responsibility (Nan et al., 2022a; Nan et al., 2022b).

Case 2: source-side UCI, i.e., the carbon emissions responsibility of
the generators is fully borne by the power generation side (Tan et al.,
2021; Wang et al., 2022b).

Case 3: load-side UCI, i.e., the responsibility of carbon emissions
from generators is borne by users (Feng and Zhou, 2022; Yan et al.,
2023).

The simulations under three incentive mechanisms are carried
out to obtain the system planning results, and the specific analysis is
shown in the following sections.

5.2.1 Analysis of wind power, CCUS, and energy
storage planning capacity

The results of capacity planning for wind turbines, energy
storage and CCUS in three cases are shown in Table 6; Figure 7.

The planning capacity of CCUS under the three incentive
mechanisms is 0. This is mainly because the current investment
cost of CCUS is too large, and the carbon emission reduction benefit
brought by installing CCUS is not enough to offset the investment
cost. This is also the common problem in the actual project,
i.e., under the existing technical conditions, after the enterprise
invests a huge amount of money on CCUS, it cannot realize the
benefit of emission reduction. This problem is expected to be solved
gradually with the progress of CCUS technology, large-scale
application and carbon incentive price rising in the future.

The planning capacity of wind turbines under Case 1 is the largest,
and the total planning capacity of wind power reaches 949.4 MW. Unit
1 reaches the maximum capacity, 500 MW. The capacity of load-side
energy storage devices reaches 4,146.5 MWh. The planning capacity of
load-side energy storage under Case 2 is all 0, because at this time, all
the responsibility for the carbon emissions of generating units is borne
by the source side. There is no incentive for load-side carbon reduction,
so installing energy storage devices will not only cannot reduce the
carbon emission cost, but also increase the additional investment cost.
Therefore, no energy storage device is installed at the load side under
this incentive mechanism. For the capacity planning of wind turbines,
since the carbon emission incentive under Case 2 is at the source side,
carbon emission reduction can be promoted by optimizing the
configuration of wind turbines. The total planning capacity of wind
turbines at this time reaches 719.5 MW. Under Case 3, the carbon
emission reduction of wind turbines at the source side needs to be
converted to the load side through the carbon emission flow theory to
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participate in carbon trading, and the incentive effect is not as good as
that of direct incentives on the source side. Therefore, the planning
capacity of wind turbines on the source side is also lower than that of
Cases 1 and 2, and the planning capacity of the wind turbines is only
331.5 MW. However, when the load-side incentive is applied, the
carbon emission reduction effect of the energy storage device can be
fully utilized through the demand response, and the planning capacity
of the energy storage device at the load-side at this time is the largest,
which is 4,722.1 MWh.

In summary, the analysis shows that, under the source-side UCI
mechanism, it can motivate carbon emission reduction of source-side
wind turbines, But it is not effective for stimulating load side energy
storage configuration. Under the load-side UCI mechanism, it can
promote load-side energy storage configuration and carbon reduction,
but cannot incentivize the carbon emission reduction of source-side
wind turbines. Under the source-load BCI incentive mechanism, the
source-side and load-side share the total carbon emissions of the
generator equally and participate in carbon incentives, which can fully
utilize the roles of wind turbines and energy storage.

5.2.2 Analysis of carbon reduction benefits
Further comparing the investment costs and carbon emissions

under three cases, as shown in Table 7 and Figure 8, it can be seen
that the total system investment costs do not differ much under
three cases, The total cost on the source side includes the installed
cost of wind turbines and,CCUS, and daily operation cost which is
composed of the power generation cost and carbon incentive cost.
The total cost on the load side includes the investment cost of the
energy storage and the daily operation cost, which is composed of
electricity purchasing cost and carbon incentive cost. Under three
incentive mechanisms, the carbon emission reduction effect of Case
1 is the best, with a daily reduction of 6.428×103 tCO2 and the
smallest daily cost of the system, which is 5.2326×106 USD. The
carbon emission reduction effect of Case 2 is the second best, with a
carbon emission reduction and daily economic cost of 4.987×103

tCO2 and 5.2411×106 USD, respectively. The carbon emission
reduction effect of Case 3 is the worst, with a carbon emission
reduction and daily economic cost of 1.911×103 tCO2 and
5.2691×106 USD, respectively. Under the load-side carbon
incentive mechanism of Case 3, because the carbon emission
reduction only origins from demand response, the total amount
of carbon emission reduction is much less than that of Cases 1 and 2.
The carbon emission intensity on each bus is shown in Figure 9.

In summary, under the existing technical conditions, due to the
high investment cost of CCUS, the source-load BCI mechanism has
obvious carbon emission reduction effect compared with the
traditional single-end carbon incentive mechanism. The source-
load BCI mechanism can better play the role of carbon incentives for
both the source side and the load side, and promote the
improvement of the output structure of the power generation
side, wind consumption and carbon-oriented demand response.

5.2.3 Analysis of the impact of CCUS costs on
carbon emission reduction

According to the previous analysis, it can be seen that there is no
economic benefit in building CCUS due to the huge investment cost
of CCUS at this stage. However, with the future technological
progress and further large-scale popularization of CCUS, it is

believed that the cost of CCUS will gradually decrease. In order
to further analyze the carbon emission reduction effect of CCUS on
the power system, this paper further analyzes the effect of each
carbon incentive mechanism under different carbon capture cost.
The unit carbon capture investment cost of CCUS is set to different
values from 10USD/t~110USD/t CO2, and the capacity expansion
planning is carried out under different carbon incentive
mechanisms. According to the previous analysis, under the load-
side BCI mechanism, the source side does not bear the responsibility
of carbon emission, so adding CCUS at the source side will not
benefit from carbon incentive, but increase the investment cost at
the source side, leading to the non-configuration of CCUS at this
time. For this reason, in the analysis of the impact of CCUS cost on
carbon emission reduction, we only focus on the two cases of the
source-side carbon incentive and the double-side carbon incentive,
i.e., Case 1 and Case 2. The total economic cost of the system and
carbon emission reduction under different unit CCUS investment
costs are shown in Figure 10.

It can be seen that when the unit investment cost of CCUS is
more than 35USD/t CO2, Case 1 has a better carbon emission
reduction effect than Case 2, which is mainly due to the fact that at
this time, the investment cost of carbon capture is too high, and the
benefits of carbon incentives are not enough to compensate for the
cost of the investment, as analyzed in Section 5.2.1.

When the unit investment cost of CCUS is less than 35USD/
tCO2, Case 2 has a better carbon emission reduction effect than
Case 1. This is because when the cost of carbon capture decreases,
due to the good carbon capture effect of the CCUS unit, deep
emission reduction can be achieved. Compared to case 1, the
carbon emission responsibility under Case 2 is fully borne by
the source-side, leading to more configuration of CCUS and a
better carbon emission reduction effect. To further analyze the
emission reduction effect of CCUS, the carbon emission reduction
result is simulated when the unit investment cost of CCUS is
20USD/tCO2, as shown in Figure 11. It shows that the daily carbon
emission can be reduced by 11.312 × 103t CO2 under Case 2, with a
carbon emission reduction rate of 23.22%, whereas the daily
carbon reduction under Case 1 is 6.558 × 103t CO2, with a
carbon emission reduction rate reaches 13.46%. The total daily
cost of Case 1 and Case 2 is basically the same, which shows that
the carbon emission reduction effect of the source-side BCI
mechanism is better when the unit investment cost of CCUS is
relatively low. Figure 12 shows the carbon emission intensity of
each bus when unit investment cost of CCUS is 20USD/tCO2,
which denotes that the carbon reduction effect of Case 2 is more
obvious.

6 Conclusion

This paper established a source-load bilateral carbon incentive
(Source-load BCI) mechanism for wind-CCUS-battery power
systems based on the carbon emission flow theory to motivate
the capacity planning of WTG, CCUS and DSB. A bi-layer wind-
CCUS-battery expansion stochastic planning framework
considering wind and load uncertainties was constructed.
Simulation analysis was conducted to compare the carbon
emission benefits under three different incentive mechanisms,
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and the impact of CCUS costs on carbon emission reductions from
different carbon incentive mechanisms was analyzed. In short, the
main conclusions can be obtained as follows:

1) Under the existing technology conditions, even with the carbon
incentive mechanism, it is not enough to incentivize CCUS
investment planning due to the high investment cost of CCUS.

2) Without installing CCUS, the bilateral carbon incentive mechanism
is more conducive to promoting system carbon reduction than the
traditional unilateral carbon incentive mechanism. The carbon
reduction rate after expansion planning under source-load BCI is
13.1%, which has superiority over the other two UCT mechanisms,
with the carbon reduction rate of 10.2% (source-side UCI) and 3.9%
(load-sideUCI),respectively.Bilateral carbon incentives can promote
source-side investment in green energy and load-side investment in
energy storage equipment to regulate electricity demand, thus
stimulating the potential for carbon reduction at both the source
and load side.

3) In the future, as the CCUS technologymatures and the investment
cost of CCUS decreases, CCUS will have the possibility of large-
scale development and application. The carbon emission
reduction rate under source-side carbon incentive mechanism
is 23.22%, which is much higer than the source-load carbon
incentive mechanism, with the carbon emission reduction rate
of 13.46%. At this time, the system using source-side carbon
incentive mechanism can reduce carbon more significantly than
bilateral carbon incentive mechanism, while the difference in total
daily cost between the two is not significant.

This paper analyzes the results of new energy expansion planning
under three different carbon trading incentive mechanisms, and
analyzes the planning results under different CCUS unit
investment costs. However, the installation of CCUS is not only
related to its own investment cost, but also related to the carbon
price in carbon trading, when the carbon price is high enough, it can
also promote the installation of CCUS so as to benefit from carbon
emission reduction, so in the future, we can also analyze the impact of
carbon price, carbon tax and other perspectives on the planning
capacity of CCUS, so as to better improve the carbon trading
mechanism, and to promote the development of the power system
of decarbonization.
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In recent years, the deployment of high-voltage direct current (HVDC) tie-lines
in power grids has become a prevalent solution in some countries to transmit
renewable energy from remote locations to load centers. However, the variability
and uncertainty associated with renewable energy generation pose challenges
to effectively utilizing this technology. This work proposes a novel multistage
planning-operation model, aiming to unlock the potential flexibility in the HVDC
transmission system and increase the renewable penetration. By incorporating
flexibility, which is essential for accommodating the uncertainty in renewable
generation, our model optimally shares the inter-regional flexibility between the
sending- and receiving-end grids. One of the key features of our proposedmodel
is its robustness and non-anticipativity, meaning it can account for different
levels of uncertainty and make decisions that are suitable for multiple scenarios.
This work develops two solution approaches to solve this challenging multistage
model with variable uncertainty sets.We validate the proposed approach through
a case study conducted on a real-world inter-regional grid. The numerical results
demonstrate that our approach effectively unlocks more inter-regional flexibility
and assists in increasing the renewable hosting capacity.

KEYWORDS

HVDC transmission, renewable energy, uncertainty, surrogate affine approximation,
implicit decision method

1 Introduction

The global adoption of high-voltage direct current (HVDC) systems has been rapidly
increasing in regions such as Europe, North and South America, and China.This widespread
installation of HVDC systems is driving a significant revolution in the strategy for
accommodating renewable energy. With the characteristics of wind and solar energy,
large-capacity wind and PV farms are often located far away from major load centers.
This geographical separation creates a need for long-distance transmission solutions, and
HVDC has emerged as one of the favorable options. HVDC offers advantages in terms of
capital cost for long-distance transmission and has a transmission capability that remains
relatively constant, regardless of the distance traveled (Li et al., 2021). In addition to the
cost and distance advantages, HVDC also provides power flow controllability, which
helps in effectively managing and avoiding loop flows in the transmission system. This
controllability feature further enhances the suitability of long-distance HVDC transmission
for accommodating renewable energy. A prime example of the importance of long-distance
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HVDC transmission for renewable energy accommodation can be
seen in China. The vast renewable resources in western China are
efficiently delivered to the load-centralized eastern regions through
HVDC transmission (Lin et al., 2020).

The traditional approach to HVDC tie-line scheduling assumes
that the transmission system operator (TSO) or independent
system operator (ISO) has accurate load forecasts and the ability
to schedule generation accordingly (Guo et al., 2018). However, the
growing penetration of renewable energy sources has challenged
this fundamental assumption. Renewable generation, such as
wind and solar energy, is inherently variable and not fully
controllable. This variability introduces uncertainty into power
system operation, requiring TSOs/ISOs to consider and manage
this uncertainty effectively. As tie-lines connect inter-regional
power grids, it becomes crucial to collaboratively address the
uncertainty associated with the tie-line power flow. In response
to these challenges, there is a need to develop new HVDC tie-
line scheduling approaches that account for the uncertainty
stemming from renewable energy. By jointly managing the
uncertainty across regions, TSOs/ISOs can enhance the system’s
ability to accommodate renewable energy and maintain grid
stability.

In recent years, significant research has been conducted on
the topic of the scheduling and operation of HVDC systems with
large-scale renewable penetration. Zhong et al. (2015) developed
an operation model of HVDC tie-line for enhancing the capacity
of renewable energy integration. Zhao et al. (2022) proposed a
distributed multi-objective day-ahead generation and HVDC
transmission joint scheduling model. Zhou et al. (2018) presented
a distributed dispatch model aimed at facilitating the integration
of wind power within the bulk AC/DC hybrid system. Guo et al.
(2018) presented a robust optimization framework for efficient
tie-line scheduling. Zeng et al. (2017) proposed a sequential
simulation method considering HVDC tie-line operation and
unit aggregation to analyze the wind accommodation in the
1-year horizon. Li et al. (2016) proposed a two-stage adaptive
robust optimization model that takes into account uncertainties
related to wind energy in tie-line scheduling problems. Wang et al.
(2019a) proposed a stochastic optimization model to address cross-
regional system scheduling, with a primary focus on minimizing
renewable energy curtailment. In the aforementioned works,
detailed unit and networkmodels are often employed in the problem
formulations (Li et al., 2016; Guo et al., 2018; Zhou et al., 2018;
Zhao et al., 2022). However, the model size is often large in the real-
world power systems, and these models may be computationally
expensive. Thus, some research studies simplify the transmission
system topology (Zhong et al., 2015; Zeng et al., 2017; Wang et al.,
2019a) and aggregate units within each area (Zhong et al.,
2015; Zeng et al., 2017) to reduce the complexity. Recently,
distributed optimization techniques, such as the synchronous
alternating directionmethod of multipliers (SADMMs) (Zhao et al.,
2022) and analytical target cascading (ATC) (Zhou et al.,
2018), have also been employed to speed up solving. These
interesting works show promising performance in computational
efficiency.

Renewable energy resources have led to the wide utilization of
energy storage (ES) devices to alleviate potential congestion and

minimize curtailment of renewable sources. Extensive research
has been conducted on both transmission expansion planning
(Yifan et al., 2015; Yin and Wang, 2022) and ES planning (Wogrin
and Gayme, 2015). More recently, there has been a growing
interest in developing collaborative planning models that address
the challenges of high renewable penetration in the transmission
system. Moradi-Sepahvand and Amraee (2021) proposed a multi-
year planning model of a hybrid AC/DC transmission system to
optimize the operation and investment cost of ES. Wang et al.
(2019b) proposed a robust formulation for ES and transmission
line co-planning. Qiu et al. (2017) proposed a co-planning
model of transmission expansion and ES under high renewable
penetration.

Nonetheless, it is difficult to find an optimal robust scheduling
strategy and recourse action for ES when considering non-
anticipativity constraints. This complexity primarily arises due
to ES’s state of charging (SOC). It has been proven that many
approaches, such as the two-stage robust model, scenario-based
model, and chance-constrained models, fall short in ensuring
feasibility when accommodating uncertainty (Lorca et al., 2016;
Lorca and Sun, 2017; Zhai et al., 2017; Zhou et al., 2021). On the
other hand, the recently proposed multistage optimization method
in Zhou et al. (2021); Lorca and Sun (2017) Lorca et al. (2016); G.
Cobos et al. (2018); and Hreinsson et al. (2019) proves to be an
effective approach for ES-accommodating uncertainties. Decisions
derived from the multistage model are guaranteed in terms of non-
anticipativity and robustness. In other words, the operators’ actions
are restricted to only depend on an uncertainty realized up to
the current decision period, which is defined as non-anticipativity
(Lorca and Sun, 2017). In addition, these actions have to be
feasible for any uncertainty realization within an uncertainty set,
which is denoted by robustness (Zhou et al., 2021). Nevertheless,
it is worth noting that the uncertainty set associated with
renewable generationwill vary as capacity increases, often rendering
the existing multistage optimization method computationally
challenging.

This paper aims to advance the integration of renewable energy
into the power system by unlocking cross-area flexibility with
HVDC tie-lines, taking into account the renewable uncertainty.
To achieve this, the authors propose a novel multistage HVDC
tie-line planning-operation model that specifically addresses the
challenges associated with high levels of renewable penetration. The
model developed in this paper considers several important factors,
including the scheduling of HVDC tie-line power, thermal plant
operations, demand response, planning of energy storage, and the
uncertainty associated with renewable energy generation. Drawing
inspiration from the surrogate affine approximation (SAA) approach
(Ye, 2018) and implicit decision method (IDM) (Zhai et al., 2017;
Zhou et al., 2021), the authors propose the two-solution method
for the model that accounts for the variable uncertainty set.
These approaches allow for effective decision-making in the
face of uncertainty, ensuring a robust and efficient operation of
the HVDC tie-line system. The contributions of this paper are
threefold:

• We propose a novel HVDC tie-line planning-operation model
that takes into account the variable uncertainty set associated
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with renewable generation. One of the key decision variables in
the model is the renewable installation capacity, which directly
impacts the uncertainty range.Themodel optimally determines
how much renewable and uncertainty that the inter-regional
flexibility can accommodate. In addition to the renewable
installation capacity, themodel also determines storage capacity
and HVDC tie-line power, considering thermal plant dispatch
and demand response. It is noted that this work focuses on the
flexibility and thus employs the simplified planningmodel used
in practice.
• This work proposes two solution approaches to the model with

the variable uncertainty set. Unlike most multistage models
that assume a constant uncertainty set, we recognize the need
to model a variable uncertainty set that is determined by the
renewable installation capacity. This introduces challenges in
solving the model as the uncertainty set is no longer fixed. To
address this, we employ a surrogate affine policy-based solution
method and implicit decision-based solution method. Both
methods allow us to effectively handle the variable uncertainty
set and make informed decisions regarding the renewable
installation capacity. As a result of the two solution approaches,
we obtain closed-form re-dispatch strategies and safe ranges
of re-dispatch strategies, respectively. These strategies provide
valuable insights into how to respond to uncertain renewable
generation, ensuring a reliable and efficient operation of the
HVDC tie-line system.
• We conduct comprehensive studies with a real-world case,

offering an in-depth analysis and discussion of an inter-
regional power system within China. It shows potential to
offer valuable insights into inter-regional renewable energy
accommodation.

The rest of this paper is organized as follows: Section
II introduces the multistage HVDC model. Section III
presents the proposed solution approach. Case studies
are provided in Section IV. Section V concludes this
paper.

2 Problem formulation

In this section, we first present the deterministic HVDC-
connected two-area system planning-operation model. To place
emphasis on the HVDC tie-line, we streamline the models for
both the sending and receiving ends. The sending-end grid
comprises thermal power plants, wind and PV farms, and storage.
Meanwhile, the receiving end incorporates storage, loads, and
demand response. Planning and operation decisions are determined
in the model simultaneously. The planning decision includes the
renewable installation capacity, storage capacity, and medium-
term HVDC tie-line power contract. The operation decision
involves HVDC tie-line power scheduling, thermal unit dispatch,
renewable energy output, storage SOC, and load shedding. Then,
we present the multistage optimization model to guarantee
the solution non-anticipativity and robustness. Recourse actions
are modeled in the multistage model to accommodate the
uncertainty.

2.1 Deterministic HVDC-connected
two-area system planning-operation
model

In the proposedHVDCplanning-operationmodel, the objective
is to maximize the installation capacity of renewable energy and
minimize investment and operation costs. Let ω denote the weight
factor that could be any value between 0 and 1. Then, the objective
function is formulated as

min (1−ω){Fc (Cpv,Cw,Csto) + ∑
t∈T
[Fgt (p

g
t)

+Fnt (p
n
t ) + F

l
t (p

ls
t )]}−ω(C

pv +Cw) . (1)

It is subject to

− κhvdct Rhvdc ≤ phvdct − p
hvdc
t−1 ≤ κtR

hvdc,

κhvdct ∈ {0,1} ,∀t ∈ T , (2)

phvdc ≤ phvdct ≤ p̄
hvdc,∀t ∈ T , (3)

t+Thvdc

∑
t

κhvdct ≤ 1,∀t ∈ T , (4)

∑
t∈T

κhvdct ≤ X
hvdc, (5)

∑
t∈T

phvdct Δt = Qhvdc, (6)

βgCg ≤ pgt ≤ C
g,∀t ∈ T , (7)

−RgΔt ≤ pgt − p
g
t−1 ≤ R

gΔt,∀t ∈ T , (8)

p f ,pvt + p
f ,w
t + p

s,dis
t − p

s,ch
t + p

g
t = p

hvdc
t ,∀t ∈ T , (9)

Est+1 = E
s
t + (μ

s,chps,cht − p
s,dis
t /μ

s,dis)Δt,∀t ∈ T , (10)

(1− αs,sto)Cs,sto ≤ Est ≤ C
s,sto,∀t ∈ T , (11)

0 ≤ ps,cht ≤ η
s,chCs,sto,∀t ∈ T , (12)

0 ≤ ps,dist ≤ η
s,disCs,sto,∀t ∈ T , (13)

Es0 = E
s
T, (14)

p f ,pvt = k
f ,pv
t Cpv,∀t ∈ T , (15)

p f ,wt = k
f ,w
t Cw,∀t ∈ T , (16)

pr,dist − p
r,ch
t + p

hvdc
t + p

n
t = p

l
t − p

ls
t ,∀t ∈ T , (17)

pn
t
≤ pnt ≤ p̄

n
t ,∀t ∈ T , (18)

−RnΔt ≤ pnt − p
n
t−1 ≤ R

nΔt,∀t ∈ T , (19)
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FIGURE 1
Illustrative intersection of sending- and receiving-end supply curves in
an inter-regional grid without network congestion. The intersection is
the energy price–quantity pair without considering other constraints.

Ert+1 = E
r
t + (μ

r,chpr,cht − p
r,dis
t /μ

r,dis)Δt,∀t ∈ T , (20)

0 ≤ pr,cht ≤ η
r,chCr,sto,∀t ∈ T , (21)

0 ≤ pr,dist ≤ η
r,disCr,sto,∀t ∈ T , (22)

(1− αr,sto)Cr,sto ≤ Ert ≤ C
r,sto,∀t ∈ T , (23)

Er0 = E
r
T, (24)

0 ≤ plst ≤ γ
lsplt,∀t ∈ T . (25)

Eqs 2–6 are operation constraints of the HVDC tie-line.
Specifically, Eq. 2 represents the ramping limits of HVDC tie-
line power. Eq. 3 denotes the lower and upper limits of HVDC
tie-line power. The minimum duration time for HVDC tie-line
power is modeled in Eq. 4. Eq. 5 represents the maximal adjustment
constraint of HVDC tie-line power each day. Eq. 6 shows that the
total energy transferred by the HVDC tie-line is determined by the
cross-border trading contract. It is worthmentioning that the energy
transferred by HVDC is formulated in this model, following the
planning practice.The transferred energy between regions is affected
by many factors. Among them is the energy cost difference. Figure 1
illustratively depicts an intersection of two supply curves in an
inter-regional grid. Without considering the renewable installation
capacity and other constraints, the intersection is the optimal point,
which yields the resulting energy quantity to be inter-regional
transferred.

Eqs 7–16 denote sending-end constraints. Specifically, Eq. 7
stands for the lower and upper bounds of the aggregated thermal
unit output. Eq. 8 represents the ramp-up/ramp-down limit of
the aggregated thermal unit. Eq. 9 represents the power balance
equation. Eqs 10 and 11 denote the SOC change and lower/upper
limit of the SOC level of the storage, respectively. Charging and
discharging power of storage are modeled in Eqs 12 and 13,
respectively. Eq. 14 shows that SOC at the last time period equals
to its initial level. Eqs 15 and 16 define the scheduled outputs of PV
and wind farm, respectively.

Eqs 17–25 denote receiving-end constraints. Specifically, Eq. 17
represents the power balance equation. Eq. 18 stands for the lower
and upper bounds of the simplified unit. Eq. 19 shows the ramp-
up/ramp-down limit of the simplified unit. Eqs 20–24 denote storage
constraints, which are similar to those in the sending end. Eq. 25
represents the upper bound of load shedding.

2.2 Multistage optimization model with the
variable uncertainty set

2.2.1 Uncertainty modeling
In this study, the deviations from renewable forecast output are

considered an uncertainty.Without loss of generality, an uncertainty
is assumed to follow Gaussian distribution with a mean value of 0
and variance of σ. Then, the materialized renewable generation is
defined as

p̂vt = p
f ,v
t + ϵ

v
t , ϵ

v
t ∼ N(0,σ

v2),∀t ∈ T ,∀v ∈ {pv,w}. (26)

Generally, the renewable output is proportional to its
capacity. Hence, the confidence interval of ϵvt can be denoted as
[−klow,vt Cv,kup,vt Cv], given a certain confidence level. Traditionally,
the uncertainty is usuallymodeled as a box set with a fixed boundary
in the multistage model (Lorca and Sun, 2017; Zhai et al., 2017;
Zhou et al., 2021). However, the installation capacity of renewables
is to be determined in this study, resulting in a non-constant
uncertainty set. Thus, we formulate the variable uncertainty set
(Cartesian product):

U(u) = U1(u1) ×U2(u2) ×…×UT(uT), (27)

whereUt(ut) is a polyhedral convex set of uncertainty at time t.Ut(ut)
can be formulated as a box set with the variable boundary,

Ut (ut) ≜ {(ϵ
pv
t , ϵ

w
t )

T:− ulow,vt ≤ ϵ
v
t ≤ u

up,v
t ;v ∈ {pv,w}} , (28)

which denotes the range of uncertainty that the inter-regional
flexibility is capable of accommodating. Ut(ut) can also be called
an optimal uncertainty range (OUR). It is related to renewable
installation capacity, and we formulate constraints as follows:

uup,vt ≥ k
up,v
t Cv,∀t ∈ T ,∀v ∈ {pv,w} , (29)

ulow,vt ≥ k
low,v
t Cv,∀t ∈ T ,∀v ∈ {pv,w} , (30)

which guarantee that uncertainty in the confidence interval can
always be accommodated inOUR. Figure 2 shows the comparison of
the uncertainty confidence interval, OUR, and installation capacity
of renewable generation.

2.2.2 Uncertainty accommodation
The recourse actions of flexible resources can be formulated as

[p̂gt , p̂
A,ch
t , p̂

A,dis
t , p̂

hvdc
t , p̂

ls
t ]

T

= [pgt ,p
A,ch
t ,p

A,dis
t ,p

hvdc
t ,p

ls
t ]

T + yt (ϵ[t]) ,∀t ∈ T ,∀ϵt ∈ Ut (ut) ,

∀A ∈ {s, r} , (31)

which respect constraints (2–25). ϵ[t] represents the uncertainty
vector and ϵ[t] = {ϵ1, ϵ2, …, ϵt}. yt (ϵ[t]) is the recourse function that
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FIGURE 2
Comparison of the uncertainty confidence interval, optimal
uncertainty range (OUR), and installation capacity of renewable
generation. OUR is the uncertainty range that the inter-regional
flexibility can accommodate, and the confidence interval of
generation uncertainty always falls within OUR. The harnessed
renewable energy, such as wind, may reach the maximal level,
regardless of installation capacity.

maps uncertainty to re-dispatch decisions. Unlike the two-stage
robust-based and scenario-based method, the proposed recourse
actions (31) can guarantee the non-anticipativity and robustness of
the solution simultaneously.

2.2.3 Multistage optimization model
With aforementioned equations, the multistage optimization

model can be formulated as

(P)min (1−ω){Fc (Cpv,Cw,Csto)

+ ∑
t∈T
[Fgt (p

g
t) + F

n
t (p

n
t ) + F

l
t (p

ls
t )]}−ω(C

pv +Cw)

s.t. (4) − (5) , (18) − (19) , (26) , (29) − (31) ,

− κhvdct Rhvdc ≤ p̂hvdct − p̂
hvdc
t−1 ≤ κ

hvdc
t Rhvdc,∀t ∈ T ,

(32)

phvdc ≤ p̂hvdct ≤ p̄
hvdc,∀t ∈ T , (33)

∑
t∈T

p̂hvdct Δt = Qhvdc, (34)

p̂pvt + p̂
w
t + p̂

s,dis
t − p̂

s,ch
t + p̂

g
t = p̂

hvdc
t ,∀t ∈ T , (35)

(1− αA,sto)CA,sto ≤
t

∑
τ=1
(μA,chp̂A,chτ − p̂

A,dis
τ /μ

A,dis)

+EA0 ≤ C
A,sto,∀t ∈ T ,∀A ∈ {s, r} , (36)

0 ≤ p̂A,cht ≤ η
A,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (37)

0 ≤ p̂A,dist ≤ η
A,disCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (38)

∑
t∈T
(μA,chp̂A,cht − p̂

A,dis
t /μ

A,dis)Δt = 0,∀A ∈ {s, r} , (39)

βgCg ≤ p̂gt ≤ C
g,∀t ∈ T , (40)

−RgΔt ≤ p̂gt − p̂
g
t−1 ≤ R

gΔt,∀t ∈ T , (41)

p̂r,dist − p̂
r,ch
t + p̂

hvdc
t + p

n
t = p

l
t − p̂

ls
t ,∀t ∈ T , (42)

0 ≤ p̂lst ≤ γ
lsplt,∀t ∈ T . (43)

The problem (P) is a highly non-convex optimization problem.
First, the model has plenty of infinite constraints due to uncertainty.
Second, the recourse actions are non-linear and non-convex.
Moreover, the model has a variable uncertainty set that is
relevant to the renewable installation capacity. To address these
difficulties, we propose two tractable methods in the following
section.

3 Solution approach

3.1 Surrogate affine approximation

In this section, affine policies are adopted to implement the
recourse actions. Re-dispatch decisions of the aggregated unit,
HVDC, load shedding, and storages are functions of renewable
realizations. We define the recourse actions as

yt (ϵ[t]) = Gtϵ[t],∀t ∈ T ,∀ϵt ∈ Ut(ut), (44)

where Gt is the matrix of affine policy. Following (31) and (44), the
problem (P) can be rewritten into a compact form as follows:

(AP−P) min
x,u,G

cTx, (45)

s.t. Ax +Eu ≤ b, (46)

Kx + Lϵ +MGϵ ≤ d,∀ϵ ∈ U(u), (47)

Fx +Hϵ + JGϵ = h,∀ϵ ∈ U(u), (48)

where x represents scheduled variables including tie-line power
and adjustment of HVDC, output of the aggregated unit, capacity
and output of renewables and storages, purchased power, and load
shedding. The variable u denotes the OUR bound of renewables.
G represents the affine policy matrix. Eq. 45 denotes the objective
function (1). Eq. 46 denotes constraints (4)–(5), (18)–(19), and
(29)–(30). Eq. 47 denotes inequality inter-regional grid constraints
with ϵ. Equality inter-regional grid constraints with ϵ are represented
by (48).

Although the affine policy reduces the model complexity, (AP-
P) is still computationally intractable due to the variable bound
of uncertainty set in Eqs 47 and 48. To deal with this difficulty,
we employ SAA (Ye, 2018) by introducing a set of surrogate
variables

0 ≤ δLB ≤ 1, 0 ≤ δUB ≤ 1, (49)
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and surrogate affine policy

Ĝ = G [−ULB,UUB] ,∀t, (50)

where ULB = diag(ulow) and UUB = diag(uup). Following strong
duality, Eq. 47 is recast as

Kx +π ⋅ 1 ≤ d, (51)

MĜ + L[−ULB,UUB] ≤ π, (52)

π ≥ 0, (53)

where π is a matrix of non-negative multipliers. The recourse action
in Eq. 44 can be rewritten as

Gϵ=G[−ULB,UUB][[

[

δLB

δUB
]]

]

=Ĝ[[

[

δLB

δUB
]]

]

. (54)

Following the recourse action (54), Eq. 48 is equivalent to the
following equations:

Fx = h, (55)

H[−ULB,UUB] + JĜ = 0. (56)

With aforementioned constraints, the SAA model is formulated
as

(SAA−P) min
x,u,Ĝ,π

cTx, (57)

s.t. (46), (51) − (53), (55) − (56). (58)

(SAA-P) is an MILP problem and can be solved using the off-
the-shelf solvers.

3.2 Implicit decision method

IDM uses carefully selected scenarios and predefined (i.e., non-
anticipative) constraints to reformulate the multistage model, while
guaranteeing solution non-anticipativity and robustness. Based on
Zhai et al. (2017), the selected scenarios include three categories:
base scenario (BS), selective vertex scenarios (SVS), and extreme
ramping scenarios (ERS). BS represents the forecast scenario of
the renewable. SVS denotes vertex scenarios of the uncertainty set.
ERS comprises two scenarios that capture extreme fluctuations in
renewable generation.

Non-anticipativity and robustness of thermal output, storage
charging/discharging power and HVDC tie-line power shall be
guaranteed. For thermal units, we use pg,min

t and pg,max
t to formulate

non-anticipativity constraints (NCs) as in Eqs 59–61. For storage,
EA,min
t and EA,max

t are introduced to formulate the NCs, as shown
in Eqs 62–64. Furthermore, we develop phvdc,max

t and phvdc,min
t to

constitute the NCs of HVDC tie-line power, as shown in Eqs 65–67.

βCg ≤ pg,min
t ≤ p

g
t,i ≤ p

g,max
t ≤ C

g,∀t ∈ T ,∀i ∈ I , (59)

−RgΔt ≤ pg,max
t − p

g,min
t−1 ≤ R

gΔt,∀t ∈ T , (60)

−RgΔt ≤ pg,min
t − p

g,max
t−1 ≤ R

gΔt,∀t ∈ T , (61)

(1− αA)CA,sto ≤ EA,min
t ≤ E

A
t,i ≤ E

A,max
t ≤ CA,sto,∀t ∈ T ,

∀i ∈ I ,∀A ∈ {s, r} , (62)

− ηA,disCA,sto/μA,dis ≤ (EA,max
t −EA,min

t−1 )/

Δt ≤ ηA,chμA,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (63)

− ηA,disCA,sto/μA,dis ≤ (EA,min
t −E

A,max
t−1 )/

Δt ≤ ηA,chμA,chCA,sto,∀t ∈ T ,∀A ∈ {s, r} , (64)

phvdc ≤ phvdc,min
t ≤ phvdct,i ≤ p

hvdc,max
t ≤ p̄hvdc,∀t ∈ T ,∀i ∈ I , (65)

− κhvdct Rhvdc − (1− κhvdct ) p̄
hvdc ≤ phvdc,min

t

− phvdc,max
t−1 ≤ κhvdct Rhvdc + (1− vt) p̄

hvdc,∀t ∈ T , (66)

− κhvdct Rhvdc − (1− κhvdct ) p̄
hvdc ≤ phvdc,max

t

− phvdc,min
t−1 ≤ κhvdct Rdc + (1− κhvdct ) .p̄

hvdc,∀t ∈ T . (67)

Based on BS, SVS, ERS, and the proposed NCs, the multistage
model of HVDC with IDM is established as

min−ω(Cpv +Cw) + (1−ω)∑
i∈I

pi{F
c (Cw,Cpv,Csto)

+ ∑
t∈T
[Fgt (p

g
t,i) + F

n
t (p

n
t ) + F

l
t (p

ls
t,i)]}, (68)

s.t. (4) − (5), (18) − (19), (59) − (67),

∑
t∈T

phvdct,i Δt = Qhvdc,∀i ∈ I , (69)

ppvt,i + p
w
t,i + p

s,dis
t,i − p

s,ch
t,i + p

g
t,i = p

hvdc
t,i ,∀t ∈ T ,∀i ∈ I , (70)

pr,dist,i − p
r,ch
t,i + p

hvdc
t,i + p

n
t = p

l
t − p

ls
t,i,∀t ∈ T ,∀i ∈ I , (71)

EAt+1,i = E
A
t,i + (μ

A,chpA,cht,i

−pA,dist,i /μ
A,dis)Δt,∀t ∈ T ,∀i ∈ I ,∀A ∈ {s, r}, (72)

EA0,i = E
A
T,i,∀i ∈ I ,∀A ∈ {s, r}, (73)

0 ≤ plst,i ≤ γ
lsplt,∀t ∈ T ,∀i ∈ I . (74)

4 Case study

We perform the case studies based on a real-world two-area
interconnected system in China. Load and renewable forecast
profiles are obtained from real historical data on two provinces. The
existing daily trading electricity of HVDC tie-line is 112.8 GWh,
150.6 GWh, 112.8 GWh, and 126.6 GWh from spring to winter.
Figure 3 shows the existing scheduled profile of the HVDC tie-line
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FIGURE 3
Existing scheduled HVDC tie-line profiles for each season.

TABLE 1 Major techno-economical parameters.

Parameter Value Parameter Value Parameter Value Parameter Value

phvdc 0 GW Cg 6 GW ηA,ch 100% Fc(Cpv) $534/kW

p̄hvdc 8 GW βg 20% ηA,dis 100% Fc(Cw) $877/kW

Rhvdc 4 GW/h Rg 2 GW/h αA,sto 90% Fgt (p
g
t ) $0.04/kWh

Xhvdc 4 μA,ch 25%/h γls 5% Fnt (p
n
t ) $0.06/kWh

Thvdc 3 h μA,dis 25%/h Fc(Csto) $385/kWh Flt(p
ls
t ) $0.10/kWh

in various seasons. The planning horizon is considered 10 years.
We use four seasonal typical days for the planning, and the time
resolution is set as 2 h.Themajor techno-economical parameters are
presented in Table 1. The simulations are executed using MATLAB
2021b and Gurobi 9.5 in a server with Intel Xeon Gold 6140
(2.30 GHz).

4.1 Effectiveness of the proposed model

4.1.1 Inter-regional flexibility
The following HVDC operation modes are compared to

demonstrate the effectiveness of the proposed model for unlocking
inter-regional flexibility:

• Mode 1: HVDC tie-line power is fixed based on the current
practice in the industry.
• Mode 2: HVDC tie-line power is optimized without a recourse

action.
• Mode 3: HVDC tie-line power is optimized with a recourse

action.

For a fair comparison, all three modes utilize an identical amount
of energy transferred by HVDC. IDM is used to solve the
proposed model in this case. The second column of Table 2

TABLE 2 Maximum installation capacity of renewable generation and
minimum 10-year cost obtained by the proposedmodel under different
operationmodes of the HVDC tie-line.

ω = 1 ω = 0

Renewable capacity (GW) Cost (×109$)

Mode 1 7.04 634.034

Mode 2 8.24 628.435

Mode 3 9.81 628.074

shows the maximum installation capacity of renewable generation
obtained by the proposed model with ω = 1. Mode 3 achieves
the highest renewable installation capacity, amounting to 9.81 GW.
This is primarily due to mode 3’s ability to unlock the inter-
regional flexibility. Recourse actions of HVDC tie-line can be taken
when uncertainty is materialized. Then, flexible resources in the
receiving end are adjusted to accommodate power fluctuations
transmitted by the HVDC tie-line. This utilization of inter-regional
flexibility effectively mitigates the impact of uncertainty; thus,
more renewable resources can be accommodated. In mode 2, the
renewable installation capacity stands at 8.24 GW, representing a
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TABLE 3 Resulting 10-year transferred energy quantity and cost under different cross-border contracts.

Cost (×109$) Q (TWh)

Sending-end grid Receiving-end grid Total

Current industry practice 17.445 610.715 628.160 458.80

Proposed approach 19.971 606.240 626.211 532.88

TABLE 4 Planning results with different methods.

Method ω = 0 ω = 1

Cost (×109$) Renewable curtailed (%) Renewable capacity (GW) Renewable curtailed (%)

IDM 626.173 0 10.51 0

SAA 626.211 0 10.37 0

SM 623.579 9.2 12.82 6.2

TABLE 5 Cases for sensitivity analysis with different parameters.

Case 1 Case 2 Case 3 Case 4 Case 5

η 100%/h 50%/h 33%/h 25%/h 20%/h

Rg 100%/h 50%/h 33%/h 25%/h 20%/h

Rdc 100%/h 50%/h 33%/h 25%/h 20%/h

decrease of 1.57 GW in comparison to mode 3 (1.57 = 9.81–8.24).
This reduction can be attributed to mode 2’s inability to leverage
inter-regional flexibility without a recourse action. However, it is
worth noting that mode 2 outperforms mode 1, primarily due
to its optimized HVDC tie-line power. These results demonstrate
that the proposed model can unlock inter-regional flexibility, thus
enhancing the penetration of renewable energy. The third column
of Table 2 shows the minimum 10-year cost obtained by the
proposed model with ω = 0. Mode 3 has the lowest 10-year cost,
amounting to $628.074 billion, while mode 1 has the highest 10-
year cost, reaching $634.034 billion. This observation highlights
the cost-saving potential achieved through unlocking inter-regional
flexibility.

4.1.2 Optimizing the contracted energy
To demonstrate the benefit of optimizing contracted energy

transferred by HVDC, the results under different cross-border
contracts are compared. SAA is employed to solve the proposed
model. We set ω = 0. Table 3 shows the resulting 10-year cost
and transferred energy quantity. Column “Q” presents the
energy transferred by HVDC. It is observed that 458.8 TWh
energy is transferred, according to current industry practice.
In contrast, the proposed approach has 532.88 TWh energy
transferred by HVDC. The column “Total” presents the total cost
in two approaches. The proposed approach saves $1.949 billion

(i.e. 1.949 = 628.16–626.211), 10-year cost, compared with the
current practice. The data indicate that the proposed approach
improves HVDC utilization and also performs better in economic
efficiency.

4.1.3 All-scenario-feasible verification
In this section, we compare IDM, the SAA model, and

scenario-based model (SM) (Wang et al., 2019a). Both IDM and
SAA can guarantee solution non-anticipativity and robustness
simultaneously, while SM does not. Furthermore, SM is performed
based on 100 scenarios generated by Monte Carlo sampling.

Table 4 shows the testing results. In this case, we use 500 out-
of-sample scenarios to verify the solution feasibility. “Renewable
curtailed” denotes the percentage of scenarios where curtailment
of renewable energy occurs. When ω = 0, SM has the lowest
cost of $624 billion. However, the renewable curtailment occurs
in 9.2% scenarios for SM. In contrast, SAA does not have any
curtailment scenario. This suggests that SM tends to be over-
optimistic. Consequently, the planning outcome might become
infeasible when restrictions on renewable curtailment are in place,
resulting in substantial economic losses during actual operations.
Meanwhile, IDM-based results have the similar cost to those based
on SAA and also have zero renewable curtailment. Similar trends
can be found in the results with ω = 1.

4.2 Comparison of solution approaches

In this paper, we find that the flexibility parameters are the
dominant factors affecting the feasible region of SAA and IDM. NCs
in the IDM shrink the safe region to guarantee solution robustness
and non-anticipativity. SAA has no pre-specified constraints or
bounds for re-dispatch. However, the surrogate affine policy is used
as recourse actions in SAA, which may somewhat compromise the
optimality of re-dispatch. Therefore, it is difficult to judge the two
approaches directly.Thus,we performa sensitivity study of flexibility
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FIGURE 4
Maximal renewable installation capacity with various flexibilities. The
renewable installation capacity decreases with the reducing flexibility.
SAA surpasses IDM after case 3 in terms of capacity.

FIGURE 5
Minimum 10-year cost solved by IDM and SAA under different cases.
(A) Cost of two methods. (B) Cost of SAA minus the cost of IDM.

parameters to compare the solution approaches. The parameters
used are shown in Table 5, where η = ηA,c = ηA,d. From case 1
to case 5, we decrease the charging/discharging capacity, ramping
capability of unit, and HVDC. Figure 4 presents the results attained
by SAA and IDM with ω = 1. Both curves show that the maximum
installation capacity decreases with the reducing ramping limits or
efficiency. When the flexibility parameters are all equal to 100%/h
(i.e., Case 1), the installation capacities attained by SAA and IDM
are 10.4 GW and 10.67 GW, respectively. When they decrease to
20%/h, the result solved by SAA and IDM reduced by 14% and
24%, respectively. It indicates that IDM ismore sensitive to flexibility
parameters than SAA. This is mainly because the reduction in
flexibility shrinks the safe region more in IDM and leads to more
conservative results. Figure 5 shows the results obtained by the
proposed methods with ω = 0 in mode 3. Similarly, IDM obtains a
better result than SAA at the initial stage, and SAA surpasses IDM
when the flexibility parameters are less than 33%/h.

The solution time of SAA is approximately 9,000 s, while the
solution time of IDM is less than 1 s. Thus, IDM has better
computation performers. However, it is worth mentioning that
an explicit re-dispatch policy can be provided by SAA, while the

IDM has to solve an extra economic dispatch (ED) problem in
the re-dispatch progress. The re-dispatch policy is an analogy to
the participation coefficient in AGC, except that it is optimally
determined. Flexible resources can be re-dispatched based on a
closed-form solution when the uncertainty is materialized.

5 Conclusion

This paper introduces a novel multistage HVDC tie-line
planning-operation model that incorporates a variable uncertainty
set. The model considers the uncertain nature of renewable
generation and incorporates a multistage re-dispatch strategy to
ensure solution feasibility in practice. To solve the multistage
model, we propose a surrogate affine-based method and implicit
decision-based method, which effectively handle the variable
uncertainty set. To validate the effectiveness of the proposed
approaches, we conducted simulation cases using a real-world two-
area system. Numerical tests show that the proposed approaches
can unlock inter-regional flexibility and help increase renewable
accommodation. In addition, we also find that the flexibility
parameters are the dominant factors affecting the feasible region of
the solution approaches. SAA outperforms IDM in a system with
low flexibility, while IDM shows better performance in a systemwith
high flexibility. IDM has better computation efficiency than SAA,
while SAA can provide an extra closed-form re-dispatch policy.
The closed-form re-dispatch policy allows for fast calculations and
decision-making, ensuring that adjustments to the HVDC tie-line
system can bemade promptly and effectively. Planners and operators
can easily determine the appropriate actions to take in real time
based on the uncertainty of renewable generation. Utility can choose
the proposed methods under different realistic conditions.

In future studies, we plan to extend the current model to include
more HVDC tie-lines, enabling a more comprehensive analysis
of the system. Additionally, we aim to improve the computation
efficiency of the proposed approaches to make them more practical
and scalable for larger-scale power systems.
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Nomenclature

Sets and indices

T , t Set/index of time periods

I, i Set/index of scenarios

M,m Set/index of units

U(u) Set of uncertainty, a function of flexibility u

Variables

phvdct Scheduled HVDC tie-line power at time t

κhvdct Binary variable of HVDC tie-line power, equaling 1 if adjusted
at time t, otherwise 0

pgt Scheduled output of the aggregated thermal unit at time t

pf ,pvt ,p
f ,w
t Forecast output of PV/wind farm at time t

ps,cht ,p
s,dis
t Scheduled charging/discharging power of storage in the

sending-end grid at time t

pr,cht ,p
r,dis
t Scheduled charging/discharging power of storage in the

receiving-end grid at time t

Es
t ,E

r
t Scheduled energy level of storage in the sending/receiving-end

grid at time t

Cs,sto, Cr,sto Capacity of storage in the sending/receiving-end grid

Cpv, Cw Capacity of PV/wind farm

pnt Power from other sources in the receiving-end grid at time t

plst Scheduled load shedding at time t

uup,vt ,u
low,v
t Upper/lower OUR bound of renewable generation v at time t

p̂gt Re-dispatch of the aggregated unit at time t

p̂A,cht , P̂
A,dis
t Re-dispatch of storage charging/discharging power of area A at

time t

p̂hvdct Re-dispatch of HVDC tie-line power at time t

p̂lst Re-dispatch of load shedding at time t

pgt,i Aggregated unit output in scenario i at time t

EA
t,i Storage energy level of area A in scenario i at time t

pA,cht,i ,p
A,dis
t,i Storage charging/discharging power of area A in scenario i at

time t

phvdct,i HVDC tie-line power in scenario i at time t

ppvt,i ,p
w
t,i PV/wind farm output in scenario i at time t

plst,i Load shedding in scenario i at time t

phvdc,min
t ,phvdc,max

t Safe range of HVDC tie-line power at time t

EA,min
t ,E

A,max
t Safe range of the storage energy level of area A at time t

pg ,min,
t pg ,max

t Safe range of the aggregated unit at time

Qhvdc Scheduled energy quantity of HVDC tie-line t

π Non-negative multiplier

Ĝ Surrogate affine policy

Parameters

phvdc, p̄hvdc Lower/upper bound of HVDC tie-line power

Xhvdc Maximal number of HVDC tie-line adjustment

Thvdc Minimum duration time of HVDC tie-line

Rhvdc Ramping limit of HVDC tie-line power

Cg Capacity of the aggregated thermal unit

βg Minimum output level of the aggregated unit

Rg Ramping limit of the aggregated unit

Rn Ramping limit of the simplified unit in the receiving end

plt Load demand in the receiving-end grid at time t

μA,ch, μA,dis Storage charging/discharging efficiency of area A

ηA,ch, ηA,dis Coefficient of storage charging/discharging bound of area A

αA,sto Storage depth of discharge of area A

kf ,pv,t kf ,wt Forecast expectation coefficient of PV/wind farm

klow,pvt ,k
up,pv
t Lower/upper bound for the confidence interval of the PV farm

at time t

klow,wt ,k
up,w
t Lower/upper bound for the confidence interval of the wind farm

at time t

γls Load shedding bound

pn, p̄n Lower/upper bound of the simplified unit in the receiving end

pi Weighting factor of scenario i

ω Weighting factor of objective function

Fc(⋅) Investment cost function

Fg
t (⋅),F

n
t (⋅),F

l
t(⋅) Cost function of fuel/purchased power/load shedding at time t
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The microservice-based smart grid service (SGS) organization and the
heterogeneous multi-cores-based computing resource supply are the
development direction of edge computing in smart grid with high penetration
of renewable energy sources and high market-oriented. However, their
application also challenges the service schedule for edge computing
apparatus (ECA), the physical carrier of edge computing. In the traditional
scheduling strategy of SGS, an SGS usually corresponds to an independent
application or component, and the heterogeneous multi-core computing
environment is also not considered, making it difficult to cope with the above
challenges. In this paper, we propose an SGS scheduling strategy for the ECA.
Specifically, we first present an SGS scheduling framework of ECA and give the
essential element ofmeeting SGS scheduling. Then, considering the deadline and
importance attributes of the SGS, amicroservice scheduling prioritizingmodule is
proposed. On this basis, the inset-based method is used to allocate the
microservice task to the heterogeneous multi-cores to utilize computing
resources and reduce the service response time efficiently. Furthermore, we
design the scheduling unit dividing module to balance the delay requirement
between the service with early arrival time and the servicewith high importance in
high concurrency scenarios. An emergencymechanism (EM) is also presented for
the timely completion of urgent SGSs. Finally, the effectiveness of the proposed
service scheduling strategy is verified in a typical SGS scenario in the smart
distribution transformer area.

KEYWORDS

smart grid services, edge computing apparatus, service scheduling, microservice,
heterogeneous multi-cores

1 Introduction

With the widespread integration of renewable energy sources and the increasing
marketization of the smart grid, the number and variety of smart grid service (SGS) at
the edge of the smart grid, such as the smart distribution transformer area—typically
functioning as the smallest unit of power supply management (Cen et al., 2022; Xiao, H.
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et al., 2023)—are expanding. These services encompass a diverse
range, including Vehicle-to-Grid (V2G) (Chukwu and Mahajan,
2014; Chamola et al., 2020; Peng and Niu, 2023), micro-grid energy
management and control (Mondal et al., 2022; Wu et al., 2022; Xiao
et al., 2023), and demand response at the user side (Bachoumis et al.,
2022; Jia et al., 2022). New demands are subsequently placed on edge
computing apparatus (ECA), a key computing node at the edge side
of the smart grid supporting the processing of the SGS (Li et al.,
2021; 2022). On the one hand, these large numbers of SGSs require
more efficient and powerful computing capabilities for the edge
computing node (Li et al., 2022). On the other hand, the services
deployed on ECA require a flexible service organization tomeet their
needs for flexibility and rapid iteration (Zhou et al., 2021). The
heterogeneous multi-cores-based computing resource supply and
microservice-based service organization can meet the
abovementioned requirements, hence emerging as the
development direction of ECA in smart grids (Zhang et al., 2019;
Jiang et al., 2020).

In the ECA, an SGS consists of multiple independent microservices
and can be realized by collaborating these microservices (Lyu et al.,
2020; Yin et al., 2022). These microservices have different
computational characteristics, such as matrix computation
operations, digital signal processing operations, power message
encapsulation, and encryption and parsing operations. During the
processing, microservices with different computational characteristics
have different computing speeds on different cores of the ECA (Lan
et al., 2022). For example, the microservice task for message parsing is

processed much faster on a specially customized FPGA core than on a
general-purpose core such as a CPU. Besides, some microservices
cannot execute in certain cores due to processing core instruction
set dependencies. Subsequently, a key question arises regarding how the
ECA can schedule the SGS task to different cores for better scheduling
performance. However, very little literature in the smart grid area carries
out a study of the above issues. The traditional smart grid apparatus
with the function of edge computing, such as TTU,DTU, and other IED
(Intelligent Electronic Device), carries a solidified and limited number
of services, and the development and deployment of services is in the
form of individual applications (Wojtowicz et al., 2018). The service
scheduling is usually fixed during the development session for the
apparatus. Thus, it is difficult to be applied to the ECA.

From the mathematical form, SGSs scheduling for ECA belongs to
the problem of scheduling a set of microservices with dependencies in a
heterogeneous system, which is an NP-C problem (Sahni et al., 2021;
Roy et al., 2023). There are three general solutions: heuristic-based list
scheduling algorithms, random search-based intelligent algorithms, and
machine learning-based methods. Some effective heuristic-based list
scheduling algorithms have been proposed, such as HEFT (Topcuoglu,
Hariri, andMin-YouWu, 2002), PEFT (Arabnejad and Barbosa, 2014),
CPOP (Kelefouras and Djemame, 2022). For the random search-based
scheduling strategy, microservice scheduling is established as an
optimization problem that is solved using intelligent algorithms such
as the Genetic Algorithm (Rehman et al., 2019), Ant Colony Algorithm
(Gao et al., 2019), and Particle SwarmAlgorithm (Rodriguez andBuyya,
2014). In recent years, with the rapid development and application of AI

FIGURE 1
The microservice scheduling framework for ECA.
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TABLE 1 Parameters of the SGSs.

Services (with its importance and
deadline)

Microsevices Execution time on each
core (milliseconds)

DAG structure
information

Plug-play service in the SDTA (importance = 5, deadline =
3,700 m)

Primary device registration
packet analysis

[100,120,20,∞] 0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Secondary device response
packet analysis

[50,120,50,∞]

SDTA mapping [300,400,∞,200]

Return the successful
registration packet

[50,100,25,∞]

Topology identification service in the SDTA (importance = 3,
deadline = 4,600 m)

Voltage pulse packet analysis [100,120,50,∞] 0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Voltage fluctuation similarity
calculation

[200,250,∞,100]

Voltage fluctuation association
calculation

[300,250,∞,150]

Topology relationship analysis [200,250,∞,∞]

Loop resistance supervision service in the SDTA
(importance = 4, deadline = 3,950 m)

Voltage packet analysis [100,120,50,∞] 0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Current packet analysis [100,120,50,∞]

Loop resistance matrix
calculation

[300,200,∞,100]

Operating condition evaluation [200,250,∞,∞]

Line loss analysis PIoT service in the SDTA (importance =
5 deadline = 6,700 m)

Line loss packet analysis [100,120,50,∞] 0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Load packet analysis [100,120,50,∞]

Stationary test [300,400,∞,100]

Granger test [300,400,∞,100]

Electricity-theft identification [150,300,∞,∞]

Grid-connection management of photovoltaic generation
service in the SDTA (importance = 1, deadline = 11,150 m)

Photovoltaic generation
capacity packet analysis

[100,120,∞,∞] 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Current packet analysis [100,120,∞,∞]

Voltage packet analysis [150,180,50,∞]

Current harmonic distortion
calculation

[150,180,50,∞]

Harmonic elimination device
control

[150,200,∞,∞]

Voltage deviation calculation [250,200,∞,130]

Reactive power compensation
control

[100,200,∞,∞]

Voltage fluctuation calculation [250,200,∞,130]

Battery storage control [150,200,∞,∞]

Photovoltaic generation access
control

[200,300,∞,∞]

Electric vehicle charging management service in SDTA
(importance = 2, deadline = 6,900 m)

Electricity price packet analysis [100,120,50,∞] 0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Electric vehicle charging packet

analysis
[100,120,50,∞]

Load packet analysis [100,120,50,∞]

Charging period optimization [600,800,∞,300]

Electric vehicle charging control [150,220,∞,∞]

(Continued on following page)
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technology, machine learning-based methods have also been applied to
the study of this problem, such as deep reinforcement learning (Gao and
Feng, 2022) and deep Q-learning (Kaur et al., 2022). The above
literature mainly addresses the service scheduling problem for
scientific workflow in distributed computing system environments,
such as grid and cloud computing environments. In these scenarios,
the service workflow is typically non-real-time tasks, and the type and
number of services to be scheduled are fixed. However, in the SGS
scheduling problem for the ECA, service requests arrive dynamically
and concurrently in real-time, and different SGSs have different
importance and quality of service requirements. In addition, the

state of service request may change with the operational state of the
smart grid and some needs to be finished before the deadline in
emergencies (Li et al., 2018).

In this paper, we propose an ECA-orientedmicroservice scheduling
strategy based on the inspiration of list scheduling to address the issues
above and fill the gap in ECA-related research fields. The main
contributions of this paper are summarized as follows:

(1) A services scheduling framework is proposed for the ECA in
the smart grid. The problem of service scheduling is divided
into two sub-problems: microservice prioritizing and core

TABLE 1 (Continued) Parameters of the SGSs.

Services (with its importance and
deadline)

Microsevices Execution time on each
core (milliseconds)

DAG structure
information

Price-based demand response aggregated service
(importance = 1, deadline = 4,150 m)

Load packet analysis [50,70,25,∞] 0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Real-time electricity price
packet analysis

[50,70,25,∞]

Time-of-use electricity price
packet analysis

[100,140,∞,∞]

Load forecast [100,40,∞,∞]

Elastic matrix calculation [150,50,∞,40]

Demand response calculation [150,200,∞,100]

Load control [50,120,∞,∞]

FIGURE 2
The illustration for multi-services integration.
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selection. Microservice prioritizing can determine the
scheduling order of microservices for meeting the
execution order constraints of microservices in a service.
Then, the core selection can allocate the microservice to a
proper core for execution. Two novel mechanisms, namely,
scheduling unit dividing mechanism and emergency
mechanism, are also integrated into the framework, where
the former is used to balance the delay requirement between
the service with early arrival time and the service with high
importance in high concurrency scenarios; and the latter is
responsible for the timely completion of urgent SGSs.

(2) A novel SGS scheduling strategy is proposed. The SGS
scheduling models are built, including the service and ECA
models. The SGS is represented by a directed acyclic graph
(DAG), and the ECA is modeled as a heterogeneous system with
multiple cores. We design a microservice scheduling prioritizing
module considering the SGS attributes of importance and
deadline to determine the microservices scheduling sequence.
Then, the insert policy is introduced to allocate the microservices
to heterogeneous cores of ECA. In addition, both scheduling unit
dividing and emergency solutions are developed and integrated
into the SGS scheduling algorithm.

(3) Extensive simulations-based performance evaluation is
conducted. Based on the ideas of solutions in existing works,
several benchmark solutions are developed for performance
comparison. Three metrics are used to evaluate the
scheduling performance, and the performance comparisons
are conducted in different levels of service concurrency. The
simulation results demonstrate that the proposed strategy is
effective and superior for SGS scheduling of ECA.
Furthermore, the influence analysis of the algorithm
parameter scheduling unit length (SUL) is also performed for
the parameter selection of the algorithm in practical applications.

The remainder of this article is organized as follows. Section 2
introduces the SGSs scheduling framework for ECA and outlines its
basic operation principle. Section 2 introduces the SGS scheduling
model for ECA, including the ECA and SGSmodels. Section 3 describes
the proposedmicroservice scheduling strategy and gives the algorithm’s
pseudo-code. Section 4 evaluates and analyzes the performance of the
proposed strategy. Section 5 concludes this article.

FIGURE 3
Effect of changing the number of concurrent requests (A) on M1, (B) on M2 for different strategy, and (C) on M3.

FIGURE 4
Effect of changing SUL on M1 and M2.

FIGURE 5
Effect of changing SUL on M1 for the SGSs with different
importance.
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2 The SGS scheduling framework
for ECA

Figure 1 shows the proposed SGS scheduling framework for the
ECA. As shown in Figure 1, the diagram is divided into two layers by
boxes. The upper layer shows the main components of the scheduling
framework, while the lower layer uses examples to illustrate the basic
workflow of the scheduling framework. The upper layer has three parts:
the service request queue, scheduler, and scheduling list. The services
request queue storages the service request information. The scheduling
list records the microservice sequence that a processing core needs to
execute. The scheduler allocates services to the processing cores for
execution according to a certain service strategy. There are several
modules in the scheduler box. The request queue monitoring module
(RQMM) collects request queue information, including queue length
and service arrival time, and passes it to the scheduling unit dividing
module (SUDM). The SUDM is responsible for dividing the service
requests into multiple fixed-length request subgroups based on the
arrival time of service, and a service request group is briefly denoted

as a scheduling unit (SU). Each service request within an SU is sorted
according to its importance, which is one of the attributes of the SGS.
The microservice scheduling prioritizing module (MSPM) calculates the
scheduling priority of eachmicroservice in an SU through amicroservice
prioritizing algorithm (such as Algorithm 1 mentioned in Section 4.1),
forming a microservice scheduling sequence. Then, based on a core
section algorithm (such as Algorithm 1 mentioned in Section 4.2), the
processing core selection module (PCSM) allocates each microservice to
a processing core in turn. The algorithm needs to obtain scheduling
queue information throughmodule 1.When the RQMMfinds an urgent
request, it activates the emergency mechanism module (EMM). The
ongoing normal service will be logged and paused at the time, and then
the urgent service will be executed based on a predefined service
scheduling scheme.

The lower layer illustrates the SGS scheduling process under
normal conditions on an ECA with two processing cores, and the
length of the SU is set to 2. The SGS is represented by DAG. The
service is successfully completed when all the microservices are
executed according to directed edge constraints.

3 Service scheduling model for ECA

In this section, we introduce the service scheduling model for
ECA, including the ECA and SGS models. In addition, an evaluation
metric model is also presented for service scheduling according to
ECA’s actual performance demand.

3.1 The ECA model

The ECA belongs to a heterogeneous multi-core system, which
integrates different types and numbers of processing cores and can be
modeled as a set P � p#1 p#2 . . . px

r . . .{ }, where the element px
r

denotes the number x of core type r (x, r∈ Z+). The cores with the same
type have the same workload for the same microservice task.
Conversely, the cores with different types have different workloads
for the same microservices task. Additionally, some cores may only be

FIGURE 6
Effect of changing SUL on M2 for the SGSs with different importance.

FIGURE 7
Performance comparison result.
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able to handle one or more specific microservices. Thus, the execution
time of the microservice on the core pr can be calculated by:

wj
i,r �

Lij,r

Cr
(1)

where Lij,r denotes the workload of microservice j of service i on the
core r. Cr represents the computation speed of core pr.

The processing cores are interconnected via an on-chip high-
speed bus. It can be assumed that the communication bandwidth
among the cores is the same, and any two processing cores can
communicate in both directions without contention (Roy et al.,
2023). The communication bandwidth between the cores can be
described by an adjacency matrix, and for an ECA with z cores:

Az �
a11 a12 ... a1z
a21 a22 ... a2n
..
. ..

.
1 ..

.

az1 az2 ... azz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

whereAz is a symmetric matrix whose diagonal elements are infinite,
and the non-diagonal elements agh represent the communication
rate between the core g and the core ph. Thus, the communication
time between microservice j executed in core pg and microservice k
executed in core ph is:

cjg,kh � dj,k

agh
(3)

where dj,k denotes the data volume transmitted from microservice j
to microservice k.

3.2 The SGS model

A set of SGSs in the SGSs request queue is denoted as S = {S1,S2,Sn},
and n is the concurrent number of SGSs. An SGS Si = {Ai, Di, Ti, Ii, Gi}
contains several basic information. Ai and Di represent the arrival time
and deadline of the Si; Ti represents the request state of service, which is
a binary value, where 0 and 1 represent normal and urgent states,
respectively; Ii denotes the importance of Si, which is given based on
expert experience. Gi is a DAG, Gi = (Vi, Ei), where V is the set of v
microservices, and E is the set of e edges between themicroservices. The
edge represents the data dependency between two microservices. The
non-entry node microservice may have one or more inputs and is
triggered to execute when all input data from the directly connected
nodes are available. The node in a DAGwith zero in-degree denotes the
entry microservice, and the node with zero out-degree denotes the exit
microservice. Suppose there are multiple exit microservices or entry
microservices for a service DAG. In that case, they can be connected
with zero time-weight edges to a single pseudo-exit task or a single entry
task with zero time-weight. The microservice j of the Si denotes v

j
i . In

addition, there are several scheduling attributes for each microservice.

(1) The average execution time. It is the average value of the execution
times required on different processor cores for amicroservice. The
average execution time of microservice vji can be calculated by:

wj
i �

∑p
r�1
wj

i,r

p
(4)

wherewj
i,r is the execution time of the microservice vji on the core pr,

and p is the number of processing cores of ECA.

(2) The average communication time. It is the average value of the
communication time betweenmicroservices on any two cores. The
average communication time ofmicroservice vji can be defined by:

cji,k �
dj
i,k∑p

r�1
∑p−1

s�r+1
Ar,s/ p2 − p( )/2( ) (5)

(3) The earliest execution start time (EST). The EST of
microservice vji in core pr is defined by:

EST vji , pr( ) � max
available vji , pr( ),

max
vki ∈pred v

j
i( ) EFT vki , pl( ) + ck,j,l,r( )⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ (6)

where available(vji , pr) represents the earliest time that the core pr
can execute vji . pred(vji ) denotes the set of predecessor
microservices for vji .

(4) The earliest execution finish time (EFT). The EFT of
microservice vji in core pr is defined by:

EFT vji , pr( ) � wj
i,r + EFT vji,r( ) (7)

3.3 Evaluation metric model

Generally, the average response time of services is a basic metric
for service scheduling, and it can evaluate the overall scheduling
performance. Aiming to the ECA in the smart grid, if these services
can be completed before the deadline, they can get a better effect on
the smart grid operation. Especially when the smart grid is in an
emergency or unhealthy state, some services must be completed
before the deadline to offer help for restoring normal operation as
soon as possible. Otherwise, it will lead to serious safety accidents
and economic losses. Thus, this study introduces the service meeting
deadlines rate (SMDA) for the performance evaluation, including
the SMDA of normal service and the SMDA of urgent service. The
above three metrics are abbreviated as M1, M2, and M3, and their
definitions are formulated as follows.

(1) M1 represents the average response time of services and can
be calculated by:

M1 � ∑n
i�1

tfinishi − tarrivali( )/n (8)

where n is the concurrent number of SGSs. tfinishi and tarrivali represent
the finished time and the arrival time of the SGS si, respectively.

(2) M2 represents the SMDA of normal service and can be
calculated by:

M2 � ∑
si∈S n

si⎛⎝ ⎞⎠/ S n| |

Ti � 0, tfinishi <Di

1, tfinishi i≥Di

{ (9)
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where S_n is the set of normal service requests,|S_n| is the number
the normal services.

(3) M3 represents the SMDA of urgent service and can be
calculated by:

M3 � ∑
si∈S urgent

si⎛⎝ ⎞⎠/ S urgent
∣∣∣∣ ∣∣∣∣

si � 0, tfinishi <Di

1, tfinishi ≥Di

{ (10)

where S_u is the set of urgent services requests, and |S_u| is the
number the urgent services.

4 SGS scheduling strategy for ECA

In this section, the specific scheduling algorithms are presented
based on the proposed framework.

4.1 Microservice prioritizing

Microservice prioritizing generates the priority of each
microservice using a rank value, which is used to
determine the execution order of microservices. The pseudo-
code of the proposed microservice prioritizing method is
shown in Algorithm 1, which mainly includes the following
three steps.

Step 1: Calculate the average execution time and average
communication time of a microservice vi

j according to Eq. 1 and
Eq. 2, respectively.

Step 2: Calculate the critical path length for the
microservice. The critical path length for microservice is
computed by:

cp vji( ) � wj + max
vk∈succ vji( ) ci,k + cp vk( )( ) (11)

Step 3:Calculate the rank value of eachmicroservice. The rank for a
microservice vi

j is computed by:

rank vij( ) � cp vij( )
cp vientry( )/ ~I

i + ~Q
i( ) (12)

where the vientry is the entry node of the service i, and it is defined as
the critical path of the service i; ~I

i
and ~Q

i
represents the normalized

value of importance of service i, and the normalized value of
deadline of the service i.

~Ii �
Ii −min

i∈I
Ii{ }

max
i∈I

Ii{ } −min
i∈I

Ii{ } (13)

~Qi �
Qi −min

i∈I
Qi{ }

max
i∈I

Qi{ } −min
i∈I

Qi{ } (14)

1: For each SGS deployed in ECA do

2: calculate the CP of the DAG of the SGS

3: For each microservice in the DAG do

4: calculate its average execution time according

to Eq. (4)

5: calculate its average communication time

according to Eq. (5)

6: calculate the CP of the microservice according

to Eq. (11)

7: calculate the rank value of the microservice

according to Eq. (12)

8: End for

9: End for

10: Output the rank value for each microservice

Algorithm 1. Smart grid microservices prioritizing.

4.2 Insertion-based core selection

The insertion-based core selection method can insert a
microservice into the earliest idle time slot between two
microservices already scheduled on the same processing core.
The execution time of the being scheduled microservice is less
than or equal to the idle time slot, and its earliest execution
finish time is less than or equal to the end time of the idle time slot.

The process for inserting microservice vji into an idle time slot
on proper processing core is shown in Algorithm 2, where the
EST(vbottom,r) represents the last microservice in the scheduling list
of core pr, the EFT(vbottom−1,r) represents the second last
microservice in the scheduling list of core pr.

1: for each processing core of ECA do

2: while PQr (the scheduling list of processing core

r) ≠∅ and EST(vbottom,r) > ( max
vk
i∈pred(vj

i)
(EFT(vk

i ,pl)) + ck,j,l,r) do
3: if wi

j,r ≤EST(vbottom,r) − EFT(vbottom−1,r)and
EFT(vbottom−1,r)≥ maxvi

k∈pred(vi
j)(EFT(vi

k,pl) + ck,j,l,r) then
4: available(vi

j,pr) = EFT(vbottom−1,r)
5: else if EFT(vbottom−1,r)< max

vi
k∈pred(vi

j )
(EFT(vi

k ,pl)+
ck,j,l,r)and
wi
j,r ≤EST(vbottom,r) − max

vi
k
∈pred(vi

j)
(EFT(vi

k ,pl) + ck,j,l,r) then
6: available(vi

j,pr) = max
vi
k
∈pred(vi

j)
(EFT(vi

k ,pl) + ck,j,l,r)
7: remove the last microservice from the PQr.

8: end if

9: end while

10: EST(vi
j,pr) � max(available(vi

j ,pr), max
vi
k
∈pred(vi

j)(EFT(vi
k,pl) + ck,j,l,r))

11: EFT(vj
i ,pr) � wj

i,r + EFT(vj
i,r)

12: end for

13: if there are same EFT on different processing cores

for microservice vi
j

14: insert it into the core which has the minimal

execution time

15: else

16: insert it into the core which has the minimal EFT

17: end if

Algorithm 2. Insertion policy-based processing core selection algorithm.
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4.3 SGS scheduling strategy considering the
scheduling unit dividing and emergency
mechanisms

There are still two scenarios that we have to consider. One is in the
high concurrency scenario, how to balance the processing delay demand
between the service, which has an earlier arrival time and low importance,
and the service, which has a later arrival time and high importance. The
other is how to meet the urgent services’ response time demand, which
must be completed before the deadline in the emergency state of the
smart grid. In response to the above issues, we design the scheduling unit
dividing and emergency mechanism, respectively, which have been
introduced in the above-proposed microservice scheduling framework
for ECA in Section 1, and integrated them into the scheduling strategy.
The pseudo-code of the SGSs scheduling algorithm is shown in
Algorithm 3. The emergency mechanism program has preset the
processing core allocation results of the microservices for the services
in an emergency state, and its processing core allocation results can be
determined by Algorithm 2.

1: While true do

2: if the MQMM detects an urgent service request then

3: stop the currently executing microservice, and

execute the established scheduling plan for the

urgent services.

4: continue

5: end if

6: While SGS request queue Q is not empty

7: calculate the length of the SGS request queue |Q|.

8: if |Q| ≥ ε then//where ε is the threshold for

scheduling unit dividing, and it is equal to

the SUL then

9: divide the service requests into multiple

scheduling units

10: sort the service microservices within each

scheduling unit in order of rank and move them to

the microservice unscheduled list

11: else

12: sort the service microservices within services

request queue in order of rank and move them to the

microservice unscheduled list

13: end if

14: end while

15: While unscheduled list is not empty do

16: remove the first microservice at the unscheduled

list and schedule the microservice to a processing

core by the Algorithm 2

17: end while

18: end while

Algorithm 3. SGSs scheduling strategy for ECA

5 Simulation

This section reports the numerical simulation result of the
proposed strategy. All programs are implemented by Matlab and
executed on an HP workstation.

5.1 Simulation background

Some typical SGSs in a smart distribution transformer area (Cen
et al., 2022) are chosen to deploy in the ECA with four
heterogeneous processing cores. The parameters of the SGSs are
shown in Table 1. The service DAG structure information is
represented by an adjacency matrix. The execution times on the
four processing cores are represented by a vector, where the symbol
‘∞’ indicates the microservice cannot execute in the core. SGS
importance is given based on expert experience and divided into five
levels from 1 (high) to 5 (low). Because the workload of microservice
is difficult obtained accurately, the execution time of microservices
on the different processing cores can be obtained by using an
application profiler (Sahni et al., 2021) or using the statistics
from multiple runs (Bochenina et al., 2016). Due to the low data
transfer volume between microservices and the very high
transmission rate between processing cores, the communication
time is much shorter than the computation time, so
communication time is ignored in the simulation. We assume all
the kinds of SGSs have the same arrival probability. The number of
concurrent service requests is set within the range [10–80], where
the proportion of urgent service requests is set to 10%. Considering
the service requests arrive at random, we repeat the experiment
100 times for each concurrency situation and take the average value
as the simulation result to ensure the effectiveness of the
simulation results.

5.2 Performance evaluation

Some benchmark solutions based on the ideas of solutions in
existing works are developed to compare the performance.

(1) Improved Heterogeneous Earliest Finish Time (HEFT)-based
strategy(S1): The strategy first integrates all the services DAG
into a big DAG by adding a virtual common zero entry node
and a virtual common zero exit node, and then the integrated
DAG uses the HEFT algorithm, which selects the
microservice with the highest upward or lowest downward
rank and then assign the tasks to the core, which can
minimize its earliest finish time. Figure 2 illustrates the
integration of multi DAGs.

(2) Importance-based scheduling strategy (S2): The strategy first
sorts service requests based on arrival time and then executes
each service in sequence based on the HEFT algorithm.

(3) First Come First Serve-based scheduling strategy (S3): this
strategy is similar to S2, but it first sorts the service
requests based on importance.

For the proposed scheduling strategy, the trigger threshold of the
SUDM is set to 20, and the scheduling unit length (SUL) is set to 10.
The performance comparison result of these scheduling strategies
under different concurrent service requests is shown in Figure 3.

Figure 3A shows the calculation results of M1 under different
numbers of concurrent requests n for these scheduling strategies. It
can be seen that the proposed strategy obtains better average
response time in all situations. As the number of service requests
increases, the advantages of the proposed strategy become more
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apparent. Compared with S1, S2, and S3, the proposed strategy
reduces the average response time by approximately 14.5%, 34.8%,
and 25.4% at n = 10, respectively, and the decrease reached 26.5%,
53.6%, and 41.2% at n = 80. For the S2, all microservices of different
services are mixed to schedule. Thus, the microservice at the exit
node always requires more time to be scheduled. Consequently, it
has the worst performance onM1. The services are scheduled one by
one in the strategies S1 and S2. In strategy S1, the services are
scheduled according to their arrival time. Thus, the early arrival
service can be scheduled and finished in time. However, in strategy
S3, the services are scheduled according to their importance value.
Thus, it will lead to a larger response time for the early arrival service
when services arrive later but have higher importance. Especially
when the execution time of the services is long, the performance
will worsen.

Figure 3B shows the calculation results of M2 under different
concurrent service requests for these scheduling strategies. The
performance of the proposed strategy is better than other
strategies in all concurrent situations. When the number of
concurrent requests is low, i.e., n = 10, all the strategies can
complete the services before their deadlines. As the concurrent
requests increase, the M2 gradually decreases in all the strategies.
The S1 has the worst performance on M2 because of its bad
performance on average response time, and M2 has already
decreased to zero at n = 50. Thus, it is not easy to apply to high-
concurrency scenarios in a smart grid.

Figure 3C shows the calculation results of M3 under different
concurrent service requests for these scheduling strategies. The
proposed scheduling strategy can complete the urgent services
before their deadlines in all concurrent situations due to the
emergency mechanism, while the other strategies achieved similar
performance as M2. Considering the demand for urgent service
requests and high concurrency scenarios in the smart grid,
emergency mechanisms in the SGS scheduling strategy
are necessary.

5.3 Influence analysis of the parameter SUL

This section conducts a simulation analysis for the effect of the
SUL and assesses the effectiveness of SUDM. We set the maximum
number of concurrent service requests to 80 and set eight
experiment groups at intervals of 10 within [10, 80], where the
case of SUL = 80 represents the case without considering SUDM.
Regardless of the value of SUL, urgent services are always completed
before the deadline due to the emergency mechanism, so the urgent
service were ignored to avoid interference with the
simulation results.

Figure 4 shows the performance evaluation results under
different SUL. It can be seen that the proposed method also
improves the performance to some extent. Overall, better M1 and
M2 will be achieved as the SUL decreases. Compared with the
case without considering the SMDA, M1 decreases by
approximately 31.4% under the case of SUL = 10. The change
in M2 is relatively small before the length of the SUL is less than
40, and the degree of change in M2 increases sharply and

nonlinearly. M2 increases by approximately 76.1% under the
case of SUL = 10.

Figures 5, 6 show the performance results for services with
different importance. It can be seen that the SUDM can effectively
balance the performance of services with different levels of
importance. Compared with the case without considering the
SMDA, the services with low importance can reduce their
average response time, as shown in Figure 5, and increase the
rate of meeting deadlines, as shown in Figure 6. For example, the
services with the lowest importance have a 51.1% reduction in
M1 compared to without using SMDA. However, the services
with the highest importance have a 17.1% reduction in
M1 simultaneously. As for M2, all services achieved varying
degrees of improvement compared to not using SMDA. It should
be noted that a lower average response time only sometimes means a
higher on-time completion rate because some overtime services are
completed close to the deadline.

5.4 Performance comparison with the
homogeneous multi-cores ECA

This section conducts a simulation analysis for the
performance comparison with the homogeneous multi-cores
ECA. In the simulation, the homogeneous multi-cores ECA
have the same number of cores as the heterogeneous multi-
cores ECA, but all the processing cores are set to type 1, whose
execution time corresponds to the first element in the vector in the
third column of Table 1. The performance comparison result is
shown in Figure 7. At the low concurrent requests situation, such
as n = 10, the two kinds of ECAs have similar performance in
M1 and M2. As the concurrent requests increase, the
heterogeneous multi-cores ECA has achieved better
performance due to its dedicated core’s advantages in
differentiated computation ability for different SGSs, and it
leads up to 1 and 2 improvements in M1 and M2, respectively,
at n = 80. In addition, the performance result of M3 shows that
both can complete the urgent services before the deadline under all
the concurrent situations due to the emergency mechanism.

6 Conclusion

In this article, we have proposed an SGS scheduling strategy for
ECA in smart grids. A microservice scheduling framework was
presented to meet the demand for microservice-based SGS
processing in the smart grid. Considering the SGS scheduling
attributes of deadline and importance, a microservice prioritizing
method was designed, and then the insert-based policy was utilized
to schedule the microservice to the cores for efficient utilization of
ECA’s computing resources. Two novel mechanisms, SUDM and
EPM, were presented to deal with urgent services under abnormal
smart grid conditions and balance the performance of SGS with
different importance, respectively. Extensive simulation
experiments have demonstrated that the proposed strategy can
effectively solve the SGS scheduling problem for the ECA.
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Compared with other benchmark solutions, the proposed strategy
can effectively reduce the average response time of services, improve
the on-time completion rate, and guarantee the completion of
urgent services before the deadline.

The work of this article aims to fill the related research gap in
smart grids and promote the development of the ECA in the smart
grid. In future work, we will further study the SGS offloading
strategy to meet the quality of service demand for resource-
constrained ECA by offloading microservices to the cloud center
or other ECAs in smart grids.
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Analysis and quantitative
evaluation of wind turbine
frequency support capabilities in
power systems

Hongliang He, Huangqing Xiao* and Ping Yang

School of Electric Power Engineering, South China University of Technology, Guangzhou, China

With the rapid development of photovoltaic andwind power, the penetration rate
of renewable energy in power system is gradually increasing. This escalation
poses a challenge as it results in a continuous reduction in the inertia and
damping of the power grid, accentuating the issue of frequency stability in
power systems. It is one of the effective measures to deal with this risk that
renewable energy sources such as wind turbines actively provide frequency
support for power grid. This paper carries out research into the examination
of wind turbines’ capacity to contribute to system frequency support, considering
two aspects: inertia support and primary frequency regulation capabilities.
Subsequently, the frequency control method of the wind turbine support
system is analyzed, emphasizing the roles of rotor kinetic energy control and
power reserve control in facilitating frequency support. The evaluation of the
transient frequency support capability of wind turbines is introduced,
incorporating factors such as control methods, controller parameters, and the
duration of transient frequency support. Key metrics, including accumulated
energy and frequency change rate indices during the transient frequency support
stage, are proposed to quantitatively assess the transient frequency support
capability of wind turbines. These indices provide a comprehensive framework
for the quantitative evaluation of wind turbine transient frequency support
capabilities.

KEYWORDS

frequency support capability, wind turbines, control strategy, system frequency,
transient frequency support capability assessment

1 Introduction

In recent years, new energy power generation and voltage source converter-high voltage
direct current (VSC-HVDC) transmission technology have developed rapidly (Xu, 2020).
More and more new energy sources such as wind power and photovoltaic are connected to
the power grid through grid-connected converters, which makes the penetration rate of new
energy in the power grid continue to increase. The power grid presents the characteristics of
high proportion of new energy access and high proportion of power electronic equipment
(Wang et al., 2020; Xiao et al., 2023a). Unlike synchronous generators, grid-connected
converters are static components without rotational inertia, and cannot respond to
frequency changes of the system through mechanical rotors (Wang et al., 2020).
Therefore, the inertia and damping of the power grid continue to decline with the
increase of new energy penetration (Zhang et al., 2018; Xiao et al., 2023b).
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In order to cope with the above risks, new energy stations such as
wind power stations need to have the ability to participate in
frequency modulation (Ruttledge et al., 2012). In countries with
rapid development of new energy, power grid companies have issued
relevant regulations, which have made rigid requirements on the
frequency of active support systems for energy stations (Yao et al.,
2021). The regulations “Technical rule for connecting wind farm
into power grid: Q/GDW 1392—2015” issued by the State Grid of
China point out that the wind farm should have the ability to
participate in system frequency modulation, peak shaving and
power reserve. When the output active power of the wind farm
is more than 20% of its rated output, all the wind turbines in the
wind farm should be able to achieve smooth adjustment of power
and participate in the active power control of the system (Wu and
Sun, 2018). Germany company TenneT requires that the grid-
connected wind farm must have the ability to participate in
frequency regulation, and the power capacity of the wind farm
participating in frequency regulation is not less than 2% of its
installed capacity (Tennet, 2023). The grid-connected regulations
of the Danish power grid require that the wind farm needs to reduce
the load according to its own operation (Energinet En, 2016). The
UK power system operation ESO also requires the frequency
modulation capability of the wind farm (ESO, 2021).

Considering the frequency support of the system from the wind
turbine level, it is mainly through control that the output active
power of the wind turbine can respond to the frequency of the
system and participate in the frequency modulation of the system.
By introducing virtual inertia and damping into the controller of the
wind turbine, the wind turbine has the external characteristics
similar to that of the synchronous generator, and has the inertia
and primary frequency modulation ability to meet the requirements
of the grid for the frequency modulation ability of the grid-
connected wind farm (Zhao et al., 2022). At the same time, the
frequency response characteristics of the system are improved, and
the inertia and damping of the system are increased. The wind
turbine can also reserve frequency modulation power for the system
through over-speeding control or pitch angle control, providing
continuous energy support for the system during the frequency
response process (Ouyang et al., 2021). When the wind turbine
provides transient frequency support for the power grid, the
corresponding evaluation methods and evaluation indexes are
needed to evaluate and judge the transient frequency support
ability of the wind turbine, so as to facilitate the quantitative
analysis of the transient frequency support ability of the wind
turbine. However, the existing evaluation indexes of transient
frequency support capability, such as frequency change rate and
inertia time constant are usually used to evaluate the transient
frequency support capability of traditional synchronous
generators (Zhang et al., 2022), while the generalized inertia time
constant (Sun et al., 2020), equivalent inertia (Li et al., 2020) and
equivalent inertia promotion factor (Xu, 2022) are the evaluation
indexes of transient frequency support capability for power grid. The
transient frequency support capability of the wind turbine is closely
related to its control methods and controller parameters. Therefore,
the wind turbine needs a set of transient frequency support
capability evaluation indicators that can take into account its
participation in frequency support control methods and
controller parameters.

Therefore, this paper first analyzes the function of wind turbine
participating in system frequency support and the role of wind turbine
frequency support function in system frequency. Then the specific
control method of wind turbine participating in system frequency
support is introduced. Secondly, considering the transient frequency
support control methods and the controller parameters of the wind
turbine, the duration of the transient frequency support, the evaluation
index of the transient frequency support capability of thewind turbine is
proposed on the basis of the original transient frequency support
capability index. Finally, a summary of the full text is given.

2 Frequency support function of
wind turbine

The frequency variation of the power grid is often caused by the
mismatch between the active power output by the power supply and
the active power required by the load. For synchronous generators,
the change of system frequency will change the rotor speed. When
the speed of the rotor changes, the kinetic energy released by the
rotor changes, and the energy absorbed or released by the rotor is
manifested as the increase or decrease of the electromagnetic power.
The changed electromagnetic power balances the power difference
of the system. The wind turbine adjusts its active power output by
simulating the controller as a synchronous generator swing equation
(Huang et al., 2020), thereby imitating the frequency response
process of the synchronous machine and participating in the
frequency adjustment of the system (Zhong and Georage, 2011),
The frequency response of the wind turbine is shown in Figure 1.
The swing equation of the synchronous machine is shown in Eqs
1, 2:

J
dΔω
dt

� Pm − Pe −DΔω (1)
dθ

dt
� ω (2)

Where, J is the moment of inertia, Δω � ω0 − ω is the generator
speed deviation, ω0 is the rated speed, ω is the actual speed, Pm is the
mechanical power, Pe is the electromagnetic power, D is the
damping coefficient, θ is the electrical angle of the generator
rotor. By replacing the mechanical power Pm of the generator
with the reference value Pref of the output power of the non-
synchronous machine power supply, and replacing the
electromagnetic power Pe of the generator with the actual output
power Ps of the non-synchronous machine power supply, the
control equation of the non-synchronous machine power
synchronization control loop can be obtained. The control
equation of the power synchronization control loop of the non-
synchronous machine is obtained as shown in Eq. 3:

θ � 1
s

1
Js +D

Pref − Ps( ) + ω0[ ] (3)

2.1 Inertia support function of wind turbine

The inertia support of wind turbine is the function of the output
power of wind turbine to respond to the frequency change rate of the
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system (Morren et al., 2006). When the system frequency changes
and the frequency change rate is not 0, the inertia support of the
wind turbine begins to work, releasing or absorbing power, and
slowing down the speed of frequency change. When the frequency is
stable at a new stable operating point, the inertia support also stops
working (Milano et al., 2018). The characteristics of inertia support
are summarized as follows:

1) The inertia support is a differential feedback control of the
system frequency, compared with the primary frequency
control, the inertia support has the characteristic of
overshooting, and the response speed is faster.

2) In the initial stage of system frequency change, the frequency
change is small and the frequency change rate is large, so the
inertia support has a large output in the transient frequency
support stage.

3) The system frequency will be over to a new stable operating point
after a short transient frequency support process. At this time, the
inertia support no longer works, so the inertia support lasts for a
short time and the accumulated energy is very limited.

4) Since the inertia support only responds to the frequency
change rate, its main role is to prevent the system
frequency from changing rapidly, and cannot suppress the
amplitude of frequency rise or fall.

2.2 Primary frequency modulation function
of wind turbine

The primary frequency regulation of thewind turbine is the function
of the output power of the wind turbine to respond to the frequency
change of the system, and its essence is the active power-frequency droop
control of the wind turbine. When the actual operating frequency of the
system deviates from the rated frequency, the primary frequency
modulation begins to work, continuously releasing or absorbing
power, so that the frequency of the system does not continue to fall
or continue to rise (Qin et al., 2018). The characteristics of primary
frequency modulation are summarized as follows:

1) The primary frequency modulation is a proportional feedback
control of the system frequency. Compared with the inertia
support control, its response speed is slower.

2) In the early stage of system frequency change, the frequency
deviation of the system is small, so the output of primary
frequency modulation in the transient frequency support stage
is small.

3) Primary frequency modulation is a continuous power support.
As long as there is a deviation in the system frequency, the
power of the primary frequency modulation support will
always exist. Therefore, the primary frequency modulation
lasts for a long time, and the accumulated energy is very
considerable.

4) The primary frequency modulation is to provide power support
when there is a deviation in the frequency to prevent the system
frequency from falling or rising continuously, but it cannot limit
the rate of change of the frequency.

It is also necessary to point out that neither inertia support nor
primary frequency modulation can achieve error-free adjustment of
system frequency. Only by introducing the secondary frequency
modulation function into the controller can the wind turbine realize
the error-free adjustment of the system frequency.

3 Frequency support control methods
of wind turbine

Due to the decoupling of the VSC-HVDC transmission system,
the wind turbine cannot directly respond to the frequency change of
the AC system to participate in the frequency support (Yao et al.,
2021). It is necessary to transmit the frequency signal of the AC
system to each wind turbine. The wind turbine adopts the frequency
support control method to respond to the frequency change of the
AC system (Huang et al., 2017). According to the different principles
of frequency modulation, the methods of wind turbines
participating in frequency support mainly include: rotor kinetic
energy control, power reserve control.

3.1 Rotor kinetic energy control

In order to maximize the use of wind energy, the maximum
power point tracking (MPPT)method is used when the wind turbine
is working normally. In the MPPT mode, the wind turbine supports

FIGURE 1
Frequency response diagram of wind turbine.
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the frequency of the current system through additional control
(Hurtado et al., 2002), including additional inertia control,
additional droop control, and the combination of additional
inertia control and droop control. Rotor kinetic energy control is
to release the kinetic energy stored in the rotor by changing the
speed of the wind turbine, and carry out inertia support, so there is
no need to retain power reserve.

Inertia control is added to the wind turbine to simulate the
inertial response process of the synchronous generator. When the
system frequency decreases and the frequency change rate is not 0,
the wind turbine releases the kinetic energy of the rotor by changing
the speed to support the inertia. The inertial control of the wind
turbine can be expressed as Eq. 4:

ΔPJ � kJ
df

dt
(4)

Where, ΔPJ is the power provided by the inertia support of the
wind turbine, kJ is the inertia control coefficient, f is the frequency
of the AC system.

Adding droop control to the wind turbine can simulate the
governor response of the synchronous generator and realize the
function of primary frequency modulation. When the AC system
frequency decreases and the frequency deviates from the rated
frequency, the wind turbine changes the speed to release the
rotor kinetic energy for primary frequency modulation energy
support. The droop control of the wind turbine can be expressed
as Eq. 5:

ΔPD � kD f0 − f( ) (5)

Where, ΔPJ is the power provided by the droop control of the
wind turbine, kD is the droop control coefficient, f0 is the rated
frequency of the AC system.

The combination of additional inertia control and droop control of
rotor kinetic energy control can make the wind turbine have both
inertia support function and primary frequency modulation function,
so as to better support the system frequency. The additional inertia
control and droop control of the fan can be expressed as Eq. 6:

ΔPJ+D � kJ
df

dt
+ kD f0 − f( ) (6)

Where, ΔPJ+D is the total power provided by the inertia support
and droop control of the wind turbine.

3.2 Power reserve control

Rotor kinetic energy control is to use the kinetic energy of the rotor
for power support, but because it does not reserve power reserve, the
power and time that the wind turbine can support under this control are
very limited. When encountering large power fluctuations, the rotor
kinetic energy cannot provide sufficient power support. Therefore,
some scholars have proposed the use of power reserve control, so
that the wind turbine has a certain frequencymodulation reserve power.
Power reserve control mainly includes two types of control: over-
speeding control and de-loading operation by pitch angle control
(Dreidy et al., 2017; Trovato et al., 2020). The schematic diagram of
over-speeding control is shown in Figure 2A. Increasing or decreasing
the speed of the wind turbine can reduce the output of the wind turbine,

but it is easy to cause the small-signal stability of the wind turbine when
the speed is reduced. Therefore, overspeed control is generally used to
reduce the load of the wind turbine. Let the speed of the wind turbine
work at a speed greater than theMPPT state, and the wind turbine runs
at a working point less than the maximum output power, leaving a
certain power reserve for the frequency support. When the system
frequency drops, the wind turbine improves the active power output by
reducing the speed. The over-speeding control can be expressed as
Eq. 7:

ΔPdel � PMPPT 1 − d%( ) (7)

Where, PMPPT is the output power of the wind turbine running
at the MPPT operating point, d% is the load shedding rate. By
adjusting the load shedding rate, the reserve power output of the
wind turbine can be adjusted to support the system frequency to
varying degrees.

The schematic diagram of the de-loading operation by pitch angle
control is shown in Figure 2B. When the speed of the wind turbine is
constant, the larger the pitch angle is, the smaller the output active
power is. By adjusting the pitch angle β of the wind turbine, the wind
turbine runs at the sub-optimal power point, leaving a certain power
reserve for the frequency support (Almeida and Pecas Lopes, 2007).
When the AC system frequency drops, the wind turbine improves its
active power output by reducing the pitch angle. In most cases, the de-
loading operation by pitch angle control of the wind turbine can be
carried out, so the control has a wide range of applications. However,
the variable pitch load shedding control is amechanical adjustment, and
the adjustment speed is slow, so it cannot provide transient frequency
support for the AC system.

3.3 Rotor kinetic energy and power reserve
combined control

The control block diagram of the controlmethod of thewind turbine
participating in the system frequency support is shown in Figure 3. Rotor
kinetic energy control can increase the inertia anddamping of the system,
and power reserve can provide frequency support for the system.
Combining the two controls can further improve the frequency
stability of the system (Liu et al., 2016), so that the wind turbine can
have good frequency response characteristics under various operating
conditions. In response to different operating conditions, some scholars
have proposed controlmode switchingmethods, so that thewind turbine
adopts different frequency support control methods under different
operating conditions, thereby improving the applicability of the wind
turbine (Attya and Thomas, 2014). Another method to improve the
frequency support effect of wind turbines is to optimize the controller
parameters of different control methods on the basis of joint control to
improve the frequency response characteristics of the system (Pradhan
and Chandrasekhar, 2016).

4 Evaluation index of transient
frequency support capability of
wind turbine

The existing evaluation index of transient frequency support
capability usually adopts inertia or frequency change rate at the
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moment of frequency change (Xu, 2022). However, these two
evaluation indexes only consider the frequency support ability
of the power supply at the moment when the system frequency
changes, and cannot reflect the frequency support ability of the
wind turbine in the whole transient frequency support stage.
Moreover, these two indexes do not take into account the
control method and controller parameters of the frequency
support of the wind turbine, and do not reflect the
characteristics of the frequency support of the wind turbine.
Therefore, considering the control method, controller
parameters and the duration of transient frequency support,
this paper proposes the cumulative energy in the transient
frequency support stage and the average frequency change
rate index in the transient frequency support stage to
evaluate the frequency support capacity provided by the wind
turbine during the transient process.

4.1 The cumulative energy in the transient
frequency support stage

Energy is the integral of power to time, so this paper considers
using energy to represent the support ability of wind turbines in the
transient frequency support stage. The power provided by the wind
turbine for the frequency support during the whole transient process
is integrated to obtain the accumulated energy of the wind turbine in

the transient frequency support stage. The specific calculation
expression is shown as Eq. 8:

Ef � ∫t1

t0
ΔPdt (8)

Where, t0 is the time point when the frequency changes, t1 is the
time point when the transient frequency support ends, ΔP is the
active power supported by the frequency of the wind turbine during
the transient process. ΔP is related to the frequency support control
method adopted by the wind turbine. When the rotor kinetic energy
is used to control the additional inertia control, ΔP � ΔPJ.
Therefore, the accumulated energy in the transient frequency
support stage can be expressed as Eq. 9:

Ef � ∫t1

t0

− kJ
df

dt
dt � −kJ f1 − f0( ) (9)

Where, f0 is the rated operating frequency of the system, f1 is
the frequency of the system at the end of the transient frequency
support stage.

When the wind turbine adopts the rotor kinetic energy control with
additional droop control, ΔP � ΔPD. Therefore, the accumulated
energy Ef in the transient frequency support stage can be expressed
as Eq. 10:

Ef � ∫t1

t0

kD f0 − f( )dt (10)

FIGURE 2
Schematic diagram of over-speeding control and de-loading operation by pitch angle control.

FIGURE 3
Control block diagram of frequency support control methods by wind turbine.
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When the wind turbine adopts the over-speeding control in the
power reserve control,ΔP � ΔPdel. Therefore, the accumulated energy
in the transient frequency support stage can be expressed as Eq. 11:

Ef � ∫t1

t0

PMPPT 1 − d%( )dt (11)

When the wind turbine adopts the de-loading operation by pitch
angle control in the power reserve control, due to its slow adjustment
speed, it cannot provide transient frequency support for thewind turbine.
Therefore, the cumulative energy in the transient frequency support stage
of the wind turbine is approximately 0 when this control is adopted.

4.2 The average frequency change rate in
the transient frequency support stage

The value of the transient frequency change rate at a time point
cannot represent its frequency support ability over a period of time,
while the average value can take into account the value of multiple
time points over a period of time, which can better characterize the
support ability of the wind turbine in the transient frequency
support process. Therefore, this paper considers using the
average frequency change rate in the transient frequency support
stage to represent the frequency support capacity of the wind turbine
in the transient frequency support stage. The average frequency
change rate df

dt ave of the wind turbine in the transient frequency
support stage is obtained by taking the frequency change rate of the
five time points in the transient support stage and calculating the
average value. The specific calculation expression is shown as Eq. 12:

df

dt ave � 1
5
∑4
i�0

df

dt

∣∣∣∣∣∣∣t�t0+ i
4 t1−t0( )

(12)

The average frequency change rate in the transient frequency
support stage takes into account the frequency change rate of the wind
turbine at five time points from the frequency change to the end of the
transient frequency support process, and takes its average to represent
the transient frequency support capability of the wind turbine, which
can more accurately reflect the frequency support capability of the
wind turbine in the whole transient support process. The smaller the
value is, the smaller the change rate of the system frequency during the
transient frequency support stage is, indicating that the frequency
support ability of the wind turbine to the system is stronger.

5 Conclusion

In this paper, the frequency support capability of wind turbines and
the control method of wind turbines participating in frequency support
are analyzed, and two evaluation indexes, the cumulative energy in the
transient frequency support stage and the average frequency change rate
in the transient frequency support stage, are proposed to evaluate the
transient frequency support capability of wind turbines. Among them,
the cumulative energy in the transient frequency support stage takes into
account the control method and controller parameters of the wind
turbine participating in the frequency support, and the index can be
obtained by integrating the support power provided by the wind turbine
in the transient frequency support stage; the average frequency change

rate in the transient frequency support stage takes into account the five
frequency change rates from the system frequency change to the end of
the transient frequency support, and takes the average of thefive values to
represent the transient frequency support capability of the wind turbine.
Summarizing the full text, the following conclusion are obtained:

1) Different from the synchronous generator, which supports the
frequency of the AC system by absorbing or releasing power
from the mechanical rotor, the wind turbine adjusts its output
power through the controller to support the system frequency.

2) The transient frequency support ability of wind turbine is
closely related to the frequency support control method and
controller parameters.

3) The cumulative energy in the transient frequency support
stage and the average frequency change rate in the transient
frequency support stage proposed in this paper take into
account the entire frequency support stage, which can more
accurately characterize the strength of the transient frequency
support capability of the wind turbine.
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Two-stage low-carbon optimal
dispatch of the power system
considering demand response to
defend large uncertainties
and risks

Linjun Cai*, Dongliang Xie, Feng Xue and Huilin Zhang

State Grid Electric Power Research Institute, Nanjing, China

Introduction: In order to promote the consumption of renewable energy, reduce
carbon emissions, and take into account the uncertainty of renewable energy
output and load fluctuations in the new power system that can affect the normal
operation of market mechanism, a two-stage low-carbon optimization
scheduling method for power system that considers demand response under
multiple uncertainties is proposed in this paper.

Methods: Uncertain scene sets are generated through Latin hypercube sampling
and heuristic synchronous backpropagation method is used to reduce scenes to
obtain typical scenes and their probabilities. Then, a one-stage optimizationmodel
is established with the goal of maximizing energy efficiency and corresponding
demand response strategies are obtained. Green certificate carbon trading joint
mechanism model consisting of tiered green certificate trading and time-sharing
tiered carbon trading are established, and the output of two-stage units are
optimized with the goal of minimizing comprehensive operating costs.

Result: The simulation results show that the carbon emissions are decreased by
251.57 tons, the consumption rate of renewable energy is increased by 8.64%,
and the total costs are decreased by 124.0612 million yuan.

Discussion: From this, it can be seen that the dual layer low-carbon optimization
scheduling strategy for power system considering demand response under
multiple uncertainties can effectively reduce the operating costs and carbon
emissions of the system, while balancing the economic and environmental
aspects of power system operation.

KEYWORDS

power system, uncertainty, demand response, low carbon, optimal scheduling

1 Introduction

The growing prevalence of renewable energy (RE) poses numerous challenges for the
power system, including issues related to reliability, efficiency, energy loss, and emissions
(Jordehi, 2019; Liu et al., 2020a). Simultaneously, with the development of the electricity
market, consumer engagement in the demand-side response is increasing. Hence, the
achievement of power system optimization dispatch with the consideration of the
demand response (DR) under the dual-carbon target requirements has become a current
research hotspot (Wang et al., 2018).
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The optimal dispatch of a power system is widely employed across
various operational scopes, spanning from real-time execution to long-
range planning. Liu et al. (2021) considered the interaction between
power generation and consumption the basis in a comprehensive
optimization dispatch model, and three different scheduling
commands were proposed before electric vehicle (EV) charging and
discharging, such as stochastic scheduling command, load interruption,
and transfer command. Zhang and Zheng (2019) presented a dynamic
multiple target optimal scheduling method for the electrical system,
including economics, pollutant emissions, and power rejections. Wan
et al. (2020) employed an improved MOEA/D algorithm to overcome
the optimization dispatch problem of the hierarchical model, in which
the load-side demand was considered. Li and Xu (2018) developed a
globally optimal scheduling strategy for microgrids under grid
connection and islanding conditions. Jiang et al. (2020) established a
hierarchical scheduling model based on the boundary variable feasible
domain-coordinated power system and district heating system
operators. A conservative boundary variable feasible domain-based
approximationmethodwas provided for a district heating system based
on simplex approximation. Hou et al. (2020) employed a multi-
objective optimal method and fuzzy membership function approach
to overcome the transferable loads and other distributed generation
models in microgrids. Liu J. et al. (2020) proposed a multi-task power
scheduling method by introducing a multi-objective multi-factor
optimization algorithm. Zhang et al. (2018) established a two-phase
robust optimal mold, accounting for the uncertainty associated with
distributed RE and DR within power systems. This served as the basis
for proposing a coordinated optimal operational strategy. Yang et al.
(2021) developed a coordinated interval optimization scheduling
method by taking into account the uncertainty of RE. However, the
scheduling scheme obtained through the robust approach is too
conservative, while interval optimization based on interval
mathematics still encounters the limitations of complex model-
solving techniques and too large interval values. Therefore, by
sampling a considerable number of error scenarios for the assumed
probability distributions of random variables, the scenario approach is
used to describe the uncertainty, which has a more intuitive model and
yields highly accurate computational results.

Moreover, utilizing market mechanisms for carbon dioxide
transaction offers advantages of flexibility and benefit. By optimizing
the allocation of resources within the carbon emission space and
aligning with economic incentives, carbon emission trading
mechanisms facilitate the trading of carbon credits while maintaining
a constant total carbon emission volume (Hou et al., 2023; Yang et al.,
2023; Zhong et al., 2023). Considering the uncertainty of RE generation
and customer price responses, a two-stage integrated planning and DR
model was proposed by Zeng et al. (2014). The method facilitated the
transition from RE generation to low-carbon distribution systems
through multiple probability scenario representations, thereby
establishing a low-carbon distribution system. To resolve the model,
the optimal scheduling approach about suppositional electricity plants
incorporated both the carbon dioxide transaction market and green
certificate transaction market, alongside the proposal of a self-
concluding variational particle swarm optimization approach by
Zhang et al. (2023). Considering the generalized electric–heat DR,
Cui et al. (2022) proposed a scheduling method of an energy system
with source–load coordination. By combining the organic Rankine cycle
and DR for electric heating, the difficulty caused by an inadequate

carbon capture level over spike load periods in the low-carbon
transformation procedure of thermal power units has been
improved. Leveraging the enhanced two-stage electric gas operation
model and the comprehensive thermoelectric DR model within the
constructed electric hydrogen production device, Chen et al. (2023)
developed a schedulingmethod ofmultiple energy production involving
electricity and hydrogen on the basis of short-period wind power
forecasting. It is noteworthy that the variational mode decomposition
and gated recurrent unit approach enhances the exactitude of very
short-period wind power generation prediction. Dong et al. (2022)
developed a deep reinforcement learning-based energy scheduling
strategy using the double-delay depth-determined strategy gradient
approach to resolve low-carbon mathematical and multi-objective
optimization models. The model involves cogeneration units, carbon
capture systems, and electricity-to-gas units. The prevalent carbon
trading mechanisms in current research within carbon and green
certificate trading markets solely focus on the carbon emission quota
trading system across the entire daily cycle timeframe. The green
certificate transaction market solely accounts for the fixed green
certificate transaction parameter costing model, limiting its maximal
potential efficacy.

DR serves as a pivotal mechanism for ensuring the safety and
steadiness of the power system by harmonizing equilibrium between
supply and demand. To enhance operational efficiency and alleviate
power overload resulting from the integration of large-scale electric
vehicles, Ran et al. (2021) proposed a hybrid integer planning model
that amalgamates DR operations and policies. By concurrently
addressing DR requisites, user comfort regarding electric water
heaters, and electricity prices, Song et al. (2022) introduced a deep
reinforcement learning strategy for DR optimization, leveraging cloud
computing. Wu et al. (2022) introduced a buyer–seller auction model
based on the principles of benefit distribution among diverse trading
entities in DR transactions. Considering the user-side elastic change
inherent in heat construct systems, a numerical optimization difficulty
in distribution network planning was delineated by Troitzsch et al.
(2020). The problem was structured as a mixed-integer quadratic
programming endeavor directed toward minimizing both the capex
of the grid and running expenses associated with flexible loads. By
introducing two-phase forces to promote the search ability of the
particle swarm algorithm, a hybrid peaking optimal method on the
basis of regenerative electric heaters and electric vehicle load control
constraints was established by Song et al. (2019). To overcome the
difficulty of large fluctuations in themagnitude and phase of the voltage
of an uncertain system at both ends of the source load, an adaptive
cubature Kalman filtering algorithm was proposed by Palaniyappan
et al. (2023). The bidirectional long short-period recollection method
was utilized to improve the generalization ability of the model in
dealing with DR problems, and an excitation-based integrated DR
model was constructed by Liu et al. (2023). Nonetheless, the
compensation amount for DR in the aforementioned studies
predominantly adheres to a fixed value and fails to consider the
active response behavior of users, which limits its capacity to
substantially incentivize user participation in the response.

In this paper, considering user responsiveness and multiple
uncertainties, a two-layer low-carbon optimal scheduling method is
proposed to enable low-carbon running for the power system and deal
with risks brought through RE and load uncertainty. Initially, scenarios
encompassing photovoltaic (PV), wind power, and load are produced

Frontiers in Energy Research frontiersin.org02

Cai et al. 10.3389/fenrg.2024.1361919

184

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1361919


by using Latin hypercube sampling (LHS). Then, the scenarios are
refined using the heuristic synchronized back generation method.
Additionally, a model incorporating both green certificate trading
and carbon trading, along with a stepped DR incentive mechanism,
is proposed as a joint market mechanism. Subsequently, a two-stage
optimization dispatch method for the power system is developed. The
model aims to maximize user energy benefit and minimize system
operating costs. Then, the rationale and validity of the proposed
method are demonstrated through diverse scenario setups.

2 Modeling of uncertainty

External factors frequently result in unpredictable variations in
both RE generation and load. These fluctuations can disrupt the
normal functioning of market mechanisms and significantly influence
the security and solidity of the power system (Su et al., 2023).
Addressing the challenge of achieving low-carbon economic
dispatch within the green certificate carbon trading mechanism
amid uncertain conditions involves employing LHS. This approach
generates scenes derived from the probability distributions of wind
power, PV output, and load. Subsequently, the heuristic synchronous
backpropagation approach is used to refine the generated scenarios.

2.1 Model of source and load uncertainty

The actual values of wind output, PV, and load are regarded as the
total of the forecasted value and the forecasted deviation, which can be
given by

PWV,z,t � Ppre
WV,z,t + ΔWV,z,t

PPV,z,t � Ppre
PV,z,t + ΔPV,z,t

Pload,z,t � Ppre
load,z,t + Δload,z,t

⎧⎪⎨⎪⎩ , (1)

where PWV,j,t and P
pre
WV,j,t are the actual and predicted wind power of

scenario z at time t, respectively. ΔWV,z,t represents the forecast
deviation of wind power. PPV,z,t and Ppre

PV,z,t are the actual and
predicted PV of scenario z, respectively. ΔPV,z,t is the prediction
deviation in the PV output. Pload,z,t and Ppre

load,z,t are the actual and
predicted electrical load of scenario z at time t, respectively. Δload,z,t

is the forecast deviation in the electrical load. It is usually assumed
that wind power follows a Weibull distribution, PV follows a beta
distribution, and load follows a normal distribution (Baharvandi
et al., 2018; Gupta, 2020; Mahdavi et al., 2023).

2.2 Latin hypercube sampling

A multidimensional sampling theory is introduced, considering
the probability distributions of wind power, PVs, and electric load.
LHS is a significant multidimensional stratified sampling approach
used to reflect the global distribution of stochastic variables through
samples drawing values. LHS effectively enhances sampling efficiency
and ensures the coverage of all sampling areas by points, rendering it
suitable for power system reliability analysis. This paper uses LHS to
generate scenarios encompassing wind power, PVs, and load.

Assume that a hypercube has input random variables
x1, x2, x3, ..., xp, and the dimension of the variables is p. Then,

the cumulative probability distribution function of each variable is
Fxz � fz(xz), where z � 1, 2, ...p. By using LHS, the sample N
within the hypercube can be generated as follows:

(1) The sampling size is defined as N.
(2) For any random variable xz, the perpendicular axis of the

accumulative probability distribution curved line Fxz �
fz(xz) is divided into N intervals of equal probability. The
breadth of each range is 1/N. A value is Stochastically chosen
from every range that satisfies xz1 < xz2 < xz3...<xzk...< xzN

and P(xzk <x<xz(k+1)) � 1
N.

(3) For the kth sampling value xzk of the stochastic variable xz, its
relevant accumulative distribution probability is given by

F k( ) � 1/N( )ru + k − 1( )/N, k � 1, 2, 3,/, N, (2)
where ru ~ N(0, 1). By computing the contrary function of the
accumulative distribution function Fxz, the kth sampling value xzk

can be obtained, which satisfies

xzk � F−1
xz 1/N( )ru + k − 1( )/N( ). (3)

(4) When the sampling process is accomplished, the sampled values
of each stochastic variable are organized in a column of the
matrix to form the sampling matrix. The sampled values of each
column in thematrix are sorted to minimize their correlation. In
this paper, the Gram–Schmidt sequence orthogonalization
approach is used for sorting. In addition, iterative calculation
is used to minimize the correlation between each column. In
conclusion, Eqs 1–3 describe the uncertainty model.

3 Timeshare stepped carbon
trading mechanism

The carbon transaction market implemented in this strategy
operates on a time-sharing basis and considers carbon emission
quota trading at an hourly scale. The system divides the hourly
carbon dioxide trading volume into multiple intervals. Notably, as the
carbon transaction volume range increases, both the unit carbon
emission transaction price and necessary operating costs
correspondingly increase. Conversely, if the carbon emissions of
system decrease to below the initial quota, the surplus quota can be
introduced to the carbon transaction market for potential sale, yielding
profits based on prevailing selling prices. In essence, higher carbon
trading volumes lead to increased unit carbon emission trading prices,
thereby augmenting the system benefits. The timeshare stepwise carbon
trading market model comprises three primary parts: the initial quota
model for carbon emissions, actual carbon emission model, and
calculation model of costs associated with timeshare stepped
carbon trading.

3.1 Initial quota model of carbon
emission rights

At present, the incipient allotment of carbon emission quotas is
mainly carried out through free allocation. The time period
covered by the carbon emission right quota for each carbon
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emission source is daily. The corresponding carbon emission right
quota is calculated according to the output of equipment in the
day-ahead dispatch. The regulatory authority will notify the
allocated quota 1 day in advance. The carbon emission sources
within the system mainly include thermal power units and gas
turbines. Their carbon emission quota calculation model can be
given by

ECET,free,t � Ef,free,t + Egt,free,t

Ef,free,t � ∑n1
m�1

λePf,m,t

Egt,free,t � ∑n2
h�1

λePgt,e,h,t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (4)

where ECET,free,t, Ef,free,t, and Egt,free,t represent the carbon
emission rights of the power system, thermal power units, and
gas turbines during time t, respectively. λe represents the carbon
emission rights for unit power supply. Pf,m,t indicates the
exportation of thermal power unit m during time t. Pgt,e,h,t

represents the electrical exportation electricity of gas turbine h
during time t. n1 and n2 are the number of thermal power units
and gas turbines, respectively.

3.2 Calculation model of actual
carbon emissions

The actual carbon emission model in this paper is established
according to Chen et al. (2021) and Lu et al. (2023). According to
them, the calculation of carbon emission adopts a quadratic
function. The constructed actual carbon emission model is given by

ECET,a,t � Ef,t + Egt,t

Ef,t � ∑n1
m�1

a1P2
f,m,t + b1Pf,m,t + c1

Egt,t � ∑n2
h�1

a2P2
gt,h,t + b2Pgt,h,t + c2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (5)

where ECET,a,t, Ef,t, and Egt,t are the actual carbon emissions of the
power system, thermal power units, and gas turbines at time t,
respectively. a1, b1, and c1 represent the carbon emission coefficients
of the thermal power unit. a2, b2, and c2 are carbon emission
coefficients of the gas turbine.

The calculation of carbon emission trading volume ECET,t

during time t is as follows:

ECET,t � ECET,a,t − ECET,free,t. (6)

3.3 Calculation model of the timeshare
stepped carbon trading cost

Carbon emission trading is conducted in the hourly scale
system, and the stepped carbon trading mechanism is adopted.
Additionally, the carbon emission reduction compensation price is
introduced to incentivize power generation enterprises to actively
save energy and reduce emissions. When the total carbon emissions
of power generation enterprises remain lower than the incipient
carbon emission right, the institution will provide certain cost

compensation. The established timeshare stepped carbon
transaction cost calculation formula is as follows:

fCET,t �

1 + nυCET( )μt nlst + ECET,t( ) − n + n n − 1( )
2

υCET( )μtlst ECET,t ≤ − nlst

..

. ..
.

1 + 3υCET( )μt 3lst + ECET,t( ) − 3 + 3υCET( )μtlst −4lst ≤ECET,t ≤ − 3lst

1 + 2υCET( )μt 2lst + ECET,t( ) − 2 + υCET( )μtlst −3lst ≤ECET,t ≤ − 2lst

1 + υCET( )μt lst + ECET,t( ) − μtl
s
t −2lst ≤ECET,t ≤ − lst

−μtECET,t −lst ≤ECET,t ≤ 0

ξtECET 0≤ECET,t ≤ l
p
t

1 + σCET( )ξt ECET,t − lpt( ) + ξt l
p
t lpt ≤ECET,t ≤ 2l

p
t

1 + 2σCET( )ξt ECET,t − 2lpt( ) + 2 + σCET( )ξtlpt 2lpt ≤ECET,t ≤ 3l
p
t

1 + 3σCET( )ξt ECET,t − 3lpt( ) + 3 + 3σCET( )ξtlpt 3lpt ≤ECET,t ≤ 4l
p
t

..

. ..
.

1 + nσCET( )ξt ECET,t − nlpt( ) + n + n n − 1( )
2

σCET( )ξtlpt ECET,t ≥ nlpt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(7)

where fCET,t represents the cost of carbon transaction during time t.
ξt indicates the carbon trading basic price during time t. μt
represents the carbon emission reduction compensation basic
price during time t. lst denotes the length of the carbon reduction
range for selling carbon emission rights at time t. lpt represents the
length of the carbon transaction range for purchasing carbon
emission quotas at time t. σCET indicates the growth rate of the
carbon transaction price. υCET denotes the growth rate of the carbon
emission reduction compensation price. When ECET,t < 0, the actual
carbon emissions at time t become less than the free carbon emission
right. Excess right is on sale at the carbon reduction compensation
price to obtain carbon trading benefits. In conclusion, Eqs 4–7
describe the timeshare stepped carbon trading mechanism.

4 The model of a stepped green
certificate trading mechanism

The transaction model for stepwise green certificates involves
dividing the overall system green certificate quantity into multiple
intervals. Greater trading volumes of green certificates within an
interval correspond to increased unit green certificate trading prices,
resulting in elevated system costs. Likewise, excess green certificates
acquired from integrating RE into the system beyond the green
certificate quota of the system can be sold within the green certificate
market. The resultant revenue is determined by the prevailing daily
selling price. Increased trading volumes within intervals yield higher
unit green certificate trading prices, consequently boosting the
system revenue. The trading mechanism of the stepped green
certificate model primarily encompasses three models: the green
certificate quota indicator, RE green certificate quantity, and stepped
green certificate trading cost calculation models.

4.1 The model of the green certificate
quota indicator

According to the regulations of the Chinese government energy
department, the sum of the renewable energy consumption (REC)

Frontiers in Energy Research frontiersin.org04

Cai et al. 10.3389/fenrg.2024.1361919

186

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1361919


and green certificate trading volume must not be less than the
designated consumption responsibility weight. The green certificate
quota is given by

EGCT,index � λGCT∑T
t�1

Pload,e,t + PEL,e,t + Pcha
ES,e,t + Pdis

ES,e,t/ηdisES,e( ), (8)

where ηdisES,e is the discharge efficiency. EGCT,index is the green certificate
quota indicator of systems. λGCT is the green certificate quota
coefficient. Pload,e,t represents the electric load during time t. PEL,e,t

denotes the alkaline electrolyzer output at time t. Pcha
ES,e,t represents the

electricity of charging at time t. Pdis
ES,e,t denotes the electricity of

discharging at time t. T represents the scheduling period.

4.2 The model of renewable energy green
certificate quantity

The conversion of REC into the quantity of green certificates is
set as 1 kWh, where 1 kWh of settled electricity corresponds to
1 green certificate.

EGCT,a � ∑T
t�1

PWT,t + PPV,t( ), (9)

where EGCT,a represents the quantity of green certificates obtained
from REC. PWT,t represents the actual wind power output at time t.
PPV,t represents the actual exportation of PV during time t.

4.3 The model of stepped green certificate
trading cost calculation

The trading mechanism for gradual green certificates includes
using a gradual pricing mechanism to divide the number of
certificates into intervals. As the quantity of certificates to be
bought or sold increases, the unit green certificate trading price
in the corresponding interval increases. The established model for
calculating the costs of tiered green certificate trading is as follows:

EGCT � EGCT,index − EGCT,a, (10)

FGCT �

1 + nσGCT( )cGCT nlGCT + EGCT( ) − n + n n − 1( )
2

σGCT( )cGCTlGCT EGCT ≤ − nlGCT

..

. ..
.

1 + 3σGCT( )cGCT 3lGCT + EGCT( ) − 3 + 3σGCT( )cGCTlGCT −4lGCT ≤EGCT ≤ − 3lGCT

1 + 2σGCT( )cGCT 2lGCT + EGCT( ) − 2 + σGCT( )cGCTlGCT −3lGCT ≤EGCT ≤ − 2lGCT

1 + σGCT( )cGCT lGCT + EGCT( ) − cGCTlGCT −2lGCT ≤EGCT ≤ − lGCT

−cGCTEGCT −lGCT ≤EGCT ≤ 0

cGCTEGCT 0≤EGCT ≤ lGCT

1 + σGCT( )cGCT EGCT − lGCT( ) + cGCTlGCT lGCT ≤EGCT ≤ 2lGCT

1 + 2σGCT( )cGCT EGCT − 2lGCT( ) + 2 + σGCT( )cGCTlGCT 2lGCT ≤EGCT ≤ 3lGCT

1 + 3σGCT( )cGCT EGCT − 3lGCT( ) + 3 + 3σGCT( )cGCTlGCT 3lGCT ≤EGCT ≤ 4lGCT

..

. ..
.

1 + nσGCT( )cGCT EGCT − nlGCT( ) + n + n n − 1( )
2

σGCT( )cGCTlGCT EGCT ≥ nlGCT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(11)

whereEGCT is the green certificate trading volume of the system. FGCT

is the cost of the green certificate transaction. cGCT represents the base
price of certificate trading. lGCT is the interval length of certificate
trading. σGCT is the growth rate of certificate trading. When EGCT < 0,

it indicates that the quantity of green certificates obtained from the
consumption of REC in the system exceeds the green certificate quota.
Certificates are on sale at the certificate trading price to obtain green
certificate trading revenue. In conclusion, Eqs 8–11 describe the
model of a stepped green certificate trading mechanism.

5 Two-stage scheduling model for the
power system considering the demand
response under multiple uncertainties

5.1 The optimization model of the first stage

5.1.1 Objective function
The side of the load cluster adjusts the response quantity of the

electric load based on the DR incentive strategy to maximize
energy efficiency.

maxCL � Cdr − C†
dr, (12)

whereCL is the energy efficiency on the side of the load cluster.Cdr is
the compensation benefit for DR.C†

dr is the response cost on the side
of the load cluster.

(1) The compensation benefit for demand response

Traditional DR usually uses fixed compensation prices, which can
lead to low user responsiveness. To more efficiently stimulate user
participation in DR and optimize the running scheme on the basis of
demand-side flexibility resources, a model of stepped DR
compensation cost calculation is established. According to the DR
quantity of users, the model specifies multiple DR intervals, where the
compensation price increases with the DR quantity in each interval.
The model of stepped DR compensation cost calculation is as follows:

Cdr �

μelP
sum
el,dr, P

sum
el,dr ≤mel

μelmel + 1 + ]el( )μel Psum
el,dr −mel( ),

mel ≤Psum
el,dr ≤ 2mel

2 + ]el( )μxlmxl + 1 + 2]xl( )μxl Psum
xl,dr − 2mxl( ),

2mel ≤Psum
el,dr ≤ 3mel

3 + 3]el( )μelmel + 1 + 3]el( )μel Psum
el,dr − 3mel( ),

3mel ≤Psum
el,dr ≤ 4mel

4 + 6]el( )μelmel + 1 + 4]el( )μel Psum
el,dr − 4mel( ),

Psum
el,dr ≥ 4mel

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

where μel represents the basic price of DR compensation, which is set
as 20 yuan/MW. ]el is the rate of increase in the DR price, which is
set as 0.1.mel represents the quantity range length of DR, which is set
as 150 MW. Psum

el,dr is the total power at which the electrical load
participates in DR within one scheduling period.

Moreover, the model of traditional DR compensation cost
calculation is as follows:

Cdr � μelP
sum
el,dr. (14)

(2) The cost of response.

The participation of users in DR will incur discomfort cost,
which can be calculated as a quadratic function of the load
response amount.
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C†
dr � ∑T

t�1
εel Pe1,dr t( )( )2[ ], (15)

where εel is the discomfort coefficient participating in DR, and
its magnitude is determined by the energy consumption habits of
users. Pel,dr(t) is the electricity load participating in DR at time t.

5.1.2 Constraint condition
(1) Load-related constraints

The response types considered in this paper for electrical load
include transferable load and reducible load.

Pel t( ) � Po
el t( ) + Ptran

el t( ) − Pcut
el t( ), (16)

where Pel(t) represents the load quantity after participating at time t
in the DR plan. Po

el(t) represents the initial load quantity at time t.
Ptran
el (t) is the transferred load quantity at time t when the electrical

load participates in DR. Pcut
el (t) is the reduced load quantity at time t

when the electrical load participates in DR.

(2) Transferable load constraint

Ptran
el t( ) � ξtranel,in t( )Ptran

el,in t( ) − ξtranel,out t( )Ptran
el,out t( )

0≤ ξtranel,in t( ) + ξtranel,out t( )≤ 1∑T
t�1
Ptran
el t( ) � 0

0≤Ptran
el,in t( )≤Pel,in

max t( )
0≤Ptran

el,out t( )≤Pel,out
max t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (17)

where Ptran
el,in(t) and Ptran

el,out(t) represent the power that the load can
transfer in and out at time t, respectively. ξtranel,in(t) and ξtranel,out(t) are
binary variables. ξtranel,in(t) � 1 denotes the power transferred in.
ξtranel,out(t) � 1 denotes the power transferred out. Pel,in

max(t)
represents the upper bound of the electricity load transferred in.
Pel,out

max(t) is the upper limit of the electric load transferred out at
time t. In Eq. 17, the first two lines ensure that a certain type of load
will neither transfer in nor transfer out during the same time period.
The third line ensures that the entire demand of the load keeps
unchanged within one scheduling cycle.

(3) Reducible load constraints

Some loads can be reduced while satisfying user demands. The
constraint for the reducible electric load can be given by

0≤Pcut
el t( )≤ ξcutel t( )Pcut

el,o t( ), (18)

where ξcutel (t) is the binary variable. ξcutel (t) � 1 denotes that the
power is reduced of the load. Pcut

xl,o(t) represents the upper bound
that the load can be reduced at time t.

(4) Constraints on the total power involved in DR

Within one scheduling cycle, the total transferred power of
transferrable loads entering is equal to the total transferred power of
loads exiting. To avoid duplicate compensation, the total response
power of transferrable loads is calculated based on the total entering
power or the total exiting power. Here, we choose to calculate it
based on the total exiting power. Therefore, the total power Pel,dr(t)

of the electric load participating in DR within one scheduling cycle is
given by

Pel,dr t( ) � Ptran
el,out t( ) + Pcut

el t( )
Psum
el,dr � ∑T

t�1
Pel,dr t( )

⎧⎪⎪⎨⎪⎪⎩ . (19)

In conclusion, Eqs 12–15 describe the objective function., and
Eqs 16–19 describe the constraint condition in the optimization
model of the first stage.

5.2 The optimization model of the
second stage

5.2.1 Objective function
In a typical scenario involving wind power, PVs, and load, the

objective function on the basis of the green certificate carbon trading
model is as follows:

minF � min CT + Cope + FGCT + FCET( ), (20)

where F represents the entire cost of the system. CT represents the
thermal power generation cost. Cope represents the equipment
running cost. FGCT represents the green certificate transaction
cost. FCET represents the carbon transaction cost.

Additionally, the power generation cost calculation expression is
given by

CT � ∑n1
m�1

∑T
t�1

aP2
m,t + bPm,t + c( ), (21)

where a, b, and c are the cost coefficients of thermal power units.
The expression for calculating device running costs is

Cope � ∑T
t�1

cWTPWT,t + cPVPPV,t + cgtPgt,t + cELPEL,e,t

+cMGPMG,H2 ,t + cHFCPHFC,H2 ,t +∑5
n�1

cES,n Pcha
ES,n,t + Pdis

ES,n,t( )⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(22)

where cWT, cPV, cgt, cEL, cMG, cHFC, and cGB represent the unit running
costs of wind power, PV, gas turbine, electrolyzers, methane generators,
hydrogen fuel cells, and gas boilers in the park, respectively. cES,n
represents the unit running costs of a storage battery.

5.2.2 Constraint condition
5.2.2.1 Power flow calculations

The development of its computational methods is closely linked
to the advancement of computer tools. For an n-node power system,
the polar coordinate form of the node injection power equation is as
follows (Liu et al., 2020c; Liu et al., 2022):

Pi � Vi ∑
j∈i

Vj Gij cos θij + Bij sin θij( )
Qi � Vi ∑

j∈i
Vj Gij sin θij − Bij cos θij( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (23)

where Pi andQi represent the active power and reactive power specified
for node i, respectively. j ∈ i denotes the nodes adjacent to node i,
including the case where j � i. Gij and Bij represent the mutual
conductance and susceptance between nodes i and j, respectively. Vi

andVj represent the voltage magnitude of nodes i and j, respectively. θij
represents the voltage phase difference between node i and node j.
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Due to the nonlinearity of the power flow equation in Eq. 22, it
requires iterative solutions until convergence is achieved. Once the
amplitude and the phase angle of node voltages are obtained, the
branch power flow can be computed by

Pij � ViVj Gij cos θij + Bij sin θij( ) − V2
i Gij

Qij � −ViVj Bij cos θij − Gij sin θij( ) + V2
i Bij

⎧⎨⎩ , (24)

where Pij and Qij represent the active power and the reactive power
flow of branches i and j, respectively.

In the scenario of direct current, Eqs 23, 24 can be simplified,
and the simplification procedure is as follows:

(1) The voltage at per hybrid in a running system is generally near
the specified voltage, and Vi � Vj � 1 can be approximated.

(2) The voltage phase angle difference between the two ends of the
line is very small, resulting in θij ≈ 0. Thus, sin θij � θij and
cos θij � 1.

(3) In ultra-high voltage networks, the resistance of the line is
smaller than the reactance, allowing us to neglect the resistance,
represented by rij � 0. Therefore, Eq. 24 can be simplified to

Pij � −bij′ θi − θj( ) � θi − θj( )/xij

Qij � 0
{ , (25)

where bij′ � −1/xij. xij represents the resistance of the transmission
line. θi and θj denote the voltage phase angles of nodes i and j,
respectively.

The network of n nodes is written in matrix form as follows:

PSP � Bθ, (26)
where PSP is the power injection matrix of active power for n nodes
in the network. B represents an n-order matrix.

PSP
i � ∑

j∈i,j≠i
Pij � ∑

j∈i,j≠i

θi − θj
xij

, (27)

Bii � ∑
j∈i,j≠i

1/xij

Bij � −1/xij

⎧⎪⎪⎨⎪⎪⎩ . (28)

5.2.2.2 Energy equipment constraints
1) Wind power

0≤PWT,t ≤Ppre
WT,t. (29)

2) Photovoltaic

0≤PPV,t ≤Ppre
PV,t, (30)

where PWT,t and PPV,t represent the actual output of wind power
and PV at time t, respectively. Ppre

WT,t and Ppre
PV,t represent the upper

limit of wind power and PV at time t, respectively.

5.2.2.3 Energy conversion equipment output and climbing
constraints
1) Gas turbine

PGT,g
min ≤PGT,g,t ≤PGT,g

max

ΔPGT,g
min ≤PGT,g,t+1 − PGT,g,t ≤ΔPGT,g

max{ , (31)

wherePGT,g
min

and PGT,g
max

represent the ceiling and prescribedminimum of
the natural gas consumed by the gas turbine, respectively. ΔPGT,g

min and
ΔPGT,g

max
represent the upper and lower bound of natural gas used by the

gas turbine during ramping, respectively.

2) Alkaline electrolyzer

PEL,e
min ≤PEL,e,t ≤PEL,e

max

ΔPEL,e
min ≤PEL,e,t+1 − PEL,e,t ≤ΔPEL,e

max{ , (32)

where PEL,e
min and PEL,e

max represent the upper and lower bound of
electricity consumed by the alkaline electrolyzer, respectively. ΔPEL,e

min

and ΔPEL,e
max represent the upper and lower bound of electricity used by

the alkaline electrolyzer during ramping, respectively.

3) Methane generator

PMG,g
min ≤PMG,g,t ≤PMG,g

max,
ΔPMG,g

min ≤PMG,g,t+1 − PMG,g,t ≤ΔPMG,g
max{ , (33)

where PMG,g
min and PMG,g

max represent the upper and lower bound
of electricity consumed by the methane generator, respectively.
ΔPMG,g

min and ΔPMG,g
max represent the upper and lower bound of

electricity consumed by the methane generator during ramping,
respectively.

4) Hydrogen fuel cell

PHFC,H2
min ≤PHFC,H2 ,t≤PHFC,H2

max

ΔPHFC,H2
min ≤PHFC,H2 ,t+1 − PHFC,H2 ,t≤ΔPHFC,H2

max{ , (34)

where PHFC,H2
min and PHFC,H2

max represent the upper and lower
bound of electricity consumed by the hydrogen fuel cell,
respectively. ΔPHFC,H2

min and ΔPHFC,H2
max represent the upper and

lower bound of electricity consumed by the hydrogen fuel cell
during ramping, respectively.

5) Energy storage

The energy storage equipment model is given by Zhao et al.
(2019), Huang et al. (2021)

0≤Pcha
ES,n,t ≤Bcha

ES,n,tP
cha
ES,n,max

0≤Pdis
ES,n,t ≤Bdis

ES,n,tP
dis
ES,n,max

En t + 1( ) � En t( ) + Pcha
ES,n,tηchar − Pdis

ES,n,t/ηdis( )Δt
En,1 � En,25

En
min ≤En,t ≤En

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (35)

where Pcha
ES,n,t and Pdis

ES,n,t represent the charge and discharge
electricity of the battery, respectively. Bcha

ES,n,t and Bdis
ES,n,t

represent binary variables for the charge and discharge states of
the energy storage equipment, respectively. Δt is the unit time
period. Pcha

ES,n,max and P
dis
ES,n,max represent the upper bound of charge

and discharge electricity of the energy storage equipment in a
single operation, respectively. En,t is the volume of the energy
storage equipment. En

max and En
min represent the upper and lower

bound of the storage equipment volume, respectively. ηchar is the
charge efficiency.

In conclusion, Eqs 20–22 describe the objective function., and
Eqs 23–35 describe the constraint condition in the optimization
model of the second stage.
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5.3 Optimization process of a two-
stage model

Considering DR under multiple uncertainties, the
architecture of the two-stage scheduling method of the
power system is shown in Figure 1. Based on predictive
scenarios and load response capabilities, the dispatch center
optimizes the load structure in the first phase. The load is

divided into fixed and flexible components with the goal of
maximizing user energy efficiency. In the second stage, the
model introduces green certificate transaction and carbon
transaction mechanisms with the goal of minimizing the
comprehensive running costs for unit output planning in
typical scenarios. The detailed process of scheduling plan
formulation is as follows:

Step1: The basic information about the system covering PV and
wind power output, forecasted electricity load, and equipment
parameters is input.

Step2: A large set of sampling scenarios that conform to the
probability distributions of load, wind power, and PV is
generated using LHS.

Step3: The heuristic synchronous backtracking method is used for
scenario reduction to obtain a small number of representative typical
scenarios, along with their probabilities.

Step4: Gurobi is used to seek the solution of the first-stage optimal
model and determine the corresponding response strategy that
maximizes energy efficiency.

Step5: The improved stepped pricing is used to calculate the green
certificate trading cost. Then, a stepped green certificate transaction
model is introduced, and a green certificate carbon transaction
model is jointly built by incorporating a time-of-use stepped
carbon trading mechanism. The second-stage unit output plan is
optimized with the goal minimizing the overall running costs in
typical scenariosl.

FIGURE 1
Architecture of a two-stage dispatch strategy of the power system considering the demand response under multiple uncertainties.

FIGURE 2
Topology of the power system.
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6 Case study

6.1 Basic data

An improved IEEE 14-node transmission network is used for
analysis and verification. Due to the fact that the power network
used in this paper belongs to the transmission network, it can meet
the relevant simplification of the DC power flow explained in
Section 5.2.2. Therefore, the model established in this paper is
applicable to any transmission network that satisfies the
simplification of the DC power flow and is not limited to the
power grid system model used in the example section. The
topology of the power system is shown in Figure 2. The scene
reduction outcomes are shown in Figures 3–5. The base value is set
as 100 MW. Table 1 outlines the parameters of thermal power
units. Table 2 presents the parameters of other equipment.
Furthermore, Table 3 delineates the parameters of carbon
emissions. The carbon emission quota per unit of electricity
generated stands at 0.798 t/(MWh), and for per unit of thermal
power generated, it stands at 0.385 t/(MWh). The foundational
price for carbon emission compensation stands at 252 yuan/t. The
carbon trading price experiences a growth rate of 25%, and the
green certificate quota coefficient is fixed at 50%. The foundational
price for green certificate transactions is 0.4 yuan, with a growth
rate of 25%.

6.2 Analysis of the demand response

In this section, the advantages of DR are discussed. Three
different scenarios are set up, which are as follows:.

Scenario a: Not considering DR.

Scenario b: Considering traditional DR with a certain
compensation price.

Scenario c: Considering ladder-type DR with varying
compensation price.

Table 4 shows that scenario b experiences a reduction of
107.199 million yuan in operating costs compared to scenario a,
leading to an overall cost decrease of 107.1589 million yuan.
Moreover, a decrease of 222.63 metric tons in carbon emissions
and a reduction of 38.56 MW in the variance between electric load
peaks and valleys occur. This verifies that the incentive mechanism
for DR significantly reduces total costs, carbon emissions, and
electric load variances.

Despite scenario c incurring DR compensation costs exceeding
26,000 yuan, it results in a reduction of 15.4828 million yuan in
overall costs and a decrease of 17.82 metric tons in carbon emissions.
Regarding the DR rate, scenario b achieves a rate of only 67.96%,
whereas scenario c attains a rate of 95.14%, marking a 27.18%
increase over scenario b. Additionally, the variance between electric
load peaks and valleys decreases by 12 MW, verifying that the
incentive mechanism based on a ladder-type structure not only
effectively encourages user participation but also considers the
economic, low-carbon, and peak load shifting aspects of power
system operation.

FIGURE 3
Scene reduction results of PV.

FIGURE 4
Scene reduction results of wind power.

FIGURE 5
Scene reduction results of electric load.
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Figure 6 shows that the peak electric load predominantly occurs
between 10:00 and 22:00. Implementing the ladder-type DR
incentive mechanism resulted in a reduction in the electric load
during this timeframe. Specifically, a shift in the electric load from
the periods of 10:00–14:00 and 19:00–22:00 to the period of 24:
00–04:00 occurred, coinciding with a lower energy demand. This
initiative achieved a reduction of 108 MW in the electric load and a
transfer of 165.44 MW, effectively smoothing the electric load curve.
Concurrently, this strategy involved transferring electric load from
high-priced daytime periods to lower-priced nighttime periods,
thereby reducing operational costs within the power system.

6.3 Analysis of low-carbon economy

In this section, so as to effectively analyze the benefits of the
proposed model regarding low carbon emissions and economy, four
scenarios are arranged.

Scenario 1: The transaction volume of green certificates is not
divided, and DR is not considered. The setting of the certificate

transaction price is unified. Objectives are optimized by considering
the costs of purchasing energy, equipment running, and green
certificate trading.

Scenario 2: Green certificate transaction is divided. DR is not
considered. Objectives are optimized by considering the costs of
energy purchase, equipment running, and green certificate trading.

Scenario 3: Stepped green certificate transaction and time-
sharing stepped carbon transaction are considered. DR is not
considered. Objectives are optimized by considering the costs of
purchasing energy, equipment running, green certificate trading,
and carbon transaction.

Scenario 4: Stepped green certificate transaction and time-
sharing stepped carbon transaction are taken into account. DR is
considered. Objectives are optimized by considering the costs of
purchasing energy, equipment running, green certificate trading,
and carbon transaction.

Table 5 shows the scheduling results of power system in different
scenarios. The benefits of tiered green certificate trading are
compared and analyzed through scenario 1 and scenario 2. As is
shown in Table 5 Scenario 2 exhibits a reduction of 16.85 metric tons
in carbon emissions compared to scenario 1. Additionally, scenario
2 records a decrease of 67,000 yuan in carbon transaction costs
relative to scenario 1. Conversely, the transaction costs for green
cards in scenario 2 escalate by 66.72 million yuan compared to
scenario 1. This increase is attributed to the adoption of a ladder-
type green card trading mechanism featuring a pricing structure

TABLE 1 Parameters of the coal-fired power unit.

Unit
number

Cost coefficient a/b/c
(yuan/MW2)/(yuan/MW)/

yuan

Upper and lower limits of
power output/pu

Climbing speed/
(pu/h)

Carbon emission
intensity/(t/MWh)

G1 0.005/280/500 1.20/0.06 0.240 1.21

G2 0.003/390/400 0.72/0.036 0.144 1.15

G3 0.0047/380/250 0.48/0.024 0.096 0.97

G4 0.003/400/300 0.96/0.048 0.192 1.08

G5 0.002/420/100 5.00/0.250 1.000 1.30

TABLE 2 Parameters of other equipment.

Equipment Upper limit of output/pu Climbing speed/(pu/h) Conversion efficiency Operation cost/(yuan/kWh)

ES1 0.5 0.15 0.98 0.0180

ES2 0.5 0.15 0.98 0.0170

ES3 1.0 0.30 0.98 0.0120

ES4 1.0 0.30 0.98 0.0220

H2S 1.5 0.45 0.98 0.0550

GT1 0.5 0.1 0.3 0.0251

GT2 0.5 0.1 0.3 0.0251

EL 1.5 0.3 0.87 0.0525

HFC 2.0 0.4 0.95 0.0286

MR 1.5 0.3 0.83 0.0587

TABLE 3 Parameters of carbon emissions.

a1 b1 c1 a2 b2 c2

36 −0.38 0.0034 3 −0.04 0.001
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with higher unit green certificate transaction prices within
corresponding intervals. Notably, scenario 2 demonstrates a
6.60% increase in REC compared to scenario 1. These findings
support the assertion that the implementation of stepped green
certificate transactions offers superior advantages over traditional
methods in reducing system carbon emissions and enhancing
REC rates.

The case examines the advantages of the joint mechanism
involving green certificates and carbon trading using scenarios
2 and 3. Scenario 3 exhibits a 4.51-ton reduction in carbon
emissions compared to scenario 2. Moreover, it exhibits a
decrease of 45,000 yuan in carbon transaction costs, and a

reduction of 6,000 yuan in green certificate transaction expenses
relative to scenario 2. Overall, scenario 3 demonstrates a notable
decrease of 2.5758 million yuan in total costs in contrast to scenario
2. This analysis suggests that incorporating carbon transaction costs
into the objective function led to a reduction in system carbon
emissions. Furthermore, it resulted in decreased carbon and green
certificate transaction expenses, contributing to a whole diminution
in entire costs.

Analysis of benefits derived from the DRmechanism is conducted
in relation to scenarios 3 and 4. Scenario 4 demonstrates a reduction of
230.21 metric tons in carbon emissions compared to scenario 3.
Additionally, scenario 4 displays a decrease in carbon transaction
costs by 52,900 yuan and a reduction in the transaction cost of green
certificates by 165.4 thousand yuan compared to scenario 3. The
overall cost difference illustrates a decrease of 124.7358 million yuan
between scenario 4 and scenario 3. Evidently, the incorporation of the
DR mechanism effectively mitigates carbon emissions within the
power system. Furthermore, the optimization of DR, in
conjunction with green certificate and carbon trading mechanisms,
aligns with the objective of achieving a low-carbon economy in power
system dispatching.

7 Conclusion

In pursuit of low carbon emissions and promoting the
absorption of RE while addressing risks posed by multiple
uncertainties to the system, a management approach considering
uncertainties and DR for the power system was proposed. The
primary aim was to facilitate enhanced low-carbon economic
operations. First, taking the multiple uncertainties of RE and
electric load into account, a large number of scenarios were

TABLE 4 Dispatch results of three models.

Scenario Compensation
cost/yuan

Carbon
emission/t

User response
enthusiasm/%

Operation
cost/yuan

Peak-to-valley
difference/MW

Total cost/
yuan

a \ 2,875.56 \ 106,073.20 × 104 295.73 106,073.20 × 104

b 3.91 × 104 2,652.93 67.96 95,353.40 × 104 257.17 95,357.31 × 104

c 6.51 × 104 2,635.11 95.14 93,802.53 × 104 245.17 93,809.03 × 104

TABLE 5 Power system scheduling results in different scenarios.

Scenario Carbon
emission/t

Carbon
trading

cost/yuan

Green
certificate
transaction
cost/yuan

Renewable
energy

consumption
rate/%

Power
production
cost/yuan

Operation
cost/yuan

Total
cost/
yuan

1 2,875.68 47.86 × 104 40.09 × 104 91.36 106,041.41 × 104 23.34 × 104 106,152.70 ×
104

2 2,858.83 47.19 × 104 106.81 × 104 97.96 106,298.51 × 104 25.23 × 104 106,477.74 ×
104

3 2,854.32 46.74 × 104 106.21 × 104 100.00 106,041.42 × 104 25.79 × 104 106,220.16 ×
104

4 2,624.11 41.45 × 104 89.67 × 104 100.00 93,583.39 × 104 25.55 × 104 93,746.58 ×
104

FIGURE 6
Result of the demand response.
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formed using LHS. By using the heuristic synchronous back
substitution approach to achieve centralized reduction, multiple
typical scenarios and their probabilities of PV and load were
obtained. Furthermore, a joint market mechanism model of
green certificate transaction and carbon transaction was
developed, which was applied to promote REC, thus reducing
carbon emission. Considering the active response of users, a
stepped DR incentive mechanism was constructed on the basis of
the transferable and reducible characteristics of electric load.
Subsequently, a two-stage optimization dispatch model was
constructed with the objective function of both maximizing user
energy efficiency and minimizing system operating cost. Finally, the
case results showed that carbon dioxide emissions were decreased by
251.57 metric tons, the REC rate was increased by 8.64%, and the
total cost was reduced by 124.0612 million yuan. Compared with the
model that only considers the traditional green certificate
mechanism, the method developed here could significantly
promote the economy and low-carbon operation of the
power system.

With the ongoing expansion of the energy market, the threshold
for engaging in energy trading is progressively diminishing, leading
to the continual emergence of diverse market trading models and
varieties. The focus will shift toward optimizing the representation
of energy commodity attributes, enabling seamless and extensive
transactions among diverse entities. This stands as the forthcoming
research trajectory.
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In the evolving landscape of power systems, the integration of various
renewable energy resources (RERs) introduces complex challenges, particularly
in maintaining power quality, which are paramount for system stability. To
address this issue, an adaptive power quality disturbance (PQD) detection
framework is implemented in this paper. First, the optimal mode decomposition
(OMD) is developed to decompose the compound PQDs into sub-ingredients
to make them more visible based on the optimal energy ratio. Subsequently,
we propose an improved attention convolutional neural network (IACNN), an
advanced neural network architecture that leverages an enhanced attention
mechanism to expedite the identification of PQDs. Importantly, the sub-
ingredients can be strengthened based on the established PQD detection
framework. Finally, a series of experiments are conducted under different
noise levels and various types of PQDs. The results demonstrate that the
proposed framework has profound detection effectivity with about 99.2%
accuracy under the simulation condition of 20 dB noise level. In addition, the
experimental verification analysis proves a satisfactory real-time performance.
This underscores the potential of the proposed framework as a significant
advancement in the realm of power quality management, offering a robust
solution to the challenges posed by the integration of RERs into modern power
systems.
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1 Introduction

The integration of renewable energy resources (RERs) into the power grid has a
significant impact on the stability and operation of the power system (Chawda et al., 2020).
Specifically, it is imperative to implement precise controlmechanisms for RERs to effectively
manage and mitigate power quality disturbances (PQDs). Employing technologies such as
grid-synchronization and grid-forming control strategies (Xiao et al., 2023b) is essential to
ensure the seamless integration of RERs, thereby maintaining the stability and reliability
of the power grid. For instance, the power output from solar and wind resources can
fluctuate significantly due to changes in weather conditions, leading to voltage variations,
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frequency deviations, and harmonic distortions in the power grid.
Moreover, the use of power electronic converters in RERs for
converting DC to AC power can also generate harmonics and
cause power quality issues (Xiao et al., 2023a). This highlights the
importance of advanced power quality disturbance detection and
mitigation techniques in the era of renewable energy. The accurate
and timely detection of power quality disturbances is essential to
prevent these issues, enabling prompt corrective actions to be taken.
It also aids in maintaining the stability and reliability of power
systems, ensuring uninterrupted power supply, and enhancing the
overall performance and efficiency of electrical systems.

PQDs are the result of a variety of power electronic devices
operating within the grid, leading to complex and compound types
of disturbances. Recognized standards such as IEEE Std 1159,
which delineates practices for monitoring electric power quality,
and IEEE 519-2022, which specifies guidelines for limiting electrical
harmonic contributions, provide crucial benchmarks for managing
PQ issues. For example, the total demand distortion (TDD), as
defined by IEEE 519, considers harmonic components up to the 50th
order, highlighting the comprehensive nature of these standards
(Sabin et al., 2022). Such criteria underscore the increasing necessity
for enhanced detection efficiency and precision.

To address the abovementioned problem, some recent studies
have elaborated the method to detect the power quality signals.
These approaches are typically segmented into three distinct phases:
the identification of sub-components within the PQDs, extraction
of salient features from the signal components, and subsequent
detection of PQD characteristics.

The initial phase of PQD analysis involves the dissection of
complex signals into discernible sub-components or domains, such
as the frequency domain. To this end, methodologies such as
variational mode decomposition (VMD) are utilized, facilitating
the breakdown of PQDs into several intrinsic mode functions
(Zhao et al., 2019). Next, a Wigner–Ville distribution (WVD)
technique is developed to transfer the PQD into the time–frequency
domain (Cai et al., 2019). Then, the PQD can be identified from a
graphical perspective. Some other technologies include ensemble
empirical mode decomposition (EMD) (Hukampal and Mohanty,
2020), Stockwell transform (ST) (Kumar et al., 2020; Panigrahi et al.,
2022), and short-time Fourier transform (STFT) (De Frein and
Rickard, 2011). Similar to VMD, the EMD decomposes the PQDs
into multiple modes. The advantage of EMD is its fast execution
time (Jalilian and Samadinasab, 2021). One of the limitations is
the modal aliasing and end effects. Additionally, it can only extract
temporal information. In contrast, time–frequency transformative
methods, such as the ST (Cui et al., 2022) and the adaptive ST,
leverage window-matching spectrum techniques to address the
issue of time–frequency resolution (Pan et al., 2023). Despite their
utility, these time–frequency-based algorithms are characterized by
computational intensity, which may result in delays when detecting
high-frequency PQDs, an aspect that demands consideration in
their application.

In the pursuit of expediting PQD detection in systems with high
penetration of RERs, the extraction of distinctive features from the
decomposed sub-components is a critical step. As demonstrated by
Yılmaz et al. (2022), five features are extracted from the decimated
wavelet transform, including themean, standard deviation, variance,

entropy, and energy. In addition, 24 features were derived from the
discrete wavelet transform for each PQD case by Shafiullah et al.
(2021). It will highly speed up the detection of PQDs. However,
this efficiency may come at the cost of comprehensiveness, as
the condensed information within the extracted features may not
encapsulate the full spectrum of PQD data.

Based on extracted features, the PQD feature detection is
implemented as the last stage. In this stage, the conventional
methods and the advanced methods are used. Aiming at feature
processing at the second stage, the kernel support vector machine
method was proposed by Tang et al. (2020). The method named
adaptive k-nearest neighbor with excluding outliers was developed
by Liu et al. (2021). Some typical methods consist of the decision
tree and artificial neural network (ANN) (Igual and Medrano,
2020). However, the limitation of conventional methods is their
insufficient learning ability. To mitigate this problem, deep learning
methods are developed. For example, a novel sequential, non-
parametric, and supervised disturbance detector is proposed to
facilitate cooperative detection with only 0.61 cycles, corresponding
to 0.0123s (Mozaffari et al., 2022). In addition, the ensemble deep
learning is applied for the automated classification of PQDs
(Wang et al., 2022). A method called end-to-end PQD detection is
achieved based on the integrated conventional neural networks and
gate recurrent unit (Xiao and Li, 2021). It can detect the PQDs
without the need to perform feature extraction to achieve real-time
detection. Furthermore, the deep conventional neural networks are
combined with the WVD (Cai et al., 2019). Adaptive and hybrid
deep learning methods (Sindi et al., 2021) are proposed against the
noise.The primary limitation is that the importance of the features is
not strengthened, and therefore, they need to consume more layers
to learn more distinguishing characteristics.

To address the challenges associatedwith the real-time detection
and identification of compound PQDs, this paper introduces a
groundbreaking method, whose efficacy is underpinned by the
following significant contributions:

1. To accurately distinguish different disturbance components,
optimal mode decomposition (OMD) is developed based
on ensemble empirical mode decomposition. An innovative
energy ratio metric is formulated to mitigate the influence of
decomposition parameters within the OMD.

2. To highlight the importance of the disturbance features, an
improved attention convolutional neural network (IACNN)
is proposed to learn the critical information from PQDs
automatically. This model enables the autonomous learning
of vital information from PQDs, thus enhancing feature
recognition capabilities.

3. Integrated with the OMD and IACNN, a compound PQD
detection framework is proposed to eliminate the impact of
the irrelevant disturbance features. This integration facilitates
real-time PQD detection and obviates the necessity for manual
feature engineering.

The structure of this paper is organized as follows. Section 2
presents the principle of OMD. Then, the details of the IACNN are
given step by step in Section 3. Next, the conducted experiments
are explained in Section 4. Finally, the conclusion is given
in Section 5.
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2 Optimal mode decomposition

2.1 Principle of ensemble empirical mode
decomposition

The sophisticated nature of PQD signals, characterized by
their nonlinearity and non-stationarity, necessitates a robust feature
extraction method to yield accurate disturbance identification. The
empirical mode decomposition (EMD) technique is widely utilized
for this purpose, enabling the extraction of multiple intrinsic mode
functions (IMFs) from PQD signals.These IMFs are instrumental in
isolating various frequency components, thereby providing detailed
insights into disturbances and facilitating the analysis of non-
stationary signals. Nevertheless, a significant limitation of the EMD
method is its susceptibility to mode mixing, a phenomenon that
can introduce errors in the decomposition of complex PQD signals.
To mitigate this issue and enhance the accuracy of EMD, the
ensemble empiricalmode decomposition (EEMD) is developed.The
EEMD approach augments the decomposition efficacy by averaging
the results from numerous EMD iterations, each with a unique
instantiation of white noise added to the PQD signal.

For the PQD signal x(t), the EMD is carried outM times. In each
EMD trial, x(t) is superimposed with an independent white noise
wm(t), which can be expressed as shown in Eq. 1.

xm (t) = x (t) +wm (t) , m = 1,2,…,M. (1)

After the EMD operation, xm(t) is decomposed into multiple
IMFs Imp(t) and a residual rm(t). The number of IMFs is denoted
byK, and the decomposition result can be described as shown in Eq.
2.

xm (t) =
K

∑
p=1

Imp (t) + rm (t) . (2)

Then, to eliminate the influence of white noise on real IMF
components, the mean values of the corresponding IMFs and
residuals are computed, as shown in Eqs 3, 4, respectively.

IMFp (t) =
1
M

M

∑
m=1

Imp (t) , (3)

re (t) = 1
M

M

∑
m=1

rm (t) , (4)

where IMFp(t) denotes the pth IMF component after the
EEMD operation.

Based on these IMF components and the residual, the EEMD
result of the original PQD signal x(t) can be further obtained as
shown in Eq. 5.

x (t) =
K

∑
p=1

IMFp (t) + re (t) . (5)

Relative to the EMD method, the EEMD technique offers
an enhanced ability to diminish noise impact and alleviate the
mode mixing issue, leading to a more precise extraction of
PQD signal modes. However, the typical empirical approach to
determining the number of IMFs can introduce artifacts or omit vital
information when handling complex PQD signals. To address this,
the novel optimized mode decomposition strategy is introduced.

This method adaptively configures the number of IMFs based on
the specific characteristics of the PQD signal, thereby optimizing
the decomposition process and ensuring a more accurate signal
representation.

2.2 Proposed OMD

In essence, EEMD builds upon the foundation of the EMD
method, with each IMF correlating to a specific frequency range.
Within this range, EEMDeffectively extracts the inherent oscillatory
elements of the PQD signal (Prosvirin et al., 2019). Consequently,
EEMD’s operation can be likened to a form of band-pass filtering,
where signal energy divergent from the central frequency is
attenuated. It follows that the cumulative energy across all IMFsmay
decrease if the number of decompositions is either excessively high
or low. Furthermore, the aggregate energy of the IMFs is invariably
less than that of the original PQD signal.

Considering this analysis, an effective selection method of
the decomposition number is presented. This method involves
comparing the total energy of all IMFs subsequent to the EEMD
process. The cornerstone of the optimized mode decomposition
technique is the dynamic adjustment of the decomposition number
K, aiming to maximize the total IMF energy. This enhancement
renders the original EEMD more adaptable, thereby significantly
bolstering the precision of disturbance identification across a
spectrum of complex PQD signals.

The PQD signal is denoted as x(t), and the initial total energy
can be defined as follows:

E (x) =
S

∑
j=1

x2 (j) , (6)

where S represents the number of sampling points and x(j)
represents the amplitude of x(t) at different sampling points.

After the EEMD operation, multiple mode signals are obtained,
and the total energy of these IMFs can be expressed as follows:

E (IMF) =
K

∑
p=1

E(IMFp) , (7)

and there is

E(IMFp) =
S

∑
j=1

IMF2
p (j) , (8)

where E(IMF) represents the energy summation of the IMF signals
when the corresponding decomposition number is K and IMFp(t) is
the pth IMF signal.

Based on Eqs 6–8, the energy ratio between the IMFs and the
original PQD signal can be further computed, which is given as
shown in Eq. 9.

ξ =
E (IMF)
E (x)
× 100%. (9)

In OMD, when the sampling frequency and sampling period are
determined, the corresponding sampling points S are fixed. Namely,
the original disturbance energy E(x) is a fixed value. Therefore, once
the energy ratio ξ reaches the maximum, the corresponding total
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energy of all IMFs also obtains the maximum, which demonstrates
that the decomposition number K is optimal.

After the OMD-based feature extraction process, an improved
attention convolutional neural network model is further proposed
to identify different complex PQD signals based on the IMFs
provided by OMD.

3 Improved attention convolutional
neural network for PQD identification

3.1 Principle of the convolutional neural
network

As a quintessential archetype of deep learning, convolutional
neural networks (CNNs) are distinguished for their superior
feature extraction proficiency. The CNN architecture uniquely
integrates feature extraction with classification, thereby optimizing
the utilization of informational resources. This dual capability has
propelled its adoption across a broad spectrum of applications,
including image recognition, fault diagnosis, and natural language
processing. Complementing its practical applications, scholarly
inquiries have substantiated CNNs’ effectiveness in PQD signal
identification, consistently delivering a commendable performance.
Consequently, this paper selects the CNN as the primary model for
PQD signal classification, leveraging its validated strengths in this
specialized area of study.

Generally, the CNN contains the input layer, convolutional
layer, pooling layer, fully connected layer, and output layer.
When it is used for PQD identification in this article, the
input layer is the IMFs of the PQD signals. The feature
information of IMFs is extracted by the convolutional
layer. Then, the pooling layer is utilized to reduce feature
dimensions to improve network efficiency. Thus, the pooling
layer is also called the downsampling layer. The classification
performance of the CNN is usually reflected by combining
multiple convolutional layers and pooling layers. The fully
connected layer is used to combine the extracted features in
a nonlinear manner and then transfer the feature information
to the output layer. Namely, the fully connected layer is not
expected to have feature extraction ability, but it attempts to
use existing higher-order features to complete the identification
goal. Finally, the output layer outputs the classification result
of the CNN.

For some simple PQD signals, a traditional CNN can
typically yield satisfactory classification outcomes by increasing
the count of the convolutional and pooling layers. However,
this approach tends to escalate processing time, making it
challenging to fulfill the real-time processing demands of
PQD detection. Furthermore, when it comes to complex PQD
signals, classification accuracy may suffer. To achieve a balance
between high identification accuracy and expedient detection
time, this work introduces an advanced attention convolutional
neural network. This innovative model intends to significantly
amplify the inherent feature extraction prowess of the CNN.
This approach aims to deliver precise classification of PQD
signals while adhering to the time-sensitive requirements of
real-time detection.

3.2 Proposed IACNN

In the improved attention convolutional neural network, the
enhancement of feature extraction is approached from two strategic
angles. First, the deployment of multiple convolutional kernels of
varying sizes supplants the traditional singular kernel, enabling the
capture of both global and local signal characteristics. This variety
allows for the integration of diverse feature sets, culminating in a
composite feature that encapsulates more detailed information.

Second, the integration of an attention module subsequent to
the convolutional layers serves a pivotal role. Its primary function is
to direct the IACNN’s focus toward salient features of disturbances
while diminishing the influence of non-essential elements. The
objective is to streamline the flow of pertinent information within
the model. The configuration of the proposed IACNN architecture
is illustrated in Figure 1, with an in-depth exposition provided in the
subsequent sections.

Instead of the single convolution kernel, the sizes of 3× 3
and 7× 7 are used to obtain the local and global information,
respectively. Taking the 3× 3 convolution as an example, the output
of the convolutional layer can be determined as shown in Eq. 10.

Zc3 = f (W
p ∗ X+ bp) , (10)

where Wp denotes the weight of the convolutional kernel in the pth
layer, bp is the corresponding bias, X is the input, ∗ denotes the
convolution operator, and f is the activation function. In this article,
the scaled exponential linear unit (SELU) activation is used in both
the convolution layers and fully connected layers. The description of
SELU can be expressed as shown in Eq. 11.

SELU (x) = λ
{
{
{

x, ifx > 0

αex − α, ifx ≤ 0,
(11)

where λ = 1.0507 denotes the scale constant and α is a constant.
In addition, to increase the convergence speed and accelerate the

network stability, batch normalization is added in the convolutional
layer, and the convolution result is normalized to a Gaussian
distribution before the activation operation.

After the convolutional layer, motivated by the work of
Woo et al. (2018), the attention modules are placed to emphasize
the important disturbance feature. The attention modules consist
of channel attention and spatial attention modules, where channel
attention is used to reflect ‘what’ is meaningful, and spatial attention
is used to find ‘where’ is an informative part. These two attention
modules are placed as shown in Figure 2.The PQD feature extracted
by the convolutional layer is first processed by the channel attention.
The description of the channel attention can be expressed as shown
in Eq. 12.

Mc (Zc3) = σ(MLP(AvgPool(Zc3)) +MLP(MaxPool(Zc3))) , (12)

where Zc3 is the output of convolution 3× 3, AvgPool and MaxPool
represent the average-pooling and max-pooling operations,
respectively, MLP denotes the multi-layer perceptron, and σ
represents the sigmoid function.

After the channel attention, the output of the disturbance feature
is adjusted as shown in Eq. 13.

Zc3
′ =Mc (Zc3) ⊗Zc3, (13)
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FIGURE 1
Structure of the proposed IACNN.

FIGURE 2
Operation process of attention modules.

where ⊗ represents the element-wise multiplication.
Next, the new disturbance feature is processed by the spatial

attention, which can be described as shown in Eq. 14.

Ms (Zc3
′) = σ(Convn×n ([AvgPool(Zc3

′) ;MaxPool(Zc3
′)])) , (14)

where Convn×n denotes the convolutional layer with the size of n× n.
The attention layer output can be obtained after the spatial

attention, which can be expressed as shown in Eq. 15.

Zc3
′′ =Mc (Zc3

′) ⊗Zc3
′. (15)

Then, the pooling layer is deployed for downsampling, and
the pooling size is 2× 2. The convolution, attention, and pooling
are carried out twice in the proposed IACNN. After that, the
features from convolutions 3× 3 and 7× 7 are fused to provide more
comprehensive disturbance information. In this way, the IACNN
can further improve its classification performance. Finally, the
IACNN can output the classification result after the fully connected
(FC) layer. The number of FC layers is set to five in the proposed
IACNN model.

4 Illustrative example

To evaluate the efficacy of the proposed OMD–IACNN method
for PQD classification, a series of comparative experiments are

conducted. These experiments are designed in accordance with the
IEEE (2019) and draw upon findings by Tang et al. (2020). A total of
28 PQD types are examined, which include nine categories of single
PQDs and 19 variations of complex PQD signals. The PQD signals
under test are cataloged in Table 1. In the experimental setup, each
PQD category is represented by a dataset of 2,000 samples generated
in MATLAB. The datasets are partitioned into three subsets: 60%
for training, 20% for validation, and the remaining 20% for testing
purposes. Furthermore, the PQD signals are characterized by a
fundamental frequency of 50 Hz and a sampling frequency of
3,200 Hz, with a sampling duration set to capture 640 data points
per PQD sample, equivalent to a 10-s observation window.

4.1 Feature extraction using OMD

The features extracted by the OMD method directly affect the
classification accuracy. In OMD, the decomposition number ranges
from 6 to 10, and the specific number is determined based on the
energy ratio of IMFs. Taking one complex PQD signal C27 as an
example to explain the set of decomposition numbers for OMD,
when the decomposition number ranges in OMD, different energy
ratios of IMFs are listed in Table 2.

From Table 2, it can be seen that the energy ratio has a lower
value when the IMF number is small, which demonstrates that the
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TABLE 1 Twenty-eight types of PQD signals.

Class Types Class Types

C1 Normal C15 Spike + harmonics

C2 Sag C16 Sag + transient

C3 Swell C17 Swell + transient

C4 Interrupt C18 Interrupt + transient

C5 Harmonics C19 Spike + transient

C6 Flicker C20 Sag + transient + harmonics

C7 Transient C21 Swell + transient + harmonics

C8 Spike C22 Interrupt + transient + harmonics

C9 Notch C23 Flicker + transient + harmonics

C10 Sag + harmonics C24 Spike + transient + harmonics

C11 Swell + harmonics C25 Sag + flicker + harmonics

C12 Interrupt + harmonics C26 Swell + flicker + harmonics

C13 Flicker + harmonics C27 Spike + harmonics + sag

C14 Transient + harmonics C28 Spike + harmonics + swell

TABLE 2 Energy ratios of IMFs under different decomposition numbers.

PQD type IMF number Energy ratio (%)

C27

6 60.38

7 61.19

8 62.05

9 62.02

10 61.98

PQD signal is not fully decomposed. When the IMF number is over
eight, the energy ratio decreases with the increase in its number,
indicating some false components are generated. Therefore, the
optimal number of OMD is set to eight for proper decomposition.
The corresponding decomposition result is shown in Figure 3. It is
worth mentioning that IMF0 denotes the original C27 signal and
RES denotes the residual. In this way, different PQD signals can be
set the optimal decomposition number.

4.2 Verification for OMD and the IACNN

In addition, to verify the improvement of OMD and the
IACNN for the PQD classification performance, the accuracy

of OMD–IACNN is compared with other combination methods,
including EEMD–IACNN, OMD–ACNN, and EEMD–CNN. It is
important to note that the ACNN model differs from the IACNN
in that it utilizes a singular convolutional approach as opposed
to the latter’s advanced attention-fused convolutional strategy.
For the input features of the various CNN architectures, a fixed
dimension of 640× 10 was established, where 640 represents the
length of IMFs and 10 represents the highest decomposition level.
In instances where the decomposition level of OMD fell short of
10, null values were padded with zeros to maintain a consistent
input size. The comparison results under different noise levels are
presented in Figure 4.

Figure 4 shows that both the feature extraction and the classifier
have an obvious effect on PQD identification. On the one hand,
the OMD–IACNN has higher classification accuracy compared to
the EEMD–IACNN under different noise levels. This demonstrates
that the OMD can provide more reliable disturbance feature
information by adjusting the decomposition number adaptively,
proving its effectiveness. Furthermore, the superior performance of
OMD–IACNN over OMD–ACNN and EEMD–CNN underscores
the advantages of incorporating an attention mechanism and
a convolution fusion strategy into the CNN framework. This
combination bolsters the CNN’s ability to discern disturbancesmore
accurately. Notably, the OMD–IACNN maintains a high accuracy
rate of 99.2% evenunder 20 dBnoise, affirming its robustness against
noise interference. In addition, Figure 4 also shows an increase in
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FIGURE 3
Decomposition result of OMD for C27.

FIGURE 4
Accuracy comparison under different noise levels.

model accuracy when the noise level shifts from 40 dB to 20 dB;
the reason is that the PQD signals are changeable before the noise
is added, which can reflect the randomness of the classification
result. Such results are indicative of the model’s strong anti-noise
capabilities, making it a suitable tool for PQD identification under
challenging conditions.

4.3 Comparison with other PQD
classification frameworks

To further verify the proposed OMD–IACNN, some existing
PQD detection frameworks are selected for a comprehensive
comparison. The comparison result is given in Table 3.
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TABLE 3 Comparison with some existing frameworks.

Framework Type of PQD Noise (dB) Accuracy (%)

ACMP + SVM Z.T.; Motlagh et al. (2021) 16 20 97.13

HT + Slip-SVDNSA; Wang et al. (2019) 11 20 98.45

OST + KSVM; Tang et al. (2020) 24 20 98.82

ICEEMDAN + AdaKNNEO; Liu et al. (2021) 21 30 96.10

EITD + GSCNN; Zhu et al. (2023) 27 20 98.56

OMD + IACNN 28 20 99.20

FIGURE 5
Hardware platform. (A) Experimental PQD collection process. (B) PQD identification flowchart.

TABLE 4 Accuracy of experimental PQD signals.

Type Accuracy
(%)

Average
accuracy

(%)

Test time
(ms)

C1 100

97.37 115

C2 98.75

C3 99.375

C4 93.75

C5 95

It can be seen from Table 3 that the proposed OMD–IACNN
model has a higher PQD identification accuracy compared with
some other popular detection frameworks. First, more PQD types

are considered in our OMD–IACNN, which is important to address
the challenges of power grid complexity. In addition, under the
same noise level, the proposed OMD–IACNN can obtain the
highest accuracy. For example, the accuracy of the OST–KSVM
and the EITD–GSCNN is 98.82% and 98.56%, respectively, while
that the OMD–IACNN is 99.20%. The result demonstrates that the
optimal mode decomposition and improved network structure can
significantly enhance disturbance detection performance.Therefore,
the proposed OMD–IACNN is more suitable for complex PQD
identification.

4.4 Experimental verification analysis

To further ascertain the practical applicability of the proposed
methodology, a hardware experimental platform was employed to
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capture authentic PQDs signals. The hardware platform is presented
in Figure 5.

Figure 5 shows that the hardware platform is based on the
AC6801 series AC power source. After the experimental PQD
signals are collected, they can be identified by the proposed
OMD–IACNN model in PC. The experiment encompasses a
suite of PQD scenarios: C1 (normal), C2 (sag), C3 (swell), C4
(interrupt), and C5 (harmonics). We adhered to a sampling
frequency of 3,200 Hz and a total sampling duration of 10 s. To
reinforce the robustness of the identification process, each PQD
category was subjected to 160 random tests, with the results
presented in Table 4.

The data in Table 4 attest to the resilience of the OMD–IACNN
approach when applied to experimental PQD signals. An
average classification accuracy of 97.37% was achieved with
the OMD–IACNN, underscoring its efficacy in accurate
detection. Moreover, the average time taken to test each
PQD sample was less than the time required for signal
sampling, highlighting the model’s commendable real-time
performance. Collectively, these experimental findings reinforce the
OMD–IACNN model’s superiority in the identification of multiple
PQD types.

5 Conclusion

In this paper, a compound power quality disturbance detection
framework is proposed to improve the identification performance
in power systems with high penetration of RERs. The optimal
mode decomposition is first deployed to select the optimal
decomposition parameters. The performance under various energy
ratios and different numbers of mode components demonstrated
that a better parameter can be successfully selected with a strong
anti-noise ability. Then, an improved attention-based CNN is
implemented to identify the PQDs based on the results from
OMD. The experiment comparison reveals that the useful feature
information can be incorporated into the IACNN model, resulting
in improved accuracy. The experiments under different noise
levels and numbers of PQDs reveal that the proposed framework
has profound detection performance, with approximately 99.2%
performance, which is better than some state-of-the-art approaches.
The test based on the emulator indicates that the real-time
performance can be satisfied. However, the convolution process
is still time consuming, and some more complex and unknown
PQD signals may be produced with the development of the RERs
system. Further research can focus on the network parameter
simplification method and explore more possible complex PQD

signals. We will also focus on the PQD control using the advanced
grid-synchronization-based inverter control method to eliminate
the PQD issues.
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Multi-scenario flexibility
assessment of power systems
considering renewable energy
output uncertainty
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Jinchao Cao1, Xiangnan Li1 and Yingge Wang1
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The widespread adoption of renewable energy sources presents a significant
challenge to the flexibility of power system. To assess the flexibility of the power
system in scenarios with uncertain renewable energy output, it is crucial to
quantify it quantitatively. This evaluation plays a vital role in planning flexible
regulatory resources and dispatching resources for both the energy source and
load. This study introduces a novel flexibility assessmentmodel tailored for power
grids with high renewable energy penetration, specifically addressing uncertainty
associated with wind and PV. By analyzing the impact of wind and PV uncertainty
on system flexibility, the paper proposes an improved cohesive hierarchical
cluster analysis method, incorporating reliability considerations based on the
Davies-Bouldin classification reliability index. Additionally, the study develops
models for flexibility resources and demands within high renewable energy
power systems, along with quantitative assessment indicators across three key
aspects. Through a structured flexibility assessment process accounting for wind
and PV uncertainty, the effectiveness of the proposed approach is validated using
real-world data from a renewable energy power grid in Shandong province. A set
of typical renewable energy output scenarios with uncertainty is constructed
using the improved hierarchical cluster analysis method. The study then analyses
the impact of different wind and PV penetration rates and the proportion of
energy storage units on system flexibility by the flexibility assessment model to
validate the proposed method's effectiveness.

KEYWORDS

renewable energy, power system flexibility, evaluation model, resource scheduling,
hierarchical cluster analysis

1 Introduction

In recent years, power systems have seen an increasing penetration of renewable energy
sources. The rapid expansion of the renewable energy scale and the reduction of the non-
clean energy ratio have contributed to improving the green and low-carbon levels of the
energy industry. However, the typical uncertainty associated with renewable energy output
poses significant challenges to the power system with high proportions of renewable energy
access. The net load fluctuation of the system increases due to the high-frequency
fluctuation and low-frequency intermittency of wind power generation, which, in turn,
leads to insufficient allocation of flexible regulation resources and difficulties in balancing
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source–load dispatch. Moreover, there is no common flexibility
assessment process to quantitatively calculate the flexibility
adequacy of highly proportional renewable energy power systems
to judge whether the flexibility regulation capacity of the system can
meet the operation requirements. This is a key challenge that needs
to be addressed.

In the field of wind and PV power uncertainty research, most of
the existing studies are based on scenario analysis methods to
process possible scenarios of wind and PV power by means of
simulation, sampling, or clustering to obtain multiple typical
scenarios of wind and PV power and their probability
distributions so as to transform the uncertainty problem of
wind and PV power into deterministic scenarios for solution
and analysis and effectively realize the uncertainty description
and characterization of wind and PV power. Ai et al. (2014),
Zhang et al. (2014), and Yu (2015) described typical wind
power scenarios in grid dispatching models, considering the
influence of uncertainty based on Monte Carlo sampling
methods. Liu et al. (2022) obtained a typical set of
wind–light–load output scenarios by downscaling the
wind–light–load massive high-dimensional scenarios through a
principal component–Gaussian hybrid clustering algorithm.
Zheng et al. (2022) applied a multi-scene clustering method to
divide the scene space into several roughly equal subspaces,
considering the temporal and stochastic nature of distributed
units and loads, and the point corresponding to the algebraic
mean of the coordinates of each dimensional component in
each subspace is taken as the cluster center of the scene,
respectively. Hou et al. (2023) used the Latin hypercube
sampling method to sample from the joint probability
distribution interval of wind and PV and then obtained the
initial sample scenarios of wind and PV output. Martins and
Borges (2011) designed a new E-C-K-means clustering
algorithm to cluster the wind speed and irradiance in four-
season scenarios, considering the time series characteristics of
load and distributed power output to obtain typical scenario
daily curves. Li et al. (2021) described the source and load
uncertainty problem as a deterministic multi-scenario problem
by constructing planning scenarios that may exist in active
distribution network planning. The above methods are usually
based on large-scale data fitting to generate typical scenarios to
characterize the uncertainty of wind power and PV output, but they
are less capable of handling outliers and large amounts of data, and
the efficiency of the model solution decreases with the increase in
the size of the input data. At the same time, the number of typical
scenarios needs to be set by human beings beforehand, which may
lead to a strong similarity between different scenarios because of
too many divisions or too few divisions, resulting in large
differences between the samples in each category of the selected
scenarios, which lacks representativeness. In summary, the
traditional uncertainty analysis method has limitations in the
processing of large-scale renewable energy output data, and
further research is needed to improve the accuracy and
rationality of the classification of uncertainty scenarios.

In a high-percentage renewable energy power system,
flexibility is the power regulation ability of the power system to
cope with the volatility and randomness of renewable energy
output by optimizing the deployment of various types of

flexibility resources, i.e., the ability of the system flexibility
resources to meet the flexibility demand, and based on the
shortage of the flexibility regulation ability of the system, the
power, capacity, and response speed requirements of the
flexibility resources such as energy storage can be quantitatively
evaluated. In the study of the flexibility assessment of systems
containing renewable energy, by studying the power output
characteristics of wind power and photovoltaic, a mathematical
morphology algorithm is used to obtain the flexibility evaluation
index system for different time scales and climbing directions by
Tong et al. (2023). For the problem of flexibility assessment of
power systems containing a high proportion of wind power access,
based on the Monte Carlo simulation method and economic
dispatch model for the calculation of flexibility metrics, Li et al.
(2015) and Liu et al. (2019) proposed a flexibility evaluation index
system based on the fluctuation of wind power and load, as well as
the inherent flexibility supply capacity of various generation
resources in the system. Li et al. (2017) conducted a
quantitative analysis from the perspective of the regulation
range of system flexibility resources, and a practical system
flexibility adequacy calculation method was proposed based on
the power balance constraint to realize the evaluation of system
renewable energy consumption capacity. Gholizadeh-Roshanagh
and Zare (2019), Huang et al. (2023), and Lu et al. (2023)
constructed the main types of flexibility resources, the principle
of flexibility balance, and the quantitative flexibility assessment
index system, and the core content and solution ideas of
coordinated planning of power system flexibility including
energy storage devices were proposed. Yasuda et al. (2013)
proposed a flexibility radar diagram to characterize system
flexibility, and the installed percentages of various types of
flexible resources (such as hydroelectric plants, cogeneration,
pumped storage, gas turbines, and interconnected grids) and
wind power were given in the form of radar diagrams. Zhao
et al. (2015), Xu et al. (2021), and Xu et al. (2022) established a
unified framework system for flexibility assessment and proposed
key factors of flexibility, including time scale, system action
behavior, and cost. Following the concept and idea of a safe
operation domain of power systems, the concept of a flexible
operation domain is proposed by Ulbig and Andersson (2014),
which is a three-dimensional space consisting of a climbing-
flexible domain, power-flexible domain, and energy-flexible
domain, and the multi-node flexibility tidal model is obtained
from the power injection analysis of a single node. Although the
above studies have proposed the evaluation index process for
various types of flexibility resources and demands, they are still
exploratory in the field of quantitative analysis of power system
flexibility, and their evaluation models often focus on considering
one aspect of flexibility resources, lack synergy and universality,
and are difficult to be coupled with the operation and planning of
flexibility resources, such as energy storage, in the system. At the
same time, the traditional methods do not include the output
uncertainty of wind turbines in the scope of system flexibility
analysis and assessment. In summary, future research should
realize the quantitative analysis and assessment of grid
flexibility based on the consideration of the impact of a high
percentage of renewable energy uncertainty. This research
content is of great significance for the rational planning of
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power system flexibility resources, as well as for meeting the
challenges of renewable energy access to the safe and stable
operation of the power grid.

This study adopts an improved cohesive hierarchical clustering
method in the given context to construct a quantitative assessment
model for the flexibility of high-proportional renewable energy
power systems, considering uncertainties in wind and photovoltaic
sources. First, a method for improved cohesive hierarchical clustering
analysis, considering reliability indicators, is proposed. The study also
discusses the specific process of optimizing the classification of
typical scenarios using historical renewable energy output data.
Second, the study models the flexibility of resources and demands
of high-proportional renewable energy power systems. It also
proposes quantitative evaluation indicators for flexibility,
considering the expectations of insufficient peak flexibility,
expectations of insufficient climbing flexibility, and the probability
of inflexibility. The study establishes a multi-scenario flexibility
assessment process for high-proportional renewable energy power
systems, incorporating uncertainties in wind and photovoltaic
sources. Finally, a case study is conducted using historical data
from a high-proportional renewable energy power system. The
study constructs a typical set of renewable energy output
scenarios, incorporating uncertainties, using the proposed
improved hierarchical clustering analysis method. These scenarios
are then substituted into the flexibility assessment model to analyze
the impact of different renewable energy penetration rates and energy

storage unit percentages on system flexibility. The effectiveness of the
proposed flexibility evaluation method is verified.

2 Mechanism of the impact of
renewable energy uncertainty on
power systems

2.1 Analysis of the impact of renewable
energy output trends on net load
peaking demand

The connection of large-scale wind power and photovoltaic
generating units to the power system greatly reduces the pressure
of the system power supply during peak load hours and reduces the
environmental pollution problems caused by the reliance on fossil fuel
combustion of traditional generating units, but at the same time, the
uncertainty characteristics inherent in the high proportion of
renewable energy generation put forward higher requirements on
the reliability of system operation and the stability of power quality. In
order to study the impact of uncertainty on system peaking, the
renewable energy output is treated as the reverse load, the uncertainty
is characterized by the trend of renewable energy output under
different scenarios by analyzing the net load output curve, and the
mechanism of uncertainty on the net negative peaking demand of the
system is investigated. The impact of renewable energy grid

FIGURE 1
Three types of peaking of renewable energy output. (A) Positive peaking; (B) Excessive peaking; (C) Reverse peaking.

Frontiers in Energy Research frontiersin.org03

Ai et al. 10.3389/fenrg.2024.1359233

208

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1359233


connection on peaking can be summarized into three types: positive
peaking, excessive peaking, and reverse peaking.

According to Figure 1A, in the same sampling period, the power
output trend of renewable energy units is similar to the power
demand trend of load, and the difference between the peak and
valley of the source load in this period is not much. At this time, the
net load curve of the system is flatter than the original load curve,
and the net load peak–valley difference, i.e., the system peaking
demand, decreases while the flexibility regulation demand decreases.
In this case, the impact of renewable energy output on power system
operation is positive peaking.

According to Figure 1B, in the same sampling period, the power
output trend of renewable energy units is similar to the power
demand change of the load, but the peak-to-valley difference of
renewable energy output in this period is much larger than the
power change of the load. At this time, the net load curve of the
system changes the peak regulation direction compared with the
original load curve, and when the peak-to-valley difference of
renewable energy output is greater than twice the peak-to-valley
difference of the load, the peak regulation demand of the system will
increase in the opposite direction compared with the original
working condition, and the flexibility regulation demand rises. In
this case, the impact of renewable energy output on power system
operation is excessive peaking.

According to Figure 1C, in the same sampling period, the power
output trend of renewable energy units is opposite to the power demand
trend of the load. At this time, the net load output curve of the system
will increase its peak regulation demand in the same direction
compared with the original load output curve, and the flexibility
regulation demand rises. In this case, the impact of renewable
energy output on power system operation is reverse peaking.

According to the above analysis, the high proportion of
renewable energy sources connected to the grid may both reduce

the intra-day peaking pressure of the system and increase the
regulation demand of flexibility, so it is necessary to propose the
quantification method of system flexibility supply and demand
under the condition of considering uncertainty factors to cope
with the problems of wind and light abandonment caused by
high renewable energy penetration.

2.2 System net load demand at different
renewable energy penetration levels

In order to quantify the flexible regulation demand of the system
at each time scale when the renewable energy penetration reaches
different levels, the upward (downward) net load creep demand is
defined as the ratio of the maximum upward (downward) regulation
demand of the net load in a day to the average annual load; the net
load upward (downward) regulation demand is defined as the ratio of
the maximum daily power upward (downward) regulation demand to
the average daily load power in a year. Taking the renewable energy
penetration rate of 30%–90%, the defined net load regulation demand
is estimated, and the results are shown in Figure 2.

With the increase in renewable energy penetration, the net load
regulation demand caused by the uncertainty of wind and PV power
output also increases gradually, which poses a great challenge to
both power regulation and energy regulation of system flexibility
resources. As shown in the estimation results in Figure 2, when the
renewable energy penetration is ≤ 30%, the net load regulation
demand of the system is small, and the regulation margins of the
flexibility regulating units can realize the envelope to the fluctuation
of the renewable energy output in the usual case; when the renewable
energy penetration is ≥ 40%, the net load climbing and peaking
demands increase significantly, and the upward and downward net
load regulation demands show a similar change trend. The

FIGURE 2
Net load regulation demand with different renewable energy penetration rates.
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estimation shows that under the condition of maintaining a certain
installed capacity of adjustable units, as the penetration of renewable
energy increases, the system net load peaking and climbing
regulation demand gradually grows to an extremely high level,
and the existing flexibility resources are unable to maintain the
power balance state of the system in terms of both power regulation
and energy regulation. In this context, how to quantitatively assess
the flexibility supply and demand of a high percentage of renewable
energy power systems and fully utilize the regulation capability of
system flexibility resources is the key to the future power systems to
cope with the uncertainty of a high percentage of renewable energy.

3 Improved cohesive hierarchical
cluster analysis method with reliability

In power systems with high proportions of renewable energy
access, the output of renewable energy is closely related to
meteorological conditions, geographical distribution, and system
operation status, resulting in typical stochasticity and uncertainty.
After analyzing the influence mechanism of renewable energy output
uncertainty on power grid flexibility, in order to solve the above
problems, this study employs an improved hierarchical clustering
algorithm to conduct a typical scenario clustering analysis on
renewable energy output data in order to effectively characterize
the uncertainty of renewable energy output. To optimize the
number of clustering scenarios, the Davies–Bouldin classification
reliability index is incorporated into the traditional hierarchical
clustering analysis method, and an improved cohesive hierarchical
clustering analysis method is introduced to account for reliability.

Based onN days of renewable energy output data on power systems
under a high proportion of renewable energy access and using cluster
analysis, the daily data points are designated as T for sampling, and each
day’s renewable energy output sample is treated as an initial cluster;
then, the regional renewable energy output sample Xi �
[xi1, xi2 . . . , xiT] on day i, and the initial clustering set matrix of
renewable energy output in the region is thus constructed as shown
in Eq. 1:

X �
X1

X2

...
XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
x11 x12 ... x1T

x21 x22 ... x2T

... ... ...
xN1 xN2 ... xNT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×T

, (1)

where xit represents the power output data for the sampling point in
the area on day i. In the initial cluster set matrix, the Euclidean
distance method is used to calculate the similarity between each
cluster, and the Euclidean distance between two clusters can be
quantified and expressed as shown in Eq. 2:

d Xi,Xj( ) �

�����������
∑T
t�1

xit − xjt( )2
√√

. (2)

When the similarity between clustersXi andXj is larger, d(Xi,Xj)
is smaller; otherwise, its value is larger and satisfies
d(Xi,Xj) � d(Xj,Xi).Calculating the Euclidean distance between all
N initial clusters yields a symmetric N-dimensional inter-cluster
distance matrix D, which as shown in Eq. 3:

D �
0 d X1 ,X2( ) ... d X1 ,XN( )

d X2 ,X1( ) 0 ... d X1 ,X2( )
... ... ...

d XN,X1( ) d XN,X2( ) ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

. (3)

The interclass squared distance d2(Xu,Xv) between any two initial
clustersXu andXv is defined as the average of the squared distances
between the samples of the two classes, which can be expressed
quantitatively as follows:

d2
Xu,Xv( ) �

1
nunv

∑ d2
Xu,Xv( ), (4)

where nu and nv are the sampling points in clusters Xu and Xv,
respectively. Using Equation 4 to calculate the mean of squared
distances between all N initial clusters, a symmetric N-dimensional
distance squared mean matrix can be obtained as shown in Eq. 5:

D2 �
0 d2

X1 ,X2( ) ... d2
X1 ,XN( )

d2
X2 ,X1( ) 0 ... d2

X2 ,XN( )
... ... ...

d2
XN,X1( ) d2

XN,X2( ) ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

. (5)

Let the non-diagonal elements of matrix D2 have the minimum
value d 2

min � d2(Xa ,Xb).Xa andXb are combined into a new classXab
(1),

i.e., Xab
(1) � Xa,Xb{ }, and the number of samples in the new class

Xab
(1) is nab � na + nb. The a, b rows and a, b columns are deleted in

the distance square matrix D2, and the distance squared mean between
the new class A and other classes Xo

(1)(o ≠ a, b) in the last row and
column of the matrix are added; then, the number of clusters is reduced
from N to N-1, the first clustering is finished, and the new distance
squared mean matrix D2(1) is obtained. The distance squared between
the new classXab

(1) and the other classXo
(1)(o ≠ a, b) is the following:

d2
X 1( )
ab

,X 1( )
o( ) �

na
nab

d2
Xa ,X

1( )
o( ) +

nb
nab

d2
Xb ,X

1( )
o( ), (6)

where Xab
(1) and Xab

(1) � Xa, Xb{ } are the new classes after
completing the first clustering division, and Xa and Xb are the
initial clusters. Equation 6 is used to continue calculating the

FIGURE 3
Clustering branch tree diagram.
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squared mean of the distance between the new class and the other
classes to complete the kth clustering.

In order to visualize the similarity and tightness relationship
between the clustered samples of renewable energy output, a tree
diagram is used to represent the clustering process of renewable
energy output samples within N days, as shown in Figure 3.
Taking the k+1st clustering as an example, hk+1 represents the
interclass distance in Xu

(k) and Xv
(k). When the interclass

distance difference is the smallest, a new class Xuv
(k) can

be merged.
The traditional hierarchical clustering analysis method requires

the manual setting of the branch cut of the clustering tree diagram
based on historical experience after obtaining the clustering
hierarchy tree diagram. This paper introduces the
Davies–Bouldin classification reliability index to quantitatively
evaluate the reliability of the clustering results with different
numbers of branches in order to achieve optimal selection of the
number of clustering scenarios. The classification reliability index of
hierarchical clustering can be expressed as follows:

KDBI � 1
h

∑
i,j ∈ Ωh

Si + Sj
Ci − Cj

���� ����( )
i≠j

, (7)

where KDBI is the classification reliability index under different
numbers of clustering scenes, and the smaller the value of the index,
the better the clustering result under that number of branches; h is
the number of clustering scenes; Si and Sj are the mean values of the
distances from all elements in clusters i and j to the central curve of
clusters, respectively, indicating the degree of curve dispersion
within the clustering scenes; ‖Ci − Cj‖ is the distance between
clusters i and j.

By calculating the reliability index of different clustering
scenarios and considering engineering requirements, the
minimum value of KDBI is selected as the optimal result for the
clustering of typical output scenarios of renewable energy sources.
This approach avoids the issue of improper setting of the number of
scenarios caused by the manual selection of h values in the
traditional hierarchical clustering process and improves the
reliability and accuracy of typical scenario clustering analysis.

4 Assessment of high-percentage
renewable energy power system
flexibility considering wind and PV
uncertainty

With the large-scale integration of renewable energy sources
into the power grid, the supply capacity of the system has greatly
increased. However, due to the close correlation between renewable
energy generation and factors such as weather conditions,
geographic location, and system operating conditions, the output
exhibits significant uncertainty and randomness, posing significant
challenges to the stable and economic operation of the power grid. In
this context, considering the uncertainty of wind and photovoltaic
power generation, it is important to study the quantitative
evaluation method of the flexibility of the high-proportion
renewable energy power system, which plays an important role
in the flexible regulation of power grid resource planning and
bidirectional resource scheduling.

4.1 Theoretical overview and impact analysis
of flexibility

The broad flexibility of power systems refers to the system’s
responsive regulation ability to cope with internal and external
uncertainties. In the high percentage of renewable energy power
systems, the large-scale grid connection of scenery causes a
significant challenge to the flexibility regulation ability of the
system, which is prone to wind and light abandonment and load
shedding caused by insufficient peak regulation and ramp climbing
flexibility. Therefore, flexibility can be defined as the ability of the
system to maintain a balance between power supply and demand on
both sides of the system source and load by coordinating various
types of flexible regulation resources.

For example, due to the change in weather conditions, when the
sudden increase of wind power and photovoltaic unit output makes
the system net load power demand suddenly decrease, the adjustable
generating unit output should be reduced accordingly. If the unit
output continues to decrease until it works in the minimum normal
operation power state and the energy storage unit is charged with
maximum power, the load still cannot completely consume the
renewable energy output, that is, if the system flexibility cannot meet
the balance of output supply and demand, then the problem of
insufficient downward flexibility arises. At this time, the dispatcher
needs to issue wind and light abandonment instructions and wind
power and photovoltaic unit output reduction to maintain the
system supply and demand balance.

As shown in Figure 4, the solid blue line is the downward flexibility
margin of the system flexibility resources and the solid red line is the
downward flexibility demand of the net load. When the downward
flexibility supply is less than the net load demand, the downward
flexibility of the system is insufficient, and wind or PV will be
curtailed to consume the excess renewable energy output. Similarly,
when the supply of upward flexibility of the system is less than the net
load regulation demand, the dispatch will issue a load-shedding
command to maintain the power balance of the system. The
source–load output comparison curve and the insufficient flexibility
capacity are shown in Figure 5.

Due to the immature development of energy storage technology,
in the operation of the power system, the supply and demand of
power from both sides of the source and load need to be
corresponded in real time. When the renewable energy output is
at peak hours or the load power demand changes suddenly, the

FIGURE 4
Schematic diagram of downward inflexibility.
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problem of lack of flexibility caused by insufficient system regulation
speed andmargin is likely to occur. Therefore, a quantitative analysis
of the flexibility of the power system with a high proportion of
renewable energy is important for the rational planning and real-
time dispatch of the power system.

4.2 Modeling of flexibility requirements and
resources for high-percentage renewable
energy power systems

Compared with traditional flexible resources (such as gas, coal,
and storage units), scenic renewable energy can be regarded as the
reverse load of the system because the power output variation in
scenic renewable energy is determined by meteorological conditions
and almost does not actively participate in the power adjustment of
the grid. Let the sequence of renewable energy power plant output in
the system be Pres,t � Pres,1,t, Pres,2,t, . . . , Pres,M,t{ }; the load output
demand Pload,t � Pload,1,t, Pload,2,t, . . . , Pload,N,t{ }. Therefore,
according to the definition of net load, the net load output
demand of the system at time t is expressed as shown in Eq. 8:

Pnet,t � ∑N
n�1

Pload,n,t − ∑M
m�1

Pres,m,t, (8)

where N is the number of load nodes, M is the number of renewable
energy stations, n is the load node number, and m is the renewable
energy station number.

The sampling time interval is set as Δt, and first-order differential
calculation is performed on the system net load time series to obtain
the unit time output demand ΔPnet,t of the net load, which can be
decomposed according to its power direction as shown in Eq. 9:

ΔPdem,up,t � max ΔPnet,t, 0( )∣∣∣∣ ∣∣∣∣
ΔPdem,up,t � min ΔPnet,t, 0( )∣∣∣∣ ∣∣∣∣{ , (9)

where ΔPdem,up,t is the upward flexibility demand in the output
period t, which represents the increase in net system load output
demand per unit time period, and ΔPdem,down,t is the downward
flexibility demand in the output period t, which represents the
decrease in net load output demand per unit time period.

System flexibility resources refer to units with flexibility
regulation capability that can actively participate in system power
regulation through unified dispatch and control, including coal-fired
units, gas-fired units, adjustable hydropower units, and energy
storage. Corresponding to the upregulation (downregulation)
flexibility demand of the system, the upregulation
(downregulation) flexibility supply of the system is defined as the
difference between the upper bound (lower bound) of the system
flexibility resource output at a certain moment and the system
flexibility resource output at the previous moment, which is
expressed as shown in Eq. 10:

ΔPsup ,up,t � Psup ,max , t+1( ) − Psup ,t

∣∣∣∣ ∣∣∣∣
ΔPsup ,down,t � Psup ,min , t+1( ) − Psup ,t

∣∣∣∣ ∣∣∣∣{ , (10)

where ΔPsup ,up,t is the up-adjusted flexibility supply in the output
segment t, which indicates the increase in system flexibility resource
output supply per unit time period; ΔPsup ,down,t is the down-adjusted
flexibility supply in the output segment t, which indicates the
decrease in system flexibility resource output supply per unit
time period; ΔPsup ,max ,(t+1) is the upper bound of system
flexibility resource output in the output segment (t + 1);
ΔPsup ,min ,(t+1) is the lower bound of system flexibility resource
output in the output segment (t + 1); and ΔPsup ,t is the system
flexibility resource output in the output segment t.

4.3 A multi-scenario flexibility evaluation
model accounting for wind and PV
uncertainty

Because of the randomness of renewable energy output, during
peak output periods, renewable energy output reduction can occur
due to insufficient downward adjustment capacity of the system,
i.e., insufficient system absorption capacity. Similarly, during peak
net load demand periods, load reduction can occur due to
insufficient upward adjustment capacity of the system,
i.e., insufficient supply of system flexibility resources, defining the
expectations of insufficient peak flexibility, reflecting the severity of
the deficiency of the system’s adjustment margin. By subtracting the
system flexibility supply–demand output curve, the expected
indicator of insufficient system flexibility for adjusting peaks can
be calculated as follows:

Er � kmEm + klEl

� km ∑
s∈Ωm

∑
t∈TN

πm
Psup ,s,t − 1 + μ( )Pnet,s,t( )

Ns,t
+ kl ∑

s∈Ωl

× ∑
t∈TM

πl
Pnet,s,t − Psup ,s,t( )

Ms,t
, (11)

where Em is the downward peak capacity shortage expectation of the
system, which indicates that the system regulable generating units
work at the minimum normal operating power, and the energy
storage units and load still cannot fully consume part of the output
expectation; El is the upward peak capacity shortage expectation of
the system, which indicates that the system regulable generating
units work at the maximum normal operating power, and the
flexible resource supply still cannot envelop the net load

FIGURE 5
Comparison curve of source and load output.

Frontiers in Energy Research frontiersin.org07

Ai et al. 10.3389/fenrg.2024.1359233

212

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1359233


regulation demand part of the output expectation; km, kl is the
weighting coefficient of the peak capacity shortage indicator, which
can be set according to the energy loss costs of wind abandonment
and load shedding; Ωm is the set of scenarios where the system has
insufficient capacity to consume and needs to abandon wind and
light; Ωl is the set of scenarios where the system has insufficient
supply of flexible resources and needs to cut load; TN and TM are
collections of inflexible outgoing segments under scenarios Ωm and
Ωl, respectively; Ms,t and Ns,t are the number of under-flexible
output segments under scenarios Ωm and Ωl , respectively; Psup ,s,t is
the flexible resource output in output segment t; and μ is the
generator set standby factor.

The increase in net load output demand per unit time is defined
as positive and the decrease as negative; according to the definition
of flexibility demand and flexibility supply, the time series of
fluctuations of system upward (downward) flexibility supply and
demand per unit time can be differentiated from the perspective of
system output supply and demand balance, and the system’s supply
and demand flexibility assessment index ΔPt is obtained as follows:

ΔPt � ΔPup,t

∣∣∣∣ ∣∣∣∣ � min ΔPsup ,up,t − ΔPdem,up,t, 0( )∣∣∣∣ ∣∣∣∣,ΔPnet,t > 0
ΔPdown,t

∣∣∣∣ ∣∣∣∣ � min ΔPsup ,down,t − ΔPdem,down,t, 0( )∣∣∣∣ ∣∣∣∣,ΔPnet,t < 0{ ,

(12)
where ΔPsup ,up,t is the upregulated flexibility supply in the output
section t, ΔPsup ,down,t is the downregulated flexibility supply in
output section t, ΔPdem,up,t is the upregulated flexibility demand
in output section t, ΔPdem,down,t is the downregulated flexibility
demand in output section t, and ΔPnet,t is the unit time output
demand of net load.

When ΔPnet,t >0, that is, the direction of the system’s flexibility
demand per unit time is upward, ΔPup,t is the upward climbing
flexibility deficiency in the outgoing power section. If the upward
flexibility supply of the system in that time period can envelop its
flexibility demand,ΔPt =0; if the upward flexibility supply of the system
in that time period is smaller than its flexibility demand, ΔPt ≠0.
Similarly, when ΔPt < 0, that is, the direction of the system’s flexibility
demand per unit time is downward, ΔPdown,t is the downward creeping
flexibility deficit in the outgoing power section. If the downward
flexibility supply of the system in that time period can envelop its
flexibility demand, ΔPt = 0; if the downward flexibility supply of the
system in that time period is smaller than itsflexibility demand,ΔPt ≠ 0.
The larger ΔPt is, the more serious the lack of system-climbing
flexibility is. Based on the supply–demand flexibility assessment
index, the power deficit of the climbing flexibility-deficient output
section can be filtered and calculated, thus establishing the system
climbing flexibility deficiency expectation index. This indicator reflects
the shortage of system flexibility regulation speed by calculating the
power difference expectation of system flexibility supply as less than the
flexibility demand power output section by counting the corresponding
power output section when ΔPt ≠ 0. The expectations of insufficient
climbing flexibility are as follows:

Ec � ∑
s∈Ωc

∑
t∈TK

ΔPs,t

Ks,t
, (13)

where Ωc is the set of all scenarios with insufficient climbing
flexibility, TK is the set of inflexible outgoing segments in
scenario Ωc, Ks,t is the number of inflexible climbing outgoing

segments in that scenario, and ΔPs,t is the supply and demand
flexibility index in the outgoing segment t.

The probability indicator of flexibility insufficiency reflects the
dynamic stability and balance of the system by calculating the
proportion of the time periods where the flexibility supply is less
than the flexibility demand during the total sampling period, based
on the statistics of the number of time periods corresponding to the
insufficiency of climbing and peaking flexibility. It indicates the
probability of the system’s flexibility insufficiency. The probability of
inflexibility is as follows:

Rl � ∑
s∈Ωcr

∑
t∈TL

Ls,t

T
· 100%, (14)

where Ωcr is the concatenation of scenarios with insufficient peak
regulation flexibility and insufficient climbing flexibility, TL is the set
of insufficient flexibility output segments under scenario Ωcr, Ls,t is
the number of insufficient flexibility output segments under this
scenario, and T is the number of sampling periods on the daily
output curve.

Based on the flexibility assessment indexes proposed in this
paper, the typical scenarios of renewable energy output are extracted
through an improved hierarchical clustering algorithm, which
converts the linearly correlated multiple groups of wind and PV
output data into several linearly independent renewable energy
output clustering center curves to reflect the uncertainty
characteristics of the original output data in a reduced
dimensional way, effectively reducing the complexity of flexibility
calculation. The specific process of the multi-scenario flexibility
assessment of high-percentage renewable energy power systems
with wind and PV uncertainty is shown in Figure 6.

FIGURE 6
Flexibility assessment calculation process.
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Step 1: Based on the improved hierarchical clustering algorithm, the
historical wind and PVoutput data on the high proportion of renewable
energy power systems are clustered to build a set of typical renewable
energy output scenarios taking into account the uncertainties.

Step 2: The central curve of renewable energy clustering in case I
scenario and the single-day generating units, energy storage units, and
load output data are substituted with the highest net load peaking
demand in this scenario, and the load output and renewable energy
output are compared to obtain the net load output curve, i.e., the
demand flexibility curve; the sum of energy storage units and adjustable
generating units output constitutes the supply flexibility curve.

Step 3: The scenario in which the supply of peaking flexibility is
greater than the demand in the sampled supply–demand
comparison curve is selected, making the difference between the
supply and demand curves to obtain the system renewable energy
reduction power, thus calculating the system downward peaking
capacity shortage expectation index; then, from the scenario in
which the supply of flexibility is less than the demand, the
system load reduction power and upward peaking capacity
shortage expectation index are calculated. After weighting and
summing the indicators, the expectations of insufficient peak
flexibility are obtained.

Step 4: First-order difference processing is carried out on the system
flexibility supply and demand output data, which is decomposed into
upward and downward system flexibility supply and demand per unit
time, according to the power direction, and then, the fluctuation series
of system flexibility supply and demand per unit time are differenced
to obtain the upward and downward flexibility supply and demand
evaluation index. By counting the corresponding output segments
when ΔPt ≠ 0, the system climbing flexibility supply is less than the
flexibility. By counting the power shortage of the demand output
section, the expectations of insufficient climbing flexibility are
obtained; by counting the number of peak regulation and climbing
flexibility shortage output sections, the probability of the system
inflexibility indicator is obtained.

Step 5: The system flexibility assessment index under this condition
is recorded, the capacity of energy storage and renewable energy
units is changed, steps 1–4 are repeated, and the flexibility change in
the high proportion of renewable energy power systems under the
condition of different influencing factors is obtained.

5 Example

5.1 Algorithm setup

This example selects a typical intra-day operation of a high
proportion of distributed PV and wind power pilot area in Shandong
Province for flexibility calculation and analysis. The total installed
capacity of all types of units in the regional grid is 79.93 MW,
including approximately 49.83 MW of adjustable generating units
and 30.10 MW of renewable energy units, with a maximum system
load of 61.00 MW and a maximum network supply load of
55.45 MW. The specific unit types and installed capacities are

shown in Table 1. The distribution of major wind power, PV,
and energy storage in Shandong Province is shown in Figure 7.

5.2 Typical scenarios of renewable energy
output taking into account the uncertainty

Based on an improved hierarchical clustering algorithm, a
typical scenario analysis of historical power output data is
performed for the installed renewable energy generating units in
the region. The original data were provided by the power company
in the region, and the inverter control strategy used power
synchronization control (Zhang et al., 2009; Harnefors et al.,
2021; Xiao et al., 2023a; Xiao et al., 2023b). The cohesive
hierarchical clustering algorithm is used to divide the renewable
energy output curve into scenes, and the clustering branch tree
diagram of wind and PV output curve is obtained. Then, the
Davies–Bouldin classification reliability indexes under different
numbers of clustering scenes are calculated by Equation 7, and
the reliability of the clustering results is quantitatively evaluated to
achieve the optimal selection of the number of clustering scenes. The
calculation results of the reliability index under each number of
scenes are shown in Table 2. Based on the reliability analysis results
of different clustering schemes, the clustering scheme with the
smallest reliability index is selected, and the number of clustering
scenes h is set to three. Based on the robust uncertainty processing to
eliminate the interference of bad data, the set of renewable energy

TABLE 1 Types of generating units and installed capacity.

Unit type Capacity/MV

Distributed PV units 21.67

Distributed wind units 8.43

Thermal power unit 48.24

Energy storage unit 1.59

Total 79.93

FIGURE 7
Distribution of major wind power, PV, and energy storage in
Shandong Province.
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typical power output scenes is obtained, as shown in Figure 8, and
the probability and number of each scene are shown in Table 3.

5.3 Analysis and the solution process of
high-percentage renewable energy power
system flexibility

Assuming that the solar irradiation and wind resources in the
region do not affect each other, the clustering center curves of each
wind and PV output obey independent distribution. The dataset
with the highest probability of occurrence in each scenario is used as
an example for analysis, and the central curve of wind and PV
clustering in this scenario is summed up as the input of regional
renewable energy output data. Under the conditions of PV output
clustering scenario II and wind power output clustering scenario III,
the single day with the highest net load peaking demand is selected
as the research object, and the thermal power units, energy storage,
and load data of this day are substituted into the flexibility
assessment. The model is used to calculate and analyze the data
and show the solution process. Different wind and PV penetration
rates and energy storage units are set as variables to differentiate the

working conditions and calculate the change in flexibility under
different working conditions.

The net load output curve, i.e., the demand flexibility curve, is
obtained by finding the difference between the load output and
the distributed wind and PV unit output, and the supply
flexibility curve is formed by the sum of the energy storage
unit and thermal unit output. After sampling on the scale of
Δt =15min, the supply flexibility and demand flexibility output
curve of the system is shown in Figure 9, which reflects the real-
time supply and demand balance of the high-proportion
renewable energy system.

The system flexibility supply and demand output curves are
first-order differential processed and decomposed into upward and
downward system flexibility supply and demand per unit time,
according to the power direction, as shown in Figures 10, 11,
where the system flexibility demand output sequence is affected
by the output of the wind and PV unit, and the creeping flexibility

TABLE 2 Calculation results of wind and the PV clustering reliability index
for each number of scenarios.

Number of clustering
scenes h

3 4 5 6 7

KDBI, PV 2.76 2.83 3.68 4.82 5.56

KDBI, WIND 2.03 2.70 3.77 3.96 3.25

FIGURE 8
Clustering results of PV and wind power. (A) Clustering results of PV; (B) Clustering results of wind power.

TABLE 3 Number and probability distribution of the occurrence of
clustering scenes.

Clustering scenario Quantity Probability (%)

PV output clustering scenario Ⅰ 71 19.45

PV output clustering scenario Ⅱ 193 52.88

PV output clustering scenario Ⅲ 101 27.67

Wind power output clustering scenario Ⅰ 55 15.07

Wind power output clustering scenario Ⅱ 131 35.89

Wind power output clustering scenario Ⅲ 179 49.04
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deficiency situation where the system output supply is smaller than
the demand per unit time will occur in the time period with a larger
output fluctuation range.

According to Equation 12, the time series of fluctuations of
system upward (downward) flexibility supply and demand per unit
time are made differential, and the upward and downward system
supply and demand flexibility assessment index ΔPt is obtained.
When ΔPnet,t > 0, i.e., the direction of system flexibility demand per
unit time is upward, ΔPup,t is the upward creeping flexibility
deficiency in this outgoing segment; when ΔPnet,t < 0, i.e., the
direction of system flexibility demand per unit time is downward;
ΔPdown,t is the downward creeping flexibility deficiency in this
outgoing segment. The larger ΔPt is, the more serious the system
creeping flexibility deficiency is.

The system flexibility supply and demand output curves will be
differential, and the expectations of insufficient peak flexibility can
be calculated by Equation 11; the power deficiency of ΔPt ≠0 output
section can be calculated by Equation 13, and the expectation of
insufficient climbing flexibility can be obtained. The number of peak
regulation and climbing flexibility deficiency output sections is

counted as the proportion of the total sampling period, and the
probability of system flexibility deficiency under the initial working
condition can be obtained by Equation 14.

5.4 Analysis of the impact of renewable
energy and energy storage on system
flexibility

The evaluation index of system flexibility under this working
condition is recorded. Keeping the load capacity and the total
installed capacity of generating units unchanged, the distributed
wind and PV unit penetration rate and the proportion of the
installed capacity of energy storage units to the capacity of
renewable energy units are changed, and the system source load
data under the scenic penetration rate of 20%–80% and the energy
storage ratio of 0%–10% are implemented in the model to iteratively
calculate the system flexibility index values under different wind, light,
and energy storage parameters. Based on the MATLAB CFTOOL
toolbox, the calculated data points are fitted to the 3D polynomial,
and the continuous variation in the flexibility indexes under different
operating conditions is obtained, as shown in Figure 12.

In the high proportion of renewable energy power systems, the
access of energy storage units plays an important regulating role for
the system flexibility. Based on the calculation results of the
flexibility assessment index, the influence mechanism of different
wind and PV penetration rates and energy storage proportions on
system flexibility is analyzed: with the increasing wind and PV
penetration rate and decreasing energy storage unit proportion, the
expectations of insufficient peak flexibility increases continuously
from 0 to 10.19 MW; the expectation of insufficient climbing
flexibility increases from 0 to 7.86 MW; the system flexibility
deficiency probability increases from 0% to 60.42%. The system’s
flexibility deficiency continues to intensify.

According to the analysis of Figures 12A, B, because the total
installed capacity of the generators and load power demand is certain,
the higher the renewable energy units generate, the more difficult it is
for the load to completely dissipate the energy. At the same time, with
the continuous increase in the installed renewable energy capacity,

FIGURE 9
Comparison curves of supply and demand flexibility.

FIGURE 10
System flexibility supply sequence.

FIGURE 11
System flexibility demand sequence.
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when thewind andPVpenetration rate exceed a certain range to reach a
very high proportion of the renewable energy access level, the
proportion of generating units with flexible power output regulation
capability is very low, resulting in a serious shortage of the power
support capacity of generating units to system load during the low time
of wind and PV unit power output, leading to a situation of imbalance
between the system active power supply and demand. At this time, in
order to maintain the stable operation of the system, a large amount of
load-shedding on the power system is required, causing incalculable

losses to the economy and even production and life. In order to avoid
the above situation, energy storage can be configured to cope with the
problem of insufficient system flexibility. It can be seen from the index
data that under different wind and PV penetration conditions, the
access of energy storage units can effectively reduce the expectation of
insufficient peak regulation and climbing flexibility of the power system,
and the flexibility adequacy of the system is improved comprehensively,
which verifies that the energy storage system can solve the problem of
the insufficient supply of flexibility resources in the power systemwith a
high proportion of renewable energy through power regulation and
energy storage.

According to the analysis in Figure 12C, when the proportion of
wind and PV is low, the access of energy storage units can effectively
reduce the probability of insufficient flexibility, which is because in the
system with a lower proportion of renewable energy access, the main
reason for insufficient flexibility is the fluctuation of wind and PV output
in a short time, and the access of the energy storage system can make up
for the shortcomings of a lower climbing rate and longer response
regulation time of traditional generating unit flexibility. However, with
the increase in wind and PV penetration in the power system, the effect
of energy storage units on the management of the probability of
insufficient system flexibility gradually decreases, which is because
when the wind and PV penetration rate is too high, the proportion
of traditional generating units decreases, the system load power demand
is too dependent on renewable energy generation, and the flexibility
regulation capacity of generating units is insufficient during the low
hours of renewable energy output, and the generating units appear in
most output sections. Inmost of the output periods, the power supply of
generating units and energy storage reaches the upper limit, but the
system power supply is still less than the load demand, resulting in a
certain capacity of energy storage unit access that still cannot effectively
reduce the probability of insufficient system flexibility. New flexibility
resources need to be added to the system to maintain the balance of
power supply and demand in the power system.

In summary, in power systems with a high proportion of
renewable energy sources on the grid, the access of energy storage
units can effectively improve the system’s climbing and peaking
flexibility and significantly reduce the probability of insufficient
flexibility of the system. However, in the power system with a very
high proportion of renewable energy sources on the grid, the access of
the energy storage system should take into account the economic
impact factors and combine it with other adjustable units for
cooperative scheduling to improve the flexibility of the system and
ensure the stable and economic operation of the power system.

6 Conclusion

This paper presents an analysis and evaluation of operational
flexibility in high-percentage renewable energy power systems using
an improved hierarchical clustering algorithm. The proposed
flexibility evaluation method offers significant guidance for
quantifying power system flexibility, analyzing the balance
between the supply and demand of electric power, and allocating
flexibility resources effectively. Initially, the traditional hierarchical
clustering analysis method is applied, augmented by the
Davies–Bouldin classification reliability index to optimize the
number of clustering scenarios. Additionally, an enhanced

FIGURE 12
Continuous variation in the flexibility indexes under different
operating conditions. (A) Insufficient peaking expectations. (B)
Insufficient climbing expectations. (C) Inflexibility probability.
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cohesive hierarchical clustering analysis method is introduced to
incorporate reliability considerations. Subsequently, a structured
flexibility assessment process is devised for high-proportion
renewable energy power grids, considering uncertainties
associated with wind and PV sources. Furthermore, leveraging
power grid data with notable distributed wind power and PV
integration, a typical renewable energy output scenario is
formulated, accounting for uncertainties in wind and PV sources.
The system’s flexibility is then comprehensively calculated and
analyzed under diverse operating conditions. The results indicate
that, at a certain proportional renewable energy penetration rate, the
inclusion of energy storage units can effectively alleviate flexibility
regulation pressures arising from the uncertainty in renewable
energy output. However, in cases of extremely high renewable
energy penetration, relying solely on energy storage
configurations becomes insufficient to meet the flexibility
demands of the power system. Consequently, a strategic planning
approach incorporating multiple flexibility resources is necessary to
address the flexibility challenges posed by high levels of renewable
energy grid integration. Although this paper has achieved some
results in the study of flexibility assessment modeling for high-
percentage renewable energy grids, there are still some issues that
have not been studied in depth. For example, the special scenarios in
the inflexibility situation are not defined, and the impact of multiple
types of energy storage access systems is not considered. In the
future, further research will focus on applying the flexibility
assessment indexes proposed in this paper to the planning and
scheduling of high-ratio renewable energy distribution grids and
continue to conduct in-depth research on reducing the operating
costs of distribution grids with high-ratio renewable energy access
and improving the system’s flexible regulation capability,
contributing to valuable solutions to the challenges of meeting
the “dual-carbon” target and the integration of high-ratio
renewable energy into the grid.
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Market equilibrium with strategic
pricing and strategic constraints
in renewable energy: the role of
private energy storage
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Zuyi Li2

1Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai
Jiaotong University, Shanghai, China, 2College of Electrical Engineering, Zhejiang University,
Hangzhou, China

With the increasing prevalence of renewable energy (RE) companies equippedwith
private energy storage (ES) systems, a dual capability emerges to offer strategic
pricing and strategic constraints in market competition. Specifically, these RE
companies can strategically leverage their own private ESs to modulate the
variability of RE output limits and introduce modified constraints within the
market. To examine these new strategic behaviors and the resulting market
equilibria, we introduce an innovative bilevel strategic behavior model. The
upper level of the model delineates the strategy for RE profit maximization
through the imposition of strategic constraints and pricing schemes, while the
lower level calculates the revenue outcomes for all entities in the day-ahead energy
market clearing. The integration of the bilevel models from all strategic entities
leads to the formulation of a new equilibrium problemwith equilibrium constraints
(EPEC), the solution of which indicates a novel market equilibrium. The impacts of
these market equilibria on critical system operation metrics are then evaluated
across two representative market mechanisms. Our numerical experiments reveal
that RE exhibits low sensitivity to the private ES’s cost, suggesting that the behavior
of imposing strategic constraintsmay bewidespread amongRE companies owning
private ESs. Furthermore, the introduction of strategic constraints enhances the
competitiveness of RE, significantly affecting social welfare, energy pricing, and RE
integration rate. The study concludes with insights that could inform practical
market transactions and system operations.

KEYWORDS

electricity market, strategic behavior, renewable energy, private energy storage,
equilibrium problem with equilibrium constraints (EPEC)

1 Introduction

With renewable energy (RE) sources increasingly integrating into the power grid (Xiao et al.,
2019; Cole et al., 2021), RE generation companies are entering a competitive fray (Meng et al.,
2023), necessitating strategic positioning in the market (DeMeo et al., 2004). Unlike conventional
thermal power generators with static output limits, RE generators are subject to time-variant
maximum power outputs (Nguyen et al., 2022a), influenced by fluctuating weather conditions.
This variability introduces a layer of complexity to the strategic maneuvers of market participants
(Li et al., 2022a; Tang et al., 2022). In response to the intermittent (Xiao et al., 2020) and
uncertain nature of renewables (Luo et al., 2022), several countries have enacted policies
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mandating that RE generators be equipped with energy storage
(ES) systems proportional to their generation capacity (Yang
et al., 2018; Li et al., 2022b). The equipped ES systems, as assets
owned by the respective RE generation companies, are
customized in terms of the maximum capacities and charge/
discharge capabilities to suit the needs of specific RE generators.
Thus, such ES units are termed “private energy storage” (Ecker
et al., 2018; Englberger et al., 2021; Forrester et al., 2022). A
private ES is exclusively dedicated to serving the single RE
generation company it is associated with. This phenomenon is
quite prevalent in the Chinese power system. According to
China’s electricity market reform, the capacity of these private
ESs must exceed at least 10% of the installed capacity of the RE
generators. In some provincial power grids, even higher
proportions are mandated, with the capacity of private ESs
reaching 15%–30% (Zhang et al., 2022).

Against this backdrop, RE generators are poised to leverage
private ES to recalibrate their original output limits and introduce
modified constraints within the day-ahead market, thereby
augmenting their competitiveness. We define this maneuver as
“offering strategic constraints.” With the ascent of RE and ES, RE
companies are now positioned to set not only strategic prices but also
explore the potential of strategic constraints to reinforce their market
standing. It is imperative that these innovative strategic behaviors and
the ensuing market equilibria be thoroughly examined.

While existing literature has explored the strategic behavior of RE in
the context of market equilibrium, it has primarily been confined to
strategic pricing, often formulated within a bilevel modeling framework
that includes an upper-level RE profit maximization model and a lower-
level market clearingmodel (Ruiz et al., 2012; Kazempour and Zareipour,
2014; Hartwig and Kockar, 2016; Zou et al., 2016; Heredia et al., 2018;
Wang et al., 2018; Guo et al., 2020; Huang et al., 2021; Dai et al., 2022;
Naemi et al., 2022; Wang et al., 2022; Zhang et al., 2023a; Zhang et al.,
2023b). Commonly, the Karush-Kuhn-Tucker (KKT) conditions
(Kazempour et al., 2012; Zeynali et al., 2022) are employed to recast
the bilevel problem into a single-level nonlinear framework, namely a
mathematical problem with equilibrium constraints (MPEC) (Guo et al.,
2020). Market equilibrium is further delineated by amalgamating the
MPECs from all strategic producers, forming an equilibrium problem
with equilibrium constraints (EPEC) (Ruiz et al., 2012).

Specifically (Guo et al., 2020), delves into the strategic pricingwithin
energy and green certificate markets, while (Ruiz et al., 2012) introduces
an analyticalmodel for equilibria in oligopolistic electricitymarkets with
stepwise offer curves. Large-scale wind power integration and its
influence on market equilibria are the focus of (Kazempour and
Zareipour, 2014), and the interplay between the strategic offerings in
coupled gas and electricity markets is examined in (Wang et al., 2018).
However, these studies have not addressed the role of ES systems in
shaping the strategic behavior of RE generators. A few works, such as
(Naemi et al., 2022), have investigated the optimization of battery
storage in wind power plants within wholesale markets, but without
considering strategic pricing implications.

By introducing dynamic game of strategic RE and ES (Wang et al.,
2022), proposes a multi-stakeholder potential game model considering
the bounded rationality. Reference (Hartwig and Kockar, 2016)
evaluates the impact of strategic behavior of an independent trader
who operates private ESs in a nodal electricity market. A multi-period
Nash-Cournot equilibrium model for joint energy and ancillary service

markets is developed in (Zou et al., 2016). This model evaluates the
contributions of private ESs in supporting RE generation. A Cournot
competition model is introduced in (Huang et al., 2021) to investigate
the impact of the strategic operation of grid-level ES systems on
wholesale electricity markets. Reference (Zhang et al., 2023a)
constructs a joint optimal bidding strategy for RE units supported
by shared ES systems, targeting the maximization of expected daily
profits within joint energy and regulation markets. Reference (Heredia
et al., 2018) proposes a multi-stage stochastic programming model to
ascertain the optimal bids for virtual power plants (VPPs) that include
wind power plants and private ESs. Reference (Dai et al., 2022) further
expands themodeling horizon with an equilibriummodel for electricity
markets that incorporates the role of VPPs, consisting of wind farms
and distributed ESs, in a secondary market clearing mechanism
designed to enhance hydropower consumption. Reference (Zhang
et al., 2023b) develops a two-layer equilibrium model to study the
grid impact of peer-to-peer energy trading considering ES participation.

While these studies (Ruiz et al., 2012; Kazempour and Zareipour,
2014; Hartwig and Kockar, 2016; Zou et al., 2016; Heredia et al., 2018;
Wang et al., 2018; Guo et al., 2020; Huang et al., 2021; Dai et al., 2022;
Naemi et al., 2022; Wang et al., 2022; Zhang et al., 2023a; Zhang et al.,
2023b) advance the modeling of strategic pricing and market behaviors
for the alliance of REs and ESs, they conventionally treat the variable
power output constraints of RE resources as fixed parameters. This
simplification overlooks the dynamic nature of RE outputs influenced
by the integration of ES technologies. In reality, the RE generation
company can utilize its private ESs to adjust the maximum power
output curves of RE generators, suggesting that the offering constraints
of the RE generation company can be treated as strategic variables. Such
an approachwould provide amore nuanced and realistic representation
of the market behaviors and bidding strategies of RE generators, as they
report to system operators (SO). Recognizing the variable nature of RE
outputs as strategic variables can lead to a more accurate depiction of
market equilibria and generator strategies, facilitating improved
decision-making processes for both market participants and regulators.

To summarize, this paper identifies two primary research gaps:
First, existing strategic behavior models inadequately address the
strategic constraints inherent in the alliance of RE generators and
private ESs. This oversight is notable given the substantial market
influence exerted by private ESs in power systems with high proportion
of renewables. Second, existing market equilibrium models fail to
capture the dual influence of strategic pricing and strategic
constraint offerings by RE generators equipped with private ESs, a
scenario increasingly representative of future energy systems.

Our contribution is threefold. First, we propose a pioneering model
that captures the strategic behavior of RE generators, employing private
ES to dynamically offer variable power output constraints. This model
advances the conventional MPEC by integrating offerings of strategic
constraints with strategic pricing, thereby introducing an innovative
MPEC framework. Second, we formulate a novel EPEC that
synthesizes these new MPECs, providing a comprehensive
understanding of the market equilibrium dynamics influenced by
multiple entities consisting of RE generators and private ESs. Third,
we assess the implications of these strategic behaviors on critical
operational metrics under typical market mechanisms, offering
insights that may guide market transactions and system operations.

The paper is organized as follows. Section 2 delineates the
definition of private ES; Section 3 constructs the strategic

Frontiers in Energy Research frontiersin.org02

Xiao et al. 10.3389/fenrg.2024.1346528

221

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1346528


behavior model for the alliance of RE generators and private ESs;
Section 4 develops the new market equilibrium model; Section 5
models the implications on system metrics; Section 6 presents case
studies and discusses the results; and Section 7 concludes with
valuable insights.

2 Definition of private energy storage

A private ES is defined as an asset dedicated solely to the
operations of a single RE generation company and does not
directly participate in market clearing processes (Kazemi et al.,
2023). The private ESs can exert an indirect influence on market
clearing outcomes by modulating the maximum power output curve
of the RE generator that owns them. Figure 1 depicts a schematic of
how RE generators employ strategic pricing and impose strategic
constraints by harnessing private ES units. The primary objective for
any RE generator utilizing private ES is to enhance revenue and
profit within the energy market.

For convenience of illustration, we assume that each generation
company operates a single generator (denoted as i) paired with one
private ES (denoted as xi). Generically, generator i represents an
amalgamation of multiple generation units, while private ES xi
symbolizes a unified system comprising several ES units. Private ES xi
is exclusively dedicated to serving its corresponding generator i, together
forming a collaborative entity referred to as alliance i. The operational
costs and constraints of private ES xi are encapsulated by Eqs (1–3).

The private ES xi enables RE generator i to present a novel set
of strategic constraints and prices to the SO. This study
primarily associates strategic constraints with variable power
output limits, as expressed in Formula 4. The private ES can

provide a charging-discharging regulation curve PB
(xi) to modify

the maximum power output of alliance i. Additionally, since the
private ES xi is usually co-located with its associated RE
generator i, there are no line transmission losses (Nguyen
et al., 2024) between them.

From the perspective of SO, the alliance i is a market entity i. It is
critical to note that the SO considers generator i in conjunction with
xi as an integrated entity within themarket clearing model. The SO is
agnostic to the internal utilization of private ES by the RE generator,
concentrating primarily on the deliverability of the strategic
constraints submitted by each entity.

C xi( ) PB
xi( )( ) � a xi( )S2xi( ) + b xi( )S xi( ) + c xi( ) (1)

S xi( ) � PB
xi( )

����� �����1Δt � ∑T
t�1

PB
xi( ),t

∣∣∣∣∣ ∣∣∣∣∣Δt (2)

s.t.
RBmin

xi( ),t ≤R
B
xi( ),t ≤RBmax

xi( ),t ,∀t
PBmin

xi( ),t ≤PB
xi( ),t ≤P

Bmax
xi( ),t ,∀t

RB
xi( ),t � RB

xi( ),t−1 − PB
xi( ),tΔt,∀t

⎧⎪⎨⎪⎩ (3)

where t is time period; T is the number of time periods; Δt is the time
interval; PB

(xi) symbolizes the charging-discharging regulation curve
provided by the private ES xi; S(xi) indicates the regulation energy of
PB
(xi), as defined in (Xiao et al., 2022); a(xi), b(xi) and c(xi) represent

the cost coefficients of S(xi); C(xi) signifies the cost of providing PB
(xi);

RB
(xi),t, RBmax

(xi),t and RBmin
(xi),t are respectively the state of charge,

maximum capacity and minimum capacity of xi at t; PB
(xi),t is the

power of vector PB
(xi) at t; PBmax

(xi),t and PBmin
(xi),t are respectively the

maximum discharging and charging power of xi at t.

PGmax
i ← xi,t

� PGmax
i,t + PB

xi( ),t
PGmin
i ← xi,t

� PGmin
i,t + PB

xi( ),t
{ ,∀t,∀i ∈ G (4)

FIGURE 1
Framework of renewable energy employing strategic pricing and strategic constraints via private energy storage.
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where G is the set of generators; PGmax
i,t and PGmin

i,t are respectively
the maximum and minimum power output of generator i at t,
before using xi; PGmax

i ← xi,t
and PGmin

i ← xi,t
symbolize respectively the

maximum and minimum power output of generator i at t,
after using xi.

3 Strategic behavior of renewable
energy generators: utilizing private
energy storage for strategic constraints
and pricing

Figure 2 illustrates the architecture of the developed bilevel
model. The upper-level model formulates the profit maximization
strategy for the alliance of RE generators and private ESs, which
involves offering strategic constraints and pricing schemes. The
lower-level model corresponds to the day-ahead energy market
clearing process that calculates the revenues for all market-
participating entities. The integration of strategic constraints and
pricing links the decision-making in the upper-level model with the
outcomes in the lower-level model.

In Section 3, we detail the construction of the bilevel model
within the framework of the substitute energy price (SEP) market
mechanism (Xiao et al., 2022). To provide a comparative analysis, a
corresponding bilevel model is also formulated under the locational
marginal price (LMP) market mechanism (Caramanis et al., 1982;
Li, 2007), as outlined in Supplementary Appendix SA.

Under the SEPmarketmechanism,market transactions are executed
in two sequential stages. In the first stage, termed the substitute energy
market, generators trade their energy production curves, which act as
mutual substitutes to fulfill the total energy demand of the system-wide
load. The second stage, termed the regulation energymarket, orchestrates
the trading of regulation services offered by ESs and flexible generators.

This stage aims to satisfy the regulation demands arising from both the
load and certain generators during the first stage, thus achieving power
balance across all time periods.

3.1 Upper-level model: profit maximization
through strategic constraints and pricing

In the SEP-based market, the profit maximization problem for a
strategic generator i, which involves offering strategic constraints
and strategic pricing through the use of private ES, is formulated in
Eqs 5–9.

min − ri � − Ii − CE0
i PE

i( ) − CS0
i PS

i( ) − C xi( ) PB
xi( )( )[ ] (5)

Ii � πSEPEi + πREPSi (6)
CE0

i PE
i( ) � aE0i E2

i + bE0i Ei + cE0i

� aE0i ∑T
t�1
PE
i,tΔt⎛⎝ ⎞⎠2

+ bE0i ∑T
t�1
PE
i,tΔt⎛⎝ ⎞⎠ + cE0i

(7)

CS0
i � aS0i Si( )2 + bS0i Si + cS0i
� aS0i PS

i

���� ����1Δt( )2 + bS0i PS
i

���� ����1Δt( ) + cS0i

� aS0i ∑T
t�1

PS
i,tΔt

∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠2

+ bS0i ∑T
t�1

PS
i,tΔt

∣∣∣∣ ∣∣∣∣ + cS0i

(8)

s.t.

PG
i ← xi

� PG
i + PB

xi( ) ≥ 0
PGmax
i ← xi,t

� PGmax
i,t + PB

xi( ),t
PGmin
i ← xi,t

� PGmin
i,t + PB

xi( ),t
bEmin
i ≤ bEi ≤ bEmax

i

RBmin
xi( ),t ≤R

B
xi( ),t ≤RBmax

xi( ),t ,∀t
PBmin

xi( ),t ≤PB
xi( ),t ≤P

Bmax
xi( ),t ,∀t

RB
xi( ),t � RB

xi( ),t−1 − PB
xi( ),tΔt,∀t∑T

t�1
PB

xi( ),t � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

FIGURE 2
Proposed bilevel strategic behavior model and corresponding new MPEC.
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where ri represents the profit of entity i; Ii signifies the revenue of entity i
in the day-ahead energy market; πSEP indicates the clearing price of
substitute energy market; πREP implies the clearing price of regulation
energy market; PE

i is the energy curve supplied by generator i; PS
i is the

regulation curve supplied by generator i; PG
i is the actual output curve of

generator i; PG
i , P

E
i and P

S
i jointly satisfy Formula 10; PG

i ← xi
symbolizes

the actual output curve of generator i after using xi; Ei is the awarded
substitute energy of generator i; Si is the awarded regulation energy of
entity i; PE

i,t and PS
i,t are respectively the power of P

E
i and PS

i at t; C
E0
i

denotes the production cost of PE
i ; C

S0
i denotes the production cost of

PE
i ; a

E0
i , bE0i and cE0i are the cost coefficients of the generator i for

producing Ei; aS0i , bS0i and cS0i are the cost coefficients of the generator i
for producing Si; bEi represents the first-order coefficient of the bidding
function of entity i, representing the offering price of entity i in this
paper; bEmin

i and bEmax
i are respectively the lower limit and upper limit of

bEi ; To decouple the regulation supply from energy supply of the private
ES, we set the constraint ∑T

t�1PB
(xi),t � 0 in Formula 10.

PG
i � PE

i + PS
i (10)

3.2 Lower-level model: day-ahead energy
market clearing

The lower-level problem represents the process of SO clearing the
day-ahead energymarket, whose optimization object is tomaximize the
global social welfare. As delineated in reference (Xiao et al., 2024), the
joint clearing of the substitute energy market and the regulation energy
market can be efficiently executed in a single stage, as Eqs 11–16.

min −WSEP � −U +∑
i∈G

CE
i + CDS

i( ) + ε ∑
i∈B∪G

CS
i (11)

CE
i � aEi E

2
i + bEi Ei + cEi

� aEi ∑T
t�1
PE
i ← xi,t

Δt⎛⎝ ⎞⎠2

+ bEi ∑T
t�1
PE
i ← xi,t

Δt⎛⎝ ⎞⎠ + cEi
(12)

CDS
i � πSpΔt PDS

i ← xi

���� ����
1
� πSpΔt PE

i ← xi
− PErrm

i ← xi

���� ����
1

� πSpΔt PE
i ← xi

−
∑T
t�1
PE
i ← xi,t

∑T
t�1
PD
t

PD

����������������
����������������
1

(13)

CS
i � aSi Si( )2 + bSi Si + cSi
� aSi PS

i ← xi

���� ����
1
Δt( )2 + bSi PS

i ← xi

���� ����
1
Δt( ) + cSi

(14)

s.t.
∑T
t�1

∑
i∈G

PE
i ← xi,t

Δt +∑T
t�1
PD
t Δt � 0

PGmin
i ← xi

≤PE
i ← xi

≤PGmax
i ← xi

,∀i ∈ G

⎧⎪⎪⎨⎪⎪⎩ (15)

s.t.

PDS + ∑
i∈B∪G

PS
i ← xi

� 0

PDS � ∑
i∈G

PDS
i ← xi

� PD +∑
i∈G

PE
i ← xi

ΔESmin
i ≤∑T

t�1
PS
i ← xi,t

Δt≤ΔESmax
i ,∀i ∈ B ∪ G

PGmin
i ← xi

≤PE
i ← xi

+ PS
i ← xi

≤PGmax
i ← xi

,∀i ∈ G
RBmin
i ≤RB

i ≤R
Bmax
i ,∀i ∈ B

PBmin
i ≤PS

i ← xi
≤PBmax

i ,∀i ∈ B
RB
i,t � RB

i,t−1 − PS
i ← xi,t

Δt,∀i ∈ B,∀t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

In Formula 11, WSEP denotes the global social welfare in a SEP-
based market; U is the value of electricity usage, which is set as a
constant; B signifies the set of independent ESs that participate in the
market clearing; Note that private ESs are not included in set B; CE

i

indicates the bidding function of substitute energy supplied by
generator i; CDS

i is the potential cost of regulation demand
generated by entity i, which is caused by the energy curves
PE
i ← xi

with different shapes and assessed by the regulation
responsibility PErrm

i ← xi
; CE

i + CDS
i guarantees the nature of trading

energy curves as substitutes; CS
i represents the bidding function of

regulation energy supplied by entity i; ε is an extremely small
positive number; εCS

i has little effect on the nature of energy
substitutes and meanwhile helps determine the optimal
regulation curve PS

i ← xi
.

In Eqs 12−14, aEi , b
E
i and c

E
i symbolize the cost coefficients of Ei for

bidding; aSi , b
S
i and cSi denote the cost coefficients of Si for bidding; In

this paper, only bEi is strategic and variable, while other cost coefficients
are non-strategic; PD is the load curve; PE

i ← xi
and PS

i ← xi
are

respectively the energy curve and regulation curve of entity i
integrating the private ES xi; PE

i ← xi,t
is the power of PE

i ← xi
at t; PD

t

is the load demand at t; πSp is the preset price of regulation energy; An
ideal πSp could make CDS = CS.

Formula 15 gives the constraints of substitute energy market. The
first equality constraint in (15) represents the supply-demand balance of
substitute energy irrespective shape of PE

i . P
Gmax
i ← xi

and PGmin
i ← xi

are both
strategic constraints of i, respectively the maximum and minimum
power outputs of generator i after using xi.

Formula 16 presents the constraints of regulation energy
market. The first equality constraint in (16) represents the
power balance of regulation supply and regulation demand.
PDS denotes the system regulation demand; PDS

i ← xi
is the

regulation demand of entity i; ΔESmax
i and ΔESmin

i are
respectively the maximum and minimum energy
consumptions of PS

i , reported by entity i; PS
i ← xi,t

is the power
of PS

i ← xi
at t; RB

i , R
Bmax
i and RBmin

i are respectively the state of
charge, maximum capacity and minimum capacity of
independent ES i; PBmax

i and PBmin
i are respectively the

maximum discharging power and maximum charging power
of independent ES i. Different from the private ES, the
independent ES directly participates in the market, instead of
cooperating with a RE generator.

According to reference (Xiao et al., 2022), the pricing
methodologies for the πSEP and πREP are outlined in Eqs 17, 18,
respectively. The πSEP is determined as the highest price among the
accepted substitute energy bids, reflecting the marginal price of
substitute energy within the market. Under the SEP mechanism, the
energy curves from various generators act as substitutes for each
other, resulting in the πSEP being a one-dimensional price. A similar
principle applies to the πREP.

πSEP � max πSEP
i

πSEP
i � dCE

i

dEi
� 2aEi Ei + bEi ,

i ∈ G, Ei > 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (17)

πREP � max πREP
i

πREP
i � dCS

i

dSi
� 2aSi Si + bSi ,

i ∈ B ∪ G, Si > 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (18)
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3.3 Reformulation and solution method

The model encompassing Eqs 5–18 constitutes a bilevel
problem incorporating absolute values, rendering it
computationally intractable. To address this, we initially convert
the lower-level problem into a mathematically standard form
devoid of absolute values. Subsequently, this bilevel problem is
recast as an equivalent single-level nonlinear problem employing
the KKT conditions.

Reference (Mangasarian, 2014) provides a mathematical
method for transforming decision variables related to absolute
values into continuous decision variables without absolute values.
Based on this method, we have made an equivalent substitution of
the decision variables |PDS

i ← xi
| and |PS

i ← xi
| as demonstrated in

Eq. 19.

PDS
i ← xi

∣∣∣∣∣ ∣∣∣∣∣ � PDSu
i ← xi

+ PDSv
i ← xi

PDS
i ← xi

� PDSu
i ← xi

− PDSv
i ← xi

PDSu
i ← xi,t

≥ 0, PDSv
i ← xi ,t

≥ 0
i ∈ G

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ,

PS
i ← xi

∣∣∣∣∣ ∣∣∣∣∣ � PSu
i ← xi

+ PSv
i ← xi

PS
i ← xi

� PSu
i ← xi

− PSv
i ← xi

PSu
i ← xi,t

≥ 0, PSv
i ← xi ,t

≥ 0
i ∈ B ∪ G

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

where PDSu
i ← xi

, PDSv
i ← xi

, PSu
i ← xi

and PSv
i ← xi

are auxiliary variables;
PDSu
i ← xi,t

, PDSv
i ← xi,t

, PSu
i ← xi,t

and PSv
i ← xi,t

are respectively the power
of corresponding vectors at t.

By incorporating Eq. 19 into the model defined by Eqs 11–16, we
derive a standard lower-level model without absolute values, as
denoted by Eqs 21, 22.

min∑
i∈G

CE
i +∑

i∈G
CDS

i + ε ∑
i∈B∪G

CS
i

� ∑n
i�1

aEi ∑T
t�1
PE
i ← xi,t

Δt⎛⎝ ⎞⎠2

+ bEi ∑T
t�1
PE
i ← xi,t

Δt⎛⎝ ⎞⎠ + cEi
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+πSpΔt∑n
i�1
∑T
t�1

PDSu
i ← xi ,t

+ PDSv
i ← xi,t

( )
+ε ∑

i∈B∪G
aSi ∑T

t�1
PSu
i ← xi ,t

+ PSv
i ← xi,t

( )Δt⎡⎣ ⎤⎦2 + bSi∑T
t�1

PSu
i ← xi ,t

+ PSv
i ← xi ,t

( )Δt + cSi
⎧⎨⎩ ⎫⎬⎭

(20)

s.t.

∑T
t�1

∑
i∈G

PE
i ← xi ,t

Δt +∑T
t�1
PD
t Δt � 0: λE

PGmin
i ← xi

≤PE
i ← xi

≤PGmax
i ← xi

: μEmin
i , μEmax

i ,∀i ∈ G

PDSu
i ← xi

− PDSv
i ← xi

� PE
i ← xi

−
∑T
t�1
PE
i ← xi,t

∑T
t�1
PD
t

PD: λDSi ,∀i ∈ G

PDSu
i ← xi

≥ 0,PDSv
i ← xi

≥ 0: μDSui , μDSv
i ,∀i ∈ G

PD +∑
i∈G

PE
i ← xi

+ ∑
i∈B∪G

PSu
i ← xi

− PSv
i ← xi

� 0: λS

ΔESmin
i ≤∑T

t�1
PSu
i ← xi,t

− PSv
i ← xi ,t

( )Δt≤ΔESmax
i : μSmin

i , μSmax
i ,∀i ∈ B ∪ G

PGmin
i ← xi

≤PE
i ← xi

+ PSu
i ← xi

− PSv
i ← xi

≤PGmax
i ← xi

: μGmin
i , μGmax

i ,∀i ∈ G

RBmin
i ≤RB

i ≤R
Bmax
i : μBRmin

i , μBRmax
i ,∀i ∈ B

PBmin
i ≤PSu

i ← xi
− PSv

i ← xi
≤PBmax

i : μBPmin
i , μBPmax

i ,∀i ∈ B

RB
i,t � RB

i,t−1 − Δt PSu
i ← xi ,t

− PSv
i ← xi ,t

( ): μBPRi,t ,∀i ∈ B,∀t

PSu
i ← xi

≥ 0,PSv
i ← xi

≥ 0: μSui , μ
Sv
i ,∀i ∈ B ∪ G

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

where λE, μEmin
i , μEmax

i , λDSi , μDSui , μDSvi , λS, μSmin
i , μSmax

i , μGmin
i , μGmax

i ,
μBRmin
i , μBRmax

i , μBPmin
i , μBPmax

i , μBPRi,t , μSui and μSvi are dual variables of the
corresponding constraints; The tth element of λS is λSt , similarly
hereinafter.

The Lagrangian for this standard lower-level model is
formulated in Eq. 22, and the corresponding KKT optimality
conditions are delineated in Eqs 23–48.

LSEP � ∑
i∈G

CE
i +∑

i∈G
CDS

i + ε ∑
i∈B∪G

CS
i

+λE ∑T
t�1

∑
i∈G

PE
i ← xi,t
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t�1
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t Δt⎛⎝ ⎞⎠
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i∈G

μEmax
i PE
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( )T + μEmin
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− PE
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( )T

+∑
i∈G

λDSi PDSu
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− PDSv
i ← xi
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+
∑T
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PD
t
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T
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PE
i ← xi

+ ∑
i ∈ B ∪ G

PSu
i ← xi

− PSv
i ← xi

⎛⎝ ⎞⎠T

+ ∑
i∈B∪G

μSmax
i ∑T

t�1
PSu
i ← xi,t

− PSv
i ← xi,t

( )Δt − ΔESmax
i

⎡⎣ ⎤⎦
+ ∑

i∈B∪G
μSmin
i ΔESmin

i −∑T
t�1

PSu
i ← xi,t

− PSv
i ← xi,t

( )Δt⎡⎣ ⎤⎦
+∑

i∈G
μGmax
i PE

i ← xi
+ PSu

i ← xi
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(22)
∂LSEP

∂PE
i ← xi,t

� 2aEi Δt2∑T
t�1
PE
i ← xi,t

+ bEi Δt

+λEΔt + μEmax
i,t − μEmin

i,t − λDSi,t +
∑T
t�1
λDSi,t P

D
t

∑T
t�1
PD
t

+λSt + μGmax
i,t − μGmin

i,t � 0,∀t,∀i ∈ G

(23)

∂LSEP

∂PDSu
i ← xi,t

� πSpΔt + λDSi,t − μDSui,t � 0,∀t,∀i ∈ G (24)
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∂LSEP

∂PDSv
i ← xi,t

� πSpΔt − λDSi,t − μDSvi,t � 0,∀t,∀i ∈ G (25)
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0≤ PE
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− PGmin
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i − PE
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+ PSv
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0≤PE
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− PSv
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0≤RBmax
i − RB
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0≤RB
i − RBmin

i ⊥ μBRmin
i ≥ 0,∀i ∈ B (44)

0≤PBmax
i − PSu

i ← xi
+ PSv

i ← xi
⊥ μBPmax

i ≥ 0,∀i ∈ B (45)
0≤PSu

i ← xi
− PSv

i ← xi
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i ≥ 0,∀i ∈ B (46)

0≤PSu
i ← xi

⊥ μSui ≥ 0,∀i ∈ B ∪ G (47)
0≤PSv

i ← xi
⊥ μSvi ≥ 0,∀i ∈ B ∪ G (48)

This reformulation process effectively transforms the original
bilevel problem into an equivalent single-level problem,
characterized by the objective function in Eq. 5 and the
constraints set forth in Formula 9, Eqs 23–48. The nonlinear
terms in this mathematical model, such as the complementarity
slackness conditions and the product terms of decision variables, can
be handled using conventional methods as detailed in (Kazempour
et al., 2012). Ultimately, the proposed MPEC can be solved using the
GUROBI optimization software.

4 Market equilibrium of proposed
strategic behavior model

For each strategic entity i, the reformulated single-level model
constitutes a novel MPEC. This new MPEC diverges from
traditional models by incorporating strategic constraints
alongside strategic pricing.

For the strategic interaction between all market entities (i =
1,2,. . .,n), there are a total of n MPECs. The joint solution of these
new MPECs of all entities constitutes an innovative EPEC, as
depicted in Figure 3. Unlike conventional EPEC formulations,
the solutions derived from this novel EPEC represent the market
equilibrium for multiple RE-ES alliances that engage in both
strategic pricing (e.g., bEi ) and strategic constraints (e.g., variable
power output limits PGmax

i ← xi
of RE). The introduction of these

decision variables in the proposed EPEC significantly alters the
market equilibrium outcomes.

To ascertain the equilibrium, the diagonalization algorithm (Hu
and Ralph, 2007) is employed, where each strategic generator’s
MPEC is iteratively solved until the profit ri (i = 1,2,. . .,n)
stabilizes. It should be emphasized that the computational
burden of the EPEC surges dramatically with the increasing size
of the system and the number of generators. To address the
challenge, several methods are available. One effective method
applied in this study is a reductionist approach, aggregating
multiple generators with identical characteristics to significantly
reduce the total number of generators. This allows us to
demonstrate typical strategic behaviors and the resulting market
equilibria. Other methods include employing heuristic algorithms to
provide favorable initial values for faster convergence and utilizing
parallel computing to enhance the speed of the computational
process. However, the latter methods are beyond the scope of
this paper and are not explored here.

In summary, the scope of application for the novel MPEC and
EPEC developed in this paper is outlined as follows. In terms of the
proposed framework, referring to Figure 1, the private ESs in
practical applications can be substituted with various generalized
ESs (Liu et al., 2023), including conventional ES systems (Nguyen
et al., 2022b), VPPs with distinct external characteristics (Fan et al.,
2020; Yang et al., 2024), and flexible load aggregators (Sun et al.,
2022). In terms of modeling, the proposed model fundamentally
represents the strategic interactions among different alliances.
However, it is not applicable to shared ES resources (Zhang
et al., 2023c), as these serve multiple stakeholders simultaneously,
thereby increasing the physical and economic coupling between
different alliances.
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5 Impact on system operation metrics

To assess the impact of the proposed strategic behaviors on the
market dynamics and power system operations, we focus on three
critical system operation metrics: true global social welfare (W*),
total load payment (I*), and RE integration rate (R*), as defined in
Eq. 49. These metrics serve as indicators of various practical aspects
of the power system.

In particular, true global social welfare (W*) offers insights into
the overall economic efficiency and effective resource utilization
within the power system. This metric diverges from the approach
used in Eq. 11 by considering actual production costs, thereby
transcending strategic offering prices to reflect genuine economic
optimality.

The total load payment (I*) provides a measure of the financial
burden on consumers, encapsulating the costs associated with
energy consumption and associated fees. This metric is pivotal in
understanding the economic implications for end-users in the
power market.

Lastly, the RE integration rate (R*) is a crucial indicator of the
system’s capacity to integrate RE resources, which is instrumental in
gauging progress towards reducing carbon emissions. This metric
underscores the importance of integrating sustainable energy
resources into the power grid.

W* � U −∑
i∈G

CE0
i − ∑

i∈B∪G
CS0

i −∑
i∈G

C xi( )

I* � ∑
i∈B∪G

Ii

R* �
∑T
t�1

∑
i∈GR

PG*
i ← xi,t

Δt

∑T
t�1

∑
i∈GR

PGmax
i,t Δt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(49)

where PG*
i ← xi

and PG*
i ← xi,t

respectively indicate the equilibrium
solution of PG

i ← xi
and PG

i ← xi,t
; GR is the set of RE generators;

PDnet represents the net load curve after RE generation; PDnet
t is

the net load at t.

6 Case study

6.1 Introduction of case study

Due to the significant computational complexity involved with
the new EPEC, this study simplifies the diverse range of practical
generators into three types: thermal (G1), wind (G2), and
photovoltaic (G3) power generators. These types, G1, G2, and
G3, aim to represent the strategic behaviors characteristic of their
respective generator categories. Alongside these generators, an
independent ES also participates in the day-ahead energy market.
The independent ES’s offering price is non-strategic, fixed at aS =
0.0024 US$/MWh2, bS = 60 US$/MWh and cS = 0 US$. Besides, G1,
G2, and G3 can leverage their respective private ES units (denoted as
private ES1, private ES2 and private ES3) to increase their profits by
regulating their maximum power outputs. That is to say, the
maximum power output constraints for generators G1, G2 and
G3 are strategic. Furthermore, the first-order coefficients bEi (i =
1,2,. . .,n) of bidding functions are strategic variables, whereas other
bidding coefficients, such as aEi and cEi , are non-strategic and
maintained as constants. It should be noted that the strategic
price in the case study specifically refers to the coefficient bEi .
The upper limit of the strategic price is fixed at bEmax

i =
120 US$/MWh.

The load data, as well as the forecasted wind and solar power
generation figures, are based on (Ye et al., 2017; Wang et al., 2008; Li
et al., 2021). The number of time periods is set as T = 8 and the time
interval is set as Δt = 3 h. The nominal capacities of generators G1,
G2, and G3 are set at 500 MW, 600 MW, and 600 MW, respectively.
The RE constitutes 71% of the total installed capacity. The forecasted
maximum outputs for wind and photovoltaic power are 95% and
73% of their respective capacities. The maximum charge and
discharge power for the independent ES, as well as all private
ESs, are set at 200 MW. Partial case studies incorporate the ES
capacity constraints. Differentiated parameter settings will be
clarified in the corresponding sections.

The case study is structured as follows: Section 6.2 presents the
proposed strategic behaviors of the generators and conducts

FIGURE 3
Proposed market equilibrium model and corresponding new EPEC.
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sensitivity analysis. Section 6.3 explores the market equilibrium that
results from strategic constraints combined with non-strategic
pricing. Section 6.4 investigates the market equilibrium when
strategic constraints are paired with strategic pricing.

6.2 Sensitivity analysis of strategic behavior
in RE utilizing private ES

6.2.1 Strategic constraint formation
The strategic constraint arises from the RE generator’s optimal

utilization of its private ES. This section delves into the analysis of
this process in the context of the SEP mechanism. The regulation
price for private ES2 is set at 40 US$/MWh. For G2, equipped with
private ES2, the solution of the newly proposed MPEC is depicted in
Figure 4. In the day-ahead energy market, the wind power generator
G2 utilizes private ES2 to adjust its original upper power output limit
during periods 2, 4, and 6, thereby establishing a new upper limit.
This adjustment constitutes the strategic constraint of G2, as shown
in the red line in Figure 4. As a result, G2’s energy curve better aligns
with the regulation responsibility curve mandated by the SEP
market mechanism. Consequently, the system’s required
flexibility (regulation energy) for accommodating wind power
decreases from 3,378 MWh to 2,223 MWh. Thus, the market
share for G2’s awarded substitute energy expands from
6,813 MWh to 8,947 MWh, and G2’s profits rise from
579.1 thousand US$ to 713.0 thousand US$. This preliminary
test demonstrates that the strategic use of private ESs is both
profitable and substantial. Such strategic behaviors are likely to
be widespread among RE generators that are equipped with
private ESs.

6.2.2 Sensitivity of RE’s strategic behavior to private
ES’s cost

The sensitivity of the wind power generator G2’s strategic
behavior to the private ES2’s cost is assessed under SEP
mechanism, as depicted in Figure 5. The financial analysis reveals
that G2 benefits from employing private ES2 within a price range of
[0, 280] US$/MWh, identifying 280 US$/MWh as the approximate
maximum profitable price. It is noteworthy that the market clearing
price for regulation energy fluctuates between [60, 70] US$/MWh.
This implies that even when the cost of private ESs exceeds market
prices, RE generators can still secure higher profits through using
private ESs. This occurs because the independent ESs in the market
are oriented towards enhancing global social welfare, whereas the
private ESs primarily cater to the financial objectives of their
associated RE generators. Leveraging the SEP mechanism,
modifications to the original wind power output curve can
significantly enhance G2’s revenue from the substitute energy
market. The strategic utilization of private ES2 by G2 is justified
as long as the incremental revenue from the substitute energy
market outweighs the regulation costs incurred, thus affirming
the strategic deployment of private ES.

The implications derived from these findings are twofold: 1) The
SEP mechanism effectively incentivizes RE generators towards ES
integration by diminishing the profit dependency on private ESs’
costs. 2) High-cost ESs, while not benefiting directly from market
participation due to competitive dynamics, can form profitable

alliances with RE generators, circumventing market price
constraints. For instance, a private ES2 pricing its regulation
energy at 120 US$/MWh would find market participation
unprofitable due to lower competitor pricing (below 70 US$/
MWh). However, this same ES could form a profitable
collaboration with G2, selling 417 MWh of regulation energy to
G2 at a profitable rate, as detailed in Figure 5, thereby altering
market dynamics and reinforcing the strategic positioning of RE
generators.

6.2.3 Sensitivity of RE’s strategic behavior to private
ES’s capacity

To analyze the sensitivity of RE’s strategic behavior to the
capacity of its private ES, different maximum capacities for
private ES2, ranging from 300 MWh to 1800 MWh, are set. The
minimum capacity of private ES2 is fixed at 20% of its maximum,
and the initial state of charge is set at 60% of the maximum capacity.
Figure 6 presents the results of this sensitivity analysis. It is observed
that when the capacity of the private ES2 is less than 600 MWh, the
sensitivity of G2’s strategic behavior is high, indicating significant
fluctuations in the profit of the alliance of G2 and private ES2. When
the capacity of the private ES2 ranges from 600 MWh to

FIGURE 4
Strategic constraint formation by wind power generator G2 with
private ES2.

FIGURE 5
Sensitivity of wind power generator G2’s strategic behavior to
private ES2’s cost.
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1,400 MWh, the sensitivity of G2’s optimal strategy notably
decreases. This is primarily due to the diminishing marginal
utility of the regulation energy provided by the private ES2,
which concurrently weakens the impacts of the strategic
constraints. Beyond 1,400 MWh, G2’s profit remains almost
unchanged, suggesting that G2 has identified a dominant strategy
in the SEP-based energy market, eliminating the need to calculate
alternative strategies. Overall, while the capacity of private ES
imposes certain limitations on the strategic behavior of RE, the
act of providing strategic constraints still enhances the total profit of
the RE-ES alliance and strengthens the market competitiveness of
RE generators.

6.2.4 Sensitivity of RE’s strategic behavior to
proportion of RE

This sensitivity analysis investigates how the strategic behavior
of wind power generator G2 is influenced by the proportion of wind
power in the energy mix, under the SEP mechanism, as detailed
in Table 1.

In scenarios where the proportion of wind power is low,
specifically in the range of [0%, 21%], the generated wind power
is entirely consumed, negating the need for G2 to employ private
energy storage. In such cases, the influence of wind power
proportion on G2’s strategic behavior is markedly low.

Conversely, at higher wind power proportions ([27%, 54%]), the
optimal strategy involving the use of regulation energy from private
ES2 shows significant variability, ranging from [93, 1317] MWh.
Correspondingly, the profit increase per unit of regulation energy
fluctuates between [69, 269] US$/MWh. It is important to note that
the engagement of private ES2 is not directly proportional to the
increase in wind power, highlighting the complexity of these
strategic behaviors in practical scenarios. In this range, the
sensitivity of G2’s strategic decisions to wind power proportion is
considerably more pronounced.

Furthermore, when the proportion of wind power lies between
[59%, 72%], operating the market clearing model without private
ES2 becomes infeasible due to excessive flexibility demands, which
exceeds the flexible regulation capability of thermal power G1 and
the independent ES. However, with the utilization of private ES2 by
G2, the model attains feasibility, enabling not only an increase in RE

profit but also an enhancement in RE integration—from
54% to 72%.

This analysis underscores the critical role of private ES in
optimizing strategic outcomes and augmenting the integration of
renewable energy within the power system.

6.2.5 Comparative impact analysis under LMP and
SEP mechanisms

Figure 7 and Figure 8 illustrate the outcomes of wind power G2’s
strategic application of private ES2 and its subsequent effects on system
operation metrics under LMP and SEP mechanisms, respectively. For
comparative analysis, all metrics are normalized against a benchmark
scenario where no private ES is utilized by the generators.

In the LMP-based market framework, the most profitable pricing
point for private ES2 is identified at approximately 160US$/MWh. This
pricing strategy largely hinges on exploiting the maximum price
differential across different time intervals, characterized by charging
at the lowest LMP and discharging at the highest LMP. Therefore, the
market share of RE does not significantly impact the optimal strategy
for employing private ES. Unfortunately, this leads to an undesirable
consequence: the LMP mechanism falls short in motivating entities to
equip private ES as a means to enhance the RE integration rate.
Consequently, as shown in Figure 7, the RE integration rate remains
constant at 79%, demonstrating insensitivity to the private ES’s price
under the LMP model.

Conversely, in the SEP-based market, both energy and
regulation emerge as independent commodities available for
trade. Here, the primary strategy for RE generators to enhance
profitability through private ES usage centers on increasing their
share in the energy market. This unique characteristic of the SEP
model fosters an increase in the RE integration rate, elevating it from
84% to 100%, as evidenced in Figure 8.

Comparatively, the SEP mechanism outperforms the LMP
model in facilitating RE integration, reducing carbon emissions,
and contributing to sustainable development. Furthermore, the
assessment within the MPEC framework indicates that both
global social welfare and total load payment under the LMP and
SEP mechanisms are comparable, with fluctuations around 1.0 p.u.
These parameters will undergo further comparative analysis in the
context of the EPEC as elaborated in Section 6.3 and Section 6.4.

6.3 Market equilibrium of strategic
constraints and non-strategic pricing

In this section, we simulate the strategic behaviors of generators
G1, G2, and G3, each employing their respective private energy
storages ES1, ES2, and ES3. This simulation aims to demonstrate the
solutions of the newly proposed EPEC. The pricing for these private
ES units is standardized, set at a(x) = 0.001 US$/MWh2, b(x) =
10 US$/MWh and c(x) = 0 US$. Figure 9 and Figure 10 depict the
market equilibrium achieved by these strategic generators utilizing
private ESs and imposing strategic constraints. Table 2 and Table 3
present the impacts of these market equilibria on system operation
metrics under LMP and SEP mechanisms, respectively. For
comparative purposes, benchmark scenarios are established in
which no strategic behaviors occur under the respective market
mechanisms. In the case of thermal power generator G1, due to its

FIGURE 6
Sensitivity of wind power generator G2’s strategic behavior to
private ES2’s capacity.
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robust flexibility and low regulation cost, the optimal strategy does
not involve the use of private ES1, resulting in an optimal regulation
energy of 0 MWh.

Under the LMP mechanism, significant regulation energy from
private ESs is utilized by both wind power G2 (2,303MWh) and
photovoltaic G3 (1752 MWh). This usage leads to a 5% decrease in
true global social welfare and a 41% increase in total load payment,
indicating a surge in energy prices. Due to the market competitiveness
enhanced by strategic constraints of RE entities, the revenues of
G2 and G3 increased by 258 thousand US$ and 114 thousand
US$, respectively, with their revenue growth rates being 19% and 21%.

Without strategic pricing, this equilibrium reveals some defects
of LMP mechanism, that is, the profit-driven behaviors of utilizing
ES is not well incentive-compatible with the system operation
metrics. Moreover, due to the 100% RE integration rate in the
benchmark scenario, RE generators opt for creating higher time-
period price differences using private ESs rather than increasing
their energy market share in the equilibrium, resulting in enhanced
price volatility, as illustrated in Figure 9.

Conversely, under the SEP mechanism, strategic use of private ES
combined with non-strategic pricing does not significantly alter the
market clearing prices (πSEP and πREP). Meanwhile, due to the 100%
integration of photovoltaic in the benchmark, the market share of
photovoltaic G3 has attained its maximum possible value, leading to an

optimal regulation energy of 0 MWh for private ES3 in the equilibrium.
This contrasts with the LMP mechanism, as G3’s market-detrimental
strategic behavior is mitigated by the SEP mechanism.

Besides, wind power G2, employing private ES2 (with optimal
regulation energy of 578 MWh), increases its integration rate from
89% to 100% in the equilibrium, thereby earning increased revenue
in the SEP-based market. In this scenario, both the true global social
welfare and the total load payment see a 1% increase. Compared to
the LMPmechanism, the SEP mechanism encourages RE generators
to use less regulation energy, resulting in a more efficient market
equilibrium. These outcomes suggest that the SEPmechanism aligns
more effectively with the incentives for RE and ES integration. A key
reason is that the SEP mechanism collectively treats the energy
production curve from each entity as a whole, trading them as
vector-level substitutes. This design is more adaptive to the
synergistic trading of the energy produced by RE and the
flexibility provided by ES.

6.4 Market equilibrium of strategic
constraints and strategic pricing

In this section, we examine the strategic behavior of generators,
taking into account both strategic constraints and strategic pricing.

TABLE 1 Sensitivity of wind power generator G2’s strategic behavior to proportion of wind power.

Proportion of wind power 7% 21% 27% 33% 38% 44% 48% 54% 59% 72%

Profit of G2 before utilizing private ES (thousand US$) 130 389 489 579 579 641 713 719 Infeasible Infeasible

Profit of G2 after utilizing private ES
(thousand US$)

130 389 514 622 717 758 791 818 838 908

Increment of profit of G2 (thousand US$) 0 0 25 43 138 117 78 99 — —

Optimal regulation energy of private ES (MWh) 0 0 93 623 1100 1317 906 446 893 1157

Profit increment per regulation energy of private ES
(US$/MWh)

0 0 269 69 125 89 86 222 — —

FIGURE 7
Impact of strategic utilization of private ES on system operation
metrics under LMPmechanism. Note that πLMP represents the clearing
price under LMPmarket mechanism; and πLMP = [368, 120, 38, 40, 120,
120, 368, 368] US$/MWh in the benchmark.

FIGURE 8
Impact of strategic utilization of private ES on system operation
metrics under SEP mechanism. Note that πSEP = 120 US$/MWh and
πREP = 64 US$/MWh in the benchmark.
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For clarity in this analysis, the time periods are set to T = 4, with a
time interval of Δt = 6 h. The maximum capacities of both the
private and independent ES systems are set at 800 MWh, with an
initial state of charge of 480 MWh. The minimum capacities for
these ESs are fixed at 160 MWh. All other parameters employed are
consistent with those detailed in Section 6.3. Table 4 and Table 5
present the outcomes of market equilibrium and their impacts under
the LMP and SEP mechanisms, respectively.

Under the LMP mechanism, the equilibrium prices for G1, G2,
and G3 are derived to be 120, 99, and 35 US$/MWh, respectively. In
this scenario, RE generators (G2 and G3) extensively utilize the
regulation energy from their private ESs to enhance profitability by
imposing strategic constraints. For instance, the optimal regulation
curve produced by private ES3 in the LMP market equilibrium is
[53, −51, −9, 7] MW, resulting in a regulation energy of 720 MWh.
By integrating the private ES3, the strategic constraint of
photovoltaic G3 shifts from its natural output curve [0, 315, 439,
0] MW to a modified maximum power output constraint [53, 264,
430, 7] MW, as detailed in Table 4.

Consequently, the market share of RE and the rate of RE
integration increase by 6%, and the true global social welfare
improves by 1%, compared to the benchmark outlined in Table 4.
However, the cost of enhancing the RE integration rate, under
simultaneous strategic constraints and pricing, is substantial,
resulting in a 51% increase in total load payment. This indicates
that elevating the RE integration rate in the LMPmarket incurs a high
economic cost. It also suggests that the LMP mechanism is somewhat
deficient in guiding market-beneficial strategic behaviors and in
restraining excessive profiteering by RE-ES alliances.

Under the SEP mechanism, the equilibrium prices for G1, G2,
and G3 are 120, 35, and 35 US$/MWh, respectively. Only wind
power G2 implements a strategic constraint [324, 518, 461, 534]
MW. A comparison between Table 4 and Table 5, particularly
regarding the regulation energy utilized by private ESs, highlights
a notable aspect of the SEP mechanism: entities achieve a more
favorable market equilibrium with less regulation energy compared
to the LMP mechanism. Specifically, relative to the benchmark, the
SEP-based market equilibrium shows a 1% increase in true global
social welfare and a 4% improvement in RE integration rate, with
these enhancements incurring only a 6% increase in the total
load payment.

FIGURE 9
Market equilibrium of strategic generators utilizing private ESs
and offering strategic constraints under LMP mechanism. Note that
πLMP = [120, 120, 120, 120, 120, 373, 120, 120] US$/MWh in the
benchmark, while πLMP = [120, 40, 120, 120, 371, 371, 370, 120]
US$/MWh in the equilibrium.

FIGURE 10
Market equilibrium of strategic generators utilizing private ESs
and offering strategic constraints under SEP mechanism. Note that
πSEP = 120 US$/MWh and the πREP = 63 US$/MWh in the benchmark
and the equilibrium.

TABLE 2 Impact of market equilibrium with strategic constraints under LMP mechanism.

Benchmark Equilibrium with strategic constraints

Regulation energy of utilized private ES (MWh) Private ES1: 0 Private ES1: 0

Private ES2: 0 Private ES2: 2,303

Private ES3: 0 Private ES3: 1752

True global social welfare (p.u.) 1.00 0.95

Total load payment (p.u.) 1.00 1.41

Integration rate of wind power 100% 100%

Integration rate of photovoltaic power 100% 100%
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Although the increment in the RE integration rate under the
SEP mechanism is 2% lower than that of the LMP mechanism,
there is a substantial 45% reduction in the total load payment. This
indicates that in markets with strategic behaviors, the SEP
mechanism promotes RE integration at a lower economic cost
and more effectively guides stakeholders towards decisions that are
beneficial to the market and the power system.

Figure 11 gives a comprehensive comparison of the LMP and
SEP mechanisms in terms of market equilibria and strategic
behaviors. This comparison is primarily based on the
simulation results from Section 6.4, supported by the findings
in Section 6.2 and Section 6.3. Both the SEP and LMP mechanisms
exhibit similar effects on true global social welfare, fluctuating
within the range of 0.95–1.05. Each mechanism encourages RE
generators to leverage private ESs to improve their market share.
The LMP mechanism slightly outperforms the SEP mechanism in
enhancing the RE integration rate by approximately 2%. However,
in terms of the average cost of promoting RE integration, the SEP
mechanism demonstrates a more significant advantage, as
explained below.

On one hand, the LMP mechanism tends to result in a higher
total load payment, approximately 41%–52%. In contrast, the SEP
mechanism only causes a 1%–6% increase in total load payment.
On the other hand, under the LMP mechanism, RE generators
consume substantial amounts of regulation energy produced by
private ESs, around 1900 to 4,000 MWh, to boost their market
share. Conversely, under the guidance of the SEP mechanism,
achieving a similar rate of RE integration requires only 500 to
700 MWh of regulation energy. This indicates that the LMP
mechanism may foster more market-detrimental competitive
behaviors, potentially leading to unnecessary utilization of
flexibility resources and higher electricity prices. Fortunately,
SEP significantly mitigates this issue, facilitating strategic
behaviors that are more beneficial to the electricity market and
power systems.

Additionally, within the SEP framework, a higher maximum
profitable price for private ESs is noted, indicating a greater
willingness among ES resources to offer regulation services to RE
generators. Such incentives are key in fostering the cooperation of
RE and ES, contributing to a more stable and efficient power supply.

TABLE 3 Impact of market equilibrium with strategic constraints under SEP mechanism.

Benchmark Equilibrium with strategic constraints

Regulation energy of utilized private ES (MWh) Private ES1: 0 Private ES1: 0

Private ES2: 0 Private ES2: 578

Private ES3: 0 Private ES3: 0

True global social welfare (p.u.) 1.00 1.01

Total load payment (p.u.) 1.00 1.01

Integration rate of wind power 89% 100%

Integration rate of photovoltaic power 100% 100%

TABLE 4 Impact of market equilibrium with strategic constraints and strategic pricing under LMP mechanism.

Benchmark Equilibrium with strategic constraints and strategic pricing

Strategic price (US$/MWh) G1: 110 G1: 120

G2: 35 G2: 99

G3: 35 G3: 35

Strategic constraint (maximum power output, MW) G1: [500, 500, 500, 500] G1: [500, 500, 500, 500]

G2: [271, 518, 567, 481] G2: [324, 412, 567, 534]

G3: [0, 315, 439, 0] G3: [53, 264, 430, 7]

Regulation energy of utilized private ES (MWh) Private ES1: 0 Private ES1: 0

Private ES2: 0 Private ES2: 1272

Private ES3: 0 Private ES3: 720

True global social welfare (p.u.) 1.00 1.01

Total load payment (p.u.) 1.00 1.51

RE integration rate 87% 93%

πLMP (US$/MWh) [110, 49, 51, 110] [120, 120, 114, 120]
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7 Conclusion

This paper develops an innovative model for the market
behaviors of RE generators equipped with private ESs. These
entities uniquely offer not only conventional strategic pricing but
also novel strategic constraints to the SO, leading to a new market
equilibrium conceptualization. The impacts of these strategic
behaviors on pivotal system operation metrics are analyzed under
both LMP and SEP market mechanisms. The key findings from our
numerical experiments are summarized as follows:

(1) The Role of Private ES. At the entity level, the private ESs
enable the RE generation companies to offer strategic
constraints on the electricity market. A typical strategy

involves utilizing the ES’s charging-discharging curve to
modify the dynamic maximum power output limits of RE
generators. Fundamentally, the private ES not only expands
the energy market share of RE companies but also facilitates
additional profits through the provision of flexibility.
Consequently, RE entities usually show low sensitivity
towards private ESs’ costs, indicating widespread adoption
of private ESs and strategic constraints among REs. At the
system level, the absence of private ES renders market
feasibility problematic when the proportion of RE
surpasses 59%. This underscores the significant role of
private ES in enhancing the system’s potential for
maximum RE integration by up to 18%.

(2) Strategic Constraints and Strategic Pricing of RE. Under
policies requiring ES deployment in RE systems, RE
generation companies have developed dual capabilities
in strategic constraints and pricing to recover costs of
their assets. The RE profits from strategic constraints in
two primary ways: firstly, by offering more competitive
constraints to enhance awarded energy, and secondly, by
capitalizing on larger peak-to-valley price differentials for
arbitrage purposes. The SEP mechanism primarily
influences RE generators to adopt the former approach,
while the LMP mechanism tends to incentivize the latter.

(3) New Market Equilibrium. The dual strategic behaviors of
all RE entities in the market collectively establish a new
market equilibrium, which has diverse impacts on system
operation metrics. Both the SEP and LMP mechanisms
demonstrate similar effects on the true global social
welfare and the RE integration rate. However, under the
LMP mechanism, an excessive use of regulation energy
from private ESs for competitive advantage leads to
resource wastage and a sharp increase in the total load
payment. Fortunately, the SEP mechanism guides more

TABLE 5 Impact of market equilibrium with strategic constraints and strategic pricing under SEP mechanism.

Benchmark Equilibrium with strategic constraints and strategic pricing

Strategic price (US$/MWh) G1: 110 G1: 120

G2: 35 G2: 35

G3: 35 G3: 35

Strategic constraint (maximum power output, MW) G1: [500, 500, 500, 500] G1: [500, 500, 500, 500]

G2: [271, 518, 567, 481] G2: [324, 518, 461, 534]

G3: [0, 315, 439, 0] G3: [0, 315, 439, 0]

Regulation energy of utilized private ES (MWh) Private ES1: 0 Private ES1: 0

Private ES2: 0 Private ES2: 1272

Private ES3: 0 Private ES3: 0

True global social welfare (p.u.) 1.00 1.01

Total load payment (p.u.) 1.00 1.06

RE integration rate 87% 91%

πSEP (US$/MWh) 110 120

πREP (US$/MWh) 66 66

FIGURE 11
Comprehensive comparison of LMP and SEP mechanism in
market equilibrium of strategic constraints and strategic pricing.
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system-beneficial strategic behaviors and equilibria,
curbing unreasonable high electricity prices and
efficiently integrating RE and ES.

Future research will delve deeper intomarket equilibria based on
strategic constraints and strategic pricing, taking into account
complex real-world factors. These include the combined effects of
shared ESs and private ESs, geographical location issues, grid power
flow constraints, and joint optimization offering strategies in
electricity-carbon coupled markets. Such comprehensive studies
will thereby contribute to the advancement towards a clean
energy future.
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Deep reinforcement learning for
adaptive frequency control of
island microgrid considering
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and economy
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To achieve frequency stability and economic efficiency in isolated microgrids,
grid operators face a trade-off between multiple performance indicators. This
paper introduces a data-driven adaptive load frequency control (DD-ALFC)
approach, where the load frequency controller is modeled as an agent that
can balance different objectives autonomously. The paper also proposes a
priority replay soft actor critic (PR-SAC) algorithm to implement the DD-ALFC
method. The PR-SAC algorithm enhances the policy randomness by using
entropy regularization and maximization, and improves the learning
adaptability and generalization by using priority experience replay. The
proposed DD-ALFC method based on the PR-SAC algorithm can achieve
higher adaptability and robustness in complex microgrid environments with
multiple performance indicators, and improve both the frequency control and
the economic efficiency. The paper validates the effectiveness of the proposed
method in the Zhuzhou Island microgrid.

KEYWORDS

load frequency control, island microgrid, frequency stability, priority replay soft actor
critic, data-driven

1 Introduction

Traditional islanded energy systems mainly rely on diesel generators, wind turbines
(WT), photovoltaic (PV) and energy storage facilities to provide power supply. Diesel
generators, as representatives of traditional energy sources, have the advantages of stability
and robustness, but they also have the disadvantages of high operating cost, slow response,
and serious environmental pollution. Therefore, their share of power generation is gradually
decreasing. Wind turbines and photovoltaic, as representatives of distributed renewable
energy sources, have the advantages of safety, flexibility and low pollution, but they are also
highly dependent on external factors such as weather, temperature and light, resulting in
strong fluctuations and time-varying characteristics. This may cause power shortage or
surplus, leading to system imbalance and frequency instability. To address the energy
balance problem between the demand side and the supply side of the islanded energy
system, improve the operational reliability of the system, and ensure the quality of energy,
the hybrid energy system that combines diesel generators and distributed renewable energy
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sources has become the mainstream of future development.
Therefore, it is of great significance to develop advanced energy
storage systems (ESS) and corresponding energy management
systems (EMS), to achieve the coordinated control of traditional
energy and distributed renewable energy, and ultimately realize the
optimal control of energy. When the microgrid is disconnected from
the main grid, it enters the islanded operation mode, in which the
microgrid needs to independently establish the voltage and
frequency reference, and maintain the power balance and
frequency stability within the system. This requires the secondary
frequency control of the microgrid, that is, based on the primary
frequency control, the microgrid central controller or distributed
controller coordinates the distributed power generation and energy
storage devices within the system to control the frequency, so that
the frequency of the microgrid is restored to the rated value, and the
economic operation of the microgrid is achieved.

Load frequency control (LFC) of microgrids is a challenging
problem that has been addressed by various control methods, from
the classical Proportional Integral Derivative (PID) control to
advanced control theories. PID control is a traditional control
policy that was widely adopted in the early studies of LFC (Xi
et al., 2022; Li and Zhou, 2023a; Li and Zhou, 2023b). However, PID
control has some limitations, such as the continuous change of
parameters and some constraints in the power system, which affect
the control performance and the dynamic index of the system (Li
et al., 2023a; Li et al., 2023b). A method that combines integral
compensation and state feedback was applied to the LFC system in
(Xi et al., 2020).With the development of various agent optimization
algorithms, the traditional control algorithm was improved by
integrating agent control method with classical control method to
enhance the control effect of LFC. For example, Cavin and Calovic
et al. (Cavin et al., 1971; Calovic, 1972) applied the optimal control
method based on the traditional PID control and proposed the
controller parameter design of agent optimization algorithm. Wang
et al. (2018) proposed a design method based on model predictive
control, which can improve the frequency response of the system
when the load changes. More advanced control strategies were also
applied in the LFC system with the development of control method.
For the study of adaptive control, Xie et al. (2023) designed a
decentralized adaptive control method to ensure that the
frequency fluctuation of each region converges to an acceptable
range and the deviation range is maintained in a very small range.
Deng et al. (2022) proposed a virtual inertia and virtual damping
parameters adaptive control policy, which can better track the
frequency changes and set the action threshold of adaptive
control. In the study of sliding mode variable structure control,
Chen et al. (2018) designed the control policy of modular multilevel
converter under unbalanced grid voltage according to the principle
of sliding mode variable structure control. Dong et al. (2019) also
considered the system parameter uncertainty, energy storage system
and traditional unit control channel delay problem, reduced the
capacity configuration of the energy storage system, and proposed a
sliding mode LFC controller and energy storage coordination
control policy for the LFC model containing wind storage. In
terms of predictive control, Elmouatamid et al. (2021) proposed a
Generalized Predictive Control (GPC) policy for energy
management in Micro-Grid (MG) systems. Qian et al. (2016)
proposed a robust distributed predictive control algorithm based

on linear matrix inequality with adjustable parameters, considering
both generators change rate constraints and valve position
constraints, and transforming the solution of a set of convex
optimization problems into a linear matrix inequality solution. In
the robust control, Toghani Holari et al. (2021) considered Input
Output Feedback Linearization (IOFL) and Sliding Mode Control
(SMC) under load variations and parameter uncertainties for AC-
DC hybrid microgrid systems. Su et al. (2021) proposed a structural
singular value based design methodology for robust decentralized
automatic power generation controllers for deregulated multi-area
power systems.

Traditional methods for load frequency control (LFC) of
islanded microgrids also face some challenges, which include the
following aspects:

(1) It is challenging to improve the frequency control
performance of microgrids. Due to the low inertia of the
microgrid and the large fluctuations of the load and renewable
energy, the frequency of the microgrid is prone to large
deviations, which affect the frequency quality and stability
of the microgrid. Therefore, microgrids need effective
frequency control strategies to suppress frequency
deviations, restore the frequency to the rated value, and
ensure the normal operation of microgrids. However, the
existing frequency control methods, such as constant power
control, constant frequency control, constant virtual inertia
control, sliding mode control, fuzzy control, neural network
control, etc., have certain limitations and drawbacks, such as
fixed control parameters, unsatisfactory control effect,
complex control logic, and non-robust control system.

(2) It is challenging to consider the multi-objective synthesis of
microgrids. Since frequency control and optimal operation of
microgrids are two interrelated problems and involve
multiple performance indicators, such as frequency
deviation, operating cost, renewable energy utilization, etc.,
microgrids need to consider these performance indicators
comprehensively to achieve multi-objective optimization of
microgrids. Therefore, microgrids need effective multi-
objective optimization methods to balance the performance
indicators of microgrids and achieve comprehensive
optimization of microgrids. However, existing multi-
objective optimization methods, such as weighted sum
method, ideal point method, fuzzy set method, hierarchical
analysis method, and multi-objective evolutionary algorithm,
have certain limitations and drawbacks, such as subjective
selection of weights, difficulty in determining the ideal point,
difficulty in constructing fuzzy sets, complexity of hierarchical
analysis, and slow convergence of multi-objective
evolutionary algorithm.

Artificial intelligence algorithms have emerged as a promising
technique for LFC of islanded microgrids with a high penetration of
renewable energy sources. Many AI methods have been proposed to
address the challenges of LFC, especially the reinforcement learning
method, which can significantly improve the CPS performance.
Zhang et al. (2021) applied Q-learning to solve the LFC problem and
demonstrated its robustness. Zhang et al. (2023) proposed Q
methods with a “relaxation” policy, which effectively dealt with
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the large time lag of thermal power units, and reduced the frequent
regulation and inversion issues caused by improper LFC control
strategies. Yin et al. (Linfei et al., 2017) combined the “human
emotion” function with Q-learning to form an emotion
reinforcement Learning, and modified the Q-learning parameters
of “learning rate, reward function, and action selection” by
simulating the nonlinear emotion function of humans in complex
situations, which greatly enhanced the index. Yu et al. (Li et al.,
2023c) proposed an agent controller that uses double deep
Q-learning to operate energy storage elements in islanded
microgrids. This controller minimizes the power loss in the grid
even under the influence of intermittent energy sources. However,
the controller is designed for steady state operation and hence
transient stability is not considered. In another study, Li et al.
(2022) proposed a dual deep Q-network (DDQN) controller for a
microgrid energy storage system that reduces the power used from
the main grid to maximize the profit. An agent microgrid power
management approach to minimize the exchanged power with the
main grid was proposed in (Mahboob Ul Hassan et al., 2022), where
a fitted Q algorithm was used. However, the authors did not consider
the transient behavior of the microgrid during disturbances. The
above methods have low robustness and performance and cannot
meet the requirements of islanded microgrids. Reinforcement
learning methods can learn the optimal control policy by
interacting with the environment, but they require the analysis of
the Mercuriality of the problem, the construction of a Markov
decision process, and the design of a reasonable reward function.
The optimal control variables can be obtained by building an
optimization model, but it requires the analysis of the constraints
of the problem and the choice of a suitable solution algorithm.
However, these methods have low adaptability and robustness, and
are prone to the curse of dimensionality, which makes it impossible
to obtain an LFC policy that can consider a wide range of metrics in a
complex islanded microgrid environment.

This paper tackles the challenges of balancing multiple
performance indicators for isolated microgrids, such as frequency
stability and economic efficiency, which are often conflicting
objectives. The paper proposes a data-driven Adaptive Load
Frequency Control (DD-ALFC) method that uses deep
reinforcement learning to design an agent that can make
independent decisions and optimize multiple indicators. The
paper also introduces a Priority Replay Soft Actor Critic (PR-
SAC) algorithm that enhances the policy randomness and
adaptability of the agent by using entropy regularization and
prioritized experience replay. The paper demonstrates the
effectiveness of the proposed method and algorithm in improving
the frequency control performance and economy of a complex
microgrid environment, using the Zhuzhou Island microgrid as a
case study.

The main contributions and innovations of this paper are
as follows:

(1) Improved deep reinforcement learning method: We propose
a Priority Replay Soft Actor Critic (PR-SAC) algorithm to
solve the frequency control and optimal operation problems
of microgrids. PR-SAC uses entropy regularization and
maximization of entropy objective to make the policy more
randomly distributed, and employs the priority experience

replay policy to enhance the adaptability and generalization of
the algorithm. This enables the data-driven adaptive load
frequency control (DD-ALFC) based on this algorithm to
consider multiple performance indicators in complex
microgrid environments and to improve the frequency
control and economic performance.

(2) Data-driven adaptive load frequency control: We develop a
DD-ALFC to evaluate the effectiveness of frequency control
and optimal operation of microgrids by considering
multiple performance indicators. We consider not only
the frequency deviation of the microgrid, but also the
operating cost of the microgrid as the objective function
of the multi-objective optimization of the microgrid to
achieve a comprehensive optimization of the microgrid.
We design a suitable reward function to balance these
performance indicators so that the frequency control and
optimal operation of the microgrid can simultaneously
satisfy frequency stability, economy and
environmental benefits.

The structure of this paper is as follows: Section 2 introduces the
problem statement and the mathematical formulation of the
proposed approach. Section 3 describes the design and
implementation details of the proposed method. Section 4
presents the simulation model and the analysis of the results.
Section 5 concludes the paper and discusses the future work
directions.

2 Model of DD-ALFC

2.1 Island microgrid model

The grid-connected inverter interface allows distributed
photovoltaic (PV), wind power (WP) and energy storage (ES)

FIGURE 1
DD-ALFC structure.
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units to connect to the microgrid. The distributed generation (DG)
unit can track a given reference power quickly by controlling the
grid-tie inverter. A first-order model is adopted to represent the
grid-connected inverter model in the LFC model (Deng et al.,
2022). The previous section introduces the load frequency control
model of conventional thermal power units, the simplified
equivalent model of renewable energy units with certain
frequency regulation capability, and the simplified equivalent
model of battery energy storage. Based on these models, this
paper constructs a single-area load-frequency control microgrid
model, which consists of two wind turbines, two photovoltaic
units, an energy storage system and a diesel engine. Figure 1 shows
the load frequency control model.

This paper presents an islanded microgrid system with various
distributed energy sources, such as photovoltaic (PV), wind turbine
(WT), microturbine (MT), diesel generator (DG), and fuel cell (FC).
A benefit and penalty function is proposed to optimize themicrogrid
operation, considering both the economic cost and the control cost.
The smart body uses a DD-ALFC controller to generate the total
regulation commands, which are then distributed to each unit by the

PROP command distributor. The structure of the DD-ALFC
controller is described in detail.

2.1.1 Micro gas turbines
Various fuels, such as natural gas, biogas, biomass gas, diesel, etc.,

can be utilized by micro gas turbines, which have the benefits of high
efficiency, reliability, environmental protection and flexibility. These
turbines can serve as the core power equipment in various fields, such as
distributed energy, mobile emergency power generation, new energy
utilization, transportation, etc. Details as Eqs 1, 2.

CMT,OM � ∑T
t�1
kMT,OMPMT t( ) (1)

CMT,fuel � CMTΔt
1

LHV
∑T
t�1

PMT t( )
ηMT

(2)

where CMT is the maintenance cost of the power consumption,
kMT,OM is the maintenance coefficient, the value of CMT,fuel is the
unit price of MT fuel gas, LHV is the low calorific value of natural
gas, and PMT is the operating efficiency of MT.

FIGURE 2
Learning processes and programs.
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2.1.2 Diesel generators
Sag control is a technique that enables diesel generators to

achieve stable frequency and voltage output. By using sag
control, each unit can adjust its power output according to the
voltage sag, without requiring communication or coordination with
other units. This enhances the reliability and flexibility of the
distributed generation system. Details as Eqs 3, 4.

CDG,OM � ∑T
t�1
kDG,OMPDG t( ) (3)

CDG,fuel � α + β∑T
t�1
PDG t( ) + γ∑T

t�1
P2
DG t( ) (4)

where CDG,OM is the cost of the DG, kDG,OM is the DG maintenance
factor; PDG is the fuel cost of the DG, and α, β, and γ are the fuel cost
coefficients.

2.1.3 Fuel cell modeling
A possible way to provide secondary frequency regulation for

the grid is to employ fuel cells, which can adjust their output
power according to the grid frequency deviation and the area
control error signal. This way, the system can restore the
frequency and power balance by using fuel cells as flexible
resources. Details as Eqs 5, 6.

CFC,OM � ∑T
t�1
kFC,OMPFC t( ) (5)

CFC,fuel � CFCΔt
1

LHV
∑T
t�1

PFC t( )
ηFC

(6)

where CFC,OM is the cost of the FC, kFC,OM is the maintenance factor
of the FC, PFC (t) is the output power of the FC at time period t;
CFC,fuel is the fuel cost of the FC,CFC is the unit price of gas for the FC
and ηFC is the operating efficiency of the FC.

2.2 Objective functions and constraints

This paper presents an optimization method for the scheduling
of an islanded microgrid that operates under system constraints,
economic cost and frequency control objectives. A penalty function
is introduced to enable the multi-objective optimization of the
microgrid. The paper considers the cost and frequency regulation
performance of three types of distributed generators: micro gas
turbine, diesel generator and fuel cell: Details as Eqs 7, 8.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (7)

∑n
i�1
ΔPin

i � ΔPorder−∑
ΔPorder−∑*ΔPin

i ≥ 0

ΔPmin
i ≤ΔPin

i ≤ΔPmax
i

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (8)

where ΔPorder-∑ is the total generation power command, ΔPimax and
ΔPimin are the upper and lower limits of the generation units
respectively, ΔPirate is the creep rate of the unit, and ΔPiin is the
generation power command input to the ith unit.

3 MDP model and PER-SAC algorithm
for DD-ALFC

3.1 MDP model for the proposed method

Reinforcement learning is a framework for decision-making,
where an agent interacts with an environment by observing its state,
performing actions, and receiving rewards. The agent aims to learn a
policy that maps states to actions in order to maximize the expected
return over time. However, reinforcement learning algorithms often
suffer from instability during training, which affects their
performance (Su et al., 2021).

3.1.1 The concept of MDP in the DD-ALFC
Reinforcement learning is a learning paradigm that enables

agents to acquire optimal behaviors through trial-and-error
interactions with stochastic environments. The theoretical
foundation of reinforcement learning is the Markov Decision
Process (MDP), a mathematical framework that captures the
essential features of sequential decision making under
uncertainty. Figure 1 illustrates the basic elements of an MDP. At
each discrete time step, the agent perceives the current state st of the
environment, selects an action at according to its strategy, and
receives a scalar reward rt+1 as a feedback, The environment then
transitions to a new state st+1, and the process continues. The agent’s
behavior is determined by one or more of the following components:
policy, value function, and model. These components are defined
as follows.

3.1.1.1 Policy
An agent’s behavior in different states is described by a

probability distribution, which is called a policy. A policy fully
determines the agent’s behavior, meaning that it assigns
probabilities to all possible actions that the agent can take in
each state. The policy is invariant in the same state, but the
action probabilities may vary. The agent’s objective is to find the
optimal policy that maximizes the expected reward over time. The
policy is denoted by π (a|s), and Eq. 9 defines all the possible
behaviors and probabilities of the agent in each state.

π a | s( ) � P At � a | St � s( ) (9)
where P is the probability of choosing action At to be a at time t.

3.1.1.2 Value functions
The performance of an agent in each state, or the degree of merit

of a given behavior in a given state, is captured by the value function.
Themerit is measured by the expected future reward, which depends
on the policy followed by the agent. All value functions are estimated
with respect to a given policy. The reward Gt is the discounted sum
of all future rewards starting from time t, as defined by the following
equation. Details as Eq. 10.

Gt � Rt+1 + γRt+2 + . . . � ∑∞
k�0

γkRt+k+1 (10)

The discount factor γ embodies the proportion of the value of
future rewards in the current moment, and the value of the reward R
obtained at k+1 moment is γkR at t. When γ is 0, the agent only pays
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attention to the immediate rewards in front of it, and does not
consider the long-term benefits in the future. When γ is 1, the agent
will fully consider the future rewards and regard the long-term
benefits as important.

3.1.1.3 Models
An agent can use a model to represent the environment internally,

which can facilitate its decision-making and planning processes in its
interaction with the environment. Two problems need to be addressed
by the environment model: one is the state transition probability Pssʹ

a,
which characterizes the dynamic properties of the environment and is
used to predict the probability distribution of the next state sʹ after
taking a behavior a in state s; the other is the prediction of the possible
instantaneous rewards Rs

a. Rs
a characterizes the rewards obtained after

taking a behavior a in state s. The formula is described as follows. Details
as Eqs 11, 12.

Pa
ss′ � P St+1 � s′ | St � s, At � a( ) (11)
Ra
s � E Rt+1 | St � s, At � a[ ] (12)

where St denotes the state at moment t, At denotes the action at
moment t; Pssʹ

a denotes the state transfer probability, and Rs
a denotes

the reward. The following is the MDP modeling of the agent.

3.1.2 The MDP model in the DD-ALFC
3.1.2.1 Action space

The ith unit (agent) functions as the output of the command of
the ith unit, which makes the exploration range to be reduced in
order to obtain. The action is shown as follows. Details as Eq. 13.

ai � ΔPorder−i (13)
where ai is the action of the ith agent and ΔPorder-i is the regulation
command of the ith agent (unit).

3.1.2.2 State space
The state of the agent is shown below. Details as Eq. 14.

sj � Δf k( ) ∫t

0
Δfdt ΔPorder−i k − 1( )[ ] (14)

where si is the state of the ith agent, Δf is the frequency deviation,
and ΔPorder-i(k) is the regulation command.

3.1.2.3 Reward function
According to Eq. 7, the reward function of the agent is shown as

follows. Details as Eq. 15.

ri k( ) � − μ1 Δf k( )∣∣∣∣ ∣∣∣∣ − μ2C
p
Σ[ ] + PT (15)

where ri is the reward function of agent i, and μ1 and μ2 are the
weight coefficients. Details as Eq. 16.

Among them

PT � −5 Δf k( )∣∣∣∣ ∣∣∣∣≥ 1KW

0 Δf k( )∣∣∣∣ ∣∣∣∣< 1KW

⎧⎨⎩ (16)

Deterministic policies based on deep reinforcement learning
algorithms have the advantage of selecting a unique action for each
state. However, this also limits the exploration of the environment
in the initial stage of training, when the agents have limited

knowledge. Therefore, deterministic policies can only improve
gradually, resulting in low learning efficiency. To address this
issue, the agents should explore more randomly and adaptively in
the early stage of learning, so that they can find a policy that
maximizes the Q value under insufficient information. As the
learning progresses, the agents should reduce the randomness and
focus on the best policy according to the current information.
Moreover, the exploration degree of the agents in deterministic
policies is usually controlled by human intervention, which may
not match the agent’s state and lead to high reward variance. This
can misguide the agents to choose suboptimal policies and lower
the learning efficiency. Hence, this section aims to find a DRL
algorithm that can adjust the exploration degree autonomously
based on the agent’s state, and select the most suitable exploration
for the environment, thus reducing the reward variance and
improving the learning efficiency. In summary, this section
proposes a randomized DRL algorithm based on the PR-SAC
algorithm, which enables the agents to explore more randomly
and adaptively. The algorithm overcomes the main challenges of
model-free DRL algorithms, such as poor convergence, difficulty in
choosing the optimal policy, and high sampling complexity.

PR-SAC is an off-policy, actor-critic reinforcement learning
algorithm that follows the maximum entropy principle. It uses a
stochastic policy function that resembles deterministic deep
reinforcement learning algorithms with a replay buffer storage
scheme. Unlike other reinforcement learning algorithms, PR-SAC
encourages exploration and exploitation of policies that maximize
the expected return. By introducing an entropy term, the policy can
be as random as possible, effectively balancing exploration and
exploitation. This prevents the policy from getting stuck in a
local optimum and allows it to explore multiple feasible solutions
for a given task. This also improves the robustness of the algorithm
to disturbances. The Q-function of the critic, which evaluates the
quality of the actions, is modeled as follows: Details as Eq. 17.

Qμ s, a( ) � −∑T
t�1

Δt BiΔf( )2 +∑n
i�1

Ctotal( )⎡⎣ ⎤⎦⎡⎣ ⎤⎦ (17)

The policy improvement phase aims to maximize the soft Q
values while maintaining the similarity between the soft Q values
and the policy distribution. Hence, the new policy is obtained by
minimizing the KL divergence between the policy distribution and
the soft Q values. A novel approach to enhance the Actor-Critic
framework is PR-SAC, which incorporates entropy into the reward
function. The agent receives a reward at each step that is
proportional to the entropy of the policy at the current time step,
as shown in the following equation. Details as Eq. 18.

π* � argmaxπ ∑
t

E s,a( )−ρz r st, at( ) + αH π · | st( )( )[ ] (18)

where ρs denotes the distribution of state-action pairs obtained from
the interaction between the agent and the environment under the
control of the policy π; α denotes the entropy coefficient, which is
used to adjust the degree of emphasis on the picking value. The
policy π controls the agent’s interaction with the environment,
resulting in a distribution of state-action pairs ρs. The entropy
coefficient α adjusts the trade-off between the value and the
entropy of the policy. The objective of maximizing the entropy-
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regularized value encourages the agent to explore more diverse
strategies without neglecting the low-reward ones.

Entropy is introduced in both the state action value function and
the state value function, called the flexible action value function
Qseft

π and the flexible state value function Vseff
π, with the following

expressions. Details as Eqs 19, 20.

Qπ
seft st, at( )�Δ r st, at( ) + γEss+1−ρz V st+1( )[ ] (19)

Vπ
seft st( ) � E

st ,at−ρz
Q st, at( ) − α log π at | st( )[ ] (20)

Similarly, the actor network parameter policy gradient is
computed as. Details as Eq. 21.

∇̂ϕJπ ϕ( ) � ∇ϕα log πϕ( ) + ∇aθα log πϕ( ) − ∇aiQθ st, at( )( )∇ϕfϕ

(21)

where fφ denotes the parameterization policy for neural network
transformation.

The target value in the Double-Critic network is prone to error
propagation, which affects the accuracy of the action value function
and leads to suboptimal solutions in Q-learning. A related challenge
in reinforcement learning is policy selection, which aims to balance
exploration and exploitation by retaining good policies and
exploring new ones. Therefore, minimizing error propagation
and achieving exploration-exploitation trade-off in double-critic
networks are important problems in deep reinforcement learning.
Kullback-Leibler (KL) divergence measures the similarity between
two distributions, with lower values indicating higher similarity. For
a random variable in the set χ, the KL divergence of two continuous
probability distributions p and q is defined as follows. Details as
Eq. 22.

DKL p
����q( ) � ∫

z
p x( )log p x( )

q x( )( )dx (22)

where p(x) and q(x) are distributed as p and q and probability
density functions.

The PR-SAC algorithm alternates between two phases: policy
evaluation and policy improvement. In each phase, the five neural
networks that constitute the PR-SAC algorithm are updated with
different objectives: Details as Eqs 23, 24.

qsoftπ st, at( ) � rt + γEst+1−p vsoftπ st+1( )[ ] (23)
vsoffπ st( ) � Eat−π qsoftπ st, at( ) − λ log π at | st( )( )[ ] (24)

where p denotes the state transfer probability function under the
randomized policy π. π(at|st) denotes the stochastic policy π under
which the agent makes the action at in state st.

3.2 Mixed priority experience replay

PR- SAC algorithms employ experience replay and random
sampling of transitions to update parameters. This approach is
inefficient for sparse reward scenarios, where only a few samples
can provide meaningful learning signals for the agent, while most
samples have small and indistinguishable rewards. Moreover, the
algorithm samples transitions uniformly at random from the replay
buffer, which can introduce strong temporal correlations among
adjacent data and different contributions of data to the gradient
learning, thus reducing the learning efficiency and even causing
overfitting.

This paper proposes a method to calculate the sampling
probability of samples based on the discretization of sample
mixing priority. The method aims to address the problems of
greedy sampling of high-error samples and poor guidance of the
evaluation network in prioritized experience replay. The paper
argues that high-error samples are not conducive to the
optimization of the policy network, and that low-error samples
should be sampled more frequently to train the evaluation network
and the policy network. The paper also suggests that the dispersion
of sample priority can be used to improve the diversity of training
samples and to balance the sampling probability of high-error and
low-error samples. The paper claims that the proposed method can

FIGURE 3
Results of case 1. (A) Frequency error of advanced control. (B)
Frequency error of conventional control.
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reduce the uncertainty of the evaluation network and enhance the
optimization ability of the policy network. The weight coefficients
are as follows: Details as Eqs 25, 26.

zi � ui − λ( )2 + ω (25)

pi � zζi∑
k
zζk

(26)

where zi denotes the dispersion of the first i sample, λ denotes the mean
of themixed prioritization of all the samples in the experience pool, and
ω denotes a small positive constant to ensure that the prioritization of
each sample in the experience pool is not 0. pi denotes the probability of
sampling the first i sample, and ζ denotes the conditioning factor of the
prioritization. When ζ=0, the prioritized experience replay is degraded
to random uniform sampling; when 0<ζ<1, partial-priority sampling is
used; when ζ=1, full-priority sampling is used. In this paper, full-priority
sampling is used to calculate the sample sampling probability. The
specific learning process is shown as follows:

4 Experiment and case studies

A DD-ALFC based on the PR-SAC algorithm is proposed and
applied to the DD-ALFC model of the CSGmicrogrid (Li and Cheng,
2023). The parameters are taken from (Xi et al., 2022) and represent
actual data. The CSG microgrid is an off-grid smart microgrid system
in Sanya Zhuzhou Island, which uses wind power and photovoltaic
power as the main energy sources and energy storage batteries and
diesel generators as auxiliary energy sources. The main parameters of
the CSG microgrid are as follows: wind power generation system: two
50 KW wind turbines, with an annual power generation capacity of
about 200,000 kwh; photovoltaic power generation system: two sets of
130 kW photovoltaic power generation systems, with annual power
generation of about 300,000 kwh; energy storage system: 2 sets of
300 kw/650 kwh lithium iron phosphate energy storage system, 1 set

of 150 kw/20.6f super capacitor; diesel generator: one 150 KW diesel
generator with an annual fuel consumption of about 11000L. The
smart microgrid controller is used in the microgrid control system to
realize the coordinated control of wind, light, storage and diesel,
optimize power distribution and improve system efficiency. The aim
of the CSG microgrid is to solve the problem of power supply on the
island, utilize the local abundant wind and solar energy resources,
realize the diversification and cleaning of energy, reduce the
dependence on diesel power generation, reduce carbon emissions,
and protect the island ecological environment. The proposed
method is compared with DD-ALFC based on DRL algorithms
such as soft actor critic (SAC) (Deng et al., 2022), trust region policy
optimization (TRPO) (Xiao et al., 2023a), twin delayed deep
deterministic policy gradient algorithm (TD3) (Chen et al., 2018),
Deep deterministic policy gradient (DDPG) (Calovic, 1972), Double
deep Q-learning (DDQN) (Zhang et al., 2021) and LFC based on
algorithms such as Model predictive control (MPC) (Li and Zhou,
2023a), particle swarm optimization fuzzy proportional integral
differential algorithm (PSO- Fuzzy-PI) (Harnefors et al., 2022),
Genetic algorithm optimized fuzzy proportional integral
differential algorithm (GA-Fuzzy-PI) (Calovic, 1972), glowworm
swarm optimization fuzzy proportional integral differential
algorithm (GSO-Fuzzy-PI) (Xie et al., 2023), particle swarm
optimization fractional order proportional integral (PSO-FOPI),
genetic algorithm optimized fractional order proportional integral
(GA-FOPI).

4.1 Case 1: randomized disturbances

A step disturbance is applied to the system and the algorithm is
tested for its robustness. The comparison of the algorithmwith other
methods is shown in Figures 3A, B and Table 1.

Table 1 shows the comparison between pr-sac algorithm and
other algorithms in terms of frequency deviation and power

TABLE 1 Statistical results for Case 1.

Algorithm Average frequency deviation (Hz) Power generation costs ($)

|Δf |avg Ctotal

PR-SAC 0.004840 2071.23

SAC 0.005064 2073.39

TRPO 0.005347 2073.50

TD3 0.004959 2073.43

DDPG 0.005764 2073.18

DDQN 0.005845 2073.16

MPC 0.006227 2073.10

PSO-Fuzzy-PI 0.007375 2073.53

GA-Fuzzy-PI 0.007081 2073.64

GSO-Fuzzy-PI 0.008660 2073.23

PSO-FOPI 0.007761 2073.44

GA-FOPI 0.006004 2073.13
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generation cost. The frequency deviation of pr-sac algorithm is
significantly lower than that of other algorithms, which is reduced
by 2.45%–78.92%, and the generation cost of PR-SAC algorithm is
also reduced by 0.09%–0.117%. Figures 3A, B shows the frequency

response and diesel generator output power of the microgrid under
different control modes. The simulation results show that pr-sac has
the best control performance among the four intelligent algorithms,
followed by SAC. This is because both pr-sac and sac adoptmaximum
entropy exploration, which can adjust the learning rate adaptively. By
sharing experience and dynamically updating the function table, the
relative weights of each region can be obtained, so that each control
region can adjust the control strategy appropriately and improve the
flexibility of control. The advantage of pr-sac is that it does not need
average strategy estimation, but directly makes decisions based on
dynamic joint trajectory and historical state action pairs. At the same
time, it has strong adaptability to learners’ real-time learning rate, so it
can obtain better LFC coordination control.

PR-SAC shows strong adaptability and better control
performance under different conditions of the system, which
fully proves the effectiveness and scalability of the proposed
algorithm. Reinforcement learning has strong competitiveness
among many methods because of its simplicity and universality
of parameter setting. However, the application of reinforcement
learning method also faces new challenges. Firstly, when dealing
with large-scale tasks, it is difficult to reasonably define an
optimal common exploration goal for multiple single agent
reinforcement learning; Secondly, each agent needs to record
the actions of other agents (resulting in poor stability) in order to
interact with other agents to get joint actions. This poor stability
also makes the convergence speed of many methods slow. In this
context, multi-agent reinforcement learning technology with
group characteristics has been rapidly developed and widely
used. Reinforcement learning focuses on how to use agent
exploration technology to solve dynamic tasks in real time in
dynamic planning and time sequence difference methods. The
pr-sac based on reinforcement learning proposed in this paper is
innovative and efficient due to its more accurate independent
self-optimization ability.

4.2 Case 2: renewable energy disturbances

This paper presents an intelligent distribution network model
that incorporates various new energy sources, such as electric
vehicles, wind power, hydropower, gas turbines, fuel cells,
photovoltaic and biomass energy, to examine the regulation
performance of PR-SAC in a highly stochastic environment. In
this model, new energy sources such as electric vehicles, wind power
and photovoltaic are considered as random load disturbances and
do not participate in the system frequency control. The input signal
of the wind turbine is determined by the random wind simulated by
the band-limited white noise, which results in the wind power
output. The active power output of the photovoltaic unit is
determined by simulating the diurnal variation of solar
irradiance. The relevant parameters of each unit are given in (Li
and Zhou, 2023b).

The long-term control effect of PR-SAC under strong random
load disturbance was evaluated by using 24-hour random white
noise as the test signal. The output curve of PR-SACwas able to track
the change of random disturbance quickly and accurately, as shown
in Figure 4. The statistical data of the simulation experiment were
also analyzed and presented in Table 2. The generation cost was

FIGURE 4
Results of case 2. (A) Frequency error of advanced control. (B)
Frequency error of conventional control. (C)Unit regulation of output.
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defined as the sum of the total regulation costs of all generating units
within 24 h. The distribution network data indicated that the
frequency deviation of other algorithms was 1.09–3.20 times
higher than that of pr-sac algorithm, while the generation cost of
PR-SAC algorithm was reduced by 0.0005%–0.017%. Moreover, PR-
SAC had higher economy, stronger adaptive ability and better
coordinated optimization control performance than other
intelligent algorithms.

The convergence characteristics and learning efficiency of pr-sac
were also verified by introducing various interference signals such as
step wave, square wave and random wave. The results demonstrated
that pr-sac had excellent adaptability in random environment. It could
not only resist random disturbance, but also improve the dynamic
control performance in interconnected power grid environment.
Figure 4A illustrated the balance response relationship between the
output power of various units and the load demand within 24 h. It was
observed that the total power of the units could well track the load
change. Under the control of the total power command, the coordinated
and optimized operation of multiple energy sources was achieved in
each unit period. Among them, new energy units had the advantages of
fast start-up and stop, fast climbing, and large adjustment range
compared with diesel units. As shown in Figure 4B, new energy
units were the most important frequency modulation unit in the
system and undertook most of the output tasks to cope with the
load fluctuation of the power grid.

5 Conclusion

In summary, the main contributions of this work are given
as follows.

This work presents a data-driven Adaptive Load Frequency
Control (DD-ALFC) for isolated microgrids, which aims to
balance multiple performance indicators, such as frequency
stability and economic efficiency. These indicators are often

conflicting, requiring grid operators to make trade-offs. The DD-
ALFC treats the Load Frequency Control (LFC) controller as an
agent that can make independent decisions based on the data.

To implement the DD-ALFC, a Priority replay Soft Actor Critic
(PR-SAC) algorithm is proposed. The PR-SAC algorithm uses
entropy regularization and maximization to achieve a more
random policy distribution, and employs a priority experience
replay mechanism to enhance the adaptability and generalization
of the algorithm. The PR-SAC based DD-ALFC can achieve higher
adaptivity and robustness in complex microgrid environments with
multiple performance indicators, and improve both the frequency
control and the economic performance. The proposed method is
validated in the Zhuzhou Island microgrid.

Future work: The PR-SAC algorithm proposed in this article is
still difficult to apply in practice due to its low generalization. Future
work aims to improve the generalization of the algorithm to make it
more practical.
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Glossary

Abbreviations

DD-ALFC Data-driven adaptive load frequency control

DDPG Deep deterministic policy gradient

DDQN Double deep Q-learning

DG Dstributed generation

DRL Deep reinforcement learning

EMS Energy management systems

ESS Energy storage systems

FC Fuel cell

GA-FOPI Genetic algorithm optimized fractional order proportional integral

GA-fuzzy-PI Genetic algorithm optimized fuzzy proportional integral
differential algorithm

GPC Generalized Predictive Control

GSO-Fuzzy-PI Glowworm Swarm Optimization fuzzy proportional integral
differential algorithm

KL Kullback-Leibler

MPC Model predictive control

MT Microturbine

PID Proportional Integral Derivative

PR-SAC Priority replay soft actor critic

PSO- Fuzzy-PI Particle swarm optimization fuzzy proportional integral differential
algorithm

PSO-FOPI Particle swarm optimization fractional order proportional integral

PV Photovoltaic

SMC Sliding Mode Control

TD3 Twin delayed deep deterministic policy gradient algorithm

TRPO Trust Region Policy Optimization

WT Wind turbines

Nomenclature

ai action of the ith agent

At choosing action

CDG,OM cost of the DG

CFC unit price of gas for the FC

CFC,OM cost of the FC

CMT maintenance cost of the power consumption

CMT,fuel unit price of MT fuel gas

fφ parameterization policy for neural network

kDG,OM DG maintenance factor

kFC,OM maintenance factor of the FC

kMT,OM maintenance coefficient

LHV low calorific value of natural gas

Qseft
π

flexible action value function

pi probability of sampling the first i sample

P probability of choosing action

PDG the fuel cost of the DG

PFC output power of the FC

PMT operating efficiency of MT

Pssʹ
a state transition probability

rt+1 scalar reward

ri reward function of agent i

R reward

Rs
a instantaneous reward

sʹ next state

st current state

Vseff
π

flexible state value function

zi dispersion of the first i sample

Greek symbols

α entropy coefficient

β fuel cost coefficients

γ discount factor

Δf frequency deviation

ΔPi
in command of ith unit

ΔPimax upper limits of the units

ΔPi
min lower limits of the units

ΔPi
rate creep rate of the unit

ΔPorder-i regulation command

ΔPorder-∑ total command

ζ conditioning factor of the prioritization

ηFC operating efficiency of the FC

λ mean of the mixed prioritization

μ1 weight coefficients

μ2 weight coefficients

π(a|s) policy

ρs distribution of state-action pairs

χ random variable

ω small positive constant
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A robust optimization method for
new distribution systems based
on adaptive data-driven
polyhedral sets

Yuming Ye1, Jungang Wang1, Dingcai Pan1, Jingsong Zhang2,
Fan Li3 and Xueli Yin2*
1Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang, Guizhou, China, 2China
Southern Power Grid Energy Development Research Institute, Guangzhou, Guangdong, China, 3China
Southern Power Grid Digital Power Grid Group Co., Ltd., Guangzhou, Guangdong, China

In order to better describe the uncertainty of renewable energy output, this paper
proposed a novel robust optimizationmethod for new distribution systems based
on adaptive data-driven polyhedral sets. First, an ellipsoidal uncertainty set was
established using historical data on renewable energy output, and a data-driven
convex hull polyhedral set was established by connecting high-dimensional
ellipsoidal vertices; on this basis, an adaptive data-driven polyhedral set model
was established to address the problem of high conservatism in the scaling
process of convex hull polyhedral sets. Furthermore, a novel adaptive data-driven
robust scheduling model for new distribution systems was established, and a
column-and-constraint generation (C&CG) algorithm was used to solve the
robust scheduling model. Finally, the improved IEEE-33 bus system simulation
verification shows that the robust scheduling model for new distribution systems
based on adaptive data-driven polyhedral sets can reduce conservatism and
improve the robustness of optimization results.

KEYWORDS

two-stage robust optimization, convex hull polyhedral set, hyperplane polyhedral set,
economic dispatch, C&CG algorithm

1 Introduction

With the high proportion of new energy access, the operation of new distribution
systems is facing unprecedented challenges. Compared with traditional fossil fuel power
generation, new energy is characterized by volatility and randomness, which brings an
unpredictable disturbance risk to the operation of distribution systems. The traditional
distribution system operation mode is based on reliable load prediction and controllable
power generation methods, but the access of new energy has changed this mode (Su et al.,
2018; Aenovi and Jakus, 2020).

In order to deal with the uncertainty of distributed photovoltaic (PV) output, there are
mainly two uncertain optimization methods for distribution system dispatching: stochastic
optimization methods (Wang et al., 2016; Torquato et al., 2018; Leng et al., 2023) and robust
optimization methods (Sun et al., 2015; IsmaSmA et al., 2019). Robust optimization
methods usually use the set form to describe the distribution range of uncertain
parameters. Compared with stochastic methods, it does not need to obtain the
probability distribution of uncertain parameters and avoids the high-dimensional
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problem introduced by a large number of scenarios, so it has
attracted more and more attention.

However, different set forms will affect the robust optimization
results of new distribution systems, so selecting an appropriate set
can not only reduce the conservatism of the robust optimization
results but also ensure the robustness of the results. Ding andMather
(2017), Gao et al. (2017), and Abad and Ma (2021) used the box set
to describe the distribution range of uncertain parameters, and for
the box set model, the worst cases were obtained only at the border.
However, in reality, these conditions rarely occur, so the robust
optimization methods based on the box set will have the problem of
overly conservative results. Some scholars also use uncertain
parameter sets to control the envelope range of uncertain
parameters, thereby optimizing the conservatism of the results
(Yu et al., 2016). Zhang X. et al. (2022) established a
collaborative robust optimization model for reactive power
optimization and reconstruction of AC/DC hybrid distribution
networks, which improved the economic efficiency of distribution
network operation. Xu et al. (2021) proposed a distributed robust
optimization scheduling model for the interconnection and
interoperability between electric vehicle clusters and power
systems. Xu et al. (2021) and Zhang X. et al. (2022) used
polyhedral sets to describe the envelope range of uncertain
parameters, which are more conservative than interval sets.
However, polyhedral sets do not consider the correlation between
uncertain parameters, and their conservatism still needs
improvement. Florin et al. (2015) proposed a new uncertainty set
based on classification probability chance constraints to fully
consider the differences in the random distribution of various
uncertainty factors. This method can accurately describe the
robustness of dispatching schemes so as to better deal with the
effects of various uncertainties. However, for uncertain parameters
with correlation, the conservatism of the above studies needs to
be improved.

In recent years, in order to enhance the reliability of robust
optimization results and describe the correlation between uncertain
parameters, some scholars have used the historical data on uncertain
variables to try finding out the relationship between random variable
changes and propose a data-driven uncertainty set (Dent et al., 2010;
Florin et al., 2015; Abad et al., 2018; Masoume et al., 2022). Chen
et al. (2017) established a polyhedral uncertainty set based on
historical wind data to model, analyze, and optimize economic
dispatch. Tan et al. (2020) established a correlation polyhedral
set model by bending the boundary of the polyhedral set with
the method of mathematical analysis based on the polyhedral set.
Taha et al. (2021) further improved the construction of a generalized
correlation polyhedral set model on the basis of the study proposed
in Tan et al. (2020) so that the polyhedral set can better cover the
range of the occurrence of uncertain parameters. Moreira et al.
(2017) constructed an elliptic set to describe the PV output, and an
affinely adjustable robust optimal operation strategy for the active
distribution network was proposed. Although the elliptic set can
well-consider the correlation between uncertain parameters, its
nonlinear structure increases the difficulty of solving the model.
Although the correlation of uncertain sets is considered in Chen
et al. (2017), Moreira et al. (2017), Tan et al. (2020), and Taha et al.
(2021), the large envelope range of the uncertain sets they
established will increase the conservatism of decision-making.

In addition to building with polyhedral and elliptic sets, another
common approach is to build uncertain sets based on extreme
scenarios. Zhang S. et al. (2022) and Palahalli et al. (2022) first
selected the historical data on uncertain sets, then constructed
convex hull sets based on extreme scenarios filtered from
historical data, and introduced appropriate scaling factors to
cover all historical data. Finally, a robust optimization model
based on extreme scenarios is established. The method proposed
by Zeng and Zhao (2013) and Chen et al. (2018) did not presuppose
the shape of the uncertain set but represented the uncertain set as the
convex hull of historical scenarios. The above research has improved
the problem of high conservation in polyhedral sets, but the sets
constructed based on extreme scenarios may face difficulties in a
robust solution.

In view of the shortcomings of the above sets, a novel robust
optimizationmethod for new distribution systems based on adaptive
data-driven polyhedral sets is proposed in this paper. First, the
elliptic set is constructed based on the historical scenarios, then the
convex hull polyhedral set is constructed by connecting the elliptic
vertices, and finally all the historical scenarios are covered by scaling.
In order to solve the problem of high conservation in the scaled
convex hull polyhedral set, an adaptive data-driven polyhedral set
based on the idea of hyperplane is constructed. Finally, the
effectiveness of the proposed method is verified by an improved
IEEE-33 bus system.

The rest of the paper is organized as follows: Section 2
introduces the representation methods of convex hull
uncertain and hyperplane uncertain sets; Section 3 presents an
economic dispatch model for the new distribution system;
Section 4 uses the C&CG algorithm to construct a robust
scheduling model; Section 5 uses an improved 33-node system
to verify the effectiveness of the method proposed in this paper;
finally, the conclusion is presented in Section 6.

2 Data-driven uncertainty set modeling

2.1 Convex hull polyhedral set

This paper first collected data on photovoltaic reception in
different areas of a township city in Guangdong Province and
divided the collected historical data into days. The number of
days for collecting historical data was set as Nh, and the number
of photovoltaic scenes was set as Nw. The daily output data were
recorded as a historical scene, and the collected data were written in
the form of a vector as follows:
wk � (PPV,k

1,1 /PPV,k
1,T /PPV,k

Nw,T
), k � 1, 2 . . .Nh, and T represents the

time dimension, which is 24 h in this paper. PPV,k
1,t indicates the

output size of the i-th photovoltaic scene at time t in the k-th
group. In practical applications, a photovoltaic data processing
platform can be designed based on the historical data on the
local photovoltaic output, and the required information can be
obtained by inputting data. According to the scatter plot formed
by the historical data on the distributed PV output, different
envelope lines can be used to represent different sets, such as the
box set and ellipsoid set, as shown in Figure 1. For different sets, this
paper uses a budget uncertainty set U to describe the fluctuation
range of the distributed PV output.
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2.1.1 Box set
The specific expression is represented as follows:

U � zPV ∈ RNPV×1
∣∣∣∣∣βzPVdown ≤ zPV ≤ βzPVup{ }, (1)

where NPV represents the number of distributed PVs; zPV

represents the distributed PV uncertainty variable. zPVup and
zPVdown represent the upper and lower boundaries of distributed
PV uncertainty variables, respectively. β represents the
adjustment coefficient, and the conservative value used to
adjust the box set is (0, 1].

Figure 1A shows that the box set envelops all possibilities of the
distributed PV output. However, because the distributed PV often has a
certain temporal and spatial correlation at different times and at
different locations, PV output data are mostly concentrated around
the y = x and y = -x function lines. At this time, if the box set is used to
describe the uncertainty of the PV output, the optimization schememay
be too conservative because the box set not only covers all possibilities of
fluctuations but also covers the blank area with a low probability of
fluctuations. Therefore, it is necessary to adopt a more appropriate
approach to modeling uncertain sets.

2.1.2 Ellipsoid set
The specific expression is shown in Eq. (2):

U � zPV ∈ RNPV×1
∣∣∣∣ zPV − c( )TΣ−1 zPV − c( )≤ 1{ }, (2)

where c represents the center point of the high-dimensional
ellipsoid. Σ ∈ RNPV×NPV indicates a positive definite matrix that
represents the offset direction of the high-dimensional ellipsoid
relative to the coordinate axis.

Figure 1B shows that both the ellipsoid and box sets envelop all
possibilities of the distributed PV output. At the same time, unlike the
box set, the ellipsoid set reduces the blank area with a low probability of
envelope fluctuation and reduces the conservative of the decision result.
However, the expression of the ellipsoid set is quadratic, so it is more
difficult to solve in the process of robust optimization.

On this basis, Palahalli et al. (2022) proposed a generalized
convex hull set that can effectively reduce the conservatism of

optimization results and avoid the introduction of quadratic
forms in the modeling process. First, this method utilizes existing
high-dimensional ellipsoid-solving algorithms to propose a novel
data-driven uncertain set modeling method, which generates
uncertain sets in the form of linear generalized convex hulls;
compared with traditional box sets, generalized convex hull sets
can reduce the conservatism of results by reducing the envelope of
empty hull regions, while uncertain sets in linear form reduce the
complexity of computational results. Therefore, this article
constructs a data-driven uncertain set based on Palahalli et al.
(2022), and the modeling process is shown in Figure 2.

Step (1): First, a high-dimensional ellipsoid uncertainty set U e1

that covers all historical data fluctuations and has the smallest
volume is constructed. The constructed high-dimensional
ellipsoid is shown in Figures 2A and is specifically expressed
in Eq. 3:

FIGURE 1
Uncertain set.

FIGURE 2
Modeling process of the convex hull polyhedral uncertainty set.
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U e1 � zPV ∈ RNPV×1
∣∣∣∣ zPV − c( )TΣ−1 zPV − c( )≤ 1{ }. (3)

Step (2): On the basis of the original high-dimensional ellipsoid,
the positive definite matrix Σ is orthogonally decomposed,
Σ � PTJP � P−1JP. The original ellipsoid is rotated and
translated so that the center of the ellipsoid falls on the center
point of the coordinate axis, as shown in the green dotted line in
Figure 2B. At this time, the high-dimensional ellipsoid
uncertainty set is U e2, As shown in Eqs (4, 5):

U e2 � zPV′ ∈ RNPV×1
∣∣∣∣ zPV′( )TJ−1 zPV′( )≤ 1{ }, (4)

zPV′ � P × zPV − c( ), (5)
where J represents the diagonal matrix, denoted as
J � diag(λ1 . . . λNPV). P indicates the transformation matrix,
representing the offset angle of the matrix. According to the
diagonal matrix J, the coordinates of the vertex zPVc,i ′ of the
transformed high-dimensional ellipsoid are as shown in Eq. (6):

zPVc,1 ′ � 1/ 


λ1

√
, 0 . . . 0[ ], zPVc,NPV+1′ � − 1/ 



λ1
√

, 0 . . . 0[ ]
zPVc,2 ′ � 0, 1/ 



λ2
√

. . . 0[ ], zPVc,NPV+2′ � − 0, 1/ 


λ2

√
. . . 0[ ]

..

.

zPVc,NPV
′ � 0, 0 . . . 1/ 





λNPV

√[ ], zPVc,2NPV
′ � − 0, 0 . . . 1/ 





λNPV

√[ ]
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ .

(6)
Furthermore, the vertices of the high-dimensional ellipsoid are

connected to form a high-dimensional polyhedron, as shown by the
red line in Figure 2B. At this time, the high-dimensional linear
polyhedral uncertainty set Up2 is as shown in Eq. (7):

Up2 � zPV′ ∈ RNPV×1

zPV′ � ∑2NPV

i�1
miz

PV
c,i ′

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (7)

where mi represents the weight coefficient of the i-th vertex.

Step (3): Since the high-dimensional linear polyhedral set used
in step 2 provides a small number of data points outside the
envelope, it is necessary to scale the original set, as shown in the
red solid line in Figure 2C. The vertices of the scaled high-
dimensional linear polyhedron are as shown in Eq. (8):

kzPVc,1 ′ � k/ 


λ1

√
, 0 . . . 0[ ], kzPVc,NPV+1′ � − k/ 



λ1
√

, 0 . . . 0[ ]
kzPVc,2 ′ � 0, k/ 



λ2
√

. . . 0[ ], kzPVc,NPV+2′ � − 0, k/ 


λ2

√
. . . 0[ ]

..

.

kzPVc,NPV
′ � 0, 0 . . . k/ 





λNPV

√[ ], kzPVc,2NPV
′ � − 0, 0 . . . k/ 





λNPV

√[ ]
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ ,

(8)
At this time, the scaled high-dimensional linear polyhedral

uncertainty set Up2 is represented as shown in Eq. (9):

Up2 � zPV′ ∈ RNPV×1

zPV′ � ∑2NPV

i�1
mikz

PV
c,i ′

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (9)

where k represents the scaling factor, which is used to adjust the
conservative degree of the envelope range of the high-dimensional
linear polyhedron. The calculation method of k is shown in Palahalli
et al. (2022). Therefore, there is a minimum kmin value, which makes
the scaled polyhedral set cover all possible data points, so the value
range of k is [0, kmin]. The polyhedral set formed by different k is
shown in Figure 3.

Step (4): The scaled high-dimensional linear polyhedron is rotated
and translated to make it fit the range of original data points.
According to (5), the high-dimensional linear polyhedral
uncertainty setUp1 after rotation and translation as shown inEq. (10):

Up1 � zPV ∈ RNPV×1

zPV � ∑2NPV

i�1
mi c + kP−1zPVc,i ′( )

∑2NPV

i�1
mi � 1; 0≤mi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭. (10)

2.2 Hyperplane polyhedral set

The convex hull polyhedral set introduced in Section 2.1 is
used to build a high-dimensional polyhedral uncertain set

FIGURE 3
Range of convex hull polyhedral sets under different k-values.

FIGURE 4
Uncertainty set based on extreme scenarios.
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connecting all vertices on the basis of establishing the ellipsoidal
polyhedral set first and then make the high-dimensional
polyhedral set envelop all historical data points using a scale.
However, since the scale is a global scale, an excessive increase in
the scaling factor may occur in order to envelope a certain data
point, resulting in more blank areas being enveloped
accordingly. Therefore, the uncertainty set construction
method based on extreme scenarios proposed by Zeng and
Zhao (2013) and Chen et al. (2018) does not determine the
shape of the envelope range in advance but envelopes extreme
scenarios successively to form an irregular polyhedral set, as
shown in Figure 4.

The uncertainty set expression based on extreme scenarios is
represented as follows:

U � zPV ∈ RNPV×1

zPV � ∑Nex

i�1
σ iz

PV
i

∑Nex

i�1
σ i � 1; 0≤ σ i ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (11)

where Nex represents the number of extreme scenarios; zPVi
represents the i-th extreme scenario; and σ i represents the weight
coefficient of extreme scenarios.

Compared with the convex hull uncertainty set, the uncertainty
set of extreme scenarios can greatly reduce the envelope of the blank
region with small probability distribution. Therefore, this method
has the best conservatism. However, it can be seen from (11) that the
construction of the uncertainty set based on extreme scenarios
depends on the number of extreme scenarios, i.e., the number of
polyhedral vertices. If there are many extreme scenarios, it will
increase the difficulty of solving robust optimization. Wu et al.
(2019) proposed a set of hyperplane polyhedra. First, assuming the
total dimension of the uncertainty variable is E, a closed box
polyhedron is formed in the E-dimensional space that exactly
covers all historical data. This closed box polyhedron is
equivalent to a box uncertainty set. Starting from each vertex of
the boxed uncertain set, a suitable hyperplane is found to separate
the boundary of the boxed uncertain set from all historical data and
maximize the removal of blank “invalid” areas in the process, as
shown in Figure 5.

In general, for the K-dimensional space, the hyperplane is
expressed as shown in Eq. (12):

αm
Tz � βm,∀m, (12)

where αm represents a K-dimensional non-zero vector;
βm represents a scalar, and m represents the vertex sequence
number of the K-dimensional box set. Let the vertex of
the K-dimensional box set be zBm, and the vertex generated
by the hyperplane cutting the K-dimensional box set be zHn ;
then, the relationship between the vertex sequence number m
and n as shown in Eq. (13):

n � m − 1( ) × Κ + s, s � 1, 2 . . .Κ,∀m � 1, 2 . . . 2Κ. (13)
At this point, the vertices generated by hyperplane cutting can be

obtained by solving the following model:

∀m, max
αm,βm,ξms,zHn

1
Κ!
∏Κ
s�1

ξms, (14)

αm
TzBm ≥ βm, αm

Tτ ≤ βm, αm
TzHn � βm,∀s,∀τ ∈ Τ, (15)

zBmo − zHno � 0,∀s, o � 1, . . . s − 1, s + 1, . . .Κ, (16)
ξms � θms zBms − zHns( ),∀s, (17)

ξm1s + ξm2s≤ z
B
m2s

− zBm1s
,∀s,∀h ∈ H s( ), m1, m2 ∈ h. (18)

Equation 14 aims to solve the blank region with the maximum
volume cut by the hyperplane, where ξms represents the geometric
distance between zHn and the corresponding zBm. Since (14) is a
factorial form, in order to ease the calculation pressure, it is
converted into the form of (19) without affecting the variables to
be solved:

∀m, max
αm,βm,ξms,zHn

∑Κ
s�1

ln ξms. (19)

Equation 15 indicates cutting the K-dimensional space into
inner and outer parts, where the vertex vector zBm indicates that
the box set is outside and the data vector τ is inside, and Τ

represents the dataset. Equation 16 indicates that, except for the
o � s dimension, the coordinate difference of other dimensions is
0; eq. 17 represents the calculation equation for the geometric
distance ξms, where the value of θms is 1 or −1, obtained when zBms

is greater/less than zHns in the s-dimension. Equation 18
represents that any two hyperplanes do not intersect in the
K-dimensional box set; h and H(s) represent the interval
sequence number and set of the s-dimensional box uncertain
set, respectively. m1 and m2 represent the boundary of
the interval.

The above model is a nonlinear model, so the interior point
method is adopted to solve it. After solving the hyperplane vertex
coordinates, combined with (11), the hyperplane uncertainty set is
expressed as

U � zH,PV ∈ RNPV×1

zH,PV �∑NH

n�1
εiz

H,PV
n

∑NH

n�1
εi � 1; 0≤ εi ≤ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (20)

where εi represents the weight coefficient of the i-th vertex.

FIGURE 5
Hyperplane polyhedral set.
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3 Economic dispatching model for new
distribution systems

3.1 Objective function

This paper considers the economic dispatch goal of minimizing
the comprehensive costs of network loss cost, abandoning PV cost,
and electricity purchase cost for a new distribution system, which is

minC �∑T
t�1
∑
ij∈L

closs Pij,t + Pji,t( ) +∑T
t�1
cTRPTR

t +

∑T
t�1

∑
i∈ΩPV

N

cPV ~P
PV

i,t − PPV
i,t( )Δt, (21)

where Pij,t and Pji,t represent the active power flow direction of
branch ij at time t; Pij,t represents the power flow from bus i to bus j
at time t; Pji,t represents the power flow from bus j to bus i; PTR

t

represents the gateway power at time t; ~P
PV
i,t represents the maximum

available power of the distributed PV system connected to bus i after
fluctuation at time t; PPV

i,t represents the actual injected power of the
distributed PV system connected to bus i at time t; PPV

i,t represents
the actual injected power of the distributed PV system connected to
bus i at time t; C represents the total cost of economic dispatch; closs
represents the cost coefficient of network loss; cTR represents the cost
coefficient of electricity purchased for the main network at the
gateway; cPV represents the cost coefficient of PV abandonment.
ΩPV

N represents the set of bus connected to distributed PV, and L
represents the set of all branches of the distribution network.

3.2 Constraint condition

3.2.1 Second-order cone relaxation power flow
constraints

Psum
i,t − Pcur

i,t � ∑
j∈N i( )

Pij,t, (22)

Qsum
i,t − QD

i,t � ∑
j∈N i( )

Qij,t, (23)

Psum
i,t � PTR

t + PPV
i,t − Pch

i,t + Pdis
i,t , (24)

Qsum
i,t � QTR

t + QCB
i,t , (25)

Pij,t �


2

√
glui,t − glRl,t − blTl,t, (26)

Pji,t �


2

√
gluj,t − glRl,t + blTl,t, (27)

Qij,t � − 

2

√
blui,t + blRl,t − glTl,t, (28)

Qji,t � − 

2

√
bluj,t + blRl,t + glTl,t, (29)

I2l,t �


2

√
g2
l + b2l( ) ui,t + uj,t −



2

√
Rl,t( ), (30)


2
√

Rl,t

2

√
Tl,t

ui,t − uj,t

�����������
�����������≤ ui,t + uj,t, (31)

Vi
min( )2

2

√ ≤ ui,t ≤
Vi

max( )2

2

√ , (32)
Il,t ≤ Il

max. (33)

Equations 17–25 represent the power balance constraints of the
branch, where Psum

i,t represents the total active power injected by bus

i at time t. It includes the active power injected by the gateway at
time t, the output power of distributed PV connected to bus i at time
t, and the charging power Pch

i,t and discharging power Pdis
i,t of the

energy storage battery connected to bus i at time t. Pcur
i,t represents

the load of bus i after implementing the demand-side response at
time t; Qsum

i,t represents the total reactive power injected by bus i at
time t, including the reactive power QTR

t injected by the gateway at
time t and the reactive compensation power QCB

i,t of the reactive
power compensator connected to bus i at time t. QD

i,t represents the
reactive load of bus i at time t, Qij,t represents the reactive power
flow of branch ij at time t, and N(i) represents the set of all bus
connected to bus i. Equations 26–30 represents the active/reactive
power of the branch and the amplitude of the branch current, where
gl and bl represent the conductance and admittance of the branch l,
respectively, and Il,t represents the current amplitude of the branch l
at time t. Meanwhile, introducing ui,t � V2

i,t/


2

√
, uj,t � V2

j,t/


2

√
,

Rl,t � Vi,tVj,t cos θl,t, and Tl,t � Vi,tVj,t sin θl,t, where Vi,t and Vj,t

represent the voltage amplitude of the head bus i and the end bus j of
branch l at time t, respectively, θl,t represents the voltage phase angle
of both ends of branch l at time t. Equation 31 is a second-order cone
relaxation constraint. Equations 32–33 represent the amplitude
constraints of voltage and current, where Vi

min and Vi
max

represent the maximum and minimum voltage amplitude of bus
i, respectively, and Il max represents the maximum current amplitude
of branch l.

3.2.2 Distributed PV constraints

~P
PV

i,t � PPV,f
i,t + ΔPPV,maxzPVi,t , (34)

0≤PPV
i,t ≤ ~P

PV

i,t ,∀i ∈ ΩPV
N , (35)

PPV
i,t( )2 + QPV

i,t( )2 ≤ SPVi,t( )2,∀i ∈ ΩPV
N . (36)

Equations 34–36 represent the operation constraints of
distributed PV, where PPV,f

i,t represents the maximum available
power of the distributed PV connected to bus i before fluctuation
at time t; ΔPPV,max represents the maximum fluctuation of
distributed PV; QPV

i,t and SPVi,t represent the reactive power and
capacity of distributed PV connected to bus i at time t.

3.2.3 Battery energy storage constraints

SSOCi,t � SSOCi,t−1 + ηi,ch
Pch
i,tΔt

Ei,max
− Pdis

i,t Δt
ηi,disEi,max

,∀t ∈ H, (37)

0≤Pch
i,t ≤Pch

i,maxD
ch
i,t

0≤Pdis
i,t ≤Pdis

i,maxD
dis
i,t

Dch
i,t +Ddis

i,t ≤ 1

⎧⎪⎨⎪⎩ , (38)

SSOCi,min ≤ SSOCi,t ≤ SSOCi,max. (39)

Equations 37–39 represent the operation constraints of battery
energy storage, where SSOCi,t represents the state of charging of battery
energy storage connected to bus i at time t; Dch

i,t and Ddis
i,t represent

0–1 variables, representing the charging and discharging states of the
battery storage connected to bus i at time t, respectively, where
1 represents charging and 0 represents discharging; ηi,ch and ηi,dis
represent the charging and discharging efficiencies of the battery
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energy storage connected to bus i, respectively. Ei,max represents the
maximum amount of energy stored by the battery of bus i. SSOCi,min and
SSOCi,max represent the minimum and maximum values of the state of
battery energy storage connected to bus i, respectively. Δt represents
the battery energy storage dispatching interval, andH represents the
charging and discharging time set of the battery energy storage.

3.2.4 Capacitor bank operation constraints

0≤ xC
i,t ≤xC

i,max, i ∈ ΩCB
N

QCB
i,t � xC

i,tCi,step, i ∈ ΩCB
N

{ , (40)

∑T
t�1

xC
i,t − xC

i,t−1
∣∣∣∣ ∣∣∣∣≤Δ CB

max . (41)

In eqs 40–41, xCi,t represents the number of groups of capacitor
connected to bus i at time t; Ci,step represents the capacity of each
group of capacitor connected to bus i; ΩCB

N represents the set of all
installed capacitor bank bus; and Δ CB

max represents the maximum
value of the change in the number of capacitor input groups in
adjacent time periods.

3.2.5 On-load tap changer constraints
The schematic diagram of the on-load tap changer branch is

shown in Figure 6:

um,t � t2ijuj,t, (42)
tij � tmin

ij + TijΔtij, (43)
0≤Tij ≤Kij, (44)

Δtij � tmax
ij − tmin

ij( )/Kij. (45)

In eqs 42–45, tij represents the transformer ratio on branch ij; Tij

denotes an integer variable that represents the optimal gear position
of the transformer. Δtij represents the change value of each gear of
the transformer tap. Kij represents the number of gears of the
transformer tap. tmax

ij and tmin
ij represent the upper and lower limits

of the transformer ratio, respectively, where um,t � (Vm,t)2/


2

√
,

uj,t � (Vj,t)2/


2

√
, and ui,t � (Vi,t)2/



2

√
.

3.2.6 AC/DC converter constraints
Figure 7 shows a schematic diagram of the AC/DC converter.
The active power of the AC side of the converter is set at time t as

Pref ,AC
ji,t , the reactive power as Qref ,AC

ji,t , and the reference point voltage
asVref ,AC

j,t . The active power of the DC side at time t is Pref ,DC
jk,t , and the

reference point voltage is Vref ,DC
j,t . Meanwhile, uref ,ACj,t �

(Vref ,AC
j,t )2/ 


2
√

and uref ,DCj,t � (Vref ,DC
j,t )2/ 


2
√

are introduced. Similar

to the AC power flow in polar coordinates, the branch power flow
equations with an AC/DC converter can be written as follows:

Pij,t �


2

√
glui,t − glRl,t − blTl,t,∀l ∈ Ωref

L , (46)
Pref ,AC
ji,t � − 


2
√

glu
ref ,AC
j,t − glRl,t + blTl,t( ),∀l ∈ Ωref

L , (47)
Qij,t � − 


2
√

blui,t + blRl,t − glTl,t,∀l ∈ Ωref
L , (48)

Qref ,AC
ji,t � − − 


2
√

blu
ref ,AC
j,t + blRl,t + glTl,t( ),∀l ∈ Ωref

L , (49)
Pref ,DC
jk,t � 


2
√

glu
ref ,DC
j,t − glRl,t,∀l ∈ Ωref

L , (50)
Pkj,t �



2

√
gluk,t − glRl,t,∀l ∈ Ωref

L . (51)

In eqs 46–51, Ωref
L represents the set of converter branches.

The voltage amplitude relation between AC and DC sides of the
converter station as shown in Eq. (52):

Vref ,AC
j,t � KcMiV

ref ,DC
j,t , (52)

whereKc represents the utilization rate of DC voltage;Mi represents
the modulation degree. The relationship between the active power of
the AC and DC sides of the converter station as shown in Eq. (53):

Pref ,AC
ji,t � Pref ,DC

ji,t

ηConv
, (53)

where ηConv represents the conversion efficiency.

3.2.7 Demand-side response constraints

−ξ i,t �
ΔPD

i,t

Δρt
� Pcur

i,t − PD
i,t

ρcurt − ρt
, (54)

∑Ni

i�1
∑T
t�1
Pcur
i,t �∑Ni

i�1
∑T
t�1
PD
i,t, (55)

ρcur,max
t ≤ ρcurt ≤ ρcur,min

t , (56)

ρcurt � ρpeak t ∈ Tpeak

ρvalley t ∈ Tvalley{ . (57)

In eqs 54–57, ξi,t represents the elastic coefficient of electricity price
of bus i at time t; ΔPD

i,t represents the change in the load of bus i
before and after implementing the demand-side response at time t;
PD
i,t represents the load of bus i before implementing the demand-

side response at time t. Δρt represents the change in electricity price
before and after implementing the demand-side response at time t;
ρt and ρcurt represent the electricity price before and after
implementing the demand-side response at time t, respectively.
ρcur,max
t and ρcur,min

t represent the upper and lower limits of
electricity price before and after implementing the demand-side

FIGURE 6
Schematic diagram of branches with OLTC.

FIGURE 7
Schematic diagram of the AC/DC converter station.
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response at time t, respectively. ρpeak and ρvalley represent the peak
and valley electricity price before and after implementing the
demand-side response at time t, respectively. Tpeak and Tvalley

represent the peak and valley period before and after
implementing demand-side response at time t, respectively (He
et al., 2021; Qiu et al., 2021).

4 Robust dispatching method for new
distribution systems

4.1 Robust dispatching model for new
distribution systems

Let the constraint variable of power flow be the vector
P � Pij,t, Pji,t, Qij,t, Qji,t, PTR

t , QTR
t , ui,t, Rl,t, Tl,t, Il,t{ }; the constraint

variable of PV is the vector PPV � PPV
i,t , Q

PV
i,t{ }; the variable of battery

energy storage operation is the vector PESS � SSOCi,t , Pch
i,t , P

dis
i,t{ }; the

operating variable of the capacitor bank is the vector QCB � QCB
i,t{ };

the constraint variable of the on-load tap changer is the vector
UOLTC � um,t, tij{ }; the constraint variable of the AC/DC converter
is the vector I � Pref ,AC

ji,t , Pref ,DC
jk,t , Qref ,AC

ji,t , uref ,ACj,t , uref ,DCj,t{ }; and the
constraint variable of a demand-side response is the vector PD �
Pcur
i,t , ρ

cur
t{ }.

Based on the data-driven polyhedral set of the distributed PVoutput,
a two-stage robust economic dispatching model for new distribution
systems is established in this paper. The matrix form is as follows:

min
x

max
u∈U

min
y∈Ω x,u( )

cTy( )
s.t. Ax ≤ d a( )

Gy ≤ h − Ex −Mu b( )
Ry
���� ����2 ≤ rTy c( ),

(58)

where x, y represent the decision variables of the model, and u
represents an uncertainty variable. The decision variable in the first
stage is x � Dch

i,t , D
dis
i,t , x

C
i,t, Tij{ }; the decision variable in the second

stage is y � P,PPV,PESS,QCB,UOLTC, I,PD{ }; the uncertainty
variable in the second stage is u � ~P

PV
i,t{ }. The constant matrix A

represents the coefficient matrix associated with the decision
variable x, and the column vector d represents the coefficient
vector associated with the decision variable x. The constant
matrices G, E, and R represent the coefficient matrix related to
the decision variable y. The column vectors h and r are constant
vectors representing the coefficient vector related to the decision
variable y. The constant matrix M represents the coefficient matrix
associated with the uncertain variable u. Ω(y, u) represents the
feasible region of the continuous variable y when (x, u) is given. cTy
represents the objective function of the second stage, corresponding
to (18); (54-a) corresponds to the constraints related to the variable x
in the first stage; (54-b) corresponds to the constraints related to the
variable y in the second stage; (54-c) corresponds to second-order
cone constraints related to the variable y in the second stage.

For a two-stage robust optimizationmodel such as (58), it cannot be
directly solved due to the presence of both continuous and integer
variables, and the uncertain parameter u in the second stage of the
model. Therefore, this paper adopts theC&CGmethod (Qiu et al., 2020;
Wang et al., 2021) to transform it into amaster-sub problem for solving.
Among them, the master problem is to solve the new distribution

system robust scheduling model with the minimum comprehensive
cost in the worst case scenario. After solving the integer solution of the
master problem first (including the charging and discharging states of
the energy storage battery, the number of capacitor bank groups, and
the gear change of the on-load tap changer), the sub-problem
minimizes the comprehensive cost of the system in the worst case
scenario by optimizing the remaining continuous variables.

4.2 C&CG iterative solving method

4.2.1 Master–sub problem model
The master–sub problem model corresponding to (58) is

as follows:

MP1:

min
x,y,u

η( )
s.t. Ax ≤ d

Gyl ≤ h − Ex −Mul ∀l≤ k
Ryl
���� ����2 ≤ rTyl ∀l≤ k
η≥ cTyl ∀l≤ k

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (59)

SP1:

max
u∈U

min
y∈Ω x,u( )

cTy

s.t. Gy ≤ h − Ex* −Mu: π
Ry
���� ����2 ≤ rTy: τa, τb

⎧⎪⎪⎨⎪⎪⎩ . (60)

First, the master problem MP1 is solved corresponding to (59). In
this case, MP1 belongs to the mixed-integer second-order cone
programming problem. The first stage variable solution x*
corresponding to MP1 and the auxiliary variable η introduced in the
k+1 iteration are C&CG cuts. Then, the variable solution x* obtained in
the first stage is substituted into the second-stage subproblem SP1 to
find the worst scenario ul, where l represents the number of historical
iterations and k represents the number of current iterations. Finally, the
worst scenario ul obtained in the second stage is brought into themaster
problemMP1 in the first stage for iteration. The last three constraints of
(59) are the optimal cut plane and the feasible cut plane set generated by
the previous k iterations, respectively. π, τa, and τb are the dual
variables of the subproblem constraints.

4.2.2 Sub-problem solving method
Equation 60 is a max–min optimization problem. Therefore, the

duality theorem is used in this paper to convert the inner min
problem of (60) into its dual form and combine it into a
maximization problem. The specific form is shown in (61):

max
u,π

− h −Mu − Ex( )Tπ
s.t. c + NTπ + RTτa + rτb � 0

τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (61)

In eq. 61, there exists a bilinear term (Mu)Tπ, which is solved by the
external approximation method of the bilinear term (Kersting,
2010). The master problem MP2 and the sub-problem SP2 are
obtained, as shown in (62) and (63):

SP2:

max
u,π

− h −Mu − Ex( )Tπ
s.t. c + NTπ + RTτa + rτb � 0

τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (62)
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MP2:

max
u,π

− h − Ex( )Tπ + β

s.t. c + NTπ + RTτa + rτb � 0
τa‖ ‖2 ≤ τb

π, τa, τb ≥ 0
β≤Gm u, π( ),∀m≤ n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ . (63)

In eqs 62 and 63, MP2 and SP2 are used to solve the upper and lower
bounds of (61), respectively, where m represents the number of
historical iterations and n represents the number of current
iterations. The auxiliary variable β is introduced to replace the
bilinear term in the original equation. The bilinear term exists in
Gm(u,π) � (Mu)Tπ in (63). Therefore, the outer layer
approximation method is needed for linearization, and the
linearization equation is shown in (64):

Gn u,π( ) � un( )Tπn
sp + u − un( )Tπn

sp + π − πn
sp( )Tun. (64)

4.3 Solving steps and processes

The specific steps for solving the C&CG algorithm are as follows:

1) Let the initial values of the upper and lower bounds of the
master-sub problem be U1 � +∞ and L1 � −∞, the initial
number of iterations k = 1, and the convergence value be ε1 max.

2) Solving the master problem in the worst case scenario, where
the constraints of the master problem do not include C&CG
cuts, then the integer solution x* is obtained.

3) Based on the integer solution x* obtained by solving the
master problem, the sub-problem is solved to obtain the

worst scenario (ul+1)* and the objective function value of
the sub-problem. The upper limit U1 � min(U1, cTy)
is updated.

4) Then, whether U1 − L1 is less than the convergence value
ε1 max is checked. If so, the operation ends. If this is not true,
k � k + 1 is set, and a new set of scenario variables uk and
C&CG cuts are added to the master problem. Solving the
master problem to obtain η* and update the lower bound
L1 � max(L1, η*), then step 3 is repeated.

The specific solving steps are shown in Figure 8.

5 Example analysis

5.1 Example system settings

In order to verify the feasibility of the new distribution system
optimization method based on the adaptive data-driven polyhedral
set, in this section, the improved IEEE-33 bus system is used for
example analysis. The wiring diagram of the improved IEEE-33 bus
system is shown in Figure 9. Table 1 shows the parameter settings of
PV, BESS, CB, and OLTC of the access system. The reference voltage
of the system is 12.66 kV, and the reference capacity is 10 MVA. The
active power range of the gateway is 0–2000 kW, the reactive power
range is 0–2000 kVAr, the upper limit of the branch current
amplitude is 0.5 p.u., and the bus voltage amplitude is
0.95–1.05 p.u. For the convenience of the analysis, this paper
assumes that the available power of the two distributed PV
systems is the same before the fluctuation and the demand-side
response only for the load of the residential and commercial areas.
According to the calculation method given by Palahalli et al. (2022),
the value of kmin here is 1.41.

5.2 Analysis of 33-bus system examples

5.2.1 The impact of the scaling factor k on
optimization results

The influence of the scaling factor k on the robust
dispatching results of the new distribution system is shown in

FIGURE 8
Solution flowchart of C&CG.

FIGURE 9
Modified IEEE-33 bus test system.
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Table 2. The size of the scaling factor k determines the coverage
degree of the constructed convex hull polyhedral set to the
historical data. It is not difficult to observe from Table 2 that
the network loss cost is almost unchanged, the electricity
purchase cost and the penalty cost of abandoning PV are
slightly increasing, and the total system cost is constantly
increasing. This is because, when the scaling factor k becomes
larger, the convex hull uncertainty set will continue to expand
the envelope range of historical output data. In other words, the
fluctuation range of the distributed PV output will continue to
grow, making it more prone to the worst scenario. When the
distributed PV output with large fluctuations is continuously
injected into the distribution network, the system needs to filter
out most of the distributed PV power injection in order to meet
the balance of supply and demand and reduce the disturbance
caused by uncertain energy injection, so the penalty cost of
abandoning PV is constantly increasing. At the same time, due to
the significant reduction in the injection of distributed energy, in
order to meet the power supply of the system, it is necessary to
increase the injection power of the gateway, so the cost of
electricity purchase gradually increases. The network loss cost
depends on the network parameters of the system, so the
network loss cost is almost constant. The total cost of the
system is mainly the cost of abandoning PV and the cost of
purchasing electricity, so the total cost of the system continues
to increase.

5.2.2 The impact of the robust adjustment
coefficient β on optimization results

Figure 10 shows the impact of the robust adjustment coefficient
on the dispatching results of the new distribution system. As can be
seen from the figure, with the robust adjustment coefficient
increasing from 0.2 to 1, the network loss cost of the system
remains almost unchanged at approximately 148 yuan, but the
total cost of the system continues to increase. When the box set
is adopted, the variation amplitude of the total system cost is
basically stable with the increase in the robust adjustment
coefficient β. When convex hull polyhedral sets with different
scaling factors are used, the variation range of the total system
cost decreases gradually. Specifically, when the scaling factor k
changes from 0.6 to 1.4, the change amplitude of the total system
cost tends to flatten out at 0.4, 0.6, and 0.8. The reason for this
phenomenon is related to the change in electricity purchase and PV
abandonment costs, which constitute the total cost of the system.

The robustness of the constructed polyhedral set is determined by
the robustness adjustment coefficient β. When the robust adjustment
coefficient β is small, the adaptability of the system to distributed PV
disturbance is poor, and the cost of PV abandonment is almost
unchanged whether the box set or the convex hull polyhedral set is
used. On the contrary, when the robust adjustment coefficient β is
larger, the system has better adaptability to distributed PV disturbance.
Therefore, for the robust adjustment coefficient β � 1, the use of box
sets cannot accurately respond to various situations in PV generation,

TABLE 1 System configuration parameters.

Equipment Access nodes Parameter

PV 19 and 29 Capacity: 1000 kVA

BESS 22 and 27 State of charge: 5%–95%

Capacity: 1.2 MW

Investment cost: 1 million yuan

Percentage of capacity at the end of life: 5%

Battery charging rate: 0.5

CB 6 and 26 Single group compensation power: 50 kVAr

Maximum number of compensation groups: 6

Maximum number of CB actions in a day: 5

OLTC 33–1 Transformer ratio: 0.95–1.05

Transformer tap change value at each gear: 0.01

Number of transformer tap gears: 10

TABLE 2 Impact of the scaling factor k on various costs.

Various costs/yuan k = 0.6 k = 0.8 k = 1 k = 1.2 k = 1.4

Network loss cost 148 148.36 148.07 148.74 148.43

Purchasing electricity cost 12648.12 12706.37 12744.05 12783.96 12785.60

Abandoning PV cost 445.69 485.52 512.07 538.62 565.17

Total cost 13241.82 13340.26 13404.20 13471.33 13499.21
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which may lead to higher PV abandonment costs. However, when the
convex hull polyhedral set is used, the envelope range of the convex hull
set will be different due to different scaling factors k. When the scaling
factor k � 0.6, the envelope range of the convex hull polyhedral set is
also small. In this case, changing the size of the robust adjustment
coefficient β does not significantly affect the cost of PV abandonment.
However, when the scaling factor k � 1.4, the convex hull uncertainty
set will encompass all the historical data, so the corresponding
adjustment will be made according to the increase in the robust
adjustment coefficient β, which will affect the PV abandonment
cost. The change trend of the cost of purchasing electricity is similar
to the cost of abandoning PV.When the scaling factor k> 1, the convex
hull uncertain set covers all the worst historical scenarios as well as the
box set. In this case, in order to stabilize the system power balance, the
system needs to filter most of the uncertain PV injection and increase
the gateway power. However, when the scaling factor k≤ 1, the convex
hull uncertain set cannot completely encompass all the historical data,
and some of the worst scenarios may be missed. Similar to the cost of
abandoning PV, the cost of purchasing electricity may remain the same
despite changing the size of the robust adjustment coefficient β.

5.2.3 The various costs of the three polyhedral set-
based robust optimization methods

The influences of the three polyhedral set-based RO methods on
various costs are further compared, as shown in Table 3. It can be seen
from Table 3 that when different polyhedral set-based ROmethods are

adopted, the cost of the hyperplane polyhedral set-based ROmethod is
lower than that of the convex hull polyhedral set-based ROmethod and
the box set-based RO method, except that the system network loss is
basically unchanged. The convex hull polyhedral set-based ROmethod
needs to scale the original convex hull to achieve the purpose of
enveloping all historical data. Figure 3 shows that when the scaling
factor k � 1.4, the convex hull uncertainty set envelopes all historical
data on the PV output. Although this enhances the robustness of the
solution results, an excessive scale of data for some scenarios increases
the conservatism of the solution,making the total cost of the convex hull
polyhedral set-based ROmethod close to the box set-based ROmethod.
The hyperplane polyhedral set-based RO method uses the
mathematical idea of a hyperplane to greatly reduce the envelope
range, optimize the robustness of the system, and reduce the
conservatism of the system on the basis of enveloping all the
historical data on PV. Therefore, the distributed PV system, using
the hyperplane polyhedral set-based ROmethod, reduces the cost of PV
abandonment and electricity purchase. It can be seen that the
hyperplane polyhedral set-based RO method not only optimizes the
robustness of the result but also reduces its conservatism.

5.2.4 The voltage distribution under three
uncertain set-based RO methods

Figure 11 shows the node voltage distribution of the improved
IEEE-33 bus system for the box set-based RO method with the
robust adjustment coefficient β � 1, the convex hull polyhedral set-

FIGURE 10
Impact of the robust adjustment coefficient β on various costs: (A) total loss, (B) network loss, (C) abandoning PV, and (D) purchasing electricity.
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based RO method with a scaling factor k � 1.4, and the hyperplane
polyhedral set-based RO method. Figure 11 shows that the voltages
of the three uncertain set-based RO methods are all distributed in
the range of 0.95 p.u.~1.05 p.u. However, during the distributed PV
generation period (10:00–14:00), the node voltage using the box set-
based RO method is higher than that of the other two set-based RO
methods. The node voltage of the hyperplane polyhedral set-based
RO method is generally stable, and the voltage fluctuation is less
than that of the convex hull polyhedral set-based RO method. This

further shows that the hyperplane polyhedral set-based RO method
has stronger robustness and better conservation compared to the
convex hull polyhedron set-based RO method.

6 Conclusion

In this paper, a new distribution system robust dispatching
model based on adaptive data-driven polyhedral sets is constructed

TABLE 3 Impact of three uncertain set-based RO methods on various costs.

Various costs/
yuan

Box set-based RO
method

Convex hull polyhedral set-based
RO method

Hyperplane polyhedral set-based
RO method

Network loss cost 149.30 148.43 148.34

Purchasing electricity
cost

12787.55 12785.60 12744.73

Abandoning PV cost 576 565.17 512.07

Total cost 13512.85 13499.21 13405.14

FIGURE 11
Node voltage distribution under three uncertain set-based RO methods: (A) box set-based RO method, (B) convex hull polyhedral set-based RO
method, and (C) hyperplane polyhedral set-based RO method.
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and solved using the C&CG algorithm. Finally, by comparing three
new distribution system robust dispatching methods based on
polyhedral sets, the simulation results show the following:

(1) When the robust adjustment coefficients are the same, the
total cost of the system using the convex hull polyhedral set-
based RO method is lower than that using the box set-based
RO method. For the convex hull polyhedral set-based RO
method with different scaling factors, the robustness of the
optimization results can be enhanced by expanding the
scaling factors.

(2) Compared with the box set-based RO and convex hull
polyhedral set-based RO methods, the hyperplane
polyhedral set-based RO method using adaptive data-
driven polyhedral sets can describe the distribution range
of uncertain variables more accurately, and reduce the
envelope of the low-probability blank region and the
conservatism of optimization results. Therefore, compared
with the convex hull polyhedral set-based RO method, the
new robust dispatching method based on the adaptive data-
driven hyperplane polyhedral set-based ROmethod has lower
conservatism and stronger robustness.

Due to the main research direction of this paper being the
impact of the uncertainty of photovoltaic output fluctuations on
the distribution network, the main control mode of the
photovoltaic model in this paper is the hybrid control mode.
The grid-type control can only operate in parallel to the grid and
cannot operate independently. It is synchronized by extracting
the reference voltage phase angle through phase detection links,
such as the phase-locked loop (PLL). The grid-type control is
synchronized by generating phase angles through power control
(Zhang et al., 2010; Harnefors et al., 2022; Xiao et al., 2023a; Xiao
et al., 2023b). Therefore, from the perspective of control modes,
all three types of control will have a certain impact on the power
flow of the distribution network:

1. Photovoltaic grid-type: This type of system is mainly responsible
for supplying local loads, and the power flow is mainly limited
within the photovoltaic power generation system.

2. Grid following: When the electricity generated by the
photovoltaic power generation system exceeds the local load
demand, the excess energy will be transmitted to other places
through the grid, leading to adjustments in the distribution of
power flow in the grid.

3. Hybrid control: Hybrid control combines photovoltaic
power generation systems with other energy systems and
coordinates management through intelligent control
strategies. This connection method can achieve
complementarity and balance among various energy
systems, thereby affecting the power flow distribution of
the power system. For example, when photovoltaic power
generation is insufficient or unable to generate electricity at
night, other energy systems (such as wind power generation,
energy storage systems, etc.) can supplement power supply
and adjust the distribution of power flow.

In order to further study the impact of photovoltaic integration
on the power system, research can be conducted from the
perspectives of photovoltaic fluctuation uncertainty and
different control modes of photovoltaic systems. Future
research will focus on different photovoltaic control modes, as
mentioned above, such as grid-following control and grid-forming
control of photovoltaic systems. When there is fluctuation in the
connected photovoltaic system, the operating results of the power
system will change. In addition, it is necessary to consider factors
such as how the reactive power of the system changes and how to
maintain the system voltage stability when a large amount of
photovoltaic energy is injected into the distribution network
(Mehrdad et al., 2020).
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Optimal operation of flexible
interconnected distribution grids
based on improved virtual
synchronous control techniques

Zeyi Wang1, Guangzhi Liu2, Dan Pang1, Yao Wang1, Bin Yu1 and
Zhenhao Wang2*
1State Grid Changchun Power Supply Company, Changchun, China, 2Key Laboratory of Modern Power
System Simulation and Control and Renewable Energy Technology (Northeast Electric Power
University), Jilin, China

With distributed energy sources connected to the distribution grid on a large
scale for distributed photovoltaic power randomness, this paper proposes a
flexible interconnection system optimization operation strategy. First, the
virtual synchronous control technology is improved to improve the DC bus
voltage stability; second, it analyzes the system operation mode to judge the
output logic of PV and storage units, takes DC bus power balance as the
underlying logic, and puts forward the power coordination optimization
strategy and fault power supply restoration strategy with full consideration of
factors such as the load balance degree of the distribution station area, the
economic operation of themain transformer, and the amount of power lost in the
faulty station area. It also establishes a multi-objective optimization model to
obtain the power commands of each port and achieves the power flexibility
mutualization of the flexible interconnected system through the accurate
regulation of the soft normally open point (SNOP). Finally, a simulation model
of the flexible interconnection system is built usingMATLAB/Simulink to verify the
effectiveness of the proposed optimization strategy.

KEYWORDS

flexible interconnection, load balancing, economic operation of main transformer,
power mutualization, virtual synchronous control technology

1 Introduction

Promoting renewable energy substitution is an important way to achieve the goal of
“carbon peak and neutrality targets.” In this context, the large-scale and high penetration
rate of distributed energy access to the distribution system and the randomness of its output
have posed new challenges to the traditional distribution network. The traditional
distribution network in China generally adopts the operation mode of “closed-loop
design and open-loop operation,” and the natural distribution of the current of each
distribution station area during normal operation cannot actively balance the load,
increasing the comprehensive loss of transformers in the station area and endangering
the safe and stable operation of the distribution network in the case of extreme imbalance of
the load. Traditional distribution stations are usually equipped with normally open contact
switches, but when a fault occurs, the normally open contact switches are unable to regulate
the power, which further worsens the problem of unbalanced loads in the station area.
Therefore, the traditional distribution network is unable to solve the problems of balanced
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loads in the station area, light and heavy load operation of the main
transformer, and transferring faults to the power supply (Koutsoukis
et al., 2016). The soft normally open point (SNOP) can realize the
power flexibility and mutual aid well, balance the load of the station
area during normal time, and transfer part of the load to the faulty
station area during fault time. Therefore, SNOP has significant
advantages in improving new energy access capacity, balancing
the load of each station area, and reducing system operation loss
(Qin et al., 2016).

Currently, scholars’ research on SNOP in the flexible
interconnection system focuses on the aspects of station load
balancing, the main transformer avoiding falling into light and
heavy load operations, and the restoration of power supply to
faulty stations. Huo et al. (2018) proposed a control strategy
based on SNOP to achieve the control objective of load balancing
in the station area; Lou et al. (2019) proposed an adaptive power
restoration strategy for SNOP considering distributed power
sources, but they did not consider the problem of balancing the
load on the feeders of each station when restoring the power supply
in case of failure. Yin et al. (2018) proposed a non-stop switching
strategy based on SNOP in case of failure. Zhang et al. (2020)
proposed an optimization scheme for the power mutualization of
faulty feeders. Most of them required switching control strategies
when feeder faults occurred, thus increasing the control complexity.
In this paper, we want to consider both load balancing and the
restoration of the power supply to a faulty station. Based on this
paper, we developed an optimization strategy for the multi-mode
operation of the system. However, most of the schemes in the above
literature require switching the control strategy in the event of a
fault, thus increasing the control complexity. Wu et al. (2019)
pointed out that the virtual synchronous machine-based SNOP
control strategy can achieve switching between different
operation modes and does not need to switch the control
strategy, so this paper adopts the virtual synchronous control
technique. Zhang et al. (2015) proposed a control method aiming
at the overall load balance of low-voltage distribution substations.
Tu et al. (2015) proposed an SNOP control method considering the
economic operation of the main transformer, which effectively
avoids the problems of load imbalance and the light–heavy
operation of the main transformer. However, they did not
consider the situation of the new energy access system under
control. Qi et al. (2023) proposed a system strategy that
aggregates multiple distributed resources, such as distributed PV,
energy storage, and controllable loads, which reduces voltage
fluctuations and maintains the safe and stable operation of the
system. Assem et al. (2023) discussed and evaluated an optimal DC
bus voltage regulation method that maintains the balance through
the storage system, which results in smaller voltage fluctuations for
grid-connected renewable energy sources such as PV. Wang et al.
(2023) discussed a joint optimization model for wind–PV–load-
storage microgrids in multiple scenarios and provided the optimal
economic dispatch scheme in multiple scenarios. Based on this, this
paper proposes a multi-mode operation strategy for photovoltaics
and storage.

In summary, there are few studies that can simultaneously take
into account the control objectives such as load balancing in the
station area, avoiding the main transformer from falling into light
and heavy load operation, and considering new energy access and

power supply recovery in the faulty station area. Based on this, this
paper takes the five-port flexible interconnection system as the
research object and first improves the virtual synchronous
control to improve the DC bus voltage stability. Second, it
introduces the output logic of the photovoltaic and storage units
in each operation mode after they are connected to the system, and
for the unbalanced load of each station area and the main
transformer of the station area light or heavy load operation and
other problems, optimization strategies based on the virtual
synchronous machine control are proposed for the normal and
fault modes. Finally, the effectiveness of the proposed strategies is
verified by simulation experiments on the flexible
interconnection system.

2 Distribution substation flexible
interconnection system

The distribution substation flexible interconnection system is
formed by SNOP interconnecting DC distribution substations with
AC distribution substations. Through the power control of the
voltage source converter (VSC), all kinds of dispatchable sources
and loads in the flexible interconnection system are coordinated and
deployed to avoid the problems of unbalanced loads and light or

FIGURE 1
Five-port flexible interconnection system.

FIGURE 2
DC distribution station topology.
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heavy loads on transformers. This paper takes the five-port flexible
interconnection system as the research object, and the system is
shown in Figure 1.

In Figure 1, Gi denotes the 10 kV distribution network; Si
denotes the circuit breaker; Ti denotes the station transformer
with a ratio of 10.5/0.4 kV; SNi denotes the rated capacity of the
main transformer of each station, which is 315, 400, and 630 kVA,
respectively; and PaLi denotes the total amount of active loads (kW)
in each station. The direction of power flowing into SNOP in the
system is specified to be positive.

In Figure 1, the DC power distribution station area consists of a
PV unit, an energy storage unit, and DC loads such as charging piles.
The PV unit works in the MPPT mode to output as much power as
possible; the DC distribution station topology is shown in Figure 2.

The traditional flexible interconnection control strategy to
ensure stable operation of the system is the key to the stability of
the DC bus voltage, and DC bus voltage and DC bus transmission of
active power are closely related to the following analysis of the DC
bus side of the active power balance.

The flexible interconnection system operates each distribution
station to achieve flexible power interconnection through the DC
bus, and its topology is shown in Figure 3. The DC side current is
analyzed and obtained according to Kirchhoff’s current law:

C
dUdc

dt
� ∑5

i�1iVSCi + iPV + ibat. (1)

Multiplying both sides of Eq. 1 by Udc simultaneously gives

UdcC
dUdc

dt
� Udc∑5

i�1iVSCi + UdciPV + Udcibat. (2)

A further transformation of Eq. 2 above gives

UdcC
dUdc

dt
� ∑5

i�1PVSCi + PPV + Pbat. (3)

In Eq. 3, when the DC bus voltage is stable, the power of each
port is balanced, and each port outputs power according to the
instruction. Thus, both the output power and the instruction value
are the same, as can be obtained from Eq. 4:

FIGURE 3
Five-port flexible interconnection system topology.

FIGURE 4
Virtual synchronous generator control.

TABLE 1 System status judgment criteria.

Judgmental condition Fulfill the condition

A1 Pnet ≥ 0

A2 Pnet ≤ 0

B1 20%≤ SOC ≤ 80%

B2 SOC < 20%

B3 80%< SOC

C1 0≤Pdc − PPV ≤Pbat.m

C2 Pdc − PPV < − Pbat.m

C3 −Pbat.m <Pdc − PPV < 0

C4 Pbat.m <Pdc − PPV
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∑5

i�1Pref i + PPV + Pbat � 0. (4)

If the DC bus voltage is disturbed, there will be unbalanced
power. When each port converter uses traditional virtual
synchronous control, the DC bus voltage can only be
controlled by the energy storage unit, resulting in both
unbalanced power and the energy storage unit being
responsible for maintaining the stability of DC bus voltage.
Distributed PV units are usually equipped with energy storage
capacity ranging from 5% to 20% of their total capacity, so the
stability of the DC bus voltage system is poorly controlled by the

storage unit alone. In the system, frequent power transfers can
easily cause deterioration in system control accuracy, which can
lead to DC bus voltage instability and system control failure. By
transforming Eq. 3, we can obtain

1
2
C
dU2

dc

dt
� ∑5

i�1PVSCi + PPV + Pbat. (5)

Further variations of Eq. 5 are available as follows, as shown in
Eq. 6:

∑5

i�1 PVSCi − kiCΔU
2
dc( ) + PPV + Pbat � 0, (6)

where ki is the scale factor. ∑5
i�1ki � 1

2, and in this paper, each scale
factor is set according to the transformer capacity of each
distribution station, as shown in Eq. 7:

ki � 1
2

SNi∑5
j�1SNj

. (7)

By substituting Eq. 4 into the collation, we obtain Eq. 8

Prefi � PVSCi − kiCΔU
2
dc . (8)

Analyzing the above equation, it can be seen that ΔU2
dc can be

introduced to compensate for the active power command of each
port to achieve fast tracking of DC bus voltage by virtual
synchronous control, and the control strategy is shown
in Figure 4.

In order to verify the role of the proposed control strategy in
improving the DC bus voltage stability of the flexible
interconnection system, the power fluctuation of the PV due
to the change in light intensity at 1 s is set as the disturbance of
the DC bus voltage. Under the same working conditions, the
traditional virtual synchronous control strategy and the U
compensation control strategy proposed in this paper are
simulated, and the DC bus voltage waveform is obtained, as
shown in Figure 5.

It can be seen that when the PV output fluctuates, the
traditional control strategy can easily lead to DC bus voltage

FIGURE 6
Operational mode switching.

TABLE 2 Operation of each mode.

Mode Photovoltaic and storage control method

Mode 1 MPPT, energy storage discharge

Mode 2 MPPT, energy storage maximum power charging

Mode 3 MPPT, energy storage charging

Mode 4 MPPT, energy storage maximum power discharging

Mode 5 MPPT, no charging or discharging of energy Storage

FIGURE 5
DC bus voltage waveform under PV fluctuation.
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instability due to the weak regulation ability of the energy storage
unit, while the control strategy proposed in this paper can use the
converter of each port to quickly track the DC bus voltage, reduce
the burden of the energy storage unit’s regulation and control,
and then maintain the DC bus voltage constant during the power
transmission process, which improves the stability of the flexible
interconnection system. At the same time, the virtual
synchronous control technique can provide frequency and
voltage support for the downstream loads in the event of
feeder failure without switching the control strategy, which
reduces control difficulty.

3 Multi-mode operation strategy for
photovoltaics and storage

When the system is running, factors such as the load state of the
station, the PV output, and the charge state of the storage will change
over time, which in turn leads to the system being in different
operation modes, creating difficulties for the system’s multi-mode
operation optimization strategy. Therefore, it is necessary to

TABLE 3 Working condition setting.

Time 0–1s (kW) 1–2s (kW) 2–3s (kW)

Module

Photovoltaic 30 45 58

Energy storage 3.24 2.62 −1.99

DC load 57 66 43

Pdc 23.76 18.38 −13.01

TABLE 4 Flexible interconnected system simulation parameters.

Parameter Numerical

Voltage level of the distribution network 10/0.4 kV

DC bus voltage 750 V

SNOP port capacity 150 kW

Rated capacity of transformers T1, T2, and T3 315, 400, and 630 kV A

FIGURE 7
Simulation results: (A) energy storage output power and (B)
photovoltaic and storage joint output power.

FIGURE 8
Optimize processes of the flexible interconnection system.
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integrate the photovoltaic and storage units and analyze the
corresponding photovoltaic and storage joint operation modes
and switching logic when the system is running in each mode.
First of all, the power transfer relationship of the system in each

TABLE 5 Simulation power fact sheet.

Time (s) δ1 PaL1 δ2 PaL2 δ3 PaL3 δ4 PaL4 δ5 PaL5

0–1 50.1% 150 kW 26.3% 100 kW 16.7% 100 kW 41.8% 125 kW 33.4% 200 kW

1–2 83.5% 250 kW 26.3% 100 kW 16.7% 100 kW 41.8% 125 kW 33.4% 200 kW

2–3 50.1% 150 kW 26.3% 100 kW 33.4% 200 kW 58.5% 175 kW 20.9% 125 kW

3–4 50.1% 150 kW 26.3% 100 kW 33.4% 200 kW 83.5% 250 kW 33.4% 200 kW

FIGURE 9
Photovoltaic and energy storage output power.

FIGURE 10
SNOP active power waveforms: (A) post-regulation and (B)
comparison experiment.

FIGURE 11
Transformer load factor waveforms: (A) pre-regulation, (B)
comparison experiment, and (C) post-regulation.
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mode should be analyzed to determine the operating state of the
system, which provides a reference for the control of the
photovoltaic and storage units.

3.1 Critical power analysis of the system

It is defined that when the load of a station exceeds 75% of the
capacity of the main transformer of the station, themain transformer of
the station is put into heavy load operation, and when it is lower than
25% of the capacity of the main transformer of the station, the main
transformer of the station is put into light load operation. The critical
power of the system can be expressed as follows in Eq. 9:

Pnet � 0.75 ·∑5

i�1ST cosφ + Ppv − ∑n
i�1
PaLi + PdL

⎛⎝ ⎞⎠, (9)

where Ppv is the generation power of the PV unit; PaLi is the load
power of the AC distribution station i; PdL is the load power carried
by the DC distribution station; ST is the rated capacity of the
transformer; cosφ indicates the transformer power factor, which
is taken to be 0.95; and n is the total number of normal feeders
connected to SNOP. The first term in the formula indicates the
maximum power that can be supplied when all nmain transformers
are critically reloaded (Duan et al., 2020). When Pnet ≥ 0, it is said
that the system operates in the critical power redundancy state;
otherwise, it is said that the system operates in the critical power
deficit state.

3.2 Photovoltaic and storage
mode switching

Due to the volatility of the PV unit output, if it is directly
consumed by the AC distribution station, it will cause a large
disturbance to the system and destroy the stability of the system
(Zhang et al., 2022). The reasonable scheduling of energy storage
devices can alleviate the impact of PV output uncertainty on the
distribution network and play the role of peak shaving and valley
filling (Pei et al., 2022). However, there is a lack of capacity allocation
of energy storage units or no configuration of energy storage units,
so this paper adopts the energy storage unit on the PV unit for
“dynamic peak shaving and valley filling.” The PV unit and the
energy storage unit are integrated; according to the PV unit’s output
prediction, reasonable overall output power is set, which is defined
as the photovoltaic and storage joint output reference power Pdc, and
then determined according to the system state. In this paper, the
final output power obtained from the energy storage unit and the PV
unit is defined as the photovoltaic and storage joint output power,
PDC, in order to achieve the control goal that the PV output is jointly
consumed by the energy storage unit, the DC load, and the AC
distribution station area and reduce the perturbation caused by the
fluctuation of the PV output power to the system.

The specific charging and discharging action states of the energy
storage unit depend on the output power of the PV unit and the
overall power transfer of the system. If the system meets condition
A1, the energy storage unit charge state meets B1, and the PV unit

FIGURE 12
Standard deviation of n feeder load factor.

FIGURE 13
DC bus voltage waveform. FIGURE 14

SNOP active power waveforms: (A) post-regulation and (B)
comparison experiment.
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output does not reach the photovoltaic and storage joint output
reference power Pdc; that is, the photovoltaic unit output meets
condition C1. At this time, the energy storage unit discharges in
order to achieve the reference value of the photovoltaic and storage
joint output power; however, if the system critical power shortage is
in condition A2, the photovoltaic unit output meets condition C2

and the energy storage unit charge state satisfies condition B1. In
order to avoid further shortages of system power, at this time, the
energy storage unit is not charged, and the joint output power of
photovoltaic and storage is only photovoltaic power. In a certain
operating mode, the charge state of the energy storage unit will also

FIGURE 15
Transformer load factor waveforms: (A) pre-regulation, (B) post-
regulation, and (C) comparison experiment.

FIGURE 16
Load loss of faulty stations before and after regulation.

FIGURE 17
Standard deviation of n feeder load factor.

FIGURE 18
DC bus voltage waveform.

FIGURE 19
Angular frequency of the fault station.
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have differences, leading to different photovoltaic and storage joint
operating modes, along with various modes of operation switching,
as shown in Figure 6.

In Figure 6, Pbat. m is the maximum charge/discharge power of
the energy storage unit; when the PV unit is configured with the
energy storage unit, Pbat. m is set according to the actual maximum
charge/discharge power of the energy storage unit; when the PV unit
is not configured with the energy storage unit, Pbat. m is taken to be 0.
It should be pointed out that when conditions A2 and B2 are
satisfied, the photovoltaic storage unit operates in Mode 4,
regardless of the state of condition C. The judgment conditions
for each state in Figure 6 are shown in Table 1:

First, system power redundancy and, second, the charging state
of the energy storage unit should be determined, which can be
divided into five categories of the photovoltaic storage unit
operation modes, as shown in Table 2, and ultimately, the joint
output power PDC of the photovoltaic and storage systems can be
determined. This approach aims to reduce the difficulty of the
coordinated control of flexible interconnected systems while at
the same time effectively reducing the PV power fluctuations
caused by the system perturbation.

3.3 Simulation verification

In order to verify the effectiveness of the regulation strategy, this
paper first substitutes the optical storage joint output reference power,
and then, according to the specific operating state of the system to
discriminate the final determination of the optical storage joint output
power, the specific working conditions are set as follows in Table 3:

In this paper, a simulation comparison of the system under two
types of photovoltaic and storage operation modes is designed. One is
the regulation strategy proposed in this paper, and the other operation
mode is the traditional strategy of coordinated operation of PV and
storage, and the simulation results are shown in Figures 3–8.

Figure 7A shows the energy storage output power of the two
control strategies, and it can be seen that when the traditional strategy of
the coordinated operation of PV and storage operation is used to run,

the battery charging and discharging power reaches more than 20 kW.
On the other hand, the battery charging and discharging power can be
controlled within 5 kW during the operation of photovoltaic storage
joint regulation, so it can be proved that the photovoltaic and storage
joint regulation strategy can effectively solve the problem of insufficient
energy storage configuration. Figure 7B shows the active power output
to the AC side of the two control strategies. It can be seen that the
strategy proposed in this paper enables flexible scheduling on the AC
side. When the PV power is sufficient and the load demand is low, the
AC distribution station can be used to absorb the surplus power. When
the PV power cannot meet the demand of the load, the AC distribution
station can be called upon to supply the power to SNOP. This approach
can effectively reduce the burden of the battery balancing power and
improve the stability of the system.

4 Optimization strategy for the multi-
mode operation of the system

Photovoltaic and storage joint operation can be more randomly
distributed photovoltaic output power into a stable and controllable
photovoltaic and storage joint output power, which facilitates the
optimization strategy for its real-time scheduling. This paper takes
the DC bus power balance as the underlying logic and proposes the
power coordination optimization strategy and feeder failure power
supply restoration strategy for the system operation mode.

4.1 Optimization strategies for normal
mode operation

Each station carries different loads in the system, and it is
impossible to balance the loads of each station before connecting
to SNOP. The situation will endanger the safe operation of the
distribution network when it is serious, and improving the degree of
balancing of loads at each station is conducive to energy saving and
consumption reduction to ensure the economic and safe operation
of flexible interconnection systems (Lin et al., 2022). In this paper,

FIGURE 20
AC voltage of the faulted station.
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the standard deviation of the station load ratio is used to measure the
degree of load balancing in the station area, and the smaller the
standard deviation is, the higher the degree of load balancing in the
station area. The standard deviation η of the main transformer load
rate can be expressed as Eqs. 10–12.

η �










∑n
i�1

αi − β( )2
n

√√
, (10)

αi � PaLi + PVSCi

PNi
, (11)

β � 1
n
∑n
i�1
αi, (12)

where αi is the loading rate of station i; β is the average
loading rate of the station; PaLi is the loading power of station i;
PVSCi is the power of the converter connected to station i,
taking the inflow SNOP as positive and the outflow as
negative; and PNi is the active capacity delivered by the
transformer in station i.

SNOP interconnects the low-voltage side of the transformer, and
the line loss can be ignored, while the main transformer of each
station area is the key equipment of the distribution station area. The
majority of the station area loss is transformer loss, which is about
70% (Chunming et al., 2023), and the comprehensive transformer
loss is closely related to the transformer loading rate, so it is
necessary to consider the variability of the economic operation of
different models and capacities of transformers. The GB/
T13462 economic operation of power transformers puts forward
the concepts of transformer integrated power loss and integrated
power loss rate, which are calculated as Eqs 13, 14.

ΔPZi � P0Zi + δ2i PkZi, (13)
ΔPZi% � ΔPZi

δiSNi cosφ + ΔPZi
× 100%, (14)

where P0Zi indicates the transformer’s no-load loss (kW); PkZi

indicates the transformer-rated load power loss (kW); ΔPZi is the
transformer’s integrated power loss; δi is the transformer load ratio;
SNi indicates the transformer-rated capacity (kVA); and ΔPZi% is
the transformer’s integrated power loss rate.

In summary, power co-ordination optimization should be
constructed with the objective of minimizing the standard
deviation of the load factor of the station area and the integrated
power loss of the transformer as the power co-ordination
optimization model, and its objective function is Eqs 15, 16.

f 1 � min η( ), (15)
f 2 � min ΔPZi( ). (16)

Formula 13 can be plotted as a concave function of the
relationship between the transformer-integrated power loss rate
and load rate. If the main transformer load rate of each station is
too low or too high, it will increase the loss rate of the transformer. In
addition, the optimal economic operation interval of different series
of transformers varies; for example, the optimal economic operation
interval of the S9 series transformer is [0.25,0.75]. Therefore, the
optimal economic operation constraint of the transformer can be
derived as Eq. 17.

0.25SNi ≤
PaLi + PVSCi( )

cosφ
≤ 0.75SNi. (17)

In addition, the constraints of the power-coordinated optimal
control model are included as follows:

(1) Feeder power balance constraints

Paci − PaLi � PVSCi. (18)

(2) DC bus power balance constraints

∑n
i�1
PVSCi + PDC � 0. (19)

(3) SNOP capacity constraints

PVSCi ≤ �PVSCi. (20)
where �PVSCi is the converter capacity of each SNOP port.

4.2 Optimization strategies for failure
mode operation

SNOP access to the distribution system can reduce the outage
time, cut off the fault current through blocking in the event of a fault,
and cooperate with the relay protection device to quickly remove the
fault. SNOP can also transfer the load of the faulty station area to
minimize the loss of power in the faulty station area as an objective.
In the specific implementation of the transfer objective, the degree of
load balancing in the station area and the integrated power loss of
the transformer should also be considered. Therefore, taking the
failure of station i as an example, the objective function of the feeder
fault power supply restoration strategy model is Eqs 21–23:

f 1 � min PaLi + PVSCi( ), (21)
f 2 � min η( ), (22)

f 3 � min ΔPZi( ). (23)

After the fault in station i is removed, the system topology will be
changed, and the constraints that should be satisfied by the feeder
fault recovery strategy model need to be altered as follows.

(1) Feeder power balance constraints is Eqs 24, 25

Pacj − PaLj � PVSCj, (24)
PaLi + PVSCi � 0. (25)

In addition, it should also be considered that the power
supply of important loads in the faulty station area cannot be
interrupted, and important loads are introduced without power
supply constraints.

(2) Important load uninterrupted power constraints is Eq. 26.

PVSCi + PaLi,Im ≤ 0, (26)
where PaLi,Im is the important load in station i. The rest of the
operating constraints are the same as in the power coordination
optimization model, as shown in Eqs 18–20, where the transformer’s
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optimal economic operating constraints only consider the main
transformer of the station where no faults have occurred.

Both optimization models in this paper are multi-objective
optimization models, and hierarchical analysis can be used to deal
with the objective function in order to achieve the transformation from
multi-objective to single-objective, as shown in Eq. 27.

f � min λ1f 1
′ + λ2f 2

′ + λ3f 3
′( ), (27)

where λ1、λ2、and λ3 are the weight coefficients corresponding to
the optimization objective function; f 1′、f 2′、and f 3′ are normalized
as f 1、f 2、and f 3 (i.e., converted to values in the interval [0,1]) to
eliminate the effect on the optimization results due to the differences
in the order of magnitude and scale of the values of each
objective function.

The objective function during normal operation is to minimize
the standard deviation of the station load rate and minimize the
integrated power loss of the transformer; in this paper, we take
objective functions 1 and 2 to be equally important and set the
weight vector of each objective as Eq. 28.

λ1 λ2[ ] � 0.5 0.5[ ]. (28)

When the feeder fault occurs and the system is working in the load
transfer stage, the objective function includes the minimum power loss
in the fault area, theminimum standard deviation of the load rate in the
station area, and theminimum integrated power loss of the transformer,
in which the minimum power loss in the fault area is more important
than the other two objectives, and the remaining two objectives are
taken as equally important (Zhan et al., 2023); accordingly, the
discriminant matrix is obtained, and the weight vector of each
objective can be obtained after normalization computation.

In the feeder failure, the systemworks in the load transfer stage. The
objective function includes the minimum power loss in the fault area
and the minimum comprehensive power loss of the transformer, in
which the minimum power loss in the fault area and the minimum
standard deviation of the load rate of the station area are taken to be
equally important and aremore important than the other objective [10],
according to which the discriminant matrix is obtained as Eq. 29

J �
1 1 3
1 1 3
1/3 1/3 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (29)

The consistency indicator and consistency ratio are defined,
respectively. As shown in Eqs 30, 31.

CI � λ − n
n − 1

, (30)

CR � CI
RI

, (31)

where λ is the maximum feature root and n is the unique non-zero
feature root. Taking RI = 0.58 after the consistency test and obtaining
CR < 0.1, there is satisfactory consistency, and the normalization
calculation obtained after the weight vector of each target is Eq. 32.

λ1 λ2 λ3[ ] � 0.428 0.428 0.144[ ]. (32)

The active power reference value of each converter in a multi-
state switch is obtained by solving the objective function, which leads
to the coordinated control of the system.

4.3 Optimizing processes

The flow chart of the operation optimization strategy of the
flexible interconnection system is shown in Figure 8. First, basic
parameters such as transformer, PV output data, and energy storage
unit charge state are collected to provide conditions for determining
the operation mode of the system; then, the photovoltaic and storage
joint operation mode is judged, and the final photovoltaic and
storage joint output power is determined; second, it is judged
whether there is any feeder failure in the system, and a system
optimization model is established based on the judgment results,
which are solved using the CPLEX commercial solver; and finally,
according to the solved decision variables (the output power of each
port of SNOP), the precise regulation of the flexible interconnected
system is realized.

5 Example analysis

The simulation model is established in the MATLAB/Simulink
environment, and the flexible interconnection system is shown in
Figure 1.Duan et al. (2020) performed the comparison experiment,
and the simulation and experimental parameters are shown
in Table 4.

5.1 Normal mode simulation verification

In order to verify the feasibility of this paper’s load regulation
strategy and energy balance control method, this paper, based on the
full consideration of a variety of complex operating conditions and
extreme power mutations in the distribution area, designs the
simulation of the power reality information, as shown in Table 5.
It can be seen that in each AC distribution station area in [0,1) s,
transformer T3 operates under a light load. At 1s, there is a load
mutation in station area 1, increasing to 250 kW. In [1,2) s,
transformer T1 operates under a heavy load, while transformer
T3 continues to operate under a light load. At 2 s, the load in station
area 1 returns to 150 kW. Furthermore, there is a load mutation in
station area 3, increasing to 200 kW. Station area 4 increases its load
by 50 kW, while station area 5 reduces its load by 75 kW. In [2s],
station area 1 returns to a load of 150 kW, station area 3 maintains
its load at 200 kW, station area 4 increases its load by 50 kW, and
station area 5 reduces its load by 75 kW. With a 75 kW load, in [2,3)
s, transformer T5 operates under a light load. At 3s, the load in
station 4 mutates to 250 kW, and in [3,4) s, transformer T4 operates
under a heavy load. The DC distribution platform simulates
charging pile load mutations and PV output volatility. The
charging pile load is designed to be 5 kW in the [0,2) s interval
and increases to 50 kW at 2s. The PV output is designed to fluctuate
between 15 kW and 25 kW. The energy storage unit’s initial SOC is
set to 60%, with a maximum charge and discharge power of 5 kW.
The photovoltaic and storage joint output reference power Pdc in
this paper is set to 20 kW. In this paper, the reference power Pdc is set
to 20 kW, and the joint output power PDC is 20 kW at all stages after
the determination. The following figure shows the joint output
power waveform of the photovoltaic and storage systems, as
shown in Figure 9.
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After determining the joint output power of photovoltaic and
storage at each stage, it is substituted into the power coordination
optimization model, and the power command of each VSC is
obtained using the CPLEX solver, and the result is shown in Eq. 33.

PVSC1

PVSC2

PVSC3

PVSC4

PVSC5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

−75.2 −150.0 −69.0 −51.8
4.1 18.8 20.7 41.5
103.2 127.5 44.7 95.2
−50.2 −38.8 −90.0 −150.0
3.1 27.5 119.6 95.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

The output power waveform of each converter is shown in
Figure 10. When the SNOP power command is changed, each port
can track the power command quickly and precisely.

Figure 11 shows the transformer load rate waveform. Figure 11A
shows the unregulated transformer load rate, and the transformer is
caught in the light and heavy load operations. Figure 11B shows the
comparative experiment, which results in the overloading of the
transformers due to the failure to take into account the difference in
the capacity of each transformer. Figure 11C shows the transformer load
rate after adopting the power coordination and optimization strategy,
and the main transformer load rate of each station can be kept in the
optimal economic operation interval [0.25,0.75] after regulation.

Figure 12 shows the standard deviation of the load rate of each
station before and after optimization compared with the comparison
test. It can be seen that the comparison test did not take into account the
differences between the distribution stations, and the load distribution
was unbalanced. After optimization, the load balance of the distribution
stations was significantly improved, which is conducive to the safe and
economic operation of the flexible interconnection system.

Figure 13 shows the DC voltage waveform of the flexible
interconnection system, and the results show that the battery can
effectively stabilize the DC side voltage at 750 V. The load of the
station area changes at 1 s, 2 s, and 3 s, and the power command of
each port of the SNOP also changes, and the DC voltage fluctuates to
a certain extent. Among them, the DC side voltage fluctuation is
most obvious at 2 s due to the sudden increase in the DC side load,
but the maximum fluctuation amplitude does not exceed 20 V (the
fluctuation ratio is less than 5%).

5.2 Failure mode simulation verification

In order to verify the feasibility of the feeder fault recovery
strategy, the working condition settings of the DC distribution
station and each AC distribution station are the same as those in
Section 4.1 and will not be repeated here. At 2 s, a fault occurs in
station 2, in which the important load is 30 kW, and the load-cutting
operation is required when it cannot be completely transferred to the
capacity limitation of the converter port. After the determination of
the fault condition, the combined photovoltaic and storage output
power PDC of each stage is still 20 kW in each converter output
power command, as shown in Eq. 34, and the simulation results are
shown in Figure 14.

PVSC1

PVSC2

PVSC3

PVSC4

PVSC5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

−75.2 −150.0 −65.8 −35.0
4.1 18.8 −100.0 −100.0
103.2 127.5 136.6 150.0
−50.2 −38.8 −90.8 −135.0
3.1 27.5 150.0 150.0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (34)

As shown in Figure 14, the ports are still able to track power
commands quickly and accurately under fault conditions.

Figure 15A shows the transformer load ratio waveform. After the
fault occurred, themain transformer load ratio of station area 2 dropped
to 0, the load of station area 2 all lost power, and the main transformer
of the rest of the station area easily fell into light and heavy load
operations without regulation. Figure 15B shows the ease with which
the table transformer can fall into light or heavy load operations under
the comparative experiment. After adopting the control strategy of this
paper, the load of station area 2 will be reasonably allocated to the
normal station area for load transfer to supply and effectively avoid
transformer fall into the light and heavy load operations; at this time, the
transformer load ratio is shown in Figure 15C.

Figure 16 shows the comparison of the power loss of each station
before and after optimization. Before the optimization of station
2 failure, which involves a complete power outage, all power is lost.
However, after the use of the control strategy proposed in this paper, the
remaining normal stations can redistribute their power to supply the
faulty station loads. The four normal distribution stations in this paper
they are capable of transferring all the faulty station loads and can
ensure that the load of each station is balanced, as shown in Figure 17.

Figure 18 shows the DC voltage waveform. The failure of feeder
2 of the station at 2 s has the largest disturbance to the system, and
the DC side voltage fluctuation is also the most obvious. However,
the maximum fluctuation amplitude of the DC side voltage is not
more than 35 V (the fluctuation ratio is less than 5%).

Figures 19, 20 show the waveforms of AC voltage and angular
frequency on the faulted feeder, respectively. The AC side voltage
and frequency of the station can still be stabilized at 380 V/50 Hz
after the fault and are not affected by the sudden change in the load
of the station at the moment of 3 s.

6 Conclusion

Based on the improved virtual synchronous control strategy, this
paper proposes a joint multi-mode operation strategy for photovoltaic
and storage. Optimization strategies are proposed for the normal and
fault modes, and the simulation verifies the reasonableness and
effectiveness of each strategy. The conclusions are as follows:

(1) The joint operation and control strategy of photovoltaic and
storage proposed in this paper can effectively improve the
controllability of distributed PV and the real-time scheduling of
distributed PV to participate in the system power mutual benefit.

(2) The optimization strategy proposed in this paper is based on the
constraints of the economic operation interval of the transformers
and the control objectives of balanced load on the feeder line and
minimum integrated power loss of the transformer. The model is
solved to ensure the balanced regulation of the load in the station
area, effectively avoiding the light–heavy load operation of the
main transformer in the station area and, at the same time,
improving the economy of the system.

(3) The virtual synchronous control strategy in this paper can
effectively maintain the stability of the DC bus voltage, and at
the same time, when a fault occurs, there is no need to switch the
control strategy so that it can provide support for the faulty line
and ensure power supply for important loads.
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It should be noted that, in practice, VSC transmission efficiency will
change along with the power command, and the existing model should
be improved by considering the changes in VSC efficiency; at the same
time, there are still many problems to be solved in terms of how to set
the reference power for the joint output of photovoltaic and storage. In-
depth research on the above aspects will be carried out later.
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Station-network cooperative
planning method of urban
integrated energy system based
on energy flow model
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Coordinated siting and sizing for energy stations and supply networks in urban
integrated energy system (UIES) is significant for economic improvement and
carbon emissions reduction. A station-network cooperative planning method
of UIES based on energy flow model is proposed. First, an operation model of
heat network based on energy flow theory is proposed, which solves the
problem that the temperature mixing equation in the traditional operation
model cannot be applied to heat network planning. On this basis, a bi-level
model for station-network cooperative planning of UIES is constructed, in
which the upper level optimizes the siting and sizing of the energy station and
the topology of the supply network, and the lower level optimizes the
operation of the UIES and feeds back the operation cost of the UIES to the
upper level. Finally, a solution method of cooperative planning based on the
Karush-Kuhn-Tucher condition is proposed, to transform the bi-level
nonlinear optimization model into a single-level linear optimization model
for efficient solution. Case studies on the 55-node and 77-road urban
topology show that the proposed method can perform an effective
planning on energy supply network topology and rationally configure the
capacity of various devices in the energy station.

KEYWORDS

energy flow model, urban integrated energy system, bi-level planning model, station-
network cooperative optimization, heat network

1 Introduction

With the continuous depletion of traditional fossil fuels and the increasingly serious
problem of environmental pollution, there is an urgent need to form a new highly
efficient, clean and sustainable way of utilizing multiple energy sources in a
complementary manner (Strezoski et al., 2022). As an advanced energy utilization
concept emerging in recent years, urban integrated energy system (UIES) can realize the
coordinated complementary and efficient utilization of various types of energy sources,
thereby increasing the rate of renewable energy consumption and reducing carbon
emissions (Li et al., 2021). Therefore, it is of great significance to study the optimal
configuration and operation optimization strategy of UIES under the background of
dual carbon target (Chen et al., 2022).
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Currently, global scholars have conducted a large number of
studies on the planning of UIES. In Farrokhifar et al. (2020), a
comprehensive summary of the planning research of UIES is
provided from the perspectives of mathematical modeling,
operation constraints, optimization objectives and methods of

handling uncertainty. In Mu et al. (2020), a planning model for
energy conversion and storage devices in UIES considering dynamic
energy con-version efficiency coefficients is developed. In order to
achieve carbon emission reduction, a device capacity planning
strategy in UIES based on various device investment constraints is
proposed in Wang et al. (2019). In Dong et al. (2023), an optimal
expansion planningmodel for an integrated energy system consisting of
a power grid, a gas network and multiple energy hubs is proposed. The
references mentioned above focus on the planning problem of the
capacity of the device in energy stations when the siting of the station
and energy supply network are predetermined. However, the siting and
sizing of the energy station and the energy supply network are
interacting with each other, and the global optimal solution of UIES
planning cannot be obtained when the siting of the station and the
supply network are predetermined (Xiao et al., 2018). Therefore, further
research is needed to investigate the cooperative planning of the siting
and sizing of energy station with energy supply network.

In this context, a coordinated siting and sizing method for
PIES that considers load complementary characteristics is
proposed in Liu. (2020a). In Liu (2020b), an alternating
optimization method based on cellular network theory is
proposed for UIES’s energy station site selection, energy
supply area division, and pipe network planning, and the
Kruskal algorithm is used to determine the pipe network
topology planning strategy. In Zhang et al. (2015), a long-term
expansion planning methodology for energy hubs containing
electric, gas and heat to optimally determine the least-cost
planning schedules for generating units, transmission lines,
gas boiler (GB) and combined heat and power (CHP)
generation is proposed. However, these references do not use
an exact model that includes variables such as thermal mass flow
and temperature when modeling heat networks, but simply de-
scribes them through thermal power balance constraints only,
which will lead to inability to obtain accurate planning results.

To address this problem, a planning method of UIES
consisting of a simulation model and an optimization model

FIGURE 1
Urban road topology.

TABLE 1 Maximum electrical and heat loads during the planning period.

Node Electrical load (kW) Heat load (kW)

10 4180 4130

13 1720 2660

32 860 2210

45 4670 4330

49 1430 2380

FIGURE 2
The curve of electrical load for typical operating scenarios.
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is proposed in Hong et al. (2018), where the simulation model
adopts a two-layer bus structure, and considers both the energy
flow in the external bus and the detailed network in the internal
bus to achieve an accurate modeling of the thermal network in
mass regulation mode. In Chen et al. (2024), a two-stage
planning model of UIES for coordinating the location and size
of the energy station as well as the supply net-work is proposed,
where the optimal location of the energy station and the topology
of the supply network are optimized to obtain the optimal location
of the energy station in the first stage, and the size of the energy
station and the pipeline network selection are optimized to obtain
the optimal location of the energy station and the supply net-work
topology in the second stage. However, all of the above references
are planning with the topology of the heat network determined and

does not consider planning for the heat supply pipeline. This is
because the temperature mixing equation is only valid if the inlet
and outlet of the heat pipeline are correctly determined, whereas
the ther-mal mass flow direction cannot be predetermined when
considering the planning of the heat pipeline, and therefore the
model needs to be improved.

In this regard, by introducing an auxiliary heat variable and
approximating the calculation equation of heat loss, the heat
network model is transformed into a linear energy flow model in
Xue et al. (2021), which can be applied to the planning problem of
heat net-work to significantly improve the computational efficiency.
Based on this model, for a mesh multi-energy distribution network
(MMDN) containing electric, gas and heat, a resilience-oriented
extended planning and reinforcement model is proposed in Li et al.

FIGURE 3
The curve of heat load for typical operating scenarios.

FIGURE 4
The curve of PV for typical operating scenarios.
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(2023), to enhance the resilience of the MMDN through multi-
energy coupling support, reinforcement, and reconfiguration
strategies to resist low-probability high-damage un-foreseen
events. In order to increase the penetration rate of wind power, a
coordinated planning model for electric and heat based on the
energy flow model and considering seasonal heat network
reconfiguration is developed in Du et al. (2024), which is
formulated as a mixed integer linear programming model.
However, none of the energy flow-based heat network operation
models in the above reference take into account the transmission
delay characteristic of thermal mass, which cannot fully utilize the
heat storage capacity of the heat network.

In summary, it can be seen that how to apply the energy flowmodel
to the station-network cooperative planning of UIES and consider
the transmission delay of thermal mass still needs to be
investigated. Aiming at this problem, a station-network

cooperative planning method of UIES based on energy flow
model is proposed, which realizes the cooperative optimization
of the siting and sizing of energy station and the topology of energy
supply network. The main contributions are as follows:

(1) By introducing energy flow variables to replace the product of
flow and temperature, and establishing the transmission delay
characteristic equation, an energy flow-based heat network
operation model is proposed, which solve the problem that
the existing models do not take into account the transmission
delay characteristic of thermal mass.

(2) A bi-level model for station-network cooperative planning
of UIES is constructed, in which the upper level optimizes
the siting and sizing of energy station and the topology of
energy supply network with the objective of minimizing the
total cost and passes it to the lower level, and the lower level

FIGURE 5
The curve of WT for typical operating scenarios.

TABLE 2 Parameters of devices to be planned.

Device Parameters Value Device Parameters Value

CHP cCHP
inv 7000 yuan/kW GB cGBinv 2450 yuan/kW

cCHP
m 0.05 yuan/kW cGBm 0.03 yuan/kW

τCHP 25 years τGB 25 years

KCHP
h /KCHP

e 0.3/0.45 KGB
h 0.95

EH cEHinv 2800 yuan/kW ES cESinv 1960 yuan/kWh, 560 yuan/kW

cEHm 0.04 yuan/kW cESm 0.043 yuan/kW

τEH 25 years τES 12 years

KEH
e 0.95 ηES,c/ηES,f 0.95

PV cPVinv 5000 yuan/kW WT cWT
inv 7500 yuan/kW

cPVm 0.04 yuan/kW cWT
m 0.05 yuan/kW

τPV 30 years τWT 30 years
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optimizes the operation of the UIES according to the
planning scheme and feeds back the total operation cost
of the UIES to the upper level.

(3) A solution method of cooperative planning based on the
Karush-Kuhn-Tucher (KKT) condition is proposed.
Firstly, the nonlinear bi-level cooperative planning
model is transformed into a bi-level linear model based
on mathematical linearization theory to improve the
solution efficiency, and then the bi-level linear model
is transformed into a mixed-integer linear planning
model which is easy to be solved based on the
KKT condition.

The remainder is organized as follows. In Section 2, the
operation model of heat network based on energy flow theory is
proposed. In Section 3, the bi-level model for station-network
cooperative planning of UIES is constructed. In Section 4, the
solution method of cooperative planning based on the KKT

condition is proposed. In Section 5, case studies are conducted to
demonstrate the Effectiveness and efficiency of the proposed
method. Conclusion is finally given in Section 6.

2 Operation model of heat network
based on energy flow theory

2.1 Exact operation model of heat network

In the heat network, the return water is heated by the heat
source, and enters the supply pipeline after the temperature
rises, and is transmitted to each secondary heat exchanger
station through the supply pipeline, and flows into the
return pipeline again after heat exchange. The exact
operation model of heat network is as follows (Wu et al.,
2018; Ha et al., 2022):

HN
i,t,s � cwmi T

S
i,t,s − TR

i,t,s( ) (1)∑
ki

mS
ki � ∑

ij

mS
ij (2)

∑
ki

mR
ki � ∑

ij

mR
ij (3)

TS
i,t,s ∑

ki

mS
ki � ∑

ki

mS
kiT

S,out
ki,t (4)

TR
i,t,s ∑

ki

mR
ki � ∑

ki

mR
kiT

R,out
ki,t,s (5)

TS
i,t,s � TS,in

ij,t,s (6)
TR
i,t,s � TR,out

ij,t,s (7)

TS,out
ij,t,s � Tam

t,s + TS,in
ij,t−τij ,s − Tam

t,s( )e− λijLij

mS
ij
Aijρw cw (8)

TR,out
ij,t,s � Tam

t,s + TR,in
ij,t−τij ,s − Tam

t,s( )e− λijLij

mR
ij
Aijρw cw (9)

TS
min ,i ≤TS

i,t,s ≤TS
max ,i (10)

TR
min ,i ≤TR

i,t,s ≤TR
max ,i (11)

FIGURE 6
Results of energy station siting and energy supply
network planning.

TABLE 3 Results of device capacity allocation in energy station.

CHP (MW) GB (MW) EH (MW) PV (MW) WT (MW) ES

4.35 7.33 2.23 12.60 10.00 2.40 MW/4.80 MWh

TABLE 4 Various costs of UIES.

Cinv Cope

Cdv (104 yuan) Cpl (104 yuan) Cbuy
e (104 yuan) Cbuy

g (104 yuan) Cmain (104 yuan)

1406.6 1399.9 76.7 1322.9 162.3

TABLE 5 Comparison of UIES’s costs of the proposed method and Case 1–1.

Call (104 yuan) Cinv (104 yuan) Cope (104 yuan)

Proposed method 4368.4 2806.5 1561.8

Case 1–1 4605.5 2978.9 1626.6
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FIGURE 7
Total heat power of the heat equipment in the system of the proposed method.

FIGURE 8
Total heat power of the heat equipment in the system of Case 1–1.

TABLE 6 Comparison of system costs in five scenarios.

Cost (104 yuan) Proposed method Case 2–1 Case 2–2 Case 2–3 Case 2–4

Cdv 1406.6 1081.8 1202.4 1587.2 1266.7

Cpl 1399.9 1399.9 1399.9 1399.9 1399.9

C buy
e 76.7 376.1 362.8 376.3 46.6

C buy
g 1322.9 2252.9 1419.0 1140.1 1633.1

Cmain 162.3 162.2 162.2 162.3 162.2

Call 4368.4 5272.9 4546.5 4665.8 4508.6
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mS
min ,ij ≤mS

ij ≤m
S
max ,ij (12)

mR
min ,ij ≤mR

ij ≤m
R
max ,ij (13)

where HN
i,t,s is the heat power of heat network node i at period t

under scenario s; cw is the specific heat capacity of water; mi is
the mass flow rate of heat exchanger at node i; T S

i,t,s and TR
i,t,s are

the temperature of water flow at node i in supply/return
network at period t under scenario s, respectively; m S

ij and
m R

ij is the mass flow rate in pipe ij of supply and return networks,
respectively; λij is the thermal conductivity of pipe ij; Lij is the
length of the road between nodes i and j; Aij is the cross-
sectional area of pipe ij; ρw is the density of water; T S, in

ij,t,s and
TR,in
ij,t,s are the inlet temperatures of water flow in pipe ij of supply

and return network at period t under scenario s, respectively;
TS,out
ij,t,s and TR,out

ij,t,s are the outlet temperatures of water flow in
pipeline ij of supply and return network at period t under
scenario s, respectively; Tam t,s is the ambient temperature
at period t under scenario s; τij is the transmission delay of
pipeline ij; T S

max,i and TS
min,i are the maximum and minimum

temperatures of water in supply network for node i,
respectively; TR

max,i and TR
min,i are the maximum and

minimum temperatures of water in return network for node
i, respectively; mS

max,ij and mS
min,ij are the maximum and minimum

flow rates of the water in pipe ij of supply network, respectively; mR
max,ij

and mR
min,ij are the maximum and minimum flow rates of the water in

pipe ij of return network, respectively.
The above model cannot be directly applied to the station-

network cooperative planning of UIES mainly because of the
following two problems:

(1) In the exact operation model, the temperature mixing
equations, i.e., Eqs. 4, 5, are only valid if the inlet and
outlet of the heat pipe are correctly determined, whereas
the direction of mass flow cannot be predetermined when
considering the planning for heat network, and therefore the
model cannot be used.

(2) The product term of mass flow rate and temperature exists in
the exact model, which, if applied to the station-network
cooperative planning of UIES, will make the planning model
become a nonlinear optimization model, which not only has a
poor solution efficiency, but may not be able to achieve the
solution when the size of network is large.

Therefore, a heat network operation model based on theory
(Xue et al., 2021) is constructed in this paper, which effectively solves
the above two problems.

2.2 Energy flow-based heat network
operation model

Based on the energy flow theory, utilizing an auxiliary variable
instead of the nonlinear term (i.e., the product of temperature and
mass flow rate) is considered in this paper, and defines the available
heat quantity at the inlet and outlet of the pipe ij at period t under
scenario s as hinij,t,s and houtij,t,s, respectively, as shown in the
following equation:

hinij,t,s � cwm
S
ij TS,in

ij,t,s − TR,in
ij,t,s( ) (14)

houtij,t,s � cwm
S
ij TS,out

ij,t,s − TR,out
ij,t,s( ) (15)

Then Eqs. 4, 5 are transformed into the following equation:∑
ki

houtki,t,s +HN
i,t,s � ∑

ij

hinij,t,s (16)

Due to the flow direction of heat pipeline in the UIES planning
problem varies with the planning scheme, the energy flow-based
heat network operation model in Xue et al. (2021) is unable to
account for transmission delay characteristics of thermal mass. To
address this issue, this paper depicts the flow direction of heat
pipeline based on the spanning tree variables in the spanning tree
theory, and rewrites the delay characteristic equation Eqs. 8, 9 into
the following form:

− 1 − bHij( )M≤ hinij,t,s − houtij,t−τij ,s − hlossij,t,s ≤ 1 − bHij( )M (17)
− 1 − bHji( )M≤ houtij,t,s − hinij,t−τij ,s − hlossij,t,s ≤ 1 − bHji( )M (18)

hlossij,t,s � cwm
S
ij TS,in

ij,t,s + TR,in
ij,t,s − 2Tam

t,s( ) 1 − e
− λijLij

mS
ij
Aijρw cw⎛⎝ ⎞⎠ (19)

where hlossij,t,s is the loss of available heat quantity of the pipe ij at
period t under scenario s; bHij and bHji are binary spanning tree
variables. If node i is the parent of node j in the heat network, bHij =
1 and bHji = 0; if node j is the parent of node i, bHji = 1 and bHij = 0.
When bHij = 1, the flow direction of pipeline ij is from node i to node
j, therefore Eq. 17 transform to hinij,t,s − houtij,t−τij ,s − hlossij,t,s � 0 to depict
the transmission delay characteristic of the available heat quantity
of the pipe ij. Eq. 18 is the same as Eq. 17.

Based on Eqs 10–13, the upper and lower constraints on the
available heat quantity are respectively established as shown in Eqs
20–23 and give the calculation of the upper and lower limits of the
available heat quantity.

hinmin ,ij ≤ hinij,t,s ≤ hinmax ,ij (20)
houtmin ,ij ≤ houtij,t,s ≤ houtmax ,ij (21)

hinmax ,ij � cwmS
max ,ij T S

max − T R
min( )

houtmax ,ij � cwmS
max ,ij T S

max − T R
min( ){ (22)

hinmin ,ij � 0
houtmin ,ij � 0{ (23)

where hinmax, ij and hinmin, ij are the upper and lower limits of the
available heat quantity at the inlet of the pipe ij, respectively;
houtmax, ij and houtmin, ij are the upper and lower limits of the available
heat quantity at the outlet of the pipe ij, respectively; T S

max and
T S

min are the maximum and minimum temperatures of water in
supply network, respectively; TR

max and TR
min are the maximum

and minimum temperatures of water in return network,
respectively.

If the heat loss hlossij,t,s is determined, the operation model of
heat network based on energy flow theory is independent of
temperature and mass flow rate and can be solved directly
without considering the direction of water flow. The
nonlinear term λijlij/mS

ijAijρwcw in Eq. 19 is very close to 0,
usually less than 0.001, so considering 1-e-x≈x, the loss of
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available heat quantity can be approximated as (Dorfner and
Hamacher, 2014):

hlossij,t,s ≈ cwm
S
ij TS,in

ij,t,s + TR,in
ij,t,s − 2Tam

t,s( ) λijLij

mS
ijAijρwcw

� λijLij

Aijρw
TS,in
ij,t,s + TR,in

ij,t,s − 2Tam
t,s( ). (24)

Since the only controllable variable affecting the loss of available
heat quantity is temperature, the temperature of pipe should be kept
lower to minimize the heat loss. In calculating the loss of available
heat quantity, the inlet temperature of pipe in Eq. 21 is set as its
lower limit, therefore:

hlossij,t,s �
λijLij

Aijρw
TS,in
min ,ij + TR,in

min ,ij − 2Tam
t,s( ) (25)

where T S, in
min, ij and T

R, in
min, ij are the lowest outlet temperatures of water

flow in pipe ij of supply and return network, respectively.

3 Bi-level planning model of
station-network cooperative
optimization of UIES

3.1 Objective of the upper level
planning model

The objective of the upper level is to minimize the total cost Call,
including the investment cost Cinv and the operation cost Cope as
shown in the following equation:

minCall � Cinv + Cope (26)
The investment cost Cinv includes the device investment cost Cdv and

the pipeline investment cost Cpl, as shown in the following equation:

Cinv � Cline + Cdevice (27)
Cdevice � ∑

i∈NP

∑
d∈ΩD

cdinvS
d
i R

d
ir (28)

Cline � ∑
ij∈L

∑
d∈ΩL

cdinvlijy
d
ijR

d
ir (29)

Rd
ir �

r 1 + r( )τd
1 + r( )τd − 1

(30)

where NP is the set of candidate nodes of energy station; L is the
set of roads; ΩD is the set of the types of devices, including CHP,
GB, electrical heater (EH), energy storage (ES), photovoltaic (PV)
and wind turbine (WT); ΩL is the set of the types of pipelines,
including electric lines and heat pipes; cd inv is the investment
cost factor for the d-category device/pipeline; Rd

ir is the payback
factor for d-category device/pipeline, which spread the
investment cost of the device over the planning period equally
over the years of the life cycle; τd is the life of d-category devices/
pipelines; Sdi is the planning capacity of d-category device at node
i; y d

ij indicates whether d-category pipeline is installed between
nodes i and j. If it is installed, ydij,k = 1, otherwise, ydij,k = 0.

3.2 Constraints of the upper level
planning model

3.2.1 Constraints of planning for energy station
This paper considers that there are multiple candidate nodes of

energy station, and defines the binary variable yS
i to indicate whether

energy station is planned at node i. If it is planned, ySi = 1; otherwise,
ySi = 0. The number of energy stations in the UIES needs to meet the
following constraints:

N S
min ≤ ∑

i

yS
i ≤N

S
max (31)

whereN S
min andN

S
max are the lower and upper limits of the number of

energy stations, respectively.
The CHP units, GB, EH, ES, PV andWT can be configured only

when the node is planning an energy station, so there:

yS
i S

d
min ,i ≤ S

d
i ≤yS

i S
d
max ,i, d ∈ CHP,GB, EH, ES,WT,PV{ } (32)

where Sd
i denotes the installed capacity of d-category device at node i;

Sd
min,i and Sd

max,i are the minimum and maximum installed capacity
of d-category device at node i, respectively.

The total capacity of each type of equipment in the UIES needs
to meet the following constraints:

S d
min ≤ ∑

i

Sdi ≤ S
d
max , d ∈ CHP,GB, EH, ES,WT,PV{ } (33)

where Sdmin and Sdmax are the lower and upper limits of the total
installed capacity of d-category equipment in the UIES.

3.2.2 Constraints of planning for energy
supply network

In this paper, the planning of electric lines and heat pipes is
considered, in order to ensure the radial structure of the electric
network, the following constraints are in place. Eqs 31, 32 and give
the calculation of the number of parent node of a node based on the
spanning tree theory. Eq. 36 indicates that if a candidate node is
planned as an energy station, it must be the root node and has no
parent node. Eq. 37 indicates that each load node has a parent node.
Eq. 38 indicates that nodes other than candidate nodes and load
nodes have at most one parent node.

yE
ij � bEij + bEji (34)
cEi � ∑

ji

bEji (35)

cEi ≤ 1 − yS
i , i ∈ NP (36)

cEi � 1, i ∈ NL (37)
cEi ≤ 1, i ∈ N\ NP ∪ NL( ) (38)

where N, NP and NL are the sets of all nodes, candidate energy
station nodes and load nodes, respectively; yEij indicates whether
the electric line is planned between nodes i and j. If it is planned,
yEij = 1; otherwise, yEij = 0; bEij and bEji are binary spanning tree
variables. If node i is the parent of node j in the electric network,
bEij = 1 and bEji = 0; if node j is the parent of node i, bEji = 1 and
bEij = 0; cEi denotes the number of parent nodes of node i in the
electric network.
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Similarly, to ensure the radial structure of the heat network, the
following constraints are imposed based on Eqs 34–38:

yH
ij � bHij + bHji (39)
cHi � ∑

ji

bHji (40)

cHi ≤ 1 − yS
i , i ∈ NP (41)

cHi � 1, i ∈ NL (42)
cHi ≤ 1, i ∈ N\ NP ∪ NL( ) (43)

where yH
ij indicates whether the heat pipe is planned between nodes i

and j. If it is planned, yH
ij = 1; otherwise, yH

ij = 0; cHi denotes the
number of parent nodes of node i in the heat network.

3.3 Objective of the lower level
planning model

The objective of the lower level is to minimize the operating cost
Cope, which includes purchasing electric cost Cbuy

e , purchasing gas
cost Cbuy

g and maintenance cost Cmain, as shown in the
following equation:

minCope � Cbuy
e + Cbuy

g + Cmain (44)
Cbuy

e � ∑
s

∑
t

∑
i

αsces Pbuy
i,t,sc

E
t (45)

Cbuy
g � ∑

s

∑
t

∑
i

αsces Gbuy
i,t,sc

G
t (46)

Cmain � ∑
i∈NP

∑
d

cdmS
d
i + ∑

ij∈L
lij yE

ijc
E
m + yH

ij c
H
m( ) (47)

where Pbuy
i,t,s is the power of purchasing electric at node i at period t

under scenario s; Gbuy
i,t,s is the power of purchasing gas at node i at

period t under scenario s; Pd
i,t,s is the output of d-category device at

node i at period t under scenario s; cdm is the unit maintenance cost of
d-category device; cEm and cHm are the unit maintenance cost of electric
line and heat pipe, respectively.

3.4 Objective of the lower level
planning model

3.4.1 Constraints of device
(1) Constraints of CHP.

The constraints of CHP are established as follows (Chen
et al., 2023):

HCHP
i,t,s � KCHP

e PCHP
i,t,s (48)

HCHP
i,t,s � KCHP

h GCHP
i,t,s (49)

PCHP
min S

CHP
i ≤PCHP

i,t,s ≤PCHP
max S

CHP
i (50)

−r CHP
max S

CHP
i Δt≤PCHP

i,t,s − PCHP
i,t−1,s ≤ rCHP

max S
CHP
i Δt (51)

where PCHP
i,t,s, G

CHP
i,t,s andH

CHP
i,t,s are the electric power, gas consumption

power and heat power of the CHP at node i at period t under
scenario s, respectively; KCHP

e is the heat-to-electric ratio
coefficient of the CHP; KCHP

h is the gas-heat conversion
efficiency of the CHP; PCHP

max and PCHP
min are the upper and lower

limits of the generation power of the CHP, respectively; rCHP
max is

the maximum ramp rate of the CHP.

(2) Constraints of GB (Zhang et al., 2023).

HGB
i,t,s � KGBGGB

i,t,s (52)
H GB

min S
GB
i ≤HGB

i,t,s ≤H
GB
max S

GB
i (53)

where GGB
i,t,s and HGB

i,t,s are the gas consumption power and heat
power of the GB at node i at period t under scenario s, respectively;
KGB is the heat-gas conversion factor of the GB;HGB

max andH
GB
min are

the upper and lower limits of the heat power of the GB,
respectively.

(3) Constraints of EH (Chen et al., 2023).

HEH
i,t,s � KEHPEH

i,t,s (54)
H EH

min S
EH
i ≤HEH

i,t,s ≤H
EH
max S

EH
i (55)

where P EH
i,t,s and H

EH
i,t,s are electric power and heat power of the EH at

node i at period t under scenario s, respectively; KEH is the heat-
electric conversion factor of the EH; HEH max and HEH min are
the upper and lower limits of the heat power of the EH,
respectively.

(4) Constraints of ES (Wang et al., 2021).

xES,c
i,t,s + xES,f

i,t,s ≤ 1 (56)
0≤PES,c

i,t,s ≤ xES,c
i,t,s S

ES
i (57)

0≤PES,f
i,t,s ≤ xES,f

i,t,s S
ES
i (58)

PES
i,t,s � PES,c

i,t,s − PES,f
i,t,s (59)

EES
i,t,s � EES

i,t−1,s + ηES,cPES,c
i,t,s −

PES,f
i,t,s

ηES,f
(60)

10%EES,p
i ≤EES

i,t,s ≤ 90%E
ES,p
i (61)

where x ES,c
i,t,s and x ES,f

i,t,s are the charging and discharging state of the ES
at node i at period t under scenario s, respectively; P ES,c

i,t,s and P
ES,f
i,t,s are

the charging and discharging power of the ES at node i at period t
under scenario s, respectively; E ES

i,t,s is the capacity of the ES at node
i at period t under scenario s; ηES,c and ηES,f are the charging and
discharging efficiencies of the ES, respectively; EES,p

i is the planning
capacity of the ES at node i.

(5) Constraints of PV (Chen et al., 2023).

0≤PPV
i,t,s ≤ α

PV,pre
t,s SPVi (62)

where αPV, pret,s is the predicted output coefficients for PV at period
t under scenario s; PPV

i,t,s is the power outputs of PV at node i at period
t under scenario s.

(6) Constraints of WT.

0≤PWT
i,t,s ≤ αWT,pre

t,s SWT
i (63)

where αWT, pre
t,s is the predicted output coefficients for WT at period

t under scenario s; PWT
i,t,s is the power outputs of WT at node i at

period t under scenario s.
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(7) Constraints of Power of Purchasing Gas.

Gbuy
i,t,s � GCHP

i,t,s + GGB
i,t,s (64)

3.4.2 Constraints of electric network
The power flow model of the electric network is established

based on the LinDistFlow model as follows (Baran andWu, 1989; Su
et al., 2023):

PN
i,t,s � Pbuy

i,t,s + PCHP
i,t,s + PPV

i,t,s + PWT
i,t,s + PES

i,t,s − PEH
i,t,s − Pload

i,t,s

QN
i,t,s � Qbuy

i,t,s + QCHP
i,t,s + QPV

i,t,s + QWT
i,t,s − QEH

i,t,s − Qload
i,t,s

⎧⎨⎩ (65)

∑
ki∈L

PL
ki,t,s + PN

i,t,s � ∑
ij∈L

PL
ij,t,s∑

ki∈L

QL
ki,t,s + QN

i,t,s � ∑
ij∈L

QL
ij,t,s

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (66)

−M 1 − yE
ij( )≤U2

i,t,s − U2
j,t,s − 2PL

ij,t,sRij − 2QL
ij,t,sXij ≤M 1 − yE

ij( )
(67)

U 2
min ≤U

2
i,t,s ≤U 2

max (68)
PL
ij,t,s( )2 + QL

ij,t,s( )2 ≤yE
ij Sij( )2 (69)

where PN
i,t,s andQ

N
i,t,s are the active and reactive power at node i at period

t under scenario s, respectively; PL
ij,t,s andQ

L
ij,t,s are the active and reactive

power transmitted by line ij at period t under scenario s, respectively;
U2

i,t,s is the squared value of the voltage at node i at period t under
scenario s; Rij and Xij are the resistance and reactance of line ij,
respectively; M comes from the big-M method and is a sufficiently
positive number, so that for any unplanned line ij,U2

i,t,s andU
2
j,t,s do not

directly influence each other;U2
min andU

2
max are the squares of the lower

and upper limits of voltage, respectively; Sij is the capacity of line ij.
Rij and Xij in Eq. 67 require the substitutions shown in Eq. 70:

Rij � yE
ijlijR

Xij � yE
ijlijX

{ (70)

where R and X are the resistance and reactance per unit length of the
electric line, respectively.

Then Eq. 67 is transformed into Eq. 71:

−M 1 − yE
ij( )≤U2

i,t,s − U2
j,t,s − 2PL

ij,t,sy
E
ijlijR

− 2QL
ij,t,sy

E
ijlijX≤M 1 − yE

ij( ) (71)

3.4.3 Constraints of heat network
In addition to the energy flow-based heat network operationmodel

developed in Section 2, the constraint shown in Eq. 72 is included.

HN
i,t,s � HCHP

i,t,s +HGB
i,t,s +HEH

i,t,s −Hload
i,t,s (72)

In summary, the constraints of heat network include Eqs 16, 20,
21, 25, 72.

4 Solution method of station-network
cooperative optimization of UIES

Firstly, the nonlinear terms in the cooperative optimization
model are linearized based on mathematical theory, and the bi-

level nonlinear optimization model is transformed into a bi-level
linear optimization model. Then based on the Lagrangian function
and KKT condition, the lower level model is transformed into the
additional constraints of upper level model, and the bi-level linear
optimization model is transformed into a single-level linear
optimization model, which can be efficiently solved by
commercial solvers.

4.1 Linearization of the cooperative
planning model

The nonlinear terms PL
ij,t, syE ijlijR andQ

L
ij,t, syE ijlijR appear in Eq. 71,

which need to be linearized to improve the efficiency of the solution.
Define the auxiliary variable Z P

ij,t,s = P L
ij,t,sy

E
ij, Z

Q
ij,t,s =Q L

ij,t,sy
E
ij, where y

E
ij

is a 0–1 variable, so there are the constraints shown in Eqs 73–76.
When yE

ij = 1, Eqs 73, 74 are translated into Z P
ij,k,t,s = P L

ij,t,s; when y E
ij =

0, Eqs 73, 74 are translated into ZP
ij,k,t,s = 0. Eqs 75, 76 are identical to

the above.

PL
ij,t,s −M 1 − yE

ij( )≤ZP
ij,t,s ≤PL

ij,t,s +M 1 − yE
ij( ) (73)

−MyE
ij ≤ZP

ij,t,s ≤MyE
ij (74)

QL
ij,t,s −M 1 − yE

ij( )≤ZQ
ij,t,s ≤QQ

ij,t,s +M 1 − yE
ij( ) (75)

−MyE
ij ≤ZQ

ij,t,s ≤MyE
ij (76)

Then Eq. 71 is transformed into:

−M 1 − yE
ij( )≤U2

i,t,s − U2
j,t,s − 2ZP

ij,t,slijR − 2ZQ
ij,t,slijX≤M 1 − yE

ij( ).
(77)

Further, Eq. 69 is linearized based on quadratic constraint
linearization method, and two square constraints Eq. 78 are
employed to substitute for Eq. 69 (Chen et al., 2016).

−yE
ijSij ≤PL

ij,t,s ≤yE
ijSij

−yE
ijSij ≤QL

ij,t,s ≤yE
ijSij

− �
2

√
yE
ijSij ≤PL

ij,t,s + QL
ij,t,s ≤

�
2

√
yE
ijSij

− �
2

√
yE
ijSij ≤PL

ij,t,s − QL
ij,t,s ≤

�
2

√
yE
ijSij

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (78)

At this point, the bi-level nonlinear optimization model is
transformed into a bi-level linear optimization model.

4.2 Transformation of the cooperative
planning model based on KKT conditions

The Lagrangian function of the lower level model is shown in
Eq. 79.

L qu, ql, λ, μ( ) � f qu, ql( ) +∑I
i�1
λibi qu, ql( ) +∑J

j�1
μjdj qu, ql( ) (79)

where f (qu, ql) is the objective function of the lower level model; b
(qu, ql) and d (qu, ql) are the set of inequality constraints and the set
of equation constraints of the lower level model, respectively; qu and
ql are the decision variables of the upper level model and lower level
model, respectively; λi∈λ and μj∈μ are the Lagrange multipliers of the
inequality constraints and equation constraints in the lower level
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model, respectively; I and J are the number of inequality constraints
and equation constraints in the lower level model, respectively.

Based on Eq. 79, the Lagrangian function of the lower level
model is constructed as in Eq. 80.

LLM � ∑
s

∑
t

∑
i

αsce
s Pbuy

i,t,s c
E
t +∑

s

∑
t

∑
i

αsce
s Gbuy

i,t,s c
G
t + ∑

i∈NP

∑
d

cdmS
d
i

+ ∑
ij∈L

lij yE
ijc

E
m + yH

ij c
H
m( ) + λ1i,t,s HCHP

i,t,s −KCHP
e PCHP

i,t,s( ) + λ2i,t,s HCHP
i,t,s −KCHP

h GCHP
i,t,s( )

+ λ3i,t,s HGB
i,t,s − KGBGGB

i,t,s( ) + λ4i,t,s HEH
i,t,s − KEHPEH

i,t,s( ) + λ5i,t,s PES
i,t,s − PES,c

i,t,s + PES,f
i,t,s( )

+ λ6i,t,s EES
i,t,s − EES

i,t−1,s − ηES,cPES,c
i,t,s + PES,f

i,t,s /ηES,f( ) + λ7i,t,s Gbuy
i,t,s − GCHP

i,t,s − GGB
i,t,s( )

+ λ8i,t,s PN
i,t,s − Pbuy

i,t,s − PCHP
i,t,s − PPV

i,t,s − PWT
i,t,s − PES

i,t,s + PEH
i,t,s + Pload

i,t,s( )
+ λ9i,t,s QN

i,t,s − Qbuy
i,t,s − QCHP

i,t,s − QPV
i,t,s − QWT

i,t,s + QEH
i,t,s + Qload

i,t,s( )
+ λ10i,t,s ∑

ki∈L

PL
ki,t,s + PN

i,t,s − ∑
ij∈L

PL
ij,t,s

⎛⎝ ⎞⎠ + λ11i,t,s ∑
ki∈L

QL
ki,t,s + QN

i,t,s − ∑
ij∈L

QL
ij,t,s

⎛⎝ ⎞⎠
+ λ12i,t,s ∑

ki

houtki,t,s +HN
i,t,s −∑

ij

hinij,t,s⎛⎝ ⎞⎠ + λ13i,t,s HN
i,t,s −HCHP

i,t,s −HGP
i,t,s −HEH

i,t,s −Hload
i,t,s( )

+ u1,min
i,t,s P CHP

min S
CHP
i − PCHP

i,t,s( ) + u1,max
i,t,s PCHP

i,t,s − P CHP
max S

CHP
i( )

+ u2,min
i,t,s −r CHP

max S
CHP
i Δt − PCHP

i,t,s + PCHP
i,t−1,s( ) + u2,max

i,t,s PCHP
i,t,s − PCHP

i,t−1,s − r CHP
max S

CHP
i Δt( )

+ u3,min
i,t,s H GB

min S
GB
i −HGB

i,t,s( ) + u3,max
i,t,s HGB

i,t,s −H GB
max S

GB
i( )

+ u4,min
i,t,s H EH

min S
EH
i −HHP

i,t,s( ) + u4,max
i,t,s HEH

i,t,s −H EH
max S

EH
i( ) − u5,min

i,t,s xES,c
i,t,s + xES,f

i,t,s( )
+ u5,max

i,t,s xES,c
i,t,s + xES,f

i,t,s − 1( ) − u6,min
i,t,s PES,c

i,t,s + u6,max
i,t,s PES,c

i,t,s − xES,c
i,t,s S

ES
i( ) − u7,min

i,t,s PES,f
i,t,s

+ u7,max
i,t,s PES,f

i,t,s − xES,f
i,t,s S

ES
i( ) + u8,min

i,t,s 10%EES,p
i − EES

i,t,s( ) + u8,max
i,t,s EES

i,t,s − 90%EES,p
i( )

− u9,min
i,t,s PPV

i,t,s + u9,max
i,t,s PPV

i,t,s − αPV,pret,s SPVi( ) − u10,min
i,t,s PWT

i,t,s

+ u10,max
i,t,s PWT

i,t,s − αWT,pre
t,s SWT

i( )
+ u11,min

ij,t,s −M 1 − yE
ij( ) − U2

i,t,s + U2
j,t,s + 2ZP

ij,t,s lijR + 2ZQ
ij,t,s lijX[ ]

+ u11,max
ij,t,s U2

i,t,s − U2
j,t,s − 2ZP

ij,t,s lijR − 2ZQ
ij,t,s lijX −M 1 − yE

ij( )[ ]
+ u12,min

ij,t,s PL
ij,t,s −M 1 − yE

ij( ) − ZP
ij,t,s[ ] + u12,max

ij,t,s ZP
ij,t,s − PL

ij,t,s −M 1 − yE
ij( )[ ]

+ u13,min
ij,t,s QL

ij,t,s −M 1 − yE
ij( ) − ZQ

ij,t,s[ ] + u13,max
ij,t,s ZQ

ij,t,s − QQ
ij,t,s −M 1 − yE

ij( )[ ]
+ u14,min

ij,t,s −MyE
ij − ZP

ij,t,s( ) + u14,max
ij,t,s ZP

ij,t,s −MyE
ij( ) + u15,min

ij,t,s −MyE
ij − ZQ

ij,t,s( )
+ u15,max

ij,t,s ZQ
ij,t,s −MyE

ij( ) + u16,min
ij,t,s −yE

ijSij − PL
ij,t,s( ) + u16,max

ij,t,s PL
ij,t,s − yE

ijSij( )
+ u17,min

ij,t,s −yE
ijSij − QL

ij,t,s( ) + u17,max
ij,t,s QL

ij,t,s − yE
ijSij( )

+ u18,min
ij,t,s − �

2
√

yE
ijSij − PL

ij,t,s − QL
ij,t,s( ) + u18,max

ij,t,s PL
ij,t,s + QL

ij,t,s −
�
2

√
yE
ijSij( )

+ u19,min
ij,t,s − �

2
√

yE
ijSij − PL

ij,t,s + QL
ij,t,s( ) + u19,max

ij,t,s PL
ij,t,s − QL

ij,t,s −
�
2

√
yE
ijSij( )

+ u20,min
ij,t,s − 1 − bHij( )M − hinij,t,s + houtij,t−τij ,s + hlossij,t,s[ ]

+ u20,max
ij,t,s hinij,t,s − houtij,t−τij ,s − hlossij,t,s − 1 − bHij( )M[ ]

+ u21,min
ij,t,s − 1 − bHji( )M − houtij,t,s + hinij,t−τij ,s + hlossij,t,s[ ]

+ u21,max
ij,t,s houtij,t,s − hinij,t−τij ,s − hlossij,t,s − 1 − bHji( )M[ ] + u22,min

ij,t,s hinmin ,ij − hinij,t,s( )
+ u22,max

ij,t,s hinij,t,s − hinmax ,ij( ) + u23,min
ij,t,s houtmin ,ij − houtij,t,s( ) + u23,max

ij,t,s houtij,t,s − houtmax ,ij( )
(80)

According to the constructed Lagrangian function and KKT
complementary relaxation conditions, the lower level model can be
transformed into the additional constraints of the upper level
model, thus transforming the bi-level linear optimization
model into a single-level linear optimization model, and the
simplified form of the model is as follows:

min
qu∈QU,ql∈QL

F qu, ql( ) (81)
B qu, ql( )≤ 0, D qu, ql( ) � 0 (82)
b qu, ql( )≤ 0, d qu, ql( ) � 0 (83)

∇qlL qu, ql, λ, μ( ) � 0 (84)
λi ≥ 0, i � 1, 2, . . . , I (85)

λibi qu, ql( ) � 0, i � 1, 2, . . . , I (86)

where F (qu, ql) is the objective function of the upper level model;
B (qu, ql) and D (qu, ql) are the set of inequality constraints
and the set of equation constraints of the upper level model,
respectively.

The objective function corresponding to F (qu, ql) is shown in
Eq. 87. B (qu, ql) includes the constraints in Eq. 88.D (qu, ql) includes
the constraints in Eq. 89. b (qu, ql) includes the constraints in Eq. 90.
d (qu, ql) includes the constraints in Eq. 91. The constraint shown in
Eq. 84 can be easily obtained by calculating the partial derivatives of
the decision variables of the lower level model in Eq. 80.

minCall � Cinv + Cope (87)
Equations 31( ) − 33( ), 36( ), 38( ), 41( ), (88)
Equations 34( ) − 35( ), 37( ), 39( ) − 40( ), (89)

Equations 50( ) − 51( ), 53( ), 55( ), 56( ) − 58( ), 61( )
− 63( ), 68( ), 73( ) − 78( ) (90)

Equations 48( ) − 49( ), 52( ), 54( ), 59( ), 60( ), 64( ) − 66( ), (91)

At this point, the cooperative optimization model is transformed
into a single-level linear optimization model that can be efficiently
solved by the mathematical solvers.

5 Case studies

In this section, the proposed method is demonstrated on a 55-
node and 77-road urban topology. A computer with an Intel i9-
13900HX CPU and 32 GB memory is used, and the MILP
problems are modelled in MATLAB R2021a with the YALMIP
package and solved by GUROBI 10.0.0 with the parameter MIPGap
set as 0.01%.

5.1 Test system

The urban road topology shown in Figure 1 is used to test the
proposed method, containing 55 nodes and 77 roads. There are six
load centers in the region, and the maximum electric and heat load
demand during the planning period is shown in Table 1. Typical
operation scenarios are shown in Figures 2–5. The technical
parameters of the proposed planning device are shown in Table 2.

5.2 Analysis of the results of the
proposed method

Figure 6 shows the results of energy station siting and energy
supply network planning, Table 3 shows the results of device
capacity allocation in the energy station, and Table 4 shows the
various costs of the UIES.

As can be seen in Figure 1, the proposed method chooses to
construct energy station at node 14 and constructs 15 power supply
lines/heat pipes. The planned energy supply network does not have a
ring network and satisfies the requirement of radial constraint. In
order to further verify the effectiveness of the proposed method, the
planning scheme and the total system cost are solved one by one
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when the energy station is constructed at other nodes, and the result
reveals that the total cost of the planning scheme of the proposed
method is one of the smallest. In summary, the proposed method
can effectively plan the energy supply network.

As can be seen from Tables 3, 4, the proposed method in
configures larger capacity PV andWT, which in conjunction with
CHP can basically satisfy the electric load demand during the
planning period, so the cost of purchasing electric in UIES is
smaller. In addition, the proposed method configures a larger
capacity of GB and a smaller capacity of EH, which means
that the heat load is mainly satisfied by GB consuming gas,
and is assisted by EH when more electric is generated in the
region. This shows that the proposed method can reasonably plan
the capacity of energy devices including CHP, GB, EH, PV,
WT, and ES.

5.3 Analysis of the efficiency of the proposed
heat network operation model

In order to analyze the efficiency of the proposed heat network
operation model, the following scenario is set up as a comparison
with the proposed method.

Case 1–1: Replace of the heat network operation model of the
proposed method with the energy flow-based heat network
operation model from Xue et al. (2021).

Table 6 demonstrates the comparison of UIES’s costs of the
proposed method and Case 1–1. The results of energy station
siting and energy supply network planning of Case 1–1 are the
same as Figure 6. Figures 7, 8 show the total heat power of the
heat equipment in the system of the proposed method and
Case 1–1.

The comparison in Table 5 shows that compared to Case 1–1,
the planning cost of proposed method is reduced by 5.79% and
the operating cost is reduced by 3.98%, which in turn lead to a
5.15% reduction in the total cost. As can be seen from the
comparison of Figures 7, 8, this is because considering the
transmission delay can utilize the virtual heat storage
characteristics of the heat network, which in turn smooths out
the fluctuations of the heat power of the system and reduces the
maximum power of heat load, thus reducing the required capacity
of the heat equipment and lowering the investment cost and
operation cost.

5.4 Analysis of the impact of considering
different devices on planning results

In order to analyze the impact of considering different devices
on planning results, the following scenarios are set up as a
comparison with the proposed method. Table 6 shows the
comparison of the planning results.

Case 2–1: Planning for PV and WT is not considered.
Case 2–2: Planning for ES is not considered.
Case 2–3: Planning for GB is not considered.

Case 2–4: Planning for EH is not considered.
The comparison between the proposed method and Case

2–1 shows that in Case 2–1, the device investment cost for UIES
is reduced because the planning for PV and WT is not considered,
but UIES not only needs to purchase more electric from the superior
grid, but also needs to purchase more natural gas for CHP
generation, so the cost of purchasing electric and gas is
significantly increased. Thus, in Case 2–1, although the
investment cost for UIES is reduced by 11.6%, the total cost is
increased by 20.7%.

The comparison between the proposed method and Case
2–2 shows that in Case 2–2, the device investment cost for
UIES is reduced because the planning for ES is not
considered, but the purchasing electric cost for UIES is
significantly increased due to the absence of ES to provide
peak shaving and valley filling. Thus, in Case 2–2, although
the investment cost for UIES is reduced by 7.3%, the total cost
is increased by 4.1%.

The comparison between the proposed method and Case
2–3 shows that in Case 2–3, not considering the planning for
GB makes the purchasing gas cost for UIES decrease significantly,
but the capacity of CHP and EH is increased in order to meet the
heat load demand, which leads to an increase of the device
investment cost and purchasing electric cost for UIES on the
contrary, and consequently the total cost of the system
increases by 6.8%.

The comparison between the proposed method and Case
2–4 shows that in Case 2–4, the purchasing electric cost for UIES
is reduced due to the fact that EH is not considered in the
planning, but the capacity of CHP and GB is increased in order
to meet the heat load demand, which leads to an increase in the
purchasing gas cost for UIES instead, and consequently the total
cost of the system is increased by 3.2%.

In summary, it can be seen that the consideration of PV,WT, ES,
EH, GB in station-network cooperative planning of UIES are all
conducive to reducing the total cost of the system and improving the
economics of the planning scheme.

6 Conclusion

In this paper, a station-network cooperative planning
method of UIES based on energy flow model is proposed to
realize the cooperative optimization of the siting and sizing of
energy station and the topology of energy supply network. And
the following conclusions are obtained through arithmetic
example analysis: 1) The proposed method can effectively
plan the energy supply network and reasonably configure the
capacity of energy devices including CHP, GB, EH, PV,
WT and ES.

2) Compared with the existing energy flow-based heat network
operation model, the proposed method takes into account the
transmission delay of the heat network, which can more fully
utilize the heat storage capacity and thus improve the economic
efficiency of the planning scheme.
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3) The consideration of PV, WT, ES, EH, GB in station-network
cooperative planning of UIES are all conducive to reducing the total
cost of the system and improving the economics of the
planning scheme.
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The snow-shaped distribution network (SDN) is a cable distribution network
composed of eight (or six) 10 kV feeders from four (or three) substations in a
regular connection. Compared with the traditional 10 kV distribution network,
SDN can support a wide range of load transfer among six or eight feeders. Aiming
at the problem of load spatial-temporal unbalanced condition caused by the
integration of distributed generators (DGs) and different load types in different
feeders, this paper proposes a dynamic reconfiguration strategy for load
balancing in SDN considering DGs and energy storage system (ESS). Firstly,
the basic structure of SDN is analyzed and the power flow model for its
dynamic reconfiguration is developed. Secondly, the dynamic reconfiguration
optimization model for load balancing in SDN considering DGs and ESS is
proposed to utilize the load transfer capability to mitigate the load
unbalanced condition and reduce active power loss. Thirdly, the original non-
convex model is converted into a mixed-integer second-order cone
programming (MISOCP) model by applying the second-order cone relaxation
and the big-Mmethod, which is solved by CPLEX solver. Finally, the effectiveness
of the proposed model and method are verified by an actual case in Tianjin and
IEEE 33-node system. The analysis results show that the proposed method can
significantly alleviate the load unbalanced spatial-temporal distribution and
improve the economic efficiency by regulating the operation of SDN including
ESS optimization and dynamic reconfiguration.

KEYWORDS

the snow-shaped distribution network (SDN), dynamic reconfiguration, load balance,
energy storage system (ESS), mixed-integer second-order cone programming (MISOCP)

1 Introduction

The distribution system is the final link in the power system, directly serving the
majority of users, and being closely related to population distribution and economic
development. With the high-permeability access of DGs and the uneven spatial
distribution of industrial, commercial, and residential regions in urban areas, the
problem of load unbalanced spatial-temporal distribution has always existed in urban
distribution networks. The mismatch between power generation and consumption may
cause lower resource utilization, network congestion (Zhao et al., 2022), and increased
active power loss, which seriously affects the security and economy of distribution network.

Aiming at the problem of load spatial-temporal unbalanced condition, there are mainly
the following solutions. One option is to consider new substations or line expansion (Yao
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et al., 2014), but this involves high investment costs and is
challenging to implement, especially in areas with limited urban
land resources. Through flexible regulation of controllable
resources such as energy storage devices and flexible load, load
curves can be dynamically adjusted by peak shaving and valley
filling to alleviate load imbalance and other problems (Cho et al.,
2012; Hosseina and Bathaee, 2016; Li et al., 2022). The effectiveness
of this method is affected by the capacity and location of
controllable resources. Network topology reconfiguration
involves altering the open and closed states of switches in the
feeders to balance feeder load, adjust power flow distribution, and
improve the economic efficiency of distribution network (Baran and
Wu, 1989a; Ji, 1997). Generally, distribution network
reconfiguration can be divided into two categories: static
reconfiguration and dynamic reconfiguration. Static
reconfiguration optimizes the topology of the distribution
network under a single time section, which is the basis of
dynamic reconfiguration. Dynamic reconfiguration takes into
consideration the fluctuation of DGs and load demand to
dynamically optimize the distribution network structure in a
continuous period (Jabr et al., 2012). The optimization objectives
for distribution network reconfiguration are usually to minimize the
active power loss (Jakus et al., 2017), improve the system reliability
(Lotfi et al., 2020) and voltage stability (Zhang and Wang, 2004;
Wang, 2012), and balance the feeder load (Gao et al., 2022). The
optimization problem in multi-time dynamic reconfiguration
involves both continuous and numerous discrete variables,
posing a challenging task. Mathematical optimization methods
(López et al., 2016; Tian et al., 2016; Aldik and Venkatesh,

2020), intelligent optimization algorithm (Lotfi and Ghazi, 2021;
Lotfi, 2022) and heuristic algorithms (Jakus et al., 2020; Silveira
et al., 2021; Montoya et al., 2023; Yu et al., 2023) have been proposed
to solve the problem. Heuristic algorithms, not necessitating
convexity in the mathematical model, have been widely used in
solving non-convex problems. However, the results may be local
optimal solutions through heuristic algorithms. With the
development of optimization theory, mathematical optimization
methods have been extensively applied to solve dynamic
reconfiguration problems. Specifically, the convex relaxation
technique represented by second-order cone programming
(SOCP) is used more and more frequently, which can obtain the
globally optimal solution and reduce the computation time.

The above studies address the distribution network load
balancing problem with traditional single-radial distribution
network, most of them start from the spatial dimension to
realize load balancing by adjusting the tie switches state. The
dispatching means are relatively single, considered only from the
feeder level, with less consideration of scenarios where load and
DG output change over time, and seldom with the main objective
of load balancing of multiple feeders in multiple substations.
However, relative to the previous grid structure, snow-shaped
distribution network is upgraded based on a 10 kV single-double
ring network by adding new station tie switches. The snow-
shaped distribution network (SDN) (Wang et al., 2023)
constructs a “3-station 6-wire” or “4-station 8-wire” feeder
cluster, with the ring main units as the network unit, and
each feeder contains multiple tie switches and segment
switches. The flexible and controllable ring network structure

FIGURE 1
Schematic diagram of a 4-station, 8-wire snowflake distribution network.
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of SDN establishes a supportive platform for dynamic
reconfiguration to achieve multi-level and multi-directional
load transfer, and provides an effective means to promote the
spatial-temporal balance of load within feeder clusters. It can
comprehensively consider a variety of control means to realize
the load transfer between two feeders supplied by the same
transformer, different transformers, and different substations, to
achieve the “feeder-transformer-substation” three levels of
load balancing.

To our best knowledge, this is the first study on the load
imbalance problem of substation level, transformer level and
feeder level in urban SDN. From both time and space dimension,
this paper proposes a multi-objective dynamic reconfiguration
model for load balancing through collaborative optimal
dispatching of dynamic reconfiguration and distributed
energy storage system in SDN. Firstly, the grid structure of
SDN is analyzed and the power flow model for its dynamic
reconfiguration is developed. Secondly, based on the advantages
of multiple inter-station and intra-station connections, a
dynamic reconfiguration model in SDN for feeder load
balancing is established, considering DGs and ESS. In order
to take into account the economic efficiency and load balancing,
the weighted combination of the minimum active power loss and
load balance index is proposed as the optimization objective
function. Thirdly, the original non-convex model is converted
into a mixed-integer second-order cone programming
(MISOCP) model using convex relaxation theory for an
accurate and efficient solution. Finally, the proposed dynamic
reconfiguration model and method are analyzed and verified in
the 10 kV Tianjin snow-shaped distribution network and IEEE
33-node system.

2 Snow-shaped distribution network
structure and model

2.1 Snow-shaped distribution
network structure

Under the development of new power distribution system, a
flexible and controllable ring network structure named SDN is
proposed in Wang et al. (2023), based on the traditional single
and double ring distribution network. This structure
comprehensively supports the wide range of load transfers
between different feeders, feeder clusters, and snow-
shaped units.

SDN takes the ring main units as ring network nodes,
composed of eight (or six) 10 kV feeders from four (or three)
substations in a regular connection to form a group of independent
feeder clusters. Each substation has two 10 kV outgoing lines, each
equipped with an inter-station contact and an intra-station
contact. As shown in Figure 1, taking the four-station SDN as
an example, the existing four groups of single-loop network wiring
only establish contacts between the stations. Building on this
foundation, four new intra-station contacts have been added, so
that the inter-station and intra-station have established load
transfer channels to provide an effective method for spatial-
temporal load balancing in the feeder cluster.

2.2 Power flow model for SDN dynamic
reconfiguration

In this paper, the branch power flow model for SDN dynamic
reconfiguration is developed based on the distflow model which was
proposed in Baran and Wu (1989b). This paper introduced
0–1 integer variables aij(t) to represent the open and closed states
of the switches on the branch. The power flow model can be
mathematically expressed as follows:

2.2.1 Active and reactive power balance constraints

∑
i∈Ωin j( )

aij t( ) Pij t( ) − I2ij t( )Rij( ) + Pj t( ) � ∑
k∈Ωout j( )

ajk t( )Pjk t( )

∑
i∈Ωin j( )

aij t( ) Qij t( ) − I2ij t( )Xij( ) + Qj t( ) � ∑
k∈Ωout j( )

ajk t( )Qjk t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1)

U2
j t( ) � U2

i t( ) − 2 Pij t( )Rij + Qij t( )Xij( ) + I2ij t( ) R2
ij +X2

ij( ) (2)

I2ij t( ) � P2
ij t( ) + Q2

ij t( )
U2

i t( ) (3)

whereΩin(j),Ωout(j) denote the sets of ring nodes in SDNwith node j as
the end ring node and the first ring node, respectively;Pij(t),Qij(t) denote
the active and reactive power flowing from ring node i to ring node j at
moment t, respectively; when aij(t) is 1, it means that the contact switch
on the branch ij is in the closed state atmoment t, then branch ij needs to
be subjected to the constraints; and 0 means it is in the open state. Uj(t)
denotes the voltagemagnitude at ring node j at moment t; Pj(t) andQj(t)
denote the active and reactive power injected at ring node j at moment t,
respectively; Rij andXij denote the resistance and reactancemagnitude of
branch ij, respectively; and Iij(t) denotes the currentmagnitude of branch
ij at moment t.

2.2.2 Active and reactive power injection
constraints

Pj t( ) � PDG,j t( ) − Pload,j t( ) + PESS,dis,j t( ) − PESS,ch,j t( )
Qj t( ) � −Qload,j t( ){ (4)

where PDG,j(t) denotes the active power output of the distributed
PV connected to the ring node j at moment t; Pload,j(t), Qload,j(t)
denote the active and reactive power of the load at ring node j at
moment t; and PESS,dis,j(t), PESS,ch,i(t) are the discharging and
charging power of the energy storage connected to the ring node
j at moment t.

3 A snow-shaped distribution network
dynamic reconfiguration model for
load balancing

In urban distribution networks, different types of loads have
different spatial-temporal asynchrony, and some feeders have heavy
load during peak-load period. SDN constructs feeder clusters with
four (or three) stations and eight (or six) lines, providing a flexible
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load transfer supportive platform. Through dynamic
reconfiguration, it can realize the flexible spatial-temporal
transfer of load in feeder clusters to mitigating the coexistence of
light and heavy loads to decrease the security risks in SDN operation
and improve economic efficiency.

3.1 Objective function

Considering the economic operation and load balance of
SDN, the linear weighted combination of the minimum feeder
load unbalanced condition and total active power loss is
proposed as the optimization objective function, which is
formulated as follows:

minf � ω1f1 + ω2f2 (5)

f1 � ∑T
t�1

∑
ij∈Ωl

Sij t( )
Sij,max

( )2

� ∑T
t�1

∑
ij∈Ωl

P2
ij t( ) + Q2

ij t( )
S2ij,max

(6)

f2 � ∑T
t�1

∑
ij∈Ωl

I2ij t( )Rij (7)

Where, the optimization objective function is formulated in
Eq. 5 feeder load balance index f1 and the total active power loss f2
are formulated in Eqs 6, 7, respectively. The quantity ω1 is used as
the coefficient of the load balance index. The quantity ω2 is used as
the coefficient of the total active power loss, and ω1 + ω2 = 1; the load
balance index f1 is defined as the square sum of the ratio between the
transferred reactive power and the maximum transmission capacity

FIGURE 2
Flowchart of the SDN dynamic reconfiguration method for load balancing.
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of the branch;Ωl is the set of all branches in the SDN; and Sij(t) is the
apparent power of branch ij at moment t, Sij,max is the maximum
apparent power of branch ij. T is the total period horizon, which
is 24 h.

3.2 Constraints

The network dynamic reconfiguration problem proposed in this
paper is a multi-objective optimization problem in mathematics,
requiring compliance with the pertinent constraints.

(1) Active and reactive power balance constraints are given by
Eqs 1–3.

(2) Active and reactive power injection constraints are given
by Eq. 4.

(3) Security operation constraints

Pi,sub,min t( )#Pi,sub t( )#Pi,sub,max t( )
Qi,sub,min t( )#Qi,sub t( )#Qi,sub,max t( ){ (8)

I2ij t( )#I2ij,max (9)
Ui,min#Ui t( )#Ui,max (10)

Equation 8 represents the constraints on substation output
power. The current limit for branch ij at time t is expressed in
Eq. 9. Equation 10 indicates the node voltage constraints. Where,
Pi,sub(t) and Qi,sub(t) are the active and reactive output power of the
substation in ring node i at time t, respectively; Pi,sub,max(t) and

FIGURE 3
Schematic diagram of a 3-station, 6-wire snowflake distribution network.

TABLE 1 Parameters of distributed PV and ESS.

Type Node Rated power/MW Rated capacity/MWh Charging/discharging efficiency

PV 8, 9 1.2 — —

ESS 22, 26 1.5 6 0.9
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Pi,sub,min(t) are the maximum and minimum active output power of
the substation in ring node i at time t, respectively; Qi,sub,max(t) and
Qi,sub,min(t) are the maximum and minimum reactive output power
of the substation in ring node i at time t, respectively; Iij,max is the
maximum current magnitude of branch ij; Ui,max and Ui,min are the
maximum and minimum voltage magnitude in ring node i,
respectively.

(4) Network topology constraint

∑
ij∈Ωl

aij t( ) � Nbus −Nsub (11)

Equation 11 indicates that the network structure is guaranteed to
be open-loop operation in the process of dynamic reconstruction.
Where, Nbus and Nsub denote the number of ring nodes and
substations in the SDN, respectively.

(5) Contact switch state constraints

αij t( ) − βij t( ) � aij t( ) − aij t − 1( ) (12)
αij t( ) + βij t( )≤ 1 (13)∑

t∈T
αij t( ) + βij t( )( )≤Kmax

ij (14)

Equation 12 represents the switching state equation relationship,
and αij(t) and βij(t)are both 0–1 variables that represent the sign bits
of the contact switches closed and open on the branch ij at moment
t. When αij(t) = 1, the state of the contact switch on the branch ij
changes from open to closed at moment t.When βij(t) = 1, the state
of the contact switch on the branch ij changes from closed to open at
time t; Eq. 13 indicates that the variables αij(t), βij(t) cannot take
1 because the switching state can only be changed once at the same
time; Eq. 14 indicates a constraint on the number of switching
actions in a certain period, Kij

max is the maximum number of
switching actions. The dynamic reconfiguration process should
avoid frequent changes in the switching state to ensure the
service life of the switches.

FIGURE 4
Prediction curve of typical PV and load data in case 1.

TABLE 2 Load balance index and active power loss optimization results.

Scenario Load balance index f1 (p.u.) Reduction rate of f1 (%) Active power loss f2 (kWh) Reduction rate of f2 (%)

Scenario 1 28.71 — 1700.36 —

Scenario 2 24.48 ↓14.73% 1552.16 ↓8.72%
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(6) Energy storage operation constraints

SESS,i t( ) � SESS,i t − 1( ) + ηchPESS,ch,i t( ) − PESS,dis,i t( )
ηdis

(15)

EESS,i · Cmin
ESS ≤ SESS,i t( )≤EESS,i · Cmax

ESS (16)
0≤PESS,dis,i t( )≤PESS,i · μdis t( )
0≤PESS,ch,i t( )≤PESS,i · μch t( ){ (17)

0≤ μdis t( ) + μch t( )≤ 1 (18)
SESS,i 0( ) � SESS,i T( ) � EESS,i · Cmin

ESS (19)
where Eqs 15–19 are the constraints of energy storage operation
SESS,i(t) denotes the power of energy storage connected to the
ring node i at moment t; ηch and ηdis are the charging and
discharging efficiency of energy storage, both of which are
taken as 90% in this paper; PESS,i and EESS,i are the rated
power and rated capacity of energy storage at ring node i;
μch(t) and μdis(t) denote the charging and discharging states of
energy storage at moment t. When the energy storage is charging,
μch(t) is 1, μdis(t) is 0; when discharging, μdis(t) is 1, μch(t) is 0;

Cmax
ESS and Cmin

ESS denote the maximum and minimum value of the
energy storage charging state at the moment t, which are 0.9 and
0.1, respectively.

TABLE 3 Results of dynamic reconfiguration in scenario 2 (case 1).

Time Open switches on branches

1 B2-B3-B7-B9-B26-B27

2 B2-B3-B7-B9-B26-B27

3 B2-B3-B7-B9-B26-B27

4 B2-B3-B7-B9-B26-B27

5 B2-B3-B7-B9-B26-B27

6 B2-B3-B7-B9-B26-B27

7 B2-B3-B7-B9-B26-B27

8 B2-B3-B7-B9-B26-B27

9 B2-B3-B7-B9-B26-B27

10 B9-B11-B17-B20-B22-B27

11 B9-B11-B17-B20-B22-B27

12 B9-B11-B17-B20-B22-B27

13 B9-B11-B17-B20-B22-B27

14 B9-B11-B17-B20-B22-B27

15 B9-B11-B17-B20-B22-B27

16 B9-B11-B17-B20-B22-B27

17 B9-B11-B17-B20-B22-B27

18 B2-B7-B9-B11-B14-B27

19 B2-B7-B9-B11-B14-B27

20 B2-B7-B9-B11-B14-B27

21 B2-B7-B9-B11-B14-B27

22 B2-B7-B9-B11-B14-B27

23 B2-B7-B9-B11-B14-B27

24 B2-B7-B9-B11-B14-B27

FIGURE 5
The network structure topology of different periods. (A) 1:00–9:
00. (B) 10:00–17:00. (C) 18:00–24:00.
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4 Solution methodology

The dynamic reconfiguration model for SDN is a highly non-
convex nonlinear programming problem, which may have multiple
locally optimal points and is difficult to solve to obtain the globally

optimal solution. In order to solve this problem accurately and
efficiently, the original non-convex nonlinear programming (NLP)
can be converted into a mixed integer second-order cone
programming (MISOCP) by applying the second-order cone
relaxation and the big-M method.

FIGURE 6
The load ratio of each feeder in the snow-shaped distribution network in scenarios 1 and 2. (A) scenario 1. (B) Scenario 2.
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FIGURE 7
Energy storage output power.

FIGURE 8
Active power losses in each time period.
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Equations 20, 21 are obtained by introducing auxiliary variables
iij(t), and uij(t) for variable transformation, and Eq. 22 is obtained by
relaxation through the big-M method. M is an arbitrarily large
positive number that is not infinite.

iij t( ) � I2ij t( ) (20)
ui t( ) � U2

i t( ) (21)

−aij t( )M≤Pij t( )≤ aij t( )M
−aij t( )M≤Qij t( )≤ aij t( )M{ (22)

With the above constraints Eqs 20–22, the trend constraint Eq. 1
is transformed into Eq. 23, and Eq. 2 is relaxed by the big-Mmethod
to obtain Eq. 24.

FIGURE 9
Node voltages in scenarios 1 and 2.

FIGURE 10
IEEE 33-node.
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∑
i∈Ωin j( )

Pij t( ) − iij t( )Rij( ) + Pj t( ) � ∑
k∈Ωout j( )

Pjk t( )

∑
i∈Ωin j( )

Qij t( ) − iij t( )Xij( ) + Qj t( ) � ∑
k∈Ωout j( )

Qjk t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (23)

uj t( ) − ui t( )≥ −M 1 − aij t( )( ) − 2 Pij t( )Rij + Qij t( )Xij( )
+iij t( ) R2

ij +X2
ij( )

uj t( ) − ui t( )≤M 1 − aij t( )( ) − 2 Pij t( )Rij + Qij t( )Xij( )
+iij t( ) R2

ij +X2
ij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(24)

Equation 7 is transformed to Eq. 25 accordingly.

f2 � ∑T
t�1

∑
ij∈Ωl

iij t( )Rij (25)

Equation 3 is transformed into Eq. 26 by the second-order cone
relaxation, which is further transformed into the standard second-
order cone form as shown in Eq. 27:

iij t( )≥ P2
ij t( ) + Q2

ij t( )
ui t( ) (26)

2Pij t( )
2Qij t( )

iij t( ) − ui t( )

�����������
�����������
2

≤ iij t( ) + ui t( ) (27)

Similarly, the linearization of Eq. 6 is achieved by introducing
the auxiliary variable fij(t) for variable substitution. Equation 28 is
obtained by using variable substitution of

P2
ij(t)

S2ij. max
,
Q2

ij(t)
S2ij. max

.

fij t( ) � P2
ij t( )

S2ij. max

+ Q2
ij t( )

S2ij. max

(28)

Equation 6 is transformed into Eq. 29.

f1 � ∑T
t�1

∑
ij∈Ωl

fij t( ) (29)

Equation 28 is transformed into Eq. 30 with the second-order
cone relaxation, which is further transformed into the standard
second-order cone form as shown in Eq. 31:

fij t( )≥ P2
ij t( )

S2ij. max

+ Q2
ij t( )

S2ij. max

(30)

FIGURE 11
The profile of typical PV and load data in case2.

TABLE 4 Load balance index and active power loss optimization results.

Scenario Load balance index f1 (p.u.) Reduction rate of f1 (%) Active power loss f2 (kWh) Reduction rate of f2 (%)

Scenario 1 4.4324 — 1744.55 —

Scenario 2 2.4266 ↓45.25% 1256.51 ↓27.98%

Frontiers in Energy Research frontiersin.org11

Luo et al. 10.3389/fenrg.2024.1361559

299

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1361559


2 Pij t( )
Sij. max

2 Qij t( )
Sij. max

1 − fij t( )

�����������������
�����������������
2

≤ 1 + fij t( ) (31)

The flowchart of SDN dynamic reconfiguration method for load
balancing in this paper is shown in Figure 2. And the specific
operation process includes the following five steps:

Step 1: Data inputting. Input the basic SDN data including
network parameters, load data, devices data,
and so on;

Step 2: Model constructing. Construct SDN dynamic
reconfiguration model for load balancing to minimize
load balance index and active power loss, which set the
constraints including active and reactive power balance
constraints, active and reactive power injection
constraints, security operation constraints, network
topology constraints and so on;

Step 3: Model converting. Convert the NLP model into a
MISOCP model which can be solved easily by applying
the second-order cone relaxation and the big-M method;

Step 4: Model solving. Use the CPLEX solver to solve the
MISOCP model;

Step 5: Results outputting. Output the optimization results.

5 Case study

5.1 Case 1 (3-station, 6-wire SDN)

5.1.1 Case introduction
The validity of the model and method proposed in this paper is

verified with a 3-station, 6-wire snow-shaped distribution network. The
structure diagram of SDN is shown in Figure 3, including 3 substations,
6 feeders, 21 ring main units, and 27 branches. Green ring main units
indicate intra-station contact switches and red ring main units indicate
inter-station contact switches. The rated voltage is 10 Vk, with an
allowable voltage range of 0.93 p.u. to 1.07 p.u. Themaximumallowable
branch current is 577 A. Substation A provides power to residential
loads, Substation B provides power to commercial loads, and Substation
C provides power to office loads. Table 1 lists the parameters of PV and
ESS. The prediction curve of typical PV and load data is shown in
Figure 4. The heavily loaded feeders involve F1, F3, F5, F6, and the
lightly loaded feeders involve F2, F4.

Different types of loads have different patterns of curve change.
Residential load mainly includes the electricity consumed by
residents’ electrical equipment, which experiences steady growth
with economic development and notable seasonal fluctuations.
Commercial load mainly includes air-conditioning, lighting,
power, and other electrical loads in commercial areas. Peak
electricity consumption hours are concentrated and stable
throughout the day. Office load is closely related to the working
hours, and the peak electricity consumption is mainly concentrated
during these hours with a great difference between peak and valley.

The maximum number of switch actions per day is set to 4. By
using the hierarchical hierarchy process (AHP), the load balance
index and active power loss weighting coefficients ω1, and ω2 in the
objective function are 0.846 and 0.154, respectively. The proposed
method in this paper is implemented in using MATLAB R2020a,
where the MISOCP model is modeled by YALMIP programming
and solved by the CPLEX solver.

5.1.2 Analysis of dynamic reconfiguration results
The following two scenarios are set up for the analysis and

comparison. Scenario 1 is the benchmark scenario, which considers
the PVs and ESS. Based on scenario 1, dynamic reconfiguration is
considered in scenario 2.

The effectiveness of the dynamic reconfiguration model and
method of SDN are verified as follows.

Step 2: Model constructing. Construct SDN dynamic
reconfiguration model for load balancing to minimize
load balance index and active power loss,

Step 3: Model converting. Convert the NLP model into a
MISOCP model through the second-order cone
relaxation and the big-M method;

TABLE 5 Results of dynamic reconfiguration in scenario 2 (case 2).

Time Open switches on branches

1 B6-B10-B14-B17-B25

2 B6-B10-B14-B17-B25

3 B6-B10-B14-B17-B25

4 B6-B10-B14-B17-B25

5 B6-B10-B14-B17-B25

6 B6-B10-B14-B17-B25

7 B6-B10-B14-B17-B25

8 B6-B10-B14-B17-B25

9 B6-B10-B14-B17-B25

10 B6-B10-B14-B17-B25

11 B7-B14-B15-B27-B35

12 B7-B14-B15-B27-B35

13 B7-B14-B15-B27-B35

14 B7-B14-B15-B27-B35

15 B7-B14-B15-B27-B35

16 B7-B14-B15-B27-B35

17 B4-B10-B13-B25-B36

18 B4-B10-B13-B25-B36

19 B4-B10-B13-B25-B36

20 B4-B10-B13-B25-B36

21 B4-B10-B13-B25-B36

22 B4-B10-B13-B25-B36

23 B4-B10-B13-B25-B36

24 B4-B10-B13-B25-B36
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The optimization results of load balance index and active power
loss for SDN in scenarios 1 and 2 are listed in Table 2. The load
balance index is 28.71 in scenario 1 and 24.48 in scenario 2, which is
reduced by about 14.73%. The maximum load ratio of the feeder is
reduced from 92.46% to 59.24%, which is reduced by about 33.22%.
The all-day active power loss of SDN is reduced from 1,700.36 kWh
to 1,552.16 kWh, a reduction of about 8.72%. With the collaborative
optimization of energy storage and dynamic reconfiguration, the
load balancing in SDN is greatly improved and the active power
losses are reduced.

In scenario 1, the switches on contact lines B22, B23, B24, B25, B26,
and B27 are in the open state before reconfiguration. In scenario 2, the
states of sectional contact switches are optimized through dynamic
reconfiguration to achieve a wide range of spatial load transfer, thus
enhancing overall load balance in SDN. The results of dynamic
reconfiguration in scenario 2 are shown in Table 3.

At 0:00–9:00, the switches on branches B2, B3, B7, and B9 open,
and the switches on branches B22, B23, B24, and B25 close. The
loads of ring node 8 on feeder F1 are transferred to feeder F2 through
intra-station contact on branch B22; The loads of ring nodes
9,15,16 and 17 are transferred to feeder F4 through inter-station
contact on branch B23 and intra-station contact on branch B25; The
loads of ring node 13 on feeder F2 are transferred to feeder
F5 through inter-station contact on branch B24; At 10:00–17:00,
B11, the switches on branches B11, B17, B20 and B22 open, switches
on branches B2, B3, B7, and B26 close. The loads of ring node 23 on
feeder F5 are transferred to feeder F2 through inter-station contact

on branch B24; The loads of ring nodes 26 and 27 on feeder F6 are
transferred to feeder F4 through inter-station contact on branch
B26; At 18:00–24:00, the switches on branches B2, B7, and B14 open,
switches on branches B17, B20, and B22 close. The different network
structure topology of different periods is shown in Figure 5.
Different colored parts indicate the power supply ranges of
different substations.

The load ratio of each feeder in the snow-shaped distribution
network in scenarios 1 and 2 is shown in Figure 6. In scenario 1,
feeder 5 and feeder 6 are equipped with ESS. ESS absorbs electricity
at the time of low power consumption, and releases electricity at the
time of peak power consumption to smooth the load curve, reduce
the curve volatility, and alleviate the peak load on feeder F5 and
feeder F6. However, the regulation capability is limited, and the load
ratios of feeders F3, F5, and F6 remain high during the time period of
8:00–18:00, up to 92.46%, and the heavy load situation is serious. In
scenario 2, based on dynamic reconfiguration, the load on the feeder
with high load rate is transferred to other feeder with low load rate
throughmultiple switch contacts in the snow-shaped network feeder
cluster, and the maximum load rate is reduced to 59.24%, realizing a
more balanced feeder load of the whole network.

In scenario 1 and 2, the ESS output power is shown in
Figure 7, which both show the trend of charging and then
releasing. ESS charges during the load valley time (01:00–08:
00) and then discharges the stored energy during the peak load
period (10:00–17:00). The energy is transferred across time,
achieving peak shaving and valley filling effects on the load

FIGURE 12
Maximum power flow loading of each branch in scenarios 1 and 2.
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curve and thereby smoothing it. During the peak load period (10:
00–17:00), the active power output of ESS in scenario 1 and 2 are
different. In scenario 1, the optimal dispatching of ESS can only
smooth the load curve on feeder F5 and feeder F6 in substation C
because of node 22 in feeder 5 and node 26 in feeder 6 equipped
with ESS. In scenario 2, node 26 is in feeder 4 at 10:00–17:
00 through dynamic reconfiguration. During the load valley time
(01:00–08:00), the optimal dispatching of ESS can smooth the
load curve on feeder F5 and feeder F6 in substation C. During the
load valley time (10:00–17:00), the optimal dispatching of ESS
can smooth the load curve on feeder F4 in substation B and
feeder F5 in substation C through dynamic reconfiguration. The
collaborative optimization of energy storage and dynamic
reconfiguration achieves the “feeder-transformer-substation”
three levels of load balancing.

The active power losses for each hourly period before and after
the dynamic reconfiguration of SDN are shown in Figure 8. The
voltage fluctuations at typical nodes before and after the dynamic
reconfiguration are shown in Figure 9.

From Figures 8, 9, it can be seen that network dynamic
reconfiguration in SDN effectively reduces the system active
power loss, enhances the voltage level and improves the power
quality. The active power loss decreases from 1700.36 kWh to
1552.16 kWh throughout the day, a reduction of about 8.72%.
For instance, considering ring node 14, the node voltage
increases after dynamic reconfiguration, alleviating voltage offset
and enhancing the system’s voltage safety margin.

5.2 Case 2 (IEEE 33-node)

The proposed method is tested on a standard test style such as
IEEE 33-node. This test system is a 12.66 kV distribution network
which is shown in Figure 10. The profile of typical PV and load data
is shown in Figure 11. Similar to Section 5.1, this section sets up two
scenarios for comparison. Scenario 1 is the benchmark scenario,
which considers the PVs and ESS. Based on scenario 1, dynamic
reconfiguration is considered in scenario 2. The values of ω1 and ω2

in case 2 are the same as in case 1.
Table 4 lists the optimization results of load balance index and

active power loss in scenarios 1 and 2. The overall load balance index
is 4.4324 in scenario 1 and 2.4266 in scenario 2, which is reduced by
about 45.25% by conducting the feeder load balancing method based
on dynamic reconfiguration. The all-day active power loss of SDN is
reduced from 1256.51 kWh to 1744.55 kWh, a reduction of
about 27.98%, which is a considerable improvement of
economic efficiency.

The results of dynamic reconfiguration in scenario 2 are shown
in Table 5.

Figure 12 shows the maximum power flow loading of each branch
over a day for scenarios 1 and 2. The maximum power flow loading is
reduced in scenario 1 by conducting dynamic reconfiguration. The
unbalanced condition of the feeder load is exacerbated due to the high
penetration of distributed renewable energy in scenario 1, as shown in
Figure 13. The proposed dynamic reconfiguration-based feeder load
balancing method, which is implemented in scenario 2, maintains the

FIGURE 13
Power flow loading of branch B6 in scenarios 1 and 2.
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power flow loading within the desired level and significantly mitigates
the feeder load unbalanced condition caused by the increasing
distributed renewable energy.

6 Conclusion

Based on the characteristics of SDN frame structure, this paper
establishes a multi-objective dynamic reconfiguration model for
load balancing through collaborative optimal dispatching of
dynamic reconfiguration and distributed energy storage system in
SDN. And the second-order cone relaxation and big-M method are
employed to convert the original NLP model into a MISOCP model
which can be tractably solved. Case studies in an urban 10 kV
distribution network and IEEE 33-node system are performed to
show the effectiveness of the proposed model, the following
conclusions can be drawn:

(1) The optimization results show that the safety and economy of
SDN operation are both included in our formulated model to
mitigate the feeder load unbalance, reduce the active power
loss and improve voltage profile.

(2) Through adjusting the switching state combinations of tie
switches and segment switches at the spatial level as well as
by optimizing the charging and discharging states of the
energy storage at the temporal level, the model proposed in
this paper maximizes the advantages of inter connection
and intra connection among feeder clusters in SDN,
achieving the large-scale space-time load transfer, and
fully excavating the power supply capacity of the
distribution network.

This paper focuses on the dynamic reconfiguration strategy in
SDN for feeder load balancing, flexibly transferring load through
intra-station and inter-station contacts in all directions to
improve system security and economic efficiency. Further
research will consider additional elements such as flexible
loads and electric vehicles to fully exploit the operational
potential of SDN.
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This study introduces a smart home load scheduling system that aims to address
concerns related to energy conservation and environmental preservation. A
comprehensive demand response (DR) model is proposed, which includes an
energy consumption scheduler (ECS) designed to optimize the operation of
smart appliances. The ECS utilizes various optimization algorithms, including
particle swarm optimization (PSO), genetic optimization algorithm (GOA), wind-
driven optimization (WDO), and the hybrid genetic wind-driven optimization
(HGWDO) algorithm. These algorithms work together to schedule smart
home appliance operations effectively under real-time price-based demand
response (RTPDR). The efficient integration of renewable energy into smart
grids (SGs) is challenging due to its time-varying and intermittent nature. To
address this, batteries were used in this study to mitigate the fluctuations
in renewable generation. The simulation results validate the effectiveness
of our proposed approach in optimally addressing the smart home load
scheduling problem with photovoltaic generation and DR. The system achieves
the minimization of utility bills, pollutant emissions, and the peak-to-average
demand ratio (PADR) compared to existing models. Through this study, we
provide a practical and effective solution to enhance the efficiency of smart
home energy management, contributing to sustainable practices and reducing
environmental impact.

KEYWORDS

smart grid, demand response, home energy management, load scheduling, heuristic
algorithms, renewable generation, solar, battery
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1 Introduction

A reliable power system operation depends on the optimal
scheduling of power usage (Wang et al., 2021a; Liu et al., 2023a).
However, devising a framework for optimal power usage scheduling
that bolsters reliability presents formidable challenges. These
challenges are particularly pronounced as power demand surges due
to population growth and elevated living standards. Presently, over
50% of the global population lives in urban zones, a marked increase
from 30% in 1950, and this percentage is projected to reach 66% by
2050 (Amato et al., 2017). Additionally, electricity demand in power
zones is anticipated to increase by 40% by 2025, with the domestic
and commercial sectors experiencing a 25% increase from current
levels, as projected by the Energy Information Administration (EIA)
(Energy Information Administration, 2019). The EIA forecasts a
50% increase in power consumption between 2018 and 2050
(Energy Information Administration, 2019).

The widespread reliance on fossil fuels for electricity production
is a main contributor to environmental pollution and proves
unsustainable due to the dwindling reserves of conventional
resources. Consequently, transitioning from conventional
to modern renewable energy (RE) enhances reliability and
environmental sustainability (Liu et al., 2023b; Yao et al., 2023).
Nevertheless, conventional power systems are ill-equipped to
meet the burgeoning energy demands and are ill-suited for
integrating RE. Moreover, they fail to address challenges such as
bidirectional power, bidirectional communication flow, hybrid
power generation, and simultaneous information andpower transfer
systems (Yang et al., 2023a). To address these challenges, researchers
actively explored innovative grid solutions, such as smart grids (SGs)
(The Smart Grids, 2022). SGs encompass various advanced features
such as demand response (DR), advanced metering infrastructure
(AMI), sophisticated communication infrastructure (Palahalli et al.,
2019), net metering, energy management (Ahmed et al., 2022),
and flexible load (Shaker et al., 2023). This modern system also
has technical aspects such as an energy-efficient framework for
the internet of things (Jiang et al., 2022), a voltage and frequency
stabilization control strategy (Zhang et al., 2023), monitoring house
vacancy dynamics (Liu et al., 2023c), fast and accurate calculation
methods (Li et al., 2022a; Song et al., 2022a), optimal planning
(Ullah et al., 2021), and energy management. These advancements
and modern technical aspects represent a pivotal step toward
achieving a more reliable and sustainable power system in the face
of evolving energy demands and environmental concerns. To bridge
the energy supply–demand mismatch and address environmental
concerns, the DR is used by utility companies. The DR aims to
balance the fluctuating energy demands of users with the available
utility generation capacity, thus avoiding extensive investments
in additional energy generation infrastructure (Alzahrani et al.,
2023a). The DR incorporates pricing mechanisms and incentive
initiatives to optimize consumption patterns and reshape user
demand. One such pricing mechanism is the time-of-use (ToU)
structure. This involves three types of hours throughout the day,
stimulating users to transition from peak hours to non-peak
hours. Another approach is critical peak pricing (CPP), which
assigns higher prices during peak hours. Real-time pricing (RTP)
employs an hourly fluctuating mechanism (Silva et al., 2023a). To
incentivize consumers to participate in load scheduling via DR,

utility companies offer incentives tomanage the gap between energy
demand and supply effectively. In addition, authors reshaped energy
usage and use wide-area phasor measurements to ensure robust
control and identify sources (Wang et al., 2021b; Yang et al., 2023b).
Residential load scheduling has garnered considerable attention, yet
a lack of knowledge is a significant challenge that residential users
often face while adopting DR for load scheduling. To tackle this
challenge, an energy consumption scheduler (ECS) was introduced
using optimization techniques. The ECS was designed to encourage
users to respond efficiently to price incentives offered by utility
companies. It operates by receiving pricing incentive offers from
power suppliers and orchestrating interruptible appliances (IAs) and
non-interruptible appliances (non-IAs). Inês et al. (2020); Lu et al.
(2020); and Ghayour and Taghi (2022) focused on scheduling
residential loads using various optimization techniques to minimize
electricity bills. Additionally, consumers were observed to integrate
solar systems with batteries to generate energy for energy balancing
effectively (Rehman et al., 2023a; Alzahrani et al., 2023b). However,
it is worth noting that although these strategies aim to reduce
electricity bills, they may inadvertently lead to peaks in demand.
Li et al. (2022b) and Chen et al. (2023) developed a model to
solve the economic dispatch problem. A modified gravitational
search and particle swarm optimization (PSO) algorithm was
developed to solve the multi-objective load dispatch problem in
microgrids incorporating electric vehicles (Zhang et al., 2022a).
Several DR strategies for appliance power usage scheduling
benefited consumers and utility providers (Bizzozero et al., 2016;
Mohammad andMishra, 2019; Sarker et al., 2021; Song et al., 2022b;
Chreim et al., 2022; Alahyari and Jooshaki, 2023; Rehman et al.,
2023b; Reiszadeh et al., 2023). Consumers have adopted strategies
involving photovoltaic (PV) units, batteries, and controllable loads
within their homes to decrease their electricity bills while optimizing
their consumption. For instance, a strategy was developed for
scheduling an energy hub with risk constraints, incorporating
RE, DR, and electric vehicles (Liu et al., 2023d; Yang et al., 2024).
Furthermore, a low-carbon, fixed-tour scheduling challenge with
time windows in a time-dependent traffic scenario was addressed
by Zhang et al. (2022b). Nevertheless, none of the existing literature
has simultaneously addressed the issues of electricity bills, pollutant
emissions, or the peak-to-average demand ratio (PADR). It is
indispensable to highlight that residential energy management
is vital to enhancing the stability of the electricity grid, as the
deployment of DR practices driven by more energy-efficient
utilization by consumers can lead to significant energy savings
(Parvin et al., 2022). Investigating load scheduling in the context
of utility and PV systems holds promise for achieving more
optimal energy utilization in residential areas. Thus, meta-heuristic
approaches have emerged to address problems accompanied by
game-theoretic models. For example, the PSO algorithm discussed
by Disanayaka and Hemapala (2023) was developed to cater to
load scheduling problems for electricity bill payments and load
peak curtailment. However, the resultant system is complex. Some
authors have developed evolutionary algorithms to address power
usage scheduling problems (Alonso et al., 2012; Nawaz et al., 2020a;
Lotfi et al., 2020; El et al., 2022). A segmented probabilistic strategy
using multi-measurement data was utilized for the harmonic
estimation of residential distribution systems considering non-
intrusive residential loads (Xie and Sun, 2022; Lin et al., 2023;
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Wang et al., 2023). Authors used the genetic optimization algorithm
(GOA) for energy cost and utility bill reduction by optimizing power
usage scheduling for residential loads (Arabali et al., 2012). Using
SG, this study adjusts generation and load, measures and monitors
data, and transmits and distributes power for optimal energy
management. Mandal and Mandal (2020) developed an enhanced
differential evolutionary algorithm (EDEA) for DR between users
and aggregators. Silva et al. (2023a); Rehman et al. (2023c); Liu et al.
(2023e); and Makroum et al. (2023) developed heuristic algorithms
for optimal load scheduling in SGs. For example, Ullah et al. (2020a)
adapted the cuckoo search algorithm (CSA) to maintain a balanced
load curve considering the users’ preferences and constraints. The
gray wolf accretive satisfaction algorithm was proposed for smart
home appliance control and monitoring by Ayub et al. (2020). The
aim was to reduce energy costs and increase savings. Likewise, in
Ahmad et al. (2023), a heuristic algorithm-basedECSwas developed
to solve power scheduling problems considering RE and pricing
DR. The aim was to minimize utility bill payments, operation
delay time, and peak energy consumption. The gray wolf and
crow search optimization (GWCSO) algorithm was developed by
Waseem et al. (2020) to solve residential load scheduling problems
for peak energy consumption and energy cost optimization.
Zhao et al. (2013); Ma et al. (2016); and Jiang and Xiao (2019a)
developed the GOA to solve power usage scheduling problems
using the DR for peak energy demand alleviation, operation
delay minimization, and utility bill curtailment for single and
multiple consumers. Likewise, Ullah et al. (2020b) adopted the PSO
algorithm to solve load scheduling problems using incentive DR
and RE in SGs. An energy management framework was developed.
The ECS was programmed based on the GOA, Bacterial foraging
optimization algorithm (BFOA), PSO, and genetically enhanced
PSO algorithms by Jasim et al. (2023); Youssef et al. (2023); and
Samadi et al. (2022) for peak load demand and utility bill payment
curtailment. An optimal power flow solution using heuristic and
meta-heuristic algorithms was introduced by Shaheen et al. (2022a)
and Shaheen et al. (2022b) to maximize savings.

These techniques cannot handle the complexity and large-
scale nature of load scheduling problems in real-time. Meta-
heuristic algorithms emerge as the most suitable candidates
to address these challenges, offering the capacity to handle
complex and large-scale problems while providing near-optimal
solutionswithin reasonable timeframes.However, their effectiveness
is contingent on parameter choices and the quality of initial
solutions, making it challenging to guarantee the discovery of
globally optimal solutions. Thus, a smart home load scheduling
system with solar PV generation and DR was developed
under the umbrella of SGs. The main technical contribution is
listed as follows:

• Introduction of the hybrid genetic wind-driven optimization
(HGWDO) algorithm: An HGWDO algorithm is
introduced, combining the GOA and wind-driven
optimization (WDO) algorithms for optimal smart
home load scheduling under real-time pricing DR and
renewable generation.
• Development of the smart home load scheduling system:

A smart home load scheduling system is devised, using
heuristic techniques for the ECS to address the home

energy management problem. The system incorporates a
PV system, batteries, and smart appliances to optimize
home load behavior and reduce utility bills, pollutant
emissions, and PADR.
• Comparative analysis and validation: Extensive simulations

are conducted to evaluate the HGWDO algorithm against the
PSO, GOA, and WDO algorithms. The results demonstrate
the superior performance of the proposed HGWDO
approach in terms of utility bill payment, pollutant
emissions, and PADR. This work is a continuation of
the previous work (Hafeez et al., 2020), where the energy
management problem was solved for Internet of Things-
enabled smart homes under price-based DR using the wind-
driven bacterial foraging algorithm (WBFA). Validation is
supported by comparison with the BPSO, GOA, GWDO, and
GBPSO algorithms.

This work is organized as follows: first, an introduction
is presented; second, the problem statement and formulation
are presented; third, the modeling and methodology
of the developed framework are discussed; fourth, the
simulation results and discussions are presented; and
finally, the work is concluded, and future directions
are unfolded.

2 Problem statement and formulation

Initially, the smart home load scheduling problem is presented
and defined separately for each specific objective, such as
minimizing utility bill payments, reducing pollutant emissions, and
alleviating the PADR. Subsequently, the load problem is structured
as an optimization challenge. A more detailed explanation is
presented below.

2.1 Problem statement

Smart home load scheduling is a challenge due to the
unpredictable and nonlinear behavior of end users. Thus, most
researchers have focused on smart appliance operation scheduling
for optimal home energy management. Numerous strategies have
emerged in the literature, primarily focusing on pricing-based
DR mechanisms to govern smart appliance scheduling. Jiang
and Xiao (2019b) and Hafeez et al. (2020) devised a GOA for
scheduling appliances to reduce utility expenses and address the
PADR. However, this approach comes at the cost of compromising
consumer convenience while striving to minimize utility expenses,
because it exhibits certain inherent limitations and issues related to
uncontrolled mutation, resulting in imbalanced loads (Nawaz et al.,
2020b). Another strategy, based on the BPSO algorithm, was
presented for scheduling smart appliances by Imran et al. (2020).
Nevertheless, this approach further subdivided the scheduling time
horizon into shorter intervals, adding complexity to the model and
increasing computational overhead, which can be avoided. The
HGWDO algorithm is introduced with a strategy for programming
the ECS to address these challenges. The ECS, using the HGWDO
algorithm, automatically responds to DR pricing signals for effective
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smart appliance operation schedules and efficient energy utilization.
The WDO and GOA algorithms were chosen for the development
of the HGWDO algorithm due to their ease of implementation,
adaptability to specific constraints, low computational complexity,
rapid convergence, and minimal computational time. The
HGWDO algorithm-based ECS addresses smart home energy
managementwith real-time price-based demand response (RTPDR)
by yielding optimal schedules for smart appliances. End users
can then follow these schedules to maximize energy utilization,
minimize utility bill payments, mitigate the PADR, and reduce
pollutant emissions.

2.2 Problem formulation

Smart appliance operation scheduling was structured as an
optimization problem for efficient home energy management.
From an optimization standpoint, it is highly desirable for these
appliances to efficiently harness available energy resources to achieve
a triple objective: reduce pollutant emissions, mitigate the PADR,
and minimize the utility bills paid to the utility company. The
formulation of the load scheduling problem as an optimization
problem is given below:

min (CT,ϒ,R
p
a) , (1)

subject to.

ET ≤ Capacity, (2a)

EschT = E
unsch
T , (2b)

T o,sch
i ≠ T

o,unsch
i , (2c)

T lo,sch
a = T

lo,unsch
a . (2d)

Eq. 2a introduces a constraint that enforces the capacity limit
of the power grid, ensuring that it can actively participate in the
power usage scheduling of smart appliances without (W/O) utility
overloading.Meanwhile, Eq.2b constraints ensure that the net power
consumption remains unchanged W/O scheduling. Eq.2c indicates
the status of an activity, distinguishing between continued and
completed actions. The constraint is essential for facilitating a fair
comparison. Finally, Eq. 2d stipulates that the duration of the
time interval must remain consistent before and after scheduling,
promoting fairness in the comparison process. In the subsequent
sections, we elaborate on each objective and provide their formal
formulations, inspired by Hafeez et al. (2020).

2.2.1 Energy consumption
Energy consumption refers to the electricity consumed by

smart appliances during the scheduling period. This study considers
three types of smart appliances: power-flexible appliances (PFAs),
denoted by AP

a ; critical appliances, denoted by AC
a ; and time-flexible

appliances (TFAs), denoted by AT
a . The TFA is further classified

into two subtypes: interruptible time-flexible appliances (ITFAs)
and non-ITFAs. The hourly electricity consumption of ITFAs is
formulated as follows:

EIc (t) = P
I
r × St. (3)

In this context, EIc(t) stands for the hourly electricity consumption,
PIr represents the power rating, and St functions as the on/off status
indicator of the appliance. The net energy consumed by ITFAs is
computed below:

EIT =
24

∑
t=1

N

∑
a=1

EIc (t) ∀ I ∈ A, (4)

where N is the number of appliances and EIT is the net energy
consumption of ITFAs.

The net energy consumed by the non-ITFA is computed below:

ENIc (t) = P
NI
r × St, (5)

where ENIc (t) is the consumed energy at each hour, PNIr indicates the
power rating, and St is the non-ITFA status indicator. Thus, the total
energy used by the non-ITFA is computed below:

ENIT =
24

∑
t=1

N

∑
a=1

ENIc (t) ∀ N ∈ A. (6)

Thus, the net energy consumed per day by the TFA is computed
below:

EtaT = E
I
T +E

NI
T . (7)

Here, EIT and ENIT denote the daily electricity consumption of ITFAs
and non-ITFAs, respectively, while EtaT represents the combined net
electricity consumption of both ITFAs and non-ITFAs. The hourly
and daily energy consumption of PFAs is expressed below:

Epc (t) =
{
{
{

Pminp
r × St for on − peak hrs of γ (t)

Pmaxp
r × St for off − peak hrs of γ (t) ;

∀ p ∈ A, (8)

EpT =
24

∑
t=1

N

∑
a=1

Epc (t) . (9)

2.2.2 Utility bill payments
Theutility bill represents the charges usersmust pay to the utility

company for their electrical energy usage over a specified period.
This research established a formula for utility bill payments based on
RTPDR received from the utility company. The 2009 FERC Report
shows that users engaged in DR initiatives for load scheduling
enjoyed a 65% benefit. The formula for calculating the electricity bill
that users pay to their utility company for the electricity consumed
is expressed as follows:

CRP
T =

24

∑
t=1
(

N

∑
a=1

Eac (t) × St × γ (t)). (10)

Eq. 10 represents the electricity charges that consumers need to pay
for the electricity they use through an RTPDR. The variable CRP

T
signifies the total bill paid by users to operate all types of smart
appliances, whereas Eac (t) represents the electricity consumed by
each appliance a during hour t.

2.2.3 PADR
Utility companies encourage users to shift their electricity

consumption frompeak to off-peak hours to reduce the strain on the
power grid andmitigate peak demand.The PADR is ametric used to
measure the peak and average power usage ratio. It holds significant
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importance for utility companies and users for two primary reasons:
(a) it helps distribute the loadmore evenly, reducing the necessity for
peak power generation, and (b) it leads to lower utility bill payments
for users. The PADR is obtained as follows:

Rp
a = 24×(

max(EIc (t) , E
NI
c (t) , E

p
c (t) ,Ecc (t))

ET
), (11)

where Rp
a signifies the PADR and ET represents the overall energy

consumption.

2.2.4 Pollutant emissions
Pollutant emissions occur when carbon is released into the

atmosphere during the operation of household appliances. Pollutant
emissions are calculated as follows, as presented by Imran et al.
(2020):

ϒ =
avgEP
ε× ς× I

. (12)

Eq. 12 shows the carbon emissions measured in pounds. In
this equation, avgEP represents the average electricity price, ɛ
represents the price per kWh, ς indicates the emission factor, and I

denotes hour of the day.

3 Methodology

This section presents the methodology of the developed system
model, which consists of the generation and demand sides, focusing
on smart home load scheduling in SGs. The AMI is pivotal in
enabling RTPDR for smart home load scheduling. The homes on
the demand side are equipped with an ECS, a home gateway,
appliances, smart meters (SMs), remote control capabilities, a
monitoring display (MD), and a wireless home area network.
These components optimize energy consumption and enhance
control over household energy usage. Figure 1 shows the key
components of the system and their interactions.The AMI is a
vital component of the SG, serving as a central nervous system for
efficient smart home load scheduling. The AMI functions as a two-
way communication system that connects utilities and consumers.
Its primary role is the collection and real-time delivery of power
consumption records from SMs to utility companies. Additionally,
the AMI transmits RTPDR from utilities to consumers through SMs
and home gateways. The home gateway may exist as a separate
device or be integrated into the SMs, serving as a graphical user
interface (GUI) between the HAN and the wired network. The SM,
which can be installed indoors or outdoors in homes, is located
between the ECS and the AMI. Its core responsibilities include
measuring, recording, and processing energy consumption data and
delivering this information to the utility. Furthermore, the SMs
send an RTPDR to the ECS to facilitate optimal smart home load
scheduling.

This study focuses on a home equipped with various types
of smart appliances, including those with power-flexible, critical,
and time-flexible appliances. PFAs have flexible power ratings and
adhere to predefined operating schedules. Meanwhile, TFAs have
adaptable operating times but operate at fixed power levels. The
TFA is further divided into two categories: ITFAs (dishwashers,

tumble dryers, washing machines, etc.) and non-ITFAs (heaters,
vacuum cleaners, etc.). To address the challenge posed by the lack
of user knowledge, which often hinders the implementation of DR
programs, an ECS is used in homes. The ECS, based on HGWDO,
responds to theRTPDRon time.TheHGWDO-basedECS considers
factors such as the power ratings of smart appliances, RTPDR,
the duration of appliance operations, and energy availability from
the power grid. It uses these inputs to schedule the operation
hours of the smart appliances while adhering to the objective
function and various constraints. The ECS within the home can
communicate with appliances via various communication networks,
such as Wi-Fi, Z-Wave, Zigbee, and HomePlug, to share operation
schedules with these appliances. Energy management within the
home is achieved through the scheduling of smart appliances,
and it can be monitored either through an MD or remotely
via Android phones. The workflow shown in Figure 1 outlines
the entire process of this study. This model was developed with
motivation from Hafeez et al. (2020).

The proposed model remotely controls and monitors the
operation of smart appliances to efficiently manage energy through
automated scheduling, eliminating the need for human intervention
via DR programs.The key objectives of this home energy framework
are outlined as follows:

• Utility bill payment minimization
• PADR alleviation
• Pollutant emission mitigation

These objectives are obtained by smart home load scheduling
using an ECS based on HGWDO under RTPDR to utilize energy
for energy management optimally.

3.1 Inputs

The developed system model receives input data, including
the available energy from the power grid, solar PV, and battery,
information about RTPDR, power ratings of appliances, duration
of operation, and power usage patterns. A more comprehensive
breakdown of these inputs is provided below.

3.1.1 Solar PV generation
RE includes wind, solar, fuel cell, biogas, and tidal energies.

Among these REs, solar energy is plentiful, easily available, and
free. Thus, this work considers solar energy as an RE. The aim
is to use solar energy to reduce utility bill payments, peak
energy consumption, etc. Solar energy is modeled and defined
by Eq. 13 (Ahmad et al., 2023). The symbols used by Eq. 13 are
defined as follows: Epv is the generated output power, ∂pv denotes
the solar system efficiency, and Apv shows the solar panel area.
Likewise, rad (t) and Tp (t) denote the irradiation and temperature,
respectively, and the temperature correction factor is constant and
equal to 0.005.

Ppv (t) = ∂pv ×Apv × rad (t) × (1− 0.005× (Tp (t) − 25)) . (13)

The Weibull probability function models solar radiation as in
Eq. 14. The symbols used in Eq. 14 are defined as follows: θ1 and θ2
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FIGURE 1
Developed functional diagram for smart home load scheduling. The single arrowhead indicates one-way flow, whereas the bi-arrowhead signifies
two-way flow.

denote shape factors, 0 < rad(t) <∞, ω indicates the weight factor,
and λ1 and λ2 represent scale factors.

F (rad (t)) = ω(θ1
λ1
)(

rad (t)
λ1
)
(θ1−1)e

−( radλ1 )
θ1

+ (1−ω)(θ2
λ2
)(

rad (t)
λ2
)
(θ2−1)e

−( radλ2 )
θ2

. (14)

The ECS uses the maximum available solar energy during high-
priced hours and charges batteries during low-priced hours to
minimize utility bill payments.

3.1.2 Battery as energy storage
Batteries play a vital role in modern energy systems; they help

balance the power grid, improve reliability and resilience, and enable
RE integration. Power usage scheduling with batteries involves
charging the batteries during periods of low demand, such as at
night whenmany businesses are closed and electricity usage is lower.
The stored energy can then be discharged during periods of high
demand, such as during hot afternoons when many people run air
conditioning units. By doing this, the batteries minimize the peak

electricity demand and alleviate the strain on the grid, leading to a
more reliable and stable energy supply. Batteries are used to provide
backup power during a power outage situation. For example, if a
hospital has batteries installed, it can use the stored energy to power
critical systems, such as life support equipment, during an outage
until power is restored. In addition to load-scheduling and backup
power, batteries can also help integrate RE, like solar power, into
the power grid. The RE is variable and intermittent. Batteries can be
used to store excess energy during periods of high production and
then release it during periods of low production, providing a more
stable and reliable energy source. Thus, batteries remarkably curtail
pollutant emissions and notably alleviate utility bill payments. In
addition, batteries exchange power with utility companies when the
load demand is at its peak during the highest hours (Ahmad et al.,
2023). The batteries are modeled and defined in Eq. 15. The symbols
used are defined as follows: BESS, μBESS, η, EECh, and EEDch

represent the stored energy, efficiency, time duration, solar power
supplied to batteries, and power released from batteries to load,
respectively.

BESS (t) = BESS (t− 1) + η ⋅ μBESS ⋅EECh (t) −
η ⋅EEDch (t)

μBESS
∀t. (15)
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Limits designed to resolve overcharging/deep discharging are
presented as follows:

EECh (t) ≤ EEChUB, (16)

EE(t)Dch ≤ EEDchLB , (17)

PS (t) ≤ PSChUB. (18)

3.1.3 Appliances
A smart home is outfittedwith various types of smart appliances,

including PFAs, denoted as AP
a , TFAs, denoted as AT

a , and critical
appliances, denoted as AC

a . These smart appliances are characterized
by specific parameters encompassing well-defined operational time
intervals, power ratings, priority levels, categories, statuses, and
positions. The mathematical representation is as follows:

A = {AT
a ,A

P
a ,A

C
a } . (19)

The status indicator Sat = {1,0} and position indicator Xa
t =

(rat ,w
a
t ) are assigned for every appliance, where rat represents

remaining hours and wa
t represents waiting hours. The complete

description of the appliance is presented as follows:

1. PFAs, referred to as AP
a , exhibit adjustable power ratings. They

operate at the minimum rated power level during high-priced
hours and at the maximum rated power level during low-
price hours, aiming to reduce utility bill payments, alleviate
the PADR, andminimize pollutant emissions.These appliances
are given a secondary priority. These are also known as power-
regulating appliances. The formulation for the PFA in the
current and subsequent hours is as follows:

XN
t = (T

o
P,β− α+T

o
P + 1) , (20)

XP
t+1 =
{{{{
{{{{
{

rPt , 0, P
minp
r ifSt = 1, rPt ≥ 1

rPt , 0, P
maxp
r ifSt = 1, rPt ≥ 1

0, 0 otherwise.

(21)

In this context, XP
t and XP

t+1 represent the present and subsequent
status in the present and subsequent hours for PFAs, respectively.
The parameter To

P represents the total operating time. α denotes
the starting time of operation, β represents the ending time of
operation, rPt indicates the remaining hours, and St serves as
the status indicator for PFAs. These PFAs dynamically regulate
their power output within the range of the minimum power
rating, denoted as Pminp

r , and the maximum power rating,
denoted as Pmaxp

r .

2. TFAs have flexible operating schedule functions at rated power
levels. These appliances are denoted by AT

a and can be further
classified into two categories: non-ITFAs, labeled by ANI

T , and
ITFAs, denoted by AI

T. These types of appliances are signed as
the third and fourth priority, respectively. The mathematical
characterization is outlined as follows:

AT
a = {A

I
T,A

NI
T } . (22)

• ITFAs, denoted as AI
T, can adjust their operation times by

advancing or delaying their schedules as required. The ITFA
operation interruption/delay/advance during runtime before
completing their assigned tasks significantly contributes to
minimizing peak energy consumption. Additionally, these
smart appliances can refrain from starting during high-priced
hours. They can be either shut down or rescheduled to
operate during low-priced hours to ensure utility bill payment
reduction. These types of appliances are also referred to as
deferrable appliances. The positioning of ITFAs for the current
and subsequent hours is computed below:

XI
t = (T

o
I ,β− α+T

o
I + 1) , (23)

XI
t+1 =
{
{
{

rIt, w
I
t − 1, P

I
r ifSt = 0,wI

t ≥ 1

rIt − 1, w
I
t P

I
r ifSt = 1, rIt ≥ 1.

(24)

In this context, XI
t represents the current status of the ITFAs, while

XI
t+1 denotes their status in the next hour. The parameter To

I signifies
the total hours of operation; α represents the start time of operation;
β is the end time of operation; rIt represents the remaining hours;
wI
t indicates the waiting hours;PIr stands for the power rating; and St

reflects the status indicator (on/off) of the ITFA.

• Non-ITFAs, designated as ANI
T , can accommodate schedule

delays but cannot tolerate interruptions during operation until
the assigned task is completed.The positioning of the non-ITFA
for the current and subsequent hours is defined as follows:

XN
t = (T

o
N,β− α+T

o
N + 1) , (25)

XN
t+1 =
{
{
{

rNt , w
N
t − 1, P

NI
r ifSt = 0,wN

t ≥ 1

rNt − 1, 0, P
NI
r ifSt = 1, rNt ≥ 1.

(26)

In this context, XN
t represents the current status of the non-ITFAs,

while XN
t+1 signifies their status in the next hour. The parameter To

N
denotes the total hours of operation, α indicates the start time of
operation, β represents the end time of operation, rNt indicates the
remaining hours, wN

t denotes the waiting hours, PNIr stands for the
power rating, and St represents the status indicator (on/off).

3. Critical appliances, denoted asAC
a , are smart devices operating

at rated power levels and do not accept delay/interruption once
their operation commences. They are given priority and follow
a predefined schedule that does not disturb user convenience.

The input parameters for the smart appliances integrated into
the home are briefly described and provided in Table 1.

3.1.4 Price-based demand response
This study introduces the RTPDR, an input for the developed

HGWDO-based smart home load scheduling system. The utility
company provides the RTPDR to theHGWDO-based ECS, enabling
smart appliance power usage scheduling to achieve objectives such
as minimizing utility bill payments, reducing pollutant emissions,
and mitigating the PADR. The RTPDR is adapted from the FERC
(MISO, 2017). The RTPDR is structured with three pricing levels
throughout the day, namely, high-, medium-, and low-price hours.
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TABLE 1 Home appliance parameters, including factors such as their
duration, category, operating time intervals, priority, and power rating.

Appliance Power (kW) Start time End time

Washing machine 3.0 9:00 15:00

Tumble dryer 3.3 16:00 20:00

Dish washer 2.5 22:00 24:00

Vacuum cleaner 1.5 10:00 12:00

Water heater 1.8 5:00 8:00

Refrigerator 0.5–1.5 1:00 24:00

Air conditioner 0.8–1.8 1:00 24:00

Water dispenser 0.5–2.0 1:00 24:00

Microwave oven 1.2 14:00 16:00

1.9 8:00 10:00

Electric kettle 1.9 16:00 18:00

1.9 20:00 22:00

1.2 7:00 9:00

Electric toaster 1.2 13:00 15:00

1.2 20:00 22:00

The explanation is as follows: γ(t) represents the electricity price
at time step t, and γ1, γ2, and γ3 denote the prices of the RTPDR
during the off-,mid-, and on-peak periods, respectively.TheRTPDR
is defined for the entire day with an hourly resolution, meaning
that the union of the time intervals T1, T2, and T3 adds up to 24 h,
satisfying the condition γ1 < γ2 < γ3. To provide a breakdown, time
intervals from 1 to 8 h and 22 to 24 h correspond to low-price hours,
representing T1 and γ1. Likewise, time intervals from 8 to 16 h and
21 to 22 h constitute average-price hours, corresponding to T2 and
γ2. Moreover, the time interval from 16 to 21 h falls within the high-
price hours, indicating T3 and γ3. Based on our proposed HGWDO
algorithm, the ECS is designed to shift the load frompeak to off-peak
hours, aiming to curb utility bill payments, and pollutant emissions,
and reduce the PADR.

4 Hybrid genetic wind-driven
optimization algorithm

The HGWDO algorithm is our proposed hybrid algorithm that
combines the complete WDO technique with the GOA algorithm
mutation and crossover processes. This amalgamation was chosen
because the GOA excels at PADR minimization, whereas the WDO
algorithm proved to be efficient in utility bill payment and pollutant
emission reduction. The strategy based on the HGWDO algorithm
was designed to schedule appliance operations, aiming to satisfy the
needs of both users and utility companies. The HGWDO algorithm

Algorithm 1. HGWDO algorithm for smart home load scheduling in the
smart grid.

comprises two steps: (a) the entire operational process of the WDO
technique and (b) the mutation and crossover phases of the GOA
algorithm (Hafeez et al., 2020).The optimal result obtained from the
WDO technique was subjected to mutation and crossover phases
of the GOA algorithm to derive the optimal operation schedule
for appliances. Smart appliances then use this optimal schedule
to minimize utility bill payments, pollutant emissions, and PADR.
The HGWDO algorithm was configured with a population size of
10 individuals, a variable n set to 9, running for 100 iterations.
Additionally, the algorithm used a parameter RT with a value of 3, g
set to 0.2, α set to 0.4, and considered dimensions within the range
of −5–5. The maximum and minimum velocities (vmax and vmin)
were set to 0.3 and −0.3, respectively. The crossover probability (Pc)
was set to 0.9, and the mutation probability (Pm) was set to 0.1. The
complete implementation of the HGWDO algorithm to solve the
smart home load scheduling problem is presented in Algorithm 1.

4.1 Output

The HGWDO-based ECS relies on various parameters of
smart home appliances, such as their operating schedule, power
consumption, priority, and current status. It also considers the
RTPDR and the available energy from the power grid, PV, and
battery. Using these inputs, it aims to efficiently manage the power
consumption of homes by creating optimal operation schedules for
appliances.The output of the developed systemmodel is the optimal
operation schedule of appliances aiming to achieve the desired
objectives: utility bill payment, pollutant emission, and PADR
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FIGURE 2
Input profiles: (A) real-time price-based demand response signal; (B) temperature; (C) solar radiation; (D) estimated photovoltaic generation; (E)
utilized and remaining PV generation; and (F) hourly battery charging level.

FIGURE 3
Load pattern: (A) without (W/O) a PV and battery system; (B) with PV; (C) with a PV and battery system.

minimization. The smart appliances use the schedules generated by
the HGWDO-based ECS to minimize utility bill payments, reduce
pollutant emissions, and mitigate the PADR simultaneously.

5 Experimental results

The simulations for the developed model using the HGWDO
algorithm were conducted using MATLAB R2017b, where the
performance of the developed algorithm was compared to that of
three benchmark algorithms: PSO, GOA, and WDO with respect

to energy consumption, utility bill payment, pollutant emissions,
and PADR. We selected these algorithms as benchmarks due to
their architectural similarities with the proposed algorithm. We
carefully tuned the control parameters for the developed and
benchmark algorithms to ensure a fair comparison. Experiments
were conducted for three scenarios to evaluate the performance of
our proposed and benchmark algorithms. In the first scenario, we
considered a power grid as a source W/O the integration of PV
and batteries. The second scenario involved a power grid with PV
integration, and the third scenario included a grid with both PV and
battery integration. The proposed HGWDO algorithm incorporates
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FIGURE 4
Utility bill payment evaluation: (A) hourly utility bill payment W/O the PV and battery system; (B) hourly utility bill payment with PV; (C) hourly utility bill
payment with the PV and battery system; (D) net utility bill payment W/O the PV and battery system; (E) net utility bill payment with PV; (F) net utility bill
payment with the PV and battery system.

the RTPDR, forecasted temperature, and solar irradiance, as shown
in Figures 2A–C. The output power from solar energy systems
depends on solar radiation (Figure 2C) and temperature (Figure 2B).
We also considered the estimated PV generation, utilized PV
generation, and remaining PV generation after battery charging, as
depicted in Figures 2D, E, and the battery state of charge (Figure 2F).

A detailed discussion and performance evaluation of the
developed HGWDO and other algorithms are presented in the
following sections. The effectiveness assessment of the developed
HGWDO technique was performed by comparing it with the PSO,
GOA, and WDO algorithms in terms of energy consumption,
utility bill payment, pollutant emissions, and PADR. By assessing
the effectiveness of the HGWDO algorithm in optimizing these
key metrics, we aimed to comprehensively understand its potential
contributions to energy efficiency, cost reduction, environmental
sustainability, and grid reliability. The comparative analysis sheds
light on the suitability of the algorithm for addressing complex smart
home load scheduling challenges and its potential to outperform
established optimization techniques. A detailed analysis of each
metric is presented in the following sections.

5.1 Energy consumption

The energy consumption profiles for scheduled operation using
the PSO, GOA, WDO, and HGWDO algorithms, as well as
unscheduled loads, were analyzed across three scenarios: W/O
PV and battery system, with PV alone, and with PV and battery
systems. Figure 3 represents these energy consumption patterns,

providing valuable insights into how the scheduling strategies of
each algorithm impact energy usage under different configurations.

The load scheduling based on the PSO, GOA, WDO, and
HGWDO algorithms, as well as the unscheduled load W/O PV
and battery systems, is depicted in Figure 3A. For users W/O PV
and battery systems, the unscheduled load exhibited consumption
peaks of 800 Wh at 1, 2, 22, and 23 h, 700 Wh during 18–20 h, and
680 Wh during 7 and 8 h. On average, it consumed 300 Wh during
the remaining hours.

The load scheduling based on the PSO for users exhibited
peak energy consumption of 690 Wh at 2, 5, and 14 h, along
with 510 Wh at 22–23 h. During the remaining hours, the load
scheduling based on the PSO maintained a moderate energy
consumption level. Notably, the peak energy consumption with
the PSO was 13.75% lower than that in the unscheduled case.
For users under the GOA-based load scheduling, peak energy
consumption occurred at 510 Wh during 16–18 h and 495 Wh at
19 and 20 h, with moderate energy consumption in the remaining
hours.This lead to a significant curtailment of 36.25% in peak power
consumption compared toW/O scheduling. In the created schedule,
peak energy consumption reached 480 Wh during 21–24 h. Like
the GOA, the WDO load scheduling exhibited moderate energy
consumption during the remaining hours, with a 40% decrease
in peak power consumption compared to the W/O scheduling
case. The HGWDO-generated scheduling showed a peak power
consumption of 500 Wh at 2, 3, and 19–24 h while maintaining
moderate energy consumption in the remaining hours. Compared
to the unscheduled scenario, HGWDO achieved a 37.75% reduction
in peak power consumption. Similarly, the load scheduling results
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TABLE 2 Evaluation with respect to utility bill payment, PADR, and
carbon emission reduction.

Scenario Algorithm Utility
bill
payment
reduction
(%)

PADR
reduction
(%)

Carbon
emission
reduction
(%)

1

- - -

PSO 12.03 19.77 10.46

GOA 10.75 11.46 17.15

WDO 17.08 22.63 20.50

HGWDO 24.05 31.23 23.84

2

- - -

PSO 12.75 13.04 11.47

GOA 14.09 16.72 14.75

WDO 19.79 21.40 16.06

HGWDO 29.53 31.43 18.46

3

- - -

PSO 8.67 9.43 8.29

GOA 17.35 16.98 10.59

WDO 23.14 24.90 11.05

HGWDO 32.64 30.18 13.08

based on the PSO, GOA, andWDO algorithms and the unscheduled
scenario, both with PV and with PV and battery systems, are
depicted in Figures 3B,C, respectively. Notably, the HGWDO
algorithm outperformed the unscheduled scenario and the PSO,
GOA, andWDOalgorithms because it yielded themost optimal load
schedule across all scenarios.

The load scheduling with PSO, GOA, WDO, and HGWDO
algorithms with the PV and battery system is depicted in Figure 3.
The developedHGWDO algorithm in the case of the PV and battery
system was better than the other PSO, GOA, and WDO algorithms.

5.2 Utility bill payments

This section presents PSO, GOA, WDO, and HGWDO
effectiveness assessments under different conditions: W/O PV
and battery systems, with PV, and with PV and battery systems,
emphasizing visusalized in Figures 4A–F.Thehourly evaluationwith
Figure 4B. The maximum utility bill of an unscheduled load is 91
cents at 10 h, the PSO is 37.87 cents at 8 h, the GOA is 52.5 cents at
10 h, the WDO is 42.32 cents at 22 h, and the HGWDO algorithm
is 43.24 cents at 2 h. Similarly, in case 1, the utility bill payment
W/OPV and battery systems are shown in Figure 4A.Themaximum

utility bill payment of an unscheduled load is 69 cents at 8 h, the PSO
is 49 cents at 8 h, the GOA is 42 cents at 10 h, the WDO is 51 cents
at 20 h, and for the proposed HGWDO algorithm, it is 65.36 cents at
20 h. Likewise, the hourly utility bill payment assessment using PV
and battery systems, with and W/O the scheduling-based proposed
algorithm and existing algorithms, is depicted in Figure 4C. The
maximum utility bill payment for the unscheduled load is 59.99
cents at 1 h, the PSO is 59.65 cents at 10 h, the GOA is 58.35 cents
at 8 h, the WDO is 58.99 cents at 8 h, and the developed HGWDO
algorithm is 47.87 cents at 8 h. The results conclude that HGWDO
surpasses the performance of available techniques regarding hourly
utility bill payments for all three scenarios.

Thenet utility bill payment evaluation of the proposed algorithm
compared to the existing algorithms is listed in Table 2 and shown
in Figures 4D–F. In 24 h, the net utility bill payment for the
unscheduled load is 1,580 cents compared to those of the PSO,
GOA, WDO, and HGWDO algorithms, which are 1,390, 1,410,
1,310, and 1,200 cents, respectively. Comparing all the benchmark
heuristic algorithms with the HGWDO algorithm showed that the
proposed algorithm has the minimum utility bill payment during
the 24 h in scenario 1, presented in Figure 4D. Similarly, in scenario
2, in 24 h, the net utility bill payment for the unscheduled load
is 1,490 cents compared to those of the PSO, GOA, WDO, and
HGWDO algorithms, which are 1,300, 1,280, 1,195, and 1,050 cents,
respectively, presented in Figure 4B. Likewise, in scenario 3, the
net utility bill payment for the unscheduled load is 1,210 cents.
On the other hand, the utility bill payments of the PSO, GOA,
WDO, andHGWDOalgorithms are 1,105, 1,000, 930, and 815 cents,
respectively, depicted in Figure 4F. The graphical and numerical
results validate that the net utility bill payment curtailment of the
HGWDO algorithm is more significant than available techniques
and W/O scheduling cases. Consequently, the developed HGWDO
algorithm has the minimum utility bill payment on an hourly basis
or aggregated level compared to the existing algorithms for all
three scenarios.

5.3 Pollutant emissions

The evaluation of pollutant emissions from unscheduled and
scheduled loads is depicted in Figures 5A–C and summarized in
Table 2. Compared to the scenario W/O scheduling, the existing
and proposed algorithms demonstrate reduced carbon emissions.
However, it is noteworthy that the proposed algorithm consistently
outperforms all benchmark algorithms regarding carbon emission
reduction. For instance, in the scenario of W/O load scheduling
(shown in Figure 5A), peak carbon emission occurs at 21 h, reaching
160 pounds. On the other hand, the PSO, GOA, WDO, and
HGWDO algorithms exhibit maximum carbon emissions of 150
pounds, 142 pounds, 140 pounds, and 137 pounds, respectively,
at 21 h. Consequently, all benchmark algorithms perform better
than the unscheduled load scenario in reducing carbon emissions.
Notably, the proposed algorithm achieves the lowest carbon
emission at 21 h with only 137 pounds. Similarly, when considering
the scenario with PV systems (shown in Figure 5B), the maximum
carbon emission from the unscheduled load is 130 pounds at 21 h.
On the other hand, PSO, GOA, WDO, and HGWDO produce
maximum carbon emissions of 110 pounds, 105 pounds, 103
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FIGURE 5
Pollutant emission analysis: (A) W/O the PV and battery system; (B) with PV; (C) with the PV and battery system.

pounds, and 102 pounds, respectively, at 21 h. Remarkably, the
proposed HGWDO algorithm emits only 101 pounds of carbon at
21 h, the lowest among all existing algorithms. Furthermore, it is
worth noting that both the existing and proposed algorithms emit
lower pollution than W/O scheduling. The peak pollutant emission
is 145 pounds at 21 h for W/O scheduling in scenario 3 (presented
in Figure 5C). In contrast, peak carbon emissions for PSO, GOA,
WDO, and the proposed HGWDO algorithm are 142 pounds, 140
pounds, 137 pounds, and 130 pounds at 21 h, respectively. This
analysis underscores the significant reduction in carbon emissions
achieved by both the existing and proposed algorithms, particularly
when compared to unscheduled load scenarios.

In scenario 1, when no power usage scheduling is applied,
the total carbon emissions amount to 1,195 pounds. In contrast,
benchmark algorithms such as PSO, GOA,WDO, and our proposed
HGWDOalgorithm emit 1,070, 990, 950, and 910 pounds of carbon,
respectively. Comparatively, PSO reduced carbon emissions by
10.46%,GOAby 17.15%,WDOby 20.50%, andHGWDOby 23.84%
compared to unscheduled carbon emissions. This demonstrates
the effectiveness of our proposed algorithm in reducing carbon
emissions both per hour and in total in scenario 1.

When considering the unscheduled load and PV generation
scenario, the emissions stand at 915 pounds. The existing PSO,
GOA, WDO, and our HGWDO algorithms emit 915, 810, 780,
768, and 746 pounds of carbon, respectively. In this context, PSO
reduced carbon emissions by 11.47%, GOA by 14.75%, WDO by
16.06%, and HGWDO by 18.46%, marking the highest reduction
among the algorithms. Therefore, the developed algorithm
consistently outperformed the existing algorithms in pollutant
emission reduction.

In scenario 3, the unscheduled load led to a total carbon
emission of 1,085 pounds. The PSO, GOA, WDO, and HGWDO
algorithms resulted in emissions of 995, 970, 965, and 943 pounds,
respectively. Relative to the unscheduled carbon emissions, PSO
reduced emissions by 8.29%, GOA reduced emissions by 10.59%,
WDO by 11.05%, and HGWDO by 13.08%. Consequently, the
HGWDO algorithm consistently produced lower carbon emissions
than all benchmark algorithms.

5.4 Peak-to-average demand ratio

The assessment of the PADR is presented in Table 2 for three
distinct scenarios. In scenario 1, the PADR values for the PSO,
GOA, WDO, and developed HGWDO algorithms are 2.80, 3.09,
2.70, and 2.40, respectively. These algorithms collectively reduce
the PADR by 19.77, 11.46, 22.63, and 31.23, respectively. The
HGWDO algorithm successfully achieves load distribution during
off-peak and mid-peak hours, meeting its objectives. In contrast,
benchmark algorithms generate rebound peaks during power usage
scheduling, posing threats to grid reliability. Consequently, the
proposed HGWDO algorithm significantly mitigates the PADR
compared to the existing algorithms. In scenario 2, the developed
HGWDO algorithm and the PSO, GOA, and WDO algorithms
reduce the PADR by 31.43, 13.04, 16.72, and 21.40, respectively.
The proposed algorithm uniformly allocates the load during off-
peak hours and optimizes grid capacity using a knapsack problem
formulation, avoiding rebound peaks. Conversely, benchmark
algorithms uniformly shift load, leading to rebound peaks that
disrupt power grid reliability. These results demonstrate that
HGWDO optimally shifts the load from high- to low-price hours,
benefiting consumers and utility companies. The performance of
the proposed algorithm shines when integrated with PV scheduling.
Similarly, in scenario 3, PSO,GOA,WDO, andHGWDOalgorithms
curtail the PADR by 9.43, 16.98, 24.90, and 30.18, respectively.
The HGWDO algorithm optimally distributes the load during off-
peak hours and successfully meets its objectives. Some techniques
create rebound peaks that jeopardize grid reliability. The evaluation
of the PADR in the context of PV battery systems reveals that
the developed HGWDO algorithm significantly reduces the PADR
compared to the other techniques, benefiting utility providers
and consumers.

6 Conclusion and future work

Optimal smart home load scheduling can be achieved through
the DR program. However, a lack of knowledge can often hinder
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the successful implementation of DR. The emergence of the ECS
has helped overcome this challenge and led to the development
of the HGWDO algorithm. The HGWDO algorithm-based ECS
automatically responds to the RTPDR for optimal operation
scheduling of smart appliances under PV, battery, and utility
systems. The developed algorithm aims to address the smart home
load scheduling problem forW/O PV and battery, with PV, and with
PV and battery systems, aiming to simultaneously reduce utility bill
payment, pollutant emission, and PADR. The results show that the
developed HGWDO is more effective than other frameworks based
on PSO, GOA, and WDO schemes. The future directions for this
work are as follows:

• The Lyapunov technique will be used for real-time scheduling
to address smart home load scheduling issues by responding to
on-site events and requests.
• Dynamic power usage scheduling issues will be addressed by

adapting multi-objective optimization algorithms.
• We will employ cloud computing for smart home load

scheduling problems via the DR in SGs.
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