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Editorial on the Research Topic
Immunology of allogeneic hematopoietic stem cell transplantation
Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) remains the only curative

treatment for several high-risk hematologic malignancies (1). The role of the immune

response in allogeneic HSCT involves both the eradication of the disease via the graft-

vs.-leukemia (GvL) effect and the development of some of the major complications of

the transplant procedure, such as graft rejection, graft-vs.-host disease (GvHD), and

infections. Recently, there has been an increased interest in the field of cancer

immunology and immunotherapy, which has also been reflected in the HSCT field.

Numerous studies have focused on the understanding of the immune biology of HSCT

in order to reduce adverse effects and enhance the anti-cancer efficacy. Moreover,

innovative immunotherapeutic approaches such as bispecific antibodies, checkpoint

inhibitors, and chimeric antigen receptor (CAR) T-cells are increasingly being

combined with allogeneic HSCT to improve its therapeutic efficacy (2).

The articles published in the present Research Topic provide a glimpse of some of the

critical aspects of immune biology of allogeneic HSCT and their implications in translational

practice. These contributions range from retrospective cohort studies to exemplificative case

reports that offer insights into managing peculiar and complex clinical scenarios.

Acute GvHD is one of the major toxicities of allogeneic HSCT. Research in this area is

focused on the validation of reliable biomarkers for risk-adapted therapy (3). New

therapeutic strategies aiming to avoid broad immunosuppression are under investigation

(4). Sun et al. described the role of monocytes as potential biomarker for the

prevention and treatment of acute GvHD, through a comparative analysis of single-cell

RNA sequencing data on peripheral blood of patients with and without this

complication. Monocytes showed a marked increase and activation on day 21 post-

transplantation, before the onset of GvHD, which aligned with clinical cohort results

obtained from routine blood examinations. Moreover, these monocytes were able to

induce a significantly higher proliferation rate of T cells. Ideally, such an early GvHD
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biomarker could be useful to guide clinical management of GvHD.

Another subset of immune cells, namely gamma delta (γδ) T cells,

though a minor fraction of the human T cell repertoire, play a

crucial role in anti-infectious and anti-tumor responses in

allogeneic HSCT. In a prospective study of 49 pediatric

allogeneic HSCT recipients, Müller et al. identified a protective

role for γδ T cells, particularly the Vδ2 + subset, against acute

GvHD and Epstein–Barr virus (EBV) infection. Multivariate

analyses confirmed these findings, supporting further exploration

of γδ T cells as prognostic markers and potential targets for

adoptive T cell transfer strategies after HSCT.

With regard to GvHD prediction from an immunogenomic

standpoint, a new metric to gauge the immunopeptidome

diversity, called HLA evolutionary divergence (HED), previously

explored in a variety of hematological conditions (5–7), is studied

in acute lymphoblastic leukemia (ALL) patients undergoing

haploidentical HSCT by Cao et al.. Both class I and II HED

metrics were calculated in 225 patients with ALL. While no

differences were found in terms of survival outcomes, multivariate

analysis indicated that a high class II HED for donor-recipient was

an independent risk factor for the development of severe acute

GvHD (P = 0.007), and that recipients with high class I HED had

a more than two-fold reduced risk of relapse (P = 0.028).

Three studies explore the potential benefits of using umbilical

cord blood (UCB) products. Niu et al. reported the outcomes of

adult and pediatric patients with severe steroid-refractory acute

GvHD who were treated with intravenous infusions of human

umbilical cord-derived mesenchymal stromal cells (UC-MSCs).

The overall response rate at day 28 was 52.3%, without serious

adverse events. Poor outcomes were observed for patients with

acute lower gastrointestinal and liver GvHD.

Zeng et al. described how UCB regulatory T cells (Tregs), which

play a key role in immune balance, work in synergy with Ruxolitinib

in GvHD treatment. This combination effectively alleviates GvHD

while preserving the beneficial GvL effect, as demonstrated in

xenogeneic preclinical models. Graft failure (GF) and poor graft

function (PGF) are potential complications in allogeneic HSCT,

particularly in recipients with donor specific antibodies (DSA).

UCBs, known for their high stem cell content and low

immunogenicity, have been shown to promote immune tolerance

when co-infused in haploidentical HSCT. In a retrospective,

single-center, controlled study, Wang et al. demonstrated that co-

infusion of third-party UCBs in patients with HLA antibodies

improved engraftment and reduced the incidence of chronic GvHD.

Three case reports provide valuable insights into the

management of challenging clinical scenarios. Zhu et al. described

an unusual case of isolated spinal cord involvement with B-cell

lymphoid proliferation 11 months post-HSCT, followed six

months later by EBV-positive NK/T-cell lymphoma with

subcutaneous involvement. This case underscores the importance

of maintaining a high suspicion for post-transplant lymphoid

proliferations in the context of neurological complications after

HSCT and highlights the need for early diagnosis to manage this

potentially life-threatening condition. Liu et al. reported a case of
Frontiers in Transplantation 026
relapsed/refractory ALK + anaplastic large cell lymphoma

successfully treated with crizotinib and brentuximab vedotin as

bridging therapy, followed by autologous HSCT and sequential

anti-CD30 CAR T-cell therapy. This innovative combination

therapy model offers promising guidance for managing this rare

subtype of T-cell non-Hodgkin lymphoma and informs future

clinical trial strategies. Finally, Miao et al. described a patient with

relapsed/refractory acute myeloid leukemia receiving donor-derived

CLL-1 CAR T-cell therapy for bridging to allogeneic HSCT after

achieving remission, showing the promising efficacy of cellular

therapies in the realm of myeloid malignancies.

The studies and case reports presented in this Research Topic

underscore the dynamic interplay between immune biology and

clinical practice in allogeneic HSCT. Advances in biomarker

discovery, cellular therapies, and immunogenomics are shaping

personalized strategies to reduce complications, enhance the

quality of life, and improve outcomes. Moreover, the integration

of innovative immunotherapies highlights the potential to extend

curative options to even the most challenging cases. Moving

forward, collaborative research is essential to optimize the

therapeutic potential of allogeneic HSCT while addressing its

limitations. While the studies in this Research Topic provide

valuable insights, they also point to the need for prospective

trials to further validate findings and refine treatment strategies.

By bridging translational science and clinical application, the

field is poised to offer transformative solutions for patients with

high-risk hematologic malignancies.
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ALK+ ALCL
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Xiaojian Zhu* and Yi Xiao*
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Background: Anaplastic lymphoma kinase-positive anaplastic large cell

lymphoma (ALK+ ALCL) is a rare, mature T-cell non-Hodgkin lymphoma. The

prognosis of patients with relapsed or refractory ALCL following first-line

chemotherapy is extremely poor. NCCN guidelines recommend intensified

chemotherapy with or without ASCT consolidation for r/r ALCL, however, this

is not an effective treatment for all ALK+ALCL.

Case report:Herein, we report a patient with relapsed/refractory ALK+ ALCL who

received crizotinib and brentuximab vedotin as bridging therapy, followed by

autologous stem cell transplantation and sequential anti-CD30 CAR T

cell therapy.

Conclusion: The patient achieved complete remission and long-term disease-

free survival of months and continues to be followed up. The combination

therapy model in this case may provide guidance for the management of

relapsed/refractory ALK+ ALCL, and further prospective trials are needed to

confirm its effectiveness.
KEYWORDS

anaplastic large cell lymphoma, T-cell non-Hodgkin lymphoma, crizotinib, CAR T cell
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1 Introduction

Anaplastic lymphoma kinase-positive anaplastic large cell

lymphoma (ALK+ ALCL) is a rare aggressive systemic T-cell

non-Hodgkin’s lymphoma (NHL), contributing approximately 6–

7% of mature T-cell lymphomas. In 2016, the World Health

Organization (WHO) classified anaplastic large cell lymphoma

into four categories: ALK+ ALCL, ALK-negative ALCL (ALK−

ALCL), primary cutaneous ALCL, and breast-implant-associated

ALCL (BIA-ALCL). ALK+ ALCL is more common in children and

young adults, with a male predominance, and is characterized by

overexpression of the ALK protein because of ALK gene

translocation. Most patients with systemic ALCL present with

advanced stage III or IV, which is frequently associated with

systemic symptoms and extranodal involvement. The systemic

symptoms in patients with ALK+ ALCL include weight loss,

fever, weakness, fatigue, and night sweats. Common extranodal

involvement includes involvement of the skin, bone, soft tissues,

lungs, and liver (1).

Compared to other peripheral T-Cell lymphoma (PTCL)

subtypes, ALK+ ALCL has a significantly better prognosis after

first-line treatment. Following initial treatment, patients with ALK+

ALCL demonstrate relatively favorable outcomes, with complete

remission (CR) rates of up to 86% and 8-year overall survival (OS)

rates of 82% in a long-term follow-up study (2). However, relapsed

and refractory ALK+ ALCL is associated with a relatively poor

prognosis, and established standards for the management of

relapsed or refractory disease are lacking. Currently, stem cell

transplantation, targeted therapy, and immunotherapy with ALK

inhibitors, brentuximab vedotin (BV), histone deacetylase (HDAC)

inhibitors, and programmed cell death protein 1 (PD-1)/

programmed death-ligand 1 (PD-L1) inhibitors are some of the

most widely considered options for the treatment of relapsed or

refractory ALK+ ALCL.

To date, consensus regarding the roles of autologous stem cell

transplantation (ASCT) and CAR-T cell therapy in patients with

relapsed/refractory ALK+ ALCL has not been achieved. In this

study, we present the case of a patient who failed multiple lines of

therapy and benefited from ASCT and CAR-T cell treatment. Our

study provides insights into therapeutic strategies for such patients.
2 Case report

A 19-year-old man presented to our otolaryngology department

in August 2017 with a table tennis-sized lump in his left chest wall

and right axilla and pain in right rib that lasted for 1 month. The

patient’s history was free of relevant diseases. The patient’s family

history and genetic history are free of genetically related diseases

and free of hematologic disorders such as lymphoma. Chest

computed tomography (CT) showed enlargement of the right

axillary lymph nodes, indicating neoplastic lesions and

destruction of the right eighth rib bone. The diagnosis of ALCL

was confirmed using a right axillary lymph node biopsy and

immunohistochemical analysis (Figure 1). Immunohistochemical

staining revealed that the tumor cells were positive for ALK and
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CD30. The Ki-67 proliferation index was 90%. The patient was

diagnosed with stage IV ALCL and had an international prognostic

index (PI) score of 3. The patient received induction chemotherapy,

including 8 courses of cyclophosphamide, doxorubicin, vincristine,

etoposide, and prednisolone (CHOEP). The patient underwent

clinical evaluation after completing 8 cycles of chemotherapy.

Positron emission tomography–computed tomography (PET–CT)

revealed bilateral neck and axillary lymph node enlargement and

increased metabolism. Subsequently, the patient underwent neck

and axillary sensitization radiotherapy (Dt 3960cGy/22F). Three

months later, a substantial subcutaneous mass measuring

approximately 1 cm was palpated in the left lower abdomen. The

patient was diagnosed with relapsed/refractory ALCL after an

abdominal mass biopsy (Figure 1). PET–CT (August 29, 2019)

demonstrated multiple mediastinal, abdominal, and retroperitoneal

lymph node enlargement that were partially fused. The largest one

was approximately 4.9 ×3.3 cm, and the SUVmax was 19.6. Right

pleural thickening, a slightly low-density shadow in the left kidney,

multiple muscles, and subcutaneously increased metabolism were

also observed. These new changes were considered lymphoma

infiltration. The bilateral cervical and axillary lymph nodes

increased in size, and metabolism was enhanced. Increased local

metabolism of the stomach, small intestine, and transverse colon

was also observed. One cycle of dexamethasone, high-dose cytosine

arabinoside, cisplatin (DHAP) chemotherapy was initiated on

September 4, 2019. The patient presented with abdominal pain

on September 23, 2019. Abdominal imaging revealed a significant

increase and enlargement of the peripancreatic, retroperitoneal, and

mesenteric root lymph nodes, indicating tumor progression. New

flaky low-density shadows appeared in the left kidney, indicating a

potential tumor invasion. Imaging assessment of the retroperitoneal

mass showed that the stable disease (SD) developed into progressive

disease (PD). The patient began taking crizotinib (250 mg twice

daily) on October 1, 2019, for 1 month. BV at a dose of 100 mg was

administered to the patient on October 29, 2019. On the day of BV

infusion, the patient underwent an abdominal CT examination.

Compared with the previous abdominal images (September 25,

2019), the number of enlarged retroperitoneal and mesenteric

lymph nodes was significantly reduced. The range of patchy, low-

density lesions in the left kidney also decreased significantly.

Abdominal imaging findings were evaluated as partial remission

(PR). The patient learned of the clinical trial of tandem ASCT and

CAR30 T cell infusion in r/r CD30 + lymphoma being conducted at

our hospital, to further enhance the curative effect, he volunteered

to participate in the clinical trial. The trial was approved by the

Institutional Review Board of Tongji Hospital, Tongji Medical

College, Huazhong University of Science and Technology, and the

study was registered with the Chinese Clinical Trial Registry

(ChiCTR, number ChiCTR2100053662). Informed consent was

obtained by the patient and her family according to the

Declaration of Helsinki. On December 21, doxorubicin

hydrochloride liposome with the BEAM regimen pretreatment

was performed. Autologous hematopoietic stem cells (4.94 × 106/

kg CD34+ cells) were infused on December 28, and CD30 (24.00 ×

106/kg) CAR-T cells were infused three times. The three infusion

doses of CD30 CAR-T were 5 × 106/kg, 5 × 106/kg and 1.4 × 107/kg
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respectively (January 1, 2, and 3, 2020). The structure is as shown in

Figure 2A. CAR30 transgene copy numbers in the peripheral blood

was detected by droplet digital polymerase chain reaction (ddPCR)

(Figure 2B). After infusion of anti-CD30 CAR T-cells, grade 1

cytokine release syndrome (CRS) was observed, and immune

effector cell-associated neurotoxicity syndrome (ICANS) was not

occur. The serum ferritin and interleukin-6 levels were assessed

after cell infusion (Figure 2). The engraftment times of neutrophil

and platelet after hematopoietic stem cells infusion were both 14

days. The results of the PET–CT evaluation 3 months after

treatment showed that the retroperitoneal soft tissue focus was

significantly reduced or had disappeared (Figure 3). PET–CT

assessments at 3, 6, and 12 months after autologous stem-cell

transplantation (ASCT) and CAR T-cell therapy showed

sustained complete remission (CR). The latest PET–CT showed

that the size of the lymph nodes in the left neck IIA region was

similar, and metabolism was slightly reduced compared to previous

PET–CT images (July 16, 2020). Approximately 4 years after ASCT

and CAR T-cell therapy, the patient was disease-free. The timeline

of clinical treatment and disease status is shown in Figure 4.
3 Discussion

It’s been a long time the recommended first-line treatment

options for patients with ALCL are mostly anthracycline-based
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cyclophosphamide, vincristine, doxorubicin, and prednisone

(CHOP) or CHOP-like regimens. CHOEP is more suitable for

patients aged <60 years. In a previous study, among younger

patients with ALK+ ALCL (n = 78) with normal LDH levels at

the time of diagnosis, adding etoposide to CHOP (-like) regimens

enhanced overall response rates and resulted in superior event-free

survival (EFS) (3-year EFS of 91% vs. 57% in patients treated with

CHOEP vs. CHOP, respectively). Furthermore, a large analysis of

263 adult patients with ALK+ ALCL demonstrated that the

integration of etoposide into primary therapy was associated with

significant improvements in the 5-year progression-free survival

(PFS) (83% vs. 62%) and OS (93% vs. 74%) vs. non-etoposide

regimens. In patients aged ≤60 years (n = 232), the respective 5-year

PFS and OS were 81% vs. 65% and 92% vs. 77%, respectively (3). In

Netherlands, a nationwide population-based study assessed the

impact of etoposide on overall survival (OS) among patients aged

18 to 64 years with stage II to IV ALCL, angioimmunoblastic T-cell

lymphoma (AITL), or PTCL not otherwise specified (NOS)

diagnosed between 1989 and 2018. In patients with ALK+ ALCL

who received CHOEP, CR rate was significantly higher than in

patients who received CHOP (86% vs 61%). Overall, 5-year OS for

patients with ALK+ ALCL who received CHOEP was superior to

that in patients who received CHOP (90% vs 61%) (4). Multiple

studies have shown that etoposide being of great value in ALCL but

also in other PTCL subtypes. CD30 is a transmembrane

glycoprotein receptor expressed on all systemic ALCL, making it
A

C

B

D

FIGURE 1

Hematoxylin and eosin (H&E) of relapsed/refractory anaplastic large cell lymphoma. The first biopsy: (A) Pathological HE image of the patient’s right
axillary lymph node (100×). (B) Pathological HE image of the patient’s right axillary lymph node (200×). The second biopsy: (C) Pathological HE
image of the patient’s abdomen mass (100×). (D) Pathological HE image of the patient’s abdomen mass (200×).
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FIGURE 2

The therapeutic response after anti-CD30 CAR T-cell infusion. (A) Schematic diagrams of CAR construct. The third-generation CAR was composed
of a single chain variable fragment (scFv), two costimulatory domains from CD28 and 4-1BB, and CD3z chain as activation domain. The scFv was
derived from a murine monoclonal antibody against human CD30. Abbreviations: SP, signal peptide; VL, variable L chain; L, linker; VH, variable H
chain. (B) The copies of CAR30 transgenes in the peripheral blood detected by ddPCR. (C) Dynamic changes in ferritin after CAR T cell infusion.
(D) Dynamic changes in IL-6 after CAR T cell infusion.
A

B

C

FIGURE 3

The 18F-FDG PET/CT images of relapsed/refractory ALCL. (A) From left to right: diagnosed as relapsed/refractory ALCL;1 month before ASCT and
CAR T-cell therapy;3 months after ASCT and CAR T-cell therapy. (B) The metabolic images of retroperitoneal enlarged lymph nodes during disease
recurrence, before ASCT and CAR T-cell treatment and 3 months after treatment (from left to right). (C) The metabolic images of right scapular
muscle group during disease recurrence, before ASCT and CAR T-cell treatment and 3 months after treatment (from left to right).
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an ideal therapeutic target. BV is a chimeric monoclonal antibody–

drug conjugate that targets CD30. The phase 3 ECHELON-2 study

comparing CHOP with BV (BV substituted for vincristine; BV–

CHP) regimen to CHOP in CD30+ adult PTCLs, including ALK+

ALCL with IPI ≥2, showed an improved 3-year PFS (57.1% vs.

44.4%) and OS (76.8% vs. 69.1%) in the BV group (5). The

ECHELON-2 trial established the BV–CHP regimen as a new

standard front-line therapy for patients with ALK+ ALCL. After 5

years of follow-up, patients with PTCL treated with BV–CHP as a

frontline treatment had a survival benefit over CHOP, with a 5-year

OS of 70.1% vs. 61.0%, respectively. This study further

demonstrated that BV–CHP resulted in clinically significant

improvements in OS compared with CHOP (6). Children’s

Oncology Group trial ANHL12P1 described the results of adding

BV to standard chemotherapy in children with newly diagnosed

ALK+ ALCL, with a 2-year EFS of 79.1% and OS of 97% (7). The

addition of BV prevented relapses during therapy, and the OS and

EFS estimates were relatively favorable to the results obtained using

conventional chemotherapy. Thus, at present, BV-CHP (and its

variations such as BV-CHEP) is the current standard of care for

patients with ALCL (either ALK+ or ALK-) in the Europe

and America.

Relapsed and refractory ALK+ ALCL are associated with a poor

prognosis. NCCN guidelines recommend intensified chemotherapy

with or without ASCT consolidation for r/r ALCL, however, this not

effective treatment in all ALK+ALCL. Various therapeutic

approaches, including high-dose chemotherapy regimens, new

drugs such as anti-CD30 antibody drugs and ALK inhibitors, as

well as autologous or allogeneic hematopoietic stem cell

transplantation, have been used. ALK inhibitors are a more

recently approved therapy that is often used as a stand-alone

therapy for relapsed or refractory disease. Crizotinib, an inhibitor

of ALK, was approved for the treatment of refractory ALK+ ALCL

in pediatric patients and young adults in January 2021 (8).A small

single-center study that evaluated crizotinib as a monotherapy for

25 patients with relapsed or refractory ALK+ ALCL found durable

remission in almost 2/3 of patients (9). A non-controlled, open-

label phase II study conducted in France enrolled 28 patients with

relapsed/refractory ALK+ ALCL, of whom 25 patients receiving at

least one dose of crizotinib were included in the analysis. The

overall response rate at 8 weeks was 67% (95% CI: 47–82%), with

80% (95% CI: 44−97%) in children/adolescents and 57% (95% CI:

29−82%) in adults. The PFS and OS rates at 3 years were 40% (95%

CI, 23–59%) and 63% (95% CI, 43–79%), respectively (10). In an
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open-label phase II trial, crizotinib was administered to 26 pediatric

patients with relapsed or refractory ALK+ ALCL, achieving an

objective response rate of 90% (11). Even though it induces CR in

most cases, crizotinib has not yet been proven curative, as it may

require life-long treatment. Notably, abrupt relapses of ALK+

lymphoma following crizotinib discontinuation have been

reported. Crizotinib induces CR as a bridge for subsequent

transplantation. Ceritinib, another ALK inhibitor, has shown a

promising response as a treatment for ALK+ ALCL. The Phase I

ASCEND-1 trial showed persistent responses in several adult

patients with ALK+ ALCL, including three patients with relapsed

ALK+ ALCL (12). Alectinib is a second-generation oral kinase

inhibitor of ALK. A single-arm phase II study published in 2020

tested the efficacy of alectinib in 10 patients with relapsed/refractory

ALK+ ALCL. Among these patients, eight (80%) achieved objective

remission, and six (60%) achieved CR (13).

BV was approved in the USA and Europe for the treatment of

relapsed ALCL in adults following the failure of at least one multi-

agent chemotherapy protocol. BV has demonstrated its efficacy as a

single agent (1.8 mg/kg every 3 weeks) in pediatric patients with

relapsed ALCL, with objective response rates of 53–86% in phase 1

and 2 settings. A long-term follow-up of 5 years demonstrated that

among a subset of patients with relapsed or refractory systemic

ALCL, BV may be a potentially curative treatment option. Among

all enrolled patients (n = 58), 16 (28%) had ALK+ ALCL, 10

achieved CR, and the PFS rate at 5 years was 50% among patients

with ALK+ CR (95% CI, 19–81%) (14, 15). A multicenter study

conducted in Italy evaluated the effectiveness of BV in 40 patients

with relapsed/refractory ALCL, including 18 patients with ALK+. A

total of 31 (77.5%) patients achieved a favorable response after a

median of four cycles of BV monotherapy, with an overall response

rate of 62.5% (16). Other immunotherapies and targeted therapies,

such as PD-1/PD-L1 and HDAC inhibitors, can also be applied in

ALCL. The use of PD-1/PD-L1 inhibitors in relapsed/refractory

ALK+ ALCL has been demonstrated in previous case reports. Two

patients with ALK + ALCL who relapsed after multiline therapy

achieved sustained CR following nivolumab (3 mg/kg/2 for 2 weeks)

(17, 18). Some non-randomized single-arm trials and small patient

population studies have investigated the role of HDAC inhibitors,

such as chidamide, romidepsin, and belinostat, combined with

chemotherapy, in the first-line treatment of patients with ALCL

(19–22).

Autologous hematopoietic stem cell transplantation (auto-

HCT) following high-dose chemotherapy remains an option for
FIGURE 4

The timeline of disease status and the corresponding clinical treatment.
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the treatment of relapsed/refractory ALK+ ALCL and is associated

with a 5-year PFS rate of up to 56% (23). A prospective cohort study

demonstrated that high-dose chemotherapy followed by ASCT

achieved a remarkable long-term complete response, with a 12-

year overall survival rate of 62% in patients with ALK+ ALCL (24).

In a single-arm, open-label, multicenter, phase 2 study, 16 patients

with relapsed/refractory ALCL who responded to BV and achieved

CR and subsequently received either allogeneic or autologous

consolidative SCT had a 5-year PFS rate of 69% (95% CI, 46–

91%) and OS rate of 75% (95% CI, 54–96%) (14). A large cohort

study performed by the Center for International Blood and Marrow

Transplant Research found that patients with relapsed ALCL

undergoing auto-HCT had superior outcomes to those receiving

allo-HCT, with a smaller non-relapse mortality at 100 days, 1 year,

and 3 years, and superior PFS and OS at 1 and 3 years for the

patients who underwent auto-HCT compared with those who

underwent allo-HCT (23). CAR-T therapy represents a major

breakthrough in relapsed/refractory B cell NHL immunology.

However, its application in T-cell malignancies is still being

explored due to issues such as antigen targetability and cell

fratricide. The presence of CAR-T cells that can recognize CD30

offers hope for patients with ALCL. Clinical trials of CD30-directed

CAR-T cells for relapsed/refractory CD30+ ALCL are currently

ongoing (NCT04653649, NCT04008394, NCT04288726, and

NCT04288726). An open-label, single-center, single-arm pilot

study demonstrated the combined administration of ASCT and

CAR30 T-cell therapy was well-tolerate and highly effective in r/r

classical Hodgkin lymphoma (cHL) and ALCL. In six r/r CD30+

lymphoma patients (five with cHL and one with ALK-negative

ALCL), ORR and CR rates were 100% and 83.3%, respectively (25).

Given the limited data on ASCT and sequential anti-CD30 CAR T

cell therapy, it is difficult to know if the CAR-T cell therapy added

any improved survival over the ASCT alone.

In the present case, the disease recurred quickly after the patient

received chemotherapy and local radiotherapy. The use of crizotinib

and BV as a bridge to autologous stem cell transplantation followed

by CD30-directed chimeric antigen receptor T cell therapy is

expected to achieve a long-term survival effect in the management

of patients with relapsed/refractory CD30+ ALK+ ALCL. For

patients with ALK+ ALCL with early relapse or refractory disease,

targeted therapy induced remission may be considered as a bridge

to transplantation or subsequent ASCT combined with CAR30

T-cell therapy as a treatment option. This is a promising approach

for future clinical trials. Further prospective studies with larger

sample sizes are required to demonstrate the superiority of the

therapeutic strategies mentioned in this study for relapsed/

refractory ALK+ ALCL.
4 Patient perspective

When discussing the feelings from diagnosis to recovery, the

patient felt that everything was as surreal as a dream. His life went

through significant ups and downs but turned out well. The

patient’s successful recovery was attributed to the combined
Frontiers in Immunology
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efforts of the doctors and the wholehearted dedication and support

of his parents. At present, the patient has returned to campus in

good physical condition, with gratitude, optimism, and hope for

the future.
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Case report: Donor-derived
CLL-1 chimeric antigen receptor
T-cell therapy for relapsed/
refractory acute myeloid
leukemia bridging to allogeneic
hematopoietic stem cell
transplantation after remission
Xiaojuan Miao1†, Yanrong Shuai1†, Ying Han1†, Nan Zhang1,
Yilan Liu1, Hao Yao1, Xiao Wang1, Guangcui He1, Dan Chen1,
Fangyi Fan1, Alex H. Chang2,3*, Yi Su1* and Hai Yi1*

1Department of Hematology, People’s Liberation Army The General Hospital of Western Theater
Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical
Research Center for Hematological Disease, Chengdu, Sichuan, China, 2Shanghai YaKe Biotechnology
Ltd., Shanghai, China, 3Engineering Research Center of Gene Technology, Ministry of Education,
Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
Background: Explore the efficacy and safety of donor-derived CLL-1 chimeric

antigen receptor T-cell therapy (CAR-T) for relapsed/refractory acute myeloid

leukemia (R/R AML) bridging to allogeneic hematopoietic stem cell

transplantation (allo-HSCT) after remission.

Case presentation: An adult R/R AML patient received an infusion of donor-

derived CLL-1 CAR-T cells, and the conditioning regimen bridging to allo-HSCT

was started immediately after remission on day 11 after CAR-T therapy upon

transplantation. Then, routine post-HSCT monitoring of blood counts, bone

marrow (BM) morphology, flow cytometry, graft-versus-host disease (GVHD)

manifestations, and chimerism status were performed.

Result: After CAR-T therapy, cytokine release syndrome was grade 1. On day 11

after CAR-T therapy, the BM morphology reached complete remission (CR), and

the conditioning regimen bridging to allo-HSCT started. Leukocyte engraftment,

complete donor chimerism, and platelet engraftment were observed on days

+18, +23, and +26 post-allo-HSCT, respectively. The BM morphology showed

CR and flow cytometry turned negative on day +23. The patient is currently at 4

months post-allo-HSCT with BM morphology CR, negative flow cytometry,

complete donor chimerism, and no extramedullary relapse/GVHD.
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Conclusion: Donor-derived CLL-1 CAR-T is an effective and safe therapy for R/R

AML, and immediate bridging to allo-HSCT after remission may better improve

the long-term prognosis of R/R AML.
KEYWORDS

relapsed/refractory, acutemyeloid leukemia, C-type lectin-likemolecule 1, donor-derived
chimeric antigen receptor T cells, allogeneic hematopoietic stem cell transplantation
1 Introduction

Relapsed/refractory acute myeloid leukemia (R/R AML) has a

low remission rate with chemotherapy and a high probability of

relapse after salvage HSCT has been performed in the absence of

remission (1–3). Therefore, it is challenging to regain remission

before HSCT to achieve good conditions for successful

hematopoietic stem cell transplantation (HSCT) and reduce the

risk of subsequent relapse. In recent years, the success of CD19

chimeric antigen receptor T-cell (CAR-T) therapy in B-cell

malignancies has led to the exploration of the feasibility of using

CAR-T for the treatment of acute myeloid leukemia (AML) (4, 5).

C-type lectin-like molecule 1 (CLL-1) is a membrane protein

that plays a pivotal role in the fight against infection and maintains

homeostasis and self-tolerance by recognizing damage- and

pathogen-associated molecular patterns that lead to the regulation

of innate and adaptive immunity (6). Non-hematological tissues in

humans express very low levels of CLL-1 (7). In the hematopoietic

tree, CLL-1 is mainly expressed by almost all granulocytes and

monocytes and by approximately 61.8% of their precursors, 41.6%

of progenitors, and only 2.5% of CD34+CD38− HSCs, but it is not

expressed by T, B, and NK cells or erythrocytes or by their

precursors (8). CLL-1 is also expressed by basophils, eosinophils,

granulocytes, macrophages, and myeloid DCs (9). CLL-1 is also

expressed in leukemic stem cells (LSCs), which have the ability to

self-renew indefinitely and produce many daughter blast cells,

representing one of the most important causes of leukemia

relapse (10, 11). As a result, CLL-1 can serve as a marker of LSC

and disease relapse. More importantly, CLL-1 is expressed by >80%

of AML cells but not by normal HSC (12, 13), allowing CLL-1 to be

considered an ideal druggable target for the treatment of AML.

A phase I/II clinical trial of autologous CLL-1 CAR-T therapy

by Zhang et al. enrolled eight children with R/R AML, all of whom

received autologous CLL-1 CAR-T therapy after a conditioning

regimen with fludarabine and cyclophosphamide (Flu/Cy) (14).

After Flu/Cy treatment, the patients experienced grade 1–2 cytokine

release syndrome (CRS) with no fatal adverse events. Of these four

children who achieved bone marrow morphology complete

remission (CR) and minimal residual disease (MRD)-negative

status, one child showed positive BM morphology and MRD, one

child achieved CR with incomplete count recovery (CRi) with
0216
positive MRD, one child achieved partial remission (PR), and one

child maintained stable disease (SD) status (14). In another phase I

clinical study, Jin et al. enrolled 10 adult patients with R/R AML

who received 1–2 × 106/kg autologous CLL-1 CAR-T cells after Flu/

Cy (15). All 10 patients developed CRS (low-grade in four patients

and high-grade in six patients), none of these patients developed

CAR-T therapy-related encephalopathy syndrome (CRES), and

70% of these patients achieved CR/CRi. All patients presented

severe pancytopenia, which was attributed to the fact that CLL-1

was also expressed in normal granulocytes. Two patients died from

severe infections caused by prolonged granulocyte deficiency (15).

Therefore, bridging to HSCT was considered to rescue the resulting

prolonged granulocyte deficiency.

As evidenced by current studies on immunotherapy with

autologous CLL-1 CAR-T cells, CLL-1 is an effective target for the

treatment of R/R AML, and bridging to HSCT is required after

remission to rescue the subsequent granulocyte deficiency, reduce the

risk of post-HSCT relapse, and improve long-term prognosis.

However, some patients with R/R AML have extremely low

autologous lymphocyte counts due to a high tumor load and are

unable to provide autologous lymphocytes for the preparation of CAR-

T cells. Li Z et al. analyzed 12 patients with R/R T-ALL/LBL (16). These

patients obtained CR or PR through donor-derived CD7-CAR-T

therapy bridging to allo-HSCT, and the OS and DFS at 6 months

were 91.67% and 83.33%, respectively, and the allo-HSCT-related

mortality (TRM) was 8.33%. This result showed the strong anti-

leukemic effect and safety of donor-derived CD7-CAR-T combined

with allo-HSCT (16). Therefore, we describe an adult patient with R/R

AML to explore the efficacy and safety of donor-derived CLL-1 CAR-T

therapy bridging to allo-HSCT from the same donor after remission.
2 Case description

2.1 Patient characteristics before CAR-
T therapy

An 18-year-old male patient was admitted to a local hospital in

June 2021 with a fever. After routine blood tests, bone marrow

puncture, and other related examinations, this patient was diagnosed

with AML with CEBPA double mutation and normal karyotype
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https://doi.org/10.3389/fimmu.2024.1389227
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Miao et al. 10.3389/fimmu.2024.1389227
(classified as low risk according to the ELN 2022 risk stratification).

Subsequently, the patient received four courses of chemotherapy (first

course: 170 mg of cytarabine d1–d7 and 130 mg of daunorubicin d4–

d6; second course: 500 mg of cytarabine q12h d1–d3; third and fourth

course: 5,000 mg of cytarabine d1–d3). Bone marrow (BM)

morphology showed CR and flow cytometry showed positive MRD

at the end of the first course of chemotherapy. TheMRDwas detected

based on this phenotype of CD34+CD117+HLA-DR+CD13dim

+CD33dim+CD38+CD123dim+CD200+CLL-1+CD56+CD7+CD19−.

The patient achieved CR and negative MRD since the second course

of chemotherapy. During this period, a lumbar puncture was

performed and no abnormalities were observed on routine

cerebrospinal fluid, biochemistry, and flow cytometry examinations.

The patient underwent autologous HSCT (auto-HSCT) on 6 January

2022. The conditioning regimen was busulfan/Flu/Cy/chidamide

(150 mg of busulfan d1–d4, 50 mg of Flu d1–d5, 1,500 mg of

cytarabine on d1–d5, and 30 mg of chidamide d1, d4, d8, d11). On

24 May 2022, routine blood tests revealed a white blood cell count of

1.14 × 109/L, a hemoglobin concentration of 62 g/L, a platelet count

of 3 × 109/L, and 4% immature cells. BM morphology revealed 71%

myeloid blasts, and flow cytometry showed abnormal myeloid

primitive cells comprising approximately 77.74% of nucleated cells,

with a phenotype of CD34+CD117+HLA-DR+CD13dim+CD33dim

+CD38+CD123dim+CD200+CLL-1+CD6+CD7+CD19−. Chromosome

karyotype analysis showed 45,XY,-9. Analysis of myeloid gene

mutations identified a CEBPA double mutation. In summary, this

patient was diagnosed with R/R AML with CEBPA double mutation

and was classified as high risk according to the ELN 2022 risk

stratification. Hence, the patient received one course of venetoclax

and azacytidine chemotherapy (100 mg of venetoclax d1–d28 and

100 mg of azacytidine d1–d9) on 29 May 2022. BM morphology

showed 61% primitive granulocytes on 4 July 2022. Flow cytometry

showed 63.18% abnormal myeloid primitive cells suggesting a

refractory disease.
2.2 CLL-1 CAR-T therapy bridging to allo-
HSCT after remission

Given the refractoriness of the patient, we proposed that the patient

should undergo donor-derived CLL-1 CAR-T therapy, and we

obtained the patient’s understanding and consent. The donor was his

21-year-old older sister. We used the COM.TEC blood component

separator (Fresenius, Bad Homburg, Germany) to collect the donor’s

peripheral blood T cells, which subsequently were stimulated with

magnetic beads coated with anti-CD3/CD28 antibodies (Thermo

Fisher Scientific Massachusetts, United States of America) overnight.

The patient received Flu/Cy therapy (50mg of Flu for 3 days, 500mg of

Cy for 3 days) starting on 22 July 2022. Then, a total of 0.5 × 106/kg of

donor-derived CLL-1 CAR-T cells were infused on 1 August 2022 and

on 4 August 2022, respectively. The CAR-T manufacturing protocol

was performed as follows (17). Briefly, the CLL-1 CAR lentivirus was

manufactured at our center under goodmanufacturing practice (GMP)

standards. CLL-1 CAR-T cells were manufactured with donor-derived

T cells transduced with CLL-1 CAR lentivirus. Transduction efficiency,

defined as the percentage of CAR+ cells among CD3+ cells, and cell
Frontiers in Immunology 0317
viability were determined just before infusion by flow cytometry and

Trypan blue exclusion. Subsequently, vital signs, blood counts, cytokine

levels, ferritin levels, peripheral blood CAR-T cell count, BM

morphology, and flow cytometry were closely monitored. On day 8

after CAR-T therapy, the patient developed a fever with a maximum

temperature of 39.2°C, which subsided on day 10 after 10 mg of

intravenous dexamethasone (Figure 1A). No other adverse effects were

observed, including blood pressure drop, capillary leak syndrome,

CRES, gastrointestinal events, cardiovascular events, change in

general conditions (fatigue, flu-like symptom, rash, and peripheral

edema), laboratory values (AST increase, ALT increase, bilirubin

increase, creatine increase, and LDH increase), or infection. CRS was

grade 1. The patient had a severe reduction in whole blood cells

(Figures 1B–D) with a mild increase in ferritin and interleukin-6 (IL-6)

levels (Figures 1E, F). CAR-T cell counts in the peripheral blood are

shown in Figure 1G. BMmorphology on 12 August 2022 (day 11 after

CAR-T therapy) showed an extreme reduction in BM proliferation

with 5% primitive granulocytes. Flow cytometry revealed 0.29%

abnormal myeloid primitive cells in the BM. A conditioning regimen

including decitabine/cladribine/cytarabine/busulfan/semustine/ATG

(300 mg of G-CSF d1–d5, 30 mg of decitabine d1–d5, 8.4 mg of

cladribine d1–d5, 1,600 mg of cytarabine d1–d5, 180 mg of busulfan

d1–d3, 400 mg of semustine d5, 200 mg of ATG d3, and 300 mg of

ATG d4–d6) was carried out on 12 August 2022 (day 11 after CAR-T

therapy), and the patient received donor stem cells [mononuclear cells

(MNCs) 8 × 108/kg, CD34 6.6 × 106/kg, total nucleated cells (TNCs)

12.3 × 108/kg, CD3 1.3 × 108/kg] on 20 August 2022 (day 0 after allo-

HSCT), with routine treatment of cyclosporine, mycophenolate

mofetil, and short-course methotrexate (MTX) for graft-versus-host

disease (GVHD) prevention. The donor was the same one described

above, whose CMV status was negative and whose blood type was A+

(the patient’s blood type was AB+). The HLA compatibility between

them was 8/12. Leukocyte engraftment, complete donor chimerism,

and platelet engraftment were observed on days +18, +23, and +26 after

allo-HSCT, respectively. BM showed CR and flow cytometry was

negative on day +23 after allo-HSCT. No abnormalities were

observed in routine cerebrospinal fluid, biochemistry, or flow

cytometry examinations on day +32 after allo-HSCT. The patient is

currently at 4 months post-allo-HSCT with bone marrow morphology

CR, negative flow cytometry, complete donor chimerism, and no

evidence of extramedullary relapse or GVHD.
3 Timeline

The timeline of the disease and treatment course of this patient

is shown in Figure 2.
4 Discussion

AML is a highly heterogeneous group of malignant hematologic

diseases. Although some low-risk patients achieve prolonged survival

with chemotherapy, some patients do not benefit from chemotherapy

and may progress to relapsed/refractory (R/R) AML. Treatment after

relapse remains a challenge, especially for AML that relapses after
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HSCT, with no standard therapies and only a series of palliative

treatments (18, 19). In recent years, the success of CD19 CAR-T

therapy in B-cell malignancies has led to the exploration of the efficacy

and safety of CAR-T therapy in AML, the targets of which include

LewisY, CD44V6, CD33, CD123, and CLL-1 (4, 8, 20–24). Although

more expressed in leukemic stem cells (LSCs), CD33 and CD123 are

also frequently expressed in normal HSCs, and their suppression can

lead to long-term or even permanent myelosuppression (25). The fact
Frontiers in Immunology 0418
that CLL-1 is highly expressed in AML cells but is deficient in normal

HSCs makes it an attractive target in CAR-T therapy for AML (26).

The efficacy and safety of autologous CLL-1 CAR-T therapy have been

demonstrated in previous clinical studies (14, 15). However, to date, no

cases have described allogeneic donor-derived CLL-1 CAR-T therapy

in R/R AML.

The patient we describe herein was initially diagnosed with CEBPA

double-mutated AML (low risk). After achieving remission from
A

B C

D E

F G

FIGURE 1

Related indexes of the patient at different time points. (A–G) Temperature (A), WBC (B), HB (C), PLT (D), ferritin (E), IL-6 (F), and CAR-T cell count (G)
in the peripheral blood of the patient on days 2, 4, 6, 8, 10, and 12 after CAR-T therapy. WBC, white blood cell; HB, hemoglobin; PLT, platelet.
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induction chemotherapy, the patient underwent three courses of

consolidation chemotherapy with sequential auto-HSCT. Relapse

occurred within 6 months after auto-HSCT and then the patient was

reclassified as R/R AML with CEBPA double mutation (high risk).

Salvage chemotherapy with standard doses of venetoclax and

azacytidine was performed after relapse; however, BM evaluation

after chemotherapy indicated treatment failure. At this point, the

patient was faced with the options of 1) immediate salvage allo-

HSCT or 2) participation in a clinical trial of CAR-T therapy.

However, the disease status at the time of allo-HSCT was closely

related to the outcome after HSCT. Allo-HSCT is most effective in

patients who reached CR with the lowest relapse rate since there is

sufficient time to establish a strong graft-versus-leukemia (GVL) effect

in such cases (2, 3). Therefore, immediate salvage allo-HSCT was not

the optimal choice for this patient. The BM immunophenotyping of

this patient revealed high CLL-1 expression by tumor cells on 24 May

2022. Therefore, participation in the CLL-1 CAR-T clinical trial was a

feasible option. However, this patient was in a state of AML relapse and

had an extremely low peripheral blood lymphocyte count, which made

it difficult to collect sufficient autologous lymphocytes for the

preparation of CAR-T cells. The results of Zhi Hui Li et al. showed

strong anti-leukemia effect and safety of donor-derived CAR-T

combined with allogenic HSCT (16). For this patient, we considered

administering donor-derived CLL-1 CAR-T therapy bridging to allo-

HSCT immediately after remission. After a conditioning regimen with

Flu/Cy and infusion of donor-derived CLL-1 CAR-T cells, this patient

developed grade 1 CRS on day 8 after CAR-T therapy. On day 11 after

CAR-T therapy, BM morphology showed CR and flow cytometry

showed 0.29% abnormal myeloid primitive cells. This case fully

demonstrated that donor-derived CLL-1 CAR-T therapy has

significant efficacy and good safety advantages, which can create

favorable conditions for a transition to allo-HSCT. A routine

conditioning regimen before allo-HSCT was started immediately

after remission, followed by donor stem cell infusion and treatments

to prevent GVHD. The patient recovered well after allo-HSCT and has

a positive MRD status with no GVHD or extramedullary relapse

manifestations at follow-up to date. These results demonstrated the

safety and efficacy of donor-derived CLL-1 CAR-T therapy bridging to

allo-HSCT immediately after remission.

The successful treatment of this patient indicates that donor-

derived CLL-1 CAR-T therapy for R/R AML to achieve remission

followed by immediate bridging to allo-HSCT is effective with mild
Frontiers in Immunology 0519
and manageable adverse effects, thus providing new avenues for the

treatment of R/R AML.
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Lower incidence of grade II-IV
acute Graft-versus-Host-Disease
in pediatric patients recovering
with high Vd2+ T cells after
allogeneic stem cell
transplantation with
unmanipulated bone marrow
grafts: a prospective
single-center cohort study
Thilo Müller1, Lina Alasfar1,2, Friederike Preuß3,
Lisa Zimmermann1, Mathias Streitz4, Patrick Hundsdörfer5,
Angelika Eggert1, Johannes Schulte6, Arend von Stackelberg1

and Lena Oevermann1,7*

1Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin,
Berlin, Germany, 2Department of Internal Medicine V: Hematology, Oncology and Rheumatology,
University Hospital Heidelberg, Heidelberg, Germany, 3Department of Cardiology, Angiology and
Intensive Care Medicine, German Heart Center Berlin, Berlin, Germany, 4Department of Experimental
Animal Facilities and Biorisk Management (ATB), Friedrich-Löffler-Institut, Greifswald, Germany,
5Department of Pediatrics, Helios Klinikum Berlin-Buch, Berlin, Germany, 6Department of Pediatrics I
– Haematology, Oncology, Gastroenterology, Nephrology and Rheumatology, University Hospital
Tübingen, Tübingen, Germany, 7Berlin Institute of Health (BIH), Berlin, Germany
Gamma delta (gd) T cells represent a minor fraction of human T cell repertoire but

play an important role in mediating anti-infectious and anti-tumorous effects in

the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT).

We performed a prospective study to analyze the effect of different transplant

modalities on immune reconstitution of gd T cells and subsets. CD3, CD4 and

CD8 T cells were analyzed in parallel. Secondly, we examined the impact of gd T

cell reconstitution on clinical outcomes including acute Graft-versus-Host-

Disease (aGvHD) and viral infections. Our cohort includes 49 pediatric patients

who received unmanipulated bone marrow grafts from matched unrelated

(MUD) or matched related (MRD) donors. The cohort includes patients with

malignant as well as non-malignant diseases. Cell counts were measured using

flow cytometry at 15, 30, 60, 100, 180 and 240 days after transplantation. Cells

were stained for CD3, CD4, CD8, CD45, TCRab, TCRgd, TCRVd1, TCRVd2, HLA-
DR and combinations. Patients with a MRD showed significantly higher Vd2+ T

cells than those with MUD at timepoints +30, +60, +100 (p<0.001, respectively)

and +180 (p<0.01) in univariate analysis. These results remained significant in

multivariate analysis. Patients recovering with a high relative abundance of total

gd T cells and Vd2+ T cells had a significantly lower cumulative incidence of grade

II-IV aGvHD after transplantation (p=0.03 and p=0.04, respectively). A high
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relative abundance of Vd2+ T cells was also associated with a lower incidence of

EBV infection (p=0.02). Patients with EBV infection on the other hand showed

higher absolute Vd1+ T cell counts at days +100 and +180 after transplantation

(p=0.046 and 0.038, respectively) than those without EBV infection. This result

remained significant in a multivariate time-averaged analysis (q<0.1). Our results

suggest a protective role of gd T cells and especially Vd2+ T cell subset against the

development of aGvHD and EBV infection after pediatric HSCT. Vd1+ T cells

might be involved in the immune response after EBV infection. Our results

encourage further research on gd T cells as prognostic markers after HSCT and

as possible targets of adoptive T cell transfer strategies.
KEYWORDS

pediatric stem cell transplantation, allogeneic stem cell transplantation, gamma delta
(gd) T cells, immune reconstitution, transplant immunobiology, Graft-versus-Host

Disease (GVHD)
Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is a

curative treatment for various malignant and nonmalignant

diseases. Delayed immune reconstitution (IR) is a main risk

factor for morbidity and mortality in patients undergoing

allogeneic HSCT as it is associated with higher rates of relapse,

infectious complications and Graft-versus-Host-Disease (GvHD)

(1). To further improve transplant-related outcomes in the future, it

is critical to identify the factors that influence speed and quality of

immune recovery after HSCT.

In the past two decades, more focus has been placed on the

reconstitution of gamma delta (gd) T cells as growing evidence

suggests that these cells have beneficial effects in the context of

HSCT, by mediating innate and adaptive immune responses

independent of HLA-antigen presentation and by exerting potent

antitumor activity via various receptors e.g. NKG2D or DNAM-

1 (2).

While the majority of circulating CD3 lymphocytes carries an

ab T cell receptor, only 1-10% in the peripheral blood are gd T cells.

The gd T cell receptor consists of g and d chains that are encoded by
6 Vg genes on chromosome 6 respectively 8 Vd genes on

chromosome 14 (3). gd T cells are subclassified based on their Vd
chain; Vd2+ T cells are the predominant fraction found in the

peripheral blood of healthy adults, whereas non-Vd2+ T cells

(mainly Vd1+) are primarily found in epithelial tissue like skin or

intestines (4, 5).

Nowadays, peripheral blood stem cells represent the main stem

cell source for HSCT in adults. In contrast, unmanipulated bone

marrow grafts among peripheral blood stem cells and cord blood

are still frequently used in children. In addition to graft source and

graft manipulation, donor selection has an important impact on IR.

In a recent meta-analysis of 11 studies (919 patients) on gd T

cell reconstitution after allogeneic HSCT, Arruda et al. reported that
0222
high gd T cell counts were associated with less disease relapse, fewer

viral infections and higher overall and disease-free survival (6).

Most of these studies included only adult patients with partially

mismatched related donors (PMRD). There is only few data on IR

of gd T cells and especially their subsets in children undergoing

allogeneic HSCT from matched unrelated (MUD) or matched

related donors (MRD).

In our prospective single-center cohort study, we report on the

reconstitution of gd T cells and subsets until day +240 after

transplantation in a cohort of pediatric patients receiving

unmanipulated bone marrow grafts. We studied the impact of

transplant modalities on the IR and the effect of high versus low

gd T cells on HSCT outcomes.
Material and methods

Patients

This study includes 49 patients who underwent their first

allogeneic HSCT between August 2016 and January 2019 at the

Department of Pediatric Oncology and Hematology, Charite ́ –
Universitätsmedizin Berlin. The median patient age at HSCT was

7 years (0-19 years). All patients received unmanipulated bone

marrow as graft source. The cohort consisted of 29 patients with

malignant hematological disorders and 20 patients with various

non-malignant HSCT-indications, mostly hemoglobinopathies.

Detailed transplant characteristics of our cohort are presented in

Table 1. Patients received different conditioning regimens

dependent on the transplant indication (Supplementary Figure 1).

For GvHD-prophylaxis all patients received Ciclosporin A

(CSA) intravenously twice daily starting from one day prior to

transplantation. Patients were switched to oral CSA formulations

before discharge from the hospital. In combination with CSA
frontiersin.org
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patients received either Mycophenolate Mofetil (MMF) 2x600 mg/

m2/d starting on day +1 after HSCT for 30 days or Methotrexate

(MTX) 10 mg/m2 once a day on days +1, +3 and +6.

Serotherapy was administered in 36 cases, 33 patients were

treated with anti-thymocyte globulin (ATG) and 3 patients received

Alemtuzumab (for detailed information on dosing and

administration of serotherapy see Supplementary Figure 1).

In nine patients, immunosuppression with CSA was changed to

Everolimus andMMF after transplantation. For one patient, this became

necessary because he developed posterior reversible encephalopathy

syndrome, while the other patients had acute renal failure.
Ethics

Written informed consent was obtained from all patients or

their parents/guardians before HSCT. The study was approved by

the local ethics committee (EA2/144/15).
Evaluation

The day of engraftment was defined as the first of three consecutive

days with an absolute neutrophil count of at least 500 cells/µl.
TABLE 1 Patient and transplant characteristics.

Number of patients 49

Follow-Up Time, days,
median [IQR]

737 [474, 873]

Patient age, years,
median [range]

7 [0 - 19]

Patient sex, n (percent) Female 23 (46.9)

Disease, n (percent)
Acute lymphoblastic
leukemia (ALL)

21 (42.9)

Acute myeloid leukemia (AML) 6 (12.2)

Myelodysplastic syndrome (MDS) 2 (4.1)

Sickle cell disease (SCD) 10 (20.4)

ß-Thalassemia 3 (6.1)

Chronic granulomatous
disease (CGD)

1 (2.0)

Severe combined
immunodeficiency (SCID)

1 (2.0)

Severe aplastic anemia (SAA) 1 (2.0)

Hb-Yokohama 1 (2.0)

Fanconi anemia 1 (2.0)

Congenital amegakaryocytic
thrombocytopenia (CAMT)

1 (2.0)

Osteopetrosis 1 (2.0)

Donor type, n (percent) MSD 26 (53.1)

MUD 20 (40.8)

MFD 3 (6.1)

Antithymocyte
globulin, n (percent)

Yes 33 (67.3)

Alemtuzumab,
n (percent)

Yes 3 (6.1)

Methotrexat,
n (percent)

Yes 36 (73.5)

Mycophenolatmofetil,
n (percent)

Yes 14 (28.6)

Disease Status,
n (percent)

Non-malignant disease 20 (40.8)

Malignant disease 29 (59.2)

HLA Compability,
n (percent)

9/10 3 (6.1)

10/10 46 (93.9)

Conditioning Regimen,
n (percent)

VP16/TBI 9 (18.4)

Flu/TT/Treo 23 (46.9)

Flu/TT/Mel 5 (10.2)

Flu/Bu/TT 1 (2.0)

Flu/TT 2 (4.1)

(Continued)
TABLE 1 Continued

Flu/Cy 2 (4.1)

Flu/Bu/Cy/TT 2 (4.1)

Flu/Bu 2 (4.1)

Bu/Cy/Mel 2 (4.1)

Amsacrine/Flu/Cy/Ara-C/TBI 1 (2.0)

Graft CD3, cells/kg,
median [IQR]

4,9 x 107 [2,8
x 107, 7,3
x 107]

Graft CD34, cells/kg,
median [IQR]

5,2 x 106 [3,4
x 106, 7,8
x 106]

Graft CD45, cells/kg,
median [IQR]

3,9 x 108 [2,9
x 108, 5,8
x 108]

CMV Serostatus, D/R,
n (percent)

+/+ 19 (44.2)

+/- 7 (16.3)

-/- 9 (20.9)

-/+ 8 (18.6)

Donor age, years,
median [range]

14 [2 - 52]

Sex (mis-)match,
n (percent)

F/F 12 (25.0)

F/M 10 (20.8)

M/F 9 (18.8)

M/M 17 (35.4)
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In patients with leukemia, relapse was defined either

morphologically as more than 5% blast cells in the bone marrow

or a minimal residual disease of ≥ 1x10-4 measured by flow

cytometry or polymerase chain react ion. Relapse of

Myelodysplastic syndrome (MDS) was defined by morphology,

cytogenetics, or both.

Acute GvHD was defined and diagnosed according to the

modified Glucksberg criteria based on clinical, laboratory and

histological findings (7, 8).

All patients were screened twice weekly for Cytomegalovirus

(CMV), Epstein-Barr virus (EBV) and Adenovirus (ADV) DNA in

peripheral blood and ADV DNA in stool with polymerase chain

reaction until discharge. After discharge, analysis was performed

once weekly. PCR cut-off levels for detection of EBV, CMV and

ADV in blood were 550, 300 and 2000 Copies/ml, respectively. A

linear range of the copy numbers was provided by the local

laboratory between 1000 – 2,2x108 Copies/ml (EBV), 2000 –

3x108 (CMV) and 2000 – 1x108 (ADV). The viral load in positive

stool samples was measured semi-quantitatively.
Sample collection

Whole blood samples (3 ml) from all patients undergoing

HSCT were collected on ethylenediamine tetra acetic tubes and

analyzed the same day at seven different timepoints: once prior to

the start of the conditioning regimen and at six timepoints after

HSCT on days +15, +30, +60, +100, +180, +240.
Flow cytometry

Flow cytometry was performed using Duraclone technology

(Beckman Coulter) and each timepoint was analyzed using the

DuraClone IM Phenotyping T cell subtypes panel containing nine

conjugated antibodies. Samples were processed according to

validated standard operation procedures. All analyses were

performed using a NAVIOS flow cytometer (Beckman Coulter).

Measurements were performed according to the validated method

described previously (9) and analyzed using the FlowJo 10.4.2

software. Cell counts were conducted for cells expressing CD3,

CD4, CD8, CD45, TCRab, TCRgd, TCRVd1, TCRVd2, HLA-DR

and combinations.
Statistical analysis

Wilcoxon rank test was performed for non-parametric

variables, while comparing two outcomes or timepoints. For

multiple strata or groups, the Kruskal test was performed. As a

measure of effect size Cliffs Delta was computed for variables having

two levels and Spearman correlation for continuous variables.

When Spearman correlation was computed, the associated
Frontiers in Immunology 0424
Spearman test of correlation was performed (10). Testing for

confounded variables was done using a linear model with

multiple variables and interaction terms followed by a log-

likelihood ratio test with the null hypothesis being a single

variable model. A significant log-likelihood ratio test indicates

that the variable in question is confounded.

The analysis of outcomes in relation to the qualitative cell

counts of interest i.e. high versus low was performed using the

Cox hazard regression model via the R survival package (11) in

accordance with the EBMT recommendations (12). To test for the

statistical significance of the Cox fits, Rank-sum tests

were performed.

The stratification of the cohort into patients with high and low

cell relative abundance was done by ordering the patients by their

time-averaged relative abundance of the cell type of interest, then

finding the best cut-off value of this relative abundance that

separates the cohort into two groups. This is defined by the

largest effect size w^2 comparing the Jaccard distances in

the space of the time-averaged relative abundance and the rank of

the patient based on it, Supplementary Figure 2.

In all tests, a p-value of 0.05 is considered significant for single-

variable analysis. For multivariate analysis, the p-values were

corrected for multiple testing using the Benjamini-Hochberg

method (13) to get q-values. A corrected q-value of <0.1 is

considered significant.

The t-distributed stochastic neighbor embedding (t-SNE)

analysis was performed on a maximum of 200K cells randomly

sampled from the samples corresponding to each timepoint and

each group (grade II-IV GvHD or not). The analysis is performed

using FlowJo software, with the coloring of cells corresponding to

the gating performed.

Statistical analysis were performed using RStudio, Version

2023.06.2 + 561 (RStudio: Integrated Development Environment

for R. Posit Software, PBC, Boston, MA).
Results

Patient outcomes

The median (Interquartile range) follow-up time in our cohort

was 737 (474 – 873) days. Successful engraftment was achieved in

100% of the patients and none of them experienced graft rejection

afterwards. During the follow-up period five patients (10%) died;

three of the deaths were treatment-related mortalities (TRM); two

patients died from relapse. Patients in the TRM group had severe

infectious complications with consecutive multiple organ failure.

Relapse occurred in 13 of 29 cases (44.8%) in the subgroup of

patients with malignant disease at a median of 171 days after

transplantation. We registered 23 cases of aGvHD (46%). In eight

of these patients (16%) higher grade aGvHD (grade II-IV) was

diagnosed. The median onset of aGvHD was 17 (15 – 31) days after

transplantation. Viral infections occurred in 34 cases (69%) and 19
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patients (55% of patients with viral infection) experienced infection

with more than one virus (CMV, EBV or ADV) during the course of

transplantation. A total of 14 patients developed CMV infection

(28.5%) at a median of 28 (9 – 40) days after transplantation. EBV

infection was diagnosed in 25 patients at a median of 50 (42 – 108)

days after transplant. In 13 patients ADV infection was diagnosed

(26%) by positive ADV PCR from a stool sample. In eight of these

patients, we also detected ADV replication in the blood. The

median onset of systemic adenovirus infection was 24 (16 – 43)

days after transplantation.
Descriptive analysis of gd T cell immune
reconstitution after HSCT

CD3 cells quadrupled between day +30 and day +240 after

transplantation. CD8 cell counts exceeded CD4 counts during the

first 240 days after transplantation with the lowest CD4/CD8 ratio

of 0.3 at day +100 after transplantation. Absolute and relative cell

counts of T cells and their subsets are summarized in Table 2.

Counts of gd T cells increased gradually after HSCT until day

+240 after transplantation. Between day +30 and day +240 the

proportion of gd T cells of total CD3 cells was relatively stable

between 4 and 6%. At day +240 the median count of gd T cells (68/

µl) was still lower than published reference values for healthy

children (14). The Vd2/Vd1-ratio decreased continuously from

day +30 to day +240 after transplantation and was < 1.0 after day

+100, Figure 1.
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Impact of donor source on
immune reconstitution

We analyzed the impact of pre-transplant modalities on gd T cell

reconstitution. In univariate analysis patients with a related donor

(MSD or MFD) showed significantly higher absolute Vd2+ T cell

counts compared to patients with a matched unrelated donor (MUD)

at timepoints +30, +60, +100 (p<0.0001, respectively) and +180

(p=0.004), Figure 2. In multivariate analyses this result remained

significant for timepoints days +30, +60, +100 (q<0.001, respectively)

and +180 (q<0.05), Figure 3. The correlation was also highly significant

(q<0.001) in a multivariate time-averaged analysis, Figure 4.

The amount of total gd T cells in patients with a related donor

was higher at days +30 and +60 (q<0.001, respectively) after

transplantation but not in the time-averaged analysis. The only

timepoint with an association between elevated Vd1+ T cells and

MSD/MFD as donor source was day +60 (q<0.001) after

transplantation, Figure 3. In summary, the donor type seems to

especially influence Vd2+ subtype reconstitution.

The donor type was also correlated with a faster recovery of theabT
cell compartment in (uni-) and multivariate analysis. Early after

transplantation (day +30) CD4 cells, HLA-DR positive CD4 cells, CD8

cells and HLA-DR positive CD8 cells showed faster recovery in patients

with MSD or MFD (q<0.001, respectively). At day +60 after HSCT

having a related donor was independently associated with higher CD4

(q<0.001) andCD4HLA-DR positive cell counts (q<0.1), Figure 3. In the

multivariate time-averaged analysis only CD4 HLA-DR positive cells

showed a positive correlation with MSD/MFD donor status, Figure 4.
TABLE 2 Absolute and relative concentrations of T cells and subsets during the first 240 days after transplantation.

Day +15 Day +30 Day +60 Day +100 Day +180 Day +240

Cell subset concentration (cells/µl), median (IQR)

CD3 6 [0, 43] 297 [112, 593] 620 [251, 1026] 486 [335, 1121] 1011 [668, 1693] 1202 [879, 1754]

CD4 2.09 [0.20, 25.45] 112 [31, 241] 157 [75, 239] 153 [108, 224] 365 [236, 511] 469 [336, 612]

CD8 2.51 [0.08, 17.06] 156 [38, 288] 451 [102, 792] 316 [111, 827] 407 [286, 1089] 539 [326, 987]

ab T cells 4 [0, 37] 280 [106, 565] 610 [239, 915] 459 [300, 1041] 943 [609, 1526] 1152 [791, 1551]

gd T cells 1 [0, 5] 10 [2, 29] 17 [6, 49] 27 [14, 71] 58 [41, 94] 68 [42, 141]

Vd1 0 [0, 1] 2 [0, 6] 4 [2, 15] 13 [3, 36] 29 [12, 53] 34 [17, 53]

Vd2 0 [0, 3] 4 [1, 20] 4 [1, 22] 5 [2, 18] 14 [4, 23] 19 [8, 33]

nonVd1-nonVd2 0 [0, 0] 1 [0, 3] 3 [1, 7] 4 [1, 14] 9 [5, 17] 12 [6, 21]

Relative concentrations, %

CD4/CD3 49 [19, 56.5] 36 [20.5, 48.2] 28 [14, 52.5] 29 [16, 48] 38 [25, 60] 41 [25, 55]

CD8/CD3 32 [19.3, 43.8] 55 [34.3, 70.3] 68.5 [38.8, 78.8] 66 [43, 73] 55 [32, 67] 52 [38.3, 64.5]

ab T cells/CD3 84.5 [64, 94] 96 [92, 97.3] 95 [91.3, 98] 95 [90, 97.5] 94 [91, 96] 93.5 [91, 95]

gd T cells/CD3 14.5 [4.3, 27] 4 [2.8, 8] 4.5 [2, 8] 5 [2, 10] 6 [4, 8] 6.5 [5, 9]

Vd1/gd T cells 20 [3.5, 35.8] 26.5 [11, 41.8] 41 [19, 48.8] 50 [27, 61.5] 48 [29, 67] 51 [35, 65.8]

Vd2/gd T cells 65 [39.5, 81] 60.5 [34.8, 83] 38 [16.3, 61.3] 25 [10, 51.5] 26 [8, 50] 26.5 [9, 48.5]

nonVd1-nonVd2/gd
T cells 5 [0, 12.5] 7 [2.6, 14.3] 13.5 [7.3, 20.8] 16 [10, 23] 14 [10, 21] 14 [9, 19]
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FIGURE 1

Concentrations of gd T cells and subsets (Vd1, Vd2, non Vd1-non Vd2) during the first 240 days after transplantation. HSCT, Hematopoietic stem
cell transplantation.
FIGURE 2

Concentrations of Vd2 cells dependent on donor type during the first 240 days after transplantation. MSD, matched sibling donor; MFD, Matched
family donor; MUD, Matched unrelated donor; HSCT, Hematopoietic stem cell transplantation. ** | p <= 0.01; **** | p <= 0.0001.
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Impact of other transplant modalities on
immune reconstitution

In a multivariate analysis serotherapy with ATG or

Alemtuzumab was independently associated with lower CD4 T

cells at days +30, +60 (q<0.001, respectively) and +100 (q<0.05).
Frontiers in Immunology 0727
This association was also highly significant in the multivariate time-

averaged analysis (q<0,001). The same accounted for CD8 counts at

day +30 (q<0.001). We saw no correlation between the use of

serotherapy and the counts of total TCR gd cells or subtypes.

Supplementary Figure 3 shows a subgroup analysis of Vd2+ T cell

reconstitution in patients with malignant disease that received BM
B

C D

E F

A

FIGURE 3

The correlation (in terms of spearman r or Cliffs d) between T cell populations, transplant modalities and transplant outcomes at timepoints (A) day
+15, (B) day +30, (C) day +60, (D) day +100, (E) day +180, (F) +240 with confounder analysis; confounded correlations are indicated with circles,
while significant unconfounded are indicated with asterisk. A matched related donor (MSD or MFD) is the strongest transplantation modality
correlating positively with gd T cells and its subpopulations. HSCT, Hematopoietic stem cell transplantation; aGvHD, acute Graft-versus-Host-
Disease; GI, gastro-intestinal.
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from a MRD without previous serotherapy compared to patients

with sickle cell disease that received ATG before transplant from a

MRD. Both groups presented high Vd2+ T cell counts early after

transplantation in contrast to patients with a MUD, highlighting

serotherapy did not affect gd T cell reconstitution in our cohort.

Higher donor age (age as a continuous variable) was associated

with lower counts of total gd, Vd1+, Vd2+, non-Vd1/non-Vd2 T

cells (q<0,001, respectively), CD8 HLA-DR+ and CD8 cells

(q<0,001, respectively) at day +30 and Vd2+ T cells at day +180

(p<0.001). Donor age was also negatively associated with CD4

counts at day +240 (q<0.1) and in the time-averaged analysis

(q<0,001), Figures 3, 4.
Immune reconstitution and
clinical outcomes

Death and relapse
There was no difference in cumulative incidence of death

between patients with high versus low TCR gd cells and Vd2+ or

Vd1+ subsets respectively. In the subgroup of patients with

malignant hematological disorders we observed no statistical

difference of relapse incidence between the two groups.
Frontiers in Immunology 0828
Acute Graft-versus-Host-Disease
In univariate analysis patients without aGvHD (grade I-IV)

showed higher absolute median Vd2+ T cell counts at day +60

(p=0.048), day +100 (p=0.023) and day +240 (p=0.027) compared

to those with aGvHD (data not shown). Patients with higher grade

aGvHD (grade II-IV) had higher Vd2+ T cell counts at day +180 (p

= 0.046), Figure 5. This result remained significant in multivariate

time-averaged analysis (q<0.1), but not at single timepoints,

Figures 3, 4. The grade of aGvHD was independently negatively

correlated with the Vd2+ T cell counts at day +100 (q<0.1) and in

multivariate time-averaged analysis (q<0.05), Figures 3, 4. We

observed no difference for total gd T cells and Vd1+ subset.

In a multivariate time-averaged analysis the grade of aGvHD

was independently negatively correlated with the Vd2+ T cell count

(q<0.05), Figure 4. Patients with a high relative abundance of total

gd T cells (p=0.03) and Vd2+ T cells (p=0.04) had a significantly

lower cumulative incidence of grade II-IV aGvHD, Figures 6, 7.

Patients with and without grade II-IV aGvHD showed a population

inversion concerning the Vd2/Vd1-ratio after HSCT. While

patients without grade II-IV aGvHD showed a trend towards

recovering pre-HSCT Vd2/Vd1-ratio, those with grade II-IV

aGvHD had an ongoing decline until day +240 after

HSCT, Figure 8.
FIGURE 4

The correlation (in terms of spearman r or Cliffs d) between the T cell populations, transplant modalities and transplant outcomes in a time-averaged
approach, with confounder analysis, confounded correlations are indicated with circles, while significant unconfounded are indicated with asterisks.
A matched related donor (MSD or MFD) is the strongest transplantation modality correlating positively with gd T cells and its subpopulations. HSCT,
Hematopoietic stem cell transplantation; aGvHD, acute Graft-versus-Host-Disease; GI, gastro-intestinal.
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FIGURE 5

Comparison of absolute Vd2+ T cell counts between patients with and without grade II-IV aGvHD. HSCT, Hematopoietic stem cell transplantation;
aGvHD, acute Graft-versus-Host-Disease. ns | not significant; * | p <= 0.05.
FIGURE 6

Cumulative incidence of grade II-IV acute GvHD in patients with a high vs. low relative abundance of gd T cells. aGvHD, acute Graft-versus-
Host-Disease.
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We observed a lower cumulative incidence of aGvHD of the

skin in patients with high total TCR gd cells compared to those with

low numbers (p=0.02), Supplementary Figure 4. No association was

found for aGvHD of the liver or the gut.
Frontiers in Immunology 1030
Figure 9 illustrates the impact of aGvHD on immune

reconstitution by using t-distributed stochastic neighbor

embedding (t-SNE) dimensionality reduction and clustering of

CD3 lymphocytes. Patients are stratified according to the grade of
FIGURE 7

Cumulative incidence of grade II-IV acute GvHD in patients with a high vs. low relative abundance of Vd2+ T cells. aGvHD, acute Graft-versus-Host-Disease.
FIGURE 8

Logarithm of the Vd2/Vd1-ratio stratified over patients with and without grade II-IV aGvHD. HSCT, Hematopoietic stem cell transplantation; aGvHD,
acute Graft-versus-Host-Disease.
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aGvHD (no or grade I aGvHD vs. grade II-IV aGvHD). The CD4/

CD8 ratio is smaller in patients with grade II-IV aGvHD and they

show a higher proportion of activated HLA-DR positive

lymphocytes on days +180 and +240. The fraction of Vd2+ T

cells is diminished in patients with higher grade aGvHD while the

Vd1+ and non-Vd1/non-Vd2 subset is present in both strata.

EBV infection
We examined the association between virus infection and gd T

cell reconstitution. In a first step we compared transplant

modalities, HSCT outcomes and IR data of CD3, CD4, CD8, TCR

ab, TCR gd, Vd1, Vd2 and non-Vd1/non-Vd2 T cells between

patients with and without viral infections.

Patients with EBV infection had a higher median donor age

(27.5 vs. 11 years, p=0.024) and more frequently received ATG

(88% vs. 45.8%, p=0.004) or had an EBV-positive donor (100% vs.

68.2%, p=0.011) than patients without EBV infection. There was no

significant difference concerning the distribution of underlying

disease or conditioning regimens between the two groups. Rates

of aGvHD and grade II-IV aGvHD were comparable between EBV-

positive and EBV-negative patients (p=0.893 and 0.739,

respectively). No significant difference was seen in CMV and

ADV infection rates (p>0.2, respectively), Table 3.

There was no difference for total gd T cells and Vd2+ T cells in

the TCR gd cell compartment at any timepoint, but Vd1+ T cell

counts were significantly higher at day +100 and day +180 in

patients with EBV infection (p=0.046 and 0.038, respectively),

Supplementary Figure 5. This association was even more distinct

in the analysis of relative Vd1+ T cell counts (in percent of total

TCR gd cells). At timepoints +60 (p=0.036), +100 (p=0.006), +180

(p=0.002) and +240 (p=0.009) EBV-positive patients had a
Frontiers in Immunology 1131
significantly higher percentage of Vd1+ T cells than EBV-negative

patients, Supplementary Figure 6.

In multivariate analysis the association between elevated Vd1+
T cell counts and EBV infection remained significant in the time-

averaged model (q<0.1) but not at single timepoints, Figures 3, 4.

As mentioned before, Vd2+ T cell reconstitution was delayed in

the whole cohort and especially in patients with grade II-IV

aGvHD. We saw the same effect for patients with EBV infection.

Vd2/Vd1-ratio decreased during the first 240 days after

transplantation. In patients without EBV infection it stabilized

and stayed >1, while in patients with EBV infection Vd2/Vd1-
ratio continuously decreased from day +30 (1.5) until day +240

(0.2), Figure 10.

After stratification of the cohort into patients with high and low

relative abundances of total TCR gd, Vd1+ and Vd2+ T cells we

registered a lower cumulative incidence of EBV-infection in patients

with a high relative abundance of Vd2+ T cells after HSCT

compared to those with low Vd2+ T cells (p=0.02), Figure 11.

CMV infection
Analogously, we studied the association of T cell subset

reconstitution and the risk of CMV infection after HSCT.

Patients with CMV infection had higher mortality (p=0.03) and

higher rates of grade II-IV aGvHD compared to patients without

CMV infection (p=0.006). The amount of CD45 positive cells in the

bone marrow graft was significantly higher in the group without

CMV infection (p=0.045). There was no difference concerning

counts of CD3 and CD34 positive cells in the grafts and pre-

transplant CMV status between the two groups, Table 4.

Patients with CMV infection had significantly higher CD8

counts at days +60, +100 and + 180 after transplantation
FIGURE 9

t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction and clustering of the CD3 cells, while the color indicates the gating
performed on those cells. The cell populations are randomly subsampled from all the stratified samples according to the aGvHD grade status (no or
grade I versus grade II-IV aGvHD) to a maximum of 200K events per time point. The counts of the gated T cell subpopulations are shown
qualitatively in the sunburst diagrams.
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TABLE 3 Distribution of transplant modalities and transplant outcomes between patients with and without EBV infection after transplantation.

No EBV infection EBV infection p

n 24 25

Diagnosis (%) Acute lymphoblastic leukemia (ALL) 13 (54.2) 8 (32.0) 0.242

Acute myeloid leukemia (AML) 2 (8.3) 4 (16.0)

Myelodysplastic syndrome (MDS) 2 (8.3) 0 (0.0)

Sickle cell disease (SCD) 5 (20.8) 5 (20.0)

ß-Thalassemia 0 (0.0) 3 (12.0)

Chronic granulomatous disease (CGD) 1 (4.2) 0 (0.0)

Severe combined immunodeficiency (SCID) 1 (4.2) 0 (0.0)

Severe aplastic anemia (SAA) 0 (0.0) 1 (4.0)

Hb-Yokohama 0 (0.0) 1 (4.0)

Fanconi anemia 0 (0.0) 1 (4.0)

Congenital amegakaryocytic
thrombocytopenia (CAMT) 0 (0.0) 1 (4.0)

Osteopetrosis 0 (0.0) 1 (4.0)

Donor type (%) MSD 17 (70.8) 9 (36.0) 0.027

MUD 7 (29.2) 13 (52.0)

MFD 0 (0.0) 3 (12.0)

ATG (%) No 13 (54.2) 3 (12.0) 0.004

Yes 11 (45.8) 22 (88.0)

Alemtuzumab (%) No 22 (91.7) 24 (96.0) 0.971

Yes 2 (8.3) 1 (4.0)

Serotherapy (%) No 11 (45.8) 2 (8.0) 0.007

Yes 13 (54.2) 23 (92.0)

Conditioning regimen (%) VP16/TBI 3 (12.5) 6 (24.0) 0.198

Flu/TT/Treo 14 (58.3) 9 (36.0)

Flu/TT/Mel 2 (8.3) 3 (12.0)

Flu/Bu/TT 0 (0.0) 1 (4.0)

Flu/TT 2 (8.3) 0 (0.0)

Flu/Cy 0 (0.0) 2 (8.0)

Flu/Bu/Cy/TT 0 (0.0) 2 (8.0)

Flu/Bu 2 (8.3) 0 (0.0)

Bu/Cy/Mel 1 (4.2) 1 (4.0)

Amsacrine/Flu/Cy/Ara-C/TBI 0 (0.0) 1 (4.0)

Donor age
(median [IQR]) 11 [7, 24] 27 [11, 35] 0.024

EBV Status Donor (%) negative 7 (31.8) 0 (0.0) 0.011

positive 15 (68.2) 23 (100.0)

EBV Status Patient (%) negative 7 (31.8) 2 (9.1) 0.135

positive 15 (68.2) 20 (90.9)

aGVHD (%) no 12 (50.0) 14 (56.0) 0.893

(Continued)
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(p=0.026, p=0.006, p=0.006, respectively). The same accounted for

CD3 positive cells at the same timepoints (p=0.03, p=0.012,

p=0.005, respectively) while there was no difference at any

timepoint for CD4 positive cells. In the gd T cell compartment we

observed significantly higher amounts of total gd T cells at day +100

(p=0.038) and of Vd1+ T cells at days +100 and +180 (p=0.038 and

p=0.041, respectively), Supplementary Figures 7-10. No difference

was seen for Vd2+ T cells.

Relative counts of gd T cell subsets significantly differed between

patients with and without CMV infection at day + 180. Counts of

Vd1 cells (in percent of total TCR gd cells) were higher in patients

with CMV infection (p=0.008), while relative counts Vd2+ T cells

were decreased consecutively (p=0.004), data not shown.

In multivariate analysis including the impact of various pre-

transplant modalities and transplant outcomes CD8 cells were still

significantly higher in patients with CMV reactivation at days +100

and +180 (q<0,05, respectively). Total gd T cells and Vd1+ T cells

were higher at day +100 (q<0,1, respectively). CD8 counts were also
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higher at day +180 (p<0.05). In the multivariate time-averaged

model the result remained significant for CD8 cells, Figures 3, 4.

After stratification into patients with high or low relative

abundance of total TCR gd, Vd1+ and Vd2+ T cells, we saw a lower

cumulative incidence of CMV infection in patients with high total gd T
cells (p=0.02), Supplementary Figure 11. No difference was observed

for patients with a high relative abundance of Vd1+ or Vd2+ T cells.

ADV infection
The group of patients that experienced systemic ADV infection

(blood PCR positive) showed a significantly higher rate of aGvHD

grade II-IV (p=0.022) and had been hospitalized significantly longer

after HSCT than those patients without or with gastrointestinal

ADV infection (66 days (60-88 days) vs. 48 days (44-58 days),

p=0.009), data not shown.

We found no significant association between ADV infection

(systemic as well as only gastrointestinal infection) and the

reconstitution of any of the examined T cell subtypes.
TABLE 3 Continued

No EBV infection EBV infection p

yes 12 (50.0) 11 (44.0)

aGvHD grade II-IV (%) no 21 (87.5) 20 (80.0) 0.746

yes 3 (12.5) 5 (20.0)

CMV (%) no 19 (79.2) 16 (64.0) 0.391

yes 5 (20.8) 9 (36.0)

ADV (%) no 20 (83.3) 21 (84.0) 1.000

yes 4 (16.7) 4 (16.0)
Significant p-values are indicated in bold.
FIGURE 10

Logarithm of the Vd2/Vd1-ratio stratified over patients with and without EBV infection. HSCT, Hematopoietic stem cell transplantation.
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Discussion

In the past, various studies reported favorable outcomes in

patients recovering with high gd T cells after allogeneic HSCT,

highlighting their potent anti-infectious and anti-tumorous

abilities. Meanwhile data from pediatric cohorts and especially

those with unmanipulated, HLA-matched grafts remain scarce.

Despite promising results of transplant settings using

haploidentical TCRab/CD19-depleted grafts in children (15),

unmanipulated bone marrow grafts remain the standard of care

for many transplant indications in the pediatric field. Both strategies

differ fundamentally in terms of gd T cell reconstitution due to the

high content of these cells in the manipulated grafts. We performed

a study on the dynamics and the clinical impact of gd T cell

reconstitution in the context of unmanipulated bone

marrow transplantation.

One of the challenges in studying IR is defining thresholds

for high and low gd T cells. The definitions used in earlier studies

differed widely and depended on the timepoint of assessment.

Two studies defined high gd T cell reconstitution as reaching a

cut-off of 150 respectively 175 cells/µl at two consecutive

timepoints in a timeframe of one year post HSCT (16, 17).

Only about 10% of the included patients reached this cut-off,

which bears the risk of an underestimated effect of robust gd T

cell reconstitution. A different approach is the use of median gd
T cell counts at certain timepoints for stratification. Minculescu

et al. recently reported improved overall survival and relapse-
Frontiers in Immunology 1434
free survival with lower incidence of aGvHD in adult patients

with above median concentrations of gd T cells at day +56 after

HLA-matched, T cell replete stem cell transplantation (18).

Other studies used relative cell counts at different single

timepoints for stratification (19). Both strategies have their

limitations as it is not clear which timepoint is most suitable

for stratification because HCST complications occur at different

stages after transplantation. Our approach to addressing the

problem of stratification was using the time-averaged ratios R =

TCR gd/TCR ab, Vd2/TCR ab and Vd1/TCR ab cells. The cut-

off for high and low gd T cells and subsets was found using

clustering in the space of the ratio and the ranking of the patients

based on it.

Few studies investigated the impact of graft sources on the

reconstitution of gd T cells. Perko et al. found significantly higher gd
T cell counts in patients with matched related donors (MRD)

compared to matched unrelated donors (MUD) (17). Eyrich et al.

described a subgroup of 12 pediatric patients that received bone

marrow grafts from MSD in which some of the patients showed

transient gd T cell expansion early after transplantation, that did not

occur in the other subgroup with CD34+ selected PBSC grafts from

unrelated donors (20). Others reported faster gd T cell

reconstitution in MSD/MUD transplantation compared to cord

blood (21) or in patients with ab-depleted PBSC grafts compared to

CD34+ selection (22).

In our study we investigated not only the correlation between

donor source and reconstitution of total gd T cells but also its
FIGURE 11

Cumulative incidence of EBV infection in patients with a high vs. low relative abundance of Vd2 cells.
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TABLE 4 Distribution of transplant modalities and transplant outcomes between patients with and without CMV infection after transplantation.

No CMV infection CMV infection p

n 35 14

Diagnosis (%) Acute lymphoblastic leukemia (ALL) 14 (40.0) 7 (50.0) 0.174

Acute myeloid leukemia (AML) 2 (5.7) 4 (28.6)

Myelodysplastic syndrome (MDS) 2 (5.7) 0 (0.0)

Sickle cell disease (SCD) 9 (25.7) 1 (7.1)

ß-Thalassemia 3 (8.6) 0 (0.0)

Chronic granulomatous disease (CGD) 1 (2.9) 0 (0.0)

Severe combined immunodeficiency (SCID) 1 (2.9) 0 (0.0)

Severe aplastic anemia (SAA) 1 (2.9) 0 (0.0)

Hb-Yokohama 1 (2.9) 0 (0.0)

Fanconi anemia 0 (0.0) 1 (7.1)

Congenital amegakaryocytic
thrombocytopenia (CAMT)

0 (0.0) 1 (7.1)

Osteopetrosis 1 (2.9) 0 (0.0)

Conditioning regimen (%) VP16/TBI 5 (14.3) 4 (28.6) 0.183

Flu/TT/Treo 18 (51.4) 5 (35.7)

Flu/TT/Mel 4 (11.4) 1 (7.1)

Flu/Bu/TT 1 (2.9) 0 (0.0)

Flu/TT 2 (5.7) 0 (0.0)

Flu/Cy 1 (2.9) 1 (7.1)

Flu/Bu/Cy/TT 2 (5.7) 0 (0.0)

Flu/Bu 2 (5.7) 0 (0.0)

Bu/Cy/Mel 0 (0.0) 2 (14.3)

Amsacrine/Flu/Cy/Ara-C/TBI 0 (0.0) 1 (7.1)

Graft CD3, cells/kg (median [IQR])
5,6 x 107 [3,2 x 107, 7,4
x 107]

4,3 x 107 [2,5 x 107, 5,6
x 107] 0.168

Graft CD34, cells/kg
(median [IQR])

5,6 x 106 [3,5 x 106, 8,0
x 106]

4,2 x 106 [3,2 x 106, 5,9
x 106] 0.212

Graft CD45, cells/kg
(median [IQR])

4,4 x 108 [3,1 x 108, 6,2
x 108]

3,1 x 108 [2,0 x 108, 4,5
x 108] 0.045

CMV Status Donor (%) negative 14 (42.4) 3 (21.4) 0.299

positive 19 (57.6) 11 (78.6)

CMV Status Patient (%) negative 14 (43.8) 3 (23.1) 0.338

positive 18 (56.2) 10 (76.9)

Death (%) no death 34 (97.1) 10 (71.4) 0.030

death 1 (2.9) 4 (28.6)

NRM (%) no 35 (100.0) 11 (78.6) 0.030

yes 0 (0.0) 3 (21.4)

aGVHD (%) no 20 (57.1) 6 (42.9) 0.556

yes 15 (42.9) 8 (57.1)

(Continued)
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subsets Vd1+, Vd2+ and non-Vd1/non-Vd2 T cells. We could

demonstrate that especially Vd2+ T cell reconstitution is severely

hampered in patients with non-related donors while patients with

MSD or MFD showed fast Vd2+ T cell recovery early after

transplantation. This finding was independent of other

transplant-related modalities that significantly influenced T cell

reconstitution in our cohort like donor age and the use of

serotherapy. Although the biological background of this finding

needs further research, it bears many implications for transplant

design. MSD HSCT remains the preferred donor source for many

transplant indications as outcomes including GRFS (composite

endpoint of graft-versus-host-disease-free and relapse-free

survival), relapse-free survival and non-relapse mortality show

better results compared to MUD transplantation (23). As Vd2+ T

cells are already known to have important antitumor and anti-

infectious capacities, fast reconstitution of these cells might

contribute to favorable outcomes in patients with matched

related donors.

To what extend immune reconstitution is influenced by the

method of stem cell harvest in a T cell replete setting is still unclear.

As mentioned above, the study by Minculescu et al. showed

superior outcomes in patients with high gd T cells. Their cohort

consisted mainly of adult patients receiving PBSC grafts from

MRD/MUD donors and in contrast to our cohort, Vd2+ T cells

were the predominant subset found in the peripheral blood during

the first year after transplantation. Nevertheless, they observed a

shift towards Vd1+ subset similar to the distribution in our

pediatric cohort during that timeframe (18). If this difference is

due to mobilization of peripheral blood stem cells is not clear and

further studies are needed to identify the best transplant setting to

facilitate fast gd T cell recovery.

We report a lower cumulative incidence of grade II-IV aGvHD

in patients recovering with a high relative abundance of Vd2+ T

cells. At the same time, we observed an inversed Vd2/Vd1-ratio
after HSCT that has been described by other groups for the first few

months after transplantation (22). In our cohort the population

inversion persisted until day +240 after HSCT. Patients without

extensive aGvHD showed a trend towards normalization of the

ratio between day +100 and +240, contrary to patients with higher

grade aGvHD. This evidence supports a protective effect of gd T

cells and especially Vd2+ T cells by sustaining immune homeostasis
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and thereby avoiding aGvHD in the context of unmanipulated bone

marrow transplantation. This hypothesis is supported by findings

from pediatric studies with patients receiving TCR ab/B cell-

depleted grafts with high counts of gd T cells (22). Although

patients in this study did not receive GvHD-prophylaxis no

severe aGvHD was registered. Still, other reports demonstrated an

elevated risk of grade II-IV aGvHD in patients with gd T cell-

enriched graft composition (24) and several studies in mice

reported that donor- as well as host-derived gd T cells can

promote aGvHD (25–27). These conflicting results emphasize the

need for further research on the role of the different gd T cell

subtypes and the molecular pathways via which gd T cells affect

aGvHD pathogenesis.

Viral infections account for another large part of transplant-

associated morbidity and mortality. In our cohort we observed a

high EBV infection rate of 51%. One explanation of this finding

might be the frequent use of serotherapy, mainly with ATG, in 73%

of our patients. ATG is known to delay IR after HSCT and increase

the risk of EBV infection and EBV-associated post-transplant

lymphoproliferative disorder after HSCT (28).

Liu et al. reported a higher incidence of EBV infection in adult

patients recovering with low absolute Vd2+ T cell counts at day +30

after haploidentical transplantation (29). In our study we could

reproduce the same significant association between EBV infection

and reduced Vd2+ counts using the time-averaged ratio R of Vd2/
TCR ab. Our hypothesis, that early robust Vd2+ T cell

reconstitution might protect patients from developing EBV

infection after HSCT is supported by groups that demonstrated

the ability of Vd2+ T cells to recognize and kill EBV-infected cells in

vitro (29, 30).

Interestingly, we found that absolute Vd1+ T cell counts were

significantly increased at day +100 and +180 in patients with EBV

infection. This was accompanied by a reversed Vd2/Vd1-ratio in

patients with EBV infection between days +60 and +240. Like Vd2+,
Vd1+ T cells expand upon activation with EBV-infected cells and

skewing towards an oligoclonal Vd1+ T cell repertoire after EBV

infection in the context of HSCT has been observed (31). The same

study reported that Vd1+ T cells are capable of lysing EBV infected

cells in vitro. Taking into consideration that EBV infection in our study

occurred at a median of 50 days after transplantation, Vd1+ expansion

in patients with EBV infection after day +60 could be a sign of a
TABLE 4 Continued

No CMV infection CMV infection p

aGvHD grade II-IV (%) no 33 (94.3) 8 (57.1) 0.006

yes 2 (5.7) 6 (42.9)

EBV (%) no 19 (54.3) 5 (35.7) 0.391

yes 16 (45.7) 9 (64.3)

ADV (%) no 31 (88.6) 10 (71.4) 0.299

yes 4 (11.4) 4 (28.6)
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targeted immune reaction to clear EBV-infected cells. Furthermore, the

high rate of EBV infection can serve as an explanation for the inversed

Vd2/Vd1-ratio seen in our cohort. Whether Vd1+ T cells detected in

the peripheral blood are mobilized from epithelial tissue – its natural

habitat – or proliferate upon contact with EBV-infected cells in a

different location is not clear.

While expansion of Vd1+ T cells after EBV infection is a

relatively new finding, several studies have described a possible

role of gd T cells and especially Vd1+ subset in CMV infection after

HSCT (18, 22, 32, 33). Our findings support the existing evidence,

adding data from a pediatric study population. We saw a lower

cumulative incidence of CMV infection in patients recovering with

a high relative abundance of total gd T cells after HSCT. The Vd1+
T cell subset expanded between day +60 and day +180 in patients

with CMV infection, highlighting its capacity to recognize and kill

CMV-infected cells (32). Our study cohort was too small to show

any association between CMV infection and relapse rates. In 2011

Elmaagacli et al. reported lower relapse rates in adult AML patients

who experienced CMV infection and Scheper et al. provided a

possible explanation by showing that non-Vd2+ T cells are able to

cross-recognize leukemia cells and CMV-infected cells in vitro

(34, 35).

In contrast to EBV and CMV disease we did not find any

significant association between the reconstitution of gd T cell

subsets and ADV infection after HSCT. Interestingly, patients

with systemic ADV infection had higher rates of grade II-IV

aGvHD. This finding is in line with other studies that described

aGvHD as a risk factor for ADV infection (36). At the same time,

ADV might trigger intestinal aGvHD as hypothesized by a study

that found higher rates of intestinal aGvHD in patients that had a

posit ive ADV stool PCR before transplantation (37).

Correspondingly, three of four patients in our cohort with

intestinal aGvHD also presented with positive ADV PCR in stool

and blood.

The results of our study are limited by the single-center design

and the heterogeneity of the patient population. Still, it includes a

relatively high number of patients for a pediatric HSCT study and

all participants uniformly received unmanipulated bone marrow

grafts, which is of great importance as graft source has a major

impact on immune reconstitution.

In conclusion, we demonstrate that donor choice has a strong

influence on gd T cell reconstitution after pediatric HSCT with

unmanipulated bone marrow grafts. Especially Vd2+ T cell

reconstitution was severely hampered in patients with MUD

compared to those with MRD, which can contribute to the

understanding of favorable outcomes after MRD transplantation.

We report a lower cumulative incidence of grade II-IV aGvHD and

EBV infection in patients recovering with a high relative abundance

of Vd2+ T cells. This supports a protective role of the Vd2+ subset

early after transplantation, a cell population that bears great

potential as part of posttransplant adoptive T cell therapy (38,

39). First studies are currently performed exploring the potential of

allogeneic gd T cell transfer against aGvHD and the relapse of

hematological malignancies after HSCT (40). Similar studies using
Frontiers in Immunology 1737
ex vivo expansion and activation of gd T cells are necessary to

evaluate the efficacy in pediatric patients. Due to the high variability

of gd T cell reconstitution dynamics seen early after transplantation

the ex vivo approach seems more promising than in vivo expansion

methods. Establishing an effective but safe cell number for

reinfusion will be a crucial point of the analysis.

Additionally, we observed expansion of Vd1+ T cell subset in

patients with CMV as well as with EBV infection. This new

association in the context of EBV infection after HSCT can

contribute to the process of understanding the role of gd T cells

in anti-virus immunity (41). This opens grounds for

future research.
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Human umbilical cord-derived
mesenchymal stromal cells for
the treatment of steroid
refractory grades III-IV acute
graft-versus-host disease with
long-term follow-up
Jing-wen Niu †, Yuhang Li †, Chen Xu, Hongxia Sheng,
Chong Tian, Hongmei Ning, Jiangwei Hu, Jianlin Chen,
Botao Li, Jun Wang, Xiao Lou, Na Liu, Yongfeng Su, Yao Sun,
Zhuoqing Qiao, Lei Wang, Yu Zhang, Sanchun Lan, Jing Xie,
Jing Ren, Bo Peng, Shenyu Wang, Yanping Shi, Long Zhao,
Yijian Zhang, Hu Chen, Bin Zhang* and Liangding Hu*

Senior Department of Hematology, The Fifth Medical Center of Chinese People's Liberation Army
(PLA) General Hospital, Beijing, China
Introduction:Mesenchymal stromal cells (MSCs) have been extensively studied as a

potential treatment for steroid refractory acute graft-versus-host disease (aGVHD).

However, themajority of clinical trials have focused on bonemarrow-derivedMSCs.

Methods: In this study, we report the outcomes of 86 patients with grade III-IV

(82.6% grade IV) steroid refractory aGVHD who were treated with human

umbilical cord-derived mesenchymal stromal cells (UC-MSCs). The patient

cohort included 17 children and 69 adults. All patients received intravenous

infusions of UC-MSCs at a dose of 1 × 106 cells per kg body weight, with a

median of 4 infusions (ranging from 1 to 16).

Results: Themedian time between the onset of aGVHD and the first infusion of UC-

MSCs was 7 days (ranging from 3 to 88 days). At day 28, the overall response (OR)

rate was 52.3%. Specifically, 24 patients (27.9%) achieved complete remission, while

21 (24.4%) exhibited partial remission. The estimated survival probability at 100 days

was 43.7%. Following a median follow-up of 108 months (ranging from 61 to 159

months), the survival rate was approximately 11.6% (10/86). Patients who developed

acute lower GI tract and liver GVHD exhibited poorer OR rates at day 28 compared

to thosewith only acute lower GI tract GVHD (22.2% vs. 58.8%; p= 0.049). No patient

experienced serious adverse events.

Discussion: These finding suggest that UC-MSCs are safe and effective in both

children and adults with steroid refractory aGVHD. UC-MSCs could be considered as

a feasible treatment option for this challenging conditon. (NCT01754454).
KEYWORDS

hematopoietic stem cell transplantation, graft-versus-host disease, mesenchymal
stromal cells, umbilical cord, long-term follow-up
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Introduction

Acute graft-versus-host disease (aGVHD) is a severe

complication following allogeneic hematopoietic stem cell

transplantation (HSCT), primarily affecting skin, liver and

gastrointestinal (GI) tract. Despite GVHD prophylaxis,

approximately 50% of transplant recipients still develop aGVHD,

and 11% develop grade III to IV aGVHD (1). The prognosis for

patients with grade III to IV is dismal with a 2-year survival rate of

20% and a 5-year survival rate of 8% (2). Systemic steroids remain

the standard first-line treatment for acute GVHD. Approximately

40%–50% of patients develop steroid-refractory acute GVHD,

which is associated with poor OS (3, 4). Currently, ruxolitinib is

the only therapy approved by the European Medicines Agency

(EMA) and the US Food and Drug Administration (FDA) for

steroid refractory aGVHD. However, in the phase III randomized

clinical trial, 38% of patients who received ruxolitinib did not

achieve a CR or PR by day 28, and 60% of the patients required a

third-line immunosuppressive therapy or had died by day 56 (5).

An important clinical question is which treatment to use in patients

with steroid refractory aGVHD who cannot afford ruxolitinib, not

responding to ruxolitinib, with ruxolitinib toxicity (including

cytopenias, infections), or contraindications.

In 2004, LeBlanc et al. pioneered the use of bone marrow-

derived MSCs in the treatment of a pediatric patient with grade IV

lower GI tract and liver aGVHD (6). This was followed by a phase

II, multicenter clinical trial in 2008, which evaluated the efficacy of

MSCs in steroid refractory severe aGVHD. Out of 55 patients, 39

responded favorably to MSCs treatment, without any side effects

(7). Since then, MSCs have emerged as a promising therapeutic

option for patients with steroid refractory aGVHD. In 2015, the

Japanese Pharmaceuticals and Medical Devices Agency took the

lead in granting approval to JR-031 (TEMCELL®) for the treatment

of aGVHD in both children and adults.

Mesenchymal stem cells (MSCs) exhibit multi-lineage

differentiation potential, along with nonspecific immunosuppressive

and immunomodulatory effects. These cells can be isolated from

various sources, including bone marrow (BM), adipose tissue,

placental tissues and umbilical cord (UC) (8, 9).

Most of the large-scale analyses have focused on bone marrow-

derived MSCs. However, bone marrow aspiration is an invasive

procedure that may cause pain, infection or hemorrhage. And the

number and function of BM-MSCs may influenced by donor age

(10). Compared to BM, human umbilical cord (UC) can provide a

large number of MSCs (11). It is a waste product after childbirth,

and harvesting UC-MSCs does not involve invasive procedures,

thus offering better ethical acceptance. What’s more, UC-MSCs

have demonstrated lower immunogenicity and higher proliferative

capacity (12). Despite the use of UC-MSCs to treat steroid

refractory aGVHD has demonstrated promising results, the OS by

day 28 ranging from 59% to 80% (13–18), the number of clinical

trials is relatively few, and the history of UC-MSCs application is

shorter. In this study, we report the outcomes of 86 patients with

grade III-IV steroid refractory acute GVHD (all involved lower GI

tract) who received UC-MSCs as a salvage therapy and with a long
Frontiers in Immunology 0241
period of follow-up. To the best of our knowledge, this is the largest

cohort of 86 grade III-IV acute GVHD patients treated with UC-

MSCs reported so far.
Subjects and methods

Patients

Patients of all ages experiencing steroid refractory grade III to

IV acute GVHD, have lower GI tract involved, were eligible for this

study. The grading and staging of acute GVHD were determined

using the Modified Glucksberg Criteria (19). Steroid refractory

GVHD was defined as progression of acute GVHD within 3-5

days or failure to improve within 5-7 days of treatment with 2mg/

kg/day of prednisone (20). A total of 86 patients were enrolled in

this study.
MSC manufacture and administration

MSCs were derived from UCs of unrelated HLA-mismatched

donors. The culture and expansion of UC-MSCs were carried out by

modifying methods previously published (21, 22). Briefly, UC

tissues were digested with 0.05% type II collagenase (Sigma, St

Louis, USA), and the cell suspension was collected by filtering

through a stainless-steel mesh. The cells were resuspended in

serum-free MSC culture media. After culturing, non-adherent

cells were discarded. The adherent cells were detached using

0.05% Trypsin and 0.01% EDTA (Gibco, Grand Island, NY,

USA). The fifth-passage cells were frozen. Each batch of UC-

MSCs was characterized by flow cytometry for phenotype and, in

some cases, tested for their ability to differentiate into adipocytes,

osteoblasts, and chondrocytes. The UC-MSCs suspensions were

cultured and tested negative for bacteria and mycoplasma

contamination before infusion.

UC-MSCs therapy was initiated as soon as possible after the

onset of steroid refractory grade III-IV acute GVHD. Patients

received intravenous infusions of cryopreserved and freshly

thawed MSCs at a dose of 1×106/kg, either once or twice a week,

depending on their symptom severity. These infusions were given in

conjunction with corticosteroids and cyclosporine until aGVHD

showed a response.
Evaluation points

The primary endpoint of the study was to assess the efficacy of

UC-MSCs therapy, which was evaluated based on complete

response (CR), partial response (PR), and overall response (OR)

rates. CR was defined as the complete resolution of all symptoms of

aGVHD. PR was defined as a clinical improvement of at least one

GVHD grade. OR encompassed both CR and PR. Response to UC-

MSCs therapy was evaluated on day 28, day 56 and day 100 after the

first MSC infusion, or on the date of death if it occurred before 28
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days. Patients who showed no change in their disease status (stable

disease, SD) or those who experienced worsening symptoms

(progressive disease, PD) were classified as having no

response (NR).
Statistical analysis

Response rates across different categories were compared using

Fisher’s exact test. This test allowed us to determine whether there

were significant differences in response rated between different

groups. To estimate the probability of survival, we used the

Kaplan–Meier method. This method allows us to estimate the

survival function from the observed data. We compare survival

curves between groups using the log-rank test. A P-value of less

than 0.05 was considered statistically significant, indicating that the

observed differences in response rated or survival probabilities. All

Statistical analyses were performed using the statistical software R.
Results

Patient characteristics

Between September 2010 and April 2018, a total of 86 patients

were enrolled in this study. Patient characteristics are summarized

in Table 1. The median age of these patients was 27.5 years old

(ranging from 11 to 54 years). The majority of patients, 37 in total,

received allogeneic HSCT due to acute myeloid leukemia (AML).

Other indications for HSCT included acute lymphoblastic leukemia

(ALL) in 27 patients, myelodysplastic syndrome (MDS) in 8,

chronic myeloid leukemia (CML) in 4, aplastic anemia (AA) in 3,

non-Hodgkin lymphoma (NHL) in 2, and other diseases in 5

patients. HSCT was performed using granulocyte colony-

stimulating factor (G-CSF) mobilized peripheral blood stem cells

in 84 patients, BM in 1 patient, and a combination of both in

another patient. Donors were either HLA-compatible in 19 cases or

partially HLA matched in 67 cases. Myeloablative regimens were

used in all cases. Forty-four patients received ATG as part of their

conditioning regimen. GVHD prophylaxis consisted primarily of

CsA combined with methotrexate and MMF in 44 patients. All

patients developed lower GI tract aGVHD while receiving

prophylactic immunosuppressive drugs. The median time from

HSCT to the onset of lower GI tract aGVHD was 37 days

(ranging from 7 to 216 days). The majority of patients, 71 out of

86 (82.6%), presented with grade IV acute lower GI tract GVHD.

Additionally, 18 patients (20.9%) developed both acute lower GI

tract and liver GVHD. None of the patients had used ruxolitinib.
Treatments of aGVHD before
MSCs infusions

All patients enrolled in the study received steroids as first-line

treatment for aGVHD, but none responded to this therapy.
Frontiers in Immunology 0342
TABLE 1 Characteristics of patients.

Sex, n(%)

Male 57 (66)

Female 29 (34)

Age at HSCT, n(%) Median: 27.5 (11-54)

<18 y 17 (20)

18-25 y 21 (24)

>25 y 48 (56)

Primary disease, n(%)

AML 37 (43)

ALL 27 (31)

MDS 8 (9)

CML 4 (5)

AA 3 (3)

NHL 2 (2)

Others 5 (6)

Disease status at HSCT, n(%)

CR 62 (72)

PR 19 (22)

NR 5 (6)

Type of donor, n(%)

MUD 52 (60)

MSD 20 (23)

Haploidentical 14 (16)

HLA typing, n(%)

HLA-identical 19 (22)

9/10 21 (24)

8/10 20 (23)

7/10 7 (8)

6/10 2 (2)

5/10 15 (17)

other 2 (2)

Hematopoietic stem cell source, n(%)

PBSC 84 (98)

BM 1 (1)

PBSC + BM 1 (1)

GVHD Prophylaxis, n(%)

CSA+MTX+MMF 44 (51)

CSA+MTX
+MMF+MVC

7 (8)

CSA+MTX 33 (38)

(Continued)
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Subsequently, 30 patients (34.9%) received one or two second-line

immunosuppressive drug (these patients were treated with either a

CNI alone or in combination with Basiliximab), while 56 patients

(65.1%) did not respond to three or more additional

immunosuppressive therapies. The median time from the

diagnosis of aGVHD to the first infusion of UC-MSCs was 7 days

(ranging from 3 to 88 days). The cell dose per infusion was 1 x 106/
Frontiers in Immunology 0443
kg. Each patient received a median of 4 infusions, with a range of 1

to 16 infusions. The UC-MSCs therapy was well-tolerated, and no

acute or late side effects were observed during or after the infusions.
Response to MSC treatment

At day 28 post-treatment, over half of the patients (45/86,

52.3%) achieved an OR, including 24 patients (27.9%) who achieved

a CR and 21 (24.4%) who achieved a PR (Figure 1). Forty-three

patients did not respond to the treatment, with 21 (24.4%) showing

SD, 14 (16.3%) showing PD, and 6 (7.0%) dying. Patients who

developed both acute lower GI tract and liver GVHD had

significantly worse OR at day 28 compared to patients who only

had acute lower GI tract GVHD (22.2% vs. 58.8%; p=

0.049) (Figure 2).

There were no significant differences in clinical responsiveness

based on age groups. Among children under 18 years old, 6 (37.5%)

reached CR and 2 (12.5%) achieved PR on day 28. Among patients

aged 18-25 years, 5 (25.0%) achieved CR, 6 (30.0%) achieved PR.

Among patients above 25 years of age, 13 (26.0%) achieved CR, 13

(26.0%) PR. Similarly, there were no significant differences in OR

between patients receiving once or twice weekly infusions of UC-

MSCs (48.0% vs. 58.3%; p= 0.777). Furthermore, there were no

differences in OR based on whether patients were in CR1 status

before transplantation (50.0% vs. 54.1%, p=0.915) (Figure 2).
TABLE 1 Continued

CSA+MTX+MVC 2 (2)

Onset of
aGVHD (days)

Median: 37 (7-216)

Gut aGVHD grade, n(%)

III 15 (17)

IV 71 (83)

with liver aGVHD, n(%)

Yes 18 (21)

No 67 (78)

NR 1 (1)
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic
syndrome; CML, chronic myelogenous leukemia; AA, aplastic anemia; NHL, non-Hodgkin
lymphoma; CR, complete response; PR, partial response; NR, no response; MUD, matched
unrelated donor; MSD, matched sibling donor; PBSC, peripheral blood stem cell; BM, bone
marrow; CsA, cyclosporine A; MTX, methotrexate; MMF, mycophenolate mofetil; MVC,
maraviroc; ATG, antithymocyte globulin.
FIGURE 1

GVHD response and outcome.
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Survival

The overall survival (OS) at 100 days was 43.7% for the entire

cohort of patients, and 60.0% for children specifically (P=0.297). When

stratified by GVHD involvement, the OS was significantly higher for

patients with only acute lower GI tract GVHD (52.6%) compared to

those with liver involvement (11.1%) (P=0.003) (Figure 3).

As of the last follow-up in December 2023, 10 patients (11.6%)

were alive, with a median follow-up duration of 108 months

(ranging from 61 to 159 months) from the first infusion of UC-

MSCs. Notably, none of the survivors experienced recurrence of

their original disease or development of secondary tumors, leading

to a DFS rate of 11.6%. Ten patients were out of touch and 66 had

passed away: 17 due to infections, 8 due to disease relapses, 22 due

to the progression of GVHD, 2 due to TMA, 1 due to bleeding, and

for 16, the cause of death was indeterminate.
Discussion

The present study represents the largest single-center cohort of

86 patients treated with UC-MSCs for steroid refractory acute

GVHD. It suggests the use of umbilical cord as a source of MSCs

seems to have similar results with that of bone marrow. In our

study, an OR of 52.3% (45 of 86 patients) was observed by day 28

following UC-MSCs infusion. This is comparable to a previous
Frontiers in Immunology 0544
single-center study reporting an OR of 59% in 54 children treated

with UC-MSCs for grades II-IV aGVHD (15). And our study

indicates that UC-MSCs maintain its safety profile even after

long-term follow-up.

Currently, BM-MSCs have been approved in Japan, Canada and

New Zealand for the treatment of GVHD. Although clinical studies

of MSCs for aGVHD have generally shown encouraging efficacy

results, the response rates can vary. Many factors are likely to

influence the outcomes: expansion protocols, MSC dose per

infusion, number of infusions, patient age, and choice of second-

line agents. The recent review concludes several trials with 30 or

more patients treated with BM-MSC, the OS by day 28 ranging

from 40% to 82.8% (23). In the field of UC-MSC therapy, Ding Y,

et al. studied 54 patients with grade II-IV aGVHD, with the

majority (74%) at grade III and 14.8% at grade IV. The median

age was 12.5 years, spanning from 1 to 62 years old. The 28-day OR

rate was 59.3% (15). Donadel CD, et al. presented data on 52

patients with grade II-IV aGVHD, with 25% at grade III and 71.2%

at grade IV. The median age was also 12.5 years, but the age range

was broader, from 0.3 to 65 years old. Their 28-day OR rate was

slightly higher at 63.5% (16). Zhao, et al. reported on a less severe

cohort of 25 patients with aGVHD of grade II-IV, with 44% having

grade III/IV. This group had a higher median age of 37 years,

ranging from 24.5 to 47 years old. They achieved a notably higher

28-day OR rate of 80% (18). The relatively inferior results reported

in our study could be attributed to the severity of the disease in our
FIGURE 2

GVHD response in different subgroups. (A) according to MSC infusion frequency; (B) according to age groups; (C) according to disease status before
HSCT; (D) according to whether liver aGVHD involved. D28/56/100: 28/56/100 days after the first infusion of UC-MSCs. W/O, without. NR, not
response. PR, partial response. CR, complete response.
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patient cohort. Most (82.6%) of our patients had grade IV steroid

refractory aGVHD, which is much more severe than most

published series (grade II to IV). Our study’s emphasis is on GI

aGVHD, with or without liver involvement. This is because skin-

limited aGVHD (stage 4 limited-skin aGVHD are also categorized

as grade IV) typically responds well to steroid therapy and is less

likely to be life-threatening (24, 25). Additionally, most of our

patients had received more than two additional treatments (none of

the patients ever received ruxolitinib) before UC-MSCs infusion,

indicating that they were receiving MSCs as a salvage therapy. It has

suggested that patients with severe lymphodepletion due to GVHD

and multiple immunosuppressive treatment regimens may lose

responsiveness to MSCs (23). Despite these challenges, the results

we obtained from such a highly challenging patient cohort (17.4%

grade III and 82.6% IV) suggest the advantage of treatment of

aGVHD with UC-MSCs.

The association between liver involvement and a worse

response, as observed in our study, is consistent with other

reports (15, 26, 27). This suggests that liver involvement is a

prognostic factor for aGVHD, rather than a specific predictor for

MSC therapy. However, it is noteworthy that a prospective

randomized trial found that remestemcel-L led to significantly

higher overall response rates in GVHD patients with liver
Frontiers in Immunology 0645
involvement (28). This finding highlights that MSCs cannot be

excluded from the treatment options for liver aGVHD patients.

Further exploration of MSCs as a treatment option for aGVHD

patient with liver involvement is needed.

Our study’s observation of similar response rates between

children and adults (P = 0.871) is consistent with recent reports

on UCB-MSCs (15) and a study using Temcell (27). This suggests

that MSCs may have similar efficacy in both pediatric and adult

patients with aGVHD. However, this finding disagrees with most

studies that have demonstrated a trend towards a better clinical

response in children both in an UC-MSC report (16) or in BM-

MSC reports (28–31). This discrepancy could be due to

differences in patient populations, disease severity, or other

confounding factors.

Regarding the frequency of MSC infusion, our study did not

find a significant difference in response rates between once-weekly

or twice-weekly infusions. However, Larger controlled studies are

needed to definitively identify the optimal infusion schedule for

MSCs in the treatment of aGVHD.

In our study, the administration of UC-MSCs did not elicit any

adverse effects among patients, thus confirming its safety. As of the

last follow-up in December 2023, our cohort, with a median follow-

up of 108 months (ranging from 61 to 159 months) from the initial
FIGURE 3

One-year survival estimates for patients with steroid-resistant and therapy-refractory III-IV acute GI GVHD from time of first MSC infusion.
(A) according to MSC infusion frequency; (B) according to age groups; (C) according to disease status before HSCT; (D) according to whether liver
aGVHD involved. Abbreviations: aGVHD, acute graft-versus-host disease; HSCT, hematopoietic stem cell transplantation; CR, complete response;
MSC, mesenchymal stem cell.
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UC-MSCs infusion, exhibited a survival rate of approximately

11.6% (10/86).

We noticed that a phase II study showed a pre-MSC six-

biomarker (IL2Ra, TNFR1, HGF, IL-8, Elafin and Reg3a) panel

and post-MSC ST2 levels were predictive of mortality (32).

However, over the past few years, we have not made it a standard

practice to monitor the cell subsets or plasma aGVHD biomarkers.

In the future study, we will initiate the monitoring of biomarkers

before and after administration of UC-MSCs therapy.

UC-MSCs offer a promising therapeutic potential due to their

non-invasive acquisition and comparable clinical efficacy to bone

marrow-derived stem cells. This study provides important insights

into the clinical outcomes and safety profile of UC-MSC therapy in

the treatment of aGVHD, particularly in patients with liver

involvement and in both pediatric and adult populations. Future

randomized, placebo-controlled, and double-blind studies are

necessary to identify the most suitable patient populations,

predictors of response, optimizing infusion schedules, and

exploring combinations of MSCs with other immunosuppressive

agents to further improve outcomes for patients with aGVHD.
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Introduction: The human leukocyte antigen (HLA) evolutionary divergence

(HED) reflects immunopeptidome diversity and has been shown to predict the

response of tumors to immunotherapy. Its impact on allogeneic hematopoietic

stem cell transplantation (HSCT) is controversial in different studies.

Methods: In this study, we retrospectively analyzed the clinical impact of class I

and II HED in 225 acute lymphoblastic leukemia patients undergoing HSCT from

related haploidentical donors. The HED for recipient, donor, and donor-recipient

pair was calculated based on Grantham distance, which accounts for variations in

the composition, polarity, and volume of each amino acid within the peptide-

binding groove of two HLA alleles. Themedian value of HED scores was used as a

cut-off to stratify patients with high or low HED.

Results: The class I HED for recipient (R_HEDclass I) showed the strongest

association with cumulative incidence of relapse (12.2 vs. 25.0%, P = 0.00814)

but not with acute graft-versus-host disease. The patients with high class II HED

for donor-recipient (D/R_HEDclass II) showed a significantly higher cumulative

incidence of severe aGVHD than those with low D/R_HEDclass II (24.0% vs. 6.1%, P

= 0.0027). Multivariate analysis indicated that a high D/R_HEDclass II was an

independent risk factor for the development of severe aGVHD (P = 0.007), and a

high R_HEDclass I had a more than two-fold reduced risk of relapse (P = 0.028).

However, there was no discernible difference in overall survival (OS) or disease-

free survival (DFS) for patients with high or low HED, which was inconsistent with

the previous investigation.

Discussion: While the observation are limited by the presented single center

retrospective cohort, the results show that HED has poor prognostic value in OS

or DFS, as well as the associations with relapse and aGVHD. In haploidentical
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setting, class II HED for donor-recipient pair (D/R_HEDclass II) is an independent

and novel risk factor for finding the best haploidentical donor, which could

potentially influence clinical practice if verified in larger cohorts.
KEYWORDS

human leukocyte antigen (HLA) evolutionary divergence (HED), acute lymphoblastic
leukemia, haploidentical hematopoietic stem cell transplantation, donor selection,
risk factor
1 Introduction
Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

is a curative therapy for many hematopoietic disorders, including

acute lymphoblastic leukemia (ALL) (1). The success of allo-HSCT

partly depends on the recognition of tumor antigens presented to

alloreactive T cells via human leukocyte antigens (HLAs). The

importance of HLA matching is currently well established,

resulting in a fully HLA-matched sibling or unrelated donor

being the preferred source for allo-HSCT to reduce the risk of

GVHD through allo-recognition of foreign HLA molecules (2, 3).

The divergence of HLA alleles may lead to an increased functional

capability of the immunopeptidome, which would defend against

potentially fatal opportunistic infections and leukemia cells causing

relapse (4). Heterozygosity was typically used to assess the HLA allelic

difference. Recently, HLA evolutionary divergence (HED), a metric

reflecting the immunopeptidome diversity, has been utilized to more

accurately quantify HLA allele divergence using the Grantham

distance, which accounts for variations in the composition, polarity,

and volume of each amino acid within the peptide-binding groove of

two HLA alleles (5, 6). Previous research has linked the high

heterozygosity of HLA class I loci to an improved response to

immune checkpoint inhibitors in advanced cancer patients (7).

Further, Chowell et al. found that the effect of HED on survival was

independent of other clinically relevant variables and that a high HED

in class I alleles was strongly related with response to checkpoint

inhibitors in advanced cancer patients (8). These findings, however,

were subsequently challenged by a study with a large cohort of cancer

patients who had undergone anti-PD1 immunotherapy (9).

In the context of liver grafts, Feray et al. discovered that the

donor’s HED was an intrinsic feature completely independent of the

recipient’s characteristics and that a high class I HED of the donor

was strongly related to a poor outcome (10). The influence of class I

and II HED in the HSCT setting has primarily been explored in

acute myeloid leukemia (AML). In AML patients, a high class I/

class II HED ratio was revealed to be an independent factor for

improved overall and disease-free survival (11, 12). More recently,

HED was utilized to predict the outcome of children and young

adults who underwent HSCT from an unrelated donor for a variety

of malignant disorders (4). According to this study, patients with a
0249
high HED score of the combined HLA-B and -DRB1 loci had

significantly increased overall and disease-free survival.

As an alternative donor transplant, HLA-haploidentical

transplantation allows patients who do not have fully matched

donors to undergo a transplant, and it has been increasingly used

globally over the last two decades (13). In the haploidentical HSCT

setting, almost all patients have more than one donor. As a result, the

search for the best donor is a critical issue because donor selection can

considerably affect the incidences of graft-versus-host, relapse,

transplant-related mortality, and survival (13). Previous studies have

identified a variety of characteristics that influence haploidentical

outcomes, including HLA matching, donor age, donor sex, family

relationships, and so on. These risk factors should be considered when

selecting the best donor. However, the effects of HLA disparity on

transplantation outcomes have vanished due to the improved protocols

of haploidentical HSCT with anti-thymocyte globulin (ATG) or with

post-transplantation cyclophosphamide (PT/Cy). If HLA disparity,

either the quantity of HLA-mismatched loci or the mismatch

combination of specific sites, is not a risk factor for haploidentical

donor selection, it is currently unclear whether HED, which reflects

HLA allele spatial epitope information, affects donor selection and

clinical outcomes (4). To date, little is known about the impact of HED

on outcomes in the HLA-haploidentical HSCT setting. In this study,

we scored HED for donors, recipients, and donor-recipient pairs, and

assessed the clinical significance of class I and II HED in 225 ALL

patients who received HLA-haploidentical HSCT from a related donor.

We found that the Grantham distance score of HLA evolutionary

divergence was associated with acute GVHD and relapse in ALL

patients undergoing HLA-haploidentical HSCT from a related

donor, which may be considered a novel risk factor for donor

selection in the haploidentical transplant setting.
2 Materials and methods

2.1 Patient characteristics

To investigate the influence of HED on clinical outcomes following

HSCT, we conducted a retrospective analysis of consecutive Acute

Lymphoblastic Leukemia patients (ALL) receiving allo-HSCT between

2012 and 2017 at Hebei Yanda Lu Daopei Hospital, Langfang City, PR
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China. HED was calculated using data from all patients. The clinical

data collected included graft-versus-host disease (GVHD), relapse, date

of the event, survival status, and last follow-up date, etc. All patients

were prepared for transplantation using modified myeloablative or

reduced intensity conditioning regimens (based on total body

irradiation, busulfan, or fludarabine, depending on the patient’s

comorbidities) (14). According to Chinese Bone Marrow Transplant

Cooperative Group recommendations, GVHD prophylaxis was based

on anti-thymoglobulin (ATG), cyclosporin A (CsA), methotrexate

(MTX), and mycophenolate mofetil (MMF) (15–17).

This retrospective study was reviewed and approved by the

Ethics Committee of Hebei Yanda Lu Daopei Hospital (DEPC-M-

2023, No. 20). Before data collection, written informed consent was

obtained from the patient or the patient’s parents if the patient was

under the age of 18. This study follows the Declaration of Helsinki.
2.2 HED calculation

HLA compatibility was determined at five loci (HLA-A, -B, -C,

-DRB1, and -DQB1) using sequencing-based typing (SBT) GenDx

excellerator kits (GenDX, Utrecht, Netherlands). The patient and

donor two-field resolution typing of these HLA loci served as the

input for the HED calculation, and the calculation was performed

using a Python script according to the original Grantham distance

formula presented in the literature (5).

For each donor and recipient, the HED score was determined by

calculating the Grantham distance between the peptide-binding

domains of the two alleles at the HLA loci (exons 2 and 3 for HLA-

A, HLA-B and HLA-C, exons 2 for HLA-DQB1, HLA-DRB1) loci (6,

7). For donor-recipient pair, HED per locus was estimated for pairwise

allele combinations between donors and recipients. We take HLA-A as

an example to illustrate how HED between donors and recipients was
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calculated (Figure 1). If recipient has HLA-A allele 1 and 2, donor has

HLA-A allele 3 and 4 (Figure 1).Dij is Grantham distance between two

alleles and calculated using the original formula (5) as follows:

Dij = ½a(ci − cj)
2 + b(pi − pj)

2 + g (vi − vj)
2�1=2

Where i and j represent paired amino acids of the same position

in the sequence of two alleles. c, p and v represent respective

composition, polarity and molecular volume of the homologous

amino-acids at a given position. a, b and g are constants. HED

between donor and recipient (HED donor/recipient) was calculated by

the sum of Grantham distance of four combinations for donor-

recipient alleles, given by the formula:

HEDdonor=recipient =o
ij
(D13

ij + D14
ij + D23

ij + D24
ij )

In the context of haploidentical HSCT, where donor and

recipient always have one allele shared in any HLA locus, as

shown in the diagram allele 1 = allele 3, the formula is:

HEDdonor=recipient

=o
ij
(D14

ij + D23
ij + D24

ij ) = HEDdonor + HEDrecipient +o
ij
(D24

ij )

Furthermore, if HLA-A matched (allele 1 = allele 3, allele 2 =

allele 4), the formula is:

HEDdonor=recipient = HEDdonor + HEDrecipient

The mean HED score of class I HLA (HEDclass I) or class II HLA

(HEDclass II) was measured for donor, recipient, and donor-

recipient, respectively. HED was denoted by the prefix R

(Recipient), D (Donor), or D/R (Donor-Recipient pair). The

median HED score was used as the threshold to define a high- or

low-HED group.
FIGURE 1

HED calculation flowchart for donors, recipients and donor-recipient pairs.
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2.3 Clinical endpoints

The primary objective was to assess the impact of HED on

relapse, non-relapse mortality (NRM), and acute and chronic graft-

versus-host disease (GVHD). The secondary aim of the study was to

assess the effect of HED on prognosis following haploidentical HSCT.

Endpoints of interest included the cumulative incidence of

GVHD, relapse and NRM, overall survival (OS), and disease-free

survival (DFS). aGVHD incidence was defined as time to first

diagnosis of aGVHD (grade 2-4). Because acute GVHD,

especially of grade 2 or higher, is probably the most suitable

marker of morbidity, an additional sub-analysis for aGVHD

(grades 3-4) was performed. Patients who survived more than 14

and 100 days following transplantation were evaluated for acute and

chronic GVHD, respectively. The modified Keystone Criteria were

used to grade aGVHD (18), while the National Institute of Health

Consensus Criteria were used to evaluate cGVHD (19). Relapse

incidence was defined as the time to relapse and death without prior

recurrence. The NRM event was treated as a competing risk for

relapse. NRM was defined as the time to death from any cause other

than relapse. OS was defined as the time from transplantation to

death, or the last follow-up. DFS was defined as the probability of

survival without disease at any period following transplantation,

with relapse or death considered events.

At the last follow-up, patients free from the event of interest

were censored. The presence of 5% or more leukemic cells in the

bone marrow and no indication of extramedullary localization was

considered a hematological relapse.
2.4 Statistical analysis

Patient characteristics were summarized using descriptive

statistics. Categorical variables are reported as counts (%), while

continuous variables are described as the medians. The chi-square

test, or Fisher’s exact test, was used to assess differences in

categorical variables across two groups. The Mann-Whitney U

test was used to compare the intergroup continuous variables.

Cumulative incidences of GVHD, relapse, and NRM were

estimated with the methods of Fine and Gray considering the

respective competitive risks; comparisons between the high and

low HED groups were performed with Gray’s test. The Kaplan-

Meier survival curve was used to estimate the probability of OS and

DFS, and the significance was determined with a log-rank test.

Potential risk factors were identified using the univariate Cox

regression method to assess the hazard ratio (HR) for the various

factors associated with clinical outcomes. Multivariate Cox

regression analysis retained significant HED and other variables

that might have been clinically meaningful or statistically significant

in univariate analysis (P<0.2). The final multivariate models were

built using a backward stepwise model approach.

Variables considered in the multivariate models were donor sex,

donor and patient age, donor-recipient HLA disparity, donor-

recipient family relationship, disease status at transplant (non-
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remission vs. complete remission), and donor-recipient sex

matching. KIR matching and the HSCT-specific comorbidity

index were not included due to insufficient data.

All tests were two-sided, and P<0.05 was considered statistically

significant. The date collected is as of December 31, 2017. Statistical

analysis was performed using the SPSS 25 package (SPSS Inc.,

Chicago, USA) and a graphical user interface for R language, EZR

version 1.32 (20).
3 Results

3.1 Patient characteristics

The study comprised 225 ALL patients who had HSCT from a

related donor between 2012 and 2017. Most of the transplants (179)

were parents as donors. Thirty-nine transplants were siblings as

donors. The median age was 15 years, with the range of 2 to 48

years, and the median follow-up time following transplantation was

35.8 months (range, 1-83.9). High-resolution HLA typing revealed

that 146 (64.9%) of 225 donor-recipient pairs had five mismatches,

43 (19.1%) had four mismatches, and 36 (16.0%) had three or fewer

HLAmismatches. Thirty-one individuals (13.8%) had active disease

at the time of transplantation. Table 1 summarizes the patient

demographics and characteristics.
3.2 HED scores

We estimated HED strictly following the original formula of

Grantham distance. Our HED value for class I was 3.56 times higher

than Pierini and Lenz’s (6), and for class II, it was 1.75 times higher

(Supplementary Method). This discrepancy is due to differences in

data processing, but there is a clear and straightforward relationship

between the two calculation methods, thus they can be considered

identical in clinical investigations.

For recipients, HLA-B locus showed the highest HED variability

(R_HEDB, median 29.7), followed by HLA-A (R_HEDA, median

26.8), HLA-DRB1 and -DQB1 (R_HEDDRB1 and R_HEDDQB1,

median 26.5 and 22.5, respectively), and HLA-C locus displayed

the lowest HED variation (R_HEDC, median 19.8) (Figure 2A).

HLA-B evolutionary divergences were greater than HLA-A and

HLA-C, supporting previous findings that HLA-B is the most

ancient and diverse of the three HLA-class I loci (6). Class I HLA

had a slightly higher mean HED (R_HEDclass I) than class II HLA

(R_HEDclass II) (median 23.9, 22.9, respectively) (Figure 2A). The

variance and distribution pattern of donor HED were quite

comparable to that of the recipient, with HLA-B having the

highest value (D_HEDB, median 29.8) and HLA-C having the

lowest (D_HEDC, median 20.3) (Figure 2B).

Despite the fact that the HED scores for donor-recipient pairs

were much higher than those of the donor or recipient due to the

computed divergence among the four alleles, the HED distribution

and variation patterns of each locus or class were identical to those
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of the donor or recipient. The highest was D/R_HEDB (median

84.2), followed by D/R_HEDDRB1 (median 72.7), D/R_HEDA

(median 72.0), and D/R_HEDDQB1 (median 64.4), while the

lowest was D/R_HEDC (median 55.4). D/R_HEDclass I was higher

than D/R_HEDclass II (median 69.9 versus 67.4) (Figure 2C).
3.3 GVHD

The overall cumulative incidences of grade 2-4 and 3-4 aGVHD

at 100-day were 36.5% (95% confidence interval [CI]: 29.9-43.0%),

and 15.1% (95% CI: 10.3-20.7%), respectively. Neither the donor

(D_HEDclass I, D_HEDclass II) nor recipient HED values
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(R_HEDclass I, R_HEDclass II) had any effect on aGVHD.

Surprisingly, the HED score of donor-recipient pair (D/

R_HEDclass II) was significantly associated with the cumulative

incidence of grade 3-4 aGVHD at 100-day. The incidence of

grade 3-4 aGVHD was 24.0% (95%CI:15.7-33.3%) in patients

with high D/R_HEDclass II compared to 6.1% (95%CI: 2.5-12.2%)

in patients with low D/R_HEDclass II (P = 0.0027) (Table 2,
FIGURE 2

Violin plot of HLA evolutionary divergence (HED) distribution for (A)
recipients, (B) donors, and (C) donor-recipient pairs.
TABLE 1 Patient characteristics.

Variable N
%

or range

Age at transplant (yr.) Median 15 2-48

Gender Female 81 36%

Male 144 64%

Donor-recipient relationship Parent-child 179 79.6%

Child-parent 7 3.1%

Sibling-sibling 39 17.3%

HLA-matching 5/10 146 64.9%

6/10 43 19.1%

7/10 23 10.2%

8/10 8 3.6%

9/10 5 2.2%

Disease status at HSCT CR1 103 45.8%

CR2 73 32.4%

Active disease 49 21.8%

Conditioning regimen MAC 101 44.9%

RIC 124 55.1%

TBI Yes 213 94.7%

No 12 5.3%

Acute GVHD Yes 123 54.7%

Chronic GVHD Yes 161 71.6%

Time from HSCT to
aGVHD occurrence (days)

Median 60 4-240

Time from HSCT to
cGVHD occurrence (days)

Median 180.5 28-4170

Time from HSCT to
relapse (days)

Median 984.5 18-2491

CMV reactivation 144 64.0%

EBV infection 73 32.4%
CMV, cytomegalovirus; CR, complete remission; EBV, Epstein-Barr virus; GVHD, graft-
versus-host disease; MAC, myeloablative conditioning; HLA, human leukocyte antigen;
HSCT, hematopoietic stem cell transplantation; RIC, reduced intensity conditioning; TBI,
total body irradiation.
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Figure 3A). The favorable impact of D/R_HEDclass II appears to be

primarily driven by D/R_HEDDRB1. The higher the D/R_HEDDRB1,

the higher the incidence of grade 3-4 aGVHD (23.4% [95%CI:15.1-

32.8%] vs 7.2% [95%CI: 3.1-13.5%], P = 0.0047).

The 5-year cumulative incidence of cGVHD was unexpectedly

high, at 80.4% (95%CI: 74.1-86.0%). In contrast to the results for

aGVHD, the cumulative incidence of cGVHD at 5-year was

significantly associated with higher D/R_HEDclass II (P = 0.0311),

with higher D/R_HEDclass II being associated with lower cGVHD

risk (73.0% vs. 85.6%), but not with D/R_HEDclass I (P = 0.533)

(Table 2). D/R_HEDclass II was therefore included in the subsequent

cox regression analysis for GVHD. Regardless of the negative

association with D/R_HEDB, there was no significant correlation

between cGVHD and D/R_HEDclass I.
3.4 Relapse and NRM

Forty-four of 225 (19.6%) patients relapsed at a median time of

984.5 days (range 18-2491) after transplantation. The 5-year

cumulative incidence of relapse (CIR) for all patients after

transplantation was 18.6% (95% CI: 13.7-24.0%). The cumulative

incidence of NRM at five years was 22.6% (95% CI: 17.3-28.3%),

which was greater than the 5-year CIR.

When patients are stratified based on HEDclass I or HEDclass II,

all three HEDclass I (D_HEDclass I, R_HEDclass I, and D/R_HEDclass
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I) scores show an obvious association with CIR (Table 2). Higher

D_HEDclass I and D/R_HEDclass I contribute to a lower 5-year CIR

(11.8 vs. 25.2%, P = 0.0123; 12.7% vs. 24.2%, P = 0.0232) (Table 2).

R_HEDclass I, in particular, exhibited the strongest association with

5-year CIR (12.2 vs. 25.0%, P = 0.00814) (Table 2, Figure 3B).

Conversely, neither HEDclass II were correlated with 5-year CIR.

Thus, the three HEDclass I(D_HEDclass I, R_HEDclass I, and D/

R_HEDclass I) were used as candidate risk factors for subsequent

Cox regression analysis. The cumulative incidence of NRM at five

years was not associated with any HEDclass I or HEDclass II. These

findings suggest that genetic divergence of class I HLA, rather than

class II HLA, may be responsible for the differences in CIR, but that

genetic differentiation of either class I or II HLA loci has little effect

on NRM.
3.5 Multivariate analysis

The impact of HED on GVHD and relapse was further

investigated using the Cox proportional hazard regression

analysis with consideration of other risk factors in multivariate

analysis. The univariate analysis for GVHD, relapse and DFS is

shown in Supplementary Table 1.

The multivariate regression analysis revealed that the low

R_HEDclass I group had a more than two-fold greater risk of relapse

(HR = 2.101 [95%CI: 1.083-4.078], P = 0.028) (Table 3, Figure 3B,
TABLE 2 Cumulative incidences (%) of Relapse, NRM, cGVHD and aGVHD based on HEDclass I and HEDclass II.

Factor Group Relapse* NRM* aGVHD§ cGVHD*

D_HEDclass I High 11.8 (6.6-18.6) 21.9 (14.7-30.1) 16.6 (9.7-25.2) 79.4 (69.4-86.5)

Low 25.2 (17.5-33.7) 23.2 (15.9-31.4) 13.5 (7.5-21.3) 78.9 (68.4-86.3)

P value 0.0123 0.808 0.928 0.666

R_HEDclass I High 12.2 (6.8-19.3) 25.5 (17.7-33.9) 14.7 (8.4-22.7) 82.7 (72.0-89.6)

Low 25.0 (17.4-33.3) 19.7 (12.9-27.6) 15.4 (8.8-23.7) 76.7 (66.4-84.2)

P value 0.00814 0.246 0.858 0.355

D/R_HEDclass I High 12.7 (7.3-19.7) 23.6 (16.2-31.9) 18.3 (11.1-26.8) 78.8 (68.6-86.0)

Low 24.2 (16.7-32.5) 21.5 (14.4-29.5) 11.6 (6.0-19.1) 80.1 (69.6-87.2)

P value 0.0232 0.631 0.331 0.533

D_HEDclass II High 18.1(11.5-25.9) 24.2 (16.7-32.5) 18.1 (10.8-26.9) 79.6 (69.3-86.7)

Low 19.1(12.3-27.0) 20.9 (13.8-29.0) 12.1 (6.5-19.5) 79.0 (68.6-86.3)

P value 0.796 0.556 0.402 0.702

R_HEDclass II High 15.8 (9.6-23.4) 20.2 (13.2-28.2) 15.3 (8.8-23.6) 74.8 (64.2-82.6)

Low 21.2 (14.2-29.2) 24.9 (17.3-33.2) 14.7 (8.4-22.8) 84.3 (74.2-90.7)

P value 0.293 0.421 0.903 0.0886

D/R_HEDclass II High 19.3 (12.5-27.2) 23.9 (16.3-32.2) 24.0 (15.7-33.3) 73.0 (62.0-81.3)

Low 18.0 (11.4-25.7) 21.3 (14.3-29.4) 6.1(2.5-12.2) 85.6 (75.8-91.7)

P value 0.775 0.674 0.0027 0.0311
*Cumulative incidence (%) at 5 years; §Incidence of grade 3-4 aGVHD at 100 days; NRM, non-relapse mortality; Numbers in parenthesis indicate 95% Confidence Interval. HED’s prefix D, R,
and D/R indicate donor, recipient and donor-recipient pair, respectively.
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Supplementary Table 2), whereas non-remission patients exhibited

an approximately threefold risk of relapse. Therefore, R_HEDclass I

can be considered an independent risk factor for relapse.

In the multivariate model of severe aGVHD, the low D/

R_HEDclass II significantly reduced the risk of grade 3-4 aGVHD

(HR = 0.335 [95% CI: 0.148-0.756], P = 0.009) as the only protective

factor when considering donor age as a continuous variable
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(Table 3; Supplementary Table 2). However, when donor age was

considered a dichotomous variable, it remained in the final model as

a risk factor but failed to reach a statistically significant level (HR =

2.153, P = 0.068) (Table 3; Supplementary Table 2).

Regarding cGVHD, Model 1 with donor age as a continuous

variable revealed that D/R_HEDclass II was the only independent

risk factor, and low D/R_HEDclass II was associated with high risk of
FIGURE 3

Clinical outcomes according to D/R_HEDclass II and R_HEDclass I (A) cumulative incidence of aGVHD (grade3-4) stratified by D/R_HEDclass II, (B)
cumulative incidence of relapse stratified by R_HEDclass I, (C) KM curve of overall survival stratified by D/R_HEDclass II, (D) KM curve of overall survival
stratified by R_HEDclass I, (E) KM curve of disease-free survival stratified by D/R_HEDclass II, (F) KM curve of disease-free survival stratified by
R_HEDclass I.
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cGVHD (HR = 1.376 [95% CI: 0.995-1.904]); however, this

association reached marginal statistical significance (P = 0.054,

Table 3; Supplementary Table 2). In Model 2, patients with a

history of aGVHD or receiving transplantation from donor older

than 45 years had a high risk for cGVHD development, while D/

R_HEDclass II no longer remained significant.
3.6 Survival

The proportions of 5-year OS and DFS for the entire cohort

were 62.9% (95% CI: 56.1-68.9%) and 58.2% (95% CI: 51.4-64.4%),

respectively. There was no discernible difference in overall and

disease-free survival (OS or DFS) between patients with high- and

low-HED (Figures 3C–F; Supplementary Figures 1, 2) except

D_HEDclass I associated with DFS, implying that HED was

ineffective as a prognostic indicator for ALL patients who

underwent HLA-haploidentical HSCT with related donors.

Multivariate regression analysis confirmed that HED, including

D_HEDclass I, was not associated with survival.
4 Discussion

In the present investigation, we report the impact of HED scores

on clinical outcomes for ALL patients underwent haploidentical

HSCT. This represents the first study investigating HED in a pure

cohort of haploidentical transplantations with patients affected by

only one type of hematologic malignancy. While the observation are

limited by the presented single center retrospective cohort, the

results find that HED has poor prognostic value in OS/DFS, as well

as the associations with relapse and aGVHD. In haploidentical

setting, HLA disparity was once considered to have little impact on
Frontiers in Immunology 0855
transplantation benefits, but our results showed that HED is an

independent risk factor for selecting the best haploidentical donor.

Previous studies investigated the impact of HED on prognosis

in mixed AML patients transplanted from either related or

unrelated HLA-matched donors (11, 12). Roerden et al. examined

the effect of HED on survival in an AML cohort with an HLA-

identical sibling or foreign donor and found that a high class I HED

had a favorable impact on OS (12). In AML patients undergoing

HSCT, Daul et al. investigated the effect of class I and II HED on

survival using four different donor sources: identical siblings,

haploidentical donors, matched unrelated donors, and

mismatched unrelated donors (11). The authors claimed that the

class I/II HED ratio was an independent factor associated with

better DFS/OS and could be an additive indication of GVL in

addition to the major allogenic effect associated with the

mismatched HLA. Recently, various hematological diseases were

examined in a study by Merli et al., which supports the use of HED

as a predictive marker in young adult and pediatric patients

receiving transplantation from unrelated donors (4).

The ability of immune cells to interact with mismatched HLAs,

minor histocompatibility antigens, and tumor-associated antigens

(TAAs) on the leukemic cells is the foundation of the GVL effect

(graft-versus-leukemia) (21). Compared to related patient/donor

pairs, the overall genetic divergence for unrelated patient/donor

pairs is higher. According to whole exome sequencing of patient-

donor pairs undergoing allo-HSCT, an average of 6,445 non-

synonymous SNVs were found to be mismatched, offering a

sizable pool of possible miHAs (22). Genome-wide SNP array

analyses revealed that the average mismatched SNVs in the

coding region were 9.4% for sibling donors, rising to 17.3% for

unrelated donors (23). To lessen the confounding effect of genetic

background divergence, we therefore restricted the analysis to a

pure cohort of haploidentical transplantation recipients who

received transplantation from the related donor.

Our data showed that high R_HEDclass I was associated with a

lower 5-year CIR, confirming the crucial function of CD8+ effective

T cells in the GVL immune response and thus directly reflecting the

immunological benefit of high HED. Patients with high HED scores

potentially exhibit more immunogenic peptides than those with low

HED scores, which may be recognized by donor-derived T

lymphocytes (24), thereby reducing the likelihood of relapse. This

explanation can be supported by similar research conducted

recently. It was found that AML patients with high class I HED

tended to recover their CD8+ T, B, and NK cells more quickly (11).

Recently, Pagliuca et al. found that high recipient class I HED was

associated with a higher diversity of TCR repertoire (25). In the first

year of HSCT, a higher diversity of TCR repertoire and enhanced

immune reconstitution might result in a strong defense against

opportunistic infections (4).

However, our studies did not reveal any differences in OS or

DFS between high and low R_HEDclass IALL patients, indicating

that high R_HEDclass I was not always associated with a good

prognosis as seen in AML. Patients with high R_HEDclass I had a

relatively high incidence of NRM (25.5%) despite a low relapse rate

(12.2%) (Table 2), which in turn offset the survival benefit from high

R_HEDclass I, resulting in no significant difference in OS. This
TABLE 3 Significant factors for GVHD and relapse in
multivariate analyses.

Outcomes HR 95% CI P value

Relapse*

R_HEDclass I, low vs high 2.101 1.083-4.078 0.028

Disease status, NR vs CR 2.928 1.440-5.951 0.003

aGVHD (grade 3-4) *

D/R_HEDclass II, low vs high 0.335 0.148-0.756 0.009

cGVHD

Model 1*

D/R_HEDclass II, low vs high 1.376 0.995-1.904 0.054

Model 2§

Donor age, >=45 vs <45 1.738 1.160-2.603 0.007

aGVHD status 1.438 1.024-2.018 0.036
*Donor age was treated as continuous variable. §Donor age was treated as dichotomous
variable. CR, complete remission; NR, non-remission; aGVHD and cGVHD, acute and
chronic graft-versus-host disease.
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possible explanation is related to the Beijing protocol we used. The

difference between our results and those of earlier studies may also

be due to differences in disease type and ethnicity. Our cohort

enrolled ALL patients, which has characteristics that cannot be

totally extrapolated from studies of AML patients. For instance,

while AML is incredibly sensitive to NK cell alloreactivity, the

majority of adult ALL patients are not (26, 27). Furthermore, our

homogeneous cohort is limited to Chinese, and distinct HLA alleles

and HLA haplotypes are present in each ethnic group (28),

emphasizing the significance of studying HED in this particular

population. It’s interesting to note that Chhibber et al. (2022) found

that genetic diversity of class I or II HLA loci (HED, heterozygosity,

genotype) was not associated with clinical outcomes (9), suggesting

that this biomarker shouldn’t be used for clinical decision-making

for cancer patients receiving pembrolizumab. Similar studies

conducted independently have also confirmed Chhibber’s

conclusion (29–31). To properly comprehend the overall impact

of HED, therefore, more research in larger cohorts and across more

centers would be required.

As an alternative donor transplant, haploidentical HSCT offers

patients who lack fully matched donors the chance to receive

transplant, while donor-derived alloreactive T cells elicit a

strong allogeneic response and exert an immense GVL effect (32).

Between 2005 and 2015, there was a roughly threefold increase

of haplo-HSCT in Europe due to favorable practical aspects

of using a haploidentical donor and the accumulation of data

of better outcomes achieved with TCR platforms (33). The

democratization of using haploidentical donors leads to a

fundamental paradigm shift: while donor availability was the key

challenge for years, the issue today becomes identifying the best

donor among several possible ones when haplo-HSCT (34). In

general, the outcome of haploidentical HSCT may be influenced by

DSA (donor-specific antibody), donor age, donor sex, KIR (killer

immunoglobulin-like receptor), NIMA (noninherited maternal

antigen), HLA matching, as well as family relationships (35, 36).

Recent studies have confirmed that neither the quantity of HLA loci

nor the combination of specific sites would affect the outcome of

haploidentical HSCT (35, 37–40). The Beijing protocol showed that

1, 2, or 3 mismatches of 6 HLA loci had no effect on the cumulative

incidence of cGVHD or aGVHD. Additionally, the number of HLA

mismatches had no influence on the cumulative incidence of

relapse, overall survival, and leukemia-free survival (35, 37). The

cumulative incidence of GVHD, relapse rate, NRM, and overall

survival were not affected by differences in the HLA locus in the T-

cell-replete (TCR) haploidentical HSCT with a low dose of anti-T

lymphocyte globulin (ATG), according to a prospective multicenter

study from Japan (39). In the multivariate analysis, the only

significant predictive factor for increased relapse was non-CR

status prior to transplantation (P = 0.0424), which tended to be

associated with a worse survival rate (P = 0.0524). It was also

observed that the degree of HLA mismatching had no effect on

post-transplant OS, cumulative incidence of aGVHD, NRM, or 1-

year cGVHD in the high-dose PT/Cy haploidentical transplantation
Frontiers in Immunology 0956
protocol, whether in the HVG (host-versus-graft) or GVH (graft-

versus-host) settings (40). According to Kasamon et al., survival

following nonmyeloablative transplants with posttransplant

cyclophosphamide is also not correlated with the degree of HLA

disparity (41).

Technique advances in aGVHD prophylaxis, prevention of

post-transplant relapse, and treatment strategies have greatly

improved the outcome of haploidentical HSCT compared to the

past decades. Although the team from the Beijing protocol

established the notion of donor selection and the best option of

donor selection is to choose youthful, male, and NIMA-

incompatible donors (35, 36), the consensus of donor selection,

however, is still limited within the TCD and TCR haploidentical

systems at this time. New criteria for donor selection may develop

as a result of an increase in haploidentical HSCT cases and updated

assessments of the factors influencing transplant outcomes (33, 34,

42–44). In this study, we found a strong association between D/

R_HEDclass II and aGVHD incidence, with higher D/R_HEDclass II

indicating more severe aGVHD. Single locus analysis revealed that

the influence of D/R_HEDclass II appears to be predominantly

driven by D/R_HEDDRB1,which proves the conclusions that

DRB1 has the highest diversity among all HLA class II genes and

the highest cell surface expression when compared to other HLA

class II antigens (45). A high D/R_HEDclass II implies great spatial

structural differences between donors and recipients, as well as

more targets from tissue cells being presented. As a result, the

greater the effect of T-cells attacking the tissue cells, the more severe

the damage to the organ. The number of mismatch loci is obviously

a relatively rough indicator, although it also reflects the degree of

incompatibility between recipient and donor. Therefore, previous

studies and our results suggest that the amount of HLA mismatch

should not be used as a criterion for the selection of family

haploidentical donors. Instead, D/R_HEDclass II provides more

epitope information than mismatch numbers and also indicates

donor and recipient mismatches, suggesting that D/R_HEDclass II

may be taken into account as a new risk factor for donor selection in

related haploidentical HSCT.

There are some limitations to this study. Our research was

based on single-center and retrospective data and had a limited

number of patients. Independent, prospective, larger, and

multicenter investigations would be needed and beneficial to

further confirm the impact of HED on outcome and the clinical

significance of D/R_HEDclass II in donor selection. Due to the

unavailability of data or limitations of the methods themselves,

other approaches such as peptide binding motifs (PBM) (46), T-cell

epitope (TCE) (47) or KIR-ligand mismatches (34, 45) were

not considered.

In conclusion, we conducted a retrospective analysis to

investigate the correlation between HED and outcomes in ALL

patients who underwent transplants from related haploidentical

donors. Results revealed that only class I HED of the recipient

(R_HEDclass I) was associated with 5-year CIR and only D/

R_HEDclass II was significantly correlated with severe aGVHD.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2024.1440911
Multivariate Cox regression analysis did confirm that a high D/

R_HEDclass II was an independent risk factor for grade 3-4 aGVHD,

and the high R_HEDclass I group had a more than two-fold reduced

risk of relapse. KM and multivariate regression analyses confirmed

that none of HED was associated with overall or disease-free

survival. These results suggest that HEDclass II of donor-recipient

pair could be used for donor selection as a novel risk factor for grade

3-4 aGVHD and patient’s HEDclass I for relapse in the setting of

related haploidentical HSCT, but not as an independently

prognostic factor for predicting OS or DFS.
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Monocytes as an early risk factor
for acute graft-versus-host
disease after allogeneic
hematopoietic stem
cell transplantation
Huimin Sun1†, Linjie Wu1†, Xueying Zhao1†, Yingying Huo2,
Peiyuan Dong1, Aiming Pang1, Yawei Zheng1, Yiwen Han1,
Shihui Ma1, Erlie Jiang1, Fang Dong1*, Tao Cheng1,3*

and Sha Hao1,3*

1State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood
Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,
2Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
3Tianjin Institutes of Health Science, Tianjin, China
Acute graft-versus-host disease (aGVHD) is a major complication after allogeneic

hematopoietic stem cell transplantation (allo-HSCT) and contributes to high

morbidity and mortality. However, our current understanding of the

development and progression of aGVHD after allo-HSCT remains limited. To

identify the potential biomarkers for the prevention and treatment of aGVHD

during the early hematopoietic reconstruction after transplantation, we

meticulously performed a comparative analysis of single-cell RNA sequencing

data from post-transplant patients with or without aGVHD. Prior to the onset of

aGVHD, monocytes in the peripheral blood of patients with aGVHD experienced

a dramatic rise and activation on day 21 post-transplantation. This phenomenon

is closely aligned with clinical cohort results obtained from blood routine

examinations. Furthermore, in vitro co-culture experiments showed that

peripheral blood monocytes extracted from patients with aGVHD

approximately 21 days post-transplantation induced a significantly higher

proliferation rate of allogeneic T cells compared to those from patients

without aGVHD. Our study indicates that monocytes could be a crucial early

clinical risk factor for the development of aGVHD, and this insight could

potentially guide the timing of monitoring efforts, recommending assessments

at the pivotal juncture of approximately day 21 post-transplantation, shedding

fresh light on the significance of early hematopoietic regeneration in relation to

the onset of aGVHD.
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Introduction

Despite the routine use of graft-versus-host disease (GVHD)

prophylaxis, acute GVHD (aGVHD) still affects 30%–60% of

patients receiving al logeneic hematopoietic stem cell

transplantation (allo-HSCT) and is associated with poor clinical

prognosis (1–3). In recent years, there has been an increase in the

number of allo-HSCT procedures conducted annually due to

technological advancements and the promotion of haploidentical

allo-HSCT (4–6). It also indicates that there will be a sharp increase

in the number of aGVHD patients. The development of aGVHD

was initially observed as a secondary disease that appeared after the

recovery from conditioning-induced toxicity in murine models of

bone marrow transplantation (7). After that, Billingham formulated

three conditions for the development of aGVHD: the graft

comprises immunologically competent cells, the recipient

expresses tissue antigens that are absent in the transplant donors,

and the recipient is incapable of eradicating the transplanted cells

(8). Additionally, the development of aGVHD can be conceptually

separated into three phases: activation of antigen-presenting cells

(APCs); donor T-cell activation, proliferation, differentiation, and

migration; and target tissue damage (9).

Considering the high morbidity and mortality of aGVHD,

precisely predicting the occurrence of aGVHD is of vital importance

for early intervention. Current pretransplant clinical risk factors for

aGVHD mainly include human leukocyte antigen (HLA)

compatibility, the ages and genders of recipients and donors, and

conditioning regimen intensity (10, 11). When aGVHD manifests

clinically, specific biomarkers including tumor necrosis factor

receptor 1 (TNFR1), interleukin-33 receptor (ST2), and regenerating

islet-derived protein 3-alpha (REG3a) are found in elevated levels in

blood plasma, and immune cell infiltration has been detected in

affected target organs like the liver, gut, and skin (12–14). Using

biomarkers or risk models to predict the risk of aGVHD onset in

patients receiving allo-HSCT can assist in effective clinical intervention

(15, 16). However, the risk factors for aGVHD during the early

hematopoietic reconstruction require further elucidation.

During the initial stages of HSCT, hematopoietic stem and

progenitor cells (HSPCs) could be regulated in several ways,

including a range of inflammatory signals, which could alter their

differentiation bias (17, 18). Taking advantage of the rapid development

of single-cell RNA sequencing (scRNA-seq) technology, we dissected

the reconstitution dynamics of transplanted HSPCs at single-cell

resolution in both mice and humans in previous studies (19, 20).

More importantly, we identified a cluster of neutrophil progenitors

with immunoregulatory function in mobilized human grafts, which

have the potential against the development of aGVHD.However, in the

context of aGVHD, a deeper comprehension is necessary of the

hematopoietic reconstitution dynamics and intricate regulatory

mechanisms of transplanted human HSPCs.

This study involved a comparative analysis at the single-cell

level for the early hematopoietic reconstitution dynamics in aplastic

anemia (AA) patients with or without aGVHD after allogeneic

granulocyte colony-stimulating factor (G-CSF)-mobilized

peripheral blood stem cell transplantation (allo-PBSCT). We
Frontiers in Immunology 0260
found that patients with aGVHD had an obvious increase and

activation of monocytes in day 21 peripheral blood (PB) post-

transplantation and verified this phenomenon with clinical cohort

and in vitro co-culture experiments. Our findings introduce a new

risk factor for early prognostication of aGVHD, and monocytes

could potentially serve as an intervention target for aGVHD

management following transplantation.
Methods

Sample collection

All blood samples of patients were obtained from the Blood

Diseases Hospital, Chinese Academy of Medical Sciences in China,

and were collected into ethylenediaminetetraacetic acid (EDTA)

tubes. Peripheral blood mononuclear cells (PBMCs) were isolated

by density gradient centrifugation using Ficoll-Paque™ Plus (Gibco,

Grand Island, NY, USA). The cells were frozen in CellBanker

(AMSBIO, Cambridge, MA, USA), a fetal bovine serum (FBS)-free

cryoprotectant, and stored in liquid nitrogen until further use.
Single-cell RNA sequencing and
data preprocessing

We included scRNA-seq data of total nucleated cells (TNCs) of

PB and bonemarrow (BM) from three healthy controls (HCs) and six

patients, as well as scRNA-seq data of TNCs from patient-paired G-

CSF-mobilized peripheral blood (donor) in our published study (20)

(Table 1), and followed previous preprocessing and quality control

using scanpy pipeline (Version 1.9.3) (21). Next, we normalized

count data using scanpy.pp.normalize_total function and performed

logarithmically transformation for the following analysis.
Batch effect correction and cell
type annotation

Using scanpy.pp.highly_variable_genes, we identified 1,869 highly

variable genes for the following analysis. For principal component

analysis, we regressed out the total number of counts and the

proportion of mitochondrial counts and used the harmony

algorithm to correct batch effects (22). We generated a neighborhood

graph using scanpy.pp.neighbors with “neighbors = 30, npcs = 10” for

downstream Uniform Manifold Approximation and Projection

(UMAP) visualization and clustering analysis. We performed

unsupervised clustering using scanpy.tl.leiden, and we identified 19

clusters by setting “resolution = 0.8”. Next, we identified subclusters for

monocytes, neutrophils, and lymphoid cells. We repeated the data

integration and unsupervised clustering for monocytes and performed

batch effect correction by harmony and bbknn (23). For T, B, NK, and

neutrophils, we reran neighborhood graph computation and

unsupervised clustering. We identified the cell types of subclusters

according to the expression of marker genes.
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Differential gene expression analysis

Differentially expressed genes (DEGs) were detected using the

scanpy.tl.rank_genes_groups function with the Wilcoxon rank-sum

test. Genes with an absolute value of log foldchangemore than 1 and

adjusted p-value less than 0.05 were defined as DEGs.
Gene set enrichment analysis

For functional annotation of DEGs, we performed gene set

enrichment analysis by Metascape (24) (Version 3.5.2) and used

terms in GO Molecular Functions and GO Biological Processes. The

R package pheatmap (Version 1.0.12) was used for visualizing the

gene expression and functional annotation results.
Cell–cell communication analysis

CellChat (Version 1.6.1) (25) was used to assess the cell–cell

interactions between monocytes and lymphoid cells. The normalized

gene expression data and CellChat human database were taken as

input. Genes that expressed more than 10% of the cells in one cluster

and the ligand–receptor pairs with p-values less than 0.05 were

considered significant interaction molecules among different cell

types. Results were visualized using functions in CellChat.
Calculation of the signature score

The signature scores for monocytes and T cells were calculated by

scanpy.tl.score_genes with functional gene sets from published studies.
Statistical analysis

FlowJo, version 10.8.1, was used for analysis of flow cytometry

data. Statistical comparison was performed using R (Version 4.2.3).

p-Values for the Mann–Whitney U test and Tukey–Kramer test

were calculated using the “stats” package, and the significance was

shown as *p < 0.05, **p < 0.01, ***p < 0.001, and **** p < 0.0001.
Frontiers in Immunology 0361
Monocyte-allogeneic T-cell
co-culture experiments

T cells were isolated from fresh PBMCs of healthy volunteers using

human CD3 MicroBeads, following the manufacturer’s instructions

(Miltenyi Biotec, Bergisch Gladbach, Germany). Similarly, monocytes

were isolated from cryopreserved human PBMCs using human CD14

MicroBeads (Miltenyi Biotec). Isolated cells were confirmed to consist

of >95% target cells by flow cytometry (BD Canto II flow cytometer,

BD Biosciences, San Jose, CA, USA). T cells were labeled with 1 mL
carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen, Carlsbad,

CA, USA) and were co-cultured with sorted monocytes in 96-well U-

bottom plates at 37°C with 5% CO2 at a 4:1 ratio in RPMI 1640

medium supplemented with 1%100 IU/mL penicillin, 10 mg/mL

streptomycin (Gibco), 1% 2 mM L-glutamine (Invitrogen), and 10%

heat-inactivated FBS (Gibco) for 5–7 days. Then, cultured cells were

harvested into a FACS tube; incubated with antibodies CD4, CD8,

CD25, and CD69 (BioLegend, San Diego, CA, USA); and analyzed

using a BD Canto II flow cytometer.
Criteria of clinical cohorts

Inclusion criteria
Patients’ ages ranged from 15 to 60 years.

Patients were diagnosed with aplastic anemia or acute

leukemia and underwent allo-PBSCT.

Patients underwent conditioning regimens before allo-PBSCT.

Patients complied with study procedures and follow-up.
Exclusion criteria
Patients had co-occurring chronic diseases such as hepatitis

and diabetes mellitus.

Patients were diagnosed with acute myelomonocytic leukemia.

Patients with abnormal liver function or gastrointestinal

complications required further diagnostic evaluation.
TABLE 1 Clinical parameters and outcomes of six AA patients undergoing allo-PBSCT.

Case ID
Age
(years) (P)

Sex (P/D) Diagnosis
Type of
conditioning
regimen

HLA-
matched

aGVHD
prophylaxis

aGVHD
onset time
and grade

P1 25 F/F SAA RIC 8/10 CSA+MMF No

P8 17 M/M SAA RIC 10/10 FK506+MTX No

P9 35 M/F VSAA RIC 10/10 CSA+MTX No

P6 52 F/M SAA RIC 6/10 CSA+MTX+MMF d37; grade I

P7 21 F/F VSAA RIC 5/10
FK506
+MTX+MMF

d21; grade II

P10 18 M/F SAA RIC 5/10
FK506
+MTX+MMF

d31; grade III
P, patient; D, donor; M, male; F, female; AA, aplastic anemia; SAA, severity AA; VSAA, very SAA; HLA, human leukocyte antigen; aGVHD, acute graft-versus-host disease; RIC, reduced intensity
conditioning regimen; CSA, cyclosporine; MMF, mycophenolate mofetil; MTX, methotrexate; FK506, tacrolimus.
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Fron
Patients relapsed during 60 days post-transplantation.
Result

The early hematopoietic reconstitution is
altered in transplant patients with aGVHD

To investigate the dynamics of early hematopoietic

reconstruction in patients with aGVHD, we involved published

scRNA-seq data of TNCs of PB and BM from three HCs and six

patients, as well as scRNA-seq data of TNCs from patient-paired G-

CSF-mobilized peripheral blood (donor). The case ID of six patients

involved in the study corresponds one-to-one to the patients in our

previous work (20). Patients included in this study were diagnosed

as AA and underwent allo-PBSCT after BM conditioning. Three of

them developed different grades of aGVHD and received surging

immunosuppressive treatment, while the rest did not show any

clinical manifestations of aGVHD within 6 months after allo-

PBSCT (Table 1). The schematic workflow is depicted in

Figure 1A, and the 10x Genomics platform was employed to

generate single-cell transcriptome data of TNCs.

After rigorous quality control (Supplementary Figure 1A),

230,550 high-quality cells and 20,862 genes were obtained for

subsequent analysis. All TNCs were visualized using UMAP and

classified into eight major cell populations: Neutrophil progenitors

(ProNeus), Neutrophil precursors (PreNeus), Mature neutrophils

(MatureNeus), Monocytes (Monos), Megakaryocytes (MKs), B

lymphocytes/Plasmas (B/Plasma), T lymphocytes, and Natural

killer (NK) cells (Figure 1B; Supplementary Figures 1B, C).

Consistent with previous studies, neutrophils and monocytes

emerged as the predominant cell populations during the first month

after allo-PBSCT, while T cells remained largely absent until 30 to

60 days; the reconstruction state of T cells was greatly influenced by

immunosuppressive therapy (20, 26), and these regulations of

hematopoietic reconstruction showed consistency in both PB and

BM (Figure 1C). Furthermore, the dynamics of hematopoietic

reconstitution exhibited distinct characteristics and intriguing

differences in PB compared to BM between the two groups. For

example, the proportions of monocytes and MatureNeus in PB

showed noteworthy differences between the aGVHD and non-

aGVHD groups before the initial diagnosis of aGVHD (range

from day 21 to day 37 after allo-PBSCT), and day 21 was a key

time point of this hematopoietic reconstruction disparity. In the

non-aGVHD group, MatureNeus had a higher proportion of PB

within 21 days after allo-PBSCT. However, in the aGVHD group,

the proportion of PB monocytes was higher within 21 days and

reached the peak on day 21, and this enrichment of PB monocytes

showed consistency among three aGVHD patient groups

(Figure 1D; Supplementary Figure 1D). Therefore, we mainly

focused on monocytes in PB on day 21 post-transplantation

during subsequent analysis.

We further investigated possible explanations for the significant

enrichment of day 21 PB monocytes in aGVHD patients. Monocytes

from day 21 PB predominantly originated from the donors, with only
tiers in Immunology 0462
0.05% and 0.12% of monocytes being identified as recipient-derived

cells by demuxlet (27) in the aGVHD and non-aGVHD groups,

respectively (Supplementary Figure 1E). Considering that

hematopoietic stem cells (HSCs), with the capacity of multilineage

differentiation and self-renewal, are the origination of all

reconstituted blood cell lineages (28), we introduced the scRNA-seq

data of HSPCs in BM from HCs and patients 14 days post-

transplantation involved in this study and compared the myeloid

differentiation trajectory of HSPCs between the aGVHD and non-

aGVHD groups (Supplementary Figures 1F, G). The ratio of

monocyte/dendritic progenitors (MDs) to unipotent neutrophil

progenitors (NePs) was elevated in patients with aGVHD than

those without aGVHD (Figure 1E). The cell fate bias of

multipotent and bipotent progenitors [estimated in a previous

study (20)] on day 14 toward NePs exhibited no significant

difference between the two groups while maintaining a pronounced

inclination toward MDs in the aGVHD group than the non-aGVHD

group (Figure 1F). Thus, the differentiation preference of HSPCs

toward monocytes in the aGVHD group occurred prior to day 21,

accounting for the abnormal regeneration of monocytes before the

onset of aGVHD.

Taken together, the comparison analysis of scRNA-seq data

systematically identified aGVHD-associated immune disturbances. A

prominent enrichment of PB monocytes on day 21 after allo-PBSCT

occurs in aGVHD patients, and this emergency monocytopoiesis stems

from pre-existing differentiation bias of HSPCs.
Prominent activation of enriched PB
monocytes in aGVHD group on day 21
post-transplantation

Considering the contribution of monocytes and monocyte-derived

cells to the development of aGVHD (29, 30), we conducted further

investigation into the functional variations of monocytes in patients

with aGVHD. The heterogeneity of monocytes always corresponds to

diverse functional specializations (31). To comprehensively

characterize the functional variation of PB monocytes enriched on

day 21, we compared the transcriptome profiles of monocyte subsets

between the aGVHD and non-aGVHD groups. We defined three

subsets in monocytes according to CD14 and CD16 expression:

classical monocytes (CD14++CD16−), intermediate monocytes

(CD14++CD16+), and non-classical monocytes (CD14+CD16++).

Classical monocytes exhibited the highest expression levels of S100A8

and S100A9, the proinflammatory mediator released by myeloid cells

in many acute and chronic inflammatory disorders (32), while non-

classical monocytes upregulated the expression of antigen presentation-

associated genes, like CD74, HLA-DRA, and HLA-DRB1 (33, 34)

(Figures 2A, B). On day 21, the prominent enrichment of PB

monocytes in the aGVHD group was primarily attributed to classical

and intermediate monocytes, while the proportion of PB non-classical

monocytes was comparable between the aGVHD and non-aGVHD

groups (Figure 2C; Supplementary Figure 2A).

To further investigate the possible role of monocytes in the

pathophysiology of aGVHD, we performed differential expression

gene analysis for day 21 monocytes in PB. In the aGVHD group,
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monocytes showed higher proliferation and chemotaxis potential with

the upregulation of genes like FOS, JUN, and CXCL8 while

downregulating interferon-associated genes like ISG15 and IFIT3

(Figure 2D). The aGVHD group demonstrated a significantly higher

number of upregulated genes across each monocyte subset when

contrasted with the non-aGVHD group. This observation highlighted

the pronounced functional differences among the monocyte subsets

between the two groups (Figure 2E; Supplementary Figure 2B). To

further profile the functional characteristics of eachmonocyte subset, we

annotated upregulated genes in monocyte subsets in the aGVHD group
Frontiers in Immunology 0563
by gene ontology analysis. Classical monocytes showed activation in the

regulation of phagocytosis, chemotaxis, and cohesion, while non-

classical monocytes demonstrated enhanced capability of antigen-

presenting and T-cell viability. The higher expression of ICAM and

TNFSF14, the genes associated with co-stimulatory signals for T-cell

proliferation and activation (35, 36), indicates that monocyte subsets

may contribute to the proliferation and activation of T cells in the

aGVHD group (Figure 2F).

We additionally explored the functional disparities of

lymphocytes between the aGVHD and non-aGVHD groups. We
FIGURE 1

Comparison of hematopoietic reconstruction between patients with acute graft-versus-host disease (aGVHD) and those without aGVHD during early
post-transplantation. (A) Overview of experimental design and data analysis. (B) Uniform Manifold Approximation and Projection (UMAP) visualization of
total nucleated cells (TNCs) from healthy controls (HCs), granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (donors), and six
patients. (C) The post-transplant cell compositions in patients with (bottom) or without aGVHD (upper) at multiple follow-up time points. (D) The
dynamic proportion of TNC subsets between aGVHD and non-aGVHD groups at multiple follow-up time points. The monocyte proportion from d21 PB
shows a sharp increase in aGVHD group. The line plots show the means ± SEM for the proportions of each cell type. (E) The ratio of monocyte/dendritic
progenitors (MDs) to neutrophil progenitors (NePs) in d14 hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM). (F) Cell fate
probabilities of hemopoietic stem cell multipotent (HSC/MPP), lymphoid-primed multi-potential progenitor (LMPP), and granulocyte-monocyte
progenitor (GMP) in BM on d14 post-transplantation. p-Values were evaluated by the two-tailed Mann–Whitney U test. ns, not significant; ***p < 0.001.
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FIGURE 2

Transcriptome characteristics of peripheral blood (PB) monocytes on day 21 in patients with acute graft-versus-host disease (aGVHD). (A) Uniform
Manifold Approximation and Projection (UMAP) of monocyte subsets. (B) Heatmap shows the marker genes for each monocyte subset. (C) The
dynamic proportions of monocyte subsets in PB at multiple follow-up time points after allo-PBSCT. (D) Volcano plot depicts the differentially
expressed genes (DEGs) in d21 PB monocytes between aGVHD and non-aGVHD groups. (E) Transcriptomic difference for each monocyte subset
between aGVHD and non-aGVHD groups. The number of upregulated genes in the aGVHD group shows that the drastic transcriptomic variation
occurred in all monocyte subsets. (F) Heatmap represents expression level of upregulated functional genes of each monocyte subset in d21 PB for
aGVHD group. Annotations show functional attributes of genes in aGVHD group.
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defined elaborate subsets of T, B, and NK cells (Supplementary

Figures 2C, D). By performing differential expression gene analysis

for CD8 effector T and CD16 NK cells, we found that cytotoxicity-

associated genes like GZMB and KLF2 (37) were upregulated in the

aGVHD group, implying the highly activated functional state of

CD8 effector T and CD16 NK cells in aGVHD patients

(Supplementary Figure 2E).

Collectively, the transcriptome profile of monocytes provides

insights into the functional characteristics of monocytes from

aGVHD patients. The overstated activation of monocytes may

play an essential role in inducing T-cell activation and

proliferation in the context of aGVHD.
Enhanced cell–cell interactions between
monocytes and cytotoxic cells occur in
patients with aGVHD during the early
hematopoietic reconstitution

To further explore the effect of aGVHD-associated activation of

monocytes on the cell–cell regulatory network, we performed cell–cell

communication analysis for PB immune cells on day 21 using

CellChat (25) software. Patients with aGVHD showed the highest

interaction strength and numbers among the HC, aGVHD, and non-

aGVHD groups, indicating enhanced cell–cell interactions

(Figure 3A; Supplementary Figure 3A). Compared with the non-

aGVHD group, the augmentation of interaction strength in aGVHD

patients was mainly focused on monocytes, T cells, and NK cells. The

enhanced interaction strength of three monocyte subsets was

primarily attributed to the outgoing signals of interaction,

emphasizing the pivotal role of monocytes in regulating other cell

populations in the context of aGVHD. Correspondingly, the

incoming signal was obviously strengthened for CD8 effector T,

CD16 NK, and CD56 NK, supporting the potential activation of

lymphocytes in the aGVHD group (Figure 3B). Furthermore, the

aligned interactive interplay between three monocyte subsets and

CD8 effector T, CD16 NK, and CD56 NK was also remarkably

augmented in the aGVHD group, indicative of the stimulation role of

monocytes on T cells and NK cells. In addition, the cell–cell

communication between monocyte subsets and CD8 memory T

was relatively weak in the aGVHD group, supporting the initiative

role of cytotoxic lymphocytes including CD8 effector T and CD16

NK in inducing target damage of aGVHD (38) (Figure 3C;

Supplementary Figure 3B).

To investigate the underlying mechanism of altered cell–cell

interaction, we compared the level of involvement of all detected

pathways between the aGVHD and non-aGVHD groups and

revealed the different enrichment paradigms of signal pathways

between the two groups. The upregulation of cytokine-associated

pathways including RESISTIN, IL16, and IL1 pathways reflected that

immune cells in aGVHD patients had a higher proinflammatory ability

and stronger signal transmission, while the upregulated CCL, CXCL,

and ITGB2 pathways indicated the enhanced ability of cell migration

and cohesion of immune cells in the aGVHD group. Additionally, the

signal pathways, including ICAM, MHC-II, and CD45, which play

crucial roles in the co-stimulation of T cells, were found to be
Frontiers in Immunology 0765
significantly enriched in the aGVHD group (Figure 3D), which was

consistent with the observation in Figure 2E.

We subsequently investigated the pivotal role of enriched

pathways in facilitating enhanced cell–cell interactions among

monocytes, T cells, and NK cells in patients with aGVHD. The

overall enrichment state of the same signal pathway remained

consistent in both outgoing signal-originated monocyte

subpopulations and incoming signal-received T and NK subsets,

supporting that these pathways upregulated in the aGVHD group

mediate the enhancement of cell–cell interactions among

monocytes, T cells, and NK cells (Figure 3E). The CXCL pathway

was specifically activated between non-classical monocytes and

CD8 effector T cells in aGVHD patients, and the expression of

the ligand–receptor pair genes CXCL16 and CXCR6 was

respectively upregulated in non-classical monocytes and CD8

effector T cells. The CXCL pathway plays an important role in

immune cell migration (39); thus, the activation of the CXCL

pathway showed enhanced migration ability of CD8 effector T

cells and non-classical monocytes in patients with aGVHD.

Similarly, the RESISTIN pathway showed a preference for cell–

cell interactions between classical, intermediate monocytes, and

CD8 effector T cells and NK cells. In the aGVHD group, the

expression of the ligand gene RETN was elevated on classical and

intermediate monocytes, while the corresponding receptor gene

CAP1 was upregulated on CD8 effector T cells and NK cells

(Figures 3E, F). These results demonstrate that monocytes may

regulate the functional activity of T cells and NK cells by secreting

immune effectors (40). In addition, even the identical pathways

could exert different roles in mediating cell–cell interaction in

conditions of aGVHD or no-aGVHD. The ITGB2 pathway

mediated the interactions from monocytes to naive T cells and

NK cells in the non-aGVHD group, whereas the interactions

between monocytes and naive T cells were absent in the aGVHD

group (Supplementary Figure 3C).

To elucidate the pivotal role of augmented cell–cell interactions

within the aGVHD group in the pathogenesis of aGVHD, we

calculated signature scores based on published gene sets to evaluate

the killing andmigration ability of T cells and NK cells (Supplementary

Table 1). We found that both cytotoxicity and migration scores were

significantly higher in the aGVHD group (Figure 3G). In addition, we

scored the migration and cytokine secretion ability of monocytes.

Monocytes in the aGVHD group also had higher scores of cytokine

secretion and migration ability, which were especially noticeable in

intermediate and non-classical monocytes (Supplementary Figure 3D).

In conclusion, we emphasized the enhanced regulatory network

frommonocytes to CD8 effector T cells and NK cells in the aGVHD

group. These results further support that the day 21 monocytes in

PB have the potential to induce the overstated activation and

proliferation of T cells and NK cells in aGVHD patients.
Insufficient immunosuppression may
contribute to the development of aGVHD

Immunosuppression refers to the prevention or reduction of

immune response, and insufficient immunosuppression can give
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FIGURE 3

Cell–cell communication analysis for total nucleated cells (TNCs) in d21 peripheral blood (PB). (A) Barplot shows the strength of cell–cell interaction
among healthy control (HC), acute graft-versus-host disease (aGVHD), and non-aGVHD groups. (B) Scatter plots show the outgoing and incoming
strength for each cell type. Monocyte subsets, CD8 memory T, CD8 effector T, and NK subsets are the most variable cell types between aGVHD and
non-aGVHD groups. CD4 Mem T, CD4 Memory T; CD8 Mem T, CD8 Memory T. (C) Relative value of interaction strength among the most variable
cell types between aGVHD and non-aGVHD groups. The positive value (red) represents stronger interaction strength, and the negative value (blue)
represents weaker interaction strength in aGVHD group. CD4 Mem T, CD4 Memory T; CD8 Mem T, CD8 Memory T. (D) Relative information flow for
signaling pathways between aGVHD and non-aGVHD groups. The pathways with significantly enhanced information flow are highlighted using
colors corresponding to their respective groups. p-Values were evaluated by the two-tailed Mann–Whitney U test. *p < 0.05, **p < 0.01, and ***p <
0.001. (E) Heatmap shows outgoing and incoming signal intensities of most variable cell types. CD4 Mem T, CD4 Memory T; CD8 Mem T, CD8
Memory T. (F) Gene expression levels of ligand–receptors of CXCL and RESISTIN pathways in HC, aGVHD, and non-aGVHD groups (left). Chord
plots show these two pathways mediated the cell–cell interaction patterns in aGVHD group (right). CD4 Mem T, CD4 Memory T; CD8 Mem T, CD8
Memory T. (G) Module scores of functional gene sets in CD8 effector T and CD16 NK. p-Values were evaluated by the two-tailed Mann–Whitney U
test. *p < 0.05, ***p < 0.001.
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rise to allograft rejection and recipient-specific antibody

development (41). Myeloid-derived suppressor cells (MDSCs) are

renowned for their roles in exerting anti-inflammatory and

immunosuppressive effects, including two major subsets:

polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs

(42). In a previous study, we identified a cluster of neutrophil

progenitors S100Ahigh Neu2 with the transcriptome characteristics

of PMN-MDSCs, and these cells have the potential protection

against the development of aGVHD (20). In this research, we

found that PreNeus in PB had similar transcriptome characteristics

with S100Ahigh Neu2. By scoring neutrophils with published gene sets

of MDSCs, we found the signature scores were significantly higher in

PreNeus than in other neutrophil subsets, showing that PreNeus may

have immunosuppressive function (Supplementary Figure 4A;

Supplementary Table 1).

On day 21 post-transplantation, significant transcriptomic

disparities were observed between the two groups of PreNeus,

with those from the non-aGVHD group exhibiting the most

pronounced upregulation of DEGs (Supplementary Figure 4B).

Volcano plot further demonstrated that PreNeus in the non-

aGVHD group upregulated immunosuppression-associated genes

such as ARG1 and IL4R (43), suggesting that PreNeus in the non-

aGVHD group are more likely to exert immunosuppressive

function than those in the aGVHD group (Supplementary

Figure 4C). In addition, we selected published gene sets related to

immunosuppression functions to evaluate the impact of PreNeus

cells on immune response. The module scores of three gene sets

were all significantly higher in the non-aGVHD group, further

supporting that PreNeus from non-aGVHD patients exhibits a

greater potential for negative regulation of immune response

(Supplementary Figure 4D; Supplementary Table 1). This

phenomenon also suggests that immunosuppressive cells like

PreNeus may be crucial for the development and progression

of aGVHD.
Functional validation and clinical value of
the abnormal accumulation of day 21 PB
monocytes in aGVHD monitoring during
the early post-transplantation period

To validate the function of PB monocytes on day 21 in aGVHD

patients, we collected PB samples from AA patients approximately

day 21 after allo-PBSCT and isolated monocytes to co-culture with

T cells from HCs for 5–7 days (Figure 4A). As expected, monocytes

from aGVHD patients were noted to be more capable of inducing

T-cell proliferation, while the T-cell activation showed no

significance between the two groups (Figures 4B–D;

Supplementary Figure 5). To further verify the clinical value of

the enrichment of PB monocytes on day 21 in monitoring aGVHD

onset, we collected the results of blood routine examination from 32

AA patients during 60 days after allo-PBSCT, including 16 aGVHD

who were diagnosed as aGVHD during 21–100 days after

transplantation and 16 non-GVHD patients who never
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manifested symptoms of aGVHD 120 days post-transplantation

(Supplementary Tables 2, 3). By comparing the median cell

percentage within 3 days for each post-transplantation time point,

we observed similar monocyte enrichment on day 21 in aGVHD

patients, which was consistent with the results concluded by

transcriptome analysis (Figure 4E; Supplementary Figure 6A). In

addition, we extended the observation of PB monocytes into acute

leukemia (AL) patients receiving allo-PBSCT. For blood routine

examination data from 33 AL patients after allo-PBSCT (18

aGVHD and 15 non-aGVHD patients), day 21 PB monocytes

were also significantly enriched in the aGVHD group (Figure 4F;

Supplementary Figure 6B; Supplementary Tables 2, 3). Moreover,

the median time point for aGVHD onset was 36 days in the two

clinical cohorts (Supplementary Table 4). These clinical data

validated the phenomenon of the abnormal enrichment of PB

monocytes on day 21 in aGVHD patients, supporting the

potential of monocytes as an early risk factor to monitor the

development of aGVHD for pat ients rece iv ing al lo-

PBSCT clinically.

In this segment, we validated the functional superiority of day

21 PB monocytes from aGVHD patients in inducing the

proliferation of T cells. In addition, aGVHD-associated aberrant

accumulation of PB monocytes on day 21 after allo-PBSCT was also

confirmed in clinical blood routine examination data from

transplant patients with AA and AL, indicating the universality of

the phenomenon. The overall findings suggest the promising

potential of monocytes as an early-stage risk factor for the

development of aGVHD.
Discussion

HSCT is an established procedure for various disorders of the

hematopoietic, immune, and metabolic systems. However, aGVHD

remains the major complication of allo-HSCT and poses a threat to

good prognosis. Here, our study provides new insights into the

dynamics of the early hematopoietic reconstruction for patients

with aGVHD after allo-PBSCT. We focused on immune cells from

PB at different periods post-transplantation and found a significant

increase in monocyte proportion on day 21 in the aGVHD group.

The transcriptional profiling and in vitro co-culture experiments

confirmed that day 21 PB monocytes isolated from aGVHD

patients had a stronger ability to stimulate the proliferation of T

lymphocytes than those of non-aGVHD patients. Furthermore, we

verified our findings with clinical blood routine data, concluding

that the aGVHD-associated enrichment of PB monocytes on day 21

post-transplantation could be generalized in patients undergoing

allo-PBSCT, to some extent. Based on the dynamics of early

hematopoietic reconstruction after transplantation, our findings

provide new insights for early monitoring and therapeutic

intervention of aGVHD.

Although the reconstitution dynamics of transplanted

allogeneic HSPCs in both mice and humans have been described

at single-cell resolution (19, 20, 44, 45), our understanding of the
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FIGURE 4

Co-culture experiments and clinical cohort. (A) Schematic overview of co-culture experiments of T cells and monocytes. (B) Flow cytometry graphs
show the proliferation frequency of the allogeneic CD4+ T and CD8+ T cells estimated by carboxyfluorescein succinimidyl ester (CFSE) dilution after
co-culture with monocytes. Monocytes were sorted from approximately day 21 peripheral blood (PB) of aplastic anemia (AA) patients undergoing
allo-PBSCT with acute graft-versus-host disease (aGVHD) (aGVHD), without aGVHD (non-aGVHD), and PB of healthy controls (HCs). T cells cultured
without monocytes (T Only) were used as the baseline control. (C) The summary of the proportion of T-cell proliferation (percentage of CFSE
dilution) in co-culture experiments with five replications. p-Values were evaluated by the Tukey–Kramer test. *p < 0.05, **p < 0.01. (D) The summary
of proportion of T-cell activation (percentage of CD69+/CD25+ T cells) in co-culture experiments with five replications. p-Values were evaluated by
the Tukey–Kramer test. *p < 0.05, **p < 0.01. (E) Monocyte percentage from blood routine examination of AA patients with aGVHD (aGVHD group,
n = 16) and without aGVHD (non-aGVHD group, n = 16) after allo-PBSCT. Each point represents the median value of monocyte percentages within
3 days around the corresponding time point. p-Values were evaluated by the two-tailed Mann–Whitney U test. *p < 0.05. (F) Monocyte percentage
from blood routine examination of acute leukemia (AL) patients with aGVHD (aGVHD group, n = 18) and without aGVHD (non-aGVHD group, n =
15) after allogeneic peripheral blood stem cell transplant transplantation (allo-PBSCT). Each point represents the median value of monocyte
percentages within 3 days around the corresponding time point. p-Values were evaluated by the two-tailed Mann–Whitney U test. **p < 0.01.
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early hematopoietic reconstruction in the context of aGVHD is still

severely limited. Previous studies have indicated that APCs can

initialize and exacerbate GVHD in mice; however, the cell type has

not been specified in humans, and associated GVHD prophylaxis

regimens remain further to be developed (46–48). Clinical studies

have revealed alterations in the proportions and phagocytic

functions of monocyte subpopulations following complications

after HSCT (49, 50). However, the biological characteristics and

potential pathogenic role of monocytes in the development of

aGVHD require further elucidation. Our research delineated the

transcriptomic landscape of aGVHD progression during the initial

phase of hematopoietic reconstitution and highlighted the

abnormal accumulation and activation of day 21 PB monocytes

before the occurrence of aGVHD. The abnormal accumulation of

day 21 PB monocytes is close to being a universal phenomenon in

patients undergoing allo-PBSCT and could be detected by clinical

blood routine examination. In general, our study reveals that the

abnormal accumulation of monocytes in PB on day 21 following

allo-PBSCT is clinically feasible as a potential risk factor for

aGVHD, and this groundbreaking discovery supports the

advancement of aGVHD surveillance and intervention measures

to coincide with this critical time point, specifically approximate

day 21 post-transplantation.

Although we validated that monocytes in aGVHD patients have

a stronger capability to induce the activation and proliferation of T

cells compared with those in non-aGVHD patients, the spectrum

of cytokines secreted by monocytes and T cells remains to be

further explored. Of note, cytokines and related inflammatory

pathways exert an essential role throughout the three phases of

aGVHD pathophysiology. In the first phase, conditioning

chemoradiotherapy or total body irradiation (TBI) traditionally

provokes pathological tissue damage and promotes the release of

proinflammatory cytokines [such as interleukin-1a, interleukin-33,

tumor necrosis factor-a (TNF-a), and interleukin-1] as well as

pathogen-associated molecular pattern (PAMP) molecules, which

could significantly boost the antigen-presenting capacity of APCs

(51–55). During the second phase of aGVHD pathophysiology,

activated APCs induce the proliferation and activation of T cells by

presenting alloantigens and secreting cytokines. Alloantigens are

internalized, processed, and presented to T cells by APCs through

the major histocompatibility complex (MHC)–peptide complex,

which provides the first signal for T-cell activation. Interaction of

costimulatory molecules on the APC and T-cell surface (including

CD80/CD86-CD28 and CD40-CD40L) delivered a second

costimulatory signal for T-cell activation. In addition, cytokines

secreted by APCs are important components of the third signal of

T-cell activation (56, 57). Systemic interleukin-6 (IL-6)

concentration is elevated early after allogeneic transplant, and

donor dendritic cell (DC)-derived IL-6 exerts a crucial regulatory

role in the expansion and differentiation of T cells during aGVHD

(58). Documented IL-6 signaling is critical to induce donor type-17

T (Th17) and type 22 T (Th22) cell differentiation after bone

marrow transplantation (BMT) (59–61), and the anti-IL-6

receptor monoclonal antibody, tocilizumab, has been shown to
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effectively reduce the incidence of acute GVHD (62). Moreover,

type I interferon (IFN) produced by putative DCs could enhance

CD8+ T cell-mediated GVHD and graft-versus-leukemia (GVL),

although protecting recipients from CD4+-mediated GVHD (63).

Murine models also demonstrated that OX40, a molecule expressed

on activated T cells and interacting with OX40L on activated APCs,

stimulates effector T-cell proliferation. Furthermore, OX40

signaling in regulatory T cells (Tregs) disturbs their

immunosuppressive effects (64, 65). In the third phase,

differentiated effector cells, such as T cells and phagocytes—

including monocytes and macrophages—secrete cytokines that

contribute to the persistence and exacerbation of aGVHD. During

aGVHD, Th17 and non-Th17 donor lineages are a primary source

of granulocyte-macrophage colony-stimulating factor (GM-CSF),

which can expand myeloid populations (66, 67). In addition,

monocytes can achieve self-regulation through the secretion of

GM-CFS during inflammatory response after HSCT (68).

Collectively, these studies indicate that the combination of IL-6

and GM-CSF appears to establish a positive feedback mechanism,

which significantly contributes to the progression of aGVHD.

Our study’s transcriptome analysis revealed that NK cells from

patients with aGVHD exhibited heightened functional activation. A

study demonstrated that NK cells migrate to GVHD target organs

following a spatial and temporal distribution extremely similar to T

cells after HSCT (69). Although there are still some controversies

about the role of NK cells in aGVHD (70–72), much attention

should be paid to NK cells because of the first donor-derived

lymphocyte subset to recover (73) and their crucial role in GVL

after HSCT for hematological malignancies (74). Kordelas L. et al.

reported that the proportions of donor-derived NK cells expressing

the activating receptor CD94/NKG2C were lower in recipients with

GVHD compared with those without GVHD after HSCT. GVHD

patients presented with a lower ratio of CD94/NKG2C to CD94/

NKG2A on NK cells (75). Consistently, Ghadially and coworkers

suggested that NK cells inhibited or promoted GVHD development

by relying on different receptor expression profiles. NK cells with

NKp46 receptor stimulation mediated the elimination of APCs,

thereby reducing the incidence of GVHD, while the absence of

NKp46 on donor NK cells results in DC-mediated increased

stimulation of donor T, thereby facilitating GVHD development

(76, 77). However, pro-inflammatory cytokines derived from NK

cells contribute to GVHD development, which is well-established.

Xun et al. showed that in vitro IL-2-activated human NK cells

producing IFN-g and TNF-a were able to induce aGVHD in a

xenogeneic model (78). Furthermore, higher proportions of IFN-g
producing NK cells after HSCT were associated with an increased

incidence of acute GVHD in humans (79). IFN-g boosts the

recognition of CD8 T cells for target cells and promotes the

differentiation of CD4 T cells toward a T-helper type 1 (Th1)

phenotype (80), which plays an important role in the

pathophysiology of GVHD (81). Importantly, the cytokines

(including type I IFN, interleukin-2, interleukin-18, and

interleukin-15) secreted by dendritic cells, macrophages,

monocytes can further promote NK-cell cytolysis and IFN-g
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secretion (82). In short, NK cells can suppress GVHD by killing

APCs, while NK cells can exacerbate GVHD due to enhanced NK-

cell cytolysis or cytokine secretion facilitated by APCs. Further

investigations are essential to elucidate the regulatory interactions

between NK cells and other immune cells including T cells,

monocytes, and neutrophils during aGVHD.

There are several intriguing perspectives that merit further

studies. In patients with aGVHD, the differentiation bias of

HSPCs toward monocytes occurs even prior to day 21 post-

transplantation. Exploring the fundamental mechanisms behind

the hematopoietic differentiation bias of HSPCs is anticipated to

uncover potential targets for counteracting the abnormal

accumulation of monocytes. In addition, there is uncertainty

regarding the microenvironment in patients with aGVHD during

the early hematopoietic reconstruction. The altered niche associated

with aberrant monocyte accumulation could offer additional

perspectives on the underlying pathogenic mechanisms. In

addition, the regulatory role of immunosuppressive cells like

PreNeus in the development of aGVHD remains under

further investigation.
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Hôspital Saint-Antoine, France

REVIEWED BY

Leland Metheny,
University Hospitals of Cleveland,
United States
Abantika Ganguly,
Stanford University Medical Center,
United States

*CORRESPONDENCE

Yujie Jiang

yujiejiang05@126.com

RECEIVED 04 July 2024

ACCEPTED 11 September 2024
PUBLISHED 27 September 2024

CITATION

Wang Y, Zhao Y, Fang X, Yuan D, Ding M,
Lu K, Qu H, Wang N, Lv X, Li P, Zhen C, Xu H
and Jiang Y (2024) Umbilical cord blood stem
cells as third-party adjuvant infusions in
human leukocyte antigen antibody-positive
patients undergoing haploidentical
hematopoietic stem cell transplantation.
Front. Immunol. 15:1459699.
doi: 10.3389/fimmu.2024.1459699

COPYRIGHT

© 2024 Wang, Zhao, Fang, Yuan, Ding, Lu, Qu,
Wang, Lv, Li, Zhen, Xu and Jiang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 September 2024

DOI 10.3389/fimmu.2024.1459699
Umbilical cord blood stem cells
as third-party adjuvant infusions
in human leukocyte antigen
antibody-positive patients
undergoing haploidentical
hematopoietic stem
cell transplantation
Yuying Wang1, Yiou Zhao2, Xiaosheng Fang3, Dai Yuan3,
Mei Ding3, Kang Lu3, Huiting Qu3, Na Wang3, Xiao Lv3,
Peipei Li3, Changqing Zhen3, Hongzhi Xu3 and Yujie Jiang3*

1Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,
2School of Life Science and Technology, Changchun University of Science and Technology,
Changchun, Jilin, China, 3Department of Hematology, Shandong Provincial Hospital Affiliated to
Shandong First Medical University, Jinan, Shandong, China
Introduction: Graft failure (GF) or poor graft function (PGF) remain critical

obstacles in haploidentical hematopoietic stem cell transplantation (haplo-

HSCT), especially in recipients with HLA antibodies. Here, we performed a

retrospective cohort study to investigate the efficacy and safety of the use of

unrelated umbilical cord blood stem cells (UCBs) as a third-party adjuvant

infusion in patients with HLA-antibodies undergoing haplo-HSCT.

Methods: A total of 90 patients were divided into three groups: 17 patients in

Group A (with positive HLA antibodies and who received UCB infusion), 36

patients in Group B (with positive HLA antibodies without UCB infusion), and 37

patients in Group C (without HLA antibody or UCB infusion).

Results: The median age of patients included in Groups A, B, and C was 43 (IQR,

27 - 49.5), 33 (IQR, 20 - 48.75), and 30 (IQR, 18 - 46.5) years, respectively. All but

one patient in Group B achieved granulocyte recovery within 28 days after

transplantation. The median time to granulocyte engraftment were all 12 days for

patients in Groups A, B, and C, respectively. All the patients in Group A achieved

100% donor chimerism without UCB engraftment. There were no significant

differences in granulocyte or platelet engraftment time between the three

groups. There were 1, 5, and 0 patients in Groups A, B, and C, respectively,

who developed PGF. The cumulative incidence rates for any grade of acute graft-

versus-host disease (aGVHD) were comparable among the three groups. Patients

in Group B presented a greater incidence of cGVHD than did those in Group A

(P = 0.002) and Group C (P = 0.006). Patients in Group A presented more limited

and milder cGVHD than those in Group C (P < 0.0001). The 1-year relapse-free

survival (RFS) was 70.6% (95% CI, 0.47 - 0.87), 55.6% (95% CI, 0.40 - 0.70), and

77.9% (95% CI, 0.63 - 0.89) in Groups A, B, and C, respectively.
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Discussion: Our results indicated that patients who were positive for HLA

antibodies were at a greater risk of developing GF/PGF. Co-infusion with UCBs

was safe and improved engraftment, cGVHD, and improved the 1-year RFS to

some extent.
KEYWORDS

unrelated umbilical cord blood, haploidentical hematopoietic stem cell transplantation,
graft failure, poor graft function, graft-versus-host disease, relapse-free survival
1 Introduction

With the progression of haploidentical hematopoietic stem cell

transplantation (haplo-HSCT) technology, almost every patient

with malignant hematopoietic diseases can find a donor receiving

allogeneic-HSCT and achieve long overall survival (OS). However,

the therapeutic benefits and wider application of haplo-HSCT are

limited by graft-versus-host disease (GVHD), the latter remains a

major obstacle to long-term survival for this population.

Furthermore, rejection remains a critical reason for graft failure

(GF) in the haplo-HSCT setting. The incidence of rejection was

<3% for matched human leukocyte antigen (HLA)-identical sibling

donors (MSDs) or matched unrelated donors (MUDs), and these

data increased to >10% for haplo-HSCT. Furthermore, the

incidence of poor graft function (PGF) with complete donor

chimerism is also greater in the haplo-HSCT setting (1). Both GF

and PGF often result in an increased incidence of transplant-related

mortality (TRM) and inferior OS.

Previous studies have suggested that rejection is mainly related

to donor-specific antibody (DSA), severe acute GVHD (aGVHD),

HLA mismatching, stem cell number, etc. (2). DSA is the most

important risk factor for rejection, and a previous study confirmed

that DSA is the only risk factor for GF (3). In haploidentical donor

selection, due to the presence of multiple donor-recipient

mismatches, anti-HLA antibody screening must be performed in

the recipient to detect the presence of DSA. In 2018, the European

Society for Blood and Marrow Transplantation (EBMT)

recommended DSA testing in all haploidentical donor transplant

recipients and suggested an MFI > 1,000 as DSA positivity (4). If

multiple donors are available, DSA-positive donors should be

avoided. Furthermore, donors who have the same allele as

patients with DSA (MFI ≥ 10,000) should be excluded. For

patients with HLA antibodies but not DSAs, transplantation can

be conducted as scheduled. However, these patients also have a

higher GF rate than those without HLA antibodies, especially in

haplo-HSCT (5). To date, there is no consensus on whether HLA

antibodies but not DSAs should be managed before transplantation,

and there is no ideal strategy for eradicating or decreasing HLA

antibodies in this population (6).

Umbilical cord blood cells (UCBs) are characterized by

abundant stem cell sources and low immunogenicity. UCB has a
0274
greater number of natural killer (NK) cells and a greater proportion

of immature T cells (7). UCBs have previously been shown

to contain a distinct regulatory T-cell (Treg) subset that exists

at a relatively high frequency compared to that in peripheral

blood (PB). Tregs and other components of UCB may act as

immunomodulators to reduce immune rejection and regulate the

hematopoietic microenvironment (7). Previous studies reported

satisfactory results using UCBs as third-party stem cells in haplo-

or MUD transplantations (8, 9). Lyu et al. confirmed a superior

outcome of haplo-HSCT combined with third-party UCBs

compared with MUD transplantation in 66 patients with a high

risk of hematopoietic neoplasm relapse (10). Here, we hypothesized

that third-party UCBs could offer some advantages for patients with

HLA antibodies and decrease the incidence of GF/PGF.

In this retrospective, single-center, controlled study, we aimed

to investigate the efficacy and safety of unrelated UCBs as third-

party adjuvant infusions in patients with HLA antibodies receiving

haplo-HSCT. The primary objectives were the incidence of GF/PGF

and the transplant-related mortality (TRM) within 100 days

posttransplantation. The secondary objectives included the

following: incidence of aGVHD grades II-IV, chronic GVHD

(cGVHD), relapse-free survival (RFS), GVHD- and relapse-free

survival (GRFS), and overall survival (OS).
2 Material and methods

2.1 Patients and controls

A total of 90 eligible participants with hematological diseases

who underwent haplo-HSCT from May 2017 to December 2022 in

the Department of Hematology of Shandong Provincial Hospital

Affiliated to Shandong First Medical University were enrolled in

this study. The inclusion criteria for patients were haplo-HSCT with

weakly positive/positive HLA antibodies (MFI >500) but not DSAs.

Age- and sex-matched patients who underwent haplo-HSCT

without any HLA antibodies were chosen concurrently as

controls. The exclusion criterion was haplo-HSCT with positive

DSAs (MFI>1,000). HLA antibodies from each patient were

routinely tested before transplantation. In this retrospective study,

participants were assigned to three groups in a ratio of 1:2:2. Group
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A (experimental group: patients with weakly positive/positive HLA

antibodies who received UCB infusion), Group B (positive control

group: patients with weakly positive/positive HLA antibodies who

did not receive UCB infusion), Group C (blank control group:

patients who did not receive HLA antibody or UCB infusion). All

protocols and consent forms were obtained from the patients or

their guardians and approved by the Human Subjects Review

Committee of the Shandong Provincial Hospital Affiliated to

Shandong First Medical University. This project is registered by

the Shandong Data Protection Agency and approved by the Joint

Ethics Committee of Jinan. UCBs were obtained from the Shandong

Umbilical Cord Blood Bank. All the study procedures were

conducted in compliance with the Declaration of Helsinki. The

consort flow chart of this study is shown in Figure 1.
2.2 Conditioning and prophylaxis
for aGVHD

Patients included in this study received myeloablative

conditioning (MAC), which included antithymocyte globulin

(ATG) at a total of 10 mg/kg administered on days -5 to -2

before the transplant. The conditioning regimens used in this

study are summarized in Table 1. The calcineurin inhibitor (CCI)

combined with mycophenolate mofetil (MMF) and short-term

methotrexate (MTX, 15 mg/kg on days +1, 10 mg/kg on days +3,
Frontiers in Immunology 0375
+5, and +11) were administered for aGVHD prophylaxis.

Glucocorticoid (GC)-based treatment was given when Grade II or

higher aGVHD developed. For patients who developed steroid-

resistant/refractory aGVHD (SR-aGVHD), second-line strategies,

including ruxolitinib, anti-CD25 monoclonal antibody, and

mesenchymal stem cell (MSC) infusion, were considered. For

patients with cGVHD, GC combined with CCIs was the most

common strategy used in our study.

Acyclovir, fluconazole/posaconazole, and cotrimoxazole were

administered prophylactically against herpes viruses, fungi, and

pneumocystis pneumonia, respectively. Granulocyte colony-

stimulating factor (G-CSF) was administered subcutaneously at a

dose of 5 - 10 mg/kg from day +6 after stem cell transfusion and was

discontinued until neutrophil engraftment. All blood products were

irradiated, and leukocytes were depleted.
2.3 Transplant products

All patients received peripheral blood stem cells (PBSCs) from

their haplo-donors. For patients in Group A, single unrelated UCBs

were infused four hours before haplo-donor stem cells. The

following criteria for cord blood unit selection were applied: 1)

HLA matching was preferred at > 4/6 loci (HLA-A, HLA-B, and

HLA-DRB1 loci serological matching) between donors and

recipients. 2) The total nucleated cells (TNCs) were not less than
FIGURE 1

The consort flow chart of the study.
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1 × 107/kg of the recipient’s body weight after thawing. 3) Blood

type-matched cord blood was preferred at an equal level of HLA-

type matching. The matching landscape of the haplotype donor and

cord blood is shown in Table 2.
2.4 Definitions and patient management

The first day of absolute neutrophil count (ANC) > 0.5 × 109/L

for 3 consecutive days was defined as neutrophil engraftment. The

first day when the platelet count was > 20 × 109/L without platelet

transfusion support for 7 consecutive days was defined as platelet

engraftment. Primary GF was defined as failure to achieve neutrophil

engraftment within the first 28 days posttransplantation and lack of

evidence of donor-type implantation. Poor graft function (PGF) was

defined as the presence of multilineage cytopenias in the presence of

100% donor chimerism. The diagnostic and grading criteria for acute

and chronic GVHD were determined according to the EBMT-NIH-

CIBMTR Working Group Position Statement on Criteria and

Guidelines for the Evaluation of Graft-versus-Host Disease (11).

Serum levels of cytomegalovirus (CMV)- and Epstein‒Barr virus

(EBV)-DNA were monitored twice weekly during the first 30 days

posttransplantation and every month thereafter. Donor chimerism

was evaluated every month in the first year and every 3 months until

3 years posttransplantation.
2.5 Data collection

The occurrence of granulocyte and platelet engraftment time,

GVHD, CMV/EBV reactivation, hemorrhagic cystitis (HC), TRM

within 100 days posttransplantation, 1-year relapse-free survival

(RFS), 1-year GVHD- and relapse-free survival (GRFS), and 1-year

overall survival (OS) between the three groups were analyzed in

this study.
TABLE 1 Demographic and clinical characteristics of patients
and donors.

No. (N = 90) %

Donor

Median age at mobilization,
yr (IQR)

33.5(23.75 - 47) –

Male 64 71.1%

Female 26 28.9%

Patient

Median age at transplant, yr (IQR) 33(19 - 48) –

Male 51 56.7%

Female 39 43.3%

Diagnosis

AML, MDS 43 47.8%

ALL, MPAL 27 30.0%

CMML, CML 16 17.8%

SAA and other benign diseases 4 4.4%

Remission status at transplant

CR1 59 65.6%

≥CR2 16 17.8%

NR 11 12.2%

SAA and other benign diseases 4 4.4%

Conditioning regimen

IDA+BU/FLU 21 23.3%

BU/FLU 12 13.3%

BU/CY 6 6.7%

mBU/CY 4 4.4%

VP16+BU/CY 20 22.2%

TBI/CY 3 3.3%

FLU/CY 3 3.3%

Others 21 23.3%

Donor–patient gender matching

Male-Female 28 31.1%

Male-Male 36 40.0%

Female-Male 15 16.7%

Female-Female 11 12.2%

Donor–patient relationship

Patient-child 40 44.4%

Child-patient 34 37.8%

Sibling 16 17.8%

HLA match

(Continued)
TABLE 1 Continued

No. (N = 90) %

HLA match

>5/10 15 16.7%

5/10 75 83.3%

Donor–patient blood type

Match 62 68.9%

Mismatch 28 31.1%

Cellularity in haplo-grafts, median (IQR)

Mononuclear cells, 108/kg 10.46(8.16 - 13.26)

CD34+ cells, 106/kg 3.94(2.69 - 4.95)
AML, acute myelocytic leukemia; MDS, myelodysplastic syndrome; ALL, acute lymphocytic
leukemia; MPAL, mixed phenotype acute leukemia; CMML, chronic myelomonocytic
leukemia; CML, chronic myelogenous leukemia; SAA, severe aplastic anemia; CR, complete
remission; NR, non-remission; IDA, idarubicin; BU, busulfan; FLU, fludarabin; CY,
cyclophosphamide; mBU/CY, modified BU/CY; VP16, etoposide; TBI, total body
irradiation. IQR, interquartile range.
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2.6 Statistical analysis

SPSS 26.0 software (SPSS, Chicago, IL) and GraphPad Prism

software (La Jolla, CA) were used to conduct the statistical analyses

and construct the figures. All quantitative values are expressed as the

mean (range) or median (IQR, interquartile range). The normality of

the continuous variables was assessed by the Kolmogorov-Smirnov

test (K-S test). The Kruskal-Wallis test and analysis of variance

(ANOVA) were used for comparisons among the three groups. A

nonparametric test (Mann-Whitney U test) was used to compare the

nonnormally distributed continuous variables between the two

groups. The chi-squared test and Fisher’s exact probability test were

performed to analyze categorical variables, including the incidence

and grade of aGVHD, cGVHD, incidence of CMV, EBV reactivation,

and HC, among the different groups. The TRM, RFS, GRFS, and OS

were estimated using the Kaplan-Meier product limit estimation

method, and differences in subgroups were assessed by the log-rank

test. Throughout, two-sided P values < 0.05 were obtained via t-tests,

and 95% confidence intervals (95% CIs) that included unity were

considered to indicate statistical significance.
Frontiers in Immunology 0577
3 Results

3.1 Patient characteristics

A total of 90 patients were included in this study (17 in Group

A, 36 in Group B, and 37 in Group C). The median age of patients

included in Groups A, B, and C was 43 (IQR, 27 - 49.5), 33 (IQR, 20

- 48.75), and 30 (IQR, 18 - 46.5) years, respectively. These

participants were aged 8 to 65 years, and the median age of the

patients at transplantation was 33 years. The clinical characteristics

of the patients and the paired donors are listed in Table 1. The

median follow-up time was 26.5 (range, 1 - 79 months), and the last

follow-up time point was December 2023.
3.2 HLA antibody distribution

The prevalence of antibodies to HLA according to different

cutoff values of mean fluorescence intensity in Groups A and B are

shown in Figures 2A, B. For patients with HLA antibodies, the three

most frequent alleles were HLA-B76, HLA-DP1, and HLA-DR4.

The first three highest MFI values were 23,768, 22,741, and 22,428,

which corresponded to the HLA loci HLA-B13, HLA-B61, and

HLA-B60, respectively. One patient in Group B who developed GF

presented with a weakly positive HLA-A02 (MFI 1294) antibody.
3.3 Transplant products and engraftment

For all 90 participants, the median numbers of reinfused haplo-

graft mononuclear cells (MNCs) and CD34+ cells were 10.46 (IQR,

8.16 - 13.26) × 108/kg and 3.94 (IQR, 2.69 - 4.95) × 106/kg, respectively.

The median MNCs and CD34+ cells for the three groups were

compared, and there was no significant difference among them.

No obvious adverse effects were observed during the process of

UCB infusion. For Group A, the median cellularity of the third-

party UCB units was 15.16 (IQR, 12.45 - 18.23) × 108/kg for TNCs

and 4.63 (IQR, 3.75 - 5.55) × 106/kg for CD34+ cells. The median

number of MNCs in the UCBs was 11.03 (IQR, 9.43 - 17.35) × 108/

kg, and the median number of CD34+ cells was 3.58 (IQR, 2.58 -

4.81) × 106/kg.

All the patients in Group A achieved 100% donor chimerism

without UCB engraftment. There were no significant differences in

granulocyte or platelet engraftment time between Group B and the

other two groups.

The median time to granulocyte engraftment was 12 (IQR, 10.5

- 15), 12 (IQR, 11 - 16), and 12 (IQR, 11 - 14) days for patients in

Groups A, B, and C, respectively. The median time to platelet

recovery was 14 (IQR, 12 - 16), 13 (IQR, 12 - 17), and 13 (IQR, 12 -

17.75) days in Groups A, B, and C, respectively. The cellularity of

the stem cells and the graft times of the granulocytes and platelets in

the three groups are shown in Table 2.
TABLE 2 The cellularity of the stem cells and the engraftment time of
neutrophil and platelet.

Group A
(n = 17)

Group B
(n = 36)

Group C
(n = 37)

HLA match (Cord blood)

5/10 3 (17.6%) – –

>5/10 14 (82.4%) – –

Donor–patient blood type (Cord blood)

Match 15 (88.2%) – –

Mismatch 2 (11.8%) – –

Cord blood TNC, 108/kg

Median (IQR) 15.16 (12.45
– 18.23)

– –

Cord blood CD34+, 106/kg

Median (IQR) 4.63 (3.75 – 5.55) – –

Cell compositions in haplo-grafts, median (IQR)

MNC, 108/kg 11.03 (9.43
– 17.35)

9.95 (7.70
– 11.99)

10.80 (8.20
– 13.69)

CD34+ cells,
106/kg

3.58 (2.58 – 4.81) 4.01 (2.61
– 6.50)

4.13 (2.85
– 4.87)

Granulocyte recovery at +28 days, n (%)

Median (IQR) 12 (10.5 – 15) 12 (11 – 16) 12 (11 – 14)

Platelet recovery at +28 days, n (%)

Median (IQR) 14 (12 – 16) 13 (12 – 17) 13 (12 – 17.75)
HLA, human leukocyte antigen; TNC, total nucleated cells; MNC, mononuclear cell; IQR,
interquartile range.
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3.4 Incidence of GF or PGF

All but one patient in Group B achieved granulocyte recovery

within 28 days after transplantation. This patient died of multiple

organ dysfunction syndrome (MODS) at 50 days posttransplantation.

There were 1, 5, and 0 patients in Groups A, B, and C,

respectively, who developed PGF. In Group A, the patient who

developed PGF received a child-parent donation with a matched

blood type. The HLA-antibody MFI of this patient was 18,649.3,

which corresponded to the HLA locus of HLA-B13. The number of

MNCs and CD34+ cells from his haplo-donor group were 11.89 ×

108/kg and 4.7 × 106/kg, respectively. This patient eventually died

from a serious infection. According to Group B, 4 males and 1

female developed PGF. There were 3 parent-child and 2 child-

parent donor-patient relationships. Three donor-recipient blood

types were matched, and 2 donor-recipient blood types were not

matched. The mean numbers of MNCs and CD34+ cells in these

five patients were 9.90 (range, 7.01 - 15.2) × 108/kg and 4.75 (range,

2.33 - 8.52) × 106/kg, respectively. All five patients died, two died of

severe infection, two died of respiratory and circulatory failure, and

one died of posttransplant lymphoproliferative disease (PTLD).
3.5 The incidence of aGVHD and cGVHD

In all 90 patients, the cumulative incidence rates for Grade I-II

aGVHD and Grade III-IV aGVHD were 75.5% (37/90) and 24.5%

(12/90), respectively. Eight patients (1 patient in Group A, 3
Frontiers in Immunology 0678
patients in Group B, and 4 patients in Group C) developed grade

IV intestinal aGVHD, three of whom developed SR-aGVHD, and

all of whom responded to second-line anti-aGVHD therapy. There

were no significant differences in the incidence or grades of aGVHD

among the patients in the three groups (Figures 3A, B). The median

time points of aGVHD occurrence were 17.5 (range, 8 - 31), 21

(range, 10 - 45), and 20 (range, 11 - 31) days after transplant for

Groups A, B, and C, respectively. The clinical characteristics and

grades of aGVHD in the three groups of patients are shown in

Table 3. The incidence of cGVHD in 84 patients who survived to

+100 days was evaluated. The cumulative incidence rate of cGVHD

was 20.2% (17/84). There were 2, 10, and 5 patients who developed

cGVHD in Groups A, B, and C, respectively. There was no

significant difference in the incidence of cGVHD between Group

A and Group C. However, patients in Group B presented a greater

incidence of cGVHD than did patients in the other two groups

(Group B vs. Group A: 31.3% vs. 12.5%, P = 0.002; Group B vs.

Group C: 31.3% vs. 13.9%, P = 0.006) (Figure 3C). Patients in Group

A presented with limited cGVHD, which was relatively mild

compared with that in Group B and Group C (0% vs. 40%, P <

0.0001, Figure 3D). There was no statistically significant difference

in the degree of cGVHD organ involvement between patients in

Group B and those in Group C.

At the end of follow-up, the median cGVHD durations of the

three groups were 7 (range, 5 - 9), 7 (range, 3 - 23), and 8 (range, 3 -

12) months, respectively. The distribution of characteristics of

patients with cGVHD in the three groups is shown in Table 3.

The organs most frequently involved in cGVHD were the oral
FIGURE 2

The prevalence of HLA antibodies according to different cut-off values of MFI in Groups A and B. (A) The prevalence of HLA antibodies in Group A
and Group B patients according to different MFI cut-off values. (B) The prevalence of HLA antibodies specific for antigens coded by different HLA
loci, such as HLA-A, -B, -C, -DP, -DQ, -DR. HLA, human leukocyte antigen; MFI, mean fluorescence intensity.
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TABLE 3 The clinical characteristics of patients with aGVHD/cGVHD.

Group A Group B Group C P-value

Occurrence of aGVHD, n (%) 10 (58.8) 19 (52.8) 20 (54.1) 0.658

Median time of aGVHD occurrence, days (range) 17.5 (8 – 31) 21 (10 – 45) 20 (11 – 31) 0.553

Mean age, yr (range) 37.60 (16 – 63) 29.42 (9 – 65) 30.95 (14 – 56) 0.110

Gender 0.222

Male, n (%) 6 (60.0) 10 (52.6) 13 (65.0) –

Female, n (%) 4 (40.0) 9 (47.4) 7 (35.0) –

Primary disease, n (%) 0.482

AML, MDS 5 (50.0) 8 (42.1) 8 (40.0) –

ALL, MPAL 3 (30.0) 6 (31.6) 9 (45.0) –

CMML, CML 1 (10.0) 3 (15.8) 2 (10.0) –

SAA and other benign diseases 1 (10.0) 2 (10.5) 1 (5.0) –

Pre-transplantation status, n (%) 0.240

CR1 7 (70.0) 11 (57.9) 12 (60.0) –

≥CR2 3 (30.0) 2 (10.5) 5 (25.0) –

NR or other 0 (100.0) 6 (31.6) 3 (15.0) –

Grades of aGVHD, n (%) 0.564

I 3 (30.0) 7 (36.8) 7 (35.0) –

(Continued)
F
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FIGURE 3

The comparison of aGVHD and cGVHD among patients in Groups A, B, and C. (A) The incidence of aGVHD in Groups A, B, and C. (B) The grades of
aGVHD in Groups A, B, and C. (C) The incidence of cGVHD in Groups A, B, and C. (D) The degree of cGVHD organ involvement in Groups A, B, and
C. No significant difference was observed in the incidence and grading of aGVHD between patients in Groups A, B, and C, respectively. **P < 0.01.
****P < 0.0001. aGVHD, acute graft-versus-host disease; cGVHD, chronic graft-versus-host disease; NS, no significance.
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cavity (4/17, 23.5%) and liver (4/17, 23.5%). One patient in Group B

developed bronchiolitis obliterans syndrome (BOS) and lived with

poor quality of life at the last follow-up (Supplementary Table S1).
3.6 The incidence of CMV and
EBV reactivation

The differences in the reactivation of CMV and EBV among the

three groups are presented in Table 4. The total incidences of CMV

and EBV viremia were 47.8% (43/90) and 72.2% (65/90), respectively.

As shown in Figure 4A, there were no significant differences in CMV

reactivation among the three groups in the first 100 days after

transplantation. In terms of EBV reactivation, patients in Group A

presented with less EBV reactivation than did those in Group B

(52.9% vs. 70.3%, P = 0.020) and Group C (52.9% vs. 83.3%, P <

0.001). Patients in Group B had a greater incidence of EBV

reactivation than did those in Group C (83.3% vs. 70.3%, P =

0.045) in the first 100 days posttransplantation (Figure 4A). As

shown in Figure 4B, when the data were analyzed by month, the

rate of CMV reactivation was greater in Group A than in Group B at

1 month after transplantation (41.2% vs. 22.2%, P = 0.006), and there

was no significant difference between Group C and any of the other

two groups. There was no statistically significant difference in the

percentage of patients who experienced CMV reactivation in the 2nd

month after transplantation among the groups. At 3 months
Frontiers in Immunology 0880
posttransplantation, no CMV reactivation occurred in Group A

patients, and the rate of CMV reactivation was greater in Group B

patients than in the other two groups (Group B vs. Group A 19.4% vs.

0.0%, P < 0.001; Group B vs. Group C 19.4% vs. 5.4%, P = 0.004).

When we analyzed the data by month, there was no significant

difference in the rate of EBV reactivation between patients in Group

A and those in Group C at 1 month posttransplantation

(Figure 4C). However, the rate of EBV reactivation in Group B

patients was greater than that in Groups A (47.2% vs. 29.4%, P =

0.013) and C (47.2% vs. 24.3%, P = 0.001). At 2 months

posttransplantation, the rate of EBV reactivation in Group A

patients was lower than that in Group B patients (23.5% vs.

58.3%, P < 0.001) and Group C patients (23.5% vs. 62.2%, P <

0.001). However, there was no significant difference between

Groups B and C. At 3 months after transplantation, the

percentage of patients who were positive for EBV reactivation was

lower in Group A than in Group B (23.5% vs. 50.0%, P < 0.001) and

Group C (23.5% vs. 37.8%, P = 0.046). Similarly, there was no

significant difference in the rate of EBV reactivation between

patients in Groups B and C.

In addition, a total of 4 patients developed PTLD

posttransplantation (1 in Group A, 2 in Group B, and 1 in Group

C). The patient in Group C has survived to date, and the patient in

Group A died of hemophagocytic lymphohistiocytosis (HLH). Two

patients in Group B died of PTLD complicated with severe infection

secondary to hematopoietic failure.
TABLE 3 Continued

Group A Group B Group C P-value

II 5 (50.0) 7 (36.8) 8 (40.0) –

III-IV 2 (20.0) 5 (26.3) 5 (25.0) –

aGVHD organ involvement, n (%) 0.051

Skin 6 (60.0) 9 (47.4) 8 (40.0) –

Liver 1 (10.0) 0 (0.0) 0 (0.0) –

Gastrointestinal tract 1 (10.0) 3 (15.8) 4 (20.0) –

Two or more organs involved 2 (20.0) 7 (36.8) 8 (40.0) –

Occurrence of cGVHD, n (%) 2 (12.5) 10 (31.3) 5 (13.9) <0.001

Median time of cGVHD occurrence, months (range) 7 (5 – 9) 7 (3 – 23) 8 (3 – 12) 0.830

Early aGVHD before cGVHD, n (%) 0.048

Yes 2 (100.0) 5 (50.0) 3 (60.0) –

No 0 (0.0) 5 (50.0) 2 (40.0) –

cGVHD Organ Involvement, n (%) <0.0001

Lung 0 (0.0) 1 (10.0) 0 (0.0) –

Skin, joint, and connective tissue 0 (0.0) 0 (0.0) 2 (40.0) –

Liver 0 (0.0) 3 (30.0) 1 (20.0) –

Oral cavity 2 (100.0) 2 (20.0) 0 (0.0) –

Two or more organs involved 0 (0.0) 4 (40.0) 2 (40.0) –
AML, acute myelocytic leukemia; MDS, myelodysplastic syndrome; ALL, acute lymphocytic leukemia; MPAL, mixed phenotype acute leukemia; CMML, chronic myelomonocytic leukemia;
CML, chronic myelogenous leukemia; SAA, severe aplastic anemia; CR, complete remission; NR, non-remission; aGVHD, acute graft-versus-host disease; cGVHD, chronic graft-versus-
host disease.
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3.7 Other complications posttransplantation

The mean incidence of HC in the first 100 days post-

transplantation in Groups A, B, and C transplantation was 29.4%

(5/17), 30.6% (11/36), and 27.03% (10/37), respectively. There was

no significant difference in HC incidence among the three groups

(all P values > 0.05).

Forty-three (47.8%) patients developed lung infections, and 38

(42.2%) patients suffered multiple organ infections (abdominal,

sinus infections, etc.). There were no significant differences in the

number of infectious organs or pathogens among the

three groups.
3.8 Survival analysis

The TRM within 100 days after transplantation was 5.9%,

11.1%, and 2.7% in Groups A, B, and C, respectively. The

comparison of TRM within 100 days after transplantation did not

significantly differ among the three groups (Figures 5A–C).

The 1-year RFS rates were 70.6%, 55.6%, and 77.9% in Groups

A, B, and C, respectively. The 1-year RFS of patients in Group A was

not significantly different from that of patients in the other two

groups (Figures 5D, E). However, the 1-year RFS of patients in

Group C was greater than that of patients in Group B [HR = 0.41

(0.18 - 0.92), P = 0.031] (Figure 5F).

The 1-year GRFS for the three groups were 23.5%, 16.7%, and

29.7%, respectively. As shown in Figures 5G and 5H. Compared

with Groups B and C, the 1-year GRFS was not statistically

significant in patients in Group A. The 1-year GFRS was higher

in patients in Group C than in Group B [HR = 0.66 (0.39 - 1.12), P =

0.035] (Figure 5I).
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After a median follow-up period of 26.5 (range, 1 - 79) months,

61 patients survived. The 1-year OS rates of patients in Groups A, B,

and C were 70.6%, 58.3%, and 83.8%, respectively. As shown in

Figures 5J and 5K, there was no significant difference in the 1-year

OS between patients in Group A and those in the other two groups.

However, the 1-year OS of patients in Group C was greater than

that of patients in Group B [HR = 0.35 (0.15 - 0.83, P =

0.017] (Figure 5L).
4 Discussion

In the present study, we investigated the efficacy and safety of

unrelated UCBs as third-party adjuvant infusions in patients with

HLA antibodies receiving haplo-HSCT. Preexisting or de novoHLA

antibodies can be derived from blood transfusion, pregnancy,

history of allogeneic transplantation, self-peptides, tumor

antigens, CMV, influenza virus infection, bacterial infection, etc.

(12, 13) There has been no consensus on the necessary and ideal

strategy for eradicating or decreasing HLA antibodies before

transplantation. However, former studies indicated that patients

with HLA antibodies but not DSA are also at a higher risk of

developing GF/PGF.

As alternative stem cells, UCBs are characterized by abundant

stem cell sources and low immunogenicity (14, 15). UCBs are easy

to achieve and have a high matching success rate. Lyu et al.

confirmed that haplo-HSCT co-infused with third-party cord

blood induced immune tolerance and modulated allogeneic

reactions in patients who underwent mismatched HSCT (10). The

incidence of grade II-IV aGVHD in their cohort was 14.3%, which

was lower than that in previous reports of 28% (16). Cheng et al.
TABLE 4 The reactivation of CMV and EBV between the three groups.

Group A Group B Group C P-value

CMV reactivation within 100 days 0.443

Yes 9(52.9) 16(44.4) 18(48.6) –

No 8(47.1) 20(55.6) 19(51.4) –

CMV reactivation by month

1st-month 7(41.2) 8(22.2) 13(35.1) 0.014

2nd-month 5(29.4) 10(27.8) 8(21.6) 0.478

3rd-month 0(0.0) 7(19.4) 2(5.4) <0.0001

EBV reactivation within 100 days <0.0001

Yes 9(52.9) 30(83.3) 26(70.3) –

No 8(47.1) 6(16.7) 11(29.7) –

EBV reactivation by month

1st-month 5(29.4) 17(47.2) 9(24.3) 0.001

2nd-month 4(23.5) 21(58.3) 23(63.9) <0.0001

3rd-month 4(23.5) 18(50.0) 14(37.8) <0.001
CMV, cytomegalovirus; EBV, Epstein-Barr virus.
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confirmed a similar outcome with MSD-PBSCT when they infused

cord blood stem cells with PBSCT in haplo-setting (8). The

feasibility and efficacy of UCBs as third-party adjuvant infusions

in previous studies may be related to low immunogenicity and

immunomodulation. Therefore, we hypothesized that third-party

UCBs could offer some advantages for patients with HLA antibodies

at a high risk of GF/PGF.
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In the present study, the incidence of GF/PGF in Group B (5

cases) was greater than that in Group A (1 case) and Group C (0

case), respectively, indicating that UCB transfusion could benefit

the engraftment of haplo-donor stem cells in patients with HLA

antibodies. The potential reasons for this improvement might

include the following aspects. First, compared with BM/PB cells,

UCB cells might have more robust differentiation and proliferation
FIGURE 4

The comparison of CMV and EBV reactivation among patients in Groups A, B, and C. (A) The incidence of CMV and EBV reactivation within 100 days
after transplantation in Groups A, B and C. (B) CMV reactivation in Groups A, B, and C by month post-transplantation. (C) EBV reactivation in Groups
A, B, and C by month post-transplantation. *P < 0.05. **P < 0.01. ***P < 0.001. NS, no significance. CMV, cytomegalovirus; EBV, Epstein-Barr virus.
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capabilities. Cairo et al. demonstrated an 80-fold increase in stem

cell factor (SCF) and G-CSF or GM-CSF after a 14-day expansion of

UCB versus adult BM using IL-11 (17). Moreover, compared with

adult BM, UCB has been shown to have increased serial in vitro

replating efficiency (18) and increased culture lifespan with

increased progenitor cell production (19, 20). Second, the

phenotype and constitution of the precursor cells in UCB are

different from those in BM/PB cells. Hao et al. found that the

primitive cell population that expresses the CD34 antigen is

fourfold more prevalent than in BM or peripheral blood

progenitor cells (PBPCs). This subpopulation of UCB has a

greater in vitro cloning efficiency than the same population

isolated from adult BM (21). Third, other components, such as
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Thy-1 antigen (CD90), expressed on UCB progenitors might have

synergistic effects on precursor cell differentiation (22). Thy-1 is

thought to assist in hematopoietic cell development. These data

support that UCB has more primitive immature colony-forming

cells (CFCs) than adult BM/PB and that these hematopoietic

progenitors are capable of long-term repopulation (23). Last, it

has been shown that stimulated NKT cells can facilitate

hematopoietic reconstitution through dual immunoregulatory

functions by secreting IL-10, IL-4, and TGF-b through the direct

cell-cell contact pathway or cytokine pathway to induce immune

tolerance and improve immune survival (7). Overall, due to their

robust differentiation and proliferation capabilities, different

phenotypes and constitutions of precursor cells, and ability to
FIGURE 5

Kaplan-Meier analysis of all patients (Groups A, B, and C). (A–C) TRM within 100 days for all patients. (D–F) 1-year RFS for all patients. (G–I) 1-year
GRFS for all patients. (J–L) 1-year OS for all patients. Significant differences in 1-year RFS, 1-year GRFS and 1-year OS were observed between
patients in Group B and Group C, respectively (P < 0.05, log-rank test, for each cohort). TRM, transplant-related mortality; RFS, relapse-free survival;
GRFS, GVHD- and relapse-free survival; OS, overall survival.
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stimulate NKT cells, UCBs might facilitate haplo-donor stem cell

homing and differentiation after transplantation, thus overcoming

the adverse effects of HLA-antibodies on engraftment.

In our study, the cumulative incidence rates for grades I-II

aGVHD, grades III–IV aGVHD, and cGVHD were 41.1% (37/90),

13.3% (12/90), and 18.9% (17/90) respectively, which is similar to

that in previously reported studies (16, 24, 25).

We also observed a slight increase in Grade IV intestinal

aGVHD in Groups B (3 patients) and C (4 patients) compared

with Group A (1 patient). The exact mechanism by which UCBs

improve aGVHD efficacy is not yet fully understood. The reasons

may include the following aspects. First, in contrast to the

complexity of T cells in the PB, T cells are largely naïve in UCB

(26). Tregs are a subset of CD4+ T cells that are known to limit

inflammatory reactions, and they could be considered for

prophylaxis and treatment of severe and refractory GVHD (27).

UCB contains a significant number of CD4+CD25+ Tregs and

mesenchymal stem cells (MSCs), which have immune regulatory

mechanisms that can regulate the hematopoietic microenvironment

and therefore play important roles in the prevention of GVHD.

Clinical-grade expansion of Tregs from UCB has been performed

successfully (28) in vitro. Second, UCB is a rich source of NK cells.

Janelle A Olson et al. investigated the impact of donor NK cells on

donor alloreactive T cells in GVHD induction in an animal model.

Donor T cells exhibited less proliferation, lower CD25 expression,

and decreased interferon-gamma (IFN-gamma) production in the

presence of donor NK cells. Interestingly, the GVL effect was

retained in the presence of donor NK cells (29). Third, type II

NKT cells can secrete IL-4 to induce Th2-type immune responses,

both of which together contribute to alleviating GVHD (30). Pillai

et al. reported that CD4-CD8-NKT cells, a subtype of NKT cells,

were able to kill T cells and APCs expressing CD1d molecules,

thereby inhibiting immune cell proliferation recognized by specific

antigens and alleviating aGVHD (31). Larger samples are needed to

validate the efficacy of UCB co-infusion in mitigating aGVHD.

In the present study, it is worth noting that patients in Group B

presented a greater incidence of cGVHD than did patients in the

other two groups. Patients in Group A presented more limited

cGVHD than did patients in Group C. The pathophysiology of

cGVHD is characterized mainly by impaired immune tolerance,

and alloreactive donor-derived T and B cells are involved in this

process (32). During cGVHD, regulatory cell populations, including

Tregs, regulatory B cells (Bregs), regulatory NK cells, invariant NKT

cells, and regulatory type 1 T cells, are impaired or reduced in

frequency or number, resulting in the continuous release of

inflammatory factors and ultimately pathogenic immunoglobulin

deposition in various organs (33, 34). The history and severity of

aGVHD are the strongest predictors among the known risk factors

for cGVHD (26). The abundance of Tregs, Bregs, and NK cells in

UCB might benefit the immune reconstitution, and alleviate

aGVHD, thus improving cGVHD in patients who received a co-

infusion of UCBs. In the future, more investigations performed

both in vivo and in vitro are needed to confirm our findings.

In the present study, we did not find a significant difference in

the TRM within 100 days after transplantation among the three

groups. The 1-year RFS and 1-year GRFS of patients in Group A
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were not significantly different from those in the other two groups.

However, if patients with HLA-antibodies did not receive UCB

transfusion, their 1-year RFS was obviously lower than that of

patients in Group C. These findings indicated that the presence of

HLA antibodies was an adverse factor for relapse and that the co-

infusion of UCBs can reverse this adverse effect to some extent.

Yang et al. confirmed that the addition of UCBs could improve the

prognosis of patients receiving haplo-HSCT and enhance the GVL

effect without increasing the incidence of GVHD (35). This might

be interpreted that faster engraftment and immune reconstitution

in Group A may contribute to a GVL effect. In our previous

perception, recipients who develop PGF will be at a greater risk

of relapse than recipients who achieve good hematopoietic

reconstitution. The GVL effect is considerably dependent on the

amount and function of NK cells, especially allogenic mismatched

NK cells. The effects of GVL can also be initiated by antigen-specific

T cells and activated dendritic cells (DCs) of leukemic origin (36).

The concurrent increase in NKT cell numbers and activities, the

promoted host DC activation, subsequent CD8-dependent GVL

effects, and increased generation of Tregs can all contribute to the

preservation of the GVL and the prevention of CD4-dependent

GVHD. Compared with NK cells derived from PB, cord blood-

derived NK cells are younger, proliferate more, and have greater

efficacy in targeting and killing malignant cells (19). Many NK

progenitor cell populations can be found in UCB, and these

populations are usually not present in PB (37). These include the

CD34-CD133-CD7-CD45+lin- population, which can differentiate

into NK cells after culture with IL-15 and stromal cells.

Furthermore, CD34+CD7+ and CD34-CD7+ progenitor cells

were also more abundant in UCB, and these cells were also able

to develop into NK cells (13). Furthermore, when aGVHD is

initiated, excessive cytokines can activate CTLs and NK cells and

directly exert an immune response. Combined with our

experimental results, co-infusion with UCBs in a haplo-HSCT

setting might utilize this ‘shortcoming’ of increased risk of

aGVHD and favor NK cells to facilitate the GVL effect. Therefore,

the co-infusion of UCBs with haplo-stem cells might provide a

certain number of progenitor cells and derived NK cells, and the

latter will play an important role in anti-infection and anti-leukemia

effects.Furthermore, there was no significant difference in the 1-year

OS of patients in Group A compared with the other two groups. A

larger sample size and longer follow-up are anticipated to draw

more exact conclusions about the long-term survival of the

participants in this study. Overall, co-infusion of UCBs might

alleviate the relapse rate to some extent by potentially

maintaining the GVL effect. The abundant NK cells and the

cross-talk effect of cytokines might be involved in this

complex process.

Our results indicated that the total incidences of CMV and EBV

viremia were 47.8% and 72.2%, respectively, which is consistent

with previous studies in developing countries. There were no

significant differences in CMV reactivation among the three

groups in the first 100 days after transplantation. Patients in

Group A presented with less EBV reactivation than did those in

Group B and Group C in the first 100 days posttransplantation. This

may be due to the faster neutrophil reconstitution in Group A than
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in Group B. Furthermore, NK cells derived from UCBs might also

be an important cause of less virus activation. NKT cells can activate

the immune system involved in resisting viral and bacterial

infection (38). The anti-infective effect of NKT cells is achieved

by direct recognition of CD1d-presenting bacterially derived lipid

antigens or by the development of responses to self-lipid antigens

presented by APCs and infectious agents when interacting with

pathogen-associated molecules (29). Therefore, the anti-infection

ability of NKT cells can be used to effectively reduce the infection

rate, improve the survival rate, and solve the problem of viral and

fungal infection in the first few months after HSCT. Kotsianidis

et al. (39) reported that NKT cells secrete hematopoietic-related

cytokines, such as granulocyte giant cell colony-stimulating factor

(GM-CSF) and IL-3, which are involved in regulating stable

hematopoietic processes through CD1d recognition of

hematopoietic precursor cells.

In addition, a total of 4 patients developed PTLD

posttransplantation (1 in Group A, 2 in Group B, and 1 in Group

C). EBV activation is the most important risk factor for developing

PTLD. Patients in Group A might benefit from a reduced incidence

of EBV activation due to cotransfusion with UCBs. In the future, a

larger sample size should be investigated to determine why patients

in Group A presented lower EBV activation than those in Group C.

In our study, a 4/6 match for HLA markers was the minimum

criterion for choosing a UCB. As recommended by the EBMT, the

minimum amount for UCB transplantation after thawing is 2.0 - 2.5

× 107/kg for TNC and 1.0 - 1.2 × 105/kg for CD34+ cells (40). Koen

van Besien et al. proposed that a cell dose of > 3 × 106 total cord

blood units is the minimum threshold cell dose for haplo-cord

engraftment. They also determined that a dose lower than 1 × 107/

kg has a high risk of rejection of the UCB graft (41). In our study,

the median doses of third-party UCBs to the TNC and CD34+ cells

were 15.16 × 107/kg and 4.63 × 105/kg, respectively. All the patients

who achieved successful engraftment had haploid-stem cell

engraftment without cord blood engraftment, which may be

related to factors such as the number of haploid-stem cells being

far greater than the number of cord blood hematopoietic stem cells.

Furthermore, there might be both intrinsic cord blood factors and

recipient factors that can lead to cord blood not engrafting. The

exact mechanisms underlying the lack of UCB engraftment should

be investigated in more in-depth studies. Our results indicated that

the use of UCBs as a complement to haplo-HSCT is a feasible and

safe strategy without concern about UCB engraftment.

Notably, our study has several limitations. First, the sample size

was small, and the observation time was short. The clinical

outcomes relating to survival and disease control seem to be

preliminary. It would be better to classify the patients into

subgroups according to their titers of HLA antibodies and analyze

the differences between these groups. Second, as a retrospective

cohort study, certain imbalanced features may exist in our study

such as the unbalance in the number of cases between groups,

although we made adjustments in the multivariate analysis. Finally,

it is necessary to monitor HLA antibody titers after transplantation

to find more evidence of the benefit of UCB.
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5 Conclusions

In the present study, UCBs administered to patients who were

positive for HLA antibodies as a third-party adjunctive infusion

were safe and improved the engraftment, the grade and number of

organs involved in cGVHD, decreased the incidence of EBV

reactivation, and improved the 1-year RFS to some extent.

Patients who are positive for HLA antibodies without UCB

infusion are at a greater risk of developing GF/PGF and a greater

risk for relapse. The patients who were negative for HLA antibodies

still had better 1-year RFS, GRFS, and OS than those who were

positive for HLA antibodies regardless of the UCB infusion. In the

future, we will also expand the sample size to further validate

our results.
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Metachronous spinal cord
involvement B cell and
subcutaneous tissue
involvement NK/T cell
lymphoid proliferations and
lymphomas arising in post-
transplantation mimicking
general NK/T cell lymphoma: a
case report and review of
the literature
Yingxin Zhu1, Lingbo He2, Heshan Zou3, Shuyan Yao3,
Jinglin Hu1, Jing Guo2* and Yini Wang1*

1Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China,
2Department of General Practice, Beijing Friendship Hospital, Capital Medical University,
Beijing, China, 3Department of Hematology, Beijing Friendship Hospital, Capital Medical University,
Beijing, China
Lymphoid proliferations and lymphomas arising in post-transplantation are

potentially life-threatening complications after solid organ transplant (SOT) and

hematopoietic stem cell transplant (HSCT). The lymphoid proliferations and

lymphomas arising in post-transplantation originating from different cell

lineages in the same patient are highly unusual. Herein, we delineate a case of

isolated spinal cord involvement with B cell lymphoid proliferations and

lymphomas arising in post-transplantation at 11 months post-transplantation,

which was successfully treated with chemotherapy and intrathecal injection. Six

months later, the patient again developed lymphoma arising in post-

transplantation, presenting with predominant subcutaneous tissue involvement

deriving from EBV-positive NK/T cells, and received four courses of

chemotherapy. Ultimately, she achieved complete remission (CR). The report

further contributes to our new insights into the unusual clinical presentations of

lymphoid proliferations and lymphomas arising in post-transplantation.
KEYWORDS

transplantation, Nk/T cell lymphoma, lymphoid proliferations and lymphomas
associated with immune deficiency/dysregulation, spinal cord, subcutaneous
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Introduction

Lymphoid proliferations and lymphomas arising in post-

transplantation used to be termed post-transplant lympho

proliferative disorders, a heterogeneous group of lymphoid and

plasmacytic proliferations, which are categorized as “Lymphoid

proliferations and lymphomas associated with immune

deficiency/dysregulation (IDD)” in the 5th edition of the World

Health Organization Classification of hematolymphoid tumors (1).

It encompasses a spectrum of disorders ranging from indolent

reactive lesions to malignant and aggressive diseases (2). For

patients with lymphomas arising in post-transplantation, failure

to receive timely and appropriate treatment will result in a 3-year

overall survival rate of 20% (3). In comparison, the 3-year overall

survival rate significantly improves to 60% when patients receive

prompt diagnosis and appropriate management (4). The

manifestation of lymphoid proliferations and lymphomas arising

in post-transplantation is nonspecific, including fever, night sweats,

fatigue, loss of appetite, lymphadenopathy, and enlarging masses,

and some patients are asymptomatic, which poses challenges for

early diagnosis. Approximately 90-95% of lymphoid proliferations

and lymphomas arising in post-transplantation display B cell

lineage derivation (5), with a high incidence of extranodal

involvement, including frequently the gastrointestinal tract, lung,

and bone marrow (6). In contrast, NK/T cell lymphoid

proliferations and lymphomas arising in post-transplantation are

uncommon. Here, we report a rare case of isolated spinal cord

involvement with B cell lymphoid proliferations and lymphomas

arising in post-transplantation at 11 months post-transplantation.

Six months later, the patient again developed lymphoma arising in

post-transplantation, presenting with predominant subcutaneous

tissue involvement deriving from EBV-positive NK/T cells.
Case presentation

A 29-year-old woman presented to an outside hospital with a

prolonged fever (>38.5°C). Although receiving antibiotic treatment

with meropenem (500mg q8h for 7 days) combined with

dexamethasone (5mg qd for 2 days) and Tylenol (0.65g q8h for 7

days), her body temperature was repeatedly elevated. The in-patient

examination indicated that sCD25(18964pg/ml), hypertriglyceridemia

(3.28mmol/l), hypofibrinogen(0.81g/l), hepatosplenomegaly and

hemophagocytosis in the bone marrow. She presented with EBV

DNA positivity of plasma and Peripheral Blood Mononuclear Cells

(PBMCs), accompanied by bilateral lymph node enlargement in the

neck and inguinal areas, andwas diagnosed with EBV-HLH according

to HLH-2004 diagnostic criteria in November 2019. Subsequently, she

was initially treated with the DEP chemotherapy regimen, which

consisted of etoposide (110mg day1), doxorubicin hydrochloride

liposomes (40mg day1), methylprednisolone (80mg, day1 to 3,

30mg, day4 to 7, 10mg, day8 to 10, and 4mg, day11 to 14) on

November 28, 2019 and achieved CR after two cycles of induction

therapy according to efficacy evaluation criteria of the HLH (7).

On December 20, 2019, the patient was admitted to our hospital

for HSCT. She had no other medical history or family history of
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primary immunodeficiency. On physical examination, the patient

was afebrile, with normal vital signs. The neck, axilla, and groin

ultrasound detected no lymph node enlargement. On the functional

examination of NK cells and cytotoxic T lymphocytes (CTL), the

expression of associated proteins, such as DCD107a, perforin, and
Granzyme, is normal. Whole exome sequencing (WES) did not also

detect any significant pathogenic variant.

On February 20, 2020, she received allogeneic HSCT from her

father following a conditioning regimen including busulfan,

cyclophosphamide, etoposide, and anti-thymocyte globulin(ATG).

Prior to HSCT treatment, the serologic workup of the recipient was

positive for EBV and negative for CMV, whereas the donor was

serologically negative for EBV and CMV. Cyclosporin A (CsA, 50mg

intravenously daily) and mycophenolate mofetil (MMF, 500mg orally

daily) were used as prophylaxis against graft versus host disease

(GVHD). Grade II hyperacute GVHD of the gastrointestinal tract

occurred 4 days after HSCT and was in remission after short course

of methotrexate (24mg/day, +4 day, 16mg/day, +6day, and 18mg/

day, +9 day), methylprednisolone (40mg qd), cyclosporinA (CsA,

100mg intravenously twice daily), andmycophenolate mofetil (MMF,

500mg orally twice daily) therapy. At 3 months after transplantation,

the immunosuppressive therapy regimen was adjusted, consisting of

CsA (50mg orally twice daily initially, dosage adjusted according to

drug concentration), methylprednisolone (8mg once daily) andMMF

(500mg orally twice daily). The immunosuppressive treatment was

gradually reduced and discontinued 1 year after transplantation. The

patient had been maintaining complete donor chimerism since 20

days after transplantation.

At 11 months post-transplantation, the patient was admitted to

our hospital with posterior neck pain and limb numbness for 2

months. Magnetic resonance imaging (MRI) of the spine revealed

diffuse swelling and increased signal intensity of the spinal cord

extending from cervical 2 to thoracic 3. DNA copy numbers of

EBV-DNA in both plasma, PBMC and cerebrospinal fluid (CSF)

measured by real-time qPCR were positive. The sorting of EBV-

infected peripheral blood cells revealed a predominance of B

lymphocytes. However, bone marrow and CSF cytology

demonstrated no abnormal cells. We eliminated other etiologies

such as ischemic myelopathy, compressive myelopathy,

autoimmune/infectious/parainfectious myelitis and metabolic/

toxic myelopathy by a comprehensive analysis of clinical and

MRI findings. Eventually, the patient was clinically diagnosed

with EBV-positive lymphoid proliferations and lymphomas

arising in post-transplantation with spinal cord involvement

according to National Comprehensive Cancer Network (NCCN)

guidelines. Consequently, the patient received four courses of

chemotherapy treatment that incorporated Rituximab, Reduction

in immunosuppression (RIS) combined with intrathecal injection of

methotrexate (MTX) and dexamethasone. Her symptoms and

spinal cord swelling gradually remitted and nearly completely

disappeared (Figure 1).

In July 2021, 17 months after the transplantation, the patient

reported a superficial mass in the left elbow joint with mild pain.

The ultrasonography revealed a 2cm*2cm mass in the medial aspect

of the left elbow joint. The biopsy was delayed due to the novel

coronavirus epidemic. Twenty-one months after transplantation,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1467506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1467506
the patient presented a 4.6*2cm subcutaneous mass on the right

upper extremity. Puncture biopsies of bilateral upper extremity

masses were performed, and similar characteristics were

demonstrated. Pathological examination revealed that the mass

was surrounded by the infiltration of abundant lymphocytes and

heterogeneous cells, accompanied by granuloma formation and

plentiful cellular necrosis. The immunohistochemical examination

demonstrated the tumor cells expressed CD20, CD3, CD4, CD8,

CD56, Ki67, Gr B, TIA-1, and EBNA2. They were also positive for

EBV-encoded RNA (EBER) (Figure 2). EBV DNA was positive in

PBMC at a low level and negative in plasma. A Positron Emission

Tomography/computed tomography (PET/CT) indicated increased

uptake of Fluoro-2-deoxy-D-glucose (FDG) in masses in both

upper limbs, multiple lymph nodes, liver, spleen, truncal bones,

colorectum, and multiple subcutaneous nodules. Consequently, the

patient was treated with four courses of chemotherapy with L-GDP

(L-Asparaginasum, Gemcitabine, Dexamethasone, Cisplatin) plus

PD-1 inhibitor and was routinely evaluated by PET CT imaging at
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the end of treatment. The metabolic activity and volume of masses

in both upper limbs and enlarged lymph nodes significantly

decreased (with a Deauville score of 1-3), and no other abnormal

lesions were revealed. CR was confirmed according to the Lugano

efficacy evaluation criteria (8).
Discussion

Lymphoid proliferations and lymphomas arising in post-

transplantation display a bimodal distribution with an increase in

incidence within one year of transplant and then another peak, which

occurs around five years after transplant. Early-onset lymphoid

proliferations and lymphomas arising in post-transplantation are

mainly derived from polyclonal or monoclonal polymorphic B-cell

proliferations, which occur within one year of transplantation and are

frequently associated with EBV (9). In this case, the patient presented

diffuse swelling and increased signal intensity of the spinal cord 11
FIGURE 1

(A)-T2 weighted sagittal images revealed diffuse swelling and increased spinal cord signal intensity from cervical 2 to thoracic 3 before treatment
(the red arrow). (B)- T2 weighted sagittal images showed that spinal cord swelling and abnormal strengthening signals from cervical 2 to thoracic 3
were significantly remitted after treatment (the red arrow). (C)- T2 weighted axial images revealed hyper-intense signal in the spinal cord more in the
white matter region before treatment (the red arrow). (D)- T2 weighted axial images revealed hyper-intense signal in the white matter of the spinal
cord return to normal (the red arrow).
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months after transplantation and was clinically diagnosed with EBV-

positive central nervous system (CNS) lymphoid proliferations and

lymphomas arising in post-transplantation (10). Historically, only a

minority of published cases of lymphoid proliferations and

lymphomas arising in post-transplantation with neurological

symptoms have been reported as case reports (11–13). Among

them, involvement of the internal structure of the CNS occurs in

approximately 5-30% of patients with lymphoid proliferations and

lymphomas arising in post-transplantation (14). They often present

with multiple supratentorial lesions in the periventricular regions

(14). However, Beukelaar et al. reported that a rare lymphoid

proliferations and lymphomas arising in post-transplantation case
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occurred in the ventral side of the spinal cord after HSCT (15).

Another uncommon case of intraspinal lymphoid proliferations and

lymphomas arising in post-transplantation involvement was reported

in a pediatric patient who underwent renal transplantation (16). Our

patient is a rare case of lymphoid proliferations and lymphomas

arising in post-transplantation involving the spinal cord.

Due to the complexity of obtaining specimens from the CNS,

multiple postoperative complications, and the rapid progression of

CNS lymphoid proliferations and lymphomas arising in post-

transplantation, most patients did not receive a histologically

confirmed diagnosis or appropriate therapy during their lifetime.

They commonly passed away within a year of receiving a transplant,
FIGURE 2

(A, B)-neoplastic NK/T-cells-positive reaction for CD20; biopsy of mass on the left upper extremity and the right upper extremity respectively; (C, D)–
neoplastic NK/T-cells-positive reaction for CD3; biopsy of mass on the left upper extremity and the right upper extremity respectively; (E, F)–neoplastic
NK/T-cells-positive reaction for CD4; biopsy of mass on the left upper extremity and the right upper extremity respectively; (G, H)–neoplastic NK/T-
cells-positive reaction for CD8; biopsy of mass on the left upper extremity and the right upper extremity respectively; (I, J)–neoplastic NK/T-cells-
positive reaction for CD56; biopsy of mass on the left upper extremity and the right upper extremity respectively; (K, L)– neoplastic NK/T-cells; high
proliferative index – almost all cells showed expression of Ki67; biopsy of mass on the left upper extremity and the right upper extremity respectively;
(M, N)–neoplastic NK/T-cells-positive reaction for EBER; biopsy of mass on the left upper extremity and the right upper extremity respectively; (O, P)–
neoplastic NK/T-cells-positive reaction for Granzyme B; biopsy of mass on the left upper extremity and the right upper extremity respectively; (Q, R)–
neoplastic NK/T-cells-positive reaction for TIA-1; biopsy of mass on the left upper extremity and the right upper extremity respectively; (S, T)–neoplastic
NK/T-cells-positive reaction for EBNA2; biopsy of mass on the left upper extremity and the right upper extremity respectively.
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with autopsy results ultimately confirming the diagnosis. According

to previous reports, a combination of clinical presentation, imaging

studies such as MRI, and the detection of EBV DNA in CSF can aid

in the clinical diagnosis of CNS lymphoid proliferations and

lymphomas arising in post-transplantation. Early initiation of

treatment after clinical diagnosis of CNS lymphoid proliferations

and lymphomas arising in post-transplantation can significantly

improve the survival of patients, with an overall survival rate of up

to a median of 47 months (17). However, standard prophylactic or

therapeutic protocols for CNS lymphoid proliferations and

lymphomas arising in post-transplantation are still under

investigation (18). Current regimens for treating CNS lymphoid

proliferations and lymphomas arising in post-transplantation

include monotherapy with Rituximab (19), intrathecal injection of

methotrexate (MTX) (20), high-dose MTX intravenous treatment

(6), RIS combined with Rituximab and whole brain radiation

therapy (WBRT) (21), and EBV-specific cytotoxic T lymphocytes

(CTL) (22), all of which have demonstrated promising efficacy.

At 17 and 21 months post-transplantation, the patient

presented with a mass on the bilateral upper extremities, along

with enlarged multiple lymph nodes. However, the tissue biopsy

was insufficient to confirm whether it was general NK/T cell

lymphoma or NK/T cel l lymphoma aris ing in post-

transplantation. Misdiagnosis often occurs due to the similar

pathological features shared by NK/T cell lymphoma arising in

post-transplantation and common NK/T cell lymphoma (23). Early

differentiation is especially crucial between NK/T cell lymphoma

arising in post-transplantation and NK/T cell lymphoma, as it

allows for the initiation of treatment. Notably, our patient had

presented with generalized lymphadenopathy prior to treatment

initiation. However, upon admission to our hospital, the enlarged

lymph nodes had disappeared following chemotherapy with the

DEP regimen, and no lymph node biopsy was performed for a

definitive diagnosis. Therefore, it is reasonable to suspect the

presence of occult lymphoma at the initial diagnosis, with a

recurrence of occult lymphoma. However, NK/T cell lymphoma

is predominantly extranodal (24), and patients with nodal

involvement typically progress rapidly (25). The majority of

patients have chromosomal abnormalities, such as del (6), del (8),

and del (13), as well as frequent gene mutations, such as JAK3,

STAT3, and STAT5b (26), which are not consistent with our

patient’s clinical presentation at the time of initial treatment.

Additionally, in NK/T cell lymphoma, increases in circulating

EBV DNA are usually found due to viral DNA release from

apoptosis of proliferating tumor cells. However, in this case, EBV

DNA was positive in PBMCs at a low level and negative in plasma.

On the other hand, multiple risk factors that increase the likelihood

of developing lymphoid proliferations and lymphomas arising in

post-transplantation have been elucidated, including the use of

ATG prior to transplantation and immunosuppression following

HSCT, elderly donor (51 years), difference of EBV serological status

between donor and recipient, and haplo-identical HSCT (27).

Pathology indicated that the tumor cells predominantly exhibited

an EBV latency type III (LMP1-positive, EBNA2-positive, EBER-
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positive), mainly expressed in immunodeficient patients (28). Wang

S.H. et al. reported a patient who underwent HSCT for cutaneous

NK/T cell lymphoma and developed hepatosplenomegaly and

cervical lymphadenopathy two months after transplantation. The

patient was ultimately diagnosed with EBV-positive lymphoma

arising in post-transplantation, although recurrence of NK/T cell

lymphoma was suspected initially (29). Even though the

pathological presentations of lymphoid proliferations and

lymphomas arising in post-transplantation with cutaneous

involvement are commonly characterized by polymorphic or

monomorphic B cell and plasma cell subtypes (30–32), the NK/T

cell lymphoid proliferations and lymphomas arising in post-

transplantation primarily manifesting as subcutaneous nodules

have also been reported (9, 33, 34). The majority of them are

usually present late after transplantation and are EBV-negative (27).

Nonetheless, approximately 15% of NK/T cell lymphoid

proliferations and lymphomas arising in post-transplantation

occur in the early post-transplant stage (5), and about 40% of

these patients are EBV-positive. Based on the evidence presented,

the final diagnosis of the subcutaneous mass was established as NK/

T cell lymphoma arising in post-transplantation.

RIS has been the cornerstone of first-line treatment for

lymphoma arising in post-transplantation (35), and it is often used

in combination with chemotherapy, radiotherapy, surgery, adoptive

T-cell therapy, and antiviral and immunological agents. The

combined treatment has become the mainstream for NK/T cell

lymphoma arising in post-transplantation, and the 5-year survival

rate has risen to 60% (34). NK/T cell lymphoma is an aggressive

disease with a poor response to therapy and a high risk of replase,

resulting in a poor long-term prognosis. The overall 5-year survival

rate is approximately 10 to 40%, with the median survival being 15

months (36–38). Patients with extracutaneous involvement show

shorter median survival (39). On the contrary, as of the last follow-

up in March 2023, our patient maintained CR without any evidence

of disease recurrence. The satisfactory treatment efficacy of the

patient further supported the diagnosis of NK/T cell lymphoma

arising in post-transplantation.

EBV infection status is a significant factor associated with the

development of lymphoid proliferations and lymphomas arising in

post-transplantation (40). Unlike post-transplant B cell lymphoid

proliferations and lymphomas arising in post-transplantation, the

role of EBV in EBV-positive NK/T cell lymphoid proliferations and

lymphomas arising in post-transplantation is still unclear. Magro

et al. suggest that regulatory T cells can undergo tumorigenic

transformation under conditions of immunosuppression. EBV-

infected B cells, serving as a continuous antigenic stimulus, may

induce an excessive immune response in T cells, leading to the

development of EBV-positive NK/T cell lymphoid proliferations and

lymphomas arising in post-transplantation (41). The incidence of

lymphoid proliferations and lymphomas arising in post-

transplantation has significantly increased over the last two decades

due to various factors, including an increasing number of HSCT,

older donors and recipients, the use of novel immunosuppressive

agents, and the introduction of unrelated donors (42). Despite
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significant improvements in supportive strategies following HSCT in

recent years, many problems still need to be better controlled.

Monitoring EBV DNA allows for early recognition of impending

lymphoid proliferations and lymphomas arising in post-

transplantation, thus providing a basis for timely treatment

initiation (43). Notably, only 30% of case reports showed positive

results for EBV DNA in the CSF of patients with CNS lymphoid

proliferations and lymphomas arising in post-transplantation (44);

for post-transplant patients who present with CNS symptoms,

peripheral blood EBV DNA monitoring does not meet clinical

needs, making combined imaging examinations necessary for

monitoring CNS lymphoid proliferations and lymphomas arising

in post-transplantation. Furthermore, there needs to be more

standardization across institutions in the detection methods and

the sample types used for EBV DNA surveillance. The

management of lymphoid proliferations and lymphomas arising in

post-transplantation also needs a common consensus around the

EBV DNA threshold for preemptive therapy. The standard RIS

regimens that allow for the elimination of lymphoid proliferations

and lymphomas arising in post-transplantation while maintaining

the level of immunosuppression to prevent graft rejection and GVHD

have yet to be elucidated. Additionally, the optimal dosage of

Rituximab in first-line treatment regimens warrants further

investigation (45).
Conclusion

Conclusively, lymphoid proliferations and lymphomas arising in

post-transplantation with predominantly intraspinal involvement is a

rare disorder that is difficult to diagnose definitively and has a dismal

clinical prognosis. This case report serves as a reminder to clinicians

to maintain a high index of suspicion for lymphoid proliferations and

lymphomas arising in post-transplantation with spinal cord

involvement when neurological complications arise after HSCT. It

also highlights the importance of long-term imaging and CSF

monitoring in post-transplant patients. Early diagnosis is crucial for

disease management and improvement in prognosis due to the

differences in pathomechanisms and prognosis between NK/T cell

lymphoma arising in post-transplantation and general NK/T cell

lymphoma. This article further explains the current treatment

modalities and clinical shortcomings of lymphoid proliferations

and lymphomas arising in post-transplantation, providing more

references to enhance the knowledge of clinicians and pathologists

on the disease and pointing out the direction for future exploration.
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Cord blood T regulatory cells
synergize with ruxolitinib to
improve GVHD outcomes
Ke Zeng1, Hongbing Ma2, Meixian Huang1, Mi-Ae Lyu1,
Tara Sadeghi3, Christopher R. Flowers1 and Simrit Parmar4*
1Department of Lymphoma/Myeloma, The University of Texas at MD Anderson Cancer Center,
Houston, TX, United States, 2Department of Hematology, West China Hospital, Sichuan University,
Chengdu, China, 3Cellenkos Inc., Houston, TX, United States, 4Department of Microbial Pathogenesis &
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Background: Adoptive therapy with umbilical cord blood (UCB) T-regulatory
(Treg) cells can prevent graft vs. host disease (GVHD). We hypothesize that
UCB Tregs can treat GVHD and synergize with ruxolitinib, Jak2 inhibitor, to
improve outcomes.
Methods: UCB Treg potency and efficacy was examined using cell suppression
assay and xenogeneic GVHD model, respectively. Ruxolitinib was fed
continuously in presence or absence of CellTraceViolet tagged UCB Tregs on
days +4, +7, +11, +18. Mice were followed for survival, GVHD score, hematology
parameters and inflammation.
Results: Addition of ruxolitinib to UCB Tregs exerted synergistic suppressor
function in vitro and improved persistence of UCB Tregs in vivo. Lower GVHD
score, improved survival, increased hemoglobin level and platelet count,
decreased inflammatory cytokines and decrease in CD3+ T cell lung infiltrate
was observed in UCB Tregs+ruxolitinib recipients.
Conclusion: UCB Treg+Ruxolitinib combination improves outcomes in
xenogeneic GVHD and should be explored in a clinical setting.
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Introduction

Graft vs. host disease (GVHD) is a fatal complication of allogeneic stem cell

transplantation, driven by donor derived T cell proliferation and characterized by

excessive inflammation which can lead to widespread tissue injury and wasting

phenomenon (1). CD4+CD25+FoxP3+ regulatory T cells (Treg) are a subset of T cells

that regulate immune function and resolve unwanted inflammation (2). Tregs have been

extensively studied for prevention and treatment of GVHD (3–5), with promising

clinical results (6–11).

We have previously shown that Tregs derived from umbilical cord blood (UCB) co-

express CD45RA+CD45RO+ (12) that allow for sustained in vivo proliferation of the

injected cells; as well as retain their suppressor function in presence of dexamethasone

(12, 13). Additionally, treatment with multiple injections of UCB Tregs can reduce

burden of inflammation without interfering in the anti-tumor activity of CD19 CART

cells in a xenogeneic lymphoma model (14). Recently, Kadia et al., showed that a

single infusion of CK0801 Tregs can lead to durable independence from blood and

platelet transfusion in patients with bone marrow failure (15). In a randomized
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placebo control trial, multiple infusions of CK0802 Tregs led to

improvement in survival in patients with COVID associated

acute respiratory distress syndrome (13). Combination of donor

derived Tregs and ruxolitinib, a Jak2 inhibitor currently

approved agent for steroid refractory GVHD (16), has been

shown to exert synergistic effect to improve GVHD outcomes

without interference in graft vs. leukemia effect (17). We

hypothesize that addition of UCB Tregs to ruxolitinib can

improve results in GVHD.
Methods

UCB Treg cell generation and function

UCB derived Tregs were generated as described previously

(12, 18) and/or provided by Cellenkos® Inc. (Houston, TX,

USA). Cell characterization was performed as described in

Supplementary Material. Cell suppression assay was performed as

described previously (14).
In vivo GVHD model

Animal procedures were performed according to an approved

protocol by The University of Texas MD Anderson Cancer

Center Institutional Animal Care and Use Committee.

Xenogeneic GVHD model was established as described

previously (4). CellTraceViolet (CTV) dye labeled UCB Tregs

(1 × 107 cells) were injected on days +3, +10, +17, and +24. Mice

received 1 mg ruxolitinib daily by oral gavage for 14 consecutive

days. Mice were monitored and weighed twice weekly. GVHD

score was calculated as described previously (Supplementary

Table S1) (19). Peripheral Blood (PB) from mice was collected

weekly and at euthanasia, for flow analysis. Euthanasia was

performed according to institutional guidelines. Room air in the

mice chamber was gradually replaced by 100% CO2, from a

compressed gas cylinder at a flow rate that displaced 30%–70%

of the chamber volume per minute until the concentration of

CO2 reached 100%. Upon achieving this concentration, the mice

remained in the chamber for at least, an additional three minutes

to ensure effective euthanasia. Plasma was analyzed for

inflammatory cytokines using Human Cytokine 42-plex

Discovery Assay Kit (Eve Technologies, Calgary, Canada).

Organs of xenografts were harvested, homogenized, and analyzed

as described previously (14).
Statistical analysis

All statistical analyses were done with GraphPad Prism 9

software (San Diego, CA, US). Data are presented as mean ±

SEM. P-values were calculated using 2-tailed t-test with 95%

confidence interval, one-way ANOVA, or two-way ANOVA for

evaluation of statistical significance compared with the untreated

controls. P < 0.05 was considered statistically significant.
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Results and discussion

UCB Tregs can treat GVHD without
affecting GVL

Ex vivo expanded UCB Tregs express CD4+CD25+CD127lo

FOXP3hiHelioshi phenotype (Supplementary Figure S1) and have

been shown to retain their function in presence of dexamethasone

(12). In an established haploidentical murine GVHD model, donor

Tregs injection on day +11 led to improvement in survival and

decrease in GVHD score (20). In an exploratory study, two out of

five patients suffering from chronic GVHD, who received donor

derived, ex vivo expanded, Treg cells at a median of 35 months

after their allogeneic hematopoietic cell transplantation showed

improvement in their condition which allowed decrease in their

steroid intake and the other three patients had stable disease (21).

To evaluate whether UCB Tregs can treat established GVHD in a

completely mismatched setting, we injected multiple of UCB Tregs,

in a fixed dose of 10 million cells, in a xenogeneic GVHD model

(Supplementary Figure S2). As shown in Figure 1A, UCB Treg cell

treatment led to improvement in survival; preservation of weight

(Figure 1B) and decrease in GVHD score (Figure 1C). A major co

ncern exists in regard to impact of any GVHD treatment modality

on possibly interfering in the donor T cell mediated graft vs.

leukemia (GVL) effect (22). To evaluate the impact of UCB Tregs

on GVL, 3 × 106 GFP labeled HL60 leukemia cells were injected

through tail vein into sublethal irradiated non-SCID gamma null

(NSG) mice to establish acute leukemia. On day +1, mice were

injected with 3 × 106 CD4+25− Tcon cells in presence or absence of

3 × 106 UCB Tregs injected on day +4 (Supplementary Figure S2).

No evidence of leukemia was detected in Tcon and UCB Tregs +

Tcon recipients by day +28 by non-invasive bioluminescence

imaging (Figures 1D,E). However, all Tcon recipients succumbed

to GVHD without evidence of leukemia by day +35 (Figure 1D).

Whereas highest GVHD score was observed in Tcon recipients,

addition of UCB Tregs reduced it significantly over 35 days

(p < 0.0001; Figure 1F). While body weight was comparable

between Tcon and Tcon +UCB Treg recipients (Figure 1G),

a significantly superior survival was observed in the latter arm

(p < 0.001; Figure 1H). Our findings support that UCB Tregs can

treat xenogeneic GVHD without compromising GVL effect. Similar

uncoupling effect has been reported in a xenogeneic lymphoma

model, where UCB Tregs dampened systemic inflammation witho

ut interfering in the on-target anti-tumor effect of CD19 CART

cells (14). Long term follow up of multiple clinical studies

examining Treg cells in GVHD, also do not report any detrimental

effect of Tregs on the risk of leukemia relapse (6–10, 23). Thus,

adoptive therapy with UCB Tregs presents itself as a viable strategy

for treatment of GVHD.
UCB Tregs synergize with ruxolitinib to
improve GVHD outcomes

Next, we proceeded to examine whether UCB Tregs can be

added to ruxolitinib, an approved agent for treatment of steroid
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FIGURE 1

UCB Tregs can treat GVHD and preserve GVL. Xenogeneic GVHD model using female Rag2-γc- mice, that underwent sublethal irradiation on day-1
and received tail vein injection of 107 human peripheral blood mononuclear cells (PBMCs) on Day 0. In the treatment arm, 107 UCB Treg cells were
injected through tail vein on days +4, +11, +18, and +25. N= 6 each arm. (A) UCB Tregs improve survival compared to control. (B) UCB Tregs maintain
body weight compared to continued weight loss in control arm. (C) UCB Tregs significantly improve GVHD scores, from days 7 and 14 compared to
control groups. Graft vs. Leukemia (GVL) xenogeneic model was set up using female Rag2-γc- mice, that underwent sublethal irradiation, followed by
3 × 106 GFP-labeled HL60 AML cells in presence or absence of by 3 × 106 UCB Tregs on Day 0, followed by tail vein injection of 3 × 106 Tcon cells.
Treatment groups were divided into: Arm 1: HL60 alone (AML); Arm 2: HL60 +UCB Tregs (+Treg); Arm 3: HL60+Tcon (+Tcon); Arm 4: HL60+UCB
Tregs+Tcon (+Tcon+Treg), N= 6 each arm. (D) UCB Tregs do not increase tumor burden in GVL model. HL60 tumor burden in mice was evaluated by
Non-invasive bioluminescence imaging (BLI) with the IVIS Lumina X5 Imaging System. Ventral images are shown for each day of capture. Non-invasive
BLI showed clear evidence of disease progression in control arm, AML and +Treg. No evidence of disease in +Tcon and +Tcon+Tregs recipients on
day 21 and day 28. (E) Quantitative analysis of the BLI measurements (photons/sec/cm2/sr) showed no differences in the +Tcon and +Tcon+Tregs
recipients by day 35. (F) UCB Tregs improve GVHD score in GVL model. Significant improvement in GVHD scores in +Treg+Tcon arm compared
to +Tcon arm alone. Scores were evaluated bi-weekly, with statistical analysis conducted using data from day 28 to compare the different arms.
(G) UCB Tregs maintain weight in GVL model. No differences observed between +Tcon vs. +Tcon+UCB Treg arm. Weight measured twice
weekly, and results presented as fold changes compared to baseline. (H) UCB Tregs do not compromise survival in GVL. Over a 49 day follow up,
+Tcon+UCB Treg arm shows survival benefit. Addition of UCB Tregs to AML did not have any significant impact on tumor burden. Error bars
represent SEM. Statistical differences compared with control were quantified by one-way ANOVA or paired student’s t-test; *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns, not significant; SEM, standard error of means.
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refractory GVHD (16). In a recent study of 35 patients with

aplastic anemia, prophylatic administration of ruxolitinib

significantly lowered incidence of moderate to severe acute

GVHD (17.1% vs. 48.6%) (24). However, since ruxolitinib can

suppress both T cells (25) and Tregs (26) and is accompanied by

hematologic toxicity including anemia and thrombocytopenia

(16) that can be dose limiting in GVHD treatment, we examined

whether the addition of UCB Tregs can mitigate such a side

effect. We analyzed the proliferation of CTV labeled CD4+25−

Tcon cells cultured with different ratios of UCB Tregs in

presence or absence of ruxolitinib. A slight, but significant

improvement in the cell suppression was observed with the

addition of ruxolitinib at UCB Treg:Tcon ratio of 2:1 and 1:1 (p

< 0.01; Figure 2A). Similar synergistic effect of 0.1 um ruxolitinib

on cell suppression function of human Treg cells has been

reported at 120 h of co-culture, where superior survival was
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observed in recipients of ruxolitinib and Tregs compared to

either agent alone (17). To understand whether a comparable

effect will be recapitulated in a xenogeneic GVHD model,

ruxolitinib and UCB Treg treatment combination was examined

(Supplementary Figure S2). Improvement of survival was

observed in the UCB Tregs + ruxolitinib recipients compared to

all other arms (Figure 2B), which was accompanied with

preservation of body weight (Figure 2C) and lowering of GVHD

score (Figure 2D). When gated on live cells, while the circulating

human CD45+ cells in the peripheral blood increased over time,

a significantly lower level was observed in the UCB Tregs +

ruxolitinib recipients when compared to UCB Tregs alone

recipients at day +14 (p < 0.001; Figure 2E). This synergistic

effect might be due to engagement of complimentary pathways

since the effects of ruxolitinib on Tregs are immune-context

dependent (27).
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FIGURE 2

UCB tregs synergize with ruxolitinib to improve GVHD outcomes. (A) Ruxolitinib improves UCB Treg suppression. UCB Tregs co-cultured with CTV-
labeled Tcon (CD4+CD25−) cells at different ratios of 4:1, 2:1, 1:1, 1:2, and 1:4 in the presence of CD3/28 beads. Proliferation of CTV-labeled Tcons was
assessed by the LSR Fortessa Cell Analyzer after 96 h of culture. Percentage suppression was calculated using the following formula: 100% ×
(1−percentage of proliferating CTV-diluting Tcons in the presence of UCB Tregs at a different ratio/percentage of proliferating CTV-diluting Tcons
when cultured alone). Ruxolitinib (0.5 μM) led to improvement in UCB Treg suppression at 2:1 and 1:1 Treg: Tcon ratio. Impact of addition of
ruxolitinib at different UCB Tregs: Tcon ratios was: 4:1 (84.0% vs. 80.2%); 2:1 (64.1% vs. 59.3%); 1:1 (55.4% vs. 49.1%); 1:2 (22.4% vs. 19.1%); 1:4
(5.4% vs. 4.1%), respectively. Xenogeneic GVHD model was established using female Rag2-γc- mice, that received tail vein injection of 107 human
PBMCs on Day 0. In the treatment arm, mice received 1 mg of Ruxolitinib (45 mg/kg) daily orally from day −1 until day 14. Additionally, 107 UCB
Tregs were injected by tail vein on days +4, +11, +18, and +25. Arm 1: control (PBMC); Arm 2: PBMC+UCB Tregs (+Treg); Arm 3: PBMC
+ruxolitinib (+Ruxo); Arm 4: PBMC+UCB Tregs+ruxolitinib (+Treg+Ruxo). N= 6 each arm. (B) UCB Tregs improve survival in xenogeneic GVHD.
When compared to control arm, PBMC, significant improvement in survival was seen in +Treg and +Treg+Ruxo arms, at a follow up of 42 days.
(C) UCB Tregs maintain body weight in xenogeneic GVHD. Weights were recorded twice a week, and the data are presented as fold changes over
successive days relative to the baseline. (D) UCB Tregs lower GVHD score. When compared to control arm, +Treg, +Ruxo and +Treg+Ruxo led to
significantly lower GVHD score at day 14. The scoring was performed bi-weekly. (E) UCB Tregs synergize with ruxolitinib to decrease circulating
human CD45+ T cells (gated on live cells) at day 14 in xenogeneic GVHD. (F) Ruxolitinib increases UCB Tregs persistence. Significantly higher
circulating CTV labeled Tregs on day 7 (p < 0.01) and day 14 (p < 0.001) in +Treg+Ruxo vs. +Treg arm, respectively. (G) Ruxolitinib increases UCB
Tregs tissue persistence. Flow cytometric analysis of harvested organ cell suspensions at euthanasia on day 14 showed higher level of CTV labeled
Tregs in UCB Tregs+ruxolitinib (w R) recipients compared to UCB Tregs recipients (w/o R), across different lymphoid sites, including spleen (SP),
liver (LV) and bone marrow (BM). (H) Ruxolitinib addition to UCB Tregs leads to decrease in CD8+ T cells in spleen and bone marrow in
xenogeneic GVHD at day 14. Y-axis shows CD8+ T cells gated on human CD45+ cells. T = UCB Tregs; T + R =UCB Tregs + ruxolitinib. Compared
to peripheral blood (PB), proportion of CD8+ cells was significantly higher in the spleen (SP) (p < 0.05) and bone marrow (BM) p < 0.001. Addition
of ruxolitinib led to a significant decrease of CD8+ cells in spleen and bone marrow and an increase in liver (p < 0.001). (I) UCB Tregs and
ruxolitinib decrease systemic inflammation in xenogeneic GVHD. On day 7 and 14, plasma cytokines level was quantified and analyzed. Cytokines
at day 14 were normalized to day 7. The categorical heatmap shows the percentage changes in cytokine levels at day 14 compared to day 7 for
TGF-α, GM-CSF, IFN-γ, TNF-α, sCD40l, and IL-1a. Changes are color-coded: shades of green indicate decreases (less than 25%, 25%-50%, more
than 50%) and shades of red indicate increases (less than 25%, 25%-50%, more than 50%). (J). Histopathologic examinations of lung at 40×
magnification, shows tissue destruction and high CD3+ staining in the control PBMC arm. Tissue architecture is somewhat preserved in PBMC
+ruxolitinib arm, with high concentration of CD3+ staining in the alveolar lining as well as in the parenchyma. Complete resolution of CD3+

infiltrate as well as tissue architecture preservation is seen in UCB Treg recipients with or without ruxolitinib. Quantification analysis of the H-score
for human CD3 positivity (right panel). The H-score was defined by the percentage of strongly positive stain × 3 +moderately positive stain × 2 +
weakly positive stain × 1. A final value of 0–300 was also calculated at 40× magnification using the software HALO (v3.5-3,577.140). A p < 0.05 was
considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001. (K), UCB Tregs improve hemoglobin in ruxolitinib recipients. On day 14,
ruxolitinib recipients show lower hemoglobin levels compared to UCB Tregs recipients. Addition of UCB Tregs to ruxolitinib increases day 14
hemoglobin level. (L) UCB Tregs improve platelet decrease in ruxolitinib recipients. Compared to day 7, decrease in platelet counts observed in all
arms on day 14. UCB Tregs + ruxolitinib recipients preserved their platelet count. The statistical differences were quantified by a one-way ANOVA
or student’s t-test. Error bars represent SEM (n= 7); statistical differences compared with the control arm were quantified by one-way or two-way
ANOVA using GraphPad Prism software: *p < 0.05, **p < 0.01, ***p < 0.001.
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To study their in vivo distribution pattern, UCB Tregs,

were labeled with CTV, a low-cytotoxicity intracellular dye, that is

detectable for at least seven days post-labeling. As shown in

Supplementary Figure S3, when gated on human lymphocytes,

nearly all the CD4+25+127lo Treg cells comprised of CTV-labeled

cells. On day +14, CTV labelled UCB Tregs percentage was
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significantly higher in the UCB Tregs + ruxolitinib vs. UCB Tregs

alone recipients in peripheral blood (PB) (Figure 2F), and in liver,

spleen and bone marrow (Figure 2G). When gated on human

CD45+ cells, CD8+ T cells percentages decreased in spleen and bone

marrow (Figure 2H). Cytotoxic CD8+ T cells play a pivotal role in

the pathogenesis of acute GVHD because they directly attack
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nonmalignant host tissues through effector molecules (28), and

therefore, their decrease at the level of the target tissue in the UCB

Tregs recipients, alone and in combination with ruxolitinib,

highlights an important mechanism deployed by UCB Tregs

to resolve GVHD. Although a relative increase in CD8+ T cells was

observed by flow cytometry in the liver, such an increase was not

reflected on the immunohistology studies (Supplementary Figure S5).

To further examine whether addition of UCB Tregs has an

impact on tissue infiltration with CD3+ lymphocytes, IHC

staining was performed and quantified using H-score (12). In

xenogeneic GVHD model, lung has been identified as a target

organ for immune mediated tissue destruction (29). IHC section

of lung histologic section showed a decrease in CD3+ staining in

ruxolitinib recipients, with a complete resolution of CD3+

infiltrate in UCB Tregs and in UCB Tregs + ruxolitinib recipients.

Quantification of the CD3+ cell infiltrate using H-score mirrored

the histology findings, which shows that UCB Tregs decrease the

T-cell mediated tissue damage in GVHD. Histology examination

of spleen and liver is shown in Supplementary Figure S5.

Furthermore, a corresponding decrease in the inflammatory

cytokines, including GM-CSF, IFNγ, TNFα, sCD40l, IL-1a,

observed in the treatment arms at day +14 (Figure 2I),

underscores the multiple mechanisms at play for dampening

GVHD (30).

Since ruxolitinib is associated with grade 3 and/or 4

thrombocytopenia in steroid refractory GVHD (16), we sought

to examine whether UCB Tregs has an impact on this drug

toxicity. As shown in Figure 2L, on day 14, platelet count

decrease was lesser in UCB Tregs + ruxolitinib recipients when

compared to ruxolitinib alone or UCB Tregs alone recipients.

Furthermore, an improvement in the hemoglobin levels was

observed in the UCB Tregs + ruxolitinib recipients when

compared to ruxolitinib alone recipients (Figure 2K). In

addition to a possible direct protective effect on the bone

marrow, the improvement in cytopenias might be attributed to

the relief from IFNγ mediated bone marrow suppression which

is reversed by the UCB Tregs (31).

We conclude that UCB Tregs synergize with ruxolitinib to treat

xenogeneic GVHD through multiple mechanisms and lead to

improve outcomes. This combination should be examined in a

clinical setting.
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