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Activity and rational
combinations of a novel,
engineered chimeric,
TRAIL-based ligand in diffuse
large B-cell lymphoma

Karolina Piechna1, Aleksandra Żołyniak1, Ewa Jabłońska1,
Monika Noyszewska-Kania1, Maciej Szydłowski1,
Bartłomiej Żerek2, Maria Kulecka3,4, Izabela Rumieńczyk3,
Michał Mikula3 and Przemysław Juszczyński1*

1Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,
Warsaw, Poland, 2Department of Drug Discovery, Adamed Pharma S.A. Pienkow, Czosnow, Poland,
3Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland,
4Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate
Medical Education, Warsaw, Poland
Background: TRAIL (TNF-related apoptosis inducing ligand) exhibits selective

proapoptotic activity in multiple tumor types, while sparing normal cells. This

selectivity makes TRAIL an attractive therapeutic candidate. However, despite

encouraging activity in preclinical models, clinical trials with TRAIL mimetics/

death receptor agonists demonstrated insufficient activity, largely due to

emerging resistance to these agents. Herein, we investigated the cytotoxic

activity of a novel, TRAIL-based chimeric protein AD-O51.4 combining TRAIL

and VEGFA-derived peptide sequences, in hematological malignancies. We

characterize key molecular mechanisms leading to resistance and propose

rational pharmacological combinations sensitizing cells to AD-O51.4.

Methods: Sensitivity of DLBCL, classical Hodgkin lymphoma, (cHL), Burkitt

lymphoma (BL) and acutemyeloid leukemia (AML) to AD-O51.4 was assessed in

vitro with MTS assay and apoptosis tests (Annexin V/PI staining). Markers of

apoptosis were assessed using immunoblotting, flow cytometry or fluorogenic

caspase cleavage assays. Resistant cell lines were obtained by incubation with

increasing doses of AD-O51.4. Transcriptomic analyses were performed by

RNA sequencing. Sensitizing effects of selected pathway modulators (BCL2,

dynamin and HDAC inhibitors) were assessed using MTS/apoptosis assays.

Results: AD-O51.4 exhibited low-nanomolar cytotoxic activity in DLBCL cells,

but not in other lymphoid or AML cell lines. AD-O51.4 induced death-receptor

(DR) mediated, caspase-dependent apoptosis in sensitive DLBCL cells, but not

in primary resistant cells. The presence of DRs and caspase 8 in cancer cells was

crucial for AD-O51.4-induced apoptosis. To understand the potential

mechanisms of resistance in an unbiased way, we engineered AD-O51.4-
frontiersin.org01
5

https://www.frontiersin.org/articles/10.3389/fonc.2022.1048741/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1048741/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1048741/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1048741/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1048741/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1048741&domain=pdf&date_stamp=2022-10-31
mailto:pjuszczynski@ihit.waw.pl
https://doi.org/10.3389/fonc.2022.1048741
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1048741
https://www.frontiersin.org/journals/oncology


Piechna et al. 10.3389/fonc.2022.1048741

Frontiers in Oncology
resistant cells and evaluated resistance-associated transcriptomic changes.

Resistant cells exhibited changes in the expression of multiple genes and

pathways associated with apoptosis, endocytosis and HDAC-dependent

epigenetic reprogramming, suggesting potential therapeutic strategies of

sensitization to AD-O51.4. In subsequent analyses, we demonstrated that

HDAC inhibitors, BCL2 inhibitors and endocytosis/dynamin inhibitors

sensitized primary resistant DLBCL cells to AD-O51.4.

Conclusions: Taken together, we identified rational pharmacologic strategies

sensitizing cells to AD-O51.4, including BCL2, histone deacetylase inhibitors

and dynamin modulators. Since AD-O51.4 exhibits favorable pharmacokinetics

and an acceptable safety profile, its further clinical development is warranted.

Identification of resistance mechanisms in a clinical setting might indicate a

personalized pharmacological approach to override the resistance.
KEYWORDS

TRAIL, apoptosis, DLBCL, venetoclax, drug resistance, endocytosis
Introduction

Programmed cell death - apoptosis - is a conserved, highly

controlled process, essential for the development and

maintenance of homeostasis in multicellular organisms (1).

Apoptosis can be triggered by extrinsic (receptor) or intrinsic

(mitochondrial) pathways, both culminating in the activation of

caspases, a family of enzymes cleaving a large variety of different

substrates and leading eventually to cell death (2). Resistance to

apoptosis allows unrestricted cell growth, and is considered a

hallmark of cancer (3). Accordingly, most of the current cancer

therapeutic strategies act through the induction of programmed

cell death in target tumor cells. However, primary or acquired

resistance to drug-induced apoptosis is a major cause of therapy

failure. Thus, therapeutic reactivation/facilitation of apoptotic

pathways represents a promising approach to elicit cell death in

cancer cells.

TRAIL (TNF-related apoptosis inducing ligand), a pro-

apoptotic Tumor Necrosis Factor family member, represents

an attractive strategy in this aspect owing to its several unique

characteristics. Most importantly, TRAIL exhibits marked

selectivity towards tumor cells, while sparing normal cells.

This selectivity is related to higher expression of TRAIL

receptors DR4 and DR5 (death receptor 4 and 5) on tumor

than on normal cells, but involves multiple additional

mechanisms, such as cFLIP- and XIAP-dependent inhibition

of apoptosis or overexpression of TRAIL decoy receptors in

normal cells (4, 5). Secondly, unlike TNF, TRAIL does not elicit

shock-like symptoms after systemic administration. However,

the clinical use of native TRAIL is severely limited by its short
02
6

half-life (6, 7). To circumvent these limitations, a variety of

TRAIL recombinant analogs or TRAIL mimetics/death receptor

agonists have been developed. Their activity has been studied in

clinical trials. However, these studies have demonstrated only

modest clinical effects of the TRAIL-based strategies due to

insufficient activity and the development of resistance (8–10).

Diffuse large B-cell lymphoma (DLBCL) is the most common

type of aggressive B-cell lymphoma in adults. DLBCL exhibits

highly heterogeneous clinical behavior and a complex molecular

background (11–15). Depending on their transcriptomic profiles,

DLBCLs can be classified into distinct categories: germinal center-

like (GCB) and activated B-cell-like (ABC) subtypes, which differ

also in clinical behavior (13, 16). Despite molecular heterogeneity,

R-CHOP immunochemotherapy remains a standard of care in the

first-line DLBCL treatment. However, this approach is ineffective

in about 1/3 of patients who are either refractory to frontline

therapy or relapse after the initial response, underscoring the need

for better treatment modalities.

In this study, we investigated cytotoxic activity, potential

resistance mechanisms and synergies of a novel, chimeric

protein AD-O51.4 in DLBCL models. AD-O51.4 comprises a

TRAIL-derived sequence fused to tandemly arranged VEGFA-

derived peptides. The positively-charged, N-terminal VEGFA-

derived peptides increase the cell surface binding of the fusion

protein and thus facilitate the TRAIL portion interactions with

its cognate receptors (17). Consistent with its hybrid structure,

AD-O51.4 in previous studies was demonstrated to elicit dual

activity: cytotoxic effects in tumor cells and antiangiogenic

effects on the vascular endothelium (17). Herein, we studied

AD-O51.4 activity in a broad panel of lymphoid and myeloid
frontiersin.org
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tumor cells lines. We show that AD-O51.4 induces apoptosis at

sub-nanomolar concentrations in the sensitive DLBCL cell lines.

We characterize potential targetable AD-O51.4 resistance

mechanisms and propose HDAC, dynamin and BCL2

inhibitors as pharmacological modulators with a potential to

restore the sensitivity to TRAIL-induced apoptosis.
Materials and methods

Cell culture and chemicals

Human DLBCL cell lines were maintained in RPMI-1640

(Lonza; DHL-4, DHL-6, TOLEDO, U2932, K422, RIVA,

PFEIFFER) or Iscove’s Modified Dulbecco’s Medium (Lonza;

Ly-1, Ly-3, Ly-4, Ly-7, Ly-18, Ly-19, HBL-1), each supplemented

with 100 U/mL penicillin, 100 U/mL streptomycin (Lonza), 10%

or 20% heat-inactivated fetal bovine serum (Biowest), L-

glutamine (2mM, Lonza) and HEPES (10Mm, Lonza). Cell

GCB- and ABC designations were determined previously (18).

Cells were grown in a humidified atmosphere at 37°C with 5%

CO2. AD-O51.4 was synthesized and provided by Adamed S.A.

TRAIL was purchased from R&D. Dynasore, venetoclax, SAHA

and panobinostat were purchased from Selleckchem. Methyl-b-
cyclodextrin (MbCD) and filipin were purchased from Sigma

Aldrich. Caspase 3 inhibitor (Z-DEVD-FMK), caspase 8

inhibitor (Z-IETD-FMK), caspase 9 inhibitor (Ac-LEHD-

CMK) and pan-caspase inhibitor (Z-VAD-FMK) were

purchased from Merck-Millipore and used at 20 mM (caspase

8 and 9 inhibitors and pan-caspase inhibitor) or 50 mM (caspase

3 inhibitor) final concentration.
Cell viability, apoptosis and caspase
activity assays

DLBCL cells were incubated on a 96-well plate with either full

medium or medium with indicated inhibitors used at

concentrations specified in figures and figure legends. After

incubation, cell viability was assessed with the 3-(4, 5

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) assay (Promega). IC50 values

were calculated using GraphPad Prism v6.0 software. Detection of

apoptosis was performed with Annexin V-FITC Apoptosis

Detection Kit BD Biosciences and analyzed using FACS Canto

flow cytometer (BD Biosciences). Caspase activity was measured

using Caspase 3/7 Glo assay (Promega). Briefly, 0.15 ×106/mL

cells were incubated overnight with either AD-O51.4 or TRAIL

(0.1 nM). Thereafter, Caspase Glo reagent was automatically

injected to wells and the luminescence was measured using

TriStar LB 941 plate reader (Berthold Technologies).
Frontiers in Oncology 03
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Flow cytometry

Cells were washed with PBS and incubated with

fluorochrome-conjugated mouse anti-DR4-PE, anti-DR5-PE,

DcR1-PE (eBioscience) or anti-VEGFR1/2 (R&D Systems), or

with control isotype-matched antibodies for 30 minutes, then

washed again and analyzed using FACS Canto flow cytometer

(BD Biosciences). To determine receptor changes after

incubation with endocytosis modulator dynasore, cells were

fixed with 4% paraformaldehyde (Polysciences) for 15 min at

37°C, chilled on ice, washed 3 times with PBS and stained with

anti-DR4 and anti-DR5 antibodies as above.
Measurement of the membrane
cholesterol content

Cells were incubated for 1 hour with 10, 20 or 40 mM

MbCD to elute membrane cholesterol and disrupt lipid

raft integrity. Depletion of cholesterol was confirmed with

filipin staining (50 ng/mL) and flow cytometry as previously

described (19).
Immunoblotting

Immunoblotting was performed as previously described (20,

21). Briefly, protein lysates were resolved by SDS-PAGE,

transferred to PVDF membranes (Millipore) and immunoblotted

with primary and appropriate HRP-labelled secondary antibodies

(listed in Supplemental Table 1). Signals were developed by

enhanced luminescence using ECL reagent (Perkin Elmer) and a

digital image acquisition system (G:Box, Syngene). To re-probe

with another antibody, blots were incubated in the stripping buffer

(2%SDS, 62,5mM Tris/HCl, pH 6.8, 0,8% b-mercaptoethanol) at

50°C for 30 minutes, washed extensively in Tris-buffered saline and

analyzed as described above.
RNA sequencing

RNA was extracted using Gene MATRIX Universal RNA/

miRNA Purification Kit (EURx), according to manufacturer

instructions. High-quality samples (RIN≥8, determined with

Bioanalyzer instrument) were enriched in poly(A)-containing

mRNA using Dynabeads mRNA DIRECT Micro Kit (Thermo).

The libraries were prepared with Ion Total RNA-Seq Kit v2

(Thermo) and sequenced on Ion Porton sequencer as described

before (22). The raw reads were processed with Ion Torrent

RNASEQ Analysis pipeline (Torrent Suite version 5.0.4) which

maps reads to hg19 genome with STAR2 and bowtie2 aligners.
frontiersin.org
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Gene counts were generated with htseq-count version 0.6. Gene

expression analysis was performed in R environment (v 4.0.4)

using DESeq2, ClusterProfiler, fgsea and enrichplot packages

(23, 24). Sequencing results are available via Gen Expression

omnibus under accession number GSE208543.
Statistical analysis

All experiments were performed in biological duplicates or

triplicates as indicated in figure legends. The results show

average values including standard deviations. To evaluate the

differences between groups, Mann-Whitney test or Student’s t-

test (for variables with normal distribution) were used, with

p<0.05 as a significance level. Densitometric quantifications of

band intensities were performed using ImageJ software (www.

imagej.net) as described (25). Drug interactions were evaluated

using CompuSyn software using Chou-Talalay method (26).
Results

Cytotoxic activity of AD-O51.4 and its
mechanisms in lymphoma and leukemia
cell lines

We first evaluated the activity of the novel chimeric molecule

AD-O51.4 in a panel of lymphoma and leukemia cell lines

(DLBCL, Burkitt lymphoma (BL), Hodgkin lymphoma (HL)

and acute myeloid leukemia (AML)). We found that AML, cHL

and BL cells were resistant to AD-O51.4 and TRAIL

(Supplemental Figure 1). In contrast, most DLBCL cell lines

were sensitive to AD-O51.4 (Figure 1A and Supplemental

Figure 2). Of note, TRAIL exhibited similar activity in these

models. On the basis of established AD-O51.4 IC50 in viability

assays, DLBCL cell lines were termed sensitive (IC50 from 0.01

nM to 0.1 nM: DHL4, LY7, RIVA), moderately sensitive (IC50

from 0.1 nM to 1 nM: DHL6, U2932), or resistant (IC50 >1 nM:

LY4, TOLEDO; Table 1 and Supplemental Figure 2). Twenty-

four hour incubation of DLBCL cell lines with 0.1 nM AD-O51.4

markedly increased the fraction of apoptotic cells in sensitive

lines, but had only moderate or no effect in moderately sensitive

lines and resistant lines (Figure 1A, Supplemental Figure 3). We

did not observe differences in response between GCB- and ABC-

DLBCL subtypes (Supplemental Figure 4). To further determine

the mechanism of cell death in DLBCL cells, we evaluated the

expression of proteins activated in extrinsic (caspase 8), intrinsic

(caspase 9, tBID), and in common apoptosis pathway (caspase 3,

PARP). In sensitive lines, AD-O51.4 markedly induced caspase

3, 8 and 9 activation and tBID and PARP cleavage, indicating

that extrinsic, intrinsic and effector pathways are activated in

response to the drug. In contrast, resistant cell lines showed no

cleavage of these proteins (Figure 1B). Since death receptors can
Frontiers in Oncology 04
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trigger cell death in caspase-independent mechanisms [e.g via

necroptosis (27)], we next assessed whether AD-O51.4

cytotoxicity requires caspase activation. In these experiments,

caspase 8 or pan-caspase inhibition blocked cell death induced

by AD-O51.4 entirely, even with extended incubation times (up

to 120h; Figures 1C, D). These studies demonstrate that the

extrinsic apoptotic pathway is the principal cell death

mechanism triggered by AD-O51.4.

These findings prompted us to determine whether the

sensitivity of DLBCL cells to AD-O51.4 depends on the DR4/

DR5 or caspase 8 expression. Sensitive cell lines showed

significantly higher surface expression of DR4 (p=0.081) and

markedly higher expression of caspase 8 (p=0.028, Figure 2). Of

note, other TRAIL surface receptors (decoy receptors 1 and 2)

were expressed at very low levels. Since AD-O51.4 includes

VEFG-derived peptide domains, we also determined the

VEGFR1 and VEGFR2 expression on the surface of DLBCL

cell lines. Expression of these receptors was low or undetectable,

indicating that their role in the AD-O51.4 cytotoxicity in DLBCL

cells is unlikely.

Previous reports demonstrated that in certain B-cell

malignancies , the membrane microarchitecture and

constitutive localization of death receptors in lipid rafts are

required for TRAIL-induced apoptosis (28). To determine

whether the same spatial arrangement is required for AD-

O51.4 activity in DLBCL cell lines, we used a cholesterol-

eluting and lipid rafts disrupting agent, methyl-b-cyclodextrin
(MbCD). In sensitive DLBCL cells LY1 and LY7, MbCD
effectively depleted cholesterol from the cell membrane, but

did not affect AD-O51.4 activity (Supplemental Figure 5).
Mechanisms of acquired AD-O51.4
resistance

To define themolecularmechanisms associated with AD-O51.4

resistance, we first developed drug-resistant isogenic cell lines by

incubating sensitive RIVA and LY7 lines with increasing

concentrations of AD-O51.4 until they reached complete resistance

to 0.1 nM of AD-O51.4 (Figure 3A). Similar to cells with primary

resistance (Figure 2), cells with acquired resistance exhibited

decreased caspase 8 and DR4 expression (Figures 3B, C). DR5

expression decreased in RIVA, but not in resistant LY7 cells

(Figure 3C). Thereafter, to understand the mechanisms of

resistance in DLBCL cell lines in an unbiased manner and without

apriorihypotheses,we comparedgene expressionprofilesofparental

and resistant cell lines using RNA sequencing and analyzed the gene

ontology term enrichment in the genes differentially expressed

(adjusted p value <0.05) between isogenic sensitive and resistant

lines (Figure 4). In these analyses, we noted the enrichment of genes

associated with cell membrane dynamics (membrane ruffle and

lamellipodia formation, clathrin-mediated endocytosis, endocytic

vesicle transport, cytoskeleton reorganization, protein membrane
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FIGURE 1

AD-O51.4 induces apoptosis in DLBCL cells. (A) Fraction of apoptotic cells in DLBCL cell lines incubated with 0.1 nM AD-O51.4, 0.1 nM
TRAIL or PBS (control, CTR) for 24h. Early- and late–apoptotic cells are pooled together (Annexin V+/PI- and AnnexinV+/PI+, respectively).
Corresponding dot-plots of a representative experiment are shown in Supplemental Figure 3. Experiments were performed in 2 replicates.
Error bars indicate standard deviations (SD). Differences between number in apoptotic cells are indicated (Student t-test, *p-value<0.05,
**p-value<0.005, ***p-value<0.001, ****p-value<0.0005, ns – not significant. (B) Processing of PARP, Caspase 8, 9, 3 and BID in DLBCL cell
lines incubated with AD-O51.4 or TRAIL. Cells were incubated with the AD-O51.4 or TRAIL for 6h, lysed and processing/cleavage of
indicated proteins was evaluated using immunoblotting. GAPDH served as a loading control. Cleavage of the protein is manifested either by
appearance of its cleaved (lighter) form (e.g. PARP, CASP3, CASP8), or by disappearance of a full-length protein (e.g BID). (C) Caspase
inhibition blocks induction of apoptosis in AD-O51.4-sensitive DLBCL cells. LY1 or RIVA cells were pre-incubated with caspase 3, 8 9,
pan-caspase inhibitor or DMSO (vehicle, VEH) for 1 h, then with 0.1 nM AD-O51.4, 0.1 nM TRAIL for subsequent 48 h. Viability was assessed
with an MTS assay. Bars represent the average of three independent experiments, error bars represent standard deviations, statistical
differences are indicated as in panel A.(D) Prolonged incubation with AD-O51.4 does not induce caspase-independent cell death in DLBCL
cells. DHL4 cells were pretreated with Z-VAD-FMK pan-caspase inhibitor (20 mM, 1 h), and then incubated with AD-O51.4 for 96-120h. Cell
viability was evaluated with an MTS assay. Bars represent the average of three independent experiments, error bars represent standard
deviations, statistical differences are indicated as in panel (A) Results were normalized to untreated cells (viability =100%).
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trafficking,GTP-ase activity), and regulation of apoptosis. To further

understand themechanisms of acquired resistance to AD-O51.4, we

performed Gene Set Enrichment Analysis (GSEA; Figure 5).

Consistent with the results of GO term enrichment, these analyses

confirmed that AD-O51.4-resistant cells are characterized by

overexpression of gene sets associated with clathrin-mediated

endocytosis, dynamin pathway and cytoskeleton reorganization,

suggesting that AD-O51.4 resistance might be acquired through

increased receptor endocytosis. Resistant cells also showed

differential expression of genes associated with apoptosis,

indicating that modulation of apoptosis executing proteins might

be another mechanism leading to resistance. Third, resistant cells

demonstrated differential expression of HDAC-dependent genes.

Since epigenetic mechanisms facilitate adaptive reprogramming of

gene expression in response to various stress stimuli, including

cytotoxic drugs, and are responsible for cell phenotypic plasticity

(29), we hypothesized that epigenetic changesmight be also involved

in acquisition of AD-O51.4 resistance. Importantly, since increased

endocytosis of death receptors, modulation of the apoptosis-

controlling genes and/or epigenetic reprogramming can be

pharmacologically targeted, we hypothesized that modulation of

these pathways would restore the AD-O51.4 sensitivity.
Pharmacological modulation of
AD-O51.4 resistance in DLBCL models

To verify these hypotheses, we first tested the synergy between

AD-O51.4 and a proapoptotic BCL2 inhibitor, venetoclax. In

these experiments, we used a resistant cell line TOLEDO and a

moderately sensitive line U2932. As predicted, venetoclax
Frontiers in Oncology 06
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synergized with AD-O51.4 (Combination Index [CI]<0.5, for all

dose combinations, Figures 6A-D). To confirm these observations,

we assessed the biochemical markers of AD-O51.4-induced

apoptosis in these cells. While venetoclax or AD-O51.4 induced

weak or no PARP and caspase cleavage, the combination of these

drugs induced a markedly increased abundance of cleaved forms

of these markers (Figures 6E-F). Next, we asked whether HDAC

inhibitors would sensitize resistant cells to AD-O51.4-mediated

apoptosis. For these experiments, we used pan-HDAC inhibitors -

SAHA and panobinostat. While each of the HDAC inhibitors

showed little activity when used as a single agent, they markedly

sensitized resistant/moderately sensitive DLBCL cell lines to AD-

O51.4 (CI<0.54 and CI<0.52 for SAHA + AD-O51.4

combinations in Toledo and U2932, respectively; CI<0.44 and

CI<0.77 for panobinostat + AD-O51.4 combinations in Toledo

and U2932, respectively; Figure 7).

Finally, we determined whether modulation of clathrin-

mediated endocytosis increases AD-O51.4 activity. To test this

hypothesis, we used dynasore, a cell-permeable, non-

competitive inhibitor of GTPase activity of dynamin 1 and 2

(DNM1/2), essential for clathrin- coated vesicle formation and

subsequent scission of nascent endosome (30). As expected,

dynasore increased surface expression of DR4 and DR5 in

resistant/moderately sensitive cell lines TOLEDO and U2932

in a dose-dependent manner (Figures 8A, B). Importantly,

dynasore used as a single agent in these experiments showed

no cytotoxic activity over short incubation periods. Consistent

with the increased death receptor expression, dynasore-

pretreated TOLEDO and U2932 cells exhibited dramatically

increased levels of apoptosis (Figures 8C, D).
Discussion

TRAIL exhibits unique proapoptotic activity against a

variety of tumor cells while sparing non-transformed cells.

These characteristics placed the TRAIL ligand-receptor system

in the spotlight as a potential cancer therapy and multiple

TRAIL mimetics were evaluated in clinical trials. Results of

these studies generally demonstrated acceptable toxicity, but the

limited activity of TRAIL-based approaches due to the rapid

development of resistance. The resistance to TRAIL mimetics/

analogs can emerge in several mechanisms. First, since TRAIL

requires death receptors 4 and 5 (DR4/5) for activity, loss of the

surface receptors, their post-translational modifications, changes

in lipid rafts or induction of decoy receptors expression confers

resistance to TRAIL-based therapies. Second, blockades in

TRAIL-initiated apoptotic signal transduction or induction of

anti-apoptotic proteins attenuate TRAIL therapeutic activity.

Third, multiple transcriptional and epigenetic mechanisms,

triggered in response to TRAIL signaling, can program tumor

cells for TRAIL or TRAIL mimetics resistance.
TABLE 1 AD-O51.4 and TRAIL half maximal inhibitory concentrations
(IC50) in DLBCL cell lines.

DLBCL cell line AD-O51.4 IC50 [nM] TRAIL IC50 [nM]

DHL4 0.012 0.014

K422 0.011 0.066

LY1 0.047 0.04

LY7 0.04 0.039

RIVA 0.05 0.013

LY18 0.042 0.17

LY19 0.028 0.564

HBL1 0.07 0.13

DHL6 0.14 0.17

U2932 0.25 >1

LY4 >1 >1

TOLEDO >1 >1

PFEIFFER >1 >1

LY3 >1 >1
Cells with IC50 less than 0.1 nM were considered highly sensitive, cells with IC50 between
0.1 and 1 nM were considered moderately sensitive, and cells with IC50 greater than 0.1
nM were considered resistant.
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Since TRAIL/TRAIL mimetics exhibit a very attractive safety

profile, despite the limited efficacy and development of

resistance, TRAIL-based therapeutic strategies remain still in

the focus of researchers and clinicians as a potential therapeutic
Frontiers in Oncology 07
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strategy. The reversible nature of at least some of TRAIL

resistance mechanisms leaves a relatively broad space for

sensitization to TRAIL or TRAIL mimetics. Detailed

characterization of these mechanisms and identification of
B

C

A

FIGURE 2

Expression of death receptors and caspase 8 is higher in AD-O51.4 –sensitive DLBCL cell lines. (A) Expression of death receptors 4 and 5 (DR4,
DR5) decoy receptors 1 and 2 (DcR1, DcR2) and VEGF receptors 1 and 2 (VEGF-R1, VEGF-R2) was assessed in DLBCL cell lines using FACS and
appropriate fluorochrome – conjugated antibodies. Bars indicate isotype control-normalized mean fluorescence values for each receptor. The bar
plot represents the representative of three independent experiments. (B) Comparison of isotype-control normalized MFI values of DR4 and DR5 for
AD-O51.4 -sensitive and –resistant DLBCL cell lines. (C) Left panel: expression of caspase 8 in AD-O51.4 -sensitive and –resistant DLBCL cell lines
was assessed by immunoblotting. GAPDH served as a loading control. Right panel: CASP8 band intensities were quantified using pixel densitometry
and normalized to GAPDH levels. Differences between sensitive and resistant cell lines were calculated using Student t-test.
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potential targetable vulnerabilities in preclinical models is

crucial for future precise pharmacological interventions

restoring sensitivity.

In this study, we evaluated a newly developed TRAIL

mimetic, AD-O51.4. AD-O51.4 is a hybrid protein, composed

of TRAIL-derived DR ligand fused to N-terminal VEGF derived,

positively charged peptide. This molecule exhibits several

unique characteristics making it a promising clinical candidate.

First, AD-O51.4 exhibits favorable pharmacokinetics, including

extended plasma half-life, large volume of distribution and

preferential accumulation in tumors (17). In preclinical

models, AD-O51.4 demonstrated a very good safety profile –

neither mice nor monkeys treated with AD-O51.4 demonstrated

symptoms of drug toxicity (17). AD-O51.4 exhibited

promising toxicity in solid tumor models (cell lines and

patient derived xenografts - lung adenocarcinoma, colorectal,

large-cell lung, esophageal, pancreatic, bladder, and kidney

cancers, hepatoblastoma and osteosarcoma) (17). Recently, the

efficacy of AD-O51.4 has been also demonstrated in a broad

panel of colorectal cancer cell lines and patient derived

xenografts (31). These studies also highlighted the unique

mechanism of action of AD-O51.4, combining death receptor

signaling with DR-unrelated mechanism, driven by VEGF-

derived portion of AD-O51.4, which induced FAK (focal

adhesion kinase) signaling and remodeling of the actin
Frontiers in Oncology 08
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cytoskeleton (17). The VEGF-derived AD-O51.4 portion also

suppressed angiogenesis in vitro and in vivo (17).

Herein, we demonstrate that AD-O51.4 exhibits high

activity in several DLBCL cell lines. We demonstrated that

DR4/5 expression was higher in sensitive cells and the caspase

activation is crucial for AD-O51.4 activity, while caspase-

independent cell death pathways are not involved. In solid

tumors, binding of the VEGF-derived, positively charged N-

terminal portion of AD-O51.4 to the cell surface led to FAK

activation and abnormalities in the actin cytoskeleton,

characteristic of integrin mediated death. Similarly to DR-

induced apoptosis, integrin-mediated death involves activation

of caspase 8, although in complexes with actin and integrins, not

with FADD and DRs (32). Consistent with this, neutralization of

the positive charge of AD-O51.4 attenuated its proapoptotic

activity in solid tumor models (17). However, given the low

expression of VEGFR in DLBCL cells, VEGFR-mediated activity

in these tumors is unlikely. Regardless of the upstream

mechanism triggered by AD-O51.4 in DLBCL, apoptosis

initiated by this ligand requires high expression of caspase 8.

This is consistent with previous studies, which demonstrated

resistance of cell lines with low caspase 8 expression to TRAIL

(33, 34).

Consistent with previous clinical experience with TRAIL

analogues, several DLBLC cell line models exhibited primary
B

C

A

FIGURE 3

Engineered AD-O51.4 - resistant DLBCL cell lines have decreased caspase 8 and death receptor expression. (A) LY7 and RIVA cell lines were
incubated with increasing doses of AD-O51.4 until reached complete resistance to 0.1 nM AD-O51.4. The viability of parental (purple bars) and
engineered resistant (blue bars) cells is shown. Bars indicate the average of three experiments and error bars represent standard deviations.
Results were normalized to untreated (control) cells. (B) Expression of caspase 8 in parental vs resistant LY7 and RIVA cells was assessed by
immunoblotting. (C) Surface expression of DR4 and DR5 in parental vs resistant LY7 and RIVA cells was assessed by flow cytometry. Boxes
represent average MFI from 3 replicates normalized to isotype-matched antibody, error bars represent standard deviations. *p-value<0.05, **p-
value<0.005, ns – not significant.
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resistance to AD-O51.4. We also demonstrated that the

resistance can be acquired through repeated/extended

exposure to the drug, mimicking acquired resistance during

therapy. To identify potential strategies sensitizing to AD-O51.4,

we characterized the key biological mechanisms driving primary

and acquired resistance in these cells. We demonstrated that

AD-O51.4 sensitivity can be increased by blocking DR

internalization (dynasore), blocking BCL2 antiapoptotic

activity (venetoclax) or by modulating epigenetic mechanisms,

such as histone acetylation (SAHA, panobinostat). Although

endocytosis inhibitors used in these studies are “tool”

compounds, unlikely to enter clinical trials, there are clinically

available modulators of clathrin-dependent endocytosis. For

example, certain phenothiazine derivatives, such as

chloropromazine, inhibit dynamin 1 and 2 GTP-ase activity at

clinically achievable concentrations. Given the critical role of

dynamins in the scission of nascent vesicles and endocytosis,

such an approach appears to be a rational strategy to increase

DR density on target cells.
Frontiers in Oncology 09
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Since the identified resistance mechanisms are likely operating

redundantly in the same cells, and are likely susceptible to clonal

selection, triple- and higher-order drug combinations might

exhibit synergistic AD-O51.4 (re)sensitizing effect. Importantly,

numerous studies of combinations of TRAIL analogues with

empirical chemotherapeutics/targeted agents indicated that these

strategies are generally well tolerated. However, these studies were

not driven by biomarkers and involved all-comers. Given the

empirical nature of these combinations, ignorant to individual and

sometimes redundant molecular mechanisms driving resistance, it

is not surprising that they also exhibited limited activity. Thus,

future strategies involving TRAIL analogues including AD-O51.4,

should be more personalized, biomarker and knowledge-driven.

For example, based on the preclinical data presented herein - low

caspase 8 expression might represent the biomarker of resistance

and exclusion criterion. Second, given the mechanism of action

and cellular plasticity leading to resistance, the therapeutic

strategies should be designed upfront to maximize the response

and eliminate tumor cells before resistance occurs. This goal can
B

A

FIGURE 4

Gene ontology (GO) enrichment analysis in genes differentiating sensitive (parental) and engineered resistant LY7 (A) and RIVA cells (B). Graphs
demonstrate top significantly enriched GO CC (cellular component), GO BP (biological process) and GO MF (molecular function) terms.
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FIGURE 5

Gene set enrichment analysis showing differentially expressed gene sets in parental (sensitive) and engineered resistant LY7 (A) and RIVA
(B) cells. Normalized enrichment scores, raw and adjusted p-values of apoptosis, endocytosis and HDAC-related gene-sets are shown. Plots
indicate the positions of genes from a given gene set in a list of differentially expressed genes ranked by the value of Wald statistics. NES,
Normalized Enrichment Score; padj, adjusted p-value.
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FIGURE 6

Venetoclax sensitizes resistant DLBCL cells to AD-O51.4 A, B. Primary resistant TOLEDO and U2932 cells were preincubated (5h) with indicated
doses of venetoclax and then treated with AD-O51.4 for 72 h. Cell viability was assessed using an MTS assay in triplicates. Results were
normalized to control (untreated) cells. Combination indexes (CI) for all dose combinations are indicated below the plots. C, D. Increased
apoptosis in primary resistant TOLEDO and U2932 cells incubated with a combination of venetoclax and AD-O51.4. Cells were preincubated
(5h) with 5 nM venetoclax and subsequently treated with z 0.1 nM AD-O51.4 for 24 h. Apoptosis was assessed using Annexin V/PI staining. Bars
indicate the average of the combined fraction of early and late apoptotic cells (PI-/AnnexinV+ and PI+/AnnexinV+, respectively) from three
replicates. Error bars indicate standard deviations. E, F. Expression and cleavage of caspase 3, 8, 9 and PARP in TOLEDO and U2932 cells after
1 h of preincubation with venetoclax (5 nM) and subsequent 5 h treatment with 0.1 nM AD-O51.4. In panels A-D, statistical differences were
evaluated by t-test; *p-value<0.05, **p-value<0.005, ***p-value<0.001, ns – not significant.
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FIGURE 7

HDAC inhibitors sensitize resistant DLBCL cells to AD-O51.4. (A) Primary resistant TOLEDO and U2932 were preincubated with HDAC inhibitors
SAHA (100 to 800 nM) or panobinostat (0.25 to 2 nM) or DMSO (control) for 24 h. Thereafter, cells were treated with 0.1 nM AD-O51.4 or PBS
for additional 48 h. Cell viability was assessed using an MTS assay in triplicates. Bars and error bars indicate averages and standard deviations,
respectively. Results were normalized to untreated cells (control). Combination indexes (CI) for all dose combinations are indicated below the
plots. (B) Cells were treated as in A for 24h, and apoptosis was determined using Annexin V/PI staining. Bars indicate the average of the
combined fraction of early and late apoptotic cells (PI-/AnnexinV+ and PI+/AnnexinV+, respectively) from two replicates. Error bars indicate
standard deviations. In panels A-B, statistical differences were evaluated by t-test; *p-value<0.05, **p-value<0.005, ***p-value<0.001, ns – not
significant.
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be achieved by rational combinations, such as presented herein.

Individualized therapeutic approaches based on such principles

are most likely to increase the success rate of TRAIL-based

clinical trials.
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FIGURE 8

Dynamin inhibition increases the surface expression of death receptors and increases sensitivity to AD-O51.4. A, B. Dynamin inhibitor dynasore
increases surface DR4 and DR5 expression in TOLEDO and U2932 in a dose-dependent manner. Cells were incubated with DMSO (control) or
20 - 40 mM dynasore for 30 minutes and fixed to prevent further endocytosis/recycling of DR4 and DR5. The expression of death receptors was
assessed by flow cytometry. Bars indicate mean fluorescence intensity (MFI) normalized to isotype-matched antibody. Data represents an
average of 3 experiments, error bars represent standard deviations. C, D. Inhibition of endocytosis sensitizes primary resistant TOLEDO and
U2932 cells to AD-O51.4 -induced apoptosis. Cells were pretreated with dynasore (20 - 40 mM) for 1 h and treated with 0.1 nM AD-O51.4 for
24 h. Apoptosis was determined using Annexin V/PI staining. Bars indicate the average of the combined fraction of early and late apoptotic cells
(PI-/AnnexinV+ and PI+/AnnexinV+, respectively) from two replicates. Error bars indicate standard deviations. In panels A-D, statistical
differences were evaluated by t-test; *p-value<0.05, **p-value<0.005, ***p-value<0.001, ns – non significant.
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29. Hajji N, Garcıá-Domıńguez DJ, Hontecillas-Prieto L, O’Neill K, de Álava E,
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Background: Characterization of gene mutation profiles can provide new

treatment options for patients with diffuse large B-cell lymphoma (DLBCL).

However, this method is challenged by the limited source of tissue specimens,

especially those of DLBCL patients at advanced stages. Therefore, in the current

study, we aimed to describe the gene mutation landscape of DLBCL using

circulating tumor DNA (ctDNA) samples obtained from patients’ blood samples,

as well as to explore the relationship between ctDNA mutations and the

prognosis and treatment response of patients with newly diagnosed DLBCL.

Methods: A total of 169 newly diagnosed Chinese DLBCL patients were

included in this study, among which 85 patients were divided into a training

set and 84 were assigned into a validation set. The mutation profile of a 59-

gene panel was analyzed by targeted next generation sequencing (NGS) of the

patients’ ctDNA samples. Differences in clinical factors between patients with

and without ctDNA mutations were analyzed. In addition, we also explored

gene mutation frequencies between GCB and non-GCB subtypes, and the

relationship between gene mutation status, clinical factors, mean VAF (variant

allele frequencies) and the patients’ overall survival (OS) and progression-free

survival (PFS).
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Results: ctDNA mutations were detected in 64 (75.3%) patients of the training

set and 67 (79.8%) patients of the validation set. The most commonly mutated

genes in both sets were PCLO, PIM1, MYD88, TP53, KMT2D, CD79B, HIST1H1E

and LRP1B, with mutation frequencies of >10%. Patients with detectable ctDNA

mutations trended to present advanced Ann Arbor stages (III-IV), elevated LDH

(lactate dehydrogenase) levels, shorter OS and PFS, and a lower complete

response (CR) rate to the R-CHOP regimen compared with DLBCL patients

without ctDNAmutations. In addition, mean VAF (≥4.94%) and PCLOmutations

were associated with poor OS and PFS.

Conclusion: We investigated the ctDNA mutation landscape in Chinese

patients with newly diagnosed DLBCL and found that ctDNA could reflect

tumor burden and patients with detectable ctDNA mutations trended to have

shorter OS and PFS and a lower CR rate.
KEYWORDS

diffuse large B cell lymphoma, circulating tumor DNA, targeted next-generation
sequencing, mutation, prognosis
Background

Diffuse large B-cell lymphoma (DLBCL) is the most

common type of non-Hodgkin’s lymphoma (NHL) worldwide

with high clinical and genetic heterogeneity and worse outcomes

(1). Gene expression profiling (GEP) divides DLBCL into two

main subtypes, namely the germinal center B-cell (GCB) and

activated B-cell (ABC) subtypes, with different responses to

chemotherapy and targeted agents (2, 3). Recently, Schmitz

et al. (4) and Wright et al. (5) classified DLBCL into five and

seven genetic subtypes based on gene mutation and

translocation profiles. Although these current genotyping

techniques are widely accepted, they are challenged by the

limited source of tissue specimens, especially for the detection

of minimal residual disease (MRD). Thus, it is vital to develop

alternative genotyping methods based on patients’ body fluids.

Liquid biopsy is a non-invasive method reflecting intra-tumor

heterogeneity with no need for fresh tissues (6) and has potential

values in diagnosis, MRD monitoring and treatment choice of

lymphomas (7, 8). Circulating tumor DNA (ctDNA) is the DNA

fragment derived from tumor cells, which accounts for about 0.1% of

cell-free DNA (cfDNA) and emerges as one of themost powerful tools

for the early diagnosis of cancers (9). Evidence has demonstrated that

the allele frequencies (AFs) of individual mutations detected in tumor

samples are highly correlated with those observed in paired plasma

cfDNA samples (8, 10). Thus, an analysis of ctDNA in cancer patients

can reveal both genetic alterations, including single nucleotide variants

(SNVs), insertions/deletions (Indels), chromosomal rearrangements,

and copy number variations (CNVs), which can be used for

genotyping, and ctDNA content, which can reflect tumor burden
02
21
(11). Kurtz et al. (11) explored the prognostic value of ctDNA level

before and during immunochemotherapy for patients with DLBCL

from North America and Europe; they found that pretreatment

ctDNA level was an independent prognostic factor in DLBCL. Liu

et al. (10) explored the mutation profiles in Chinese patients with

newly diagnosed and relapsed/refractory (R/R) DLBCL and observed

highly consistent ctDNA and tissue mutation profiles in these patients

(sensitivity: 87.50%).

Considering that different races can have varied gene mutation

profiles and that the clinical value of ctDNA in Chinese patients

remains largely unknown, in this study, we explored the clinical

significance of ctDNA in 169 newly diagnosed Chinese DLBCL

patients. These patients were first divided into a training set and a

validation set. Then we assessed the relationship between ctDNA

mutations and clinicopathological features, as well as the roles of

ctDNA mutations, including the detected mutation site/gene

number, the mean VAF (variant allele frequency) and the

mutation status of genes, in the overall survival (OS) and

progression-free survival (PFS) in these patients.
Patients and methods

Patients

A total of 169 newly diagnosed Chinese DLBCL patients were

enrolled at Shanxi Cancer Hospital from June 2018 to December

2019. Patients were considered eligible for inclusion if they aged ≥ 18

years and had histologically confirmed DLBCL according to the

2016 World Health Organization (WHO) Classification of Tumors
frontiersin.org
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of Haematopoietic and Lymphoid Tissues (12). The patients were

classified into GCB and non-GCB subgroups according to the Hans

algorithm (13). The disease was staged based on the 2014 Lugano

Classification and the international prognositic index (IPI) was

applied for risk stratification. Bone marrow involvement was

assessed by flow cytometry, combined with immunoglobulin (Ig)

gene rearrangement and positron emission tomography-computed

tomography (PET-CT). A tumor lesion was judged as a bulky

disease if the product of length and width of the tumor was ≥

7.5 cm. All the patients were treated with the R-CHOP regimen

(rituximab, cyclophosphamide, doxorubicin, vindesine, prednisone)

and followed up until March, 2022. The treatment response,

including CR (complete response), PR (partial response), SD

(stable disease) and PD (progression disease), was assessed by CT/

magnetic resonance imaging (MRI) and PET/CT according to the

2022 Guidelines of Chinese Society of Clinical Oncology (CSCO)

after two to four cycles of the R-CHOP regimen. The data described

in thismanuscript were approved by the Ethics Committee of Shanxi

Cancer Hospital (Ethical approval No.2021013) and conducted in

accordance with the Helsinki declaration.

All study activities were approved by the Ethics Committee

of Shanxi Cancer Hospital (Ethical approval No.2021013), and

informed consent was obtained in accordance with the

Declaration of Helsinki.
DNA extraction and targeted sequencing

Ten milimeter of peripheral blood samples were collected

using EDTA-containing tubes within 1 week of receiving

anticancer treatment and centrifuged at 820 g for 10 min to

obtain plasma samples, which were centrifuged at 20,000 g for

10 min. Next, cfDNA was extracted using the QIAamp

Circulating Nucleic Acid Kit (QIAGEN, Gemany) according to

the manufacturer’s instructions. Subsequently, the mutation

profile of a 59-gene panel based on literatures (8, 14) was

analyzed by targeted next generation sequencing (NGS) of the

cfDNA samples (Shanghai Rightongene Bio-tech Co. Ltd,

Shanghai, China; Supplementary Table 1) with Illumina

NovaSeq 5000 (2×150-bp paired-end sequencing). In this

study, VAF was defined as the ratio of the number of mutated

alleles to the total number of alleles detected by NGS at a specific

genome locus. Mutations with a VAF value ranging from 45% to

55% and ≥ 95% were identified and considered as heterozygous

and homozygous germline mutations, respectively. Mean VAF

was calculated as follows: Mean VAF = The sum of VAF values

of all mutations/the total number of mutations.
Statistical analysis

The maftools (“clinical Enrichment”) package of R was used

to analyze the differences in clinical factors and gene mutation
Frontiers in Oncology 03
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frequencies between the GCB and non-GCB subgroups using

Chi-square test or Fisher’s exact test. The tableone package of R

was applied to analyze the differences in mean VAF between the

two groups. Survival probabilities were estimated using the

Kaplan-Meier method. We considered two survival endpoints:

PFS, the time intervals from diagnosis to progression, relapse, or

death from any cause; and OS, the time intervals from diagnosis

to death resulting from any cause. Factors with a P value <0.1

were included in the multivariate Cox regression models. P

values < 0.05 were considered as statistically significant.
Results

Relationship between clinicopathological
features and ctDNA mutation status in
patients with newly diagnosed DLBCL

A total of 169 newly diagnosed DLBCL cases with valid

targeted NGS data were included in this study, with 85 patients

in the training set and 84 in the validation set. Detailed clinical

information of the 169 patients is provided in Supplementary

Table 2. Sixty-four (75.3%) patients of the training set carried

ctDNA mutations. These patients were significantly enriched in

Ann Arbor stages III-IV (69.8% vs. 38.1% in Ann Arbor stages I-II,

P=0.002) and tended to have elevated LDH (lactic dehydrogenase)

levels (53.1% vs. 14.3%, P=0.004) as compared with the patients

without detectable ctDNA mutations (Table 1). Similar results

were observed in the validation set, in which 67 (79.8%) patients

having detectable ctDNA mutations were significantly enriched in

advanced Ann Arbor stages (76.1% vs. 47.1%, P=0.041) and

exhibited elevated LDH levels (56.7% vs. 18.8%, P=0.014) as

compared with those without detectable ctDNA mutations

(Table 2). In addition, the presence of ctDNA mutations was

also associated with a higher incidence of bulky disease (41.8% vs.

0.0%, P=0.003) only in the validation group (Table 2). These results

indicated that ctDNA mutation status was closely associated with

the staging and LDH level of newly diagnosed DLBCL patients.
ctDNA mutation profiles of patients with
newly diagnosed DLBCL

Next, we explored the ctDNA mutation profiles of DLBCL

patients of the training and validation sets. Detailed information

on mutation sites is provided in Supplementary Table 3 and

Supplementary Table 4. On average, we detected 6.1 ± 7.1

genetic mutations in patients with confirmed ctDNA

mutation. Mutations in PCLO (26%), PIM1 (25%), MYD88

(21%), TP53 (20%), KMT2D (16%), CD79B (12%), HIST1H1E

(12%) and LRP1B (11%) genes were the most frequently detected

variations, with mutations in each of the genes being found in no

less than 9 patients (10%) of the training set (Figure 1A).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1003957
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guan et al. 10.3389/fonc.2022.1003957
Consistently, PCLO (26%), PIM1 (24%), MYD88 (20%), TP53

(24%), KMT2D (17%), CD79B (17%), HIST1H1E (17%) and

LRP1B (20%) genes also showed high mutation frequencies in

the validation set (Figure 1B). In addition, we assessed the

difference in ctDNA mutation profile between the GCB and

non-GCB subtypes in the 169 DLBCL patients. The results

demonstrated that the mutation frequencies of PIM1 (30.4%

vs. 12.7%) and CD79B (18.8% vs. 5.5%) were significantly higher

in patients of the non-GCB subtype than in those of the GCB

subtype (Figure 1C). These results depicted the ctDNAmutation

landscape of patients with newly diagnosed DLBCL.
ctDNA mutation status was associated
with the response to R-CHOP and
clinical manifestation in newly diagnosed
DLBCL patients

Next, we assessed the relationship between ctDNA

mutation status and the response to R-CHOP regimen in
Frontiers in Oncology 04
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newly diagnosed DLBCL patients. The CR rate in DLBCL

patients without ctDNA mutations was obviously higher than

that in those carrying ctDNA mutations in both the training

(P=0.048) and validation sets (P=0.050) (Tables 1, 2). However,

there were no valid differences in the rates of PR, SD and PD

between DLBCL patients with different mutation numbers,

which is mean VAF values and mutation profiles because the

training and validation sets exhibited inconsistent findings. In

addition, we compared the mean VAF value in patients with

different ages (≤60 vs. >60 years), genders (male vs. female),

bone marrow involvement statuses (positive vs. negative),

Hans classifications (GCB vs. non-GCB), bulky disease

statuses (positive vs. negative), IPIs (1-3 vs. 4-5), Ann Arbor

stages (I-II vs. III-IV) and LDH levels (high vs. low). The

results showed that the mean VAF value was significantly

increased in patients with bone marrow involvement, higher

IPI scores (4, 5) and elevated LDH levels in both of the training

(Figures 2A–C) and validation sets (Figures 2D–F).

Collectively, these results demonstrated that ctDNA

mutations were associated with a lower CR rate and
TABLE 1 The clinicopathologic features of DLBCL patients with mutation or without in training group.

Clinicopathologic features Non-mutation group Mutation group P

Age, n (%) 0.663

≤60 10 (47.6) 25 (39.1)

>60 11 (52.4) 39 (60.9)

Gender 1.000

Female 8 (38.1) 24 (37.5)

Male 13 (61.9) 40 (62.5)

Bone marrow involvement, n (%) 0.192

No 21 (100.0) 54 (87.1)

Yes 0 (0.0) 8 (12.9)

Bulky disease, n (%) 0.131

No 19 (90.5) 44 (71.0)

Yes 2 (9.5) 18 (29.0)

Ann Arbor stage, n (%) 0.002

I-II 13 (61.9) 19 (30.2)

II-IV 8 (38.1) 44 (69.8)

Han’s classification, n (%) 0.319

GCB 9 (45.0) 19 (29.7)

Non-GCB 11 (55.0) 45 (70.3)

IPI score, n (%) 0.103

0-3 20 (95.2) 47 (75.8)

4-5 1 (4.8) 15 (24.2)

LDH, n (%) 0.004

Normal 18 (85.7) 30 (46.9)

Elevated 3 (14.3) 34 (53.1)

Response to therapy, n (%) 0.048

CR 14 (20.3) 26 (37.7)

PR+SD+PD 4 (5.8) 25 (36.2)
frontiersi
LDH, lactic dehydrogenase; CR, complete response; PR, partial response; SD, stable disease; PD, progression disease.
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aggressive clinical manifestation in patients with newly

diagnosed DLBCL.
DLBCL patients carrying ctDNA
mutations demonstrated poor prognosis

We also compared survival outcomes between patients

with and without ctDNA mutations. In the training set, the 64

patients with ctDNA mutations exhibited significantly

shorter OS than the 19 patients without ctDNA mutations

(P=0.03) (Figure 3A). PFS was also shorter in patients with

ctDNA mutations, albeit the difference was not statistically

significant (P=0.095) (Figure 3B). Next, we validated these

results in the validation set, in which 67 patients had

detectable ctDNA mutations and 17 patients did not.

Compared with patients without ctDNA mutations, both

OS (P=0.011) (Figure 3C) and PFS (P=0.0032) (Figure 3D)

were significantly shorter in patients with ctDNA mutations.

These results indicated that ctDNA mutations were
Frontiers in Oncology 05
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associated with poor prognosis in patients with newly

diagnosed DLBCL.
Mean VAF and PCLO mutations were
associated with poor prognosis in
patients with newly diagnosed DLBCL

To further explore the relationship between ctDNA

mutation status and the prognosis of patients with newly

diagnosed DLBCL, we assessed the effects of mutation

number, mutated gene number and mean VAF on OS and

PFS using Kaplan-Meier curves generated based the parameters’

average/median values. The results demonstrated that only

mean VAF (the median value of which was 4.94%) was closely

associated with patients’ prognosis in the training set.

Specifically, the OS (P=0.024) and PFS (P=0.043) of patients

with a mean VAF ≥ 4.94% were significantly shorter than those

of patients with a mean VAF < 4.94% in the training set

(Figures 4A, B). We next verified these findings in the
TABLE 2 The clinicopathologic features of DLBCL patients with mutation or without in validation group.

Clinicopathologic features Non-mutation group Mutation group P

Age, n (%) 0.029

≤60 14 (82.4) 33 (49.3)

>60 3 (17.6) 34 (50.7)

Gender, n (%) 1.000

Female 7 (41.2) 29 (43.3)

Male 10 (58.8) 38 (56.7)

Bone marrow involvement, n (%) 0.525

No 17 (100.0) 58 (92.1)

Yes 0 (0.0) 5 (7.9)

Bulky disease 0.003

No 17 (100.0) 39 (58.2)

Yes 0 (0.0) 28 (41.8)

Ann Arbor stage, n (%) 0.041

I-II 9 (52.9) 16 (23.9)

III-IV 8 (47.1) 51 (76.1)

Han’s classification, n (%) 0.085

GCB 9 (52.9) 18 (27.3)

Non-GCB 8 (47.1) 48 (72.7)

IPI score, n (%) 0.058

0-3 17 (100.0) 51 (76.1)

4-5 0 (0.0) 16 (23.9)

LDH, n (%) 0.014

Normal 13 (81.2) 29 (43.3)

Elevated 3 (18.8) 38 (56.7)

Response to therapy, n (%)

CR 12 (16.9) 26 (36.6)

PR+SD+PD 4 (5.6) 29 (40.8)
frontiersi
LDH, lactic dehydrogenase; CR, complete response; PR, partial response; SD, stable disease; PD, progression disease.
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validation set. Compared with those in patients with a mean

VAF < 4.94%, the OS (P=0.093) and PFS (P=0.014) were shorter

in patients with a mean VAF ≥ 4.94%, albeit the difference in OS

was not statistically significant (Figures 4C, D).

In addition, we assessed the effects of gene mutation status

on the OS and PFS of patients with newly diagnosed DLBCL.

Due to the relatively small sample size, we only assessed genes

with a mutation frequency ≥ 10%. In the training set, LRP1B

(Supplementary Figures 1A, B) and PCLO mutations

(Figures 5A, B) were significantly associated with shorter OS

and PFS; whereas in the validation set, only PCLO mutations

were significantly associated with shorter OS and PFS

(Figures 5C, D). These results demonstrated that a high mean

VAF value and PCLO mutations predicted poor prognosis in

patients with newly diagnosed DLBCL.
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Multivariate analysis of prognostic
factors in patients with newly diagnosed
DLBCL

Finally, multivariate Cox analysis was performed to further

explore prognostic factors in patients with newly diagnosed

DLBCL. The univariate Cox analysis showed that age > 60

years was an influencing factor on both OS (P=0.038) and PFS

(P=0.083) in the training set; meanwhile, bulky disease status

(P=0.099) was an influencing factor on PFS in the training set

(Table 3). Afterwards, factors with a P value < 0.1, namely the

clinical factors (age and/or bulky disease status), mean VAF, and

PCLO mutation status, were included in the multivariate

analysis. The results showed that age (> 60 years) and mean

VAF (≥ 4.94%) were independent influencing factors on both OS
A B

C

FIGURE 1

Mutation landscape of ctDNA samples from newly diagnosed DLBCL patients. ctDNA mutation profiles of newly diagnosed DLBCL patients in
the (A) training and (B) validation sets. (C) The mutation frequencies of PIM1 and CD79B were significantly increased in the ctDNA samples of
non-GCB DLBCL patients as compared with GCB DLBCL patients.
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and PFS in the training set (Table 4). In the validation set, age (>

60 years) and PCLO mutation status were influencing factors on

OS, while age (> 60 years) and bulky disease status were

influencing factors on PFS (Table 4) . These results further

verified the close relationship between ctDNA mutation and the

prognosis of patients with newly diagnosed DLBCL.
Discussion

Genetic heterogeneity is a major cause of increased risk and

treatment failure in DLBCL. Several studies (8, 10, 14–16) have

proved that the mutations detected in blood samples were similar to

those identified in tumor tissue, with a concordance rate over

80%.In the present study, we performed targeted sequencing of 59

lymphoma-related genes, the same panel as Liu et al. (10) to analyze

the clinical value of ctDNA mutation in 169 Chinese patients with

newly diagnosed DLBCL. To increase the reliability of our findings,

the 169 patients were randomly divided into a training set (n=85)

and a validation set (n=84). Our results demonstrated that

detectable ctDNA mutations, a mean VAF value ≥ 4.94%, and

PCLOmutations were strongly associated with shorter OS and PFS

in the newly diagnosed DLBCL patients.

We found that PCLO (piccolo presynaptic cytomatrix

protein), PIM1, CD79B and MYD88 (genes involved in the
Frontiers in Oncology 07
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NF-kB signaling pathway), LRP1B and TP53 (tumor

suppressive genes), as well as KMT2D and HIST1H1E (histone

modifying genes) were the most commonly mutated genes in the

169 newly diagnosed DLBCL patients. According to the genetic

landscape of DLBCL in western countries, the most frequently

mutated genes are sequentially KMT2D,MYD88, CREBBP, TP53

and PIM1 (17, 18). In contract, the most frequently mutated

genes in Chinese DLBCL patients are sequentially PIM1, BTG2,

TP53, HIST1H1E and KMT2D (19). The higher proportion of

non-GCB DLBCL cases in Chinese patients may be a reason for

this difference. According to literature, genes related to histone

methylation or acetylation (EZH2, EP300, CREBBP and

KMT2D) and the PI3K/AKT and JAK/STAT pathways are

commonly mutated in the GCB subtype of DLBCL patients,

while genes related to the B-cell receptor and NF-kB signaling

pathways, such as MYD88, CD79A/B, CARD11, PIM1 and

TNFAIP3, are commonly mutated in the ABC subtype (20).

Consistently, we found that the mutation frequencies of PIM1

and CD79B were significantly higher in DLBCL patients with the

non-GCB subtype than in those with the GCB subtype.

In addition, we were able to detect ctDNA mutations in 64

(75.3%) out of 85 patients in the training set and 67 (79.8%) out

of 84 patients in the validation set. Rivas-Delgado et al. (21) were

able to detect at least one ctDNA mutation in 69 of 79 patients

(87%) with DLBCL. This slight difference in ctDNA mutation
A B

D E F

C

FIGURE 2

Relationship between mean VAF and clinical features in patients with newly diagnosed DLBCL. Mean VAF was increased in patients with (A, D)
bone marrow involvement, (B, E) higher IPI scores and (C, F) elevated LDH levels in the training and validation sets.
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detection rate may be caused by different panels of genes

sequenced: Rivas-Delgado et al. (21) performed targeted

sequencing on 112 genes, while we analyzed 59 genes. In

addition, we found that patients with detectable ctDNA

mutations had shorter OS and PFS in both the training and

validation sets. Furthermore, patients carrying ctDNA

mutations were significantly enriched in more advanced Ann

Arbor stages (stages III-IV) and generally exhibited elevated

LDH levels. These findings establish a link between ctDNA

mutation status and the prognosis of patients with DLBCL.

Recently, Kurtz et al. (22) indicated that 25% of ctDNA-negative

patients demonstrated by cancer personalized profiling by deep

sequencing (CAPP-Seq) were found to be ctDNA-positive, as

revealed by phased variant enrichment and detection sequencing

(PhasED-Seq), after two cycles of therapy and presented with

poor outcomes.

ctDNA VAF has been closely associated with the clinical

features and prognosis of various cancers, and is considered as a

new biomarker for tumor burden (23, 24). For example, Fu et al.

(25) found that the VAF values of TP53 p.Y88C and LATS2

p.F972L were decreased in B-cell lymphoma patients with CR.

Desch et al. (26) reported that ctDNA VAF values were strongly

associated with total metabolic tumor volume (TMTV) and the
Frontiers in Oncology 08
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incidence of bulky disease in pediatric Hodgkin’s lymphoma. In

addition. the median VAF of non-DNMT3A clones increased

from 1% at the time of autologous stem cell transplantation

(ASCT) to 37% at the diagnosis of therapy-related myeloid

neoplasms (tMNs) (27). In the present study, we found that

the mean VAF values were significantly increased in patients

with bone marrow involvement, higher IPI scores and elevated

LDH levels in both the training and validation sets. Additionally,

we observed that in the training set, patients with a mean VAF ≥

4.94% showed inferior OS and PFS as compared with patients

with a mean VAF < 4.94%. This finding was verified in the

validation set.

Moreover, we assessed the relationship between ctDNA

mutation status and the prognosis of patients with newly

diagnosed DLBCL. Notably, we found that patients with PCLO

mutations had shorter OS and PFS. PCLO encodes a protein that

functions as a part of the presynaptic cytoskeletal matrix, which

is thought to be involved in neurotransmitter release regulation.

It has been suggested that PCLO might play a role in calcium

sensing. PCLO mutations have been detected by whole-exom

sequencing in a variety of tumors, including DLBCL (28–31). In

the mesenchymal subtype of glioblastomas, PCLO mutations

have been shown to be associated with poor prognosis (31), but
A B

DC

FIGURE 3

Patients carrying ctDNA mutations trended to have poor prognosis. Kaplan-Meier curves were applied to compare the (A) OS and (B) PFS
between patients with and without ctDNA mutations in the training set. Kaplan-Meier curves were applied to compare the (C) OS and (D) PFS
between patients with and without ctDNA mutations in the validation set.
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its association with the prognosis of DLBCL has not been

reported. Mutations in PCLO are usually considered as

passenger mutations with no functional consequences in

DLBCL (28). In this study, PIM1 (34.1%), MYD88 (31.8%)

and TP53 (20.5%) were the most common co-mutated genes

with PCLOmutations detected in the ctDNA samples of DLBCL

patients. Furthermore, we found that the mutation frequency of

TNFAIP3 in PCLO mutated DLBCL patients was significantly

higher than that of DLBCL patients without PCLO mutations

[1.6% (2/125) vs. 13.6% (6/44)]. These four genes (PIM1,

MYD88, TP53, TNFAIP3) has been identified to be the

mutational drivers in DLBCL, which might partly explain the

poor prognosis of patients carrying PCLO mutations (32–35).

Additional work is needed to resolve the mechanism of action

and role of PCLO mutations in DLBCL.

Evidence has demonstrated that ctDNA mutations are

correlated with treatment response in DLBCL patients (36).

According to the current gold standard for evaluating

treatment response in lymphoma, the sensitivity and specificity

of ctDNA profiling were 94.7% and 83.3% in refractory or

relapse (r/r) DLBCL patients after CAR-T treatment; the

median numbers of baseline ctDNA mutations in patients who

remained long-term CR and in patients who relapsed or became

refractory to CAR-T therapy were 3.0 and 14.3, respectively (36).

Herein, we explored the relationship between ctDNA mutation

status, the number of ctDNA mutations and mean VAF and the
Frontiers in Oncology 09
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curative effect of R-CHOP regimen in DLBCL patients. Our

results showed that patients without detectable ctDNA

mutations had a higher CR rate to R-CHOP treatment as

compared with patients with detectable ctDNA mutations,

while the ctDNA mutation number and mean VAF showed no

significant impacts on the CR rate.

Our study showed that age (> 60 years) and mean VAF (≥

4.94%) were independent influencing factors on prognosis in the

training set, while age (> 60 years), PCLO mutations and bulky

disease status were independent influencing factors on prognosis

in the validation set. The high heterogeneity of DLBCL may have

caused these differences between the training and validation sets.

Of course, the small sample size of our study may be another

reason for the differences. In fact, the relatively small sample size

is the main limitation of the present study, although we have

recruited the largest cohort of Chinese DLBCL patients to date.

To this end, we intend to include more Chinese DLBCL patients

for analysis in the future.

Taken together, we herein have described the ctDNA

mutation landscape of a largest cohort of Chinese patients

with newly diagnosed DLBCL to date. Our results suggested

that patients with detectable ctDNA mutations, a higher mean

VAF value or PCLO mutations trended to have shorter OS and

PFS and a lower CR rate. Our study provides evidence to support

the feasibility of using ctDNA samples obtained from patients’

blood in prognosis prediction of newly diagnosed DLBCL.
A B

DC

FIGURE 4

Patients with a mean VAF value ≥ 4.94% trended to have poor prognosis. Kaplan-Meier curves were applied to compare the (A) OS and (B) PFS
between patients with mean VAF values ≥ 4.94% and < 4.94% in the training set. Kaplan-Meier curves were applied to compare the (C) OS and
(D) PFS between patients with mean VAF values ≥ 4.94% and < 4.94% in the validation set.
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A B

DC

FIGURE 5

Patients carrying PCLO mutations trended to have poor prognosis. Kaplan-Meier curves were applied to compare the (A) OS and (B) PFS
between patients with and without PCLO mutations in the training set. Kaplan-Meier curves were applied to compare the (C) OS and (D) PFS
between patients with and without PCLO mutations in the validation set.
TABLE 3 Univariate Cox analysis of the influencing factors of PFS and OS in the training set.

Clinical factors OS PFS

HR (95% CI) P HR (95% CI) P

Age (>60) 2.651 (1.053-6.671) 0.038 2.066 (0.909-4.694) 0.083

Ann Arbor stage (III-IV) 1.673 (0.697-4.013) 0.249 1.583 (0.697, 3.594) 0.273

Han’s classification (non-GCB) 0.710 (0.314-1.607) 0.411 0.870 (0.394-1.924) 0.731

Bulky disease 1.920 (0.846-4.360) 1.920 1.918 (0.885-4.159) 0.099

LDH level (elevated) 1.760 (0.799-3.881) 0.161 1.699 (0.808-3.572) 0.162
Frontiers in Oncology
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HR, Hazard ratio; CI, confidence interval.
TABLE 4 Multivariate Cox analysis of the influencing factors of PFS and OS in the training set and validation set.

Clinical factors Training set Validation set

OS PFS OS PFS

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (>60) 3.6 (1.4-9.2) 0.01 2.6 (1.1-6.4) 0.03 2.2 (1.0-4.9) 0.05 2.1 (1.0-4.4) 0.04

Bulky disease — — 1.2 (0.5-2.7) 0.69 — — 2.4 (1.1-5.0) 0.03

VAF (4.94%) 2.6 (1.1-6.4) 0.04 2.5 (1.1-5.8) 0.04 1.4 (0.6-3.5) 0.51 1.4 (0.6-3.6) 0.48

PCLO mutation 1.9 (0.8-4.3) 0.15 1.8 (0.8-4.0) 0.17 2.7 (1.2-4.3) 0.02 2.0 (1.0-4.3) 0.06
n

HR, Hazard ratio; CI, confidence interval.
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Background: The prognostic implication of tumor-associated macrophages

(TAMs) in the microenvironment of diffuse large B cell lymphoma (DLBCL)

remains controversial.

Methods: A systematic and comprehensive search of relevant studies was

performed in PubMed, Embase and Web of Science databases. The quality of the

included studies was estimated using Newcastle-Ottawa Scale (NOS).

Results: Twenty-three studies containing a total of 2992 DLBCL patients were

involved in this study. They were all high-quality studies scoring ≥ 6 points. High

density of M2 TAMs in tumor microenvironment significantly associated with both

advanced disease stage (OR= 1.937, 95% CI: 1.256-2.988, P = 0.003) and

unfavorable overall survival (OS) (HR = 1.750, 95% CI: 1.188-2.579, P = 0.005)

but not associated with poor progression free survival (PFS) (HR = 1.672, 95% CI:

0.864-3.237, P = 0.127) and international prognostic index (IPI) (OR= 1.705, 95% CI:

0.843-3.449, P = 0.138) in DLBCL patients. No significant correlation was observed

between the density of CD68+ TAMs and disease stage (OR= 1.433, 95% CI: 0.656-

3.130, P = 0.366), IPI (OR= 1.391, 95% CI: 0.573-3.379, P = 0.466), OS (HR=0.929,

95% CI: 0.607-1.422, P = 0.734) or PFS (HR= 0.756, 95% CI: 0.415-1.379, P = 0.362)

in DLBCL patients.

Conclusion: This meta-analysis demonstrated that high density of M2 TAMs in the

tumor microenvironment was a robust predictor of adverse outcome for DLBCL

patients.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier

CRD42022343045.
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diffuse large B cell lymphoma (DLBCL), prognosis, meta-analysis, tumor-associated
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Background

Diffuse large B-cell lymphoma (DLBCL), the most common

subtype of non-Hodgkin lymphoma (NHL), occupying 30-40% of

newly diagnosed NHL (1, 2). DLBCL was heterogenous and patients

with DLBCL showed various clinical outcomes (3). Approximately

60-70% DLBCL patients can be cured by anti-CD20 based

immunochemotherapy. However, relapsed and refractory patients

still die from DLBCL and its complications (4–6). Further

improvement of DLBCL patients’ therapeutic outcome relies on

identifying high-risk patients and individualizing treatment regimens.

Recent studies by molecular profiling showed that tumor

microenvironment (TME) was associated with clinical behavior of

DLBCL. Lenz and colleagues demonstrated that the prognosis of

DLBCL patients was influenced by differences of TME. They also

demonstrated that high stromal-2 signature predicted poor outcome

(7). Using gene expression and sequencing, several other studies also

obtained promising results in identifying high-risk DLBCL patients

(8–12). However, molecular profiling has the disadvantage of low

applicability in daily practice.

Tumor-associated macrophages (TAMs) are the most abundant

component of TME (13). Recent studies have demonstrated that

TAMs were critical for the survival, growth, metastasis, and drug

resistance of tumors (14, 15). In response to different environmental

stimuli, TAMs differentiated into M1 type (classically activated

phenotype) and M2 type (alternatively activated phenotype) (16).

The two types of TAMs were distinguished in functions and surface

markers. M1 TAMs prevented tumor growth (17, 18). whereas M2

TAMs promoted angiogenesis and was involved in the progression of

tumor (17–19). CD68 is a general marker for all TAMs and CD163 is

a specific marker for M2 TAMs (3).

In DLBCL, the role of TAMs in the progression of DLBCL and the

prognostic value of TAMs remains inconclusive due to the

contradictory results obtained by previous studies. Several studies

showed that a high density of CD68+ TAMs was associated with

favorable prognosis (3, 20, 21). A few other studies failed to

demonstrate such association (4, 18, 22–27). By contrast, Cai et al.

(28) and Carreras et al. (17) showed that high density of CD68+

TAMs correlated with inferior outcome. The correlation between M2

TAMs and survival of DLBCL patients was also unsettled. Some

researchers showed that a high density of M2 TAMs was correlated

with shortened survival in DLBCL (1, 3, 17, 23). However, several

other studies did not demonstrate such association (20, 24, 25, 27, 29–

32). Therefore, we performed this meta-analysis to explore the role of

TAMs in DLBCL progression and the prognostic value of TAMs in

DLBCL patients.
Methods

Literature search

Relevant articles were systemically searched in PubMed, Embase

and Web of Science databases with an end date of August 5th, 2022.

The searching terms were “macrophage” or “macrophages” or “TAM”

or “TAMs” or “tumor-infiltrating macrophage” or “tumor-associated
Frontiers in Oncology 0233
macrophage” or “intratumoral macrophage” and “diffuse large B-cell

lymphoma” or “DLBCL”. In addition, we also searched the references

of relevant studies for eligibility. The literature search was performed

by two independent reviewers (Mei Lin and Shupei Ma) and

disagreement was resolved by consensus.
Inclusion criteria

Our inclusion criteria were as follows (1): proven diagnosis of

DLBCL; (2) CD68+ TAMs, CD163+ TAMs or CD163+/CD68+ TAMs

were detected by immunohistochemical or immunofluorescence

staining; (3) patients were categorized into high and low density

TAMs groups; (4) Odds ratio (OR) or hazard ratio (HR) and 95%

confidence interval (CI) on the density of CD68+, CD163+ or

CD163+/CD68+ TAMs and disease stage, international prognostic

index (IPI), overall survival (OS) or progression free survival (PFS)

could be obtained.
Data extraction and quality assessment

The data extraction was performed by two reviewers (Shupei Ma

and Mei Lin) independently. For each eligible study, we extracted the

following data: surname of the first author, year of publication,

number of patients, country, treatment, median/mean/average

follow-up, method, antibody (clone), analysis. For studies that HR

and its 95% CI were not reported, the data was extracted using the

Tierney’s calculation method (33). The Newcastle-Ottawa Scale

(NOS) was used to assess the quality of the involved studies and

any study scores ≥ 6 was considered as a high-quality literature.
Statistical analysis

Pooled OR and 95% CI were used to estimate the correlation

between the density of TAMs and disease stage or IPI. Pooled HR and

95% CI were used to investigate the effect of TAMs on prognosis. To

evaluate the interstudy heterogeneity, chi-squared test (Q test) and I²

test were used. P > 0.10 and I² < 50% indicated no significant

heterogeneity existed. In this case, fixed-effect model was used.

Otherwise, random-effect model was applied. Sensitivity analysis

and subgroup analysis were applied to explore the source of

heterogeneity. Publication bias was evaluated by funnel plot and

Egger test. All statistical analysis was performed using Stata 12.0

software. P < 0.05 was considered statistically significant.
Results

Identification of eligible studies

A total of 1152 literatures were retrieved according to the

abovementioned searching strategy, including 240 from PubMed,

587 from Embase and 325 from Web of Science. A total of 446

duplication was excluded. By carefully reviewing the title and abstract,
frontiersin.org
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we excluded 651 articles which are non-original, irrelevant or

laboratory studies on animals or cell lines. The remaining 55

studies were further investigated by reading the full text carefully.

Thirty-two studies were then excluded due to not fulfilling the

inclusion criteria. Finally, 23 studies were eligible for this meta-

analysis (Figure 1).
Characteristics of included studies and
quality assessment

The basic characteristics of the 23 eligible studies was shown in

Table 1. The included studies were published between 2011-2022 and

the number of participants ranged from 36 to 430. Of the 23 included

studies, 5 were from Japan (17, 26, 27, 31, 32) and China (1, 23, 28, 34,

35) respectively; 4 from Korea (3, 20, 29, 36), 3 from USA (4, 22, 30)

and Italy (21, 24, 37) respectively; 1 from Finland (18), India (25) and

Egyp t ( 3 8 ) r e s p e c t i v e l y . Immunoh i s t o ch em i s t r y o r

immunofluorescence was performed by the included studies.

Antibodies against CD68 was used to detect total TAMs and anti-

CD163 antibody or double staining with antibodies against CD68 and

CD163 was applied to estimate M2 TAMs by the eligible studies.

The quality of the 23 included studies was estimated by NOS. The

scores were all ≥ 6 points (Supplementary Table 1). This suggested

that all the eligible studies were high-quality studies.
Total TAMs and IPI, disease stage
or prognosis

In this study, the density of total TAMs was not correlated with

IPI (≥3/0-2: OR= 1.391, 95% CI: 0.573-3.379, P= 0.466) with
Frontiers in Oncology 0334
significant heterogeneity (P= 0.000, I² =78.4%) (Figure 2A). No

correlation was observed between the density of total TAMs and

disease stage (Ann Arbor stage, III+IV/I+II: OR= 1.433, 95% CI:

0.656-3.130, P = 0.366) with evident heterogeneity (P = 0.052, I² =

61.2%) (Figure 2B).

Of the 23 eligible studies, 13 or 9 studies reported the association

between the density of CD68+ TAMs and OS or PFS respectively. In

our meta-analysis, no significant correlation was observed between

the density of total TAMs and OS (HR=0.929, 95% CI: 0.607-1.422, P

= 0.734), with significant heterogeneity (P = 0.002, I² = 61.1%)

(Figure 2C). No significant association was identified between the

density of total TAMs and PFS (HR= 0.756, 95% CI: 0.415-1.379, P =

0.362) and the heterogeneity was significant (P = 0.000, I² =

72.9%) (Figure 2D).
M2 TAMs and IPI, disease stage or prognosis

In this study, no correlation was observed between the density of

M2 TAMs and IPI (OR= 1.705, 95% CI: 0.843-3.449, P = 0.138) with

evident heterogeneity (P = 0.061, I² = 59.3%) (Figure 3A). High

density of M2 TAMs associated with disease stage (OR= 1.937, 95%

CI: 1.256-2.988, P = 0.003) with no heterogeneity (P = 0.639, I² =

0.0%) (Figure 3B).

In this study, the pooled results of 14 studies showed that high

density of M2 TAMs in the microenvironment of DLBCL patients

correlated with unfavorable OS (HR = 1.750, 95% CI: 1.188-2.579, P =

0.005), with significant heterogeneity (P = 0.000, I² = 64.8%)

(Figure 3C). Pooled HR for PFS in 9 studies showed that high

density of M2 TAMs was not significantly associated with poor PFS

(HR = 1.672, 95% CI: 0.864-3.237, P = 0.127), with evident

heterogeneity (P = 0.000, I² = 80.1%) (Figure 3D).
FIGURE 1

Flow chart of study selection.
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Sensitivity analysis

Sensitivity analysis was conducted by removing one study each

time and recalculating the remaining studies (39). In the analysis of

M2 TAMs and OS or PFS, the heterogeneity become insignificant

(M2 TAMs and OS: P = 0.108, I² = 34.3%; M2 TAMs and PFS: P =

0.115, I²= 39.6%) after removing Wang et al.’s study (1). In the study

of total TAMs and IPI or disease stage, there was no heterogeneity
Frontiers in Oncology 0435
after removing Li et al.’s study (23). In the analysis of M2 TAMs and

IPI, the heterogeneity become insignificant after removing Li et al.’s

study (P = 0.306, I²= 15.7%) (23) or Xu et al.’s study (P = 0.179, I²=

41.9%) (34).

After removing Xu et al.’s study (34), high density of M2 TAMs

was related to high and high-intermediate IPI (OR= 2.239, 95% CI:

1.140-4.396, P = 0.019). After removing Li et al.’s study (23), the

density of M2 TAMs was not correlated with disease stage (OR=1.552,
TABLE 1 Characteristics of the eligible studies.

Author Year N Country Treatment Follow-up median/mean/
average (months) Method Antibody

(clone) Analysis

Asano 2022 82 Japan
RT/RT+HD-MTX/R-MPV+RT/HD-
MTX/R-MPV/others

ND IHC CD163(MRQ26) OS, PFS

Cai 2012 112 China CHOP/CHOP+RT 72 (2–135) IHC CD68(KP1) OS, PFS

Carreras 2022 132 Japan R-CHOP/R-CHOP- like/others ND IHC
CD68(514H12),
CD163(10D6)

OS, PFS

Cencini 2020 37 Italy CHOP-like/R-CHOP 60 IHC
CD68(PG-M1),
CD163(ND)

OS,PFS,
IPI,stage

Croci 2021 430 Italy R-CHOP like ND IHC CD68(PG-M1) OS, PFS

Gomez-
Gelvez

2016 70 USA R-CHOP 49.2(7.2-144) IHC CD68(KP1) OS, PFS

Jeong 2017 185 Korea ND 38.7(mean) IHC CD163(MRQ26) OS

Li 2019 221 China CHOP/R-CHOP 42(3-118) IHC
CD68(KP1), CD163
(10D6)

OS,PFS,
IPI,stage

Marchesi 2015 61 Italy R-chop/R-chop like 24.7 IFA
CD163(ND)/CD68
(ND)

OS

Matsuki 2019 94 USA CT/R+CT 64.8 IHC CD163(10D6) OS, PFS

Meyer 2011 242 USA R-CHOP/CHOP like ND IHC CD68(KP1) OS

Nam 2014 109 Korea R-CHOP 43(16-178) IHC
CD68(PG-M1),
CD163(10D6)

OS, PFS

Nam 2018 144 Korea MVP/HD-MTX/RT/R-MVP/others 31.35*(0.2-178) IHC
CD68(PG-M1),
CD163(10D6)

OS, PFS

Parkhi 2021 44 India
CT ± R/RT+CT ± R/RT/not
received

ND IHC
CD68(PG-M1),
CD163(MRQ26)

OS

Riihijarvi 2015 181 Finland CT/R+CT 65,65,85 IHC CD68(KP1)
OS, PFS,
IPI

Wada 2012 101 Japan R+CT (most) 28+(9.5-38.5) IHC
CD68 (PG-M1)
CD163(ND)/CD68
(PG-M1)

OS, IPI,
stage

Wang 2017 355 China R-CHOP 53.71 IHC CD163(ND) OS, PFS

Xu 2013 92 China ND ND IHC CD163(10D6) OS, IPI

Yamamoto 2014 36 Japan R-CHOP 37.2 IHC CD163(10D6) PFS

Yoshida 2013 47 Japan R-chop/R+THP-COP ND IHC
CD68(KP1), CD163
(10D6)

OS

Ghorab 2022 65 Egypt ND ND IHC CD68(KP1) IPI

Wang 2015 81 China R-CHOP ND IHC CD68(514H12) IPI, stage

Lee 2011 71 Korea CT+R/CT/CT+RT/operation 45.6(6-132) IHC CD68(KP1) IPI, stage
fro
N: number of patients; RT, radiotherapy; HD, high-dose; MTX, methotrexate; R, rituximab; MPVA, MTX, procarbazine, vincristine, and Ara-C; MPV, MTX, procarbazine, vincristine; ND, not
described; IHC, immunohistochemistry; IFA, immunofluorescence assay; OS, overall survival; PFS, progression free survival; MVP, methotrexate, vincristine, procarbazine; CHOP, cyclophosphamide,
doxorubicin, vincristine, prednisone; CT, chemotherapy; THP-COP, pirarubicin, cyclophosphamide, vincristine, prednisolone; * median follow-up for the group of patients who did not receive
rituximab; + average follow-up.
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95% CI: 0.758-3.180, P = 0.229). Except the abovementioned 2

studies, no other study significantly influenced the pooled results in

this meta-analysis.
Subgroup analysis

Subgroup analysis was performed in the studies of total TAMs or

M2 TAMs and survival of DLBCL patients. The eligible studies were

divided into two subgroups according to whether the study focused

on central nervous system DLBCL (CNS DLBCL). Our results showed

that high density of total TAMs was not correlated with OS in both

CNS (HR=0.652, 95% CI: 0.087-4.881, P = 0.677) and non-CNS

DLBCL patients (HR=0.974, 95% CI: 0.626-1.515, P = 0.906)

(Table 2). A high density of total TAMs was associated with

favorable PFS in CNS DLBCL patients (HR=0.275, 95% CI: 0.106-

0.714, P = 0.008) but not in non-CNS patients (HR=0.881, 95% CI:

0.478-1.624, P = 0.684) (Table 2). High density of M2 TAMs

correlated with poor OS (HR=2.038, 95% CI: 1.345-3.087, P =

0.001) and PFS (HR=2.195, 95% CI: 1.090-4.420, P = 0.028) in

non-CNS DLBCL patients. The density of M2 TAMs was not

correlated with both OS and PFS in CNS DLBCL patients (Table 3).

Based on geographic region, the included patients were classified

into Asian group and non-Asian group. High density of total TAMs

correlated with favorable OS (HR=0.704, 95% CI: 0.511-0.971, P =
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0.032) and PFS (HR=0.604, 95% CI: 0.410-0.890, P = 0.011) in non-

Asian patients with no heterogeneity (total TAMs and OS: P = 0.421,

I² = 0.00%; total TAMs and PFS: P = 0.858, I² = 0.00%). However, the

density of total TAMs was not correlated with both OS and PFS in

Asian patients (Table 2). High density of M2 TAMs associated with

poor OS (HR=1.751, 95% CI: 1.158-2.646, P = 0.008) and showed a

trend of association with poor PFS (HR=1.915, 95% CI: 0.897-4.089,

P = 0.093) in Asian patients. The density of M2 TAMs was not

correlated with both OS and PFS in non-Asian patients (Table 3).

In the subgroup analysis according to whether rituximab was

included in the treatment regimen, a high density of total TAMs was

significantly correlated with favorable PFS (HR=0.410, 95%CI: 0.219-

0.769, P=0.005) but not significantly correlated with OS (HR=0.546,

95% CI: 0.256-1.164, P = 0.117) in patients treated with rituximab-

containing regimen (Table 2). In contrast, no correlation was

observed between the density of total TAMs and OS or PFS in

patients treated without rituximab (Table 2). High density of M2

TAMs significantly correlated with unfavorable OS (HR=2.620, 95%

CI: 1.232-5.572, P = 0.012) and PFS (HR=3.475, 95% CI: 1.210-9.985,

P = 0.021) in patients treated with rituximab-containing regimen.

However, no correlation was found between the density of M2 TAMs

and prognosis of patients treated without rituximab (Table 3).

Subgroup analysis according to different clones of anti-CD68

antibody was also performed. In the subgroup detected CD68 with

clone PG-M1, total TAMs correlated with PFS (HR=0.421, 95% CI:
FIGURE 2

Forest plot of total TAMs and IPI (A), disease stage (B), OS (C) and PFS (D); OR, odds ratio; hr, hazard ratio; CI, confidence interval.
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0.244-0.729, P = 0.002) but not correlated with OS (HR=0.609, 95%

CI: 0.289-1.283, P = 0.192) (Table 2). In KP1 subgroup, no correlation

was observed between total TAMs and OS (HR=1.269, 95% CI: 0.866-

1.862, P = 0.222) or PFS (HR=1.391, 95% CI: 0.881-2.195, P =

0.157) (Table 2).

Among the 14 studies reported the correlation between M2 TAMs

and OS, 12 studies used anti-CD163 antibody and 2 studies applied

double staining with antibodies against CD163 and CD68 to estimate

M2 TAMs. The density of CD163+ TAMs and CD163+/CD68+ TAMs

was both correlated with OS (CD163+ TAMs: HR=1.549, 95% CI:

1.038-2.313, P = 0.032; CD163+/CD68+ TAMs: HR=4.941, 95% CI:

2.012-12.129, P = 0.000) (Table 3).
Publication bias

Funnel plots and Egger tests were used to assess the publication

bias. The funnel plots of this meta-analysis were shown in

Supplementary Figure 1 and Supplementary Figure 2. The yielded P

values of Egger test were: 0.180 for total TAMs and disease stage,

0.302 for total TAMs and IPI, 0.860 for total TAMs and OS, 0.707 for

total TAMs and PFS, 0.018 for M2 TAMs and disease stage, 0.150 for

M2 TAMs and IPI, 0.598 for M2 TAMs and OS, 0.321for M2 TAMs

and PFS. The results of Egger test showed that there was publication
Frontiers in Oncology 0637
bias in the analysis of M2 TAM and disease stage. Except this, no

publication bias existed in the other analysis of this meta-analysis.
Discussion

Previous studies showed that TME is critical for the progression

of tumors (14). TAMs are important component of TME (28). The

prognostic significance of total TAMs and M2 TAMs have been

investigated in a variety of cancers by meta-analysis (40–44). In

lymphoma, meta-analysis investigated the association of total

TAMs or M2 TAMs and outcome of patients have been reported in

non-Hodgkin’s lymphoma (NHL) (45) and Hodgkin’s lymphoma

(HL) (46). DLBCL is the most common type of NHL. However, meta-

analysis investigating the prognostic value of TAMs in DLBCL is

still unavailable.

Consistent with the results obtained by meta-analysis in HL (46),

gastric cancer (40) and NHL (45), we demonstrated that high density

of M2 TAMs correlated with unfavorable prognosis in DLBCL. This

suggested that high density of M2 TAMs can be used as an indicator

of poor prognosis in DLBCL patients. Xu et al.’s study reported that

high density of CD68+ TAMs correlated with poor OS and PFS in

NHL (45) and several previous studies suggested that TAMs’

infiltration was significantly correlated with favorable (3, 20, 21) or
FIGURE 3

Forest plot of M2 TAMs and IPI (A), disease stage (B), OS (C) and PFS (D); OR, odds ratio; hr, hazard ratio; CI, confidence interval.
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poor outcome (17, 28) in DLBCL. However, no correlation between

the density of CD68+ TAMs and prognosis in DLBCL patients was

found in this meta-analysis. This was in accordance with previous

studies in bladder (41) and ovarian cancers (42). Taken together,

these results suggested that M2 TAMs rather than total TAMs might

contribute to the progression of DLBCL and lead to unfavorable

outcome in DLBCL patients.

In this study, high density of M2 TAMs was correlated with

unfavorable prognosis in Asian subgroup but not in non-Asian

subgroup. These suggested that M2 TAMs may play an important

role in the disease progression and acted as an indicator of poor

prognosis in Asian patients. In this meta-analysis, high density of

CD68+ TAMs associated with favorable outcome in non-Asian

DLBCL patients but not in Asian patients. This suggested that high

density of CD68+ TAMs predicted favorable survival in non-Asian

patients but not in Asian patients.

Rituximab, a human/murine chimeric antibody, shows high

affinity and specificity for CD20 which is a transmembrane protein
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of B-lymphocyte. Rituximab has become a standard component of

treatment modality for a number of B-cell malignancies including

DLBCL (47). Taskinen and colleagues reported that addition of

rituximab to the same group of patients at relapse reversed the

negative prognostic effect of high density CD68+ TAMs in tumor

environment to favorite (48). In this meta-analysis, high density of

CD68+ TAMs correlated with favorable outcome in the subgroup of

patients treated with rituximab-containing regimen. In contrast, no

correlation was found between high density of CD68+ TAMs and

prognosis in patients treated without rituximab. These results were in

accordance with previous study and suggested that TAMs might

obtain tumor-inhibiting function in response to rituximab or TAMs

modulated the therapeutic efficiency of rituximab.

The results of our meta-analysis showed that the association of

M2 TAMs and outcome of DLBCL patients was also influenced by

whether rituximab was included in the treatment regimen. Pooled

results of this meta-analysis showed that high density of M2 TAMs in

tumor microenvironment associated with unfavorable outcome in
TABLE 2 Subgroup analysis of total TAMs and survival.

survival Subgroups Number of studies Pooled results (95%CI) P-value Heterogeneity

P I²

OS Site

CNS DLBCL 2 0.652 (0.087-4.881) 0.677 0.015 83.2%

Non-CNS DLBCL 11 0.974 (0.626-1.515) 0.906 0.006 59.5%

Region

Asian 8 1.162 (0.615-2.198) 0.643 0.006 65.0%

Non-Asian 5 0.704 (0.511-0.971) 0.032 0.421 0.0%

Treatment

With Rituximab 6 0.546(0.256-1.164) 0.117 0.072 50.5%

Without Rituximab 3 1.194 (0.404-3.523) 0.748 0.023 73.5%

Clone of antibody

KP1 6 1.269 (0.866-1.862) 0.222 0.239 26.1%

PG-M1 6 0.609 (0.289-1.283) 0.192 0.012 66.1%

PFS Site

CNS DLBCL 1 0.275 (0.106-0.714) 0.008 – –

Non-CNS DLBCL 8 0.881 (0.478-1.624) 0.684 0.001 70.2%

Region

Asian 5 0.972 (0.360-2.625) 0.955 0.000 82.2%

Non-Asian 4 0.604 (0.410-0.890) 0.011 0.858 0.0%

Treatment

With Rituximab 5 0.410 (0.219-0.769) 0.005 0.145 41.4%

Without Rituximab 3 1.145 (0.336-3.904) 0.828 0.002 84.5%

Clone of antibody

KP1 4 1.391(0.881-2.195) 0.157 0.281 21.6%

PG-M1 4 0.421(0.244-0.729) 0.002 0.239 28.8%
fronti
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patients treated with rituximab. In contrast, no correlation was

observed between the density of M2 TAMs and prognosis in

patients treated without rituximab. This emphasized the importance

of targeting M2 macrophage in rituximab era.

TAMs centered therapeutic strategies includes suppressing the

recruitment of TAMs, depletion of TAMs and reprogramming M2

TAMs to M1 type (49). Administration of antibody against chemokine

(C-C motif) ligand-2 (CCL2) led to decreased infiltration of TAMs and

impacted tumor growth in animal models of human cancers (50, 51).

Colony stimulating factor 1 (CSF-1) is a major factor for the survival of

TAMs. Targeting CSF-1 receptor with a humanized antibody RG7155 led

to obvious reduction of TAMs in various tumor tissues (52). Maeda et al.

showed that toll-like receptor 3 (TLR3) agonist Poly (I:C) was effective in

reprogramming macrophage to anti-tumor type by an in vitro study (53).

Repolarization of TAMs can also be achieved through manipulation of

CD40 (54) and CD47 pathways (55). Currently, a variety of antibodies

against CD40 (56) or CD47 (57) are being evaluated in clinical trials. A

phase IIb clinical trial was performed to investigate the therapeutic efficacy

of anti-CD40 antibody dacetuzumab plus rituximab, ifosfamide,

carboplatin, and etoposide in 151 patients with relapsed and refractory

DLBCL. The complete remission (CR) rate of the dacetuzumab group was

not superior compared to the group using placebo in place of
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dacetuzumab (58). A phase Ib/II clinical trials of anti-CD47 antibody

Hu5F9-G4 combined with rituximab in 75 patients with relapsed and

refractory lymphoma showed promising results (57). In DLBCL patients

treated with rituximab-containing regimen, the pooled results of thismeta-

analysis showed that high density of total TAMs significantly correlated

with favorable outcome while high density of M2 TAMs significantly

associated with poor prognosis. This suggested that repolarization of

TAMs from M2 to M1 might have more clinical benefit than the

methods of merely reducing the number of M2 TAMs in the treatment

of DLBCL patients who received rituximab-containing regimen.

In the subgroup analysis according to different clones of anti-

CD68 antibody, high density of total TAMs correlated with favorable

PFS in the subgroup using clone PG-M1. While no association was

identified between total TAMs and OS or PFS in KP1 subgroup. These

suggested that high density of total TAMs detected by PG-M1 rather

than KP1 was an indicator of favorable prognosis in DLBCL patients.

The current study is the first systemic meta-analysis investigating the

association between the density of total TAMs or M2 TAMs and

prognosis in DLBCL patients. However, several limitations in this study

need to be addressed. First, some of the involved studies did not report

HR. We extracted data from the Kaplan-Meier curves of these studies. In

this case, deviation from the real value of HR may be caused. Second, the
TABLE 3 Subgroup analysis of M2 TAMs and survival.

survival Subgroups Number of studies Pooled results (95%CI) P-value Heterogeneity

P I²

OS Site

CNS DLBCL 3 0.982 (0.480-2.008) 0.961 0.194 39.0%

Non-CNS DLBCL 11 2.038 (1.345- 3.087) 0.001 0.003 62.7%

Region

Asian 11 1.751 (1.158-2.646) 0.008 0.001 68.0%

Non-Asian 3 1.760 (0.437- 7.083) 0.426 0.059 64.7%

Treatment

With R 5 2.620 (1.232-5.572) 0.012 0.021 65.5%

Without R 2 1.197 (0.363-3.952) 0.768 0.221 33.3%

Antibody

CD163 12 1.549 (1.038-2.313) 0.032 0.001 65.3%

CD163+CD68 double staining 2 4.941 (2.012-12.129) 0.000 0.573 0.0%

PFS Site

CNS DLBCL 2 0.822 (0.496-1.362) 0.447 0.912 0.0%

Non-CNS DLBCL 7 2.195 (1.090- 4.420) 0.028 0.002 71.6%

Region

Asian 7 1.915 (0.897-4.089) 0.093 0.000 83.8%

Non-Asian 2 0.951 (0.364 – 2.487) 0.919 0.881 0.0%

Treatment

With R 4 3.475 (1.210-9.985) 0.021 0.068 58.0%

Without R 2 0.891 (0.459-1.731) 0.734 0.453 0.0%
fronti
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treatment of DLBCL patients in the included studies are variable. This

may influence the survival of patients and contribute to heterogeneity.

Third, significant heterogeneity exists in this meta-analysis. The

interstudy heterogeneity might be derived from the differences in origin

of patients, sample size, location of locus, tumor stages, inconsistency of

cut-off value and the antibody used to estimate TAMs. Forth, significant

publication bias was observed in the study of M2 TAMs and disease stage

in this meta-analysis. This may be due to that studies with positive results

are more likely to be published than those reporting negative results. In

addition, only three studies were eligible for this analysis. Therefore, more

studies are needed to verify our results.
Conclusion

This meta-analysis demonstrated that a high density of M2 TAMs

was a robust predictor of unfavorable outcome for DLBCL patients.
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Lindsberg ML, et al. Immune cell constitution in the tumor microenvironment predicts
the outcome in diffuse large B-cell lymphoma. Haematologica (2021) 106(3):718–29. doi:
10.1016/j.cub.2020.06.081

11. Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, et al. A
probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with
therapeutic implications. Cancer Cell (2020) 37(4):551–568.e14. doi: 10.3390/cancers14061469

12. Kotlov N, Bagaev A, Revuelta MV, Phillip JM, Cacciapuoti MT, Antysheva Z, et al.
Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental
signatures. Cancer Discovery (2021) 11(6):1468–89. doi: 10.1155/2016/9720912

13. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated
macrophages as treatment targets in oncology. Nat Rev Clin Oncol (2017) 14(7):399–416.
doi: 10.1111/cas.15179

14. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol (2020) 30
(16):R921–5. doi: 10.3324/haematol.2014.113472
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Cancerous B cells are almost indistinguishable from their non-malignant

counterparts regarding their surface antigen expression. Accordingly, the

challenge to be faced consists in elimination of the malignant B cell population

while maintaining a functional adaptive immune system. Here, we present an

IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing

IgM constant domain. Antibody masking impaired interaction with soluble

pentameric as well as cell surface-expressed IgM molecules rendering the

antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug

conjugate was restored upon conditional protease-mediated demasking which

consequently enabled target-dependent antibody internalization and

subsequent induction of apoptosis in malignant B cells. This easily adaptable

approach potentially provides a novel mechanism of clonal B cell lymphoma

eradication to the arsenal available for non-Hodgkin's lymphoma treatment.

KEYWORDS

B cell receptor, antibody-drug conjugate, masked antibody, conditional activated
antibody, MMP-9, matriptase, B cell lymphoma
Introduction

Immunotherapies represent a broad and rapidly growing type of therapies having a

substantial impact on cancer outcomes. Monoclonal antibodies (mAbs) are among the first

groups of immunotherapies approved for anti-tumor treatment and are still of exceptional

relevance in current treatment regimens (1). Rituximab, the first US Food and Drug

Administration (FDA)-approved mAb implemented in oncology, has widely been

administered in patients suffering from B cell non-Hodgkin's lymphoma (NHL). NHL is

a heterogeneous group of neoplasms and the most frequently diagnosed adult

hematological cancer, accounting for the seventh most common cancer and the ninth

leading cause of cancer deaths in the US (2). Targeting the pan-B cell antigen CD20,

rituximab exerts anti-tumor activity in four main ways, three of which rely on recruiting
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effector mechanisms from the patient's immune system such as

complement-dependent cytotoxicity (CDC), antibody-dependent

cell-mediated cytotoxicity (ADCC) and antibody-dependent

phagocytosis (ADP) (3). A fourth proposed mechanism of action

is the induction of apoptosis through both caspase-dependent and

-independent mechanisms (3, 4). Although rituximab in

combination with chemotherapy has tremendously improved the

chance of cure for NHL patients, the clinical effectiveness of

rituximab is ultimately limited by the development of treatment

resistance. Notably, only 40% of the patients initially responding to

rituximab have the ability to respond again after relapse (5, 6).

The B cell receptor (BCR) complex plays a pivotal role in the

adaptive immune response. Comprising a membrane-bound

immunoglobulin (Ig) and a non-covalently linked heterodimer

composed of Iga and Igb it is expressed on the surface of B

lymphocytes with each B cell clone possessing a unique BCR of Ig

isotype IgA, IgD, IgE, IgG, or IgM (7, 8). Previous reports have

demonstrated that malignant B cells frequently express IgM BCRs

(9–12). A subtype of the diffuse large B cell lymphoma (DLBCL) is

activated B cell-like DLBCL, where it has been reported that IgM-

positivity of tumor correlates with a poor prognosis and a shorter

overall survival for patients (10–12). Harnessing the fact that clonal

B cell cancers in most cases express BCRs of one Ig isotype, it might

be possible to selectively deplete malignant B cells of the IgM

isotype while sparing the majority of B lymphocytes expressing

other isotype or no BCRs. However, therapeutic antibodies directed

against IgM may not fully function in the body due to the presence

of soluble IgM molecules in large amounts. In order to address the

problem of selectivity and potential target-mediated drug

disposition, an IgMxHLA-DR bispecific antibody targeting two B

cell antigens has recently been engineered which demonstrated

significant in vitro anti-tumor activity as well as efficacy and

tolerability in non-human primate studies (13).

Besides improving specificity via multispecific cancer targeting,

masking strategies have been developed allowing for conditional

activation of antibodies in tumor tissue (14–16). The approach

requires the generation of a suitable masking unit which prevents

antibody-antigen interaction either by steric hindrance, e.g. by

fusion of a bulky mask, or by specific binding to the antibody

paratope, such as an epitope-mimetic or anti-idiotypic antibody

fragment (14, 16). Antibody activation through demasking is

typically mediated by proteases, such as serine proteases (e.g.

matriptase), matrix metalloproteinases (e.g. MMP-2/MMP-9) and

cysteine proteases (e.g. cathepsin S) frequently overexpressed in

tumor tissues (17–19). Previous masking attempts put forth

antibody therapeutics with improved safety profiles, while

retaining anti-disease activity (20–24). The versatile probody

therapeutic technology platform developed by CytomX

Therapeutics has been applied to target a variety of receptors

including CTLA-4, EGFR, as well as molecules considered

undruggable because of their broad tissue expression, such as

CD71 and EpCAM (25–27). The conditionally activated probody-
Frontiers in Immunology 0243
drug conjugate CX-2029 (anti-CD71) demonstrated tumor

regression and was well tolerated in patients with advanced solid

tumors (28).

To combat resistance of current mAb-based therapies and

improve the potency of biomolecules, antibody-drug conjugates

(ADC) feature ideal properties for precise and efficient tumor

targeting (29, 30). The first-in-class ADC to be FDA-approved for

therapy was gemtuzumab ozogamicin (Mylotarg), in 2000 for the

treatment of CD33-positive acute myeloid leukemia (AML) (31).

Since then, 14 ADCs received worldwide market approval, besides

over 100 ADC candidates being investigated in clinical stages at

present (32). ADCs are typically composed of mAbs covalently

bound to potent cytotoxic payload through synthetic (cleavable)

linkers. However, there is ongoing optimization of certain

parameters, including mAb specificity, linker technology, drug

potency as well as stoichiometry and placement of warheads (30,

32). The mechanism leading to ADC's anti-tumor effect includes

binding of the ADC to its target antigen that triggers ADC

internalization and intracellular release of the payload which

eventually mediates cytotoxic effects. Hence, candidate ADCs

must be carefully selected regarding numerous properties

influencing safety and efficacy. Particularly, the antigen to be

targeted by the ADC must fulfill certain characteristics such as

overexpression on the surface of cancer cells with minimal

expression in normal tissue and the potency to rapidly internalize

upon ADC binding (32). Since B cell NHL is currently treated with

either chemotherapy or immunotherapy or a combination of both,

it is anticipated that ADCs can be rational for NHL control.

In this study, we developed a proteolytically activatable IgM-

directed antibody-drug conjugate for precise targeting of IgM-

positive B cell lymphoma (Figure 1). Starting with the

immunization of a chicken with IgM from human serum, we

isolated IgM binders by single-chain variable fragment (scFv)

immune library screening using yeast surface display (YSD) in

combination with fluorescence-activated cell sorting (FACS). After

expression and characterization of isolated binders in scFv format,

full-length antibodies in Fab-Fc format were generated. With respect

to potential off-target effects on healthy IgM-expressing B cells and

capturing of antibodies by soluble IgM in the blood stream, we

identified the antigenic constant Ig domain, derived from the IgM

antigen, for antibody masking. The masking unit was genetically

fused to the N-terminus of the anti-IgM light chain (LC) via a dual-

protease cleavable linker addressable by matrix metalloproteinase-9

(MMP-9) and matriptase since these proteases are described to be

overexpressed in B cell lymphoma (33, 34). The IgM-targeting

antibody was further conjugated with the highly toxic and clinically

proven chemotherapeutic agent monomethyl auristatin E (MMAE)

imparting cytotoxic properties to the molecule (32). The resulting

masked anti-IgM ADC demonstrated no significant interactions with

different types of B cells. However, unmasking resulted in specific

targeting and efficient killing of IgM-positive lymphoma cells while

largely sparing other lymphocytes from chemotherapeutic damage.
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Results

Design of protease-activated masked anti-
IgM antibody-drug conjugates

Based on a chicken-derived anti-IgM (aIgM) antibody, we

designed an antibody-drug conjugate that is masked to overcome

potential off-target effects towards circulating IgM+ B cells and

interactions with soluble IgM in the blood stream (Figure 2). In our

approach, the human IgM domain targeted by the antibody served

as masking unit attached to the aIgM light chain. We assumed that
Frontiers in Immunology 0344
the heavy chain CDRs are mainly responsible for antigen

recognition as this was discovered in previous chicken-derived

antibodies including common light chain approaches and is

reinforced by the fact that chicken CDR3 of the VH tend to be

longer and have much higher cysteine content leading to increased

stability and complexity (36–39). Fusion of the masking unit was

achieved via a synthetic linker (33 amino acids) comprising a dual-

protease site (MMP site and MatA site) recognized by MMP-2/9

and matriptase (Figure 2A). Linker sequence and applicability to

protease-activated antibodies in tumor context have been recently

described by Geiger et al., demonstrating a synergistic effect for the
A

B

FIGURE 2

Design and mode of action of masked aIgM ADC. (A) Schematic representation of the masked aIgM ADC. The anti-IgM LC is (N-terminally) fused to
an IgM domain via a linker with dual-protease site, the HC is (C-terminally) modified with DBCO-PEG4-Val-Cit-PAB-MMAE. DBCO,
Dibenzocyclooctyne; PEG, polyethylene glycol; Val, valine, Cit: citrulline; PAB, p-aminobenzyl alcohol; MMAE, monomethyl auristatin E. Surface
representation rendered with UCSF ChimeraX (35) from PDB: 1IGT/7XQ8. (B) Conceptional mode of action of the masked anti-IgM ADC. In systemic
circulation the masked aIgM ADC is not able to bind to either soluble pentameric IgM nor membrane-bound IgM. Once reaching the tumor
microenvironment, tumor-specific proteases such as MMP-9 or matriptase hydrolyze the linker connecting the aIgM antibody and the masking IgM
domain. The activated aIgM ADC regains binding ability leading to specific ADC uptake and killing of IgM+ lymphoma B cells. Created with
BioRender.com.
FIGURE 1

Concept Overview. Chicken immunization with IgM from human serum was followed by splenic RNA isolation and cDNA synthesis. Variable
antibody domains were amplified and assembled as scFvs for yeast surface display and FACS. IgM binding scFvs were reformatted and cloned into
bacterial and mammalian vectors for scFv/scFv-Fc expression. After selection and characterization of a lead candidate, the IgM binder was
reformatted as full-length antibody, fused with the masking IgM domain and ultimately conjugated with MMAE resulting in a masked anti-IgM (aIgM)
ADC. Created with BioRender.com.
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combination of the cleavage sites for MMP-2/9-matriptase

compared to MatA site or MMP site linkers alone (21). For the

generation of an ADC the mAb component was further provided

with MMAE, since NHL is known to be sensitive to microtubule

inhibitors (40, 41). The payload consists of DBCO, PEG4 linker,

Val-Cit dipeptide sequence as cathepsin substrate, p-aminobenzyl

alcohol (PAB) self-immolative spacer and the cytotoxic payload

MMAE. Site-specific coupling of DBCO-PEG4-Val-Cit-PAB-

MMAE was accomplished via a chemoenzymatic conjugation

approach, resulting in a theoretical drug-to-antibody ratio (DAR)

of two (detailed conjugation strategy described in section

'Cytotoxicity of masked and protease-activated CH2-aIgM ADC').

The aIgM ADC should remain masked in systemic circulation, but

upon reaching the tumor microenvironment, upregulated protease

activity promotes cleavage of the substrate linker and subsequent

release of the blocking IgM domain (Figure 2B). Following

antibody-directed binding to tumor target IgM isotype BCRs, the

ADC is expected to be effectively internalized, followed by

lysosomal degradation resulting in cleavage of the drug linker and

intracellular release of the cytotoxic agent. Finally, MMAE binds to

tubulin which inhibits its polymerization and ultimately triggers

tumor cell death (42).
Generation of chicken-derived
anti-IgM antibodies

In order to generate protease-activated anti-human IgM

antibodies, we screened for IgM binders which are in a second

step equipped with the epitope-bearing human IgM domain serving

as antigenic affinity-based mask. Antibodies of IgM isotype play

important roles in non-immune as well as antigen-induced immune

reactions and constant domains of Ig heavy chain are broadly

conserved in mammals (43–45). Hence, immunization of

popularly chosen mammalian species such as mouse, rabbit or

goat might not result in the desired immune response. Accordingly,

chickens were considered for immunization as they are

phylogenetic distant from humans and previous attempts

succeeded in accessing antibodies against conserved epitopes on

mammalian molecules (46, 47). Recently, we described the isolation

of highly affine antibody fragments derived from immunized

chickens using yeast surface display in combination with FACS

(48–50). Applying this approach, we obtained high chicken

antibody titers against human IgM and were able to enrich

binders within two consecutive sorting rounds using 500 nM or

10 nM IgM from human serum, respectively (Supplementary

Figures 1A, B). Sequence analysis of four yeast single clones

emerging from the screening revealed four distinct scFv

candidates (S5, S6, S8, S9). The four scFvs were heterologously

expressed in Escherichia coli and were subjected to B cell binding

assays. Antibody clone aIgM S8 was selected as lead candidate since

it demonstrated affine binding to IgM+ lymphocytes while IgM-

cells were not targeted indicating isotypic specificity

(Supplementary Figure 2).
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Generation and characterization of
conditionally activated aIgM

The aIgM scFv S8 was reformatted as scFv-Fc fusion and as

Fab-Fc full-length antibody. To investigate which of the four

constant IgM domains aIgM S8 targets, biolayer interferometry

(BLI) epitope binning was performed. To this end, His-tagged CH1-

CH4 IgM domains were expressed separately in Expi293F™ cells

and cell culture supernatants were immobilized on Ni-NTA

biosensors. Association with aIgMscFv-Fc revealed specific and

exclusive binding to IgM CH2 domain (Figure 3A).

Consequently, simultaneous binding of full-length IgM and IgM

CH2 domain should not be possible. This was confirmed by loading

of biotinylated aIgMscFv-Fc onto SAX biosensors and stepwise

association with equimolar concentrations of CH2 in antigens using

1,000 nM single IgM CH2 domain and 100 nM (pentameric) IgM

from human serum (Figure 3B). The slightly increased binding

signal detected when incubating with CH2, following the first IgM

association can be ascribed to the small size of IgM CH2 (13 kDa) in

comparison to the pentameric IgMmolecule (970 kDa) allowing the

single Ig domain to bind unoccupied paratopes which are sterically

unavailable for pentameric IgM. Attempts to determine the affinity

of aIgMscFv-Fc towards IgM CH2 failed as the off-rate turned out

to be very low, nevertheless, implying high-affinity binding

(Supplementary Figure 3A) . In a similar setup, a competition

assay with B cells was performed using IgM+ SUP-B8 and Ramos

cells incubated with 100 nM aIgMscFv-Fc and varying

concentrations of IgM CH2 (39-10,000 nM) (Figure 3C). In

accordance with the BLI measurements, B cell binding decreased

with increasing IgM CH2 concentration amounting to IC50 values

of 143 nM and 135 nM for SUP-B8 and Ramos cells, respectively.

Hence, BCRs of IgM isotype on the cell surface compete with the

soluble IgM CH2 domain for scFv binding corroborating the notion

that CH2 is the epitope-bearing IgM domain.

Taken together, these results indicate that human IgM CH2

domain suits as masking unit for the previously identified aIgM S8

antibody since pre-incubation of antibody with IgM CH2 efficiently

impairs IgM binding in biolayer interferometric studies as well as

on a cellular level with membrane-bound IgM.

For masking of aIgM S8 antibody the IgM CH2 domain was

fused to the light chain by a linker with dual-protease site. The

unmasked aIgM and masked aIgM antibody variant, referred to as

CH2-aIgM, were expressed in Expi293F™ cells and purified via

Protein A affinity chromatography. Integrity, size and purity of the

proteins including stability of the linker during production and

purification process were confirmed using reducing SDS-PAGE

analysis (Figure 4A). Thermal stability investigated by SYPRO

Orange revealed melting temperatures of 72.5°C and 71.5°C for

the aIgM and CH2-aIgM, respectively (Supplementary Figure 4).

Thus, no significant change in thermal stability was observed by

attachment of the additional Ig domain. The functionality of the

parental full-length aIgM concerning binding of IgM from human

serum and IgM-derived CH2 domain was confirmed by BLI

(Supplementary Figure 3B). In order to prove feasibility of
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reactivation of the aIgM binding capability in the masked antibody,

CH2-aIgM was treated with either MMP-9 or matriptase. Linker

proteolysis was analyzed by SDS-PAGE demonstrating successful

and complete linker cleavage of the CH2-aIgM LC by both

proteases which resulted in the aIgM LC migrating slightly higher

in SDS gel electrophoresis than the unmasked aIgM LC due to

residual linker amino acids, and the solitary CH2 domain

(Figure 4A). Biolayer interferometry measurements were

conducted to investigate, whether the binding capacity of CH2-

aIgM is diminished and can in a next step be restored by protease

cleavage. Therefore, aIgM, CH2-aIgM, protease treated CH2-aIgM

and rituximab as an unrelated control were immobilized onto AHC

biosensors and subsequently incubated with IgM from human

serum. With CH2-aIgM loaded, association of IgM is completely

impaired since the binding signal is comparable to rituximab

control (Figure 4B). As previous experiments have shown that the

dissociation rate of soluble IgM CH2 from the antibody is low, a

Protein A purification step was systematically introduced after

protease-mediated linker hydrolysis in subsequent assays in order
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to remove a large fraction of cleaved CH2 domain. MMP-9-cleaved,

purified CH2-aIgM allows IgM association, although maximum

binding capacity of aIgM may not fully be restored. This effect of

reduced interaction might be traced back to remaining cleaved

masking units blocking the aIgM paratope due to slow dissociation.

Similar results were obtained in BLI experiments associating with

different IgM concentrations (3.9-125 nM) for competition with

cleaved CH2 masking moiety as well as in a reverse experimental

setup immobilizing IgM to the biosensor and incubating with the

respective antibody variants (Supplementary Figures 3C, D).
On-cell binding of masked and protease-
activated CH2-aIgM

To investigate, whether the masked CH2-aIgM remains innate

to IgM interaction when membrane-bound in a high copy number

on cells and whether protease-activation of CH2-aIgM restores

binding functionality, cell binding experiments were performed
A B

FIGURE 4

Protease-activation of CH2-masked aIgM. (A) Reducing SDS-PAGE of depicted antibodies with schematic representations of heavy and (masked)
light chains. (B) BLI measurement. The four antibody constructs (Rituximab, aIgM, CH2-aIgM, Protein A purified CH2-aIgM+MMP-9) were loaded
onto AHC biosensor tips and associated with 100 nM IgM from human serum.
A

B C

FIGURE 3

Epitope binning of aIgMscFv-Fc and CH2/IgM competition. (A) BLI-assisted epitope binning. The four His-tagged constant IgM domains of the HC
(CH1, CH2, CH3 and CH4) were loaded onto Ni-NTA biosensor tips and associated with 150 nM aIgMscFv-Fc, followed by dissociation. (B) BLI-
assisted competition assay. Biotinylated aIgMscFv-Fc was loaded onto SAX tips and IgM CH2/IgM from human serum were associated in sequence.
(C) Cellular competition assay. IgM+ SUP-B8 and Ramos B cells were incubated with 100 nM aIgMscFv-Fc and varying concentrations of IgM CH2
domain (39-10,000 nM). Detection was performed using anti-human IgG Fc-PE staining and flow cytometry.
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using flow cytometry. SUP-B8 and Ramos B lymphoid cell lines

derived from Burkitt lymphoma were used as IgM+ cells while IgM-/

IgG+ IM-9 B cells served as control (51–53). Cells were stained with

100 nM of respective antibody and PE-conjugated secondary

antibody for detection. While aIgM represents maximum binding

on IgM+ SUP-B8 and Ramos cells, the masked variant CH2-aIgM

shows 61-fold and 102-fold reduced cell binding, respectively

(Figure 5A). Upon MMP-9 cleavage and Protein A purification of

CH2-aIgM cell binding capacity is fully restored to a maximum

binding comparable to the unmasked aIgM version. None of the

antibodies showed unspecific interactions with IgM-/IgG+ IM-9 off-

target cells. Furthermore, cell titration was conducted for

determination of on-cell affinities for the masked and the

proteolytically activated CH2-aIgM. Antibodies were applied to

the cells in a serial dilution with concentrations ranging from

0.125 to 200 nM. Apparent binding affinities for aIgM amounted

to 0.9 nM for SUP-B8 cells and 2.4 nM for Ramos cells, while

titration of cleaved CH2-aIgM resulted in similar values of 1.5 nM

and 2.6 nM for SUP-B8 and Ramos, respectively (Figure 5B).

Besides comparable on-cell KDs of aIgM and protease treated

CH2-aIgM, maximal binding levels are also restored. The masked

CH2-aIgM displayed significantly reduced cell binding indicated by

multiple-fold increased on-cell affinity values and decreased

saturation binding levels (Figure 5B; Supplementary Figure 5A).

Furthermore, interactions of aIgM and CH2-aIgM with PBMCs

isolated from healthy human donor blood were scrutinized

revealing binding of aIgM likely to the B cell subpopulation while

the blocked aIgM antibody largely spares PBMCs (Supplementary

Figure 5B). These results suggest that masking the aIgM antibody

using a covalently linked blocking domain increases the likelihood

of the mask remaining on the antibody due to loss of

conformational degrees of freedom and high affinity, and thus
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significantly reduces binding of IgM. However, the MMP-9

treated CH2-aIgM revealed recovery in binding which indicates

dissociation of the linker-cleaved CH2 domain from the antibody

by reasons of competition with a high number of IgM BCRs in a

cellular context (Figure 5). While covalent linkage of the CH2

domain shows efficient masking, presence of the cleaved masking

unit reduces cell binding of the unmasked antibody to some extent

(Supplementary Figure 6). This may be attributed to the relatively

high concentration of masked antibody used (100 nM) and the slow

dissociation kinetics of the masking CH2 domain.

Overall, transferring the features of the masked IgM antibody in a

physiological setting, the blocked antibody is expected to be inert to

interactions and interceptions related to IgM in systemic circulation

while linker hydrolysis in the tumor microenvironment might result in

localized unrestricted binding capacity and robust tumor targeting.
Cytotoxicity of masked and protease-
activated CH2-aIgM ADC

For investigation of cytotoxicity mediated by an aIgM ADC and

its masked variant CH2-aIgM ADC, both antibody versions were

armed with MMAE generating ADCs with an expected DAR of two.

Attachment of DBCO-PEG4-Val-Cit-PAB-MMAE to the

antibodies was accomplished site-specifically by a two-step

approach of enzyme-assisted azide modification of the heavy

chain's C-terminus which was endowed with a recognition

sequence for lipoate-protein ligase A and click chemistry with

DBCO-conjugated payload. Prior to cytotoxicity studies aIgM and

CH2-masked aIgM were investigated towards internalization

properties using our antibodies labeled with pH-dependent dye

and flow cytometric analysis (54–56). In IgM+ cell lines, the
A

B

FIGURE 5

Cellular binding of unmasked and CH2-masked aIgM variants. Flow cytometry analysis of IgM+ (SUP-B8, Ramos) and IgM- (IM-9) B cells incubated
with aIgM, CH2-aIgM and Protein A purified CH2-aIgM+MMP-9 antibodies and stained via anti-human IgG Fc-PE secondary detection antibody.
(A) B cells were incubated with 100 nM of respective antibodies. Negative control samples (0 nM, black) represent cells stained with secondary
detection antibody only. Histograms were created using FlowJoTM v10 Software (BD Life Sciences). (B) Cell titration of respective antibodies (0.125-
200 nM) on B cells. On-cell KDs were determined using variable slope four-parameter fit. Results are shown as mean RFU, error bars represent
standard deviation derived from experimental duplicates. Data is representative of three independent experiments.
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proportion of endocytosed aIgM increased concentration-

dependently reaching saturation in the single-digit nanomolar

range while significantly less internalization was detected for

CH2-aIgM (Figure 6). Internalization of aIgM and CH2-aIgM

was barely measurable in IgM- B cells. Data points of

internalization measurement were removed for clarity but are

available in the Supplementary Material for all investigated

molecules (Supplementary Figure 7).

First, in vitro cytotoxicity studies were conducted with aIgM-

MMAE, its masked variant CH2-aIgM-MMAE as well as a pre-

cleaved, Protein A purified CH2-aIgM-MMAE version using on-

target SUP-B8 and Ramos cells while IM-9 served as off-target cells.

Consistent with the internalization properties of aIgM in target

cells, IgM+ cells were sensitive to aIgM ADC-induced cell death

(Figure 6). The aIgM ADC displayed potent dose-dependent cell

killing with EC50 values amounting to 0.43 nM and 0.66 nM for

SUP-B8 and Ramos cells, respectively. No significant reduction in

cell proliferation was observed by application of the aIgM-MMAE

molecule to IM-9 B cells not expressing IgM. Paratope-masked

aIgM ADC was unable to mediate cell death in any cell line, which

we expected since no endogenous proteolytic activity was observed

in cell culture supernatants supplemented with CH2-aIgM during

72 h of incubation (data not shown). Notably, MMP-9 and

matriptase activity was detected in B cell lymphoma tumor tissue

warranting the concept of protease-mediated antibody activation

(33, 34). The activity of aIgM was mostly restored after linker

hydrolysis since CH2-aIgM pre-treated with MMP-9 resulted in

significantly decreased survival of IgM+ cells. Comparing potencies

of the parental unmasked ADC to the pre-cleaved CH2-aIgM, an

approximately 5-fold reduced cytotoxic effect was observed on

SUP-B8 cells, whilst on Ramos cells efficacy was fully recovered

(Figure 6). Besides comparable induction of lymphoma cell killing

in EC50 values, similar levels in maximal cell lysis were observed.

MMP-9 treated unpurified CH2-aIgM ADC, revealed 8-9-fold

increased hal f maximal effect ive doses compared to

the parental unmasked ADC in target lymphoma cells

(Supplementary Figure 8).
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Next, we investigated whether apoptosis was triggered by aIgM-

MMAE and CH2-aIgM-MMAE. To this end, cells expressing BCRs

of IgM and IgG isotype were treated with the respective ADCs for

72 h and analyzed by Annexin V-FITC and propidium iodide (PI)

staining using flow cytometry. Application of 50 nM aIgM-MMAE

resulted in increased fractions of Annexin V-FITC-positive IgM+

cells, indicating that apoptosis was induced by antibody-guided

chemotherapeutic damage (Figure 7). SUP-B8 and Ramos cells

being exposed to aIgM-MMAE showed approximately 4-fold and

26-fold increase in Annexin V-FITC positivity, respectively,

compared to untreated control cells (0 nM). Previous

investigations have postulated that MMAE induces cell death

through a rarely studied mechanism termed mitotic catastrophe

possibly being a prelude mechanism to apoptotic or necrotic cell

death and further includes signs of autophagy (57–60). In contrast,

CH2 masked aIgM ADC did not induce any killing detectable by

Annexin V-FITC or PI staining. Likewise, IM-9 IgM-/IgG+ off-

target cells remained unaffected during aIgM ADC treatment.
Discussion

Overcoming the limitations of treatment paradigms for B cell

NHL, novel approaches of highly potent immunotherapies that

work in concert with the host immune system such as bispecific T

cell engaging antibodies and chimeric antigen receptor (CAR) T

cells have been introduced (61–64). Great efforts have further been

made in probing antibody-drug conjugates for lymphoma

therapies. Brentuximab vedotin, Polatozumab vedotin and

Loncastuximab tesirine represent FDA-approved ADCs to treat

different types of B cell lymphoma, targeting antigens such as CD30,

which is expressed by activated B cells, CD79b, and CD19, present

on all B cell types apart from pre-proB cells and mature plasma cells

(32, 65–67).

Besides selection of an appropriate antibody ensuring to reach

the tumor target site without affecting healthy cells in the periphery,

linker and cytotoxic payload are key design parameters in ADCs.
FIGURE 6

Internalization and cytotoxicity of unmasked and CH2-masked aIgM ADC variants towards B cells. For cytotoxicity studies IgM+ (SUP-B8, Ramos)
and IgM- (IM-9) B cells were exposed to varying concentrations (0.014-90 nM) of aIgM, CH2-aIgM and Protein A purified CH2-aIgM+MMP-9 MMAE-
conjugated antibodies for 72 h. Cell proliferation was normalized to untreated control cells (0 nM). For internalization studies pHAb-conjugated
aIgM, CH2-aIgM and Protein A purified CH2-aIgM+MMP-9 (0.014-90 nM) were applied to B cells and incubated overnight. Fold internalization was
defined by the ratio of relative fluorescence units (RFU) of the respective antibody sample and the untreated sample without antibody (0 nM). EC50s
were determined using variable slope four-parameter fit. Results are shown as mean, error bars represent standard deviation derived from
experimental duplicates.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1258700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schoenfeld et al. 10.3389/fimmu.2023.1258700
Related to those criterions is the DAR which plays a pivotal role

determining ADC's potency, safety, and pharmacokinetics. In

general, higher drug loading comes along with increased anti-

tumor activity. However, improvement in efficacy is limited and

excessive cytotoxic payload may cause instabilities and aggregation

and further lead to inferior pharmacokinetics such as in plasma

clearance and tumor exposure (68, 69). Bryant et al. demonstrated

that a DAR of 4 in a (trastuzumab) conjugate revealed highest

potency in vitro and a significantly increased in vivo efficacy

compared to the lower DAR conjugates (70). Referred to as the

first approved mAb for cancer patients, auristatin-based rituximab

ADCs have been developed with DARs of 7-7.5 and 4.2,

respectively, both demonstrating potent therapeutic efficacy in

vitro and in vivo (60, 71). Hence, further improvements may be

reached for the CH2-masked aIgM ADC by examination of optimal

drug loading but were out-of-scope for this proof-of-concept study.

To further promote safety and efficacy of ADCs several

innovative approaches have been developed in the last decades.

One of them includes the generation of a bispecific ADC that targets

HER2 as tumor-associated antigen and CD63 rendering enhanced

lysosomal delivery (72). Another appealing tool is introduced by

CytomX Therapeutics with the probody platform expanding the

availability of new targets for ADCs by antibody paratope masking

and tumor-specific protease-activation. Probody-drug conjugates

are supplied with a protease cleavable linker connected to a peptide

mask limiting target engagement in normal tissue and circulation

(73). CX-2029 targeting transferrin receptor 1 (CD71) attached to
Frontiers in Immunology 0849
MMAE is currently being investigated in phase II clinical trials

displaying translational and clinical activity at tolerable doses in

patients (27, 73).

In this study, we present a novel conditionally activated anti-IgM

antibody-drug conjugate for precise B cell lymphoma elimination. To

this end, we isolated a chicken-derived IgM-specific antibody (aIgM),

which was further fused to the epitope-holding IgM domain CH2 by a

tumor-protease cleavable linker ultimately equipped with the cytotoxic

payload MMAE. Efficient blockage of the tumor targeting moiety in

CH2-aIgM was confirmed by biolayer interferometry. The masked

antibody regained activity upon protease treatment, displaying affine

binding to IgM from human serum. On a cellular level CH2-aIgM was

inert to interact with IgM+ B cells while the cleaved variant revealed

excellent on-cell affinities comparable to the parental unmasked

antibody regarding on-cell affinity constants in the low single-digit

nanomolar range as well as maximum binding capacities. This allows

penetration into the tumor microenvironment without being captured

by soluble IgM or non-malignant IgM+ B cells ultimately improving

pharmacokinetic properties. Reaching the tumor target site, tumor-

protease-mediated linker hydrolysis engenders high affinity targeting.

The aIgM ADC demonstrated specific and effective receptor-mediated

cellular uptake which was closely linked to killing of lymphoma cells

exhibiting strong signs of apoptotic cell death. Cytotoxicity of the

inactive ADC version was shown to be reduced since no cell killing was

observed in the investigated concentration range, thus potentially

preventing systemic side effects. CH2-aIgM is rendered active by

proteases leading to regained toxicity towards malignant IgM+ B
FIGURE 7

Apoptosis induction of aIgM and CH2-masked aIgM ADC in B cells. IgM+ (SUP-B8, Ramos) and IgM- (IM-9) B cells were exposed to 0 nM, 50 nM of
aIgM-MMAE and 50 nM CH2-aIgM-MMAE for 72 h. Cells were stained with Annexin V-FITC and propidium iodide (PI) and analyzed by flow
cytometry. Percentage of Annexin V-FITC+/PI+ and Annexin V-FITC+/PI- (apoptotic cells) is depicted in right bar chart. Data is representative of two
independent experiments.
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lymphocytes. Further animal studies are required to reveal whether the

restrictive and potent in vitro anti-tumor efficacy of the antibody

introduced in this study can be confirmed in vivo.

Our results further show that it is feasible to generate

proteolytically activated antibody-drug conjugates against

immunoglobulins of isotype (Ig)M for B cell lymphoma treatment.

This novel strategy of Ig targeting in B cell-derived malignancies may

be superior to conventional approaches in several respects. By

addressing only a fraction of B cells, unwanted on-target off-tumor

effects are reduced which is further enhanced through the masking

functionality while conventional pan-B cell targeting results in patients

suffering from B cell-aplasia induced immunosuppression (74). In case

of the anti-CD20 antibody rituximab, various resistance mechanisms

are existing such as tumor-dependent alterations e.g., antigen

downregulation and antigenic modulation or host-dependent

immunologic factors e.g., Fc receptor polymorphisms (75–79).

Alternative attempts addressing the BCR include patient-specific

anti-idiotypic peptides or antibodies against variable regions,

however, laborious and time-consuming manufacturing may limit

developability (80–83). We propose an alternative mechanism of

tumor clearance providing the possibility to therapy relapsed or

refractory NHL in the second- or third-line setting solely implying

BCR sequencing to identify the disease-causing B cell clone. This

concept would be effortlessly applicable to different kinds of B cell-

derived malignancies as there are only four human Ig isotypes (IgM,

IgG, IgD, IgA) expressed as BCRs, against which antibodies are already

available and can in a next step be masked by the respective epitope-

bearing Ig domains. As for the CH2-masked aIgM antibody, further

protein or antibody engineering may be required to fine-tune the

affinity, particularly concerning the off-rate of the blocking moiety to

the antibody. In this in vitro study, the cleaved IgM CH2 masking unit

not being removed from the assay sample associates to the aIgM

paratope and thus hampers full functionality of the antibody in terms

of (cell) binding and cytotoxicity requiring further purification to

decrease the molar ratio of CH2 to corresponding aIgM antibody. In

the body, demasking is mediated by proteases such as MMP-9 and

matriptase described to be prognostic factors for B cell lymphoma

when overexpressed (33, 34). The mechanisms of masking domain

release may be shaped by multiple variables in vivo. Each individual

binding event is a one-step reversible biomolecular process obeying the

law of mass action. While interaction to cut CH2 is of monovalent

nature, binding to IgM on B cells involves both antibody valences

showing avidity effects. Moreover, unrestricted diffusion of the soluble

masking domain in blood is opposed to spatial clustered B cell surface

receptors effecting rebinding of aIgMwhich likely leads to local dilution

of the masking domain ultimately resulting in preferred cell binding

(84, 85). Contrary to synthetic peptide masks, the Ig domain used for

paratope-blocking is of human origin reducing the risk of

immunogenicity. However, aIgM is a chimeric antibody constituted

of chicken-derived variable domains fused to human IgG1 constant

domains. Hence, humanization is required to minimize

immunogenicity in therapeutic applications. Our group recently

developed a straightforward method to humanize avian-derived

antibodies by CDR grafting onto a human germline framework

based on Vernier residue randomization that could be applied for

this purpose but is beyond the scope of this study (86, 87).
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Taken together, our approach demonstrates a novel mechanism to

specifically eradicate NHL B cells while preserving healthy human B

lymphocytes that do not display IgM isotype BCRs. Constituting an

inactive anti-IgM antibody-drug conjugate which is actuated in the

proteolytic tumor environment, themolecule unites an enhanced safety

profile due to tumor-proximity restricted activation and potent anti-

tumor efficacy relying on a highly cytotoxic payload. Furthermore, our

study provides a basis for the development of protease-activated anti-Ig

ADCs for the treatment of B cell-driven pathologies.
Materials and methods

Chicken immunization and yeast
library construction

Chicken immunization and scFv yeast surface display library

generation were performed as described previously (48). In brief, an

adult chicken (Gallus gallus domesticus) was immunized with IgM

from human serum (Sigma Aldrich) on days 1, 14, 28, 35, and 56.

The animal was sacrificed on day 63, followed by isolation of the

spleen and total RNA extraction. The immunization process as well

as splenic RNA isolation were executed by Davids Biotechnologie

GmbH (Regensburg, Germany). For library construction, RNA was

reverse transcribed to cDNA. Subsequently, genes encoding VH

and VL were amplified and transferred into a YSD vector (pCT) via

homologous recombination in yeast (Saccharomyces cerevisiae

strain EBY100). Library generation in EBY100 cells was

conducted according to Benatuil and colleagues (88). Cultivation

and general handling of yeast cells are described elsewhere (48, 83).
Yeast library screening

Induction of gene expression and scFv surface presentation was

achieved by inoculation of yeast cells in Synthetic Galactose minimal

medium with Casein Amino Acids (SG-CAA) at an OD600 of 1.0 and

incubation overnight at 30°C and 180 rpm. For library sorting, cells

were harvested by centrifugation and washed with PBS+0.1% (w/v)

BSA (PBS-B). Antigen staining was conducted with DyLight650™-

labelled IgM from human serum (Sigma Aldrich) conjugated

beforehand using 5-fold excess of DyLight650™ NHS Ester (Thermo

Fisher Scientific). Simultaneously, staining for surface presentation

using anti-cMyc antibody FITC-conjugated (Miltenyi Biotec; diluted

1:50) was performed for 30 min on ice. After another PBS-B washing

step, the yeast library was screened using BD Influx cell sorter with

corresponding BD FACS Sortware v1.0.
Expression and purification of scFv, scFv-
Fc and Fab-Fc variants

Reformatting, expression and purification of scFvs was

performed as described previously (89). Briefly, isolated yeast

vectors were sequenced and scFv encoding genes were

reformatted into a pET30 plasmid using golden gate assembly,
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followed by recombinant expression in E. coli SHuffle® T7 Express

(New England Biolabs). A two-step affinity purification was

performed including IMAC and Strep-Tactin®XT purification,

followed by buffer exchange against PBS. Production of Fc-fused

scFvs and full-length antibodies (Fab-Fc) was conducted with

pTT5-derived golden gate assembly vectors in Expi293F™ cells

(Thermo Fisher Scientific). Expi293F™ cells were transiently

transfected using ExpiFectamine™ 293 Transfection Kit (Thermo

Fisher Scientific) following the manufacturer's protocol. For

purification of Fc-containing antibody constructs, cell culture

supernatants were collected five days post transfection, sterile

filtered and applied to a HiTrap™ Protein A HP column (GE

Healthcare) using an ÄKTA pure™ chromatography system (GE

Healthcare). Buffer exchange against PBS or TBS was performed

using a HiTrap™ Desalting column (GE Healthcare).
Cell lines

B cells including SUP-B8, IM-9 and Ramos cells were cultured

at 37°C and 5% CO2. All B cell lines were maintained in RPMI-1640

supplemented with 15% FBS and 1% Penicillin-Streptomycin and

sub-cultured every 2-3 days. Expi293F™ cells were cultured in

Expi293™ Expression Medium (Thermo Fisher Scientific), sub-

cultured every 3-4 days and incubated at 37°C and 8% CO2.
Protease-mediated protein hydrolysis

Recombinant human MMP-9 (Acro Biosystems) or

recombinant human matriptase/ST14 catalytic domain (Bio-

Techne) were used to cleave the dual-protease cleavable linker of

CH2-aIgM. Prior to the protein hydrolysis reaction, MMP-9 was

pre-activated with 1 mM 4-aminophenylmercuric acetate (APMA)

overnight at 37°C. Proteins were dissolved in TBS pH 7.4, if

necessary, by buffer exchange, ensuring suitable conditions for the

MMP-9 and matriptase hydrolysis reaction. 0.25 mg of the

respective antibody variant was mixed with 0.25 mg (0.1 mg/ml)

of activated human MMP-9 or matriptase. Protein cleavage was

performed at 37°C for 48 h. Complete linker hydrolysis was

confirmed using SDS-PAGE under reducing conditions. Cleaved

CH2-aIgM protein was further purified using Protein A spin

columns (Protein A HP SpinTrap, Cytiva) in order to remove

fractions of the masking IgM CH2 domain.
Thermal shift assay

Experiments to determine thermal stability were performed

using a CFX Connect Real-Time PCR Detection System (BioRad)

with a temperature gradient from 20°C to 95°C and 0.5°C/10 s.

The derivatives of the melt curves were calculated with the

corresponding BioRad CFX Maestro software to determine the

melt temperature (Tm). All reactions were performed in PBS in
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presence of 0.1 mg/ml protein and SYPRO Orange (Thermo Fisher

Scientific, diluted 1:100).
Biolayer interferometry

For biolayer interferometric measurements the Octet RED96

system (ForteBio, Sartorius) was used. Therefore, respective

biosensor tips were soaked in PBS pH 7.4 for at least 10 min

before assay start.

For epitope binning, Ni-NTA Biosensors (NTA, Sartorius) were

loaded with cell culture supernatants of single His-tagged IgM

domains expressed in Expi293F™ cells. All following steps were

performed using kinetics buffer (KB, Sartorius). Association was

measured for 180 s with 150 nM aIgMscFv-Fc followed by

dissociation for 180 s.

For the CH2/IgM competition assay, High Precision Streptavidin

biosensors (SAX, Sartorius) were loaded biotinylated aIgMscFv-Fc.

After quenching in KB, two association steps of 250 s were conducted

in sequence, a first association step using either 100 nM IgM from

human serum (Sigma Aldrich) or 1,000 nM IgM CH2 was followed

by a second association using 1,000 nM IgM CH2 or 100 nM

serum, respectively.

For affinity determination of aIgMscFv-Fc and aIgMFab-Fc

anti-human IgG Fc capture biosensors (AHC, Sartorius) were

used to immobilize the aIgM antibodies. After a quenching step

in KB, an association step using CH2-His with concentrations

ranging from 31.25 to 500 nM or IgM from human serum (Sigma

Aldrich) was performed followed by a dissociation step in KB.

Association in KB served as reference and was subtracted prior to

evaluation steps. Data analysis was performed using ForteBio data

analysis software 9.0. Binding kinetics including the equilibrium

constant KD were determined using Savitzky-Golay filtering and 1:1

Langmuir model.

To confirm that the parental full-length aIgM antibody binds to

IgM and IgM-derived CH2, aIgM antibody was loaded onto AHC

biosensor tips, followed by quenching in KB, association with 50 nM

IgM from human serum or 250 nM IgM CH2 and dissociation in

PBS. In the same experimental setup, binding of aIgM, CH2-aIgM,

non-purified and Protein A purified CH2-aIgM+MMP-9 and

rituximab (control) were evaluated for IgM binding by association

of 100 nM or 3.9-125 nM IgM from human serum. In a reverse

experimental setup, biotinylated IgM from human serum was loaded

onto SAX biosensor tips. After a quenching step in KB, 100 nM of the

respective antibody variants were associated.
PBMC isolation

Peripheral blood mononuclear cells (PBMCs) were isolated from

buffy coats from healthy human donors supplied by the Deutsche Rotes

Kreuz (Frankfurt). To this end, 25 ml blood was mixed 1:1 with PBS

+2% (w/v) FBS and PBMCs were purified using SepMate-50 tubes

following the manufacturer's instructions (StemCell Technologies).
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Cellular binding

Cellular binding of the antibodies was determined by affinity

titration using IgM+ SUP-B8 and Ramos cells. IgM- (IgG+) IM-9

cells were used to analyze unspecific cell binding. To this end, cells

(1.5x105 cells/well) were washed with PBS-B and subsequently

incubated with the respective antibody constructs in varying

concentrations (for cell titration: 0.125-200 nM, serial dilution)

for 30 min on ice. Followed by another PBS-B washing step, anti-

human IgG Fc PE-conjugated secondary antibody (Thermo Fisher

Scientific, diluted 1:50), anti-his AF647-conjugated secondary

antibody (Thermo Fisher Scientific, diluted 1:50) or Streptavidin-

APC conjugate (Thermo Fisher Scientific, diluted 1:50) was applied

for 20 min on ice. After final washing with PBS-B, flow cytometry

was performed using CytoFLEX S System (Beckman Coulter). The

relative fluorescence units (RFU) were plotted against the respective

logarithmic antibody concentration. The resulting curves were

fi t ted with a variable s lope four-parameter fi t using

GraphPad Prism.
Internalization assays

Investigations towards receptor-mediated antibody

internalization were performed using pHAb Amine Reactive dye

(Promega) according to the manufacturer's instructions. In brief,

aIgM, CH2-aIgM, non-purified and Protein A purified CH2-aIgM

+MMP-9 were conjugated with pHAb dyes and applied to B cells

(2x104 cells/well) in different concentrations (0.014-90 nM) in a 96-

well plate. After incubation overnight, cells were washed once with

PBS and internalization was measured using flow cytometry. Fold

internalization was determined by the ratio of relative fluorescence

units (RFU) of the respective antibody sample and the untreated

sample without antibody (0 nM). The resulting curves were fitted

with a variable slope four-parameter fit and EC50s were calculated

using GraphPad Prism.
Generation of antibody-drug conjugates

Antibody-drug conjugates were generated via a two-step approach

of enzymatic modification and click chemistry for conjugation of

monomethyl auristatin E (MMAE) to the Fc fragment. Therefore,

the C-terminus of the antibody heavy chain was genetically fused with

a lipoic acid ligase acceptor peptide (LAP) serving as recognition

sequence for lipoate-protein ligase A (LplA) from Escherichia coli

(90). Lipoic acid ligase reaction was conducted with 0.1 equivalents

(eq.) of a mutant lipoic acid ligase A (LplAW37V) (91) accepting various
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carboxylic acid derivatives in the presence of 5 mM ATP, 5 mM Mg

(Ac)2 and 10-20 eq. azide-bearing lipoic acid derivative (synthesized in-

house) in PBS pH 7.4 for 1h at 37°C. Covalent protein azide-

functionalization was confirmed by hydrophobic interaction

chromatography followed by click reaction with 5 eq. DBCO-PEG4-

Val-Cit-PAB-MMAE on Protein A resin (Protein A HP SpinTrap,

Cytiva) overnight at 4°C. After acidic elution of ADC from Protein A

column the buffer was exchanged to PBS pH 7.4.
Cytotoxicity assays

Cytotoxic effects of aIgM ADCs were evaluated by exposing

IgM+ lymphoma B cells or off-target (IgM-) cells to different ADC

concentrations. Cell viability was analyzed 72 h post ADC addition

by a colorimetric method using CellTiter 96® AQueous One Solution

Cell Proliferation Assay (Promega). Briefly, cells were seeded (1x104

cells/well) in a 96-well plate with the desired antibody

concentrations ranging from 0.014-90 nM in a serial dilution.

After 72 h, MTS solution was added to the cells and plate was

incubated for 2 h. Absorption was measured at 490 nm using

CLARIOstar plus microplate reader (BMG LABTECH). Cell

proliferation was normalized to untreated control cell absorption

values. The resulting curves were fitted with a variable slope four-

parameter fit and EC50s were calculated using GraphPad Prism.
Apoptosis assays

For AnnexinV-FITC/PI staining ROTITEST® Annexin V (Carl

Roth GmbH + Co. KG) was applied for apoptosis detection of B

cells according to the manufacturer's instructions. The analysis was

performed using CytoFLEX S System (Beckman Coulter).
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EBF1, MYO6 and CALR
expression levels predict
therapeutic response in diffuse
large B-cell lymphomas

Alice Turdo1†, Miriam Gaggianesi2†, Caterina D’Accardo1,
Gaetana Porcelli 1, Sebastiano Di Bella2, Dario Cricchio2,
Irene Pillitteri 1, Rossana Porcasi1, Melania Lo Iacono1,
Francesco Verona1, Chiara Modica2, Narges Roozafzay1,
Ada Maria Florena1, Giorgio Stassi2*, Salvatrice Mancuso1*‡

and Matilde Todaro1,3‡

1Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties
(PROMISE), University of Palermo, Palermo, Italy, 2Department of Surgical, Oncological and
Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy, 3A.O.U.P. “Paolo
Giaccone”, University of Palermo, Palermo, Italy
Background: Diffuse large B-cell lymphoma (DLBCL) is a hematological

malignancy representing one-third of non-Hodgkin’s lymphoma cases.

Notwithstanding immunotherapy in combination with chemotherapy (R-

CHOP) is an effective therapeutic approach for DLBCL, a subset of patients

encounters treatment resistance, leading to low survival rates. Thus, there is an

urgent need to identify predictive biomarkers for DLBCL including the elderly

population, which represents the fastest-growing segment of the population in

Western countries.

Methods: Gene expression profiles of n=414 DLBCL biopsies were retrieved

from the public dataset GSE10846. Differentially expressed genes (DEGs) (fold

change >1.4, p-value <0.05, n=387) have been clustered in responder and non-

responder patient cohorts. An enrichment analysis has been performed on the

top 30 up-regulated genes of responder and non-responder patients to identify

the signatures involved in gene ontology (MSigDB). The more significantly up-

regulated DEGs have been validated in our independent collection of formalin-

fixed paraffin-embedded (FFPE) biopsy samples of elderly DLBCL patients,

treated with R-CHOP as first-line therapy.

Results: From the analysis of two independent cohorts of DLBCL patients

emerged a gene signature able to predict the response to R-CHOP therapy. In

detail, expression levels of EBF1, MYO6, CALR are associated with a significant

worse overall survival.
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Conclusions: These results pave the way for a novel characterization of DLBCL

biomarkers, aiding the stratification of responder versus non-responder patients.
KEYWORDS

diffuse large B-cell lymphoma, R-CHOP, therapy resistance, elderly patients, gene
expression signature, biomarkers of response
1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common

subtype of non-Hodgkin’s lymphoma and one of the highest

mortality rates for all countries in the world within the elderly

subjects (1). DLBCL is a heterogeneous disease at molecular and

genetic level, characterized by a different biological behavior.

Although more than 50% of patients affected by DLBCL

successfully respond to standard therapy, approximately 40%

experience a relapse, making this neoplasia the leading cause of

morbidity due to limited treatment options (2). Moreover, DLBCL

commonly occurs in patients with comorbidities or in very elderly

patients who warrants geriatric assessment prior treatment. Thus, a

comprehensive examination of treatment efficacy versus the

occurrence of side effects is required in order to predict

tolerability, cardiotoxicity and the broad quality of life in frail

patients (3).

Several studies have shown that the magnitude of clinical

benefit rate in therapies for the treatment of DLBCL, which is

mainly based on the use of immunotherapy in combination with

chemotherapy (R-CHOP), reflects the molecular heterogeneity,

including gene copy-number alterations and mutations (2, 4). Of

note, in the last decades, the addition of rituximab to the standard

CHOP therapy, significantly improved, by 10-15%, the overall

survival of DLBCL patients (2).

Nonetheless comprehensive mechanisms underlying the

refractoriness to R-CHOP have not been determined, several

clinical parameters have been associated with treatment resistance

and worse outcomes. The main prognostic model applied to DLBCL

is based on the International Prognostic Index (IPI). The scoring

system allows to stratify patients from low risk (0/1 score) to high

risk (4/5 score) groups, depending on age, serum lactate

dehydrogenase (LDH) levels, the eastern cooperative oncology

group (ECOG) performance status, number of extranodal sites

and Ann Arbor stage disease (5). Newly diagnosed DLBCL

patients, treated with R-CHOP, are categorized according to the

revised IPI, which facilitates the prognostic classification of

patients (6).

Apart from the scoring system incorporating clinical

parameters, advances in molecular characterization led to

distinguish two different molecular subtypes of DLBCLs with a

different biological behavior, the germinal center B-cell (GCB)

lymphoma and the activated B-cell (ABC) lymphoma, this last

associated with a poorer prognosis. These molecular subtypes of

DLBCL are likewise arising from distinct cell of origin at diverse
0257
stages of lymphoid differentiation and specifically GCB from

normal germinal-center B cells, while ABC from a post-germinal

B cell (7).

Although several integrative approaches and models to detect

patients at increased risk of relapse have been proposed, the

identification of decisive driver biomarkers that can predict

therapy response is still an unmet need. In the present study, in

order to identify the gene expression profile of elderly (≥65-year-

old) DLBCL patient’s responders and non-responders to the

therapy with CHOP and R-CHOP, we benefited from a publicly

available dataset (GSE10846) (7). Using a multiplexed gene

expression analysis, furtherly validated by immunohistochemical

evaluation, it has been identified a gene signature predictive of

therapeutic response, in an independent cohort of DLBCL patients.

From the molecular analysis emerged that expression of EBF1,

MYO6 and CALR is able to select patients with distinct outcomes.

Here, we provided biomarkers that could be of clinical interest to

stratify elderly DLBCL patients, predicting the response to standard

therapy, and develop novel therapeutic strategies based on the

knowledge acquired, regarding validated molecular targets.
2 Materials and methods

2.1 Study populations

DLBCL tumor specimens and patients’ clinical data were

obtained at the Hematology Unit, “P. Giaccone” Hospital of

Palermo. Elderly patients (≥ 65-year-old) have been selected for

the study and further classified in two cohorts of responder (n=13)

and non-responder (n=6) to first-line R-CHOP therapy (validation

cohort). A panel of hematologist and pathologist at the “P.

Giaccone” Hospital followed the ESMO Clinical Practice

Guidelines and Italian Society of Hematology guidelines for

diagnosis, treatment and follow-up of DLBCL patients.
2.2 Statistical analysis

The training cohort (GSE10846, n=414) has been divided in two

groups: patients treated with CHOP (n=181) and patients treated

with R-CHOP (n=233). Patients’ cohort has been filtered by age (≥

65-year-old) (n=188) and subsequently divided in responder (n=94)

and non-responder (n=94) (7).Differential expressed genes (DEGs)

(fold change >1.4, p-value <0.05, k=387) have been clustered in the
frontiersin.org
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responder and non-responder groups and according to LDH levels.

The activated B-cell (ABC) and germinal center B-cell (GCB)

molecular subtypes have been reported as annotations.

Finally, the top 30 up-regulated genes of responder and non-

responder patients have been used to perform enrichment analysis

in order to identify the main signatures involved in gene ontology

(MSigDB), considering molecular function, biological process and

cellular component (p-value<10-7). The signatures associated with

the first 30 upregulated genes were also computed by the QIAGEN

Ingenuity Pathway Analysis software.

The association between features and patients’ overall survival

was assessed by using Cox proportional- hazards model.

Specifically, in the univariate analysis Cell of origin (COO),

ECOG performance status, Extranodal Sites, IPI, LDH, sex and

stage parameters were dichotomized according to (8, 9). The

dichotomization of the identified signature was defined by using

the median expression of each gene (MYO6, EBF1 and CALR). In

the multivariate analysis, we combined our signature with each

previously described feature.

To generate the Kaplan-Meier curves of overall survival by

using the GSE10846 dataset, the initial population was filtered

by age (≥ 65-year-old). “High” and “Low” groups were defined by

using the median expression of each gene (MYO6, EBF1 and CALR)

in the patient cohort.

All analyses were performed with R survival, survminer, and

coxph libraries. Graphs were created by using the ggplot2 library.
2.3 RNA extraction and droplet digital PCR

Total RNA from FFPE tumor tissue specimens was isolated by

using RNeasy FFPE Kit (Qiagen). 300 ng of total RNA was retro-

transcribed with the high-capacity c-DNA reverse transcription kit

(Applied Biosystem). In order to perform a four-gene multiplex

assay, we used specific Droplet digital PCR (ddPCR- QX200

Droplet Reader) gene expression assays with FAM (n=2) and

HEX (n=2) fluorophores. To optimize the multiplex reactions,

from 100 to 300nM gene-specific primers have been used in

combination with ddPCR supermix for probes (No-dUTP) and

25 ng of cDNA samples. Droplets were generated using the QX200

Droplet Generator (Bio-Rad) and dispensed into a 96 well-PCR

plate. PCRs were performed in a ProFlex PCR System (Applied

Biosystem) with the following protocol: 1x (95°C for 10 min), 50x

(94°C for 30 sec, 56°C for 1 min), 1x (98°C for 10 min). After gene

target amplification, samples were analyzed using QX200 Digital

Droplet Reader (Bio-Rad). Gene expression analyses (copies/µl)

were performed using QXManager Software (1.2 Standard Edition)

and normalized by using GAPDH.
2.4 Immunohistochemistry

FFPE lymphoma tissue specimens, stratified by age ≥ 65-year-

old, were obtained from 11 responder patients and 4 non responder

patients treated with R-CHOP.
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Antigen retrieval was performed using the PT link system

(Dako, Agilent Technologies, Santa Clara, CA, USA). Thereafter,

sections were permeabilized with the 0.1% TRITON X-100 PBS for

10 min on ice, followed by 3% H202 and 10% human serum

blocking incubation.

All slides were exposed overnight at 4°C to primary antibodies

against Calreticulin (CAL-R) (ab22683; mouse IgG1; Abcam,

Cambridge Science Park, UK), Myosin VI (MYO6) (MUD-19;

mouse IgG1, Sigma-Aldrich), and EBF-1 (HPA061169; rabbit;

Sigma-Aldrich). Staining was revealed using a biotin-streptavidin

system (Dako LSAB2 System-HRP) and detected with the DAB

substrate chromogen system (Dako). Nuclei were counterstained

with Mayer’s Hematoxylin (Lillie’s Modification) Histological

Staining Reagent (Dako). Staining was analyzed using an

Olympus BX60 microscope. Immunohistochemical analysis were

quantified with Image J.
3 Results

3.1 The analysis of a large cohort of elderly
DLBCL patients revealed a gene signature
associated to prognosis

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous

disease, causing high mortality in elderly patients. Despite the

adverse effects, CHOP- and R-CHOP-based therapies result effective

in the two-thirds of DLBCL patients, of which the rest portion

experiences disease recurrence. Being DLBCL elderly patients the

more susceptible to standard therapy side effects, in order to identify

the genes predictive of therapy response, a gene expression analysis of

188 pretreatment biopsies of patients with an age ≥ 65 was retrieved

from a publicly available dataset (GSE10846) (Figure 1A) (7).

Following unsupervised hierarchical clustering, the

dichotomization of training cohort patients in responder and non-

responder to CHOP and R-CHOP therapy allowed the identification

of differentially expressed genes (DEGs) associated to a poor outcome

(Figure 1B). The median age of the responder and non-responder

cohorts of patients, to standard therapy, was comparable (74.04

versus 75.12-year-old) thus allowing the exclusion of age-related

deaths. Of note, responder patients were mainly characterized by

the GCB-like (62,5%) molecular subtype associated with a favorable

outcome (Figure 1B). In accordance with well-established negative

prognostic LDH parameter, responder DLBCL patients harbored

lower LDH levels (1,0887 versus 1,8112) with respect to non-

responder patients (Figure 1B; Supplementary Figures S1A, B).

Analysis of gene expression profile, including 387 genes, of

responder versus non-responder patients showed ten most

differentially expressed genes (p-value ≤ 0.001) (Figure 1C;

Supplementary Table 1). Specifically, ATAD3A, CALR, CWF19L1,

GALT, MAGEA9, MAPKI8IP3, PSLNR, SEPTIN7P13, SLC19A1 and

SLC38A5 resulted up-regulated in non-responder patients, while high

expression levels of EBF1, EDNRA, CCDC18, CCDC186, FYB,

MALAT1, MIS18BP1, MYO6, THRAP3 and TOP1, characterized

responder DLBCL patients (Figure 1C).
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The enrichment analysis of top 30 upregulated genes computed

with Molecular Signatures Database (MSigDB), revealed six

signatures associated with cell cycle, cell division and cytoskeleton

organization, which are related to B cell malignant neoplasia
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(Figures 1D, E; Supplementary Table 2). Together these data

provide evidence that these gene signatures may select responder

from non-responder patients, identifying patients with a better

life expectancy.
B

C

D

E

A

FIGURE 1

Gene expression analysis of a large cohort of DLBCL patients reveal a gene signature associated to prognosis. (A) Workflow chart indicating the
process to select DLBCL responder and non-responder gene signatures in the training cohort of the GSE10846 database. (B) Heatmap of differential
expressed genes (DEGs) (fold change >1.4, p-value <0.05, k=387) in responder versus non responders DLBCL patients. The LDH levels and the
molecular subtype classification are shown. (C) Top ten up-regulated genes (log2) in responder (blue) and non-responder (orange) DLBCL patient
cohort. (D) Enrichment analysis in gene ontology (MSigDB) in responder and non-responder DLBCL patient cohort. (E) Protein network analysis,
generated with DEGs listed in Supplementary Table 1 The networks were generated through the use of QIAGEN IPA (QIAGEN Inc., https://
digitalinsights.qiagen.com/IPA), in responder and non-responder DLBCL patient cohort.
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3.2 The expression levels of three genes
predicted the response of DLBCL patients
to R-CHOP therapy

In order to validate the expression levels of previously identified

genes in dictating the dichotomization in life expectancy, we

analyzed a cohort of naïve DLBCL patients, diagnosed and in

follow-up at the Hematology/Oncology Unit of the “P. Giaccone”

Hospital in Palermo, treated with R-CHOP as first -line therapy

(validation cohort), selecting the frail cohort of DLBCL patients (≥

65-year-old) (Table 1).

To overcome the low abundance and integrity of RNA content

on formalin-fixed paraffin embedded (FFPE) biopsy samples, we

adopted an implemented quantitative multiplex droplet digital

PCR-based assay (Figure 1C; Figure 2A), from which emerged

that two out ten DEGs, previously identified, EBF1 and MYO6

resulted up-regulated, at both mRNA and protein levels, in

responder DLBCL patients (Figures 2B–D; Supplementary

Figures 2A, B; Supplementary Table 3). Furthermore, the gene

expression analysis of the ten upregulated genes, arisen from the

non-responder included in the dataset (GSE10846), displayed an

increasing trend of CALR mRNA levels, although not reaching

statistical significance, which was paralleled by high protein
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expression levels (Figures 2B–D; Supplementary Table 4). These

data indicate that EBF1, MYO6 and CALR could predict DLBCL

patients’ response to R-CHOP therapy and aid in the stratification

of responder versus non-responder patients.
3.3 EBF1, MYO6 and CALR signature is
associated with survival probability in
DLBCL patients

To investigate the clinical significance of the identified

signature, the magnitude of EBF1, MYO6, and CARL expression

levels has been correlated to the survival data of ≥ 65-year-old

DLBCL patients of the training cohort.

Transcriptome microarray analysis of a cohort of 154 DLBCL

revealed a significant negative correlation between the signature

EBF1low, MYO6low and CALRhigh expression and survival

probability of patients, assuming a more pronounced significance

than single gene expression (Figure 3A). Univariate analysis

denoted that EBF1high, MYO6high and CALRlow signature

expression is an independent positive prognostic factor of overall

survival showing a higher statistical significance over several

important clinical parameters, such as ECOG performance status,
TABLE 1 Clinical parameters of patients with Diffuse Large B Cell Lymphoma (DLBCL) treated with rituximab, cyclophosphamide, doxorubicin,
vincristine, and prednisone (R-CHOP) therapy.

Patient # Age Sex Ann Arbor Stage ECOG Extranodal site LDH IPI Responder

1 68 F I 1 0 269 2 Yes

2 65 M II 1 0 437 1 Yes

3 68 F I 1 0 174 1 Yes

4 67 M III 1 0 452 3 Yes

5 67 F III 1 1 374 3 Yes

6 73 M I 1 1 142 1 Yes

7 72 F nd nd 0 nd nd Yes

8 76 M I 1 1 149 1 Yes

9 69 F III 1 0 274 2 Yes

10 67 F IV 1 0 985 3 Yes

11 69 F IV 1 0 651 nd Yes

12 79 M IV 1 0 260 3 No

13 70 M IV 2 1 511 5 No

14 71 M IV 1 1 372 3 No

15 73 F II nd nd nd 1 No

16 73 F nd 1 0 nd 1 Yes

17 69 M nd 1 0 nd 3 Yes

18 65 M nd 3 0 nd 4 No

19 70 F nd 3 0 nd 2 No
Age is referred to the time of diagnosis. International prognostic Index (IPI) score varies from 0 to 5, according to the presence of prognostic factors. Responder patients to R-CHOP therapy are
indicated with “Yes”, while non-responder patients to R-CHOP therapy are indicated with “No”.
Nd, not determined.
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extranodal sites and stage (Supplementary Figure 3A). Importantly,

EBF1high, MYO6high and CALRlow signature expression significantly

increased the prognostic value of ECOG performance status,

extranodal sites, IPI, LDH and stage (Supplementary Figure 3B).

In line with the signature prognostic value, from the STRING

network analysis emerged an implication of EBF1, MYO6, and

CALR in the regulation of tumor progression together with the

control of B lymphocyte gene transcription, intracellular vesicle

transport and protein folding (Figure 3B; Supplementary Figure

S3C). Being restricted the signature expression to DLBCLs as

compared to non-tumoral lymphoid cells, a specific targeting of

EBF1, MYO6 and CALR could be exploited for therapeutic

intervention (Supplementary Figure S4A).

To investigate whether the EBF1, MYO6 and CALR differential

expression could be an age-independent signature to predict R-
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CHOP response, we assessed their expression levels in a

heterogeneous age group, which revealed a comparable expression

level in adults as well as elderly DLBCL patients (Figure 4A). Of

note, beside in the over 65-year-old, EBF1low, MYO6low and

CALRhigh signature expression is able to dichotomize the

response to R-CHOP treatment in under 65-year-old DLBCL

patients (Figure 4B; Supplementary Figure S4B). Although

EBF1high, MYO6high and CALRlow signature expression was an

independent positive prognostic factor in under 65-year-old

DLBCL patients, it did not increase the prognostic value of the

selected clinical features in a multivariate analysis (Supplementary

Figures 4C, D).

Our study unveils a robust predictive and prognostic signature

able to determine the response to R-CHOP treatment in both under

and over 65-year-old DLBCL patients. Notably, EBF1high,
B

C

D

A

FIGURE 2

EBF1 and MYO6 result highly expressed in responder DLBCL patients whilst CALR high expression characterize non responder DLBCL patients.
(A) Workflow chart indicating the validation of the identified signature in our cohort of FFPE DLBCL samples. (B) Absolute mRNA levels (copies/µl) of
EBF1, MYO6 and CALR in responder and non-responder DLBCL patients (n=19). Data are represented as mean ± SEM of three independent
experiments. (C) Representative droplet digital PCR (ddPCR) scatter plots showing single, double, triple or quadruple positive droplets for EBF1,
MYO6, CALR and CWF19L1 of FFPE samples of responder (pt#1) and non-responder DLBCL patient (pt#14). (D) Representative IHC analysis for EBF1,
MYO6 and CALR of patients as in (C) Scale bar is 100 µm.
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MYO6high and CALRlow signature expression ameliorates the

prognostic power of the most important clinical parameters and,

in particular, of the IPI clinical risk scoring system in the

elderly patients.
4 Discussion

The clinical use of the so far identified gene signatures, mostly

associated with tumor microenvironmental components, led to

unsatisfied clinical outcomes of several DLBCL patients that

remains poor (7, 10). Thus, it is becoming increasingly clear that

the heterogeneity of patients, affected by DLBCL, has been

underestimated, posing an urgent need to identify novel specific

biomarkers for predicting the response to standard therapy.

Here, we found a new signature that significantly associates with

the progression of disease that may be exploited for curative
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therapies in advanced DLBCLs. Droplet digital PCR and

immunohistochemistry analysis of a cohort of ≥65-year-old naïve

DLBCL patients revealed that EBF1, MYO6 and CALR expression

levels stratify patients for the response to the standard R-CHOP

therapy, regardless the IPI score, currently used in clinical settings.

MYO6 is a motor protein, classified as unconventional myosin

protein due to its reverse direction movement towards the actin

filaments. MYO6 is involved in vesicular and macromolecules

transport, cell migration and signaling (11). Albeit being

implicated in prostate and breast cancer progression, here we

uncover a novel role as favorable predictive biomarker in

DLBCLs. CALR controls the protein folding by regulating the

protein glucosylation-deglucosylation cycle and calcium

homeostasis in the endoplasmic reticulum (12). CALR genetic

alterations have been observed in several cancer types and

correlated to a worse outcome. Specifically, CALR driver

mutations has been described in myeloproliferative disorders but
B

A

FIGURE 3

Expression of EBF1, MYO6 and CALR correlate with prognosis in DLBCL. (A) Kaplan Meier overall survival (OS) curves of elderly DLBCL patients
(GSE10846) stratified by high or low EBF1, MYO6 and CALR expression levels. (B) Functional protein association network of EBF1, MYO6 and CALR
based on STRING database.
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have not yet been associated to other hematological neoplasia (13,

14). Interestingly, the main driver mutations in CALR exon 9

change protein localization, from a cytoplasmic form to a

membrane bound homodimers (15). Secretion of mutated CALR

has also been observed in liquid biopsies samples as urine in bladder

urothelial cancer patients (16). Our pioneer findings prospectively

pose CALR as an extremely powerful biomarker in DLBCL patients

and further analysis are necessary to clarify the mutational status of

CALR also in DLBCL patients.

Being EBF1, together with E2A and Pax5, involved in the B-cell

lineage commitment by regulating cell transcription, it has been also

implicated in the development of B-cell-acute lymphoblastic

leukemias (B-ALL) (17). EBF1 protein levels have been otherwise

associated to better prognosis in colorectal cancer and

cholangiocarcinoma and to a worse outcome in triple-negative

breast cancer (18–20). The herein reported findings indicate that

the EBF1low/MYOlow/CALRhigh gene expression foresees the failure

in therapeutic response of patients associated with a low-

intermediate IPI risk, airing this identified signature as significant

prognostic power. While further studies are needed to investigate

MYO6 regulation of lymphoma cell dynamics and to design novel

therapeutic approaches, a monoclonal antibody targeting the

neoepitope generated by mutated CALR in myeloproliferative

disorders has been generated. This approach could be

prospectively applied to DLBCL patients harboring alterations in

CALR (21). To date, specific agonists of EBF1 are not clinically
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available, however, evidence showed that the inhibition of EBF1

may be influenced by Notch and IL-7 signaling, whose modulation

by already accessible compounds could indirectly interfere with

EBF1 (17). Our findings provide evidence that EBF1, likely by

preserving B cell entity, is required together with MYO and CALR

for R-CHOP response and significantly associates with patient

overall survival.

High-grade DLBCLs requires more intensive therapies mainly

characterized by the addition of other chemotherapeutic

treatments. Although the major limitation of this study relies in

the lack of functional validation of the newly identified genes, EBF1,

MYO6 and CALR could be considered targetable candidates to aid

advanced DLBCL management.
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1Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University,
Quanzhou, China, 2Department of Hematology and Rheumatology, The Affiliated Hospital of Putian
University, Putian, China, 3The School of Basic Medicine, Putian University, Putian, China,
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Background: Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell

lymphoma in adults. CDGSH iron sulfur domain 2 (CISD2) is an iron–sulfur

protein and plays a critical role of cell proliferation. The aberrant expression of

CISD2 is associated with the progression of multiple cancers. However, its role in

DLBCL remains unclear.

Methods: The differential expression of CISD2 was identified via public databases,

and quantitative real-time PCR (qRT-PCR) and western blot were used to identifed

the expression of CISD2. We estimated the impact of CISD2 on clinical prognosis

using the Kaplan-Meier plotter. Meanwhile, the drug sensitivity of CISD2 was

assessed using CellMiner database. The 100 CISD2-related genes from STRING

obtained and analyzed using the LASSO Cox regression. A CISD2 related signature

for risk model (CISD2Risk) was established. The PPI network of CISD2Risk was

performed, and functional enrichment was conducted through the DAVID

database. The impacts of CISD2Risk on clinical features were analyzed.

ESTIMATE, CIBERSORT, and MCP-counter algorithm were used to identify

CISD2Risk associated with immune infiltration. Subsequently, Univariate and

multivariate Cox regression analysis were applied, and a prognostic nomogram,

accompanied by a calibration curve, was constructed to predict 1-, 3-, and 5-years

survival probabilities.

Results: CISD2 was upregulated in DLBCL patients comparing with normal

controls via public datasets, similarly, CISD2 was highly expressed in DLBCL

cell lines. Overexpression of CISD2 was associated with poor prognosis in DLBCL

patients based on the GSE31312, the GSE32918, and GSE93984 datasets

(P<0.05). Nine drugs was considered as a potential therapeutic agents for

CISD2. By using the LASSO cox regression, twenty seven genes were identified

to construct CISD2Risk, and biological functions of these genes might be

involved in apoptosis and P53 signaling pathway. The high CISD2Risk value had

a worse prognosis and therapeutic effect (P<0.05). The higher stromal score,

immune score, and ESTIMATE score were associated with lowe CISD2Risk value,

CISD2Risk was negatively correlated with several immune infiltrating cells

(macrophages M0 and M1, CD8 T cells, CD4 naïve T cells, NK cell, etc) that
frontiersin.org0166

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1277695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1277695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1277695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1277695/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1277695&domain=pdf&date_stamp=2023-12-12
mailto:xiongpengzhu@163.com
https://doi.org/10.3389/fimmu.2023.1277695
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1277695
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1277695

Frontiers in Immunology
might be correlated with better prognosis. Additionally, The high CISD2Risk was

identified as an independent prognostic factor for DLBCL patients using both

univariate and multivariate Cox regression. The nomogram produced accurate

predictions and the calibration curves were in good agreement.

Conclusion: Our study demonstrates that high expression of CISD2 in DLBCL

patients is associated with poor prognosis. We have successfully constructed and

validated a good prognostic prediction and efficacy monitoring for CISD2Risk

that included 27 genes. Meanwhile, CISD2Risk may be a promising evaluator for

immune infiltration and serve as a reference for clinical decision-making in

DLBCL patients.
KEYWORDS
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common

subtype of non-Hodgkin lymphoma (NHL) (1, 2), accounting for

approximately 30–40% of NHL cases. DLBCL is a clinically and

biologically heterogeneous disease with variable responses to

treatment and prognoses (1–3). R-CHOP (rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone) has

become the standard treatment for DLBCL due to its clinical efficacy

and well-established safety (3). There are some risk stratifications, such

as activated B-cell (ABC) origin, BCL2/MYC double-expression, and

high International Prognostic Index (IPI) score (3, 4), that are

associated with poor prognosis, aggressive disease behavior, or

resistance to R-CHOP in DLBCL patients. Improved understanding

of the factors influencing DLBCL prognosis is crucial for refining risk

stratification, tailoring treatment approaches, and ultimately enhancing

clinical benefit and overall survival (3, 5).

CDGSH iron-sulfur domain-containing protein 2 (CISD2), also

known as mitoNEET, is anchored to the mitochondrial outer

membrane (MOM) (6, 7). It believes that CISD2 is associated

with lifespan and health span (8), and overexpression of CISD2

might restrain age-associated degeneration of the skin, skeletal

muscles, neurons, and cardiac system in aging (7, 9). CISD2 is

also involved in the development and progression of multiple

cancer types, including breast cancer (10), lung cancer (11), and

colorectal cancer (12). Upregulation of CISD2 has often been

correlated with aggressive tumor characteristics such as increased

tumor size and advanced clinical stage (7, 13, 14). In tumorigenesis,

CISD2 can regulate cancer cell growth, proliferation, invasion,

biosynthesis, and progression through various cellular processes,

including mitochondrial iron metabolism, redox regulation, lipid

metabolism, and cellular stress response (7, 9). Moreover, inhibition

of CISD2 could improve the chemosensitivity of tumors through

increasing cell autophagy and ferroptosis (15, 16). However,

knowledge about the biological function of CISD2 in DLBCL

is meager.
0267
This study aimed to depict the expression profiles of CISD2 and

to analyze its prognostic role and immune infiltration in DLBCL

through bioinformatics analysis and to clarify its probable

mechanisms. We indicated that high CISD2 acted as a biomarker

and an indicator of an adverse prognosis among patients with

DLBCL. Taken together, these findings provided evidence that

CISD2 is important in the occurrence and development of

DLBCL and suggested that CISD2 may be a new biomarker and a

novel therapeutic target for DLBCL.
Materials and methods

Data collection

The public electronic datasets extracted from The Cancer

Genome Atlas (TCGA-DLBC) (n = 47), Genotype-Tissue

Expression (GTEx) (n = 444), which were downloaded from

UCSC Xena (https://xena.ucsc.edu/), and the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), including

GSE83632 (17) (n = 163), GSE31312 (18) (n = 498), GSE32918

(19) (n = 172), GSE93984 (20) (n = 88), GSE117556 (21) (n = 928),

and GSE181063 (22) (n = 1311). The general information and

clinical metadata were obtained and provided in Supplementary

Table S1. Three healthy volunteers were recruited in our institution,

and peripheral blood mononuclear cell (PBMC) were extracted, this

protocol was approved by the ethics committee of Quanzhou First

Hospital Affiliated to Fujian Medical University (No. [2023]K096).
Cell lines culture and expression validation

The lymphoblastoid cell line GM12878 (BeNa, China), DLBCL

cell lines DB (Procell, China), SUDHL4 (Meisen, China), and

SUDHL2 (A gift from Eatern-Sounth University), were used and

cultured in RPMI-1640 (Biosharp, China) supplemented with 10%
frontiersin.org

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2023.1277695
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1277695
fetal bovine serum (FBS, Gibco, USA), 1% streptomycin, and

penicillin (Gibco, USA). The expression of CISD2 in cell lines

was validated through quantitative real-time polymerase chain

reaction (qRT-PCR) and western blotting analysis. First, the total

RNA was extracted using TRIzol reagent (Invitrogen, US) and

reverse-transcribed into complementary DNA (cDNA) for qRT-

PCR following the manufacturer’s instructions. The primer

sequences of CISD2 and b-actin (As an endogenous control) used

in the experiment are illustrated in Supplementary Table S2.

Second, the protein was collected using RIPA buffer (Beyotime,

China) with 1% PMSF (Beyotime, China), and the concentration of

protein was measured using a BCA protein assay kit (Beyotime,

China). Then, the extracted protein was loaded onto a 12.5% SDS-

PAGE gel (Meilunbio, China) and transferred onto Polyvinylidene

fluoride (PVDF) membranes. The membranes were incubated with

the anti-CISD2 primary antibody (1:1000, Proteintech, China) at 4°

C overnight. After the membranes were incubated with goat anti-

mouse IgG (1:10000, Beyotime, China) At room temperature, the

level of protein was detected using BeyoECL Plus (Beyotime, China)

and quantified using Fiji (version 2.9, fiji.sc).
Expression analysis and survival analysis

The differential expression of CISD2 between DLBCL patients and

healthy donors was generated using the TCGA-DLBC, GTEx, and

GSE83632 datasets. The protein expression of CISD2 was explored

through The Human Pro te in Al t a s (HPA, h t tps : / /

www.proteinatlas.org). And the receiver operating characteristic

(ROC) curve was plotted for the performance of distinguishing

between them. Meanwhile, we attempted to investigate the prognostic

role of CISD2 in multiple GEO datasets, including GSE31312,

GSE32918, and GSE93984 datasets, using the survival package.
Drug sensitivity assessment

CellMiner database (www.discover.nci.nih.gov) (23) was used to

assess the drug sensitivity analysis, RNA expression data (RNA: RNA-

seq) and drug data (Compound activity: DTP NCI-60), which the

drugs were selected though approving by clinical trial and FDA, were

downloaded. The Pearson correlation coefficient between CISD2

expression and drugs was calculated and screened (|Pearson| > 0.03

and P < 0.01) using impute and limma (24) packages.
Development of a CISD2-related
risk model

The TOP 100 CISD2-related genes were downloaded from the

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, https://version-12-0.string-db.org/, Version 12.0) with

at least a medium confidence score (0.400). Based on the

GSE117556 dataset, these genes were inputted into the least

absolute shrinkage and selection operator (LASSO) Cox

regression using the glmnet package (25), a CISD2 related
Frontiers in Immunology 0368
signature for risk stratification (CISD2Risk) was developed and

determined, and the risk score was generated: risk score = ∑bixi.
Performance assessment for CISD2Risk

Aiming to elucidate CISD2Risk-related biological function and

interaction, we imported genes of CISD2Risk to STRING and

performed the protein-protein interaction (PPI) network, in

which the association was represented via a confidence score

greater than 0.400 and a P-value less than 0.05. Next, we

uploaded these genes to the Database for Annotation,

Visualization and Integrated Discovery (DAVID) (26), and Gene

Ontology (GO) (27) and Kyoto Encyclopedia of Genes and Genome

(KEGG) analysis (28) were executed. Based on the GSE117556 as

training datasets and the GSE181063 as validation datasets,

expression analysis, survival analysis, univariate Cox analysis, and

multivariate Cox analysis were adopted to appraise the association

of the CISD2Risk and clinical characteristics with OS.
CISD2Risk associated with
immune infiltration

To explore the potential immune infiltration contributing to

CISD2Risk, we qualified the tumor microenvironment, including

the stroma score, immune score, and estimate score, using the

estimate package (29). The cell type identification by estimating

relative subsets of RNA transcripts (CIBERSORT) algorithm (30)

was used to evaluate 22 types of immune cell infiltration in the

GSE117556 and GSE181063 datasets, and the difference between

the CISD2Risk value and the abundances of immune cells was

estimated. And the Microenvironment Cell Populations-counter

(MCP-counter) algorithm (31) that could allow use of the

transcriptome data to quantify the absolute abundance of 8

immune cells and 2 stromal cells was analyzed.
Prognostic implication of CISD2Risk

Meanwhile, we developed the nomograms using the rms

package, and the time-dependent receiver operating characteristic

(ROC) curves were plotted to determine the prognostic accuracy of

the CISD2Risk using the timeROC package (32), and the

probability of 1-, 3-, and 5-year OS can be obtained. A calibration

curve was used to visualize the deviation of predicted probabilities

from what actually happened. The concordance index (C-index)

was used to measure the predictive accuracy of the nomogram.
Statistical analysis

Data are expressed as the mean ± standard deviation (SD).

Comparisons between two groups were analyzed using the

Student’s t-test (two-tailed). Comparisons among groups were

analyzed using a one-Way ANOVA followed by the Tukey test. All
frontiersin.org
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analyses were performed with R programming (version 4.2.1). P <

0.05 was considered to indicate a statistically significant difference.
Results

Upregulated CISD2 expression in DLBCL

Figure 1 illustrates the workflow in this study. Based on

TIMER2.0 (http://timer.cistrome.org), we found that CISD2

expression was upregulated in numerous tumors (7)

(Supplementary Figure S1A), including lung adenocarcinoma

(LUAD) (33), breast cancer (BRCA) (10, 34), and liver cancer

(LIHC) (35). Due to the lack of normal control, the whole blood

cohort was often used as a reference to TCGA-DLBC. After excluding

Epstein Barr virus (EBV) transformed lymphocytes, a total of 337
Frontiers in Immunology 0469
whole blood specimens were enrolled. In the comparison of gene

expression between TCGA tumor and GTEx normal datasets

(Figures 2A). CISD2 expression was dramatically increased in

DLBCL samples in TCGA-DLBC compared with 337 whole blood

specimens in GTEx dataset(P < 0.05, Figure 2B). We also analyzed

CISD2 expression patterns in the GSE83632 datasets, which enrolls

76 DLBCL patients and 87 healthy controls (HCs). As shown in

Figures 2C, D, the result showed CISD2 expression in DLBCL was

higher than in HCs (P < 0.05). In order to assess the performance of

the CISD2 expression for the predictor variable. First, comparing

TCGA-DLBC with whole blood samples in GTEx dataset, the area

under the curve (AUC) of the ROC curve was 0.818 (95% CI: 0.780-

0.856, Figure 2E). Meanwhile, the AUC value of 0.8274 (95% CI:

0.759-0.896, Figure 2F) was showed in the GSE83632 dataset. On the

other hand, using HPA dataset, the protein expression of CISD2 in

lymphoma tissues were higher than lymph node tissues
FIGURE 1

Study flowchart. DLBCL, Diffuse large B-cell lymphoma; GO, Gene Ontology; GSE, Gene Expression Omnibus Series; GTEx, The Genotype-Tissue
Expression; KEGG, the Kyoto Encyclopedia of Genes and Genomes; LASSO, the least absolute shrinkage and selection operator regression; MCP-
counter, Microenvironment Cell Populations-counter; OS, over survival; PFS, progression-free survival; PPI, Protein-protein interaction; qRT-PCR,
real-time reverse transcription-PCR; STRING, the Retrieval of Interacting Genes/Proteins; TCGA, The Cancer Genome Atlas.
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(Supplementary Figure S1B). For further comparison of CISD2

expression among B-cell lines, first, CISD2 expression of DLBCL

cell lines, including DB, SUDHL4, and SUDHL2, was upregulated

compared with normal B cell lines (GM12878) through WB analysis
Frontiers in Immunology 0570
(Supplementary Figures S1C, D) and qRT-PCR analysis

(Supplementary Figure S1E). Second, the PBMCs extracted from

three healthy volunteers, comparison with DLBCL cell lines, the

CISD2 expression in PBMCs downregulated using qRT-PCR and
A

B C D

E F G

H

I

FIGURE 2

The upregulated expression of CISD2 in DLBCL. (A) The gene expression profile of CISD2 in different types of tumors and its homologous normal
tissues, data was extracted from TCGA and GTEx. (B) CISD2 expression in DLBCL tissue (TCGA-DLBC, n = 47) compared with the whole blood excluded
EBV transformed lymphocytes in GTEx cohort (n = 337). (C) The volcano plot based on GSE83632 datasets, CISD2 was located in the area of
upregulation, adjust P value < 0.05 and fold change < 1. (D) CISD2 expression in DLBCL whole blood samples (n = 76) compared with healthy controls (n
= 87) based on GSE83632 dataset. The ROC curves and AUC for evaluating the prediction accuracy of CISD2 in the network analysis of TCGA-DLBC
and GTEx gene expression datasets (E), and GSE83632 dataset (F). The expression of CISD2 in different B lymphocyte cell lines, including normal PBMCs,
SUDHL2, SUDHL4, and DB. A qRT-PCR analysis (G), and a WB analysis (H, I). AUC, area under curve; DLBCL, Diffuse large B-cell lymphoma; GSE, Gene
Expression Omnibus Series; GTEx, The Genotype-Tissue Expression; PBMC, peripheral blood mononuclear cell; qRT-PCR, real-time reverse
transcription-PCR; ROC, receiver operating characteristic; WB, western blotting. *** P < 0.001, ** P < 0.01, * P < 0.05, ns, not signifcance.
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WB analysis(P < 0.05, Figures 2G–I). These evidences indicated that

CISD2 has auxiliary diagnostic significance in distinguishing DLBCL

samples from normal samples.
Prognostic role of CISD2 expression
in DLBCL

To determine whether CISD2 could have a novel prognostic value in

DLBCL, we analyzed its prognostic significance in DLBCL patients using

a Kaplan-Meier (KM) curve based on GEO datasets. As shown in

Figures 3A, C, upregulated CISD2 expression was associated with poor

over survival (OS) in both the GSE31312 dataset (Hazard Ratio (HR) =

0.746, 95% CI: 0.594-0.938, P = 0.01) and the GSE32918 dataset (HR =

0.688, 95%CI: 0.492-0.962, P = 0.028) by the KM survival curve analysis.

Also, DLBCL with high CISD2 expression showed remarkably worse

progression-free survival (PFS) than low CISD2 expression in both the
Frontiers in Immunology 0671
GSE31312 dataset (HR = 0.774, 95% CI: 0.614-0.976, P = 0.028) and the

GSE93984 dataset (HR = 0.297, 95% CI: 0.086-1.029, P = 0.009)

(Figures 3B, D). For each of the above datasets, patients were stratified

into two groups using the median CISD2 expression level as a cutoff and

were eliminated if OS or PFS were lower than one month. This suggests

that CISD2 expression may influence the prognosis of patients

with DLBCL.
Drug sensitivity assessment of CISD2

Using the CellMiner database (23), the results showed that AM-

5992, Ribavirin, Chelerythrine, KPT-9274, Palbociclib, LEE-011,

Hydroxyurea, PX-316, and Nelarabine were positively correlated

with CISD2 expression (Figure 3E, Supplementary Table S3).

Meanwhile, the scatter plots were provided in Supplementary
A B

C

E

D

FIGURE 3

The prognostic value of CISD2 expression in DLBCL and drug sensitivity assessment of CISD2. The KM curves showed OS (A) and PFS (B) based on
GSE31312 as training datasets, on the other part, the KM curves showed OS based on GSE32918 as a validation dataset (C), and PFS based on
GSE93984 as a validation dataset (D). (E) The drug sensitivity analysis was showed, a total of 9 drugs were positively associated with CISD2
expression, and 17 drugs suggested negative correlation though CellMiner database. GSE, Gene Expression Omnibus Series; KM, Kaplan–Meier; OS,
over survival; PFS, progression-free survival.
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Figure S2. These findings indicated that these small molecule

compounds may be potential therapeutic agents for CISD2.
Development of the CISD2Risk

To in-depth explore the biological function of CISD2 and its related

genes in DLBCL, we collected 100 CISD2-related genes from the STRING

website (Supplementary Figure S3). A total of 928 patients in theGSE117556

(21) were applied for investigation into their potential effectiveness in this

study. After excluding patients with OS times of less than one month, 844

patients were enrolled. The levels of CISD2 related genes were inputted into

LASSO Cox regression analysis (Figures 4A, B). Twenty-seven genes,

including CISD2, BID, NDUFA9, NDUFS5, NDUFB9, BCL2, NDUFA7,

MCL1, PMAIP1, PIK3C3, CYCS,UQCRB,NDUFS1,HRK,UVRAG, BBC3,

PIK3R4, CISD3, NDUFB1, NRBF2, NDUFB4, FXC1, TMEM49, TIMM10,

NDUFB2, BCL2L1, and BCL2L11were evaluated (Figure 4C). Therefore, the

CISD2Risk was: CISD2Risk = 0.2485 × CISD2 -0.0610 × BID -0.0224 ×

NDUFA9 + 0.0176 × NDUFS5 + 0.2460 × NDUFB9 + 0.1057 ×

BCL2 + 0.04074 × NDUFA7 + 0.2673 × MCL1 + 0.1250 ×

PMAIP1 + 0.1510 × PIK3C3 + 0.1428 × CYCS + 0.1468 × UQCRB +

0.0598 × NDUFS1 + 0.0390 × HRK - 0.2614 × UVRAG - 0.0441 ×

BBC3+ 0.2380 × PIK3R4+ 0.1201 ×CISD3 - 0.1192 ×NDUFB1+ 0.0746 ×

NRBF2 -0.1411 ×NDUFB4 + 0.0350 × FXC1 - 0.3655 × TMEM49 - 0.0525

× TIMM10 - 0.1292 × NDUFB2 - 0.1168 × BCL2L1 - 0.0537 × BCL2L11.

The PPI network of 27 genes extracted fromCISD2Riskwas visualized using

the Cytoscape software (36) (version 3.9.1, Figure 4D).
Enrichment analysis of CISD2Risk genes
in DLBCL

Enrichment analysis of GO enrichment and KEGG pathways

was performed based on the CISD2Risk genes. We found

enrichment in GO in terms of a few biological processes (BP),

such as aerobic respiration, mitochondrial respiratory chain

complex I assembly, and apoptotic processes. The main top

enrichment cellular component (CC) was the mitochondrion,

mitochondrial inner membrane, and mitochondrial outer

membrane. And molecular function (MF) enrichment involved

protein binding, NADH dehydrogenase (ubiquinone) activity, and

BH3 domain binding, as shown in Figure 4E and Supplementary

Table S4. The KEGG pathway analysis showed that oxidative

phosphorylation, apoptosis, autophagy, and the P53 signaling

pathway are involved (Figure 4F, Supplementary Table S5).
Association between CISD2Risk and clinical
features in DLBCL

Next, we examined the impact of CISD2Risk in DLBCL. Dividing

into two groups by the median CISD2Risk value, we found that a high

CISD2Risk group was closely related to the relatively poor prognosis of

patients with DLBCL in the GSE117556 dataset that enrolled 844

DLBCL patients as a training dataset (P < 0.05, Figure 5A), and 1058

DLBCL patients in the GSE181063 dataset (Validation dataset) that
Frontiers in Immunology 0772
excluded patients with OS times of less than one month (P < 0.05,

Figure 5E). Sha et al. (21) had defined the molecular high-grade (MHG)

subtype of patients with DLBCL that identifies an activated

aggressiveness and a poor prognosis (3, 21, 37). In this study, the

highest CISD2Risk value in MHG subtype was shown both the

GSE117556 and the GSE181063 datasets (P < 0.05, Figures 5B, F).

Generally, the prognosis of DLBCL patients in ABC subtype is inferior

to that of the germinal center B cell like (GCB) subtype (38, 39), the

CISD2Risk value in ABC subtypeDLBCLwas higher thanGCB subtype

DLBCL (P < 0.05, Figures 5B, F). Similarly, high CISD2Risk patients in

ABC, GCB, andMHGDLBCL cases revealed an unfavorable prognosis,

compared to low CISD2Risk patients (Supplementary Figures S4A–C).

We had found that a higher CISD2Risk value in DLBCL patients with

raised lactate dehydrogenase (LDH) (greater than 245 U/L) than

patients with normal LDH (P < 0.05, Figures 5C, G). As previously

described (40), the IPI score was divided into high and low IPI groups

with a value of two as the cut-off, DLBCL patients with high IPI

exhibited a significantly higher CISD2Risk value (P < 0.05, Figures 5D,

H), and CISD2Risk valu play a good prognostic role of DLBCL patients

both IPI >= 2 and IPI < 2 group (Supplementary Figures S4D, E). The

clinical effectiveness of treatment for DLBCL is often divided into four

categories: complete response (CR), partial response (PR), stable disease

(SD), and progressive disease (PD), DLBCL patients achieved PD

exhibited higher CISD2Risk value than DLBCL patients achieved CR

or PR (P < 0.05, Figure 5I), we also set patients achieved CR and PR as

clinical effectiveness and the others considered as clinical ineffectiveness

(41), the result was demonstrated that the DLBCL patients achieved

clinical effectiveness manifested lower CISD2Risk value than that

achieved clincial ineffectiveness (P < 0.05, Figure 5J). On the other

part, DLBCL cases with low CISD2Risk value were often obtained a

curative treatment (P < 0.05, Figures 5K). Several studies revealed the

poor prognosis of MYC and BCL2 and/or BCL6 overexpression in

DLBCL, known as double-expressor DLBCL (21, 42). We also reported

the overexpression of MYC and BCL2 in DLBCL cases were possiblely

associated with CISD2Risk value, and the double-expressor DLBCL

exhibited the high CISD2Risk value (P < 0.05, Figure 5L). These

evidences indicated CISD2Risk value was associated with adverse

clinical outcomes in DLBCL patients. Subsequencely, we investigated

the correlation among included genes in CISD2Risk both the training

and validation datasets (Figures 5M, N), the results demonstrated that

the correlations were similar, indicating that CISD2Risk had relative

stability. In addition, CISD2 is related to aging, we divided into two

groups based on age, neither greater nor less than 60 years, there was no

difference between CISD2 expression and age (Supplementary Figures

S5A–D). And a high CISD2Risk group was closely related to the

relatively poor prognosis of DLBCL patients with different age group

(Supplementary Figures S5E–H). These results suggested that the

prognosis of CISD2Risk was not affected by different ages.
Relationship between the CISD2Risk and
immune infiltration in DLBCL

The tumor immune microenvironment significantly affects the

therapeutic effect and prognosis of multiple tumor (43, 44). We

introduced the ESTIMATE algorithm to infer the fraction of
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stromal and immune cells in tumour samples based on single

sample gene set enrichment analysis (ssGSEA). A higher stromal

(P < 0.05, Figures 6A, D) or immune scores (P < 0.05, Figures 6B, E)

suggested greater density of stromal or immune cells in the tumour

immune microenvironment of DLBCL patients with low

CISD2Risk value the ESTIMATE scores that represent the sum of

the stromal or immune scores, which can infer tumour purity

associated with poor prognosis (29, 45), were negatively correlated

with CISD2Risk value (46, 47) (P < 0.05, Figures 6C, F). The

CIBERSORT algorithm (30) was used to estimate the distribution

and proportion of 22 immune cell types in DLBCL. The gene
Frontiers in Immunology 0873
expression profiles of the GSE117556 and GSE181063 datasets were

inputted into CIBERSORTx (http://cibersortx.stanford.edu). As

demonstrated in Figures 6G, H, both the GSE117556 and

GSE181063 datasets, there were a represented abundance of CD8

T cells, CD4 naïve T cells, macrophages M0, macrophages M1,

neutrophils, and activated mast cells had significantly negative

correlations with CISD2Risk values (P < 0.05). On the contrary,

three cells that include naïve B cells, memory B cells, and plasma

cells had significantly positive correlations with CISD2Risk value (P

< 0.05). MCP-counter algorithm (31) aims to estimate immune

infiltration by fibroblasts, endothelial cells, and eight immune cells
A

B

C

D

E F

FIGURE 4

Development of the CISD2 risk model (CISD2Risk). (A) The LASSO Cox regression profiles of the CISD2Risk. (B) The 27 genes selected using LASSO
Cox regression analysis, the two dotted vertical lines were drawn at the optimal scores by lamba.minimum criteria and lamba.1se. (C) There were 27
genes enrolled: CISD2, BID, NDUFA9, NDUFS5, NDUFB9, BCL2, NDUFA7, MCL1, PMAIP1, PIK3C3, CYCS, UQCRB, NDUFS1, HRK, UVRAG, BBC3,
PIK3R4, CISD3, NDUFB1, NRBF2, NDUFB4, FXC1, TMEM49, TIMM10, NDUFB2, BCL2L1, and BCL2L11. (D) The PPI network of 27 genes enrolled in
DLBCL patients visualized by the Cytoscape software (version 3.9.1). (E) GO enrichment analysis of 27 genes enrolled. (F) KEGG pathway analysis of
27 genes enrolled. DLBCL, Diffuse large B-cell lymphoma; GO, Gene Ontology; GSE, Gene Expression Omnibus Series; KEGG, Kyoto Encyclopedia of
Genes and Genomes; LASSO, least absolute shrinkage and selection operator; PPI, protein-protein interaction; STRING, Search Tool for the Retrieval
of Interacting Genes/Proteins.
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FIGURE 5

Association between CISD2 expression and clinical features in DLBCL. CISD2Risk was divided into high- and low- groups according to the median
based on GSE117556 (training dataset) and GSE181063 (validation dataset). (A, E) The KM curves showed that high CISD2Risk group had poor OS. (B,
F) Comparison among CISD2Risk values of different molecular subgroup. (C, G) Comparison between CISD2Risk values of normal and raised LDH.
(D, H) Comparison between CISD2Risk values of low and high IPI. (I, J) Comparison between CISD2Risk values of clinical effectiveness and clinical
ineffectiveness based on GSE117556 dataset. (K) Comparison between CISD2Risk values of inactive treatment and active treatment DLBCL cases
based on GSE181063 dataset. (L) Comparison among CISD2Risk values of MYC, BCL2, and double-expressor based on GSE117556 dataset. (M, N).
The correlation analysis of 27 genes enrolled by CISD2Risk. CR, complete response; DLBCL, Diffuse large B-cell lymphoma; GSE, Gene Expression
Omnibus Series; IPI, international prognostic index; KM, Kaplan–Meier; LDH, lactate dehydrogenase; OS, over survival; PD, progressive disease; PR,
partial response; SD, stable disease. *** P < 0.001, ** P < 0.01, * P < 0.05.
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using transcriptomic data. We found that the high CISD2Risk value

was associated with significantly decreased abundances of six

immune cells, inclinding CD8 T cells, T cells, Natural killer (NK)

cells, cytotoxic lymphocytes, neutrophils, and monocytic lineage,
Frontiers in Immunology 1075
while fibroblasts and endothelial cells showed the similar trend both

the training and validation datasets. On the other hand, compared

with the low CISD2Risk value, the high CISD2Risk exhibited

increased proportion of B lineage, as shown in Figures 6I, J.
A B C D E F

G

H

I J

FIGURE 6

The immune infiltration associations about CISD2Risk in DLBCL based on GSE117556 and GSE1810163 datasets. First, estimate algorithm used to qualitify the
tumour microenvironment. (A, D) Comparison between the stromal scores of high and low CISD2Risk value, (B, E) Comparison between the immune scores
of high and low CISD2Risk value, (C, F) Comparison between the estimate scores of high and low CISD2Risk value. Second, CIBERSORT algorithm used to
evaluate 22 types of immune cell infiltration, (G, H) Comparison between the estimate proportion in 22 types of immune cell of high and low CISD2Risk
value. Third, MCP-counter algorithm used to analyse 8 types of immune cell, (I, J) Comparison between the MCP-counter scores in 8 types of immune cell
of high and low CISD2Risk value. CIBERSORT, cell type identification by estimating relative subsets of RNA transcripts; DLBCL, Diffuse large B-cell lymphoma;
MCP-counter, Microenvironment Cell Populations-counter. **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05, ns, not signifcance.
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Prognostic implication of CISD2Risk
in DLBCL

IPI scoring is a widely used tool to assess the prognosis and

predict outcomes for patients with DLBLC, the factors considered

in the IPI include ages, clinical stage, elevated serum LDH, Eastern

Cooperative Oncology Group Performance Status (ECOG PS), and

extranodal sites of disease. To investigate the prognostic values of

CISD2Risk in DLBCL, we employed these variables included

gender, cell of original (COO), molecular subgroup (21, 22), IPI,

double-expressor and status of CISD2Risk divided into high and

low levels by median of CISD2Risk value, into univariate and

multivariate Cox regression analysis. As shown in Figure 7, the

results showed that the status of CISD2Risk could be an

independent prognostic factor for OS both the GSE117556

(Figure 7A) and the GSE181063 (Supplementary Figure S6). A

forrest plot exploring multiple clinical features for PFS in the

GSE117556 dataset was provided, CISD2Risk was also an

independent prognostic indicator for PFS (Figure 7B).
Construction and validation of the
nomogram in DLBCL

We built a prognostic nomogram in DLBCL to anticipate the 1-,

3-, and 5-years OS based on prognostic factors such as age, gender,

COO, molecular subgroup (21, 22), IPI, ECOG PS, clinical stage,

LDH, extranodal, double-expressor and status of CISD2Risk in the

GSE117556 dataset (Figure 8A), that the higher total points in the

nomogram indicated worse survival. And the C-index of the

nomogram was 0.746 (95% CI: 0.743-0.749). While a survival

prediction nomogram in the validation dataset was constructed

(Supplementary Figure S7A) and C-index was 0.732 (95% CI: 0.730-

0.734). The calibration curves (The training dataset showed at

Figure 8B, The valication dataset showed at Supplementary Figure

S4B) were visualized and indicated acceptable agreement between

the predicted survival rate and the actual survival rate, suggesting

that these nomograms we constructed might favorably predict the
Frontiers in Immunology 1176
prognosis of patients with DLBCL. The AUC of time-dependent

ROC curves (Figures 8C, D, and Supplementary Figures S4C–E)

were presented in Supplementary Table S6. These data suggested

that the prognostic nomogram constructed by these clinical features

and CISD2Risk had a good prediction ability on the prognosis of

DLBCL patients.
Discussion

At present, emerging evidence demonstrates that the

pathogenesis of DLBCL is complicated and consistent with

aberrant gene expression that affects cell growth (48), invasiveness

(49), angiogenesis (50), and apoptosis (51). It is reasonable for us to

believe that CISD2 may play a significant role in DLBCL. Using

public databases (17–22), we found upregulated CISD2 as an

appropriate diagnostic factors and a unfavorable prognostic

indicator in DLBCL. Recent studies demonstrated that a clinical

risk model included multiple genes is helpful to better implement

the eligible diagnostic and the favorably prognostic criteria in

DLBCL patients (52–55). Here, we developed a CISD2-related

risk model (CISD2Risk) based on CISD2 related genes using

LASSO Cox regression analysis in the GSE117556 dataset, and

performed external validation (GSE181063 dataset) for its

performance. Our results showed that CISD2Risk revealed a good

ability to predict survival, and was an independent prognostic factor

of DLBCL patients.

There are eight genes (BUB1B, CISD2, KLOTHO, PAWR,

PPARG, PTEN, SIRT1, and SIRT6) listed as pro-longevity genes

in mammals by the Human Aging Genomic Resources (HAGR)

(56). Several studies have showed that some pro-longevity genes

(such as PTEN, SIRT1, and SIRT6) influenced the occurrence and

development, the drug resistance of DLBCL (57–59). However, the

biological function of CISD2 in DLBCL is still unclear. Knockout of

CISD2 in mice could cause a number of age-related phenotypes in

multiple organs and lead to premature aging (6, 7), suggesting that

CISD2 might play a critical role in controlling lifespan.

Mechanically, CISD2 could regulate Ca2+ homeostasis and
A B

FIGURE 7

The hazard ratios of clinical features integrated into the OS and PFS showed in the forest plots in DLBCL using univariate and multivariate cox
regression analysis based on the training dataset, (A) left, OS; (B) right, PFS; blue and circle, univariate Cox regression analysis; red and square,
multivariate Cox regression analysis. OS, over survival; PFS, progression-free survival.
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maintain mitochondrial function (8, 60). Currently, the role of

CISD2 in cancers causes more interest. Sun et al. (13) showed that

CISD2 expression was negatively correlated with the survival of

patients with glioma, and inhibition of CISD2 might activate

BECN-1-mediated autophagy to reduce the proliferation of

glioma cells. Cervical cancer patients with higher CISD2

expression had shorter OS and were associated with pelvic lymph

node metastasis (61). Upregulation of CISD2 in lung

adenocarcinoma (ADC) specimens compared with their adjacent

normal counterparts was found (33), and was associated with

increased antioxidant capacity in response to elevated ROS levels

during the formation and progression of lung cancer (33). In this

study, we also found that CISD2 was upregulated in DLBCL

compared with NCs, and CISD2 expression was negatively

associated with survival, indicating that CISD2 may be involved

in the pathologic progression of DLBCL. Numerous studies (6–9)
Frontiers in Immunology 1277
indicated that CISD2 regulates age-associated disorders. The

expression of CISD2 could be activated at a late-life stage of aged

mice pharmaceutically, hesperetin considered as CISD2 activator

enhanced CISD2 expression in order to slow down aging and

promote longevity (9). It highlights the urgent need to explore the

potential therapeutic strategy for cancer and age-associated diseases

based on CISD2 manner. In this study, different age in DLBCL did

not affect the CISD2 expression (P > 0.05), suggesting that CISD2

might play a role in promoting the development of DLBCL. We also

assessed the drug sensitivity, AM-5992, Ribavirin, Chelerythrine,

KPT-9274, Palbociclib, LEE-011, Hydroxyurea, PX-316, and

Nelarabine were potential therapeutic role for DLBCL.

CISD2 is localized on MOM, ER, and mitochondrial-associated

ER membrane (MAM) (7, 9), which is closely related to its

biological functions. Natasha et al. indicated that CISD2 could be

a physical interaction between BCL2 and BECN1 to antagonize
A

B C D

FIGURE 8

The construction and validation of the nomogram. (A) The nomogram plot of the GSE117556 dataset showed the prediction of clinical features
including age, gender, COO, molecular subgroup, IPI, ECOG PS, clinical stage, LDH, extranodal, double-expressor, CISD2Risk, and 1-year, 3-year,
and 5-year survival probability. (B) The calibration curve of 1-year, 3-years, and 5-year survival probability of DLBCL patients, The dashed line
represented a perfect uniformity between predicted probability and observed probability. The time-dependent ROC curves for nomogram (C) and
CISD2Risk (D) at 1-year, 3-year, and 5-year for DLBCL, respectively. COO, cell of original; DLBCL, Diffuse large B-cell lymphoma; ECOG PS, Eastern
Cooperative Oncology Group performance status; GSE, Gene Expression Omnibus Series; IPI, international prognostic index; LDH, lactate
dehydrogenase; ROC, receiver operating characteristic.
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autophagy in response to nutrient stress; the BCL2-CISD2 complex

is a requirement for BCL2-mediated depression of ER Ca2+ stores

(62). It was suggested that CISD2 might be involved in multiple

biological processes as an interaction or intermediate. For further

investigation of the biological function of CISD2 in DLBCL, we

collected 100 CISD2-related genes from STRING and identified 27

genes using LASSO Cox regression analysis. CISD2Risk was

developed based on these genes using the GSE117556 datasets.

GO and KEGG enrichment analysis of 27 genes revealed that

CISD2Risk might be likely to be involved in apoptosis and the

P53 signaling pathway and localize on the mitochondrial inner

membrane and outer membrane, suggesting that it may participate

in mitochondrial apoptosis. Several studies showed that apoptosis

proteins such as P53 (63, 64), BCL2 (65–67), and MCL1 (68),

directly and indirectly involved in the intrinsic or extrinsic

apoptotic pathways in the regulation of pathophysiology and

chemotherapy resistance in DLBCL (5, 51, 67, 69).

The efficacy of CISD2Risk was verified from multiple clinical

aspects, CISD2Risk showed a good performance associated with

clinical factors stratification. MHG is supposed to be an aggressive

B-cell lymphoma and show an inferior response to RCHOP

treatment (3, 21, 37). In this study, the MHG DLBCL patients

exhibited highest CISD2Risk value which indicated a poor

prognosis. MHG DLBCL has distinct molecular features with

concurrent activation of MYC and BCL2 (21, 42). DLBCL

patients with double-expressor that defined by the coexpression

of MYC and BCL-2 have a poor prognosis after standard

chemoimmunotherapy (21, 42). DLBCL patients with double-

expressor has a higher CISD2Risk value than that with non-

double-expressor in this study. Also, DLBCL patients with high

CISD2Risk value was associated with raised LDH or high IPI level,

which might be considered as a predictor of clinical outcomes

traditionally (3, 21, 70). Meanwhile, DLBCL patients who were

responsed to clinical treatment showed a relatively lower

CISD2Risk value. These evidences revealed that a high CISD2Risk

value might lead to poor clinical outcomes.

The tumor microenvironment has been considered an

important biological aspect of development and occurrence in

DLBCL (71–73), which includes multiple immunemodulating

mechanisms (73). The stromal cells are well known to be

recruited by tumor cells and regulate tumor development, and the

immune cells respond to tumor cells by causing inflammatory

responses; all of them are involved in the development and

occurrence of tumors through immunoregulatory mechanisms

(73, 74). We explored the stromal and immune cells in DLBCL

using the ESTIMATE algorithm. The high CISD2Risk values were

negatively associated with stromal scores, immune scores, and

ESTIMATE scores between the training and validation datasets,

suggesting poor prognosis and high tumor purity in DLBCL.

Hence, understanding the types and roles of immune cells

related to CISD2Risk is crucial to targeting and improving the

precise treatment of DLBCL, the CIBERSORT algorithm (30) can

be used to accurately estimate the immune composition of the 22

closely related types of immune cells. We found that CISD2Risk

value were inversely associated with the infiltration levels of
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activated mast cells, neutrophils, CD8 T cells, CD4 naïve T cells,

macrophages M0, and M1, as well as a positively associated with a

high proportion of B cells in DLBCL. Traditionally, Macrophages

that acting as sentinels of the tumor microenvironment are

extensively involved in the regulation of immune response and

homeostasis (75, 76). Macrophages M0 can be polarized into either

M1 or M2, activated M1 macrophages produces various pro-

inflammatory cytokines to cause tumor damage (76), while M2

decrease inflammation and encourage tissue repair. A high numbers

M0, M1 macrophages correlated with better survival in DLBCL (75,

77), and these data are consistent with our data. A lot of studies

reported the lower amount of CD4 T cells and CD8 T cells in the

lymphoma microenvironment correlated with poor survival (73,

77–79). CD4 naïve T cell is considered essential to guarantee

immune competence throughout life, can be activated after

interaction with antigen Major Histocompatibility Complex

(MHC) and differentiated into memory, effector, and suppressor

cells (71, 73). It believed that activated CD4 memory T cell was

associated with better survival and overcame some of the

chemotherapy resistance (80, 81). CD8 T cells as a key players

might have defective cytotoxicity in the process of targeting cancer

cells (73, 79). CD8 T cells infiltrating DLBCL that been correlated

with better prognosis are highly activated and lack an exhausted

phenotype (82). B cells as immunomodulatory cells, positive

mediators, and antigen-presenting cells play a role in modulating

the immune response to cancer (83). We found that DLBCL with

high CISD2Risk value exhibited increased B cell infiltrations in

accord with several studies (47, 77, 84, 85). B cells are part of the

adaptive immune system and can produce antibodies against cancer

cells. There are some studies demonstrated a robust B cell response

may indicate an active immune reaction against the tumor. The

increased B cells within tumour microenvironment (TME) may

reflect an attempt by the immune system to mount an anti-tumor

response. On the other hand, inflammatory signals which may be

activated by TME of DLBCL can attract immune cells, including B

cells, and these immune cells may participate in a proinflammatory

response, which can sometimes promote tumor growth and

aggressiveness (71, 81, 86). It had been reported that DLBCL

recruited T cells and monocytes via CCL5 to support B cells

survival and proliferation (87). According to COO, DLBCL was

pathologically divided into ABC, GCB, and unclassifiable (UNC)

subtypes, the aberrant memory B cells (MBs) might be the true

COO for ABC subtype DLBCL (88). The correlation between

CISD2Risk and activated B cells may be explained by the

pathological features of DLBCL (47, 88). Next, the MCP-counter

algorithm (31) can be used to analyze gene expression profiles to

estimate the expression levels of multiple tumor-infiltrating

lymphocytes. The high CISD2Risk was associated with

significantly decreased abundances of NK cells. NK cells

recognize and kill cancer cells via releasing cytolytic granules.

When DLBCL patients were treated with RCHOP, low amount of

NK cell count was associated with shorter PFS and decreased OS

compared to patients with high amount of NK cells (89, 90), these

data are consistent with our data. These findings suggested

CISD2Risk might be used to estimate the anti-tumor immunity of
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DLBCL patients, but the immune regulation of CISD2Risk needs

further investigation.

Additionally, CISD2Risk has effectively and independently

determined the prognosis of patients with DLBCL through

univariate and multivariate Cox regression. Hence, a novel

nomogram was developed that exhibited superior discrimination

ability for the prediction of prognosis in DLBCL patients and could

be used to guide routine OS for DLBCL patients. Time-dependent

ROC curve analysis of the CISD2Risk value revealed a relatively

accurate ability to predict OS. Recently, several studies showed

some clinical prediction model for DLBCL. A ferroptosis-based risk

scoring model of 16 genes for patients with DLBCL was constructed

and had good efficacy in predicting survival compared to clinical

characteristics (52), similar to Chen et al.’s study (91). Likewise, an

immune score model including 22 genes could predict the survival

of DLBCL patients and be more accurate than the IPI and Revised

International Prognostic Index (R-IPI) (77). 15 differentially

expressed genes (DEGs) among metabolic subtypes were used to

build a predictive model that could evaluate survival and drug

sensitivity in DLBCL patients (78). Different from other risk models

(52, 77, 78, 91), we built a risk model based on CISD2 and its related

genes, which also has excellent prediction ability in line with those.

Some limitations existed in this study. First, the biological

function of CISD2 need to be explored using in vitro and in vivo

experiments. Specifically, the practical effect of drugs that selected

should be assessed. Second, both the construction and validation of

CISD2Risk were based on retrospective public data; the reliability

and applicability of CISD2Risk need to be verified by some clinical

experiments. Third, GO and KEGG enrichment analysis of 27 genes

revealed that CISD2Risk might be involved in apoptosis, the P53

signaling pathway, and so on; however, the underlying mechanism

of these genes needs to be explored in the future.
Conclusion

In conclusion, our study indicated that upregulated CISD2 was

correlated with a poor prognosis. Meanwhile, we developed a

CISD2Risk for DLBCL patients that was validated in an

independent dataset. CISD2Risk showed better ability of clinical

prediction to prognosis. Additionally, CISD2Risk had a capacity for

estimation for anti-tumor immunity in DLBCL, suggesting

CISD2Risk could be a predictor for clinical prognosis as well as a

clinical evaluator for immunotherapy.
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diffuse large B-cell lymphoma
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and Mi-Hai Park1*

1School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea, 2Novartis,
Seoul, Republic of Korea, 3Department of Oncology, Asan Medical Center, University of Ulsan College
of Medicine, Seoul, Republic of Korea
Background: Approximately one-third of patients with diffuse large B-cell

lymphoma (DLBCL) are refractory to treatment or experience relapse after

initial therapy. Unfortunately, treatment options for older patients and those

who experience relapse or become refractory to hematopoietic stem cell

transplantation (HSCT) are limited. This nationwide population-based study

aimed to identify treatment patterns, survival times, and treatment costs in

patients with relapsed/refractory DLBCL (R/R DLBCL).

Materials and methods: Between 2011 and 2020, data on patients with R/R

DLBCL were retrieved from the Korean Health Insurance Review & Assessment

Service, encompassing the entire population. We identified the treatment

patterns for each treatment line using a Sankey diagram and calculated the

median time to the subsequent treatment in line. Median overall and

progression-free survival times were estimated using the Kaplan–Meier survival

curves. Finally, the medical costs incurred during DLBCL treatment were

calculated for each treatment line and the costs related to HSCT were

summarized at the episode level.

Results: A total of 864 patients with R/R DLBCL who received second-line

treatment were identified, and a regimen of ifosfamide, carboplatin, and

etoposide (ICE) was administered the most. Among them, 353 were refractory

or relapsed cases that were treated with third-line treatments. The median times

for second-line to third-line, third-line to fourth-line, fourth-line to fifth-line, and

fifth-line to sixth-line treatment failures gradually decreased (3.93, 2.86, 1.81, and

1.38 months, respectively). The median overall survival time was 8.90 and 4.73

months following the second-line and third-line treatments, respectively. In the

third-line treatment setting, the patients did not show a significant difference in

survival time after HSCT. The median medical cost was $39,491 across all

treatment lines including the cost of HSCT which was $22,054.
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Conclusion: The treatment patterns in patients with R/R DLBCL, especially at

third-line treatments and thereafter, were complicated, and their prognosis

was poor despite the high medical costs. Novel and effective treatment

options are expected to improve the prognosis and alleviate the economic

burden of patients with R/R DLBCL.
KEYWORDS

diffuse large B-cell lymphoma, hematopoietic stem cell transplantation, treatment
patterns, survival, medical costs
1 Introduction

Diffuse large B-cell lymphoma (DLBCL) accounts for

approximately 30% of non-Hodgkin lymphoma (NHL) cases,

with an age-adjusted incidence of 5.0 cases per 100,000 person-

years worldwide (1, 2). Although DLBCL affects patients of

all ages, it is most common in patients aged > 60 years (3).

The rituximab, cyclophosphamide, hydroxydaunorubicin,

oncovin, and prednisone (R-CHOP) regimen was introduced as a

standard first-line treatment in 2002, and a polatuzumab-vedotin

combination regimen with rituximab, cyclophosphamide,

hydroxydaunorubicin, and prednisone (R-CHP) was recently

introduced as a first-line treatment (4, 5). However, approximately

one-third of patients experience relapse or disease progression after

first-line treatment, and 83% of progression occurs within the first 3

years of treatment (6). For patients with relapsed/refractory DLBCL

(R/R DLBCL), high-dose therapy with autologous hematopoietic

stem cell transplantation (HDT/HSCT) is recommended (7, 8).

However, no clear treatment options are available for patients

ineligible for HSCT because of older age, frailty, lack of response

to second-line treatment, or failure to collect stem cells (9).

Furthermore, the treatment strategy is less apparent in these

patients, particularly after the failure of a second-line treatment

(10). Although not yet widely available, the introduction of

bispecific antibody therapies and chimeric antigen receptor
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(CAR) T-cell therapies for patients with R/R DLBCL is

anticipated to expand treatment options, potentially improving

prognoses and alleviating the economic burden on these patients

(11–15).

A previous study in the United States reported that rituximab-

based regimens were the most prevalent, with 25% of patients

receiving HSCT as a second-line treatment (16). Another study

demonstrated that the median survival of patients with R/R

DLBCL was 13.4 months after the initiation of second-line

treatment in an outpatient setting (17). Nevertheless, only a few

studies have reported on the survival times and treatment patterns

of patients with R/R DLBCL, particularly those who have received

second- to third-line treatments in real-world settings. In

addition, studies using nationwide Korean data on these patients

are limited, and treatment patterns differ from country to country

depending on the reimbursement system. Therefore, we aimed to

identify the treatment patterns and survival of patients with R/R

DLBCL and analyze the economic burden using Korean claims

data from the Health Insurance Review and Assessment

Service (HIRA).
2 Materials and methods

2.1 Study design and data source

We performed a retrospective observational study using the

HIRA claims data, which contain data on more than 98% of the

nationwide population in South Korea (18). The data included

patient characteristics such as age, sex, prescribed medications,

medical procedures reimbursed by the National Health Insurance

Service (NHIS), and disease codes according to the Korean

Classification of Disease 7th version (KCD-7), which is a

modified version of the International Classification of Disease

10th version (ICD-10). In Korean claims data, the overall positive

predictive value of diagnosis using ICD-10 codes is 82% (19). Data

from January 1, 2011, to February 28, 2020, were analyzed in our

study, and the enrollment period during which patients with

DLBCL were identified was from January 1, 2013, to December

31, 2019.
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2.2 Study population and eligibility criteria

The target population for this study was patients with R/R

DLBCL, defined as those who received second-line treatments.

Patients who died without receiving second-line treatments were

excluded. Prior to the selection of patients with R/R DLBCL, we

constructed a cohort of patients who were newly diagnosed with

DLBCL during the index period from January 1, 2013, to December

31, 2019, using their diagnosis codes and medical history claims for

diffuse large B-cell lymphoma (DLBCL) (ICD-10 codes C83.3). The

index date was defined as the first record of a newly diagnosed

DLBCL. To exclude confounding diseases and overcome the

limitations of our data, we excluded patients who met the following

criteria: (1) patients who had a history of DLBCL within 5 years

before the index date (washout period); (2) patients who had a history

of confounding lymphomas, such as small cell B-cell lymphoma

(C83.0), mantle cell lymphoma (C83.1), lymphoblastic lymphoma

(C83.5), Burkitt lymphoma (C83.7), other non-follicular lymphomas

(C83.8), primary mediastinum large B-cell lymphoma (C85.2), and

solid cancer (C00–C80) during the study period; (3) patients with

confounding medical histories, such as a history of HSCT before the

index date; (4) patients with no treatment records after the index date;

(5) patients who had a record of DLBCL within 2 years before the

index date or who had a record of salvage chemotherapy regimens as

the first-line treatment. This last criterion was created to account for

patients with washout periods of less than five years prior to

study inclusion.

To select eligible patients with R/R DLBCL, the treatment

regimen was defined by combining the drugs administered for

each medical episode. The specific medications and regimens used

are summarized in Table S1. Moreover, we determined whether the

treatment regimen for each medical episode was the same as that of

the previous regimen based on the combination of drugs.

Treatments targeting central nervous system diseases, such as the

administration of intrathecal methotrexate or modifications in

corticosteroid prescriptions, were considered independent of the

line of treatment. We then used both treatment regimens and gaps

between treatment episodes to classify the treatment line. First-line

treatment was defined as prescribed medications for 12 weeks from

the first record of newly diagnosed DLBCL (17). Second-line

treatment was defined as the first record of switching the

treatment regimen from first-line treatment. Each treatment line

was defined similarly. However, if patients received the HDT

regimen before HSCT, the HDT and HSCT were considered

consecutive within the same treatment line (HDT/HSCT).

Follow-up began from the date of each line of treatment and

continued until death or the end of the study (February 28,

2020), during which time only patients with claims data were

selected. All patients were followed-up for at least 60 days.
2.3 Outcomes and measurement

Baseline characteristics included age, sex, and comorbidities

within 1 year before the index date. Age groups were stratified based

on the eligibility for HSCT according to the local reimbursement
Frontiers in Oncology 0384
criteria, which were up to 65 years of age during the study period.

We assessed treatment patterns using the medical records of each

patient to identify their treatment lines and survival data.

We calculated the median time to the next treatment (TTNT)

for each treatment line and estimated the patients’ overall survival

(OS), which was defined as the time from initiating each line of

treatment until death. The claims data of the HIRA contained only

“in-hospital” deaths. Therefore, if mortality was only marked by the

“in-hospital death” code, patient survival rates would be highly

overestimated. To address this limitation, we defined “out-of-

hospital” death as the date of the last claims filed for patients

with no further records for 6 months, a method that has been

adopted in previous research and validated in high-mortality cancer

patients (20, 21). We then assessed the survival outcomes from the

first date of each line of treatment. In addition to OS, progression-

free survival was defined as the survival time from the date of

relapse or refractory disease diagnosis to the initiation of a

subsequent line of treatment or death.

Medical costs incurred during DLBCL treatment were summarized

for each treatment line. In contrast, the costs related to HSCT were

summarized at the episode level to determine the total economic

burden. We also calculated cumulative medical costs while considering

censoring (22) to show the difference in disease-related costs between

patients who received third-line treatments and those who did not.

Costs in South Korean Won (KRW) were converted to United States

Dollar (USD) at the 2020 exchange rate of 1,086.3 KRW/USD.
2.4 Statistical analysis

Descriptive analyses were performed to assess patient

demographics, survival, treatment patterns, and medical costs.

Categorical variables were expressed as counts and percentages of

patients in each category, whereas continuous variables were

expressed as mean and standard deviation (SD) or median and

interquartile range (IQR). The Charlson Comorbidity Index (CCI)

was estimated to include the risk for the severity of the underlying

disease before diagnosis (23, 24). Survival analysis was performed to

estimate the survival probability over time and calculate the survival

time. The median survival time of patients with R/R DLBCL was

computed using the Kaplan–Meier curve with a 95% confidence

interval (CI). All analyses were performed using SAS version 9.4

(SAS Institute, Cary, NC, USA).
3 Results

3.1 Baseline characteristics of patients with
R/R DLBCL

A total of 21,353 patients were diagnosed with DLBCL between

January 2013 and December 2019, and 4,931 eligible patients with

newly diagnosed DLBCL were identified. Among them, 4,067 patients

were excluded because they did not receive second-line treatment

including 922 patients who died of progressive disease or other causes.

Finally, 864 patients who experienced relapsed or refractory DLBCL
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and received second-line treatments were selected for this study

(Figure 1). The baseline characteristics of the patients included in

this study are presented in Table 1. The median (IQR) age of the

population was 63 (53–71) years; more than half of the patients met

the age criteria for HSCT (55.79%), and the male patients (n = 522,

60.42%) outnumbered the female patients.
3.2 Treatment patterns of R/R DLBCL

Figure 2 displays the treatment patterns of the patients with R/R

DLBCL. Of the 864 patients, 821 (95.02%) received R-CHOP-based

regimens as the first-line treatment and 32 underwent HDT/HSCT

as a consolidation therapy (Table S1). In terms of second-line

treatments, 363 (42.01%) patients received an ifosfamide,

carboplatin, and etoposide (ICE) regimen, of whom 42

additionally underwent HDT/HSCT. Other second-line

treatments included the etoposide, methylprednisolone,

cytarabine, and cisplatin (ESHAP) (16.09%) and dexamethasone,

cytarabine, and cisplatin (DHAP) regimens (15.39%). Regarding

third-line treatments, 82 patients (23.23%) received the DHAP

regimen, 21.81% received ICE, and 14.16% received the mesna,

ifosfamide, mitoxantrone, and etoposide (MINE) regimen. During

the follow-up period, 212 patients (24.54%) underwent HSCT.
3.3 Time to next treatments and survival of
R/R DLBCL patients

The median time from diagnosis to a second-line treatment was

9.33 months (Table 2). Among the 864 patients with R/RDBLCL, 353

experienced progression after second-line treatments and received
Frontiers in Oncology 0485
third-line treatments. The median time from a second-line to a third-

line treatment was 3.93 months. Among them, 330 (93.48%) received

salvage chemotherapy (58 patients with HDT/HSCT and 272 without

HDT/HSCT). A total of 114 and 42 patients experienced third- and

fourth-line treatment failures, respectively. The median times for

third-line to fourth-line, fourth-line to fifth-line, and fifth-line to

sixth-line treatment failures gradually decreased (2.86, 1.81, and 1.38

months, respectively). Most patients received salvage chemotherapy

in each line of treatment (93.48%, 85.09%, and 73.81%, respectively).

The median OS time was 8.90 months after a second-line treatment

and 4.73 months after a third-line treatment (Figures 3A, B).

Regardless of the previous administration of HSCT, third-line

treatments did not significantly differ in terms of median OS times

(3.31 vs. 4.83 months, p = 0.242) (Figure 3C).
3.4 Economic burden of R/R
DLBCL patients

The total lifetime medical cost across all treatment lines for R/R

DLBCL was $39,491, and the cost related to HSCT was $22,054

(Table 3). The cost for patients who experienced second-line failures

was $42,706, whereas it was $34,182 for those who did not encounter

second-line failure (Table S2). The median cost of each treatment line

was the highest from diagnosis to second-line treatment ($32,468).

Among subsequent treatment lines, the cost from second-line to third-

line treatment was the highest ($21,058), followed by costs from third-,

fourth-, and fifth-line treatments to subsequent-line treatments. After

the failure of second-line treatments, the cumulative cost for patients

who received third-line treatments was higher than that of patients

who did not receive third-line treatment from the fifth month

onwards (Figure S1 and Table S3).
FIGURE 1

Flow chart of the selection process for eligible patients with R/R DLBCL.
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4 Discussion

In this nationwide population-based study, we estimated the

treatment patterns, survival times, and treatment costs for patients
Frontiers in Oncology 0586
with R/R DLBCL. Our findings revealed a lack of clear treatment

patterns for these patients, with the ICE, ESHAP, and DHAP

regimens being the most commonly administered, in that specific

order. The median OS of patients with R/R DLBCL was 8.90

months and the progression-free survival time was 4.47 months.

Additionally, we determined that the median treatment cost for

these patients was $39,491 over their lifetime. As the patients

experienced multiple treatment failures and received subsequent

lines of therapy, a decreasing trend in TTNT was observed.

Although TTNTs decreased remarkably in subsequent treatment

stages, the decrease in cost was relatively minor.

The treatment of R/R DLBCL remains a clinical challenge. R-

CHOP has been the standard first-line treatment for DLBCL for

more than 20 years (25, 26), and a polatuzumab-vedotin

combination regimen has recently been introduced (4). However,

an established effective treatment for patients with R/R DLBCL,

particularly those who cannot undergo transplantation, remains

lacking (27). Similar to a previous study (28), approximately one-

fourth of the patients in this study received HSCT, and many

patients only underwent salvage chemotherapy due to the lack of

treatment options for DLBCL within the reimbursement criteria

in Korea.

Although several studies have analyzed the survival of patients

with DLBCL, few have investigated patients experiencing relapsed

or refractory disease. The median OS of 6.3 months presented by

Crump et al. (29) was similar to that in our study, considering that

they focused on patients who received only salvage chemotherapy.

However, this study reported only OS after a second-line treatment,

whereas our study holds significance for presenting OS following a

third-line treatment in patients with second-line failure. Another

study investigated outpatient chemotherapy in patients with R/R
TABLE 1 Baseline characteristics of patients with R/R DLBCL.

Variables
Second-line treat-
ment (N = 864)

Third-line treat-
ment (N = 353)

Age,
median (IQR)

63 (53–71) 60 (50–68)

Age group, n (%) a)

< 65 482 (55.79) 222 (62.89)

≥ 65 382 (44.21) 131 (37.11)

Sex, n (%)

Male 522 (60.42) 223 (63.17)

Female 342 (39.58) 130 (36.83)

CCI,
median (IQR)

5.00 (4.00–8.00) 5.00 (4.00–8.00)

Comorbidities, n (%)

Diabetes 368 (42.59) 150 (42.49)

Hypertension 405 (46.88) 155 (43.91)

Heart
disease b)

74 (8.56) 32 (9.07)
a)Age eligibility for HSCT according to the local reimbursement criterion: < 65 years.
b)Heart disease was defined by ICD-10 codes I21 (acute MI), I22 (STEMI), I43
(cardiomyopathy), and I50 (HF).
HSCT, hematopoietic stem cell transplantation; R/R DLBCL, relapsed or refractory diffuse
large B-cell lymphoma; CCI, Charlson comorbidity index.
FIGURE 2

Treatment patterns for patients with R/R DLBCL.
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DLBCL; however, our study adds value by including both inpatients

and outpatients (17). We also presented OS with a focus on HDT

combined with HSCT, which is recommended as a second-line

treatment for patients with chemotherapy-sensitive DLBCL (7).

Patients with R/R DLBCL who underwent HSCT exhibited a better

prognosis than those who did not (30). However, because the

prognosis for relapse after HSCT is poor, similar to other second-

line options, HSCT should be carefully considered.

The median TTNTs rapidly shortened after the first relapse or

refractory diagnosis and continued to decrease until the sixth-line
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treatment. In other words, as the disease progressed, the response to

the drug decreased, resulting in a rapid occurrence of refractoriness

or relapse. Although the TTNTs continued to decrease until the

sixth-line treatment, the medical costs were similar, indicating that

the cost per unit time was higher on the next subsequent treatment

line than on the prior treatments and that the economic burden

increased as the treatment failed. This was presumably because of

the absence of other anticancer therapy and the availability of only

salvage chemotherapy; therefore, the medical expenses required to

provide care for patients eventually increased. A previous study

reported that patients who experienced relapse spent significantly

more on medical costs than those who did not experience relapse

(31). From the perspective of each treatment line, the higher cost of

each treatment line compared with that of the next treatment line

could be attributed to the TTNT. A previous study demonstrated

that the cost of the treatment for relapse after 3 months was higher

than that of relapse within 3 months (31). Although several studies

have estimated the medical costs in patients with DLBCL, most of

them only demonstrated the medical costs for treating DLBCL and

not for R/R DLBCL. In a study evaluating the medical costs in

patients with R/R DLBCL, a similarly high cost was observed (31).

However, their assessment was confined to the initial few years

post-diagnosis; therefore, we supplemented this by calculating the

total lifetime costs. Patients who experienced relapse after the

second-line treatment spent more disease-related costs across all

time points than that patients who did not experience relapse.

This study had several limitations. Although the study lacked

clinical information, such as patients’ disease stages and treatment

lines, we classified their treatment regimens and lines based on the

drugs in each of their claims and the intervals between claims.

Therefore, it is possible that some treatment lines were misclassified,

which may have affected the TTNT andmedical expenses. In addition,

patients with R/R DLBCL who did not receive second-line treatment

because of relapse or refractory disease may have been excluded.

Third, the claims data did not allow us to identify non-covered drugs.

Therefore, treatment costs may have been underestimated. Another

limitation of this study was that we could not include newly

introduced therapies because of the limited study period. For

instance, starting in April 2022 in South Korea, CAR T-cell

therapies were reimbursed for patients who experienced failure with

second-line treatment and those who faced failure after HSCT (32).

Since these therapies have shown clinical benefits through trials to

improve the prognosis of patients with R/R DLBCL (11–13), they are

likely to affect treatment patterns after reimbursement (33). However,

CAR T-cell therapies could not be included because they were

introduced after the study period (34). With the recent approval of

other CAR T-cell and bispecific antibody therapies (14, 15), the

treatment paradigm for patients with R/R DLBCL is expected to

change in the future, and further long-term follow-up studies,

including novel therapies, should be conducted after data

accumulation. Therefore, although our data did not include newly

introduced therapies, our results remain valuable because they offer

insights into the population to which new treatments will be applied.

Despite these limitations, our study had significant strengths.

We assessed the clinical and economic burden of patients with R/R
TABLE 2 Time to next treatments and survival of R/R DLBCL patients.

Patients with R/
R DLBCL

Median follow-up time, months (IQR) 7.62 (3.55–15.33)

Median time to next treatment, months (IQR)

Time from diagnosis to second-line treatment (n
= 864)

9.33 (5.98–16.46)

Time from second-line treatment to third-line
treatment (n = 864)

3.93 (2.00–9.89)

Time from third-line treatment to fourth-line
treatment (n = 353)

2.86 (1.38–6.64)

Time from fourth-line treatment to fifth-line
treatment (n= 114)

1.81 (1.08–3.19)

Time from fifth-line treatment to sixth-line
treatment (n = 42)

1.38 (0.95–4.34)

Overall survival

Median time from second-line treatment, months
(95% CI), (n = 864)

8.90 (8.08, 9.63)

% proportion of censored patients 34.38

Median time from third-line treatment, months
(95% CI), (n = 353)

4.73 (4.17, 5.72)

% proportion of censored patients 21.81

Progression-free survival

Median time from second-line treatment, months
(95% CI), (n = 864)

4.47 (3.88, 5.06)

% proportion of censored patients 25.46

% proportion of death before progression 33.68

Median time from third-line treatment, months
(95% CI), (n = 353)

3.12 (2.73, 3.61)

% proportion of censored patients 17.85

% proportion of death before progression 49.86

Number of patients who received HSCT,
n (%) (n = 864)

212 (24.54)

Autologous HSCT 210 (24.31)

Allogenic HSCT 9 (1.04)
HSCT, hematopoietic stem cell transplantation; R/R DLBCL, relapsed or refractory diffuse
large B-cell lymphoma.
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DLBCL using long-term real-world data derived from the

nationwide HIRA database encompassing the entire national

population. In addition, this study adequately evaluated the

disease burden of patients by focusing on those with R/R DLBCL.

Unlike previous studies that reported only treatment regimen ratios

(16, 17, 35), our study demonstrated the flow of regimens using a

Sankey diagram and reported their complexities.
Frontiers in Oncology 0788
5 Conclusion

Complex treatment patterns, poor prognoses, and high medical

costs have been reaffirmed by the results of previous studies on

patients with R/R DLBCL, especially those who received third-line

treatments. This high clinical and economic burden in patients with

R/R DLBCL may be due to limited treatment options following
A

B

C

FIGURE 3

Overall survival probability (A) Overall survival of patients with R/R DLBCL who received second-line treatment (B) Overall survival of third-line
treatment patients from the end of their second-line treatment (C) Overall survival of third-line treatment patients by HSCT subgroup.
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second-line treatments. Establishing appropriate policies and novel

treatment options that will provide excellent response rates is

expected to improve prognosis and alleviate the economic burden

of patients with R/R DLBCL.
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TABLE 3 Economic burden of patients with R/R DLBCL.

Patients with R/
R DLBCL

Total medical cost, median (IQR) (n = 864) $39,491 (21,451–62,732)

Total inpatient cost $31,069 (15,791–52,685)

Total medical cost related to HSCT $22,054 (15,804–32,040)

Medical costs for each treatment line, median (IQR)

From diagnosis to second-line treatment (n
= 864)

$32,468 (26,174–41,667)

From second-line treatment to third-line
treatment (n = 864)

$21,058 (11,456–38,154)

From third-line treatment to fourth-line
treatment (n = 353)

$21,017 (10,197–39,718)

From fourth-line treatment to fifth-line
treatment (n= 114)

$18,228 (8,658–35,140)

From fifth-line treatment to sixth-line treatment
(n = 42)

$16,147 (2,778–32,631)
R/R DLBCL, relapsed or refractory diffuse large B-cell lymphoma; IQR, interquartile range;
1 USD = 1086.30 KRW (2020 exchange rate).
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Multimodal machine learning
models identify chemotherapy
drugs with prospective clinical
efficacy in dogs with relapsed
B-cell lymphoma
A. John Callegari 1, Josephine Tsang1, Stanley Park1,
Deanna Swartzfager1, Sheena Kapoor1, Kevin Choy2

and Sungwon Lim1*

1ImpriMed Inc., Mountain View, CA, United States, 2Department of Oncology, Blue Pearl Seattle
Veterinary Specialist, Kirkland, WA, United States
Dogs with B-cell lymphoma typically respond well to first-line CHOP-based

chemotherapy, but there is no standard of care for relapsed patients. To help

veterinary oncologists select effective drugs for dogs with lymphoid malignancies

such as B-cell lymphoma, we have developed multimodal machine learning

models that integrate data from multiple tumor profiling modalities and predict

the likelihood of a positive clinical response for 10 commonly used chemotherapy

drugs. Here we report on clinical outcomes that occurred after oncologists

received a prediction report generated by our models. Remarkably, we found

that dogs that received drugs predicted to be effective by the models experienced

better clinical outcomes by every metric we analyzed (overall response rate,

complete response rate, duration of complete response, patient survival times)

relative to other dogs in the study and relative to historical controls.
KEYWORDS

chemotherapy, machine learning, personalized & precision medicine (PPM), lymphoma,
artificial intelligence - AI, rescue therapy, salvage therapy
Introduction

Diffuse large B cell lymphoma (DLBCL) is the most commonly occurring lymphoma in

both dogs and humans (1, 2). In both species, the tumors are typically highly responsive to

first-line combination therapies that include cyclophosphamide, doxorubicin, vincristine,

and prednisone (CHOP). There is not yet a standard of care for either dogs or humans

when patients relapse after first-line therapy (2, 3). Patients may be reinduced with first-line

therapy or treated with one of several different rescue therapies (salvage therapies). Thus, in
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both humans and dogs there is an unmet need for support in

identifying the most effective treatment option in the event

of relapse.

To help veterinary oncologists rapidly identify the most effective

treatments for dogs with lymphoid malignancies like DLBCL, we

developed machine learning (ML) models that predict clinical

outcomes for 10 different chemotherapy drugs commonly used to

treat these malignancies (3). The models predict outcomes derived

from medical records by integrating information from two tumor

profiling technologies known to yield actionable information with a

high frequency: multicolor flow cytometry (4, 5) and ex vivo drug

sensitivity testing (3, 6–8). Flow cytometry provides quantitative

information about immune cell composition, cell size, and cell

granularity at the single-cell level, while ex vivo drug sensitivity

testing directly quantifies the cytotoxic effects of different drugs

using live tumor cells. ML models like ours, which integrate data

from multiple tumor profiling modalities, are termed “multimodal”

ML models. Because these models have the potential to increase the

accuracy of ML-based precision oncology tools and the frequency

with which these tools provide actionable clinical guidance, the

development of multimodal ML models is a highly active area of

research (9–11).To our knowledge, the study presented here is the

first to report on prospective clinical outcomes for cancer patients

treated with the assistance of a multimodal ML tool (10).
Results

We used ML models to generate a prediction report that was

provided to oncologists at multiple sites in the US beginning in June

of 2020. The report was sent 7 days after live tumor biopsies were

received for profiling at our testing facility. In the report, tumor

response predictions were presented for each drug on a scale of 0 to

1, with 1 representing the highest likelihood of a positive clinical

response (partial response or complete response). We found that

there was an approximate correspondence between a prediction

score of 0.5 and a 50% probability of a positive response (3). The

report provided written guidance on how to interpret the

predictions but did not specify how the information should be

used to modify treatment plans. Thus, clinicians were free to

combine their clinical expertise with the additional information in

the prediction report.

The reports were provided to veterinary oncologists at multiple

clinics in the US and treatment outcomes were then collected and

analyzed. Our primary endpoint for analysis of patient outcomes

was patient survival time, but for this study we also analyzed

duration of complete response, complete response rate, and

overall response rate. Because of the high prevalence of B-cell

lymphoma and the short duration of response to therapy in

relapsed patients with this cancer type [106 days (12)], patients

with relapsed B-cell lymphoma were among the first patients in our

population for whom we were able to accumulate a statistically

relevant number of prospective survival outcomes. For the current

study, we analyzed a cohort of 60 dogs that had relapsed from a

prior therapy or therapies at the time that our prediction report was

provided (Supplementary Figure 1).
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Performance of the prediction report was quantified using a

matching score analysis commonly employed in human clinical

trials where patients are stratified by the degree of matching

between recommended and administered drug treatments (13–

18). For each dog, the degree to which treatments matched the

prediction report was summarized using a matching score similar to

those described previously (13–18). The matching score was

calculated as the percentage of all administered drug treatments

assigned a prediction score greater than 0.5 in our prediction report.

We found that the matching scores for this cohort were generally

very high, with a median value of 87.5% (Supplementary Figure 2).

To examine the relationship between matching scores and

clinical outcomes, we split the cohort into two groups at the

median matching score value and analyzed outcomes in the two

groups (17). One group comprised the lower-matching half of the

population while the other group comprised the higher-matching

half of the population. A detailed discussion of dichotomization

methods is included below in the methods section.

Baseline patient and tumor characteristics were similar in the

two matching groups (Supplementary Table 1), but clinical

outcomes were better in the high matching group for every

metric we analyzed. Using the Kaplan-Meier estimator to

analyze the interval between receipt of the prediction report

and death of the patient (Figure 1A), we found that patients in

the high matching group experienced significantly longer survival

times (p < 0.001 for the logrank test), with a median survival time

of 270 days in the high matching group and 83 days in the low

matching group.

Patients in the high matching group experienced both a higher

CR rate (CRR) and a higher overall response rate (ORR) than

patients in the low matching group (Figure 1B) (CRR: 53.3% high,

13.3% low, p = 0.002; ORR: 70.0% high, 46.6% low, p = 0.12). In

patients that experienced a CR, Kaplan-Meier analysis indicated

that duration of CR was longer in the high matching group than in

the low matching group (Figure 1C) (p = 0.10 for the logrank test).

The statistical power of this survival curve comparison is limited

because only five patients in the low matching group experienced a

CR. The median duration of a CR was 200 days for the high

matching group as compared to 48 days for the low matching

group. Thus, the longer survival experienced by the high matching

group was accompanied by a similarly extended period of good

health during which the lymphoma was in complete remission.

To determine if matching scores were influenced by the drugs

predicted to be effective in the report, we analyzed the frequency

with which the prediction report contained scores above 0.5 for the

chemotherapy drugs in the high matching and lowmatching groups

(Figure 1D). No statistically significant difference was found

between the relative frequency of these predictions in the two

groups for any drug. Thus, matching scores in the low matching

group cannot be explained by properties of the drugs predicted to be

effective for the dogs in that group. This analysis also suggests that

the drug sensitivity of the two matching groups was similar at the

population level and that any differences in clinical outcomes were

likely attributable to personalization of the drug selection process.

To isolate the effect of matching score from other variables that

might confound our analysis of patient survival times, we corrected
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for tumor grade, cancer stage, and cancer substage using

multivariate Cox regression. In both univariate and multivariate

Cox regression models, matching score group was the best predictor

of patient survival with a hazard ratio (HR) of 0.31 (95% CI 0.15-

0.65) in a univariate model and HR of 0.28 (95% CI 0.14-0.59) in a

multivariate model (Table 1). Thus, consistent with the baseline

patient characteristics shown in Supplementary Table 1, the

markedly longer survival seen in the high matching group cannot

easily be explained by the presence of more advanced or aggressive

disease in the low matching group.
Discussion

The clinical outcome advantage of the high matching group

relative to the low matching group was observed with every metric

examined (ORR, CRR, durations of CRs, survival times) and after

correcting for potentially confounding variables using multivariate

Cox modeling. The clinical outcome advantage was also evident in

all four metrics when we compared high matching group outcomes

to historical controls (Table 2). Both ORR and CRR values observed

in the high matching group were higher than historical control

values (ORR: 70% this study, 48% controls; CRR: 53% this study,
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27% controls) (19). The median duration of CR of 200 days that we

observed in the high matching group was longer than a historical

control value of 106 days taken from the mean of 15 rescue therapy

studies (12). Thus, the patients in our study group that received

treatments matching their multimodal ML predictions to a high

degree experienced approximately double the frequency of CR and

double the duration of CR compared to historical values reported in

the literature. Although patient survival is not uniformly reported in

the canine rescue therapy literature, we estimated that historical

median survival time after relapse to be 110 days (see methods

section for details), which is substantially lower than the value of

270 days that we observed in the high matching group.

To compare the clinical performance of our precision oncology

platform with results from other platforms, we compiled mortality

hazard ratios (HRs) from a sample of prospective matching score

studies in the published literature (Table 3) (13–18). A low HR

means that reduced mortality was observed for patients in the high

matching group. The HR that we report here (0.28, 95% CI 0.14-

0.59) is comparable to that of the most performant precision

oncology platform in the sample of published values (HR 0.24,

95% CI 0.078–0.76). Among the studies shown in Table 3, our study

is the only to use computer-automated predictions rather than

recommendations from human experts.
A B C D

FIGURE 1

Comparison of clinical outcomes in low matching and high matching groups. (A) Kaplan-Meier curves showing survival of dogs after oncologists
were provided with multimodal ML predictions. All causes of mortality are included. p-value was calculated using the logrank test. (B) Bar graphs
showing CRR and ORR for the two matching score groups. p-values from Fisher's exact test were p = 0.002 for CRR and p = 0.12 for ORR.
(C) Kaplan-Meier curves showing disease-free survival after CR for the subset of dogs that experienced CR after their oncologists received
multimodal ML predictions (n = 5 for low matching and n = 16 for high matching). p-value was calculated using the logrank test. (D) Bar graph
showing the relative frequencies with which different chemotherapy drugs were predicted to elicit a positive response for dogs in the two matching
groups. p-values are from the two-sample Z-test with correction for multiple hypothesis testing using the Benjamini-Hochberg method.
TABLE 1 Cox proportional hazards models of patient survival.

covariate

Univariate Multivariate

coef HR (95% CI) P-value concordance coef HR (95% CI) P-value

grade -0.11 0.90 (0.27-2.98) 0.861
0.49

0.33 1.4 (0.41-4.7) 0.604

substage 0.63 1.8 (0.85-4.14) 0.121
0.55

0.96 2.6 (1.1-6.1) 0.027

stage -0.13 0.87 (0.57-1.34) 0.535
0.52

-0.23 0.80 (0.49-1.3) 0.357

matching group -1.16 0.31 (0.15-0.65) 0.002
0.57

-1.26 0.28 (0.14-0.59) <0.001
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The results reported here strongly support the efficacy of

combining clinical knowledge with multimodal ML decision

support to optimize rescue therapy outcomes for canine patients

with relapsed B-cell lymphoma. We are actively researching

application of this technology in human oncology and the impact

of tumor mutation profiling data on ML model performance.
Methods

Study design

Multimodal ML models were initially developed during a

preclinical research stage and then provided to veterinary

oncologists throughout the US. The preclinical research was

reported in a previous study (3) and clinical research is reported

here. An open cohort study design was used to assess the

performance of clinical decision support provided by multimodal

ML models. Enrollment began in June of 2020 and is continuing at

the time of this publication. Informed consent was obtained from

pet owners using a form that was approved by the clinical review

boards and ethical review committees of participating veterinary
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hospitals. Veterinary oncologists at multiple sites in the US

collected live-cell tumor biopsies from dogs with lymphoid

malignancies as described below. Tumor samples were profiled at

ImpriMed labs, generating inputs for multimodal ML models. ML

prediction reports were provided to oncologists in pdf format with

an average turnaround time of seven days from receipt of samples in

the labs. Chemotherapy was administered by veterinary oncologists

according to the standards used at their treatment sites. Medical

records were requested 3 months after delivery of the prediction

report and then periodically after that to increase the length of the

outcome observation interval. The stopping point for this study was

chosen when we estimated that sufficient time had elapsed from the

beginning of the enrollment period to assess patient survival in a

statistically relevant number of patients.
Tumor biopsy

Fine-needle aspirates (FNAs) from enlarged lymph nodes were

collected at oncology clinics and shipped to the ImpriMed testing

lab via overnight courier and processed within 24-72 hours of

collection. Cells were maintained at a high level of viability during

shipping using ImpriMed Transport Media (ImpriMed Inc.,

Mountain View, CA) that was optimized for this purpose.
Inclusion criteria

For this study, we included dogs with B-cell lymphoma that had

relapsed from prior cytotoxic chemotherapy when their oncologists

were provided with ML prediction reports. Relapse status was

reported to us by participating oncologists or determined by

inspection of medical records. We performed immunophenotyping

and clonality testing on all tumor samples internally at our A2LA-

accredited testing lab. Patients were included in this study that were

determined to have a clonal rearrangement of a B-cell receptor using

PARR and to have the following immunophenotype using flow

cytometry: (CD21+ or CD79a+)CD34-CD14-CD3-CD5-. Only dogs

that were treated with 3 or more anticancer drug administrations

after reception of the prediction report were included. This final
TABLE 2 Comparison of high matching group outcomes to internal and
historical controls.

metric

high
matching
group

low matching
group inter-
nal control

historical
controla

complete response
rate [%] 53* 13* 27

overall response
rate [%] 70** 47** 48

median duration
of complete
response [days] 200 48 106

median survival
after
relapse [days] 270 83 ~110
p-value comparisons between high and low matching groups calculated using Fisher's exact:
*p = 0.002, **p = 0.12. aSee main text for information on historical controls.
TABLE 3 Mortality hazard ratios for high matching group patients in a sample of different precision oncology publications.

year study HR 95% CI n patients

2023 Shaya et al. (13) 0.24 0.078–0.76 18

2023 this study 0.28 0.14-0.59 60

2019 Sicklick et al. (14) 0.44 0.19-1.1 69

2019 Rodon et al. (15) 0.48 0.28–0.84 69

2022 Louie et al. (16) 0.54 0.28–1.03 80

2019 Rodon et al. (15) 0.56 0.25–1.3 38

2016 Wheler et al. (17) 0.65 0.43–1.0 188

2022 Charo et al. (18) 0.65 0.34 to 1.25 113
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inclusion criterion was added to improve the accuracy of the

matching scores by guaranteeing a minimal sample size for the

calculation. Cohort selection statistics are shown in Supplementary

Figure 1. The patients who met all of these inclusion criteria had

prediction reports delivered to oncologists on their behalf between

June 26th, 2020 and November 1st, 2022. Biopsy samples and

medical records for patients in the study cohort were provided by

31 veterinarians at 29 clinics in 14 states. Of the 31 veterinarians, 29

were board-certified oncologists, 1 was an oncology resident, and 1

was a general practitioner.
Tumor profiling

The sensitivity of live tumor cells to 13 different drugs was

quantified using a high-throughput ex vivo assay as previously

described (3). Tumor cells were profiled at the single-cell level using

multicolor flow cytometry and a panel of 9 primary antibodies as

previously described (3).
Collection of clinical information

Baseline patient characteristics (Supplementary Table 1) were

collected at the time of biopsy or soon afterwards from service

request forms or a web portal. Tumor grades were determined by

individual oncology practices and may refer to cytology or

histopathology results. Patient medical charts and electronic

health record exports were emailed to us by oncology clinics

three months or more after the biopsy date. Medical records were

inspected and drug treatments, tumor responses, and death/

euthanasia events were manually entered into spreadsheets.

Tumor response annotations were classified into four categories

progressive disease (PD), stable disease (SD), partial response (PR),

or complete response (CR). We found that some clinicians used

RECIST (20) to objectively assign response categories while others

recorded qualitative clinical assessments. Medical records collected

and analyzed in this fashion were used both to create clinical

outcome labels for training ML models and to quantify health

outcomes occurring after delivery of ML predictions.
ML model development

Binary drug response labels were generated from medical

records as previously described (3). Briefly, drug treatments

followed by SD or PD clinical tumor responses were assigned a

value of 0 and drug treatments followed PR or CR were assigned a

value of 1. ML models were trained to predict the binary drug

response labels for a set of commonly used drugs using features

from flow cytometry and ex vivo drug sensitivity assays as

previously described (3). Models were updated periodically over

the course of the study by retraining existing models with additional

data (continual ML) and by adding models for drugs that had

previously lacked sufficient data for model development.
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Continuous accrual of additional training samples was a

consequence of our open cohort study design and resulted in an

increasing number of samples independently and identically drawn

from the same population of dogs. The first generation of models

was trained to predict clinical outcomes for 7 different

chemotherapy drugs using training data from 463 dogs with

known clinical outcomes. During this study, the number of

individual drug prediction models increased to 10 and the

number of training samples increased to 842 dogs. The models in

release v1.0 were random forest models generated using the caret

(21) and ranger (22) libraries. The models in releases v2.0 and above

were generated using the scikit-learn (23), BayesOpt (24), XGBoost

(25), and imbalanced-learn (26) libraries and were either random

forest models, elastic net logistic regression models, or voting

ensembles composed of multiple different ML models. Predictions

for the low and high matching groups were evenly distributed in

time, resulting in a similar utilization of the different model versions

in the two matching groups (Supplementary Figure 3).
Matching score calculation

Matching score was determined by calculating the percentage of

the drug treatments received by a dog that corresponded to drugs

with a prediction score above 0.5 in the prediction report:

matching score = 100� treatments with prediction score > 0:5
total number of treatments

Only treatments occurring after delivery of the prediction

report were included in the calculation. For the purposes of this

analysis, a treatment was defined as a 1 week course of a drug that

was administered more than once per week, or a single

administration of a drug that was given weekly or at lower

frequency. To illustrate calculation of the matching score,

consider a dog that received 6 weeks of prednisone treatments

given twice per week, and 2 infusions of rabacfosadine (trade name

Tanovea-CA1) separated by a three week interval. If the dog’s

prediction scores for prednisone and rabacfosadine were 0.3 and 0.7

respectively, then the dog received 2 rabacfosadine treatments that

matched the ML predictions and 6 prednisone treatments that did

not match the ML predictions for a total of 8 treatments. Thus, the

matching score for this dog would be 100 * 2/8 = 25%.

Our matching score calculation was slightly different than the

calculation most frequently found in the precision oncology

literature (13–18). We introduced a modification to the

calculation to prevent the score from biasing our outcome

statistics towards positive clinical outcomes in the high matching

group. Matching score is typically calculated by dividing the

number of drugs given that match actionable biomarkers by the

total number of actionable biomarkers. When we implemented this

standard matching score for our study, we discovered that the high

matching group experienced better clinical outcomes even when we

shuffled the drug recommendations. In retrospect, it is easy to see

why the standard matching score calculation introduces a bias
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towards positive clinical outcomes in the high matching group.

Patients who lived longer tended to receive a greater number of

different drugs by virtue of the fact that the oncologist had more

time for empirical therapy (i.e. to try more drugs). Thus, any

matching score that rewards the total number of drugs

administered will bias towards healthier patients regardless of the

performance of the precision oncology platform. We eliminated this

inherent bias by including the total number of drugs administered

in the denominator of our calculation.
Dichotomization by matching score

Several methods were found in the precision oncology literature

for choosing the threshold value used to dichotomize the study

cohort into low matching and high matching groups. In the studies

we examined, four used the arbitrary threshold value of 50% (13, 14,

16, 27), three adjusted the threshold to create the greatest difference

in outcomes between the high and lowmatching groups (14, 15, 18),

and one study used the median matching score (17). We chose the

median matching score as the threshold for dichotomization of our

cohort because this method offers no opportunity for investigator

bias introduced by testing multiple hypotheses about the

appropriate threshold value. The clinical outcome advantage

associated with higher matching scores was not dependent on the

method of dichotomization (Supplementary Figure 4).
Analysis of clinical outcomes

Clinical outcomes data were analyzed using custom Python

scripts and statistical functions from Python libraries.

Supplementary Table 1 was automatically generated using the

TableOne library (28). The lifelines library (29) was used for

Kaplan-Meier statistics and logrank testing. The scipy library (30)

was used to compute Fisher’s exact test. The statsmodels (31) library

was used to calculate the two-sample Z-test and Benjamini-

Hochberg corrections.
Cox proportional hazards modeling

The lifelines library (29) was used for univariate and

multivariate Cox regression. Confounding variables were chosen

based on prior evidence of prognostic significance. The

proportional hazards assumption of time invariance was verified

for each variable using the check_assumptions() method of the

CoxPHFitter class. Models were fit using default parameters for the

CoxhPHFitter class (baseline_estimation_method = ‘breslow’,

penalizer = 0.0, strata = None, l1_ratio = 0.0, n_baseline_knots =

None, knots = None, breakpoints = None). Confidence intervals

and p-values were generated by CoxhPHFitter during model fitting.

Concordance for the multivariate model was 0.62. Concordance

values for univariate models are shown in Table 1.
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Estimation of survival after relapse for
historical control

We estimated that the historical median survival time after

initiation of rescue therapy is roughly 110 days by subtracting

median time to relapse frommedian overall survival time [the mean

values from 14 published studies were used to derive this

estimate (19)].
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Background: Bone marrow (BM) involvement is an indicator of a poor prognosis

in diffuse large B-cell lymphoma (DLBCL); however, few studies have evaluated

the role of immunoglobulin gene rearrangement (IgR) in detecting

BM involvement.

Methods: We evaluated the clinical characteristics and treatment outcomes of

patients with DLBCL based on histological BM involvement or positive BM IgR

using polymerase chain reaction or next-generation sequencing. We also

investigated the role of consolidative upfront autologous hematopoietic stem

cell transplantation (ASCT) in patients with DLBCL and BM involvement.

Results: Among 624 patients, 123 (19.7%) with histological BM involvement and

88 (17.5%) with positive IgR in histologically negative BM had more advanced

disease characteristics. Overall (OS) and progression-free (PFS) survival was

better for patients with negative BM histology and negative IgR than that in

patients with histological BM involvement (P = 0.050 and P < 0.001, respectively)

and positive IgR with negative BM histology (P = 0.001 and P = 0.005,

respectively). Survival rates did not differ among 82 (13.1%) patients who were

treated with upfront ASCT and had histological BM involvement or positive IgR

with negative BM histology. The survival outcomes were worse for patients who
frontiersin.org0199

https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1363385/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1363385&domain=pdf&date_stamp=2024-02-12
mailto:hemakim@yuhs.ac
https://doi.org/10.3389/fonc.2024.1363385
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1363385
https://www.frontiersin.org/journals/oncology


Kim et al. 10.3389/fonc.2024.1363385

Frontiers in Oncology
were not treated with upfront ASCT and for those with histological BM

involvement or positive IgR, than for those with negative BM histology and

negative IgR.

Conclusion: Patients diagnosed with DLBCL and BM involvement based on

histology or IgR had aggressive clinical features and poor survival. Upfront

ASCT mitigated poor prognosis due to BM involvement.
KEYWORDS

diffuse large B-cell lymphoma, bone marrow involvement, immunoglobulin gene
rearrangement, progression-free survival, transplantation
1 Introduction

Although the treatment outcomes of diffuse large B-cell lymphoma

(DLBCL) have improved with the development of new drugs, relapse is

frequent and associated with dismal outcomes (1, 2). Bone marrow

(BM) involvement is classified as extranodal and stage 4, which

increases the international prognostic index (IPI) and is directly

linked to shorter survival (3–5). The reported incidence of BM

involvement is 11%-36% and the classic definition of BM

involvement is abnormal lymphoma cells in BM aspirates or biopsies

(3, 4, 6). However, minimal BM involvement of malignant lymphoma

cells often generates false negative results because a histological

diagnosis is very difficult in the absence of significant morphological

changes (7–9). Bone marrow involvement can be diagnosed using 18F-

FDG PET, but only within a limited range, and diagnostic rates vary

depending on the lymphoma subtype (10–13). These problems have

been addressed using the polymerase chain reaction (PCR) to detect

immunoglobulin gene rearrangement (IgR) in BM samples because B-

cell non-Hodgkin lymphoma (NHL) undergoes clonal IgR (9, 14).

Clonal immunoglobulin heavy chain (IGH) and kappa chain (IGK)

gene rearrangement could help the diagnostic process when histological

findings are inconclusive. Moreover, gene rearrangement can be a

helpful indicator during follow-up, as well as for diagnoses (15, 16).

Patients with negative histological BM can be classified based on

whether they test positive for IgR and negative for BM histology

which indicates a more accurately determined advanced stage and a

poorer prognosis (14, 17). Immunoglobulin gene rearrangement has

mostly been detected using PCR; however, next-generation sequencing

(NGS) has also been recently used (18). Detecting BM involvement in

patients newly diagnosed with DLBCL indicates poor prognosis; to that

end, IgR tests have been applied in a few studies to detect BM

involvement in patients DLBCL treated with R-CHOP (rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisolone)

chemotherapy (14, 19–21).
02100
Patients newly diagnosed with DLBCL accompanied by

negative BM histology and poor outcomes of current standard

treatment should be tested for IgR to precisely diagnose BM

involvement. New treatment approaches should also be applied

such as high-intensity chemotherapy to overcome BM involvement

as a poor prognostic factor (5). Here, we investigated the clinical

characteristics and treatment outcomes of upfront consolidative

ASCT as part of a high-intensity chemotherapeutic regimen in

patients with DLBCL and BM involvement determined by

histological or molecular biological methods.
2 Materials and methods

This study enrolled patients from nine institutions in Korea

who were newly diagnosed with DLBCL based on the World Health

Organization classification (22) and histological BM involvement

between 2010 and 2019. The study was conducted according to the

guidelines of the Declaration of Helsinki, and approved by the

Institutional Review Board of Severance Hospital (4-2019-0579 Aug

5, 2019) and each institution.

The control group comprised patients from Severance Hospital who

were newly diagnosed with DLBCL and were tested for IgR regardless of

BM involvement status within the same period. The exclusion criteria

were disease transformation from indolent follicular lymphoma, primary

central nervous system lymphoma, cutaneous DLBCL, primary

mediastinal B-cell lymphoma, and human immunodeficiency virus-

associated DLBCL. All patients were administered with R-CHOP as

first-line chemotherapy. Upfront consolidative ASCT was considered for

patients with Ann Arbor stages III or IV and elevated lactic

dehydrogenase (LDH) levels who achieved complete (CR) or partial

(PR) remission after R-CHOP chemotherapy. The international

prognostic index (IPI) score was calculated as described (23).

Responses were assessed based on the Cheson criteria (24).
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2.1 Histological diagnosis of bone
marrow involvement

We obtained aspirates and BM biopsies from the posterior

superior iliac crest from all enrolled patients before starting

chemotherapy for DLBCL. Bone marrow involvement was

diagnosed based on histological criteria and immunochemical

staining for B-cell markers (3, 8). Concordant BM involvement

was defined as BM involvement of DLBCL, while discordant

involvement was defined as involvement of small and low-grade

lymphoma cells (3). The present study investigated only concordant

BM involvement. Thirteen patients had discordant BM involvement

without DLBCL involvement, and these patients were classified as

negative. Cells of origin were classified based on the Hans algorithm

using immunochemical staining (25).
2.2 Immunoglobulin gene rearrangement
test to diagnose bone marrow involvement

We assessed clonal gene rearrangement in BM aspirates from 504

patients. The assays included BIOMED-2 multiplex primer sets in

five master mixes that targeted the IGH and two master mixes that

target the IGK locus. Fragment analysis was applied to fluorescence-

labeled PCR products using an ABI 3130 DNA sequencer (Thermo

Fisher Scientific Inc., Waltham, MA, USA) and GeneMapper 3.2

software (Thermo Fisher Scientific Inc.). Next-generation sequencing

(NGS) was applied from April 2017 using LymphoTrack® IGH FR1

and IGK Assays (Invivoscribe Technologies Inc., San Diego, CA,

USA). After PCR amplification, libraries were purified using the

Agencourt AMPure XP system (Beckman Coulter, Inc., Brea, CA,

USA). Quantified libraries were sequenced on a MiSeq system using

MiSeq Reagent Kit v2 (Illumina Inc., San Diego, CA, USA).

Bioinformatics were analyzed using LymphoTrack® Dx MiSeq

Data Analysis version 2.4.3 (Invivoscribe Technologies, Inc.). The

cut-offs for clonality and clonotype sequences were determined as

described by the manufacturers. We assessed IgR in patients without

histological BM involvement. Positive IgR was defined as positive

IGH and/or IGK gene rearrangement. The sensitivity of PCR is 10-3

and that of NGS is 10-4.
2.3 Statistical analysis

Overall survival (OS) was determined as elapsed time between

the dates of diagnosis and death, regardless of the cause. Surviving

patients were censored at the last date of follow-up. Progression-free

survival (PFS) was defined as elapsed time between the dates of

diagnosis to progression, relapse, or death from any cause. Survival

was analyzed using Kaplan-Meier curves, and pairs of groups were

compared using log-rank tests. A Cox proportional hazard model

was used for multivariate analysis. The multicollinearity of all

variables in univariate analyses was assessed as tolerance and a

variance inflation factor using linear regression analysis. Values
Frontiers in Oncology 03101
with P < 0.05 in all analyses were considered statistically significant.

All data were statistically analyzed using SPSS for Windows, version

23.0 (IBM Corp., Armonk, NY, USA).
Results

2.4 Patients’ characteristics

Among 624 patients newly diagnosed with DLBCL, 123 (19.7%)

had histological BM involvement. Among 501 patients without

histological BM involvement, 88 (17.5%) were IgR positive, 29

(5.7%) and 26 (5.1%) had positive IGH and IGK rearrangement,

respectively, and 33 (6.5%) had rearranged IGH and IGK (Figure 1).

Patients with histological BM involvement or positive IgR with

negative BM histology tended to be older (P = 0.02 and P < 0.001,

respectively). Moreover, these patients had advanced-stage DLBCL

with extranodal involvement at more than one site and elevated

LDH, as well as significantly higher IPI scores than patients who

were negative for both (Table 1). We tested 276 (55.1%) patients for

clonal IgR using PCR. Fifty (50/276, 18.1%) patients showed

positive results by PCR, whereas 38 (16.9%) of 225 patients had

positive results of NGS. The rates of positivity rates did not

significantly differ between the two test methods (P = 0.814).
2.5 Treatment outcomes according to
bone marrow involvement

Among the registered patients who received R-CHOP

chemotherapy as the first-line treatment, 587 responded. A CR

was achieved in 465 (79.2%) of 587 evaluable patients, which

included 93 (78.2%) of 119) with histological BM involvement.

These findings did not significantly differ from those of patients

without BM involvement (P = 0.428). Meanwhile, 56 (70.0%) of 80

evaluable patients with positive IgR achieved CR. This was

significantly lower than the 316 (76.5%) of 388 patients without

histologic and molecular BM involvement (P = 0.032). The median

follow-up was 32 (range: 1-108) months, and the 3-year OS and PFS

rates were 80.4% and 69.5%, respectively (Figures 2A, B). The 3-

year OS and PFS were 74.9% and 56.0% in patients with histological

BM involvement and 72.4% and 62.4% in those with positive IgR

and negative BM histology. These were lower than the survival

outcomes of patients with negative IgR and BM histology (83.9%

and 75.7%, respectively; (Figures 3A, B).
2.6 Treatment outcomes according to
autologous hematopoietic stem
cell transplantation

Upfront consolidative ASCT was administered to 82 (13.1%)

patients after they completed frontline R-CHOP chemotherapy.

Among them, 53 (64.6%) had histological BM involvement, 10
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(12.2%) had positive IgR and negative BM histology, and 19 (23.2%)

did not have histological BM involvement and were IgR negative.

Treatment outcomes were analyzed according to upfront ASCT in

patients with advanced-stage and elevated LDH levels. The OS and

PFS rates were better for patients who were administered upfront

ASCT than for patients who were not (P = 0.010 and P = 0.004,

respectively). The OS and PFS outcomes of patients who received

upfront ASCT to minimize selection bias associated with treatment
Frontiers in Oncology 04102
intensity did not significantly differ according to histological BM

involvement (P = 0.388 and P = 0.663, respectively) or positive IgR

(P = 0.685 and P = 0.528, respectively; Figures 4A, B). The 3-year OS

and PFS rates among patients who did not receive upfront ASCT

were poorer for those with BM involvement than for those without

(65.0% vs. 85.1%, P = 0.001, and 49.2% vs. 77.0%, P < 0.001,

respectively). The OS and PFS rates were also lower for patients

with positive IgR than for those without histological BM
TABLE 1 Clinical characteristics of 624 patients according to BM involvement or immunoglobulin gene rearrangement.

Characteristics
BM negative

(n=413)
No. (%)

BM positive
(n=123)
No. (%)

Clonal IgRa

(n=88)
No. (%)

Comparison between two factors
p-value

BM negative
vs BM positive

BM negative
vs clonal IgR

BM positive
vs clonal IgR

Age, median (range) years 61 (19–86) 56 (19–85) 66 (41–89) 0.02 <0.001 <0.001

Male patients 236 (57.1) 64 (52.0) 54 (61.4) 0.352 0.479 0.206

ECOG 2-4 28 (6.8) 28 (22.8) 15 (17.0) <0.001 0.005 0.387

Stage III or IV 177 (42.9) 123 (100) 58 (65.9) <0.001 <0.001 <0.001

Extranodal sites >1 114 (27.6) 93 (75.6) 38 (43.2) <0.001 0.005 <0.001

LDH, elevated 186 (45.0) 110/122 (90.2) 54/88 (61.4) <0.001 0.007 <0.001

Non-GCB subtype 278 (67.3) 62/93 (66.7) 66/88 (75.0) 0.903 0.166 0.254

DEL 102 (24.7) 21/74 (28.4) 36/88 (40.9) 0.561 0.004 0.102

Upfront ASCT 19 (4.6) 53 (43.1) 10 (11.4) <0.001 0.022 <0.001

IPI <0.001 <0.001 <0.001

Low/Low-intermediate 293 (70.9) 26 (21.1) 43 (45.3)

High-intermediate/High 120 (29.1) 97 (78.9) 52 (54.7)
aThis patient was IgR positive and BM histology negative. ASCT, autologous hematopoietic stem cell transplantation.
BM, bone marrow; DEL, double expressor lymphoma; ECOG, Eastern Cooperative Oncology Group;IgR, Immunoglobulin gene rearrangements; GCB, germinal center B-cell; IPI, International
prognostic index; LDH, Lactate dehydrogenase.
FIGURE 1

Flowchart of patients. BM, bone marrow; DLBCL, diffuse large B-cell lymphoma; IgR, immunoglobulin gene rearrangement R-CHOP, rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisolone.
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involvement and negative IgR (72.0% vs. 85.1%, P < 0.001 and

60.6% vs. 77.0%, P < 0.001, respectively; Figures 4C, D).
2.7 Univariate analysis of prognostic factors
associated with poor survival

We assessed the results of the univariate analysis of patients

who were not treated with upfront ASCT. The following factors

were significantly associated with poor prognosis: age ≥ 60 years,

poor performance status, advanced disease stage, involvement of at

least one lymph node, elevated LDH, histological BM involvement,

positive IgR, non-germinal center B-cell (GCB) subtype, and IPI.

The multivariate analysis associated poor OS and PFS with elevated

LDH (P < 0.001 and P = 0.001, respectively), poor performance

status (P = 0.004 and P = 0.05, respectively), and positive IgR

(P = 0.001 and P = 0.004, respectively; Table 2). In contrast, age was

the only prognostic factor among patients who received upfront

ASCT (P = 0.001 and P = 0.036, respectively).
Frontiers in Oncology 05103
3 Discussion

The present study findings revealed that the clinical

characteristics of patients with DLBCL and positive IgR in BM

samples (besides those with traditional histological BM

involvement) who received R-CHOP chemotherapy, resembled

those of patients with advanced-stage lymphoma. Moreover, these

patients did not respond well to R-CHOP first-line treatment and

had poor OS and PFS. Therefore, tests for IgR should be applied to

precisely predict the prognosis of patients with negative

BM histology.

BM involvement of DLBCL cells showed an unfavorable gene

signature, which was related to tumor cell proliferation, migration,

and immune escape. These could explain high-risk clinical features

and poor prognosis (5). However, differentiating the histological

diagnosis of BM involvement of malignant lymphoma cells can be

challenging particularly in patients with small amount of

lymphoma cells. The IgR test could be helpful under such

circumstances. The IgR results were positive in 13%–16% of
A B

FIGURE 3

Overall (A) and progression-free (B) survival according to bone marrow involvement by histology and immunoglobulin gene rearrangement.
BM, bone marrow, IgR, immunoglobulin gene rearrangement.
A B

FIGURE 2

Overall (A) and progression-free (B) survival of patients.
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patients with DLBCL who were diagnosed with histologically

normal BM and these patients did not survive for long (14, 20).

Here, we found positive IgR in 17.5% of patients with negative

histological BM involvement, which was similar to previous

findings. Without IgR tests, these patients would have been

classified as having no BM involvement and the disease stage

would have been lowered. Therefore, routine IgR tests of BM

samples should be recommended to evaluate the molecular BM

involvement of DLBCL cells.

A higher proportion of patients with histological BM

involvement had a more advanced disease stage, more frequent

extranodal involvement, and more elevated LDH than patients with

positive IgR and negative BM histology. Patients with histological

BM involvement were classified as having stage 4 disease or a high

IPI score at the time of diagnosis. However, patients with positive

IgR might not be classified as having an advanced disease stage and

might have been down-staged because histological BM involvement

was not found. Therefore, the clinical characteristics of patients
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with histological BM involvement differed from those with only

positive IgR with negative BM histology. Nevertheless, we found

that the differences in OS and PFS between patients with

histological BM involvement and those with positive IgR and

negative BM histology were not significant. In addition, the

multivariate analysis identified positive IgR as an important

prognostic factor associated with poor OS and PFS in patients

who were not treated with upfront ASCT.

The most useful tool for assessing clonality in patients with

NHL until recently was BIOMED-2 PCR assays. These had been

widely used as they were standardized and deemed suitable for

technically routine test environments (26). However, PCR is limited

by being unsuitable for samples with poor DNA quality, such as

formalin-fixed paraffin-embedded (FFPE) samples, which could

produce false negative results (15, 18). However, small amplicons

and FFPE samples can be analyzed using NGS (18). We compared

the ability of PCR and NGS to detect clonality and found no

significant differences.
A B

C D

FIGURE 4

Survival of patients with and without ASCT according to histological bone marrow involvement and IGR. Overall and progression-free survival of
patients with (A, B) and without (C, D) ASCT according to histological bone marrow involvement and immunoglobulin gene rearrangement. ASCT,
autologous stem cell transplantation; BM, bone marrow; IgR, immunoglobulin gene rearrangement; OS, overall survival; PFS, progression-
free survival.
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Although histological BM involvement is considered a poor

prognostic factor, a standardized treatment approach has not yet

been established. Furthermore, patients with positive IgR have not

been studied. High-intensity chemotherapy, such as fractionated

cyclophosphamide, vincristine, doxorubicin, and dexamethasone

alternating with high-dose methotrexate and cytarabine (rituximab-

hyper-CVAD/MA) or dose-adjusted etoposide, prednisone,

vincristine, cyclophosphamide, doxorubicin, and rituximab

(EPOCH-R) might overcome poor prognoses, and treatment

outcomes are better than those of R-CHOP in high-risk patients

with DLCBL (5). Consolidative upfront ASCT might also be

considered as a different approach to high-intensity chemotherapy

for DLBCL because it can eradicate PCR-detectable NHL cells and

consequently reduce recurrence (27). Upfront ASCT in the rituximab

era improves PFS in high-risk patients with DLBCL (28, 29). Based

on this, we investigated whether upfront ASCT could mitigate the

poor prognosis of patients with DLBCL and BM involvement.

According to Korean reimbursement guidelines, consolidative

upfront ASCT in clinical practice can be recommended for patients

with elevated LDH and stage III/IV DLBCL at the time of diagnosis

who respond to front-line R-CHOP chemotherapy. However, the

present study was retrospective, and as a result, patients with good

treatment response and performance might have been selected to

receive upfront ASCT. Accordingly, the patients were divided into

groups with and without upfront ASCT when analyzing the

prognostic factors associated with survival to minimize bias
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associated with the intensity of treatment. Analysis of all enrolled

patients showed that survival was shorter for patients with

histological BM involvement or positive IgR with negative BM

histology than for those without histological BM involvement and

negative IgR. The results of the multivariate analysis showed that

patients with poor performance status, elevated LDH, or positive IgR

who did not receive upfront ASCT tended to have poor OS and PFS.

These results indicated that upfront ASCT plays an important role in

overcoming a poor prognosis due to histological BM involvement or

positive IgR with negative BM histology. The routine application of

upfront ASCT consolidation after R-CHOP is not considered

standard care in all countries. However, we suggest that upfront

ASCT for high-risk patients with DLBCL and BM involvement

should be considered at least in those countries with access to

novel target agents.

This study had the following limitations. First, this was a

retrospective study and not a prospective randomized study. To

overcome this limitation, we registered as many patients as possible

from nine institutions in Korea. Another limitation was the absence

of regular follow-up data for IgR tests, although they were applied at

the time of diagnosis. Based on the concept of minimal residual

disease, follow-up tests for IgR are underway and will be examined

through further follow-up studies. Although IgR tests could not

discriminate infiltration by a high- or low-grade component, the

poor prognostic impact of IgR positivity for patients with DLBCL

nevertheless generated meaningful information. Despite these
TABLE 2 Prognostic factors of OS and PFS among patients who did not receive upfront ASCT.

OS PFS

Univariate analysis

Variable HR (95% CI) p-value HR (95% CI) p-value

Age ≥60 1.890 (1.253-2.852) 0.002 1.683 (1.227-2.308) 0.001

Male 1.026 (0.694-1.516) 0.898 1.287 (0.941-1.760) 0.114

ECOG ≥2 3.474 (2.183-5.531) <0.001 2.918 (1.973-4.315) <0.001

Stage 3,4 2.207 (1.463-3.331) <0.001 3.015 (2.150-4.226) <0.001

Extranodal >1 2.501 (1.697-3.686) <0.001 3.067 (2.257-4.167) <0.001

LDH, elevated 3.706 (2.344-5.860) <0.001 2.856 (2.046-3.987) <0.001

BM involvement 1.929 (1.203-3.094) 0.006 2.211 (1.539-3.179) <0.001

IgR 2.699 (1.752-4.159) <0.000 2.289 (1.608-3.259) <0.001

GCB vs non-GCB 1.501 (0.966-2.333) 0.071 1.533 (1.082-2.174) 0.016

DEL 1.149 (0.734-1.799) 0.544 1.066 (0.749-1.517) 0.722

IPI 3.282 (2.202-4.894) <0.000 3.404 (2.491-4.651) <0.001

Multivariate analysis

IgR 2.145 (1.379-3.337) 0.001 1.711 (1.186-2.468) 0.004

LDH, elevated 2.862 (1.760-4.655) <0.001 1.887 (1.292-2.755) 0.001

ECOG≥2 2.200 (1.379-3.737) 0.004 1.589 (1.000-2.524) 0.050

Extranodal >1 2.128 (1.480-3.061) <0.001
BM, bone marrow; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; GCB, Germinal center B-cell; HR, hazard ratio; IgR, Immunoglobulin gene rearrangement; DEL, double
expressor lymphoma; IPI, International prognostic index; LDH, lactic dehydrogenase.
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limitations, our findings were meaningful insofar as we used PCR

and NGS to investigate the role of IgR, in addition to histological

BM involvement, in a large cohort of patients with DLBCL and

analyzed their clinical characteristics and treatment outcomes.

In conclusion, tests to detect IgR BM allowed a more detailed

classification of the prognosis of patients who were negative for

histological BM involvement. Patients who did not receive upfront

ASCT could not overcome the poor prognosis associated with BM

involvement. Our results suggested that ASCT could mitigate the

poor prognosis of not only patients with histological BM

involvement but also those with positive IgR and negative BM

histology. Accordingly, these findings require validation through

future prospective studies.
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Background: Diffuse large B cell lymphoma (DLBCL) is the most common non-

Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured

with upfront standard chemoimmunotherapy schedules. However, in

approximately 35-40% of the patients DLBCL relapses, and therefore, especially

in this setting, the search for new prognostic and predictive biomarkers is an urgent

need. Natural killer (NK) are effector cells characterized by playing an important role

in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK

that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-

GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment

response and survival in relapsed/refractory (R/R) DLBCL patients.

Methods: 78 patients received the R2-GDP schedule in the phase II trial. Blood

samples were analyzed by flow cytometry. Statistical analyses were carried out in

order to identify the prognostic potential of CD8+ NKs at baseline in R/R

DLBCL patients.

Results: Our results showed that the number of circulating CD8+ NKs in R/R

DLBCL patients were lower than in healthy donors, and it did not change during

and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was

associated with complete responses in patients with R/R DLBCL. In addition, we

also demonstrated that CD8+ NKs levels have potential prognostic value in terms

of overall survival in R/R DLBCL patients.

Conclusion: CD8+ NKs represent a new biomarker with prediction and

prognosis potential to be considered in the clinical management of patients

with R/R DLBCL.

Clinical trial registration: https://www.clinicaltrialsregister.eu/ctr-search/

search?query=2014-001620-29 EudraCT, ID:2014-001620-29.
KEYWORDS

DLBCL, B cell lymphoma, recurrent/refractory disease, immune system, natural killer,
CD8+ NK, biomarker, R2-GDP-GOTEL
Introduction

Lymphoproliferative diseases comprise a diverse and heterogeneous

group of malignancies (1). Diffuse large B-cell lymphoma (DLBCL)

is the most common non-Hodgkin lymphoma (NHL) subtype,

account ing 30%-40% of lymphoid mal ignancies (2) .

Ch emo immuno t h e r a p y w i t h R -CHOP ( r i t u x imab ,

cyclophosphamide, doxorubicin, vincristine, and prednisone) and

R-CHOP-like schedules remains the upfront standard of care in

DLBCL. However, one-third of DLBCL patients will relapse having
02109
a poor outcome, especially the cases with refractory disease to

frontline or subsequent therapies (2). Although new strategies as

chimeric antigen receptor T-cells (CART), bispecific monoclonal

antibodies and new combinations with anti-CD19 (tafasitamab)

plus lenalidomide or antibody drug conjugates (polatuzumab) plus

bendamustine and rituximab are increasing the therapeutic

armamentarium in relapsed/refractory (R/R) DLBCL (3), the

search of new reliable predictive and prognostic biomarkers that

could guide clinical management and eventually point to new

therapeutic targets is extremely relevant and necessary.
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Antitumor immune cells in peripheral blood have gained

increasing relevance and interest, particularly natural killer cells

(NKs). NK population is responsible for immune surveillance and

represents major component of innate immunity against virus

infected cells or malignant cells (4). NKs are effector cells

characterized by exerting strong cytotoxicity against tumor cells

and play an important role in the efficacy of rituximab-based

therapy due to their ability to induce antibody-dependent

cell cytotoxicity (ADCC) (5, 6). In DLBCL patients, some

studies have evaluated NKs in peripheral blood. Indeed, NK

cell count was associated with response and event free survival

independently of adverse age-adjusted International Prognostic

Index (7). In this line, low baseline NK cell count has also been

associated with shorter progression-free survival (8). In these

studies, NKs were defined as CD3-CD16 + 56+. Nevertheless,

NKs express a large number of surface antigens (9); and,

consequently, many subsets of NKs have been described in

human peripheral blood (10, 11). One of the most promising

and underexplored subsets of NKs in cancer are those that

express CD8+ at lower levels than T cells (12, 13). The CD8

expression on NKs seems to be associated with a higher cytotoxic

function compared with CD8- NK cells in healthy humans (14,

15), and in avian CD8 identify the lytic NK (16). Moreover, CD8+

NKs are capable of sequential lysis of multiple target cells (12).

Regarding their relevance in human diseases, CD8+ NKs have

been found to exert a suppressive effect in relapsing remitting

multiple sclerosis (13). In chronic human immunodeficiency

virus (HIV) patients an initial loss of this subset of NKs has

been described, followed by a phenotypic change in CD8- NKs to

become CD8+ in the progression of the disease (9). Moreover,

high CD8+ NKs have been associated with slower disease

progression exhibiting a more functional profile (17). Finally, it

has been reported that CD8+ NKs mediate the autologous

cytotoxicity of myeloid leukemic cells from patients in clinical

remission after autologous stem-cell transplantation (18) and of

acute myeloid leukemia patients in complete remission after

chemotherapy alone in vitro (19).

Recently in the GOTEL clinical trial in R/R DLBCL, we found

that the number of circulating myeloid-derived suppressor cells

(MDSCs) after the third cycle of treatment was a good

immunological biomarker associated with both survival (2, 20)

and clinical benefit (21). However, the number of basal

circulating MDSCs did not predict survival or clinical benefit.

As a result, we have continued to search for blood biomarkers of

treatment response in this clinical trial. As CD8+ NK cells seem

to have a high cytotoxic function against tumor cells, we analyzed

this subset of NKs in patients treated with R-GDP plus

lenalidomide in the R2-GDP-GOTEL phase II trial and

evaluated their prognostic impact at baseline. The results

obtained showed that CD8+ NKs, but not CD8- NKs, are

associated with complete responses and, more importantly,

with overall survival (OS), representing a promising new

biomarker with prediction and prognosis potential in R/

R DLBCL.
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Materials and methods

Study design

79 patients diagnosed with R/R DLBCL were enrolled in this

multicenter (78 patients were finally considered in the intention to

treat (ITT) analysis due to the voluntary withdrawal of one patient),

open-label, single-arm R2-GDP-GOTEL phase II clinical trial study

(EudraCT Number: 2014-001620-29) (21). The main baseline

characteristics of the patients are summarized in Supplementary

Table 1 and the progress of patients through the trial are

summarized in Supplementary Figure 1A. The study was

conducted in compliance with the International Ethical

Guidelines for Biomedical Research Involving Human Subjects,

the Declaration of Helsinki, good clinical practice guidelines, and

local laws. The study protocol and any subsequent amendments

were approved by Seville Provincial Ethics Committee for Research

with Drug.
Lenalidomide plus R-GDP treatment

R/R DLBCL patients received the R2-GDP schedule, based on

lenalidomide in combination with R-GDP. After a first run-in phase

period the following schedule was administered: intravenous

rituximab 375 mg/m2 on day (D)1, intravenous cisplatin 60 mg/

m2 D1, intravenous gemcitabine 750 mg/m2 D1 and D8, oral

dexamethasone 20 mg D1–3, subcutaneous granulocyte colony

stimulating factor (G-CSF) 30 million units international (MUI)

D2–6 and D9–14 in combination with oral lenalidomide 10 mg D1–

14, in cycles every 3 weeks. If after the 3rd cycle there was no

progression of disease, a maximum of 6 induction cycles were

administered. Patients that reached clinical benefit after at least 3

cycles of treatment could enter a maintenance phase

with lenalidomide 10 mg (or the last dose administered in the

induction phase) D1–21 in cycles every 4 weeks. The maintenance

phase was intended to continue until progression, unacceptable

toxicity, patient voluntary withdrawal, or when two positron

emission tomography (PET) confirmed metabolic complete

response after 2 years of treatment.
Response evaluation and outcome

Evaluation of the response to treatment allowed us to define

patients in complete response (CR), partial response (PR), stable

disease (SD) or patients with progression of the disease (PD).

Tumor response was evaluated according to the International

Working Group Criteria (22) using computed tomography after

the third induction cycle and PET in the following 4 weeks after the

last cycle of the induction phase, and the response to treatment was

calculated as Best Overall Response.
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Immunophenotyping

NKs and other immune cells were studied in peripheral blood

from R/R DLBCL patients during the R2-GDP-GOTEL study at three

time-points: basal, cycle 3 and end of induction (EOI). Blood samples

were collected in EDTA-K3 tubes and cell populations were

determined by flow cytometry analysis using the BD FACSCanto

II™ flow cytometry system with the monoclonal antibodies (mAbs)

and protocols recommended by Becton Dickinson Immunocytometry

Systems (BDIS, San Jose, CA, USA). mAbs are listed in Supplementary

Table 2 and the phenotypes for immune cell studies are described in

Supplementary Table 3.

Lymphocyte subpopulations were analyzed by BD Multi-test 6-

Color TBNK (Becton Dickinson). NK cells were gated by selecting

the CD3- and CD16 + 56+ cells, and then analyzed as CD8- and

CD8+ (Supplementary Figure 1B).
Statistical analysis

Mann–Whitney and One-way tests were used to evaluate

differences between two or more groups, respectively. Paired

samples t-test was applied to compare the mean level of

expression within the same specimens. Overall survival was

analyzed using the Kaplan–Meier estimator, and the differences

were evaluated using the log-rank test. This survival analysis was

performed to determine the survival of all patients according to the

levels of CD8 positive or negative NKs. The Spearman’s Rank test

and principal component analysis were used to determine the

relationship between different variables. Receiver operator

characteristic curve (ROC) analysis was conducted to calculate

the area under the curve (AUC). To calculate the ROC curve, all

patients were used and compared those with CR compared to the

rest of the patients in the study. Uni- and multivariate Cox

regression analyses were used with all study patients to estimate

hazard ratios (HRs) and the influence of CD8 positive and negative

NK variables on survival time, independent of treatment response.

All statistical analyses in the study were performed using the

software’s GraphPad Prism (6.01), JMP (V.10), and SPSS

(V.25.0). The average of samples with SD is presented in all

experiments. For all analyses, p-values of ≤0.05 were considered

statistically significant.
Results

Baseline clinical characteristics of R/R
DLBCL patients

A total of 78 patients were finally considered in the ITT analysis.

In terms of clinical characteristics, the median age was 66 (range 23-

86) years, and of the total number of patients 41 were male (51.9%)

and 38 female (48.1%). Thirty-three patients (41.8%) were primary

refractory DLBCL defined as in the SCHOLAR-1 study (23), and

thirty-six samples (64.3%) were classified as non-germinal center B-

cell (GCB) and 20 (35.7%) samples as GCB subtype, by Hans
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algorithm. Of the total patients included, 29 (36.7%) achieved CR,

18 (22.8%) patients had PR, 6 (7.6%) had SD and 25 (31.6%)

showed PD. The main baseline characteristics of the patients are

summarized in Supplementary Table 1. In addition, 10 women and

10 men with a similar median age (68.2 years) to the patients were

recruited as healthy donors.
Blood CD8+ NK level does not change
during the treatment of R/R
DLBCL patients

In order to understand the potential roles of CD8+ NK cell

subpopulation, we first compared their basal blood levels in R/R

DLBCL patients with those in healthy donors. Circulating CD8+

NK levels were significantly lower in R/R DLBCL patients

compared with healthy donors (p<0.0001). Moreover, CD8-

NKs and total NKs were also lower in patients (p=0.0271 and

p=0.0005 respectively) (Figure 1A). Next, both subpopulations

were compared before (baseline), during (Cycle 3) and after

treatment (EOI) in R/R DLBCL patients, finding that the levels

of CD8- NKs were significantly higher than CD8+ NKs levels at all

sampling stages (Figure 1B). Finally, we studied how the levels of

CD8+ NKs evolved during the treatment. There were no

differences neither CD8+ NK nor CD8- NK subpopulations

before, during and after treatment in paired samples

(Figure 1C). In addition, the same results were observed when

the analyses were with all samples (Supplementary Figure 2). In

this study, CD8+ NKs are the minority subset of circulating NKs

observed in R/R DLBCL patients, and the treatment did not

modify their levels.
High-circulating CD8+ NK levels at
baseline were associated with complete
response to treatment

Once the number of circulating CD8+ NKs was assessed, we

performed a detailed analysis of the number of CD8+ NKs in

relation to clinical parameters. No significant differences in CD8+

NK levels were observed between the tumor molecular subtype in

DLBCL (GCB and no GCB by Hans algorithm), or between patients

with or without refractory disease (Supplementary Figure 3). There

was also no significant difference neither between elderly and non-

elderly patients, nor between men and women (Supplementary

Figure 3). In addition, results shown in CD8- NKs and total NKs did

not change significantly in either of the clinical parameters studied

(Supplementary Figure 3).

When response to treatment was analyzed, R/R DLBCL patients

with CR had a significant higher level of basal CD8+ NKs than

patients with PD (p=0.0006) (Figure 2A), whereas there were no

differences in treatment response in CD8- NK subpopulation

(Figure 2A). To rule out that the result obtained from CD8+ NK

cells with response to treatment was based on confounding factors,

we performed an analysis between the clinical characteristic of the

patients and response to treatment. No association was observed
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1293931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hontecillas-Prieto et al. 10.3389/fimmu.2024.1293931
with age, gender, molecular subtypes and refractory disease

(Supplementary Figure 4A).

Since clinical response was associated with different levels of CD8

+ NKs prior to therapy at basal point, we aimed to further analyze the

direct relationship of this promising biomarker with response to

treatment in these patients. We next performed a multivariate

analysis with pro- and anti-tumor immune cells from CR and PD

groups. However, in those patients with PD, levels of CD8+ NKs did

not correlate with any immune cell studied at baseline

(Supplementary Figures 4B, C). Instead, a positive correlation was

observed between CD8+ NKs and CD4 and CD8+ T cells (p=0.0155

and p=0.0025) and gamma delta (gd) T cells (CD3+C4-CD8-)

(p=0.0209) in patients with CR before treatment (Figure 2B).

Nevertheless, there was no correlation with other antitumor

immune cells such as activated T cells or the immunosuppressive
Frontiers in Immunology 05112
MDSCs (Figures 2B, C). Principal component analysis in CR patients

also showed a positive relationship between CD8+NKs, CD8+ and gd
T cells (Figure 2D). Together, high-circulating CD8+ NK levels at

baseline are associated with CR in R/R DLBCL patients. In addition,

in those CR patients, the CD8+ NK subpopulation correlates with the

antitumor immune response.
CD8+ NK cells are potential predictive and
prognostic factors to R2-GDP treatment in
R/R DLBCL patients

Given the CD8+ NK association with treatment response, we

investigated the prognostic potential at baseline in lymphoma

patients. The area under the curve (AUC) of CD8+ and CD8-
A

B

C

FIGURE 1

NK populations in R/R DLBCL patients. (A) Comparison of total NKs, CD8+ NK and CD8- NK basal levels between healthy donors and R/R DLBCL
patients. (B) CD8+ NK and CD8- NK levels comparison at three time-points in all samples. (C) CD8+ NK and CD8- NK levels comparison at three
time-points in paired samples. For all the analyses, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001. ns, not significant.
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NKs was 0.698 (95% confidence interval [CI], 0.563–0.833;

p=0.004) and 0.629 (95% CI, 0.491–0.766; p=0.066), respectively

(Figure 3A). In the CD8+ NK subset, the cutoff value of the

predictive score at the optimum point was 24.8, the specificity

was 34.1%, and the sensitivity was 76.9% (Supplementary Table 4).

Therefore, ROC curve analyses indicated that CD8+ NK levels at

baseline are a good predictor of treatment response in R/R DLBCL

patients but not the CD8- NK subset. Then, we analyzed the

relationship between OS and CD8+ NK levels by Kaplan–Meier

test using the ROC curve cutoff level 24.8. We observed that patients

with high levels of CD8+ NKs showed a higher survival rate than

patients with low CD8+ NK levels (p=0.0209) (Figure 3B).

However, there were no differences in survival in CD8- NK

population (p=0.2487) (Figure 3B). In addition, two groups were

performed, both for CD8+ NKs and CD8- NKs, depending on

whether the patients had a longer or shorter survival than 24

months. Significant high levels of CD8+ NK subset at baseline

were found in those patients with an OS >24 months compared with

those patients with an OS <24 months (p=0.0142); whereas there

were no changes in OS at 24 months in CD8- NKs (p=0.0974)

(Figure 3C). Finally, we also examined the prognostic role of CD8+
Frontiers in Immunology 06113
NKs by Cox-regression analysis of OS. Here, the patients with

primary refractory disease (a critical prognosis factor in DLBCL

patients) and the levels of two CD8 NK subpopulations were

explored. Uni- and multivariate analysis showed that only CD8+

NK was strongly associated with OS in an independent manner to

the primary refractory disease (p=0.012 and p=0.036, respectively)

(Figure 3D). These results indicate that the basal levels of circulating

CD8+ NKs can be used as an emerging non-invasive and

independent biomarker with prognostic and predictive potential.
Discussion

NKs are cytotoxic lymphocytes with an important antitumor

function acting as the first line of defense in tumor surveillance.

These effector cells exert natural cytotoxicity against tumor cells by

inhibiting their proliferation, migration, or colonization of distant

tissues (24, 25). Thus, understanding the role of innate immunity in

cancer, and NKs, in particular, is attracting increasing attention.

This has led to the discovery of various NK subsets with different

immune functions such as CD8+ NKs. We hypothesized that
A

B

D

C

FIGURE 2

High levels of circulating CD8+ NKs were associated with a complete response to treatment. (A) Analysis of CD8+ and CD8- NK levels according to
R/R DLBCL patients’ response to treatment. (B) Multivariate correlations between CD8+ NKs and protumor immune cells in R/R DLBCL patients with
CR. (C) Multivariate correlations between CD8+ NKs and antitumor immune cells in R/R DLBCL patients with CR. (D) Principal component analysis
represented by biplot showed the positive relations between NK CD8+ and CD4+, CD8+ and gd T cells. For all the analyses, *P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001 and ****P ≤ 0.0001. ns, not significant.
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circulating CD8+ NKs may provide a potential information

regarding disease progression in R/R DLBCL patients. To

elucidate the role of CD8+ NKs in peripheral blood in R/R

DLBCL patients, we first observed that the levels of the two

subtypes are different, with higher percentage of CD8- NKs.

Moreover, a significant decreased number of circulating CD8+

NKs as well as in CD8- NKs and total NKs was found in R/R

DLBCL patients compared to healthy donors. These observations

are in line with other studies in cancer in which a decrease in the

NK cell numbers is often reported (26, 27). However, before, during

and after treatment the levels of both CD8 NK subsets did not

change, which are in concordance with Waidhauser J. et al., who

also showed no significant changes before and after chemotherapy

in the count of NKs in solid tumors (28). Thus, no influence of

treatment on the CD8 NK subsets may be identified.
Frontiers in Immunology 07114
Then, we addressed the question whether the peripheral blood

profiles of both NK (CD8- and CD8+) populations were correlated

with clinical status. Although both subsets of NKs were clearly

altered in R/R DLBCL patients as compared to healthy controls, no

major shifts were observed in relation to tumor phenotype,

refractory disease, gender, or age of patients. However, differences

in NK subsets at baseline were related to treatment response. Those

patients with CR had significant higher basal levels of CD8+ NKs

than those patients in which the disease progressed, whereas no

differences in treatment response in CD8- NK subpopulation were

observed. In patients with DLBCL, peripheral blood NKs (CD3-

CD16+ and/or CD56+) count was associated with treatment

response (7). In this study, responders to induction treatment

(complete remission, uncertain complete remission or partial

remission) had higher levels of total NKs than non-responders
A

B

D

C

FIGURE 3

Circulating CD8+ NKs were a prognostic value for predicting the response to treatment and overall survival of R/R DLBCL patients. (A). ROC curve
analyses of both subsets of NKs at baseline for the prognosis of treatment response in R/R DLBCL patients. (B). Kaplan–Meier curves of overall
survival according to the levels of circulating CD8+ NKs and CD8- NKs in R/R DLBCL patients. (C). Levels of CD8+ NKs and CD8- NKs in patients
with OS >24 months and OS <24 months. (D). Cox-regression analysis of CD8 NK cells subpopulations and primary refractory disease in patients.
For all the analyses, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001. ns, not significant.
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(7). To the best of our knowledge, this is the first time that CD8+

NKs demonstrate its potential value as a predictive factor for

treatment response in cancer.

In addition to the relationship between CD8+ NKs and

response to treatment, we also evidenced a positive interaction

between CD8+ NK and some circulating immune cell in responder

patients, but not in those patients that progressed on treatment.

NKs play a role in antitumor immunity because of both their

cytotoxic capacity and their ability to modulate the immune

response. Indeed, through cytokines and chemokines production,

NKs impact the function of B and T cells responses, dendritic cells,

macrophages or neutrophils (29) hindering tumor cell growth,

whereas MDSCs promote tumor growth and progression (30, 31).

In fact, it has been described that circulating NKs were positively

correlated to T and B lymphocytes in cancer (27). Therefore, the

correlation with only immune cells that also hinder tumor cell

growth in patients with CR would suggest the presence of an

antitumor environment that induce a better response to treatment

in these patients.

Given that CD8 expression in NKs implies a higher cytotoxic

activity (14–16, 18, 19) and they are associated with slower disease

progression in HIV patients (17), the prognostic potential of CD8+

NK at baseline were explored. The analyses showed that CD8+ NKs

are useful as biomarkers regarding the treatment response in R/R

DLBCL patients. In addition, patients with higher levels of CD8+

NKs showed a higher survival rate than patients with low CD8+ NK

levels. Since patients in this clinical trial were treated with anti-

CD20 (rituximab), which has high affinity for Fc gamma receptors,

including FcgRIIIa (expressed on the surface of NKs), clinical

results may be explained at least in part by an enhanced

FcgRIIIa-mediated ADCC. In this context, recent data of

treatment of DLBCL patients with tafasitamab (anti-CD19) and

lenalidomide demonstrated an enhanced NK-cell–mediated

antibody ADCC by tafasitamab in vitro (32–34). We have found

that treatment with anti-CD20 and lenalidomide is very effective in

those patients with higher level of CD8+ NKs. Therefore, a possible

mechanism of treatment response may be the increased ADCC in

this subpopulation of NKs (CD8+) potentiated by lenalidomide,

what could also partially elucidate the immune effects and

me ch an i sm o f a c t i o n o f l e n a l i d om id e and o t h e r

immunomodulatory drugs (IMIDs). Nevertheless, this mechanism

remains speculative and further studies are needed to confirm this

hypothesis. Besides, new therapeutic choices in R/R DLBCL,

including NK-CART, reinforces the value and potential clinical

applicability of our results.

Finally, in the light of the multivariate analysis, the significant

correlation between OS and CD8+ NKs was independent of other

relevant clinical parameters such as primary refractory disease,

which may point to CD8+ NKs as a molecular factor with a

relevant prognostic value in DLBCL.

In conclusion, the search for immune biomarkers is critically

important for identifying patients who may be more likely to benefit

from cancer therapies. Nevertheless, the discovery of new

biomarkers poses challenges, as integrating new biomarkers into

clinical practice effectively and accurately in daily practice is a

challenge. In line with this, we previously found in this clinical trial
Frontiers in Immunology 08115
that circulating MDSCs along the course of antineoplastic treatment

are a promising biomarker in the clinical management of these

patients (2, 21), although these immune cells could not predict

survival or clinical benefit measured before treatment. Here instead

we have demonstrated that the number of circulating CD8+ NKs at

baseline is a favorable predictor of survival outcomes and complete

response to treatment in patients with R/R DLBCL. Therefore, it

could be used as a potential non-invasive predictive and prognostic

biomarker. Moreover, our study reveals the existence of novel NK

cell subsets displaying different functions in R/R DLBCL patients.

Finally, the identification of CD8+ NKs as a unique marker in this

tumor may represent an important advance in our understanding of

lymphomas, especially DLBCL. Further studies are required to

validate this potential biomarker, and to be analyzed in other

lymphoma subtypes, due to its biological heterogeneity, and in

other cancer types.
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sequencing provides insight into
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resistance in a patient with
refractory DLBCL: a case report
Kewei Zhao †, Qiuhui Li †, Pengye Li, Tao Liu, Xinxiu Liu,
Fang Zhu and Liling Zhang*
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Technology, Wuhan, China
Relapsed and refractory diffuse large B-cell lymphoma (DLBCL) is associated with

poor prognosis. As such, a comprehensive analysis of intratumoral components,

intratumoral heterogeneity, and the immune microenvironment is essential to

elucidate the mechanisms driving the progression of DLBCL and to develop new

therapeutics. Here, we used single-cell transcriptome sequencing and

conventional bulk next-generation sequencing (NGS) to understand the

composite tumor landscape of a single patient who had experienced multiple

tumor recurrences following several chemotherapy treatments. NGS revealed

several key somatic mutations that are known to contribute to drug resistance.

Based on gene expression profiles at the single-cell level, we identified four

clusters of malignant B cells with distinct transcriptional signatures, showing high

intra-tumoral heterogeneity. Among them, heterogeneity was reflected in

activating several key pathways, human leukocyte antigen (HLA)-related

molecules’ expression, and key oncogenes, which may lead to multi-drug

resistance. In addition, FOXP3+ regulatory CD4+ T cells and exhausted

cytotoxic CD8+ T cells were identified, accounted for a significant proportion,

and showed highly immunosuppressive properties. Finally, cell communication

analysis indicated complex interactions between malignant B cells and T cells. In

conclusion, this case report demonstrates the value of single-cell RNA

sequencing for visualizing the tumor microenvironment and identifying

potential therapeutic targets in a patient with treatment-refractory DLBCL. The

combination of NGS and single-cell RNA sequencing may facilitate clinical

decision-making and drug selection in challenging DLBCL cases.
KEYWORDS

diffuse large B-cell lymphoma, single-cell RNA sequencing, treatment resistance, tumor
heterogeneity, tumor immune microenvironment
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous

malignant tumor with regard to clinical features, histological

morphology, and genetic and molecular phenotype. Although

standard first-line treatment with R-CHOP can cure DLBCL in 60%

of patients, 40% of patients remain refractory to treatment or relapse

after remission (1). The exact mechanisms driving disease relapse or

refractoriness remain largely unknown, which can present a barrier to

selecting appropriate treatment options.

Our understanding of the pathogenesis and progression of

lymphoma has expanded considerably with knowledge of genetic

alterations and dysregulation of intracellular pathways (2). By

contrast, the role of the microenvironment in B-cell lymphoma

has been underestimated. It is important to note that since B cells

are an important part of the normal functioning immune system,

the interactions between malignant cells and immune cells in the

tumor microenvironment of B-cell lymphomas are more complex

than in other solid tumors (3). The lymphoma microenvironment

(LME) is a complicated interaction network of tumor, immune, and

stromal cells with intra- and inter-tumor heterogeneity. Moreover,

cytokines and chemokines secreted throughout the LME transmit

various tumor-promoting and tumor-suppressing signals to

regulate tumor growth and evolution, thereby affecting tumor

progression and response to immunotherapy (3, 4). As a result,

the LME is increasingly becoming a focus of attention in B-cell

lymphoma pathophysiology and treatment resistance research.

Single-cell RNA sequencing enables comprehensive

characterization of the cellular compositions and transcriptional

features of malignant cells and infiltrating immune cells in many

types of cancer (5). In order to explore the heterogeneity of DLBCL,

decode the components of DLBCL tumor microenvironment and

intratumor crosstalk of distinct cells, we conducted single-cell

transcriptomic analysis of a patient who was resistant to multi-

course chemotherapy, hoping to find some evidence related to

tumor malignant progression and drug resistance.
2 Case presentation

A 71-year-old female patient presented with a painless and

growing right supraclavicular mass in December 2020. The patient

underwent ultrasound-guided puncture biopsy at Union Hospital,

Tongji Medical College, Huazhong University of Science and

Technology on February 1, 2021, and postoperative pathology

showed the following: CD5-positive diffuse large B-cell lymphoma

of germinal center B cell (GCB) origin with dual immune-

expression of BCL2 and C-MYC. Immunohistochemical staining

identified the following proteins in tumor cells: CD20 (+), CD3 (-),

CD19 (+), CD22 (+), CD5 (+), CD10 (+), BCL6 (+), MUM1(+),

BCL2 (+), C-MYC (60+), P53 (60%+), Ki67 (LI:90%) and EBER

ISH (-). Fluorescence in situ hybridization (FISH) showed a

negative C-MYC/IgH gene fusion test. Further PET/CT imaging
Frontiers in Immunology 02119
was performed that showed the following: huge soft tissue masses in

the right superior/inferior clavicle region, chest wall muscle space,

right armpit, involving the right pectoralis major and pectoralis

minor, multiple enlarged lymph nodes in the right neck, right

armpit, left thoracic wall muscle space, left side of the erectus

spinalis, mediastinum 2R region, right side of the sternum, and left

medial psoas major, with partial fusion and abnormal increased

metabolism. The spleen was enlarged and localized metabolism was

increased. We also identified a soft tissue mass in the left iliac

socket, involving the left iliopsoas muscle, piriformis muscle, and

obturator internus muscle, with an abnormal increase in

metabolism. These lesions were considered malignant lymphoma

infiltration. There were no obvious abnormalities in bone marrow

cytology and immunotyping. The patient was eventually diagnosed

with CD5-positive DLBCL, GCB, stage IV, IPI score 4, with BCL2

and C-MYC dual expression.

Subsequently, the patient received four cycles of R-CHOP

starting in February 2021, and a partial response (PR) was

evaluated after two cycles of chemotherapy. After four cycles of

chemotherapy, the patient developed a new mass in the right chest

wall, and PET-CT indicated a progression of disease (PD). On June

23, 2021, the patient received combined rituximab, lenalidomide

and zanubrutinib for 1 cycle. However, the mass in the patient’s

chest wall continued to increase in size. On August 4, 2021, the

patient underwent a second ultrasound-guided puncture biopsy of a

recurrent right chest wall mass. The specimens were sequenced by

bulk next-generation sequencing and single-cell transcriptome

sequencing. The patient was then enrolled in the ATG 010

clinical trial in August, 2021 (protocol No: Atg-010-DLBCL -001).

Unfortunately, after 2 cycles of ATG-010 drug therapy, the patient

still had PD in October 2021. The patient received palliative

radiotherapy for the right chest wall tumor starting in November

2021. After radiotherapy with dose of 36Gy/18F, the mass of chest

wall significantly reduced in size. However, the patient discontinued

treatment due to severe bone marrow suppression caused by

radiotherapy and previous chemotherapy and died in May 2022.
2.1 Next-generation sequencing revealed
tumor-specific mutations

To better understand the mutational landscape of the patient’s

tumors, potential next‐generation sequencing (NGS) was

performed on biopsy tumor tissue and blood samples. The most

important findings were: TP53 gene copy number deletion (copy

number: 0.8) and missense mutation of p.D281G exon 8

(abundance: 51.3%). Other abnormalities included a nonsense

mutation of CD83 gene p.W49* exon 2 (c.147G>A, abundance:

43%), CDKN2A and CDKN2B gene copy number deletion (copy

number: 0.4), a shear mutation in intron 8 of the FAS gene (c.676 +

1G>A, abundance: 34.3%), missense mutation of p.C479G exon 13

in LYN gene (c.1435T>G, abundance: 30.0%), and missense

mutation of p.P84L exon 2 in PRDM1 gene (c.251C>T,

abundance: 50.2%).
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2.2 Single-cell transcriptomic analysis

2.2.1 Identification of the five major cell types
of DLBCL

After data quality control and filtering, a total of 9044 cells

were analyzed. After dimensionality reduction and clustering,

twelve major cell subpopulations were obtained using graph-

based clustering (Figure 1). Five major cell types were identified

using canonical marker genes: B cells (marker genes: CD19,

MS4A1 and CD79A), T cells (marker genes: CD3D, CD3E,

CD2), NK cells (marker genes: GNLY and NCAM1), myeloid

cells (marker genes: LYZ and CD14), and fibroblasts (marker
Frontiers in Immunology 03120
genes: COL1A1). Notably, B cells and T cells are the major cell

subsets of DLBCL.

2.2.2 Identification of malignant B cells
To investigate the transcriptomic heterogeneity of malignant B

cells in DLBCL tissues, we re-clustered the B cells and identified four

cell subpopulations (Figure 2A). To further distinguish malignant B

cells from non-malignant B cells, we took advantage of the fact that

the malignant B cell population expresses only one type of

immunoglobulin light chain, i.e. k or l light chains (6). The IGKC

fraction (IGKC/IGKC + IGLC2) method was used to distinguish

malignant B cells (7). Figure 2A shows the IGKC fraction of the four
A

B

D

C

FIGURE 1

Case presentation and general overview of single cell transcriptome sequencing results in a refractory DLBCL sample (A) The treatment process of a
78-year-old woman and the representative CT images at the time of diagnosis (2021.02) and at two points of disease progression (2021.06 and
2021.08) (B) Uniform Manifold Approximation and Projection (UMAP) representation of twelve clusters and five identified cell types. (C) Heatmap of
the relative expression level of marker genes across cells, sorted by cell type. Marker genes included CD19, CD79A and MS4A1 for B cells, CD2,
CD3D and CD3E for T cells, GNLY and NCAM1 for NK cells, CD14 and LYZ for Myeloid cells, COL1A1 for fibroblasts. The expression was measured as
the z-score normalized log2 (count+1). (D) Expression levels of typical marker genes across 9044 cells illustrated as UMAP plots.
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B cell clusters 1, 2, 3, 8. It can be seen that the IGKC fraction of almost

all B cells in these four clusters was lower than 0.25, indicating that

they were B cells with uniform expression of l+. Therefore, all four
clusters of B cells were judged to be malignant B cells.

2.2.3 Comparison of malignant and Normal B
cells by expression profiling

No benign B cells were found in the DLBCL sample. We next

compared malignant B cells from this patient with benign non-

malignant B cells from a study by Roider et al. (three tonsil and

reactive lymph node samples as control samples, named rLN1, rLN2
Frontiers in Immunology 04121
and rLN3, respectively (7). Differentially expressed genes (DEG) and

gene set enrichment analysis (GSEA) were analyzed. Reunion and

integration analyses were also performed. The Uniform Manifold

Approximation and Projection (UMAP) showed that all B cells of the

four samples were clustered into three clusters (0, 1, 2), and one

malignant cluster (cluster 1) identified by the IGKC scoring method

was well distinguished from the other two non-malignant clusters

(cluster 0, 2) (Figure 2B).

DEG analysis revealed molecular disparity among malignant

and non-malignant B cells. We constructed a heat map showing

that the top 10 genes expressed in malignant B cells were related to
A

B

D E

C

FIGURE 2

Malignant identification of B cells extracted from the refractory DLBCL patient’s tissue and integration analysis of benign B cells from external data
(A) UMAP plot of 4361 B cells from the refractory DLBCL tissue, showing the formation of the 4 main clusters. The IGKC fraction, IGKC ÷ (IGKC +
IGLC2), was calculated for each B cell. If the IGKC fraction was >0.5, we classified a B cell as k+, and if this ratio was below 0.5, we classified the
B cell as l+. The percentage of B cells expressing either k or l was calculated per ranscriptionally distinct B-cell cluster. The non-malignant healthy
B-cell cluster contained approximately 50% k- and 50% l-expressing B cells, whereas the malignant clusters contained B cells homogeneously
expressing the l or k light chain. All the four B cell clusers (cluster 1, 2, 3 and 8) identified in this refractory DLBCL sample expressed the l light chain
homogeneously and were therefore identified as malignant B cells. (B) After integrating the scRNA-Seq data from the study of Roider et al., three
clusters were identified after re-clustering. Cluster 0,1 from external single-cell data was identified as benign B cell population, Cluster 1 from our
refractory DLBCL sample was identified as malignant. (C) Heat map showing the top 10 differential expressed genes in the malignant B cell
subpopulation and non-malignant B cell subpopulations (Wilcoxon test). (D) Several significant pathways had higher or lower activities in malignant
B cell subpopulation than non-malignant B cell subpopulations by Gene Set Enrichment Analysis (GSEA). (E) Bubble map of significant pathways
enriched in the malignant B cells subpopulation by GSEA.
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ATP synthesis (ATP5F1E, ATP5MG, and ATP5MC2) and

transcription regulation (ATF5, EEF1G, and ELOB), as well as

LNCRNA (GAS5 and SNHG5) and ribosomal protein (RACK1)

(Figure 2C). Notably, three of the ten genes that were significantly

overexpressed were associated with ATP synthesis, which may be

due to malignant B cells’ adjustment in response to metabolic stress

in the DLBCL microenvironment. GSEA revealed that genes

upregulated in malignant B cells were enriched in oxidative

phosphorylation pathways and cancer-related pathways (MYC

targets V1, MYC targets V2, G2/M checkpoint, E2F targets). In

addition, HLA-DQB1 and HLA-DRB5, which are both MHC class

II molecules, were significantly downregulated in malignant B cells

suggesting immune escape in DLBCL. Furthermore, GSEA analysis

showed that antigen processing and presentation enrichment were

significantly downregulated in malignant B cells compared with

normal B cells (Figures 2D, E). Taken together, these results indicate

high levels of oxidative phosphorylation, activation of pro-tumor

pathways such as MYC and E2F, and decreased immunogenicity

caused by low expression of MHC molecules, which may be a key

factor in initiating or accelerating oncogenic signaling in malignant

B-cell carcinoma.

2.2.4 Inter-transcriptomic heterogeneity of
malignant B cells in DLBCL

Using scRNA-seq, we identified two large malignant B cell

subpopulations (including cluster1_3 and cluster2_8), showing high

heterogeneity. The significantly differentially expressed genes in

the cluster1_3 and cluster2_8 subpopulations were identified
Frontiers in Immunology 05122
(avg_log2FC>=0.5 & p_val_adj <= 0.01) and the Volcano Plot was

mapped (Figure 3A). Further GSEA analysis showed that hallmarks

of TNFA signaling via NFKB, IL2/STAT5 signaling, IL6/JAK/STAT3

signaling, inflammatory response signaling, and interferon-gamma

signaling were highly enriched in cluster2_8 compared with

cluster1_3 (Figure 3B). In addition, we compared the expression

levels of different pathogenic signaling pathways in B-cell lymphoma

in two subpopulations and the results showed that expression of BCR

signaling, CD40 signaling, and NFKB signaling was generally higher

in cluster2_8 vs. cluster1_3. In addition, cluster1_3 showed low

expression of HLA I and II molecules, which may be beneficial for

evasion of immune surveillance (Figure 3C).

Double-expression lymphoma (DEL) refers to DLBCL with

immunohistochemical evidence of the co-expression of MYC and

BCL2. In addition to cell-of-origin (COO), microenvironment

transcription markers, and some genetic drive markers, MYC and

BCL2 double expression have also been used to classify DLBCL and

predict prognosis (8, 9). The patient in this case was identified

as having dual expression of MYC and BCL2 proteins by

immunohistochemistry. Therefore, we analyzed MYC and BCL2

gene expression in B cell clusters and found that the expression of

both two genes was significantly higher in cluster2_8 than in

cluster1_3 (Figure 3D). Therefore, in the subsequent analysis, we

named cluster2_8 as MYC+BCL2+ B cells, which were identified as

MYC/BCL2 double expression subpopulations at the single-cell

level, and cluster 1_3 as MYC-BCL2- B cells. In addition, the

expression of CD274 and CD47, two immunosuppressive

immune checkpoints, were higher in cluster2_8 than in cluster1_3
A B

D E

C

FIGURE 3

Heterogeneity analysis among two malignant B cell subpopulations (cluster2_8 vs cluster1_3) (A) The volcano map shows the differentially expressed
genes between cluster2_8 and cluster1_3. (B) Several significant pathways with higher activities in cluster2_8 than cluster1_3 by GSEA. (C) Heatmap
of the relative expression fold change (log2) of genes in essential pathogenic signaling pathways and HLA molecules in cluster2_8 and cluster1_3.
(D) UMAP plots of selected genes (MYC, BCL2) expression level of different subsets of B cells. (E) UMAP plots of two immune checkpoint related
genes (CD274, CD47) expression.
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(Figure 3E). Overall, our results reveal a high degree of inter-tumor

heterogeneity in DLBCL.

2.2.5 Identification of immunosuppressive
T-cell subsets

Tumor-infiltrating immune cells, especially T lymphocytes in

the LME, are highly heterogeneous and play a crucial role in tumor

immune evasion and immunotherapeutic efficacy. To study the

intrinsic transcriptome characteristics of infiltrating T cells in

DLBCL, particularly those with immunosuppressive properties,

we re-clustered T cells and identified 10 CD4+ or CD8+ T cell

subsets (Figures 4A, B). Increasing evidence has shown that a large

number of regulatory T cells (Tregs) exist in tumor tissues, which

are the main regulators of autoimmune tolerance. They inhibit anti-

tumor immune responses by inhibiting cytokine production and

inhibiting the proliferation of CD8+ T cells, which may lead to

ineffective anti-tumor responses and the proliferation of cancer cells

(10, 11). FOXP3+ Tregs have been reported to be associated with

adverse outcomes in DLBCL (12, 13). In accordance with

established markers (CD4+, IL2RA+, FOXP3+), the C2 cluster
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was identified as CD4+ Tregs (Figures 4B, D), which makes up a

large percentage of CD4+ T cells. In addition, based on increased

expression of exhausted markers (LAG3, PDCD1, TIGIT,

HAVCR2, CTLA4, and TOX), we identified two typical exhausted

CD8+ T cell clusters (C3 and C6, Figures 4B, C). Tregs cells and

CD8+ exhausted T cells were significantly enriched in this relapsed/

refractory patient, highlighting the microenvironment’s

immunosuppressive nature. This finding suggests that this patient

may benefit from immune checkpoint blockade therapies.

2.2.6 Cellular communication in diffuse large
B-cell lymphoma

In order to explore the internal crosstalk between malignant B

cells and T cells, a ligand–receptor analysis was conducted. We

analyzed the interactions between both MYC+BCL2+ B cells and

MYC-BCL2- B cells with T cells, and found that MYC+BCL2+ B

cells maintain the most frequent interactions with T cells

(Figure 4E). TNF-TNFR2 and TNF-ICOS interactions were more

enriched between MYC+BCL2+ B cells and T cells, suggesting that

MYC+BCL2+ B cells may contribute to the maintenance of the
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FIGURE 4

Subclustering analysis of T cells. (A) UMAP plots of expression of marker genes (CD2, CD3D and CD3E) in identified T cell clusters. (B) Identification
and annotation of T cell subsets. Cells were colored according to their cluster or type. (C) UMAP plots plot showing the CD8 positive T cells clusters
and exhausted-related signature genes (LAG3, PDCD1, TIGIT, HAVCR2, CTLA4, and TOX) expression in CD8 positive T cells clusters. (D) UMAP plots
plot showing the expression of marker genes (CD4, IL2RA, FOXP3) in CD4 Treg cells. (E) Dot plot of predicted ligand-receptor interactions between
different cell subsets in the microenvironments.
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tumor-friendly immune microenvironment. This is because TNF-

TNFR2 and TNF-ICOS signals have been shown to recruit

immunosuppressant immune cells (14–16). Similarly, MYC

+BCL2+ B cells may inhibit T-cell proliferation via interactions

with SPP1-CD44 (17). In addition, MYC+BCL2+ malignant B cells

may induce an immunosuppressive microenvironment via

SIRPG_CD47 (18), INAMPT_A2RA2A (19), and CTLA-4_CD80

(20) interactions. This suggests that an immunosuppressive

microenvironment may be more likely in DLBCL overexpression

of MYC and BCL2 than in DCBCL with negative or low expression

of MYC and BCL2.
3 Discussion

In this study, we combined conventional bulk sequencing and

single-cell sequencing with a high-resolution perspective to analyze

DLBCL cells from a patient resistant to multi-course therapy. The

results revealed that the causes of drug resistance were not only somatic

mutations identified by bulk sequencing, but also heterogeneity among

malignant cells and an immunosuppressive microenvironment.

TP53 is an important tumor suppressor gene (21). However,

mutation of the TP53 gene leads to abnormal production of the p53

protein, which results in disordered proliferation of tumor cells and

the emergence of drug resistance (21). TP53 mutations have been

identified as a poor prognostic factor in DLBCL, and such patients

do not respond well to standard first-line therapies (22, 23). TP53

mutation occurs in 20–25% of patients with DLBCL and is one of

the most commonly mutated genes in this patient population (24).

In this case, the patient was identified by NGS sequencing as having

copy number deletion and a missense mutation (exon 8) in the

TP53 gene, which may be a significant cause of drug resistance.

In addition to conventional NGS sequencing, we carried out

single-cell sequencing, which can offer a high-resolution perspective

to investigate intra-tumor heterogeneity and the tumor

microenvironment. We identified malignant cell subpopulations

with distinct transcriptional characteristics. First, we found that

oxidative phosphorylation is significantly enriched in malignant B

cells compared with normal B cells, suggesting that oxidative

phosphorylation may be an essential factor in carcinogenesis.

This is consistent with a previous study on DLBCL, which

showed that DLBCL metabolism is heavily dependent on

oxidative phosphorylation (OXPHOS) (25). This metabolic

change can be beneficial in providing the energy needs of rapidly

growing, high-grade lymphoma cells, and OXPHOS inhibition

therapy appears to be effective in these tumor subtypes (26). In

addition, hallmark pathways in malignant B cells were mainly

enriched in the MYC TARGETS and E2F TARGETS, suggesting

that MYC and E2F play essential roles in promoting the

proliferation of DLBCL tumor cells.

Tumor heterogeneity is an important characteristic in tumor

occurrence and development, especially in DLBCL, and an

important factor in multi-drug resistance. We identified four

malignant B cell clusters with different transcriptional

information using scRNA-seq, suggesting a high degree of inter-

tumor heterogeneity. Since clusters 1 and 3 and clusters 2 and 8
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have transcriptional similarities, they were analyzed together. The

continuous abnormal activation of the B cell receptor (BCR)

signaling pathway is believed to be closely related to patient

survival and the malignant proliferation of tumors. The inhibition

of essential kinases in the BCR signaling pathway has become the

main focus of drug development for B-cell lymphoma (27).

Abnormal activation of the NF-kB pathway can upregulate the

expression of multiple anti-apoptotic genes, including Bcl-2,

TRAFs, and IAPs, which contribute to the continuous malignant

proliferation of cells and the occurrence of cancer. Abnormal

activation of the NF-kB signaling pathway has been previously

demonstrated in DLBCL (27). Activation of CD40 signaling can

enhance the survival of tumor B cells; therefore, targeting CD40

with a monoclonal antibody could inhibit this process (28). Our

single-cell transcriptome data showed that the corresponding

molecule expression of BCR signaling, CD40 signaling, and NF-

kB signaling in cluster2_8 was generally higher than cluster1_3,

suggesting that these pathways were more active in cluster2_8.

Monoclonal antibodies or specific medications that target these

pathways have emerged as potential anti-cancer therapies, such as

BTK inhibitors and CD40 monoclonal antibodies. However, due to

intra-tumoral heterogeneity, these drugs may not kill all tumor cells,

leading to drug resistance and potentially relapse.

Loss of MHC expression on cancer cells represents one of the

tumor immune evasion mechanisms and is usually associated with

poor prognosis (29). Here, we showed that the MYC+BCL2+ B cells

expressed higher levels of MHC class I and II genes than MYC-BCL2-

B cells, suggesting weak immunogenicity of MYC-BCL2- B cells and

thus inducing immune escape. Although MYC+BCL2+ malignant B

cells show higher MHC expression, which increases immune system

recognition and makes them more likely to induce “hot tumors”

compared to MYC-BCL2- malignant B cells, some subsets of MYC

+BCL2+ malignant B cells can actually create an immunosuppressive

microenvironment. In our analysis, GSEA analysis showed that

several inflammations and immune-related signaling pathways

including IL2_STAT5_signaling, IL6_JAK_STAT3_signaling,

inflammatory_response, interferon_gamma_response, and

TNFA_signaling_via_NFKB were specifically enriched in cluster 2_8.

Inflammatory responses play a pivotal role during tumor development,

invasion, and metastasis (30). Consistent with our results, it was

reported that tumor cells and stromal cells in DLBCL can promote

inflammation and immunosuppression through IL6_JAK_STAT3 and

NF-kB signaling and induce immune system evasion (31). We

found that MYC+BCL2+ B cells can cause an inflammatory

microenvironment with immunosuppressive characteristics through

some immune inflammatory signaling pathways. This is consistent

with the conclusion of recent studies, which showed that lymphoma

cells with obvious proliferative characteristics have the potential to

induce a ‘depleted’ microenvironment (32–34). The patient in this

case was not only confirmed as a double-expressed patient by

immunohistochemistry, but at the cellular level, we also identified a

malignant B subgroup of “MYC+ BCL2+”, indicating high

proliferation of B cells in the patient’s tumor.

Cell–cell interaction analysis also revealed that MYC+BCL2+ B

cells seem to have more communications with T cells and may

contribute to the maintenance of a tumor-friendly immune
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microenvironment through TNF-TNFR2, TNF-ICOS, SPP1-CD44,

SIRPG_CD47, INAMPT_A2RA2A and CTLA-4_CD80 interaction

(14–20). Exhausted CD8+ T cells and Tregs play an important role

in the immunosuppressive microenvironment (10–13). Our analysis

identified a high proportion of exhausted CD8+ T cells and FOXP3+

Tregs, which may indicate an immunosuppressive microenvironment

induced by MYC+BCL2+ B cells interacting with T cells.

This conclusion is consistent with two previous reports of

immunosuppressive tumor microenvironments in DLBCL (35, 36).

Immunotherapy, especially immune checkpoint inhibitors (ICIs), has

made remarkable progress in the treatment of tumors. Depleted T cells

express immunosuppressive receptors (such as LAG3, PDCD1, TIGIT,

HAVCR2, CTLA4), and ICIs can block these signals, reverse depleted

T cells, and restore the function of tumor-infiltrating T cells in the

tumor microenvironment (37). Depending on the patient’s deep

sequencing results, an immune checkpoint inhibitor, such as anti-

PD-1 antibodies, alone or in combination with chemotherapy (if the

blood hemogram permits) can then be tried.

In conclusion, by combining NGS and single-cell transcriptome

sequencing technology, this study provides insight into somatic

mutations, transcriptional features in malignant B cells, and the

immune microenvironment landscape in a patient with muti-drug

resistant DLBCL. The results revealed that several critical somatic

mutations, highly heterogeneous tumor cells, and immunosuppressive

tumor microenvironment jointly contribute to multi-drug resistance.

This in-depth biological exploration can provide therapeutic targets

and immunotherapy biomarkers for relapsed and refractory

DLBCL patients.
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Performance of MYC, BCL2, and
BCL6 break-apart FISH in small
biopsies with large B-cell
lymphoma: a retrospective
Cytopathology
Hematopathology
Interinstitutional
Consortium study
Joshua R. Menke1*, Umut Aypar2, Charles D. Bangs3,
Stephen L. Cook4, Srishti Gupta1,5, Robert P. Hasserjian6,
Christina S. Kong7, Oscar Lin8, Steven R. Long9, Amy Ly10,
Jacob A. S. Menke11, Yasodha Natkunam1,
Roberto Ruiz-Cordero8,12, Elizabeth Spiteri3, Julia Ye9,
Sara L. Zadeh13 and Dita A. Gratzinger1* on behalf of the
Cytopathology Hematopathology Interinstitutional
Consortium (CHIC)
1Division of Hematopathology, Department of Pathology, Stanford University, Stanford, CA, United
States, 2Division of Cytogenetics, Department of Pathology and Laboratory Medicine, Memorial Sloan
Kettering Cancer Center, New York, NY, United States, 3Division of Cytogenetics, Department of
Pathology, Stanford University, Stanford, CA, United States, 4Department of Laboratory Medicine, San
Francisco Veterans Administration Health Care System, San Francisco, CA, United States, 5Division of
Hematopathology, Department of Laboratory Medicine, San Francisco, CA, United States, 6Division of
Hematopathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, United
States, 7Division of Cytopathology, Department of Pathology, Stanford University, Stanford, CA, United
States, 8Division of Cytopathology, Department of Pathology and Laboratory Medicine, Memorial
Sloan Kettering Cancer Center, New York, NY, United States, 9Division of Cytopathology, Department
of Pathology, University of California, San Francisco, San Francisco, CA, United States, 10Division of
Cytopathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, United States,
11Senior Backend Engineer, Big Nerd Ranch, Atlanta, GA, United States, 12Divisons of Molecular
Genetic Pathology, Cytopathology, and Hematopathology, Department of Pathology and Laboratory
Medicine, University of Miami, Miami, FL, United States, 13Division of Cytopathology, Department of
Pathology, University of Virginia, Charlottesville, VA, United States
Introduction: Fluorescence in situ hybridization (FISH) is an essential ancillary

study used to identify clinically aggressive subsets of large B-cell lymphomas that

have MYC, BCL2, or BCL6 rearrangements. Small-volume biopsies such as fine

needle aspiration biopsy (FNAB) and core needle biopsy (CNB) are increasingly

used to diagnose lymphoma and obtain material for ancillary studies such as

FISH. However, the performance of FISH in small biopsies has not been

thoroughly evaluated or compared to surgical biopsies.

Methods:We describe the results ofMYC, BCL2, and BCL6 FISH in a series of 222

biopsy specimens, including FNAB with cell blocks, CNBs, and surgical excisional
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or incisional biopsies from 208 unique patients aggregated from 6 academic

medical centers. A subset of patients had FNAB followed by a surgical biopsy

(either CNB or excisional biopsy) obtained from the same or contiguous

anatomic site as part of the same clinical workup; FISH results were compared

for these paired specimens.

Results: FISH had a low hybridization failure rate of around 1% across all

specimen types. FISH identified concurrent MYC and BCL2 rearrangements in

20 of 197 (10%) specimens and concurrentMYC and BCL6 rearrangements in 3 of

182 (1.6%) specimens. The paired FNAB and surgical biopsy specimens did not

show any discrepancies for MYC or BCL2 FISH; of the 17 patients with 34 paired

cytology and surgical specimens, only 2 of the 49 FISH probes compared (4% of

all comparisons) showed any discrepancy and both were at the BCL6 locus. One

discrepancy was due to necrosis of the CNB specimen causing a false negative

BCL6 FISH result when compared to the FNAB cell block that demonstrated a

BCL6 rearrangement.

Discussion: FISH showed a similar hybridization failure rate in all biopsy types.

Ultimately,MYC, BCL2, or BCL6 FISH showed 96% concordance when compared

across paired cytology and surgical specimens, suggesting FNAB with cell block

is equivalent to other biopsy alternatives for evaluation of DLBCL or HGBCL

FISH testing.
KEYWORDS

diffuse large B-cell lymphoma, high-grade B-cell lymphoma, double-hit lymphoma,
FISH, BCL2 rearrangement, MYC rearrangement
1 Introduction

An important subset of diffuse large B-cell lymphoma (DLBCL)

and high-grade B-cell lymphoma (HGBCL) have MYC and BCL2

rearrangements Large B-cell lymphoma or high-grade B-cell

lymphoma with MYC and BCL2 rearrangements are commonly

referred to as "double-hit" lymphoma (DHL), which portends more

aggressive clinical behavior and inferior progression-free survival

compared to other cases of diffuse large B-cell lymphoma, germinal

center B-cell subtype, or other high-grade B-cell lymphoma (1–5).

Both the 5th Edition of the World Health Organization

Classification of Haematolymphoid tumors (WHO5) (6) and the

International Consensus Classification of Lymphoid Neoplasms

(ICC) (7) now classify diffuse large B-cell lymphoma and high-

grade B-cell lymphoma with concurrent MYC and BCL6 “double-

hit” lymphomas separately due to the unclear prognostic

significance of this combination, with some studies not showing

distinct biology for these cases (1, 2), but other studies

demonstrating an association with a poor outcome (3, 8–11).

Fluorescence in situ hybridization (FISH) is a frequently used

technique to detect MYC, BCL2, and BCL6 rearrangements.

Because diffuse large B-cell lymphoma and other high-grade B-

cell lymphoma can look identical morphologically to “double-hit”
02128
lymphoma, at a minimum MYC FISH must be obtained in every

case (see Figure 1 for an example of a case that has similar

morphology to diffuse large B-cell lymphoma, NOS on various

slide stain preparations, but ended up having both MYC and BCL2

rearrangements). In one survey of cytogenetics laboratories, the

most common test strategy (67%) was upfront testing of MYC,

BCL2, and BCL6 FISH on every case while fewer labs (26%)

performed BCL2 and BCL6 FISH testing only if MYC is

rearranged (12). In the same survey study, 56% of laboratories

performed MYC break-apart probe (BAP) in combination with

IGH/MYC dual fusion probe while 43% of laboratories performed

only MYC BAP. MYC and BCL2 IHC are known to be poor

predictors of MYC rearrangements at the gene level and

polymorphisms have even been shown to create false negative

MYC IHC results (13). Data are less clear regarding MYC and

BCL6 rearrangements, but many institutions continue to test for

BCL6 rearrangements given some data indicating these cases may

have an inferior outcome (3, 8–11).

Fine needle aspiration biopsy (FNAB) is increasingly used for

triage of lymphadenopathy and diagnosis of lymphoma.

Additionally, cell blocks (CB) and smear slides from FNAB can

effectively be used for FISH in various neoplasms (14–17). However,

only a few, small single institutional studies have described FISH
frontiersin.org
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(such as MYC) in FNAB smears and cell block for lymphoma (18–

21) and no comparisons to core biopsy or the gold standard

excisional biopsy exist to our knowledge. We have two principal

aims in this multi-institutional study of FISH performance in

diffuse large B-cell lymphoma and high-grade B-cell lymphoma:

1) compare the success rate of MYC, BCL2, and BCL6 FISH

hybridization across FNAB with cell block, core biopsy, and

excisional biopsy, 2) compare FNAB to either core biopsy or

excisional biopsy for FISH from the same patient.
2 Materials and methods

Six academic medical centers participated in this study. The

medical centers were assigned data access groups in REDCap (see

section below on REDCap) and they consisted of Massachusetts

General Hospital (MGH), Memorial Sloan Kettering Cancer Center

(MSKCC), San Francisco Veterans Administration Health Care

System (SFVAHCS), Stanford, University of California San

Francisco (UCSF), and University of Virginia (UVA).

A retrospective search was conducted of the pathology

informatics systems with keywords “FISH” AND “diffuse large B-

cell lymphoma”OR “high-grade B-cell lymphoma” over the 10-year

period from 1/1/2010 to 12/31/2019. A complementary search was

performed of cytogenetics lab data for all MYC FISH studies

performed on cytology samples to catch cases missed by the

pathology data system and then identify paired surgical samples

through the pathology archive. Only specimens that hadMYC FISH

performed were included (n=222); of these cases, 200 had BCL2

FISH performed (90%) and 186 (84%) BCL6 FISH performed.

Exclusion criteria included bone marrow biopsy specimens (due

to alternative fixation used in some of these specimens and

decalcification that could cause false negatives), and body fluid
Frontiers in Oncology 03129
specimens (due to the numerous pre-analytic variables such as

fixative type that might influence FISH performance in cell blocks).

The age of the patient was recorded for each biopsy, but for

Tables 1, 2, the age of the patient was determined as the age at

the first biopsy specimen. The WHO4R classification terminology

“high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6

rearrangements” was originally used for “double hit” or “triple hit”

cases in this patient biopsy cohort with an endpoint in 2019

irrespective of whether the morphology was more in keeping with

diffuse large B-cell lymphoma or high-grade B-cell lymphoma (22).

In keeping with the WHO5 and ICC, we subsequently distinguished

MYC and BCL2 rearranged cases from MYC and BCL6 rearranged

cases. This manuscript uses the terms high-grade B-cell lymphoma-

MYC/BCL2 or high-grade B-cell lymphoma-MYC/BCL6 to

distinguish these two groups regardless of whether the

morphology was originally interpreted as diffuse large B-cell

lymphoma or high-grade B-cell lymphoma.

All data extracted from pathology reports was entered into

REDCap (Research Electronic Data Capture), a secure, encrypted

online database. Study data were collected and managed using

REDCap electronic data capture tools hosted at Stanford (23, 24).

REDCap (Research Electronic Data Capture) is a secure, web-based

software platform designed to support data capture for research

studies, providing 1) an intuitive interface for validated data

capture; 2) audit trails for tracking data manipulation and export

procedures; 3) automated export procedures for seamless data

downloads to common statistical packages; and 4) procedures for

data integration and interoperability with external sources.

At Stanford Cytogenetics Laboratory, FISH was performed on

formalin-fixed, paraffin-embedded (FFPE) sections; the area of

interest was circled on the corresponding H&E stained slide by

the ordering pathologist. ZytoLight (ZytoVision Gmbh,

Bremerhaven, Germany) break-apart probe sets were used for
B

C

D

A

FIGURE 1

(A) H&E-stained section of lymph node cell block demonstrating effacement by high-grade B-cell lymphoma with MYC and BCL2 rearrangements.
(B) MYC interphase FISH showing separation of orange and green signals indicating a MYC rearrangement (see arrows). (C) Pap-stained smear slide
showing aggregates of large atypical lymphoid cells. (D) May-Grünwald Giemsa (MGG)-stained smear slide of cytology smear slide similarly showing
large cells. In general, Pap stains and MGG stains are complementary and helpful to obtain in all lymph node FNAB: Pap-stained slides demonstrate
greater nuclear detail but make cells appear smaller and have poor cytoplasmic detail while May-Grünwald Giemsa stains show greater cytoplasmic
detail and larger cell size but poor nuclear detail.
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MYC, BCL2, and BCL6 FISH. The MYC probe set was used with

orange probe 5’ to MYC and green probe 3’ to MYC on 8q24.21.

BCL2 (18q21) probe set included 3’BCL2 in green and 5’BCL2 in

orange. The same probe configuration was used for BCL6 (3q27):

3’BCL6 is green, 5’BCL6 is orange. All FISH results were scored in

100 interphase cells. A rearrangement was reported if 10% or more

cells showed a split signal. The results of these FISH tests were

compared to existing FISH results on a different specimen when

available. Paired specimens were either obtained from the same

anatomic site or from contiguous sites e.g. neck lymph node

draining the thyroid or CNS lymphoma spreading to the eye.

At the MSKCC, FISH analyses for MYC, BCL2, and BCL6

(Abbott Molecular, Des Plaines, IL) were performed following a

standard protocol, as previously described (25). The area of interest

was usually circled on the slide, and the cytogenetics lab staff reviewed

the slide to confirm a tumor-rich area was tested in all cases. For each

probe set, 100 interphase cells were analyzed. A rearrangement was

reported if 10% or more cells showed a split signal.

At UCSF, FISH analysis was performed on formalin-fixed paraffin-

embedded (FFPE) tissue sections. The area of interest was circled by the

ordering pathologist. Abbott Vysis Dual Color Break Apart probe sets

(Des Plaines, IL) were used and FISHwas set up according to the probe

manufacturer’s instructions (https://www.molecular.abbott/int/en/

vysis-fish-knowledge-center/fish-on-isolated-nuclei-from-paraffin).

FISH signals were imaged and analyzed using MetaSystems software

(Medford, MA). For each probe set, 50 interphase cells were analyzed.

AMYC, BCL2, or BCL6 rearrangement was reported if 6.0% ormore of

cells showed split signals.

At SFVAHCS, MYC, BCL2, and BCL6 FISH were performed at

Quest Diagnostics in San Juan Capistrano, CA. Because this was an

external lab, the area to perform FISH was not specified or circled.

FISH was performed using the probes specific for 3q27 (BCL6),

8q24.1 (MYC), 14q32.3 (IGH), and 18q21.1 (BCL2) [Abbott

Molecular and SureFISH, Agilent DAKO]. The cutoff values for

BCL6 rearrangement, MYC rearrangement, and t(14;18) in the
TABLE 1 Clinical characteristics of all 208 patients included in study.

Number of patients 208

Age (mean (SD)) 63.65 (16.55)

Gender = Male (%) 123 (59.1)

Gender = Female (%) 83 (40.3)

Data Access Group (%)

MGH 25 (12.0)

MSKCC 13 (6.2)

SFVAHCS 13 (6.2)

Stanford 134 (64.4)

UCSF 21 (10.1)

UVA 2 (1.0)

History of B-cell non Hodgkin lym-
phoma? = Yes (%)

81 (39.3)

Prior large B cell lymphoma diagnosis (%) 23 (29.1)

DLBCL, NOS 22 (95.6)

Prior follicular lymphoma diagnosis (%) 52 (64.2)

Classic follicular lymphoma (grade 1–2) 42 (80.8)

Classic follicular lymphoma (grade 3A) 6 (11.5)

other or unknown 2 (3.8)

Primary cutaneous follicle center lymphoma 2 (3.8)

Prior diagnosis of low grade B cell lym-
phoma (%)

13 (16.5)

CLL/SLL 4 (30.8)

EMZL 2 (15.4)

LPL 2 (15.4)

Mantle cell lymphoma 1 (7.7)

NMZL 1 (7.7)

other or unknown 1 (7.7)

Primary cutaneous MZL 1 (7.7)

SMZL 1 (7.7)

High-grade B-cell lymphoma
diagnosis (%)

4 (5.1)

Burkitt lymphoma 1 (25.0)

High grade B-cell lymphoma, with MYC and
BCL2 rearrangements

1 (25.0)

High grade B-cell lymphoma, NOS 2 (50.0)

Prior solid organ or stem cell
transplant (%)

16 (7.7)

Stem cell transplant 9 (56.2)

Solid organ transplant 7 (43.8)

(Continued)
TABLE 1 Continued

Number of patients 208

Prior chemotherapy (%) 52 (26.0)

Reason for chemotherapy (%)

carcinoma 4 (7.7)

carcinoma and lymphoma 1 (1.9)

lymphoma 46 (88.5)

other or unknown 1 (1.9)
The classification used for all diagnoses was the WHOR4, which is equivalent to WHO5 and
ICC for these diagnoses. Abbreviations used: CLL/SLL (chronic lymphocytic leukemia/small
lymphocytic lymphoma), EMZL (extranodal marginal zone lymphoma), LPL
(lymphoplasmacytic lymphoma), NMZL (nodal marginal zone lymphoma), MZL (marginal
zone lymphoma), SMZL (splenic marginal zone lymphoma), MGH (Massachusetts General
Hospital), MSKCC (Memorial Sloan Kettering Cancer Center), SFVAHCS (San Francisco
Veterans Administration Health Care System), UCSF (University of California San
Francisco), UVA (University of Virginia).
frontiersin.org

https://www.molecular.abbott/int/en/vysis-fish-knowledge-center/fish-on-isolated-nuclei-from-paraffin
https://www.molecular.abbott/int/en/vysis-fish-knowledge-center/fish-on-isolated-nuclei-from-paraffin
https://doi.org/10.3389/fonc.2024.1408238
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Menke et al. 10.3389/fonc.2024.1408238
TABLE 2 Pathologic characteristics and FISH results of all 222 specimens compared across different biopsy types (fine needle aspiration biopsy, core
needle biopsy, and excisional biopsy) with p values.

Fine needle
aspiration biopsy

Core needle biopsy Excisional biopsy P value

Number 46 112 64

Age (mean (SD)) 64.47 (15.70) 65.00 (16.66) 60.38 (15.81) 0.178

Gender (%) 0.209

Female 19 (41.3) 42 (37.5) 31 (48.4)

Male 27 (58.7) 70 (62.5) 33 (51.6)

Data Access Group (%) <0.001

MGH 2 (4.3) 19 (17.0) 6 (9.4)

MSKCC 4 (8.7) 12 (10.7) 0 (0.0)

SFVAHCS 6 (13.0) 6 (5.4) 1 (1.6)

Stanford 20 (43.5) 66 (58.9) 54 (84.4)

UCSF 14 (30.4) 7 (6.2) 3 (4.7)

UVA 0 (0.0) 2 (1.8) 0 (0.0)

Indication (%) <0.001

Additional diagnostic tissue 1 (2.2) 15 (13.4) 27 (42.2)

Additional tissue for
ancillary studies

0 (0.0) 1 (0.9) 2 (3.1)

Clinical trial 0 (0.0) 1 (0.9) 0 (0.0)

Initial diagnosis 27 (58.7) 38 (33.9) 11 (17.2)

Other/unknown 0 (0.0) 2 (1.8) 0 (0.0)

R/o recurrence 10 (21.7) 19 (17.0) 7 (10.9)

R/o transformation 7 (15.2) 36 (32.1) 15 (23.4)

Staging 1 (2.2) 0 (0.0) 2 (3.1)

Tissue site (%) 0.832

Bone 1 (2.2) 6 (5.4) 2 (3.1)

Lymph node or related 29 (63.0) 60 (53.6) 41 (64.1)

Mediastinum 1 (2.2) 6 (5.4) 2 (3.1)

Organ 7 (15.2) 23 (20.5) 7 (10.9)

Other or unknown 1 (2.2) 2 (1.8) 2 (3.1)

Soft tissue 7 (15.2) 15 (13.4) 10 (15.6)

Final WHO diagnosis (%) 0.206

Burkitt 1 (2.2) 3 (2.7) 1 (1.6)

DLBCL 31 (67.4) 85 (75.9) 57 (89.1)

HGBCL 4 (8.7) 3 (2.7) 2 (3.1)

HGBCL-MYC/BCL2 7 (15.2) 10 (8.9) 2 (3.1)

Other/unknown 3 (6.5) 8 (7.1) 0 (0.0)

PMLBCL 0 (0.0) 2 (1.8) 1 (1.6)

TCHRLBCL 0 (0.0) 1 (0.9) 1 (1.6)

MYC FISH (%) 0.527

(Continued)
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paraffin-embedded tumor tissue are 11%, 15%, and 3%. For each

probe set, 100 cells were analyzed.

At MGH, FISH was performed on 5-micron sections of FFPE

tissue; an H&E section was reviewed to select regions for hybridization

that contained a majority of tumor cells. Break-apart probes (MYC:

Vysis LSIMYCDual Color, Break Apart Rearrangement Probe; BCL2:

Leica Kreatech BCL2 Proximal Green [18Q001B495] and BCL2 Distal

Red [18Q002B550) probes]; BCL6: Leica Kreatech BCL6 Proximal

Green [03Q008B495] and BCL6 Distal Red [03Q007B550] probes)

were hybridized and used to calculate the number of cells out of 50

scored containing a rearrangement. A rearrangement was reported if

more than 15% of cells showed split signals.
3 Results

A total of 222 specimens from 208 unique patients were identified

with a large/high-grade B-cell lymphoma diagnosis and performance

of eitherMYC, BCL2, or BCL6 FISH. The clinical characteristics of all

patients are described in Table 1. The pathologic characteristics of all

specimens are compared across different specimen types and

corresponding p values in Table 2. The final large B-cell lymphoma

diagnosis was established after FISH resulted e.g. high-grade B-cell

lymphoma with MYC and BCL2 rearrangements or Burkitt
Frontiers in Oncology 06132
lymphoma; the breakdown of different diagnoses can be seen under

the header “Final WHO Diagnosis” in Table 2. A breakdown of the

diagnoses in our cohort is shown in Figure 2.

The breakdown of biopsy specimens by data access group

(assigned to academic medical centers as previously described),

specimen type collected, and specimen type that had FISH

performed is shown by a Sankey diagram in Figure 3. Despite the

diversity and complexity of some specimen types, for instance,

FNAB with cell block and core biopsy with varying degrees of

imaging guidance, only three specimen types ultimately had FISH

performed: cell block from FNAB, core biopsy, and surgical

excisional or incisional biopsy. Most specimens with both a cell

block from FNAB and core biopsy had FISH performed on the core

biopsy with one specimen having FISH performed on the cell block.

Most specimens undergoing FISH were lymph nodes (n=129),

followed by non-nodal sites such as solid organs (n=37) or soft

tissue (n=32), among others (see Table 2). Of the lymph nodes,

most were cervical (n=37), retroperitoneal (n=21), inguinal (n=18),

or axillary (n=15). All the indications for biopsy are shown in

Table 2; the four most common indications were initial diagnosis

(n=76), obtaining additional diagnostic tissue (n=43), evaluating for

recurrence (n=36), and ruling out transformation (n=58).

FISH detected a MYC rearrangement in 39 of 217 specimens

successfully tested (18%), no rearrangement in 174 specimens, 4
TABLE 2 Continued

Fine needle
aspiration biopsy

Core needle biopsy Excisional biopsy P value

negative 33 (71.7) 86 (76.8) 55 (85.9)

not done 0 (0.0) 0 (0.0) 1 (1.6)

positive 11 (23.9) 21 (18.8) 7 (10.9)

unsuccessful 1 (2.2) 3 (2.7) 0 (0.0)

variant 3’ signal loss 1 (2.2) 1 (0.9) 1 (1.6)

variant extra 5’ signaling 0 (0.0) 1 (0.9) 0 (0.0)

BCL2 FISH (%) 0.274

extra BCL2 signal on add(3) 0 (0.0) 0 (0.0) 1 (1.6)

negative 28 (60.9) 60 (53.6) 41 (64.1)

not done 6 (13.0) 14 (12.5) 2 (3.1)

positive 12 (26.1) 36 (32.1) 20 (31.2)

unsuccessful 0 (0.0) 2 (1.8) 0 (0.0)

BCL6 FISH (%) 0.718

negative 31 (67.4) 70 (63.1) 40 (62.5)

not done 7 (15.2) 20 (18.0) 9 (14.1)

positive 8 (17.4) 18 (16.2) 13 (20.3)

unsuccessful 0 (0.0) 2 (1.8) 0 (0.0)

variant 5’ signal loss 0 (0.0) 1 (0.9) 2 (3.2)
CNB (core needle biopsy), DLBCL (diffuse large B-cell lymphoma), EB (excisional biopsy), FNAB (fine needle aspiration biopsy), HGBCL (high-grade B-cell lymphoma, NOS), HGBCL-MYC/
BCL2 (high-grade B-cell lymphoma with MYC and BCL2 rearrangements), PMLBCL (primary mediastinal large B-cell lymphoma), TCHRLBCL (T-cell, histiocytic-rich large B-cell lymphoma),
MGH (Massachusetts General Hospital), MSKCC (Memorial Sloan Kettering Cancer Center), SFVAHCS (San Francisco Veterans Administration Health Care System), UCSF (University of
California San Francisco, UVA (University of Virginia).
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variantMYC FISH results (three with 3’signal loss and one with extra 5’

signaling), and 4 unsuccessful hybridizations (Figure 4). One specimen

was not evaluated forMYC FISH but was evaluated for BCL2 and BCL6

FISH; this specimen was included in this study because the patient had

a prior biopsy in this cohort that was evaluated for a MYC

rearrangement, and the additional biopsy was to obtain more tissue

for ancillary testing. FISH detected BCL2 rearrangements in 68 of 198
Frontiers in Oncology 07133
specimens successfully tested (34%), did not show a rearrangement in

129 specimens, 1 extra signal BCL2 FISH result on an add(3), 2

unsuccessful hybridizations and 22 specimens without any BCL2 FISH

performed (Figure 5). BCL2 rearrangements were detected in 20 of 37

MYC rearranged cases (54%), and these “double-hit” lymphomas are

described in the next paragraph. FISH detected BCL6 rearrangements

in 39 of 183 specimens successfully tested (21%), did not show a
FIGURE 2

Diagnosis of all large B-cell lymphoma specimens with MYC, BCL2, and/or BCL6 FISH performed. The diagnosis was retrieved retrospectively with
FISH results already incorporated. Most cases were diffuse large B-cell lymphoma (DLBCL) (n=173). High-grade B-cell lymphoma with MYC and
BCL2 rearrangements (HGBCL-MYC/BCL2) (n=19) and high-grade B-cell lymphoma, NOS (HGBCL) (n=9) were smaller subsets. Burkitt lymphoma
(n=5), primary mediastinal large B-cell lymphoma (PMLBCL; n=3) and T-cell, histiocyte-rich large B-cell lymphoma (TCHRLBCL; n=2) were rare in
this cohort.
FIGURE 3

Sankey diagram of specimen type collected and specimen type undergoing FISH testing by institution (data access group). Of all the 222 specimens
that underwent FISH testing in this cohort (right column), the majority are core biopsy, followed by excisional biopsy, and cell block. The core biopsy
that have FISH performed include, of course, core biopsy only specimens but also FNAB with core biopsy and all FNA with cell block and core
biopsy. One FNA with cell block and core biopsy had FISH performed on the cell block due to decalcification of the core biopsy (bone specimen).
Abbreviations used: FNA (fine needle aspiration), CB (cell block from FNA), core biopsy (core needle biopsy), EB (excisional biopsy), MGH
(Massachusetts General Hospital), MSKCC (Memorial Sloan Kettering Cancer Center), SFVAHCS (San Francisco Veterans Administration Health Care
System), UCSF (University of California San Francisco), UVA (University of Virginia).
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rearrangement in 141 specimens, 3 specimens with variant 5’ BCL6

signal loss patterns, 2 unsuccessful hybridizations, and 36 specimens

without any BCL6 FISH performed. The hybridization failure rate was

low forMYC (4 of 221 or 1.8%), BCL2 (2 of 200 or 1.0%), and BCL6 (2

of 185 or 1.1%) probes. Of the 8 unsuccessful hybridizations, 5 (63%)

showed tissue limitations such as crush artifact, fibrosis, necrosis, and

paucicellularity. FISH results across different biopsy types are shown

in Table 2.
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ConcurrentMYC and BCL2 rearrangements were detected in 20

of the 197 specimens (10%) that had FISH successfully performed at

both MYC and BCL2 loci; for 19 of these 20 specimens, this result

established the diagnosis as high-grade B-cell lymphoma withMYC

and BCL2 rearrangements (high-grade B-cell lymphoma-MYC/

BCL2). One case was indeterminate due to the morphologic

differential diagnosis of high-grade B-cell lymphoma-MYC/BCL2

versus follicular lymphoma with MYC and BCL2 rearrangements,
FIGURE 4

MYC FISH results across specimen types. MYC FISH results from all 222 specimens are arranged per specimen type that had FISH performed. MYC
was rearranged in 18% of specimens and showed 4 “other” variant MYC FISH results, which included 3 specimens with 3’ signal loss and 1 with extra
5’ signaling. The unsuccessful or hybridization failure rate was overall low at 1.8% and similar across specimen types.
FIGURE 5

BCL2 FISH results across specimen types. BCL2 FISH results from all 222 specimens are arranged per specimen type that had FISH performed. BCL2
was rearranged in 34% of cases by FISH and showed 1 “other” variant result with 1 extra signal BCL2 FISH result on an add(3). The unsuccessful or
hybridization failure rate was low at 1.0% and similar across specimen types.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1408238
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Menke et al. 10.3389/fonc.2024.1408238
which is not regarded as equivalent to “double-hit” lymphoma

according to WHO5/ICC. Of note, 4 additional cases (4 of 197 or

2%) had variant MYC FISH results, including 3 with 3’ signal loss

and 1 with extra 5’ signaling. All four of these cases with variant

MYC FISH results also had BCL2 rearrangements, raising the

possibility of high-grade B-cell lymphoma with MYC and BCL2

rearrangements, without a definitive diagnosis. Of the “double-hit”

lymphoma cases, 7 had FISH performed on FNA cell blocks, 10 had

FISH on core biopsies, and 2 had FISH on the excisional biopsy. The

clinical indications for these biopsy specimens were as follows: 7 for

ruling out transformation, 7 for initial diagnosis, 4 for ruling out

recurrence, and 1 for additional diagnostic tissue. Of note, one of

the 19 “double-hit” lymphoma cases showed rearrangements with

all three FISH probes MYC, BCL2, and BCL6, which falls in the

same diagnostic category as cases with MYC and BCL2

rearrangements only but has been called “triple-hit” lymphoma in

the literature. Three specimens of 182 (1.6%) showed MYC and

BCL6 rearrangements, which according to the ICC, is diagnostic of

the provisional entity high-grade B-cell lymphoma with MYC and

BCL6 rearrangements. The WHO5 classification does not recognize

this provisional entity but addresses the need for additional data in

this patient group.

Of the 222 specimens with FISH performed, 16 paired cytology

and surgical specimens were identified from 8 different patients

(each patient had exactly one set of paired specimens). An

additional 9 patients with paired cytology and surgical biopsy

specimens were identified at one institution (Stanford) that had

FISH performed on only one set of the pair; completion FISH was

performed at Stanford on a research basis on the specimen missing

FISH to enlarge the paired specimen cohort. In total, 34 paired

specimens were analyzed from 17 patients (Table 3). The 17

cytology cases included 13 FNAB with cell block and 4 FNAB

with cell block and core biopsy (listed as core biopsy in Table 3,

because FISH was performed on the core biopsy). The 17 surgical

cases were 10 excisional biopsies, 6 core biopsies, and 1 small bowel

resection. Of the 102 possible FISH tests (3 different FISH loci

across 34 paired specimens), MYC, BCL2, or BCL6 FISH was

performed in 100 instances (98%). Patient 13 only had BCL2

FISH performed in both specimens and thus MYC and BCL6

FISH results were not comparable (Table 3). Out of the 49

comparisons drawn between these 98 paired FISH tests, 2

comparisons (4%) were discrepant: both showed a BCL6

rearrangement in the FNA-cell block specimen but not in the

paired excisional biopsy from patient 3 or core biopsy from

patient 10 (see Table 3). No MYC or BCL2 rearrangements were

present in any of the discrepant samples. The date of specimens was

closely matched for the discrepant pairs, including differences of 5

days and 10 days between the acquisition of the cytology specimen

and the surgical specimen. Both patients had the same lymph node

sampled by FNA and excisional biopsy or core biopsy. For patient

10, necrosis was noted in the core biopsy with the negative

BCL6 FISH.
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4 Discussion

4.1 MYC, BCL2, and BCL6 FISH
demonstrate highly successful
hybridization rates across all specimen
types with no statistically significant
difference noted between FNAB, core
biopsy, and surgical excisions. Tissue
limitations may explain the rare failures

The FISH failure rate was low for all three FISH probes: 1.8% for

MYC (4 of 220), 1.0% for BCL2 (2 of 208), and 1.1% for BCL6 (2 of

187). The hybridization rate is essentially the same across small-

volume specimens such as FNAB cell block and core biopsy and

larger-volume specimens such as an excisional biopsy with a

statistically non-significant p-value across all three specimen types

(see Table 2). Figures 4, 5 also demonstrate the breakdown of MYC

and BCL2 FISH results across various specimen types and

graphically show that hybridization failure rates are low and

similar across specimen types. The 8 FISH probe failures were

from 6 specimens (one case had failure at all three FISH probes).

These 6 specimens consisted of 5 core biopsies (all of which also had

FNABs and one of which also had a cell block) and 1 cell block from

FNAB. Five of the 6 specimens with failed FISH attempts were

noted to have tissue limitations such as crush artifact, fibrosis,

necrosis, and paucicellularity, any or all of which may partially

explain why these cases had probe hybridization failure.
4.2 High-grade B-cell lymphoma with MYC
and BCL2 rearrangements was identified
across all specimen types

MYC FISH detected a rearrangement in 18% of specimens, which

is similar to prior series (1, 8, 9, 26, 27). High-grade B-cell lymphoma

withMYC and BCL2 rearrangements comprised 9% of all large B-cell

lymphoma specimens in our cohort, typical of the 8–10% rate

reported in the literature (10, 28). Identification of this subset is

critical due to the more aggressive clinical behavior that prompts more

aggressive therapy. Figure 1 illustrates images from a case that was

called diffuse large B-cell lymphoma at diagnosis but was later refined

to HGBL-MYC/BCL2 based on FISH results; the images demonstrate

three preparations routinely made for FNAB samples of lymph nodes

in many cytopathology practices—H&E-stained section of cell block,

Pap-stained smear slide (alcohol fixed), and May-Grünwald Giemsa-

stained slide (air dried).MYC break-apart FISH was performed on the

cell block of this FNAB specimen and is depicted. Morphology and

even immunohistochemistry are poor predictors of high-grade B-cell

lymphoma-MYC/BCL2, and FISH or other comparable fusion

detection assay such as targeted or whole genome next generation

sequencing (12, 29, 30), RNA based sequencing (31), or integrated
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TABLE 3 FISH results from 17 paired FNAB or core biopsy and surgical samples are displayed.

Biopsy 2

CL6 site Biopsy type MYC BCL2 BCL6

0 Lymph nodes (Floor of mouth) EB 1 0 0

0 Left supraclavicular mass EB 0 1 0

1 Left neck node EB 0 0 0

0 Neck level 2 lymph nodes EB 0 0 0

0 Lymph node, right neck EB 0 0 0

0 Lymph node, left neck EB 0 0 0

1 Left level 5 lymph nodes EB 1 0 1

0 Lymph node, cervical EB 1 0 0

0 Brain EB 0 0 0

1 Lymph node, axillary CNB 0 0 0

0 Lymph node, inguinal CNB 0 0 0

0 Bone CNB 1 1 0

0 Chest wall CNB ND 1 ND

0 Small Bowel Resection 1 0 0

0 Iliac lymph node biopsy EB 0 0 0

0 Lymph node, left mesenteric CNB 0 1 0

0 Left abdominal mass CNB 0 0 0

ween small volume biopsy and surgical, red for discordance, and yellow for indeterminate because both specimens were not tested for
rgical case (see BCL6 FISH result for patient 3 and 10); the discrepancy for patient 10 is likely attributable to necrosis noted on the core
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Patient
Biopsy 1

site Biopsy type MYC BCL2

1 Left axillary FNA-CB 1 0

2 Lymph node, left supraclavicular FNA-CB 0 1

3 Lymph node, left neck FNA-CB 0 0

4 Lymph node, left neck level 2 FNA-CB 0 0

5 Right cervical level 2 lymph node FNA-CB 0 0

6 Left neck lymph node FNA-CB 0 0

7 Left thyroid FNA-CB 1 0

8 Lymph node, axillary FNA-CB 1 0

9 Vitreous FNA-CB 0 0

10 Lymph node, axillary FNA-CB 0 0

11 Lymph node, inguinal FNA-CB 0 0

12 Bone FNA-CB 1 1

13 Soft tissue, other or unknown FNA-CB 0 1

14 Right lower quadrant abdomen CNB 1 0

15 Pelvis CNB 0 0

16 Mesentery CNB 0 1

17 Left abdominal wall CNB 0 0

FISH results are reported qualitatively as 0 (negative), 1 (positive), or ND (not done). FISH results are colored green for concordance bet
the same probe. All cases are matched for anatomic site. Two discrepancies were noted between an FNA with cell block (FNA-CB) and su
biopsy specimen causing a false negative FISH result.
FNAB-CB (fine needle aspiration biopsy with cell block), CNB (core needle biopsy), EB (excisional biopsy).
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DNA/RNA sequencing (32) must be performed to identify this

important subset of large B-cell lymphoma (28).

Rare variant signal patterns were found with both MYC and

BCL2 FISH probes, including signal loss and gain. Our cohort

includes 3 patients with variant 3’MYC loss and 1 patient with

5’MYC poly-signaling; all the patients in our cohort with variant

MYC signaling had concurrent BCL2 rearrangements, raising the

possibility of whether these were “double-hit” lymphoma. In

general, a scarcity of literature and clinical outcomes about these

rare cases exists (33). Copy number variations of MYC and BCL2

have been previously shown to have different biology than

structural rearrangements of both genes (13). Another study of

variant MYC translocations in aggressive B-cell lymphomas found

patients with 5’MYC gain were more refractory to chemotherapy or

had an early relapse with a median event-free survival of only 6

months compared to patients with 3’MYC deletion who often

responded to chemotherapy and had an event-free survival of 24

months (34). This study suggested based on survival data and the

presence of IGH/MYC fusions or other IGK, IGL rearrangements in

a subset that 5’MYC gain likely represents an unbalanced MYC

rearrangement whereas the 3’MYC deletions were likely unrelated

to MYC rearrangement. Based on this data, our cases with 3’MYC

signal loss should be excluded from the “double-hit” lymphoma

category. This data also suggests our 5’MYC gain case could be

included in “double-hit” lymphoma, but given the overall lack of

data and consensus in the literature at this point, the 5’MYC gain

case was not included in the “double-hit” lymphoma category for

our study.

High-grade B-cell lymphoma with MYC and BCL6

rearrangements was much less common in our cohort with 3

cases out of 182 specimens rearranged at both loci (1.6%). As

previously mentioned, the significance of these cases is currently

controversial. Some studies have not shown distinct biology for

these cases (1, 2), but other studies have found an association with a

poor outcome (3, 8–11). An additional 3 specimens show variant

BCL6 rearrangements, all 5’BCL6 signal loss, but these specimens

were MYC FISH negative. Additional studies are needed to further

clarify the biology, clinical outcomes, and significance of these cases.

FISH may fail to identify a subset of diffuse large B-cell

lymphoma and high-grade B-cell lymphoma that have inferior

clinical outcomes. Gene expression profiling of germinal center B-

cell diffuse large B-cell lymphoma can identify a double hit-like

signature and inferior outcomes, but only half of these cases have

structural rearrangements that can be detected by routineMYC and

BCL2 break-apart FISH (5). Whole genome sequencing of these

cases revealed cryptic MYC and BCL2 rearrangements, copy

number gains and amplifications of MYC and MIR17HG, and

focal deletions of the PVT1 promoter (5). While other

technologies in the future may more effectively detect biologically

equivalent “double-hit” lymphoma, FISH currently remains the

current clinical gold standard for detecting “double-hit” lymphoma.
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4.3 Paired specimens demonstrate 96%
concordance with MYC, BCL2, and BCL6
FISH results across FNABs, core biopsies,
and excisional biopsies

When matched for anatomic site and tissue limitations, paired

cytology and surgical specimens in our study showed 96%

concordance for FISH results (Table 3). Two FISH discrepancies

were found and both showed the following pattern: BCL6

rearrangement was detected in the FNAB while no BCL6

rearrangement was detected in the paired surgical specimen.

Necrosis was noted in the core biopsy from patient 10, and this

core biopsy yielded a negative BCL6 result, suggesting that this may

be a false negative result. Because no MYC rearrangements were

present in any of the discrepant samples, the diagnosis would not

have changed whether a BCL6 rearrangement was or was not present.

Overall, this paired data suggests that FNAB cell block is a

reasonable alternative to core biopsy or even excisional biopsy for

diffuse large B-cell lymphoma and high-grade B-cell lymphoma FISH

testing. NoMYC or BCL2 FISH discrepancies were found in any pair

and, therefore, assessment for “double-hit” lymphoma would not

have changed. The only discrepancies between paired samples were at

the BCL6 FISH locus; one of these discrepancies ultimately was

attributed to a confounding variable described above.

A major limitation of this study is the heterogeneity of this

retrospective and multi-institutional data set, which may limit

applicability to some cytogenetic labs and pathology practice

settings. Each institution used a different FISH lab with different

probe sets and acquisition systems, different split signal thresholds

for establishing the presence of a rearrangement, different numbers

of interphase cells analyzed, and so on; these differences are

reflected in the methods section. The biopsy specimens also have

variable indications, which range from initial diagnosis to

recurrence or transformation in the post-therapy setting. The data

was collected from academic medical centers with highly specialized

proceduralists and pathologists subspecializing in cytopathology

and hematopathology, which may limit applicability to the

community practice setting.
5 Conclusions

MYC, BCL2, and BCL6 FISH have highly successful

hybridization rates that are similar across different specimen types

in this cohort, including FNAB, core biopsy, and excisional biopsy.

High-grade B-cell lymphoma with MYC and BCL2 rearrangements

was detected in 9% of all large B-cell lymphoma specimens,

including one case with rearrangements at all three loci MYC,

BCL2, and BCL6; MYC and BCL6 rearrangements were found in

1.6% of specimens. No significant difference was found across

biopsy types. Paired cytology and surgical specimens
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demonstrated 96% concordance at all three MYC, BCL2, and BCL6

FISH loci. FNAB with cell block is an equally effective alternative to

core biopsy and excisional biopsy for assessment of MYC, BCL2,

and BCL6 FISH, which is required for identification of the clinically

aggressive subset of large B-cell lymphomas that carry both MYC

and BCL2 rearrangements.
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