Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused an outbreak in 2002-2003, spreading to 29 countries with a mortality rate of about 10%. Strict quarantine and infection control methods quickly stopped the spread of the disease. Later research showed that SARS-CoV came from animals (zoonosis) and stressed the possibility of a similar spread from host to human, which was clearly shown by the COVID-19 outbreak. The COVID-19 pandemic, instigated by SARS-CoV-2, has affected 776 million confirmed cases and more than seven million deaths globally as of Sept 15, 2024. The existence of animal reservoirs of coronaviruses continues to pose a risk of re-emergence with improved fitness and virulence. Given the high death rate (up to 70 percent) and the high rate of severe sickness (up to 68.7 percent in long-COVID patients), it is even more critical to identify new therapies as soon as possible. This study combines research on antivirals that target SARS coronaviruses that have been conducted over the course of more than twenty years. It is a beneficial resource that might be useful in directing future studies.
In this mini review, we explore the complex network of inflammatory reactions incited by SARS-CoV-2 infection, which extends its reach well beyond the respiratory domain to influence various organ systems. Synthesizing existing literature, it elucidates how the hyperinflammation observed in COVID-19 patients affects multiple organ systems leading to physiological impairments that can persist over long after the resolution of infection. By exploring the systemic manifestations of this inflammatory cascade, from acute respiratory distress syndrome (ARDS) to renal impairment and neurological sequelae, the review highlights the profound interplay between inflammation and organ dysfunction. By synthesizing recent research and clinical observations, this mini review aims to provide an overview of the systemic interactions and complications associated with COVID-19, underscoring the need for an integrated approach to treatment and management. Understanding these systemic effects is crucial for improving patient outcomes and preparing for future public health challenges.
Background: The aim of the study was to evaluate the humoral and cellular immunity after SARS-CoV-2 infection and/or vaccination according to the type of vaccine, number of doses and combination of vaccines.
Methods: Volunteer subjects were sampled between September 2021 and July 2022 in Hospital Clínico San Carlos, Madrid (Spain). Participants had different immunological status against SARS-CoV-2: vaccinated and unvaccinated, with or without previous COVID-19 infection, including healthy and immunocompromised individuals. Determination of IgG against the spike protein S1 subunit receptor-binding domain (RBD) was performed by chemiluminescence microparticle immunoassay (CMIA) using the Architect i10000sr platform (Abbott). The SARS-CoV-2-specific T-cell responses were assessed by quantification of interferon gamma release using QuantiFERON SARS-CoV-2 assay (Qiagen).
Results: A total of 181 samples were collected, 170 were from vaccinated individuals and 11 from unvaccinated. Among the participants, 41 were aware of having previously been infected by SARS-CoV-2. Vaccinated people received one or two doses of the following vaccines against SARS-CoV-2: ChAdOx1-S (University of Oxford—AstraZeneca) (AZ) and/orBNT162b2 (Pfizer—BioNTech)(PZ). Subjects immunized with a third-booster dose received PZ or mRNA-1273 (Moderna—NIAID)(MD) vaccines. All vaccinees developed a positive humoral response (>7.1 BAU/ml), but the cellular response varied depending on the vaccination regimen. Only AZ/PZ combination and 3 doses of vaccination elicited a positive cellular response (median concentration of IFN- γ > 0.3 IU/ml). Regarding a two-dose vaccination regimen, AZ/PZ combination induced the highest humoral and cellular immunity. A booster with mRNA vaccine resulted in increases in median levels of IgG-Spike antibodies and IFN-γ as compared to those of two-dose of any vaccine. Humoral and cellular immunity levels were significantly higher in participants with previous infection compared to those without infection.
Conclusion: Heterologous vaccination (AZ/PZ) elicited the strongest immunity among the two-dose vaccination regimens. The immunity offered by the third-booster dose of SARS-CoV-2 vaccine depends not only on the type of vaccine administered but also on previous doses and prior infection. Previous exposure to SARS-CoV-2 antigens by infection strongly affect immunity of vaccinated individuals.
Introduction: COVID-19 continues to spread worldwide, with an increasing number of individuals experiencing reinfection after recovering from their primary infection. However, the nature and progression of this infection remain poorly understood. We aimed to investigate the immune response, severity and outcomes of Omicron BA.5 reinfection among individuals previously infected with different SARS-CoV-2 variants.
Methods: We enrolled 432 COVID-19 cases who had experienced prior infection with the ancestral SARS-CoV-2 virus, Delta variant or Omicron BA.2 variant between January 2020 and May 2022 in Guangzhou, China. All cases underwent follow-up from March to April, 2023 through telephone questionnaires and clinical visits. Nasal lavage fluid and peripheral blood were collected to assess anti-RBD IgA, anti-RBD IgG and virus-specific IFN-γ secreting T cells.
Results: Our study shows that 73.1%, 56.7% and 12.5% of individuals with a prior infection of the ancestral virus, Delta or Omicron BA.2 variant experienced reinfection with the BA.5 variant, respectively. Fever, cough and sore throat were the most common symptoms of BA.5 reinfection, with most improving within one week and none progressing to a critical condition. Compared with individuals without reinfection, reinfected patients with a prior Delta infection exhibited elevated levels of nasal anti-RBD IgA, serum anti-RBD IgG and IFN-γ secreting T cells, whereas there was no noticeable change in reinfected individuals with a prior BA.2 infection.
Conclusion: These results suggest that BA.5 reinfection is common but severe outcomes are relatively rare. Reinfection with a novel SARS-CoV-2 variant different from the prior infection may induce a more robust immune protection, which should be taken into account during vaccine development.