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Editorial on the Research Topic

Trends in digital hearing health and computational audiology

Introduction

Traditional hearing health care (HHC) service delivery models focus on face-to-face,

clinic-based testing, often requiring several patient visits (World Health Organization,

2013). However, access to these services remains limited globally, leaving millions with

untreated hearing loss, which has pervasive and profound consequences (Olusanya et al.,

2014; Shukla et al., 2020). The shift toward mHealth and modern machine learning

present opportunities to increase access in HHC through scalable models of care. This

can be facilitated by low-cost hearing devices, smartphone technologies, and equipping

a larger number of specialists for medical and surgical management of ear and hearing

diseases (Bernstein et al., 2018). Furthermore, computational auditory models, advanced

algorithms, and the use of artificial intelligence offer promising avenues for developing

new hearing solutions and optimizing existing ones (Boisvert et al., 2023).

This Research Topic aimed to collect the latest research in these areas to support

the effective implementation of digital technologies and computational methods in order

to improve accessibility to ear and hearing healthcare services. The special edition

consists of 11 articles and spanned over two Frontiers journals, Frontiers in Neuroscience,

and Frontiers in Audiology and Otology. The Research Topic was initiated in June

2023, and opened for submission from September 2023 to October 2024, with a total

of 14 submissions being received. The papers included in this edition are broad in

their scope, ranging from validation of automated audiometry to machine learning and

artificial intelligence.

Advances in audiometric assessment and hearing
conservation methods

Automated audiometry has been proposed as an alternative of diagnostic assessment to

improve access to hearing care by reducing time and costs, especially in areas with limited

specialist availability. Liu et al. examined the correlation of air-conduction thresholds

between automated audiometry conducted in a non-isolated environment and manual

audiometry performed in a soundproof setting on individuals with normal hearing and
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varying degrees of hearing loss. Consistent with previous research

(Corry et al., 2017; Mahomed et al., 2013), Liu et al. found

comparable results between the two methods across hearing levels.

Hearing conservation programs rely on serial audiograms to

monitor shifts in hearing over time. McMillan et al. identified

limitations in traditional approaches to serial monitoring

and proposed a new statistical modeling method using a

Gaussian process. This approach enables individualized

predictions and simplifies interpretation, providing a

less biased, more accessible tool for early detection of

hearing changes.

Speech-in-noise testing

Human communication often occurs under adverse acoustical

conditions, where speech signals mix with interfering speech

or noise. Speech-in-noise (SIN) audiometry is thus a valuable

part of audiological diagnostics and clinical measurements.

Génin et al. developed and normalized a French speech-in-

noise (SIN) test, SoNoise, to use as both a screening and a

clinical evaluation tool. Normative values for diotic and antiphasic

presentations were established with findings accurately capturing

SIN abilities across various populations. Whereas, Meyer et al.

investigated the use of a humanoid NAO robot to present

target sentences alongside competing masker speech in a speech-

in-speech test framework. Functional similarity was found in

speech intelligibility when the NAO robot was compared to a

traditional computer setup, with participants generally positive

toward robot interactions.

Hearing aid technology and user
experience

Hearing aids (HA) are prescribed to enhance communication

and improve the quality of life for those who have hearing

loss, but many individuals do not wear them consistently due

to discomfort, dissatisfaction, or perceived lack of benefit,

especially in noisy environments (Heselton et al., 2022). Alishbayli

et al. developed a fast, domain-free noise suppression method,

Statistical Sound Filtering (SSF), which used sound textures’

statistical properties to enhance speech clarity. The evaluation

of SSF demonstrated improvements in sound quality and

reduced background noise levels without compromising speech

intelligibility suggesting that SSF could be effectively integrated

into HAs. While Fourie et al. examined the positive experiences

of HA users through ecological momentary assessment (EMA)

and found significant benefits in various contexts, particularly

in conversational settings and leisure activities. Similarly,

Sheng et al. investigated the perceived benefits of over-the-

counter (OTC) hearing aids, a recently launched category of

hearing devices, revealing that users experienced satisfaction

scores comparable to traditional hearing aid users, along with

notable improvements in emotional health, relationships, and

communication abilities.

Linked to intervention options, Madahana et al. developed and

tested a monitoring system that integrates a smartwatch and smart

hearing muff with sound sensors in a mock mine environment.

The system effectively detected noise levels and successfully

communicated alerts to miners; however, further refinements

and testing are required. Similarly, Andersson et al. leveraged

EMA on heart rate data to understand the factors influencing

real-world listening experiences. Results from a preliminary

study among individuals with no hearing loss indicated that

momentary heart rate data helped improve the prediction of

self-reported listening experiences (passive vs. active listening).

This study underscores the potential of integrating physiologic

EMA data to deepen our understanding of listening dynamics

in everyday environments and suggests promising applications

for improving hearing aid outcomes among individuals with

hearing loss.

Auditory training and assessment for
pediatric populations

Spatial hearing is crucial for communicating in noise and

can improve with training. Parmar et al. present a novel virtual

reality (VR) game for an intervention designed to enhance spatial

hearing in children and young people with bilateral cochlear

implants. The BEARS (Both Ears) approach leverages the engaging,

interactive, and immersive format of VR to strengthen listening

skills, with the aim of supporting communication skills in

noisy environments.

Auditory processing disorder (APD) assessments present

challenges due to the disorder’s heterogeneous nature, necessitating

significant experience and training for accurate diagnosis.

Wimalarathna et al. used a Random Forest model to analyse

data from APD clinical test batteries to categorize children

with APD into specific clinical subgroups which achieved

90% accuracy.

Conclusion

This Research Topic of articles highlights innovative solutions

that can significantly enhance the accessibility and effectiveness of

ear and hearing healthcare services, addressing the critical need

for more inclusive approaches to managing hearing health across

diverse populations.
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Introduction: Approximately 0.2–5% of school-age children complain of listening

di�culties in the absence of hearing loss. These children are often referred to

an audiologist for an auditory processing disorder (APD) assessment. Adequate

experience and training is necessary to arrive at an accurate diagnosis due to the

heterogeneity of the disorder.

Objectives: The main goal of the study was to determine if machine learning

(ML) can be used to analyze data from the APD clinical test battery to accurately

categorize children with suspected APD into clinical sub-groups, similar to expert

labels.

Methods: The study retrospectively collected data from 134 children referred

for ADP assessment from 2015 to 2021. Labels were provided by expert

audiologists for trainingMLmodels and derived features from clinical assessments.

Two ensemble learning techniques, Random Forest (RF) and Xgboost, were

employed, and Shapley Additive Explanations (SHAP) were used to understand the

contribution of each derived feature on the model’s prediction.

Results: The RFmodel was found to have higher accuracy (90%) than the Xgboost

model for this dataset. The study found that features derived from behavioral tests

performed better compared to physiological test features, as shown by the SHAP.

Conclusion: The study aimed to use machine learning (ML) algorithms to reduce

subjectivity in audiological assessments used to diagnose APD in children and

identify sub-groups in the clinical population for selective interventions.

Significance: The study suggests that this work may facilitate the future

development of APD clinical diagnosis software.

KEYWORDS

auditory processing disorder, clinical data mining, audiology, hearing disorders, machine

learning
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1. Introduction

Auditory processing refers to how the brain interprets the

sounds that one has heard. Normal auditory processing is

important for understanding complex sounds, such as music or

speech in difficult listening situations like classrooms, recreation,

social gatherings, or restaurants. If the auditory system has weak

processing skills, it can lead to listening problems [Cline, 2001;

American Speech-Language-Hearing Association (ASHA), 2005].

Approximately 0.2–5% of normal-hearing children have difficulty

understanding complex sounds, especially in difficult listening

situations (Chermak et al., 1997; Nagao et al., 2016). These children

are suspected of having Auditory Processing Disorder (APD).

APD is usually identified by parents or teachers and requires

an assessment by an audiologist for a formal diagnosis. APD

assessments are typically carried out in specialized clinical centers.

The audiologists who conduct these tests require extensive training

and experience for proper assessment and diagnosis. However,

there is a lack of consensus regarding which specific tests should

be included in the APD assessment battery (Emanuel et al., 2011;

Iliadou et al., 2017). Professional bodies including the American

Speech-Language Hearing Association (ASHA) recommend using

both behavioral and physiological measures (in a test battery

approach) to assess auditory processing in children suspected of

APD [American Speech-Language-Hearing Association (ASHA),

2005]. The behavioral component measures the child’s ability to

process acoustic stimuli (speech and non-speech) and respond

verbally. The physiological component measures the overall

integrity of the auditory system (Starr and Achor, 1975; Allen and

Allan, 2014). A diagnosis of APD is made if the child’s test scores

are greater than two standard deviations fromnormative thresholds

on two or more tests, or three standard deviations on one test

[American Speech-Language-Hearing Association (ASHA), 2005].

There are typically very few referrals made to clinics for APD

per year (Moore et al., 2018), making it difficult for training

audiologists to gain sufficient practice assessing APD. The diagnosis

of APD is also challenging due to its heterogeneity and associated

comorbidities (Bamiou et al., 2001; Chermak, 2002; Sharma et al.,

2009; Iliadou et al., 2017, 2018, 2019). As a result, there are

very few studies on the management of APD children (Emanuel

et al., 2011). Allen and Allan (2014) previously classified children

with APD into clinical sub-groups based on how they performed

on behavioral and physiological tests. Children who performed

poorly on behavioral tests were considered behaviorally abnormal1;

children who had atypical physiological findings were considered

physiologically abnormal; children who performed poorly on

both were considered abnormal across; and the children whose

performance on both behavioral and physiological measures were

within normal limits were categorized into a separate group. By

identifying sub-groups of APD, an audiologist can better apply

specific interventions the child may require. For example, children

who have difficulty processing auditory information behaviorally

1 Theword abnormal indicates the performance of the child in the auditory

processing test battery fell at least two standard deviations below that of

typically developing children. This is valid for any place the word “abnormal”

is used in the paper.

may benefit from auditory training (Weihing et al., 2015), whereas

children who show atypical physiologic processing may benefit

from using frequency modulated (FM) systems (Hornickel et al.,

2012; Rance et al., 2014). An FM system is a wireless device

which reduces the background noise and improves sound clarity

(Johnston et al., 2009). Children who have difficulty processing

auditory information both behaviorally and physiologically may

benefit from both auditory training and the use of an FM system

[American Speech-Language-Hearing Association (ASHA), 1970;

Sharma et al., 2012; Keith and Purdy, 2014; Smart et al., 2018].

Children whose performance is within normal limits on both

behavioral and physiological measures may indicate to address

non-auditory concerns, and a referral to another professional is

required. Categorizing children into different subclinical groups is

however complex, time consuming, and highly subjective.

Machine learning (ML) is becoming increasingly popular in

the field of medicine to help clinicians make timely and accurate

clinical diagnoses. ML techniques can be applied in designing

software for clinical use by learning from the data (Davenport and

Kalakota, 2019). Additionally, ML helps to reduce subjectivity in

clinical judgment. Previously, ML models were considered “black

box” models; however, with improvements in interpretability,

models are now able to be better understood and applied in clinical

settings (Ahmad et al., 2018). There is only one study in the

literature that has used unsupervised ML techniques (hierarchical

clustering) to identify sub-groups in APD data (Sharma et al.,

2019). The study used data collected from 90 children aged 7–12.8

years old. Four sub-groups were found based on 10 variables, as

follows:

• Group 1: Children with global deficits

• Group 2: Children with poor auditory processing, but good

word reading and phonological awareness skills

• Group 3: Children with poor auditory processing, poor

attention, and poor memory, but good language skills

• Group 4: Children with poor auditory processing and poor

attention, but good memory skills

The assessments included in the analysis were behavioral tests

and Cortical Evoked Auditory Responses (CEARs). However, APD

is heterogenous, and it is therefore important to evaluate a variety

of skills in the clinical assessment. There is a current lack of research

using ML techniques to categorize APD data into sub-groups using

both behavioral and physiological assessments.

The goal of our study was to determine if ML models

can be used to learn and predict the diagnosis of APD

with similar accuracy to clinical audiologists. Furthermore, we

used interpretability techniques to identify how important each

individual assessment within the APD battery is in arriving

at an accurate label. The application of ML may show the

diagnostic accuracy of APD, assist in centers where experts offer

limited availability, and enable another tool together with clinical

expertise to target individualized intervention of APD. To our best

knowledge, this is the first study to:

1. Use supervised ML methods for APD data analysis from a

comprehensive test battery that includes both behavioral and

objective hearing assessments.
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2. Use interpretability techniques to identify which APD

assessments contribute most to an accurate APD diagnosis

based on expert labels.

2. Materials and methods

2.1. Dataset

Children with listening complaints (hearing in noise) and or

poor academic performance were referred to the H.A. Leeper

Speech & Hearing clinic at the University of Western Ontario,

Canada for an assessment of APD. Data from 134 children between

the ages of 5–17 years old (90 male; 44 female) were retrospectively

collected from 2015 to 2021. The primary language of all the

children was English. The Health Sciences Research Ethics Board

of Western University, Canada, has approved the study (IRB

00000940).

2.2. Auditory processing audiological
clinical test battery

The APD assessment is carried out in a test battery format

following guidelines recommended by ASHA [American Speech-

Language-Hearing Association (ASHA), 2005]. The test battery

appraises the overall wellbeing of the auditory system, starting with

how sound is processed and perceived by the auditory system. The

Auditory Processing (AP) test battery consists of both behavioral

and physiological measures. In behavioral tests, the processing and

perception of auditory information are assessed. In physiological

measures, the overall neuro-physiological wellbeing of the auditory

system is assessed. Figure 1 shows a summary of the AP test

battery.

First, patient demographics such as age, gender, birth history,

middle ear history, family hearing issues, and additional health

problems are completed, typically by a parent. Next is a

detailed peripheral hearing assessment. In the peripheral hearing

assessment, pure tone audiometry (the minimum intensity that a

listener can detect for different test frequencies), tympanometry

(an assessment of middle ear function), and otoacoustic emissions

(a physiological measure that assesses the functioning of the

outer hair cells) are completed to ensure that the child does not

have any hearing loss. If a child fails any of the tests in the

peripheral hearing assessment, auditory processing tests will not

be administered [American Speech-Language-Hearing Association

(ASHA), 2005]. Children with normal hearing as indicated by

the peripheral hearing assessment will then undergo the auditory

processing test battery. In this study, pure tone audiometry was

conducted using the GSI-61 (Grason Stadler Inc, USA) Clinical

Audiometer. The middle ear function was assessed using the GSI

Audiostar (Grason Stadler Inc, USA) TympStar diagnostic middle

ear analyzer. The otoacoustic emissions were measured through the

Titan Suite.

The behavioral tests that are used are standardized and widely

used in North America (Emanuel et al., 2011). Behavioral tests can

be categorized into speech and non-speech tests. The Staggered

Spondaic Word (SSW) test (Katz, 1998) is a dichotic listening

FIGURE 1

Auditory processing (AP) clinical test battery. ABR, auditory

brainstem responses; CEARs, cortical evoked auditory responses.

test in which two spondees2 are presented in a staggered fashion

and the listener must repeat all four words. The Word in Noise

(WIN) test (Wilson, 2003) assesses the individual’s ability to listen

to speech in noise. InWIN tests, words are presented inmulti-talker

babble at seven signal-to-noise ratios (SNR) (+24–0 dB). In the

Word in Ipsilateral competing noise (WIC) test (Ivey, 1969), words

are presented at +5 dB SNR. The Pitch Pattern Sequence (PPS;

Pinheiro, 1977) test assesses the auditory system’s ability to perceive

and or process auditory stimuli in their order of occurrence. In

this study, adaptive auditory discrimination tests (psychoacoustic

tests), such as the ability to detect brief gaps in noise, amplitude

modulation (20 and 200 Hz), and ability to discriminate frequency

(1,000 Hz), were also performed for a portion of children. In the

current study, speech behavioral assessments were conducted using

the GSI-61 Clinical Audiometer and the psychoacoustic tests were

carried out using the Tucker Davis System.

Once the behavioral tests are completed, physiologic

assessments are carried out. The auditory brainstem responses

2 Spondees are terms that accommodate two equally stressed syllables.
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FIGURE 2

Summary of results for Experiments 1 and 2. The x-axis shows the four conditions, and the y-axis shows the accuracy over the test set.

(ABRs) and cortical evoked auditory responses (CEARs) are

recorded from children. These evoked responses are recorded from

both ears by placing a surface electrode on the scalp and presenting

brief acoustic stimuli. The ABR was recorded by presenting a

100 µs rarefaction click stimulus at 80 dB nHL at a rate of 13.3

clicks/s. The CEARs were recording using a 60 ms tone stimuli

at 1,000 Hz with an intensity of 70 dB nHL. The stimuli were

presented monoaurally through ER-3A, Etymotic Research Inc

insert earphones. The ABR occurs between 0 and 8 ms after

stimulus onset, whereas the CEARs occur between 80 and 300 ms

after stimulus onset. The recording windows were 10 and 750 ms

for ABRs and CEARs, respectively. The responses were averaged

and amplified with an amplification of 100 k for ABRs and 30

k for CEARs. Bandpass filters of 100–1,500 Hz were applied to

ABRs and filters of 1–30 Hz were applied to CEARs. The artifact

rejection was set to 23.8 µV for ABRs and 79.2 µV for CEARs. In

the present study, the recording of CEARs took place at a separate

appointment, and only limited data was available. To record these

physiological signals, we used a Bio-logic Navigator Pro AEP

system (Natus Medica, Inc).

The last test performed in the test battery is the acoustic

reflex (middle ear muscle reflex) test. The acoustic reflexes are

recorded by presenting loud tones to the ear. When loud tones are

presented, the admittance of the tympanic membrane and middle

ear system decreases due to stapedius muscle contraction. Presence

of an acoustic reflex is an indication that the middle ear and the

peripheral auditory system is intact. The GSI TympStar diagnostic

middle ear analyzer was used to obtain the acoustic reflexes in the

current study.

2.3. APD subgroups

A study conducted by Bellis and Ferre (1999) proposed the

idea of determining different sub-groups of APD children. Previous

studies conducted in the Child Hearing Research Laboratory at

Western University (Allen and Allan, 2014) have also shown the

importance of both physiological and behavioral assessments in the

AP test battery thereby observing sub-groups in the APD data. A

study by Sharma et al. (2019) used hierarchical cluster analysis to

identify sub-groups in APD children. In the Sharma et al. (2019)

study, data was collected from over 90 school-aged children (7–13

years old) who were suspected of having an APD. The collected

data contained the outcomes of test results, which assessed the

children’s reading, language, cognition, and auditory processing.

Initially, the dataset had 23 variables based on various auditory

assessments, however, for the cluster analysis, only 10 variables

were included, namely: phonological, irregular, TONI, Forward,

Dichotic Digit Test, Language, Non-word, Attention, Backward

DS, and Frequency Pattern Test. The cluster techniques used

were hierarchical clustering, followed by k-means. Four clusters

of children were identified: 35 children showed global deficits; 22

children showed poor auditory processing with good word reading

and phonological awareness skills; 15 children had poor auditory

processing with poor attention and memory, but good language

skills; and 18 children had poor auditory processing and attention

with good memory skills. However, the authors did not include any

physiological data such as ABRs or otoacoustic emissions in the

cluster analysis.

Cluster analysis techniques are unsupervised learning

techniques, whereas in supervised learning, expert labels are used

to train ML models. In supervised learning, after the model is

trained with part of the labeled data (the “training” set), predictions

are made on the other part of the data (the “test” set). The predicted

results are compared to the labeled data to evaluate the accuracy

of the model. The use of supervised or unsupervised techniques

depends on whether human experts are available to provide the

labels of the test set. Here, three expert audiologists with>10 years

of experience assessing APD children labeled the dataset into four

APD sub-groups (Allen and Allan, 2014) based on if children were
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behaviorally and physiologically normal or abnormal. The four

labels were presented as follows:

• “BnPn” = Behaviorally Normal and Physiologically Normal

• “BnPa” = Behaviorally Normal and Physiologically Abnormal

• “BaPn” = Behaviorally Abnormal and Physiologically Normal

• “BaPa” = Behaviorally Abnormal and Physiologically

Abnormal

2.4. Feature engineering

In traditional ML algorithms, the data should be transformed

to features that better represent the underlying problem to reach

a satisfactory outcome. This process is called feature engineering.

Deep Learning (DL), which is a sub-field in ML, does not

require such manipulations; the model itself performs feature

engineering. However, in medical applications, the use of DL

techniques is limited due to the scarcity of data. Hence, traditional

ML algorithms with effective feature engineering techniques may

produce predictive models well-suited to the current problem. The

feature engineering performed in our study was done with the

advice of the domain experts. Since the AP assessments that are

included in our study have standardized test scores, inserting the

data as raw data into the ML pipeline seemed to interfere with the

outcome of the tests. An additional problemwas that some children

did not finish all the assessments in the test battery for various

reasons. Therefore, a better representation of data was needed to

encode these clinical tests. Based on the expert agreement, the raw

data encoding was carried out categorizing to “pass,” “fail,” “did not

finish the assessment,” and “missing data.” One-hot encoding was

conducted when feeding as features. The tests that were encoded

in this manner were otoacoustic emissions, hearing thresholds,

acoustic reflexes, and all the behavioral test results (both speech and

non-speech tests).

The ABR and CEAR data are presented as clinical waveforms.

To represent these data, we used the Continuous Wavelet

Transform (CWT) as a feature extractor, as described in our

previous work (Wimalarathna et al., 2021). The CWT is a time-

frequency plot obtained by convolving a signal with a window

function called a “mother wavelet.” The mathematical equation for

the wavelet transform is as follows (Torrence and Compo, 1998),

W(a, b) =
1
√
a

∫ ∞

−∞
s(t)ψ∗(

t − b

a
)dt (1)

In the equation, s(t) represents the signal and the ψ(t)

represents the mother wavelet which is scaled by “a′′ and translated

by “b′′. The CWT plot is obtained by convolving these scaled

and translated versions of the mother wavelet. There are multiple

mother wavelet types introduced in the literature, however since

the ABRs and CEARs consist of peaks and valleys, intuitively the

Gaussian mother wavelet was chosen throughout the study. If the

ABR or the CEAR is windowed in the locations where peaks and

valleys occur, it closely matches with the Gaussian wavelet. This was

one major reason for selecting the Gaussian wavelet as it would best

mimic how a clinician would select the peaks and valleys from a

waveform.

In our previous study (Wimalarathna et al., 2021), the features

extracted from the CWT were sent through a statistical feature

selector and the models were trained to recognize abnormal versus

normal ABR responses. In the previous study, 700 features were

required to reach a 92% accuracy. For the present study, we

wanted to further optimize the feature space and determine if a

smaller number of features could represent the group differences

between typically developing children and children suspected of

having APD. The complex Gaussian mother-wavelet was used to

compute the CWT plot for both ABRs and CEARs. The resulting

CWT representation was a complex matrix. Therefore, to derive

the features, we considered its magnitude and phase. From the

magnitude plot of the CWT coefficient matrix, the coefficients were

averaged across time and the coefficient of dispersionwas calculated

based on the following equation,

Coefficient of Dispersion =
Q3 − Q1

Q3 + Q1
(2)

In the equation,Q1 andQ3 are the first and the third quartile of

the average values, respectively. The angle of the CWT coefficients

was first unwrapped across the time axis and the standard deviation

was calculated as a feature. The ABRs and CEARs both contained

four features in total, representing the magnitude and the phase.

In a clinical setting, audiologists are interested in peaks, inter-peak

intervals and their timing. However, there is additive subjectivity

when an inexperienced audiologist analyzes the waveforms. Hence,

by automatically calculating these features, subjectiveness in the

analysis can be mitigated. The designed features represent similar

characteristics of the waveform that clinicians derive manually. The

ability of these features to explain the group differences were tested

using ML models. Feature interaction was studied by adding and

removing the features while observing the effects on accuracy.

2.5. Data augmentation techniques

APD is a rare disorder and clinics typically receive few APD

referrals per year. It has also been reported that obtaining a referral

for APD diagnosis is difficult (Moore et al., 2018; Agrawal et al.,

2021). For these reasons, there was a limited amount of data

available for this study and it took approximately six years to collect

the data within the dataset. Data augmentation techniques may

be used to overcome the difficulties associated with training ML

models with small datasets. Several techniques have been identified

in the literature, with resampling techniques being the most

commonly used. Synthetic Minority Over-sampling TEchnique

(SMOTE) is one such resampling technique where synthetic

samples are generated for minority data instances (Chawla et al.,

2002). The technique draws a new sample at a position (feature

space) between samples. First, the algorithm selects a random

instance from the minority class. Next, k nearest neighbors for that

example are located. A synthetic example is then generated at a

randomly chosen position in the feature space between the two

instances and their randomly chosen neighbor (Brownlee, 2020a).

Recent advances in ML have led to the development of more

sophisticated techniques for data augmentation, such as Generative

Adversarial Networks (GANs). However, there are challenges in

using this model for augmenting tabular data such as mixed
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data types, continuous features having multimodal non-gaussian

distributions, and highly imbalanced categorical columns. The

Conditional Tabular GAN (CTGAN) model designed by Xu et al.

(2019) has been able overcome these challenges and has been

proven to perform better than the existing architectures. The

model uses mode-specific normalizations to overcome the issue

of non-Gaussian and multimodal distributions. Additionally, the

training-by-sampling technique is included to solve the problem

of imbalanced columns. In the present study, we utilized CTGAN

and the SMOTE resampling technique separately to compare which

data augmentation technique was best suited to our application.

2.6. Machine learning algorithms

Ensemble learning techniques are generally considered suitable

to train with small amounts of data. These models aggregate

the outcome of a large number of models to produce a single

classifier (Breiman, 1996). Bagging (Breiman, 1996) and Boosting

(Schapire, 1990; Freund and Schapire, 1996) are two popular

techniques used in building accurate ensemble models. In Bagging,

the ensemble classifier combines the output of various learned

classifiers into a single classifier. Boosting technique iteratively

invoke a weakly learned classifier producing multiple classifiers.

These are finally combined to a single strong composite classifier

similar to Bagging. There is theoretical and empirical evidence

proving that ensemble learning techniques can reduce both the bias

and variance components of errors made by ML models (Rokach,

2019).

Several ML algorithms are available in the literature that use

Bagging and Boosting techniques (Odegua, 2019). In our study,

we selected Random Forest (RF) as an ensemble algorithm from

the Bagging techniques and Xgboost (Xgb) from the Boosting

techniques. The RF algorithm combines bagging with bootstrap

sampling. Xgb uses a highly scalable tree ensemble boosting

algorithm. Even though there are many algorithms available in the

literature that can train a model with small datasets, it is best to

consider minimizing bias and variance to not only fit the test data

but also generalize well on test/validation data (Maheswari, 2019).

Certain algorithms are prone to overfitting if not carefully chosen.

The traditional learning algorithms such as ensemble algorithms,

perform better compared to deep learning architectures which

utilize neural networks (Alom et al., 2019). This was observed when

we trained a Neural Network model.

Additional problems encountered with some ML algorithms

include class imbalance (Brownlee, 2020a), non-representative data

(Menon, 2020), and the curse of dimensionality (Karanam, 2021).

However, ensemble methods such as RF and Xgb are less likely

to be associated with such challenges when using small datasets.

We applied hyperparameter tuning (tuned hyperparameters are

included in Table A1), cross-validation, stratified sampling, and

resampling techniques (SMOTE Chawla et al., 2002) to overcome

the challenges of a small dataset.

2.7. Interpretability techniques

Machine Learningmodels have long been considered black-box

models until recently, when the research community discovered

TABLE 1 Details of the experiments conducted.

Experiment number Features Sample size

1 SSW, PPS, WIC/WIN,

ABR magnitude and

phase, acoustic reflexes

134

2 SSW, PPS, WIC/WIN,

ABR magnitude and

phase, CEARs magnitude

and phase, acoustic

reflexes, frequency

discrimination, gap

detection, and amplitude

modulation

46

SSW, staggered spondaic word; PPS, pitch pattern sequence; WIC, word in competing;

WIN, word in noise; ABR, auditory brainstem responses; CEARs, cortical evoked auditory

responses.

techniques to disentangle the internal mechanisms of the models.

This has helped build trust in the use of ML models for sensitive

applications, such as in the field of biomedicine (Rudin, 2019;

Auslander et al., 2021; Papastefanopoulos et al., 2021). There

are two scopes of interpretability in ML models, per sample

interpretation (local) and overall interpretation (global). There are

several software libraries available to interpret an ML model both

locally and globally. Shaply Additive Values by Lundberg and Lee

(2016) is an interpretability technique that uses coalition game

theoretical approaches to explain a model’s predictions. It has been

implemented as a Python library named “SHAP,” which stands

for SHaply Additive exPlanations (Mazzanti, 2020). In SHAP, the

feature values of a data instance act as players in a coalition.

The computed SHAP values represent how to fairly distribute the

prediction among the features. The explained SHAP model can be

represented by the following equation (Bagheri, 2022),

g(x,) = φ0 +
K∑
j=1

φjx
,
j (3)

The g(x,) in the equation is the explanation model. Coalition vector

is represented as x, ∈ {0, 1}K , where K is the maximum coalition

size. The Shapley value is φj ∈ R, which is the feature attribution

for a feature j. The Shapley value reveals how to fairly distribute a

prediction among the features assuming that each feature value of

the instance is a “player” in a game where prediction is the payout.

In this study, the SHAP Python library (Lundberg and Lee, 2017)

was used to interpret the models.

2.8. Experiments

In Experiment 1, only ABRs were considered as the number

of CEARs was only available for 46 children. There were four

ABR signals (two from both ears) considered from each of the 134

children, resulting in 536 data instances. For Experiments 2, each

child had eight CEAR signals resulting in a total number of 368

instances for the dataset, including the ABRs. The train/test split

was chosen to be 70:30 across all the experiments since a balance for

both training and testing data was required due to the small dataset

sizes. In all experiments, to find the confidence bounds of the

model, iteratively 100 shuffled random splits of train/test (train/test

Frontiers in Audiology andOtology 06 frontiersin.org13

https://doi.org/10.3389/fauot.2023.1215965
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


Wimalarathna et al. 10.3389/fauot.2023.1215965

TABLE 2 Equations used to calculate the evaluation metrics. The k in the

equations indicates a class (either BaPa, BaPn, BnPa, or BnPn).

Evaluation metric Equation

Accuracy
∑

K TP+TN∑
K TP+FP+FN+TN

Sensitivity/Recall TPK
TPK+FNK

Specificity TNK
TNK+FPK

Precision TPK
TPK+FPK

F1-score 2 ∗ PrecisionK∗RecallK
PrecisionK+RecallK

Informedness SensitivityK + SpecificityK − 1

Markedness TPk
(TPk+FPk)

+ TNk
(TNk+FNk)

− 1

Accuracy is calculated by summating values from each class. Sensitivity, specificity, precision,

F1-score, informedness, and markedness are shown for an individual class.

TP, true positive; TN, true negative; FP, false positive; FN, false negative; BnPa, behaviorally

normal and physiologically abnormal; BnPn, behaviorally normal and physiologically normal;

BaPa, behaviorally abnormal and physiologically abnormal; BaPn, behaviorally abnormal and

physiologically normal.

split was not fixed) were considered from each ML algorithm.

It results in 100 models trained on different train/test splits of

the data. All the training iterations included both hyperparameter

tuning using Random Search (Bergstra and Bengio, 2012) and

stratified cross-validation (Brownlee, 2020b). This revealed how

confident each model was in predicting the labels of the dataset.

2.9. Evaluation metrics and statistical tests

The performance of the ML models was evaluated using the

metrics listed in Table 2. A true positive (TP) or a true negative

(TN) indicates cases where the model and the label provided

by the clinician agree. When the model and the labels disagree,

false negatives (FN) and false positives (FP) are encountered.

Calculating TN, TP, FN, and FP from the confusion matrix in the

case of a multi-class classification problem is different compared

to a binary classification problem. Further details on these

calculations can be found in Grandini et al. (2020) and Shmueli

(2019). The informedness and markedness were calculated from

the sensitivity, specificity, and precision. Informedness combines

both sensitivity and specificity to measure the consistency of

predictions from the ML model, whereas markedness measures the

trustworthiness of predictions made by the ML model (Powers,

2020).

Statistical significance tests were utilized to arrive at

conclusions based on the evaluated metrics. The Friedman

test was conducted to evaluate the significance of the results. The

Friedman test is a non-parametric test used to compare group

differences (Scheff, 2016).

2.10. Programming packages

All algorithms used were written in the Python programming

language. Several software libraries were employed. The

Pandas library (McKinney et al., 2011) was first used to

pre-process the data. CWT analysis was carried out using

the PyWavelets library (Lee et al., 2019). The Scikit-learn

package (Pedregosa et al., 2011) contained all the ML

FIGURE 3

Confusion matrix for the RF model for Experiment 2. The diagonal

shows the correctly classified data instances while the o�-diagonal

shows the incorrectly classified instances. BaPa, behaviorally

abnormal and physiologically abnormal; BaPn- behaviorally

abnormal and physiologically normal; BnPa, behaviorally normal

and physiologically abnormal; BnPn, behaviorally normal and

physiologically normal.

algorithms that were used in the study. Finally, the SHAP

library (Lundberg and Lee, 2017) was used to interpret the

models.

3. Results

The results obtained for the experiments as mentioned in

Table 1 are shown in Figure 2. These results were obtained from

training 100 different train/test splits from the data. Each data point

shows the accuracy for the test set after the model was trained

with hyperparameter tunning and cross-validation. In Experiment

1, the RF model has a negatively skewed distribution (mean =

68.3%, median = 68.5%) with a standard deviation of 4%, while the

Xgb model shows a positively skewed distribution (mean = 66.6%,

median = 65.7%) with a standard deviation of 5%. The median

accuracy of the RF model is greater than the Xgb model (2.8%). In

Experiment 2, the RF shows a positively skewed distribution (mean

= 81.6%, median = 81.1%), while Xgb shows a negatively skewed

distribution (mean =79.1%, median = 79.3%). The RF model shows

slightly better median accuracy than Xgb (1.8% difference).

A Friedman test revealed a significant difference in the results

of experiments [X2
r (3,N = 100) = 239.823, p < 0.05]. The

Bonferroni multiple comparison test was next used to compare

pairwise performances for each experiment. The test revealed that

each pair of experiments has significant differences in performance.

Experiment 2 showed significantly better results (p < 0.01) for

both RF and Xgb models compared to Experiment 1. Experiment

2 contained features derived from all the tests from both the

behavioral and physiological test battery, whereas Experiment 1
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FIGURE 4

Confusion matrix for the Xgb model for Experiment 2. The diagonal

shows the correctly classified data instances while the o�-diagonal

shows the incorrectly classified instances. BaPa, behaviorally

abnormal and physiologically abnormal; BaPn, behaviorally

abnormal and physiologically normal; BnPa, behaviorally normal

and physiologically abnormal; BnPn, behaviorally normal and

physiologically normal.

contained only features from ABRs due to the lack of data for

CEARs.

The model with the greatest accuracy out of the 100

models generated from each different train/test splits of data for

Experiment 2 is RF with a 90.1% overall accuracy and Xgb with an

86.5% overall accuracy. Figures 3, 4 show the confusion matrices

for the two models. The diagonals in the two matrices show

the correctly classified instances and the other indices show the

incorrectly classified instances. Based on the confusion matrices,

the performance metrics listed in Table 2 were calculated for

each class. Table 3 shows the calculated performance metrics. It

can be observed that the performance metrics of the RF model

outperformed the Xgbmodel in most performance metrics for each

class. Hence the RF model was selected as the best model.

The SHAP interpretations for the selected best-performing

model, RF, are shown in Figure 5. The x-axis in the plot shows

the mean SHAP values for each feature on the y-axis. The features

on the y-axis are ordered from highest to lowest impact, from

top to bottom. Each bar shows the contribution from each of

the four APD sub-groups. A higher mean SHAP scores that the

feature is largely contributing to the outcome of the model. The

features contributing to the outcome the most were the SSW

scores, and the features contributing the least were the right

and left contralateral acoustic reflexes. From the physiological

hearing test battery, the features derived from cortical responses

were ranked higher compared to ABR features. From the acoustic

reflexes, the ipsilateral recordings of both right and left ears

were ranked higher compared to the contralateral recordings.

The amplitude modulation at 20 Hz and gap detection from T
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FIGURE 5

SHAP interpretations for the Random Forest model for Experiment 2. This was the best-performing model with an accuracy value of 90.1%. The

X-axis of the diagram shows the mean SHAP values, and the y-axis shows the features contained in the model ordered from highest (top) to lowest

(bottom) mean SHAP value. Each bar represents a combination of average values of the contribution from each subgroup. SSW, staggered spondaic

word; WIC, word in competing; WIN, word in noise; CEARs, cortical evoked auditory responses; ABR, auditory brainstem responses; Mag, magnitude;

PPS, pitch pattern sequence; BnPa, behaviorally normal and physiologically abnormal; BnPn, behaviorally normal and physiologically normal; BaPa,

behaviorally abnormal and physiologically abnormal; BaPn, behaviorally abnormal and physiologically normal; LI, left Ipsi; RI, right Ipsi; LC, left

contra; RC, right contra; GAP, GAP detection; AMP, AMPlitude modulation; Freq, frequency detection.

psychoacoustics showed higher mean SHAP values compared to

frequency discrimination.

4. Discussion

The present work explored the use of supervisedML techniques

to analyze data collected from children suspected of APD from

a period of approximately six years. We determined RF and Xgb

models to be the best suited for this study as they are both ensemble

learning models that can perform well with small datasets. Data

augmentation techniques can be used to improve the performance

of ML models trained with small datasets. Here, we used the

CTGAN augmentation technique (Xu et al., 2019). We found no

significant difference in using CTGAN in conjunction with either

the RF or Xgbmodels. CTGANdid significantly improve the results

when used with a Neural Network. The accuracy of the neural

network model without CTGAN for Experiments 1 and 2 were

51(±0.02) and 0.50(±0.04)%, respectively. The accuracies were

improved to 69(±0.02)% for Experiment 1 and 70(±0.02)% for

Experiment 2 with CTGAN. However, the accuracy obtained for

Neural Network models was lower overall compared to RF and Xgb

models.

The assessment of hearing thresholds is conducted early in the

AP testing battery, and if a child passes each threshold, they are

tested on the remainder of the battery. In this study, all children

showed hearing thresholds (at conventional frequencies 250–

8,000 Hz) within normal limits, and there were no considerable

differences in hearing thresholds across the population. The ML

results indicated that hearing thresholds showed the least impact

on the outcome of the models. The features that were shown

to impact the outcome of the models the most based on SHAP

interpretations were derived from the behavioral tests. The SSW

ranked first in both experiments, indicating that it impacted the

outcome of the models the most. This is consistent with the

literature, in which the SSW test is identified as a standard test

for the auditory processing assessment (Emanuel et al., 2011). This

consistency further indicates that ML models can comply with

expert knowledge.

The inclusion of cortical responses in the physiological

hearing assessments provided additional information about the

neurophysiology of the auditory system. However, certain test
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batteries do not include an assessment of cortical responses.

Through our experiments, we noted that features derived from

cortical responses largely contributed to the output of the models,

as indicated by the SHAP interpretations. The features derived from

CWT represent a summary of peak amplitudes and latencies. Even

though the dataset with cortical features was smaller, the accuracy

of both the RF and Xgb models was higher compared to the dataset

without cortical features (Experiment 1). The extracted features

suggested that cortical evoked responses provided significant

information about auditory processing in these children. The

emerging literature also suggests that cortical evoked responses

are atypical in children referred for an auditory processing

evaluation (Barker et al., 2017; Hussain et al., 2022). It is therefore

recommended to evaluate cortical responses in the APD assessment

and include these features in future studies that aim to use ML for

automating APD diagnosis. Currently, it is not clear about the effect

of maturation, morphology, and inter-subject variability in cortical

evoked responses on these features. Hence, a thorough study of

the features with a larger dataset is required in the future. It will

help clinical understanding and the Machine Learning model reach

higher accuracies.

The ipsilateral acoustic reflexes from the physiological hearing

test battery also contributed largely to the model outcome

compared to the contralateral reflexes based on the SHAP

interpretations. In exploring the data, only a few children had

elevated thresholds reflected through ipsilateral reflexes, and most

children showed reflex thresholds within the normal limits overall.

Psychoacoustic tests use non-speech stimuli and can be used

to validate the results of behavioral tests. The data from these

tests were included in Experiment 2. However, the contribution

from psychoacoustic tests was lesser compared to the behavioral

assessments that used speech stimuli and the physiological tests.

In the final model, amplitude modulation detection at 20 Hz and

GAP detection were the tests that provided the most impact to

the model outcome compared to the frequency detection and

amplitude modulation detection at 200 Hz. After discussing with

clinicians, it was found that sometimes children have difficulties

with performing the frequency detection test compared to GAP

in noise. In addition, detecting amplitude modulation at 20 Hz is

easier compared to 200 Hz. Hence, this was further evidence that

the model can be used to output accurate predictions in accordance

with current clinical knowledge.

There are only a few studies in the literature that use ML

techniques to analyze APD data in children (Strauss et al., 2004;

Sharma et al., 2019; Cassandro et al., 2021). Sharma et al. (2019)

used behavioral assessments data to cluster APD children into four

sub-groups using hierarchical clustering techniques. The auditory

processing assessments used by Sharma et al. (2019) were different

than those used in the present study; we used both behavioral

and physiological data, as recommended by [American Speech-

Language-Hearing Association (ASHA), 2005]. The sub-groups

identified by Sharma et al. (2019) have very few similarities

to those identified in the present study. However, the group

identified as “global deficit” is similar to the group we identify

as “behaviorally abnormal and physiologically abnormal (BaPa),”

where all assessments are outside of the normal thresholds. The

study conducted by Strauss et al. (2004) used the β-waveform of the

binaural interaction component in auditory brainstem responses

along with a support vector machine model to detect APD in

children. The study did not identify subgroups in the data, but

rather aimed to identify children at risk for APD from those not

at risk. Cassandro et al. (2021) have used cluster analysis to identify

issues in students tested for dyslexia accompanied by poor auditory

skills. Out of the four participants in the cluster who had poor

audiometric profiles and were suspected of APD, only one subject

was identified as APD.

The clinical workflow used here can be adopted in future work

aiming to study APD data as we followed a comprehensive test

battery based on ASHA guidelines. The use of ML techniques

discussed in this paper may also be applied to future studies

aiming to develop automated platforms to assess other clinical test

batteries. Since this study focused on the technical aspects of ML,

we did not discuss the clinical management of the identified sub-

groups in detail. This would require further work by clinicians

and researchers. However, we believe our study may aid such

discussions as we have presented an objective tool to categorize

children with APD into clinical sub-groups. We have further

revealed the contribution of each assessment contained in the AP

test battery on the model outcomes. It should be noted that the use

of ML tools are meant to complement rather than replace clinical

decision making.

There are relatively few referrals made for APD assessments

in children and there is no definitive way to determine how

much data is needed for an ML experiment before collecting the

data. Our experiments were done based on the limited data we

had available. Hence, the sample size of the clinical population

is the main limitation of our study. A larger dataset will ensure

improved generalization, model performance, stability, and validity

in machine learning models. Future studies should be conducted

with a larger data set in children referred for an auditory processing

evaluation. A wide variety of complex algorithms, such as deep

neural networks, could be explored with larger datasets which will

help to derive a strong understanding of the clinical problem and

reduce the number of tests used in the diagnosis. Hence, this study

can be viewed as exploratory, where future studies may adopt our

methods from both clinical and ML workflows. Future studies may

explore solutions to the difficulties associated with collecting APD

datasets such as forming larger, multi-center collaborations. One

such solution may be the use of a federated ML system, in which

researchers for different centers may contribute training data to the

same model without exposing personal information (Yang et al.,

2019).

5. Conclusion

The purpose of this study was to explore the use of ML

techniques as a potential tool to aid in the analysis of the AP

test battery. Data from children suspected of APD were classified

into clinical sub-groups based on their performances on both

behavioral and physiological hearing assessments. The RF model

was shown to perform the best, with an average accuracy of 90%,

an average sensitivity of 91%, and an average specificity of 96% for

all sub-groups. The model was able to identify the critical subgroup

BaPa, in which children performed poorly in both behavioral

and physiological assessments, with a sensitivity and specificity
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of 93 and 91%, respectively. The group that performed within

normal limits in the test set (BnPn) were correctly identified with

a sensitivity and specificity of 100 and 98%, respectively. This study

further highlighted the utility of each individual test contained

within the AP test battery in making predictions that agree with

clinical understanding.
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Appendix

TABLE A1 Tuned hyperparameters of Machine Learning models used in

the study.

ML model Tuned hyperparameters

Random forest Number of estimators, size of the random subsets of

features, maximum depth of individual trees, minimum

samples to split on at an internal node of the trees, minimum

leaf nodes after splitting a node

Xgboost Column sample by tree, gamma, learning rate, maximum

depth, number of estimators, subsample, regularization

parameter alpha

Neural network Hidden Layers, Activation function, Optimization function,

Learning Rate, Iterations
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Using auditory texture statistics
for domain-neutral removal of
background sounds

Artoghrul Alishbayli‡, Noah J. Schlegel†‡ and Bernhard Englitz*

Computational Neuroscience Lab, Donders Institute, Radboud University, Nijmegen, Netherlands

Introduction: Human communication often occurs under adverse acoustical

conditions, where speech signals mix with interfering background noise. A

substantial fraction of interfering noise can be characterized by a limited set

of statistics and has been referred to as auditory textures. Recent research in

neuroscience has demonstrated that humans and animals utilize these statistics

for recognizing, classifying, and suppressing textural sounds.

Methods: Here, we propose a fast, domain-free noise suppression method

exploiting the stationarity and spectral similarity of sound sources that make up

sound textures, termed Statistical Sound Filtering (SSF). SSF represents a library of

spectrotemporal features of the background noise and then compares this against

instants in speech-noise-mixtures to subtract contributions that are statistically

consistent with the interfering noise.

Results: Weevaluated the performance of SSF usingmultiple qualitymeasures and

human listeners on the standard TIMIT corpus of speech utterances. SSF improved

the sound quality across all performance metrics, capturing di�erent aspects of

the sound. Additionally, human participants reported reduced background noise

levels as a result of filtering, without any significant damage to speech quality. SSF

executes rapidly (∼100× real-time) and can be retrained rapidly and continuously

in changing acoustic contexts.

Discussion: SSF is able to exploit unique aspects of textural noise and therefore,

can be integrated into hearing aids where power-e�cient, fast, and adaptive

training and execution are critical.

KEYWORDS

sound textures, noise reduction, speech enhancement, hearing aids, statistical learning

Highlights

- Acoustic textures are defined by time-independent statistics and occur frequently.

- Learning a library of spectrotemporal features rapidly filters out acoustic textures.

- Filtering suppresses background noises across different auditory textures.

- Human and automatic performance evaluation demonstrate suppression.

- Filtering is fast and can thus be integrated into mobile devices and hearing aids.

Introduction

Auditory signals rarely arrive at the ear in pure and unambiguous form but are usually

mixed with other competing sounds. Masking of relevant information by irrelevant noise

is not unique to the auditory system: occlusion of surfaces in a complex visual scene

poses an analogous signal processing problem that requires disambiguation and segregation

of sources (Handel, 2006; Minaee et al., 2022). However, unlike in the visual domain,

in the auditory domain, the noise is superimposed onto the signal which creates an
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ill-posed source separation problem for the auditory system

(McDermott, 2009). During the course of evolution, the auditory

system evolved an impressive ability to extract relevant information

from complex scenes with multiple interfering sources, an effect

known as the cocktail party effect (Middlebrooks et al., 2017).

Although the specific neural mechanisms responsible for this ability

remain poorly understood, extensive research has documented

the processes through which the auditory system of an organism

responds to the noise in complex auditory scenes. These processes

include segregation by fundamental frequency, dip listening, better-

ear listening, binaural unmasking, etc. (see Culling and Stone, 2017

for an overview).

However, what is achieved seamlessly by a normally

functioning system, becomes a challenge with hearing loss

(Koole et al., 2016). To address the issue, various noise reduction

approaches have been developed over the past few decades (Loizou,

2013b; Henry et al., 2021). They vary in multiple dimensions: some

of the methods use real-time data (Braun et al., 2021) collected

using a single channel microphone (Huang and Benesty, 2012; Lee

and Theunissen, 2015), while others are used in post-processing

and utilize multiple recording channels (Tzirakis et al., 2021),

which can provide extra spatial cues that can aid in solving

the problem. While noise reduction approaches typically do

not improve speech intelligibility itself, the subjective listening

experience does improve with indications of less cognitive load

for normal hearing persons (Sarampalis et al., 2009) and reduced

listening effort for less distorted speech in people with hearing

loss (Fiedler et al., 2021). Classically, noise reduction algorithms

use signal processing methods, but recent developments in the

field have led to increased use of machine learning techniques that

allow more flexibility in terms of target selection and enhancement

in more complex, non-stationary background noise conditions

because they make fewer assumptions about the nature of noise.

Sounds with relatively constant statistical features over time

have been categorized as acoustic textures, for example, the sound

of rain, fire, or flocks of birds (McDermott and Simoncelli,

2011). Most auditory textures are physically generated by the

superposition of a limited range of constituent sounds, which occur

independently or with limited statistical dependencies between

the constituent sounds. Previous research has shown that humans

can recognize and differentiate acoustic textures on the basis

of their statistics (McDermott and Simoncelli, 2011; McDermott

et al., 2013). However, previous approaches in noise reduction

have not made use of this inherent structure of acoustic textures,

despite their frequent role as background sounds during every-

day audition.

In this study, we propose a noise reduction method that utilizes

these inherent statistical regularities to attenuate background

sounds and thus improve the signal-to-noise ratio of embedded

speech sounds. Specifically, we represent the ensemble of

constituent sounds using samples of background sounds, identified

around or between speech samples. Assuming an additive mixture,

we then clean the speech-in-noise sample by identifying exemplars

that provide the best match to the instantaneous spectrogram. This

approach extends previous approaches of spectral noise subtraction

(Boll, 1979) by relating it to the statistics of natural background

sounds. Importantly, we do not create an explicit statistical model

of the background noise, as (i) this usually requires more data to

be well-constrained and (ii) the internal, statistical predictability

would be too limited to remove specific instantaneous sounds

randomly occurring inside the auditory textures (see Discussion

for details).

Applied to the TIMIT database in the context of artificial

and natural acoustic textures, the filtered result exhibited an

improved representation of the speech as measured by a standard

deep neural network (DNN) based speech recognition system,

spectrogram correlations, and automated estimation of speech

quality. Similarly, online psychoacoustic experiments on human

participants also indicated an improvement in the quality of the

sounds. In comparison with other machine learning approaches,

our system does not require extensive training but rapidly adapts

to the recent history of background noise, and runs faster-than-

real-time on computational resources currently available in mobile

phones. If translated to specialized processors in hearing aids, it

may be feasible to run on preprocessors for hearing aids and

cochlear implants.

Methods

Sound material

Generation of artificial textures
Auditory textures used as background noise were generated

using a slight modification of the “Sound Texture Synthesis

Toolbox” developed by McDermott and Simoncelli (2011). The

changes allowed the mixing of statistical features from different

sound sources while sampling the statistical space of natural

sounds in a controlled fashion. In total, we generated six different

textures with different combinations of marginal (mean, variance)

and correlation statistics taken from real textures (Table 1). The

algorithm calculates marginal moments and/or correlations from

the example sound which are then taken as target statistics

for synthesis. The synthesis starts from a Gaussian white noise

which is then iteratively shaped to match predetermined target

statistics using the conjugate gradient method. Those statistics were

transformed per frequency bin, which makes the resulting sound

rather similar to the original if that sound is well-defined by the

used statistics. In the case of sound textures, it has been shown

that this procedure is able to produce compelling sounds that are

indistinguishable from original sources in many cases (McDermott

and Simoncelli, 2011). Multiple 50 s texture files were generated for

each set of statistics, which was long enough for the combination

with a few speech samples while still ensuring convergence of the

synthesis. Figure 1A shows spectrograms of generated textures.

Source of real texture
To also test the process with a real texture, we needed a natural

texture example with constant statistics and a duration of at least

90min (the test part of TIMIT is roughly 87min long). We chose

a 3-h continuous rain recording (The Relaxed Guy, 2014) with

subjectively little change over time. The first 30 s of the file were

discarded to reduce the potential statistical effects of fading in, it

was then downsampled to 16 kHz and saved as a WAV file.
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Speech samples
Human speech samples used in this study were obtained

from the TIMIT corpus (Garofolo et al., 1993), which contains

broadband recordings of 630 speakers of eight major dialects of

American English, each reading ten phonetically rich sentences.

For objective testing of the algorithm, the entire test set of TIMIT

was used, comprising 1,680 files. For human evaluation of the

algorithm, due to overall time limitation (1h), we selected a subset

TABLE 1 Source sounds for artificial texture generation.

TextureID Envelope
mean

Envelope
variance

Correlation

Base1 ρ ↑ Bee swarm Pile driver Fast running river

Base1 ρ ↓ Bee swarm Pile driver Jogging on gravel

Base2 ρ ↑ Bubbling

water

Drumroll Fast running river

Base2 ρ ↓ Bubbling

water

Drumroll Jogging on gravel

Base3 ρ ↑ Shaking coins Crowd noise Fast running river

Base3 ρ ↓ Shaking coins Crowd noise Jogging on gravel

of 36 unique speech files where variables such as gender (n = 2),

dialect (n = 8), speaker ID (n = 33) and sentence type (n = 3)

were made as diverse as possible (see below for other details on the

human experiment).

Mixing of speech and noise
For each texture type, a speech-texture mix was created with

the TIMIT test set. Every speech file was mixed with an individual

texture sequence after both signals were normalized to a standard

deviation of 1. For testing of the algorithm, a constant SNR of 0

dB was set for the mixture, except when SNR was varied during

parameter exploration. After combining, the signal was normalized

to a fixed standard deviation of 0.05 to avoid clipping in the WAV

files which occurs at absolute values above 1. Texture samples were

drawn uniquely and continuously without overlap from the created

or real texture files.

Filtering algorithm

Briefly, the filtering process was a matched subtraction on the

spectrogram level using a fast k-nearest neighbors (KNN) search

FIGURE 1

Speech and noise sources used and filtering principle architecture. (A) Spectrograms of artificial and natural textures used as background noise in

testing of the algorithm. (B) Filter training and evaluation on noisy data. The training data (top) is converted to a spectrogram, governed by the

window length, step size and window function. In the training step, short sections of the spectrogram are high-pass filtered and then embedded

(bottom, black) in high-dimensional vector space (dimension: NFFT × NWindowSteps) to represent the short-term spectrotemporal statistics. (C)

Samples of speech with added noise are transformed to spectrograms (top) and embedded into the same space as the training data (bottom, red).

(D) Filtering of the noisy speech sample is performed by selecting a number of nearest neighbors inside the embedding for each time-instant,

averaging them and subtracting them from the noisy data. A playback-capable sound pressure representation of the filtered spectrogram is then

generated via spectrogram inversion using the original phases from the noisy speech sample (top).
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over the training data as an estimator of the texture contribution to

the sound (subtrahend), with appropriate transformations between

sound pressure and spectrogram representations.

Training of the filter
The internal representation of the filter was spectrotemporal

snippets from the training data represented as vectors. For this

purpose, the training data was first transformed from sound

pressure to a spectrogram using the short-term Fourier transform,

represented as ST
(
t, f

)
below, where T indicates the training

data. As usual, this transformation is parameterized by the

window size and the step size. Typical values were 16 and 2ms,

respectively, but we explore the effect of these and other parameters

in Figures 2E–K. The spectrogram was high-pass filtered, by

subtracting the local context, i.e., the temporal average over a

bidirectional window of length TMultistep = 50ms per frequency

bin, which deemphasizes speech contributions to the instantaneous

spectrum. The training data was then represented as points

in a high-dimensional space, by linearizing short segments of

dimension NFFT × NWindowSteps, where NWindowSteps is number of

subsequent time-steps embedded, i.e.,

E
(
ST

(
t, f

))
→ R

NFFTxNWindowSteps (t ) .

The resulting representation discretely approximates the

distribution of the texture in the coordinates of the spectrotemporal

snippets by sampling it. This representation captures the joint

occurrence of different frequencies over adjacent time points in the

texture. We also tried directly representing products of frequency

channels, which, however, did not improve performance, while

strongly increasing the runtime.

The training data was provided in two different ways: either,

a single textural sound of length LTrain was provided (which we

refer to as “supervised”); or a speech-in-noise sample with a total

amount of texture LTrain was provided (which we refer to as

“unsupervised”). In the first case, the algorithm knew the training

data, in the second case, we used an unsupervised method of

training data extraction based on voice activity detection (VAD),

similar to an earlier study (Xu et al., 2020). In this approach,

we used a method called robust voice activity detection (rVAD),

described in detail elsewhere (Tan et al., 2020), to detect speech-free

regions of noised sound clips and use the extracted sound fragments

to train the filter as described above.

Application of filter
After the filter had been trained, it was applied continuously

to speech-in-texture mixtures. The latter were short-term Fourier-

transformed using the same parameters as the training data,

including the referencing to the local temporal average over the

window TMultistep. For each time step, the distance of all training

data samples to the current, brief spectrogram was then computed

(Matlab function: KDTreeSearcher). The average of the NNeighbor

closest training points was then computed as an approximation

to the current noise. The resulting texture spectrogram was then

subtracted from the sound mixture in the dB scale, after which

the sound was reverted back to a linear scale. More specifically,

the spectrogram of the current noisy speech sample SN
(
t, f

)
was embedded:

E
(
SN

(
t, f

))
→ R

NFFTxNWindowSteps (t ) .

then for each time point t find

SNeighbors = {τi} = minτ

∣∣E (
SN

(
t, f

))
− E

(
ST

(
τ , f

)) ∣∣ .
In the latter, the set of closest points of size NNeighbor was

chosen, and then subtracted from the current spectrogram, i.e.,

E
(
SF

(
t, f

))
= E

(
SN

(
t, f

))
−

〈
E

(
ST

(
τ , f

)) 〉
{τi}.

After subtraction, the linear magnitude was transformed back

into a sound pressure wave using the original phases for all

frequencies (using the idgtreal function, Pruša et al., 2014). Further

exploiting the stationarity, the estimated texture was limited to the

95th percentile of the marginal amplitudes of the training data.

This approach reflects the temporally invariant composition of

auditory textures by estimating the noise component using the

known “repertoire” of sounds. Naturally, longer training data will

improve this estimate, however, a near-plateau was already reached

after only a few seconds of training data (see Figure 2J).

Performance evaluation

Pointwise correlation
This metric is computed as the correlation of the spectrograms

of the filtered or noised sounds with that of the clean speech sound:

the higher the correlation to the clean speech, the better the filtering

at the spectrogram level. The improvement as a result of filtering is

reported as a percent increase in correlation with the clean speech

[i.e., (ρfiltered – ρnoised)/ρnoised].

DNN label error rate
Another test for speech intelligibility is the performance

of automatic speech recognition software. Since this is also a

potential field of usage for the filtering method, this kind of

performance measurement was a sensible choice. We employed a

bi-directional LSTM (Graves et al., 2006) as a speech recognition

neural network, which was trained on the TIMIT dataset (see

Supplementary material for details). For each timestep in the

spectrotemporal domain of the sound, a phoneme probability result

was calculated with 62 softmax values for the 62 possible phoneme

labels (including one empty/repeat label). Using the phoneme

prediction logits (input of the softmax function) of a sound file’s

time steps, the phoneme label was predicted using a beam-search

decoder. This predicted label was used to compute the LER as its

mean edit distance to the true label. Improvement in DNN label

error rate was computed as a percent decrease of LER in filtered

sound in comparison to the LER under noisy conditions.

Perceptual evaluation of speech quality
PESQ is a standard method for objectively measuring

listening quality based on the comparison between clean reference
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FIGURE 2

Performance of statistical filtering on speech in noise. (A) Sample spectrograms of original speech, speech within noise and filtered speech within

noise. (B) Improvement via statistical filtering was first evaluated using pointwise correlation of the spectrograms (for Base 2 ρ↑; each dot

corresponds to a sound clip; n = 1,680). In this case an average improvement of 13.9% (SD = 3.9%) was achieved, with generally positive, but varying

improvements for the seven di�erent textures used (bottom). (C) Improvement in phoneme recognition error rate using an LSTM Deep Neural

Network (DNN) trained on the TIMIT corpus. Improvement here corresponds to dots below the diagonal. Absolute values of improvement were

similar in magnitude as for correlation (bottom), with larger variation across the di�erent texture types (µ = 10.1%; SD = 15.2%). (D) Improvement in

mean opinion score—listening quality objective (MOS-LQO) estimated with the PESQ algorithm (µ = 6.2%; SD = 4.1). (E–K) Dependence of the

improvement in speech quality on di�erent parameters of the sounds [(E) signal-to-noise ratio and filtering algorithm, (F) number of neighbors, (G)

window size for spectrogram creation, (H) step-size for moving the window, (I) local averaging duration in filtering the noisy speech signal, (J) training

duration, (K) scaling of the estimated noise contribution, given as a fraction]. Overall, all measures improved across the range of tested parameters.

We chose a value for each parameter as the default for the other parameters (black dot in each plot), which was also used in the subsequent figures.

sound and the given sound (Rix et al., 2001). In our case,

comparisons to clean speech were made separately for noised

speech and for filtered output of the noise reduction algorithm.

The difference between the two scores obtained this way is

interpreted as an objective estimate of the improvement in speech

quality. In this study, we used a MATLAB wrapper function

pesq_mex_vec.m provided with Sound Zone Tools (Donley, 2022),

and a wideband version of the algorithm which maps raw

PESQ score to MOS-LQO score for wideband sounds (ITU-T,

2007).

Comparison with Ephraim-Malah algorithm
To compare our method with an existing method we used

the EM algorithm also commonly referred to as Minimum Mean

Square Error-Short-Time Spectral Amplitude (MMSE-STSA)

method which is a standard algorithm for single microphone

noise reduction (Ephraim and Malah, 1985). It operates on

short overlapping frames of the input signal in the frequency

domain. By estimating the statistical properties of speech and

noise, the algorithm computes a gain function that minimizes

the mean square error between the estimated clean speech and

the observed noisy signal. The gain function is determined

based on the estimated speech presence probability in each

frequency bin. The “ssubmmse.m” MATLAB routine from the

VOICEBOX package (Brookes, 2002) was employed as the

implementation of this algorithm. The default values were

used for all user-specific parameters of the EM algorithm. See

Table 2 for the full list of external software packages used in

this study.
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TABLE 2 External software.

Name Version Source References

System: Ubuntu Linux 18.04.1 https://old-releases.ubuntu.com/releases/18.04.1

MATLAB

• System identification

• Signal processing

• Statistics and machine learning

R2019a/R2022b https://nl.mathworks.com/products/matlab.html MATLAB, 2022

Large time-frequency analysis toolbox 2.0 https://github.com/ltfat/ltfat Pruša et al., 2014

Sound texture synthesis toolbox 1.7 https://mcdermottlab.mit.edu/

Sound_Texture_Synthesis_Toolbox_v1.7.zip

McDermott and Simoncelli,

2011

NeurAudio statistical filtering toolbox https://data.donders.ru.nl/collections/di/dcn/

DSC_626840_0011_433

(This article)

Robust voice activity detection (rVAD) 2.0 https://github.com/zhenghuatan/rVAD Tan et al., 2020

Sound zone tools 1.0.0 https://github.com/jdonley/SoundZone_Tools Donley, 2022

Packages in the conda environment

Python 3.7.7 https://www.python.org/downloads/release/

python-377

van Rossum and Drake, 2009

Numpy 1.18.1 https://pypi.org/project/numpy/1.18.1 Harris et al., 2020

Scipy 1.4.1 https://docs.scipy.org/doc/scipy-1.4.1/reference/

index.html

Virtanen et al., 2020

Scikit-learn 0.23.1 https://scikit-learn.org/0.23 Pedregosa et al., 2011

Tensorflow-gpu 1.14 https://www.tensorflow.org/install/pip Abadi et al., 2016

Tensorpack 0.10.1 https://pypi.org/project/tensorpack Wu, 2016

Cudatoolkit 10.0.130 https://anaconda.org/anaconda/cudatoolkit/files?

version=10.0.130

n/a

cuDNN 7.6.5 https://developer.nvidia.com/rdp/cudnn-archive Chetlur et al., 2014

Bob.ap 2.1.10 https://www.idiap.ch/software/bob/docs/bob/bob.

ap/v2.1.10

Anjos et al., 2012

Editdistance 0.5.3 https://pypi.org/project/editdistance/0.5.3 Tanaka, 2019

Matplotlib 3.1.3 https://matplotlib.org/3.1.3/contents.html Hunter, 2007

VOICEBOX http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html

Brookes, 2002

Computational complexity
In order to evaluate the speed at which the algorithm can be

run, we used a Desktop PC (AMD Threadripper 2920X, 12 cores)

running the algorithm on 100 speech samples randomly selected

from TIMIT dataset mixed with all seven texture types. To quantify

the speed, the average time spent on running the processing of a

single frame was divided by the step size (default value = 2ms)

to obtain a real-time factor. The average time spent on a single

frame is estimated by estimating the time it takes to filter a given

speech sample divided by the number of frames in the spectrogram,

which is determined by the window (16ms) and step size (2ms)

parameters. Real-time factors <1 indicate that the algorithm can

run faster than real-time on our setup (see Figure 6).

Human experiments
To evaluate the human-perceivable change in sound quality, we

performed an online experiment where we asked participants to

rate speech and background components of the delivered sound.

The experiment lasted on average about 1 h and 10 participants

(six male, four female, average age: 33.6 y, SD = 7.6 y) took

part in the study. Participants were recruited through Prolific

(www.prolific.co), where we chose to recruit individuals with no

hearing difficulties, hearing aids or cochlear implants, and those

who spoke English as their first language. Experimental code was

generated using PsychoPy3 Builder (Peirce et al., 2019) and hosted

on Pavlovia (pavlovia.org). All participants gave written informed

consent to take part in the experiment, which was approved by

the Ethics Committee of the Faculty of Social Sciences at Radboud

University Nijmegen.

To ensure that the participants using a variety of different

hardware could hear the sounds in a comparable manner, and to

check that they were using headphones as instructed, we started

the session with a headphone screening test described in detail

elsewhere (Woods et al., 2017). In this section, participants were

asked to report which of the three pure tones was quietest,
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FIGURE 3

Comparison of individual and combined performances of SSF and EM. Combination of SSF and EM outperforms the separate filtering runs for

correlation (A), DNN label error rate (B), and MOS-LQO score (C) for all textures and speech samples used in this study (n = 7 textures; n = 1,680

speech samples). Bar plots represent the mean performance for each filtering condition across all textures and speech samples (n = 11,760) and all

di�erences between these means were highly significant (p < ǫ), except for the DNN label error rate di�erence between SSF and EM (p < 0.01). Error

bars here represent the SD, as SEMs are visually indistinguishable from 0 (due to the high number of speech samples).

with one of the tones presented 180◦ out of phase across the

stereo channels. The task is trivial with headphones but gets

harder to perform without headphones due to phase cancellation.

Nine out of 10 participants were able to perform this task with

100% accuracy (n trials = 12). The outlier was included in the

analysis due to the similarity of the behavioral results to other

participants, suggesting that this individual was still engaged

in the task. Participants were financially compensated for their

time once the experiment had finished; no additional motivation

was provided.

Experimental trials started with the presentation of a sound

clip. After the sound played, a new screen with continuous

vertical scales for speech and background ratings was shown

(see Figure 3A). Speech rating scale ran from 1 (distorted) to 5

(clear), while the background rating scale ran in an analogous

fashion from 1 (very quiet) to 5 (very loud). The participant could

report their evaluation by clicking and adjusting the indicator

point on the scale with a mouse. We tested a total of 518

sound clips which included filtered and noised versions of the

same speech fragments mixed with different types of background

noise. The order of sound delivery was randomized to avoid

direct comparison of filtered and unfiltered versions of the same

speech sample.

Results

We designed and implemented a fast noise-filtering algorithm

(Statistical Sound Filter) SSF focussed on textural stimuli,

characterized by time-independent statistics, and evaluated its

performance on the TIMIT speech dataset corrupted by a set of

semi-natural and natural background noises (Figure 1). Evaluation

included both automated and human assessments of speech quality

as well as an evaluation of SSF’s run-time as a function of its

various parameters.

Approach to filtering statistically governed
sounds

A large fraction of naturally occurring background sounds can

be characterized as acoustic textures, i.e., they are a composite

of basic sounds whose temporal occurrence is only constrained

statistically, with the additional limitation that these statistics

are stationary/time-invariant (Figure 1A). Examples of auditory

textures include the sounds of wind, waves, rain, fire, insect swarms,

flocks of birds, and essentially all sounds where many similar

entities produce similar sounds. We developed a noise filter that

specifically approaches the removal of these auditory textures from

target/foreground sounds, termed Statistical Sounds Filter (SSF).

SSF is first trained on a section of acoustic texture (see Figure 4 for

training on mixed speech-texture sounds), by assembling a library

of spectrotemporal sounds from the training data. This includes

both individual and composite occurrences of the constituent

sounds (Figure 1B, top and bottom). SSF is then applied to

speech embedded on a different realization/sample of the texture

(Figure 1C), which would occur after the training data in real life.

SSF then matches the feature library against a preprocessed version

of the speech-in-noise sample for all time points, subtracts out the

best match, and then recreates the filtered sound using the original

phases (Figure 1D). The resulting sounds exhibit substantially and

significantly reduced background noises and thus separation of the

target sound, e.g., speech in the present testing.

Filtering performance as a function of
algorithm parameters

To evaluate the performance of SSF we generated an array of

artificial textures based on real-world sound textures (Figure 1A).

These textures provided the benefit of being based on real sounds

while at the same time allowing us to manipulate the background
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FIGURE 4

Human evaluation of filtering performance. (A) Experimental setup of the human experiment. At every trial, participants were asked to rate the speech

and background components after the sound clip was delivered through headphones. The speech was rated on a scale from 1 (distorted) to 5 (clear),

while the background was rated on a scale from 1 (very quiet) to 5 (very loud). (B) Evaluation of speech (blue) and background (orange) components

of the presented sounds across di�erent background noise conditions. Black dots represent mean ratings for noised sounds, while red dots stand for

mean ratings for filtered sounds. Each line connecting the dots corresponds to an individual participant (n = 10). While speech ratings do not show

any systematic change as a result of filtering, background ratings decrease, indicating consistent removal of background noise. (C) Background

ratings provided for filtered and noised versions of the same sound clips, pooled across participants. Each dot represents two ratings provided in two

separate, non-consecutive trials (n = 2,010 pairs). (D–F) Comparison of filtering-related change in human evaluation with the change in objective

measures—correlation (D), DNN label error rate (E), and MOS (F)—reveals a very small correlation between objective and subjective evaluation

metrics, suggesting that human evaluation used in this study reflects features that are not captured by these objective measures.

sound statistics parametrically to evaluate the influence on SSF’s

performance. The generated textures varied in their marginal and

across-frequency correlation statistics and covered a large range

of values in the respective parameter spaces, both spectrally and

temporally (see Methods for details). We also included a natural

texture (sound of rain) to exclude that the SSF’s performance is

limited to the peculiarities of artificially synthesized textures.

Initial testing was carried out on a set of parameters that

allowed relatively fast and effective filtering of the background noise

(Figure 2A). For this example run, SNR= 0 dB was used for mixing

speech and noise. The performance was then quantified using three

measures, (i) the spectrogram correlation, (ii) the label error rate of

a DNN, and (iii) the MOS-LQO score.

The correlation coefficient was computed by taking a pointwise

correlation between the spectrogram of the original (clean) sound

clip and that of filtered (or noised) versions of the same speech

fragment (Figure 2B). Across all speech and noise combinations,

SSF achieved an average of 13.9% (SD= 3.9%, p< 0.001, Wilcoxon

rank sum test) improvement in correlation metric. Statistical

comparisons were carried out across the different texture types (N

= 7) between speech-in-noise and filtered averages. Within texture

type, almost all showed highly significant improvements (Table 3),

which is unsurprising given the large number of samples tested (N

= 11,760 total samples).

To evaluate the change in speech intelligibility automatically,

we utilized a DNN-based phoneme recognition system trained

on the TIMIT dataset (see Methods) and quantified the relative

labeling error rate before and after filtering (Figure 2C, µ = 10.1%;

SD= 15.2%, p= 0.011).

Lastly, we used a commonly used wideband PESQ algorithm to

evaluate the speech quality and reported the results by transforming

the raw PESQ score to mean opinion score—listening quality, as

described in ITU-T P.862.1 (ITU-T, 2003) (Figure 2D, µ = 6.2%;

SD= 4.1%, p= 0.007).

Next, we varied the main parameters of the algorithm to

understand how each affects the performance, as measured by

the above metrics. While for most parameters the performance

changed in a comparable manner across different metrics
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TABLE 3 Summary of improvement in objective evaluation metrics per texture for default parameters.

TextureID Correlation DNN LER MOS-LQO

µ Σ p µ σ p µ σ p

Base1 ρ ↑ 10.154 2.357 < ǫ∗ 6.626 12.324 < ǫ 1.277 1.591 < ǫ

Base1 ρ ↓ 11.536 2.062 < ǫ 16.481 12.146 < ǫ 3.881 2.343 < ǫ

Base2 ρ ↑ 13.758 2.995 < ǫ 17.943 12.629 < ǫ 8.012 3.224 < ǫ

Base2 ρ ↓ 14.932 2.814 < ǫ 21.643 11.865 < ǫ 10.331 3.615 < ǫ

Base3 ρ ↑ 18.340 1.160 < ǫ 0.256 13.433 0.037 8.345 3.484 < ǫ

Base3 ρ ↓ 18.493 1.218 < ǫ 7.974 13.814 < ǫ 6.645 3.179 < ǫ

Rain 10.277 1.756 < ǫ −0.159 14.316 0.286 4.953 2.238 < ǫ

∗ǫ here is 10−15 .

(Figures 2F–K), varying the signal-to-noise ratio (SNR) affected

our metrics in a clearly divergent manner (Figure 2E). At very low

SNRs, our algorithm does not significantly improve the objective

listening quality, but it is able to effectively improve the spectral

representation of the speech as measured by pointwise correlations.

Such divergent effects of SNR on the present performance metrics

highlight the need for evaluation using multiple metrics that

quantify separate aspects of the sound.

To determine if our method leverages a unique statistical aspect

of the background noise, we compared its performance with an

established method that uses the mean-square error short-time

spectral amplitude (MMSE-STSA) estimator for enhancing noisy

speech (Ephraim and Malah, 1985). The MMSE-STSA method

uses a statistical model of the speech and noise spectra, and

computes the gain function that minimizes the mean-square error

between the estimated and true spectral amplitudes. Although

the EM outperforms SSF when used alone at the SNR used

in this filtering run (0 dB), combining it with our method

(SSF → EM) significantly enhances performance across all

metrics (Figures 3A–C). Since SSF has a fast processing time (as

shown below), our results suggest that our method can effectively

complement other standard methods to further reduce noise

without adding excessive computational overhead.

Human listeners indicate consistent
suppression of background noise

To get a more explicit evaluation of human-perceivable

improvement as a result of our filtering algorithm we ran an

online experiment with human participants (n = 10). Given the

time limitation that comes with human experiments, we selected

a representative subset of speech fragments from the TIMIT corpus

with balanced features such as speaker gender, identity, dialect, and

sentence type (Garofolo et al., 1993), and mixed the selected speech

fragments with the aforementioned texture types (see Methods). At

each trial, the participant was asked to rate speech and background

components of the sound using separate linear scales running from

1 to 5 (Figure 4A). For the speech component, participants rated

the quality of sound clips on a continuous scale from distorted (1)

to clear (5). For background evaluation, participants reported their

judgments on a scale from very quiet (1) to very loud (5).

Comparing individual ratings divided across texture types, we

observed no significant change in speech ratings as a result of our

filtering procedure (µ =−6.02%, SD= 7.35%, p= 0.32, Wilcoxon

rank sum test, n = 7 filtered/noised pairs; Figure 4B). The ratings

were also not significantly different for most texture types when

the ratings were analyzed separately for each texture (Table 4).

However, participants perceived the background component as

consistently less loud after filtering (µ = −15.8%, SD = 3.47%,

p < 0.001, Wilcoxon rank sum test, n = 7 filtered/noised pairs;

Figure 4B).

To better visualize the variability in background ratings, we

compared the matched ratings of sound clips with the same

speech and noise components (Figure 4C). An additional source of

variability here likely arises from the fact that the order of trials (and

hence sound clips) in our experiment was completely randomized,

preventing the participants from directly comparing filtered and

noised versions of the same sound clip. This was done to avoid

peculiarities of a given speech sample from affecting the evaluation

and to encourage independent judgment of each sound sample.

Next, we compared the human evaluation to objective metrics

described in the earlier section. To do this, we tallied the percent

improvement in the human judgment of the background level

to those computed by pointwise correlation, DNN label error

rate, and MOS-LQO (Figure 4D). Even though our algorithm on

average improves all four metrics, correlation coefficients across

these measures of performance were very low, confirming that they

capture different features of the sound than those evaluated by the

human listeners.

Within-sample training achieved
comparable performance to dedicated
training data

Above, we trained the algorithm on a single, defined section of

textural sound to standardize the algorithms library across samples.

However, in real-life situations, such training data is not necessarily

available. To improve the range of use cases for our method, we

utilized an alternative, unsupervised training method that relies on

voice activity detection (VAD). Briefly, VAD detects sections of the

sound where human-voiced sounds are present. Focussing on the
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TABLE 4 Summary of human evaluation results for each texture type.

TextureID Speech [1 (distorted) → 5 (clear)] Background [1 (very quiet) → 5 (very loud)]

µ

(noised)
σ

(noised)
µ

(filtered)
σ

(filtered)
p µ

(noised)
σ

(noised)
µ

(filtered)
σ

(filtered)
p

Base1 ρ ↑ 3.197 0.867 3.079 0.903 0.053 3.979 0.569 3.623 0.631 < ǫ

Base1 ρ ↓ 3.229 0.941 3.232 0.864 0.892 3.920 0.555 3.546 0.632 < ǫ

Base2 ρ ↑ 3.507 0.827 3.460 0.865 0.436 3.684 0.679 3.128 0.815 < ǫ

Base2 ρ ↓ 3.309 0.896 3.500 0.851 0.003 3.827 0.591 3.069 0.755 < ǫ

Base3 ρ ↑ 3.497 0.864 3.457 0.899 0.522 3.765 0.666 3.156 0.772 < ǫ

Base3 ρ ↓ 3.455 0.863 3.502 0.861 0.451 3.796 0.652 3.322 0.715 < ǫ

Rain 2.961 0.897 2.945 0.882 0.793 4.121 0.623 3.521 0.701 < ǫ

complement, i.e., sections that likely do not contain human voice,

we create a within the sample training set, which we use to train SSF

(Figure 5A). Considering the fact that the effect of training duration

on the performance of our algorithm plateaus very fast (Figure 2J),

we hypothesized that existing VAD methods should be able to

extract sufficient amounts of training data from the gaps between

bouts of speech in our sound clips. Consistently, we found that

even though the performance of the algorithm was slightly reduced

in comparison to the supervised training, the overall pattern of

the results remained similar. Correlation with the clean speech

improved on average by 14.8% (SD= 4%, p< 0.001,Wilcoxon rank

sum test; Figure 5B), DNN label error rate was reduced by 13.7%

(SD = 13.6%, p < 0.01, Wilcoxon rank sum test; Figure 5C), while

MOS-LQO had an average of 7.66% improvement (SD = 4.48%, p

< 0.01, Wilcoxon rank sum test; Figure 5D). Because VAD-based

training is agnostic to the source of noise, we expect it to be better

utilized in settings where noise is not stationary and cannot be

obtained separately, such as cases where live filtering is required.

Another option in a real scenario would be that the user selects

certain time periods for rapidly (re)training SSF, instead of using

an automatic selection.

Statistical filtering performs much faster
than real-time

The speed with which an algorithm can be run is another

factor determining the range of its use cases. We quantified the

speed of execution on a desktop computer (AMD Threadripper

2920X, 12-core). As with other performance metrics, we varied the

core parameters of the algorithm to get a detailed overview of the

runtime of our algorithm (Figure 6). Runtime was quantified as the

time it takes to process one frame of the sound spectrogram divided

by the actual duration of that frame, referred to as the real-time

factor, with values <1 indicating faster than real-time processing.

With the default set of parameters, where each frame was 16ms

and the step size was 2ms long, we obtained a real-time factor

of µ = 0.0154 (STD = 0.0011), i.e., ∼65× faster than real-time.

The variables that had the strongest influence on processing speed

were window and step sizes, as well as training duration. Given

that the effect of these variables on performance metrics reported

above plateaus very fast, the parameters can be tuned to run the

algorithm extremely fast and effectively without compromising the

filtering accuracy.

Discussion

We developed a dedicated method for noise reduction in

the context of acoustic textures, exploiting their statistically

stable composition from a limited set of constituent sounds. The

algorithm represents the set of spectrotemporal features of the

background texture and subtracts a pseudo-optimal match from

the speech-in-noise mixture. Testing the algorithm on a set of

semi-natural and natural textures, we found that the algorithm can

effectively remove textural noise in a fast, efficient manner that

leads to a perceptual improvement in human listeners.

Instantaneous statistics vs. a full statistical
model

Given the statistically stable composition of textures, the most

obvious choice for a filtering approach appears to be training a

suitably designed statistical model of the texture, e.g., based on

McDermott et al. (2013). We have experimented with both this

model and Gaussian processes, however, we concluded that this

approach was unsuitable for filtering for two main reasons: (1)

Training and synthesis in these models are computationally intense

and require a lot of data to constrain the models. These two

aspects make them currently incompatible with the requirement

of live processing, ideally on hearing aids. (2) If one wants to

exploit the additive nature of the background noise and the

target sound, a natural approach would be to synthesize future

samples of the background noise, and subtract these from the

composite sound. However, while these samples are individually

statistically consistent with the background noise, they are not

related to the current realization of it. Choosing a best match

would thus require sampling a large variety of future samples

and then subtracting the best match from the current sample, or

projecting the latter onto the statistical model to separate noise and

target sound. In our hands, neither of these approaches was fast

enough to improve the quality of the target sound relative to the
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FIGURE 5

Training on automatically detected noise segments. (A) Sample spectrogram of original noisy speech and training data extracted using rVAD. The

evaluation of the unsupervised version of the algorithm using correlation (B), DNN label error rate (C) and MOS-LQO scores (D) exhibits an

improvement pattern similar to the supervised version shown in Figure 2.

FIGURE 6

Statistical filtering can run in super-real-time on a current mobile phone. The default parameters for the present comparison were chosen on the

basis of the filtering performance on speech in noise (see Figure 2). Filtering was run on a Threadripper 2920X processor, which is comparable in

speed to a modern mobile processor (e.g., Apple M1, comparison based on Geekbench 5 performance). Performance is given in multiples of

real-time (Real-time factor), i.e., smaller numbers indicating faster processing. Varying the parameters indicated that WindowSize (C), Step-Size (D),

and training duration (F) have the largest influence on run-time. At the default parameters (black dots), the real-time factor is on average 0.0154 (S.D.

= 0.0011). The current code is running non-compiled, hence, there remains room for optimization that would likely lead to substantial acceleration.

noise in a timely manner, however, see Liutkus et al. (2011) for a

potential approach.

Conversely, the present approach is directly based on the

expressed noise occurrences and utilizes them as a lexicon

to compare against. While this approach is less general, it

has the advantage of computational and data efficiency. In

the future, we would like to combine a low-dimensional

Gaussian process (GP) approach with SSF, since we think

this might in combination remain computationally feasible

and augment the performance of SSF by the inclusion

of slower or marginal features that are potentially missed

by SSF.
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Relation of SSF filtering to human textural
filtering

The interest in sound textures arises from the observation

that they constitute a sizable fraction of naturally occurring

sounds (Liu et al., 2022) and that humans can recognize

and distinguish sounds based on their textural statistics alone

(McDermott et al., 2013). This is reflected by the fact that

sound textures can be represented and synthesized very effectively

using a restricted number of summary statistics (McDermott and

Simoncelli, 2011). The existence of such a compact representation

raises an interesting possibility that the auditory system itself

may utilize analogous compact representations and predictively

suppress textural noise (Rabinowitz and King, 2011). The

evidence from a perceptual discrimination task suggests that

the human auditory system increasingly converges on time-

averaged statistics of textures, instead of representing the temporal

details of the individual acoustic events (McDermott et al.,

2013).

As we mentioned in the previous section, even though time-

averaged statistics carry sufficient information to resynthesize

sound texture samples, an effective reduction of noise requires

precisely matching the noise on a moment-by-moment basis.

The statistical filtering that appears to be realized in the

auditory cortex (Mesgarani et al., 2009; Khalighinejad et al.,

2019) may achieve this by suitably transforming the sound,

potentially using a cascade similar to the one proposed by

McDermott et al. (2013). and then adapting on every level,

as an extension to the principle used in Boubenec et al.

(2017). The downside of this transformation is that it is not

(easily) invertible and thus cannot be used to synthesize a

sound from the filtered representation, which is essential in

applications such as hearing aids. On the other hand, it might be

sufficient for processing in speech recognition systems. The present

method of matching samples of the sounds against a library of

known spectrotemporal features of the texture is thus likely not

reflective of neural processes but may be productively combined

with them.

Generalizability of SSF to other classes of
noises

One of the core issues facing any noise reduction algorithm

is the generalization to other sounds. To assess how well SSF

generalizes across different types of textures, we parametrically

controlled the statistical features of the background noises on

which the performance of the algorithm was tested, in addition to

the inclusion of a natural texture. Among the tested background

sounds we observed variability in algorithm performance, but

an improvement was observed for all textures with different

marginal and correlation statistics. These results suggest that

SSF can generalize across a wide range of sound textures,

though further studies utilizing the full set of statistics in the

synthesis of sound textures can improve the granularity of

the sampling.

Beyond this, an additional challenge can be that the definition

of noise can be context-dependent (Liu et al., 2022): what may

act as noise in one condition may carry information in another

context. For instance, speech sounds, which are typically enhanced

and considered as signals, are notoriously difficult to reduce when

mixed together in a cocktail party situation (Middlebrooks et al.,

2017). To address this issue, noise (or features thereof) can be

defined in a supervised, user-driven manner or deduced using cues

such as head direction, lip movements, etc. (Michelsanti et al.,

2021). Babble noise associated with cocktail party situations was

not included in our dataset due to our approach to sampling

the noise space by texture synthesis, which is not conducive to

synthesizing highly modulated speech sounds. Future applications

of SSF would therefore require further testing of the algorithm with

babble noise which can become more texture-like with a growing

number of talkers.

In addition, the variability arising from dynamic changes

in the background noise condition of the given scene poses

another major challenge for noise reduction algorithms. More

specifically, methods meant to be used in real-time situations

should be able to adaptively reduce noise from sources that

enter or leave the acoustic scene. VAD-based noise extraction

can in principle address this problem by allowing continuous

training data extraction-training-filtering cycles. The performance

of the algorithm was found to plateau quickly (∼2–5 s, see

Figure 2) as a function of adding longer training data sets,

suggesting that the algorithm can plausibly be used in a

real-time setting for continuous training. However, the time

course of background noises varies greatly from continuous

textures to impulse noise that happens very fast and poses a

challenge to SSF which assumes some level of stationarity in the

background conditions.

Comparison with other filtering techniques

By design, SSF is agnostic to the type of target sounds

embedded in the noise. While this property imparts SSF its

domain-neutrality, and a broader range of applicability, it also

limits the improvement to the speech intelligibility, when such

a use-case is desired. This is a common problem with noise

reduction algorithms that aim to model the features of noise

and subtractively remove them from the sound mixture. Previous

studies showed that while such algorithms can decrease the

listening effort, they do not necessarily improve speech quality

or intelligibility at the same time (Sarampalis et al., 2009; Fiedler

et al., 2021). In this study, speech quality rather than intelligibility

was quantified in human experiments, and the metric that

most closely approximated speech intelligibility was the DNN

label error rate. We observed that the quality of speech was

not degraded and the DNN label error rate decreased as a

result of filtering. However, further experiments are needed to

quantify the effect that SSF may have on speech intelligibility for

human listeners.

Recent years have seen a lot of development of speech-

denoising techniques based on machine learning methods,

primarily artificial neural networks, in particular deep neural
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networks (DNNs) (Michelsanti et al., 2021; Ochieng, 2022). These

methods have been demonstrated to be highly effective in tackling

speech-in-noise problems, partly because they can be trained to

have a highly complex representation of speech which may enable

them to selectively enhance speech. The present approach is more

simplistic in nature, targeting the specific properties of sound

textures. We think it has three concrete advantages over complex

DNN systems:

(i) Rapid, targeted training: DNN systems require a substantial

amount of time and resources to be trained. From the

perspective of a hearing aid user, it might often be preferable

to have an algorithm (such as SSF) available that can be

quickly retrained to adapt to the current background sound,

and thus specifically reduce disturbances from this source.

Training using SSF requires only a few seconds of training

data, and training completes closely after all training data

has been processed (∼60ms for 2 s of training data). As we

have shown, supervised (Figure 2) and unsupervised training

methods (Figure 4) can achieve similar levels of performance.

(ii) Domain-neutral: DNN systems are typically trained on a large

set of speech sounds in the context of a certain set of noise

sounds. This enables these systems tomake use of the inherent

predictability of speech in addition to the structures in the

noise. In SSF, the regularities inside the target sound are not

utilized in the filtering. While this likely limits the quality

of filtering on the training set, it may generalize better to

other target sounds, e.g., music or other sounds that are not

consistent with the textural statistics.

(iii) Fast execution: SSF runs much faster (probably 10–100×)

than real-time on the type of processors found in current

mobile devices (e.g., multicore performance of the present

desktop processor is only a factor 2 greater than an Apple

A16 processor; Geekbench, 2022). It, hence, does not require

a powerful GPU to run efficiently. This enables usage cases,

where either the hearing aid processor in the hearing aid

or a connected mobile phone runs the filtering in near

real-time. While SSF is thus computationally lighter than

DNN approaches, running it directly on a hearing aid may

require the design of a specialized processor to stay within

typical power limits and runtimes (Dr. Harzcos, audifon,

personal communication).

Methodological limitations

The low computational complexity of spectral subtraction

methods comes at a price of distortions that may arise from

inaccuracies in noise estimation. Such distortions affect the speech

as well as the noise components, creating a phenomenon known

as musical noise (Loizou, 2013a), which is characterized by small,

isolated peaks in the spectrum occurring randomly in the frequency

bands at each time frame. A number of methods have been

proposed in order to directly address musical noise (Goh et al.,

1998; Lu and Loizou, 2008; Miyazaki et al., 2012). Although

spectrally flooring negative values generated by subtraction to

minimum values in adjacent frames (as was done in Boll, 1979)

led to a small improvement in the MOS-LQO score, it significantly

reduced the performance in other performance metrics. While our

approach does not directly address the problem of musical noise,

it indirectly reduces the overall likelihood of its occurrence by

modeling the noise source specifically.

While the chosen DNN architecture for assessing the

improvement of speech intelligibility was well-motivated,

alternative approaches could have some additional value. Since

real-world applications in speech recognition would choose more

recent architectures (see Li, 2022 for a review), using such a

system might provide estimates that are more in line with the

human perceived evaluations and also translate better to current

applications in speech recognition.

Lastly, our human experiments show that the participants do

not perceive a reduction in speech quality as a result of filtering,

suggesting that the speech component is not substantially distorted

as a result of subtraction. However, since our test did not directly

ask the participants to indicate the perceived background quality

(only the level was asked), we cannot rule out the possibility of

residual musical noise. The development of automatic methods for

quantifying the amount of musical noise can therefore improve the

evaluation of spectral-subtractive methods in the future.

Conclusions and future steps

We presented an efficient and dedicated spectral subtraction-

based method for noise reduction in sound textures. The way

of representing and estimating background noises was inspired

by the fundamental feature of sound textures which are made

up of spectrally similar sound events that tend to persist in the

acoustic scene. We show that spectral subtraction performed based

on the KNN search can effectively reduce this kind of noise,

without causing significant distortion to the speech. Additionally,

the algorithm runs much faster than real-time on conventional

computing machines, suggesting that it can be integrated into

devices that have limited computational power such as hearing aids.

The speed of the algorithm also allows it to be potentially used

in conjunction with other methods that can enhance the speech

component and reduce the residualmusical noise. Given that sound

textures constitute a substantial subset of what is considered noise

in human hearing, we believe closer attention to this class of

sounds in development and testing may aid other noise reduction

algorithms in the future in terms of generalizability.
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Oto-Rhino-Laryngology – Head & Neck Surgery and Audiology, Odense University Hospital & University
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Denmark

Background and aim: Ecological momentary assessment (EMA) can provide

insights into the real-world auditory ecology of hearing aid (HA) users. To better

understand what factors, influence the real-world listening experiences of this

population, more detailed models of human auditory ecology and behavior are

needed. Laboratory studies suggest that physiological measures are sensitive to

di�erent listening experiences, as changes in physiological signals (e.g., pupil

dilation) have been associated with e�ortful listening. In addition, real-world heart

rate (HR) has been shown to be sensitive to acoustic influences (e.g., sound

pressure level, SPL, and signal-to-noise ratio, SNR). Here, we hypothesized that

including physiological and acoustic data in models predicting EMA ratings can

provide additional insights into real-world listening outcome. To test this, we

collected and analyzed longitudinal data from individuals with normal hearing.

Method: Fifteen normal-hearing adults completed smartphone-based EMAs

regarding their listening experiences during a 2-week period. When completing

the EMAs, they had to indicate their current listening intent. The participants

received a single HA each that they fastened to their collars. The HAs were used

to collect continuous SPL and SNR data in the participants’ daily environments.

Wristbands worn by the participants were used to collect continuous HR data.

Results: Linear mixed-e�ects models with SPL, SNR, and HR as fixed e�ects

and participant as random intercept showed that higher SPL and lower SNR

were associated with lower (poorer) EMA ratings. Including listening intent in

the analyses revealed increased HR in “speech communication” and “focused

listening” situations to be associated with better EMA ratings relative to situations

without any specific listening intent.

Conclusions: Our findings indicate that including in-situ HR and acoustic

measurements can improve the prediction of real-world listening experiences.

Further, they suggest that listening intent significantly impacts self-reported

listening experiences and their association with physiological responses.

Specifically, better listening experiences in speech communication situations are

associated with higher HR.

KEYWORDS

ecological momentary assessment, smartphone, heart rate, objective measurement,

hearing aids, data-logging
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Introduction/Background

Hearing aid (HA) noise management features (i.e., directional

microphones combined with noise reduction) are designed to

respond to ambient acoustics and adapt their activation levels

accordingly (Dillon, 2012). HA benefit in everyday listening is

typically more prominent when environments are more auditorily

demanding (Wu et al., 2019; Andersson et al., 2021). Everyday

benefit from HA use also depends on the type and importance of

intended listening activities and interacts with auditory demands

(von Gablenz et al., 2021). For example, benefit from HA noise

management may be different whether the user does or does

not intend to listen to any target sounds (e.g., speech) in

poor acoustic conditions. Depending on the nature of listening

intent (i.e., active listening to speech or passive listening), the

HA user might emphasize different aspects of the listening

experience (i.e., understanding speech or reduced annoyance from

background noise).

Thus, to maximize benefit, noise management solutions should

not only be based on ambient acoustic information but also on

information about how changes in the user’s auditory demands

interact with momentary listening intents to successfully complete

the listening task. More generally, there is a need to increase our

understanding of how the auditory ecology and behavior of HA

users are associated with their listening experiences in daily life.

Here, auditory ecology relates to the particular listening demands

an individual faces in different surroundings (Jensen and Nielsen,

2005).

Traditionally, real-world listening experiences of HA users have

been evaluated with retrospective questionnaires or interviews,

while objective assessments of HA benefits typically rely on

laboratory experiments under well-defined and controlled settings,

that is, in specific non-naturalistic situations (e.g., Gnewikow et al.,

2009). This means that laboratory outcomes do not translate

effectively to the real world, where conditions are constantly

changing. Greater ecological validity in hearing research can

result in tests featuring more realistic sound scenarios, enhancing

their applicability to real-world acoustics (Keidser et al., 2020).

However, laboratory testing may not fully account for the influence

of daily-life activities, interactions, and listening intentions in

shaping individuals’ real-world listening experiences (Pichora-

Fuller et al., 2016). Instead, experience sampling methods have

been proposed to better reflect real-world listening experiences.

Generally, ecological momentary assessment (EMA) aims to collect

in-situ self-reports in natural environments regarding behavior,

motivation, experiences, thoughts, or feelings (Shiffman et al.,

2008). Such in-situ reports can be collected from HA users which

can then be linked to real-world acoustics obtained with data-

logging (Andersson et al., 2021), and in combination with self-

reported listening activities or intentions (von Gablenz et al., 2021).

Several EMA studies have provided insights into the listening

experiences of HA users, their listening environments, and

situations they typically encounter. The studies have consistently

reported that adult HA users mostly encounter quite listening

environments while listening experiences in noisy environments

are being less frequently reported (Humes et al., 2018; Wu et al.,

2019; Burke and Naylor, 2020; Schinkel-Bielefeld et al., 2020;

Andersson et al., 2021; von Gablenz et al., 2021). When EMAs are

extended with acoustic data-logging provided by HAs, individual

assessments can be linked to real-world acoustic contexts. In this

manner, specific HA technologies or features can be evaluated in

real-world acoustic contexts they were designed for. For example,

Andersson et al. (2021) showed that HA users significantly benefit

from HA noise management as compared to default HA settings in

listening situations dominated by speech or speech in noise signals.

Findings like this can help reduce the incongruence between

laboratory and real-world HA outcomes (e.g., Gnewikow et al.,

2009).

Despite the benefits inherent to EMA methodology, it

is important to consider some limitations. While speech

communication-related situations account for roughly 50%

of experienced listening situations (Pichora-Fuller et al., 2016)

in daily life (Humes et al., 2018; Burke and Naylor, 2020;

Andersson et al., 2021), self-reports in such situations can often

be difficult to collect with EMA (Schinkel-Bielefeld et al., 2020;

Wu et al., 2021). Schinkel-Bielefeld et al. (2020) concluded that

EMAs regarding speech communication can be more difficult

to collect as participants often experience such assessments as

being inappropriate in social contexts. This suggests that the

general EMA approach could be improved by extending it with

objective non-invasive measures of listening-related factors that

possibly correlate with real-world listening experiences during

speech understanding.

Regarding situations related to speech communication, HA

users typically struggle to hear in the presence of background

noise (Henry and Heinz, 2012). In laboratory assessments of

speech intelligibility in noisy conditions, a consistent finding

is that HA users often need to exert greater listening effort

compared to individuals with normal hearing (Ohlenforst et al.,

2017). Listening effort is influenced by various factors, including

the listener’s hearing ability, the demands of the listening task

(such as noisy or reverberant environments), and the listener’s

motivation to successfully complete the task, potentially receiving

personal or social rewards (Pichora-Fuller et al., 2016). These

multifaced aspects of listening experience have been described

by the Framework for Understanding Effortful Listening (FUEL).

Importantly, listening effort is not a static phenomenon as it

can fluctuate throughout an activity based on both the task’s

demands, such as the difficulty of listening in noisy situations,

and the listener’s motivation or evaluation of the task’s importance

(Pichora-Fuller et al., 2016; Peelle, 2018). Also, the ramifications of

persistent listening effort in everyday life are significant, potentially

leading to fatigue, which can negatively impact the social lives of

individuals with hearing impairment (Alhanbali et al., 2018). This

underscores the importance of considering effort as a crucial aspect

when assessing the benefit of hearing aids.

The assessment of listening effort and listening difficulties

can be facilitated by physiological measurements (Mackersie and

Calderon-Moultrie, 2016; Ohlenforst et al., 2017; Zekveld et al.,

2018; Alhanbali et al., 2019; Francis et al., 2021; Giuliani et al.,

2021). Moreover, non-invasive physiological recordings could also

support the assessment of real-world listening experiences with

EMA. In fact, there is increasing evidence for real-world sound

exposure to be associated with changes in mean heart rate (HR).
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Specifically, the study by Christensen et al. (2021) found that higher

ambient sound pressure levels were associated with increases in

HR, while El Aarbaoui et al. (2017) further documented that higher

sound pressure levels also relate to decreases in HR variability.

Moreover, increases in ambient signal-to-noise ratio were linked to

decreases in HR, particularly in noisy environments (Christensen

et al., 2021). In their respective studies, Christensen et al. (2021)

used hearing aids and wrist-worn wearables to collect real-world

environmental sound and HR data, while El Aarbaoui et al. (2017)

had participants wear shoulder-mounted noise dosimeters and

medical-grade heart-rate monitoring devices. However, the effect

sizes reported in the two studies are almost identical with 0.154%

increase in HR per 1 dB SPL (El Aarbaoui and Chaix, 2019)

vs. 0.141% increase in HR per 1 dB SPL (Christensen et al.,

2021), indicating that acoustic data-logging with HAs exhibit high

face validity.

Thus, building upon the findings of Christensen et al. (2021),

the present study aims to explore the association between

environmental acoustic factors, physiological responses (i.e., HR),

and self-reported listening experiences and intentions via EMA.

Previous research has shown that acoustic factors are related

to both self-reported listening experiences (Andersson et al., 2021)

and momentary HR (Christensen et al., 2021), but there is lack of

evidence about how listening intentions impact these associations

(von Gablenz et al., 2021). Thus, the aim was to link acoustic and

HR data to self-reported listening experiences and intentions to

enable a broader understanding of how such factors interact in

relation to HA outcome.

We hypothesized that higher sound pressure level (SPL),

lower signal-to-noise-ratio (SNR) and higher momentary HR,

respectively, would be associated with poorer self-reported listening

experiences. Further, we hypothesized that there would be a

moderating effect of listening intention. That is, we hypothesized

that the association between self-reported listening experiences and

HR would be stronger in the case of specific listening intentions

compared to non-specific listening. We tested these hypotheses on

a group of normal-hearing individuals.

Materials and methods

Study design

The current study was evaluated by the Regional Committee

on Health Research Ethics for Southern Denmark, and ethical

approval was deemed unnecessary (i.e., a waiver was obtained).

The present study was part of a larger project, which included two

groups of individuals with normal and hearing loss, respectively.

The results from the participants with hearing impairment will

be reported elsewhere. For the current dataset, associations

between the acoustic and HR data have been reported elsewhere

(Christensen et al., 2023). All data were collected between March

2021 and June 2023. Each participant was paid 120 DKK/h for the

time spent visiting the laboratory. All participants provided written

informed consent.

To our knowledge, the current study was the first one to

investigate potential associations between self-reported listening

experiences, acoustic, and HR data. Given this, our study

was primarily exploratory in nature. Our study resembled

other EMA studies in terms of the number of prompted

assessments and the duration of the data collection period

(Holube et al., 2020). We chose a 2-week trial period, as

previous research has suggested that longer data collection

periods can become burdensome for participants, potentially

resulting in decreased compliance (Schinkel-Bielefeld et al.,

2020).

We applied a randomized crossover study design. Participants

began either with a 2-week period of collecting objective

data, including acoustic data and HR measurements, while

also completing EMAs. Alternatively, they began with only the

collection of objective data (without any EMA completions) for 1

week. The 1-week trial period without EMAs served as a control

condition to assess if the mere act of completing EMAs influenced

HR readings. Our analysis did not reveal a significant difference in

HR between the two trial periods. In total, the data collection period

lasted for 3 weeks and consisted of four visits to the laboratory.

The first visit included hearing screening and comprehensive

instructions in the use of the equipment as the participants started

with the data collection afterwards Additionally, participants

received a detailed paper guide explaining device usage and

basic troubleshooting procedures. We encouraged participants

to seek additional assistance if required. The remaining three

visits occurred over the subsequent 3 weeks and were primarily

dedicated to transferring data from participants’ smartphones to

a computer and verifying the correct storage of all data. The final

visit encompassed the return of the equipment and the completion

of a brief questionnaire concerning their participation in

the study.

Participants

Participants with self-reported normal hearing were recruited

from the student population of the University of Southern

Denmark in Odense, Denmark. Individuals interested in

participating were also encouraged to pass on flyers to friends

and family members. The inclusion criteria included audiometric

hearing thresholds ≤25 dB HL between 0.25 and 8 kHz for both

ears. Self-reported health issues (e.g., a pacemaker) that are known

to affect the cardiovascular system were defined as exclusion

criteria. By including individuals with normal hearing, we avoided

potential confounds due to hearing loss and HA use on our results,

allowing them to be used for reference purposes, for example when

evaluating the listening experiences of HA users in future studies.

Initially, 12 participants (four males, eight females) were

enrolled in the study. Data from four participants had to be

excluded due to technical issues (n= 1) or an insufficient number of

completed self-reports (n = 3). Thus, seven additional participants

were recruited and enrolled in the study. In total, 15 participants

(five males, 10 females) completed the study. The age of these

participants ranged from 23 to 35 years (mean: 27.7 years; SD: 3.9

years). The participants were screened with air-conduction pure-

tone audiometry to confirm normal thresholds. All participants

were familiar with using smartphones in their daily life. The

majority of participants were university students (n = 9), and
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among them, three held part-time jobs. The remaining participants

were either employed full-time (n= 5) or part-time (n= 1).

Material and apparatus

Hearing aids
Each participant was provided with a single HA fixed to a

metal clip that could be attached to the collar. The rationale for the

collar placement was to ensure consistent daily wear by participants

during data collection. Placing the HA behind the ear could lead to

discomfort, such as occlusion or the inability to wear headphones,

which might prompt participants to remove the HA, resulting in

less acoustic data collected. Participants were instructed to keep the

HA in the same position and ensure it was not obstructed by items

like jackets to maintain reliable logging of acoustic data.

The HAs were small-size receiver-in-the-ear (mini-RITE) OPN

S1 devices fromOticon A/S (Smørum, Denmark) with rechargeable

batteries. No receivers or earpieces were used. The HAs were

used solely for acoustic data-logging. Thus, familiarity with HA

usage was not relevant for the current study. The participants were

instructed in how to correctly place theHA in a charger and connect

it to a smartphone via Bluetooth. They were instructed to charge it

every evening to ensure enough battery power during the next day.

The participants could monitor the battery level on the associated

smartphone screen or app.

When turned on, the HAs continuously measured the SPL

and estimated the SNR of the ambient sound environment. These

data were transferred and stored on the Bluetooth-connected

smartphone every 20 s. Both SPL and SNR were calculated in

a broadband sense (0–10 kHz) with A-weighting applied (i.e., in

dBA). A detailed description of the acoustic parameters can be

found in Christensen et al. (2021). While charging, the HAs were

automatically turned off, and so no acoustic data were logged then.

Wristbands
Garmin (Olathe, Kansas, USA) Vivosmart 3 and 4 wristbands

were used to measure HR continuously. The wristbands were

set up with default settings and connected via Bluetooth to a

smartphone app for storage of these measurements on a beat-by-

beat basis. Previously, the validity of commercial wristbands as

compared to research-based electrocardiograms was investigated,

leading to the conclusion that “different wearables are all reasonably

accurate at resting and prolonged elevated HR, but that differences

exist between devices in responding to changes in activity” (Bent

et al., 2020). Also, the green LED sensor light (used in Garmin

Vivosmart 3 and 4) is shown to be resistant to motion artifacts

when measuring HR (Nelson et al., 2020). For each participant, the

HR data exceeding the 95% percentile were excluded to reduce the

effects of physical exercise on these measurements.

Smartphones
Each participant received an iPhone 7 smartphone (Apple,

Cupertino, California, USA) that enabled a connection with the

HAs and wristbands. The smartphones were used to perform the

EMAs via an app and to store the collected HR and acoustic data.

Data collection

HR app
The HR data were stored in a research version of a

commercially available app for HA management called “Oticon

ON” (Oticon A/S, Smørum, Denmark). Besides the features that

are available in the commercial app, the research version included

two additional features: (1) connection and synchronization of the

Garmin wearable with the smartphone, and (2) live tracking of

the logged HR and SPL data from the HA. The participants were

asked to use live tracking at least once a day to ensure connectivity

between the smartphone, wristband, and HA. The HR and acoustic

data shared the same timestamps.

EMA app
An iPhone app developed by Oticon A/S (Smørum, Denmark)

was used to perform the EMAs, which were afterwards linked

to the acoustic and HR data with the help of the timestamps.

The participants were prompted pseudo-randomly during a day

with app notifications to complete EMAs. The app prompting was

enabled only when the HA was connected to the smartphone and

when the EMA from the latest notification was completed. The

notifications were sent every 1.5–2 h, but no more than eight times

per day. The app notifications included both audible and vibratory

alerts from the smartphone. Additionally, the wristbands were

set to vibrate when the participants received prompts to improve

compliance. The participants were also encouraged to self-initiate

EMAs if they experienced a listening situation they considered

interesting to assess. They were instructed to always think about

the last 5min of listening experiences when completing an EMA,

regardless of whether it was initiated exactly at or sometime after

a prompt, or whether it was self-initiated. Each EMA consisted of

seven questions in total. To assist participants in their ratings, the

answers to the first six questions were indicated using a slider on a

line with five marks between two anchors (Table 1). The outcomes

from the first six questions were coded as continuous numbers

between 0 and 10 (these were not visible for the participants).

The EMA app was mainly designed with HA users in mind and

included an initial question regarding satisfaction with the sound

from the HAs. The participants in the current study were instructed

to use this question to rate how pleasant or unpleasant the sounds

around them were. The last question had a selection menu where

the participants could indicate their current listening intent. They

were asked to select “streamed listening” when listening through

headphones. Figure 1 and Table 1 lists the questions presented in

the EMA app.

Data processing and statistical analyses

To reduce the number of variables, the reported listening

intents were clustered into three categories according to the

Common Sound Scenarios (CoSS) framework by Wolters et al.

(2016). The rationale for including the CoSS framework was

based on it being increasingly used in HA research (e.g., Wolters

et al., 2016; Burke and Naylor, 2020; von Gablenz et al.,
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TABLE 1 List of questions used in the app with corresponding abbreviations of the questions.

Question number Question text Anchor names/possible
answers

Abbreviation of
question text

1 Right now, how satisfied are you with the sound

from your hearing aids?

Not satisfied↔ Very satisfied Satisfaction

2 Right now, how is it to focus on the sounds you

want to hear?

Difficult↔ Easy Focusing on sounds

3 Right now, how is it to ignore sounds you don’t

want to hear?

Difficult↔ Easy Ignoring sounds

4 Right now, how is it to work out where different

sounds are coming from?

Difficult↔ Easy Sound localization

5 Right now, how well can you hear what is going on

around you?

Not very well↔ Very well Audibility

6 How noisy is it right now? Very noisy↔ Quiet Noisiness

7 What are you listening to at the moment? Choose one:

One person talking

People talking

Music: live or sound system

Music via streaming

A streamed broadcast

Sounds around me

Nothing in particular

Listening intent

2021). The listening intents “one person talking” and “people

talking” were classified as “speech communication” from the CoSS

framework, whereas “nothing in particular” was classified as “non-

specific.” The other possible listening intents were classified as

“focused listening.”

The individual associations between HR, SPL, and SNR and

EMA ratings were analyzed using linear mixed-effects (LME)

models. The LME models accounted for multilevel data, that

is, correlated observations nested within each participant and

condition due to repeated measurements (Oleson et al., 2022). To

account for individual baseline variability, the participants were

defined as random effects (i.e., random intercepts) in the models

(Barr et al., 2013). The continuous variables HR, SPL, and SNR

were defined as individual fixed effects in the LME models, as

defined below:

YEMA ratingij = β0 + β1XSPLij + β2 XSNRij
+ β3XHeart rateij

+ b0i + eij (1)

Y denotes the response variable (i.e., the EMA ratings) for

participant i and repeated observation j, β0 is the intercept for the

baseline EMA rating, the other βn are the coefficients for the fixed

effects, X are the fixed effects, b0 is the random intercept for each

participant, and e represents the residual.

Prior to the modeling, the fixed effects were converted into

z-scores using the following general formula:

z− score =
x− µ

σ
(2)

Here, x denotes the raw value (e.g., dB SPL), µ is the mean,

and σ refers to standard deviation. A z-score equal to 0 represents

the observed grand average value (e.g., SPL) across all participants

while a z-score equal to 1 represents an observed value one standard

deviation from the grand average.

Initially, ratings from each EMA question were modeled

separately, and models were compared using likelihood ratio tests

to corresponding null models (i.e., intercept-only models) and

simpler models which only included SPL and SNR as fixed effects

(Harrison et al., 2018). This was done to test if the acoustic data

significantly contributed to explaining the EMA ratings, and if this

differed across EMA questions. Prior to any modeling, the ratings

from question 6 were inverted tomatch the rating scales of the other

EMA questions.

Secondly, we sought to investigate if associations between the

predictor variables and EMA ratings were moderated by listening

intent. Listening intent was included in interaction with SPL, SNR,

and HR, respectively. In this case, the data from EMA questions

1–5 and those from question 6 (for description of each question

see Table 1) were analyzed in two separate models since the former

relate to the general listening experience while the latter (subjective

rating of noisiness) relates to the environment. Furthermore, for

the data from EMA questions 1–5, EMA question was included as

a random effect term rather than as a fixed effect, since we were

interested in the overall effect of listening intent generalized to all

EMA questions:

YEMA ratingij = β0 + β1XSPLij + β2 XSNRij
+ β3XHeart rateij

+ β4Xlistening intentij
+ β5XSPLijXlistening intentij

+ β6XSNRijXlistening intentij
(3)

+ β7XHeart rateijXlistening intentij
+ b0i + b1i + eij

Again, likelihood ratio tests were applied to compare the

goodness-of-fit for the two resultant interaction models with

simpler models that excluded listening intent.

Besides inspecting the coefficient magnitudes and error of

each LME model, conditional and marginal R2 effect sizes were

considered, as these indicate whether the inclusion of the acoustic,
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FIGURE 1

Screenshots of the Oticon EMA app. (A) Shows the welcome screen. (B) Show EMA questions with slider indicator and last question as a

single-choice question. EMA, ecological momentary assessment.

HR, or listening intent data in the interaction model increased the

proportion of explained variance (for more details, see Christensen

et al., 2021).

All statistical analyses were conducted using R v.4.2.2 software.

Visualization of descriptive statistics was done with the “ggplot2”

package (v.3.3.6). The HR, SPL, and SNR data were averaged over a

5-min time window prior to each EMA completion. The density

distributions of SPL, SNR, and HR were calculated and drawn

by applying Gaussian kernel density estimate and non-parametric

Kolmogorov-Smirnov tests were conducted to assess the differences

in the distributions of SPL, SNR, and HR data, respectively, among

the listening intent categories.

The LME analyses were performed with the “lmerTest—Tests

in Linear Mixed Effects Models” package (v.3.1-3) with the use

of the “sjPlot—Data Visualization for Statistics in Social Science”

package (v.2.8.11) for tables and graphical plots of LME coefficients

and interactions. Partial pseudo-R2 was calculated using the

“MuMIn—Multi-Model Inference” (v.1.46.0) package.

Results

Descriptive results

Distribution of EMAs
During the 2-week EMA data collection period, the participants

submitted 1,521 EMAs in total with an average of 7.2 EMAs

(SD = 4.4 EMAs) per day and participant. To assess the

associations between the EMA ratings and acoustic factors, all

data which stemmed from listening intents related to “streaming”

(i.e., listening through headphones) were excluded. This resulted

in 1,260 EMAs with an average of 6 EMAs (SD = 3.4 EMAs) per

day and participant. Figure 2 shows the listening intents classified

according to the CoSS framework. Figure 2A shows that themedian

number of submitted EMAs across the 2 weeks was 68 EMAs (after

data exclusion). Figure 2B shows that most EMAs were submitted

between 6:00 a.m. and 8:00 p.m.

Figure 3A shows the percentage distribution of self-reported

listening intents during the EMAs across all original options

(after exclusion of “streaming” related listening intents), whereas

Figure 3B shows the listening intents classified according to the

CoSS framework. As shown in Figure 3A, the option “nothing in

particular” (31.3%) was the most selected listening intent followed

by “sounds around me” (23.3%). Regarding the classifications

based on the CoSS framework, “speech communication” accounted

for most selected listening intents (i.e., 37.1%), whereas “focused

listening” and “non-specific” accounted for 31.6 and 31.4%,

respectively (Figure 3B).

Distribution of acoustic and HR data
Figure 4 shows density distributions of the acoustic data from

the HA data-logging (i.e., SPL and SNR) and the HR data from the

Garmin wristbands separated by CoSS category.

The highest median SPL (60.6 dB, SD = 9.6 dB) was obtained

for “speech communication” listening intents (Figure 4A). The

median SPL for “focused listening” and “non-specific” was

56.7 dB (SD = 10.9 dB) and 48.7 dB (SD = 9.8 dB),

respectively (Figure 4A). In general, “non-specific listening” was

characterized by lower SPL values as compared to “speech
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FIGURE 2

Number of submitted EMAs as a function of listening intents corresponding to CoSS classifications. (A) Number of EMAs submitted by each

participant. The vertical red line represents the median value for submitted EMAs per participant but not divided into CoSS. (B) Stacked histograms

showing the total number of EMAs across the time of day. EMA, ecological momentary assessment; CoSS, Common Sound Scenarios framework.

FIGURE 3

Percentage distribution as a function of listening intent in descending order. (A) Bar chart showing percentage of selected listening intents by

participants. (B) Bar chart showing percentage of the selected listening intents classified as Common Sound Scenarios. Speech communication

consists of “one person talking” and “people talking” listening intents, focused listening consists of “sound around me” and “music (live or sound

system)” listening intents, and non-specific relates to “nothing in particular” listening intent.

communication” and “focused listening” intents (Figure 4A).

Kolmogorov-Smirnov tests confirmed that the distribution of

SPLs for “non-specific listening” was different from those for

“focused listening” and “speech communication” (D = 0.299, p

< 0.001, and D = 0.468, p < 0.001, respectively), and between

“focused listening” and “speech communication” (D = 0.215,

p < 0.001).

For SNR, the highest median value was estimated for “speech

communication” (19.2 dB, SD = 4.4 dB), followed by “focused

listening” (16.7 dB, SD = 4.2 dB) and “non-specific” (15.7 dB,

SD = 4.7 dB) as shown in Figure 4B. Kolmogorov-Smirnov

tests showed that the distributions of SNRs among the three

listening intent categories were different from each other (all p <

0.001). Further, Pearson’s correlation coefficient r demonstrated

a moderate correlation between SPL and SNR values (r = 0.66,

p < 0.001).

The observed grand mean HR was 76.6 bpm (SD = 6.6

bpm). This corresponds well with the mean HRs of 80.2 bpm

(SD = 14.8 bpm) and 78.5 bpm (SD = 15.1 bpm) reported by

Avram et al. (2019) based on more than 15,000 adults aged 21–30

and 31–40 years, respectively. The median HR value for “speech

communication” listening was slightly higher (77.6 bpm, SD =
6.3 bpm) than for “focused listening” and for “non-specific” (76

bpm, SD = 6.3, and 75.6 bpm, SD = 5.4, respectively) as shown in

Figure 4C. The HR values mostly overlap across the three listening

intent categories, with “non-specific” generally showing the highest
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FIGURE 4

Density plots as a function of listening intent. Each data point represents a 5-min average corresponding to the time window for each ecological

momentary assessment completion. (A) Averaged values for sound pressure levels (SPLs). (B) Averaged values for signal-to-noise ratio (SNR). (C)

Averaged values for momentary HR (HR).

density around mean HR values (Figure 4C). A Kolmogorov-

Smirnov test revealed that the distributions of the HR data for the

listening intent categories were significantly different from each

other (“non-specific” vs. “speech communication”: D = 0.294, p

< 0.001; “non-specific” vs. “focused listening”: D = 0.156, p <

0.001; “focused listening” vs. “speech communication”: D = 0.173,

p < 0.001).

Correlations between ratings from individual EMA
questions

To assess the validity of modeling each EMA question

separately, we analyzed the responses from the different EMA

questions in terms of multicollinearity. Figure 5 depicts how

strongly the responses from the different EMA questions were

correlated. For that purpose, Spearman’s correlation coefficients

(marked with bold) were calculated for each participant and

then averaged. The numbers below the coefficients show

the total number of significant coefficients (p < 0.05) per

comparison. The average correlations showed weak to moderate

associations between the different EMA questions, which indicates

that the participants could differentiate between the different

EMA dimensions.

Associations between acoustic, HR, and
EMA data

To recapitulate, we hypothesized that higher SPL, lower SNR,

and higher momentary HR, respectively, would be associated with

poorer self-reported listening experience (i.e., lower EMA ratings).

Figure 6 depicts the fixed-effects coefficients from the LME models

for the individual EMA questions. There were significant and

negative effects of SPL for all EMA questions (p< 0.001 for all EMA

questions). Thus, higher SPLs were found to be associated with

lower EMA ratings. This effect was strongest for EMA question 6

(rating of noisiness of the surroundings). Except for question 1, the

fixed-effect coefficients for SNR were all positive and statistically

significant (p < 0.01 for question 4 and p < 0.001 for questions

2–3 and 5–6). For HR, no significant coefficients were observed.

Coefficient estimates and effect sizes regarding estimates from the

LME models can be found in Table 2. While the applied LME

models corrected for inter-individual differences in baselines, the

imbalance in amount of EMAs per participant (see Figure 2) could

have influenced the slope estimates. We therefore re-fitted the LME

models to ratings from all EMA questions using only a subset of

data from NH15 and NH9. Specifically, we randomly selected 146

EMAs from NH9 and NH15 as this corresponds to the number

of EMAs from the participants with the 3rd most completed

EMAs. Inspecting the re-fitted models, we only identified negligible

and unsystematic changes in coefficients, while the direction and

significance of effects were unchanged.

Moderating e�ect of listening intent

Our second hypothesis was that the strength of the associations

between the acoustic and physiological data and the self-reported

listening experiences would be influenced by the individual’s

listening intent. To test this, we included self-reported listening

intent in the LME models as a fixed effect in interaction with SPL,

SNR, and momentary HR. This improved the goodness-of-fit for

Frontiers in Audiology andOtology 08 frontiersin.org44

https://doi.org/10.3389/fauot.2023.1275210
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


Andersson et al. 10.3389/fauot.2023.1275210

FIGURE 5

Correlation matrix displays Spearman’s rho averaged correlation coe�cients (marked with bold) for rating ratings for di�erent ecological momentary

assessment questions. The matrix shows the correlation between all the possible pairs of rating values. Red color represents positive correlation

coe�cients. The values below correlation coe�cients indicate number of statistically significant correlations with significance level of 0.05, whereas

values in the parentheses indicate number of p-values where the correlation could not be estimated due to no variance in ratings.

FIGURE 6

Plots of standard deviation from grand mean EMA rating with 95%-confidence intervals for fixed e�ects in LME models. Individual LME model

estimated fixed-e�ects coe�cients for each EMA question. Significance levels for p-values: n.s., non-significant; **p < 0.01, ***p < 0.001. LME, linear

mixed e�ects; EMA, ecological momentary assessment; SPL, sound pressure level; SNR, signal-to-noise ratio; HR, heart rate.

both models [model with EMA questions 1–5 as random effect:

χ2
(8)

= 153.4, p < 0.001; model of EMA question 6: χ2
(8)

= 110.2,

p < 0.001]. The model that included listening intent explained

1.8 percentage point (total: 34.6% increase) more variance (EMA

questions 1–5) compared to the models with only SPL, SNR, and

HR. For EMA question 6 (rating of noisiness of the surroundings),

the increase in explained variance was 6 percentage point (total:

31% increase).

The coefficients from these interaction models (see Table 2)

revealed that, for the baseline condition (non-specific listening),

EMA ratings were significantly and negatively associated with

SPL (as in the simpler model without listening intent) for the

general listening experience (questions 1–5). Also, higher SPL

was associated with ratings of more noise in the surroundings

for the baseline condition (for question 6). The association

between SNR and EMA ratings was not statistically significant
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TABLE 2 Estimates for fixed-e�ect coe�cients, confidence intervals, and p-values from linear mixed-e�ects models testing associations between

acoustic data (SPL, SNR), HR, and EMA rating.

EMA question 1:
satisfaction

EMA question 2:
focusing on sounds

EMA question 3:
ignoring sounds

Coe�cient Estimate
(rating) CI (95%)

P-value Estimate
(rating) CI (95%)

P-value Estimate
(rating) CI (95%)

P-value

Intercept 8.36 (7.60 to 9.13) <0.001 8.59 (7.92 to 9.26) <0.001 8.32 (7.45 to 9.19) <0.001

SPL (SD) −0.31 (−0.42 to−0.21) <0.001 −0.72 (−0.85 to−0.60) <0.001 −0.82 (−0.97 to−0.68) <0.001

SNR (SD) −0.08 (−0.19 to 0.02) 0.127 0.30 (0.18 to 0.43) <0.001 0.40 (0.26 to 0.55) <0.001

HR (SD) −0.07 (−0.26 to 0.12) 0.484 −0.07 (−0.29 to 0.15) 0.542 0.08 (−0.18 to 0.34) 0.540

Random e�ects

σ
2 1.66 2.29 3.16

τ00 1.95ID 1.48ID 2.51ID

ICC 0.54 0.39 0.44

N 13 ID 13ID 13ID

Observations 1,130 1,130 1,130

Marginal R2/Conditional R2 0.037/0.557 0.080/0.441 0.068/0.481

EMA question 4:
sound localization

EMA question 5:
audibility

EMA question 6:
noisiness

Coe�cient Estimate
(rating) CI (95%)

P-value Estimate
(rating) CI (95%)

P-value Estimate
(rating) CI (95%)

P-value

Intercept 8.95 (8.28 to 9.62) <0.001 8.84 (8.21 to 9.47) <0.001 7.24 (6.50 to 7.98) <0.001

SPL (SD) −0.39 (−0.49 to−0.30) <0.001 −0.59 (−0.70 to−0.49) <0.001 −1.36 (−1.51 to−1.21) <0.001

SNR (SD) 0.14 (0.04 to 0.23) 0.005 0.24 (0.14 to 0.35) <0.001 0.47 (0.33 to 0.62) <0.001

HR (SD) −0.00 (−0.18 to 0.17) 0.962 −0.06 (−0.25 to 0.13) 0.518 0.04 (-0.22 to 0.29) 0.790

Random e�ects

σ
2 1.38 1.65 3.27

τ00 1.50 ID 1.32 ID 1.80 ID

ICC 0.52 0.44 0.35

N 13 ID 13 ID 13 ID

Observations 1,130 1,130 1,130

Marginal R2/Conditional R2 0.034/0.537 0.069/0.482 0.195/0.480

SPL, SNR, and HR were modeled as fixed effects, while the participants and listening intents were modeled as random effects. P-values in bold indicate that they are below the significance

level (alpha = 0.05). SPL, sound level pressure; SNR, signal-to-noise-ratio; HR, heart rate; SD, standard deviation; EMA, ecological momentary assessment. σ2 , variance; τ00 , between-subject

variance; ICC, interclass correlation coefficient; N, sample size; ID, participant ID as random effect; Marginal R2 , variance of fixed effects; Conditional R2 , variance of both the fixed and random

effects coefficient; N, sample size; ID, participant ID as random effect; Marginal R2 , variance of fixed effects; Conditional R2 , variance of both the fixed and random effects.

for the baseline condition in both models. Further, the model

for EMA questions 1–5 showed a significant negative association

between HR and EMA ratings for non-specific listening (baseline

condition). Interestingly, the models revealed several significant

interactions. These can be seen in Figure 7, which shows model

predictions for the associations between the EMA ratings and

SPL, SNR, or HR in interaction with listening intent. There was

a significant interaction between listening intent and SPL for

EMA questions 1–5 (Table 2). That is, ratings performed during

“speech communication” and “focused listening” were stronger

(and negatively) associated with SPL than ratings made during

“non-specific” listening (Figure 7A). The LME model for question

6 also revealed that the higher SPL was associated with the

perception of increased noise (i.e., higher ratings) when listening

focused as compared to the baseline condition (Figure 7B).

Moreover, there were significant interactions between listening

intent and SNR for all EMA questions. More precisely, ratings

during “speech communication” and “focused listening” weremore

strongly (and positively) associated with SNR than during “non-

specific” listening (Figure 7C). Also, the participants rated their

surroundings as being less noisy (Figure 7D) when SNR values were

higher while listening focused or to speech than when listening

passively (i.e., “non-specific” listening).

Lastly, the models revealed that HR associated more with

ratings during “speech communication” and “focused listening”

than during “non-specific” listening for the EMA questions related

to the general listening experience (Figure 7E and Table 3). For

perceived noisiness (EMA question 6), ratings associated with HR
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only for “speech communication” (Figure 7E and Table 3). In other

words, when listening actively (to speech or focused), increased

HR associated with better general listening experiences, while the

perception of ambient noise during speech listening were associated

with higher HR.

We again re-fitted the LME models for self-reported listening

intents with data consisting of only a random subset (146 EMAs) of

data from participants NH9 and NH15 to evaluate if the imbalance

in number of completed EMAs among participants (Figure 2)

influenced the results. As with the simpler LME models, we found

only minor unsystematic changes in coefficient magnitudes but no

alteration of the direction and significance of effects.

Discussion

The current study explored how acoustic factors and HR

measurements in interaction with self-reported listening intents

relate to real-world listening experiences in young adults with

normal hearing.

Across listening intents, ambient SPL significantly and

negatively associated with ratings from all EMA questions, which

indicates that increased loudness during EMA completion is

related to poorer listening experiences and increased perception

of noisiness in the surroundings. Not surprisingly, the effect was

strongest for EMA question 6 that asked participants to rate the

noisiness of their surroundings on a scale from quiet to very noisy.

Overall, these results indicate that the participants used the EMA

scale correctly and that their experiences were reflected by the

logged acoustic factors. This can be supported by significant and

positive associations between SNR and the ratings for almost all

individual EMA questions (except question 1). This indicates that

the participants were sensitive to both loudness-related factors and

the relative levels of modulated sound and background noise (in

terms of higher SNR being associated with better ratings). These

general patterns correspond well with results from previous EMA

studies performed with hearing-device users that included acoustic

data-logging (Andersson et al., 2021; Bosman et al., 2021; Pasta

et al., 2022).

While EMAs in the current study are associated with mostly

positive 5-min SNR values (Figure 4), this is also expected

from previous investigations into typically encountered sound

environments during daily life. For example, Pearsons et al. (1977)

reported participants with normal hearing experienced mostly

positive SNR levels while others report that hearing-aid users

experience only few (<8%)moments in daily life with negative SNR

(Smeds et al., 2015; Wu et al., 2018). Also, the study by Pearsons

et al. (1977), demonstrated that increased ambient SPLwas typically

associated with decreased SNR for individuals with normal hearing.

It should be noted that caution should be taken when comparing

the absolute values of the reported SNRs with those from studies

involving different measurement methodology as differences in

estimation approach, frequency weighting and temporal averaging

all could influence the levels.

In the current study, SPL and SNR showed to have positive

moderate correlation. This is most likely because higher SPL only

associated with decreased SNR in the presence of noise as reported

by Christensen et al. (2021), while situations with both loud

and clear sound would lead to positive correlations among SPL

and SNR.

Moderating e�ect of listening intent

As hypothesized, we found that higher SPL and lower SNR

were associated with poorer EMA ratings, and that this was

moderated by listening intent. Namely, for listening intents related

to “speech communication” or “focused listening,” higher ambient

SPL and lower ambient SNR led to poorer EMA ratings relative

to “non-specific listening.” Our study appears to be the first to

report associations between acoustic data from HAs and subjective

ratings of real-world listening experiences separated by listening

intent. It supports previous findings concerning the relationship

between acoustic factors and reported listening experiences alone

(Andersson et al., 2021), and the introduction of the novel

assessment dimension (listening intent) highlights the value of

understanding not only in what conditions the participants are

listening in, but also what their intentions are, to better account

for their experiences. Even when encountering similar listening

conditions as shown in Figure 4, individuals are reporting different

assessments of their listening experiences depending on their

listening intents.

While mean HR did not associate with EMA ratings when

disregarding listening intents, the opposite was true when listening

intents were included as a moderating factor. HR associated

significantly with EMA ratings for questions 1–5 (general listening

experiences) and 6 (perception of noisiness) when listening

to speech or during “focused listening” but not for “non-

specific” listening (Figure 7 and Table 3). This finding further

highlights the value of self-reported listening intent, which here

helps reveal associations between physiological responses and

listening experiences.

Our findings support the theoretical framework of effortful

listening offered by FUEL (Pichora-Fuller et al., 2016), which

describes that increased listening effort is dependent on

motivational factors (e.g., to understand what is being said)

and increased listening demands (e.g., more challenging acoustic

conditions). In accordance with the FUEL framework (Pichora-

Fuller et al., 2016), we interpret the direction of the association

(i.e., higher HR being related to better ratings) as indicative of

the fact that increased HR reflects an increased willingness to

put more effort into listening driven by motivation to hear what

is going on (related to “focused listening”) or by understanding

what is being said (related to “speech communication”), ultimately

leading to an achievement of listening success (e.g., better ratings).

Further, the study by von Gablenz et al. (2021) has reported that

the importance of hearing well was mostly related to “speech

communication” listening intents, which can be linked with the

motivation for achieving listening success. It seems reasonable

to assume that questions related to specific listening intents or

activities can reflect motivational factors when assessing real-

world listening experiences. This corresponds well to the FUEL

framework (Pichora-Fuller et al., 2016) which states that during

increased listening demands (in terms of higher SPL and lower

SNR) individuals are willing to invest or maintain certain level
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FIGURE 7

Interaction e�ects plot for standard deviation from grand mean EMA rating across di�erent listening intents (“non-specific” as reference). (A, C, E)

Represent LME model with participants and EMA questions (questions 1–5) as random e�ect. (B, D, F) Represent LME model of EMA question 6. Panel

A and B show interaction e�ects plot for changes in SPL (sd). (C, D) Show interaction e�ects plot for changes in SNR (sd). (E, F) Show interaction

e�ects plot for changes in HR (sd). The green lines represent “non-specific” listening intent. The yellow lines represent “focused listening” intent. The

blue lines represent “speech communication” listening intent. Significant interactions are showed with p-values. Significance levels for p-values: *p <

0.05, **p < 0.01, ***p < 0.001. EMA, ecological momentary assessment; SPL, sound pressure level; SNR, signal-to-noise ratio; HR, heart rate.

of listening effort. This willingness to exert effort is driven by

motivation, such as the desire to comprehend speech effectively

and engage in social interactions.

Limitations

We expected high compliance due to EMA prompts being sent

out by both the smartphones and the wristbands every morning

and throughout the day. Five participants reported intermittent

technical issues with the Bluetooth connection between their

HA and smartphone, which could have resulted in a reduced

number of prompts and submitted EMAs. This is an inherent

weakness of EMA studies, where participants are responsible

for data collection and researchers have limited possibility to

monitor the process. Only one participant felt that the EMA app

sent too many notifications. Burke and Naylor (2020) reported

that their participants with normal hearing (N = 20) completed

1,007 EMAs in total during a 2-week data collection period,

which on average corresponded to 3.6 EMAs per participant per

day. In the current study, compliance was much higher despite

exclusion of EMAs related to “streamed” listening activities and

possible technical issues (i.e., 6 EMAs per participant per day).

Possibly, weekly visits to the laboratory combined with tactile

notifications from the wristbands increased the study engagement.

Moreover, as acoustic data-logging could not be monitored during
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TABLE 3 Estimates for fixed-e�ect coe�cients, confidence intervals, and p-values from linear mixed-e�ects models testing associations between

acoustic data (SPL, SNR), HR, listening intent, and EMA ratings across EMA questions 1–5, and EMA question 6, respectively.

EMA questions 1–5: general listening experience EMA question 6: noisiness

Coe�cient Estimate rating CI (95%) P-value Estimate rating CI (95%) P-value

Intercept 8.82 (8.14 to 9.50) <0.001 7.87 (7.14–8.60) <0.001

SPL (SD) −0.16 (−0.28 to−0.03) 0.015 −0.87 (−1.20 to−0.54) <0.001

SNR (SD) −0.09 (−0.21 to 0.02) 0.123 0.03 (−0.27 to 0.33) 0.852

HR (SD) −0.29 (−0.41 to−0.18) <0.001 −0.28 (−0.58 to 0.02) 0.066

Listening intent (FL vs. NS) −0.26 (−0.38 to−0.14) <0.001 −1.03 (−1.35 to−0.72) <0.001

Listening intent (SC vs. NS) −0.35 (−0.47 to−0.22) <0.001 −1.02 (−1.34 to−0.70) <0.001

SPL (SD): FL vs. NS −0.57 (−0.72 to−0.42) <0.001 −0.63 (−1.03 to−0.23) 0.002

SPL (SD): SC vs. NS −0.31 (−0.46 to−0.15) <0.001 0.02 (−0.39 to 0.43) 0.927

SNR (SD): FL vs. NS 0.33 (0.18 to 0.48) <0.001 0.47 (0.07 to 0.87) 0.020

SNR (SD): SC vs. NS 0.34 (0.20 to 0.48) <0.001 0.52 (0.15 to 0.89) 0.006

HR (SD): FL vs. NS 0.35 (0.23 to 0.47) <0.001 0.24 (-0.07 to 0.56) 0.130

HR (SD): SC vs. NS 0.47 (0.36 to 0.58) <0.001 0.72 (0.43 to 1.00) <0.001

Random e�ects

σ
2 2.21 2.99

τ00 1.35ID 1.57ID

0.07EMA

ICC 0.39 0.34

N 13ID 13ID

5EMA

Observations 5,650 1,130

Marginal R2/Conditional R2 0.072/0.435 0.255/0.511

SPL, SNR, HR, and listening intent (referenced to “non-specific”) were modeled as fixed effects, while the participants were modeled as random effects for EMA question 6. Model analyzing

across EMA question 1–5 included participants and question number as random effects. “:” denotes an interaction. P-values in bold indicate that they are below the significance level (alpha

= 0.05). SPL, sound level pressure; SNR, signal-to-noise-ratio; HR, heart rate; SD, standard deviation; EMA, ecological momentary assessment; NS, “non-specific”; FL, “focused listening”; SC,

“speech communication.” σ
2 , variance; τ00 , between-subject variance; ICC, interclass correlation coefficient; N, sample size; ID, participant ID as random effect; Marginal R2 , variance of fixed

effects; Conditional R2 , variance of both the fixed and random effects.

the study, noise, as produced by movement or contact with the

HA microphone might have impacted the reported values. To

minimize such issues, we provided detailed instructions to our

participants in terms of proper handling of the test equipment,

but we are unable to verify compliance. However, we expect

that potential contributions from such noise artifacts would be

spurious in time and not systematically correlated with listening

intents. Thus, by relying on averaging several acoustic samples

(e.g., 5-min averages) and performing association analysis (rather

than statistically assess absolute levels), we believe confounds have

been mitigated.

Another limitation for the current study was a sudden

COVID-19 lockdown, which occurred while the data collection

was ongoing (applying for eight participants included in the

analyses). This resulted in less social interaction and thus

reduced diversity of the listening situations experienced by the

participants. It could have also affected their motivation for

completing EMAs over time. Also, some participants reported

that they were not always able to complete EMAs as this was

inappropriate for them to do while being at work. This is

relevant to consider when designing EMA studies with younger

individuals as they may encounter other social contexts than

older adults.

In future studies, we suggest exploring additional dimensions

of motivational factors to further deepen the understanding of

how listening experiences are related to intents in interaction

with intrinsic motivational factors. This could involve examining

how individual perceptions of the importance of hearing well in

various situations relate to these experiences, a factor not explored

in our current study. Additionally, future research could explore

the feasibility of collecting other physiological measures besides

HR in real-world settings and how they might be linked to

EMA outcomes.

Conclusions

Real-world listening situations are characterized by high

variability, and similar acoustic conditions can result in

different self-reported listening experiences at the individual
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level. The current study found that acoustic and HR data-

loggings can improve the prediction of real-world self-reported

listening experiences in young adults with normal hearing.

Furthermore, it found that listening intent can influence self-

reported real-world listening experiences, and that listening intent

is associated with both acoustic factors and HR measurements.

Overall, increased HR was associated with better self-reported

listening experiences during “speech communication” as

compared to non-specific listening situations. These findings

indicate that the value of including in-situ HR measures in

EMAs depend on the ability to also discriminate between

listening intentions.
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Comparisons of air-conduction 
hearing thresholds between 
manual and automated 
methods in a commercial 
audiometer
Hui Liu 1,2, Xinxing Fu 1,2,3,4*, Mohan Li 1,2 and Shuo Wang 1,2*
1 Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital 
Medical University, Beijing, China, 2 Key Laboratory of Otolaryngology, Head and Neck Surgery, 
Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China, 3 Medical School, The 
University of Western Australia, Crawley, WA, Australia, 4 Ear Science Institute Australia, Subiaco, 
WA, Australia

Objective: To investigate the correlation of air-conduction thresholds 
between automated audiometry in a non-isolated environment and manual 
audiometry in participants with normal hearing and different degrees of 
hearing loss.

Methods: Eighty-three participants aged 11–88  years old underwent 
automated pure-tone audiometry in a non-acoustically isolated 
environment, and the results were compared with those of manual pure-
tone audiometry performed in a standard acoustically isolated booth, with 
the order of testing randomised. Six frequencies of 250, 500, 1,000, 2000, 
4,000 and 8,000  Hz were tested.

Results: All 166 ears were completed and 996 valid hearing threshold data 
were obtained, with 28 data exceeding the 95% confidence interval in 
the Bland–Altman plot, accounting for 2.81% of all data. The means and 
standard deviations of the differences for the six frequencies from 250 to 
8,000  Hz were, respectively, 0.63  ±  5.31, 0.69  ±  4.50, 0.45  ±  4.99, 0.3  ±  6.2, 
−0.15  ±  4.8, and 0.21  ±  4.97  dB. The correlation coefficients of the two 
test results for normal hearing, mild, moderate, severe and above hearing 
loss groups were 0.95, 0.92, 0.97, and 0.96, respectively. The correlation 
coefficient of the automated and manual audiometry thresholds for the age 
groups under 40  years, 40–60  years, and 60  years above, were 0.98, 0.97 
and 0.97, respectively, with all being statistically significant (p  <  0.01). The 
response time of the three age groups were 791  ±  181  ms, 900  ±  190  ms and 
1,063  ±  332  ms, respectively, and there was a significant difference between 
the groups under 40  years and over 60  years.

Conclusion: There was good consistency between automated pure-tone 
audiometry in a non-acoustically isolated environment and manual pure-
tone audiometry in participants with different hearing levels and different 
age groups.

KEYWORDS

automated audiometry, pure-tone audiometry, KUDUwave, response time, 
non-soundproof booth
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1 Introduction

WHO estimates by 2050, nearly 2.5 billion people will suffer from 
some degree of hearing loss, of whom at least 700 million will need 
rehabilitation services (World Health Organization, 2021). In addition 
to its impact on interpersonal communication, psychosocial well-
being and quality of life, hearing loss has a significant socio-economic 
impact. In children, hearing loss can limit language development and 
lead to difficulties in social integration and access to education, with 
significant impacts on the family; in adults, hearing loss can lead to 
higher unemployment rates and social isolation (Kramer et al., 2006). 
In older adults, hearing loss is also associated with cognitive decline 
and dementia (Livingston et al., 2017). In China, according to the 
results of the second national sample survey of people with disabilities, 
there are 27.8 million people with hearing disabilities, ranking first 
among the five major disabilities (Sun et al., 2008). In recent years, the 
number of people with hearing loss has increased with the increase in 
population aging. Early detection, diagnosis, and intervention can 
reduce the socioeconomic burden of hearing loss.

Pure-tone audiometry is the most basic and important method of 
assessing hearing loss. Traditional manual testing methods for pure-
tone audiometry require three conditions to be  met: a compliant 
acoustic isolation room, calibrated audiometers, and professionally 
trained audiologists. In China, most tertiary hospitals in first and 
second-tier cities can fulfil these conditions for testing, but in remote 
and economically underdeveloped areas, there are a limited number 
of hospitals that can fulfil the conditions for testing, which means that 
it is difficult for many people to access hearing healthcare, and at the 
same time, the large group of patients puts tertiary hospitals under 
even greater pressure.

Automated pure-tone audiometry means hearing threshold 
testing where the testing process is automated with no or minimal staff 
involvement (Wasmann et al., 2022). A growing body of research 
suggests that automated pure-tone audiometry can be useful in mass 
hearing screening, in remote and economically underdeveloped areas 
(Visagie et al., 2015; Eksteen et al., 2019; Sandström et al., 2020). There 
are three approaches to automate audiometry, including software 
solutions such as the AMTAS (Automated Method for Testing 
Auditory Sensitivity) and the Home Hearing Test (HHT); hardware 
solutions such as the KUDUwave portable audiometer; and 
smartphone/tablet solutions such as the hearScreen and hearTest 
application (Shojaeemend and Ayatollahi, 2018).

An automated pure tone audiometer for complete diagnostic 
testing purposes needs to include air conduction testing, bone 
conduction testing, masking techniques, and controling the noise 
attenuation. The KUDUwave 5,000 audiometer (hereinafter referred 
to as KUDUwave) is a portable audiometer that performs 
air-conducted and bone-conducted pure tone hearing threshold tests 
in automated and manual modes, with masking when required, by 
insert earphones covered by circumaural earcups to increase ambient 
noise attenuation, and continuous monitoring of ambient noise and 
determination of the amount of attenuation by using microphones 
inside and outside the circumaural earcups. This combination of 
attenuation and monitoring allows hearing tests to be performed in 
non-acoustically isolated environments, ensuring that pure tone 
thresholds can be tested down to 0 dB HL at maximum permissible 
ambient noise levels (MPANLs) of 70, 69, 58, 53, 50, 59, and 59 dB 
SPL for octaves from 0.125-8 k Hz. The audiometers are connected to 

a computer via a USB port with Internet access for remote 
hearing tests.

Existing studies reported good correlations between the results of 
automated and traditional manual pure-tone audiometry, both in 
adults and children using KUDUwave in sound-insulated and 
non-insulated environments. Swanepoel et al. conducted automated 
pure-tone audiometry in non-sound-insulated environments using 
KUDUwave in 23 adults with normal hearing (Swanepoel De et al., 
2015) and in 149 children (Swanepoel De et al., 2013), and obtained 
reliable results when compared to traditional manual pure-tone 
audiometry. Maclennan-Smith et al. (Maclennan-Smith et al., 2013) 
performed automated versus manual testing of the KUDUwave on 147 
older adults with normal hearing or varying degrees of hearing loss. 
The automated test was performed in a normal room, and the manual 
test was performed in an acoustically insulated room, with 95% of the 
threshold difference in air-conducted (250–8,000 Hz) and 86% of the 
threshold difference in bone-conducted (250–4,000 Hz) were within 
5 dB. Swanepoel et al. (Swanepoel De et al., 2010a) and Visagie et al. 
(Visagie et al., 2015) also reported remote pure-tone audiometry using 
KUDUwave that reliable test results were obtained.

Governder and Mars (Govender and Mars, 2018a) conducted 
hearing screening in a group of children aged 6–12 years in a rural 
primary school and those who failed the screening underwent 
diagnostic audiometry, both screening and diagnostic audiometry 
were conducted using KUDUwave. The results showed high specificity 
(100%) but low sensitivity (65.2%) for automated pure-tone 
audiometric screening. The 1,500 ms suggested by KUDUwave was 
used as the reaction time, and Governder and Mars concluded that 
this reaction time might be  insufficient for child subjects. It is 
proposed that the response time of the subjects should be investigated, 
and the parameters of the device should be adjusted. Storey et al. 
(Storey et al., 2014) measured 31 subjects (aged 15 to 80 years) with 
different degrees of hearing loss using the KUDUwave in quiet and 
noisy environments, most of the thresholds obtained were within 
±5 dB of the results of the manual pure-tone audiometry in an acoustic 
chamber (89 and 92% in quiet and noisy environments, respectively). 
However, thresholds obtained with the KUDUwave in 5% of the test 
ears showed large differences compared to clinical audiometers, with 
differences in thresholds up to 60 dB.

This study analysed subjects of different ages and degrees of 
hearing loss in groups and reported the response times of subjects of 
different ages. It is expected to provide evidence for setting parameters 
for automated pure-tone audiometry.

2 Materials and methods

2.1 Participants

Eighty-three participants, 41 males and 42 females, aged 
11–88 years (median age was 57 years), were enrolled from the clinical 
audiology centre, Department of Otorhinolaryngology, Head and 
Neck Surgery, Beijing Tongren Hospital. Inclusion criteria: ability to 
understand the test requirements and cooperate in completing the 
test; including normal hearing and varying degrees of sensorineural, 
conductive and mixed hearing loss. Exclusion criteria: known 
cognitive impairment and inability to understand the test 
requirements. This research project was approved by the Medical 
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Ethics Committee for Clinical Research of Beijing Tongren Hospital, 
and informed consent was obtained from the participants before 
the tests.

2.2 Equipment

Both manual and automated pure-tone audiometry were 
performed using the KUDUwave 5,000 (GeoAxon, Pretoria) clinical 
audiometer. KUDUwave was connected to a computer via a USB port, 
and the test procedure was operated by software installed on a laptop 
computer. Before testing with the KUDUwave, it was calibrated 
according to ISO 389-2: 1994. The B&K 2240 (Brüel & Kjær, Denmark) 
sound level meter was used to monitor the clinic’s environmental 
noise, recording the average and maximum noise values.

2.3 Test methods

An otoscopic examination of the subject’s external ear canal 
was conducted to remove possible cerumen obstruction. All 
participants were tested for pure-tone air-conduction hearing 
thresholds by manual and automated methods, in a randomised 
order, with adequate rest given between each test. Test frequencies 
were 250, 500, 1,000, 2000, 4,000 and 8,000 Hz. The test 
requirements were fully explained to the participant before the 
tests. The KUDUwave insert earphones were fully into the ear 
canal and the end flush with the tragus, and then the circumaural 
earphones were placed over the insert earphones. Before the test, 
a pure-tone signal sound was given manually for the subject to 
practice. The subjects were instructed to press the button as soon 
as they heard the pure tone, and to perform manual or automated 
audiometry after the subjects had fully understood the 
test requirements.

Manual pure-tone audiometry was performed in a standard 
double-walled soundproof booth with the KUDUwave. The manual 
test determined the hearing threshold according to the method 
specified in ISO 8253-1:2010. The automated pure-tone audiometry 
was conducted using the shortened ascending method (ISO 8253-
1:2010). The initial sound intensity for each frequency was 30 dB 
HL, and the sound duration was 1,000 ms. The waiting response 
time is 2000 ms, i.e., it’s considered to be a valid response to press 
the transponder button within 2000 ms from the time the tone is 
given, otherwise it will be marked as a false positive response. At 
the end of the test, a pure-tone audiogram was automatically 
generated, while KUDUwave reported the percentage of false 
positives, the noise monitoring value, the number of times the 
subject responded to the signal, and the response time to press the 
button. The automated test was conducted in a general clinic room, 
and the average and maximum values of ambient noise were 
monitored with a sound level meter during the test. A comparison 
of manual and automated hearing testing protocols is shown in 
eTable 1. To avoid the audiologist referring to the results of the first 
test for a second test, separate audiologists operated manual and 
automated tests and were unaware of each other’s results. 
Meanwhile, in order to minimize the variability, the instructions 
remained the same between the two audiologists. The test procedure 
is shown in eFigure 1.

2.4 Data processing

Descriptive measures illustrated the difference between the 
thresholds of manual and automated.

audiometry, described as mean ± SD. An independent samples 
t-test was performed on the difference in thresholds from 250 to 
8,000 Hz obtained by the two testing methods, with p < 0.05 as the 
criterion for significance. Pearson correlation tests were used to assess 
whether there was a correlation between manual and automated test 
results. One-way ANOVA was used to compare the thresholds 
between different age groups and groups with different hearing loss 
degrees. The post-hoc power analysis was run to confirm the sample 
size. The difference between the two test methods was analysed using 
Bland–Altman plots. All statistical analyses were performed by SPSS 
25 (SPSS Inc., Chicago, Illinois, USA).

3 Result

A total of 166 ears were obtained from 83 participants, with 6 
frequencies tested in each ear for a total of 996 data. A total of 28 data 
exceeded the 95% upper and lower limits of the Bland–Altman plots, 
accounting for 2.8% of all the data, less than 5%, indicating good 
consistency between manual and automated pure-tone audiometry 
results (Figure 1). The Bland–Altman plots of the separate frequencies 
from 250, 500, 1,000, 2000, 4,000 and 8,000 Hz were listed as 
supplementary material (eFigures 2A-F). The post-hoc power analysis 
was run to confirm the sufficient sample size, the calculation results 
were listed as supplementary material (eTable 2).

The difference between the automated and manual pure-tone 
audiometry results and the absolute value of the difference were 
shown in Table 1, the maximum value of the absolute value of the 
difference at each frequency is between 20 and 35 dB. The distribution 
of the absolute difference between the manual and the automated 
thresholds was shown in eFigure 3.

All participants were divided into four groups according to better 
ear average hearing level (mean values of hearing thresholds at four 
frequencies, 500, 1,000, 2000, and 4,000 Hz), the normal group 
(≤25 dB HL), the mild hearing loss group (26–40 dB HL), the 
moderate hearing loss group (41–60 dB HL), and the severe and above 
hearing loss group (≥61 dB HL) (Olusanya et  al., 2019). The 
correlation coefficient (r) between the automated and the manual test 
in the mild hearing loss group was 0.92 while the correlation 
coefficients were equal to or greater than 0.95 in all other groups, all 
with significance (p < 0.01). Threshold differences were not statistically 
significant between the groups (p > 0.05). The correlation between the 
automated and manual test results for participants with different 
hearing levels is shown in Table 2.

All participants were also divided into three groups according to 
age, the group under 40 years, 40–60 years and over 60 years, and the 
correlation coefficient (r) between the automated and the manual test 
for each group was greater than 0.9, all with significance (p < 0.01) 
(Table 3). The demographic of the participants is shown in eTable 3.

The test durations for automated and manual pure tone 
audiometry were 320 ± 42 s and 281 ± 90 s, respectively, with the 
manual test time being less than the automatic test time (p < 0.05). The 
average value of ambient noise in the general clinic was 
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41.5 ± 4.6 dB(A), and the maximum value of ambient noise was 
66.2 ± 7.2 dB(A).

False positives of automated audiometry were reported from 
KUDUwave, and the results were listed as supplementary material 
(eTable 4). The response time for subjects to press the transponder 
button increased with age (Figure 2), and the overall response time for 
all subjects was 941.5 ± 279.3 ms. The response time was 
791.5 ± 181.2 ms in the age group below 40 years, 900.4 ± 190.9 ms in 
the age group 40–60 years, and 1063.1 ± 332.3 ms in the group 60 years 
above. There was a statistical difference in response time between the 
under 40 years group and the over 60 years group (p < 0.01). The results 
were listed as supplementary material (eTable 5).

4 Discussion

In our previous study, a comparison of automated and manual 
pure-tone audiometry was performed on normal hearing subjects, 
and a good correlation was found between the results of the two tests 

(Liu et al., 2021), which is consistent with the findings of other studies 
(Swanepoel De et al., 2010b; Mahomed et al., 2013; Corry et al., 2017). 
However, there are fewer studies on the correlation between automated 
and manual pure-tone audiometry in participants with hearing loss. 
Measurement bias might be introduced by including only participants 
with normal hearing (Rutjes et al., 2006). Participants with normal 
hearing are known to have hearing within a specific range, which will 
reduce the possible range of variation between the two diagnostic 
techniques. Reducing the measurement bias by testing on clinical 
patients would provide a more valid estimate of the accuracy of 
automated pure-tone audiometry in practice (Whitton et al., 2016). 
The participants in this study were drawn from the clinical audiology 
centre, covering a wide range of hearing loss conditions of varying 
degrees and natures, and the range of ages is large, simulating the 
more common situations that occur in clinical audiometry.

The overall consistency between automated and manual 
audiometry was good, with an outlier of 2.8%, less than 5%. The 
absolute maximum value of the threshold difference between the two 
methods ranged from 20 to 35 dB. These results are consistent with 

FIGURE 1

Bland–Altman plots of the results of the automated and manual pure-tone audiometry. The dotted lines in the plots are the upper and lower limits of 
the 95% confidence intervals. M: manual pure-tone audiometry threshold; A: automated pure-tone audiometry threshold. Dots were pooled across 
both test ears and all test frequencies.

TABLE 1 The difference between manual and automated audiometry thresholds for each frequency.

Hz 250 500 1,000 2000 4,000 8,000 Total

M difference in dB 

(SD)
0.63 (5.31) 0.69 (4.50) 0.45 (4.98) 0.30 (6.22) −0.15 (4.84) 0.21 (4.97) 0.36 (5.16)

Abs M difference in 

dB (SD)
3.16 (4.31) 2.74 (3.63) 2.74 (4.18) 3.31 (5.27) 2.20 (4.32) 2.44 (4.33) 2.77 (4.37)

Maximum of Abs 

difference
25 20 35 30 35 35 35

M difference: the average value of the difference between the manual and the automated thresholds (manual minus automated values); M difference: the average of the absolute value of the 
difference between the manual and the automated threshold; Maximum of Abs difference: the maximum of the absolute value of the difference between the manual and the automated 
threshold.
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previous studies that have shown strong benefits of automated pure-
tone audiometry in screening for large-scale hearing modalities 
(Mahomed et al., 2013; Wasmann et al., 2022).

In this study, the correlation between automated and manual 
pure-tone audiometry was comparable in the groups with different 
hearing levels, demonstrating that automated audiometry can obtain 
reliable results in people with various degrees of hearing loss. In other 
studies of automated pure-tone audiometry, due to the difficulty of 
controlling ambient noise and the calibration of headphones, the 
application scenario is mainly for self-hearing healthcare monitoring 
at home, which is not available for screening mild hearing loss 
(Whitton et al., 2016; Sandström et al., 2020; Wasmann et al., 2022). 
There are a limited number of studies on automated pure-tone 
audiometry in participants with moderate and above hearing loss, 
where subjects are not grouped by degree of hearing loss. Brennan-
Jones recruited 42 participants with different degrees of hearing loss 
to conduct a correlation study between automated and manual pure 
tone audiometry, with 86.5% of the thresholds differing within 10 dB, 
and 94.8% of the thresholds differing within 15 dB, which is similar to 
this study, but no subgroup analysis of the degree of hearing loss was 
performed (Brennan-Jones et  al., 2016). Whitton (Whitton et  al., 
2016) performed automated pure tone audiometry on 19 subjects with 
varying degrees of hearing loss, finding higher thresholds at 250 Hz 
when collected at home, and attributing this to background noise in 
the home environment, but did not group the degrees of hearing loss 
to see if this phenomenon occurred only in subjects with specific 
levels of hearing loss. Tonder, Govender, and Bornman all performed 
automated pure-tone audiometry of participants with different 
degrees of hearing loss, but none of them performed detailed subgroup 
analyses based on the degree of hearing loss (Van Tonder et al., 2017; 
Bornman et al., 2018; Govender and Mars, 2018b).

In the three age groups, the thresholds correlated well between 
automated and manual tests, with correlation coefficients above 0.9, 
confirming that automated audiometry can be  carried out in the 
elderly population. Margolis et al. performed automated pure-tone 
audiometry in a non-isolated environment on 28 older adults with a 

mean age of 65 years, and the hearing thresholds were slightly higher 
than those of manual pure-tone audiometry obtained in a sound-
isolation room, but no statistical differences were observed (Margolis 
et al., 2016). In a similar study by Mosley, the mean hearing thresholds 
for four frequencies were correlated between automated and manual 
pure-tone audiometry in 112 older adults aged 60 years or older, as 
well as in different degrees of hearing loss (Mosley et al., 2019).

In addition to false-positive responses, which are the most 
common phenomenon affecting the reliability of test results, observing 
other indicators can help determine the test reliability. Margolis 
(Margolis et al., 2007) suggested a method for predicting the accuracy 
of automated audiometry thresholds (Qualind™), a multiple 
regression analysis of eight factors associated with test accuracy, 
including masked alarm rate, time per trial, false-positive rate, false-
negative rate, mean test–retest variance, the number of air-bone gaps 
>50 dB, the number of air-bone gaps <−10 dB, and the mean air-bone 
gap, yielded a regression coefficient of 0.84. Not all of these eight 
factors were available in this study and therefore could not be cross-
validated with Margolis’ results. Therefore, more metrics with higher 
sensitivity and specificity still need to be explored for validation of 
individual quality control in automated pure-tone audiometry.

The response time of the participants to press the transponder 
button after hearing the sound was positively correlated with age, and 
the overall response time was 941.5 ± 279.3 ms. Significant differences 
were observed between the groups under 40 years and over 60 years, 
which may be explained by the gradual decline of brain function with 
age. The reaction time for all subjects in this study was set to 2000 ms 
or less; if the reaction time is set too long, a portion of the false 
positives may be included in the correct response, which will affect the 
ability to obtain accurate automated audiometric results. Samantha 
et al. (Govender and Mars, 2018a) set the reaction time to 1,500 ms in 
a group of children aged 6–12 years old for hearing screening, and the 
authors concluded that the reaction time may be insufficient for child 
subjects. The results of this study showed that the reaction time did 
not exceed 1,500 ms for all subjects. Still, the minimum age of the 
subjects in this study was 11 years old, which does not cover the 

TABLE 2 Correlation of manual and automated pure-tone audiometry thresholds for different hearing levels.

Groups by hearing level Total (n  =  83)

Normal (n  =  26) Mild (n  =  14) Moderate (n  =  30) Severe and 
above (n  =  13)

M difference in dB (SD) 0.77 (3.94) 1.19 (6.43) −0.35 (3.60) −0.76 (5.29) 0.20 (4.60)

r 0.95 0.92 0.97 0.96 0.98

p-values <0.01 <0.01 <0.01 <0.01 <0.01

M difference: the average value of the difference between the manual and the automated thresholds (manual minus automated values); r: correlation coefficient.

TABLE 3 Correlation between manual and automated pure-tone audiometry thresholds in different age groups.

Age groups Total (n  =  83)

<40  years (n  =  21) 40  ~  60  years (n  =  27) >60  years (n  =  35)

M difference in dB (SD) 0.83 (4.88) −0.20 (5.61) 0.50 (4.93) 0.36 (5.16)

r 0.98 0.97 0.97 0.98

p-values <0.01 <0.01 <0.01 <0.01

M difference: the average value of the difference between the manual and the automated thresholds (manual minus automated values); r: correlation coefficient.
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subject population in the study of Governder and Mars. Perhaps a 
study that addresses a wider age range would provide more 
accurate information.

The maximum ambient noise monitored in this study was 
66.2 ± 7.2 dB, which did not exceed the MPANLs specified in the 
instructions, for transient occurrences of high ambient noise, where 
KUDUwave pauses the test, allowing good correlation to be obtained 
between the results of the automated test performed in a general clinic 
room and the manual test in an acoustically insulated room. It has 
been shown that insert earphones, when used in combination with 
earmuffs, optimize ambient noise attenuation to a level where the total 
noise attenuation can exceed that of a single-walled sound-insulated 
room (Seluakumaran and Shaharudin, 2021). Because ambient noise 
can affect test results not only through air conduction, higher ambient 
noise can also affect results through bone conduction. Therefore, it is 
recommended that testing in a non-soundproofed environment 
be performed in a quiet room.

In our previous study, we performed a comparison of manual and 
automated tests under sound-isolation conditions and found that the 
reliability at 250 Hz and 8,000 Hz was worse than at other frequencies 
(Liu et al., 2022), however, this phenomenon did not occur in the 
present group of subjects, which may be related to the use of different 
headphones. In the previous study, insert headphones were used for 
automated audiometry and circumaural earphones were used for 
manual audiometry; in the present study, KUDUwave audiometer 
were used for both manual-and automated pure-tone audiometry, 
which eliminates the calibration differences that were introduced by 
two different devices, and could easily interpret some changes in 
hearing thresholds.

Study limitations.
One of the limitations of this study is that bone conduction 

threshold tests were not conducted on the reliability of automated 
pure tone audiometry. The relationship between bone and air 

conduction is an important basis for determining the presence or 
absence of conductive hearing loss, and a subsequent study will 
be conducted to investigate the clinical application of bone conduction 
for automated audiometry.

The ambient noise levels were recorded manually by a sound level 
meter, and were also continuously monitored by KUDUwave, 
however, the data from KUDUwave was not available. It would 
be useful to compare whether both the noise monitoring methods 
provided similar levels.

Although the sample size estimate indicated that the 83 initial 
subjects for this study met the requirements. However, the inclusion 
of a larger sample of subjects would have improved the credibility of 
this study. The insufficiently large sample size is a limitation of 
this study.

5 Conclusion

In this study, subjects were grouped according to age and hearing 
level, respectively. Automated pure-tone audiometry was performed 
in the general consultation room, and manual pure-tone audiometry 
was performed in the acoustic isolation room using KUDUwave 
audiometer. There was a good correlation between the automated and 
manual audiometric thresholds. Subjects’ reaction times increased 
with age, and reaction time measurements provided a basis for a more 
accurate parameter setting of the automated tests. In the case of 
individual subjects with high variability of results, quality control of 
the automated test needs to be increased so that such subjects can 
be screened out and transferred to manual audiometry. In conclusion, 
automated air conduction pure-tone audiometry has great potential 
to play a greater role, especially in economically underdeveloped 
areas, or in mass hearing screening scenarios.

FIGURE 2

Relationship between participants’ age and response time. The fitted curve in the figure is based on linear regression. Data were pooled across both 
test ears and all test frequencies.
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Development and validation of a
French speech-in-noise self-test
using synthetic voice in an adult
population
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Background: Speech-in-noise (SIN) audiometry is a valuable part of audiological

diagnostics and clinical measurements, providing information on an individual’s

ability to understand in noise. To date, such tests have been developed

with natural voice presented monaurally or binaurally (via diotic and dichotic

presentation). The time required to develop such tests is often long. The use of

synthetic voice would simplify the test creation process and self-testing would

improve accessibility.

Design: Measurements were performed using an Android tablet (Samsung

Galaxy Tab A7) and calibrated Bluetooth headphones (Tilde Pro C, Orosound).

Normative values were first defined using natural or synthetic voice on 69

normal-hearing participants. A total of 463 participants then undertook the SIN

test comprising synthetic voice and dichotic antiphasic presentation. Of these,

399 also performed the SIN test with diotic presentation.

Results: No significant di�erences in the speech reception threshold (SRT) were

found between natural and synthetic voices for diotic presentations (p = 0.824,

paired Student t-test) with normative values of −10.7 dB SNR (SD = 1.5 dB) and

−10.4 dB SNR (SD = 1.4 dB), respectively. For the SoNoise test with synthetic

voice and dichotic antiphasic presentation, the results showed a normative value

of −17.5 dB SNR (SD = 1.5 dB), and a strong correlation (r = 0.797, p < 0.001)

with the four-frequency pure-tone average (4f-PTA). Receiver operating curves

(ROC) were then calculated: for a 4f-PTA of 20 dB hearing level (HL), the SRT

was −14.5 dB SNR with a sensitivity of 84% and specificity of 89%. For a 4f-PTA

of 30 dB HL, the SRT was−13.7 dB SNR with a sensitivity of 89% and specificity of

91%. For a 4f-PTA of 35 dB HL, the SRTwas−13.0 dB SNRwith a sensitivity of 88%

and specificity of 93%. The normative binaural intelligibility level di�erence (BILD)

value was 8.6 dB (SD = 2.0 dB) with normal-hearing participants. The learning

e�ect due to the task and interface was 1.7 dB (1st to 7th test) and test duration

was 3 min.

Conclusion: The SoNoise test in its synthetic dichotic antiphasic presentation

is a fast and reliable tool to diagnose hearing impairment at 20, 30, and 35 dB

HL cut-o�s.

KEYWORDS

hearing diagnosis, speech-in-noise test, natural and synthetic voices, dichotic

antiphasic, tablet based
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1 Introduction

While pure-tone audiometry is currently recognized as

the gold-standard measurement for hearing loss assessment,

compelling evidence suggests that speech-in-noise (SIN)

audiometry should be systematically added to evaluate the

functional impairment related to hearing loss (Plomp, 1986;

Killion and Niquette, 2000; Smits et al., 2004; Smits and Houtgast,

2005; Jansen et al., 2012). Most SIN tests assess the signal-to-noise

ratio (SNR) at which a participant can recognize 50% percent of

words. This particular SNR is called the speech reception threshold

(SRT). A high correlation (between 0.77 and 0.86) is generally

observed between pure-tone average (PTA) and SRT in noise

(Smits et al., 2004; Jansen et al., 2010, 2013; Koole et al., 2016;

Potgieter et al., 2018a,b). However, discordance between PTA

and SIN may be found in certain medical conditions, such as

auditory neuropathy (Rance et al., 2012; Narne, 2013; Apeksha and

Kumar, 2017;White-Schwoch et al., 2020, 2022) or central auditory

processing disorders (Houtgast and Festen, 2008; Anderson et al.,

2011; Bellis and Bellis, 2015; Füllgrabe et al., 2015). Use of SIN

tests offers three main advantages: (1) they are more representative

of the everyday discomfort and of the handicap experienced by

hearing-impaired people (Carhart and Tillman, 1970; Kramer et al.,

1998; Grant andWalden, 2013); (2) they are more sensitive to early

events of age-related hearing impairment, detecting the loss of

auditory neurons that cannot be detected by PTA or even by speech

audiometry in quiet (Wu et al., 2020); and (3) the supra-threshold

measurement of the SRT is less sensitive than pure-tone threshold

measurements to minor calibration inaccuracies.

Several SIN tests have been developed in French over the past 20

years, showing a rising interest for this type of auditory evaluation.

The most frequently used are currently the French version of the

hearing in noise test (HINT; Vaillancourt et al., 2005), the French

intelligibility sentence test (FIST; Luts et al., 2008), the French digit

triplet test (FrDigit3; Jansen et al., 2010), the speech understanding

in noise (SUN; Paglialonga et al., 2011), the FraMatrix (Jansen et al.,

2012), the vocale rapide dans le bruit (VRB, fast speech in noise;

Leclercq et al., 2018), the FrBio (Bergeron et al., 2019), and the

antiphasic digit triplet test (Höra; Ceccato et al., 2021). The SRT

can be determined directly with tests using adaptive methods, such

as the digit triplet test, Matrix tests, FrDigit3, HINT, and Höra, in

which the SNR evolves automatically according to the participants’

answer at each presented item (Nilsson et al., 1994; Smits et al.,

2004; Jansen et al., 2010; Kollmeier et al., 2015; Ceccato et al.,

2021). The pace of SNR adaptation may vary throughout the test,

according to the number of correct answers, and depends on the

recognition score target. Other SIN tests, such as QuickSIN (Killion

et al., 2004), SUN (Paglialonga et al., 2011), and VRB (Leclercq

et al., 2018), use lists of items presented at fixed SNR, for which

the SRT can be measured by fitting the obtained recognition score

at each presented SNR with a psychometric function. The FrBio

(Bergeron et al., 2019) aimed to provide a more ecological approach

for the SIN paradigm by measuring the recognition score at fixed

SNR in real-life sound situations. Among these tests, only the digit

triplet test, the FrDigit3 and Höra are currently performed in self-

test mode, and their use is limited to screening. On the other hand,

none of the French SIN tests used in clinical assessment, such as

the HINT (Vaillancourt et al., 2005), the FIST (Luts et al., 2008),

the FrDigit3 test (Jansen et al., 2010), the FrBio (Bergeron et al.,

2019), the SUN (Paglialonga et al., 2011), the FraMatrix (Jansen

et al., 2012), and the VRB (Leclercq et al., 2018), are currently used

in self-testing mode but mostly with the investigator recording the

subject’s answers.

SIN tests developed for clinical evaluations are mainly

performed in free-field settings, which may entail practical

difficulties linked to the need for space and maintenance of a

reliable calibration (VRB, FIST, HINT, FraMatrix, and FrBio). For

practical reasons, screening tests using SIN have been presented

with headphones, either monaurally or binaurally (Smits et al.,

2004; Jansen et al., 2012; Van den Borre et al., 2021). Some recent

SIN tests performed binaurally, have used dichotic antiphasic

presentation (De Sousa et al., 2020; Ceccato et al., 2021) of a speech

signal, with a diotic presentation of the noise (i.e., SπN0). The

phase shift allows the use of binaural mechanisms involving the

comparison of the temporal clues between the two ears. It results

in a binaural masking release that improves the perception of the

target signal (Culling and Lavandier, 2021). Binaural masking level

difference (BMLD) has been extensively explored for tonal stimulus

(Hirsh, 1948; Webster, 1951; Wilson et al., 2003). In such studies,

the BMLD of normal-hearing individuals mainly varies according

to the frequency of the stimulus to be detected: between 10 and

15 dB of enhancement at 500Hz, and 1–3 dB at 4,000Hz. For the

SIN test, use of the presentation mode BILD, corresponding to the

difference between binaural diotic (S0N0) and antiphasic (SπN0)

presentation, improves the sensitivity and specificity of the test

for detecting asymmetric, unilateral, and conductive hearing loss

when used as a screening tool (De Sousa et al., 2020, 2022; Ceccato

et al., 2021). Concerning correlation between SRT and PTA, the

SRT of antiphasic and binaural diotic tests, respectively correlate

better to the PTA of the worst and better ear (De Sousa et al., 2020;

Ceccato et al., 2021). The BILD could be of interest in a clinical

assessment as it tests binaural auditory functions that cannot be

observed with headphones in either monaural or binaural diotic

presentation mode nor in most free-field configurations.

Speech material used for SIN tests is usually based on the studio

recordings of a speaker’s voice, which entails certain disadvantages

such as the cost and the duration of test development (Dickerson

et al., 2006). Considering the progress made in voice synthesis

(Gong and Lai, 2003; King, 2014) and its current use in everyday life

(telecommunications, information services, numeric applications),

we wondered about the relevance of its application for speech

audiometry. Some studies have assessed the comparability of

natural and synthetic voice in speech audiometry (Koul, 2003;

Cooke et al., 2013; Simantiraki et al., 2018; Schwarz et al., 2022).

Most of the clinical SIN tests still use natural voices, but some use

synthetic ones (Nuesse et al., 2019; Ibelings et al., 2022).

The objective of this study was to develop and normalize a SIN

test that could be used both as a screening tool and for clinical

evaluation of SIN. For this purpose, we recruited a normative

population to: (1) evaluate if the use of a synthetic voice may induce

a difference in SRT measurement relative to the use of a more

classical natural voice recording; (2) determine normative values

for diotic and antiphasic presentation of the test; and (3) determine

normative values of the BILD. We then assessed the validity
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of the test on a study population composed of normal-hearing

and hearing-impaired participants presenting various audiometric

profiles. We also evaluated the normative values for this test in

screening and clinical assessment.

2 Materials and methods

2.1 Participants

The participants were recruited and tested in the ENT

department of the university hospital in Montpellier (France).

They were outpatients, accompanying persons, caregivers, students

or hospital workers. Exclusion criteria were visual or motor

impairments that prevented use of a tablet, self-reported cognitive

functions disallowing understanding the principle of the tests,

earwax, ear discharge, or ear malformation preventing the use of

headphones. No exclusion criterion was based on PTA.

Normative values, duration and learning effect of each SoNoise

test were calculated based on a first population of 69 normal-

hearing French native speakers (4f-PTA 0.5/1/2/4 kHz≤10 dB HL),

39 women and 30 men aged between 18 and 25 years, tested for

the first time with SoNoise tests. Participants were chosen to be in

agreement in age and hearing loss with the standard (ISO 8253-

3). The SRT with natural or synthetic voice was compared in one

group (n= 43) comprising 28 women and 15 men, with an average

4f-PTA of 5 dB HL (SD = 4.4 dB HL, median 5 dB HL, IC95 [3.7–

6.3]) and mean age of 21.2 years (SD= 2.2 yrs, median 21 yrs, IC95

[20.2–22.2]). The SRT with diotic or antiphasic synthetic SIN was

compared in the remaining group of normal-hearing participants

(n = 26), comprising 12 women and 14 men of mean age 22.9

years (SD = 2.8 yrs, median 22.5 yrs, IC95 [21.8–24]), with an

average 4f-PTA of 4.3 dB HL (SD = 2.7 dB HL, median 3.9 dB HL,

IC95 [3.4–5.2]).

A second test population of 463 French native speakers, 230

women and 233 men all over 18 years of age (mean age 40 yrs,

SD = 23 yrs, median 29 yrs, IC95 [38–42]), was used to assess

the diagnostic performance of the SoNoise_SπN0_Syn test. Of

these, for their best ear, 337 (72.8 %) were classified as having

normal hearing, 51 (11.0 %)mild hearing loss, 55 (11.9%)moderate

hearing loss, 19 (4.1%) moderately severe hearing loss, and 1 (0.2%)

severe-profound hearing loss. For their worst ear, 328 (70.8%)

were classified as having normal-hearing, 35 (7.7%) mild hearing

loss, 57 (12.3%) moderate hearing loss, 27 (5.8%) moderately

severe hearing loss, 15 (3.2%) severe-profound hearing loss, and 1

(0.2%) profound hearing loss. Degrees of hearing were based and

categorized according to the World Health Organization grades of

hearing impairment (World Health Organization, 2021) as follows:

normal-hearing (PTA ≤20 dB HL), mild (PTA >20 ≤35 dB HL),

moderate (PTA>35≤50 dBHL),moderately severe (PTA>50≤65

dB HL), severe-profound (PTA >65 ≤80 dB HL), profound (PTA

>80 ≤95 dB HL), or complete hearing loss (PTA >95 dB HL).

Among the study population of 463 participants, a subset of

399 (188 women and 211 men) with a mean age of 36 years

(SD = 21 yrs, median 27 yrs, IC95 [33–39]), received both

SoNoise_S0N0_Syn and SoNoise_SπN0_Syn tests. Of these, 331

(83%) were classified as having normal hearing, 31 (7.7%) mild

hearing loss, 31 (7.7%) moderate hearing loss, 5 (1.4%) moderately-

severe hearing loss, and 1 (0.2%) severe-profound hearing loss.

The audiometric profiles of both normative and test validation

populations are displayed in Table 1.

2.2 Speech material

Praat software (Boersma and Weenink, 2013) was used to

determine the main speech characteristics (duration, fundamental

frequency, speech rate) of both natural and synthetic voice. Natural

voice recordings were performed by a 38 years old French native

female speaker, who is not a professional speaker. Synthetic words

were generated with “neural voices” (powered by Acapela Group,

version 2017.1).

Table 2 shows the main characteristics: fundamental frequency

(Hz), word duration (ms) and speech rate (syllables/s). The

fundamental frequency of the natural speech triplet was on average

higher (210Hz) than that of the synthetic speech (178Hz). The

average word duration of the natural voice was 661ms, whereas

that of the synthetic voice was 451ms, leading to a speech rate for

natural and synthetic voice of 1.6 and 2.3 syllables/s, respectively.

2.3 SoNoise tests

SoNoise tests are adaptive SIN self-tests aimed at automatically

determining the SRT (dB SNR) in noise. They consisted here in the

presentation of different triplets of words (digit -common noun—

color) at different speech-to-noise ratios, as described elsewhere

(Prang et al., 2021). Each word was randomly selected among

9, leading to 93 = 729 triplet combinations, with equal odds of

presentation. The participant had to select the word heard by

pressing the corresponding icon representing that word on the

screen of the tablet. On the first response screen, the participant

had to pick the correct word among the 9 icons representing

digits), then a second response screen was displayed with the

next 9 icons (representing common nouns), and finally a third

screen was displayed with the last 9 icons (representing colors).

The participant was instructed to choose an icon, even if the

word was not heard, making this a forced-choice test with a

closed-set list of words (Smits et al., 2006; De Sousa et al.,

2018).

SoNoise tests are adaptive SIN tests designed to be performed

as self-tests. The SoNoise_S0N0 had a binaural diotic presentation,

i.e., both earphones delivered the same sound stimuli (words

+ noise) to each ear. Words of the SoNoise_S0N0 were

generated either with a natural (Na) or a synthetic (Syn)

voice. The SoNoise_SπN0_Syn offered a dichotic antiphasic

presentation of words while presenting the same level of noise

to each ear. A phase shift of “π” was introduced with word

presentation. For this test, words were generated with a synthetic

voice (Syn).

The masking noise was a white noise with envelope shaped on

the long-term spectrum of the test words, as described elsewhere

(Plomp and Mimpen, 1979; Nilsson et al., 1994; Brand and

Kollmeier, 2002; Smits et al., 2006; Soli and Wong, 2008; Jansen
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TABLE 1 Demographic characteristics of both normative and test validation study populations.

Demographic
characteristics

SoNoise_S0N0
_Na

SoNoise_S0N0
_Syn

SoNoise_SπN0
_Syn

SoNoise_SπN0
_Syn

SoNoise_S0N0
_Syn

Normative
value

Normative
value

Normative
value

Study
population

Study
population

Number of participants (n) 43 69∗ 26 463 399∗∗

Mean age (yrs) 21.7 (SD 2.5) 23.1 (SD 3.4) 24.8 (SD 3.7) 40 (SD 23) 36 (SD 21)

Female (n) 28 (65%) 39 (56%) 12 (46%) 230 (50%) 188 (47%)

Male (n) 15 (35%) 30 (44%) 14 (54%) 233 (50%) 211 (53%)

4f-PTA (dB HL)∗∗∗

Normal (≤20) 43 (100%) 69 (100%) 26 (100%) 328 (70.8%) 331 (83%)

Mild

(>20, ≤35)

35 (7.7%) 31 (7.7%)

Moderate

(>35, ≤50)

57 (12.3%) 31 (7.7%)

Moderately

severe

(>50, ≤65)

27 (5.8%) 5 (1.4%)

Severe-

profound

(>65, ≤80)

15 (3.2%) 1 (0.2%)

Profound

(>80, ≤95)

1 (0.2%)

Complete

(>95)

∗Sixty-nine is the sum of 26 and 43.
∗∗Three hundred and ninety-nine is a sub-group of the 463 participants tested.
∗∗∗We used 4f-PTA of the worst ear to define the population for the SoNoise_SπN0_Syn test, while we used 4f-PTA of the best ear for the SoNoise_S0N0_Syn test.

TABLE 2 Characteristics of the speech material for both natural and synthetic voices.

Digit Common noun Color Triplet

Na Syn Na Syn Na Syn Na Syn

Fundamental

frequency (Hz)

216 (SD 11) 178 (SD 14) 218 (SD 8) 189 (SD 8) 197 (SD 21) 169 (SD 5) 210 (SD 17) 178 (SD 13)

Word duration

(ms)

582 (SD 100) 421 (SD 126) 769 (SD 105) 490 (SD 96) 633 (SD 48) 441 (SD 80) 661 (SD 117) 451 (SD 102)

Speech rate

(syllables/s)

1.8 (SD 0.4) 2.6 (SD 0.9) 1.3 (SD 0.2) 2.1 (SD 0.4) 1.6 (SD 0.1) 2.3 (SD 0.4) 1.6 (SD 0.3) 2.3 (SD 0.6)

For digits, common nouns and colors, the mean values of the fundamental frequency, word duration and speech rates were calculated. Triplet values were obtained by averaging those of digit,

common noun and color.

et al., 2012; Dillon et al., 2016; Potgieter et al., 2016; De Sousa et al.,

2018). Shaping was made by: (1) obtaining the long-term spectrum

of all the concatenated words; (2) using this spectrum to design a

frequency sampling-based finite-impulse-response filter with the

desired frequency shape and applying it on a white noise; (3)

adjusting noise level with the concatenated words. Speech and noise

power spectrum for both natural and synthetic tests are displayed

in Figure 1.

The masking noise used depended on the SoNoise test

performed, i.e., it was shaped on the long-term spectrum of natural

voice words for the Na test, or synthetic words for the Syn tests.

The noise started 500ms before the first word and ended 500ms

after the third, as described elsewhere (Jansen et al., 2010; Smits

et al., 2013; Kaandorp et al., 2015; Potgieter et al., 2016; Ceccato

et al., 2021). A silence gap of 100ms was inserted between words,

to which was added a jitter (random extra delay) of 0–200ms

(Potgieter et al., 2016). The speech was presented at 75 dB SPL

(sound pressure level, Leqmeasurements) and a SNR of 20 dB at the

beginning of the test. The SNR level varied adaptively according to

the number of words recognized correctly (0, 1, 2, or 3) as follows,

respectively:+10,+5,−5,−10 until the first reversal, then+5,+2,

−2, −5 between the first and the second reversal, and +3, +1, −1,

−3 after that point.

When the SNR was positive, the noise level was modified.

When the SNR level was negative, the speech level was modified.

Twelve reversals were performed during the test, and the

SRT was calculated by averaging the SNR results of the last

eight reversals.
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FIGURE 1

(A) Long-term average spectrum for synthetic speech and noise. (B) Long-term average spectrum for natural speech and noise.

2.4 Words recording and di�culty
equalization

Speechmaterial was composed of monosyllabic words for digits

and colors, and disyllabic words for common nouns (except for one

trisyllabic word: “sanglier”). All words used were common language

and easy to represent as an image.

For both types of voice, the words were generated individually

and then combined for testing, ensuring that the word triplet

included no prosody or natural coarticulation. Prior to the study,

equalization of the words was performed for all the SoNoise tests

developed. It consisted in adjusting the level of presentation of each

word to ensure that each one had a 50% chance of being recognized

at the same SNR. A specific level adjustment has been performed

for each one of the three tests developed (SoNoise_S0N0_Na,

SoNoise_S0N0_Syn, SoNoise_SπN0_Syn). To do this, 76 normal-

hearing participants [PTA 0.5/1/2/4 kHz < 20 dB hearing level

(HL)] aged from 18 to 40 years (mean age of 21.8, SD = 4.5 yrs,

median 20 yrs, IC95 [20.8–22.8]) were tested 1–5 times each. In this

population, 21 normal-hearing subjects didn’t match the ISO 8253-

3 recommendation in terms of age and/or PTA thresholds, but their

SRT at the test didn’t statistically differ from the other participants.

This allowed a reasonable inclusion of their results as item difficulty

equalization was made following an adaptation of both the method

proposed Brand and Kollmeier in 2002 for Matrix tests (Brand

and Kollmeier, 2002; Jansen et al., 2012) and recently by Masalski

et al. (2021) for digits in noise tests. The principle was to use the

final test procedure to perform an evaluation of each item difficulty

that considered both their inner difficulty and their position in

the triplet. A routine Matlab script was used to identify the words

pronounced and answered at each SNR. The psychometric curves

of recognition for each word were fitted with a logistic function

to determine the SRT. The equalization values obtained for the

SoNoise_SπN0_Syn test are displayed in Figure 2A. Each word’s

recording level was then adjusted using the difference between the

SRT of each word and the average SRT of all words (−17.4 dB SNR)

while the average SRT of the 76 subjects was −17.5 dB SNR (SD =
2.5). The≪ before/after≫ results of the equalization are presented

Figure 2 and shows that for digits, common nouns, and colors, the

average SRT were respectively −18 dB SNR (SD = 2.3), −18.3 dB

SNR (SD= 1.4),−15.9 dB SNR (SD= 2.9) before equilibration, and

respectively−18.5 dB SNR (SD= 1),−18.9 dB SNR (SD= 1),−18

dB SNR (SD = 1) after equilibration. Globally, the item standard

deviation of SRT dropped from 2.5 to 1 dB.

2.5 Equipment and procedure

Conventional audiometry was carried out in a soundproof

booth, with an AC33 audiometer (Interacoustics) calibrated with

TDH-39 headphones.

For SIN testing, the SoNoise (SONUP, Montpellier, France)

hearing application was used on an Android OS tablet (Samsung

Galaxy Tab A7) connected via Bluetooth to circumaural

headphones (Orosound Tilde Pro C). The SoNoise tests were

performed in a quiet office. The KEMAR (Knowles Electronics

Manikin for Acoustic Research, SET electronic GmbH, MK2-B, CE

labeled), and its built-in prepolarized pressure microphones (GRAS

40AO ½), was chosen for the calibration of the tablet-headphones

pair over an artificial ear for its superior acoustic coupling with the

chosen headphones, that more closely resembles that of the adult

participants tested in the clinic (Xie et al., 2009; Guo et al., 2021).
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FIGURE 2

(A) Psychometric curves of the 27 synthetic words of the test before the first equalization. The mean SRT of each type of item is presented with SD.

For each item, the SRT and the di�erence (eq) with the average SRT of all words is also presented. (B) Psychometric curves of these same 27 words

after the first equalization. “n” corresponds to the number of SoNoise_SπN0_Syn tests performed.

The maximum output level was measured using the masking noise

of the test, and used as a reference for the calibration level. Its value

in dB SPL (sound pressure level, Leq measurements) was input

into the application, which used it as a reference to send the desired

level of signal.

This prospective study was conducted in the ENT department

of the university hospital of Montpellier (France), and aimed at the

development and the validation of the SoNoise SIN tests (SONUP).

The study was approved by the local ethics committee (IRB-

MTP_2021_09_202100889). All participants signed a consent form

to participate in the study.

Audiometric thresholds (air and bone conduction) were

determined for each subject (normative and study population)

at 0.5, 1, 2, 4, and 8 kHz, using the modified Hughson-Westlake

method (Carhart and Jerger, 1959) after bilateral otoscopy. The

4f-PTA was calculated by averaging the audiometric thresholds

(0.5, 1, 2, and 4 kHz) measured during air conduction pure-

tone audiometry.

To define normative values for both SoNoise_S0N0_Na and

SoNoise_S0N0_Syn, participants (n = 43) performed a total

of seven tests: a training test with the SoNoise_S0N0_Na,

then alternating SoNoise_S0N0_Syn or SoNoise_S0N0_Na three

times, followed by another sequence comprising the other

test not presented in the first sequence (SoNoise_S0N0_Na or

SoNoise_S0N0_Syn) again repeated three times, ensuring that both

tests were passed three times each in an alternative manner.

To define normative values for both SoNoise_S0N0_Syn and

SoNoise_SπN0_Syn, participants (n = 26) performed a total of

seven tests as described earlier except that the training test was

the SoNoise_SπN0_Syn and the six tests that followed alternated

between SoNoise_S0N0_Syn and SoNoise_SπN0_Syn. All tests

were achieved within the same session. The normative value of the

BILD for the test was calculated by subtracting SπN0 SRT from

S0N0 SRT. The tablet application measured the duration of each

test from the start to the finish.

Of the 463 participants (normal or hearing-impaired) who

underwent the SoNoise_SπN0_Syn test, 399 also underwent the

SoNoise_S0N0_Syn test in a counterbalanced order.

2.6 Data and statistical analysis

The audiometric data, age and gender of the participants were

stored by the SONUP application, uploaded to secure servers and

retrieved via a secure dedicated website. They were then exported

in xls format. Matlab R2021b software (MathWorks, Inc., USA)
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was used for statistical analyses, with the significance level set

to 5% (p-value < 0.05). ANOVA analysis was used to determine

whether the number of trials (number of tests performed) and the

voice type had a significant effect or not, followed by post-hoc t-

tests for multiple comparisons. The diagnostic power (sensitivity

and specificity) of the SoNoise_SπN0_Syn test to detect pure-

tone average hearing loss was calculated for the study population.

Different receiver operating characteristic (ROC) curves were then

computed to determine the optimal SNR values to detect a pure-

tone average hearing loss at different cut-off levels (20, 30, and

35 dB HL). The best sensitivity and specificity were determined

for each of the three SRT values. The optimal sensitivity and

specificity were achieved when the Youden index was the highest.

Z-score was used to compare the results of the study population

with the normative values, its value corresponding to the number

of standard deviations separating a result from the normative

value. For each individual tested with SoNoise_SπN0_Syn and

SoNoise_S0N0_Syn, two different values for SRT (in dB SNR)

were obtained. The difference between these values gave the BILD.

ANOVA analysis was used to determine whether the hearing loss

type had a significant effect or not. Wilcoxon post-hoc tests were

performed for multiple comparisons, all samples not following a

normal distribution (Jarque-Bera normality test).

3 Results

3.1 Normative values of the SoNoise tests

We firstly aimed to compare the use of natural and synthetic

voices in a diotic presentation, before determining normative

values for the binaural diotic tests, antiphasic test, and BILD.

Figure 3A shows the average SRT values for the three tests

(SoNoise_S0N0_Na, SoNoise_S0N0_Syn, SoNoise_SπN0_Syn)

according to the different trials. The mean SRT for the

SoNoise_S0N0_Na training test was −9.0 dB SNR (SD =
1.3) and was−10.0 dB SNR (SD= 1.4),−10.5 dB SNR (SD= 1.6),

and−10.8 dB SNR (SD= 1.3) for the next three trials, respectively.

The mean SRT for the three trials of SoNoise_S0N0_Syn that

followed the SoNoise_S0N0_Na training test were −10.3 dB SNR

(SD = 1.4), −10.9 dB SNR (SD = 1.6), and −11.1 dB SNR (SD

= 1.6), respectively. A two factor ANOVA showed that trials

number had a significant effect on SRT (p < 0.001) while the voice

(natural and synthetic) had no significant effect (p = 0.824). The

learning effect was significant for tests using the natural voice, with

a difference of 1, 1.5, and 1.8 dB (p < 0.001 for all three) between

the training and the 1st, 2nd, and 3rd tests, respectively. The 1st

test also differed significantly (p = 0.002) from the last, with a

difference of 0.8 dB. The learning effect was also significant for

tests using the synthetic voice, with a difference of 1.3, 1.9, and 2.1

dB (p = 0.016, p = 0.003, and p < 0.001) between the training and

the 1st, 2nd, and 3rd tests, respectively. When comparing binaural

diotic and antiphasic presentation, a two factor ANOVA showed

that both trials number and presentation had significant effects on

SRT (p < 0.001). A SRT of −17.5 dB SNR (SD = 1.5) obtained in

the first SoNoise_SπN0_Syn training test progressively increased

to−18.9 dB SNR (SD= 1.3),−19.0 dB SNR (SD= 1.6), and−19.2

dB SNR (SD = 1.9) over the next three trials, respectively. The

learning effect was significant with a difference of 1.4 dB between

the training and the first test but no significant difference was

found between the other consecutive tests. The value also appeared

to stabilize around −19.2 dB SNR on the 3rd test, 1.7 dB better

than the training test. We then calculated the BILD based on the

difference between diotic and dichotic antiphasic SRT values for

each individual. BILD values were 8.6 dB (SD = 2.0) for the 1st

test, 8.1 dB (SD = 2.1) for the 2nd, and 8.1 dB (SD = 1.9) for the

3rd. One factor ANOVA showed no significant learning effect on

the BILD (p= 0.645).

Figure 3B displays the distribution of SoNoise tests duration.

The mean duration was 167 s (SD = 38 s, median 166 s, IC95

[164–170]). Figure 3C displays the tests duration according to the

number of trials performed. The test duration lasted 189.2 s (SD =
41) for the training test, and seemed to stabilize at 158.9 s (SD =
36.8) after four trials.

3.2 Assessment of the diagnostic power of
the tests

Participants in the groups of age [40–60] and 4f-PTA [20–

40] were fewer in number compared to in the other age groups

(Figure 4). All the normative values, sensitivity and specificity of

the SoNoise tests are displayed in Table 3.

The threshold of 30 dB HL is the audiometric limit chosen

to qualify for reimbursement of hearing aids in France (Journal

Officiel de la République Française n◦0265, 2018; Joly et al., 2022).

The SRTs on the worst ear of the study population (n = 463) were

plotted against the 4f-PTA (Figure 5A).

The correlation coefficient measured between SRTs of the worst

ear and 4f-PTA was r = 0.797 (p < 0.001). The ROC curves

allowed visualization of the sensitivity and specificity according to

SNR values at different 4f-PTA cut-offs (20, 30, and 35 dB HL;

Figure 5B). For a 4f-PTA of 20 dB HL (mild hearing loss), the

optimal threshold value was −14.5 dB SNR and corresponded to a

sensitivity of 84% and a specificity of 89%. For a 4f-PTA of 30 dBHL

(clinical threshold defining deafness in France), the best threshold

value was −13.7 dB SNR and corresponded to a sensitivity of 89%

and a specificity of 91%. For a 4f-PTA of 35 dB HL (moderate

hearing loss), the best threshold value was −13.0 dB SNR and

corresponded to a sensitivity of 88% and a specificity of 93%.

The normative value (defined previously) of the

SoNoise_SπN0_Syn training test was measured at −17.5 dB

SNR, with a standard deviation of 1.5 dB. Theoretically therefore,

95% of the normal-hearing population would be expected to obtain

a score lower (better) than −14.5 dB SNR (Z-score of 2). In this

study population, 89.4% of the normal-hearing group, 0% of the

unilateral hearing loss group, 17.8% of the symmetrical hearing

loss group and 6.7% of the asymmetrical hearing loss group had

a Z-Score < 2. The normative value of the SoNoise_S0N0_Syn

test was measured at −10.3 dB SNR, with a standard deviation

of 1.4 dB. Theoretically therefore, 95% of the normal-hearing

population would be expected to obtain a score lower (better)

than −7.5 dB SNR (Z-score of 2). In this study population, 95.6%

of the normal-hearing group, 20% of the unilateral hearing loss

group, 21.7% of the symmetrical hearing loss group and 22.2% of
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FIGURE 3

(A) Mean SRT and BILD values measured. SπN0 synthetic in dark blue (n = 26), S0N0 synthetic in green (n = 69), and S0N0 natural in yellow (n = 43).

Binaural intelligibility level di�erence in red. The vertical bars represent the standard errors of the mean. (B) Histogram distribution of tests duration (n

= 483) for SoNoise tests. (C) Tests duration according to the number of trials performed. The inserted triangular matrix represents the degree of

significance of tests duration as a function of the number of trials (* if p ≤ 0.05, ** if p ≤ 0.01, *** if p ≤ 0.001, “ns” meaning not significant). Trial “0”

meaning performed first as a training test.

the asymmetrical hearing loss group had a Z-score < 2. Figure 6

represents the SRTs of the normative and study populations for

both SoNoise_SπN0_Syn (A) and SoNoise_S0N0_Syn (B).

We measured the BILD using results of the 399 participants

who performed both SoNoise_SπN0_Syn and SoNoise_S0N0_Syn

tests. The distribution is given in Figure 7. The mean BILD for the

325 participants with normal hearing was 7.3 dB (SD = 2.1), and

for those with hearing loss it was 1.3 dB (SD= 1.4) when unilateral

(n = 6), 4.8 dB (SD = 5.4) when symmetrical (n=59), and 1.4 dB

(SD=2.4) when asymmetrical (n= 9). ANOVA revealed significant

differences in BILD across the hearing loss types (p < 0.001).

Performing post-hoc tests (Wilcoxon test), normal-hearing group

presented significantly better BILD than the other three (Sym: p <

0.001, Uni: p < 0.001, Asym: p < 0.001). Participants presenting

symmetrical hearing loss had statistically better BILD than those

presenting unilateral and asymmetric hearing loss (Uni: p = 0.035,

Asym: p < 0.001). Unilateral and asymmetric hearing loss did not

present statistical difference in BILD.

4 Discussion

There were several reasons for developing a new French

SIN test. Firstly, accessing equipment for free-field testing

currently represents a problem. The development of SIN

tests on a tablet with Bluetooth calibrated headphones

facilitates their distribution and accessibility. Finally, no

French SIN test currently exists enabling the assessment of

BILD effect using headphones. It is important to assess the

function of both ears working together. BILD measurement

thus permitted would provide useful information to

categorize hearing loss types with reasonable accuracy,

any unilateral or asymmetric hearing loss being revealed by

minimal unmasking.

The first part of this study was to determine normative values

of SoNoise tests, based on the number of times they are performed.

The normative value of the SoNoise_S0N0_Na was −10.0 dB SNR

(SD = 1.4), meaning that 95% of the normal-hearing population

obtained a score lower (better) than −7.2 dB SNR (Z-score of 2).

For the SoNoise_S0N0_Syn, the normative value measured was

−10.3 dB SNR (SD = 1.4), meaning that 95% of the normal-

hearing population obtained a score lower (better) than −7.5 dB

SNR (Z-score of 2). These results can only be compared against

SIN tests using binaural diotic presentation. De Sousa et al. (2020)

and Prang et al. (2021), respectively found −11.1 dB SNR (SD =
0.8) and −7.1 dB SNR (SD = 1.4) with triplets of words (digits,

and digit—common noun—color, respectively) in South African

English and English languages. Difference in the results between

both tests may be either due to types of words, presentation mode

(binaural or monaural) or noise used. They respectively tested 26

and 20 normal-hearing participants (PTA < 15 dB HL). In another

study on 202 normal-hearing participants with 4f-PTA better than

25 dB HL, De Sousa et al. (2022) reported a mean SRT of −10.3

dB SNR (SD = 1.3). Matrix tests measured SRT between −10.1

dB SNR (SD = 0.7) and −6 dB SNR (SD = 0.8) for 14 different

languages, but with 5 words (Kollmeier et al., 2015). SRT obtained

withMatrix tests are higher (worse) than SoNoise and digit in noise

(DIN) tests, probably because they use open lists while we used
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FIGURE 4

Best and worst ear 4f-PTA as a function of age of the 463 participants tested. The horizontal line at 20 dB HL represents the threshold for hearing

impairment as defined by the WHO (World Health Organization). Participants were considered as hearing-impaired over 20 dB HL. The results of

participants who performed only 1 test (SoNoise_SπN0_Syn) are represented as a red triangle and as a blue triangle if they performed 2 tests

(SoNoise_SπN0_Syn + SoNoise_S0N0_Syn). The 4f-PTA was calculated by averaging the hearing thresholds at 0.5, 1, 2, and 4 kHz. Triangles with the

point facing up represent the 4f-PTA of the best ears, and triangles with the point facing down represent the 4f-PTA of the worst ears.

closed ones. The normative value of the SoNoise_SπN0_Syn test

was −17.5 dB SNR (SD = 1.5), meaning that 95% of the normal-

hearing population obtained a score lower (better) than −14.5 dB

SNR (Z-score of 2). These results can only be compared against SIN

tests using dichotic antiphasic presentation. In their study, Smits

et al. (2016) tested 16 normal-hearing participants (14 women and 2

men) aged between 19 and 25 years (average 22 yrs) with a DIN test

in Dutch and American English languages. They respectively found

standards of −15.3 dB SNR (SD = 0.9) and −17.1 dB SNR (SD

= 0.9). In their studies, De Sousa et al. (2020, 2022) tested 26 and

243 normal-hearing participants with a DIN test in South African

English language, and found standards of−18.4 dB SNR (SD= 1.4)

and −17.2 dB SNR (SD = 2.4), respectively. The normative values

of the present study are similar to both publications previously

cited, but a little closer to that of De Sousa.

Synthetic voice has made enormous progress and is now

frequently used in everyday life. Previous studies have evaluated the

intelligibility of synthetic voice compared to natural voice. Some

found no significant difference in intelligibility between the two

(Mirenda and Beukelman, 1987; Paris et al., 1995; Koul, 2003;

Nuesse et al., 2019; Ibelings et al., 2022; Schwarz et al., 2022). In

their study, Nuesse et al. (2019) measured an SRT of −9.1 dB SNR

for the natural voice, and −8.6 dB SNR for the synthetic voice.

Tests were performed with the GermanMatrix test (Wagener et al.,

1999). Some others suggested a dependence on synthetic voice

quality (Clark, 1983; Pisoni et al., 1985; Greene et al., 1986; Mirenda

and Beukelman, 1987, 1990; Kangas and Allen, 1990; Humes

et al., 1991; Wolters et al., 2007; Papadopoulos et al., 2009; Cooke

et al., 2013; Aoki et al., 2022). Finally, some authors found that

natural voice had significantly higher intelligibility than synthetic

voice (Koul, 2003; Venkatagiri, 2003; Simantiraki et al., 2018).

While intelligibility was found to strongly depend on different

features such as speech synthesizer quality, listening conditions

and experience (Koul, 2003), the way the words are recorded and

the speech material were reported to have only a minimal impact

on the results (Van den Borre et al., 2021). We compared the

SRT scores obtained in SoNoise_S0N0_Na and SoNoise_S0N0_Syn

tests. The results show no significant difference between the average

SRT measured for the three trials with respective p-values of 0.913,

0.691, and 0.754.

Learning effect is a key element and needs to be considered

when performing SIN tests. For natural voice, the learning effect

was significant with differences of 1, 1.5, and 1.8 dB (p < 0.001

for all three) between the training and the first, second and third

tests respectively. For synthetic voice, the learning effect was also

significant with a difference of 1.3, 1.9, and 2.1 dB (p = 0.016,

p = 0.003, and p < 0.001) between the training and the first,

second and third tests, respectively. These results are similar to

those found in the literature, which show about 1 dB improvement

between the first two tests, and about 2 dB between the first and
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TABLE 3 Diotic and dichotic antiphasic SRT for the best and the worst ear respectively, normative and study populations, and both natural and synthetic

voices.

Diotic Dichotic antiphasic

Natural voice
(n = 43)

Synthetic voice
(n = 69)

Synthetic voice (n = 26)

SRT (SD) SRT (SD) SRT (SD) Se (%) Sp (%)

Normal-hearing Training −9.0 (1.3) −17.5 (1.5)

Trial 1 −10.0 (1.4) −10.3 (1.4) −18.9 (1.3)

Trial 2 −10.5 (1.6) −10.9 (1.6) −19.0 (1.6)

Trial 3 −10.8 (1.3) −11.1 (1.6) −19.2 (1.9)

Synthetic voice (n = 463)

Normal- and

hearing-impaired

PTA 20 dB HL −14.5 84 89

PTA 30 dB HL −13.7 89 91

PTA 35 dB HL −13.0 88 93

FIGURE 5

Correlation and ROC curves of the SoNoise_SπN0_Syn test. (A) Correlation coe�cient (r = 0.797, p < 0.001) between SRT and 4f-PTA of the worst

ear (n = 463). Normal-hearing is represented as a blue circle, unilateral hearing impairment as an orange triangle, symmetrical hearing impairment as

a red cross, and asymmetrical deafness as a pink diamond. Two vertical dashed lines are drawn at 20 dB HL (blue) and 35 dB HL (pink). The horizontal

dashed lines represent the best SRT value predictive of a 20 dB HL and 35 dB HL 4f-PTA. The top right corner represents participants with abnormal

hearing results for both tests (true-positive). The top left corner shows discordant results between 4f-PTA (normal) and SoNoise_SπN0_Syn

(abnormal; false-positive). The bottom right corner shows discordant results between 4f-PTA (abnormal) and SoNoise_SπN0_Syn (normal;

false-negative). The bottom left corner represents participants with normal-hearing results for both tests (true-negative). (B) ROC curves

corresponding to 4f-PTA of 20 dB HL (blue), 30 dB HL (red), and 35 dB HL (pink). The inserted graph enlarges the dotted square.

fourth (Brand and Kollmeier, 2002; Jansen et al., 2012; Kollmeier

et al., 2015; Schlueter et al., 2016; Nuesse et al., 2019). However,

some studies measured a negligible learning effect after the first

training (Hagerman and Kinnefors, 1995; Rhebergen et al., 2008;

Paglialonga et al., 2014; Kaandorp et al., 2015; Sheikh Rashid et al.,

2017). These findings highlight the need to compare participants’

results to the appropriate normative value, according to the number

of times the test is performed: i.e., a normative value for screening,

and others for diagnosis or follow-up.

To assess the accuracy of the test and thus diagnostic power, we

assessed the sensitivity and specificity of the SoNoise_SπN0_Syn

test at different 4f-PTA cut-off levels. The main characteristic for

an accurate SIN test is its ability to detect almost all cases of hearing

loss without identifying individuals with normal hearing. For a
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FIGURE 6

(A) SRT distribution of the SoNoise_SπN0_Syn. The SRT of the normative population is represented in light green (n = 26). The SRT of the study

population that participated in the diagnostic power assessment study (n = 463) are shown in dark blue. The vertical dashed lines represent the

Z-score, with associated percentile values. (B) SRT distribution of the SoNoise_S0N0_Syn. The SRT of the population is represented in light green (n

= 69). The SRT of the study population (n = 399) are shown in dark blue. The vertical dashed lines represent the Z-score, with associated percentile

values.

4f-PTA of 20 dB HL, the threshold value was −14.5 dB SNR with a

sensitivity of 84% and specificity of 89%. For a 4f-PTA of 30 dB HL,

the threshold value was −13.7 dB SNR with a sensitivity of 89%

and a specificity of 91%. Finally, for a 4f-PTA of 35 dB HL, the

threshold value was −13.0 dB SNR with a sensitivity of 88% and

specificity of 93%. The French DIN test measured the correlation

between DIN SRT and 4f-PTA (0.5/1/2/4 kHz; Ceccato et al., 2021).

They tested 167 participants (77 women and 90 men), aged from

19 to 90 years (average 56, SD = 22). Among the 167 participants

tested, 66 were classified as having normal hearing, 75 symmetric

sensorineural hearing loss, 19 unilateral or asymmetric hearing loss,

and seven mixed hearing loss. For a 20 dB HL cut-off value, the

best sensitivity and specificity were respectively 96 and 93% with

−12.9 dB SNR. For a 40 dB HL cut-off value, the best sensitivity

and specificity found were respectively 99 and 83% with −10.3

dB SNR. De Sousa et al. (2020) compared the DIN results of the

worst ear to the 4f-PTA (0.5/1/2/4 kHz). For a 40 dB HL cut-off

value, the best sensitivity and specificity were respectively 87 and

91% with −14.2 dB SNR. For a 25 dB HL cut-off value, the best

sensitivity and specificity were respectively 90 and 84% with −15.7

dB SNR (De Sousa et al., 2022). In their study, 489 participants were

tested: 243 were classified as having normal hearing, 172 symmetric

sensorineural hearing loss, 42 unilateral or asymmetric hearing loss,

and 32 conductive hearing loss. Unfortunately, in their study, Smits

et al. (2016) did not report sensitivity or specificity with the PTA.

In the present study, the correlation coefficient found between

4f-PTA and SRT of the SoNoise_SπN0_Syn test was r = 0.797 (p

< 0.001). This is consistent with the two studies using dichotic

antiphasic presentation which both found r = 0.82 (De Sousa

et al., 2020; Ceccato et al., 2021). Unfortunately, again, there was

no mention of correlation coefficient with the PTA in the study

published by Smits et al. (2013).

In this study and those presented, age and hearing-impairment

repartition may have a non-negligible effect on the performance

of speech reception threshold in noise to predict hearing-

impairment based on 4f-PTA. For example, more people with 4f-

PTA under 20 dB HL and poor understanding in noise would

raise false-positive number, lowering specificity, meanwhile more

people with 4f-PTA mild hearing loss but good understanding

in noise would raise false-negative number, lowering sensitivity.
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FIGURE 7

BILD according to 4f-PTA di�erence for the participants who

performed both SoNoise_SπN0_Syn and SoNoise_S0N0_Syn tests.

Normal ears (worst ear≤20 dB HL) are represented as blue circles,

unilateral (best ear<=20 dB HL and worst ear>20 dB HL) deafness

as orange triangles, symmetrical (best ear>20 dB HL and di�PTA≤15
dB) deafness as red crosses, and asymmetrical (worst ear>20 dB HL

and best ear>20 dB HL and di�PTA>15 dB) deafness as pink

diamonds. The light green area represents the normative values of

the BILD.

The ROC analysis values must be taken with perspective with the

profile of these people misclassified according to their problems.

On Figure 5A, participants in the top left corner demonstrated

problems understanding in noise, however this would likely

be left unmanaged today due to the good 4f-PTA results,

considered the main criteria for the management of hearing-

impaired people. These people often have real complaints about

their capacity to communicate in difficult daily situations and

more and more countries consider that poor understanding in

noise alone merits treatment. On the opposite, the bottom right

corner shows discordant results between 4f-PTA (abnormal) and

SoNoise_SπN0_Syn (normal). These participants have mostly

good low frequency but poor high frequency thresholds, and can

be explained by dichotic antiphasic presentation improving the

speech understanding for individuals with symmetric hearing loss

but with well-preserved low frequency thresholds (Culling and

Lavandier, 2021). These people often have no real complaint in

noisy situations but are often eligible for hearing loss management,

not for milder hearing loss but for 4f-PTA above 30 dB HL.

In this study, their detection is difficult due to the antiphasic

presentation, and more of these profiles would have lowered the

obtained sensitivity. Studies have shown that diotic presentation

fails to detect unilateral and asymmetrical hearing loss due to

the dominance of the better ear. Also, this presentation is mostly

unaffected by bone conduction hearing loss when presented at

suprathreshold levels (De Sousa et al., 2020, 2022; Ceccato et al.,

2021). Dichotic antiphasic presentation correlates well with the

results of the worst ear, but misses symmetric hearing loss with

well-preserved low frequency thresholds.

Each test type having its advantages and disadvantages

demonstrates the need for a combined test with both diotic and

dichotic antiphasic assessment allowing the discrimination between

different types of hearing loss. Another option could be to combine

a screening audiometric test and a questionary evaluating the

hearing impairment in daily life like the HHIE-S (Ventry and

Weinstein, 1982; Duchêne et al., 2022) to assess the problematic of

subjects that perform well but still experienced hearing difficulties.

Those profiles sometimes get a real benefit from hearing care, even

with under-clinical audiometric requirements.

4.1 Binaural intelligibility level di�erence

The BILD were 8.6 dB (SD = 2.0), 8.1 dB (SD = 2.1),

and 8.1 dB (SD = 1.9) for the three SoNoise_S0N0_Syn and

SoNoise_SπN0_Syn comparisons, respectively. ANOVA analysis

showed no significant learning effect on the BILD (p = 0.645).

These results are consistent with those published by De Sousa et al.

(2020, 2022) who found a difference between diotic and dichotic

presentation of the DIN test between 6 and 8 dB. They reported a

SRT of−11.1 and−18.4 dB SNR respectively for diotic and dichotic

presentation for the first study, and −10.3 dB SNR and −17.2 dB

SNR respectively for the second one. Smits et al. (2016) meanwhile

found a smaller BILD (called binaural masking level difference

BMLD) with the DIN test in Dutch and US English giving 5.7 and

5.6 dB, respectively. In an additional study (unpublished), Ceccato

et al. (2021) tested 19 normal-hearing young adults. They found

a SRT of −10.7 dB SNR (SD = 1.3) with the diotic presentation

and −15.4 dB SNR (SD = 1.3) with the dichotic antiphasic, both

of which are lower than what was measured using diotic and

dichotic SoNoise tests with synthetic voice. The differences in BILD

may be explained by the specific equalization for binaural diotic

and antiphasic presentation for SoNoise test, and by the fact that

SoNoise tests do not only use digits.

4.2 Time duration

Concerning test duration, the mean duration of the SoNoise

tests was 167 s (SD = 38 s, median 166 s, IC95 [164–170]), and

took no longer than other screening SIN tests. Indeed, this duration

is consistent with the 3min measured with the DIN triplet test

(Smits et al., 2004; Smits and Houtgast, 2005; Koole et al., 2016;

De Sousa et al., 2020). In their studies, they respectively tested:

3,327 adults aged above 50 years (mean = 65 yrs), 38 normal-

hearing and hearing-impaired participants (76 ears) among which

22 normal ears and 54 impaired ears, and 39,968 participants

during a telephone mass screening study (75% older than 44 yrs

of age). The DIN was reported (Smits et al., 2013) to have a 2-

minute test duration, although the way this was measured was not

mentioned. In their study on 19 normal-hearing and 21 hearing-

impaired participants, Jansen et al. (2010) reported a 5-minute

duration for the FrDigit3 test, longer than other triplet tests. Where

the SoNoise_SπN0_Syn test saves a lot of time is in hearing
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screening. SoNoise tests for use in screening and in diagnosis have

the advantage of being fast in both cases and thus fulfill a key

requirement for performing SIN tests.

4.3 Speech material

The development and validation of SIN tests requires several

steps. The equalization phase ensures that each word has a

50% chance of being recognized correctly at the same SNR.

Indeed, the generation of the words does not certify an identical

difficulty between them. One equalization was done for the

SoNoise_SπN0_Syn test, and one for the SoNoise_S0N0_Syn test.

We decided to equalize each word separately, without prosody

and coarticulation. Normal-hearing participants were tested with

1 to 5 tests, to present all words equally at different SNR levels.

Psychometric curves were plotted for each of the words, and an

intensity level correction then performed so that each word had a

50% chance of being recognized at the same SNR. The Dutch DIN

equalized the whole triplet. Only some have been selected—those

with a certain slope and SNR value—and normal-hearing subjects

performed the DIN with an adaptive method (Smits et al., 2004).

In their study, Jansen et al. (2010) used digits pronounced with

natural intonation, but without coarticulation from one digit to

another. They selected digits with steep slopes and with SRTs near

the average SRT, before having them equalized by normal-hearing

subjects with a fixed SNR method. In other studies, different

procedures were used (Jansen et al., 2010; Potgieter et al., 2016;

Ceccato et al., 2021). For Matrix tests, equalization protocol was

more complicated and used coarticulation between the five words

of the tests in different languages.

Then, level adjustments were applied: words with high

intelligibility were reduced and words with low intelligibility were

increased (Kollmeier et al., 2015). In this protocol, the final test was

used to perform equalization, as proposed in Brand and Kollmeier

(2002), Jansen et al. (2012) and recently byMasalski et al. (2021) for

digits. This allows to get information of the item inner difficulties

as well as the difficulties induced by their position in the group of

words. We showed that the common nouns in the middle were

the easiest, followed by the digits presented in first position and

the colors in last position that is coherent with studies on the

Matrix tests (Brand and Kollmeier, 2002; Jansen et al., 2012; Nuesse

et al., 2019). We re-tested the difficulty of items after equalization

and found that the item SRT variability dropped from 2.5 to

1 dB of standard deviation. While variations in SRT remained

between digits, common nouns and colors, they were slightly

reduced as well. Moreover, according to the second evaluation

further equilibration in difficulty may be done, and even later by

getting the results of the future test that are done. In this study,

a different equalization has been performed for each one of the

dichotic antiphasic and diotic SoNoise tests, unlike for theDIN tests

where the words used for the dichotic antiphasic presentation were

equalized using a diotic presentation of the words. The question

could be raised as to the impact on a dichotic test of an equalization

with diotic word presentation.

The word “sanglier” is trisyllabic. When compared to other

words, length appears not to be an issue. The jitter allows a random

variation in duration between words, and the equalizations ensure

that words are equally complicated to recognize. In their study,

Potgieter et al. (2016) separated words with 200ms of silence

and 100ms of jitter. In the DIN (Smits et al., 2013), the silent

interval was 150ms between digits, and was enlarged or reduced

with a random ±50ms. This reduces the rhythm of the test, and

limits whether patients can understand a word only due to its

duration. In their studies, Lyzenga and Smits (2011) and Smits

et al. (2016) detected no significant difference in the SRT measured

between triplets of digits pronounced with and without prosody

and coarticulation, using male and female voices, respectively. It

appears that coarticulatory cues are no longer available at a SNR of

10 dB (Fernandes et al., 2007). All combinations of triplet words

were kept and available for testing, as described elsewhere (Prang

et al., 2021).

The masking noise used in these tests was a white noise fitted

to the long-term spectrum of the test words (Plomp and Mimpen,

1979; Nilsson et al., 1994; Brand and Kollmeier, 2002; Soli and

Wong, 2008; Jansen et al., 2012; Dillon et al., 2016; Potgieter et al.,

2016), ensuring that the chosen noise depended on the SoNoise test

performed. Indeed, the long-term spectrum of the diotic test words

differs from the dichotic antiphasic one, both having different

shapes due to the inverted temporal envelopes. This approach

therefore differs to that of Ceccato et al. (2021) who used the same

masking noise for both diotic and dichotic presentations. In their

study, De Sousa et al. (2022) did not specify whether the same

masking noise was used for both diotic and dichotic antiphasic

tests. In the SoNoise tests, there are differences between speech

and noise power spectrum levels below 150Hz for both natural

and synthetic tests (Figure 1). The finite-impulse-response filter

used tends to increase the noise spectrum shape, keeping more low

frequencies for the noise. This is due to the algorithm’s difficulty in

generating a filter that follows rapid spectral changes of the speech.

Characteristics of the speech material are displayed in Table 2.

The fundamental frequency was higher for natural voice (210Hz)

than for synthetic voice (178Hz). In the US DIN test, the

fundamental frequency was 208.9Hz for the female voice used

(Smits et al., 2016). In the present study, the tests also revealed

a longer word duration for natural voice (661ms) compared

to synthetic voice (451ms), leading to a slower speech rate

with 1.6 and 2.3 syllables/s, respectively. In their study, Nuesse

et al. (2019) also found a higher fundamental frequency for the

natural speech, and a slower speech rate for the natural female

OLSA (167 syllables/min) compared to the synthetic female voice

(175 syllables/min). The FraMatrix and the French Intelligibility

Sentence Test (FIST) measured higher speech rate with respectively

4.2 and 3.6 syllables/s (Jansen et al., 2012; Luts et al., 2008). The

FrDigit3 shows a lower speech rate with 1.9 syllables/s (Jansen et al.,

2010).

Most of the cited tests are designed for free-field presentation

and the only ones specifically designed for headphones presentation

are the screening tests. While free-field presentation may be more

ecological and very useful for prosthetic evaluation (hearing aids,

cochlear implants), a clinical setting is often not suited for a

good free-field installation that requires space and stability to

ensure reliable calibration. A clinical SIN test administered with

headphones may therefore be of interest, especially if the test also

measures some of the main binaural functions of the hearing.
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4.4 Limitations

The results of this study were obtained using an

Android OS tablet (Galaxy Tab A7) and calibrated Orosound

Bluetooth headphones, chosen for their capacity for automatic

calibration with the high accuracy required in a professional

hearing application.

SRT measured in normal-hearing participants with natural

and synthetic voices showed no significant differences. It would

now be interesting to compare SRT of both voices in hearing-

impaired subjects. In this study, the learning effect calculation is not

completely reliable. Normal-hearing participants tested to define

the normative values performed the tests in a counterbalanced

manner, as described elsewhere (Culling et al., 2005; McArdle

et al., 2005; Potgieter et al., 2016). If each SoNoise test had been

performed in succession by the participants, the normative values

would probably have been different. This choice was made in order

to carry out intra-individual analyses of the SRT on participants on

different tests (natural vs. synthetic voices).

5 Conclusion

SoNoise tests are adaptive SIN self-tests, performed with

Bluetooth headphones and a tablet. These SIN tests are the unique

French auditory tests operating on the binaural system. Its dichotic

antiphasic presentation enables its accurate measurement of SIN

abilities. With a duration of only 3min, it can be used for screening

and diagnosis, with the corresponding normative values.
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Introduction: Underlying mechanisms of speech perception masked by

background speakers, a common daily listening condition, are often investigated

using various and lengthy psychophysical tests. The presence of a social agent,

such as an interactive humanoid NAO robot, may help maintain engagement

and attention. However, such robots potentially have limited sound quality or

processing speed.

Methods: As a first step toward the use of NAO in psychophysical testing of

speech- in-speech perception, we compared normal-hearing young adults’

performance when using the standard computer interface to that when using

a NAO robot to introduce the test and present all corresponding stimuli. Target

sentences were presented with colour and number keywords in the presence

of competing masker speech at varying target-to-masker ratios. Sentences

were produced by the same speaker, but voice differences between the target

and masker were introduced using speech synthesis methods. To assess test

performance, speech intelligibility and data collection duration were compared

between the computer and NAO setups. Human-robot interaction was assessed

using the Negative Attitude Toward Robot Scale (NARS) and quantification of

behavioural cues (backchannels).

Results: Speech intelligibility results showed functional similarity between the

computer and NAO setups. Data collection durations were longer when using

NAO. NARS results showed participants had a relatively positive attitude toward

“situations of interactions” with robots prior to the experiment, but otherwise

showed neutral attitudes toward the “social influence” of and “emotions in

interaction” with robots. The presence of more positive backchannels when

using NAO suggest higher engagement with the robot in comparison to the

computer.

Discussion: Overall, the study presents the potential of the NAO for presenting

speech materials and collecting psychophysical measurements for speech-in-

speech perception.

KEYWORDS

speech perception, psychophysics testing, speech masking, NAO robot, human robot
interaction
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1 Introduction

Daily life often presents us with situations in which sounds
with overlapping properties originating from different sources
compete for our attention. Perception of speech in background
noise requires segregating target speech and interfering masker
signals. Further, in the case of competing background speech
(speech masking), listeners need to suppress the information
provided by the masking speech, oftentimes resulting in
informational/perceptual masking (Carhart et al., 1969; Pollack,
1975; Mattys et al., 2009). Speakers’ voice characteristics facilitate
segregating target speech from masking speech (Abercrombie,
1982; Bregman, 1990). Fundamental frequency (F0), related to
the pitch of a speaker’s voice (e.g., Fitch and Giedd, 1999), and
vocal-tract length (VTL), related to the size and height of a speaker
(e.g., Smith and Patterson, 2005), are two such speaker voice
characteristics often used in differentiating voices and speakers
(Skuk and Schweinberger, 2014; Gaudrain and Başkent, 2018).
Normal-hearing listeners have been shown to be sensitive to
small differences in F0 and VTL cues (Gaudrain and Başkent,
2018; El Boghdady et al., 2019; Nagels et al., 2020a; Koelewijn
et al., 2021), and can make effective use of these differences to
differentiate between target and masker speech (Darwin et al.,
2003; Drullman and Bronkhorst, 2004; Vestergaard et al., 2009;
Başkent and Gaudrain, 2016; El Boghdady et al., 2019; Nagels et al.,
2021). In contrast, hard-of-hearing individuals who hear via the
electric stimulation of a cochlear implant (CI), a sensorineural
prosthesis for the hearing-impaired, struggle in such situations,
and show less sensitivity to F0 and VTL cues (El Boghdady et al.,
2019). This challenge could be due to the inherent spectrotemporal
degradation of electric hearing [see Başkent et al. (2016) for
more information on the workings of CIs] and thus, difficulty
in perceiving various speaker voice cues (Gaudrain and Başkent,
2018; El Boghdady et al., 2019). Therefore, the investigation of
these vocal cues through psychophysical testing, both in clinical
and research settings, is important. On the other hand, evaluation
of speech-in-speech perception requires the use of long and
repetitive auditory psychophysical tests to ensure data reliability
(Mühl et al., 2018; Smith et al., 2018; Humble et al., 2023). This can
be a challenge for individuals being tested, especially for those with
short or limited attention spans, such as young children (Hartley
et al., 2000; Bess et al., 2020; Cervantes et al., 2023), or those with
hearing loss, such as the elderly (Alhanbali et al., 2017). Therefore,
any interface or setup that can improve engagement and focus may
be helpful in collecting such data.

The use of a computer auditory psychophysics testing has led
to methods that allow for better controlled experiments, more
complex test designs, and the varying of more test parameters
(Laneau et al., 2005). This has subsequently led to the use of
desktop or laptop computers as typical test interfaces for auditory
psychophysical tests (Marin-Campos et al., 2021; Zhao et al., 2022).
When used as the test interfaces, the computer presents stimuli
and collects responses. These capabilities have also expanded the
potential use of computers for psychophysics testing outside of
clinical or highly controlled environments (Gallun et al., 2018).
Sometimes interfaces are modified to resemble a game-like format,
especially for children (Moore et al., 2008; Kopelovich et al., 2010;
Nagels et al., 2021; Harding et al., 2023). However, in a previous

study by Looije et al. (2012), it was shown that during learning
tasks, the use of a robot was better able to hold the attention
of children in comparison to a computer interface. Furthermore,
literature has shown that the physical presence of a social actor,
both human and human-like, has a greater effect on engagement
(Lee et al., 2006), in comparison to its virtual counterpart (Kidd and
Breazeal, 2004; Kontogiorgos et al., 2021). This can be leveraged to
motivate users to exert more effort during a given task (Bond, 1982;
Song et al., 2021). This was also reported by Marge et al. (2022),
who comment that a robot can be advantageous in motivating
and engaging users. Therefore, it could be that the inclusion of an
interactive robot, such as the NAO humanoid robot, could be used
to further retain one’s attention, especially for psychophysical tests
of speech-in-speech perception.

Over the last two decades humanoid robots have gained
presence in a wide range of areas, including: high-risk
environments (Sulistijono et al., 2010; Kaneko et al., 2019),
entertainment (Fujita et al., 2003), home (Asfour et al., 2006), and
healthcare (Ting et al., 2014; Choudhury et al., 2018; Saeedvand
et al., 2019), to name only a few. Joseph et al. (2018) details more
specifically how humanoid robots have been involved in healthcare
applications, such as assisting tasks through social interactions
(McGinn et al., 2014), telehealthcare (Douissard et al., 2019), and
nurse assistive tasks (Hu et al., 2011). The use of social robotics has
steadily increased in recent years to the point where they are no
longer only being used as research tools, but being implemented in
day-to-day life (Henschel et al., 2021). The robots from Aldebaran
Robotics (NAO and Pepper) are the two most frequently recurring
robots in the field of social robotics. Moreover, the use of both the
NAO and Pepper robots has been suggested in the literature as a
facilitating interface in testing procedures for hearing research.
Uluer et al. (2023), for example, have explored using a Pepper robot
to increase motivation during auditory tests with CI children. The
NAO has frequently been used in healthcare contexts, as shown in
a scoping review by Dawe et al. (2019). Due to the robot’s small
size and its friendly and human-like appearance, the NAO has
been used often in the investigation of child-robot interactions
(Amirova et al., 2021). Polycarpou et al. (2016) used a NAO robot
with seven CI children between the ages of 5–15 years to assess
their speaking and listening skills through play. Although there
have been other audiological studies utilising robot interactions, to
the best of our knowledge, the evaluation or analysis of the human-
robot interaction (HRI) has been limited and has predominantly
focussed on task performance.

User engagement (Kont and Alimardani, 2020) is one of the
most frequently used metrics in human-robot interaction (HRI)
analysis as it provides a measure of interaction quality, and thus
one’s perception toward an interface. One’s own perception toward
a robot is often performed using self-assessments, such as the
Negative Attitude toward Robots Scale [NARS; (Nomura et al.,
2004)]. The NARS is used to determine the attitudes one has toward
communication with robots in daily life and is divided into three
components: subordinate scale 1 (S1), negative attitudes toward
situations and interactions with robots; S2, negative attitudes
toward social influence of robots; and S3, negative attitudes
toward emotions in interactions with robots. In addition to
self-assessments, much can be gleaned regarding the perception
toward a robot as well as user engagement through the analysis
of behavioural cues using video recordings. Verbal or gestural
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behavioural cues, known as backchannels and defined as cues
directed back to a conversation initiator to convey understanding
or comprehension, and a desire for the interaction to continue
(Rich et al., 2010), have also been suggested as measures to evaluate
user engagement (Türker et al., 2017).

In this study, we aim to expand the use of a NAO robot
in psychophysical evaluations of speech-in-speech perception.
Combined with its speech-based mode of communication, the
NAO robot could be a relatively low-cost tool for auditory
perception evaluation. In both research and clinical contexts, such
an implementation could potentially provide participants with
an interactive testing interface, possibly helping with engagement
and enjoyment during experiments and diagnostic measurements
(Henkemans et al., 2017). On the other hand, a number of factors
related to the hardware and software of the robot could potentially
affect auditory testing. For example, the internal soundcard and
speaker combination may not be able to produce sound stimuli
of sufficient quality for all psychophysical measurements (Okuno
et al., 2002), such as stimuli measured close to hearing thresholds.
Non-experimental artefacts such as the noise of the fans or
actuators in the robot could add unintentional background noise
to the stimuli (Frid et al., 2018). Although the robot could
potentially offer beneficial engagement during psychophysical tests,
the different test setup with the NAO may impact the quality
of the test results. Therefore, we first need to investigate how
comparable the results are when conducting a psychophysics test
using a robot to those when using the standard computer setup,
while also evaluating the engagement factor via HRI analysis.

2 Materials and methods

The present experiment is part of a large project, Perception
of Indexical Cues in Kids and Adults (PICKA), and expands on
previous work conducted using the same NAO robot for other
psychophysical tests (Meyer et al., 2023). The purpose of the PICKA
project is to investigate the perception of voice and speech in
varying populations, such as normal-hearing and hard-of-hearing
adults and children with varying degrees and types of hearing loss
and hearing devices, and in varying languages, such as English,
Dutch, and Turkish.

In the present study, the PICKA speech-in-speech perception
test was used. The speech-in-speech perception test evaluates
speech intelligibility of sentences presented in competing speech,
using an adapted version of the coordinate response measure
(CRM, Bolia et al., 2000; Brungart, 2001; Hazan et al., 2009;
Welch et al., 2015). The test was performed via the computer
[identical to that reported in Nagels et al. (2021)] as well as with
a NAO humanoid robot named “Sam,” chosen to represent a
gender-neutral name. The computer and Sam versions of the test
differ slightly in their implementation, much of which was done
intentionally. The implementation differences are further explained
in the sections below.

To compare the test performance with the robot to both
the standard computer setup and to previous relevant work,
we have collected both auditory speech intelligibility scores and
data collection duration. To quantify the human-robot interaction
(HRI), we have collected data in the form of a questionnaire, the

Negative Attitude Toward Robots Scale (NARS), a common HRI
metric (Nomura et al., 2004), and behavioural cues exhibited during
the experiment to explore engagement related factors.

2.1 Participants

Twenty-nine (aged 19–36; 23.46 ± 4.40 years) individuals took
part in the study. Two participants did not meet the inclusion
criteria for normal hearing, and therefore data for the speech-in-
speech perception test was analysed from 27 participants (aged 19–
36; 23.23 ± 4.43 years). However, all 29 participants were included
in the analysis of the HRI as there was no inclusion criteria for this
component of the study. Sample size was determined based on a
rule of thumb for human-robot interaction studies in which it is
recommended that a minimum of 25 participants are included per
tested condition (Bartneck, 2020), and an extra four participants to
account for potential drop-outs. All participants reported English
as either native or additional language and completed at least
high school education. A pure-tone audiogram was conducted
to confirm normal hearing (NH). Hearing thresholds >20 dB
HL (Hearing Level) at any of the audiometric octave frequencies
(between 250 Hz and 8 kHz) qualified for exclusion. The study
was conducted according to the guidelines of the Declaration of
Helsinki, and the PICKA project protocol was approved by the
Medical Ethical Committee (METc) at UMCG (METc 2018/427,
ABR nr NL66549.042.18). Written informed consent was obtained
prior to the start of the experiment. The participants were
compensated €8/hr for their participation.

2.2 Stimuli for speech-in-speech test

The CRM sentence stimuli used were in English, introduced
by Hazan et al. (2009), Messaoud-Galusi et al. (2011), and Welch
et al. (2015), and similar in structure to the Dutch sentences used
by Nagels et al. (2021). The 48 English sentences contained a
carrier phrase with a call sign (“dog” or “cat”), one colour keyword
(selected from six colours: red, green, pink, white, black, and blue,
all monosyllabic), and one number keyword (selected from eight
numbers between 1 and 9, excluding disyllabic seven); e.g., Show the
dog where the pink (colour) five (number) is. The same 48 sentences
were used to create all stimuli for the present test. Each of the
stimuli sets (Dutch and English) of the PICKA test battery were
generated by a female speaker with a reference F0 of 242 Hz.

Target and masker sentences were originally produced by the
same speaker. Speech-in-speech conditions were implemented by
combining target and masker speech with two manipulations: (1)
the target-to-masker ratios (TMRs) were varied, and (2) the voice
cues F0 and VTL of the masker speech varied to introduce a
voice difference between the target and masker speech [see El
Boghdady et al. (2019) and Nagels et al. (2021) for a detailed
explanation on the influence of TMR and voice cues on speech-in-
speech perception]. For TMRs, expressed in dB, three conditions
were used (−6 dB, 0 dB, + 6 dB). F0 and VTL voice cues were
expressed in semitones (st.), an intuitive frequency increment unit
used in music and expressed as 1/12th of an octave. Four different
voice conditions were used: (1) the same voice parameters as
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the target speech, but with resynthesis to account for synthesis
artefacts (1F0: 0 st., 1VTL: 0.0 st.); (2 and 3) a difference of either
−12 st. in F0 or + 3.8 st in VTL (1F0: −12 st., 1VTL: 0.0 st.;
1F0: 0 st., 1VTL: + 3.8 st.); and (4) a difference of −12 st in
F0 and + 3.8 st. in VTL (1F0: −12 st., 1VTL: + 3.8 st.). This
resulted in 12 experimental conditions (three TMRs x four voice
conditions). An additional condition with no manipulations (no
TMR, no voice condition) was included as a baseline condition
for a check of the experiment paradigm, but not included in data
analyses. Each condition was tested with 7 trials (i.e., 7 target
sentences), resulting in a total of 84 experimental trials + 7 baseline
trials = 91 trials in the experimental corpus, all tested within
one block.

For familiarisation of the test, a small corpus of training stimuli
was created with nine F0 and VTL combinations: 1F0 = −12 st.,
1VTL = 0.0 st.; 1F0 = −12 st., 1VTL = + 1.9 st.; 1F0 = −12
st., 1VTL = + 3.8 st.; 1F0 = −6 st., 1VTL = 0.0 st.; 1F0 = −6
st., 1VTL = + 1.9 st.; 1F0 = −6 st., 1VTL = + 3.8 st.; 1F0 = 0
st., 1VTL = 0.0 st.; 1F0 = 0 st., 1VTL = + 1.9 st.; 1F0 = 0 st.,
1VTL = + 3.8 st. The first two trials had a TMR of 0 dB and the
remaining trials a TMR of + 6 dB. Of the nine training stimuli, four
were randomly selected for the training phase of the test.

For each trial, a target sentence was randomly selected from
the 48 sentences with the “dog” call sign, and the masker speech
was prepared from 48 sentences with the “cat” call sign. For the
masker speech, random sentences were selected while avoiding
sentences with the same number and colour keywords as the
target sentence. From these sentences, 150–300 ms segments were
randomly selected, applying 50 ms raised cosine ramps to prevent
spectral splatter, and concatenating these segments to produce
the masker speech. The masker speech started 750 ms before the
target sentence onset and continued for 250 ms after the target
sentence offset.

2.3 Human-robot interaction evaluation

The HRI was evaluated via the NARS questionnaire and
behavioural data captured in video recordings of the experiment.
The NARS is presented as a five-point Likert scale (1: strongly
disagree—5: strongly agree), used to grade each item, and the
higher the score, the more negative an attitude one has toward
robots. Total scores for each of the NARS subscales are obtained
by totalling the grades of each subscale (S1, S2, S3). Therefore,
minimum and maximum scores are 6 and 30 for S1, 5 and
25 for S2, and 3 and 15 for S3. For the video recordings, we
analysed behaviours that could be used to indicate engagement
(backchannels). “Smiling” and “laughing” (Türker et al., 2017) are
two behaviours which can be considered positive backchannels
and therefore positive engagement. To characterise negative
backchannels, “frowning,” and “grimacing” were used as opposites
to smiling and laughing.

2.4 Setup

As mentioned previously, the paradigm of the speech-in-
speech perception test is based on the CRM, which has been used

extensively in the literature (Hazan et al., 2009; Welch et al., 2015;
Semeraro et al., 2017; Nagels et al., 2021). In the standard version of
the test, to log responses, participants make use of a coloured and
numbered matrix representing all possible response combinations
(Figure 1). Although other tests of the PICKA battery have been
modified to resemble game-like interfaces (Nagels et al., 2020a,b;
Meyer et al., 2023), the speech-in-speech perception test has not
been similarly modified to remain consistent with literature and
allow for comparison to previously reported data.

2.4.1 Computer setup
The speech-in-speech perception test was run using MATLAB

2019b (MATLAB, 2019) on an HP Notebook (Intel Core i5 7th
gen) running Ubuntu 16.04. The user interface with the standard
numbered matrix (Figure 1) was used, similar to Nagels et al.
(2021). There are two deviations from the aforementioned study:
English vs. Dutch stimuli, and use of high-quality headphones
vs. internal soundcard and stereo speakers. We made use of the
computer’s loudspeakers in this study to present a more comparable
test setup with the NAO, on which there is no audio connection
for headphones.

2.4.2 Robot setup
A NAO V5 H25 humanoid robot developed by Aldebaran

Robotics (Sam) was used as an auditory interface to introduce
the speech-in-speech perception test and present all corresponding
stimuli. The PICKA Matlab scripts were rewritten into Python,
which allowed all tests and stimuli to be stored and run directly
on Sam. Housed in Sam is an Atom Z530 1.6 GHz CPU processor,
1 Gb RAM, and a total of 11 tactile sensors (three on the head,
three on each hand, one bumper on each foot), two cameras
and four ultrasound sensors (Figure 2A). The software locally
installed on the NAO robot is the NAOqi OS, an operating
system based on Gentoo Linux specifically created for NAO by the
developers. A cross-platform NAOqi SDK (software development
kit) framework is installed onto a computer, which can then
be used to control and communicate with the robot. The NAO
SDKs available are Python (Van Rossum and Drake, 2009),
C + + (Stroustrup, 2000), and Java (Arnold et al., 2005). NAO
has 25 degrees of freedom and is able to perform movements and
actions resembling that of a human.

To improve the useability of running the PICKA tests through
Sam, a simple website was designed for the researcher conducting
any of the PICKA tests and hosted on Sam. Through this
website, displayed on a Samsung Galaxy Tablet A, relevant
participant information (e.g., participant ID and language) could
be entered and the relevant PICKA auditory test could be
initiated (Figure 2B). Stimuli were presented through the onboard
soundcard, and the internal stereo loudspeakers located in Sam’s
head. The same tablet depicted a scaled down (approximately
by a factor of 1.8) version of the aforementioned standard
computer matrix for participants to log their responses (Figure 1).
Henceforth, the robot and tablet are referred to as the “robot setup”
and “auditory interface” refers to the robot only, as the tablet is
considered a response logging interface.

2.4.3 Auditory interface calibration
The computer and the NAO inherently differ in their abilities

to reproduce sounds due to the different hardware. To measure the
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FIGURE 1

The standard computer user interface, showing the speech-in-speech perception coordinate response measure (CRM) test matrix as presented on
the screen. Each item in the matrix represents a possible response option, corresponding to the target sentence. Bar at the top of the image depicts
progress indicating how many stimuli are remaining in either the training or data collection phases. The matrix and image are published under the
CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

FIGURE 2

Panel (A) The robot auditory interface, NAO V5 H25 humanoid robot from Aldebaran Robotics. Panel (B) Webpage displayed on the Samsung Tablet
to input participant details and begin one of the four PICKA psychophysics tests. Participant details included: participant ID, the phase of the test
(either training or data collection), and the language of the test (either English or Dutch). Test buttons from left to right are for starting the different
PICKA tests: voice cue sensitivity, voice gender categorization, voice emotion identification, and speech-in-speech perception (the focus of the
present experiment), respectively. The cartoon illustrations were made by Jop Luberti for the purpose of the PICKA project. This image is published
under the CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

output of the speakers, a noise signal that was spectrally shaped
to match the averaged spectrum of the test stimuli was used.
On both the computer and Sam, the noise was presented and
measurements were recorded in third-octaves using a Knowles
Electronics Mannequin for Acoustic Research (KEMAR, GRAS,
Holte, Denmark) head assembly and a Svantek sound level metre

(Svan 979). Measurements were conducted in a sound treated
room, identical to that used for experimentation. The KEMAR was
placed approximately one metre away from the auditory interface,
similar to how a participant would be seated during the experiment.
Replicating the experimental setup, the sounds were played on
both interfaces at the calibrated level of 65 dB SPL (Figure 3). To
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FIGURE 3

Comparison of auditory interface speaker comparison. Yellow and red lines show the levels of the noise signal when presented at the calibrated
65 dB SPL for the computer and Sam, respectively. Each point represents the total power within a third-octave band. The blue line is the digitally
extracted levels from the noise signal and shifted to the ideal presentation of 65 dB SPL.

further compare these signals, the digitally extracted levels from the
original noise signal used for calibration have also been included in
Figure 3 (blue line) to depict its spectral shape.

Figure 3 shows that both the computer and Sam have relatively
low level outputs below 250 Hz, compared to the original sound.
Furthermore, the computer shows lower levels than Sam at
frequencies below 800 Hz. To maintain the overall level of 65 dB
SPL, this lack of low frequencies is then compensated above 800 Hz
in the computer. These level differences will affect the perceived
loudness and timbre of the sounds, and could also potentially affect
audibility of lower harmonics in the speech stimuli.

2.4.4 General setup
Participants were seated at a desk with either the computer

or Sam and the tablet placed in front of them on the desk
in an unoccupied and quiet room. Participants were seated
approximately one metre from the auditory interface; however,
this varied as participants moved to interact with Sam or the
computer. The unused setup was removed from the desk and placed
outside the participants’ line of sight. To capture the behavioural
HRI data, two video cameras were placed to the side and in front
of the participant to capture their body positioning and facial
expressions, respectively.

2.5 Procedure

Prior to their experimental session, participants were requested
to complete the NARS questionnaire online. The order of the
setups with which participants started the test was randomised. The
speech-in-speech perception test consisted of two phases: a training

phase and a data collection phase. The task was the same for both
training and data collection. Participants were instructed that they
would hear a coherent target sentence with the call sign “dog” that
contained both a colour and a number (such as “Show the dog where
the red four is.”) in the presence of a speech masker to replicate
a speech-in-speech listening scenario. Participants were also told
that the speech masker might be louder, quieter, or have the same
volume as the target, or be absent. Participants were instructed to
log the heard colour and number combination on the provided
colour-number matrix either by clicking with the connected mouse
when using the computer or by touching the tablet screen.

Once the participant started the training phase and prior to
the presentation of the first training trial, all stimuli for both the
training and experimental corpora were processed with all TMR
and voice conditions, and the splicing and resynthesis of speech
maskers were randomised per participant. The training phase
presented participants with four trials to familiarise themselves
with the procedure of the test, but the participant responses were
not taken into account for scoring purposes. Once confirmed by
the researcher that the participant understood the test, the data
collection phase started, consisting of a single block of all 91
trials (84 experimental + 7 baseline) with all sentences presented
in a random order. Each logged response was then recorded as
either correct or incorrect. Responses were only considered as
correct when both the colour and number combination were
correct. Participants performed the speech-in-speech perception
test twice, once on each auditory interface with a break in-between,
in a single session lasting approximately 40 min. Following the
completion of the first iteration of the test on either the computer
or Sam, participants were offered a break by the researcher
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before being seated again at the same desk with the next setup
placed upon the desk.

When using the computer, participants were presented with
the start screen of the test. Once “start” was clicked, the test
immediately began with the training phase. Once completed,
participants would again be presented with the start screen, which
would initiate the data collection phase. No positive feedback
was presented to participants; however, negative feedback was
presented in the form of the correct colour-number pair briefly
being outlined in green before continuing with the next trial.
During the data collection phase, at predefined points, breaks
would be offered to participants. A pop-up window would inform
participants that they could take a break should they wish, and the
test would resume when the pop-up window was dismissed.

When using Sam, the robot first introduced itself to the
participant before explaining how the test would be carried out.
Similar to the computer, first a training phase was presented to
participants to familiarise themselves with the robot and the test
procedure. Sam informed participants when the training phase was
completed and waited for the participant to touch the top of its head
to continue to the data collection phase. To maintain motivation
and encouragement during the test, both positive (head nod) and
negative (head shake) feedback were presented to participants
throughout the training and data collection phases, as well as visual
feedback to signal when a response could be logged (eyes turning
green), and when the response was successfully logged (eyes return
to default white). During the data collection phase, at the same
predefined points as with the computer, a break was offered to
participants. Sam would verbally ask the participant if they wanted
to take a break, to which the participant could then verbally reply
with either “yes” or “no,” If the participant decided to take a break,
Sam would ask a follow-up question if they would like to stand up
and join in a stretch routine. Again, the participants could respond
verbally with either “yes” or “no,” If answered with “yes,” Sam would
stand and perform a short stretch routine. If answered with “no,”
Sam would stay in a seated position for 10 s before asking if the
participant was ready to continue, again awaiting a verbal response.
If “yes,” Sam continued the experiment. If answered with “no,”
Sam would allow for another 10 s break before continuing the test.
Once all trials were completed, Sam informed participants that they
reached the end of the test and thanked them for their participation.

2.6 Data analysis

2.6.1 Test performance
Test performance was quantified by speech intelligibility scores

(percentage correct) and data collection duration (minutes) with
the computer and Sam setups. Intelligibility scores were calculated
by averaging the recorded correct responses across all presented test
trials per TMR and voice condition per participant. Data collection
durations were calculated from when the first trial was presented
until the response of the last trial was logged. Therefore, neither
the interactions with Sam in the beginning and end of the test were
taken into account, nor the duration of the training phases.

A classical repeated-measures ANOVA (RMANOVA) with
three-repeated factors was performed for the intelligibility: the
auditory interface with which the test was performed (computer or

Sam), the four voice conditions applied to the masker voice (1F0: 0
st., 1VTL: 0 st.; 1F0: −12 st., 1VTL: 0 st.; 1F0: 0 st., 1VTL: + 3.8
st.; 1F0: −12 st., 1VTL: + 3.8 st.), and the three TMR conditions
(−6 dB, 0 dB, + 6 dB), resulting in a 2 × 4 × 3 repeated-measures
design. When RMANOVA tests violated sphericity, Greenhouse-
Geisser corrections were applied (pgg). Evaluation of data collection
phase duration was performed using paired t-tests.

As the purpose of this study is to present a potential alternative
auditory interface to the computer, we aim to look for evidence
that both setups (using the computer and Sam) are comparable in
their data collection. Therefore, for robustness, we also conducted
a Bayesian RMANOVA using the same three-repeated factors
as a conclusion of similarity cannot be obtained with classical
(frequentist) inference. Bayesian inferential methods focus solely
on the observed data, and not on hypothetical datasets as with
classical methods. Therefore, they can provide an alternative
interpretation of the data, the amount of evidence, based on the
observed data, that can be attributed to the presence or absence of
an effect [for more detailed explanations see (Wagenmakers et al.,
2018)]. The output of Bayesian inferential methods is the Bayes
factor (BF) and can be denoted in one of two ways: BF01 where
0 < BF < 1 shows increasing evidence for the null hypothesis as
the BF approaches 0, and BF > 1 shows increasing evidence for
the alternative hypothesis as the BF approaches infinity; and BF10,
which is the inverse of BF01; i.e., 0 < BF < 1 shows evidence for
the alternative hypothesis, and BF > 1 shows evidence for the null
hypothesis. The two notation methods can be used interchangeably
for easier interpretation depending on the inference to be made.
Since the intended focus of the inference of this study is evidence
for the null hypothesis, the BF10 notation is used. The degree
of evidence is given by different thresholds of the BF: anecdotal,
0.33 < BF < 1 or 1 < BF < 3; medium, 0.1 < BF < 0.33 or
3 < BF < 10; strong, 0.03 < BF < 0.1 or 10 < BF < 30.

2.6.2 Human-robot interaction
Analysis of the NARS was performed using one sample t-tests

were performed for each subscale to determine if the results were
significantly different from the expected means (18, 15, and 9 for S1,
S2, and S3, respectively), which would indicate neutrality toward
interactions with robots, and thus an unbiased sample.

To analyse the behavioural data from the video recordings,
two independent coders viewed the recordings and logged the
frequency of displayed behaviours using the behavioural analysis
software BORIS (Friard and Gamba, 2016). Total duration of
raw video footage was approximately 23 h 57 min. To reduce
the workload of coders, video recordings were post-processed
and segments of different phases of the test were extracted.
Segments were pseudo randomised and concatenated, resulting
in approximately 8 h 23 min of footage to be coded. Due to
the repetitive nature of the test, these segments would provide
“snapshots” during the different phases. Segments were created as
follows: 35 s from the introduction when using Sam (introduction
in its entirety); 30 s from the training phase for both the computer
and Sam; 2 min from the beginning, 1 min from the middle, and
2 min from the end of the data collection phase for both the
computer and Sam; 7 s from the break during the data collection
phase in the case where the total duration was less than 10, or
45 s if the break was up to a minute. Engagement was assessed
using the frequency of backchannels recorded by the two coders
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FIGURE 4

Boxplots depicting the range, quartiles, and median percent correct scores of the speech-in-speech perception test, shown for each
talker-to-masker ratio (TMR, rows from top to bottom) and voice condition (columns from left to right) for the computer and Sam setups (yellow
and red filled boxes, respectively), and in comparison to data reported by Nagels et al. (2021; empty boxes).

and were compared both within and between coders. Within coder
comparisons were performed using Student t-tests. Reliability
between coders was evaluated using intraclass correlation [ICC;
(Bartko, 1966)] based on the frequency of exhibited behaviours
during each of the concatenated video segments. An ICC analysis
is often used for ordinal, interval, or ratio data (Hallgren, 2012).
Because the frequency of behaviours is analysed per interval of the
full video recording, as well as all subjects are observed by multiple
coders, this makes an ICC appropriate.

3 Results

3.1 Test performance

3.1.1 Speech intelligibility scores
The baseline speech intelligibility scores with no speech

masker showed good consistency of the experimental paradigm:
99.0% on average when using the computer, and 99.5% on
average when using Sam. Figure 4 shows the intelligibility
scores per TMR and voice condition across all participants.
Table 1 shows the results of both the classical and Bayesian
RMANOVAs performed across both setups, three TMRs and four
voice conditions. Results of the classical RMANOVA showed no
significant difference between participants’ intelligibility scores
when using the computer or Sam [F(1,36) = 1.090, p = 0.306,
np

2 = 0.040], no significant interaction between the auditory
interface and the TMR [Fgg (1.490,38.746) = 0.065, pgg = 0.888,
np

2 = 0.003], no significant interaction between the auditory
interface and the voice condition [Fgg (2.353,61.182) = 0.673, p = 0.537,

np
2 = 0.025], and no significant interaction between all three factors

[F(3.643,94.730) = 0.587, p = 0.657, np
2 = 0.022].

Bayesian RMANOVA showed moderate evidence that
the auditory interface on which the test was performed did
not affect the results of the speech-in-speech perception test
(BF10 = 0.185), strong evidence of no interaction between the
auditory interface and the TMR (BF10 = 0.081), strong evidence
of no interaction between the auditory interface and the voice
condition (BF10 = 0.060), and strong evidence of no interaction
between all three factors (BF10 = 0.039).

3.1.2 Data collection duration
Figure 5 shows the duration of the speech-in-speech perception

test when performed using each auditory interface, and in
comparison, to previous data reported by Nagels et al. (2021). The
average duration of the data collection phase was 9 ± 1 min on
the computer and 15 ± 5.1 min on Sam. However, we observed
that three outlier participants took substantially longer to complete
the data collection phase when using Sam. Removing these outliers
resulted in an average duration of 13 ± 1 min. The removal of
the outliers showed that they had a significant effect on the total
duration of the data collection phase [t(45) = −12.22, p < 0.001].

3.2 Human-robot interaction

Average scores for the subscales were 14.8 ± 3.74, 15.8 ± 2.17,
and 8.5 ± 1.91 out of possible totals 30, 25, and 15 for S1, S2,
and S3, respectively. One sample t-tests for each subscale showed
only a statistically significant difference to the expected mean for
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TABLE 1 Results of the classical and Bayesian RMANOVAs.

Classical RMANOVA Bayesian
RMANOVA

Case Sphericity
Correction

F, p η p
2 B10

Main factors Primary test interface None F(1,36) = 1.090, p = 0.306 0.04 0.185

TMR Greenhouse-Geisser F(1.186,30.826) = 147.980,
p < 0.001

0.851 5.54E + 18

Condition Greenhouse-Geisser F(1.982,51.526) = 131.767,
p < 0.001

0.835 3.50E + 26

Interactions Primary test interface × TMR Greenhouse-Geisser F(1.490,38.746) = 0.065,
p = 0.888

0.003 0.081

Primary test interface
× Condition

Greenhouse-Geisser F(2.353,61.182) = 0.673,
p = 0.537

0.025 0.06

Condition × TMR Greenhouse-Geisser F(4.002,104.461) = 50.928,
p < 0.001

0.662 2.99E + 30

Primary test
interface × TMR × Condition

Greenhouse-Geisser F(3.643,94.730) = 0.587,
p = 0.657

0.022 0.039

FIGURE 5

Duration to complete the data collection phase of the
speech-in-speech perception test on the computer and Sam setups
(following the removal of three outliers), and in comparison to data
reported by Nagels et al. (2021).

S1 [t(19) = −3.83, p < 0.01], and non-significant differences for S2
and S3. The results are summarised in Table 2 below.

Behavioural coding results (Figure 6) showed on average
(after pooling all backchannels) more frequent “frowning”
when using the computer, although not statistically significant
[t(1.493) = 0.721, p > 0.05], and significantly more frequent
“smiling” when using Sam [t(1) = −13, p < 0.05]. “Grimacing”
and “laughing” showed near identical frequencies between the two
auditory interfaces. Intraclass correlation showed poor absolute
agreement between coders for the behaviours “frowning” [ICC(2,
k) = 0.175] and “laughing” [ICC(2,k) = −0.375], and high
correlation for the behaviours “grimacing” [ICC(2, k) = 0.671] and
“smiling” [ICC(2, k) = 0.697].

4 Discussion

The aim of the present study was to evaluate Sam as an
alternative auditory interface for the testing of speech-in-speech
perception. To explore this, we compared the test performance data
(both percent correct scores of intelligibility and data collection
phase duration) obtained from normal-hearing young adults for
the speech-in-speech perception test when using the proposed
robot setup, to data when using the standard computer setup,
as well as to previous studies using similar methods. Due to the
inherent repetition of the speech-in-speech perception test, we
propose Sam to offer an engaging experience for participants when
conducting such a psychophysical test. Although there have been
other studies in which psychophysical tests have been gamified
to offer more engagement (Moore et al., 2008; Nagels et al.,
2021; Harding et al., 2023), there may be certain tests for which
gamification may not be appropriate, either to be consistent with
literature, or gamification may result in an overcomplication (e.g.,
Hanus and Fox, 2015) of the test, having instead the opposite
effect. In such cases, it may be beneficial to incorporate a social
agent to facilitate engagement, not only due to its presence, but
also playing an active role in the procedure. To explore this, we
have also evaluated engagement with the two setups using an
HRI questionnaire and analyses of behavioural data from video
recordings.

4.1 Test performance

4.1.1 Speech intelligibility scores
Results of the classical RMANOVA showed no significant

difference between the percent correct scores obtained when
using the computer or Sam. In addition, there was no significant
interaction between the auditory interface and TMR, auditory
interface and voice condition, or a combination of auditory
interface, TMR and voice condition. Results of the Bayesian
RMANOVA reflected the results of the classical RMANOVA,
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TABLE 2 Results of the one sample t-tests comparing each of the NARS subscales to their respective expected means (indicating neutrality).

Questions Subscale Expected
mean

Mean SD 95%
CI

t-score p

I would feel uneasy if I was given a job where I had to
use robots.

S1 18 14.8 3.73 [13.05,
16.55]

−3.83 <0.01

The word “robot" means nothing to me.

I would feel nervous operating a robot in front of other
people.

I would hate the idea that robots or artificial
intelligences were making judgements about things.

I would feel very nervous just standing in front of a
robot.

I would feel paranoid talking with a robot.

I would feel uneasy if robots really had emotions.

S2 15 15.8 2.17 [14.79,
16.81]

−1.65 N.S.

Something bad might happen if robots developed into
living beings.

I feel that if I depend on robots too much, something
bad might happen.

I am concerned that robots would be a bad influence on
children.

I feel that in the future society will be dominated by
robots.

I would feel relaxed talking with robots*

S3 9 8.5 1.91 [7.61,
9.39]

−1.17 N.S.If robots had emotions I would be able to make friends
with them.*

I feel comforted being with robots that have emotions.*

The * symbol indicates inverse items.

showing strong evidence in support of the two auditory interfaces
being functionally identical. Visual inspection of Figure 4 also
shows that the spread of the data between the TMRs and voice
conditions are identical between the two auditory interfaces, and
in comparison, to data reported by Nagels et al. (2021). It is
also illustrated that most incorrect answers were given when the
TMR was −6 dB, and a clear ceiling effect was observed at the
TMR of + 6 dB. The relatively higher percent correct scores
for all conditions in the data reported by Nagels et al. (2021)
could be due to several reasons. One possibility is that in their
study the participants used high-quality headphones instead of the
built-in loudspeakers of the computer. In addition, their stimuli
were Dutch, whereas the stimuli presented to participants in the
present study were English. Although Nagels et al. (2021) used
Dutch stimuli, their population consisted of native Dutch-speaking
participants. In the present study, participants reported English
as either their native or an additional language. Therefore, the
lower intelligibility scores seen in the present study in comparison
to those reported by Nagels et al. (2021) may be due to a non-
native effect. It is not expected that the structure of the CRM
sentences would affect the intelligibility of the sentences since
the paradigm of the sentence structure is intended to work
across languages, as suggested by Brungart (2001). However, the
English stimuli were presented by a British English speaker.
This may have also affected the intelligibility of the target
sentences in the presence of the masker sentences, especially in

the −6 dB TMR condition, for the non-native English-speaking
participants who may be more acquainted with US English,
for example.

While we attempted to replicate the test procedure of Nagels
et al. (2021) as closely as possible, as has been detailed above,
there were some differences in the implementation of the test
between the computer and Sam. Some of these implementation
differences were necessary to perform a fairer comparison between
the computer and Sam, but others were related to the interaction
between the participant and Sam. These differences may have
inadvertently introduced differences in the overall percent correct
scores, resulting in the lower intelligibility scores.

In the present study, between the computer and Sam, stimuli,
language, and target and masker speaker were kept consistent.
Several factors were postulated to potentially limit the usability
of the robot, such as the soundcard, speaker quality, processing
speed, and non-experimental artefacts. An analysis of the speaker
quality of the two auditory interfaces showed that there was a
reduced quality of the computer in comparison to Sam, especially
at lower frequency ranges. However, the consistent scores of the
speech-in-speech perception test show that despite these limitations
and the implementation differences between the computer and
Sam, both setups were capable of presenting and collecting
comparable test data. In addition, both the computer and Sam
showed similar patterns in test results for the different TMR and
voice conditions to those reported in literature. Therefore, the

Frontiers in Neuroscience 10 frontiersin.org85

https://doi.org/10.3389/fnins.2024.1293120
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1293120 February 6, 2024 Time: 17:5 # 11

Meyer et al. 10.3389/fnins.2024.1293120

FIGURE 6

Coded backchannel frequencies by coder 1 (C01) and coder 2 (C02)
when using both the computer and Sam.

comparable results between the computer and Sam, and previously
reported data, indicate that Sam can be used as an effective auditory
interface for the speech-in-speech perception test with a normal-
hearing population.

4.1.2 Data collection duration
The duration to complete the data collection phase of the

speech-in-speech perception test was longer when using Sam
in comparison to when using the computer; however, this
increased duration did not seem to affect the performance of
Sam’s setup for collecting comparable intelligibility scores. The
three outliers removed from the data collection duration were
the first three participants with whom this test was conducted.
During the experimental procedure with these participants, it was
discovered that the pauses between stimuli were increasing. This
was determined to be due to how response data was saved during
the test; with each response given, the size of the save file increased,
resulting in a longer duration to open and write to the file. Upon
discovering this response saving issue, the test code was amended
to save the results to a smaller file format during the test and
subsequently saving the full results once the test was completed,
thus rectifying the duration problem.

However, it can still be seen in Figure 5 that, even without the
outliers, the duration of the data collection phase when using Sam
was much longer than that when using the computer. We have
considered several factors that could contribute to this difference.
Potential delays due to online stimulus preparation were ruled out,
since the stimulus corpus was created prior to the training phase.
Further investigation into the data collection phase durations per
participant showed that on average, there were 6 s between the
logging of one response and the logging of the next response when
using the computer. With Sam, however, this was on average 9 s.
Closer analysis of this 3 s difference showed that this occurs due
to the feedback presented to participants following their response
logging (head nod or head shake). Subsequent to the completion
of data collection, separate measurements were taken by timing
the duration of the head movements of Sam. On average, when a
correct response was given, timings showed that it took 2.5 s for
Sam to nod its head and then present the next stimulus. When

an incorrect response was given, this time was on average 3.2 s
for Sam to shake its head before presenting the next stimulus.
Bootstrap simulations using the mean accuracy as the probability
of a correct or incorrect response (and thus a head nod or
head shake) for the various tested conditions showed that on
average, the movement of Sam’s head added 3.9 min ± 2 s over
the 91 trials. No positive feedback and brief negative feedback
(outlining of the correct response) was presented to participants
when using the computer. The inclusion of positive and negative
feedback when using Sam, although different to the computer
implementation, was done to increase the social presence of the
robot (Akalin et al., 2019).

4.2 Human-robot interaction

As mentioned previously, engagement during repetitive
auditory tasks can be challenging, especially for certain
populations, and to address this challenge we propose the use
of a humanoid NAO robot. The use of such an interface for these
tasks, at its core, relies on interactions, consisting of both social
and physical components, between humans and the robot. The
NARS questionnaire we used was developed as a measure of one’s
attitudes toward communication robots in daily life (Nomura
et al., 2004). The NARS is further broken down into three subscales
to identify the attitudes of individuals toward social interactions
with robots where the higher the score, the more an individual has
negative attitudes toward those situations. The subscales are: S1,
negative attitudes toward situations and interactions with robots;
S2, negative attitudes toward social influence of robots; and S3,
negative attitudes toward emotions in interactions with robots.
Performing such a questionnaire prior to any interaction involving
a robot allows it to be used as a cross-reference to explain any
potential skewing of subsequently collected HRI data following the
interaction. Results of the NARS subscales showed that only S1 was
statistically different from the expected mean. The non-significant
results of subscales S2 and S3 indicate that participants had neutral
attitudes towards the social influence of robots and emotions in
interactions with robots, respectively. However, the lower average
S1 score indicates that participants had overall a relatively positive
attitude toward situations of interactions with robots prior to their
interaction with Sam. This is also reflected in the behavioural
backchannels, coded from the video recordings. These showed
more frequent smiling when using Sam in comparison to the
computer, indicating both a state of comfort and engagement with
Sam. This is contrasted by the more frequent frowning (although
not significant, can be seen visually in Figure 6) when using the
computer, which could indicate either a state of confusion (Rozin
and Cohen, 2003) or contemplation (Keltner and Cordaro, 2017).
Due to the nature of the speech-in-speech perception test and its
fluctuating difficulty (especially when the TMR is −6 dB and where
the target and masker speech did not differ in voice cues, the most
difficult listening conditions tested), the more likely interpretation
of the frowning is contemplation as participants focus harder in
the more difficult voice conditions. Although this appears to be
more frequent with the computer, this is not necessarily to say
that the computer requires more focus. With both setups, this
directed focus may subsequently lead to mental fatigue during
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the task (Boksem and Tops, 2008). However, the results of the
speech-in-speech perception test show that this increased directed
focus does not affect the outcome of speech intelligibility between
the computer and Sam.

4.3 General remarks

Our overall results show that the NAO robot shows promise to
be used as an auditory interface for speech-in-speech testing. This
finding is in line with and adds to our previous work (Meyer et al.,
2023), which evaluated the test performance from two other PICKA
tests (voice cue sensitivity and voice gender categorization). Voice
cue sensitivity test measures the smallest difference between two
voice cues a listener can hear. The linguistic content seems to have
little effect on the voice cue perception (Koelewijn et al., 2021), and
the perceived voice could be biassed by the perceived gender of the
robot (Seaborn et al., 2022). Speech-in-speech perception relies not
only on processing voice and speech cues, but also on modulating
attention and inhibition to separate target speech from masker
speech, and further use of cognitive and linguistic mechanisms to
decode the lexical content. It is not clear if a voice bias due to
perceived robot gender would affect the speech intelligibility scores
(Ellis et al., 1996). Despite such differing natures of these tests,
our findings were consistent, and both showed comparable test
performance with both setups.

4.4 Future directions

In comparing the test performance between the two setups,
the only significant difference between the computer and Sam
was the increased duration of the speech-in-speech perception
test when using Sam. Although this is predominantly due to
the presentation of positive and negative feedback to participants
following the logged responses, we believe that it is an important
component in establishing and maintaining the social presence
of Sam. Therefore, instead of attempting to decrease the overall
duration of the speech-in-speech perception test on Sam by
removing the visual feedback, the social interaction with Sam
could be improved. This way, we accept the longer duration
with the inclusion of the feedback but provide the participant
with a more natural interaction when performing the test. One
such way this can be accomplished is by removing the use
of the Samsung Galaxy tablet, which pulls the attention away
from Sam with every response and replacing it with speech
recognition on Sam. This would maintain the interaction with
Sam both by not forcibly moving the participants’ attention
between Sam and the tablet, but also by engaging in more natural
speech communication with Sam. The use of automatic speech
recognition (ASR) for response logging has been explored in
another study from our lab by Araiza-Illan et al. (in press) with
the use of Kaldi (Povey et al., 2011), an open-source speech
recognition toolkit. The ASR was used to automatically score
participant’s spoken responses during a speech audiometry test.
Their results show the robustness of the ASR when decoding
speech from normal-hearing adults, offering a natural alternative
for participants to give their responses throughout the test.

Therefore, an ASR system, such as Kaldi, could be coupled
with Sam, enhancing its social presence and overall interface
functionality.

Literature has shown that the gamification of tests can also
have beneficial effects on attention and engagement (Moore et al.,
2008; Kopelovich et al., 2010; Harding et al., 2023). Although the
speech-in-speech perception test has been suggested above to not be
appropriate for gamification, it may indeed be interesting to explore
how an intentional gamification of the test compares to the data
collected here. This applies both to how speech intelligibility may
be affected by such a gamification, but also how engagement may
differ in comparison to Sam, especially after the implementation of
speech recognition and removal of the tablet.

Both the present study and our previous work show the
potential use of a NAO humanoid for speech-in-speech perception
(present study) and voice manipulation perception (previous
work) assessments by taking advantage of the robot’s speech-
related features. Furthermore, since current technical limitations
are expected to be improved in the future, the proposed setup with
the NAO provides exciting application possibilities in research and
clinical applications.
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Introduction: Occupational Noise Induced Hearing Loss (ONIHL) is one of the 
most prevalent conditions among mine workers globally. This reality is due 
to mine workers being exposed to noise produced by heavy machinery, rock 
drilling, blasting, and so on. This condition can be compounded by the fact that 
mine workers often work in confined workspaces for extended periods of time, 
where little to no attenuation of noise occurs. The objective of this research 
work is to present a preliminary study of the development of a hearing loss, early 
monitoring system for mine workers.

Methodology: The system consists of a smart watch and smart hearing muff 
equipped with sound sensors which collect noise intensity levels and the 
frequency of exposure. The collected information is transferred to a database 
where machine learning algorithms namely the logistic regression, support 
vector machines, decision tree and Random Forest Classifier are used to classify 
and cluster it into levels of priority. Feedback is then sent from the database to 
a mine worker smart watch based on priority level. In cases where the priority 
level is extreme, indicating high levels of noise, the smart watch vibrates to 
alert the miner. The developed system was tested in a mock mine environment 
consisting of a 67 metres tunnel located in the basement of a building whose 
roof top represents the “surface” of a mine. The mock-mine shape, size of the 
tunnel, steel-support infrastructure, and ventilation system are analogous to 
deep hard-rock mine. The wireless channel propagation of the mock-mine is 
statistically characterized in 2.4–2.5 GHz frequency band. Actual underground 
mine material was used to build the mock mine to ensure it mimics a real mine 
as close as possible. The system was tested by 50 participants both male and 
female ranging from ages of 18 to 60 years.

Results and discussion: Preliminary results of the system show decision tree had 
the highest accuracy compared to the other algorithms used. It has an average 
testing accuracy of 91.25% and average training accuracy of 99.79%. The system 
also showed a good response level in terms of detection of noise input levels of 
exposure, transmission of the information to the data base and communication 
of recommendations to the miner. The developed system is still undergoing 
further refinements and testing prior to being tested in an actual mine.
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Introduction

Occupational noise-induced hearing loss (ONIHL) is a significant 
concern within the mining industry in South Africa (Khoza-Shangase, 
2022), given the documented prevalence of high noise levels (Edwards 
et al., 2011). This prevalence of ONIHL is attributed to factors such as 
the nature of mining activities, the confined and reflective work 
environments, and the use of equipment in mines. These factors 
significantly increase the risk of exposure to hazardous noise levels, 
which are the primary cause of hearing problems among mine workers 
(Matetic, 2005; Strauss et al., 2012). Due to these factors, it has been 
estimated that one in four mine workers will develop ONIHL. As mine 
workers proceed to their mid-60’s, the incidence increases, with four 
out of five mine workers presenting with hearing impairment (NIOSH, 
2023). To address this issue, South African mines implement hearing 
conservation programs (HCPs) aimed at protecting workers’ hearing 
health and minimizing the risk of ONIHL. The country has legislation 
and regulations that mines must adhere to such as the Occupational 
Health and Safety Act (OHSA) of 1993 (Republic of South Africa, 
1995), along with its Noise-Induced Hearing Loss Regulations of 2003, 
which govern occupational health and safety in South Africa. These 
regulations set out specific requirements for noise exposure limits, 
hearing protection, audiometric testing, and the implementation of 
HCPs. The OHSA sets permissible noise exposure limits (NELs) for 
different industries and activities, including the mining industry. The 
regulations specify that the daily personal noise exposure level should 
not exceed 85 decibels (dB) for an eight-hour work shift.

Legislation and regulations, as part of the hierarchy of controls, 
also declare that, through risk assessments, employers are required to 
conduct noise risk assessments to determine the potential for hearing 
loss and identify areas where noise control measures are necessary. 
This involves measuring noise levels, evaluating exposure durations, 
and identifying high-risk areas or job tasks. At the same time, 
engineering controls measures should be  in place to reduce noise 
levels at their source (NIOSH, 2023). This may involve using quieter 
machinery and equipment, isolating noisy equipment, or 
implementing sound insulation measures (Moroe and Khoza-
Shangase, 2018a,b).

Additionally, employers are required to implement administrative 
controls to minimize workers’ exposure to excessive noise (Musiba, 
2015). These controls may include limiting exposure time, scheduling 
rest breaks in quieter areas, and implementing job rotation to reduce 
individual exposure levels.

On the level of the employee and ranked as the last option on the 
hierarchy of controls, when engineering and administrative controls 
are insufficient to reduce noise levels to acceptable limits, employers 
are required to provide suitable hearing protection devices (HPDs) to 
their employees (NIOSH, 2023), HPDs that are properly selected, 
maintained, and used in accordance with regulations (Suter, 2002). 
Furthermore, employees must undergo regular audiometric testing as 
a crucial component of HCPs (Moroe et al., 2022). Employers are 
required to provide baseline audiograms for employees exposed to 
noise levels at or above the action level, followed by periodic 
audiometric monitoring to detect early signs of hearing loss (Moroe 
et al., 2022). Additionally, education and training should form part of 
HCPs where the goal is to raise employees’ and supervisors’ awareness 
about the risks of ONIHL (Moroe et al., 2018), proper use of HPDs 
(Ntlhakana et  al., 2015), and the importance of complying with 

hearing conservation measures. For HCPs to be successful, legislation 
and regulations dictate that employers must maintain records of noise 
measurements, risk assessments, audiometric tests, and training 
provided to employees, and that these records should be  readily 
available for inspection by relevant authorities (Amedofu and Fuente, 
2008; Moroe N., 2020). Compliance with and enforcement of these 
regulations and legislation is the responsibility of the South African 
Department of Employment and Labour, which is responsible for 
enforcing occupational health and safety regulations, including those 
related to ONIHL.

Key points in South  African legislation regulations, which 
comprehensively cover the hierarchy of controls including noise level 
limits, hearing conservation programs, engineering controls, 
education and training, monitoring and reporting are similar to those 
meant to be adhered to globally including in the Americas (Latin 
America, Canada, and the United  States) and the rest of Africa 
(Arenas and Suter, 2014; Moroe et al., 2018). The main difference is 
the application and implementation of these, for example what each 
country’s defined values for permissible exposure limit (PEL) is, and 
if and how legislation enforcement occurs (Moroe et al., 2018). Where 
some countries ensure effective enforcement of regulations through 
inspections, penalties for non-compliance, and incentives for 
compliance; other countries do not (Moroe et al., 2018).

While HCPs in South  Africa aim to address ONIHL, several 
challenges exist in their implementation (Moroe et al., 2018; Khoza-
Shangase et  al., 2020). Some documented common challenges 
associated with these programs include; lack of awareness and 
education among both employers and employees regarding the risks 
of ONIHL and the importance of hearing conservation measures 
(Moroe et al., 2018; Kanji et al., 2019). Inadequate and insufficient 
training and supervision regarding the implementation of HCPs, 
where employees and supervisors receive no or limited training on 
identifying noise hazards, selecting appropriate hearing protection, 
and conducting regular audiometric testing (Moroe and Khoza-
Shangase, 2018a,b). Limited resources, including capacity versus 
demand challenges around audiologists in the country, leading to 
inadequate noise control measures, insufficient provision of HPDs, 
and limited access to audiometric testing facilities (Moroe et al., 2018; 
Pillay et al., 2020). Compliance issues around hearing conservation 
regulations where employers struggle to meet the requirements for 
noise measurements, risk assessments, audiometric testing, and 
recordkeeping, mostly due to some employers not prioritizing hearing 
conservation or attempting to cut costs by disregarding regulations 
(Khoza-Shangase, 2022). Linguistic, cultural and behavioral factors 
where, for example, attitudes towards wearing HPDs pose challenges; 
and the language used for training and education is incongruent with 
the employees (Moroe N., 2020). Effective enforcement and 
monitoring can be a challenge, influenced by insufficient resources 
and limited inspections by regulatory authorities resulting in 
inadequate enforcement of regulations and insufficient follow-up on 
non-compliant mines (Khoza-Shangase, 2022); and cumulative noise 
exposure and burden of disease (HIV/AIDS and TB) where some 
employees are exposed to high noise levels from multiple sources, 
both in their occupational and non-occupational environments, and 
suffer concurrent toxins exposure where they are on ototoxic 
treatments for HIV/AIDS and TB (Khoza-Shangase, 2022), thus 
increasing their risk of ONIHL and making it more challenging to 
control and mitigate the effects solely through workplace HCPs that 
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do not take these factors into account. Addressing these challenges 
requires a multi-faceted approach that can be supported by the use of 
Internet of Things (IoT)-based hearing loss early monitoring systems 
as part of HCPs (Mardonova and Choi, 2018).

The main objective of this research work is to present a 
preliminary development of an AI based early monitoring system that 
integrates smart hearing protection with smart mine wearable 
watches. The developed system can provide significant benefits for 
mine workers as a form ONIHL early warning system. This system 
combines the capabilities of IoT devices, such as sensors and 
wearables, to monitor noise exposure levels and facilitate real-time 
monitoring and protection of the workers’ hearing when exposed to 
hazardous noise levels. By integrating IoT technology, smart hearing 
protection devices, and wearable watches, the current researchers aim 
to have a system that enables real-time monitoring, personalized 
protection, and early detection of hearing loss risks for mine workers. 
This system aims at enhancing worker safety, promoting proactive 
hearing health management, and contributing to a culture of 
prevention in the mining industry.

This early warning system includes numerous factors, for it to 
be efficient and successful, with positive outcomes for any HCP. Firstly, 
there has to be IoT sensors for noise monitoring that get strategically 
deployed in the mining environment to measure and monitor noise 
levels. These sensors can be  placed in key areas or attached to 
equipment to capture accurate and real-time noise data. In the current 
study, these sensors are part of smart hearing muffs that transmit the 
data to a central monitoring system for analysis. The miners wear 
smart hearing protection devices (SHPDs) with smart watches which 
are also equipped with sensors. These SHPDs can have built-in noise 
sensors and connectivity capabilities to communicate with the central 
monitoring system. The SHPDs can adjust noise attenuation levels 
based on real-time noise exposure and provide workers with audio 
cues and alerts. The mineworkers are provided with wearable watches 
that act as a central hub for integrating various IoT devices and 
functionalities. These watches can connect to the SHPDs, IoT sensors, 
and other wearables, consolidating data and enabling real-time 
monitoring, communication, and alerts. Secondly, the early warning 
system must have real-time monitoring and feedback capabilities, 
where the IoT-based system continuously collects noise data from the 
sensors and SHPDs, transmitting it to the wearable watches. Mine 
workers can access real-time noise exposure information, receive 
alerts when noise levels exceed safe thresholds, and obtain feedback 
on their personal noise exposure. Thirdly, the system can allow for 
data analysis and insights development, where the collected data is 
analysed by the central monitoring system to identify patterns, trends, 
and potential risks. Machine learning algorithms can be employed to 
recognize patterns of noise exposure and detect early signs of hearing 
loss. The system can generate personalized reports and insights for 
individual workers and mine management. This can be done because 
the system has alert mechanisms, where if the system detects excessive 
noise levels or potential risks of hearing loss, it triggers alerts through 
the wearable watches. These alerts can be  visual or auditory or 
vibrotactile, ensuring that mine workers are immediately aware of the 
hazards and can take necessary actions, such as adjusting their work 
practices or seeking quieter areas. Lastly, the system is set up to 
integrate with existing mine management systems and databases, 
allowing for seamless data sharing and accessibility. This integration 
facilitates comprehensive analysis, reporting, and decision-making 

processes related to hearing health and safety in the mining 
environment. Such an early warning system requires provision of 
comprehensive training to mine workers on using the IoT-based 
system, including the proper use of SHPDs and wearable watches. This 
includes conduction of awareness programs to educate workers about 
the importance of hearing protection and the benefits of the early 
monitoring system. These training sessions, and refresher courses, 
need to be conducted regularly to ensure effective and ongoing usage 
of the system. Ensuring that privacy and security considerations have 
been addressed is important as well. Implementation of robust privacy 
and security measures to protect worker data collected by the IoT 
devices, with compliance with data protection regulations (POPIA), 
secure data transmission protocols, and clear communication on data 
usage and privacy policies are essential to build trust among mine 
workers where such an IoT-based system is being used as part of HCPs 
(Ntlhakana et  al., 2022). Another important consideration is the 
making sure that a robust maintenance plan to address issues related 
to IoT devices, wearables, and sensors is in place. Regular updates, 
calibration, and technical support are crucial to maintaining the 
reliability and accuracy of the system.

Once the AI-based ONIHL early warning system is in place, it can 
bring numerous value and benefits to both workers and the mining 
industry. This value and advantages include the following: Improved 
worker safety, early detection and intervention, personalised risk 
assessment, increased awareness and education, cost reduction, 
regulatory compliance, long-term data analysis, continuous 
monitoring, enhanced Occupational Health Programs (OHPs), and 
technological advancement and innovation. These benefits can 
be crucial in the context of mines, where noise is excessive.

Background

Mining employees exposed to high noise levels often experience 
difficulty hearing high-frequency sounds initially (Edwards et  al., 
2010; Grobler et  al., 2020). Regardless of age or gender, the 
measurement of hearing loss is typically assessed through percentage 
loss of hearing (PLH) and standard threshold shifts (STS) (Department 
of Labour, 2001; Department of Mineral Resources, 2016). PLH is 
determined by calculating the decline in hearing thresholds at specific 
frequencies (0.5, 1, 2, 3, and 4 kHz), and a baseline audiogram is 
established using this data (Department of Labour, 2001). 
South  African hearing conservation practitioners employed this 
method for defining hearing loss for compensation purposes between 
2001 and 2016 (Department of Labour, 2001). The STS method, based 
on the International Organization for Standardization (ISO) standard 
ISO1999:2013, considers an 8 dB decline as indicative of early 
ONIHL. Since 2016, South  African mines have utilized the STS 
method to assess miners’ hearing, tracking STS deterioration as a 
precursor to hearing loss (Strauss et al., 2012; Grobler et al., 2020). In 
2008, the Department of Mineral Resources and Energy (DMRE) 
established NIHL milestones for the mining industry, aiming to 
prevent hearing deterioration beyond 10 % in occupationally exposed 
individuals after December 2008 (Department of Minerals and 
Energy, 2008; Msiza, 2014). Despite efforts, hearing loss prevention 
was not entirely successful (Edwards and Kritzinger, 2012; Moroe and 
Khoza-Shangase, 2018a,b), leading to revised milestones in 2014, 
where no employee’s STS should exceed 10 dBHL from the baseline 
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when averaged at 2000, 3000, and 4,000 Hz in one or both ears by 
December 2016 (MHSC, 2015; Moroe N. F., 2020). Therefore, STS 
became a prioritized metric for measuring hearing loss in miners.

Normal hearing is denoted as 0 dBHL (Chamber of Mines, 2016), 
and a STS is defined as an average shift in hearing threshold of 10 
dBHL. While no hearing loss occurs at this stage, any shift greater than 
10 dBHL should be reported, triggering further investigation and 
intervention (Chamber of Mines, 2016). A shift exceeding 25 dBHL 
for one or both ears indicates actual hearing loss, requiring diagnostic 
audiometry confirmation (Department of Mineral Resources, 2016). 
The use of STS to describe the hearing function of workers exposed to 
excessive noise levels has been a global practice since the early 2000s 
(Heyer et al., 2011; Masterson et al., 2015). The hearing loss prevention 
efforts in the South African mining industry, aligned with the NIHL 
2016 milestones, now mirror those of developed countries like the 
United States. However, the efficacy of these interventions will only 
be assessed in 2024 (MHSC, 2015).

Developing an Artificial Intelligence (AI) based Occupational 
Noise Induced Hearing Loss (ONIHL) early warning system for mine 
workers can be a valuable initiative to safeguard their hearing health. 
Such a system can help identify potential risks and provide timely 
alerts to prevent or mitigate the harmful effects of noise exposure. The 
development process for such a system requires numerous steps 
depicted in Figure 1.

At present, various wired (Dohare et al., 2015; Ikeda et al., 2021; 
Kolade et  al., 2021; Kolade and Cheng, 2021) and wireless 
communication technologies are available that meet the minimum 
mandatory criteria for the data broadcast speed and range to support 
remote mining operations and advanced monitoring systems. The 
data transmission diagram by Ikeda et al. (2021) and Figure 2.

The internet and WIFI technologies that are currently 
implemented in the mines ensure the efficient transmission and 
transfer of information. The transmission diagram in Figure  2 
demonstrates how the smart technology is integrated with 
hearing protection.

Materials and methods

Development of the AI based early warning system.

Procedure

A smart system that continuously monitors noise levels in mine 
environments was developed. This system is made up of noise 
attenuation headphones, server-based AI algorithms and a smart 
watch. The headphones are equipped with sound sensors, and they 
collect information about the sound (sound intensity levels and the 
frequency) an individual mining employee is being exposed to. The 
dataset that contains the sound level of exposure for each mine worker 
is transmitted from the headphones to storage in a database. The 
collected data (sound intensity levels and frequency) is then fed into 
the trained AI model on the server.

To develop, train and test the AI subsystem of the smart system, a 
comprehensive dataset with various features is collected from various 
environments in a platinum mine. The features of interest in the 
collected data were noise level measurements, duration of exposure, 
corresponding audiometric test results, age, and gender. The data was 
cleaned and relevant features that can be used by the AI model such 

FIGURE 1

Development process for an AI-based ONIHL early warning system.
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as duration of exposure, sound intensity of exposure and frequency, 
were extracted. The audiometric data were combined with the noise 
exposure data to establish the relationship between noise levels and 
hearing loss progression. This step was essential in training the AI 
models to recognize patterns and detect early signs of ONIHL. Machine 
learning techniques, random forest, support vector machines and 
logistic regression were utilized to train the AI model. For the AI 
subsystem, the target feature was the threshold shift of a miner worker 
defined as the average change in hearing of 10 decibels or more at 
speech frequencies (2,000–4,000 Hz) in both or one ear in comparison 
to the mine workers baseline audiogram. A 10-fold cross validation 
was ran with a split of 80 and 20% randomly shuffled training and 
testing set, respectively. The K means is used to cluster the mine 
workers and then using the threshold shift, the mine workers are 
classified the mine worker according to level of priority. A predicted 
threshold shift of less than 40 is viewed as low priority, between 40 and 
60 is moderate priority, a threshold shift between 60 and 90 has a high 
priority and a threshold shift of greater than 90 has extreme priority. 
The various levels of priority are linked to various recommendations 
messages which are communicated to the mining employee via the 
smart watch. The low priority does not receive any messages while 
moderate priority receives a message to remind the mine workers to 
continue wearing their hearing protection correctly. The high and 
extreme priority receive a warning message and in addition to that a 
vibrotactile signal is triggered on the smart watch.

Demographics and inclusion criteria

The initial training of the AI model required data. The data set 
used was obtained from a platinum mine in South  Africa. The 
demographics of the dataset used to train the AI model is as follows: 
A total of 12,596 mine workers are in the platinum mine where this 
study was conducted. 11% of this mining population is female and 

89% male. The age distribution indicates appropriate variation with 
6,800 workers being younger than 40 years, 4,800 between ages 41 and 
55, and 996 being between the ages of 55 and 65 years of age. The 
designed system targets occupations that are normally exposed to 
occupational noise for extended periods of time. Therefore, a dataset 
for 1,350 employees consisting of both male and female mining 
employees with ages ranging from 18 to 60 years old was used to train 
the AI model. This sample size for training the AI model was deemed 
adequate for reliable results as a good sample size is usually 
approximately 10% of the population, if this does not exceed 1,000 
(Carmen and Betsy, 2007).

General description of the subsystems of 
the developed early warning system

Figures  3, 4 shows the block diagram and the pictorial 
representation of the Occupational Noise-Induced Hearing Loss and 
early warning system.

The mining employee is exposed to the level of noise the machine 
produces. A smart watch that capitalizes on the availability of WIFI 
and sensors in the mining environment is used to communicate with 
the hearing protection to provide mine workers with information 
about their surrounding and to enable communication. With the 
smart watch, the location of the individual mine worker can 
be established in real time by the mining administrators on the surface 
of the mine. This facilitates the ability of the administrators to check 
the conditions of the location, for example, the level of noise in the 
location where the mine worker is currently located. Personalised 
warning or recommendation messages can be sent to the mine worker. 
The important features the smart watch has for monitoring of the 
mine worker’s state of hearing are: Mine worker’s real-time location 
tracking, incident reporting and feedback-based communication. The 
mine workers can use the smart watch to report on incidences related 

FIGURE 2

The data transmission diagram (Ikeda et al., 2021).
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to excessive noise that could be coming from faulty equipment or 
malfunctioning hearing protection. The integration of the system with 
Artificial intelligence permits for the real time automated early 
warning and recommendations alerts to be sent to the mine workers. 
The sound sensors set up within the mines provide essential 
information on areas within the mines with excessive noise that could 
be due to equipment failure. The mine worker can receive immediate 
alerts through the vibration of the smart watch. The smart watch 
applies IoT and can communicate with the hearing protection via 
Bluetooth technology. Several authors have made use of the ESP-32 as 
the basis for their smart-watch design (Volsa et al., 2022; Himi et al., 
2023; Joseph, 2023; Puckett and Emil, 2023). The smart hearing 
protection can monitor real time noise levels using the sensors 
installed on it and cloud technology. The current levels of exposure to 
sound, which includes the intensity, and the frequency of exposure is 

collected by the hearing protection and transmitted to the cloud 
storage via a mobile app.

The mining administrators can conduct real time monitoring of 
the sound levels and the frequencies using the datasets. With this 
integrated system, the employees can be informed of their current 
levels of exposure at any time. With the integrated system, the mine 
worker can be  informed whether the hearing protection is worn 
correctly or not. The mine worker can also be provided with warnings 
in the form of vibration of the smart watch which is integrated with 
the smart hearing device or other visual systems that can also 
be integrated into this system. The information collected from the 
smart watch and the hearing protection is stored in a robust data 
storage solution. To ensure control over the data and the application 
of the AI models, cloud storage is chosen. This type of storage ensures 
that the data can be recovered in case there is a problem on site in the 

FIGURE 3

The block diagram of the ONIHL early warning and monitoring system.

FIGURE 4

A pictorial representation ONIHL early warning and monitoring system.
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mines. The cloud storage also requires little expertise for 
implementation with a few resources.

The AI subsystem is used in estimation of the mine worker’s 
threshold shift. The degree of priority is classified with the change in 
threshold shift. There are four classes of priority of threshold shift. 
These classes are low, moderate, high and extreme. The mining 
employee’s threshold shift is categorized and depending on the 
category recommendations are provided. The AI subsystem is also 
used to process the sound intensity patterns at particular frequencies 
and to provide the mine workers with recommendations of the actions 
they should take if necessary. Further details on the AI subsystems 
have already been published by the authors in previous works 
(Madahana et  al., 2019a,b, 2020). The feedback loops allow for a 
two-way communication between the mine administrators on the 
surface and the mine employees. The feedback loops are from the 
mine administrator to the smart watch and from the smart watch to 
the hearing protection. These two systems can also be decoupled and 
in case the smart watch is not functioning, then the hearing muffs can 
still be used and in this case, the mine worker will depend on other 
visual warning systems in the mines that have been integrated with 
the system as a supplement.

Implementation of the laboratory test rig

The laboratory test rig was built to test the proposed system. It 
consists of a smart watch, smart headsets, computer cluster, cloud 
storage, hydraulic shaping machine, Variable Direct Current (VDC) 
machine. The hydraulic shaping machine emits noise between 90 to 
110 decibels depending on the various settings and activities. The 
Variable direct current emits a noise of 91.3–100.7 decibels. The 
system is connected as shown in Figures 3, 4, the drilling machine is 
replaced with the hydraulic shaping Machine and the VDC machine. 
The variable direct current machine shown in Figure  5C. The 
participants have their hearing checked in the psychometric booth 
shown in Figure 5D to ensure that their state of hearing health is 
known. The participant wears both the smart watch and the smart 
headset. The information obtained from the smart watch and the 
headset is transmitted via WIFI to a cloud storage. The information is 
then extracted from the cloud storage, AI models are applied to 
process the information and the appropriate recommendation is sent 
to the participant. The Participant tests the systems by moving 60 m 
away and thereafter, the distance is reduced until the participant is 
0.5 m away from the machine. Different recommendation messages 
are sent to the participant smart watch at the various distance. The 
sound level metres in Figure 6 are used to measure the sound intensity 
of the machine. Figure  5A shows the shearing machine, which is 
simulated using hydraulic shaping machine, shown in Figure 5B. The 
preliminary integrated prototype is tested by allowing user to wear 
both the headphone and the smart watch, exposing them to noise at 
various decibels and frequency and observing the recommendations 
messages that are sent to the smart watch. One of the significant roles 
that audiologist plays during the testing of the integrated system is 
verification and validation of the system. The South African Mines 
usually have an audiologist who designs the Hearing Conservation 
Program for the mine. It is therefore imperative that audiologists 
be involved in the research, designing, testing and implementation of 
any system that would assist in minimizing the risks of ONIHL in the 

mines. The audiologist provides valuable feedback on the suitability of 
the integrated system and whether the user is wearing the hearing 
protection correctly.

The entire testing is conducted in the presence of audiologists to 
ensure that the participants are not exposed to any occupational noise 
and that the smart muffs provide sufficient attenuation.

Figure 7A shows the overall systems diagram of the Smart watch. 
The functioning of the smart watch is centred around the ESP32-
WROOM-32 development board provides computational power as 
well as wireless internet and Bluetooth connectivity. The user inputs 
are switches which allow the mine worker to switch the watch on and 
off as well as toggle between various functions. The watch is powered 
by a Li-po battery, and a power management system is used to control 
the charging and discharging of the battery. Various sensor inputs are 
available to provide functionality during surface mining activities: (1) 
The ambient light sensor automatically adjusts the brightness of the 
screen and saves battery life. (2) The magnetometer is to be used for 
direction (compass). (3) Heart rate and Oxygen Saturation sensing for 
cardiovascular health. (4) The accelerometer for motion detection. 
During sub-surface mining, the magnetometer may be affected by the 
underground environment. The outputs of the smart watch are: (1) 
The Watch display which can be  used to read time as well as 
notifications related to sound level and warnings related to NIHL due 
to environmental conditions. (2) The haptic vibration motor will 
vibrate during notifications as sent to the watch as well as when the 
mine worker is not wearing the hearing protection. (3) A micro-SD 
card is also available to log data.

Figure  7B shows the overall systems diagram of the Smart 
Earmuffs. Traditional earmuffs are equipped with additional sound 
sensors that can collect information from the environment. Similar to 
the smart watch, the ESP32-WROOM-32 development board 
provides computational power, wireless internet connection and 
Bluetooth connectivity. The user inputs are switches which allow the 
mine worker to switch the earmuffs on and off. The earmuffs are 
powered by a Li-po battery and a power management system is used 
to control the charging and discharging of the battery. The various 
sensor inputs are available to provide functionality during both 
surface and sub-surface mining activities: (1) The Microphones are 
used to pick up ambient sound to be used for a noise level meter that 
measures ambient sound in decibels. The noise level meter 
measurements are used to provide the mine worker with an 
instantaneous warning should the sound level reach dangerous limits. 
These warning messages appear on the smart watch accompanied by 
vibrations from the haptic vibration motor. In addition, the readings 
are sent wirelessly by the ESP32 for further processing in the cloud. 
(2) The capacitative sensors are used to detect whether the mineworker 
is correctly wearing the hearing protection. The messages are sent to 
the cloud and can be seen by administrators and warning messages 
are sent to the smart watch accompanied by vibration from the haptic 
vibration motor.

Test environment

Performing experiments in real underground environments is a 
rigorous process that requires permission from the mining stake 
holders. In addition to that, it can hinder normal operations from 
occurring while exposing researchers to unnecessary risks (Hussain 
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et al., 2017). For rapid and repetitive testing of the developed prototype 
the Wits mock mine built under the Chamber of Mines building at the 
University of the Witwatersrand, Johannesburg (South Africa) was used. 
Some of the aspects of a mine that have previously been tested in this 
mock mine are and not limited to mine safety, tunnel economics, 
improved ventilation, energy savings and communication within a mine 
(Hussain et al., 2017). Comparable to actual mine, is made up of three 
sections: an arc shaped tunnel in the basement of the building, a stope 
panel and a vertical shaft. The tunnel is closed on one side and open on 
the other side. The roof of the mock mine represents the surface of the 
mine, and it is shallow from the open end and gets deeper towards the 
closed end. The mock-mine shape, size of the tunnel, steel-support 
infrastructure, and ventilation system are analogous to deep hard-rock 
mines. Actual underground mine material has been used to build the 
mock mine to ensure it mimics a real mine as close as possible. The 
mock mine is equipped with a weather station, asset management 
system, seismometer, crack meter, stress meter, asset management and 
video analytics system. The wireless channel propagation of the mock-
mine is statistically characterized in 2.4–2.5 GHz frequency band 
(Zaman et  al., 2018). Data from various systems is collected and 

FIGURE 5

(A) The hydraulic shaping machines. (B) Shearing machine. (C) Variable direct current machines. (D) Psychometric booth.

FIGURE 6

Sound level meter.
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displayed in the control room adjacent to the mock mine. The mock 
mine has an intelligent lamp room that prevents miners with inoperative 
equipment to enter the mine. It also has a rescue chamber, where all the 
miners can gather in case of a disaster. The tunnel for the mock mine is 
shown in Figure 8. The sample size used for the first stage of testing was 
50 individuals made up of both male and female participants, whose 

ages ranged from 18 years to 60 years. The experimental protocols 
employed were approved by the ethics committee (The University of the 
Witwatersrand) and concur with the Helsinki Declaration. The study 
falls within the greater scope of another study titled “Feedback based 
estimation of Noise Induced Hearing Loss in the mines” and it has an 
ethical clearance number W-CBP-180305-01.

Results and discussion

Results

Table 1 shows the performance of the machine learning algorithm 
used. The Random forest classifier outperformed the other algorithms.

Table 2 shows the testing of the integrated system.

Discussion

In the context of the ONIHL, early warning and monitoring system 
for the mining industry, proactive and predictive approaches hold 
significant importance. By taking a proactive stance, the system identifies 

FIGURE 7

(A) Overall systems diagram indicating the subsystems in the ESP32 Smart watch. (B) Overall systems diagram indicating the subsystems in the ESP32 
Smart Earmuffs.

FIGURE 8

Wits mock mine tunnel.

99

https://doi.org/10.3389/fnins.2024.1321357
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Madahana et al. 10.3389/fnins.2024.1321357

Frontiers in Neuroscience 10 frontiersin.org

potential risks before they escalate, thus allowing for timely risk 
identification. It allows for the early detection of elevated noise levels and 
emerging patterns that could lead to hearing loss among mine workers. 
Early identification enables the implementation of preventive measures. 
These measures could include timely interventions, adjustments in work 
practices, or the use of enhanced PPE to minimize the risk of occupational 
noise-induced hearing loss. The predictive approach and the system’s 
predictive capabilities, driven by machine learning algorithms, allow for 
continuous monitoring of noise levels and associated factors. This ensures 
that any changes or trends in the working environment are promptly 
detected. Machine learning algorithms used in the developed system are 
trained to recognize patterns in the data. This includes identifying specific 
combinations of noise intensity, duration of exposure, and other variables 
that correlate with an increased risk of hearing loss. Predictive analytics 
help in forecasting potential issues based on these patterns. The predictive 
nature of the system enhances the alert mechanism. Instead of responding 
solely to current conditions, the system can anticipate future risks based 
on historical data, providing a more optimized and proactive alert system. 
Predictive analytics assist in the efficient allocation of resources. By 
forecasting when and where increased noise exposure is likely to occur, 
mine operators can deploy interventions strategically, focusing resources 
where they are most needed.

Combining proactive and predictive approaches allows for the 
development of comprehensive risk mitigation strategies. This involves 
not only addressing immediate concerns but also planning for long-term 
measures to reduce the overall risk of ONIHL in the mining 
environment. The goal is to enhance worker safety. Proactive measures 
prevent potential risks, while predictive analytics contribute to a more 
sophisticated and responsive safety infrastructure. This, in turn, 
minimizes the likelihood of ONIHL incidents. Being proactive in 
identifying and addressing risks ensures that the developed system aligns 
with regulatory standards. This is crucial for maintaining compliance 
with occupational health and safety guidelines specific to noise exposure 
in mining operations. By adopting proactive and predictive approaches, 
the ONIHL early warning and monitoring system aims for a lasting 
impact. Continuous evaluation, refinement, and adherence to safety 
protocols contribute to sustained worker well-being over the long term.

An alert mechanism that triggers warnings when the AI model 
detects excessive noise levels or predicts an increased risk of ONIHL 
for mine workers was implemented. These alerts can be sent to the 
workers, supervisors, or safety officers through visual or auditory 
means. Integrated smart hearing protection and wearable mining 
watches can contribute to hearing loss prevention as they could 
be categorized as PPE and administration in the hierarchy of controls. 

TABLE 1 Performance of the machine learning algorithms.

Model Average training accuracy Average testing accuracy

Logistic regression 74.56 77.25

Support vector machines 86.00 99.12

Decision tree 92.25 99.89

Random forest classifier 91.88 99.58

TABLE 2 Testing of the integrated system.

Distance of participant 
from machine (meters)

Priority level Recommendation Observation

Machine off Low priority None No recommendations messages were 

received

60 low None No recommendations messages were 

received

50 low None No recommendations messages were 

received

40 low Please wear your hearing protection Successful SMS

30 Moderate Hearing protection should be worn correctly Successful SMS

20 Moderate Hearing protection should be worn correctly Successful SMS

10 Moderate Hearing protection should be worn correctly Successful SMS

5 High Hearing protection should be worn correctly or step out of 

the section

Successful SMS

2 High Hearing protection should be worn correctly or step out of 

the section

Successful

1 High Hearing protection should be worn correctly or step out of 

the section

Successful

0.5 Extreme  • Hearing protection should be worn correctly or step out 

of the section

 • Vibration.

Successful SMS and vibration
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These form part of preventative audiology efforts where the focus is 
on preventive care rather than compensatory care. This preventive goal 
is achieved when the smart watch and the hearing protection work 
collaboratively to ensure preservation of hearing among mine workers 
by sending alerts and recommendation messages regarding the work 
context as well as the miner’s state of hearing.

Recommendations and conclusions

In summary, the importance of proactive and predictive approaches, 
as in the proposed, lies in their ability to prevent, identify, and address 
risks systematically, fostering a safer and healthier working environment 
for mine workers. The ONIHL early warning and monitoring system 
employs a holistic approach, integrating advanced technologies, machine 
learning, and real-time monitoring to effectively address the risk of 
ONIHL in the mining industry. Bearing the above in mind, several steps 
remain to be completed in future. Firstly, evaluation and refinement of the 
system still needs to be done. The performance of the AI model and the 
effectiveness of the early warning system need to be  continuously 
evaluated. In this process, feedback from mine workers and stakeholders 
will be collected to identify areas for improvement and refine the system 
accordingly. Secondly, regulatory compliance needs to be ensured. The 
developed system requires the researchers to ensure that it aligns with 
relevant safety regulations and standards for noise exposure in mining 
operations. Compliance with occupational health and safety guidelines is 
crucial to ensure the well-being of workers. Lastly, deployment and 
training of the system is yet to be performed. The system still needs to 
be deployed in mine sites and adequate training be provided to workers 
and supervisors on how to interpret and respond to the warnings. Regular 
training sessions and awareness programs can help promote a safety-
conscious culture. The development design and preliminary 
implementation of a test prototype for a ONIHL early warning and 
monitoring system has been presented. This system will play a 
fundamental role in ensuring that the risks of ONIHL in the South African 
mines is minimized or mitigated. For this system to be work efficiently, 
mine workers will have to be trained on the correct ways to wear the smart 
watches and the hearing protection.
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Introduction: In 2022, the US Food and Drug Administration enacted final 
regulations to establish the category of over-the-counter (OTC) hearing aids 
aimed at reducing barriers to access hearing health care for individuals with 
self-perceived mild to moderate hearing loss. However, given the infancy 
of this device category, the effectiveness of OTC hearing aids in real-world 
environments is not yet well understood.

Methods and results: To gain insights into the perceived benefit of self-fitting 
OTC hearing aids, a two-pronged investigation was conducted. In the primary 
investigation, 255 active users of a self-fitting OTC hearing aid were surveyed 
on their perceived benefit using an abridged form of the Satisfaction with 
Amplification in Daily Living (SADL) scale. The mean global (4.9) and subscale 
scores (Positive Effect (PE): 4.3; Negative Features (NF): 4.3; Personal Image (PI): 
6.1) were within the range of those previously reported for users of prescription 
hearing aids. In the secondary investigation, 29 individuals with self-reported 
hearing impairment but no prior experience with the investigational self-fitting 
OTC hearing aids used the devices and reported their perceived benefit and 
satisfaction following short-term usage. For this prospective group, the global 
SADL (5.4) and subscale scores (PE: 4.8; NF: 4.9; PI: 6.5) following a minimum 
of 10  weeks of real-world use were also within the range of those previously 
reported for traditional hearing aid users. In addition, this prospective group 
was also asked quality of life questions which assessed psychological benefits 
of hearing aid use. Responses to these items suggest hearing aid related 
improvements in several areas spanning emotional health, relationships at home 
and at work, social life, participation in group activities, confidence and feelings 
about one’s self, ability to communicate effectively, and romance.

Discussion: Converging data from these investigations suggest that self-fitting 
OTC hearing aids can potentially provide their intended users with a level of 
subjective benefit comparable to what prescription hearing aid users might 
experience.

KEYWORDS

hearing loss, over-the-counter hearing aids, patient satisfaction, quality of life, SADL

1 Introduction

According to the National Institute on Deafness and Other Communication Disorders 
(NIDCD), approximately 28.8 million adults in the United States could benefit from the use 
of hearing aids (NIDCD, 2021). Hearing loss is a prevalent condition with approximately 40 
million adults (15%) in the United States reporting having at least a little trouble with hearing 
(Pleis and Lethbridge-Cejku, 2007). Hearing loss is disproportionately overrepresented among 
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older adults, with nearly 25% of American adults aged 45 years and 
older reporting trouble hearing (Pleis and Lethbridge-Cejku, 2007), 
and its prevalence doubling with each additional decade of life (Lin 
et al., 2011).

In addition to affecting one’s ability to communicate, hearing loss 
has also been associated with adverse physical and mental health 
outcomes. Among older adults over 70 years of age, those with hearing 
loss were also more likely to have a history of cardiovascular disease 
and stroke, resulting in an increased mortality risk (Contrera et al., 
2015). Hearing loss is also associated with worse depressive symptoms 
(West et al., 2023), greater prevalence of dementia (Huang et al., 2023), 
higher rates of difficulties in activities of daily living (Dalton et al., 
2003; Choi et al., 2016), and poorer quality of life (QoL), especially 
pertaining to social and emotional relationships (Ciorba et al., 2012).

While associations between hearing loss and adverse health 
outcomes are correlational, hearing loss is considered a modifiable risk 
factor, and its rehabilitation may have some potential to lessen the 
deterioration of health and quality of life. Early screening and 
adoption of hearing aid use can play a role in maintaining a positive 
quality of life (Brodie et al., 2018), and hearing aid use has also been 
associated with reduced anxiety and depression symptoms, improved 
QoL indicators, and reduced hearing-related social and emotional 
impediments (Ciorba et al., 2012). Among older adults with moderate 
to severe hearing loss, hearing aid use has been associated with lower 
prevalence of dementia (Huang et al., 2023), and a recent intervention 
study showed that older adults who were at greater risk of cognitive 
decline showed less cognitive decline following hearing aid use than 
those who did not use hearing aids (Lin et al., 2023).

Although the evidence for the rehabilitative benefits of hearing 
aids continues to accumulate, widespread hearing aid adoption has 
been stymied by factors such as lack of awareness and motivation 
(Angara et al., 2021; Zheng et al., 2023), as well as difficulty accessing 
hearing healthcare, all of which may contribute to the delayed 
diagnosis and treatment of hearing loss. Furthermore, while hearing 
aids are viewed as a relatively cost-effective rehabilitation tool, 
disparate insurance reimbursement policies and potentially high 
out-of-pocket costs can present a financial barrier to entry (Jilla et al., 
2023). These factors can lead to individuals with hearing loss to not 
seek hearing healthcare altogether or only begin to use hearing aids 
after their condition has already worsened significantly.

Although the NIDCD reports the need for hearing aid adoption 
is high, usage continues to be low with 30% utilization for hearing aid 
candidates aged 70 and above and 16% utilization for candidates aged 
20 to 69 (NIDCD, 2021). In recognition of this, the United States Food 
and Drug Administration (FDA) established a new category of over-
the-counter (OTC) hearing aids for adults with self-perceived mild to 
moderate hearing impairment. By creating the OTC hearing aid 
category, the FDA hopes to reduce barriers to access and readily 
unlock the benefits associated with hearing aid use for those with 
hearing loss (FDA, 2023).

The OTC category of hearing aids aims to promote hearing aid 
adoption and use through two main objectives: 1) by establishing a 
category of devices that is accessible independent of the involvement 
of a hearing healthcare professional, and 2) by ensuring that the 
devices can be  controlled (i.e., adjusted) directly by the end user 
(21CFR800.30, n.d.). By definition, OTC hearing aids are 
air-conduction hearing aids that do not require a hearing healthcare 
professional to procure or prescribe, and do not require implantation 

or other surgical means to fit to a user’s ears. Such devices must also 
have user controls that enable the end user to adjust the devices based 
on their hearing needs.

To mitigate the risks associated with making such medical devices 
available to a potentially broad user base, device manufacturers must 
satisfy a range of controls in order for a product to meet the 
requirements of an OTC hearing aid (21CFR800.30, n.d.). These 
controls include software labeling, device output limits (i.e., maximum 
acoustic output limits), electroacoustic performance (e.g., distortion, 
latency, frequency response), and design requirements (e.g., maximum 
insertion depth, use of atraumatic materials, user controls).

There are broadly two kinds of OTC hearing aids: those with 
preset amplification levels, and those that are self-fitting. Self-fitting 
OTC hearing aids, which can be customized based on an individual’s 
hearing loss, require FDA 510(k) clearance, including submission 
of clinical data, to validate the effectiveness of the self-fitting 
strategy. Self-fitting OTC hearing aids aim to be easily-accessible 
and user-friendly, as they can be  obtained and fit without the 
involvement of a hearing healthcare professional. Removing the 
need to be  seen in-person by a hearing care professional may 
encourage more people with hearing loss to use hearing aids, and 
at earlier stages of their hearing loss progression, by providing 
direct access to OTC devices.

While self-fitting OTC hearing aids intend to be more accessible, 
whether these devices will be perceived as beneficial in isolation and/
or compared to prescription hearing aids fit by an audiologist 
following real world device wear by its users is yet to be seen. Clinically 
validated questionnaires have been developed to investigate the 
satisfaction of hearing aid users with real world device wear. Among 
the most known and used is the Satisfaction with Amplification in 
Daily Life questionnaire (SADL; Cox and Alexander, 1999). The SADL 
was developed to ascertain an overall sense of a user’s satisfaction with 
hearing aids, as well as satisfaction in more specific areas related to 
hearing aid procurement and use (e.g., positive effect, service and cost, 
negative features, and personal image). Thus, the SADL aimed to 
quantify the degree of satisfaction with the use of a hearing aid, its 
perceived benefit, and allow for the identification of adverse aspects 
of adaptation of hearing aids.

While the real-world benefits and satisfaction with prescription 
hearing aids (fit by an audiologist following clinical best practice 
methods) have been extensively studied using surveys such as SADL, 
perceived benefit from the use of OTC hearing aids has been 
minimally studied. In the current study, we seek to gain insight into 
the extent to which users of a commercially-available, FDA-cleared 
self-fitting OTC hearing aid system report satisfaction and a sense of 
perceived benefit following real-world device use. To gain insights into 
the perceived benefit of OTC hearing aids, we  conducted 1) a 
retrospective satisfaction survey study involving current users of an 
FDA-cleared self-fitting OTC hearing aids, and 2) a prospective cohort 
study with individuals who fit the description of the intended users of 
OTC hearing aids who had not previously used the investigational 
self-fitting OTC hearing aids.

The retrospective satisfaction survey would provide a better 
understanding of the impact of self-fitting hearing aids after its users 
acclimatized to and integrated the devices into their everyday lives, 
whereas the prospective cohort study would provide insight into the 
onboarding journey and usage experience of those who are new to the 
investigational self-fitting hearing aids.
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2 Methods

In the context of these investigations, the study devices were 
commercially available Eargo hearing (www.eargo.com; San Jose, 
CA) aids that have been cleared by the FDA to be marketed as a 
Class II self-fitting air-conduction hearing aid (K221698, n.d.) and 
meet the controls set forth by the OTC rule (21CFR800.30, n.d.). 
The Eargo self-fitting OTC hearing aid system consists of a pair of 
completely-in-the-canal (CIC) style hearing aids (left and right), a 
charging case, and a companion mobile app. The Eargo self-fitting 
hearing aid uses a proprietary method that requires the user to 
complete a self-guided hearing assessment using the mobile app 
while wearing the hearing aids. The hearing aids act as the 
transducer, emitting tonal stimuli of varying levels at different 
audiometric frequencies. The measured hearing thresholds are then 
used as the basis for fitting the appropriate gain settings for the user. 
Once fit, the user can make additional adjustments (e.g., volume, 
bass/treble) to the left, right, or both hearing aids using the mobile 
app to achieve a desired fitting. Eargo’s self-fitting hearing aids have 
been rigorously clinically validated and has been shown to provide 
adults with mild to moderate hearing loss with functional 
performance that is non-inferior to that provided by a professional 
hearing aid fitting (Hu et  al., 2022; Urbanski et  al., 2022; 
K221698, n.d.).

2.1 Retrospective self-fitting OTC hearing 
aid use satisfaction

To gain an understanding of user satisfaction and perceived 
benefit associated with the use of Eargo self-fitting OTC hearing aids, 
we  leveraged the Eargo user base to identify individuals who had 
purchased an Eargo self-fitting OTC hearing aid and who had 
completed the product’s self-fitting feature using its companion 
mobile application. In addition, we limited the query to identify only 
those who have purchased their devices at least 90 days prior to 
executing the query to constrain the sample to those who have had a 
chance to acclimatize to the hearing aids.

A random sample of subjects among those meeting the above 
criteria were invited to participate in a web-based survey about their 
experience using Eargo self-fitting OTC devices. Participation in the 
survey study was completely voluntary, and those who consented to 
participate in the survey received compensation in the form of a $25 
Amazon gift card. The survey consisted of device usability and 
satisfaction questions, including questions from an abridged form of 
the Satisfaction with Amplification in Daily Living (SADL) 
questionnaire (Cox and Alexander, 1999).

The SADL scale is a 15-item questionnaire that assesses 
satisfaction with the use of hearing aids. With the SADL, hearing aid 
satisfaction can be interpreted using a global score as well as four 
subscale scores. The global and subscale satisfaction scores are 
interpreted on a 7-point scale, with 1 corresponding to least 
satisfaction (“Not At All”) and 7 corresponding to the greatest 
satisfaction (“Tremendously”). There are four items that are phrased 
in the negative, and therefore, reverse scored. The scoring of the global 
and individual subscales is otherwise straight-forward, with the global 
score calculated as the mean score of all items completed by the 
participant, and individual subscale scores calculated as the mean 

score of all items completed by the participant within each subscale. 
The derived subscale and global satisfaction scores are interpreted 
with higher scores corresponding to higher satisfaction.

The individual subscales are: Positive Effect (PE): assessing 
functional benefit and satisfaction with overall hearing aid sound 
quality and use; Service & Cost (SC): assessing the fitting 
professional, product cost, and reliability/maintenance of hearing 
aids; Negative Features (NF): assessing the satisfaction with acoustic 
performance and feedback in specific challenging conditions; and 
Personal Image (PI): assessing the satisfaction with the hearing aids’ 
in-situ physical appearance and perceived stigma when wearing 
hearing aids.

The SADL inventory was originally developed to evaluate 
satisfaction with prescription hearing aids well before the OTC 
category of hearing aids was established. Therefore, items related to 
SC may not accurately assess user sentiment in the context of OTC 
hearing aids, nor offer a meaningful interpretation of its score 
compared to the published norms for prescription hearing aid use. As 
such, questions related to SC were not included in the abridged SADL 
questionnaire administered to the users of Eargo self-fitting OTC 
hearing aids. The scoring instructions permit the omission of 
individual items with respect to subscale and global scores. However, 
as the omission of individual items impacts the calculation of the 
global SADL score, this metric should be interpreted to exclude the 
service and cost aspects of obtaining and using hearing aids and with 
caution while comparing with published normative data. However, the 
individual subscale satisfaction scores related to PE, NF, and PI do 
offer a more direct comparison with published norms for prescription 
hearing aids.

2.2 Prospective cohort: self-fitting OTC 
hearing aid use satisfaction

To gain an understanding of user satisfaction and perceived 
benefit associated with the first-time use of Eargo self-fitting OTC 
hearing aids among OTC hearing aid candidates, we  recruited 
individuals who met the description for OTC hearing aid intended 
users, and who had no prior experience with Eargo’s self-fitting OTC 
hearing aid products, to participate in a prospective cohort study. 
Potential candidates were recruited for screening via local 
advertising, word of mouth, and a customer database search. 
Intended users of OTC hearing aids were defined by the FDA as 
adults with self-reported mild-to-moderate hearing impairment, 
and this included individuals who have trouble hearing speech in 
noisy places, find it difficult to follow speech in groups, have trouble 
hearing on the phone, become tired when listening, and need to turn 
up the volume on the TV or radio to a level where other people 
complain it’s too loud.

Participants who met the criteria described above and who 
consented to participating in the study were provisioned with retail-
equivalent Eargo self-fitting OTC hearing aids (including all product 
package labeling and instructions for use that would accompany the 
system as if it were purchased commercially), along with a retail-
equivalent investigational companion mobile app.

To approximate the journey of a would-be retail client of Eargo 
self-fitting OTC hearing aids, we  asked participants to wear the 
devices to the extent that they found appropriate or desirable, and 
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TABLE 1 Retrospective and prospective sample characteristics.

Retrospective sample characteristics Prospective sample characteristics

Sample size: N = 255 N = 29

Age: 69 years (median) 70 years (median)

62–74.5 years (interquartile range) 64–77 years (interquartile range)

Gender: 79.2% male 72.4% male

20.4% female 27.6% female

0.4% other/prefer not to say 0% other/prefer not to say

Self-reported hearing difficulty Mild: 49% Mild: 37.9%

Moderate: 46.3% Moderate: 62.1%

Severe: 4.7% Severe: 0%

Self-reported device usage (weekly) 1–2 days/week: 22.4% 1–2 days/week: 14.3%

3–5 days/week: 28.6% 3–5 days/week: 50%

6–7 days/week: 49% 6–7 days/week: 35.7%

Self-reported device usage (daily) <4 h/day: 22% <4 h/day: 14.3%

4–8 h/day: 32.5% 4–8 h/day: 28.6%

8+ hours/day: 45.5% 8+ hours/day: 57.1%

Eargo self-fitting hearing aid use 

history

3–6 months: 34.9% <1 month: 6.9%

6–12 months: 48.2% 1–2 months: 51.7%

>12 months: 16.9% >2 months: 37.9%

Self-reported lifetime hearing aid use 

history

<1 year: 46.3% <1 year: 28%

1–10 years: 49% 1–10 years: 69%

>10 years: 4.7% >10 years: 3%

provided no further instructions apart from requesting that they 
perform the app-based self-fitting procedure. This was to ensure that 
participants experienced the self-fitting process and that they would 
be testing and providing feedback on a self-fit hearing aid system. 
Otherwise, participants were expected to navigate their own hearing 
aid onboarding journey by using their devices as often or occasionally 
as they wished, and to review the included instructional materials for 
device troubleshooting. Participants were allowed to contact study 
staff if they had any questions, and research staff provided a scope and 
extent of support that mirrored those available to retail clients.

While all enrolled participants had to meet the criterion of not 
having prior experience with Eargo self-fitting OTC hearing aids, they 
were not excluded if they had previously tried or used other 
hearing devices.

Participants were given at least 10 56 weeks to become familiar 
with the study devices and to use the devices as much or as little as 
they felt appropriate in their everyday lives. At the conclusion of the 
study, all participants were administered a web-based survey on their 
experiences and satisfaction with using the study device and provided 
compensation in the form of a $75 Amazon gift card for participating 
in the study. As the study enrollment occurred on a rolling basis, and 
the final survey administration occurred at a fixed time point, several 
participants spent more than the minimum 10 weeks testing the 
study devices.

The survey consisted of device usability and satisfaction items, 
including the same abridged SADL questionnaire described above 
for the retrospective study. Overall satisfaction (global SADL 
score) and satisfaction in PE, NF, and PI were assessed. In 

addition, subjects were also asked quality of life (QoL) questions 
adapted from the MarkeTrak VIII survey (Kochkin, 2011). These 
questions assessed whether hearing aid users endorsed 
improvements across various QoL domains – emotional health, 
mental ability (memory), physical health, relationships at home, 
relationships at work, social life, feelings about oneself, ability to 
participate in group activities, sense of independence, sense of 
safety, confidence in oneself, sense of humor, romance in one’s life, 
and overall ability to communicate more effectively – that 
participants believed to be attributable to hearing aid use. These 
questions were administered by asking respondents to “rate the 
changes you  have experienced in the following areas, that 
you believe are due to your hearing aids” and each scored on a 
4-point scale from 1 = “Worse” to 4 = “A lot better.”

3 Results

3.1 Retrospective self-fitting OTC hearing 
aid use satisfaction

We identified a random sample of 393 Eargo self-fitting hearing 
aid subjects, and among these, 255 subjects met the inclusion criterion 
of having completed self-fitting using their hearing aids and the 
mobile app, and completed the abridged SADL questionnaire (see 
Table  1 for sample characteristics). Most of the respondents were 
experienced everyday users of the devices; nearly two-thirds had used 
their devices for more than 6 months (65.1%), over three-quarters 
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reported using their devices at least 3 or more days per week (77.6%; 
Table 1), and nearly half reported using their hearing aids for at least 
8 h a day (45.5%). The sample was evenly split with respect to the 
severity of self-reported hearing impairment (49% mild; 46.3% 
moderate).

The global, as well as individual subscales satisfaction scores 
derived from the abridged SADL questionnaire, were mostly 
positive (Table 2). The mean modified global satisfaction (absent 
SC items) score of 4.9 was comparable to published satisfaction 
scores for traditional hearing aids obtained through private 
practice and fit by an audiologist following clinical best practice 
methods (study mean = 4.9 vs. norm mean of 4.9; T = 0.25, 
p = 0.80). For the subscale scores, the Positive Effect was slightly 
poorer than published norms (study mean = 4.3 vs. norm mean 
of 4.9), while Negative Features (study mean = 4.3 vs. norm mean 
of 3.6), and Personal Image (study mean = 6.1 vs. norm mean of 
5.6) subscale scores were better than published norms. While the 
differences in subscale scores were statistically different from 
published norms (all Ps < 0.05), the interquartile range for each 
subscale overlapped with the previously reported ranges (i.e., 
20th-80th percentile ranges) for users of prescription hearing 
aids (Cox and Alexander, 1999). A post-hoc power calculation 
indicated that the study had sufficient power (100%) to detect a 
satisfaction score difference of 0.5 (with standard deviation of 
1.0) at alpha = 0.05 with the 255 respondents.

3.2 Prospective cohort: self-fitting OTC 
hearing aid use satisfaction

Thirty-three adults were enrolled into the prospective cohort study 
and twenty-nine subjects provided responses on the final survey. For 
this cohort, 37.9% self-reported having mild hearing impairment, while 
62.1% self-reported having moderate hearing impairment (Table 1). The 
vast majority reported regularly using the study devices for at least 
1 month (89.6%), with 37.9% reporting using the study devices for at 
least 2 months (Table 1). With respect to device usage, 85.7% reported 

using the devices at least 3 or more days per week, and 57.1% reporting 
using the devices for 8 or more hours per day.

Among this cohort of OTC hearing candidates who were new to 
using Eargo self-fitting hearing aids, the levels of self-reported 
satisfaction following this short-term device trial were within the 
expected range of satisfaction scores for prescription hearing aids 
(Table 2). Notably, the modified global satisfaction (absent SC items) 
following short-term wear was significantly higher than the global 
satisfaction score reported for prescription hearing aid users (study 
mean = 5.4 vs. norm mean of 4.9; T = 4.08, p = 0.0003). Satisfaction 
scores in the Negative Features (mean = 4.9) and Personal Image 
(mean = 6.5) subscales were significantly higher than published norms 
for prescription hearing aids (all ps < 0.05), although the interquartile 
range of individual SADL subscales overlapped with the ranges (i.e., 
20th-80th percentile ranges) published for prescription hearing aids 
(Cox and Alexander, 1999).

With respect to self-reported QoL improvements attributable to the 
short-term use of Eargo self-fitting hearing aids, there was near-
unanimous endorsement of stability or improvement in all domains 
assessed (at least 96% of respondents reported “same” or “better” on all 
14 questions). In the following QoL domains, more than half of the 
responding sample reported improvements stemming from wearing 
self-fitting hearing aids: emotional health (54.5%), relationships at home 
(64%), relationships at work (61.1%), social life (65.4%), feeling about 
oneself (60.9%), ability to participate in group activities (60%), 
confidence in oneself (54.2%), romance (100%), and overall ability to 
communicate more effectively (69.2%; Table  3). A post-hoc power 
calculation indicated that while the initial sample of 33 participants 
demonstrated sufficient power (>80%) to detect a satisfaction score 
difference of 0.5 (standard deviation of 1.0) at alpha = 0.05, the sample 
of 29 respondents yielded a power of 76.8%.

4 Discussion

This study assessed subjective benefits and satisfaction with real-
world device wear using a clinically validated questionnaire (SADL) for 

TABLE 2 Retrospective and prospective cohort hearing aid satisfaction: SADL global and subscale scores.

SADL Retrospective sample satisfaction 
results N =  255

Prospective sample satisfaction 
results N =  29

Published norms from 
Cox and Alexander 

(1999)

Global MEANa: 4.9 T = 0.25 MEANa: 5.4 T = 4.08 MEAN: 4.9

SD: 0.9 p = 0.80 SD: 0.7 P = 0.0003 20th–80th range: 4.2–5.9

IQR: 4.2–5.6 IQR: 4.8–6.1

Positive effect MEAN: 4.3 T = 7.21 MEAN: 4.8 T = 0.33 MEAN: 4.9

SD: 1.3 p < 0.0001 SD: 1.2 p = 0.75 20th–80th range: 3.8–6.1

IQR: 3.3–5.3 IQR: 3.8–5.8

Negative features MEAN: 4.3 T = 8.65 MEAN: 4.9 T = 5.45 MEAN: 3.6

SD: 1.3 P < 0.0001 SD: 1.3 P < 0.0001 20th–80th range: 2.3–5.0

IQR: 3.3–5.3 IQR: 4.0–6.0

Personal image MEAN: 6.1 T = 11.77 MEAN: 6.5 T = 7.97 MEAN: 5.6

SD: 0.7 P < 0.0001 SD: 0.6 P < 0.0001 20th–80th range: 5.0–6.7

IQR: 5.7–6.7 IQR: 6.2–6.8

aThe global satisfaction score derived from the abridged SADL questionnaire in the present study omits questions related to Service and Cost. Thus, its interpretation should be considered to 
not pertain to the Service and Cost aspects of obtaining and using hearing aids. Bold indicates p < 0.05 (two-tailed).
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an FDA-cleared self-fitting OTC hearing-aid system (Eargo) in adults 
with self-perceived hearing difficulties. Two cohorts were recruited for 
this study: 1) A retrospective cohort with longer acclimatization and 
integration of self-fitting OTC hearing-aids into their everyday lives; 
and 2) A prospective cohort who were new to the investigational self-
fitting hearing aids. While comparing between cohorts, the mean global 
and subscale satisfaction scores were better for the prospective cohort 
(vs. scores from retrospective cohort). While it may be tempting to 
interpret these differences as a stabilization of perceived benefit over 
time (for example, initial excitement may be driving higher satisfaction 
in the prospective cohort), any comparison and interpretation of SADL 
scores between the two cohorts should be done with caution due to 
differences in sample size and characteristics.

However, comparisons between SADL scores from our retrospective 
and prospective cohorts and those reported in the literature for individuals 
wearing prescription hearing aids (fit by an audiologist following clinical 
best practice methods) can offer interesting insights. The mean modified 
global SADL satisfaction score (absent SC items) from the retrospective 
group was statistically similar to those reported in the literature for adults 
fit with prescription hearing aids (Cox and Alexander, 1999, 2001; Shi 
et al., 2007; Kozlowski et al., 2017), while the global SADL score observed 
in our prospective cohort was slightly elevated. This suggests that users of 
our investigational self-fitting OTC hearing aids who have had an 
opportunity to acclimatize to the devices experience a comparable level 
of overall satisfaction and benefit as those who have been fit with 
prescription hearing aids, whereas the brand new investigational device 
users in our prospective cohort could have exhibited some initial product 
excitement that may or may not temper over time.

With respect to the SADL subscale scores, the observed mean PE 
score in the retrospective cohort was slightly poorer than published 
norms, while the observed mean PE score in the prospective cohort 
was comparable to published norms. The PE subscale consists of 
items related to a device’s functional performance and whether use of 
the device is worthwhile to the user. It is possible that hearing aid 
candidates who sought treatment through the traditional channel 
may be  better aligned with respect to their expectations when 

embarking on their hearing aid journey. The higher satisfaction in 
our prospective cohort relative to the retrospective cohort could 
be due to the fact that these users were provisioned investigational 
devices as part of a product usability study, and did not obtain them 
through a retail or prescription channel.

With respect to the NF and PI subscales, converging evidence 
from both the retrospective and prospective cohorts indicate that the 
observed NF and PI subscale scores following use of the Eargo self-
fitting OTC hearing aids were slightly better than the published 
norms for prescription hearing aid users. The favorable NF scores in 
both of our cohorts indicate that users felt the investigational self-
fitting OTC hearing aids had good acoustic performance (i.e., 
adequate gain with acceptable amount of feedback). For the positive 
PI scores in both cohorts, a reasonable explanation could be that the 
CIC form factor of the Eargo self-fitting OTC devices were less 
visually obvious than other form factors when worn in-situ, which 
may in turn alleviate some of our users’ concerns related to social 
stigma around hearing aid wear (Pasquesi et al., 2023).

However, although we have observed some slight differences in the 
mean scores across the global and subscale scores between our two 
cohorts and the published norms for prescription hearing aid users, the 
distributions (i.e., interquartile ranges) of all of our observed scores were 
largely comparable to the distributions (i.e., published 20th-80th 
percentile ranges, see Table 2) reported for prescription hearing aids. This, 
along with a few other study-specific details that may contribute to the 
interpretation of our data, encourage us to refrain from making absolute 
statements about satisfaction relative to prescription hearing aids.

For example, only individuals who have ordered a self-fitting OTC 
hearing aid system at least 90 days prior to the survey administration 
were eligible to participate in our retrospective study. This meant that 
any customers who have tried but returned their devices within the 
initial trial period were not included in the sample. While we did not 
otherwise exclude any potential participant based on complaints, return 
requests, customer support cases, or any other obvious indicators of 
device dissatisfaction, it is reasonable to assume that those who kept 
their hearing aids past 90 days may be a self-selecting group with a 

TABLE 3 Prospective cohort quality of life changes attributed to hearing aid use.

Quality of life domain (number of respondents) Worse Same Better

Romance in my life (n = 22) 0% 0% 100%

Overall ability to communicate more effectively in most situations (n = 25) 0% 26.9% 69.2%

Social life (n = 26) 3.8% 30.8% 65.4%

Relationships at home (n = 25) 0% 36% 64%

Relationships at work (n = 18) 5.6% 33.3% 61.1%

Feelings about yourself (n = 23) 0% 39.1% 60.9%

Ability to participate in group activities (n = 25) 4% 36% 60%

Emotional health (n = 22) 0% 45.5% 54.5%

Confidence in yourself (n = 25) 0% 45.8% 54.2%

Mental ability (memory) (n = 21) 0% 52.4% 47.6%

Sense of independence (n = 23) 0% 60.9% 39.1%

Sense of safety (n = 23) 0% 60.9% 39.1%

Sense of humor (n = 24) 0% 75% 25%

Physical health (n = 21) 0% 81% 19%
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slightly elevated baseline level of satisfaction with the devices. However, 
while device usage and experience has been shown to be  linked to 
satisfaction (Uriarte et  al., 2005; Vestergaard, 2006; Vestergaard 
Knudsen et al., 2010; Dashti et al., 2015), as the U.S. norm data also 
included responses from experienced hearing aid users (Cox and 
Alexander, 1999), we  believe reasonable comparisons could still 
be made.

Another aspect to consider is that the SADL norms consisted of 
hearing aid satisfaction data from both private-pay and sponsored 
samples. While there was no difference observed between private-pay 
and sponsored respondents on global satisfaction, there was a difference 
in the SC subscale satisfaction score (Cox and Alexander, 1999). While 
we  excluded the SC subscale items in both the retrospective and 
prospective cohort studies, we must acknowledge the inherent and 
implicit impacts of using a provisioned hearing aid on the expectations 
and perceptions of our prospective cohort participants. Our prospective 
cohort data were consistent with other studies where hearing aid cost 
was fully or partially sponsored demonstrating slightly elevated SADL 
scores compared to the published U.S. norms (Uriarte et  al., 2005; 
Iwahashi et al., 2013; Dashti et al., 2015).

For the prospective cohort, the positive impact of self-fitting 
hearing aid use on QoL areas varied by area, but ranged from 19% 
of respondents endorsing improved physical health to 100% of 
respondents endorsing improved romantic life. Out of the 14 
areas surveyed, all but three had unanimous responses of 
improvement or stability since using the investigational devices. 
In areas related to social functioning, 65.4% endorsed 
improvements in social life, 60% reported being better able to 
participate in group activities, and many reported improved 
relationships at home (64%) and at work (61.1%). Short-term 
hearing aid use was associated with an improved ability to 
communicate effectively in 69.2% of respondents. In areas related 
to sense of self, 60.9% reported improved feelings about oneself, 
54.2% reported improved confidence, and 39.1% reported 
improved senses of safety and independence, respectively. 
Overall, improvements were endorsed by users across a number 
of QoL areas, particularly those related to communication, 
interpersonal relationships, and social functions. It is not entirely 
clear if and how the QoL responses may change with an extended 
duration of device wear. Future work may assess QoL 
improvements from a larger, real-world cohort. Our intent was to 
present these QoL data purely as descriptive findings; it would 
not be appropriate to directly compare our observations against 
those published in the MarkeTrak reports based on paying 
hearing aid customers. However, it was still interesting to note, 
with caution, that the endorsement of improvements observed 
with wearers of self-fitting OTC hearing-aid from this study were 
better than the responses reported with prescription hearing-aids 
fit by an audiologist following clinical best practice methods 
across several categories (Picou, 2022).

5 Conclusion

Taken together, and in considering some of the limitations of our 
study above, data involving new and experienced users of an 
investigational self-fitting OTC hearing aid suggest that users report a 
level of satisfaction and subjective benefit equivalent to or better than 

(in most areas assessed, with an exception on the PE subscale where the 
retrospective cohort reported lower satisfaction), those experienced by 
users of prescription hearing aids fit by audiologists following clinical 
best practice methods. Converging evidence from the retrospective and 
prospective cohorts with respect to consistent user-reported device 
usage and positive PI scores demonstrate the device category’s potential 
impact on hearing aid use adoption. With the establishment of the OTC 
category of hearing aids, there is hope that access to hearing healthcare 
will broaden. Given that untreated hearing loss has negative implications 
on many aspects of physical, cognitive, and emotional health, breaking 
down barriers to device access can ultimately have an outsized impact 
on objective and subjective outcomes; certainly, in our small sample of 
prospective self-fitting OTC hearing aid users, many endorsed 
experiencing improvements in relationships and other social situations. 
While more research is needed to fully characterize the potential 
positive impact that self-fitting OTC hearing aids may have on health 
outcomes, here we present preliminary but encouraging evidence that 
the use of self-fitting OTC hearing aids can play a role in helping to 
preserve or improve perceived quality of life for adults with mild to 
moderate hearing loss.
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Most hearing conservation programs repeatedly monitor a subject’s pure tone

thresholds before, during, and after exposure to audiopathic agents. Changes

to the audiogram that meet significant shift criteria such as ASHA, CTCAE, and

so forth are considered evidence of audiopathic injury. Despite a wide variety

of definitions for significant change, all current serial monitoring methods are

biased due to regression to the mean and are prone to inconclusive results.

These problems diminish the diagnostic accuracy and utility of serial monitoring.

Here we propose adopting Gaussian processes to address these issues in a

manner that maximizes time e�ciency and can be administered using portable

equipment at the point of care.

KEYWORDS

serial monitoring, test-retest, Gaussian process, Bayesian analysis, hearing conservation

1 Introduction

Audiometric serial monitoring is the act of evaluating changes in hearing thresholds.

Audiologists identify changes in a patient’s hearing by comparing audiogram results

over time. The rationale is that pure tone sensitivity, as measured by the audiogram, is

susceptible to damage from audiopathic exposures such as noise or ototoxic medications,

and reflect changes associated with normal aging and certain disease conditions. A change

in pure-tone sensitivity is taken as evidence of potential audiopathic injury, motivating

follow-up care and/or removal from the audiopathic exposure.

There are many serial monitoring criteria described in the audiology literature (reviews

in King and Brewer, 2018 andMoore et al., 2022). There are three particular difficulties with

all existing approaches:

1) Lack of a gold standard: since there is no gold standard for audiopathic injury and

thus no way to evaluate the accuracy of these various criteria, it is up to the clinician

or employer to choose among serial monitoring criteria based on clinical objectives,

convention, intuition, invasiveness, time, expense, or any other priority. Priorities

differ among the end users such as the audiologist, primary care clinician, employer,

and patient. The various monitoring criteria can not simultaneously achieve the

objectives of all stakeholders resulting in inefficient care.

2) Bias due to no response: the audiologist must also decide how to handle thresholds

that exceed audiometer test limits, called “No Response” (NR), or how to handle

missing thresholds due to patient non-response. The latter is particularly challenging

in pediatric applications, while the former often occurs in older populations of

patients. HowNR andmissing thresholds are handled will impact clinical judgements.
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3) Bias due to regression to the mean: regression to the

mean is the (almost) ineluctable fact that, barring any real

changes, bigger than average baselines are always expected

to get smaller and that smaller than average baselines are

always expected to get bigger. This is necessarily true in

(almost) any homeostatic system, real or imaginary. The

previous parenthetical statements invoke certain technical

points that can be studied in Samuels (1991). In the absence

of audiopathic injury, regression to the mean (Royston,

1995) guarantees that on average a “large” or “high” baseline

threshold will be followed by a “smaller” or “lower” one, and

that a “small” baseline threshold will be followed by a “larger”

one. This is expected regardless of any audiopathic injury that

may have occurred. This clearly confounds any attempt to

judge audiometric changes in terms of potential injury to the

patient, because any observed changes are at least partially

due to regression to the mean. A proper approach is to

statistically condition the expected follow-upmeasurement on

the previously observed baseline (Royston, 1995). The clinical

expectation about a patient at follow-up naturally depends

on what was observed at baseline, and a proper statistical

expectation for a patient at follow-up must also depend on the

previously observed baseline. Regression to the mean induces

bias in all existing serial monitoring criteria (Royston, 1995).

Point (1) impacts most every facet of audiology or medicine.

Points (2) and (3) occur in most hearing monitoring criteria

because standard methods of evaluating changes in pure tone

sensitivity are based on the computed difference between

baseline and follow-up audiograms. While intuitive, the computed

difference approach will cause bias and loss of information. The

audiologist must manually perform the differencing computations

to determine if a given criterion has been met. Subsequently, the

audiologist must communicate the results to the patient and other

stakeholders in their care (family, care team). There is a need for

rapid or even real-time communication of these results, particularly

when results indicate the need for care coordination, for example

to eliminate or reduce the audiopathic exposure, or promote

timely access to treatment. An unbiased, rapid and transparent way

to communicate serial monitoring results would promote more

efficient care.

We propose a different approach in this paper to address

points (2) and (3). In our view, serial monitoring occurs under the

assumption that pure tone sensitivity does not change between the

baseline and follow-up time point. We call this the “Homeostasis

Hypothesis,” and audiometric serial monitoring is conducted to

evaluate whether or not the Homeostasis Hypothesis is true.

In this paper we develop a statistical model of the relationship

between the audiogram and a patient’s underlying pure tone

sensitivity under the assumption that the Homeostasis Hypothesis

is true. If the follow-up audiogram is unusual with respect to the

expectations of the Homeostasis Hypothesis, then the audiologist

has evidence against the assumption that pure tone sensitivity has

remained constant over the course of exposure. Follow-up action is

therefore warranted.

Figure 1 illustrates our approach as described in this paper.

Given the patient’s baseline audiogram as an input, we compute

the predictive distribution of the follow-up audiogram under

FIGURE 1

Serial monitoring an adult male, 77 years old, being treated for

Oropharyngeal cancer with 40 mg/m2, weekly. Solid lines show the

pre-treatment baseline audiogram (top row) and 6-week follow-up

(bottom row) after four infusions of cisplatin equaling a cumulative

dose 200 mg/m2. The dashed line is the ISO 1999-2013 (ISO, 2013)

age-sex specific mean threshold obtained from population-based

pure-tone threshold data. The “X” indicates No Response at that test

frequency. The shaded area is a 90% prediction region for this

patient’s audiogram under the assumption that pure tone sensitivity

hasn’t changed from their baseline test. Follow-up thresholds

exceeding the prediction region (circled) are “significant” changes to

the audiogram that warrant follow-up.

the assumption that the Homeostasis Hypothesis is correct.

Correlations between thresholds in each ear and at neighboring

frequencies, as well as population-based pure-tone threshold data

are used to narrow the patient-specific predictive distribution. This

predictive distribution is expressed as a simultaneous prediction

region, which can be easily interpreted: nine out of 10 follow-up

audiograms on the patient will be entirely within the region if the

Homeostasis Hypothesis is correct. A follow-up audiogram that

exceeds the audiogram prediction region at any frequency in either

ear is evidence that the Homeostasis Hypothesis is false and that

pure tone sensitivity has changed.

In this paper we will take advantage of recent interest in

Gaussian Processes in audiology (Song et al., 2015; Bao et al., 2017;

Barbour et al., 2019). This methodology provides an alternative

to traditional grading or binary scales that are prone to the

biases discussed above. This methodology is suitable for patients
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and employees at risk of audiopathic injury from any type

of exposure (e.g., noise, bactericidal or antineoplastic therapies,

etc.) as long as baseline audiometry is available. We do not

make recommendations about pure tone test frequencies, testing

intervals, or procedures for treating patients with audiopathic

injury. These decisions are specific to each exposure and are left to

the serial monitoring program. Our approach avoids bias and loss

of information that affects current approaches, and we believe it can

serve a wider range of clinical objectives and stakeholder priorities

than standard criteria currently in use. These benefits are achieved

at the cost of computational efficiency; i.e., a computer is required,

though this burden is small since all computation is automated

and done offline. This is an additional benefit of our approach

over existing criteria since it maximizes time efficiency and can be

administered using computer-based portable audiometry systems

at the point of care. The prediction region such as seen in Figure 1

are computed prior to the follow-up exam, and thus do not impinge

on patient-audiologist contact time.

2 Methods

The clinical problem for the audiologist is that of deciding

whether a follow-up audiogram measured on a patient

demonstrates evidence that pure tone sensitivity has degraded and

that the Homeostasis Hypothesis is false. The statistical problem is

that of defining (1) the relationship between pure tone sensitivity—

a theoretical construct that we cannot observe directly—and its

representation as the audiogram, and (2) defining the expected

relationship between baseline and follow-up audiograms under the

assumption that the Homeostasis Hypothesis is correct.

We assume that pure tone sensitivity δ in each ear e and across

the frequency spectrum f at baseline time 0 and follow-up time t

are Gaussian Processes with covariance functions K0 and Kt , and

population gender- and age-specific mean function µ
(
e, f

)
:

δ0
(
e, f
)
∼ GP

(
µ
(
e, f
)
, K0

)

δt
(
e, f
)
∼ GP

(
µ
(
e, f
)
, Kt

)
.

This model contains the important assumption that the time

that passes between baseline and follow-up measurements (i.e.

t) is less than the amount of time that is required before the

population age-specific mean function µ
(
e, f
)
changes. In other

words, the model assumes that monitoring occurs over months,

during which time normal presbycusis is effectively unmeasurable,

and not decades, when many accumulated factors unrelated to the

exposure of concern can induce hearing changes. An expanded

model is described in Bao et al. (2017).

The pure tone sensitivity δ
(
e, f
)
is measured by the audiogram

at test frequencies defined by the clinical protocol. Viewed in this

way, the baseline and follow-up audiograms are each an error-

susceptible sample from the pure tone sensitivity processes δ0
(
e, f
)

and δt
(
e, f
)
. For our purposes, the audiogram Y is comprised of

{Left Ear thresholds at 0.5, 1, 2, 3, 4, 6, 8}, {Right Ear thresholds at

0.5, 1, 2, 3, 4, 6, 8} so that Y has 14 elements. The ordering of ears

and frequencies in Y must be consistent for intelligibility. Y0 and

Yt correspond to audiometry at baseline and follow-up. Moving

forward, we use δ0 and δt to represent the functions δ0
(
e, f
)
and

δt
(
e, f
)
evaluated in the ears and pure tone frequencies specified by

the testing protocol. The process mean µ is defined the same way.

By virtue of the Gaussian process model, Y0 and Yt are

multivariate normal random variables with respectivemeans δ0 and

δt and residual covariance matrices
∑

0 and
∑

t:

Y0|δ0 ∼ N

(
δ0,
∑
0

)
and

Yt|δt ∼ N

(
δt,
∑
t

)
.

The Homeostasis Hypothesis states that pure tone sensitivity

has not changed, i.e. that δt=δ0. An important, but often tacit

assumption is that variance components, such as
∑

and K (see

below) are assumed constant over the monitoring period, so that

any contradiction to the Homeostasis Hypothesis is taken as

evidence of audiopathic injury and not to changes model variance

components. With these assumptions, the joint distribution of the

audiograms at baseline and follow-up time points conditional on δ0

according to the Homeostasis Hypothesis is

Y0

Yt
|δ0 ∼ N

(
δ0

δ0
,

[∑
0

0
∑
] )

. (1)

We don’t know the baseline pure tone sensitivity δ0 so we

integrate expression (1) with respect to the distribution of δ0. This

gives the unconditional joint distribution of Yt and Y0 as

Y0

Yt
∼ N

((
µ

µ

)
,

[∑
+K K

K
′ ∑

+K

])
, (2)

where K is a matrix of evaluations of the covariance function

K at the frequencies and ears specified by the testing protocol.

The conventional squared exponential covariance model between

binary ear indicators (0 = left, 1 = right) e and e∗ and log2
frequencies f and f ∗ is used for this purpose:

K
(
e, e

∗
, f , f

∗
)
= ϕ2 • exp

(
−α •

(
e− e

∗
)2

− β •
(
f − f

∗
)2)

,

which implies between-ear correlation of 1
eα and between-octave

correlation of 1
eβ
. We also assume that

∑
is a diagonal matrix with

constant diagonal elements σ 2. Expression (2) is the multivariate

form of the “Linear mixed model” (McCulloch and Searle, 2004).

We can think of two uses of expression (2) in serial monitoring.

First, we can compute the distribution of the difference between the

baseline and follow-up audiograms as

(Yt − Y0) ∼ N
(
0, 2 •

∑)
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and then develop prediction regions based on this model.

Application of this approach is hampered by missing data or NR at

either baseline or follow-up, and regression to the mean is in effect

so that unusually large differences are often incorrectly interpreted

as evidence of physiological change (Royston, 1995).

Instead, we use the pre-exposure baseline audiogram as an

unbiased estimate of pure tone sensitivity in the absence of any

audiopathic injury caused by the exposure. Having first observed

the baseline audiogram, prior to any exposure, it’s natural to think

of the follow-up audiogram as a test of stability within the auditory

system that generated the baseline audiogram, i.e. the follow-up

audiogram is a test that the Homeostasis Hypothesis is correct. This

motivates computing the conditional distribution of the follow-

up audiogram given the observed baseline under Homeostasis.

The multivariate Normal model of Yt and Y0 implies that the

conditional distribution Yt|Y0 is also multivariate Normal with

expected value

µ + K •
(∑

+K
)−

•
(
y0 − µ

)
(3)

and covariance

(∑
+K

)
− K •

(∑
+K

)−
• KT (4)

McCulloch and Searle (2004) and Rasmussen and Williams

(2005).

The goal is to evaluate whether the follow-up audiogram

is consistent with expectations given by the baseline audiogram

assuming that the Homeostasis Hypothesis is true. We do this by

comparing the follow-up audiogram to the multivariate Normal

distribution parameterized by expressions (3) and (4). To facilitate

clinical applications, the predictive distribution is typically distilled

into one or more prediction intervals. A follow-up threshold that

lies outside the prediction interval is unexpected and worthy of

further consideration, either by clinical referral or even ignoring

the result. This decision is left to the attending audiologist.

Ninety percent pointwise prediction intervals for the follow-

up threshold at each frequency are given by expression (3) ± 1.64

times the square root of the diagonal elements of expression (4)

(a 95% prediction interval substitutes 1.96 for 1.64 and so forth).

The result is a vector of lower and upper 90% prediction limits for

each ear and test frequency within which each follow-up threshold

is predicted to lie. These 90% pointwise prediction intervals are

called “pointwise” because they provide 90% prediction intervals

for that specific test ear and frequency “point” only. This distinction

is important: A 90% pointwise prediction interval for one ear and

test frequency is an interval such that 9 in 10 follow-up thresholds

in that ear and test frequency will be within the interval. However,

we usually want to monitor multiple frequencies in both ears

rather than single frequencies in any one ear. A 90% simultaneous

prediction region is one in which 9 in 10 audiograms are completely

inside the region. We can’t use the pointwise intervals for this

purpose because potentially far more than one in 10 follow-ups

will yield one or more audiometric thresholds outside the 90%

pointwise limits if the Homeostasis Hypothesis is correct. Such a

naïve application will yield more false-referrals than expected.

We require a 90% simultaneous prediction region for the entire

left and right ear audiogram, and not for each ear and frequency

individually. Nine in 10 follow-up audiograms should lie entirely

within the prediction region if the Homeostasis Hypothesis is

correct. Any frequency in either ear with a threshold outside the

interval is cause for concern. We define this prediction region

following the “volume tube” methodology outlined in Krivobokova

et al. (2010), McMillan and Hanson (2014), and Bao et al. (2017).

The idea is to numerically expand the width of all the pointwise

prediction intervals until exactly 90% of the predicted audiograms

are completely contained within the adjusted intervals in both

ears and at each test frequency. Let mj, lj, and uj denote the

expected value, upper and lower 90% pointwise prediction limits

for the jth ear-by-frequency combination. We first simulate a large

number of audiograms from multivariate Normal parameterized

by expressions (3) and (4). A 90% simultaneous prediction region

is found by numerically searching for a constant c > 1 that

adjusts the lower and upper prediction limits at each frequency

by mj − c
(
mj − lj

)
and mj + c

(
uj −mj

)
so that 90% of the

simulated audiograms completely lie within the adjusted intervals

at all frequencies in both ears.

2.1 Estimation

The predictive distribution of the follow-up audiogram given

its baseline is given by the parameters in expressions (3) and

(4) and requires as inputs the age-sex specific population mean

audiogram µ, the baseline audiogram y0 and estimates of σ , ϕ, α,

and β . The population mean thresholds for men and women are

taken from ISO 1999-2013 (ISO, 2013). We use these population

mean estimates to center the distribution of pure tone sensitivities,

though the model allows for considerable variation with respect

to the population. Unless there are NR thresholds in the baseline

response, the model parameters are easily estimated by maximizing

themarginal likelihood in expression (2) (Rasmussen andWilliams,

2005). We prefer a Bayesian approach so as to easily propagate

uncertainty about the parameter estimates into the predictions.

This is done through MCMC evaluation of the joint posterior

distribution of the model parameters and using those same MCMC

evaluations to compute the predictive distribution of Yt given Y0.

These predictions are then used in the volume-tube methodology

for computing prediction regions for the entire audiogram.

A pure tone threshold that exceeds the audiometer’s test limits

is called “No Response” (NR) in audiology and more generally

called “Right-Censored” at the detection limit d in statistics. This

feature is commonly observed in time-to-event data such as patient

survivorship in biomedical research or equipment reliability in

manufacturing. There are several approaches to handling NR

thresholds in hearing research, such as imputing the NR threshold

to d plus 5 dB or some other constant. Another approach is

to treat the NR measurement as completely missing. Neither of

these approaches is appealing because imputation by adding an

arbitrary constant implies an observation (the NR limit + 5 dB)

that was never made, which implies greater certainty about pure

tone thresholds than the audiologist can legitimately claim. This

will increase the false-referral rate beyond the nominal levels
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TABLE 1 Priors on the parameters and the induced parameters of the

proposed model.

Parameter Prior quantiles

5% 50% 95%

σ 2.3 6.0 12.7

E(|test-retest|) in dB= 2σ√
π

2.5 6.8 14.3

ϕ 1.9 28.3 122.9

E(|max-min sensitivity|) in dB= 2ϕ√
π

2.2 31.9 138.7

α 0.03 0.34 0.98

Correlation between ears= 1
eα

0.38 0.71 0.97

β 0.06 0.68 1.95

Correlation between octaves= 1
eβ

0.14 0.51 0.94

dictated by the monitoring protocol. Conversely, treating the NR

measurement as completely missing isn’t a valid approach either,

since the audiologist knows that the pure tone threshold exceeds the

detection limit d. Thresholds that exceed the audiometer detection

limit provide valuable information for making accurate inferences

about K and
∑

so that more accurate predictions about the follow-

up audiogram can be made.

We approach NR thresholds using censored-data models.

Expression (1) represents the likelihood σ , ϕ, α, and β conditional

on δ. Without creating additional notation, the Gaussian Process

model for δ
(
e, f
)
implies that δ is also a multivariate normal

random variable, δ ∼ N (µ, K). In the absence of any NR

thresholds, we eliminate dependence on δ by marginalizing the

likelihood in (1) giving expression (2). However, when there

are one or more NR in the audiogram we factor the likelihood

into scalar contributions from thresholds that we observe as

N
(
y; δ, σ 2

)
and into scalar contributions from NR thresholds as

1 − 8
(
d; δ, σ 2

)
. This latter expression is one minus the Normal

cumulative distribution function evaluated at the audiometer’s

detection limit d.

There is no closed form integral of this factored likelihood

with respect to the distribution of δ (Ertin, 2007) meaning that

the simplicity achieved with a complete baseline audiogram is lost.

However, we can use MCMC to evaluate the joint distribution of

δ and the parameters σ , ϕ, α, and β conditional on the baseline

audiogram. Each of these MCMC evaluations generate a predicted

follow-up audiogram according to expressions (3) and (4). The 90%

pointwise prediction interval are the 5th and 95th percentiles of

the generated predictions at each frequency and ear. The volume

tube methodology is applied to these predictive distributions to

achieve 90% prediction regions over the entire audiogram. The

result is a shaded region (Figures 1, 3–5) that expresses the clinical

expectation that 9 in 10 follow-up audiograms will lie completely

within the shaded region if the Homeostasis Hypothesis is correct.

The width of the interval can be changed, depending on the

clinical application. Chemotherapy monitoring may demand a very

low false referral rate so as not to withhold life-saving anti-cancer

therapy. Larger apparent changes are admissible before alerting

the audiologist to deleterious side effects of the therapy. A 95%

reference interval may be preferable in this instance instead of the

90% intervals used throughout this paper.Workplace noise damage

monitoring may prefer a higher false-referral rate to avoid financial

liability. Smaller threshold changes in the noise exposure context

will therefore provoke a response from administrators, so that

an 80% reference interval may be preferred. These considerations

illustrate the relationship between the consequences of a false-

referral and the desired width of the reference interval. If false-

referrals provoke little harm, then a narrower interval is acceptable,

but if the ramifications of a false-referral are serious, then wider

reference intervals are desirable. Our approach provides the user

complete control over the nominal false-referral rate.

2.2 Priors

We establish priors on α and β by recalling that the between-ear

correlation is 1
eα and between-octave correlation is 1

eβ
. We believe

that the between-ear correlation in pure tone sensitivity is likely

to be >0.5. We also believe that the between-octave correlation

is likely to be >0.5, but we admit much greater uncertainty since

this feature may vary widely among patients. These requirements

suggest to us that α ∼ Half − Normal(0.52) and β ∼ Half −
Normal(12). We also take advantage of the fact that of Yt, Y0,

and δ0 are multivariate normal random variables, such that the

expected value of the absolute difference over time between any

two corresponding elements of Yt and Y0 is
2σ√
π
and between any

two pure tone sensitivities across ears and frequencies on the same

person is 2ϕ√
π
. Average absolute test-retest differences are expected

below about 15 dB and average between 5 and 10 dB. This suggests

the prior σ ∼ Gamma (4, 0.6), which has expected value 4
0.6 and

variance 4
0.62

. The range of pure tone sensitivities across frequencies

is expected to vary markedly among patients, though we expect no

more than about 135 dB range among pure tone sensitivities within

a patient. We assume the prior ϕ ∼ Gamma (1, 0.025), which is

parameterized as for the prior on σ . Summary statistics for each of

these priors, as well as the induced priors on the correlations and

test-retest differences are shown in Table 1. Prior histograms are

shown in Figure 2, along with posterior distributions for the patient

shown in Figure 1.

2.3 Computation

The sampler is started at the posterior means from the model

in expression (1), initializing NR thresholds at the test limit d.

These initial values are fed into a new MCMC sampler replacing

expression (2) with expression (1). We find it sufficient to run

the MCMC sampler for 500,000 iterations using SAS Enterprise

Guide Software, v. 8.3, PROC MCMC, though visual confirmation

of efficient mixing is advisable, particularly for unusual audiograms

having, for example, elevated left-right asymmetry or many

NR thresholds.

3 Results

Figures 3–5 illustrate model results in the context of additional

case studies, following the format of Figure 1. The prediction region
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FIGURE 2

Prior (red) and posterior (blue) MCMC samples for the induced parameters in the model fit to the baseline data shown in Figure 1.

shown for these patients were generated by inputting the baseline

audiogram thresholds, age, and sex into expressions (3) and (4),

and following the Volume Tube methodology. Figure 3 shows

results for a patient with Cystic Fibrosis who was treated with IV

Tobramycin for a bacterial lung infection. Figure 4 shows results for

a patient with cancer who was treated with cisplatin, and Figure 5

shows results for an individual exposed to workplace noise over

a five-year period. Note that this subject did not provide baseline

3 and 6 kHz thresholds, though the model structure still allows

predictions at these frequencies.

4 Discussion

In this paper we describe a Gaussian process regression

model of the audiogram that is suitable for serial monitoring

in clinical and industrial applications. Additional applications

suitably addressed with our approach include monitoring patients

for improvements in hearing, for example following surgical

intervention such as ossicular reconstruction. The innovative

aspects of our approach are three-fold. First, it uses a patient’s

baseline hearing, known correlations among test frequencies and

ears, together with population-based hearing data, to calculate

an individualized prediction region for that patient. Second, it

provides a unified framework for monitoring the audiogram that is

much more intuitive than the various shift criteria commonly used

in clinical practice. The automated audiogram region estimated

using our approach is simply the region where the follow-up

audiogram is predicted to land if that patient’s hearing has remained

stable. Follow-up thresholds that exceed the predicted region at

ANY audiometric frequency can be interpreted as evidence for

a statistically significant hearing change. Third, our approach

overcomes the problem of regression to the mean, which is a nearly

ubiquitous but largely overlooked problem in serial monitoring.

The flexibility and ease of interpretation of this model allows for the

implementation of the criteria directly into audiometers and other

computerized hearing testing platforms, increasing the potential

user base and uptake of serial monitoring across contexts.

4.1 Limitations

Our proposal doesn’t include any explicit model training

commonly used in prediction algorithms. We embed information

about the population into the informative priors on the model

parameters. An expanded approach is to further train the model

in a large sample to identify the joint distribution of model

parameters. Training must be done in a population for which the

Homeostasis Hypothesis is unequivocally true. Furthermore, this is

computationally challenging because of the factored likelihood in

the presence of NR thresholds. Training model parameters is the

subject of ongoing work by our research group.

Our approach mitigates some of the difficulty of NR thresholds

in serial monitoring, though it cannot solve the problem entirely.

We can generate prediction regions in the presence of baseline NR,

however, any NR observed during follow-up measurements can

create difficulties. These are illustrated in Figure 1. The baseline,

left-ear, 8 kHz threshold is NR, but ourmethodology still allows one

to identify the prediction region for follow-up thresholds at that

frequency and ear. The left-ear, 3 kHz threshold is NR at follow-

up, which is outside the expectations established by proposed

Frontiers in Audiology andOtology 06 frontiersin.org116

https://doi.org/10.3389/fauot.2024.1389116
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


McMillan et al. 10.3389/fauot.2024.1389116

FIGURE 3

Serial monitoring of a 42 year-old male with a history of pancreatic

insu�ciency and diabetes mellitus related to his Cystic Fibrosis. The

patient presented to emergency unit with a pulmonary infection and

was admitted to the hospital where they received between 6.75 to

12.5ml of IV tobramycin. Visit A: baseline audiogram. Visit B:

audiogram taken 1 week after the baseline exam during their course

on IV tobramycin therapy as an inpatient. Visit C: first follow-up visit

conducted about 1 month after end of IV course of treatment. X =
no response, NR. Circled thresholds are significant changes.

methodology. In these instances our approach is handling the NR

measurement without any trouble as expected. Difficulties arise

when the prediction region “straddles” the NR level such as left-

ear, 4, 6, and 8 kHz. The observed NR are consistent with the

prediction region that spans the test limit, so that no violation of

the Homeostasis Hypothesis is observed. However, this isn’t exactly

true: anNR thresholdmay actually be outside the prediction region,

but the test limit doesn’t permit the audiologist to observe this.

There is thus some degree of uncertainty one has to accept in

these instances.

Although we have developed and described this approach to

address the clinical challenge of determining when audiopathic

damage has occurred for an adult patient or worker, the framework

is easily extended to pediatric applications as long as suitable priors

FIGURE 4

Serial monitoring of a 66 year old patient with a tumor of the

suraglottis larynx who received cisplatin-based chemotherapy prior

to surgical removal. The patient received five infusions of cisplatin

for a total of 240 mg/m2. X = no response, NR. Circled thresholds

are significant changes.

for this population can be identified. Thismethodology is also easily

generalized to “objective measures” of auditory sensitivity that can

be obtained reliably in infants and young children. Otoacoustic

emissions are an attractive measure to use due to their sensitivity to

noise and ototoxic exposures (Dreisbach et al., 2023) and the large

literature of test-retest data in unexposed young controls (Bao et al.,

2017; Konrad-Martin et al., 2020). Digital audiometry platforms to

determine what constitutes a statistically significant hearing change

for that patient, will also provide important efficiencies for future

clinical trials.

5 Conclusions

Audiogram forecasting such as described in this paper

can substantially improve serial monitoring over traditional

approaches. Our method avoids sources of bias that reduce

diagnostic accuracy and standardizes the definition of a “significant

hearing change”. This has the added benefit of leaving clinical

interpretations about the functional impacts, implications for

follow-up, and treatment options up to the treating audiologist and

other clinical stakeholders.
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FIGURE 5

Serial monitoring of a 47 year old patient who worked as a chemical

engineer and reported exposure to loud machine noise. His initial

audiogram was completed at age 47, with a follow up occurring at

age 52. Baseline thresholds are missing at 3 and 6 kHz. 3 kHz

thresholds are missing at five-year followup. X = no response, NR.

Circled thresholds are significant changes.
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Introduction: Understanding hearing aid wearer experiences in real-world

settings is important to provide responsive and individualized hearing care. This

study aimed to describe real-life benefits of hearing aids (HAs), as reported by

hearing aid wearers through Ecological Momentary Assessment (EMA) in various

listening environments.

Method: Qualitative content analysis of 1,209 open-text responses, provided

through self-initiated EMAs, was conducted. The de-identified data was

collected retrospectively via a smartphone app compatible with these HAs. Only

text responses reflecting positive hearing aid experiences were analyzed.The

1,209 open-text responses were categorized into 18 pre-determined sub-

categories, further organized into five overarching categories: Conversational,

Leisure, Device-related aspects, Lifestyle, and Other factors.

Results: Across these categories, 48 self-generated meaning units highlighted

the multifaceted benefits of HAs. In particular, participants reported

significant improvements in conversational settings, specifically during phone

conversations and meetings, attributed to improved sound quality and speech

understanding when wearing their HAs. During leisure activities, particularly TV

watching and music listening, clearer sound and ease of Bluetooth streaming

contributed to experienced benefits. Lifestyle improvements were reported

in occupational and social settings, as hearing aid wearers stated enhanced

communication and sound awareness. Device-related factors contributing to

positive wearer experiences included extended battery life and the convenience

of rechargeable batteries. The most prominent sub-category, other factors,

underscored overall satisfaction, comfort with the device, and improved auditory

experiences across various environments.

Conclusion: This study reveals the diverse benefits of HAs in improving

communication, listening experiences, and quality of life across various settings,

as captured through EMA. By emphasizing features like direct streaming

and rechargeability, the findings highlight the importance of personalized

hearing care and the potential of real-time listener feedback to inform device
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enhancements and support strategies, advancing more tailored and e�ective

hearing rehabilitation.

KEYWORDS

hearing aids, hearing aid outcome, Ecological Momentary Assessment (EMA), everyday

situations, real-life data

1 Introduction

Hearing rehabilitation aims to enhance hearing functioning,

participation, and quality of life for individuals with hearing

loss (Boothroyd, 2007). Providing amplification through hearing

aids (HAs) is a primary component of hearing care, as HAs

amplify sound and improve the clarity of sounds, with a specific

emphasis on speech and communication (Ferguson et al., 2017).

However, the effectiveness of HAs depends on wearers being

familiar with the correct way to handle the devices, understanding

the expected benefits and satisfaction, and the clinicians’ ability

to create personalized and achievable rehabilitation plans with the

HAs (Heselton et al., 2022; Humes, 2003; Wong et al., 2003).

A recent study that included former HA wearers revealed that

almost half of them attributed non-use to device-related issues

such as wearing comfort, not liking to wear the HAs, or limited

perceived benefit (Franks and Timmer, 2023; Mothemela et al.,

2023). It is therefore important to explore the factors contributing

to HA wearers’ experiences, in order to enhance understanding of

HA benefit and satisfaction from the wearer’s perspective, provide

person-centered care, and validate the effectiveness of treatment

with HAs.

Satisfaction is commonly measured through self-reported

measures, often referred to as patient-reported outcome measures

(PROMs) (Timmer et al., 2018; Oosthuizen et al., 2022). Self-

reported questionnaires can, for instance, gather information about

the individual’s perspective on how well rehabilitation goals have

been achieved in real-world settings (von Gablenz et al., 2021).

Some limitations of PROMs include that they necessitate client

input based on memory and experiences with specific listening

conditions. As memory affects recall, this can introduce recall

bias. Also, listening situations posed in PROMs might not apply

to all HA wearers (Timmer et al., 2018). Ecological momentary

assessment (EMA) has been proposed to address some limitations

of PROMs, by asking participants to repeatedly report on their

experiences during or close in time to an event of interest (Bolger

et al., 2003; Shiffman et al., 2008). EMA, also known as ambulatory

assessment or experience sampling (Trull and Ebner-Priemer,

2014), is a real-time data collection method, applied in participants’

real-world environments. EMA allows the capturing of individuals’

daily experiences and changes in their experiences over time

(Holube et al., 2020).

In practical terms, EMA research today commonly employs

personal digital devices, utilizing auditory or vibratory alerts to

prompt participants to respond to a series of questions throughout

the day. This prompted EMA approach involves participants

receiving messages on their smartphone-based app at regular

intervals to complete surveys (Burke et al., 2017). Patients may

not always comply with the EMA data collections, as the highly

dense data collection can burden participants. This limitation

arises when patients do not provide feedback when prompted,

thereby restricting the coverage of the analysis. This could lead

to inadequate results, as they might fail to accurately portray

the diverse range of experiences people have (Holube et al.,

2020; Schinkel-Bielefeld et al., 2020). An alternative approach to

prompted EMA is self-initiated EMA. During self-initiated EMA,

the individuals decide when something of interest has happened,

and subsequently fill in a survey on their initiative, without any

prompting (Schinkel-Bielefeld et al., 2020).

In addition to being used in research, EMA is also proposed

as a valuable clinical tool, enabling patients to monitor daily

challenges systematically and contributing to personalized hearing

healthcare (Schinkel-Bielefeld et al., 2020). Data collected through

EMA could guide healthcare professionals in tailoring HA settings

to meet individual patient needs during fitting, fine-tuning, and

acclimation (Holube et al., 2020). Combined with a person-

centered care approach, such data can enhance understanding,

leading to improved health outcomes. These rich data collection

methods could also facilitate improved communication between

patients and healthcare professionals, particularly concerning

patient-specific needs and residual hearing difficulties experience

in real life situations (Wu et al., 2015; Brice and Almond, 2022).

Most studies on hearing-related EMA have predominantly

utilized quantitative methodologies to capture experiences with

HAs and their features (Galvez et al., 2012; Hasan et al., 2014;

Timmer et al., 2017; Wu et al., 2018). However, there remains

a notable scarcity in the application of EMA for gathering

qualitative data, such as personal experiences with HAs in real-

life scenarios. Notably, Galvez et al. (2012) undertook a qualitative

analysis of prompted EMA data to explore hearing difficulties

among HA wearers, providing valuable insights for evaluating HA

parameters and enhancing patient care. Similarly, Vercammen et al.

(2023) identified key themes in feedback from HA wearers using

automated text analysis of self-initiated EMA data, revealing a

predominance of positive experiences related to communication

and sound quality, in contrast to challenges in HA management.

While recent technological advancements, such as real-

time speech-to-text transcription and advanced natural

language processing (NLP) techniques, provide unprecedented

opportunities for capturing and analyzing qualitative wearer

feedback (Manchaiah et al., 2021a,b), their full potential has yet

to be explored. To complement insights from such computational

methods, this study employs a manual qualitative analysis to delve

into a portion of the dataset previously investigated by Vercammen

et al. (2023) using NLP techniques. This methodological decision is

intentional, addressing the constraints of computational methods,

which may lack the depth and nuanced understanding inherent

in direct human analysis (Jiang et al., 2021; Baden et al., 2022).
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Employing this approach, our study seeks to gain a more thorough

understanding of the qualitative EMA data, with a particular

emphasis on identifying psychosocial elements of satisfaction

with HA usage (Oosthuizen et al., 2022; Knoetze et al., 2023). To

this end, we focused on a subset of the original dataset, focusing

on positive HA experiences only. Thereby providing a unique

perspective, as opposed to the commonly reported challenges

with HAs.

2 Materials and methods

2.1 Study design

The study considered a retrospective subset of the data

presented in Vercammen et al. (2023) i.e., 1,209 positive open-

text statements provided by real-world HA wearers as part of

their hearing care. Due to size of the dataset, this manuscript

focused on positive responses only, with negative responses being

analyzed as part of an upcoming manuscript. Prior to participation,

participants were informed of de-identified data analysis for clinical

and research purposes per the mobile application’s data privacy

notice. In addition, no personal identifying information was logged

to ensure participant privacy. Institutional Review Board clearance

was granted (HUM023/0922) prior to data analysis.

2.2 Study participants, material, and
apparatus

The de-identified data was collected through a smartphone

mobile application compatible with commercially available HAs,

fitted to real-world HA wearers from English-speaking countries,

i.e., Australia, Canada, England, Ireland, New Zealand, and the

United States. Clinicians activated the EMA application feature

within the fitting software during consultations. Clinicians could

activate the feature to use as a real-time feedback system whenever

they deemed it advantageous for the HA wearer and their hearing

care (Vercammen et al., 2023). Participants initiated the mobile

application on their own when they had a listening experience

that they wanted to report (i.e., self-initiated EMA) and navigated

through the windows (see Supplementary material 1) (a) indicate

the listening experience as positive or negative; (b) select the

listening situation from the list, closest to the experienced situation

(i.e., activities, battery or charging, entertainment, hearing children,

in meeting, in restaurant, in vehicle, listening music, other, phone

conversations, playing games, quiet conversations, shopping, social

activities, social event, streaming media, worship, and watching

TV); (c) provide description of the listening experience (open

text field).

2.3 Data extraction and data cleaning

Between May 2018 and June 2021, an initial sample of 30,127

self-initiated EMAs on real-world HA experiences were collected

worldwide and extracted from cloud-based data logging of the

smartphone mobile application. Text statements shorter than

20 characters were removed for content quality, and a manual

data cleaning process was conducted to correct spelling mistakes,

remove nonsense text, and exclude non-English entries. Following

data extraction and cleaning, a dataset of 5,331 negative and 3,462

positive EMAs (a total of 8,793 responses) was extracted. Only the

3,462 positive EMA’s were considered for further analysis in this

study (see Figure 1). During data familiarization, it was found that

some of the comments under each pre-determined sub-category

(which were derived from the listening situation self-selected by the

user—see Supplementary material 1, panel B) were unrelated to the

specific situation the participant had chosen (i.e., they were more

applicable to another pre-determined sub-category). In addition,

some of the comments were negative despite the participant’s

choice of a positive experience. After a discussion with the research

team (IO, FMA, VM, CV, and DWS) a consensus was reached,

and 799 open text statements were reclassified (i.e., moved to a

more applicable sub-category), and 2,150 comments were moved

from positive experiences to negative experiences. Furthermore,

103 comments could not be coded as they were irrelevant to any

pre-determined sub-category. A final sample of 1,209 positive self-

initiated EMAs was considered for further analysis (see Figure 1).

2.4 Data analysis

The final 1,209 positive self-initiated EMAs were analyzed

using qualitative content analysis (Graneheim and Lundman, 2004;

Knudsen et al., 2012). This approach was deemed suitable due

to the diverse range of responses obtained from the open-ended

question, which varied significantly in depth and detail. Qualitative

content analysis involves an iterative process of revisiting and

refining coding and categorization, facilitating a nuanced and

comprehensive understanding of the data. Initially, responses

within each of the 18 pre-determined subcategories, derived

from the users’ selected listening situations in the app (e.g.,

phone conversations, watching TV etc.), were reviewed, coded

and condensed into meaning units, capturing the essence of

each participant’s experience (Graneheim and Lundman, 2004).

These condensed meaning units were further examined and the

sub-categories were grouped into broader categories, resulting

in five main categories: Conversational, leisure, device-related,

lifestyle, and other factors. To ensure clarity, we have detailed

the hierarchical classification process used in our data analysis.

Seemingly similar responses were placed in distinct categories

based on their contextual relevance and the nuances of participant

comments. This approach aimed to capture the multifaceted nature

of hearing aid experiences. However, we acknowledge the potential

overlap of similar responses in different categories and have

included this consideration in Section 4.1.

To ensure consistency and reliability, an experienced

qualitative researcher cross-checked 50% of the coding, and

any discrepancies were resolved through team discussions. This

iterative review process allowed for refining the categories, ensuring

they accurately represented the data. The final categorization

facilitated the identification of 48 self-generated meaning units,

providing a comprehensive understanding of the diverse benefits

of hearing aids as experienced by participants in their daily lives.

Frontiers in Audiology andOtology 03 frontiersin.org122

https://doi.org/10.3389/fauot.2024.1397822
https://www.frontiersin.org/journals/audiology-and-otology
https://www.frontiersin.org


Fourie et al. 10.3389/fauot.2024.1397822

FIGURE 1

Illustration of the manual data cleaning process, leading to the final cample of 1,209 EMA responses that were considered for manual qualitative

analysis.

This detailed categorization process ensured that the diverse and

nuanced experiences of hearing aid users were systematically

captured and analyzed, yielding robust insights into the real-world

benefits of HAs.

3 Results

The 18 pre-determined sub-categories were categorized into

five categories as part of the manual qualitative content analysis:

(1) Conversational, representing diverse settings where participants

engaged in conversations; (2) Leisure settings, representing various

recreational pursuits for enjoyment and relaxation; (3) Device-

related aspects, encompassing different facets of HA functionality;

(4) Lifestyle factors, covering settings that contribute to an

individual’s way of life and daily routines; and (5) Other factors,

including settings not falling within the aforementioned domains.

From these categories, a total of 48 meaning units were self-

generated (see Tables 1–5).

Category 1: Conversational setting benefits of HAs

Six pre-determined sub-categories i.e., phone conversations

(n = 86), quiet conversations (n = 64), in vehicle (n = 59),

in meeting (n = 45), in restaurant (n = 43), and hearing

children (n = 35) were combined into the overarching

category “conversational settings” (see Figure 2). Twenty self-

generated meaning units were identified (see Table 1 and

Supplementary material 2 for elaboration on meaning units).

Within phone conversations, the largest identified meaning unit of

listening experience (n = 32) focused on aspects such as volume

and general satisfaction. The direct streaming capability facilitated

seamless call handling, introducing a private and hands-free

dimension to phone conversations. In quieter settings, participants

enjoyed their ability to engage in one-on-one conversations,

emphasizing the significance of both sound quality and improved

speech understanding. In vehicle settings, improved sound quality,

ease of conversing with passengers, and greater enjoyment of

music and audio contributed to enhanced listening experiences.

Participants also experienced increased participation and improved

speech understanding during group conversations such asmeetings

and in noisy restaurant environments. Furthermore, participants

reported improved communication with children, highlighting

enhanced speech understanding and sound quality.

Category 2: Leisure activity benefits of HAs

Four pre-determined sub-categories i.e., watching TV

(n = 227), listening music (n = 60), entertainment (n = 6), and

playing games (n= 5) were combined into the overarching category

“leisure settings” (see Figure 2). Nine self-generated meaning units

were identified (see Table 2 and Supplementary material 3 for

elaboration on meaning units). Watching TV was the most

frequently selected predetermined subcategory with listening

experience identified as the largest meaning unit (n = 143)

followed by sound quality (n = 46), speech understanding

(n = 20), and direct screening (n = 18). These indicate the

primary perceived benefits for the HA wearers in this specific

leisure activity. Some participants also reported enhanced music

listening experiences, noting improved recognition of lyrics, and

vibrant sound quality. Greater enjoyment of other media, such as

improved listening to radio, gaming, and podcast streaming, was

also mentioned.

Category 3: Lifestyle-related benefits of HAs

Five pre-determined sub-categories i.e., activities (n = 64),

social event (n = 41), social activities (n = 18), shopping

(n= 11), and worship (n= 6) were combined into the overarching

category “lifestyle” (see Figure 2). Ten self-generated meaning

units were identified (see Table 3 and Supplementary material 4

for elaboration on meaning units). Within Activities, the largest
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TABLE 1 Positive experiences in conversational settings (n = 332

meaning units).

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Phone conversations

(n= 86)

Listening experience

(n= 32)

“. . . telephone use has

improved every day!”

Direct streaming

(n= 27)

“I was able to answer a call

by just touching my

hearing aid.”

Sound quality (n= 19) “I had a phone call with a

friend while I was a

passenger in the car and

the call was very clear and

audible”

Speech understanding

(n= 8)

“I couldn’t make out

words on my phone

without speaker now I can

what a difference”

Quiet conversations

(n= 64)

General benefit (n= 51) “. . . I can hear a quiet

conversation without me

trying hear out what

others was saying. . . ”

Sound quality (n= 9) “Excellent clarity of

speech”

Speech understanding

(n= 4)

“I can understand what

they are saying”

In vehicle (n= 59) Listening experience

(n= 29)

“. . . I could hear the

warning beepers without

having their volume

increased.”

Conversation (n= 14) “I could easily converse

with others in my car”

Entertainment (n= 12) “Could hear the lyrics on

music on car radio”

Sound quality (n= 4) “. . . the sound quality was

very clear. I like the fact

that the road noise is

limited plus the quality

and volume of the sound

was very good!”

In meeting (n= 45) Meeting experience

(n= 17)

“I was sitting in a fairly

large room with a dozen or

so people seated

throughout the room, for a

meeting, and could hear

everyone talk.”

Additional benefits

(n= 16)

“Don’t have to reply on

reading lips!! and/or what

million times.”

Speech sound quality

(n= 7)

“I could hear

annunciation very clear.”

Speech understanding

(n= 5)

“understand conversations

through the background

noise.”

In restaurant

(n= 43)

Speech understanding

(n= 38)

“Having a nice

conversation at a

restaurant and able to

understand some new

voices even

with accents.”

Sound quality (n= 5) “In a quiet restaurant

everything was so clear”

(Continued)

TABLE 1 (Continued)

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Hearing children

(n= 35)

Enhanced

communication (n= 24)

“I am able to

communicate better with

my grandchildren and am

not asking “what did you

say” all the time. . . ”

Speech understanding

(n= 7)

“Understanding my

grandson [name] is so

much easier!!!”

Sound quality (n= 4) “I could hear my

grandchildren clearly..”

Numbers in brackets are the frequency of the meaning units reported in each category.

PD, pre-determined; SG, self-generated.

TABLE 2 Leisure related experiences (n = 298 meaning units).

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Watching TV

(n= 227)

Listening experience

(n= 143)

“I could hear the TV with

the volume turned to 11

when mostly it’s 25 or

higher”

Sound quality (n= 46) “TV voices are clearer

than before. . . ”

Speech understanding

(n= 20)

“I can understand what

people in shows are

saying”

Direct streaming

(n= 18)

“My understanding of

movies using the TV

connect is a lot better and

more enjoyable.”

Listening music

(n= 60)

Listening experience

(n= 33)

“Music sounds good in my

hearing aids. Nice to have

that functionality.”

Sound quality (n= 27) “Nice bright and punchy

sound quality for music”

Entertainment

(n= 6)

Media (n= 3) “I can hear a podcast I was

having difficulty with

earlier.”

Volume (n= 3) “Wife says radio is not as

loud as usual”

Playing games

(n= 5)

Listening experience

(n= 5)

“Playing pc games on the

computer is wonderful as I

can hear everything.”

Numbers in brackets are the frequency of the meaning units reported in each category.

PD, pre-determined; SG, self-generated.

identified meaning unit was occupational settings (n = 26), in

which HAs facilitated effective communication, even with face

masks on, and heightened awareness of work-related sounds. HAs

were valuable in various situations, including recreation, education,

travel, social events, shopping, and worship. Participants reported

clearer speech, improved hearing, and enhanced satisfaction across

these diverse settings.

Category 4: Device-related benefits of HAs

Two pre-determined sub-categories streaming media (n = 54)

and battery or charging (n = 34) were combined into the

overarching category “device-related benefits” (see Figure 2).
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TABLE 3 Lifestyle related experiences (n = 140 meaning units).

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Activities (n= 64) Occupational (n= 26) “I can hear my clients in

the styling chair, even with

masks on. . . ”

Recreational (n= 23) “I could hear conversations

better while on a hike.”

Educational (n= 11) “Noticeable difference

during research seminar,

sitting at back and can

hear fine”

Traveling (n= 4) “Great sounds on airline

for movies chat and other”

Social event (n= 41) Conversation

engagement (n= 21)

“Friends visited able to

hear what was being said

without too much

difficulty”

Speech understanding

(n= 12)

“I could carry on a

conversation with my kids

while my 6 grandkids were

yelling and screaming in

the background. . . ”

Sound quality (n= 8) “Much clearer with voices

in a crowded room...”

Social activities

(n= 18)

Participation (n= 18) “Social groups are more

enjoyable now”

Shopping (n= 11) General benefit (n= 11) “Heard the checkout

operator real well!!”

Worship (n= 6) General benefit (n= 6) “Hearing the Sunday

morning sermon so

clearly!”

Numbers in brackets are the frequency of the meaning units reported in each category.

PD, pre-determined; SG, self-generated.

TABLE 4 Device related experiences (n = 88 meaning units).

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Streaming media

(n= 54)

Listening experience

(n= 41)

“Streaming podcasts from

an iPhone 7, works great!”

Sound quality (n= 13) “I could hear my children

and grandchildren on face

time more clearly”

Battery or charging

(n= 34)

Duration (n= 23) “Battery life both in the

aids and the charger is

great.”

Rechargeability (n= 9) “Recharging very

convenient.”

Replacing batteries

(n= 2)

“Changed the batteries

today to get into routine of

changing them every week.

Was easy and quick.”

Numbers in brackets are the frequency of the meaning units reported in each category.

PD, pre-determined; SG, self-generated.

Five self-generated meaning units, namely listening experience,

sound quality, duration, rechargeability, and battery replacement

(see Table 4 and Supplementary material 5 for elaboration

on meaning units). Battery and charging experiences were

TABLE 5 Positive experiences for the pre-determined sub-category,

Other (n = 351 meaning units).

Sub-category
(PD)

Meaning unit
(SG)

Meaning unit
example

Other (n= 351) General benefits

(n= 200)

“I notice some

improvement to my range

of hearing.”

Device-related (n= 83) “Surprised that they’re not

noticeable. . . ”

Environmental sounds

(n= 41)

“I have especially enjoyed

hearing the spring

songbirds a rich experience

I have missed.”

Speech understanding

(n= 27)

“It was many

conversations at once. I

am not overwhelmed, and

I can understand the

individual conversations.”

Numbers in brackets are the frequency of the meaning units reported in each sub-category.

PD, pre-determined; SG, self-generated.

characterized by descriptions of extended battery life with some

participants maintaining Bluetooth connectivity throughout

the day. Rechargeable HAs offered convenience and eliminated

the need for disposable batteries. Participants using disposable

batteries reported no hindrance, and the process of replacing

batteries was deemed straightforward.

Category 5: Other benefits of HAs

This pre-determined sub-category was the most frequently

selected (n = 351) (see Figure 2). Four categories were self-

generated by the researcher from the responses, encompassing

general advantages, device-related aspects, environmental sound

considerations, and enhanced speech understanding (see Table 5

and Supplementary material 6 for elaboration on meaning units).

Participants reported noticeable improvements in their overall

hearing abilities, leading to reduced instances of asking for

repetitions and enhancing daily interactions. The comfort and

inconspicuous nature of the devices were particularly noteworthy.

A richer auditory experience emerged as wearers appreciated

sounds not heard as well-before using HAs, such as the melodic

songs of springtime birds to the sizzling of bacon.

4 Discussion

This study employed a qualitative content analysis to explore

positive real-world HA use experiences of a large sample of HA

wearers, who provided self-initiated EMAs through a smartphone

application. The pre-determined sub-categories that resulted from

the users in-app responses were grouped into categories, as part

of the manual qualitative content analysis, and consisted of (1)

conversational settings, (2) leisure-related, (3) lifestyle-related, and

(4) device-related aspects, and (5) other listening situations (see

Supplementary materials 2–6 for more detailed examples of the

sub-categories and meaning units).

The cornerstone of hearing rehabilitation is using HAs

to improve access to sounds and speech, thereby enhancing

communication—a fundamental aspect of daily life (Ferguson et al.,

2017). This study particularly highlighted the significant benefits in
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FIGURE 2

Overview of 18 pre-determined sub-categories that were derived from the listening situation self-selected by the users in the app (light blue boxes),

organized into five overarching categories (dark blue boxes) as part of the qualitative content analysis.

conversational settings, with a notable emphasis on the advantages

of smartphone-connected HAs in facilitating effective telephone

communication. The rise in smartphone ownership among adults

in the United States and the United Kingdom since 2015 has

paralleled an increase in research into smartphone-connected

HAs, underscoring improvements in phone conversation quality,

speech intelligibility, and reduced listening effort thanks to

direct streaming capabilities (Maidment et al., 2019; Gomez

et al., 2022; Pew Research Center, 2022). Moreover, the capacity

for wearers to self-manage their HAs via a smartphone app

has not only contributed to enhanced wearer satisfaction and

integration into daily routines but has also empowered wearers

through improved autonomy and ownership over their hearing

experience (Chasin, 2017). Direct streaming, particularly for

media and communication via videotelephony platforms, has been

identified as a pivotal feature, aligning with the trend toward

greater technological integration within HA design. This trend

underscores the importance of connectivity in augmenting the

wearers experience, fostering enhanced engagement with modern

communication platforms (Chasin, 2017), and thereby enriching

both listening experiences and social connections. Enhanced

speech understanding was consistently reported, particularly in

intimate settings such as conversations with spouses, further

demonstrating the value of real-time EMA in providing detailed

insights into everyday listening environments outside typical

scenarios. Across various settings—from quiet conversations to

dynamic social events—improvements in sound quality have been

central to the wearer’s enhanced ability to engage in meaningful

interactions (Cox et al., 2014), reinforcing the critical role of sound

quality in effective communication (Kaplan-Neeman et al., 2012).

In occupational settings, HAs significantly enhanced

communication and sound awareness, aligning with prior

research emphasizing the critical role of hearing in professional

environments and the heavy reliance of wearers on their devices

in such settings (Granberg and Gustafsson, 2021; Timmer et al.,

2023). This study extends these insights by demonstrating positive

experiences even in traditionally challenging situations such as

group meetings and noisy environments (Picou, 2020; Oosthuizen
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et al., 2022), where HAs facilitated effective communication

and sound source localization in the workplace. These findings,

consistent with earlier studies, underscore the efficacy of HAs

in improving occupational performance and highlight the

unique value of self-initiated EMA data in capturing real-life,

wearer-specific experiences, thus advocating for improved person-

centered care. The positive feedback from self-initiated EMAs

not only highlights the functional benefits of hearing technology

in challenging situations but also underscores its impact on

social engagements and interactions with close companions. This

enhancement of communication and social involvement echoes

previous findings on the significance of audiological interventions

for improving the quality of life among individuals with hearing

impairments (Holman et al., 2021).

It is widely recognized that, in addition to speech clarity,

effective communication, and sound quality (Picou, 2020;

Oosthuizen et al., 2022), HA wearers value device usage during

leisure activities such as watching television (Strelcyk and Singh,

2018), enjoyingmusic, and gaming (Greasley et al., 2020). The same

was found in this study’s analysis of leisure-related experiences,

where watching TV and listening to music were the two most self-

selected leisure-related sub-categories. Specifically, the enhanced

appreciation of listening to and performing music when using HAs

reported in our study, supported the survey results by Greasley

et al. (2020). Participants also reported improved speech clarity

during several recreational activities, contributing to enhanced

participation and enjoyment e.g., while playing netball, hiking, and

taking guitar lessons. Improved listening experiences while playing

computer games were also mentioned.

In contrast to general situations included in typical self-

report questionnaires (Timmer et al., 2018), the findings of

this study offer deeper insights into the nuanced benefits and

satisfaction derived from hearing aid use in specific lifestyle-related

activities, such as airline travel—a context scarcely documented

in existing literature. The unique capacity of EMA to capture

real-time feedback across diverse life situations not only enriches

our understanding of hearing aid utility but also provides a

rich dataset for informing device design and clinician support

strategies. This granular insight, especially from unique contexts

like airline travel, can serve as valuable data, guiding the

development of HAs optimized for both common and complex

environments. Moreover, the documented psychosocial benefits,

including enhanced engagement in social settings and increased

self-assurance in communication, underscore the comprehensive

impact of HAs on wearers’ wellbeing (Holman et al., 2019, 2021;

Vercammen et al., 2021; Gomez et al., 2022; Oosthuizen et al.,

2022). These findings highlight the transformative potential of

hearing rehabilitation, affirming its role in improving not just

hearing but the overall quality of life. Thus, by leveraging EMA

data, clinicians are empowered to make nuanced adjustments that

address the full spectrum of wearers’ needs, fostering improved

hearing care that is as dynamic as the lives of the individuals it aims

to support.

HA wearers also attributed positive experiences to the battery

life and convenience of rechargeable HAs in terms of device-related

experiences. Similarly, participants in a previous study reported

that rechargeable technology is reliable and offers consistent

performance (Taneja, 2020). Rechargeable HAs, noted for their

reliability and consistent performance (Taneja, 2020), offer an

eco-friendly alternative to disposables, simplifying daily routines

and reducing costs (Sun, 2019). Despite the ease of recharging,

the straightforward replacement of disposable batteries was also

appreciated since it can avoid downtime due to batteries needing to

be recharged. This emphasizes the importance of person-centered

care that supports wearers to make informed choices based on

differentiated advantages related to rechargeable and replaceable

battery devices and considers proficiency in HA management skills

(Campos et al., 2014).

Participants reported a range of benefits from using HAs,

including enhanced hearing optimization, the ability to adjust

volume for improved hearing range, and fewer needs to ask for

repetitions, classified under the “Other” sub-category. Wearers

reported wearing HAs comfortably throughout various daily

activities, even during sleep, and valued the discreetness of

their devices. This inconspicuousness plays a crucial role in

diminishing the stigma often associated with HAs, fostering a more

positive wearer attitude and enhancing overall device satisfaction

(Maidment et al., 2019). Additionally, the enriched perception

of environmental sounds—ranging from the natural ambiance of

birds and waves to the everyday sounds of home appliances—

further underscores the comprehensive benefits of HAs. These

improvements contribute to a more engaging and emotionally

positive auditory experience, underlining the significant role HAs

play in facilitating wearers’ active participation in life’s diverse

scenarios and mitigating communication challenges.

4.1 Limitations

To our knowledge, this study is the first to perform a manual

qualitative content analysis on self-initiated EMA data. However,

several limitations should be acknowledged. Primarily, the data

was collected as part of clinical practice and intended to support

HA wearers and clinicians, and thus not initially collected for

research (Friedman et al., 2015). This secondary use of the data,

while insightful, introduces challenges related to data quality and

generalizability, as also acknowledged in studies by Verheij et al.

(2018) and Dillard et al. (2020).

The exclusive use of a specific brand of smartphone-connected

HAs, including the functionality that had to be activated by the

clinician, limited participation, potentially introducing a selection

bias toward a more technologically adept and motivated subgroup.

Also, we included responses from individuals who provided

feedback in English only.The absence of detailed demographic and

audiological profiles of participants further restricts the findings’

applicability across a broader HA wearers’ population.

Additionally, the use of the mobile application’s pre-

determined sub-categories (i.e., pre-determined listening situations

presented in-app for the user to respond to and select) to guide the

categorization and grouping of responses may have constrained

the coding process. While this classification ensured consistency,

it might have limited the exploration of emergent themes not

predefined in the app. We acknowledge the potential overlap

of similar responses in different categories as a methodological
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limitation, as the predefined sub-categories imposed a structure

not necessarily shared by all participants. Furthermore, the

reliance on self-initiated EMAs introduces potential biases related

to participant self-selection and memory recall, as users may

selectively report experiences they perceive as significant. The

voluntary nature of feedback and the potential for retrospective

reporting introduces risks regarding compliamce and recall bias,

respectively (Shiffman et al., 2008). In addition, this study focuses

exclusively on positive self-initiated EMA responses, presenting a

partial view of the overall hearing aid experience. The exclusion of

negative responses means that while the study highlights significant

benefits, it does not document the full range of user experiences,

including potential challenges and negative aspects. Additionally,

a follow-up paper is underway to analyze the negative EMA

feedback, which will complement this work and provide a more

balanced understanding of hearing aid experiences. Furthermore,

the free-text EMA method, while rich in detail, can be time-

consuming for participants, which may influence engagement and

data comprehensiveness.

Future studies could benefit from enhanced app instructions

and prompts, alongside efforts to capture amore diverse participant

demographic to broaden the research’s relevance. Addressing these

limitations in future research would help in obtaining more

generalized and comprehensive insights into the real-world benefits

of hearing aids.

5 Conclusions

Qualitative self-initiated EMA with positive sentiment has

demonstrated its potential to uncover the diverse benefits of

HAs, offering unique insights into the wearer’s experience in

real-world settings. The effort participants invest in free-text

EMAs yields significant insights, particularly when analyzing

positive EMA statements. This study confirms the substantial

role of HAs in enhancing listening experiences, sound quality,

and communication, even in less documented contexts such as

air travel. Features like direct streaming, extended battery life,

and rechargeability were particularly valued, bolstering satisfaction

and supporting audiologists in delivering personalized auditory

solutions. An innovative use of EMA through smartphone apps

could enable wearers to contribute feedback spontaneously,

allowing for example the immediate analysis of voice notes via

NLP strategies. This could extract meaningful themes in real-

time, informing clinicians or activating support mechanisms (i.e.,

specialized chatbots) to assist individuals in those exact moments

of need. Employing this technology could lead to more dynamic,

responsive, and person-centered hearing care, leveraging personal

narratives to address the intricacies of daily life for HA wearers and

enhance hearing rehabilitation strategies.
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Spatial hearing relies on the encoding of perceptual sound location cues in

space. It is critical for communicating in background noise, and understanding

where sounds are coming from (sound localization). Although there are some

monoaural spatial hearing cues (i.e., from one ear), most of our spatial hearing

skills require binaural hearing (i.e., from two ears). Cochlear implants (CIs)

are often the most appropriate rehabilitation for individuals with severe-to-

profound hearing loss, with those aged 18 years of age and younger typically

receiving bilateral implants (one in each ear). As experience with bilateral hearing

increases, individuals tend to improve their spatial hearing skills. Extensive

research demonstrates that training can enhance sound localization, speech

understanding in noise, and music perception. The BEARS (Both Ears) approach

utilizes Virtual Reality (VR) games specifically designed for young people with

bilateral CIs to train and improve spatial hearing skills. This paper outlines the

BEARS approach by: (i) emphasizing the need for more robust and engaging

rehabilitation techniques, (ii) presenting the BEARS logic model that underpins

the intervention, and (iii) detailing the assessment tools that will be employed

in a clinical trial to evaluate the e�ectiveness of BEARS in alignment with the

logic model.

KEYWORDS

audiology, cochlear implant, spatial hearing, auditory training, sound localization,

speech perception, pediatric audiology, deafness (hearing loss)

Background

Internationally, there are over one million cochlear implant (CI) recipients

in the United Kingdom (UK) (Zeng, 2022). Every year, there are ∼1,500 new

CI recipients in the UK (British Cochlear Implant Group, 2024). Of those

who are bilaterally implanted, around 75% are 18 years of age or younger.
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Extensive evidence supports the conclusion that early cochlear

implantation improves speech and language development

outcomes in this population (Geers et al., 2003; Sharma et al., 2020;

Peixoto et al., 2013), however they often experience significant

challenges in speech perception and sound localization, particularly

in noisy environments (Zheng et al., 2022; Badajoz-Davila and

Buchholz, 2021). Furthermore, bilateral CI users, particularly those

sequentially implanted, may experience difficulties in combining

sounds from the two implants to create three-dimensional sound

(Sparreboom et al., 2012). Some individuals experience “increased

effort” when using the second implant due to perceptible

differences in sound quality between the devices, which may

lead to the rejection of the second implant (Vickers et al., 2021;

Myhrum et al., 2017; Watson et al., 2016; Emond et al., 2013). A

lack of rehabilitative support to address these challenges has been

documented (Mather et al., 2011).

There are currently no standardized clinical fitting protocols,

guidance documents, or rehabilitation tools specifically developed

to optimize the fitting of bilateral CIs, either in the UK or

internationally. Existing rehabilitation techniques with CIs are

often unengaging, do not adequately address real-world hearing

challenges, and lack targeted training to maximize the benefits of

bilateral implantation.

Recognizing the absence of standardized protocols for fitting

bilateral CIs, and the need for ecologically valid outcome measures

and resources for multi-modal listening training, the BEARS (Both

Ears) programme was established. The aim of this paper is to

present the BEARS approach and the underpinning logic model,

which extends previous research on the development of the BEARS

intervention through participatory design methodologies (Vickers

et al., 2021).

BEARS programme logic model

The BEARS programme has involved the development of

virtual reality (VR) based spatial hearing games designed to

enhance spatial hearing in children and young people (CYP, aged 8–

16 years) with bilateral CIs (Vickers et al., 2021). It is informed by a

logic model (Figure 1) based on the National Institute for Health

and Care Research/Medical Research Council (NIHR/MRC)

framework for complex health interventions (Skivington et al.,

2021), and has developed both the intervention and outcome

measures to rigorously assess intervention effectiveness in a

randomized controlled trial (RCT, ISRCTN: 92454702). Logic

models are visual representations illustrating the interconnected

relationships among various components of a programme or study

(Skivington et al., 2021; Funnell and Rogers, 2011).

The BEARS logic model integrates multiple components

to assess the intervention and its anticipated outcomes, while

also accounting for the specific characteristics of the target

patient population. The model outlines the external context for

implementation, the mechanisms of change, and the potential

effects on healthcare delivery should the intervention demonstrate

efficacy. Implementation determinants have also been considered

in the development of the BEARS logic model. Moderating

and mediating factors include chronological age at first implant,

developmental age, training engagement, school setting, duration

of hearing before severe-profound deafness, type of intervention

device, CI center, number of active CI electrodes, and level of

asymmetrical hearing loss. Here, the components of the logicmodel

are presented in more detail.

Target population

The BEARS logic model is grounded in developmental theory,

which accounts for the biological, psychological, social, and

emotional changes occurring with age (Piaget, 1971). Within

our RCT study population of 384 CYP [power calculation

based on pilot data using the BEARS primary outcome measure

(spatial speech-in-noise)] with bilateral CIs, it is anticipated that

participants will have reached either the “concrete operational”

stage, characterized by logical thinking about tangible objects,

or the “formal operational” stage, marked by the development

of abstract thinking and a more complex understanding of the

world. They will also have reached a “cognitive stage” which is

linked to the proposed change mechanisms. As hearing abilities

improve, this should develop knowledge construction of the world,

increasing self-confidence and socio-emotional development (i.e.,

improve experience, expression, management of emotions and

ability to establish positive relationships with others). Participants

will be bilateral CI users with a minimum of 6 h of daily

usage and stable aided hearing levels (within ±10 dB across 500

Hz−4 kHz), confirmed over at least the two most recent clinical

review appointments.

Intervention plan

Virtual Reality (VR), which relies on immersive, computer-

generated audio-visual environments, is increasingly being applied

in health research and healthcare delivery. Users interact with

VR environments through a head-mounted display and handheld

controllers. In auditory research, VR has been utilized to assess

listening abilities (Salanger et al., 2020), train localization skills

(Shim et al., 2023; Alzaher et al., 2023), and measure the benefits

of hearing aids (Grimm et al., 2016). The advantages of VR can

include enhanced experimental reproducibility, a reduced need for

additional resources and complex speaker-array equipment, as well

as increased applicability to real-world scenarios. These benefits

may improve the utility of VR based rehabilitation and diagnostic in

clinical scenarios. Furthermore, simulating physical spaces through

VR, could be advantageous to train, monitor and potentially

improve how hearing device users physically respond to sounds

e.g., head turn movements and positioning (Grange et al., 2018), in

addition to speech perception and sound localization performance.

Developing VR games to improve spatial hearing
The BEARS intervention is a suite of VR games (Figure 2),

delivered via the Meta Quest 2 head-mounted device and a

pair of headphones, and specifically designed to enhance the

spatial hearing abilities of CYP with bilateral CIs. The BEARS

intervention was developed using a participatory design approach,

as outlined in Vickers et al. (2021), where stakeholders, including
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FIGURE 1

The BEARS logic model created using the Medical Research Council (MRC) framework on complex interventions to improve health (Skivington et al.,

2021).

CI users, served as co-creators (Vickers et al., 2021). CI users

provided valuable feedback on various aspects of the games, such

as usability, content, difficulty levels, and settings. Clinicians,

including audiologists, speech and language therapists, teachers

of the deaf, and music therapists, also played a critical role by

evaluating the BEARS training package and suggesting important

stimuli for enhancing speech and hearing development. Through

collaborative workshops, patients, clinicians, researchers, and

engineers reached a consensus that the training package was

appropriately designed and ready for use in a randomized

controlled trial to evaluate effectiveness.

During this iterative process, modifications were made to

ensure the games encompassed a wide range of scenarios, reward

systems, lessons and challenges of varying difficulty and clear

instructions. They were structured to provide feedback and

measure success. Additionally, an iPad version was developed

for participants with smaller heads, who find the VR headset

uncomfortable, for those who do not like the experience of using

the head mounted display, or those with vestibular disorders or

significant motion sickness while playing video games. The sound

from the VR headset can be presented using inbuilt loudspeakers

but due to positioning there was inconsistency in the quality

of delivery to the CI processor microphones. There are also

options for sound delivery via Bluetooth connection or direct

audio-input, but the participatory feedback groups indicated that

many individuals were not comfortable in using these listening

options and there was greater variability across CI manufacturers.

Therefore, headphones were chosen as the most consistent to

use for all participants. Various headphones were evaluated for

comfort, ease and consistency of use through workshops with the

target population, and quality of acoustic representation of the

signals and robustness to headphone placement were evaluated by

electro-acoustic assessments. AKG k240 headphones were selected

for audio delivery with headsets, and with iPads.

The BEARS training package consists of three VR training

games to enhance spatial hearing, using target localization, speech

perception, and music content (Figure 2). Each game is based on

an audio-visual task performed through the VR interface. Players

are automatically guided through on-screen visual prompts to

support the gameplay with feedback given on their performance.

They progress through levels of increasing difficulty. Challenges

and lessons are unlocked during the gameplay; the difficulty of the

various levels has been calibrated during the participatory design

stage and to provide enough content for the whole duration of

the trial. The package is designed for self-administration, allowing

players the flexibility to engage with the games at any location and

time. Workshops with CYP suggested that it is practical to play the

BEARS games for at least 1 h per week, divided into a minimum

of two 30-min sessions. Clinician workshops recommended that

all three games be incorporated into each session to optimize the

use of multiple approaches. Informed by these recommendations,

relevant literature and device safety guidance (Rechichi et al., 2017;

Meta, 2024), no limitations were placed on the number of gaming

sessions; however, participants were advised not to exceed 30min

per session. Device datalogging captures detailed gameplay metrics,

including session duration, the number of levels unlocked, game

points (stars) earned, and the time spent on each game category.

Target game

Originally developed to train normal-hearing individuals

in sound localization when using non-personalized rendering

(Steadman et al., 2019), the target game was later adapted for CI
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FIGURE 2

The BEARS games. (Left) Sound localization game, where participants identify targets. (Middle) Speech-in-noise game where participants follow

instructions to serve café customers with food and beverage items. (Right) Music game, for participants to complete tasks of pitch discrimination,

rhythm repetition, and instrument selection.

users. In this game, players are initially trained to localize sounds

using audiovisual cues. Sounds can originate from any direction

around the player, who must identify the target, represented as a

bullseye, and direct their controller toward it. At the outset, the

bullseye is clearly visible, but as the difficulty levels increase, it

gradually disappears, transitioning the task into a purely auditory

challenge. Additional challenges involve locating the target signal

amidst interfering stimuli or identifying a set of targets in a specific

order, further enhancing the training complexity.

Speech in noise game

Players are immersed in a virtual café environment, where

they are tasked with progressively challenging speech recognition

activities. These tasks require players to interact dynamically with

the environment by rotating their heads to localize characters who

are speaking, and accurately identify the spoken words in the

presence of varying levels of background babble. As customers

approach from different directions, players must accurately locate

them, take their orders, and select the appropriate items from

the café counter. The complexity of the game increases with the

introduction of background noise and additional interfering tasks

within the café setting. A set of advancing levels are also available

in a scenario where the player needs to make pizzas, putting the

correct ingredients onto the pizzas in the right order and delivering

them directly to customers or to delivery staff.

Music game

The game aims to enhance perception and localization of

musical instruments and lyrics in a range of immersive and

interactive soundscapes. Players complete a variety of pitch,

timbre, and rhythm discrimination tasks. For example, a pitch

discrimination task could involve a participant selecting the

location of a pitch-shifted popular song and identifying whether the

pitch is higher or lower compared to the original. A rhythm-based

task may require participants to use VR controllers to replicate a

presented rhythmic beat by playing virtual drums. The music game

is based on the Musiclarity web-application, created within the

3D Tune-in project (Reactify, 2024; Cuevas-Rodríguez et al., 2019;

Levtov et al., 2016).

Change mechanisms

Although individuals with bilateral CIs generally exhibit better

sound localization and speech-in-noise perception compared

to those with a unilateral implant, their performance remains

significantly below that of typically hearing children (Sarant

et al., 2014; Sparreboom et al., 2015; Lovett et al., 2015; Zheng

et al., 2015; Lammers et al., 2014). Extensive research indicates

that sound localization can be enhanced through targeted

training, with evidence suggesting that plasticity-induced changes

can occur in the auditory pathways of both children and

adults, facilitated by appropriate training systems (Firszt et al.,

2015; Yu et al., 2018; Killan et al., 2019; Mathew et al., 2018).

These improvements are underpinned by cue remapping—

using new spatial cues to develop a revised localization

map—and cue reweighting, which involves emphasizing

unaltered cues while disregarding altered ones (Steadman

et al., 2019).

Computer-based training offers substantial potential,

particularly due to its remote delivery capability and greater

engagement. Such training has been shown to improve speech-in-

noise perception in CI users (Casserly and Barney, 2017). Research

also highlights the efficacy of combined training stimuli. For

instance, Cai et al. (2018) found audio-visual training to be more

effective than auditory-only training, while Steadman et al. (2019)

emphasized the importance of auditory-based interaction during

training. A systematic review by Rayes et al. (2019) identified

multimodal interventions or a combination of bottom-up and

top-down training tasks as the most effective for children with CIs.

Whitton et al. (2017) demonstrated that audio-motor perceptual

training can improve speech-in-noise intelligibility by up to 25%.

Stitt et al. (2019) also illustrated the use of virtual auditory displays

to create training environments that teach users to localize sounds

using modified localization cues. The inclusion of audio-visual

stimuli facilitates task familiarization, while gamification enhances

engagement and performance.

It is anticipated that the BEARS intervention, compared to

standard care alone, will improve spatial hearing, speech-in-noise

perception, and listening ease. These improvements are expected to

be driven by plasticity-related processes, training-induced increases
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in performance change rates andmaximumperformance, auditory-

visual integration, multimodal stimuli, and cognitive engagement-

driven generalization. The mechanism of action assumes that the

games promote learning.

Direct outcomes

The evaluation of BEARS follows a mixed methods approach to

determine whether BEARS (i) improves speech-in-noise perception

in spatial environments, (ii) enhances quality of life, (iii) is cost-

effective, and (iv) increases the perceived benefits of everyday

listening. A range of tools and measures are utilized to assess

outcomes, including some specifically developed as part of the

BEARS project. The primary outcome measure is a spatial speech

in noise assessment. The Spatial Speech in Noise Virtual Acoustics

(SSiN-VA) test simultaneously assesses word identification and

relative localization and can provide information about spatial

release from masking. It is based on a test initially developed

by Bizley et al. (2015) and has been adapted into a virtual

implementation (Bizley et al., 2015; Salorio-Corbetto et al., 2022).

The virtual adaptive sentence-in-noise task, utilizing the Spatial

Adaptive Sentence List (Sp-ASL;MacLeod and Summerfield, 1990),

is administered in accordance with the BKB-SIN task protocol

(Bench et al., 1979). These virtual outcome measures are carried

out with an iPad and calibrated headphones, and were developed

in response to the limited availability of multi-speaker arrays

for spatial hearing assessments in many audiology departments

(Parmar et al., 2022). They are intended to make speech-in-noise

testing more accessible and efficient for audiologists, and can be

adapted for different populations and clinical purposes.

Health provision, health, and wellbeing
outcomes

A bespoke quality of life measure, the York Binaural Hearing

Related Quality of Life—Youth (YBHRQL-Y) has been developed

as part of the BEARS programme (Somerset et al., 2023). This

measure has been re-operationalized for use with CYP from the

original adult YBHRQL developed by Summerfield et al. (2022).

Other health economics questionnaires include the Health Utilities

Index 3 (HUI-3; Horsman et al., 2003) the Child Health Utility

instrument (CHU-9D; Furber and Segal, 2015). The economic

evaluation will calculate incremental cost per quality-adjusted life-

year (QALY) gained by offering BEARS and usual care compared to

usual care, from a National Health Service (NHS), Personal Social

Services and Local Education Provider perspective.

A longitudinal qualitative design is being used to explore

CYP’s experiences of everyday listening, and to contribute to

understanding how the BEARS intervention may lead to perceived

changes to that experience. Semi-structured online interviews are

being carried out with a subset of 40 participants from both BEARS

and usual care arms, at baseline and again after 3 months. In

addition, all participants in both arms of the trial are asked to

respond to open-ended survey questions at successive timepoints

throughout the study (baseline, 3 and 12 months). The interview

and survey questions have been co-produced in sessions with deaf

CYP. Interview and survey data will be analyzed thematically using

a Framework approach (Parkinson et al., 2016). Findings will be

discussed with deaf CYP to explore whether the trial data resonates

and reflects their own lived experiences as users of CIs.

Conclusion

The BEARS programme comprises a suite of VR games

specifically designed to enhance spatial hearing in CYP with

bilateral CIs. The development of the BEARS intervention

is grounded in evidence presented above, supporting the

efficacy of sound localization training, the application of VR

technologies, multi-modal training approaches, and the necessity

for rehabilitation methods that are both effective and engaging for

CYP. These games were co-developed with input from bilateral

CI users and other key stakeholders, ensuring their relevance and

appeal to the target population. This work is aligned with key

objectives outlined in the UK’s NHS Long Term Plan (National

Health Service, 2019), which emphasizes the importance of

expanding digital tools and services to empower patients and

support healthcare professionals.

The effectiveness of the intervention will be evaluated within

an RCT (ISRCTN: 92454702). The unblinded, multi-center RCT

is currently underway to evaluate the effectiveness of a 3-month

spatial-listening training programme delivered via the BEARS

platform, in addition to usual care, compared to usual care

alone. The trial aims to assess improvements in spatial hearing

abilities, quality of life, and cost-effectiveness. The study is being

conducted across 11 cochlear implant centers in the UK, with a

target recruitment of 384 bilateral implanted 8- to 16-year-olds.

A 12-month follow up session will assess retention and longer-

term effects.

In accordance with the NIHR/MRC framework for complex

health interventions (Skivington et al., 2021), we are collaborating

with participants, clinicians, and researchers to develop a

comprehensive scale-up and implementation strategy. This

strategy addresses the immediate challenges of integrating the

BEARS intervention into clinical practice, alongside long-term

considerations such as ongoing game development, equipment

maintenance, and ensuring equitable access. Furthermore, we

are partnering with international collaborators to explore the

feasibility of global implementation of the BEARS intervention.

A critical element of this effort is the BEARS process evaluation,

which aims to explore trial compliance, and verify the mechanistic

assumptions underlying the intervention’s outcomes, and to

determine opportunities for optimisation (Moore et al., 2015).

Insights from the process evaluation will guide the refinement of

the implementation strategy and provide essential information

for decision-makers seeking to deploy the intervention across

varied settings. To mitigate bias, the process evaluation will

be conducted independently of the clinical trial, with data

collected by individuals not involved in the design or delivery of

the intervention.

The BEARS programme plays a significant role in advancing

remote care resources, offering novel interventions that empower

patients to take greater ownership of their rehabilitation while
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potentially alleviating the burden on healthcare providers. For

younger populations, the implementation of VR provides a more

engaging alternative to traditional auditory rehabilitation methods.

The use of participatory design in the development of BEARS

games and outcome measures (Vickers et al., 2021) improves their

relevance to the target population, thereby enhancing the likelihood

of adoption and sustained use.
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