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Evolution of Public Cooperation in a
Risky Society with Heterogeneous
Assets
Linjie Liu and Xiaojie Chen*

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China

The phenomenon of asset heterogeneity is widespread in human society. However,

it is unclear what roles heterogeneous assets play in the evolution of cooperation of

the collective-risk society. In this paper, we thus introduce asset heterogeneity into a

threshold public goods game with collective-risk, and we divide the population into the

rich and the poor according to individual assets. We show that asset heterogeneity

hinders public cooperation no matter whether the temptation to defect is high or low.

We find that cooperation collapses in the conditions of low risk, the high gap between

the rich and the poor, and high threshold. Besides, the increment of individual assets can

significantly enhance the level of public cooperation even the conditions for the evolution

of cooperation are strongly harsh. Our work is instructive to a better understanding of

the emergence of cooperation in the risky society with heterogeneous assets.

Keywords: asset heterogeneity, collective-risk, threshold public goods game, individual assets, public cooperation

1. INTRODUCTION

The emergence and maintenance of cooperative behavior is fundamental for a society to thrive
[1–17]. However, cooperation is often threatened by selfish individuals who only concern the short-
time interests [18–20]. Not surprisingly, if all individuals’ goal is to maximize their own fitness
regardless of the consequences which might have for the whole population, then there will be a
dilemma of cooperation in our society [21–28]. One typical dilemma underlying the tragedy of
commons is described by the public goods game (PGG) [29–35]. In the PGG, an individual will
obtain a higher payoff by contributing nothing, no matter what the other players do. Therefore,
rational players have no incentive to contribute, instead they choose to free ride on the benefits
produced by others. Although the PGG illustrates that defection is the evolutionary stable strategy
and cooperators are prone to be exploited, abundant examples of altruistic behavior exist in animal
and human society [36–39].

In order to solve this inconsistency, the PGG model has been extended by adding the risk
of a collective failure to ensure the emergence of cooperative behavior [40–44]. Besides, several
mechanisms have been proposed in the past decades for supporting the emergence of public
cooperation [45–65].

However, these mentioned works assumed that all individuals have been treated as equivalent
in all respects, in sharp contrast with real-life situations, in which diversity is ubiquitous. Indeed,
our modern societies are grounded in great diversity, in which some individuals play radically
different roles depending on their social positions [66–79]. Until recently, such heterogeneity has
attracted considerable attention. For example, one research assumed that resource heterogeneity

5

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2017.00067
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2017.00067&domain=pdf&date_stamp=2018-01-04
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiaojiechen@uestc.edu.cn
https://doi.org/10.3389/fphy.2017.00067
https://www.frontiersin.org/articles/10.3389/fphy.2017.00067/full
http://loop.frontiersin.org/people/419463/overview
http://loop.frontiersin.org/people/108486/overview


Liu and Chen Asset Heterogeneity for Public Cooperation

may enable cooperators to spread and persist if the temptation
to defect is not too large [80]. Some other researches assumed
that players may participant in PGG with different wealth
distributions [70, 81, 82]. More specifically, Wang et al. [70]
showed that participants with lower initial wealth may choose
to cooperate only if all the rich are cooperators. Subsequently,
Vasconcelos et al. [82] studied the evolution of cooperation in two
different scenarios, namely, with wealth inequality and without
wealth inequality, and showed that the former leads to more
global cooperation than the latter.

Interestingly, previous researches involving wealth inequality
always consider that individuals have been provided with
dichotomic initial wealth before participating in the PGG [32,
70, 82]. Indeed in the real world, acquired wealth can only
be regarded as a part of personal assets, such as the wage
earnings. However, the implications of heterogeneous assets for
cooperation have so far remained unexplored. Since uneven
distributions of personal assets are ubiquitous, it remains unclear
how evolutionary stable levels of cooperation are influenced by
asset heterogeneity.

In this study, we thus introduce asset heterogeneity in a
threshold public goods game (TPGG) with collective risk to
investigate how cooperation evolves. Specifically, we first explore
the impact of asset heterogeneity on social cooperation in the
conditions of low and high temptation to defect, and find that
asset heterogeneity can hinder cooperation no matter whether
the temptation to defect is high or low. Then we study the
role of increased asset values in social cooperation at the same
asset heterogeneity level, and observe that the gradual increase
of assets significantly promotes the emergence of cooperative
behavior. Finally, we verify how social cooperation depends on
other important parameters, such as risk, threshold, and the
proportion of the poor.

2. MODEL AND METHOD

We consider the collective-risk dilemma game in a well-mixed
population. We divide the individuals into the poor and the rich,
where the fraction of the poor in the population is p. We assume
that each rich individual has an initial asset ar and each poor
individual has an initial asset ap( ar > ap). Each individual y
either pays a cost c as a cooperator with strategy sy = 1 or pays
nothing as a defector with strategy sy = 0. Denote the proportion
of rich cooperators, poor cooperators, rich defectors, and poor
defectors as xr , xp, yr , and yp, respectively. Then xr + yr = 1− p
and xp + yp = p. The collective target will be reached if the total
amount of individuals who choose to contribute to the common
pool reaches the threshold T. Thus each individual can gain the
benefit b, such that the payoff is py = b − csy. However, if
the collective target is not reached, all the individuals within the
group lose their investment and the assets with probability r.
Accordingly, the payoff of individual y with strategy Sy in group
having i cooperators can be written as:

py = bθ(i− T)+ b(1− r)[1− θ(i− T)]− apr[1− θ(i− T)]ϕ

− rar[1− θ(i− T)](1− ϕ)− cSy,

where θ(u) = 0 if u < 0 and θ(u) = 1 otherwise. Besides, ϕ = 1
denotes that the participant is rich, and ϕ = 0 indicates he is
poor.

We further apply a replicator system for the dynamic analysis,
based on preferentially imitating strategies of the more successful
individuals [83–86]. Unless otherwise specified, problem
formulation and modeling are presented in Supplementary
Material S1. Results are proved analytically in Supplementary
Materials S2, S3.

3. RESULTS

We begin by showing the stationary distribution and the gradient
of selection for different parameters of asset heterogeneity ap/ar
and of asset ar . As shown in Figure 1, for low ar (for example,
ar = 2), when the gap between the rich and the poor is
relatively large, there are nine fixed points but only two are stable
(Figure 1A), and the stability analysis of equilibria can be found
in Supplementary Material S3.2.2(9). We find that the basin of
attraction of the stable equilibrium indicating that most of the
poor and all the rich are cooperators, is larger than that of another
stable point denoting full defection. As ap/ar increases, the higher
location stable fixed point moves toward full cooperation and
the basin of attraction of full defection rapidly shrinks closely
to zero (see Figures 1A–C). For intermediate ar (for example,
ar = 10), we find that the tendency of individuals to choose
defection shrinks as the gap between the rich and the poor shrinks
(see Figures 1D–F). For even larger ar (for example, ar = 50),
individuals no matter whether they are the rich or the poor
do have a higher expected loss than the cost of cooperation
(Figures 1G–I). Particularly, there are very few individuals who
choose to defect when the gap between the rich and the poor is
not obvious (Figure 1I), and the specific theoretical analysis can
be seen in Supplementary Material S3.2.2(10).

Then we explore the effect of asset heterogeneity on
cooperation when the temptation to defect is high. In Figure 2,
we find that the main conclusions in Figure 1 are not changed.
Concretely, the growth of ap/ar can promote the poor to
contribute to the common pool even personal assets are
significantly low. Besides, the proportion of cooperators increases
with personal assets, regardless of whether the gap between the
rich and the poor is high or low. But, more importantly, the
inhibitory effect of asset heterogeneity on cooperative behavior
still exists.

In what follows, we present that public cooperation can be
destroyed in the conditions of high gap between the rich and
the poor and a relatively high threshold T at a low r value.
From Figure 3 we can see there is only one stable point which
represents full defection (more detailed analysis of equilibria is
presented in Supplementary Materials S2, S3.2.1(3)). Indeed, in
this case, low risk causes individuals to worry less about losing
all their assets when the target is not reached. Besides, the high
gap between the rich and the poor makes the poor reluctant to
contribute. Not only that, the rich will be also no longer willing
to cooperate if they need to complete a relatively high target.
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FIGURE 1 | (Color online) Stationary fraction of cooperators and gradient of selection for different levels of asset heterogeneity ap/ar and of assets (A–I). In each

panel, open and filled circles denote unstable and stable fixed points, respectively. The curved arrows show the so-called gradient of selection, which provides the

most likely direction of evolution. For each arrow, we use a continuous color bar associated with the likelihood of such a transition (red lines denote the highest speed

of transition while purple lines represent the lowest speed of transition). The initial assets for the rich and the poor individuals are (A) ar = 2 and ap = 0.2; (B) ar = 2

and ap = 1; (C) ar = 2 and ap = 1.8; (D) ar = 10 and ap = 1; (E) ar = 10 and ap = 5; (F) ar = 10 and ap = 9; (G) ar = 50 and ap = 5; (H) ar = 50 and ap = 25; (I)

ar = 50 and ap = 45. Other parameters values are N = 6,T = 3, r = 0.5,p = 0.7, and c/b = 0.1.

In Figure 3 we mainly study the effects of relatively high
threshold value on cooperation in the specific conditions.
However, it remains of interest to show how different
combinations of threshold and asset heterogeneity affect the
stationary distribution. As shown in Figure 4, for low value of
T (top row), we can see that the system can converge to the
state where all the rich and nearly half of the poor choose
to contribute when the gap between the rich and the poor
is large (Figure 4A), and for more details see Supplementary
Materials S2, S3.1(8). What’s more, we find that the proportion
of the poor cooperators increases with ap/ar (see Figures 4A–C).
When T takes an intermediate value (second row), the basin
of attraction of full defection state increases with increasing
T. Specially, when T is sufficiently large (third row), for
low ap/ar , there are three stable fixed points, and the newly
added one located at the top left represents that all the rich

are cooperators but the poor cooperators cannot survive (see
Figure 4G and Supplementary Material S3.2.1(9)). But this
stable equilibrium will disappear when we increase the value of
ap/ar .

Furthermore, we investigate how risk values influence the
stationary fraction of cooperators at an intermediate threshold
value, as shown in Figure 5. We find that for a relatively small
ap/ar (for example, ap/ar = 0.1 ), the poor cooperators
cannot survive when r is low (see Figure 5A and Supplementary
Material S3.2.2(3)). In fact, the expected loss for the poor is
less than the cost of cooperation. This adverse situation will be
reversed if we enhance the value of risk r (see Figure 5D and
Supplementary Material S3.2.2(9)). More specifically, the growth
of the risk leads to the higher location stable point moving
toward full cooperation (see Figure 5G and Supplementary
Material S3.2.2(10)). Besides, the effect of asset heterogeneity on
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FIGURE 2 | (Color online) Stationary fraction of cooperators and gradient of selection for different values of ap/ar and ar when the temptation to defect is high (A–I).

The initial assets for the rich and the poor individuals are (A) ar = 2 and ap = 0.2; (B) ar = 2 and ap = 1; (C) ar = 2 and ap = 1.8; (D) ar = 10 and ap = 1;

(E) ar = 10 and ap = 5; (F) ar = 10 and ap = 9; (G) ar = 50 and ap = 5; (H) ar = 50 and ap = 25; (I) ar = 50 and ap = 45; Other parameters values are

N = 6, T = 3, r = 0.5, p = 0.7, and c/b = 0.5.

cooperation is consistent with our above conclusion, namely,
narrowing the gap between the rich and the poor can promote
public cooperation (see Figures 5G–I).

In order to study how the fraction of cooperators depends on
the proportion of the poor p, we show the stationary distribution
of cooperators as a function of the proportion of the poor p
at r = 0.5 and T = 3 for three different values of ap/ar in
Figure 6. For a low p (top row), all the poor will choose to free
ride even the gap between the rich and the poor is significantly
small (see Figures 6A–C). Besides, it is obvious that not all the
rich are enthusiastic to contribute, which means that there exist
free-riders among the rich if they constitute the vast majority of
the group. For an intermediate value of p (second row), the poor
cooperators can survive, and beyond that, as ap/ar increases,
the proportion of the poor cooperators increases as well [more
details can be found in Supplementary Material S3.1(10)]. For
much larger p (third row), we can find that the stable point in

the upper left corner will disappear when ap/ar is significantly
high [see Figures 6G–I and Supplementary Material S3.2.2(6)
and (8)].

As also shown in Figure 6, the proportion of the poor p acts
an important factor in supporting cooperation. More specifically,
when p is particularly small, the change of asset heterogeneity
will not have any effect on cooperation. When the proportions
of the poor and the rich in the group are the same, then the
poor cooperators can survive. At the same time, the region of
attraction of full defection has a slight expansion in comparison
with a smaller p. As p continues to increase, the poor account
for 90 percent of the population. Then the contributions from
the rich are far from meeting the target. In order to prevent their
assets from losing, the majority of the poor will contribute to the
common pool. Besides, narrowing the gap between the rich and
the poor can effectively reduce the occurrence of defection as long
as the proportion of the poor is not too small.
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FIGURE 3 | (Color online) Stationary fraction of cooperators and gradient of

selection for low values of risk r and asset heterogeneity ap/ar , together with a

relatively high threshold T. And the initial assets for the rich and the poor

individuals are ar = 2 and ap = 0.2. Other parameters: N = 6, T = 4, p = 0.7,

r = 0.2, and c/b = 0.1.

4. DISCUSSION

We have introduced asset heterogeneity in the collective-risk
social dilemma game, and intensively studied its effects on
the evolution of public cooperation. We have been motivated
by the fact that an uneven distribution of personal assets is
surprisingly common in human societies, as well as by the
fact that recent research on a similar variant of the collective-
risk social dilemma game in a well-mixed population has
shown that heterogeneous wealth distributions can affect public
cooperation [70]. By considering personal asset rather than
wealth, we mainly investigate the effects of asset heterogeneity
on cooperation. Our research reveals that asset heterogeneity
hinders cooperation no matter whether the temptation to
defect is high or low. In addition, four important parameters
have been considered in our work, namely, personal assets,
threshold, risk, and the proportion of the poor. Specifically,
we have shown that the increment of personal assets and
risk can both significantly promote social cooperation [43,
44]. Furthermore, the cooperation level increases with the

FIGURE 4 | (Color online) Stationary fraction of cooperators and gradient of selection for different values of ap/ar and T. For r = 0.5, the threshold values are T = 2

(A–C), T = 3 (D–F), and T = 4 (G–I). The initial asset for the rich is 2, while the initial asset for the poor is respectively set to 0.2 (left column), 1 (middle column), and

1.8 (right column). Other parameters are p = 0.7, N = 6, and c/b = 0.1.

Frontiers in Physics | www.frontiersin.org January 2018 | Volume 5 | Article 679

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Liu and Chen Asset Heterogeneity for Public Cooperation

FIGURE 5 | (Color online) Stationary fraction of cooperators and gradient of selection for different values of risk r and the asset ratio of the poor and the rich ap/ar

(A–I). And the initial assets for the rich and the poor are respectively ar = 2, ap = 0.2, 1, 1.8 corresponding to ap/ar = 0.1, 0.5, 0.9. Other parameters: N = 6, T = 3,

p = 0.7, and c/b = 0.1.

growth of the poor proportion. But a small number of the
rich will no longer enthusiastic to contribute when the rich
make up a large proportion of the population. Our model also
shows an interesting phenomenon: an increase in threshold
can contribute to the increase of poor cooperators. However,
in some special conditions, a higher threshold can destroy
cooperation.

Temptation to defect has been seen as a key factor for
exploring the effect of heterogeneity on cooperation in
recent years [80, 87, 88]. Kun and Dieckmann [80] have
revealed that resource heterogeneity leads to decreased
level of cooperation once when the temptation to defect
is significantly lowered, otherwise, heterogeneity facilitates
the maintenance of cooperation. Unlike previous study,
however, our model introduces threshold and the risk of
collective failure into the public goods game, and shows

that asset heterogeneity can hinder cooperation no matter
whether the temptation to defect is high or low (see
Figures 1, 2).

Besides, it is worth noting that the impacts of the increment
of the threshold value on public cooperation are two-sided.
On the one hand, the growth of the threshold enlarges the
region of attraction of full defection. On the other hand, it
enhances the proportion of poor cooperators (see Figure 4).
In addition, social cooperation will collapse at low risk, high
poverty gap, and high threshold (see Figure 3). Recently, the
effects of the threshold value have been studied theoretically and
experimentally [72, 82, 89]. Vasconcelos et al. [82], for instance,
verified that threshold uncertainty has a disruptive effect on
cooperation when all individuals in the group are equivalent,
but they neglected the presence of wealth inequality. Our model
proves that, in the specific conditions, a larger target value
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FIGURE 6 | (Color online) Stationary fraction of cooperators and gradient of selection for different values of ap/ar and different proportion of the poor p. The

proportions of the poor are respectively p = 0.1 (A–C), p = 0.5 (D–F), and p = 0.9 (G–I). And the initial assets for the rich and the poor individuals are respectively

ar = 2, ap = 0.2, 1, 1.8 corresponding to ap/ar = 0.1, 0.5, 0.9. Other parameters: N = 6, T = 3, r = 0.5, and c/b = 0.1.

will destroy cooperation in a risky society with heterogeneous
assets.

As we said earlier, our model is inspired partly by the realistic
situation, in which it is relatively straightforward to come up with
examples where our model could apply. One widely considered
example is the problem of climate change. The Paris climate
agreement aims at holding global warming to well below 2◦C
and to “pursue efforts” to limit it to 1.5◦C [90]. To accomplish
this, countries, no matter whether developed countries or
developing countries, have submitted national plans that spell
out their intentions for addressing the climate change challenge.
Nevertheless, targets and actions for reducing greenhouse gas
(GHG) emissions are core components [91, 92]. Therefore, it is
of greatest importance for countries to set a measurable emission
reduction target. Besides, the action by all countries is effective in
averting climate catastrophes, thus it is also a challenge for policy
makers to enhance the level of cooperation among different
countries. Our research may contribute to a better understanding
of the emergence of cooperative behavior in risk society with

heterogeneous assets, and thus may provide some insights to
how to solve the climate change problem in the realistic world
including developed and developing countries.
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Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation,

by which beneficial acts are returned, not by the recipient, but by third parties. This

mechanism relies on the ability of individuals to know the past actions of others, and

to assess those actions. There are many different systems of assessing others, which

can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”).

In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt

to environments, on indirect reciprocity are investigated. We examine two representative

architectures: one based on replicator dynamics and the other on genetic algorithm.

Different from the replicator dynamics, the genetic algorithm requires describing the

mixture of all possible norms in the norm space under consideration. Therefore, we also

propose an analytic method to study norm ecosystems in which all possible second

order social norms potentially exist and compete. The analysis reveals that the different

adaptive architectures show different paths to the evolution of cooperation. Especially

we find that so called Stern-Judging, one of the best studied norms in the literature,

exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics,

Stern-Judging remains alive and gets a majority steadily when the population reaches a

cooperative state. On the other hand, in the genetic algorithm, it gets a majority only

temporarily and becomes extinct in the end.

Keywords: evolutionary game theory, evolution of cooperation, indirect reciprocity, social norms, ecosystems,

adaptive systems

INTRODUCTION

Cooperative relationships such as I-help-you-because-you-help-me relations can often be found
in both biological systems and human societies. Cooperative behaviors are obviously essential to
make societies effective and smooth. However, evolutionary biologists and social scientists have
long been puzzled about the origin of cooperation. Recently, scientists from a variety of fields such
as economics, mathematics and physics have been tackling the puzzle using tools developed in each
discipline.
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According to a thorough review published from statistical
physics viewpoints recently [1], there have been numerous
contributions from physicists to this area for the past decade.
In those researches, diverse methods to handle many interacting
particles developed in statistical physics are used to investigate
interactions of biological and social elements.

Following the context of the physics literature, in this paper,
we deal with interactions of “social norms.” Social norms are
interpreted as views on what is “good” or “bad” and play an
essential role in indirect reciprocity based on reputation systems.
Indirect reciprocity is known as one of the main mechanisms for
the emergence of cooperation. It has a long history and has been
amply documented in human populations [2–12]. One feature of
indirect reciprocity is that helpful acts are returned, not by the
recipient as in direct reciprocity, but by third parties [13–15]. To
decide helpful acts therefore needs information on others, who
can be possible recipients in the future.

As mentioned in Nowak and Sigmund [16], there are
two main motivations to pursue the investigation of indirect
reciprocity. One concerns the evolution of human communities:
how can cooperation emerge in villages and small-scale societies?
(see for instance [17, 18]) The other motivation is related to the
recent rapid growth of anonymous interactions on a global scale,
made possible by the spread of communication networks on the
internet: how can cheating be avoided in on-line trading [19]? In
both cases, simple, robust methods for assessing others, i.e., social
norms are necessary.

Vast studies on indirect reciprocity in the framework
of evolutionary game theory have discovered various types
of norms or assessment rules that enhance the evolution
of cooperation in the modern society with highly mobile
interactions. Theoretically, assuming that the same norm is
adopted by all members of a population, Ohtsuki and Iwasa have
shown that only eight out of 4,096 resulting possible norms lead
to a stable regime of mutual cooperation. These are said to be
the “leading eight” [20, 21]. In this context, “stable” means that
the corresponding population cannot be invaded by other action
rules. However, this does not settle the issue on whether the focal
norm can be invaded by other norms (i.e., assessment rules) or
not.

Many theoretical studies also considered another stability
criterion. Those studies focus on whether the corresponding
population cannot be invaded by or can invade into
unconditional strategies such as perfect cooperators and
perfect defectors [21–24]. Clearly, these previous studies do not
allow us to fully compare different norms either.

If one wants to analyze the evolution of even the simplest
system of morals, one has to consider the interaction of several
assessment rules in a population. Some studies meet the theme.
For example, comparing Simple-Standing with Stern-Judging,
both members of the leading eight, is an important task to
explore a champion of the assessment rules using second-order
information. Uchida and Sigmund [25] analyzed the competition
of these two different rudimentary norms and established
significant findings.

Despite the theoretical developments of Uchida and Sigmund
[25] on analyzing multiple rules, its approach cannot describe

a mixture of more than a few rules. Real society, however,
comprises a melting pot of various norms that interact with each
other. Therefore an imperative next step of studies on indirect
reciprocity would be to develop an analytical tool which can
deal with “norm ecosystems” in which more than a few norms
coexist, interact and compete. Although some insights have been
derived in a research using individual-based simulations [26], a
new theoretical approach may capture co-evolution of diverse
norms more in detail.

Therefore the main focus of the present paper is in developing
a systematic analytical methodology with which entanglements
of all sixteen norms using second-order information can be
formulated in an equation system. Extending the methodology
proposed by Uchida and Sigmund [25], we see that the key
problem, i.e., determining the average payoff of each norm
surrounded by other norms to determine its fitness, comes down
to a linear problem (i.e., a task of solving an inhomogeneous
linear equation system). Thus it is computationally feasible to
calculate the payoffs even when to deal with mixture of many
norms. Uchida and Sigmund [25] treated a special case of the
linear problem analyzed here.

The authors’ development is useful not only for rigorous
analysis of norm ecosystems, but also helps compare different
“adaptive architectures.” Here an adaptive architecture means
a way for individuals to adapt to their environments. In this
paper, we take up the two representative architectures, replicator
dynamics and genetic algorithm. Although these architectures
are popular in the literature, they are studied independently in
different domains and their comparison in the framework of
evolutionary game theory has not yet been done because there
has been no technical method developed to capture all strategies
in a norm space at once as the study of genetic algorithm requires.
Our approach offers a first opportunity to theoretically analyze
a comparison of replicator dynamics and genetic algorithm in
evolutionary game theory.

The analysis reveals that the two representative adaptive
architectures show different paths to the evolution of
cooperation. We find that Stern-Judging, one of the best
studied norms in the literature, plays important but different
roles in both cases [25, 27, 28]. In the replicator dynamics,
Stern-Judging remains alive and gets a majority whenever the
population reaches a cooperative state. On the other hand, in the
genetic algorithm, it gets a majority just before cooperation rate
starts rising but becomes extinct after the cooperation has been
accomplished.

In the next section, we describe the model ecosystem,
derive the equation to analyze it and introduce the adaptive
architectures. Then we present the results and discuss them.

MATERIALS AND METHODS

Game, Norm, and Payoff
An infinitely large, well-mixed population of individuals (or
players) is considered. From time to time, one potential donor
and one potential recipient are chosen at random from the
population and they engage in a donation game: the donor
decides whether to help the recipient at a personal cost c. If the
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donor chooses to help, the recipient receives a benefit b > c;
otherwise the recipient obtains nothing. Each individual in the
population experiences such decision makings many times both
as a donor and as a recipient [29–31]. From here on, we denote
the action “help” by “1” and “refuse” by “0.”

Individuals in the population have the ability to observe
and assess others following their assessment rules (or social
norms). Here “assess” means that players label other players
“good” or “bad” according to their actions as a donor in their
last interactions. The images of players are also denoted by
“1” (for “good”) and “0” (for “bad”). The assessment is done
privately but the information needed for the assessment is so
easily accessed that all individuals have the same information (on
private information see for example [29–31]).

A donor determines whether or not to help the recipient,
depending on the current image of the donor (i.e., whether the
recipient is labeled as 1 or 0). If the recipient is viewed as 1
in the eyes of the potential donor, the recipient will be given
help, otherwise the recipient will not be offered a help. Note that
we do not assume any kind of error in the model because this
is a first attempt to describe competitions of all norms in the
focal norm space (for the role of errors, see [32–34]). Moreover,
we assume that all individuals are trustful, therefore, initially
good.

The social norms in this present research are at most of second
order, i.e., they take the image of the recipient as well as the
action of the donor into consideration. Denoting the action of
the donor by α ∈ {0, 1} and the image of the recipient by
β ∈ {0, 1}, the new image of the donor after the game from
the view point of some norm is a binary function of α and β :
βnew

= f (α,β) ∈ {0, 1}. Hence a second order norm can be
identified by a four bit (f (1, 1) , f (1, 0) , f (0, 1) , f (0, 0)).There
are 16 possible norms and we number them by defining that
i = f (1, 1)23 + f (1, 0)22 + f (0, 1)21 + f (0, 0) 20 + 1. The 16
norms include some well-studied norms in the literature: the 9th
norm (1000) is known as Shunning (SH), the 10th norm (1001)
is called Stern-Judging (SJ), the 13th norm (1100) Image-Scoring
(IS) (which is of first order) and the 14th norm (1101) Simple-
Standing (SS). The first norm (0000) and the last one (1111) are
unconditional norms and called AD and AC, respectively.

We denote by xi the frequency of individuals that follow social

norm i
(

∑16
i=1 xi = 1

)

. Note that individuals using the same

norm have the same opinion on others, since all individuals have
the same information without errors.

As individuals play the game, the images of the individuals
gradually change. At the equilibrium of images, the average
payoff of individuals with norm i depends on the frequencies of
the other norms in the population and on how many individuals
are good. The average payoff Pi at the equilibrium of images is in
fact given by

Pi =

16
∑

j=1

xj
(

sjib− sijc
)

, (1)

where sij is the probability that a random player with norm
i has a good image of a random player with norm j. We call

sij∈ [0, 1]16×16 the “image matrix.” Thus specifying the image
matrix provides the average payoff with the frequencies xj fixed.
The outline of the calculation for the imagematrix is shown in the
Results section (The full information on the calculation is found
in the Supplementary Material).

Adaptive Architectures
The players adaptively switch their assessment rules, aiming at
more payoffs. We examine two different switching processes:
adaptive changes due to social learning by imitation described by
the replicator dynamics and those changes of norms modeled by
the genetic algorithm.

Replicator Dynamics
In case of replicator dynamics, an individual occasionally has a
chance to change its norm by imitating another individual (i.e.,
adopting its norm as a model). The probability that an individual
(with norm i) is chosen as a model is proportional to the norm’s
frequency xi and that model’s fitness Fi = F + Pi. Here, F is
a baseline fitness (the same for all) and will be set to c in all
simulations (We also normalize Fi in simulations.).

With some probability, an individual selects a norm totally at
random and adopts that norm. This occurs due to mutation. The
resulting dynamics is given by the replicator-mutation equation
ẋi = xi

(

Pi − P
)

+ µ
( 1
16 − xi

)

, where P =
∑16

k=1 xkPk is
the average payoff in the population (see [35]) and µ is a
parameter that measures strength of mutation. In fact, we use
the discretized version of replicator dynamics to compare with
genetic algorithm: xi

(

t + dt
)

= xi (t)+ dtxi (t)
(

Pi (t) − P (t)
)

+

dtµ
( 1
16 − xi(t)

)

.

Genetic Algorithm
In case of genetic algorithm, an individual decomposes a norm
into a collection of bits and changes its norm “bit-wise” by
imitating the norms of two randomly selected individuals (called
parents) [36]. Following [26], the probability that an individual
with norm i is selected as a parent is proportional to the norm’s
frequency xi and the square of the fitness of norm i (rule 1).

After parents have been chosen [now, the norms of the
parents are j = (a, b, c, d) and k = (e, f , g, h), respectively], a
crossover is uniformly performed: the first bit of the child’s norm
is either “a” or “e” with the same probability and the second
bit “b” or “ f ” and so on. The uniform crossover generates the
norms (a, b, c, d), (a, b, c, h) · · · (e, f , g, d), (e, f , g, h) with the same
probability, which is 1/16 (rule 2).

From rules 1 and 2, we can derive the probability that any
norm i = (p, q, r, s) is generated at the next generation (which we
denote by wi). However, due to mutation, a bit of the generated
norm can be flipped with probability µ. Note that µ in the RD
and that in the GA have different meanings. We assume that
at most one bit can be inverted because of the small mutation
probability. Thus the probability that none of 4 bits is flipped
is 1 − 4µ. Therefore the probability that norm i = (p, q, r, s) is
actually generated is vi = (1− 4µ)wi + µI. Here I is the total of
the probabilities that the neighboring norms (1−p, q, r, s), (p, 1−
q, r, s), (p, q, 1− r, s), (p, q, r, 1− s) are generated before mutation.
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The frequency of norm i at the next generation t + dt is given
by xi(t + dt) = (1 − dt)xi(t) + dtvi, where dt is the proportion
of individuals that change their norms between the generations t
and t + dt.

Replicator Dynamics with Multiple Models
In addition to the ordinary adaptive architectures well-studied in
the literature mentioned above, we consider two other adaptive
architectures that are modified versions of the conventional
replicator dynamics and the genetic algorithm, respectively. The
first one is replicator dynamics with multiple models.

In this adaptive architecture, an individual learns each bit
of its norm independently from probably different models. The
probability that an individual having norm j = (p, q, r, s)
flips its first bit is proportional to the average fitness of
such individuals that follow a norm the first bit of which
is 1 − p. This fitness is given by

∑

V∈X1
xVFV . Here X1 is

the set of norms whose first bit is 1 − p (i.e., norms of the
form (1 − p, ∗, ∗, ∗)) and FV is the normalized fitness of V .
Then for instance, the probability that the individuals change
their norm from j = (p, q, r, s) to k = (1 − p, q, r, s)
is given by

∑

V∈X1
xVFV

(

1−
∑

V∈X2
xVFV

) (

1−
∑

V∈X3
xVFV

)

(

1−
∑

V∈X4
xVFV

)

. In this formula, for example, the second

term
(

1−
∑

V∈X2
xVFV

)

is the probability that the individual
does not flip its second bit. By considering all possibilities, we
can calculate the in-flow to norm j from norm i (wij) and out-
flow from j to i (wji). Then the increase rate of norm j is given by
∑

i (xiwij − xjwji).
As in ordinary replicator-mutation dynamics, we also include

a mutation term in addition to the switching process described
above. But here, we assume that mutation occurs “bit-wise” as
assumed in genetic algorithm. That is, by µ, we denote the
probability that each bit is flipped by mutation. Then the in-
flow to j due to mutation is given by µ

∑

k xi with k being 4
neighboring norms of j (i.e., the hamming-distances between the
4 norms j are 1.) and the out-flow from j by 4µxj.

The resulting dynamics is given by ẋj =
∑

i (xiwij − xjwji) +
µ

(
∑

k xi − 4xj
)

. Note that “4µ” in this dynamics corresponds
to “µ” in the ordinary replicator-mutation dynamics. As for
other adaptive architectures, we use discretized version of the
dynamics.

Genetic Algorithm with a Single Parent
The other one is genetic algorithm with a single parent. In this
architecture, only one individual is chosen as the unique parent
of an individual. Then the child copies the norm of the parent.
That is, the child adopts the entire norm of the single parent.
Mutation effects and the probability that an individual is chosen
as a parent are calculated in the same way as in the ordinary
genetic algorithm mentioned above.

All four corresponding evolution equations depend on
expected payoffs. We assume that images are always at
equilibrium at each time step of the evolution equations. Under
this assumption in the next section, we derive the equation
system to specify image matrices (thus expected payoffs of
norms) and show time evolutions of norms based on the above
mentioned adaptive architectures.

RESULTS

Image Matrix
Images of individuals change in time as well as frequencies of
norms. But we assume that the time scale of the changes of images
is much faster than that of norm changes. As a result, images
are always at equilibrium and norm frequencies are treated as
constant in estimating image matrices, as is assumed in the
literature (See [37]).

To calculate image matrix sij, we introduce “image profile”

s
(j)
e1e2e3···e16 ∈ [0, 1]2

16
, which is the joint probability distribution

in terms of the images of a random player with norm j from

the viewpoints of all norms. Thus the value of s
(j)
e1e2e3···e16 is the

probability that a random player with norm j is labeled an image
e1 ∈ {0, 1} from the first norm and e2 from the second norm,
. . . , and e16 from the 16th norm. Note that, since the first norm
is unconditional AD, the probability that e1 = 1 is zero. Thus

s
(j)
e1=1,e2e3···e16

= 0. Similarly, s
(j)
e1e2e3···e16=0 = 0.

The image profile is a joint probability distribution and
contains the finest probabilistic information about the system.
For example, the image matrix is interpreted as the marginal
distribution:

sij =
∑

e1e2···ei−1ei+1···e16

s
(j)
e1e2···ẽi···e16

, (2)

with ẽi = 1.
Now we define the joint distribution in the whole population by

Rf1f2···f16 =

16
∑

j=1

xjs
(j)
f1f2···f16

, (3)

which gives the proportion of those individuals in the whole
population, who are labeled image f1 from the viewpoint of the
first norm and f2 from the second norm, f3 from the third norm
and so on. Since Rf1f2···f16 is a probability distribution, there is a
constraint on Rf1f2···f16 :

∑

f1f2······f16

Rf1f2···f16 = 1. (4)

According to our analysis, it is possible to derive the equation

system that yields the values of all image profiles s
(j)
e1e2···e16 (the

joint probability distribution). More concretely, we can find

an expression of s
(j)
e1e2···e16as a linear function of Rf1f2···f16 .

Then inserting those relations between s
(j)
e1e2···e16and Rf1f2···f16 into

Equations (3) and (4), we can have an inhomogeneous linear
equation system for Rf1f2···f16 . Solving this equation system yields

the values of s
(j)
e1e2···e16 , because s

(j)
e1e2···e16 is expressed as a function

of Rf1f2···f16 . See the supplementary material for the details of the
derivation.

We remark that the equation system with respect to Rf1f2···f16
includes 216 − 1 unknowns in principle, but the fact that
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the equation system contains some trivial variables such as
Rf1f2···f16 = 0 with f1 = 1 or f16 = 0 reduces the dimension of
the equation system.

Moreover, the case where f13 = f(1,1,0,0) = 1 indicates that
action C has been taken. In this case, the following conditions
must be satisfied: f(1,1,0,1) = f(1,1,1,0) = 1 and f(0,0,1,1) = f(0,0,0,1) =
f(0,0,1,0) = 0. The situations in which the above conditions are
broken never happen. For those situations, Rf1f2···f16 = 0.

Similarly if f13 = f(1,1,0,0) = 0, which implies that action D
has been chosen, then f(0,1,0,0) = f(1,0,0,0) = 0 and f(0,0,1,1) =

f(0,1,1,1) = f(1,0,1,1) = 1. Therefore Rf1f2···f16 = 0 for the situations
where the above condition is not satisfied.

As a result the dimension of the equation system reduces to
29 − 1, which can computationally be handled.

Note that the solution depends on the frequencies of norms
in the population. In Figure 1, we can compare an image matrix
obtained by an individual simulation with an image matrix
calculated by the above mentioned method with all frequencies
equal: xi = 1/16. We see that the simulation and the analytic
method generate parallel results.

Time Evolutions of Norms
Frequencies of norms in a population change in time, based on
its adaptive architecture. The equations describing such changes
depend on payoffs. Therefore the calculating image matrices by
the above mentioned method makes it possible to investigate the
evolution of multiple norms caused by both switching processes,
replicator dynamics and genetic algorithm.

In Figure 2A, we show a typical pattern of time evolutions
of norms produced by (ordinary) replicator-mutation dynamics
for a case where cooperation is achieved. Figure 2B shows its
initial part (the first 100 steps). Similarly in Figure 3, a time
series produced by (ordinary) genetic algorithm (for a case where
cooperation is reached) and its initial part (the first 30 steps) are
displayed. We note that whether or not the population evolves
to cooperation depends on initial conditions. It can happen
that a population evolves into non-cooperative states in both
architectures. In this paper, we discuss typical situations in which
cooperation is achieved.

As Figures 2B, 3B show, initial parts of both architectures
are similar, in that the cooperation rate declines at first as
defective norms such as AD (blue solid line) and Shunning (SH;
green dashed line) pervade in the population. But they gradually
decrease and alternatively the frequency of Stern-Judging (SJ; red
dashed line) rises. In parallel, the cooperation rate increases.

However the long-term behavior of Stern-Judging differs in
both architectures. In replicator dynamics, Stern-Judging gets a
majority after defective norms have disappeared and cooperation
has been realized. This trend after the transition between non-
cooperative states and cooperative states is preserved stably
(Figure 2A). In genetic algorithm, Stern-Judging gets a majority
during the transition but it becomes extinct when cooperation
has been achieved.

Generally, from Figure 3A, we see that genetic algorithm
prefers tolerant norms to strict norms in cooperative states. In
fact, after cooperation has been established, AC (the 16th norm;
green dotted line) gets a majority and the 15th norm (blue dotted

line) is the second best, then the 14th (Simple-Standing= SS; gray
dashed line) and the 13th (Image-Scoring = IS; yellow dashed
line). The more tolerant a norm is, the higher the frequency of
the norm becomes in the population.

But this is not true for replicator dynamics. In replicator
dynamics, Stern-Judging (red dashed line) is the best, Simple-
Standing (gray dashed line) is the second best and Image Scoring
(yellow dashed line) is the third. All these norms are well-known
in the literature. Note that in both architectures, Image-Scoring
survives in the long run. This is a significant finding since, in
literature, Image-Scoring is known as an unstable strategy [32]
and is not included in the leading eight [21].

Figure 4A shows a typical pattern of time evolutions of norms
produced by replicator dynamics with multiple models for a
case where cooperation is achieved. Its initial part (the first
500 steps) is shown in Figure 4B. We see that the evolutionary
path is similar to that of ordinary genetic algorithm (Figure 3)
rather than ordinary replicator dynamics (Figure 2). Conversely,
a typical pattern of time evolutions of norms produced by genetic
algorithms with a single parent (Figures 5A,B) is similar to that
of ordinary replicator dynamics. Thus in Figure 4, Stern-Judging
becomes extinct and in Figure 5, Stern-Judging gets a majority in
the end.

DISCUSSION

In the last section we found that the norm ecosystems based
on different architectures show similarity and dissimilarity.
Although the norm ecosystems investigated here are complex
systems, their analyses enable us to gain deep understanding of
a simple single norm. For instance, an unstable norm, Image-
Scoring, evolves and survives in the melting pot of competing
norms regardless of architectures individuals are based on. This
insight cannot be obtained if we solely analyze the single norm.

The main difference of the two representative architectures
(ordinary replicator dynamics and genetic algorithm) appears
in the roles of Stern-Judging, whose local stability is well-
studied in the literature. The analysis revealed that Stern-
Judging wins the competition against other norms and stays
alive in ordinary replicator dynamics even after cooperation
is achieved. That is, Stern-Judging is not only locally stable
but can evolve from a mixture of diverse norms and gets a
majority in the end as far as ordinary replicator dynamics
is assumed. In this sense, we say that Stern-Judging plays
the role of a “leading” norm in the framework of replicator
dynamics.

This norm also plays a vital role in genetic algorithm since it
gets a majority just before the cooperation rate starts rising. This
occurs because Stern-Judging can defeat defective norms such
as AD or Shunning and can increase its frequency in defective
states. In other words, Stern-Judging kick-starts the evolution
toward cooperation. In Yamamoto et al. [26], in which genetic
algorithm is adopted as an adaptive architecture, it is reported
that cooperation cannot evolve without Stern-Judging. However
it is not a stable leading norm because it becomes extinct after
cooperation has been achieved. Thus Stern-Judging takes a role of
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FIGURE 1 | Image matrix sij (i, j = 1, · · ·16) produced by (A) an individual based simulation and (B) the analytical method described in the text. In order to generate

(A), an individual simulation with 3,200 agents was run (each norm has 200 individuals). In the simulation, each individual plays the donation game as the donor 100

times on average with different randomly chosen recipients (i.e., 320,000 games in total). This number of games is large enough for the process to reach the

equilibrium. After each game, all individuals, following their own norms, assess the donor and label “1” or “0” to the individual. After 320,000 games, the number of

individuals with norm j of whom the individuals with i has image “1” is counted and the number is divided by 200 (total number of individuals with j) to obtain sij . The

value of sij is shown in gray scale, in which white corresponds to “1,” and black to “0”.

FIGURE 2 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by replicator dynamics (A) and its initial part

(the first 100 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.05, dt = 0.2.

a “go-between” (defective states and cooperative states) in genetic
algorithm.

But why do these architectures show such different results?
What is the essential difference between the two? In genetic
algorithm, individuals divide norms into smaller parts (bits) and
learn the parts more or less independently (from its mother
and father). So we can call the learning process “analytic.”
For individuals with genetic algorithm, the first bit of a norm
represents pro-sociality of the norm, the second bit tolerance,
the third anti-sociality and the fourth intolerance (i.e., punitive
nature) and they imitate each aspect of their parents, respectively.

On the other hand, individuals based on (ordinary) replicator
dynamics do not analyze norms into parts but treat norms as a
whole. The learning process based on replicator dynamics can

therefore be called “synthetic.” And whether or not the adaptive
architecture is analytic or synthetic has a large impact on the
results.

In fact, we modified genetic algorithm so that an individual
learns how to assess others from only one parent (i.e., the norm
is not divided into parts), and we obtained similar results as
ordinary replicator dynamics. Moreover we extended replicator
dynamics so that an individual decomposes norms into four bits
and imitates each part of different models. As a result, we found
similar results as ordinary genetic algorithm (with two parents).
From these results, we can conclude that whether Stern-Judging
can survive in a long run in cases where cooperation is achieved
does not depend on switching processes (i.e., whether replicator
dynamics is assumed or genetic algorithm is used). But it relies
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FIGURE 3 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by genetic algorithm (A) and its initial part

(the first 30 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.01, dt = 1.

FIGURE 4 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by replicator dynamics with multiple models

(A) and its initial part (the first 500 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.005, dt = 0.2.

FIGURE 5 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by genetic algorithm with a single parent

(A) and its initial part (the first 60 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.01, dt = 1.
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on whether norms are treated as a whole or “bit-wise” in the
corresponding switching processes.

In spite of the findings mentioned so far, we have to remark
that much remains to be studied. The model studied in this
present research especially has many limitations, which offers
some tasks for future research from physics perspectives. First of
all, we omitted implementation errors in the model to simplify
the analysis. Whether and how errors change the results is
interesting and necessary research yet to be done.

Moreover we assumed well-mixed populations in the analysis
and ignored the effects of structured populations and group
formations on cooperative behaviors of individuals. Recently
interactions between heterogeneity of populations and reciprocal
behaviors are investigated from physics viewpoints. For example,
Nax et al. [38] studied interactions among groups and found
that how important roles Image-Scoring plays for cooperation
to emerge relative to “group scoring” depends on the population
size. And Szolnoki et al. [39] introduced facilitators, a special
type of players, on interaction networks and showed that the
facilitators reveal the optimal interplay between information
exchange and reciprocity. These studies provide evidence
that structured populations in fact affect reciprocal functions.
Inversely, some papers showed that indirect reciprocity affects
population structures. For instance, it is reported that indirect
reciprocity can function as a boosting mechanism of group
formation and in-group favoritism, which is another aspect of
cooperation [40–43].

Another factor that is out of scope in this research is
the imperfectness of information. From the players’ viewpoint,
although the same interaction can be interpreted differently by
players with distinct norms, different individuals that share the
same norm always have the same opinion since all individuals

are based on the same information in the model. In the literature,
the imperfectness of information has been studied in several ways
[29, 30, 33, 44–46] and examining the effect of such imperfectness
may lead us to understand the moral ecosystem more deeply.
Obviously this present paper is just a first step to theoretically
investigate the competition and cooperation among multiple
norms.
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In social evolution theory, unconditional cooperation has been seen as an evolutionarily

unsuccessful strategy unless there is a mechanism that promotes positive assortment

between like individuals. One such example is kin selection, where individuals sharing

common ancestry and therefore having the same strategy are more likely to interact with

each other. Conditional cooperation, on the other hand, can be successful if interactions

with the same partners last long. In many previous models, it has been assumed that

individuals act conditionally on the past behavior of others. Here I propose a new model

of conditional cooperation, namely the model of coordinated cooperation. Coordinated

cooperation means that there is a negotiation before an actual game is played, and that

each individual can flexibly change their decision, either to cooperation or to defection,

according to the number of those who show the intention of cooperation/defection.

A notable feature of my model is that individuals play an actual game only once but

can still use conditional strategies. Since such a negotiation is cognitively demanding,

the target of my model here is exclusively human behavior. I have analyzed cultural

evolutionary dynamics of conditional strategies in this framework. Results for an infinitely

large population show that conditional cooperation not only works as a catalyst for

the evolution of cooperation, but sustains a polymorphic attractor with unconditional

cooperators, unconditional defectors, and conditional cooperators being present. A finite

population analysis is also performed. Overall, my results provide one explanation of why

people tend to take into account others’ decisions even when doing so gives them no

payoff consequences at all.

Keywords: conditional cooperation, evolutionary game theory, negotiation, replicator dynamics, finite population

1. INTRODUCTION

Prevalence of altruistic traits in nature has been an evolutionary paradox since Darwin (1859). It
is because defectors, also called cheaters or free-riders, avoid the cost of cooperation but enjoy its
benefit, and hence act detrimentally against evolution of cooperation. Now there is a consensus
among evolutionary biologists that positive assortment is a key to its evolution (Lehmann and
Keller, 2006; Nowak, 2006b; West et al., 2007; Fletcher and Doebeli, 2009). Positive assortment
means cooperators are more likely to meet and interact with other cooperators than by chance, and
so are defectors.

A viscous population (Hamilton, 1964; Taylor, 1992; Wilson et al., 1992) provides an excellent
occasion for such positive assortment to occur. Limited dispersal creates an environment where
those who share the common ancestry tend to cluster in a spatially structured population. In such
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a situation, whether kin recognition is present or not, cooperation
with neighbors tends to result in cooperation with another
cooperator. This process is known as kin selection.

In contrast, conditional cooperation is another mechanism
to achieve positive assortment (Fletcher and Doebeli, 2009).
The success of the famous Tit-for-Tat strategy (Axelrod and
Hamilton, 1981; Nowak and Sigmund, 1992) and other variants
(Nowak and Sigmund, 1993) suggests that helping only those
who have helped in the past (Trivers, 1971; Axelrod, 1984;
Alexander, 1987; Nowak and Sigmund, 2005) is a strong
driving force for the evolution of cooperation. In these
cases, positive assortment does not necessarily mean genetic
assortment but means behavioral assortment; whatever different
genetic architecture is behind cooperation, those who behave
cooperatively at a phenotypic level come together and interact
with each other.

A vast majority of previous models of evolution of conditional
cooperation has assumed repeated interactions, where the same
group of individuals interact repeatedly, or, in the case of indirect
reciprocity, one repeatedly interacts with different others, but
their past history of actions is available as reputation. In either
case, it is a well established fact that a long repetition is a key to
success (Nowak, 2006b).

However, an experiment suggests that people behave
conditionally on others’ choices even in a one shot interaction
(Fischbacher et al., 2001). In their four-player public goods game
experiment, Fischbacher et al. (2001) asked each of the four
players to submit a contribution table, which describes howmuch
one would like to contribute to a public good for all 21 possible
average contributions by the other three players. If one assumes
that everyone should behave rationally, two predictions follow.
Firstly, the best choice is to contribute nothing irrespective of
others’ decisions. Secondly, and more interestingly, there should
be no incentives at all to base one’s contribution on others’,
because the game used in that experiment was a linear public
goods game. To understand the second point more, here is the
payoff function used in their experiment;

πi = 20− gi + 0.4
4

∑

j = 1

gj, (1)

where πi is the payoff of i-th player, and 0 ≤ gj ≤ 20
is j-th player’s contribution to a public good. This functional
form clearly suggests that for each additional unit amount
of contribution, i-th player loses 0.6 units irrespective of
others’ decisions and hence that taking others into account
makes no sense. Despite these predictions, Fischbacher et al.
(2001) found that a significant fraction of participants made
a positive contribution in this experiment, and that 50% of
participants were “conditional cooperators” who monotonically
increased their contribution with increased average contribution
by the others. Interestingly, they also found the existence of
“unconditional defectors” who persistently contributed nothing.

The experiment by Fischbacher et al. (2001) suggests that
people have strong preference to coordinate their behavior with
others, if possible, even in a one-shot interaction. One may

think that a one-shot interaction in the real world is truly “one-
shot” in the sense that no communication outside the game
is allowed, but it is not necessarily true. There is sometimes a
stage of negotiation or discussion by the participants before the
actual game is played, where they talk with each other and can
coordinate their behavior. One good example is international
negotiation about the global climate change, where many hours
of discussion are performed before participants finally decide
whether or not to cooperate (Smead et al., 2014).

The aim of this paper is to explicitly model the process of
negotiation that occurs prior to the game to understand its
potential role in the evolution of cooperation. In that sense, my
model is specific to human behavior because it is hard to imagine
that non-human animals are engaged in negotiation before social
interactions. I am in particular interested in whether it explains
the emergence and maintenance of conditional cooperators in a
linear public goods game. As a result of my analysis, I find that
conditional cooperators and unconditional ones are sustained in
the population through frequency dependent selection for a wide
range of parameters. I will also discuss my model limitations in
Discussion.

2. MODEL

2.1. Public Goods Game
I study a linear public goods game played by n(≥ 2) players.
Each player ultimately chooses one action, either cooperation
(hereafter abbreviated as C) or defection (abbreviated as D). Each
cooperator pays the cost c for a public good, but defectors do not.
The total payment is aggregated, multiplied by the factor r, and
equally redistributed to the participants of the game irrespective
of their contribution to the public good. Therefore, when there
are k cooperators and n − k defectors in the game, their payoffs
are given respectively as

WC = −c+
rkc

n
,

WD =
rkc

n
.

(2)

When one pays the cost c, it yields the net benefit of rc to
the group. Equivalently, for each additional contribution c, each
individual obtains the benefit of rc/n. Hereafter I assume 1 <

r < n such that contribution to the public good is beneficial to a
group (i.e., rc > c) but not to an individual (i.e., rc/n < c).

2.2. Strategies
In order to consider coordinated actions by players, here I assume
that players in the game possess a conditional strategy. More
specifically, a player refers to the actions of the other n − 1
players and conditions its own action (C or D) on the number
of cooperators among those n − 1 players. Because the number
of cooperators excluding self can be either 0, 1, · · · , or n − 1
(= n possibilities), a conceivable strategy takes the form of an
n-digit sequence of letters of C or D, the k-th letter (1 ≤ k ≤ n)
of which corresponds to the action prescribed by that strategy
when the number of cooperators excluding self is exactly equal
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to k − 1. For example, CCC· · ·CC is the strategy that always
prescribes cooperation irrespective of others’ actions, which is so
called ALLC strategy. The strategy DDD· · ·DD always defects, so
it is called ALLD strategy. Of course more complicated strategies
are possible; for example, the strategy CDCDCD· · · prescribes
cooperation when the number of cooperators excluding self is
even, and defection when odd. There are 2n possible strategies
in total.

Out of all conceivable strategies, I especially pay attention to
simple ones; those which have a minimum threshold level for
cooperation. In other words, I consider strategies in the form of

D · · ·D
︸ ︷︷ ︸

k

C · · ·C
︸ ︷︷ ︸

n−k

. (0 ≤ k ≤ n) (3)

The strategy represented by Equation (3) cooperates when the
number of cooperators excluding self is at least k, otherwise
defects. Let us call this strategy Ck. Obviously C0 is the ALLC
strategy and Cn is the ALLD strategy. In between are strategies
that cooperate only if some others cooperate. In other words,
the index number k represents the degree of resistance against
cooperation. In the following I will consider only those (n + 1)
strategies, from C0 to Cn.

2.3. How Negotiation Proceeds
Since players condition their actions on other players’ actions,
which in turn are dependent on other players’ actions, it is not
straightforward to predict the final consequence of the game
interaction. Therefore I model the negotiation stage prior to the
actual game in the following way. First, to each of the n players,
his/her initial thought, either C or D, is assigned by some specific
rule. Here, thought means one’s temporal but not final decision,
which is observable to everyone, but does not affect one’s payoff
at all. It is instructive to imagine, for example, n human agents
at a negotiation table. Those agents simultaneously announce
their initial thoughts, and therefore I can assume that perceiving
others’ thoughts is easy and costless. A combination of all players’
thought, that is usually expressed by an n-tuple of C or D, is called
a state. Given an initial state in the negotiation stage, a player is
randomly chosen, and is given an opportunity to change his/her
thought, from C to D, or from D to C, if his/her conditional
strategy prescribes so. For example, if a C3 strategist, currently
having thought C, finds only two other C’s in the group, he/she
changes his/her thought to D, because he/she needs at least three
other C players to keep his/her current thought to play C. This
change of his/her thought is announced to everyone. In the
next step, a player is randomly chosen again for an update, and
this procedure is repeated until no one wants to change his/her
thought. I call such a final state stationary state. In SectionA in the
Supplementary Material I prove that there always exists at least
one stationary state, so this negotiation surely ends. However,
multiple stationary states are possible, and which stationary state
is reached depends on players’ initial thought and the order of
updates. Once a stationary state is reached, all players transform
their thought to an actual action in the public goods game, they
obtain payoffs, and the game ends. Here I exclude the possibility
of lying (that is, one takes the opposite action to his/her thought

at the stationary state in the negotiation), and this point will be
discussed more in Discussion.

2.4. Example
To facilitate a better understanding of the model, consider an
example of the three-person game played by individuals X, Y, and
Z. Suppose that X and Y adopt strategy C1 while Z adopts strategy
C2. Below I will represent the temporal thought of those three
players by a triplet, such as (X, Y, Z) = (D, C, C).

Suppose that the initial state is (D, C, C). If players chosen
randomly in the first four update steps are Y, Z, X, and Z in this
order, the following state transition occurs;

(D, C, C) −−−−−→
Y chosen

(D, C, C) −−−−−→
Z chosen

(D, C, D)

−−−−−→
X chosen

(C, C, D) −−−−−→
Z chosen

(C, C, C). (4)

In the first step Y is chosen. Y finds there is one cooperator, Z,
and that satisfies his threshold. Therefore Y does not change his
thought. In the second step Z is chosen. Z finds there is one
cooperator, Y, but that does not satisfy his threshold. Therefore
Z changes from C to D. In the third step, X is chosen. X finds
that there is one cooperator, Y, and that satisfies his threshold.
Therefore X changes from D to C. In the fourth step, Z is chosen.
In contrast to the second step, Z finds two cooperators, X and Y,
which satisfies his threshold. Therefore Z changes from D to C.
It is easy to see that (C, C, C) is a stationary state for them. Thus
they play an actual public goods game, all of them pay the cost of
cooperation, and enjoy the benefit from the public good.

It is notable that in the transition shown in Equation (4),
individual Z made two changes, from D to C and from C to D.
Such a transition is possible depending on the order of updates.
In addition, it is not difficult to see that (D,D,D) is another
stationary state. For example, if players randomly chosen in the
first two steps are Z and Y in this order, the following transition
occurs, leading to no cooperation.

(D, C, C) −−−−−→
Z chosen

(D, C, D) −−−−−→
Y chosen

(D,D,D). (5)

2.5. Initial State
As I have seen above, initial states have a great impact on the
consequence of negotiation. Players may have predisposition
either toward C or D, but here I assume that each player
independently has initial thought C with probability p, and initial
thought D with probability 1 − p. When p = 0, it means that
the default action is D. This is true when cooperation takes the
form of active contribution; cooperation means doing something
and defection means doing nothing. For example, monetary
investment to a public good often takes this form. In contrast,
p = 1 means that the default action is C. This is true when
defection takes the form of active exploitation; defection means
doing something and cooperation means doing nothing. Forest
conservation can be a good example of this. Cutting trees and
selling timber is exploitative defection, whereas not cutting trees
is passive cooperation. Therefore I cannot necessarily set the
value of p a priori. Instead, I treat p as my model parameter.
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Another rationale behind the parameter p, especially when it
is between 0 and 1, is that it reflects some uncertainty in the game.
It could be the case that players do not perfectly know the payoff
structure of the game at the beginning, in which case they may
temporarily choose either one of the actions.

Although the value of p can possibly be chosen independently
and strategically by different strategies, here I assume for
simplicity that p is common among all the strategies. Therefore
p is not an evolutionary trait but a model constant in this paper.

2.6. Population Game and Evolutionary
Dynamics
So far I have explained the public goods game played by n players,
but I will also consider a population of players. Suppose that
there is a population of players of size M (either infinitely large
or finite). For each public goods game n players are randomly
chosen from the population, they play a one-shot public goods
game with a negotiation stage described above, and return to the
population. Such n-person games are played many times, and
each individual obtains an average payoff per game, which I will
denote by w.

Time change of frequencies of strategies can be studied by
evolutionary dynamics, which are based on a simple criterion that
successful strategies increase in frequency. Note that equations
of evolutionary dynamics can describe both genetic evolution, in
which information is transmitted through genetic materials, and
cultural evolution, in which information such as ideas or norms
can be transmitted culturally, in a quite similar form (Traulsen
et al., 2009, 2010); here it is natural to consider cultural evolution.
For an infinitely large population, M = ∞, the evolutionary
dynamics of (n + 1) strategies, from C0 to Cn are described by
the replicator equation (Taylor and Jonker, 1978; Hofbauer and
Sigmund, 1998; Nowak, 2006a);

ẋk = xk(wk − w), (6)

where xk and wk are the frequency and the average payoff of
strategy Ck, respectively. The average payoff in the population,
w, is calculated as w ≡

∑n
ℓ=0 xℓwℓ. The dynamics is defined in

the n-dimensional simplex, Sn+1, where xk’s are non-negative and
they sum up to unity.

For a finite population, M < ∞, a frequency-dependent
Moran process (Nowak et al., 2004) and pairwise comparison
processes (Traulsen et al., 2005, 2007) are standard models
to describe its evolutionary dynamics. Similarly to the infinite
population case, players are engaged in many n-person games
and obtain average payoffs. In each elementary step of updating,
two players are randomly chosen from the population (with
replacement). The first player compares his payoff with that of
the second player. Let 1 be the payoff of the second player minus
that of the first. Then the first player copies the strategy of the
second player with probability

1

1+ exp[−s1]
, (7)

otherwise he stays with the current strategy. Here, the parameter
s > 0 is called intensity of selection (or inverse temperature).

TABLE 1 | Stationary states in the two-person game.

Composition of players Stationary states Probability of occurrence

(C0, C0) (C, C) 1

(C0, C1) (C, C) 1

(C0, C2) (C, D) 1

(C1, C1)
(C, C) p

(D, D) 1− p

(C1, C2) (D, D) 1

(C2, C2) (D, D) 1

The functional form of Equation (7) comes from the Fermi
distribution function in physics (Traulsen et al., 2006, 2007), so
this process is sometimes referred to as Fermi process (Traulsen
and Hauert, 2009). Equation (7) suggests that the first player is
more likely to copy the strategy of the second player if the payoff
difference, 1, is larger.

Because of a finite population size, once all players adopt the
same strategy, no other strategies can invade the population.
Such a phenomenon is called fixation. In order to avoid fixation
of strategies, I consider mutation in strategies. With a positive
probability,µ > 0, the first player who is chosen in an elementary
step of updating changes his strategy to another random strategy,
irrespective of the payoff difference, 1. Under the limit of
µ → 0, a newly arising mutant in a resident population either
goes to extinct or takes over the whole population before a next
mutant arises. Such limit is sometimes referred to as adiabatic
limit (Sigmund et al., 2010, 2011). In the adiabatic limit only
possible transitions are those from onemonomorphic population
to another, so fixation probabilities between two strategies
characterize the process (see Section B in the Supplementary
Material).

3. TWO-PERSON GAME

3.1. Payoffs
First I study the n = 2 person game. Let ak,ℓ be the payoff of a
Ck player matched with a Cℓ player. There are six different types
of encounters, (C0, C0), (C0, C1), (C0, C2), (C1, C1), (C1, C2),
and (C2, C2). It is easy to confirm that the stationary state of
each encounter except (C1, C1) is unique. According to Table 1,
payoffs are

a0,0 = −c+ rc

a0,1 = −c+ rc a1,0 = −c+ rc

a0,2 = −c+
1

2
rc a2,0 =

1

2
rc (8a)

a1,2 = 0 a2,1 = 0

a2,2 = 0.

On the other hand, the encounter (C1, C1) needs consideration.
There are two stationary states, (C, C) and (D,D). If the initial
state is (C, C) (which occurs with probability p2) or (D,D) (which
occurs with probability (1 − p)2), it is already a stationary
state. If the initial state is (C, D) or (D, C) (which occurs with

Frontiers in Ecology and Evolution | www.frontiersin.org May 2018 | Volume 6 | Article 6226

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ohtsuki Coordinated Cooperation

probability 2p(1 − p)), however, who updates first matters. If
the one with thought C is chosen for an update, he changes to
D and mutual defection results. If the one with thought D is
chosen for an update, he changes to C and mutual cooperation
results. These chances are even. Therefore, for the encounter
(C1, C1), the probability that they arrive at mutual cooperation
is p2 +

1
2 · 2p(1 − p) = p, and that of mutual defection is

(1− p)2 + 1
2 · 2p(1− p) = 1− p. As a result, I obtain

a1,1 = p(−c+ rc)+ (1− p) · 0 = p(−c+ rc). (8b)

To summarize, I have obtained the following payoff matrix of the
game;

A =





C0 C1 C2

C0 −c+ rc −c+ rc −c+ 1
2 rc

C1 −c+ rc p(−c+ rc) 0
C2

1
2 rc 0 0



. (9)

3.2. Infinite Population
Evolutionary game dynamics based on the payoff matrix,
Equation (9), are shown in Figure 1 for the three separate cases,
(a) p = 0, (b) 0 < p < 1, and (c) p = 1.

Firstly I look at the two extreme cases. When p = 0
(see Figure 1A), everyone initially chooses defection. Therefore
no cooperation arises unless there is at least one C0 player.
Obviously C1 is invaded by C0, which in turn is invaded by C2.
In the absence of C0 strategy, C1 and C2 are neutral. There is
a continuum of fixed points on the C1-C2 edge, a part of the
segment including the C1 corner consists of unstable fixed points;
introduction of C0 players drives the population away from these
fixed points. The other segment including the C2 corner consists
of stable fixed points. Its mirror image is obtained when one
considers the case of p = 1 (Figure 1C), where C2 invades C0

but it is invaded by C1. The C0-C1 edge consists of unstable and
stable segments.

Dynamics are in between these extreme cases when 0 < p < 1
(see Figure 1B). There is an internal fixed point and myriads of
closed orbits surround it. Strategy C1 invades the population of
C2, which is invaded by C0, which is invaded by C2. The edges
of the simplex constitute a heteroclinic cycle. The frequencies of

strategies at the internal fixed point is given as

(x∗0 , x
∗

1 , x
∗

2) =

(

2p(r − 1)

r
,
2− r

r
,
2(1− p)(r − 1)

r

)

. (10)

It is worthwhile to mention that the two-player game dynamics
are equivalent to the dynamics of ALLC, ALLD, and Tit-For-Tat
(TFT) strategies in a repeated Prisoner’s Dilemma game (Brandt
and Sigmund, 2006; Sigmund, 2010). To see this, consider a
two-person Prisoner’s Dilemma game with the following payoff
matrix;

(

C D

C −C + B −C
D B 0

)

, (11)

where C is the cost and B is the benefit of cooperation, and
consider a repeated game of this Prisoner’s Dilemma with a
discounting factor, δ. ALLC players always cooperate. ALLD
players always defect. TFT players cooperate in the first round,
and then imitate whatever the opponent did in the previous
round. I also consider errors; I assume that an erroneous
defection occurs with probability (1 − k)ǫ when one intends
cooperation, and that an erroneous cooperation occurs with
probability kǫ when one intends defection. Let A′ be the payoff
matrix of this repeated game, each pivot representing a payoff per
round. In the double limit of δ → 1 and then ǫ → 0, it turns to
be

lim
ǫ→0

lim
δ→1

A′
=





ALLC TFT ALLD

ALLC −C + B −C + B −C
TFT −C + B k(−C + B) 0
ALLD B 0 0



, (12)

which is formally equivalent to Equation (9) with the
transformation of B ≡ rc/2,C ≡ c − (rc/2) and k ≡ p (see
Figure 3 of Brandt and Sigmund, 2006). This correspondence
makes sense, because the negotiation stage in my model can be
interpreted as hypothetical rounds of the repeated game where
payoffs are not counted. The limit δ → 1 means that I count
only payoffs in future rounds after a stationary state is reached.

I also find differences between the two models. In my model,
players’ thought is updated asynchronously such that at most one

FIGURE 1 | Replicator dynamics of the two-person game played in an infinitely large population. (A) When p = 0, (B) when 0 < p < 1, and (C) when p = 1. Filled

circles represent Lyapunov stable equilibria, whereas open circles represent unstable ones. Parameter: r = 1.6.
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FIGURE 2 | Time-averaged frequencies of strategies in the Fermi process for

the two-person game for various intensity of selection, s. Dark-colored dotted

lines in the right show the stationary distribution of strategies,

(q0,q1,q2) = ( 14 ,
1
4 ,

1
2 ), predicted by Equation (13) for the adiabatic limit. Note

that there is a considerable overlap between blue (strategy C0) and green

(strategy C1) dots and lines. When s is close to zero, each strategy has

approximately the frequency of one third. Parameters:

M = 36,p = 0.5, r = 1.5 and c = 1.0. Mutation rate was set to µ = 10−4 per

elementary updating step. M elementary steps constitute one generation.

Time average was taken over 108 generations.

player can change his thought (C to D, or D to C) in one updating
event. In contrast, players in the repeated game change their
actions (C to D, or D to C) in a synchronous fashion; each player
takes into account the previous action by the partner. Another
difference is that, while errors are not assumed in my model, the
model of the repeated game does consider erroneous defection
and cooperation. It is interesting that my parameter p, that is the
probability that initial intension is C, correspond exactly to the
parameter k in the repeated game model, which represents the
fraction of erroneous cooperation among all erroneous moves.

3.3. Finite Population
To simplify the analysis, I consider the adiabatic limit, µ → 0,
and strong selection, s → ∞. More precisely speaking, I first take
the limit µ → 0 and then take the limit s → ∞.

Under the adiabatic limit, the population is almost always
monomorphic in strategies. Therefore I can consider the
stationary distribution over the three strategies; namely how
much proportion of time the stochastic game dynamics spends
at each monomorphic state. Let qk (k = 0, 1, 2) represent
the fraction of time that the stochastic process spends at the
monomorphic population of strategy Ck. Calculations in Section
C in the Supplementary Material show that for M ≥ 3, the
following result holds;

(q0, q1, q2) =











( 1
M+3 ,

1
M+3 ,

M+1
M+3 ) if p = 0

( 14 ,
1
4 ,

1
2 ) if 0 < p < 1

( 1
M+4 ,

M+1
M+4 ,

2
M+4 ) if p = 1.

(13)

Computer simulations confirm the validity of this result
(Figure 2). To understand the significance of the result, it is

TABLE 2 | Stationary states in the three-person game.

Composition of players Stationary states Probability of occurrence

(C0, C0, C0) (C, C,C) 1

(C0, C0, C1) (C, C,C) 1

(C0, C0, C2) (C, C,C) 1

(C0, C0, C3) (C, C, D) 1

(C0, C1, C1) (C, C,C) 1

(C0, C1, C2) (C, C,C) 1

(C0, C1, C3) (C, C, D) 1

(C0, C2, C2)
(C, C,C) 1

2p
2
+

1
2p

(C, D, D) −
1
2p

2
−

1
2 p+ 1

(C0, C2, C3) (C, D, D) 1

(C0, C3, C3) (C, D, D) 1

(C1, C1, C1)
(C, C,C) −p2 + 2p

(D, D, D) p2 − 2p+ 1

(C1, C1, C2)
(C, C,C) −

1
2p

2
+

3
2p

(D, D, D) 1
2p

2
−

3
2p+ 1

(C1, C1, C3)
(C, C, D) −

1
2p

2
+

3
2p

(D, D, D) 1
2p

2
−

3
2p+ 1

(C1, C2, C2)
(C, C,C) 1

2p
2
+

1
2p

(D, D, D) −
1
2p

2
−

1
2 p+ 1

(C1, C2, C3) (D, D, D) 1

(C1, C3, C3) (D, D, D) 1

(C2, C2, C2)
(C, C,C) p2

(D, D, D) −p2 + 1

(C2, C2, C3) (D, D, D) 1

(C2, C3, C3) (D, D, D) 1

(C3, C3, C3) (D, D, D) 1

instructive to consider a traditional framework of social dilemma,
where only C0 and C2 strategies are possible. In this case,
irrespective of the value of p, the stationary distribution of the
Fermi process under the adiabatic limit and strong selection is

(q0, q2) = (0, 1). (14)

Equation (13) thus suggests that the existence of coordinated
cooperators, C1, has a great impact on evolutionary dynamics.
For 0 < p < 1, unconditional cooperation (C0) is attained
a quarter of the time during evolution. This is because a C1

mutant in the population of C2 players has 50% chance of
fixation; once a C1 player replicates to two by chance, those two
C1 players have a positive (=p) chance of establishing mutual
cooperation and thus they can outcompete C2 players. However,
C1 players are invaded by C0 players, because a dyad of C1

players sometimes fail to establish mutual cooperation, which
is disadvantageous compared with C0. Obviously C0 is invaded
by C2, and such an evolutionary cycle repeats. In other words,
coordinated cooperators C1 work as a catalyst of cooperation. If
they exist, sociality is promoted and rationality is hindered.

Such an effect is much more dramatic when p = 1. In this
case strategies C0 and C1 are completely neutral to each other,
and the only difference between them is whether or not they can
establish mutual cooperation in the population of C2 without
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being cheated. In fact, strategy C0 is easily exploited by C2 but
C1 is not. Therefore, for a large M, the population is dominated
by C1 most of the time.

4. THREE-PERSON GAME

4.1. Payoffs
Next I consider the n = 3 person game. Let ak,ℓ1ℓ2 be the
payoff of a Ck player matched with a Cℓ1 player and a Cℓ2

player. Obviously ak,ℓ1ℓ2 = ak,ℓ2ℓ1 holds. In the three-person
game with four different strategies from C0 to C3 there are 20
possible encounters, which are listed up in Table 2. For each case,
the probability with which negotiation reaches each possible
stationary state is calculated (see Section D in the Supplementary
Material). As a result I arrive at the following payoff matrix;

A =















C0C0 C0C1 C0C2 C0C3 C1C1

C0 −c+ rc −c+ rc −c+ rc −c+ 2
3 rc −c+ rc

C1 −c+ rc −c+ rc −c+ rc −c+ 2
3 rc p(2− p)(−c+ rc)

C2 −c+ rc −c+ rc −
p(1+p)

2 c+
p2+p+1

3 rc 1
3 rc

p(3−p)
2 (−c+ rc)

C3
2
3 rc

2
3 rc

1
3 rc

1
3 rc

p(3−p)
3 rc

C1C2 C1C3 C2C2 C2C3 C3C3

−c+ rc −c+ 2
3 rc −c+

p2+p+1
3 rc −c+ 1

3 rc −c+ 1
3 rc

p(3−p)
2 (−c+ rc) −

p(3−p)
2 c+

p(3−p)
3 rc

p(1+p)
2 (−c+ rc) 0 0

p(1+p)
2 (−c+ rc) 0 p2(−c+ rc) 0 0

0 0 0 0 0















.

(15)

Because I assume randommatching of players, the average payoff

of a Ck player is calculated as

wk =

3
∑

ℓ2=0

3
∑

ℓ1=0

ak,ℓ1ℓ2xℓ1xℓ2 , (16)

where xℓ represents the frequency of Cℓ players in the population.

4.2. Infinite Population
As before I consider the replicator equation, Equation (6). Since
the payoff is already quadratic in x, as in Equation (16), the
resulting replicator dynamics are highly non-linear. As a result,
I have to largely rely on numerical simulations to study the
whole dynamics. However, the evolutionary dynamics restricted
on either of the six edges of the simplex S4 are rather easy to study,
because they are essentially reduced to a one-dimensional system.

I will hereafter consider when 0 < p < 1. The analysis in
Section E in the Supplementary Material shows that behavior on
four of the six edges is straightforward; C2 increases on the C3-
C2 edge, C1 increases on the C2-C1 edge, C0 increases on the
C1-C0 edge, and C3 increases on the C0-C3 edge. Therefore, there
always exists a heteroclinic cycle connecting the four vertices of
the simplex: C3 → C2 → C1 → C0 → C3. As for the C0-C2

edge, if

3

2
< r <

3+ 3p

1+ 2p
(17)

holds there exists one unstable equilibrium (which I
hereafter call P02) and the system shows bistability.
If r is smaller than 3/2, strategy C2 dominates C0.
If r is greater than (3 + 3p)/(1 + 2p), strategy C0

dominates C2.
On the C1-C3 edge, in contrast, if

3

2
< r <

6− 3p

3− 2p
. (18)

holds there exists one stable equilibrium (which I hereafter
call Q13) and the system allows the coexistence of the two

strategies. If r is smaller than 3/2, strategy C3 dominates C1. If
r is greater than (6 − 3p)/(3 − 2p), strategy C1 dominates C3.

Numerical simulations suggests that when r < 3/2 the
dynamics either converge to a trimorphic equilibrium or an
evolutionary cycle with strategies C1, C2 and C3 present but
C0 absent (see Figure 3). When r > 3/2, the outcome of
evolutionary dynamics seems to rely on the stability of the
dimorphic rest point, Q13. It is possible to show that Q13 is always
stable against the invasion of C2. However, it is stable against the
invasion of C0 only when r is below some threshold, rc = rc(p).
When 3/2 < r < rc the system converges to the dimorphic
equilibrium, Q13, with strategies C1 and C3 present.When r > rc,
the system converges to a trimorphic equilibrium with strategies
C0, C1 and C3 present but C2 absent. Figure 3 shows the phase
diagram in the (p, r)-space according to this classification as well
as long term consequences of evolutionary dynamics. It is easy
to see there that the instability/stability of Q13 accurately predicts
whether strategy C0 is present or absent after a long run.

4.3. Finite Population
As before I consider the adiabatic limit and strong selection.
The analysis for an infinite population above showed that a
coexisting equilibrium (Q13) can exist on the C1-C3 edge. In
this case a C1 mutant appearing in the finite population of
C3 or vice versa is highly likely to lead the population to a
stable mixture of C1 and C3, and the population will be trapped
for a considerably long time there. Nevertheless stochasticity
eventually causes either one of the strategies to fixate in the
population, and the assumption of the adiabatic limit guarantees
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FIGURE 3 | Long-term consequences of replicator dynamics of the three-person game in an infinitely large population. Numerical calculations were performed from

the initial condition in which all the four strategies were equally abundant (frequency = 1/4). If dynamics converge to a fixed point, its composition of strategies is

shown by a small pie chart. “Cycle" means that the dynamics do not converge but show stable oscillation among three strategies, C1, C2, and C3. The three solid

lines represent r = 3/2, (6− 3p)/(3− 2p) and (3+ 3p)/(1+ 2p), respectively. The dotted line represents r = rc(p), above which the unstable equilibrium Q13 is not

robust against the invasion of C0. Parameters studied: p ∈ {0.1, 0.2, · · · , 0.8, 0.9} and r ∈ {1.2, 1.4, · · · , 2.6, 2.8}.

that no second mutation occurs before the first mutant either
disappears or fixates in the population.

Section F in the Supplementary Material shows the full
analysis of the Fermi process. For 0 < p < 1, I find
that the stationary distribution differs between the four
parameter regions shown in Figure 4. Similarly to section 3.3, let
qk (k = 0, 1, 2, 3) be the fraction of time that the Fermi process
spends at the monomorphic population of strategy Ck in the
stationary distribution. For a largeM, the following result holds;

(q0, q1, q2, q3) =























1
16 (5, 4, 1, 6) = (0.3125, 0.2500, 0.0625, 0.3750) (if r >

3+3p
1+2p )

1
18 (5, 5, 2, 6) = (0.2778, 0.2778, 0.1111, 0.3333) (if 7−3p

4−2p < r <
3+3p
1+2p )

1
10 (1, 1, 2, 6) = (0.1000, 0.1000, 0.2000, 0.6000) (if 3

2 < r <
7−3p
4−2p )

1
26 (2, 3, 6, 15) = (0.0769, 0.1154, 0.2308, 0.5769) (if r < 3

2 ).

(19)

Compare this result with the result of a conventional model that
allows only C0 and C3, which is

(q0, q3) = (0, 1). (20)

Obviously the existence of strategies C1 and C2 dramatically
increases the possibility of cooperation. For example, Equation
(19) states that evolution favors strategies other than full
defection (C3) 62.5% of the time when r is large. Remember
that without C1 and C2 full defection (C3) prevails over full
cooperation (C0) because the former exploits the benefit yielded
by the latter. However, as I saw in section 4.2, strategies C1 and

C2 always create an invasion path of C3 → C2 → C1 → C0.
Additionally, when r is large there are other invasion paths, such
as C3 → C2 → C0 and C3 → C1 → C0. These paths contribute
to the evolutionary success of more cooperative strategies. I have
confirmed the validity of the analytical results [Equation (19)]
by computer simulations for parameters that do not allow the
existence of stable equilibrium Q13 in the corresponding infinite
population model (Figures 5, 6). Note that when Q13 exists and
when the population size M is large, it takes enormous time to

numerically confirm Equation (19) due to the reason described in
the beginning of this subsection. Analyses for the cases of p = 0
and p = 1 are found in Section F in the Supplementary Material.

5. DISCUSSION

This paper explicitly models the process of negotiation
among players, including conditional cooperators, to study its
evolutionary consequences. There is much similarity between
my model here and previous models of repeated games. In
particular, my strategy Ck, which changes his/her own thought
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FIGURE 4 | A stationary distribution of the Fermi process of the three-person game in a finite population of size M(≫1). Each small pie chart represents how much

fraction of time the Fermi process stays at each monomorphic state. The three solid lines represent r = 3/2, (7− 3p)/(4− 2p) and (3+ 3p)/(1+ 2p), respectively.

Parameters studied: p ∈ {0.1, 0.2, · · · , 0.8, 0.9} and r ∈ {1.2, 1.4, · · · , 2.6, 2.8}.

FIGURE 5 | Time-averaged frequencies of strategies in the Fermi process for

the three-person game for various intensity of selection, s. Dark-colored

dotted lines in the right show the stationary distribution of strategies,

(q0,q1,q2,q3) =
1
16 (5, 4, 1, 6), predicted by Equation (19) for the adiabatic

limit. When s is close to zero, each strategy has approximately the frequency

of one fourth. Parameters: M = 36,p = 0.5, r = 2.5 and c = 1.0. Mutation

rate was set to µ = 10−4 per elementary updating step. M elementary steps

constitute one generation. Time average was taken over 108 generations.

to cooperation if and only if k or more than k others show the
thought of cooperation, corresponds to strategy Ta proposed by
Boyd and Richerson (1988), which cooperates in the next round
of the repeated Prisoner’s Dilemma game if and only if a or
more than a others play cooperation in the current round. A very
similar formulation is also found in Segbroeck et al. (2012), where

FIGURE 6 | Time-averaged frequencies of strategies in the Fermi process for

the three-person game for various intensity of selection, s. Multiplication factor

is set to r = 1.25. The other parameters are the same as in Figure 5. The

predicted stationary distribution under the adiabatic limit is

(q0,q1,q2,q3) =
1
26 (2, 3, 6, 15) in this case.

their RM strategy cooperates if M or more than M individuals
(including self) cooperated in the previous round. Two major
differences between the current model and those previousmodels
are; that (i) only the final state of negotiation affects one’s payoff
in my model whereas each round of the repeated game yields a
payoff to players in the models of Boyd and Richerson (1988)
and Segbroeck et al. (2012), and that (ii) players update their
thought asynchronously in the negotiation stage in my model
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whereas all players update their actions synchronously in Boyd
and Richerson (1988) and Segbroeck et al. (2012). Conditional
cooperators in my model can detect unconditional defectors
during negotiation at no cost and avoid being exploited by them,
while conditional cooperators in Boyd and Richerson (1988)
and Segbroeck et al. (2012) can detect unconditional defectors
only after being exploited by them in the first round of the
repeated game and hence detection of unconditional defectors
is costly there (compare Figures 2, 3 of Brandt and Sigmund,
2006 to understand how the payoff in the first round qualitatively
changes evolutionary dynamics). Similar phenomena, though the
modeling framework is quite different from the current one, were
found in the continuous-time, two-player “coaction” model by
van Doorn et al. (2014), where the authors found that (i) real
time coaction in response to partner’s behavior (analogous to
my negotiation stage) generally favors cooperation but that (ii)
once delay in information about the behavior of one’s partner
is introduced, as is often the case with discrete-round repeated
Prisoner’s Dilemma games, achieving cooperation becomes more
difficult. Therefore, the introduction of a negotiation stage, if
the possibility of lying is suppressed by some mechanism such
as punishment (Sigmund et al., 2010; Quiñones et al., 2016)
or ostracism (Nakamaru and Yokoyama, 2014), contributes to
enhancing the efficiency of conditional cooperation.

It is notable that my model explains the presence of
conditional cooperation not as an evolutionarily stable strategy
(ESS). For example, a classical ESS analysis of the Tit-For-Tat
strategy (Axelrod and Hamilton, 1981) predicts that everyone
should adopt conditional cooperation at an evolutionary
equilibrium. However, recent experiments strongly suggest that
there is wide variation in behavior among people (Fischbacher
et al., 2001; Martinsson et al., 2013). My analysis here, in contrast,
predicts evolutionary coexistence of many types of players. In
fact, I have found, for both two-player and three-player games
and in both infinite and finite population analyses, that the
existence of conditional cooperators creates a cycle of invasion,
in which unconditional defectors are invaded by conditional
cooperators, which are invaded by unconditional cooperators,
which are then invaded by unconditional defectors. As a result,
cooperation is sustained to some degree in the population.
Note that, although my model predicts such cyclical invasion
over time, it should be best interpreted as the possibility of
polymorphism, because the evolutionary model here inevitably
simplifies other factors of human decision making. A similar
evolutionary cycle has been found in Segbroeck et al. (2012).
Conditional cooperators work as an evolutionary catalyst; they
create an evolutionary advantage of being a cooperator, and self-
sustain their presence in the population. This is quite in contrast
to a population with unconditional defectors and unconditional
cooperators only, where defection is a dominating strategy.

As mentioned in the Model section, my negotiation model
makes a very strong assumption; that players can never change
the action (i.e., never tell a lie) once the negotiation reaches a
stationary state. It can be understood such that players make
a commitment before the game is actually played. Recently, a
series of papers analyzed the effect of such pre-commitments
on evolution of cooperation (Han et al., 2013, 2015a,b, 2017a,b;
Sasaki et al., 2015; Han and Lenaerts, 2016) and found that

pre-commitments were effective in enhancing cooperation.
Those works typically assume that players can choose whether
they make a costly commitment before the game. If one breaks
the commitment he or she has to pay a fine. It has been shown
that a large fine enhances the success of commitment strategies
(Han et al., 2013, 2015a, 2017a). Another possible way to suppress
those who make a fake commitment would be to exclude them
from other games in the future. I have not modeled these
“outside-game” possibilities in this paper but have concentrated
on describing the one-shot negotiation game.

Among those papers on pre-commitments, Han et al. (2017a)
has notable similarity to my current model, because both study
public goods games and consider conditional cooperators who
are keen to the behavior of others in the group. Through a finite
population game dynamics analysis, Han et al. (2017a) essentially
found a similar evolutionary cycle, from unconditional defectors
to conditional cooperators, then to unconditional cooperators,
and then to unconditional defectors again. In contrast, there
is a remarkable difference between these two models. In my
model players make “commitments” to cooperate or to defect
depending on the number of other cooperators and defectors
during a process of dynamic negotiation. In the model of Han
et al. (2017a), however, all players except pure defectors first do
make commitments to cooperate, and then count the number
of committers to see if this number exceeds their threshold to
actually play the public goods game.

My model does not rely on the mechanism of direct
reciprocity in the sense that the same individuals do not have
to interact repeatedly. This feature is shared by models of
generalized reciprocity (Hamilton and Taborsky, 2005; Pfeiffer
et al., 2005; Chiong and Kirley, 2015), where individuals
make decisions based on the previous encounter with other
group members. A driving force of evolution of generalized
reciprocity is assortment of cooperative strategies (Rankin and
Taborsky, 2009) based on contingent movement of individuals
between groups (Hamilton and Taborsky, 2005), a small
group size (Pfeiffer et al., 2005) (but see Barta et al. (2011),
where random drift helps generalized reciprocity to overcome
initial disadvantage in a large group), or network structure
(van Doorn and Taborsky, 2012). Generalized reciprocity has
been proposed as a mechanism that does not require high
cognitive ability, and hence is applicable to cooperation by
non-human animals (Rutte and Taborsky, 2007; Schneeberger
et al., 2012; Leimgruber et al., 2014; Gfrerer and Taborsky,
2017) as well as empathy-based cooperation by humans
(Bartlett and DeSteno, 2006; Stanca, 2009). In contrast, a
driving force of cooperation in my model is coordination
of behavior based on negotiation and pre-commitments.
Therefore, its scope of application is rather cognition-
based cooperation (and defection), which characterizes
another aspect of human sociality (Knoch et al., 2006;
Baumgartner et al., 2011; Ruff et al., 2013; Yamagishi et al.,
2016).

A technical advantage of employing the finite population
analysis is that, in contrast to replicator dynamics analysis for an
infinitely large population where outcomes can be dependent on
initial conditions and many complexities can arise due to high
dimensionality, it can predict a stationary probability distribution
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that is independent of initial conditions. There is limitation inmy
analysis based on the adiabatic limit and strong selection, though,
because mutation rate must be unrealistically low for the Fermi
process to reach either end of the C1-C3 edge (i.e., fixation of
one strategy) despite the tendency of evolutionary coexistence
of those two strategies due to negative frequency-dependent
selection. Nevertheless, I believe that this methodology can give
us some insights that would not have been derived by replicator
dynamics analyses.

There is a growing interest in studying negotiation processes
to see how flexibility in behavior shapes an evolutionary outcome
(McNamara et al., 1999; McNamara, 2013; Quiñones et al., 2016;
Ito et al., 2017). My negotiation model here is such an attempt to
reveal the origin of conditional cooperators and to explain why
we observe both cooperation and defection in the real world.
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Third-party punishment is a common mechanism to promote cooperation in humans.

Theoretical models of evolution of cooperation predict that punishment maintains

cooperation if it is sufficiently frequent. On the other hand, empirical studies have found

that participants frequently punishing others do not success in comparison with those

not eager to punish others, suggesting that punishment is suboptimal and thus should

not be frequent. That being the case, our question is what mechanism, if any, can

sustain cooperation even if punishment is rare. The present study proposes that one

possible mechanism is risk-averse social learning. Using the method of evolutionary

game dynamics, we investigate the effect of risk attitude of individuals on the question.

In our framework, individuals select a strategy based on its risk, i.e., the variance of the

payoff, as well as its expected payoff; risk-averse individuals prefer to select a strategy

with low variable payoff. Using the framework, we examine the evolution of cooperation in

two-player social dilemma games with punishment. We study two models: cooperators

and defectors compete, while defectors may be punished by an exogenous authority;

and cooperators, defectors, and cooperative punishers compete, while defectors may

be punished by the cooperative punishers. We find that in both models, risk-averse

individuals achieve stable cooperation with significantly low frequency of punishment.

We also examine three punishment variants: in each game, all defectors are punished;

only one of defectors is punished; and only a defector who exploits a cooperator or a

cooperative punisher is punished. We find that the first and second variants effectively

promote cooperation. Comparing the first and second variants, each can be more

effective than the other depending on punishment frequency.

Keywords: evolutionary game dynamics, cooperation, third-party punishment, social learning, risk aversion

1. INTRODUCTION

Cooperation is observed in various species, albeit it seems unfavorable in view of selfishness [1–3].
Among others, human cooperation is unique as they enforce themselves to cooperate by means
of social norms and institutions: norm violators are punished by community members and thus
cooperation is maintained [4–10]. In human cooperation, a punisher is often a third party who
does not directly suffer from a norm violation. From the viewpoint of rationality, the third-party
punisher has no incentive to vicariously punish the norm violator at a personal cost [7, 8]; therefore,
third-party punishment is another dilemma of cooperation [6, 10–12]. Despite that, empirical
studies suggest that third-party punishment is ubiquitous across humans [8, 13].
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Numerous evolutionary models have been proposed to solve
the dilemma of third-party punishment: group selection [14],
reputation as a signal to induce the others’ cooperation
toward the punisher [15], social structure that localizes
interactions [16, 17], conformist bias whereby a majority
strategy is imitated in social learning [18], an option to opt-
out of joint enterprize [12, 19], second-order punishment [20,
21], commitment to cooperation before playing a game [22],
and implicated punishment in which members in the same
group with a wrongdoer are also punished [23]. In all the
models, punishment should be sufficiently frequent to maintain
cooperation. On the other hand, laboratory studies found
that participants frequently engaged in punishment did not
success in comparison with those not eager for performing
punishment, suggesting that punishing others too frequently is
maladaptive [24, 25]. If so, how cooperation can be maintained
with only occasional third-party punishment?

In this study, we propose an idea to promote cooperation
even when third-party punishment is rare—risk aversion. An
obvious psychological fact is that norm violation is a risky choice:
it may provoke anger of community members that can lead to
actual execution of punishment to the norm violator [26]. In
fact, public executions were common in pre-modern societies,
intended by rulers to cause fear to commit a norm violation.
Moreover, experimental studies suggest that the mere threat of
punishment can promote cooperation [27, 28].

To incorporate risk psychology with evolutionary game, we
extend the canonical evolutionary game dynamics with a risk-
sensitive utility function, which can describe risk-prone and risk-
averse strategy selection. To summarize our results, risk aversion
promotes cooperation with a little bit of third-party punishment.

2. AUTHORITATIVE THIRD-PARTY
PUNISHMENT

We first introduce a simple model of competition between
cooperators and defectors in an infinite, well-mixed population,
in which defectors are probabilistically punished by a third-party
authority. From time to time, randomly sampled two individuals
play a social dilemma game called the weak prisoner’s dilemma
game [29] in which players have two options: cooperation (C)
and defection (D). Its payoff matrix is given by

C
D

C D
[

1 0
T 0

]

, (1)

where T > 1. In this game, mutual cooperation provides payoff 1
to both players, while they have temptation to enjoy one-sided
defection as it provides better payoff T (> 1). However, each
game is observed by an authoritative third-party punisher with
probability z, and those who have selected defection are fined
by an amount F (> 0). The population evolves according to
replicator dynamics [30, 31].

2.1. Evolutionary Stability of Cooperators
Here, we consider evolutionary stability of a monomorphic
population of cooperators against invasion by defectors. Our
finding is that risk aversion of individuals lower the required
frequency of observation to maintain cooperation; the authority’s
cost for punishment is significantly lower than the prediction by
the risk-neutral theory.

The ordinary evolutionary game dynamics assume that
players change strategies based on their expected payoffs. Let us
consider our model on this line. In a monomorphic population
of cooperators, the expected payoff of resident cooperators
is 1—they mutually cooperate—and that of mutant defectors
is T − zF—they enjoy one-sided defection but are punished
with probability z. Therefore, the population of cooperators is
evolutionarily stable against invasion by defectors, i.e., ESS, if
1 > T − zF, i.e.,

z >
T − 1

F
= : z∗neutral. (2)

The infimumof the required probability of observation, z∗neutral, is
a power function of the amount of fine, F; i.e., z∗neutral ∝ F−1 (the
dashed line in Figure 1). This implies that even if the authority
imposes a heavy fine on defectors, for maintaining cooperation,
the authority needs to punish defectors quite often; the cost to
maintain cooperation should be considerable.

We extend the ordinary theory by assuming that players
change strategies according to their utility. Given that using
strategy s results in a stochastic payoff represented by random

variable Rs (the realization of Rs is R
(i)
s with probability p(i)s where

i indicates each outcome), its utility is defined by

us =
1

β
logE

[

eβRs
]

, (3)

FIGURE 1 | The infimum of the required probability of observation by an

authority to maintain cooperation: individuals are risk newtral (dashed line;

z∗neutral where β = 0), risk averse (solid line; z∗biased with β = −1), or risk prone

(dotted line; z∗biased with β = 1). The red dot-dashed line represents the

asymptotic line to which z∗biased with β = 1 converges. Parameters: T = 2.
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where E
[

eβRs
]

=
∑

i p
(i)
s eβR

(i)
s represents the expected value of

random variable eβRs . Equation (3) is a well-known exponential
utility function developed by Pratt [32], Howard and Matheson
[33], Coraluppi and Marcus [34] and Mihatsch and Neuneier
[35]. It can be expanded to

E [Rs]+
β

2
Var [Rs]+ O(β2), (4)

where the first term is the expected value of the payoff and the
second term is proportional to the variance of the payoff. Thus,
if β = 0, the utility is equal to the expected value, implying risk-
neutral utility; if β < 0, the utility is decreased by the second
term, implying risk-averse utility with which an individual finds
a strategy less preferable if it produces a highly variable payoff;
and if β > 0, the utility is increased by the second term, implying
risk-prone utility with which an individual finds a strategy more
preferable if it produces a highly variable payoff.

In case of risk aversion or proneness (i.e., if β 6= 0), the
utility of being a cooperator and that of being a defector are, from
Equation (3), given by

uC =
1

β
log

[

1 · eβ·1
]

= 1 (5a)

and

uD =
1

β
log

[

z eβ(T−F)
+ (1− z) eβT

]

, (5b)

respectively. A straightforward calculation leads to the ESS
condition corresponding to Equation (2): uC > uD, i.e.,

z >
1− e−β(T−1)

1− e−βF
=: z∗biased. (6)

Note that limβ→0 z
∗

biased = z∗neutral holds true. If β < 0, its
asymptotic form is an exponential function of F—i.e., z∗biased ∝

eβF—and it rapidly approaches 0 as F increases (the solid line in
Figure 1). This implies that for maintaining cooperation among
risk-averse individuals, the authority needs to punish defectors
only occasionally. Compared to the ordinary theory, the cost to
maintain cooperation should be significantly less expensive. If
β > 0, z∗biased approaches 1 − e−β(T−1) (> 0) as F increases;
punishment needs to be most often (the dotted line in Figure 1).

2.2. Dimorphism of Cooperators and
Defectors
If Equations (2) or (6) is violated, defectors invade the
population of cooperators. After that, they may form a stable
dimorphic population with cooperators. Here, we study the
effect of risk attitude of individuals on such dimorphism. We
find that risk aversion increases the frequency of cooperators.
Moreover, we introduce three variants of punishment relevant
in dimorphism: (a) to punish all defectors (most costly);
(b) to punish one of them as a warning for others [less
costly than variant (a)]; or (c) to punish only one-sided
defectors (cheapest). We find that the first and second variants

but the third achieve cooperative dimorphism. Surprisingly,
the first variant can be the most cost-effective solution to
maintain cooperation with a reasonably small probability of
observation.

Unlike the case of monomorphism (Section 2.1) in which
defection by a mutant is always toward a resident cooperator,
mutual defection between two defectors is also likely in
dimorphism. Consequently, a problem arises—how should
the third-party authority treat mutual defection? Should the
authority punish both defectors? This might be too costly. Punish
only one of them as a warning for others to inhibit defection
in the future? This is less costly but could be insufficient.
As the two defectors obtain nothing in mutual defection,
punish none of them? For this, we consider three variants
that rule differently on mutual defection (Figure 2): (a) the
authority punishes all defectors; (b) the authority punishes one
of defectors selected at random; and (c) the authority punishes
only a one-sided defector so that neither defectors are punished.
Hereafter, we call them ALL, ONE, and ONE-SIDED variants,
respectively.

FIGURE 2 | Three variants of third-party punishment. Blank circles represent

players and those with “P” represent punishers as observers. Each line

connecting blank circles, above which “D D” or “D C” is attached, represents

mutual defection or one-sided defection in a game, respectively. Arrows

represent that punishment is executed. (A) ALL defectors are punished: in

case of mutual defection, the punisher pays cost 2C and each of the two

defectors pays fine F. (B) Only ONE of defectors is punished: in case of mutual

defection, the punisher pays cost C and one of the two defectors, selected at

random, pays fine F. (C) Only a ONE-SIDED defector is punished: the punisher

does not care about mutual defection. In all the three variants, the punisher

pays cost C and the defector pays fine F in case of one-sided defection.
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For each variant with different risk attitudes, we numerically
find stable points of the replicator dynamics of cooperators and
defectors, i.e.,

ẋ = x(1− x) [uC − uD] , (7)

where x is the frequency of cooperators, uC and uD are the
utility of being a cooperator (Equation A1) and that of being
a defector (Equation A2). The ALL and ONE variants achieve
stable dimorphism of cooperators and defectors (Figures 3A,B).
In these variants, smaller β increases the stable frequency of
cooperators more. As expected, the ALL variant achieve higher
cooperation than the ONE variant. The ONE-SIDED variant
does not achieve dimorphism because uC > uD with Equations
(A1, A2c) are equivalent to Equation (6); a stable population in
this variant consists of all defectors if the ESS condition (i.e.,
Equations 2 or 6) is violated.

Although the ALL variant achieves higher cooperation than
the ONE variant does, the authority might have to punish more
defectors—thus pay higher cost—in the ALL variant than in the
ONE variant. This concern is needless for risk-averse individuals
with a sufficiently large—but reasonably small—probability of
observation, z. Given that the stable frequency of cooperators is
x∗, the probability for the observing authority to find one-sided
defection is 2x∗(1− x∗) and that to find mutual defection is (1−
x∗)2. Thus, the expected number of punishment per observation
in the ALL variant is 2x∗(1− x∗)× 1+ (1− x∗)2× 2 = 2(1− x∗)
and that in the ONE variant is 2x∗(1 − x∗) × 1 + (1 − x∗)2 ×
1 = 1 − x∗2—at first glance, the former looks larger than the
latter. Since x∗ in the ALL variant is larger than that in the ONE
variant (see Figures 3A,B), the effective number of punishment
per observation in the ALL variant can be smaller than that in
the ONE variant (Figures 3C,D plot them and Figure 3E shows
their difference). If individuals are risk averse, a reasonably small
z makes the ALL variant less expensive; i.e., the branching point
at which the sign of the difference changes becomes smaller as β

decreases (In Figure 3E, the branching point in case of β = −1
is located around z = 0.15).

3. ENDOGENOUS THIRD-PARTY
PUNISHMENT

So far, we have assumed that the punisher is an exogenous
authority that exists outside the population dynamics. Although
this assumption seems reasonable for societies in which a
mature institution for authoritative punishment exists, small-
scale societies such as hunter-gatherers may require a different
scenario. Our next question is what if without any leviathan. Our
finding is that if individuals are risk averse, a few of endogenous
third-party punishers—they evolve in the population dynamics—
can maintain high cooperation.

Here, we consider another model of competition among
cooperators, defectors, and endogenous third-party punishers.
From time to time, randomly sampled three individuals
participate in a situation: as well as section 2, two of them—
selected at random—play the weak prisoner’s dilemma game; the
remaining one observes the game and can punish each defector at

costC (> 0). Again, those being punished pay fine F. Cooperators
select C in a game and do nothing if being an observer; defectors
select D in a game and do nothing if being an observer; and
punishers select C in a game and perform punishment if being
an observer (and observing defectors). The individuals change
strategies according to replicator–mutator dynamics [36–38]
based on their risk-sensitive utilities (Equation 3), given by

ẋ = xfC (1− µ) + yfD
µ

2
+ zfP

µ

2
− x〈f 〉, (8a)

ẏ = yfD (1− µ) + zfP
µ

2
+ xfC

µ

2
− y〈f 〉, (8b)

and

ż = zfP (1− µ) + xfC
µ

2
+ yfD

µ

2
− z〈f 〉, (8c)

where x, y, and z are frequencies of cooperators, defectors, and
punishers,

〈f 〉 = xfC + yfD + zfP (9)

is the average fitness and

fs = 1− w+ wus (10)

is the fitness of strategy s (= C, D, and P) where us is given
by Equations (A3, A4). In Equation (8), µ is the probability
with which an individual mutates his/her strategy to another by
chance: one does not mutate his/her strategy s with probability
1−µ; otherwise, his/her strategy aftermutation is one of the other
strategies s′(6= s) with probability µ/2, where 2 is the number
of the other strategies. In Equation (10), w (0 ≤ w ≤ 1) is
a parameter that controls intensity of selection; large (small) w
implies strong (weak) selection.

As our main interest is not on their effects, we fix w = 0.1
and µ = 0.01 throughout Section 3. Our motivation to employ
replicator–mutator dynamics here is (1) to avoid artificial neutral
stability between cooperators and punishers when defectors are
not present and (2) to incorporate more reality in the model—
in social learning, humans often explore different strategies at
random [39].

We numerically examine the replicator–mutator dynamics
(Equation 8) for each variant with different risk attitudes. As a
reference point, we choose a set of parameters (T = 2,C =

1, F = 3,w = 0.1, and µ = 0.01) with which defectors are
frequent in a population of risk-neutral (i.e., β = 0) individuals
(Figures 4G–I). Then, we check the effect of changing parameter
β : with extreme risk aversion (β = −10), individuals achieve
almost full cooperation (Figures 4A–C); on the other hand, with
extreme risk proneness (β = 10), they reach almost full defection
(Figures 4M–O). We can understand these two extreme cases by
examining limβ→±∞ us for s = C,D, and P (see Appendix B

in Supplementary Material): because limβ→−∞ uC = 0,
limβ→−∞ uD = −F (ALL and ONE variants) or T − F (ONE-
SIDED variant), and limβ→−∞ uP = −2C (ALL variant) or
−C (ONE and ONE-SIDED variants) in the interior of the state
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FIGURE 3 | Stable frequency of cooperators (A,B) and the expected number of punishment per observation (C,D) in a dimorphic population of cooperators and

defectors if Equations (2) or (6) is violated. (A,C) The ALL variant. (b, d) The ONE variant. (E) Shows the difference between (C,D). Individuals are risk newtral (dashed

line; β = 0), risk averse (solid line; β = −1), or risk prone (dotted line; β = 1). Parameters: T = 2 and F = 1.

space (apply Equation B1a to Equations A3, A4), the utility of
cooperators is the largest if individuals are extremely risk averse
(and if T < F in the ONE-SIDED variant); similarly, because
limβ→∞ uC = limβ→∞ uP = 1 and limβ→∞ uD = T (apply
Equation B1b to Equations A3, A4), the utility of defectors is the
largest if individuals are extremely risk prone.Withmoderate risk

aversion (β = −1) or risk proneness (β = 1), the outcomes
are in-between (Figures 4D–F or Figures 4J–L, respectively). In
case of risk aversion, a population of frequent cooperators and
a few punishers establishes stable and high cooperation; as well
as Section 2, the required frequency of observation—i.e., the
frequency of punishers in this model—is small.
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FIGURE 4 | The replicator–mutator dynamics of cooperators (C), defectors (D), and third-party punishers (P). A population is full of one of them at the “C,” “D,” and

“P” corners, respectively. Their frequencies are equal at each center of each simplex. Arrows represent trajectories starting from various initial states. Red points

represent stable outcomes. (A,D,G,J,M) The ALL variant. (B,E,H,K,N) The ONE variant. (C,F,I,L,O) The ONE-SIDED variant. We set (A–C) β = −10. (D–F) β = −1.

(G–I) β = 0. (J–L) β = 1. (M–O) β = 10. Parameters: T = 2, F = 3, C = 1, w = 0.1, and µ = 0.01.

Comparing the three variants of punishment, the ALL and
ONE variants promote cooperation more easily than the ONE-
SIDED variant in the case of risk aversion (clearly observed in
Figures 4D–F). This is because among the three variants, only
the ONE-SIDED variant misses term e−βF in the defector’s utility
(see Equations A4a, A4c, A4e). In the other two variants with
sufficiently strong risk aversion, the largest term in the defector’s
utility is e−βF , meaning that the defector’s utility is most affected

by the worst-case scenario that he/she obtains nothing from
cheating but is punished. In the ONE-SIDED variant, the largest
term in the defector’s utility is eβ(T−F), meaning that the most
dominating scenario in the utility is that the defector at least
enjoys cheating but is punished. It is most difficult to promote
cooperation in the ONE-SIDED variant because the defectors’
worst-case scenario in this variant is milder than that in the ALL
and ONE variants.
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FIGURE 5 | The replicator–mutator dynamics of cooperators (C), defectors (D), and third-party punishers (P) if we assume the donation game. A population is full of

one of them at the “C,” “D,” and “P” corners, respectively. Their frequencies are equal at each center of each simplex. Arrows represent trajectories starting from

various initial states. Red points represent stable outcomes. (A,D,G) The ALL variant. (B,E,H) The ONE variant. (C,F,I) The ONE-SIDED variant. We set (A–C)

β = −10. (D–F) β = −1. (G–I) β = 0. Parameters: c = 1, b = 2, F = 4, C = 1.5, w = 0.1, and µ = 0.01. Note that we omit the results if β > 0 in which defectors win.

4. THE DONATION GAME

Throughout the analyses, we have assumed that individuals play
the weak prisoner’s dilemma game (i.e., Equation 1). The so-
called donation game, i.e., payoff matrix

C
D

C D
[

b− c −c
b 0

]

(11)

where b > c > 0, has been adopted in many studies [3, 16,
17, 24, 25]. For those interested in the difference between the
two games, in Appendix C (Supplementary Material), we note
the results if we assume the donation game instead of the weak
prisoner’s dilemma game.

The two games have similar results except for the case of
authoritative third-party punishment in which observation by
the authority is not sufficiently frequent to stabilize cooperation:
in this case, only the weak prisoner’s dilemma game with the
ALL or ONE variant achieves dimorphism of cooperators and
defectors (Section 2.2). This is technically because in the weak
prisoner’s dilemma game, one-sided cooperation (i.e., selecting
C against an opponent’s D) and mutual defection (i.e., selecting
D against an opponent’s D) have the same payoff. Consider
a monomorphic population of defectors. We denote by S

and P, respectively, the payoff if selecting C and the payoff
if selecting D in the population. Assuming the authoritative
third-party punishment of ALL or ONE variant, the utility
of being a cooperator is S and that of being a defector is

1/β log
[

z/k eβ(P−F)
+ (1− z/k)eβP

]

where k = 1 in the ALL

variant and k = 2 in the ONE variant. Thus, uC > uD ⇐⇒

z/k > (1− eβ(S−P))/(1− e−βF); in the case of the weak prisoner’s
dilemma game (i.e., if S = P), cooperators can invade the
population of defectors if the authority watches individuals with
any frequency (i.e., z > 0); in the case of the donation game (i.e.,
if S−P = −c), cooperators can invade the population of defectors
if z > kz∗DG (see Equation C2).

5. DISCUSSION

In this work, we have investigated the effect of risk attitude
on social learning dynamics of third-party punishment. We
studied two models: in the first model, the third-party
punisher is an external authority that stands outside the
competition of individuals; in the second model, those
individuals endogenously perform third-party punishment so
that the third-party punishers compete against non-punishers. In
both models, risk-averse individuals achieved higher cooperation
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with a significantly lower frequency of punishment than risk-
neutral or risk-prone individuals. In the first model, this means
that a strong leviathan who constantly watches people and
severely punishes norm violators is not needed; in the second
model, it implies that not everyone needs to be an enforcer.

We also examined the effects of three variants of third-party
punishment, ALL, ONE, and ONE-SIDED variants, on the social
learning dynamics. In the ALL variant, all defectors are punished;
in the ONE variant, only one of defectors is punished as a
warning to others; and in the ONE-SIDED variant, only who
actually enjoyed cheating against a cooperator is punished. We
found that since the worst-case payoff of defectors in the ONE-
SIDED variant is milder than that in the other two variants,
it is most difficult to promote cooperation in the ONE-SIDED
variant: even if cheating is toward a cheater, it should be punished
for maintaining cooperation. We also found that in the case of
authoritative punishment, the ALL variant can be more efficient
than the ONE variant with a reasonably small frequency of
observation: punishment as a warning for others is efficient only
if the authority can watch people really rarely.

Risk aversion has been directly or indirectly observed
in laboratory experiments of social dilemma games with
punishment opportunity [27, 28, 40]. Yamagishi [27] reported
that in his study, the mere existence of punishment was sufficient
to promote cooperation in early trials of the social dilemma
experiments. The participants might not sufficiently realize the
reward structure in their early trials, so that uncertainty of
punishment would increase participants’ cooperation. This is
in line with the present study predicting that risk aversion
promotes cooperation under the existence of punishment. Qin
andWang studied the effect of probabilistic punishment. In their
study, they observed an inverted U-shaped relationship between
the probability of punishment and the level of cooperation,
suggesting that the participants’ utility function was risk
averse [40]. Moreover, children seem to be risk averse under the
threat of punishment [28].

A number of experimental studies reported that punishing just
one, the worst contributor in a game, was enough to maintain
cooperation [27, 40–44]. These observations are consistent with
the present study in which the ONE variant as well as the
ALL variant is effective to promote cooperation in risk averse
individuals. Comparing the two variants, punishing one and
punishing all, Andreoni and Gee [41] and Kamijo et al. [42]
suggested that punishing one is a more efficient solution to
promote cooperation. In the present study, however, the ONE

variant was more effective than the ALL variant only when
the frequency of watching by authority was rare. Because in
their studies the amount of fine if being punished was variable
depending on the amount of contribution, their study and ours
are not directly comparable. More investigations to clarify this
point would be required.

Finally, we mention some concerns about the assumptions
in our model. One is the assumption that the risk attitude
of individuals is homogenous so that they have an identical
utility function of stochastic payoffs. In reality, however, people
have a variety of personality and they have heterogenous
attitudes toward risk [45, 46]. Risk takers might tend to
be norm violators or punishers, while cautious people might
tend to be non-punishing cooperators who avoid risky things.
It should be interesting to incorporate such a correlation
between risk attitudes and strategies into an extended model.
Another concern is the assumption that the risk attitude of
individuals is constant over time whereas their strategies evolve.
It could be justified by thinking about the importance of
risk aversion in evolutionary history. In fact, risk aversion is
widely observed among animals [47], implying that it is a
crucial concern across species. Risk aversion could be stressed
under far stronger selection pressure than the punishment
norms.
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Human social strategies have evolved as an adaption to behave in complex societies. In

such societies, humans intensively tend to cooperate with their closer friends, because

they have to distribute their limited resources through cooperation (e.g., time, food, etc.).

It also makes the situation difficult to have uniform social relationships (social grooming)

with all friends. Thus, the social relationship strengths often show a much skewed

distribution (a power law distribution). Here we aim to show adaptivity of such social

grooming strategies in order to explore the evolution of human social intelligence. We use

a model in the framework of evolutionary games where the social grooming strategies

evolve via building social relationships with cooperators. Simulation results demonstrate

four evolutionary trends. One of the trends is similar to the strategy that humans use.

We find that these trends depend on three parameters; individuals’ richness, group

sizes, and the amount of social grooming. The human-like strategy evolves in large

poor groups. Moreover, the increase of the amount of social grooming makes the group

size larger. Conversely, this implies that the same strategy evolves when the amount of

social grooming is properly adjusted even if the group sizes are different. Our results are

important in the sense that, between human and non-human primates, the differences

of the group size and the amount of social grooming are significant.

Keywords: social grooming, evolutionary game, social structure, Yule–Simon process, cooperation

1. INTRODUCTION

Cooperation is common among humans and it is fundamental to our society (Smith and
Szathmáry, 2000; Fehr and Fischbacher, 2003). The amount of cooperation by other people is
limited because they have to pay costs (e.g., money, time, opportunities, food, etc.) (Santos et al.,
2006; Xu and Wang, 2015). Therefore, people carefully choose their friends in order to receive
intensive cooperation (Rand et al., 2011; Grujić et al., 2012; Wang et al., 2012).

Actually, people tend to cooperate with close friends. An experimental study using the Donation
Game shows that participants tend to cooperate more with closer friends (Harrison et al., 2011).
Another study using the Public Goods Game shows that friend groups are more cooperative
with each other than with other groups (Haan et al., 2006). Additionally, in a data analysis study
dealing with the data set of a social network game, people’s frequent communication increases their
cooperative behavior (Takano et al., 2016a,b).

Thus, it is important that humans have stronger social relationships in greater numbers with
cooperators than with others. We define social grooming as the behavior that constructs social

44

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2018.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2018.00008&domain=pdf&date_stamp=2018-01-31
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:takano_masanori@cyberagent.co.jp
https://doi.org/10.3389/fevo.2018.00008
https://www.frontiersin.org/articles/10.3389/fevo.2018.00008/full
http://loop.frontiersin.org/people/254155/overview
http://loop.frontiersin.org/people/144501/overview


Takano and Ichinose Evolution of Human-Like Social Grooming Strategies

relationships. Primarily, social grooming is the act of cleaning or
maintaining the body of a social partner in primates (Dunbar,
2000, 2004; Nakamura, 2003). Social bonding is part of the
functional aspect of social grooming. Therefore, human social
bonding behavior is also called social grooming (Dunbar, 2000,
2004), as a hypothetical extrapolation of the findings in non-
human animals.

The behavior constructing social relationships is not limited
to humans but widely observed in primates (Kobayashi
and Kohshima, 1997; Dunbar, 2000, 2004; Nakamura,
2003; Kobayashi and Hashiya, 2011; Takano et al., 2016a,b;
Takano and Fukuda, 2017). In doing so, they face cognitive
constraints (Dunbar, R. I. 2012) (e.g., memory and processing
capacity) and time constraints (i.e., time costs) in constructing
and maintaining social relationships. These time constraints
are not negligible, as people spend a fifth of their day in social
grooming (Dunbar, 1998) for maintaining the relationship (Hill
and Dunbar, 2003; Roberts and Dunbar, 2011). Therefore,
the strength of existing social relationships exhibits a negative
correlation with the total number of social relationships (Roberts
et al., 2009; Miritello et al., 2013b).

On the other hand, it is important to select cooperative
partners in the evolution of cooperation because cooperators
tend to be exploited by defectors (Axelrod, 2006). To select
appropriate cooperative partners, it is known that reading others’
intentions play an important role (Han et al., 2012, 2015; Arechar
et al., 2017). Arechar et al. (2017) revealed that sending a
message for their intentions (selecting a strategy in repeated
games) when subjects play the games promotes cooperation
even when an error is incorporated. Han et al. (2012, 2015)
showed that, by theoretical models, others’ intentions which
are formed by past interactions in repeated games enhance
cooperation. Moreover, commitments (e.g., prior agreements to
cooperate) are other mechanisms to build long-term cooperative
relationships, which enable cooperation to evolve by natural
selection ( Nesse, 2001; Martinez-Vaquero et al., 2015, 2017).
Han et al. (2015) emphasized that the balance between intention
and commitments is important for cooperative relationships.
These are the mechanisms working in direct reciprocity. Spatial
reciprocity and network reciprocity also suggest the necessity of
fixed relationships (Perc and Szolnoki, 2010; Perc et al., 2017).
Therefore, it is reasonable to consider that humans and other
social animals tend to cooperate with their close partners (Haan
et al., 2006; Harrison et al., 2011; Takano et al., 2016a,b).

Humans must construct and maintain social relationships
within the constraints of this trade-off. We expect that strategies
are employed to distribute the limited time resources tomaximize
benefits from their social relationships (Brown and Brown, 2006;
Miritello et al., 2013a; Saramaki et al., 2014). As a result of such
strategies, social relationship strengths, as measured by frequency
of social grooming (Roberts and Dunbar, 2011; Arnaboldi et al.,
2012, 2013; Song et al., 2013; Fujihara and Miwa, 2014; Saramaki
et al., 2014; Takano and Fukuda, 2017), may often show a
skewed distribution (Zhou et al., 2005; Arnaboldi et al., 2013),
distributions following a power law (Hossmann et al., 2011;
Arnaboldi et al., 2012; Hu et al., 2012; Pachur et al., 2012; Song
et al., 2013; Fujihara and Miwa, 2014; Takano and Fukuda, 2017).

Moreover, it has been demonstrated that social structures of non-
human primates (Kanngiesser et al., 2011; Tung et al., 2015; Levé
et al., 2016; Dunbar, R. I. M. 2012) are also skewed.

The skewed distributions of the relationships could be
generated by a strategy where individuals select social
grooming partners in proportion to the strength of their
social relationships (Pachur et al., 2012; Takano and Fukuda,
2017); known as the Yule–Simon process (Yule, 1925; Simon,
1955; Newman, 2005). Individuals should pay time costs to
win the competitions with others by strengthening their social
relationships with cooperators, assuming that having strong
social relationships is to receive cooperation.

Human societies using these strategies are much larger
than those of non-human primates. Based on the social brain
hypothesis, human intelligence has evolved to adapt to large
societies. Therefore, the evolution of human strategies of social
relationship construction may explain the origin of human
intelligence. However, evolutionary stability of the strategies, i.e.,
the Yule–Simon process, is still open investigation.

In this paper, we aim to show the adaptivity of the social
grooming strategies in order to explore the evolution of human
social intelligence predicted by the social brain hypothesis.
Especially, we focus on how environments drive the evolution
of a social grooming strategy that humans use in their daily life.
The evolution should depend on group size and the amount
of resources for cooperation. For this purpose, we simulate the
evolution of the strategy to receive cooperation from others
with different environmental conditions for cooperations. We
show that strategies evolve depending on the strength of social
relationships.

2. METHODS

We expand the model of Takano and Fukuda (2017) to an
evolutionary game. They consider two types of individuals;
social groomers and cooperative groomees (Figure 1 (Takano
and Fukuda, 2017). In the real world, individuals are groomers

FIGURE 1 | Concept of our model. Social groomers interact with cooperative

groomees depending on their social grooming strategies. Cooperative

groomees cooperate with social groomers who are top Rc on the strengths of

social relationships. Groomer strategies evolve based on their fitness which is

the amount of cooperation from groomees.
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TABLE 1 | Descriptions of model parameters.

Parameter Description

s Parameter of social grooming strategies for reinforcing

relationships. See also Figure 2.

q Ratio of creating a new social relationship with a stranger.

Rg Frequency of social grooming in a grooming stage.

wij Strength of social relationships between i and j (the number of

social grooming from i to j).

dij Normalized wij , i.e., wij/max({wi1,wi2, . . . ,wiM})

Rc Number of cooperation from groomees to groomers.

M Number of groomees.

N Number of groomers.

T Number of generations.

and groomees, simultaneously. For simplicity, they use this
classification to focus on the social grooming strategies for social
structures. In this paper, we only focus on the evolution of
social grooming strategies while cooperation from gromees’ is
static. This is because that cooperative behaviors are common
in humans and primates (Silk, 2009; Rand and Nowak, 2013).
Given that cooperation from groomees’ is static, we can consider
the evolution of groomers’ strategies. While the evolutionary
dynamics of cooperation are well-known (Nowak, 2006; Perc
and Szolnoki, 2010; Rand and Nowak, 2013; Perc et al.,
2017), there are few study on the evolutionary dynamics of
social grooming. Groomers construct their social relationships
with groomees depending on their social grooming strategies
in a “grooming stage.” Cooperative groomees cooperate with
groomers depending on social relationship strengths in a
“cooperation stage.” Groomer strategies evolve based on their
fitness which is the amount of cooperation from groomees in each
generation. Groomees’ cooperation strategies are static. Table 1
shows the parameters of this model.

In a grooming stage, groomer i repeatedly interacts with
cooperative groomees Rg times depending on their social
grooming strategy (si, qi). qi is a ratio that i constructs a new social
relationship with a stranger, new groomee j, and si is a parameter
of a probabilistic function p(dij; si) which selects existing social
grooming partner j depending on dij (dij > 0). We used the
following function (Figure 2) as a simple function to express
various strategies depending on dij including concentrated
investment to strong relationships (s = 4), diversified investment
to weak relationships (s = −4), at random (s = 0), and the
Yule–Simon process (s = 1; i.e., human-like strategy).

p(dij; si) = b(dij;αi,βi)/
M

∑

k=1

b(dik;αi,βi), (1)

where αi = 1 + si,βi = 1 when si ≥ 0 while αi = 1,βi =

1 − si when si < 0. dij is wij/max({wi1,wi2, . . . ,wiM}), where
wij shows strength of social relationships, i.e., the number of
social grooming from i to j. This function only depends on dij,
because previous studies have revealed that people select their
social grooming partners depending on the strength of social

FIGURE 2 | Examples of social grooming strategies. Social groomers with

large s tend to interact with a groomee in a strong social relationship (large d).

On the other hand, groomers with small s tend to interact with a groomee in a

weak social relationship (small d). When s = 0, groomers interaction is

independent from d. When s = 1, groomers interact in proportion to the

strength of social relationships, i.e., the Yule–Simon process.

relationships (Pachur et al., 2012; Takano and Fukuda, 2017).
Therefore, this function can simply represent human-like social
grooming strategies. M is the number of groomees. b(x;α,β) is
a normalized beta distribution xα−1(1 − x)β−1/B(α,β), where
B(·, ·) is a beta function. While using other functions which
have fewer assumptions by using more dimensions is possible
(e.g., nonparametric functions), we used Equation (1) because
it is simple and is expressive enough to represent various social
grooming strategies (Figure 2).

In a cooperation stage, groomee j cooperates with groomers in
the top Rc as ranked by {w1j,w2j, . . . ,wNj}. The total payoff (i.e.,
fitness) of each groomer is the number of cooperation (i.e., the
number of times ranked in the top Rc of each cooperator). That
is, cooperators cooperate in their close relationships according to
their resources Rc. RcM shows all resources in the environment
(Rc,M), i.e., the total amount of cooperation.

The next generation is generated by sampling with
replacement in proportion to the groomers’ fitness, i.e., the
roulette wheel selection. In each generation, s mutates by the
Gaussian distribution (µ = 0, σ = 0.2) and q mutates by the
Gaussian distribution (µ = 0, σ = 0.05), where µ is a mean and
σ is a standard deviation of the distribution, where q ∈ [0, 1] (if
q is out of range by mutation, then it is set to the nearest value
in 0 or 1). Groomers’ s and q in an initial generation are set by
the Gaussian distribution (µ = 0, σ = 5.0) and by uniform
distribution [0, 1], respectively. Cooperators do not evolve.

We conducted evolutionary simulations 30 times on each
Rc and M by using this model (Rc ∈ {5, 10, . . . , 50}, M ∈

{5, 10, . . . 200}). The number of groomers N is 100, the number
of social grooming actions Rg in each grooming stage is 300 (we
also use Rg = 100 in experiments shown in Figures S1, S3, and
S4), and the number of generation T is 200. The source code is
available at “https://doi.org/10.6084/m9.figshare.5526850.v1.”

We set the mutation parameters to be small so that evolution
converges at the equilibrium point. At the same time, we set those
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FIGURE 3 | Summary of results of evolutionary simulations. We found four evolutionary trends (s and q of the final populations) depending on total resources RcM

and the ratio of each cooperator’s resources to the number of cooperators Rc/M (see details Figure 4, Figures S1, S2). (A) Shows the results of evolution with

parameter Rc and M. Each color shows the most frequent trend in parameters of the point. This was created based on Figure 4. (B) Is the concept diagram. Trend 1

evolved when RcM was small. Trend 4 evolved when RcM was large. Trends 2 and 3 evolved in the intermediate range between trends 1 and 4 where Rc/M

determined whether groomers evolved to trend 2 or 3. The behavior of trends 2 and 3 were similar to human strategies, although trend 2 was closer, as described.

FIGURE 4 | Frequencies of evolution in each trend (Rg = 300). Trend 1 evolved when RcM was small. Trend 4 evolved when RcM was large. Trends 2 and 3 evolved

in the intermediate range between trends 1 and 4 where Rc/M determined whether groomers evolved to trend 2 or 3. Additionally, Rg increased a range of group

sizes M in which social grooming strategies evolved to trend 2 or 3, i.e., a large amount of social grooming evolved to trends 2 and 3 in large groups.

parameters to be large so that evolution reaches the equilibrium
point within T generations. The initial range of parameters is
widely distributed to cover the whole search space. All those
values were determined based on the results of preliminary
experiments.

3. RESULTS

We found four evolutionary trends in the results of the
simulations (Figure 3). These trends are explained by total
resources RcM and the ratios of each cooperator’s resources to
the number of cooperators Rc/M (Figure 4, Figure S1).

Groomers evolved to trend 1 when RcM was small. Their
s evolved larger and their q evolved smaller. This strategy
concentrates investment into strong social relationships (e.g., s =
4 in Figure 2). Groomers tended to evolve to trend 4 when RcM
was large with s < 0 . This strategy widely invests in many weak
social relationships (e.g., s = −4 in Figure 2). These trends’ s do
not converge, meaning that they do not have characteristic values.

On the other hand, s converged to 0 < s < 2 in trends 2
and 3. Trends 2 and 3 evolved in the intermediate range between
trend 1 and 4, and Rc/M determined whether groomers evolved
to trend 2 or 3. Groomers evolved to trend 2 when Rc/M was
large, where q evolved larger. They evolved to trend 3 when Rc/M
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FIGURE 5 | Average selection pressures (ds,dq) in four trends for (s,q) and typical orbits from (s,q) = (0, 0.5) (Rg = 300). These figures show trends 1, 2, 3, and 4

from left. The cell colors show the gradients of s and q (i.e., ds,dq). For example, the figures show s and q decrease when (s,q) is in a cell of ds < 0 and dq < 0.

Areas, where the cell colors are mixed, show little gradients, that is, mutation noises were larger than selection pressures. For example, populations were random walk

along the s axis and they were small along the q axis, when s < −1 in Rc = 5 and M = 200. Evolutionary dynamics in Rg = 100 showed similar trends (see Figure S3).

FIGURE 6 | Strategies of social grooming (A–D), i.e., probability p of social grooming after each strength of social relationship w, and social structures of each trend

(E–H), i.e., distribution of w in each trend (Rg = 300). These figures show trend 1, 2, 3, and 4 from left. These trends in Rg = 100 are similar to them (see Figure S4).

In (A–D), the orange points are the 25th percentile, the green points are the 50th percentile and the blue points are the 75th percentile. In the (A–D), we drew w when

the number of samples was more than 20. The figures of trend 2 and 3 of the (F,G) are shown by using a logarithmic scale in both axes. In the social structure of trend

1 (E), many weak relationships were caused by mutation noises of q.

was small, where q evolved smaller. s in trend 2 tends to be larger
than s in trend 3. Both strategies are diversified investments (e.g.,
s = 1 and s = 0.5 in Figure 2), where groomers intensively invest
in strong social relationships while also widely investing in weak
social relationships. Additionally,M, where groomers evolved to
trends 2 and 3 is larger, when Rg is large (see Figure 4, Figure S1).

Next, we demonstrate how the four trends emerged
throughout the evolution and how groomers constructed social
structures in each trend. Regarding the former, Figure 5, Figure

S3 shows the evolutionary pressures (ds, dq) of each combination
of s and q, and the typical orbits of evolution. Evolutionary
pressures were calculated using the method of the average
gradient of selection (AGoS) (Pinheiro et al., 2012). That is, we
calculated the mean difference of s and q of the next generation
of a population in which individuals’ s and q obeyed the Gaussian
distribution [(µ = s, σ = 0.2) and (µ = q, σ = 0.2)] on each
cell (s, q). These orbits were drawn based on the average selection
pressures and noises which are a normal distribution with µ = 0
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and σ = 0.01. Incidentally, there is no cell in (ds, dq) = (0, 0).
For the latter, Figure 6, Figure S4 shows strategies of social
grooming, i.e. probability p of social grooming after each strength
of social relationship w (Figures 6A–D) and social structures of
each trend, i.e., distributions of w (Figures 6E–H).

Trend 1 evolved in environments with small RcM. Groomers
are in intense competition for receiving cooperation from
groomees in the environments. Therefore, they evolved to
concentrate investments to a few poor groomees, i.e., large s and
small q [(Rc,M) = (5, 5) in Figures 5, 6A]. The results show that
they only had very strong social relationships in environments
with small RcM (Figure 6E). That is, most w were very large and
the number of relationships was low.

Trend 4 evolved in environments with large RcM. Groomers
easily receive cooperation from groomees in these environments.
Thus, they constructed many weak social relationships with
many rich cooperators [(Rc,M) = (50, 200) in Figures 5, 6D,H].
That is, most w were very small and the number of relationships
was high.

Trends 2 and 3 evolved between trend 1 and trend 4.
Their s converge to (0, 2), this means groomers with these
strategies intensively invest in strong social relationships while
they also widely invest in weak social relationships [(Rc,M) =

(15, 45) and (5, 200) in Figure 5]. Their social grooming
probability is in proportion to each strength of the social
relationships (Figures 6B,C), so their construction processes
of social relationships are similar to the Yule–Simon process.
As a result, their social structures were similar to power law
distributions (Figures 6F,G).

Themain difference between trends 2 and 3 is how q is affected
by Rc/M. When Rc/M is small, groomers have to confine the
number of social relationships with groomees to construct strong
social relationships, because they compete intensively in each
social relationship (i.e., small Rc). Therefore, they evolved to
small qwith small Rc/M [trend 3; (Rc,M) = (5, 200) in Figure 5].
In contrast, when Rc/M is large, they do not have to restrict
the number of social relationships with groomees, because their
competition is not intense in each social relationship (i.e., large
Rc) and the maximum number of their social relationships is
small (i.e., small M). Thus, they evolved to large q with large
Rc/M [trend 2; (Rc,M) = (15, 45) in Figure 5]. Interestingly,
these trends of evolution show non-continuous transition (see
Figure S5).

4. DISCUSSION

We analyzed the evolutionary dynamics of social grooming
strategies and social structures. As a result, we find that
the evolutionary dynamics depend on total resources (i.e.,
RcM) and the ratios of each cooperator’s resources to the
number of cooperators (i.e., Rc/M). In the poor small groups,
individuals’ strategies evolved to concentrate investment among
strong social relationships. In the rich large groups, their
strategies evolved to wide investment among many weak social
relationships. In the middle groups, their strategies evolved
according to the Yule–Simon process. These strategies invest

intensively in strong social relationships while also investing
widely in weak social relationships. As a result of these strategies,
skewed distributions of social relationship strengths were
generated.

There are two trend strategies which are similar to the
Yule–Simon process (Pachur et al., 2012; Takano and Fukuda,
2017). One evolved in relatively rich and small groups in the
middle groups. Individuals with this strategy constructed social
relationships with all group members, and reinforced their
relationships in proportion to the strength of social relationships.
The other one evolved in relatively poor and large groups in the
middle groups. Individuals with this strategy constructed social
relationships with parts of their groups, and reinforced their
relationships. In primitive human groups, individuals belong to
large groups and interact in small cliques within them (Dunbar,
R. I. M. 2012). Hence, humans’ social grooming strategy may
have evolved in the latter group. Non-human primates may
also have similar strategies, because they also construct skewed
social structures even though their group sizes are different
from humans (Kanngiesser et al., 2011; Tung et al., 2015;
Levé et al., 2016; Dunbar, R. I. M. 2012). Their strategies’
similarity may be explained by the difference of the amount
of social grooming Rg . Our experiments show the increase
in the amount of social grooming Rg results in the increase
of group sizes M, in which social grooming strategies evolve
according to the Yule–Simon process (see Figure 4). The same
social grooming strategies are stable in different group sizes.
Actually, there is a positive correlation between group sizes
and the amount of social grooming in primates (Dunbar, 1993,
2016).

If a social grooming strategy based on the Yule–Simon process
is universal in primates not limited to humans, and group sizes
depend on external factors (e.g., predators, food, etc.), then social
grooming strategies of humans and non-human primates evolved
to the same strategies by automatically adjusting their amount
of social grooming. This relationship between group sizes and
strategies may be clearly demonstrated by comparison among
humans, non-human primates, and other social animals. This
will contribute toward an explanation of the evolution of humans’
large social groups.

It is also important how cooperators select other cooperators
as their interaction partners (Hauert et al., 2002). For example,
if cooperators maintain relationships with other cooperators and
break relationships with exploiters, their reciprocal relationships
will be maintained and their inegalitarian relationships will
be broken (Perc and Szolnoki, 2010; Perc et al., 2017).
This mechanism to keep cooperation is known as network
reciprocity. Social grooming strategies are network construction
strategies. Actually, social grooming has a beneficial effect on
the construction of reciprocal relationships (Takano et al.,
2016a,b). Our results suggest that the evolution of human-
like strategies for network construction depends on the
resources of environments and their group size. In this
paper, we focused on the evolutionary dynamics of social
grooming with stable cooperative behavior. The co-evolutionary
dynamics of both behaviors is an issue to be addressed in the
future.
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Comparison among various species’ data sets will be needed
in order to clear the relationships between environments and the
four evolutionary scenarios of social grooming strategies.
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Models of social diffusion reflect processes of how new products, ideas, or behaviors are

adopted in a population. These models typically lead to a continuous or a discontinuous

phase transition of the number of adopters as a function of a control parameter. We

explore a simple model of social adoption where the agents can be in two states, either

adopters or non-adopters, and can switch between these two states interacting with

other agents through a network. The probability of an agent to switch from non-adopter to

adopter depends on the number of adopters in her network neighborhood, the adoption

threshold T and the adoption coefficient a, two parameters defining a Hill function. In

contrast, the transition from adopter to non-adopter is spontaneous at a certain rate µ. In

a mean-field approach, we derive the governing ordinary differential equations and show

that the nature of the transition between the global non-adoption and global adoption

regimes depends mostly on the balance between the probability to adopt with one and

two adopters. The transition changes from continuous, via a transcritical bifurcation,

to discontinuous, via a combination of a saddle-node and a transcritical bifurcation,

through a supercritical pitchfork bifurcation. We characterize the full parameter space.

Finally, we compare our analytical results with Monte Carlo simulations on annealed and

quenched degree regular networks, showing a better agreement for the annealed case.

Our results show how a simple model is able to capture two seemingly very different types

of transitions, i.e., continuous and discontinuous and thus unifies underlying dynamics for

different systems. Furthermore, the form of the adoption probability used here is based

on empirical measurements.

Keywords: adoption, phase transition, mean-field, social contagion, spreading

1. INTRODUCTION

Spreading processes are ubiquitous in nature: the contagion of diseases [1], herd behavior
in animals [2], the diffusion of innovations [3], rumor spreading [4], the evolution of social
movements [5], the propagation of hashtags in Twitter [6], etc. All these processes share similar
dynamics; in a population of initially neutral (disease-free, unaware of some information, etc.)
agents (humans, animals, or even bots), some of them start carrying some information, pathogen,
or behavior, i.e., they adopt this innovation. Through a transmission process they can pass it on to
other agents, starting in this way the process of adoption diffusion.

The diffusion of adoption has been extensively studied and modeled in several fields including
Biology, Physics and Social Sciences [7–10]. In general, new adopters have been in contact with
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one or several adopters, with two main mechanisms: in disease-
like models [11, 12], adoption takes place with an adoption
probability per contact with an adopter which is constant
irrespective of the number of adopters; in threshold-like models
[8, 11–13], adoption happens only after a critical number of
adopters has been reached. There are also models of “generalized
contagion” [14], where both disease-like and threshold behaviors
are special cases.

However, while the models describe individual adoption
probabilities, most of the related empirical research was based on
aggregated data, typically cumulative adoption curves [15, 16].
Recent studies have focused on individuals’ behavior, where the
number of adopters accessed by each individual can be measured
[17–20]. These measurements have a direct connection with the
form of the adoption probability. In this paper we explore the
probability function obtained by Milgram et al. [17] from a social
experiment. They analyzed the correlation between the size of a
group looking at the same point in the street and the number of
passerby that joined the behavior of looking at that point. The
results of the experiment can be fitted with a Hill function for the
probability of adoption [20]. We will show that the shape of the
adoption probability leads to two different behaviors depending
on the parameter values: either a continuous or a discontinuous
phase transition. This provides a simple model that describes
both regimes within the same framework, depending only on two
parameters; with a probability function linked to empirical data.

2. RESULTS

An agent that has not adopted yet, adopts with some probability
when interacting with an adopter, which turns her an adopter-
maker too. After adoption, the agent is “recovered” at a certain
rate µ and becomes again a potential adopter. Here, we study the
consequences of the probability of adoption. The transition from
adopter to non-adopter is assumed to occur at some constant
rate µ.

In the standard SIS (susceptible-infected-susceptible) model
[1], the adoption probability (from susceptible to infected, S →

I) β is constant for each interaction with an adopter. In general,
the adoption probability can be a general function of the number
of adopted neighbors, n:

P(n) = λ′f (n) . (1)

In this contribution we will consider the function proposed by
Gallup et al. [20]

f (n) =
na

Ta + na
, (2)

where λ′ is persuasion capacity (similar to β = λ′ for T = 0
and a = 1), a is the adoption coefficient (or Hill coefficient) and
controls how fast/slow this probability increases with n and T is
the adoption threshold and fixes the number of adopters needed
to reach half the persuasion limit. λ′, T and a are real positive
numbers. This type of function is known as Hill function and
has been used in models of population growth and decline [21–
23]. The evolution of such a system in an annealed degree regular

network (a network where all the nodes have the same number of
neighbors or degree k but where they are chosen randomly in the
population at each interaction) is determined by

dρ

dt′
= −µρ + (1− ρ)A, (3)

where ρ is the density of adopters and A is the probability of
adoption given the density ρ and is given by

A =

k
∑

n=0

P(n)

(

k
n

)

ρn(1− ρ)k−n . (4)

The number of infected neighbors is assumed to be binomially
distributed with a success probability equal to the global density
of infected agents. Without loss of generality we get rid of
parameter µ by changing the timescale and rescaling the
persuasion capacity λ′

t = µt′ (5)

λ =
λ′

µ
, (6)

which is equivalent to setting µ = 1. The equilibrium solutions
for the system are determined by the condition

− ρ∗
+ (1− ρ∗)A∗

= 0 . (7)

Given a particular value of a and T, there are at most three
possible solutions for ρ∗ (Figure 1): (i) ρ∗

= 0, corresponding
to the adoption-free regime, (ii) ρ∗

= ρup, represented by the
upper branch, and (iii) ρ∗

= ρdown, the lower branch.
The stability of the fixed points can be easily checked by linear

stability analysis. The solution ρ∗
= 0 changes stability at

λ0 =
1

kf (1)
, (8)

being stable for λ < λ0 and unstable otherwise. As can be seen in
Figure 1, if the solution ρ∗

= 0 intersects the upper branch, then
that branch is stable and the solution ρ∗

= 0 changes stability
via a transcritical bifurcation. Then for λ > λ0 and for any initial
ρ0 6= 0 the system will end up in the fixed point ρup (Figure 1A).
If, on the contrary, the solution ρ∗

= 0 intersects the lower
branch, this one is unstable and there is a region λ1 < λ < λ0 for
which two stable solutions (ρ∗

= 0 and ρup) coexist, separated
by an unstable solution ρdown (Figure 1B). For λ = λ1 the two
fixed points of opposite stability annihilate through a saddle-
node bifurcation, while at λ = λ0 we still have a transcritical
bifurcation. Therefore, in that region the final state of the system
will be the upper branch solution ρup if the initial density ρ0 >

ρdown and 0 otherwise and we can observe hysteresis. For λ > λ0
and for any initial ρ0 > 0 the system will end at ρup. Note that
λ0 is only the critical point for continuous transitions, while for
discontinuous ones would be λ1. The sign of the derivative of
the ρ∗ function at the intersection of ρ∗

= 0 and the other
branches determines the type of transition. If the derivative is
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FIGURE 1 | Complete solutions of Equation (7) are shown in black for T = 3, k = 10, and a = 1.2, 1.53, 1.8 (A–C, respectively). Continuous lines represent stable

solutions. Note that when λ0 intersects the upper branch, the transition is continuous (A). When λ0 intersects the lower branch (C), two stable solutions coexist in the

region λ1 < λ < λ0, 0 and ρup, and the transition is discontinuous. Simulations of the microscopic model are shown in blue points in (A,B). For (C) the simulation is

shown in (D), that amplifies the region λ1 − λ0, showing the hysteresis of the system. (B) illustrates the case when λ0 = λ1.

positive (ρ∗
= 0 intersects ρup), the transition is continuous,

while if it is negative (ρ∗
= 0 intersects ρdown), the transition

is discontinuous (Equations 9a,b, respectively).

dρ∗

dλ

∣

∣

∣

∣

λ0

> 0 H⇒ f (2) <
2k

k− 1
f (1) (9a)

dρ∗

dλ

∣

∣

∣

∣

λ0

< 0 H⇒ f (2) >
2k

k− 1
f (1) . (9b)

For the particular case when f (2) =
2k
k−1 f (1) both λ0 and

λ1 coincide. For this condition one can show, by approximating
Equation (7) to third order in ρ∗, that the bifurcation diagram is
that one of a supercritical pitchfork bifurcation, i.e., the equation
is equivalent to ẋ = rx − x3 (Figure 1C). In this case, the final
fate of the system is similar to the continuous case. For λ < λ0
there is no global adoption and the system ends at ρ∗

= 0, while
for λ > λ0 any initial condition ρ0 6= 0 will bring the system to
ρup.

Simulations using a microscopic model are also included in
the plots of Figure 1. This microscopic model simulates an SIS
dynamics in a degree regular network of k = 10 that changes at
each time step. From one step to another, an agent is selected;
if it is an adopter it recovers with probability µ, if not, it adopts
with probability P(n), where n is the number of adopters among k
randomly chosen agents. There is an initial seed of infected agents
which we fix to 1% of the total population.

In Figures 1A,B results of the simulations are shown in blue
dots over the analytical solution. For Figure 1C, simulations

are shown in Figure 1D. As can be seen, the system exhibits
hysteresis in the region λ1 < λ < λ0, where there is bistability.
The system ends at ρup or ρdown depending on the initial
condition.

Figure 1 also illustrates the two different kinds of transitions.
The density of adopters stays at zero until a critical value of λ,
where the system goes to ρup by either a continuous transition or
a discontinuous transition. As can be observed, provided a value
for T, the size of the jump increases with a. For values of a ∼ 1
the system resembles the epidemic-like models while for values
a > 1 the transition is threshold-like.

For the case of our choice of f (n) (Equation 2) the conditions
in Equation (9) give bounds for the parameters region for which
the transition is of one regime or the other:

Cont.: T <

(

2a(k+ 1)

2a(k− 1)− 2k

)
1
a

(10a)

Disc.: T >

(

2a(k+ 1)

2a(k− 1)− 2k

)
1
a

. (10b)

Figure 2 shows this parameters space for k = 5, 10, 20.
The white region represents the parameters combination for a
continuous transition while the light gray region corresponds to
a discontinuous transition. The dark gray region is the condition
that λ0 ≤ 1 on Equation (8), that is, that the value where both
curves meet is in the range λ ≤ 1,

T < (k− 1)
1
a . (11)
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FIGURE 2 | Parameter space for a regular random network with k = 5, 10, 20 (A–C, respectively). The white area is for continuous transitions while the light gray area

is for discontinuous transitions. Both areas are separated by the curve given by Equation (10), corresponding to a supercritical pitchfork bifurcation diagram. In the

dark gray area only the solution ρ* = 0 exists, i.e., there is not global adoption.

This constraint implies that the in dark gray region in the plot
there is only one possible solution, ρ∗

= 0.
Both conditions together, Equations (10, 11), predict the

values of the parameters for which the model shows one type
of transition or another, or none. For example, in Figure 2B, a
continuous transition is allowed for all values of a ∈ [1, 2] and
some values of T ∈ [0, 10], while the discontinuous transition
is only possible for values of a higher than 1.25 and values of T
higher than 1.5. As can be seen in Figure 2, for small values of k,
there are only continuous transitions, while for higher values of k,
also discontinuous transitions are allowed. Besides, the higher the
value of k, the more parameter space allows for ρ 6= 0 solutions.

Finally, we perform simulations to characterize numerically
the behavior of the system using a similar microscopic model on
quenched regular random network. Again, at each time step an
agent is selected, if she is an adopter it recovers with probability
µ, if not, she adopts with probability P(n), where now n refers
to the number of adopters in her network neighborhood, which
is now fixed. There is an initial seed of infected agents equal to
1% of the total population. The long term values of the fraction
of adopters ρ∞ are shown in Figure 3 for 10 realizations and
different values of a for T = 1.2, 3. The realizations are not
averaged to show the low dispersion (inset of upper panel in
Figure 3 and lower panel of Figure 3).

As Figure 2 indicates for T = 1.2 and k = 10, the system
exhibits always a continuous transition no matter the values of
a ∈ [1, 2] (inset of the upper panel). For T = 3 and k = 10,

for values of a higher than 1.5 the transition is discontinuous,
as shown in Figure 2. The upper panel of Figure 3 zooms in the
region of the critical point for the case of a = 1.0. It shows
the simulations of the microscopic model on a quenched degree
regular random network (pink), on an annealed degree regular
random network (blue) and the exact solution of the equation
(black). As can be seen, there is a small discrepancy for the model
on the quenched version of the network. This is because when
the topology is fixed correlations appear and in particular the
approximation that the infected agents are binomially distributed
among the neighbors with a success probability equal to the
global fraction of infected agents breaks down. As in the cases
presented above, the simulations on the annealed network and
the exact solution agree. For both microscopic models, the type
of transition is predicted by the parameters space represented in
Figure 2.

3. CONCLUSIONS

We have analyzed a model of social contagion (SIS-like) on
degree regular random networks with an adoption probability
measured in empirical data in Gallup et al. [20] that interpolates
between the cases of epidemic-like spreading and threshold-
like dynamics. We show that this simple model displays both
continuous and discontinuous transitions from a disease-free
state to an endemic state. We find the values of the parameters
that separate this transitions and the critical persuasion capacities
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FIGURE 3 | Simulations of the microscopic model on a degree regular random

network with degree k = 10. Individuals might adopt with probability P(n).

Upper panel shows the results for T = 1.2 and lower panel for T = 3 for

different values of a. For T = 1.2 the transitions are continuous for any a (inset,

same color code as lower panel). The upper panel shows the region of the

critical point for the simulations of the microscopic model on the quenched

network (pink), the simulations on the annealed network (blue) and the exact

solution (black line) of the equation for a = 1.0, respectively. For T = 3 there

are continuous or discontinuous transitions depending on the value of a.

λ by applying standard linear stability and bifurcation theory
tools.

The simplicity of the model studied here allows for relaxing
some of the assumptions considered here. For example, the
stability condition given by Equation (8) resembles the structure

of the critical point in the SIS model in uncorrelated random
networks with arbitrary degree distributions. Following this
similarity, we conjecture that the solution of our model in
complex networks will be given by λ0 = < k > / < k2 > f (1).
Thus degree heterogeneity will lead to the vanishing threshold
unless f (1) → 0 as N → ∞. This can be achieved for example
by considering that T = ckmax. Alternatively, an interesting
variation is to consider that the adoption probability depends not
on the absolute number of adopters but on the fraction of them.
Besides, heterogeneity can emerge not only at the degree level, but
also in the distributions of the adoption threshold T and adoption
coefficient a and furthermore they can be correlated with the
degree of the nodes. How heterogeneity affects the nature of
the transition needs to be explored in detail. Another possible
line of research is adding non-Markovianity to the dynamics, for
example by letting the adoption probability depend not only on
the state of the neighboring agents, but also on some internal time
which takes into account when an agent tries to convince another
one for adopting the innovation.

Our results highlight that not only the structure of the
interaction network neither the dynamics alone are responsible of
the type of transition that the system displays. Furthermore, this
simplified framework is able to capture this seemingly disparate
types of transition, which are usually taken as a signature of
different dynamics. Furthermore the choice of the adoption
probability curve is based on empirical measurements from
Gallup et al. [20], which highlights the relevance of our results
for realistic modeling of social phenomena.
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Income redistribution is a feasible means to adjust the income among individuals, which

could reduce the gap between the rich and the poor and realize the social equity. By

means of taxation and public services, the income could be transferred from some

individuals to others directly or indirectly. We study how income redistribution affects

the evolution of global cooperation through proposing a multi-level threshold public

goods game model and introducing two kinds of income redistribution mechanisms.

We find that both of the income redistribution mechanisms promote global cooperation.

Furthermore, the global income redistribution is more in favor of the emergence of global

cooperative behaviors than the local income redistribution mechanism. On the other

hand, the fixation time of global cooperation is sharply shortened after introducing income

redistribution mechanisms. In threshold public goods games, only when the amount

of collected public goods reaches a certain threshold, the income of individuals can

be guaranteed. Hence, the influences of thresholds of different levels on strategies are

investigated in the paper.

Keywords: evolutionary game theory, public goods game, stochastic processes, human cooperation, income

redistribution

1. INTRODUCTION

Collective actions, such as a group of neighborhood residents donating money to construct a public
project, require voluntary contributions to collect public goods [1]. Voluntary contributing activity
is widespread and substantial [2–5]. It is beneficial for the group, however, costly for individuals.
Performing an altruistic act can weigh heavily on individual wellbeing and prosperity. Selfish
individuals always have an advantage over cooperators. Such social dilemma can be represented
as the public goods game (PGG) [6–8]. In human societies, people are often required to sacrifice
personal benefits for the common goods and work together to achieve what they are unable
to achieve alone [9, 10]. Especially when it comes to the situation that people are faced with
the option of voluntary contribution to achieve a collective goal, where public goods cannot
be provided in part, but only in whole after a certain cost (threshold) is covered. Threshold
public goods game (TPGG) models nicely capture the main features of the above described social
phenomena [11–18]. In the typical TPGG, the size of a proposed project and the associated total
cost (threshold) are predetermined. The public goods are provided if the total contributions meet
or exceed the threshold; otherwise, no goods are provided and all individuals suffer with nothing
irrespective of whether they contributed or not. Since cooperation forms the bedrock of our efforts
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for a sustainable and better future, understanding cooperative
behaviors in complex interactive systems has been one of the
grand scientific challenges of the global society [19–24]. The
problem is in many ways unnatural. Now that free riders can
enjoy the same benefits for free, what kind of mechanism can
motivate individuals to care for and contribute to the public
goods, if only the fittest survive?

Most governments devote considerable resources to the
provision of public goods available for all citizens to consume,
such as national defense, environmental protection, health
insurance and highways. Such universal provision schemes can
redistribute income from the rich to the poor [25], and further
realizing the fairness of the society [26–28]. Redistribution of
income may provide a nonexcludable benefit to those who give,
and many such schemes are universal in the sense that everyone
is eligible and the provision is free [29]. One of the classic forms
of income redistribution is the tax system, in which people are
taxed at fixed rates. People who make more money pay higher
taxes, thereby forfeiting more of their income to the government.
Tax funds are used to benefit the society as a whole by providing
a variety of public and social services by the government, and
the direct transfer of income may occur in the case of welfare
payments and other forms of cash assistancemade to low-income
members of society [30]. Previous works on physical models of
collective dilemmas, however, seldom theoretically analyze how
income redistribution influences the evolution of cooperation in
the complex social-economic system.

Motivated by this, we propose a multi-level threshold public
goods game model, where global and local public goods are
clearly distinguished. Although pure public goods are defined
as being non-rival in consumption and non-excludable [31],
however, there exist impure public goods in reality. Owing to
geographic space, some classes of goods are globally public, and
others are only locally public. Global public goods are available
to the entire population while local public goods may be available
only to the residents of a very small neighborhood [32, 33]. Thus,
players in the model can choose among selfishness, contributing
to global public goods, or local public goods. In particular,
the global public goods and local public goods both involve
the threshold. If the collected public goods are not enough,
dangers would happen. For example, coastal inhabitants may be
inundated owing to failure of fundraising for a dam [34], disease
may spread caused by inadequate voluntary vaccination [35–
39] and regional defense system may collapse due to insufficient
finance [40].

We then respectively consider two kinds of income
redistribution mechanisms in the multi-level TPGG. In the
model with local income redistribution, players have to pay
part of their idealized income to the focal group according
to a given income expenditure proportion after each round.
Distinguished from the contribution action during the PGG
process, such compulsory payment is named as the second-
order payment. Subsequently, the accumulated income are
redistributed to all the members of this group regardless of their
strategies and the quantity of their second-order payments. On
the other hand, for the global income redistribution, players
pay part of their idealized income to the whole population.

Similarly, the accumulated income is then redistributed to
all the players in the whole population. In reality, the local
income redistribution seems like a special transaction tax in
economic system, which is collected according to the definite
quantity of the volume of trade. And then, the revenue is
redistributed to the group members uniformly, which amounts
to the fiscal subsidy for a particular industry. While for the
global income redistribution, the processes of second-order
payment and income redistribution can be classified as the
process of collecting and redistributing the gross income of
personal income tax for the whole country. Based on this model,
we theoretically investigate the evolution of cooperations of
different levels and free-riders under collective risks, and focus
on the influence of diverse income redistribution mechanisms
on the global cooperation.

2. MODEL

In this paper, we study a finite population of N players. The
whole population is divided into M groups, then there are m =

N/M players in each of the group [41, 42]. Player x can choose
a strategy Sx ∈ {G, L, S}, where G, L and S represent global
cooperation, local cooperation and selfishness, respectively. Each
player has one unit of money at the beginning of the game. They
should decide whether put their money into Global account,
Local account or Personal account. If the money is put into the
Personal account, it is saved without multiplication. The player
will finally own the single unit of money. The money put into the
Local account are added and multiplied by a local gain-factor r1
(1 < r1 < m). Then it will be equally distributed to the players
in the focal group. The money put into the Global account are
summed and multiplied by a global gain-factor r2 (1 < r2 < N).
Then it is distributed to all the players in the whole population
irrespective of whether they are global cooperators or not.

After game interaction, players are asked to take part in
the process of income redistribution. We respectively consider
two cases: one is local redistribution, the other one is global
redistribution. For local redistribution, each player has to pay
part of their income to its group according to the given
income expenditure proportion p1. The parameter p1 denotes
the proportion of the second-order income obtained in the
PGG of the focal group. Subsequently, the accumulated income
expenditure of players in this group is redistributed to the m
group members irrespective of their strategies and the amount
of their second-order payments. Thus, the actual income of
player x in this group after local redistribution of income can be
calculated as

π l
x = πx × (1− p1)+

p1

m
×

m
∑

x = 1

πx, (1)

where πx denotes the income of a player after one PGG,
p1

∑m
x=1 πx is the sum of the accumulated second-order

payments of the groupmembers. Denote π1
G(i), π

1
L (l) and π1

S (m−

i − l) as the final payoff of each G, L and S player, respectively,
when there are i G players, l L players in the local group and
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the other N − i − l players all hold S strategy in the whole
population [43]:

π1
S (m− i− l) = (

i× r2

N
+

l× r1

m
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx

(2)

π1
G(i) = (

i× r2

N
+

l× r1

m
)× (1− p1)+

p1

m
×

m
∑

x = 1

πx (3)

π1
L (l) = (

i× r2

N
+

l× r1

m
)× (1− p1)+

p1

m
×

m
∑

x = 1

πx, (4)

whereπx = ir2/N+lr1/m+1 for S player andπx = ir2/N+lr1/m
for G and L players.

On the other hand, for global redistribution, players are
mandatory to pay the part of their income to the whole
population according to a fixed proportion p2, which is the
second-order payment in global redistribution. We emphasize
that p2 denotes the income expenditure proportion of all
the second-order income player obtained in the PGG of the
whole population. Subsequently, the accumulated income is
redistributed to all the players irrespective of their strategies or
the quantity of their second-order payments. Thus, the payoff
of each player after the global income redistribution can be
calculated as

π
g
x = πx × (1− p2)+

p2

N
×

N
∑

x = 1

πx, (5)

where πx is the income of a player after PGG, p2
∑N

x = 1 πx is the
sum of the accumulated second-order payments of all the players.

We consider the two-level TPGG, thus the payoffs of players
are threatened by two-level risks. Here, we denote s1 as the local
threshold and s2 as the global threshold. Then we introduce the
threshold functions:

θ1(l) =

{

q1 for l× r1 < s1

0 for l× r1 ≥ s1
(6)

θ2(i) =

{

q2 for i× r2 < s2

0 for i× r2 ≥ s2
(7)

where i is the number of global cooperators and l is the number
of local cooperators in the focal group. If the amount of collected
global public goods is less than s2, a world-wide danger is on the
way with a probability q2. Once such danger happens, the payoffs
of all the individuals are zero. If the amount of public goods in
the Global account is more than s2, the collective target achieves
and disasters are not going to happen. In this case, all the players
will get their payoffs in the public goods game. However, if the
amount of local public goods in a group is less than s1, a potential
risk could happen with a probability q1. Once suffered such risk,
the payoffs of players in the focal group would be lost.

We use imitation process to describe the evolution of
strategies. Players are likely to learn the strategies of their

successful counterparts’. Firstly, we randomly select a player A
from theN population. Then, another player B should be chosen.
With a probability ϕ, B will be selected from the N population.
Otherwise, with probability 1 − ϕ, B is chosen only from A’s
local group. In other words, the larger ϕ is, the more likely
players interact with each other globally. In our daily life, the
interaction within a group is much more frequent than that
between groups. A would learn B’s strategy with a probability
1/[1 + e−ω(πB−πA)] [44–48], where πx is the payoff of individual
x. ω denotes the imitation intensity [49–52], measuring the
dependence of decision making on the payoff comparison. Here,
we define two different imitation intensities. We denote ω1 as
the imitation intensity within a group and ω2 as the imitation
intensity between groups. During the evolutionary process of
strategies, each player has the chance of switching its strategy to
a different one with a probability µ. In this paper, we assume the
exploration rate µ → 0. The parameters in the model are listed
in Table 1.

3. METHODS

We are interested in how global cooperation evolves. To this
end, we study the stationary distribution and the fixation time.
It is common that the interaction within a group is much more
frequent than that between groups [53, 54], thus the fixation
process of a single mutant in the population goes through two
steps: the fixation of this mutant in its local group and the fixation
of such group in the whole population. We theoretically analyze
the two kinds of income redistributions respectively.

3.1. Local Income Redistribution
We consider a single local group composed of m − i S players
and i G players. All the other groups in the whole population are
full of S players. Based on Equations (2, 3), the payoffs of each G

TABLE 1 | Parameters in the model.

Symbols The meaning of the parameters

N Population size

M Number of groups

m Number of players in each group

r1 Local gain-factor

r2 Global gain-factor

p1 Local income expenditure proportion

p2 Global income expenditure proportion

s1 Local threshold

s2 Global threshold

q1 Local risk probability

q2 Global risk probability

ϕ Globally learning probability

µ Exploration rate

ω1 Imitation intensity within a group

ω2 Imitation intensity between groups
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player and each S player in the focal group are:

π1
G(i) =

i× r2

N
× (1− p1)+

p1

m
×

m
∑

x = 1

πx (8)

π1
S (m− i) = (

i× r2

N
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx. (9)

The number of G players changes from i to i± 1 in one time step
with a probability:

T±(i) = (1− ϕ)×
i

m
×

m− i

m
×

{

1+ e±ω1 [π1
S (m−i)−π1

G(i)]
}−1

,

(10)

where ω1 is the imitation intensity within a group. The fixation
probability of a single G mutant invading a group of S players is
denoted by P1SG, which is given by Traulsen et al. [45] and Wu et
al. [54]:

P1SG =



1+
m−1
∑

j = 1

j
∏

i = 1

T−(i)

T+(i)





−1

=







1+
m−1
∑

j = 1

eω1
∑j

i = 1[π
1
S (m−i)−π1

G(i)]







−1

. (11)

We define the fixation probability of a local group full ofG players
invading the whole population full of S players as P2SG. The payoff
of each G player is denoted by π2

G(i) and that of S player is
π2
S (M − i) when there are i local groups full of G players and

the otherM − i groups full of S players.

π2
G(i) =

i× r2

M
× (1− p1)+

p1

m
×

m
∑

x = 1

i× r2

M
=

i× r2

M

(12)

π2
S (M − i) = (

i× r2

M
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

(
i× r2

M
+ 1)

=
i× r2

M
+ 1. (13)

A new group full of G players arises when two players with
different strategies from different local groups are chosen, and the
S player alters its strategy through imitation, then it takes over its
local group. Thus, the probability to increase the number of local
groups full of G players by one is given by:

Ŵ+(i) = ϕ ×
i

M
×

M − i

M
×

{

1+ eω2 [π2
S (M−i)−π2

G(i)]
}−1

× P1SG(k),

(14)

where ω2 is the imitation intensity between groups. P1SG(k)
represents the fixation probability of a single G mutant invading
a group of S players when there already exist k groups full of G.

Similarly, the probability to decrease the number of G groups by
one is:

Ŵ−(i) = ϕ ×
i

M
×

M − i

M
×

{

1+ eω2 [π2
G(i)−π2

S (M−i)]
}−1

× P1GS(k).

(15)

Hence, the fixation probability of a G group in the whole
population is obtained as follows:

P2SG =



1+
M−1
∑

j = 1







eω2
∑j

i = 1[π
2
S (M−i)−π2

G(i)]
j

∏

i = 1

[

P1GS(k)

P1SG(k)

]











−1

.

(16)

We aim to analyze the multi-level TPGG. Thus, the payoffs above
are conditional. Once global danger happens, all the individuals
will lose their wealth. On the other hand, if local danger strikes,
the players in the focal group lose their wealth. By utilizing the
threshold functions, Equations (6, 7), the revised payoffs are as
follows:

π1
G(i) =

[

i× r2

N
× (1− p1)+

p1

m
×

m
∑

x = 1

πx

]

×(1− q1)× [1− θ2(i)] (17)

π1
S (m− i) =

[

(
i× r2

N
+ 1)× (1− p1)+

p1

m
×

m
∑

x = 1

πx

]

×(1− q1)× [1− θ2(i)] (18)

π2
G(i) = (

i× r2

M
)× (1− q1)× [1− θ2(i×m)] (19)

π2
S (M − i) = (

i× r2

M
+ 1)× (1− q1)× [1− θ2(i×m)].

(20)

Inserting Equations (17, 18) into Equation (11) and
Equations (19, 20) into Equation (16), we can get the following
equations when there are k groups full of G players:

P1SG(k) =







1+
m−1
∑

j = 1

eω1 (1−q1) (1−p1)
∑j

i = 1[1−θ2(i+mk)]







−1

(21)

P2SG =



1+
M−1
∑

j = 1







eω2 (1−q1)
∑j

i = 1[1−θ2(m i)]
j

∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

.

(22)

The fixation probability of a single Gmutant invading the whole
global population full of S players is defined as ρSG. Hence, we
have:

ρSG ≈ P1SG(0)× P2SG. (23)

Accordingly, we can get the fixation probability ρSG, and also ρGS,
ρSL, ρLS, ρLG, ρGL, which are given as follows:

ρSG ≈



1+
m−1
∑

j = 1

eω1 (1−p1) (1−q1) (1−q2) j





−1
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×



1+
M−1
∑

j = 1







eω2 (1−q1)
∑j

i = 1[1−θ2(m i)]
j

∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

(24)

ρGS ≈



1+
m−1
∑

j = 1

e−ω1 (1−p1) (1−q1) (1−q2) j





−1

×



1+
M−1
∑

j = 1







e−ω2 (1−q1)
∑j

i = 1[1−θ2(m i)]
j

∏

k = 1

[

P1SG(k)

P1GS(k)

]











−1

(25)

ρSL ≈







1+
m−1
∑

j = 1

eω1 (1−p1) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+
M−1
∑

j = 1

e[ω2 (1−q1−r1)+ω1 (m−1) (1−p1)] (1−q2) j







−1

(26)

ρLS ≈







1+
m−1
∑

j = 1

e−ω1 (1−p1) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+
M−1
∑

j = 1

e[−ω2 (1−q1−r1)−ω1 (m−1) (1−p1)] (1−q2) j







−1

(27)

ρLG ≈
1

m
×







1+
M−1
∑

j = 1

eω2
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )







−1

(28)

ρGL ≈
1

m
×







1+
M−1
∑

j = 1

e−ω2
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )







−1

.

(29)

During the evolutionary process, players have the chance of
exploring strategies with a probability µ. Since we assume the
exploration rate µ → 0, it assures that a single mutant vanishes
or fixates in the population before the next one appears [55, 56].
Thus, the evolutionary process can be approximated by aMarkov
chain where the state space is composed of homogeneous states
full of each type of players (G, L or S). The corresponding
transition probability matrix T is:

T =









TSS
µ
2 ρSL

µ
2 ρSG

µ
2 ρLS TLL

µ
2 ρLG

µ
2 ρGS

µ
2 ρGL TGG









. (30)

Here, Tii = 1 −
∑

k 6=i(
µ
2 ρik), where i, k ∈ {G, L, S}. Stationary

distribution describes the percentage of time spent by the
population in each homogeneous state in the long run, which
is determined by the normalized left eigenvector corresponding
to the eigenvalue 1 of the transition matrix. The stationary
distribution for Equation (30) can be calculated as follows:

XS =
ρGS ρLG+ρGS ρLS+ρLS ρGL

1
(31)

XL =
ρGS ρSL+ρSL ρGL+ρSG ρGL

1
(32)

XG =
ρSG ρLS+ρSL ρLG+ρSG ρLG

1
, (33)

where XS, XL, and XG represent the probability to find the
population in the homogeneous state consisting entirely of selfish
ones, local cooperators, and global cooperators, respectively. The
normalization factor 1 assures XS + XL + XG = 1.

On the other hand, the average time to reach a certain state
for the first time can be derived analytically in the limit of rare
explorations. For example, we denote fixation time τGS as the
average time starting in pure state of G to reach S. This fixation
time satisfies:

τGS = 1+ rGL τLS + rGG τGS, (34)

where rij = δij +
µN
2 (ρij − δij). It represents the transition

probability from the homogeneous state i to the homogeneous
state j. ρij expresses the fixation probability. δij denotes the

Kronecker delta. µN
2 means the rate at which mutants of type

j are born (as only two types of mutants can be produced
with equal probability), since on average it takes the time of
1

µN for per mutation. Then, we can get the average time of
reaching the homogeneous state S from the initial pure states
G and L:

τGS = 1+ µN
2 ρGL τLS + [1− µN

2 (ρGS + ρGL)] τGS (35)

τLS = 1+ µN
2 ρLG τGS + [1− µN

2 (ρLS + ρLG)] τLS. (36)

Solving Equations (35)-(36), we have:

τGS =
2 (ρGL+ρLG+ρLS)

µN (ρGS ρLG+ρGL ρLS+ρGS ρLS)
(37)

τLS =
2 (ρGL+ρGS+ρLG)

µN (ρGS ρLG+ρGL ρLS+ρGS ρLS)
. (38)

Similarly, expressions for other fixation time can be shown as
follows:

τSL =
2 (ρGL+ρGS+ρSG)

µN (ρGL ρSG+ρGL ρSL+ρGS ρSL)
(39)

τGL =
2 (ρGS+ρSG+ρSL)

µN (ρGL ρSG+ρGL ρSL+ρGS ρSL)
(40)

τSG =
2 (ρLG+ρLS+ρSL)

µN (ρLG ρSG+ρLS ρSG+ρLG ρSL)
(41)

τLG =
2 (ρLS+ρSG+ρSL)

µN (ρLG ρSG+ρLS ρSG+ρLG ρSL)
. (42)

Based on the solved fixation probabilities, Equations (24–29), we
can deduce the stationary distribution and the fixation time with
a complete form.

3.2. Global Income Redistribution
Similarly with the former analysis for local income redistribution,
we consider a single local group in which there are i G players
and m − i S players, and assume that all the other groups are
full of S players. Compared with Equations (17–20) for local
income redistribution, the payoffs of each G and S player for
global income redistribution are:

π1
G(i)

′
=

[

i× r2

N
× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

× (1− q1)
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×[1− θ2(i)] (43)

π1
S (m− i)′ =

[

(
i× r2

N
+ 1)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

× (1− q1)

×[1− θ2(i)] (44)

π2
G(i)

′
=

[

(
i× r2

M
)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

×(1− q1)× [1− θ2(m× i)] (45)

π2
S (M − i)′ =

[

(
i× r2

M
+ 1)× (1− p2)+

p2

N
×

N
∑

x = 1

πx

]

×(1− q1)× [1− θ2(m× i)]. (46)

Based on the payoffs, we can get the fixation probability ρ′

SG, ρ
′

GS,
ρ′

SL, ρ
′

LS, ρ
′

LG, and ρ′

GL for global income redistribution, which are
given as follows:

ρ′

SG ≈



1+
m−1
∑

j = 1

eω1 (1−p2) (1−q1) (1−q2) j





−1

×



1+
M−1
∑

j = 1







eω2 (1−p2) (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1GS(k)

P1SG(k)

]











−1

(47)

ρ′

GS ≈







1+
m−1
∑

j = 1

e[−ω1 (1−p2) (1−q1) (1−q2) j]







−1

×



1+
M−1
∑

j = 1







e−ω2 (1−p2) (1−q1)
∑j

i = 1[1−θ2(m i)]

j
∏

k = 1

[

P1SG(k)

P1GS(k)

]











−1

(48)

ρ′

SL ≈



1+
m−1
∑

j = 1

eω1 (1−p2) (1−q2)
∑j

i = 1[1−θ1(i)]





−1

×







1+
M−1
∑

j = 1

e[ω2 (1−q1−r1)+ω1 (m−1)] (1−p2) (1−q2) j







−1

(49)

ρ′

LS ≈







1+
m−1
∑

j = 1

e−ω1 (1−p2) (1−q2)
∑j

i = 1[1−θ1(i)]







−1

×







1+
M−1
∑

j = 1

e[−ω2 (1−q1−r1)−ω1 (m−1)] (1−p2) (1−q2) j







−1

(50)

ρ′

LG ≈
1

m
×



1+
M−1
∑

j = 1

eω2 (1−p2)
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )





−1

(51)

ρ′

GL ≈
1

m
×



1+
M−1
∑

j = 1

e{−ω2 (1−p2)
∑j

i = 1[1−θ2(m i)] (r1+q1
i r2
M )}





−1

.(52)

Based on these fixation probabilities, it is easy to deduce
the corresponding stationary distribution and the fixation
time with a complete form for the case of global income
redistribution.

4. RESULTS AND DISCUSSION

Sustainable development calls for more and more global
cooperation. Former collective risk dilemma models, however,
seldom distinguish global cooperators from local ones. In
this paper, we explicitly consider different cooperators arising
from the group structured population to address how global
cooperative behavior is affected by collective risk and income
redistribution mechanisms. Income redistribution is a means of
adjusting the income among individuals, which could make full
use of social capital. We explore how income redistribution of
different levels influence the evolution of global contribution in
multi-level threshold public goods games.

We first study the local income redistribution mechanism.
The stationary distribution of three strategies are compared in
Figure 1A. With the increment of the local income expenditure
proportion p1, XG (the stationary distribution of G) and XL

show an ascending trend while XS descends. It is found that the
global cooperation is promoted by local income redistribution
compared with typical TPGG, which is shown as p1 = 0.
In PGG model, the Nash equilibrium predicts zero provision.
Thus, the selfishness is the dominate strategy, while global
cooperation is inferior. When public goods can only be provided
if global contributions reach a minimum threshold, this creates
an advantage in that Pareto efficient outcomes can be Nash
equilibria. In TPGG, however, we still see significant under-
provision of the global public goods. After introducing the local
income redistribution, players share part of their payoffs. The
mechanism changes the comparison between different strategies
in the local group, which reduces the inferiority of global
cooperators. Especially under the high risk circumstance, the
global cooperation becomes a Nash equilibrium (if the collective
target is so large which requires almost all the players to
contribute). For different gain-factors, it is shown in Figure 1B

that the global cooperative behavior is promoted with the rise
of p1. It is well-known that, in the context of PGG, small
values of gain-factor favor defectors and large values benefit
cooperators. In our work, larger r1/r2 indicates much worse
condition for global contributors. Even though in such situations,
compared with the frequencies of global cooperation at p1 = 0,
global cooperators still have a much better chance for survival
when p1 > 0. That is because the wealth gap between global
cooperators and others is narrowed with increasing p1, which
makes the cooperative behaviors have more chance to prevail in
themulti-level TPGG rather thanwithout suchmechanism. Local
income redistribution balances the income difference among
individuals in the same group. Suffered as a consequence, the
final payoff of each player is strongly dependent on the quality
of its group. Obviously, more local cooperators make larger
contributions in the group with a fixed number of participants.
Thereinto, a player in the group withmore local cooperators has a
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competitive advantage over the other players. Thus, local income
redistribution, which acts as a driving force for promoting
cooperation in the local group, especially local cooperation, gives
prominence to the role of groups on the evolution of cooperation.

We then probe how global income redistribution mechanism
influences the evolution of different strategies in the multi-
level TPGG model. As is illustrated in Figure 2, the stationary
distribution of G (XG) shows an ascending trend while XS

and XL descend with the increment of p2. Different from
results in local income redistribution mechanism, only global
cooperation is obviously improved. Under the mechanism of
global income redistribution, the accumulated second-order
payments are redistributed to the whole population irrespective

of their strategies and contributions. Thus, on the one hand, the
payoff differences among strategies are reduced. On the other
hand, the evolutionary advantage of compact cooperative clusters
cannot spread to the whole population. Thus, the global income
redistribution actually inhibit the heterogeneity of groups. When
p2 → 1, almost all the players share all of their fortunes. Under
such circumstance, the whole population is in a state of random
drift. Each strategy holds a stationary distribution of 1/3.

In the following, we study how long the population fixates at
each state in both income redistribution mechanisms. We focus
on the fixation time of each strategy, especially that of G strategy.
With the increase of income expenditure proportion, both p1 and
p2, the changes of average time that a mutant of each strategy

FIGURE 1 | The influence of the local income expenditure proportion on the stationary distribution of strategies. In (A), the tendency of stationary distribution of

selfishness, local contribution and global cooperation (XS, XL, and XG) with respect to the increase of local income expenditure proportion p1 are shown. XG and XL
are promoted with the increasing p1, while XS decreases. It means that the effect of local income redistribution on promoting global cooperation becomes remarkably

obvious with the increase of the proportion of redistribution in groups. Parameters are m = 5, M = 20, N = 100, q1 = q2 = 0.8, r1 = 2, r2 = 3, s1 = 2, s2 = 160,

and ω1 = ω2 = 0.005. In (B), the tendency of the stationary distribution of global cooperation with the increase of p1 under different gain-factors are shown. We

respectively study three r1/r2 ratios.

FIGURE 2 | The influence of the global income expenditure proportion on the stationary distribution of strategies. In (A), the tendency of stationary distribution of S, L,

and G (XS, XL, and XG) with respect to the increase of global income expenditure proportion p2 are shown. XG is promoted with the increasing p2, while XS and XL
decrease. It means that the effect of global income redistribution on promoting global cooperation becomes remarkably obvious with the increase of the proportion of

redistribution in the whole population. Parameters are m = 5, M = 20, N = 100, q1 = q2 = 0.8, r1 = 2, r2 = 3, s1 = 2, s2 = 160, and ω1 = ω2 = 0.005. In (B), the

tendency of the stationary distribution of global cooperation with the increase of p2 under different gain-factors are shown. We respectively explore three r1/r2 ratios.
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invades population full of the other two respectively are shown
in Figure 3. After introducing an income redistribution (both
global and local) into the multi-level TPGG model, the time
for G invading the other two strategies are obviously shortened.
The larger the p1 (or p2), the more likely global cooperation
to be learned and adopted by other strategies’ holders. Then G
strategy could occupy the entire population more quickly. By
comparison, the G strategy under global income redistribution
mechanism fixates faster than local income redistribution. The
change of the fixation time of S is on the contrary. The time for S
invading the other two strategies remarkably prolong. It is known
that the fixation time of L is shortened in TPGG compared with
PGG. For the local income redistribution, the fixation time of L
declines. The difficulty for other strategies to invade L increases.
For the global income redistribution, however, although the time
for L invading S is shortened, the time for L invading G becomes
longer with the rise of p2. Compared with the promotion of global
cooperation and the inhibition of selfishness owing to the global
income redistribution, to a certain extent, it only has little impact
on local cooperation. For a limit case, when p2 = 1, the fixation
difficulty of all the strategies are the same.

We further investigate how decision-makings are affected by
the change of the thresholds. As shown in Figure 4, the global
cooperative behavior is promoted with the increasing global
threshold. By adding a threshold in global PGG, the game is
turned from a social dilemma into a sort of coordination game. In
particular, with a large threshold, players are facing a sufficiently
severe potential crisis. Such risk indicates that all the players
probably lose their wealth. Higher global threshold means a
bigger target which has to be reached to avoid the risk. Global
cooperation is necessary for public safety, and becomes more
and more important with the increasing risk. Once the disaster
happens, all the individuals are equally wealthy. Thus, global
cooperators can gain a foothold. Because income redistribution

could narrow the payoff differences among strategies, global
cooperation has more opportunity to be adopted in high risk
cases. This paves the way for them to emerge in the population.
In comparison, for the same income expenditure proportion,
p1 = p2, the growth of global cooperation is more obvious in
the global income redistribution mechanism than in the local
one. It hints that when sharing more wealth with the whole
population, the relationship among individuals becomes more
close. Hence, individuals are more inclined to cooperate globally

FIGURE 4 | The stationary distribution changes with the global threshold s2.

Global cooperation is promoted with the increase of the global threshold s2,

while selfishness and local cooperation decrease. It hints that players are more

apt to cooperate globally under high global risks. We investigate both of the

two income redistribution mechanisms, and the stationary distributions of

strategies are calculated respectively in each mechanism under the same

parameter values. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3,

s1 = 2, q1 = q2 = 0.8, p1 = 0.5, p2 = 0.5, and ω1 = ω2 = 0.005.

FIGURE 3 | The fixation time changes with the income expenditure proportions. (A) reflects the local income redistribution; (B) reflects the global income

redistribution. In each panel, average fixation time of each strategy invading the others are respectively shown. When a mutant G invades S population, denoting τSG
as the average time starting in pure state of S to reach G. When a mutant G invades L population, denoting τLG as the average time starting in pure state of L to reach

G. Both τSG and τLG decline with the increase of p2 and p1. Likely, a mutant L invades S population, a mutant L invades G population, a mutant S invades L

population, and a mutant S invades G population are respectively shown as τSL, τGL, τLS and τGS. It shows that the larger p2 and p1 benefit the fixation of global

cooperation. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3, s1 = 2, s2 = 160, q1 = q2 = 0.8, and ω1 = ω2 = 0.005.
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for collecting global public goods to resist the disaster. Moreover,
we study the influence of local threshold on the results. As
shown in Figure 5, the increase of s1 obviously promotes local

FIGURE 5 | The stationary distribution changes with the local threshold s1.

Local cooperation is promoted with the increase of s1, while selfishness

decreases. It has little influence on global cooperation, which slightly drops

with the increase of s1. Local risk makes the L strategy become a better

behavior to be chosen. The results are obtained under global income

redistribution mechanisms, while similar results can be found under the local

income redistribution case. Parameters are: m = 5, M = 20, N = 100, r1 = 2,

r2 = 3, s2 = 160, q1 = q2 = 0.8, p1 = 0.5, p2 = 0.5, and ω1 = ω2 = 0.005.

cooperation, while inhibits selfishness. Meanwhile, it has only
a little impact on global cooperation, which slightly drops with
the rise of s1. The results are obtained under global income
redistribution mechanisms, while similar results can be found
under the local income redistribution too. Compared with the
global threshold, local thresholds have much less effects on the
global cooperation. Since we focus on the global cooperation, we
mainly study the impacts of global threshold on the results in this
paper.

In the global income redistribution mechanism, we further
investigate the mutual influence of global threshold s2 and p2
on the evolution of strategies. As shown in Figure 6, with the
increase of s2 and p2, global cooperation shows an increasing
trend, while selfishness declines correspondingly. It is worth
noting that the trend for local cooperation with the change of
p2 is related to the size of global threshold s2. For smaller s2,
local cooperation decreases with the rise of p2; for larger s2, local
cooperation increases with the rise of p2. While for intermediate
s2, local cooperation rises under lower p2 and then reduces under
higher p2. It is found that there exists a most adaptable value
of p2 for local cooperators under global income redistribution.
This phenomenon means that, on one hand, the mechanism of
global income redistribution reduces income inequality within
the whole population, which is generally regarded to be a
positive improvement to society. But on the other hand, it
may negatively affect the efficiency of social-economic system
(local economic development). Thereby, the income expenditure
proportion, which can be described as the social tolerance,
should be limited under such case. Beyond these limits, the

FIGURE 6 | The stationary distribution changes with p2 under different global thresholds. Global cooperation is promoted with the increase of p2 as well as s2, while

selfishness decreases. It hints that players are more apt to cooperate globally under high global risks. As to local cooperation, it depends on s2. For lower s2, local

cooperation decreases with the rise of p2. For higher s2, local cooperation increases with the rise of p2. For moderate s2, local cooperation first rises and then drops

with the increase of p2. Parameters are: m = 5, M = 20, N = 100, r1 = 2, r2 = 3, s1 = 2, q1 = q2 = 0.8, and ω1 = ω2 = 0.005.
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enthusiasm of individual investment and rapid development of
social-economic system may be on the brink of collapse.

5. CONCLUSION

In this paper, we have studied the evolution of strategies in
the multi-level threshold public goods games, where global
and local cooperation are clearly distinguished. By introducing
two kinds of income redistribution mechanisms, we investigate
how income expenditure proportions (p1 and p2) and risks
(thresholds) influence the average abundance of strategies and
fixation time. It is shown that with larger income redistribution
proportions, players aremore apt to cooperate globally, especially
under high collective risks. When individuals are conscious
of an even greater calamity, they are apt to form an alliance
to prevent the risk through cooperation globally. The more
disruptive the danger is, the more likely they succeed in
collective target. Selfishness is effectively inhibited under both
income redistribution mechanisms. It implies that an income
redistribution mechanism may be effective for solving the
social dilemma of free-riders and promoting social equity. We
further compare the influences of the local and global income
redistribution on the global cooperation and local cooperation. It
is found that compared with local income redistribution, global
income redistribution is more in favor of global cooperation.
On the contrary, local income redistribution is more beneficial
for local cooperation. Our model is relatively simple compared
with the actual situations, but it characterizes some main features

of the systems with income redistribution, and show results
that the frequency of global cooperation may be promoted in
some cases. This study may provide some useful implications
for investors, fundraisers and also government officials. The
theoretical analysis in this work is only a first step toward
the models of learning process. Since learning and interaction
between players should be on the same scale, we hope more
accurate theoretical methods on this kind of models could be
explored in the future.
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This study computationally examines (1) how the behaviors of subjects are represented,

(2) whether the classification of subjects is related to the scale of the game, and (3)

what kind of behavioral models are successful in small-sized lowest unique integer

games (LUIGs). In a LUIG, N (≥ 3) players submit a positive integer up to M(> 1)

and the player choosing the smallest number not chosen by anyone else wins. For this

purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses

the behavioral data obtained in the laboratory experiment by Yamada and Hanaki [1].

For computational experiments, the author calibrates the parameters of typical learning

models for each subject and then pursues round robin competitions. The main findings

are in the following: First, the subjects who played not differently from the mixed-strategy

Nash equilibrium (MSE) prediction tended to made use of not only their choices but also

the game outcomes. Meanwhile those who deviated from the MSE prediction took care

of only their choices as the complexity of the game increased. Second, the heterogeneity

of player strategies depends on both the number of players (N) and the upper limit (M).

Third, when groups consist of different agents like in the earlier laboratory experiment,

sticking behavior is quite effective to win.

Keywords: lowest unique integer games, laboratory experiment, heterogeneity of strategies, learning, agent-

based simulation

1. INTRODUCTION

In social and economic systems, individuals, groups, firms and so on make their decision based on
the rules they should obey. For example, call market, continuous double auction and other trading
mechanisms are seen in financial markets and investors trade by taking into consideration which
mechanism is introduced [2]. Or, first- and second-prize styles are usually employed in auction
markets and the theoretical bid is different from the auction style [3]. On the other hand, new
types of social and economic systems have been also proposed and some of them are introduced in
practice. Among these, Swedish lottery (SL) game Limbo and Lowest/Highest Unique Bid Auctions
(LUBA/HUBA) like the Auction Air or Juubeo websites are one of the new systems where the
participants are required to be unique by taking risks of not being so.

Lowest Unique Integer Games (LUIGs) are highly simplified versions of SL and LUBA/HUBA.
In a LUIG, N (≥ 3) players simultaneously submit a positive integer up toM. The player choosing
the smallest number that is not chosen by anyone else is the winner. In cases where no player
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chooses a unique number, there is no winner. For instance,
suppose there is a LUIG with N = 3 andM = 3. There are three
players, A, B, and C, who each submit an integer between 1 and 3.
If the integers chosen by A, B, and C are 1, 2, and 3, respectively,
then A wins the game. If the integers chosen by A, B, and C are 1,
1, and 2, respectively, then C is the winner. And, as noted, if all of
them choose the same integer, there is no winner.

LUIGs are more tractable than the above-mentioned real
systems because the exact numbers of players or participants and
the options are known for their decision-making. In this sense,
these types of real systems have been attracting much attention
recently from scholars of various disciplines1. In addition, several
social or economic systems have characteristics of LUIGs. As
Östling et al. [4] have pointed out, “choices of traffic routes and
research topics, or buyers and sellers choosing among multiple
markets” (p. 3) are probable examples. Or, the Braess paradox
can be explained by LUIG [1]. While the previous studies have
investigated these related systems theoretically and empirically,
the behaviors of the bidders and participants, and the dynamics
of game outcomes are not so clear. Likewise, experimental studies
on LUIGs and related systems are still scarce except for Östling
et al. [4] and Rapoport et al. [5]. Östling et al. have conducted
a laboratory experiment of SL and found that there are mainly
four kinds of behaviors observed: random, stick, lucky and
strategic. Based on their findings, Mohlin et al. have proposed
two learning models, global cumulative imitation and similarity-
based imitation, where players make use of not only their choice
but also the game outcome for updating their attractions [6]. On
the other hand, Rapoport et al. have experimentally studied a
version of LUBA/HUBA with (N,M) ∈ {(5, 4), (5, 25), (10, 25)}
and found that only a small fraction of subjects behaved as
theoretically predicted [5].

Yamada and Hanaki experimentally studied LUIGs to
determine if and how subjects self-organized into different
behavioral classes to obtain insights into choice patterns that can
shed light on the alleviation of congestion problems [1]. They
considered four LUIGs with N = {3, 4} and M = {3, 4} and
implemented a laboratory experiment for totally 192 subjects.
Each subject played two separate LUIGs but the difference
between the two LUIGs was eitherN orM. Therefore, each LUIG
had 96 subjects and they were equally split into two parties,
those who played it in Game 1 and the others who did in Game
22. Accordingly, 48 subjects played one of the four LUIGs in
Game 1, which yielded 16 groups in three-person LUIGs and
12 groups in four-person LUIGs. Yamada and Hanaki found
that (a) choices made by more than 1/3 of subjects were not
significantly different from what a symmetric mixed-strategy
Nash equilibrium (MSE) predicts; however, (b) subjects who
behaved significantly differently fromwhat theMSE predicts won
the game more frequently.

These early experimental studies suggest that the strategy and
the decision-making of subjects are heterogeneous and that the
theoretical predictions may not be effective to win more. Yet,

1The list of related work is found in Yamada and Hanaki [1].
2The whole explanation for the experimental design and the mixed-strategy Nash
equilibrium in each LUIG are given in Yamada and Hanaki [1].

due to limited number of samples, it is necessary to intensively
examine the relations between the behavior and learning of
individuals, which can be an origin of heterogeneity, and their
performances. This study extends their past experimental work
to check whether such successful or unsuccessful behaviors
are also true for the game with different opponents. For this
purpose, the author pursues computational approach where the
calibrated agents play with all agents including themselves (round
robin contest) and make comparison between experimental
and computational experiments. Here, several typical learning
models are employed to express the behaviors of subjects in the
laboratory experiment. Then, the one with the best likelihood
for every subject in each game setup is used for computational
experiments.

Several studies have employed both experimental and
computational approaches to computationally test the
experimental results and vice versa. According to Duffy, its
advantages are summarized as “the agent-based approach
to understand results obtained from laboratory studies with
human subjects” and “to understand findings from agent-
based simulations with follow-up experiments involving human
subjects” (p. 951) [7]. The necessity of combining two approaches
have been argued and the methodology has been proposed for
the last decade (e.g., [8–11]). There are a few researches which
indeed employ the combined approach to computationally
test the validity of experimental findings in the laboratory,
implement an intensive computational experiment, and extend
the experimental design by using the laboratory data [12–14].

2. MATERIALS AND METHODS

In the laboratory experiment by Yamada and Hanaki [1], they
observed that keeping on choosing a number was an effective way
to win LUIGs. But, it was not at that moment sure whether such
sticking behavior was really successful. Here, a computational
experiment of round robin competition is employed to see its
effectiveness. Before the competition, several typical learning
models are employed and the parameters of the models for each
subject are then estimated.

2.1. Learning Models
The learning models are as follows:

• One variable adaptive learning (AL1)
An AL1 player i has a propensity aki (t) for number k (k =

1, · · · , M) at the beginning of round t. Before the start
of a game, she is assumed to have the same non-negative

propensities for all the possible integers, namely a
j
i(0) =

aki (0) ≥ 0 for j 6= k.
In every round, she chooses one integer according to the

following exponential selection rule

pki (t) =
exp(λa · aki (t))

∑M
k′=1 exp(λa · a

k′
i (t))
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TABLE 1 | Classification of subjects by observed behavior in the laboratory and

the estimated learning model.

(A) LUIG 33

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 9 12 0 5

AL3 1 0 0 1

NI 10 8 0 2

Stick 0 0 0 0

Cramer’s coef. = 0.194

(B) LUIG 34

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 7 8 2 6

AL3 1 2 0 0

NI 15 5 0 1

Stick 0 0 0 1

Cramer’s coef. = 0.386

(C) LUIG 43

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 6 10 3 5

AL3 4 1 0 1

NI 14 4 0 0

Stick 0 0 0 0

Cramer’s coef. = 0.388

(D) LUIG 44

MSE

(choice + change)

MSE

(choice)

MSE

(change)

Non-MSE

AL1 4 4 1 13

AL3 0 0 2 0

NI 12 8 0 3

Stick 0 0 0 1

Cramer’s coef. = 0.561

where pki (t) is i’s selection probability for integer k in round
t, and λa is a positive constant called sensitivity parameter
([15, 16]).

After a round, propensities are updated as

aki (t + 1) = (1− φa)a
k
i (t)+ 1{k,si(t)}ψaR

where φa and ψa are positive constants called learning
parameter ([15, 16]), 1{·} is the indicator function that takes
1 if k = si(t), and 0 otherwise. Here si(t) is the number that
player i has actually chosen in round t, and R is the payoff
received. Note that the model is called “cumulative” if ψa = 1
and “averaging” if ψa = φa.

• Three variables adaptive learning (AL3)
Players using this model take into consideration two

additional psychological assumptions, experimentation and
forgetting. Here, propensities are updated as

aki (t + 1) = (1− φb)a
k
i (t)+ 1{k,si(t)}ψbR

when they win and

a
j
i(t + 1) = (1− φb)a

j
i(t)+ ψbǫR/(M − 1) (j 6= si(t))

when they lose3. φb and ψb are also learning parameters and ǫ
is a experimentation parameter. Here ǫ is set to 1.0.

• Naive imitation (NI)
Players using this model follow a winning number

regardless of whether they are a winner or not. When
“no-winner” situation happens, they choose the preceding
number4.

While the selection rule is the same as that in AL1 and AL3
models, the updating rule is expressed in the following:

aki (t + 1) = (1− φn)a
k
i (t)+ 1{k,v(t)}ψnR

where v(t) is a winning number in round t, and φn and ψn are
also learning parameters.

• Stick
Players using this model always choose only one number5.

2.2. The Data to Calibrate
Since the subjects in the earlier laboratory experiment were
asked to choose and submit one of the M integers, the
experimental data for calibration include rounds, the choices
of subjects and the winning number for every group in every
LUIG. In other words, they were not asked to imagine what
numbers their opponents would choose or to determine the
probability distribution so that one number would be randomly
chosen.

To determine a learning model for every subject, the author
set one condition and assumed one point: First, only the
experimental data in Game 1 were used for calibration. This
is because learning across the games cannot be clearly treated.
For example, when subjects play a LUIG with M = 3 in Game
1 and that with M = 4 in Game 2, it is not clear how the
initial propensity for the integer 4 is given. Besides, even if the
calibration is done, it is not preferable that the initial state is
different from the subjects; Second, all initial propensities in
Game 1 are set to zero, namely the subjects did not have any prior

3Similar learning model in Swedish lottery is proposed byMohlin et al. [6]. In their
model, players using the model pay attention to the numbers around the winning
number when they lose. But, since the number of options in LUIGs here is much
smaller, it may be possible to take into account the numbers except their chosen
number in the same situation. If the players consider only the winning number,
the following “naive imitation” model is applied.
4Since there are no information about the winning number at the beginning of
the computational experiments, they choose one integer in accordance with the
exponential selection rule.
5Level-k thinking in LUIGs chooses a strategy randomly (k = 0), 1 (k: odd), and 2
(k: even).
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FIGURE 1 | Generated dendrogram (LUIG33).

FIGURE 2 | Generated dendrogram (LUIG34).

belief to others or view to the game. Then, the learning model
with the best log likelihood is employed for the simulation6. Note
that the subjects who did not change at all in Game 1 belong to
“stick.”

6“optim” function in R was used for calibration.

2.3. Computational Round Robin Contest
The experimental design is as follows:

1. Agents played the same LUIG as the corresponding subjects
played in the laboratory.

2. Every agent competes all the combinations of opponents
including him/herself. Therefore, the total number of
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FIGURE 3 | Generated dendrogram (LUIG43).

FIGURE 4 | Generated dendrogram (LUIG44).

combinations is 48HN and an agent faces 1,174 (three-
person LUIGs) and 29,329 (four-person LUIGs) patterns of
opponents.

3. Every combination of agents played the LUIG 100 times
each of which has 50 rounds.

4. The initial propensities of each agent in each game are
the ones estimated by the maximum likelihood method. In
other words, the agents learn and update their belief by using
the data of Yamada and Hanaki [1] before they start to play
the computational LUIG.
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TABLE 2 | Expected behaviors of representative agents in each cluster (ID: Subject ID in the session).

(A) LUIG 33

Cluster #subjects Session ID 1 2 3

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 15 1 11 0.574 0.273 0.153

2 19 1 23 0.433 0.311 0.256

3 6 1 10 0.024 0.951 0.025

6 20 0.166 0.705 0.129

4 3 1 6 0.998 0.001 0.001

5 5 1 21 0.991 0.000 0.009

Cluster 10c 11c 12c 12w 13c 13w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.574 0.594 0.581 0.276 0.574 0.153

2 0.424 0.494 0.435 0.347 0.393 0.287

3 0.042 0.150 0.182 0.733 0.211 0.112

0.177 0.269 0.275 0.578 0.282 0.157

4 0.990 0.997 0.985 0.008 0.951 0.024

5 0.989 0.995 0.994 0.000 0.978 0.022

Cluster 20c 21c 21w 22c 23c 23w

1 0.273 0.260 0.594 0.276 0.273 0.153

2 0.321 0.282 0.459 0.356 0.325 0.310

3 0.627 0.581 0.255 0.747 0.690 0.131

0.546 0.532 0.292 0.631 0.611 0.152

4 0.057 0.102 0.798 0.685 0.612 0.092

5 0.000 0.000 0.990 0.000 0.001 0.045

Cluster 30c 31c 31w 32c 32w 33c

1 0.153 0.146 0.594 0.143 0.276 0.153

2 0.312 0.277 0.435 0.254 0.361 0.326

3 0.158 0.183 0.228 0.205 0.548 0.421

0.162 0.172 0.253 0.182 0.559 0.272

4 0.132 0.171 0.331 0.205 0.458 0.790

5 0.052 0.020 0.980 0.024 0.002 0.080

(B) LUIG 34

Cluster #subjects Session ID 1 2 3 4

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 4 2 3 0.252 0.735 0.007 0.006

2 6 0.016 0.952 0.017 0.016

2 26 5 14 0.272 0.246 0.236 0.246

5 19 0.289 0.293 0.191 0.227

3 3 2 17 0.001 0.001 0.998 0.001

4 15 5 22 0.865 0.053 0.064 0.017

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.261 0.377 0.275 0.711 0.281 0.015 0.287 0.017

0.021 0.093 0.105 0.834 0.117 0.038 0.129 0.044

(Continued)
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TABLE 2 | Continued

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

2 0.272 0.275 0.274 0.248 0.273 0.237 0.272 0.246

0.283 0.334 0.297 0.312 0.273 0.241 0.254 0.256

3 0.001 0.005 0.008 0.002 0.011 0.982 0.015 0.005

4 0.847 0.876 0.836 0.079 0.791 0.100 0.761 0.040

Cluster 20c 21c 21w 22c 23c 23w 24c 24w

1 0.667 0.549 0.412 0.661 0.641 0.032 0.621 0.035

0.755 0.728 0.152 0.899 0.877 0.029 0.854 0.035

2 0.246 0.245 0.275 0.248 0.247 0.237 0.246 0.246

0.261 0.240 0.306 0.295 0.270 0.262 0.250 0.267

3 0.007 0.010 0.025 0.041 0.050 0.894 0.060 0.022

4 0.099 0.080 0.789 0.123 0.125 0.146 0.130 0.072

Cluster 30c 31c 31w 32c 32w 33c 34c 34w

1 0.040 0.037 0.431 0.031 0.611 0.057 0.061 0.062

0.043 0.051 0.097 0.059 0.774 0.217 0.224 0.064

2 0.236 0.235 0.274 0.234 0.248 0.237 0.236 0.246

0.245 0.229 0.294 0.217 0.287 0.271 0.251 0.272

3 0.846 0.819 0.066 0.791 0.092 0.909 0.887 0.024

4 0.156 0.127 0.696 0.127 0.165 0.185 0.184 0.107

Cluster 40c 41c 41w 42c 42w 43c 43w 44c

1 0.067 0.060 0.436 0.051 0.563 0.054 0.087 0.093

0.071 0.079 0.126 0.087 0.538 0.095 0.245 0.302

2 0.246 0.245 0.274 0.245 0.248 0.244 0.237 0.246

0.268 0.247 0.290 0.231 0.284 0.219 0.275 0.274

3 0.030 0.037 0.058 0.045 0.078 0.053 0.781 0.169

4 0.113 0.096 0.609 0.096 0.200 0.095 0.215 0.140

(C) LUIG 43

Cluster #subjects Session ID 1 2 3

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 13 4 14 0.390 0.398 0.213

2 9 7 8 0.608 0.200 0.192

3 8 7 14 0.899 0.058 0.042

7 13 0.691 0.298 0.010

4 15 4 6 0.272 0.570 0.158

5 3 4 22 0.001 0.997 0.002

Cluster 10c 11c 12c 12w 13c 13w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.293 0.484 0.358 0.368 0.271 0.322

2 0.558 0.830 0.763 0.120 0.697 0.150

3 0.760 0.924 0.807 0.108 0.615 0.172

0.685 0.758 0.675 0.315 0.666 0.016

4 0.272 0.290 0.276 0.576 0.273 0.160

5 0.001 0.002 0.001 0.997 0.001 0.002

(Continued)
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TABLE 2 | Continued

Cluster 20c 21c 21w 22c 23c 23w

1 0.304 0.234 0.363 0.424 0.315 0.353

2 0.184 0.211 0.581 0.582 0.539 0.154

3 0.120 0.068 0.689 0.290 0.164 0.250

0.322 0.248 0.737 0.334 0.335 0.024

4 0.566 0.552 0.291 0.573 0.564 0.162

5 0.996 0.994 0.002 0.997 0.996 0.003

Cluster 30c 31c 31w 32c 32w 33c

1 0.267 0.210 0.401 0.172 0.409 0.352

2 0.181 0.204 0.323 0.225 0.447 0.595

3 0.141 0.080 0.680 0.046 0.268 0.219

0.026 0.022 0.715 0.021 0.351 0.034

4 0.163 0.159 0.292 0.152 0.570 0.164

5 0.002 0.002 0.001 0.001 0.998 0.002

(D) LUIG 44

Cluster #subjects Session ID 1 2 3 4

SUMMARY AND SUBMISSION PROBABILITY IN ROUND 51

1 20 8 22 0.520 0.078 0.201 0.201

3 9 0.346 0.457 0.166 0.031

2 5 3 14 1.000 0.000 0.000 0.000

3 12 8 13 0.248 0.253 0.251 0.248

8 23 0.199 0.402 0.199 0.199

4 11 8 1 0.206 0.772 0.015 0.007

Cluster 10c 11c 12c 12w 13c 13w 14c 14w

UPDATES OF CHOSEN OR WINNING NUMBER

1 0.520 0.738 0.738 0.042 0.738 0.110 0.738 0.110

0.345 0.410 0.361 0.473 0.345 0.176 0.342 0.038

2 1.000 1.000 1.000 0.000 1.000 0.000 1.000 0.000

3 0.249 0.591 0.510 0.164 0.447 0.184 0.399 0.200

0.211 0.527 0.463 0.222 0.414 0.177 0.376 0.193

4 0.206 0.253 0.207 0.776 0.207 0.015 0.206 0.007

Cluster 20c 21c 21w 22c 23c 23w 24c 24w

1 0.042 0.042 0.738 0.103 0.103 0.103 0.103 0.103

0.441 0.395 0.405 0.462 0.438 0.186 0.431 0.046

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.213 0.222 0.336 0.564 0.489 0.156 0.431 0.177

0.242 0.245 0.325 0.564 0.492 0.154 0.436 0.175

4 0.772 0.727 0.253 0.776 0.774 0.015 0.772 0.007

Cluster 30c 31c 31w 32c 32w 33c 34c 34w

1 0.103 0.103 0.691 0.103 0.103 0.229 0.229 0.089

0.187 0.171 0.401 0.154 0.450 0.196 0.194 0.054

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.194 0.207 0.233 0.217 0.329 0.558 0.484 0.154

0.192 0.204 0.232 0.215 0.334 0.530 0.466 0.158

4 0.015 0.014 0.253 0.011 0.776 0.015 0.015 0.007

(Continued)
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TABLE 2 | Continued

Cluster 40c 41c 41w 42c 42w 43c 43w 44c

1 0.089 0.089 0.594 0.089 0.089 0.089 0.229 0.201

0.056 0.052 0.396 0.048 0.439 0.047 0.204 0.063

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

3 0.176 0.192 0.199 0.206 0.231 0.216 0.328 0.557

0.178 0.193 0.201 0.206 0.235 0.215 0.325 0.531

4 0.007 0.006 0.253 0.005 0.776 0.005 0.015 0.007

5. The information available for the agents is their choice and
the winning number in the preceding round. However, at
the beginning of each game, there does not exist the winning
number.

6. Agents learn according to their calibrated learning model
with the corresponding parameters.

All numerical results in the next section have been computed in
double precision on a 2.4 GHz PC with 8 GB of RAM and a linux
OS (Kernel 4.4.52-2vl6). All the source codes have been written in
C++, and complied and optimized by GNU g++ version 4.9.37.

3. RESULTS

3.1. Classification of Subjects
Before discussing the results of computational round robin
competitions, the author needs to pay attention to how the
subjects were classified and whether there are relations between
their calibrated learning model and their behaviors observed in
the laboratory.

Table 1 shows the relation between the calibrated learning
model and the choice and the change criteria given in Yamada
and Hanaki [1]8. Two updating rules, cumulative and averaging,
are encapsulated into one. Cramer’s coefficient of association for
each LUIG is also given. Note that the abbreviation “LUIG34”
means that the number of players N is 3 and the upper limit M
is 4. Thus, the first number followed by “LUIG” is N and thenM
comes next.

Cramer’s coefficient of association seems to depend on both
N and M. When N and M are small, the value is relatively
low (0.193 for LUIG 33). On the other hand, if N and/or M
are large, the coefficient becomes larger. In particular, Cramer’s
coefficient of association for LUIG 44 is 0.561, namely many of
the subjects who played not differently from MSE prediction are
considered as NI players whereas those who deviated from the
MSE prediction took into account only their own choices. This
means, since larger N and M make it more difficult to imagine
what number one’s opponents chose from his/her choice and the
winning number, some of the subjects became to rely on the
available information.

7The source code is available upon request.
8Choice criterion means whether the relative frequency of chosen number was
different from that in MSE prediction meanwhile change criterion does whether
the frequency of changing numbers is different from that in theory.

Next, the author takes a look at how the subjects
in the laboratory would have played if the game had
continued. To answer this question, the author employed
cluster analysis. By doing so, the expected behaviors
of subjects would be quantitatively categorized and
characterized.

To conduct the analysis, the following procedure was
employed: First, the propensities in round 50 of laboratory
experiment were calculated by using the game log. Second, the
probability to choose each integer in round 51 was obtained.
Third, the updated choice probability was calculated for all the
possible cases. Here, “case” means that a subject’s choice is k and
the winning number isw. Accordingly, there are totallyM(M+1)
cases in a LUIG. Lastly, the author set the following values as
inputs:

• Submission probability for integer k (k = 1, · · · ,M) in
round 51

• The following inputs are calculated for all k:

• Updated probability to choose the same integer in round 52
when there are no winner in round 51

• Updated probability to choose the same integer in round 52
when s/he wins in round 51

• Updated probability to choose the same integer in round 52
when s/he loses in round 51

• Updated probability to choose the winning integer in round
52 when s/he loses in round 51

After having a dendrogram9 in each LUIG, the author split them
into four or five clusters and obtained the inputs of “median”
agents in each cluster10 (Figures 1–4).

Table 2 summarizes how the representative agents in
each cluster would play and update their propensities in
round 5111.

There are mainly three choice patterns observed: keeping on
choosing one number, completely or relatively randomized
behavior with fluctuation, and completely or relatively
randomized behavior with non-fluctuation. The first pattern
includes sticking behavior and a result of reinforcement. The

9The agglomeration method was “ward.D2” in R.
10The resulting dendrograms are given in the appendix.
11The meaning of string “10c” is “When number 1 is chosen and the winning
number is 0 (= no-winner), the probability to choose the same number (= 1).”
Likewise, the meaning of string “12w” is “When number 1 is chosen and the
winning number is 2, the updated probability to choose the winning number.”
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TABLE 3 | Summary statistics of round robin competition in computational

experiments.

(A) LUIG 33

Partition 3 2–1 1–1–1 Expr. MSE

WINNING NUMBER

0 11.00 6.33 4.83 7.19 6.92

1 19.77 21.87 22.80 19.44 19.99

2 10.57 11.6 12.44 14.69 11.54

3 8.65 10.21 9.93 8.69 11.54

PERFORMANCE

#wins 13.00 14.56 15.06 14.27

(sd) 3.36 1.15 0.86 5.13

#changes 23.09 21.67 20.62 21.15

Cor. 0.612 −0.327 −0.657 −0.379

(B) LUIG 34

Partition 3 2–1 1–1–1 Expr. MSE

WINNING NUMBER

0 11.17 5.75 4.05 5.31 5.90

1 18.48 20.46 22.42 22.13 20.19

2 10.15 10.80 10.09 11.06 11.10

3 6.37 8.42 9.14 9.88 6.41

4 3.85 4.58 4.30 1.63 6.41

PERFORMANCE

#wins 12.95 14.75 15.31 14.90

(sd) 3.63 1.61 1.12 5.30

#changes 22.88 20.62 19.38 26.08

Cor. 0.606 −0.071 −0.400 −0.426

(C) LUIG 43

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr. MSE

WINNING NUMBER

0 18.07 14.16 16.27 14.92 14.45 14.58 16.46

1 15.11 16.48 15.33 16.29 16.77 14.42 15.05

2 13.03 14.64 14.12 14.71 14.94 16.67 14.30

3 3.79 4.73 4.28 4.08 3.85 4.33 4.20

PERFORMANCE

#wins 7.98 8.96 8.43 8.77 8.89 8.85

(sd) 2.03 0.98 1.27 0.79 0.50 3.72

#changes 24.81 23.80 23.48 23.29 23.11 24.17

Cor. 0.772 −0.423 0.670 0.416 0.295 −0.557

(D) LUIG 44

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr. MSE

WINNING NUMBER

0 19.28 11.78 16.47 13.48 12.74 12.42 16.31

1 14.75 17.95 15.46 17.48 17.93 16.75 15.08

2 10.87 13.52 12.22 13.74 14.72 15.67 14.31

3 3.69 4.57 4.19 3.71 3.23 4.25 4.23

4 1.40 2.18 1.66 1.60 1.38 0.92 0.06

(Continued)

TABLE 3 | Continued

Partition 4 3–1 2–2 2–1–1 1–1–1–1 Expr.

PERFORMANCE

#wins 7.68 9.55 8.38 9.13 9.32 9.40

(sd) 3.45 1.69 2.34 1.61 1.17 4.54

#changes 23.21 21.75 21.00 21.08 21.04 21.45

Cor. 0.852 −0.200 0.709 0.436 0.463 −0.374

remaining two patterns stem from the fact that the corresponding
subjects failed to reinforce their propensities and that they were
sensitive to the winning number. In addition, the value of
sensitivity parameter was small so that every number was equally
chosen anytime. Hence, whether sticking to a number or not
played an important role in LUIGs, which may support the
results of the earlier laboratory experiment.

3.2. Experimental Results
Agents in the round robin competition faced all the agents
including his/herself. By doing so, the author compares
their performances between when they played with different
opponents and when their opponents included themselves.

Table 3 shows the summary statistics of each LUIG in terms
of the agent structure. The data include the frequency of game
outcomes, the number of wins, that of changes, and Pearson’
correlation between the numbers of wins and changes. This table
also provides with the results of laboratory experiment and the
theoretical prediction for comparison. The partitions of agents
are in the following:

• Three-person LUIGs

• 3
Three identical agents exist;

• 2–1
Two identical agents and one different agent exist; and

• 1–1–1
Three different agents exist.

• Four-person LUIGs

• 4
Four identical agents exist;

• 3–1
Three identical agents and one different agent exist;

• 2–2
Two different pairs of two identical agents exist;

• 2–1–1
Two identical agents and two other different agents exist

and;
• 1–1–1–1

Four different agents exist.

The cases where there are identical agents mean that they played
with one or more agents whose learning model and its values of
parameters were the same. But the updating process is different.
And the different agents mean at least their learning model or its
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TABLE 4 | Differences of performance with respect to the constitution of players (p-values are from Wilcoxon signed rank test).

(A) LUIG 33

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

3 48 13.00 23.09 0.612

2–1 2,256 12.49 23.06 0.243 18.69 18.88 −0.582

1–1–1 17,296 15.06 20.62 −0.657

(B) LUIG 34

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

3 48 12.95 22.88 0.606

2–1 2,256 11.24 22.63 0.385 21.77 16.61 −0.467

1–1–1 17,296 15.31 19.38 −0.400

(C) LUIG 43

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

4 48 7.98 24.81 0.772

3–1 2,256 7.39 24.85 0.665 13.67 20.65 −0.602

2–2 1,128 8.43 23.48 0.670

2–1–1 51,888 7.29 24.39 0.513 10.25 22.19 −0.522

1–1–1–1 194,580 8.89 23.11 0.295

(D) LUIG 44

Partition #games Identical Different

#wins #changes Cor. #wins #changes Cor.

4 48 7.68 23.21 0.852

3–1 2,256 6.83 23.32 0.744 17.72 17.05 −0.499

2–2 1,128 8.38 21.00 0.709

2–1–1 51,888 6.65 22.66 0.536 11.61 19.49 −0.325

1–1–1–1 194,580 9.32 21.04 0.463

p < 0.001 (#wins), p < 0.001 (#changes).

values of parameters is/are different from those of the others in
the group.

The above partitions of agents are related to behavioral
heterogeneity. When heterogeneity is high, “no-winner”
situations were less frequently observed and thereby the average
number of wins became larger. This is especially true for
three-person LUIGs. In four-person LUIGs, things are a little bit
different; When there are only two kinds of agents and one agent
is singular, the average number of wins per agent is about 8.96
(LUIG43) and 9.55 (LUIG44). Meanwhile, when all the agents are
different, the value is lower, 8.89 (LUIG43) and 9.32 (LUIG44).
In addition, when one makes a comparison between LUIGs with
the same N but different M, the average number of wins per
agent may depend on heterogeneity. More concretely, it is more

difficult to win when agents are homogeneous meanwhile there
are more chances to win when heterogeneity exists.

Similar results and discussions are found with respect to the
correlation between the numbers of wins and changes. When
heterogeneity is low and there are no singular agents, not to
change the numbers may lead to win more often in both three-
person and four-person LUIGs. As the heterogeneity increases,
the extent of negative correlation becomes larger, which suggests
that keeping on choosing the same number is effective in groups
like in the earlier laboratory experiment.

Next, Table 4 shows the differences of performances between
identical agents and different agents for each agent constitution,
by which one sees how each type of agents behaved and how
often they won. An apparent fact is that the different agents
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TABLE 5 | Differences between types of subjects with respect to the numbers of wins and changes in computational round robin contest.

(A) LUIG 33

Partition Type Item MSE (both) MSE (choice) MSE (change) Non-MSE p-value Note

3 Identical #wins 13.94 13.27 NA 9.99 0.800

#changes 24.56 21.87 NA 13.05 <0.001 a

2–1 Identical #wins 13.09 12.32 NA 11.41 0.500

#changes 22.43 19.19 NA 14.35 <0.001 b

2–1 Different #wins 17.25 18.64 NA 22.42 <0.001 a

#changes 27.35 25.60 NA 24.19 0.010 c

1–1–1 Different #wins 13.47 14.96 NA 19.25 <0.001 a

#changes 21.72 20.86 NA 20.92 0.200

#subjects 20 20 0 8

(B) LUIG 34

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

3 Identical #wins 13.63 13.24 14.66 10.00 0.400

#changes 23.74 21.04 21.42 14.48 0.010 c

2–1 Identical #wins 12.37 11.45 10.98 7.66 0.070

#changes 20.61 17.49 15.98 10.64 0.200 c

2–1 Different #wins 21.16 22.38 22.22 22.28 0.300

#changes 30.06 29.09 28.05 24.83 0.020 c

1–1–1 Different #wins 14.25 15.95 16.21 16.97 0.050

#changes 20.92 21.12 21.16 19.21 0.030

#subjects 23 15 2 8

(C) LUIG 43

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

4 Identical #wins 8.34 8.24 8.82 5.26 0.300

#changes 21.12 18.83 21.04 10.15 <0.001 c

3–1 Identical #wins 7.90 7.81 6.84 4.59 0.200

#changes 19.73 17.48 16.47 8.77 <0.001 c

3–1 Different #wins 13.05 13.79 12.25 16.58 0.002 d

#changes 24.32 22.78 23.15 18.78 0.001 c

2–2 Identical #wins 8.81 8.90 8.61 5.66 0.400

#changes 20.40 18.39 19.42 9.63 0.003 c

2–1–1 Identical #wins 7.69 7.68 7.11 4.77 0.300

#changes 18.87 16.92 17.06 8.64 0.001 c

2–1–1 Different #wins 9.56 10.20 8.63 13.96 0.001 e

#changes 20.40 19.20 19.38 16.33 0.001 c

1–1–1–1 Different #wins 8.07 8.81 7.61 12.98 0.001 e

#changes 18.64 17.69 17.97 15.19 0.001 c

#subjects 24 15 3 6

(D) LUIG 44

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

4 Identical #wins 8.51 8.57 10.55 5.76 0.100

#changes 20.98 20.22 18.78 10.75 0.001 a

3–1 Identical #wins 7.67 8.00 8.71 9.33 0.100

#changes 18.61 18.52 16.66 9.33 <0.001 a

(Continued)
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TABLE 5 | Continued

Partition Type Item MSE (both) MSE (choice) MSE (change) non-MSE p-value Note

3–1 Different #wins 17.52 17.67 17.47 17.98 1.000

#changes 27.35 27.24 26.34 22.06 0.001 a

2–2 Identical #wins 9.00 9.62 11.62 6.36 0.100

#changes 19.45 19.65 20.84 10.93 0.010

2–1–1 Identical #wins 7.40 11.19 10.00 12.77 0.050

#changes 20.20 20.27 19.25 16.70 <0.001 a

2–1–1 Different #wins 8.38 8.63 7.69 10.97 0.020

#changes 20.20 20.27 19.25 16.70 <0.001 a

1–1–1–1 Different #wins 8.38 8.63 7.69 10.97 0.020

#changes 17.21 17.37 16.56 14.76 <0.001 a

#subjects 16 12 3 17

a, MSE (both) – non-MSE, MSE (choice) – non-MSE.

b, MSE (both) – MSE (choice), MSE (both) – non-MSE.

c, MSE (both) – non-MSE.

d, MSE (both) – non-MSE, MSE (change) – non-MSE.

e, MSE (both) – non-MSE, MSE (choice) – non-MSE, MSE (change) – non-MSE.

won more than identical agents. This is statistically confirmed
by Wilcoxon’s Rank Sum Test and all the p-values are less than
0.001. But the superiority of uniqueness disappears when there
are more different agents. This is because the identical agents
tended to behave similarly meaning that their choices were not
often unique and the different agent(s) learned to avoid it. Also,
there is a clear difference between the two types of agents with
respect to the number of changes and Pearson’s correlation;
Identical agents, on the one hand, changed more often and are
expected to do so to win more. This may be because they learn
to play differently and to change more often. Different agents,
on the other hand, changed less frequently than identical agents
when there are both identical and different agents. When there
are more different agents, they need not to change their strategy
to win.

There is one point to be addressed; When one reviews
Table 4, s/he may notice the difference of Pearson’s correlation
for the partition 1–1–1–1 of LUIG43 and LUIG44. That is,
negative correlations in experimental results whereas positive
correlations in computational results. This is because these
correlations are obtained from 17,296 (three-person LUIGs) or
194,590 (four-person LUIGs) groups, not from those which
were played in the laboratory (16 groups in three-person
LUIGs and 12 groups in four-person LUIGs). Hence, if s/he
calculates correlations by picking up only the corresponding
pairs, the value is −0.820 in LUIG43 and −0.767 in LUIG44
respectively. Likewise, the correlation is −0.755 in LUIG33
and −0.737 in LUIG34 respectively. This means that the
computational experiment supported the experimental findings
for the groups generated in the laboratory and, at the
same time, that the earlier laboratory experiment might have
needed more subjects. Instead, the possible reason why the
sign of Pearson’s correlation is opposite is that the relative
frequencies of game outcome in four-person LUIGs were not
reproduced, which might stem from the learning of calibrated
agents.

Finally, Table 5 shows the difference of the numbers of wins
and changes between the types of subjects in each partition of
LUIGs. The average values are in these tables and p-values are
from Kruskal-Wallis test. The last column of each table explains
the results of multiple comparisons if the corresponding pairs
have significant differences (5%) and the details are given in the
footnote of each panel.

When agents are identical in the group, MSE (both) agents
seemed to win more than non-MSE agents while they changed
more frequently. On the other hand, when the agents are
different, non-MSE agents won more than MSE (both) agents by
not changing their choices. Since the subjects were all different
in every group, one will experimentally and computationally find
that sticking behavior is quite effective so long as there are no
identical players in small-sized LUIGs.

To summarize, the extent of behavioral heterogeneity may
depend on the scale of LUIGs, the number of players in a group
and the upper limit. In addition, the observed game outcomes
and individual performances depend on the constitutions of
agents. In particular, behavioral heterogeneity may improve the
chances of win. When there is a mixture of identical agents and
different agents, different agents win more than identical agents.
However, a full of diversity lessens the winning opportunities for
each different agent. With respect to individual performance, the
computational experiment shows that keeping on choosing the
same number leads the agents to win more, which supports the
experimental findings.

4. DISCUSSION

This study computationally examines (1) how the behaviors of
subjects are represented, (2) whether the classification of subjects
is related to the scale of the game, and (3) what kind of behavioral
models are successful in small-sized LUIGs by using the earlier
experimental data by Yamada andHanaki [1]. For these purposes,
the behavior of subjects is calibrated and determined among
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the several typical learning models. Then computational round
robin competition including the games where every agent faces
not only different agents but also him/herself is pursued. The
main findings are as follows: First, the subjects who played not
differently from the MSE prediction tended to made use of not
only their choices but also the game outcomes meanwhile those
who deviated from the MSE prediction took care of only their
choices as the complexity of the game increased. Second, when
groups consist of different agents which is the case of the earlier
laboratory experiment, sticking behavior is quite effective to win
LUIGs. Third, when groups consist of different agents like in the
earlier laboratory experiment, sticking behavior is quite effective
to win.

Since this study deals with the estimated learning models,
unlike in Linde et al. [17], there may be better models for
some of the behavioral data in laboratory experiment. Hence,
as done by Linde et al., it is necessary to conduct another
laboratory experiment where subjects are asked to elicit their
decisions to play LUIGs. Another future work includes larger-
sized experiment to see whether similar behaviors and game

dynamics are also observed. This comes form the empirical
finding by Östling et al. [4] and Mohlin et al. [18].
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APPENDIX

This section gives the generated dendrograms to classify the
calibrated agents in computational round robin contests. The x-
axis stands for subject ID (session–subject) and y-axis does the
distance between the calibrated agents. The expected decision-
making of the “median” agents in each cluster is summarized in
Table 2.
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This paper investigates interactions between game theoretical strategies and social

relationships in real-time decision-making and rewarding environments. We propose an

experimental framework based on techniques of web-based multiplayer online games

for this purpose. In our framework, multiple human players, represented as particles in

a two-dimensional space of social interactions, can modify their positions and game

strategies for the prisoner’s dilemma in real time, and receive benefit or cost emerging

from both game theoretical and social relationships with neighboring players. We report

on experiments with human participants in different conditions of the payoff matrix, which

reflects game structures, and the speed of each player, which reflects the ability to change

her social relationship. We show that cooperative relationships emerge in real human

groups regardless of experimental settings, and show their basic behavioral patterns.

We further discuss relationships between behavioral characters of participants in the

experiments and their psychological characters to see how their personalities can be

reflected in their behavior in such a game theoretical framework, and show that a few

psychological characters of participants might reflect their behavioral characters at least

in part, but there were variations in these relationships between experimental groups.

Keywords: social particle swarm, social dynamics, multiplayer online game-based experiments, prisoner’s

dilemma, the Big Five personality traits, the relational mobility scale

INTRODUCTION

Understanding human behavior in real-time decision-making environments is getting much
attention, because such situations are ubiquitous in both real-world activities (e.g., stock markets,
team works, school activities) and social networks (e.g., Facebook, Twitter, Instagram). While
traditional game theoretical approaches havemainly focused on discrete interactions (e.g., standard
repeated games) (Maynard Smith, 1982; Hofbauer and Sigmund, 1998), recent studies have shown
human behavior in real-time decision-making environments is different from that in cases with
discrete interactions (Friedman and Oprea, 2012; Hawkins and Goldstone, 2016).

Hawkins and Goldstone (2016) conducted a version of two-player and asymmetric coordination
game, termed the Battle of the Exes, in both real-time decision-making environments and
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traditional staged environments. In their environment, players
were placed at opposite ends of the two-dimensional virtual
world, and allowed to move toward one of the two destinations,
each corresponds to the player’s decision, with full freedom
to change that destination at any time. They reported that
players who were allowed to interact continuously within
rounds achieved outcomes with greater efficiency and fairness
than players who were forced to make simultaneous decisions.
Friedman and Oprea (2012) also assumed a case of continuous
interactions based on a prisoner’s dilemma in which players
can switch between cooperation and defection at any point
in time and they receive the flow of payoffs that changes in
continuous time according to the changes in their strategies. They
showed that the proportion of cooperative behavior in this real-
time decision-making and rewarding environment was much
higher than that in a case with standard discrete and repeated
interactions.

It has also been shown that structures of social networks can
influence the emergence of cooperative behavior (Nowak and
May, 1992; Nowak, 2006; Pinheiro et al., 2012), theoretically.
Recent experimental studies with interaction networks of
human populations based on repeated games suggested that
the population structure can affect the evolution of cooperative
behavior as theoretically expected (Rand et al., 2014), or may
not affect so significantly than theoretically expected (Grujić
et al., 2014) because they might adopt different strategy updating
criterions (e.g., moody conditional cooperation Grujić et al.,
2014, reinforcement learning Horita et al., 2017) rather than an
imitation-based criterion (e.g., imitating the best), which is a
common assumption in theoretical models.

In addition, theoretical studies showed that dynamic changes
in network structures can affect the global dynamics of human
behaviors (Zimmermann and Eguíluz, 2005; Pacheco et al., 2006;
Suzuki et al., 2008), and recent experimental studies with human
participants have also shown that cooperative clusters can emerge
when participants could modify their network structure of
interactions (Fehl et al., 2011; Rand et al., 2011; Wang et al., 2012;
Antonioni et al., 2014; Yonenoh and Akiyama, 2014). This is
because participants tend to keep cooperative relationships while
severing connections with defectors, and thus form cooperative
and highly connected clusters in general (Rand et al., 2011).
Recently, Cuesta et al. (2015) showed the existence of reputation
on neighbors (i.e., the history of their actions in the past a few
rounds) can facilitate the emergence of cooperative clusters, and
Antonioni et al. (2016) further showed there existed two types of
participants who are reliable subjects and cheaters when cheating
her own reputation with a cost was allowed.

There have also been studies that focused on effects of
the mobility of agents on evolution of cooperation in spatial
environments. Meloni et al. (2009) showed the intermediate
speed of random movement on a continuous 2D space can
facilitate the evolution of cooperation Sicardi et al. (2009) also
showed that a random movement on a 2D diluted grid in
which vacant cells are allowed to exist can affect differently
different types of 2-person games. Antonioni et al. (2015) first
conducted an experimental study with human participants in
such a situation in which each participant can move toward a

vacant neighboring cell, and showed that cooperative clusters
formed temporally but dissolved due to invasion by defectors.
Efferson et al. (2016) also showed that participant can establish
cooperative clusters by running away from bad behavior even
when they do not know much about the information of potential
new neighbors.

However, these previous studies on the evolution of
cooperation in dynamically networking or spatially interacting
populations assumed discrete interactions between individuals in
the sense that relationships between individuals are discrete (i.e.,
“connected or not” or “neighbor or not”) and their relationships
also change in time in a discrete manner while real human
relationships could be continuous and can change in continuous
time, as described above.

Our purpose is to understand how both game theoretical
strategies and social relationships among humans change in real
time decision-making and rewarding environments. For this
purpose, we are developing an experimental framework based on
techniques of web-based multiplayer online games (Kodera et al.,
2017).

We use a simple multi-player game that is adapted from
Nishimoto et al.’s computational model for investigating
dynamically changing social relationships termed social particle
swarm (SPS)model (Nishimoto et al., 2013, 2014). See Nishimoto
et al. (2013) for details. They assumed that individuals were in
a two-dimensional and toroidal plane. This represents a social
or psychological space in which the proximity between two
individuals reflected their social or psychological closeness. Each
particle has a strategy for the prisoner’s dilemma (PD) game, and
moves according to the force vector generated from the payoffs
in the game. The behavior of the particles in each step consists of
two sequential processes: First, all particles simultaneously decide
whether to select cooperation or defection in the current step in a
tit-for-tat fashion based on the proportion of cooperators among
its neighboring agents within a fixed range in the previous time
step. If this proportion is larger than an attribute value of each
individual, termed cooperation threshold, the focal individual
cooperates, and otherwise it defects. Second, each individual
receives attractive (repulsive) force from each neighbor who gives
a positive (negative) payoff according to the payoff matrix of the
PD game, whose the magnitude is proportional to the payoff
value and inversely proportional to the distance between the
focal individual and the neighbor. Then, each individual moves
toward the direction of the resultant vector of the all forces at
a fixed speed. They observed repeated occurrences of explosive
dynamics that consisted of a formation of an altruistic cluster
followed by its collapse with explosive dispersal of defective
particles. While Antonioni et al. (2015) showed formation and
collapse of cooperative clusters in a 2D diluted grid environment,
it is unclear how human groups behave under such a situation in
which a lot of individuals continuously change their relationships
in real time.

In our preliminary framework, multiple human players,
represented as particles in a shared two-dimensional space of
social interactions, canmodify their positions and game strategies
for the prisoner’s dilemma in real time, and receive benefit or cost
emerging from both game theoretical and social relationships
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with neighboring players. In preliminary experiments (Kodera
et al., 2017), we did not observe stable emergence of cooperative
relationships, and simple analyses showed that this could be due
to several model settings such as no limitation of visibility of
other players (i.e., all players can observe all others), and the
lower limit of the accumulated score.

In this paper, we propose an updated framework to investigate
dynamic changes in continuously changing social relationships
in real time decision-making and rewarding environments
by considering these factors that might negatively affect the
emergence of cooperation in the previous one. We discuss
benefits of this framework for this purpose by conducting several
experiments with human participants, showing that cooperative
relationships can emerge regardless of parameter settings relating
to the game structure and the mobility of players, and analyzing
their behavioral patterns.

We further discuss relationships between behavioral
characters of participants in the experiments and their
psychological characters to see if how their personalities
can be reflected in their behavior in such a game theoretical
framework. Relationships between behaviors in online social
networks (e.g., Facebook) of users and their personality have
been discussed (Gosling et al., 2011; Seidman, 2013). Gosling
et al. (2011) found that several connections between the Big Five
personality traits and self-reported Facebook-related behaviors,
suggesting that the users extended their offline personalities into
the domains of online social networks. We conducted a survey
on the Big Five personality traits (Oshio et al., 2012) and the
relational mobility of their social environments (Yuki et al., 2007)
after experimental sessions. We analyzed the correlation among
behavioral characters in experiments and these psychological
characters, showing that a few psychological characters of
participants might reflect their behavioral characters at least in
part, but there were variations in these relationships between
experimental groups.

MATERIALS AND METHODS

A Multi-Player Online Game-Based
Experimental Framework
Wefirst introduce amulti-player game based on the SPSmodel to
observe continuous and dynamic relationships. Then, we explain
how we implemented this framework to simulate this game
situation with human participants.

We assume that N human subjects (players) participate in
an experimental trial. Each player is represented as a point and
arranged in a 500 × 500 two dimensional and toroidal space.
Figure 1A shows an example interface showing the distribution
of 7 players in the neighboring area of a player in the plane.

The position of each player represents her social state against
the other players, which approximates her physical, social and
psychological properties that may affect her interest against her
neighbors. The proximity between two players reflects their social
closeness. Each player can move freely in this space and change
its strategy of the prisoner’s dilemma (cooperate or defect) at
arbitrary timing during a trial. The score arising from their

social relationship with neighbors was accumulated through a
session, and the objective of each player is to maximize her own
accumulated score.

To simulate such a real-time decision-making and rewarding
environment, we implemented a server-client framework using
WebSocket and HTML5, which are used for developing Web-
based online games.

Client Application
Figure 1A shows an example of the web-based client application
for each human player. It enables a player to login to a server
application with a handle name. During an experimental session,
each player can see the current spatial distribution of neighboring
players as shown in the square panel. The circle with a radius
R = 100 in the plane represents the neighboring area. The focal
player can observe other players within this area, and recognize
them as neighbors. Cooperators are represented as blue points,
and defectors are represented as red points. The focal player is
always placed at the center of the panel, and she is connected
to other neighboring players to emphasize the distance to the
neighbors. The color of the connecting line represents the color of
the other player (orange: cooperator, gray: defector) and its width
is inversely proportional to the distance. The handle name and
the current accumulated score of the focal player are indicated
around the player in the plane. There is also a leaderboard
showing the current ranking of all the players.

A player can specify each player’s direction of movement using
a mouse cursor (Figure 1B). If the focal player places a mouse
cursor outside of the small staying area around her on the panel,
she moves toward the cursor on the space. Note that her position
on the space changes, but she is kept in the center of the panel,
always showing her neighboring area. The strategy of the focal
player is flipped when the “c” key is pressed. In addition, the
strategy is also flipped with a small probability 0.2% at every
time step to make players pay much attention to the strategy.
Specifically, the client application sends the xy-coordinate of the
mouse cursor on the window to a server application at every time
step of 0.2 s asynchronously. It also sends a key event every time
when “c” key was pressed.

Server Application
The server application conducts two procedures at every time
step with a short time interval of DT = 0.5 s. First, it updates
the accumulated scores of all players. The strategy of each
player is updated using the information that was sent from
client applications. Each player i gets a score depending on her
current social relationships with all neighbors, which is defined
by Table 1 and Equation (1):

Score =
∑

j∈neighbors of i

pd i, j

di, j + 1
, (1)

where pdi ,j represents a payoff, in Table 1, that the player i gets by
playing a game with j. di, j represents the distance between i and j
in the plane. This equation means that the basic game theoretical
relationship between players is based on the prisoner’ dilemma,
but the net score is inversely proportional to the proximity
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FIGURE 1 | (A) A screenshot of a web-based user interface. A player is located at the center of the panel, and her neighbors within the range of R = 100 were

shown. The color of each point represents her strategy (blue: cooperation, red: defection). The color and the thickness of the link reflects the payoff from a neighbor to

the focal player. (B) The moving direction of a player. A player moves toward the direction of the mouse cursor with a speed V (pixel/step) if the cursor is outside of the

staying area.

TABLE 1 | Payoff matrix.

Opponent C Opponent D

Player C (1.0, 1.0) (−1.0, T )

Player D (T,−1.0) (−0.5, −0.5)

(player’s score, opponent’s score).

between them, which reflects the effect of the social relationship
between them. The score is accumulated over the whole game
playing time.

Then, the position of each player is updated according to the
information that was from the corresponding client. Each player
moves toward the direction specified by the mouse cursor by V
pixels if she does, and thus can move with a speed of V/DT pixels
per second. Finally, the state and position of all players and their
accumulated scores are sent to the all clients and reflected in their
interfaces.

Experimental Procedures
The experimental procedures with human participants have
been approved by the planning and evaluation committee
in the Graduate School of Information Science, Nagoya
University (GSIS-H28-3). An informed consent was obtained
from all participants before experiments. We recruited N = 23
undergraduate or graduate school students at Nagoya University
as participants and conducted experiments (E1) on July 14th,
2017. All the participants were gathered in a computer room

of our department. Each participant was assigned a standard
desktop PC and asked to use an interface on a web-browser with
a mouse and a keyboard. They were not allowed to talk with
each other during the experiment. They were asked to maximize
their own accumulated score regardless of the relative value from
others’, and told that they would receive 1,000 yen for taking
part in an experiment and additional bonus at most 500 yen
will be paid according to the accumulated score. However, all
participants received 1,500 yen after the experiment.

After an introduction of the game and the user interface to
participants, 23 participants participated in three experimental
sessions (S1–S3) and 21 participants participated in one
experimental session (S4) with different payoff matrices with a
temptation to defect T = 1.5 (S1, S2) and 1.2 (S3, S4), and a
different speed V = 3 (S1, S3), 6 (S2, S4), sequentially. The
experimental instruction is shown as the Data sheet 1 in the
Supplementary Materials. Each player was asked to maximize her
own accumulated score. Each session lasted for about 10min, but
players were not informed of the exact time limit in advance. We
used data for initial 265 s (i.e., 530 time steps) for analysis of each
session, which is the minimal experimental duration among the
all sessions. We also assumed a practice session (for 1min) before
S1, and a short break (for 2min) between S2 and S3.

Two players did not participate in S4 and did not have a survey
questionnaire (explained below). Another player participated in
all the sessions but did not have a survey questionnaire. Thus,
we used the data from all the 23 participants for the behavioral
analysis in S1, S2, and S3, and used them from 21 participants
in S4 in section Behavioral and psychological characteristics of
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players. We used the behavioral and personal data from 20
participants who answered questionnaires in the next section.

We also conducted another experiment (E2) on February 6th,
2018 with N = 13 undergraduate or graduate school students
at Nagoya University, using a different order of experimental
settings T = 1.5 (S1, S3) and 1.2 (S2, S4), andV = 3 (S1, S2), 6 (S3,
S4). We conducted this experiment to grasp a general behavioral
tendency that could be observed in both experiments. In this
experiment, all participants participated in all the sessions and
completed a survey questionnaire. We used data for initial 305 s
(i.e., 610 time steps) for the analysis.

A Survey on the Big Five Traits and the
Relational Mobility
After S4, we also conducted a survey questionnaire on Big
Five personality traits and relational mobility of their social
environments. Specifically, we conducted the Big Five
personality (or Five-Factor Model) test on all participants
using a Japanese version of Ten-Item Personality Inventory
(TIPI-J) (Oshio et al., 2012), which is based on Ten Item
Personality Inventory (TIPI) proposed by Gosling et al.
(2003). TIPI is a 10-item (questions) measure of the Big Five
dimensions, which is commonly used to describe personality
according to five traits: openness (inventive/curious vs.
consistent/cautious), conscientiousness (efficient/organized
vs. easy-going/careless), extraversion (outgoing/energetic vs.
solitary/reserved), agreeableness (friendly/compassionate vs.
challenging/detached), and neuroticism (sensitive/nervous vs.
secure/confident).

The relational mobility is the degree to which individuals in a
given society have the option to form new relationships and end
old relationships (Yuki et al., 2007).When an individual perceives
their social environment to be low in relational mobility, they
perceive it as difficult and costly to leave current relationships and
to establish new ones. We focus on how the relational mobility
of their local environments can affect their behaviors in our
experiments. The relational mobility scale (Yuki et al., 2007;
Schug et al., 2010), a 12-item measure, was used to assess the two
components of the relational mobility of participants.

Participants were asked to rate 22 (10 for the Big Five and 12
for the relational mobility) statements using a 6 (the relational
mobility scale) or 7 (the Big Five traits) -point scales (options
ranged from: 1-strongly disagree, to 6/7-strongly agree). We then
calculated scores of the Big Five personality traits (OPE: openness
to experience, CON: conscientiousness, EXT: extraversion, AGR:
agreeableness, and NEU: neuroticism) and two components of
the relational mobility (MNP: meeting new people, and CIP:
choosing one’s own interaction partners) for each individual. The
questionnaire is shown as the Data sheet 2 in the Supplementary
Materials.

RESULTS

General Behavioral Tendency
Figure 2A shows the temporal dynamics of the proportion
of cooperators and the average number of neighbors in
E1-S3. While both indices fluctuated through the session,

we observed cooperative clusters emerged and collapsed
locally. Figure 2B shows an example transition of the social
dynamics in S3 that were often observed in all experimental
sessions. We see that a cooperative cluster with a small
number of players forms spontaneously (t = 25), and
keeps or grows its size by increasing mutual benefit among
players (t = 61). However, when some defectors find and
approach them, or some players change their states from
cooperative to defective, cooperative players escape from
defectors and try to find other players to establish cooperative
relationships (t = 90). Such an emergence and collapse of
cooperative cluster occurred repeatedly in the all experimental
sessions.

Figure 3 shows the average proportion of cooperators and
moving players (i.e., the proportion of players who decided to
move toward any direction) among all players at each time
step, in each session. It should be noted that the proportion
of cooperation was between about 0.63 and 0.82, meaning that
many individuals tended to be cooperative in this experimental
framework.

We also see that the proportion of cooperators increased as
the experimental sessions proceeded from S1 to S4 (except for
S3 and S4 in E2). It is highly possible that this trend is, at
least in part, due to the effect of increased learning experience
of game environments because experimental sessions were
conducted sequentially. Having this in mind, we still observed
a negative relationship between the proportion of cooperators
and the proportion of moving players in both experiments.
This implies that more successful cooperators tended to move
less often. Also, the smaller temptation to defect (T) tended
to contribute to the higher proportion of cooperation (except
for S3 and S4 in E2), and the larger speed of movement (V)
tended to contribute to the lower proportion of moving players.
These might reflect the effect of the temptation to defect as
expected, and also reflect that the ability to more quickly modify
each player’s social state contributed to form stable cooperative
relationships.

Figure 4 shows the proportion of cooperative and moving
players at step t when the proportion of cooperative neighbors
was lower than 0.5 or not in the previous step t-1. In
the all sessions, players tended to be more cooperative and
tended to be less frequently moving when there were more
than half of neighbors were cooperative (Kolmogorov-Smirnov
test, p-value < 0.001). This simple rule is expected to be a
basic mechanism that contributed to the emergence of stable
cooperation in these experiments.

Behavioral and Psychological
Characteristics of Players
Next, we focus on relationships among behavioral and
psychological characteristics of each participant in experimental
sessions. Specifically, we defined 5 behavioral indices that
represent different aspects of each individual’s behavior as
follows: COO: the ratio of a focal player’s cooperation (i.e., the
proportion of time during which her state was cooperative), NEI:
the number of neighbors, MOV: the proportion of steps at which
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FIGURE 2 | (A) The temporal dynamics of the proportion of cooperators and the average number of neighbors in E1-S3. (B) An example transition of the social

dynamics in E1-S3 that were typically observed in the all experimental trials. Blue, cooperators; red, defectors. (Left) A spontaneous formation of cooperative cluster,

(Center) a growing cluster, (Right) an escape from defectors. We can also see some other clusters of cooperators in the field.

FIGURE 3 | The average proportion of cooperators and moving players in each session. The error bar represents 95% confidence interval.

the focal player moved, CHA: the number of time steps in which
the focal player changed her strategy, SCO: the total score that
the focal player obtained, in each session.

We conducted a correlation analysis (Spearman’s rank
correlation coefficient) among these 5 indices and scores of
7 components of psychosocial properties explained in section

Server application to grasp overall correlation among behavioral
and psychological characters. We focused on statistically
significant (p-value < 0.05) pairs of these indices in each
experimental session.

Table 2 shows results of the analysis in each experimental
session. In E1, there is a strong correlation between SCO
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FIGURE 4 | The proportion of cooperative and moving players at step t when the proportion of cooperative neighbors was lower than 0.5 or not in the previous step

t-1.

and COO in all the experimental sessions, meaning that more
cooperative players obtained higher scores. This is because
cooperative players successfully established stable cooperative
relationships as discussed in the previous section.

There is also a negative relationship between “SCO or COO”
and “MOV and CHA”, meaning that players who frequently
changed their strategy and moved in the plane were less
cooperative or obtained lower scores. This implies that defectors
who were seeking and trying to exploit cooperative clusters
were not successful probably because they were avoided by
cooperators.

As for NEI, there were differences in their relationship with
SCO among sessions. In S1, NEI had a negative relationship
with SCO, respectively, and they had not so clear relationship
with SCO in S2. This could be because smaller clusters of
cooperators (e.g., two or three cooperators) were frequently
invaded by defectors when the experimental setting was
beneficial for defectors (S1 and S2) or players tended to

be defectors due to the less game experience. On the other
hand, NEI had a positive relationship with SCO in both S3
and S4, respectively. This means that players who tended
to form large cooperative clusters obtained higher scores
when the experimental setting was beneficial for cooperators
(S3 and S4).

As for the relationship between these behavioral characters
of players and their psychological characters, it was not easy
to see general trends across all experimental sessions. However,
it should be noticed that AGR had a positive relationship with
NEI in S2 and S3, SCO in S3, and a negative relationship with
MOV in S4. This implies that agreeable players tended to get
clustered and less frequently moved, obtaining a higher score.
In S3 and S4 in which there were the larger proportion of
cooperators, COO had a negative relationship with CIP. This
implies that players who do not have many chances to choose
their own partners in their social environments tended to be
cooperative.

Frontiers in Ecology and Evolution | www.frontiersin.org June 2018 | Volume 6 | Article 7490

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Suzuki et al. Online Framework for Cooperative Relationships

TABLE 2 | Results of correlation analyses of indices (Spearman’ s rank correlation coefficient).

Index 1 Index 2 Correlation p-value Index 1 Index 2 Correlation p-value

E1-S1 E1-S2

COO SCO 0.766 0.000 COO SCO 0.934 0.000

COO MOV −0.645 0.002 COO MOV −0.484 0.031

COO EXT −0.607 0.005 CHA SCO −0.500 0.025

CHA SCO −0.525 0.017 SCO MOV −0.525 0.018

CHA EXT 0.483 0.031 NEI AGR 0.580 0.007

SCO NEI −0.505 0.023

SCO EXT −0.521 0.018

SCO MNP −0.537 0.015

MOV EXT 0.556 0.011

E1–S3 E1–S4

COO CHA −0.667 0.001 COO CHA −0.803 0.000

COO SCO 0.633 0.003 COO SCO 0.660 0.002

COO MOV −0.519 0.019 COO EXT −0.610 0.004

COO CIP −0.540 0.014 COO CON −0.488 0.029

CHA CIP 0.492 0.028 COO CIP −0.456 0.043

SCO NEI 0.626 0.003 CHA SCO −0.456 0.043

SCO AGR 0.567 0.009 CHA CIP 0.466 0.038

SCO CIP −0.471 0.036 SCO MOV −0.556 0.011

SCO EXT −0.565 0.009

MOV NEI −0.520 0.019

MOV AGR −0.523 0.018

NEI AGR 0.596 0.006

E2–S1 E2–S2

COO SCO 0.743 0.004 COO SCO 0.699 0.008

CHA MNP −0.715 0.006 CHA NEU 0.582 0.037

SCO NEI 0.648 0.017

MOV CIP 0.640 0.019

E2–S3 E2–S4

COO SCO 0.669 0.012 COO SCO 0.747 0.003

COO OPE 0.604 0.029 COO NEI 0.601 0.030

CHA SCO −0.655 0.015 COO CIP 0.573 0.041

CHA MOV 0.637 0.019 CHA AGR 0.741 0.004

CHA NEU 0.574 0.040 CHA NEU 0.582 0.037

SCO NEI 0.615 0.025 SCO NEI 0.729 0.005

MOV CON −0.619 0.024 NEI EXT −0.617 0.025

The value shows statistically significant (p-value < 0.05) correlation between two indices in each session. COO, the ratio of a focal player’s cooperation; DIS, the average distance

between the focal player and the others; NEI, the number of neighbors; MOV, the proportion of steps at which the focal player moved; CHA, the proportion of time steps in which the

focal player changed her strategy; SCO, the total score that the focal player obtained, in each session; OPE, openness to experience; CON, conscientiousness; EXT, extraversion; AGR,

agreeableness; NEU, neuroticism; MNP, meeting new people, and CIP, choosing one’s own interaction partners.

In E2, we see the less number of significant correlations
between indices than in E1, which is expected to be due to
the small number of players. However, we still see a strong
correlation between SCO and COO in all the experimental
sessions, and the similar tendency of the correlation observed
in E1 such as a positive relationship between “COO or SCO”
and NEI in S2, S3, and S4. However, we observed different
relationships between behavioral and psychological indices: there
was a positive correlation between CHA and NEU, meaning
that more sensitive players tended to change their strategy more
frequently. We also see an opposite relationship such as the

positive relationship between “COO and CIP” in S4. This implies
that psychological characters of participants might reflect their
behavioral characters at least in part, but there were variations in
these relationships between experimental groups.

DISCUSSION

We proposed and constructed an experimental framework to
observe continuous and dynamic relationships in a group
of human participants by applying techniques of web-based
multiplayer online games. We implemented a multi-player
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game based on Nishimoto et al.’s SPS model in which human
participants, represented as particles in a shared space, can
change their positions and game theoretical strategies in real
time, according to the benefits or costs arising from social
relationships with neighboring players.

We found that cooperative clusters emerged in parallel in all
experimental sessions, and found a strong positive assortativity
between cooperators in some sessions. This is quite different
from the cases in our preliminary experiments (Kodera et al.,
2017). In these experiments, defectors dominated the population,
chasing cooperators through experimental sessions. This is
expected to be because each player could observe all the
other players in these cases, and thus defector could exploit
cooperators more easily. This implies that the spatial locality
is an essential factor for the emergence of cooperation in our
framework. The fact that there was no incentive to avoid mutual
defections when their scores were the lower limit (0) could
be another reason for defectors to successfully dominate the
population.

We also found a general behavioral tendency of participants
that they tend to be cooperative and tend not be moving when
the proportion of neighboring cooperators were high. This fact
supports the validity of the behavioral rule of particles adopted in
the SPS model (Nishimoto et al., 2013), at least in part, in that
their game strategy is based on the proportion of cooperators
among neighbors and they tend to get close when they are
cooperators.

It should be noted that psychological characters of participants
reflected their behavioral characters in the three experimental
sessions in E1, in part. That is, agreeable players established
stable and cooperative clusters and obtained higher scores.
Also, we found that players who have fewer chances to
choose partners in their social environments tended to be
cooperative. This may be due to the experimental settings
in which cooperative clusters were easy to emerge. These
results imply that our experimental framework can be a
platform to conduct psychological experiments with many
participants to see how psychological characters can affect global
dynamics of social relationships emerging from interactions
among them. However, at the same time, we also found
that there were variations in these relationships between
experimental groups. This implies that these relationships
can be strongly affected by the social settings such as the

number of participants and their distribution of psychological
characters.

These results were from two small groups of participants, and
the experiments were conducted in the sequential order, and thus
there could be effects orders of sessions on the results. We believe
that more detailed analysis with many groups can clarify general
behavioral strategies of humans in real-time decision-making and
rewarding environments.
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Evolution on a Rugged Fitness
Landscape
Masahiko Higashi*, Reiji Suzuki and Takaya Arita
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The role and importance of social learning have been investigated by many researchers

because it is observed in many animals and is expected to play a significant role in cultural

phenomena. We explore the coevolution between individual learning and social learning

on a rugged fitness landscape as a realistic condition in which they can interact with each

other. We demonstrate that social learning allows individuals not to have adaptive traits

innately, and thus, has two important roles to enhance individual fitness. First, social

learning spreads and keeps the adaptive phenotypes acquired by individual learning.

Second, social learning enables individuals to explore a wide range of fitness landscape

by the increased population diversity. Based on the difference of the roles of individual

and social learning, they can work complementarily in the course of adaptive evolution

on the rugged fitness landscape.

Keywords: social learning, individual learning, coevolution, baldwin effect, fitness landscape

INTRODUCTION

Animals adapt to their environment by two different mechanisms working on two levels, evolution
and learning. Evolution is a population level mechanism and learning is an individual level
mechanism. There have been a lot of discussion on the effects of learning on the course of evolution.
Baldwin, a pioneer in epigenetic evolutionary theory, proposed a possible scenario which is now
called Baldwin effect that explains how evolution and learning interact with each other [1]. It
consists of the following two steps [2]. (1) Some agents acquire adaptive phenotypes by learning,
and then, they increase in population. (2) Because of the learning cost, agents which have the
adaptive phenotypes innately become more adaptive than other agents, so the population evolves
to have adaptive phenotypes innately i.e., a genetic assimilation of adaptive phenotypes. Through
these two steps, learning facilitates the evolution.

Hinton and Nowlan devised a simple computational model that shows learning can accelerate
evolution, and they associated this phenomenon with the Baldwin effect [3]. However, individuals
in the model only used individual learning based on trial-and-error. Learning can be classified into
individual learning (e.g., trial-and-error process) and social learning (e.g., imitation process). Via
individual learning animals adapt to their environment by using only their own experience while via
social learning they adapt to their environment by using other animals’ experience. In general, it is
considered that social learning affect evolution of animals significantly, because it allows animals to
acquire adaptive behavior without paying the cost of trial-and-error process, and also, the adaptive
behavior can be evolved cumulatively through generations by the imitation between adults and
offspring. These types of transmission are necessary to create culture, and from the interest of
cultural evolution, social learning has been investigated for a long time from many points of view.
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The two major focuses of the research on social learning
having been the conditions under which social learning evolves
and the way of social learning. In the research focusing on
the conditions, researchers mainly investigated the effects of
fluctuation and structure of environment, and successfully
showed that social learning is favored in stable and simple
environment. For example, on the effect of fluctuation on
environment, Rendell et al. [4] and Jones et al. [5] found that
when the environment is varied or intense, social learning is
disfavored. On the effect of structure of environment, Tamura
et al. [6] developed a mathematical model to explore the
effect of social networks on social learning and revealed that
social networks disfavor the social learning. Kobayashi et al.
[7] also developed an island migration model and revealed
that spatial structures disfavor the social learning. The way of
social learning can be approached from at least two aspects:
“when” and “whom” they learn from Laland [8]. As a study
focusing on “when,” Enquist et al. [9] found that “critical social
learning” that does social learning during having no information
about the environment and then does individual learning, is
superior to pure social learning. Rendell et al. [4] also revealed
that the “conditional social learning” that does social learning
only when individual learning fails, is superior to pure social
learning. As a study focusing on “whom,” Mesoudi [10] found
that “copy-successful-individuals” strategy is more adaptive than
individual learning by experimental simulation using human
subjects. “whom” aspect is linked to the biases in information
transmission. Specifically, it has been shown that the conformist
bias is adaptive under a broad range of environmental conditions
[11–14].

However, most of computational or mathematical research
assumed the transfer of very simple information (typically,
which of two behaviors is correct) that sometimes becomes
absolute [6, 7, 9, 11–14]. This situation could be interpreted
as the evolution on a fitness landscape with a single peak
of which location might change occasionally. However, in the
real world, the fitness landscape should have many peaks as
local optima in general. Therefore, we explore the interactions
between individual learning and social learning on a rugged
fitness landscape as a more realistic condition. The purpose of
our study is to clarify evolutionary roles of individual and social
learning on a rugged fitness landscape in the context of the
Baldwin effect. We adopted a minimal fitness function [15] that
represents a multi-modal fitness landscape in which there is a
trade-off between the adaptivity of individuals and the strength
of nonlinear epistatic interactions among multiple phenotypes.
We constructed an agent-based evolutionary model in which
each individual can accommodate its plastic phenotypes using
both individual learning based on trial-and-error and social
learning based on imitation of multiple phenotypes from the
most adaptive individual.

MODEL

Rugged Fitness Landscape
There are N individuals in a population and each individual
has M traits ti (i = 0 . . . M-1) as shown in Table 1. Each gene

gi (i = 0. . . M-1) in a M-length chromosome GI represents
the initial value of the corresponding trait ti , taking an integer
value within the range [1, M]. Each individual has another
M-length chromosome GP (pi (i = 0. . . M − 1)) which
decides whether the corresponding trait is plastic (“1”) or not
(“0”). Each row of plastic traits is highlighted in Table 1. Plastic
traits can be changed through the individual or social learning
process (described later). Each individual also has a gene s which
represents the probability of performing social learning instead
of individual learning. s has a real value in the range of [0, 1]. The
trait values ti are determined in the range of gi±1 by learning.
So as to evaluate the fitness of each set of traits, we adopted the
following fitness function [15]:

fitness = argmax
(

f (n)
)

, (1)

f (n) =

{

n if num (n) ≥ n,
0 otherwise,

(2)

where num(n) represents the number of traits of which
phenotypic value is n. The fitness is determined by a group of
traits which have the same values using Equations (1, 2). Equation
(2) shows that the trait group of n yields the fitness value n if its
group size (num(n)) is greater than or equals to n, and Equation
(1) shows that the highest f (n) of the trait group defined by
Equation (2) is adopted as the fitness of the trait set. For example,
the fitness of the trait set inTable 1 is 6 because the number of 6 in
the traits is 6 and at the same time, it is the highest number among
those which satisfy the condition in Equation (2), as illustrated in
Table 2.

This fitness function has the following two characteristics, and
thus the fitness landscape is rugged as illustrated in Figure 1.

1) The higher the fitness of trait group is, the harder to get
it, because the minimum size necessary for the trait group to
express its adaptivity becomes larger.
2) When n ≥ M/2 it is impossible to satisfy both conditions
num(n) ≥ n and num (n+ 1) ≥ n+ 1.

The benefit for using this fitness landscape is that we can
explicitly grasp the contribution of each phenotypic value on
the fitness and the progress of the evolution while keeping the
ruggedness of the landscape high.

TABLE 1 | An example of an individual (M = 10).

ti 6 6 2 6 2 6 6 3 6 2

gi 6 6 2 5 2 6 6 2 6 2

pi 0 0 0 1 1 0 0 1 0 0

S 0. 73

TABLE 2 | Fitness evaluation of the trait set in Table 1.

n 1 2 3 4 5 6 7 8 9 10

num(n) 0 3 1 0 0 6 0 0 0 0

f(n) 0 2 0 0 0 6 0 0 0 0

fitness 6
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Individual Learning and Social Learning
We assume an intergenerationally overlapped population that
consists of N/2 parents and N/2 offspring. Figure 2 illustrates
the population structure composed of two types of (i.e., parent
and offspring) individuals. In each generation, all individuals
simultaneously learn individually or socially L times regardless
of being parents or offspring. In other words, the individuals
learn L times with their parents and themselves after they are
born in a generation, and then they become parents and learn L
times with their offspring and themselves in the next generation.
In each learning step, each individual chooses social learning
with its genetically determined probability s, meaning it chooses
individual learning with the probability 1-s. The way of learning
is defined as follows.

Social Learning
The individual who chose social learning selects and imitates
another individual who got the highest fitness in the last learning
step. It makes each plastic trait closer to the corresponding trait

FIGURE 1 | An image of a rugged fitness landscape defined by Equations (1,

2).

FIGURE 2 | The overlap between generations in the model.

of the selected individual, by adding −1 or +1 to the genetically
determined initial value.

Individual Learning
The individual who chose individual learning changes possibly all
of its plastic traits by adding a value selected randomly from {−1,
0, 1} to the genetically determined initial value. Selecting 0 means
that the corresponding trait is not changed by learning.

The fitness of acquired trait set is evaluated after each learning
process. We define the step fitness as the highest value among the
all fitness values of each individual’s trait sets evaluated until the
current time step. Thismeans that individuals can keep and adopt
the most adaptive trait set at each time step.

Figure 3 illustrates an example of learning process. This
individual adopt individual learning and obtained the fitness 3
at time step t. At the next step, it obtained the higher fitness
4 by imitating the phenotypes of the best individual in the
previous step through social learning, whichmade the step fitness
increased. At step t+3, this individual obtained the trait set of
which fitness was 3, but its step fitness was kept 4, as defined.

Evolution
After completing L steps of learning, offspring grow up to parents
and produce the offspring by the following genetic operations.

(1) The lifetime fitness of each individual is defined as the
average step fitness over all the learning steps during its
lifetime. Two parents are independently selected from the
population by roulette wheel (fitness proportionate) selection
based on the lifetime fitness.
(2) For GI and GP, we apply a single-point crossover
operation on a pair of cloned chromosomes from the parents,
which produce two offspring chromosomes for GI and GP,
respectively.
(3) Each value of cloned genes gi, pi, s from the parents are
mutated with the probabilities mg , mp, and ms , respectively.
A mutation occurring in gi adds +1 or −1 to the current
value, and if the value exceeds its domain, does it again until
satisfying the condition. A mutation in pi flips the current
binary value. A mutation in s adds a random value from a
normal distributionN(0, σ 2). If the value goes lower than 0, it
also does it again until satisfying the condition.

RESULTS

We conducted computational experiments to explore the
coevolution between individual and social learning, using
the parameters shown in Table 3. The initial population was
composed of N/2 individuals of which gi were all 1, and pi
and s were randomly determined. We assumed two cases of
experiments, one in which individuals were allowed to perform
individual learning only, and the other in which the proportion
of social learning could evolve (as described above). Experiments
were conducted 20 times for each case, and the average lifetime
fitness at the final generation of the former case was 6.91 and
that of the latter was 8.98. Table 4 shows the breakdown of the
dominant values of the fitness function in the last generation in
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FIGURE 3 | An example of learning process.

TABLE 3 | Default parameter values.

Population size N = 1,000

Number of learnings L = 50

Number of generations T = 15,000

Number of trait ti (i = 0… M-1) M = 10

Mutation rate of gene g mg= 0.006

Mutation rate of gene p mp= 0.005

Mutation rate of gene s ms= 1

Standard deviation of normal distribution σ = 0.02

TABLE 4 | Breakdown of the how much average fitness increased (Total 20).

The maximum value of average fitness reached 7 8 9 10

Individual learning 20 0 0 0

Individual and social learning 0 4 8 8

Even if the average fitness approaches a certain value, it was rare that theymatch perfectly,

so if the average fitness exceeded a certain value n−0.1, we say that the average fitness

had reached n.

the 20 trials for each case. The average fitness tends to be slightly
smaller than dominant values of them in the population due to
the deviation of the distribution. Thus, if the average lifetime
fitness exceeded a certain value n − 0.1, we regarded that it had
reached n. In the former case, it reached 7 in all the trials, but in
the latter case, it increased to 10 which is the highest value in this
model, and in all experiments, it reached higher values than 7.
Therefore, the social learning can facilitate the adaptive evolution
of the population on a rugged fitness landscape.

Experiments Only With Individual Learning
First, we show the details of experiments only with individual
learning. We fixed genes s of all individuals to 0. Figure 4

shows a result of the experiments, which indicates the typical
dynamics of evolution process in this case. In the Figure 4A,
the horizontal axis represents the generation. The green and
red lines show the highest fitness and the average of the

lifetime fitness, respectively. The blue line shows the average
innate fitness, which represents the average fitness of initial
phenotypic values gi. In the Figure 4B, the blue line shows the
proportion of plastic phenotypes and the light blue line shows
the average of the variances of gene gi in each locus. The red line
shows the average plasticity contribution. We used the plasticity
contribution in order to see how and when learning effectively
worked. Specifically, as this index, we calculated the number of
the learned trait (in the sense that it was changed from the initial
trait) which contributed to the fitness (in the sense of Equations
1, 2) divided by the number of the plastic traits, in the most
adaptive phenotype attained by the individual (that equals to
the phenotype in the last learning step). Figure 4C represents
the distribution of the innate fitness, and Figure 4D represents
the distribution of calculated fitness by individual learning in
learning steps and Figure 4E represents the enlarged view of
Figure 4D.

We see from Figure 4A that individuals evolved through
repeated occurrences of the two steps of Baldwin effect during
the first 2200 generations. (1) The highest fitness increased
(discovering adaptive traits by individual learning) and the
average fitness increased while the average innate fitness
remained steady or decreased (agents which can learn adaptive
traits increased in population). This corresponds to the 1st step of
Baldwin effect. (2) Then, the innate fitness increased (because of
the learning failure cost, agents evolve to adaptive traits innately).
This corresponds to the 2nd step of Baldwin effect. As a result,
the average lifetime fitness increased to 7.0 until around the
2200th generations, and converged to this value, meaning that
the population got stuck in the local optima of the rugged fitness
landscape.

Figure 5 represents the enlarged view of Figure 4.
Figure 5(1–4) illustrate typical phases of the evolution of the
population on the rugged fitness landscape, each corresponding
to the duration indicated by a double headed arrow. Each
individual is represented as a pair of a circle, showing its innate
fitness, and a square, showing its lifetime fitness. The circle and
the square are connected with a directional arrow, representing
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FIGURE 4 | The evolution of the population with individual learning. (A) Shows the initial and highest and lifetime fitness, and (B) shows the proportion of plastic traits,

plasticity contribution and average variance of each gene. (C) Shows the distribution of the innate fitness. (D) Shows the distribution of acquired step fitness by

individual learning, and (E) shows the enlarged view of (D), when agents doing only individual learning.

its learning process. In general, individuals are classified into
three types a, b, c. Thick circles and squires represent dominant
individuals in the population. The string of numbers around each
individual represents its example phenotypes. The underlined
values are plastic traits.

First, in phase (1), most of agents, classified as type-a, had the
same fitness values before and after learning, meaning that they
stayed on a peak of the landscape through their lifetime. This
corresponds to around 1000th to 1250th generation. We can see
that most of agents had the fitness 6 innately from Figure 5C, and
also in Figure 5D, few agents acquired the fitness 7 by learning.
This is because they had few “7” traits and it was difficult to satisfy
the condition num (7) ≥ 7 by learning.

In phase (2), individuals, classified as type-b, who had the
higher lifetime fitness than the innate fitness increased in the
population, meaning that they jumped over the valley of the
fitness landscape by learning. This phase corresponds to around
1250th to 1500th generation. These individuals had more plastic
traits than type-a individuals and also they had more “7” traits
innately. As a result, they could satisfy the condition num (7) ≥

7 by learning. We can see the proportion of plastic traits and
plasticity contribution increased in Figure 5B. The increase of
“7” traits in innate phenotypes decreased the probability of
acquiring the fitness 6 by learning as shown in Figure 5D. In
Figure 5E, we can confirm the proportion of fitness 7 acquired
by learning increased.

In phase (3), individuals which were born in the valley of the
fitness landscape but could reach the higher peak by learning
increased. They are classified as type-c. This phase corresponds to
around 1500th to 1900th generation in the graph. This is because
individuals came to have more traits 7 innately to increase the
probability of acquiring the fitness 7. As a result, they became to

not to satisfy the condition num (n) ≥ n innately in any numbers
and thus, their innate fitness became 0.We can see the proportion
of the innate fitness 0 increased in Figure 5C and the proportion
of fitness 7 acquired by learning increased in Figure 5D.

In phase (4), individuals who existed on the top of the higher
peak increased. This phase corresponds to around 1900th to
2100th generation. They satisfied the condition num (7) ≥ 7
innately and they could not acquire more adaptive phenotypes
by learning. Thus, they were type-a agents. In Figure 5C, the
proportion of plastic traits decreased to around 0.3 because non-
plastic traits of “7” traits increased the probability of acquiring
fitness 7 phenotypes by learning. We can confirm the proportion
of the innate fitness 7 increased in Figure 5C.

After phase (4), the population converged to the top of the
peak of the fitness 7, and it means the evolution process got back
to phase (1). The population climbed the rugged fitness landscape
by repeating these 4 phases until around 2200th generation.
However, as seen in Figure 5, the evolution process completely
converged. This is because the population could not acquire the
fitness 8 stably as shown by the repeated temporal increase of the
highest fitness in Figure 5A.

Experiments With Individual and Social
Learning
Next, we show the details of experiments with social learning.
Figure 6 shows a typical example when the average fitness
increased to 10. This is a universal behavior in every experiments
when fitness increased. The representation is the same as in
Figure 4, but it is changed in some points. In Figure 6A, highest
fitness is replaced by that acquired by individual learning (green
line) and that acquired by social learning (purple line). If they
took the same values, they are represented by black line. In
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FIGURE 5 | Enlarged view of Figure 4. (1–4) Illustrate typical phases of the evolution of the population on the rugged fitness landscape, each corresponds to the

duration indicated by a double headed arrow. Each individual is represented as a pair of a circle, showing its innate fitness, and a square, showing its lifetime fitness.

The circle and the square are connected with a directional arrow, representing its learning process. Thick circles and squares represent dominant individuals in the

population.

Figure 6B, the proportion of social learning is added, and in
Figure 6F, the proportion of fitness acquired by social learning
is added. In this model, population finally reached the fitness 10,
the maximum value of this fitness function.

The gene s, which is the probability of social learning, evolved
to high values at early generation, and it kept high values. This
is because imitating phenotypes of the best agents was more
adaptive than acquiring adaptive phenotypes by trial and error.
It took high values more stably as the lifetime fitness increased.
This is because as the fitness landscape became more rugged,
acquiring adaptive phenotypes by individual learning became
more difficult. In addition, once such adaptive phenotypes were
acquired by individual learning and then came to be maintained
in the population by social learning, social learning became more
adaptive than individual learning.

This adaptive evolution process was caused by complex
interactions between individual learning and social learning.
Figure 6(1–4) illustrate typical phases of the evolution of the
population on the rugged fitness landscape as in Figure 4.
A green directional arrow, which connects a circle and a
square, represents a change in the fitness by social learning,
and a dotted square represents the best phenotypes shared in
the population through imitation from parent individuals to
offspring individuals in the population.

First, in phase (1), most of agents, classified as type-c,
acquired adaptive, but innately non-adaptive, phenotypes by

social learning. They had almost the same lifetime fitness as type-
a agents, so they can coexist with them and the genetic diversity
increased.

In phase (2), because of the increased genetic diversity
due to social learning, some type-c individuals occasionally
had higher numbered values of innate phenotypes, meaning
that they were born in the valley near to the higher peak of
fitness landscape. They could found new adaptive phenotypes
by individual learning, and became the best individuals to be
imitated by others.

However, other type-c individuals often failed to imitate such
new adaptive phenotypes mainly due to the lack of plasticity
as illustrated in Figure 6(2′). This made the population lose
the adaptive phenotypes and type-a individuals dominated
the population again. Thus, the population went back to
phase (1). These transition processes repeatedly occurred from
around 3200th to 6000th generation in this trial. The phases
Figure 6(1–2′) correspond to the increase in the innate fitness 0
in Figure 6C, the increase in the acquired fitness 9 in Figure 6E,
and the increase in the innate fitness 8, respectively.

On the other hand, once individuals successfully imitated
the new adaptive phenotypes by social learning and they were
maintained in the population, type-b individuals, who could
acquire such new adaptive phenotypes while keeping innate
adaptive phenotypes, increased in the population, as illustrated in
Figure 6(3). This phase corresponds to around 6000th to 6300th
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FIGURE 6 | The evolution of the population with individual and social learning. (A) Shows the initial and highest and lifetime fitness, and (B) shows the proportion of

plastic traits, plasticity contribution and average variance of each gene. (C) Shows the distribution of the innate fitness. (D) Shows the distribution of acquired step

fitness by individual learning, and (E) shows the enlarged view of (D). (F) Shows the distribution of acquired step fitness by social learning. (1–4) illustrate typical

phases of the evolution of the population on the rugged fitness landscape, each corresponds to the duration indicated by a double headed arrow. Each individual is

represented as a pair of a circle, showing its innate fitness, and a square showing its lifetime fitness. The dotted square showing inherited phenotypes through

generations. The circle and the square are connected with a directional arrow, representing its learning process. Blue arrow represents individual learning and green

arrow represents social learning. Thick circles and squares represent dominant individuals in the population.

generation. We can see from the enlarged view in Figure 6F,
which is marked by a square, individuals which could imitate
fitness 9 phenotypes increased slightly. This phase is the similar
to phase (2) in the case with individual learning only.

In phase (4), type-c individuals, who could acquire new
adaptive phenotypes more quickly by discarding innate adaptive
phenotypes, increased in the population as in phase (3) in the case
with individual learning only. This phase corresponds to around
6300th to 7000th generation. The proportion of plastic traits and
plasticity contribution in Figure 6B took very high values around
0.9 compared with those in the case with individual learning only.
It means that individuals highly relied on social learning and they
need high plasticity to imitate precisely. In Figure 6B, the average
variance of each gene increased and it shows type-c individuals
increased in the population.

Finally, the evolution process went back to phase (1) but the
population existed on a more adaptive peak. Type-c individuals
appeared in the other side of the valley and dominated the
population, and a few type-a individuals appeared. Therefore, the
evolutionally process was cyclic, and individuals evolved through
this process on the rugged fitness landscape.

In addition, we conducted experiments with different settings
of parameters, and found that the basic scenario of evolution
process did not change under the assumption of plausible
parameter settings. We also found that some parameters can
affect the speed of evolution (i.e., the fitness increase). For
example, the larger number of learning iterations L, which is a
parameter relating to learning process, can increase the speed of
evolution, which is expected to be due to the increase in chances
to acquire new and adaptive phenotypes, and vice versa. On the
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other hand, the higher values of parameters on mutation process
mg , mp, ms, and σ generally decreased the speed of evolution
if they were increased. These are mainly due to the fact that a
strong mutation prevents the population from keeping adaptive
sets of genotypes, plasticity, and high social learning rate. But the
lower mg also slowed down the speed of evolution because of the
smaller genetic diversity.

DISCUSSION

We constructed a computational evolutionary model with
individuals that can learn individually or socially on a multi-
modal fitness landscape as a more realistic situation than those
which have been used in previous research. Comparing the
results with only individual learning and with both of learning,
we found essential differences between these two learning, which
can be described at more general level as follows.

In general, learning has an effect to expand the individuals’
search range in phenotypic space. At the same time, it also
enables individuals which have different genotypes to have
similar phenotypes and fitness values, which means that, at
the population level, learning has an effect of bringing the
population genetic diversity. Comparing individual and social
learning, the characteristic of individual learning is the ability
to find new adaptive phenotypes, which cannot be achieved by
social learning. On the other hand, social learning has greater
amount of the above-described effects of learning, especially of
an increase in genetic diversity, by allowing individuals to imitate
the adaptive phenotype in population already found by individual
learning, without trial and error.

Based on these differences, individual and social learning
work complementarily in the course of adaptive evolution on
the rugged fitness landscape as follows. Individual learning can
find new adaptive phenotypes thanks to the diversity of genetic
expressions created by social learning. It is illustrated in the
transition from Figure 5(1) in which individuals that were born
on the valleys on either side of a peak (8) leach the peak by

social learning to Figure 5(2) in which an individual that was
born on the valley of the right side of the top found a new
fitness peak (9) by individual learning. On the other hand, social
learning can keep a new adaptive phenotype found by individual
learning in the population. It is illustrated in the transition from
Figures 5(2,3) in which individuals on the lower peak (8) can find
the higher peak (9) by social learning, thus keeping the new peak
found by individual learning in the population. However, if every
social learning is unsuccessful because of keeping different values
for non-plastic trait, the peak found by individual learning is lost
and the population moves back to Figure(1) via Figure(2′).

We have described how individual and social learning interact
with each other and how it enables individuals to find adaptive
phenotypes on the rugged fitness landscape with valleys which
cannot be crossed by individual learning alone. In recent
years, theoretical and empirical research to predict and explain
social learning strategies of humans and other animals has
been conducted [16]. One of the promising direction would
be to introduce several typical strategies for social learning
into the model and investigate the effect of the interaction
between the strategies on the evolutionary scenario of the
cooperation. It is also would be the future direction to consider
network structures of social interactions so as to make the
model more realistic, in terms of the “whom” aspect of social
learning.
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The continuous development of the service economy and an aging society with fewer

children is expected to lead to a shortage of workers in the near future. In addition, the

growth of the service economy would require service providers to meet various service

requirements. In this regard, self-service technology (SST) is a promising alternative to

securing labor in both developed and emerging countries. SST is expected to coordinate

the controllable productive properties in order to optimize resources and minimize

consumer stress. As services are characterized by simultaneity and inseparability, a

smoother operation in cooperation with the consumer is required to provide a certain level

of service. This study focuses on passenger handling in an airport departure lobby with

the objective of optimizing multiple service resources comprising interpersonal service

staff and self-service kiosks. Our aim is to elucidate the passenger decision-making

mechanism of choosing either interpersonal service or self-service as the check-in

option, and to apply it to analyze several scenarios to determine the best practice. The

experimental space is studied and an agent-based model is proposed to analyze the

operational efficiency via a simulation. We expand on a previous SST adoption model,

which is enhanced by introducing the concept of individual traits. We focus on the

decision-making of individuals who are neutral toward the service option, by tracking

the actual activity of passengers and mapping their behavior into the model. A new

method of validation that follows a different approach is proposed to ensure that this

model approximates real-world situations. A scenario analysis is then carried out with

the aim of exploring the best operational practice to minimize the stress experienced by

the air travelers and to meet the business needs of the airline managers at the airport.

We collected actual data from the Departure Control System of an airline to map the

real-world data to the proposed model. Passenger behavior was extracted by front-line

service experts and clarified through consecutive on-site observations.

Keywords: ABM, airport, airline, self-service technology, fuzzy, scenario analysis, simulation, multi-agent

simulation

1. INTRODUCTION

1.1. Background
The service economy continues to grow globally. Both developed and emerging countries are
expected to face difficulties in securing workers in the future. Developed countries need to address
this progressive and imminent issue in their aging societies. In these countries, the working
population enjoys improved health care and has fewer children; thus, industries are required to
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secure their workforces in new ways. Clearly, we need some
mechanism to offer enhanced service and improved interactions
with consumers. Self-service technology (SST) is a promising
alternative for fulfilling future customer service requirements.
However, unless SST is recognized and accepted by the
customers, the implementation of SST is unlikely to be successful,
resulting in neither customers nor firms enjoying the benefits of
service investment.

This study focuses on self-service kiosks at the airport, as these
are a familiar alternative for air travelers. In general, service is
characterized by simultaneity and inseparability, which, in our
situation, means that service agents and passengers need to work
together to achieve a common goal in each of the processes
that form the constituents of air travel. In particular, because
the check-in process is a critical starting point for improving
the travel experience, smoother operation in cooperation with
the passenger is required to provide a certain level of service.
It is essential for both airlines and passengers to utilize the
SST at the airport because it reduces stress and the amount of
waiting time. Time and suitable opportunities are required to
identify the best practice for fully utilizing the resources including
SST. Conducting a trial is a common strategy to evaluate the
functioning of a new policy, the performance of which is also
challenging to verify under new circumstances. However, it
is difficult for on-site managers to understand the statistical
result and analysis and apply its findings to a service operation
in practice. Further, because the operational trial involves a
certain degree of risk in that it may adversely affect the service
quality, local managers would prefer to prevent sacrificing the
customer’s experience asmuch as possible rather than conducting
operational trials in the field. An experimental space helps
managers to understand the circumstances of a new handling
policy without conducting actual try-and-error trials, if it stably
reproduces real-world phenomena.

1.2. Purpose of this Study
This study investigates the way in which coordination and
cooperation take place in the airport departure lobby. The
optimization of current resources is key in achieving the same
goal for both passengers and the airline. We investigate how
effectively both SST and service staff engaging in interpersonal
service can achieve a harmonized performance.

To achieve this, two steps are undertaken to uncover
the fundamentals of smoother passenger handling operation:
constructing the experimental space and scenario analysis by
simulations. The first of these two steps of this study consists
of proposing an experimental space to which to map the real-
world situation. In this regard, we utilize agent-based modeling
(ABM) to emulate the departure lobby of an airport with existing
data collected from an airline system. We focus on the decision-
making process of a passenger who is neutral toward SST use.
Because it is important to know what causes an individual to
opt for SST when they have not yet determined an attitude
toward it, we develop an SST adoption model by introducing an
aggregate analysis of passenger records from an airline system.
We also propose a methodology to validate the proposed ABM
in order to clarify that the core mechanism is robust and that

the designed concept functions as intended. Then, we carefully
construct several scenarios to determine the best combination of
SST and service staff to ensure a certain level of quality.

This research is based on computer simulation experiments.
This study was carried out in accordance with the guideline
of “Researcher’s ethics” of the University of Tsukuba. This
study complies with Regulation for Faculty of Business Science
Research Ethics Committee. An ethics approval was not required
as per institutional and national guidelines and regulations.

2. RELATED WORK AND FINDINGS

SST has been examined from various perspectives. First, as SST
adoption is an individual decision to adopt a new method,
we review studies pertaining to the adoption and diffusion of
innovation. Subsequently, an overview of the field of services
marketing is given to provide the necessary background against
which to understand the development of SST studies. Then
we review ABM as a tool to elucidate the dynamics of the
phenomenon of SST adoption. We specifically consider the
ABM SST adoption model for reviewing the progress of current
findings and research problems.

2.1. Innovation Diffusion
Rogers [1] defined innovation as the introduction of
something new: a new idea, method, or device. The OECD
Oslo Manual defines four types of innovation: product
innovation, process innovation, marketing innovation and
organizational innovation1. However, innovation is often
also viewed as the application of improved solutions to meet
new requirements, unarticulated needs, or existing market
needs. This is accomplished by using more effective products,
processes, services, technologies, or business models that are
readily available in markets, governments, and society. The
existence of designated variables to define the speed of diffusion
is well-known. Greater relative advantage, higher compatibility,
less complexity, higher trialability, and greater observability are
known to accelerate the diffusion of innovation. The change
agent has also been claimed to promote innovation and to play
an important role in increasing the speed of diffusion [1]. The
variables responsible for enhancing the diffusion speed indicate
what we should be looking at in this study because SST adoption
is an individual decision to accept innovation.

2.2. Service-Marketing Framework
The study of SST can be traced back to the study of convenience.
Berry et al. [2] examined and discussed convenience from
two main perspectives: (1) wait time and its management and
(2) what consumers find convenient. Davis [3] developed a
“technology acceptance model (TAM),” which is specifically
meant to explain computer usage behavior. The developed
methodology emphasizes the necessity of evaluating proposed
new systems prior to their implementation. The author
concluded that perceived usefulness and ease of use create

1OECD Innovation strategy Defining innovation, https://www.oecd.org/site/
innovationstrategy/defininginnovation.htm.
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favorable attitudes toward SST. Davis [4] empirically examined
the ability of TAM to predict and explain user acceptance and
rejection of computer-based technology.

Bitner et al. [5] explored the changing nature of service, with
an emphasis on ways in which encounters can be improved
through the effective use of technology. They focused on the
benefits of thoughtfully managed and effectively implemented
technology applications [5]. In the same year, self-service
technologies were described as technological interfaces that
enable customers to produce a service without a service
employee’s involvement [6]. The use of SSTs can drive up
productivity and efficiency [7–9], and additionally, reduce and
avoid high labor cost.

Through various means including surveys, interviews, and
questionnaires, a large number of studies have found factors
that influence the usage of SST. Meuter et al. [6] concluded
that service convenience through SST resulted in consumer
satisfaction when it was “better than the alternatives” and they
appreciated “time saving” the most. It was also claimed that SST
usage depends on customer readiness for SST [10].

Liljander et al. [8] reviewed SST adoption from the perspective
of consumer readiness. Meuter et al. [9] explored usage patterns
and the benefits of using SSTs and their findings indicate that
“technology anxiety” is a superior, more consistent predictor of
SST usage than demographic variables.

Dabholkar and Bagozzi [11] extended the attitudinal model
of technology-based self-service (TBSS) and proposed that
the moderating variables affect the attitude toward SST and
intention to use SST. Their extended framework of TBSS was
well supported and captured a variety of consumer traits and
situational factors.

2.3. ABM
Agent-based models, also known as multi-agent systems and
agent-based simulation etc., are (computational) models of
a heterogeneous population of agents and their interactions
(CoMSES)2.

Technical instruments enable each agent to behave
autonomously. By locating players in the experimental space
and approximating it to the real world, ABM is developed
and its effectiveness enhanced. A social multi-agent system
represents phenomena of complex social systems [12]. Kawai
[13, 14] utilized ABM and demonstrated the diffusion of new
products and services using an ABM abstract model. These
studies illustrate important facts and concepts for the diffusion
of innovation. However, they merely illustrated the concept,
and neglected to describe the reproducible mechanism of
decision-making for choosing several options.

Stylized facts are empirical regularities in search of theoretical,
causal explanations, such as statistical features. In the financial
markets, there are a few stylized facts, such as volatility
clustering and the power law decay of the tails of the return
distribution [15]. As Watts and Gilbert introduced ABM
literature by mentioning stylized facts, it is common to evaluate

2OpenABM FAQ: What are agent-based models (ABMs)? https://www.openabm.
org/faq-page#t780n3730

the simulation results of various fields using stylized facts
[16]. Grimm et al. [17] propose a general framework for
designing, testing, and analyzing bottom-up models, which is
pattern-oriented modeling. The framework attempts to enhance
the rigor and comprehensiveness of bottom-up modeling by
explaining observed patterns. It is claimed that patterns are the
defining characteristics of a system and indicators of the essential
underlying processes and structures.

2.4. SST Study by Utilizing ABM
In this section, we briefly review the SST adoption model
that equips ABM step by step. The building stages of the
proposed ABM are reviewed to illustrate the feature of passenger
handling at the airport and the basic idea of the decision-making
mechanism for using SST.

2.4.1. Concept of SST Adoption Model
Ueda and Kurahashi [18] created an ABM to demonstrate how
air travelers choose SST at the airport. The experimental space
emulates an existing airport departure lobby (Figure 1) and has
three check-in options: interpersonal check-in service, baggage
drop, and self-service kiosk.

The default check-in option is the interpersonal check-in
service. Travelers who use the self-service kiosk can check in
their baggage at the baggage drop position. The baggage drop
positions are also utilized as check-in positions when there is
no-one waiting in front of them.

ABM creates passenger agents at the same volume and the
same arrival timing, with certain properties according to the
system log collected from the airline. The ratios of passenger
demographics and travel conditions such as checked baggage
are also copied into the model. It gives each passenger agent
the variable value, which represents “hesitation status” toward
using SST. The passenger agent reduces the “hesitation value”
when the service agent interacts, as it is common and observed
that passengers are encouraged to use SST by knowing that
the self-service kiosk exists and functions and that it may
enable them to reduce their waiting time. According to the
various records (system log, on-site observation, etc.), the
number of active check-in counters, self-service kiosks, and lobby
service agents are also implemented as they were in practice
(Table 1).

Figure 4 shows the volume and variables of the data collected
mainly from the airline system.

2.4.2. Decision-Making Mechanism for SST Use
Figure 2 illustrates the core mechanism of the proposed model.
The passenger agent is created randomly or stochastically with
certain traits. Each agent moves toward check-in options in
the lobby and decides its direction autonomously by collecting
surrounding information.

The perceived waiting time and visibility of SST are key inputs
for fuzzy inference methodology to determine the direction of
each agent. Based on the knowledge of service experts, the “Self-
service Preference Index (SPI)” is calculated by following the
simple fuzzy rule and membership function (Figure 3).
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FIGURE 1 | SST adoption model.

• Rule 1: IFW [Waiting time for conventional check-in] is short
and V[Visibility of SST] is low, THEN SPI is negative.

• Rule 2: IFW is long and V is high, THEN SPI is positive.
• Rule 3: The more the lobby service agent interacts with

passengers, the higher the possibility of using SST.

If SPI is positive, the agent moves toward SST. If SPI is
negative, the agent moves toward the conventional check-
in counter. Sixteen days of on-site observation clarified that
passengers’ actual behavior followed the defined rule almost
consistently.

Figure 3 illustrates that the fuzzy system calculates the SPI
score by using the max-mini inference method and the simplified
centroid method.

The Equation (1) defines the calculation of EQT, which is
the input value to find the membership score of variable W.
A passenger agent moving toward the interpersonal check-in
service is taken as the default option. However, in the decision-
making zone, it estimates and compares the waiting time of the
two check-in options.

EQT is defined as the predicted difference in waiting time at
the interpersonal check-in, and the wait time for using SST. It has
weighting parameters for check-in preference (“p1” and “p2”),
If p1 and p2 have the same value, the preference for the two
options are the same; however, few passengers prefer SST. The
variable V reflects how the passenger perceives SST. The number

TABLE 1 | Experimental dataset.

Dataset Passenger choice Product property quantity

IPSC SSC SST IPC BagDrop CSR

dataset406 85 46 4 3 3 2

dataset408 100 60 4 2 3 2

dataset409 68 39 4 2 2 3

dataset410 67 54 4 2 2 3

dataset411 63 62 4 2 2 3

dataset412* 67 25 4 3 2 0

IPSC, Interpersonal Service (conventional); SSC, Self-service; SST, Self-service Kiosk;

IPC, Conventional Check-in; BagDrop, Baggage check-in (interpersonal); CSR, Customer

Service agent who guides passenger to SST; *dataset412, Training dataset.

of passenger agents in front of SSTs is the input value of V.
When there is no agent using SST, V is low; when there are more
agents using SST, the value V becomes higher. If the number of
passengers who are in front of SSTs exceeds the number of SSTs,
V decreases, because passengers would occupy the self-service
area and then the visibility of the SST significantly decreases.
This model places the customer-service staff in the experimental
space because the front-line staff ’s experience and the findings of
previous work indicate that passengers respond positively to use
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FIGURE 2 | Decision-making self-service adoption model at the airport (2017model).

SST under the guidance of the airport staff [7, 19]. Similar to the
different preferences of an actual individual, each created agent is
assigned a different attitude toward using the SST. ABM assigns
each passenger agent a random “hesitation” value from 0 to 20. If
the “hesitation” value is high, the chances of using the SST are
less. If the passenger agent reduces their “hesitation” value by
contacting the customer service agent, there is a greater chance
of using the SST.

EQT =

(

NCCP

CCPs

)

× p1−

(

NSSQ

SSUs

)

× p2 (1)























NCCQ : Number_of _passengers_waiting _in_Classic_Ckin_Queue
CCPs : Number_of _Classic_Ckin_Positions
NSSQ : Number_of _passengers_waiting_in_SST_Queue
SSU : Number_of _Self − Service_Units
p1, p2 : weighting_parameters

2.4.3. Model Development
The replicated SST adoption model [22] introduces the concept
of an attitudinal model of [11], which claims that the attitude and
intention of using the SST directly influences several moderating
variables such as consumer traits and situational factors.

An aggregate analysis of the airline records (DatasetB:
Figure 4) supports the idea that situational factors and passenger
traits influence the attitudes of individuals toward SST. The
regression analysis demonstrates the significance of explanatory

variables representing travel conditions such as the volume of
held baggage and busyness of passenger handling.

The variable “recent use of self-service kiosk” indicates the
service that is chosen the most, whereas the other variable “flight
frequency of passenger” occupies the second position. These
findings are reflected by modifying the SST adoption model to
assign each produced passenger agent an individual trait: Non-
SST user 35%, Strong SST user 14.8%. The ABM assigns each
agent a random non-negative number up to 100. Depending on
the score the agent holds, the trait category of passenger agent is
defined stochastically.

2.4.4. Simulation Result
Verification and validation processes are carried out
carefully using six datasets: one dataset (dataset412) is
used for training and the remaining datasets are used for
validation.

Various parameters, including the baggage holder rate (0.7),
and the processing times for the different service options
(interpersonal service, self-service, and baggage check-in), are
set to represent real-world conditions. After fitting the two
parameters (p1 and Speedmax: maximum moving speed of
passenger agent) by calibration, we conducted experiments
using the other datasets with different circumstances. In each
experiment, the number of check-in counters and staff is
mapped according to the actual situations on those days.
Experiments were conducted by using 50 runs each for the five
test datasets, which differ completely in terms of the timing of
passenger arrival. In these experiments, the self-service usage
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FIGURE 3 | Fuzzy membership score.
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FIGURE 4 | Dataset for experiments.

rate, the quotient of passengers using self-service divided by all
passengers, is observed.

The results of the simulation for each model are provided in
Table 2. The simulation result is sufficiently close to the real-
world situation and is persuasive for modeling actual passenger
handling at the airport. Table 2 indicates that in the replicated
2017 model, the RMSE (Root Mean Squared Error) for the
self-service usage rate versus the real data is 0.039, which is
higher than that in the 2014 model. However, the core of
the SST adoption model supports the concept developed by
previous services marketing literature and innovation studies,
namely the effect of technology readiness and anxiety, and
moderating variables with fuzzy inference systems are used
to demonstrate the dynamic mechanism of SST adoption.
In addition, the result of experiments finds that calibration
results of two parameters are different: the speed of the
passenger agent (Speedmax) is linearly related to the self-
service usage rate, whereas the interpersonal preference of an
individual (p1) is non-linearly related to the self-service usage
rate.

2.5. Topics of Related Work
Previous innovation diffusion studies typically describe the
introduction of a new method and introduce the variables that
determine the rate of adoption. The services marketing literature
explores and specifies factors that promote the use of technology-
based self-service (TBSS). Dabholkar and Bagozzi [11] expanded
the concept of a technology acceptance model to explicate that
situational factors and consumer traits have a direct effect on
promoting a positive attitude toward TBSS and the intention
to use TBSS. They conducted an on-site survey at a fast food
restaurant to examine the behavior of consumers. However, as
Dabholkar noted, the results would change if one of situational

TABLE 2 | Experimental results of the SST adoption models of 2014 and 2017.

Experiment results (SST usage-rate)

2014 model 2017 model RMSE vs. Actual results

Dataset Actual

results

Trait given 2014 model 2017 model

Random Stochastic

dataset406 0.351 0.361 0.373 0.010 0.022

dataset408 0.375 0.422 0.417 0.047 0.042

dataset409 0.364 0.364 0.350 0.000 0.015

dataset410 0.446 0.452 0.419 0.005 0.027

dataset411 0.496 0.434 0.409 0.062 0.087

dataset412 0.272 0.245 0.285 0.027 0.013

Average 0.025 0.039

factors was to change. Those studies are based on statistical
methods, and this means that the analysis is static rather
than dynamic. Inductive approaches based on statistical models
are often inadequate for elucidating “complicated consumer
behavior mechanisms” and “complex phenomena occurrence
mechanisms” [20].

Applying the TAM proposed by Davis [4] in user acceptance
testing would involve demonstrating system prototypes to
potential users and measuring their motivation to use the
alternative systems. Although “consumer behavior experiments
can provide theoretical insight on consumer decision making
and response to marketing measures, it is practically difficult to
experiment with a large number of subjects and to examine the
complicated interaction among consumers [20].” Studies in the
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services marketing field have not determined the mechanism by
which predictable results can be reliably reproduced.

Kawai proposed the diffusion of new products and services
utilizing ABM [13, 14]. Although his model demonstrated the
phenomenon of diffusion, the model does not use data observed
in the real world. Therefore, the model succeeds in illustrating
the concepts but it does not represent the actual phenomenon
of diffusion or reveal consumers motivations for selecting a new
alternative.

The SST adoption model [18, 22] was used to conduct
simulation experiments with actual data collected from an airline
and approximated the experimental space to the real world
(Table 2). These models were validated by comparing the self-
service usage rate of the simulation results against the actual
recorded activity, under different circumstances and various
patterns of passenger volume and arrival timing (Table 1). The
results clarified that the statistical features of mass behavior are
similar. However, it is necessary to find other stylized facts shared
by the two spaces, which can render more credibility to the
proposed SST adoption model.

The above-mentioned previous results suggest that a model
capable of addressing the concerns of on-site managers would
need to stably reproduce the situation and operations of the
departure lobby. The service operations consist of coordination
and cooperation of service resources and interactions among
passengers, which ABM is inherently capable of representing.

3. ENHANCING SST ADOPTION ABM

The results of experiments with the SST adoption model [18, 22]
closely reproduce the real-world situation and indicate that there
is room for improvement. In section 3.1, we focus on individuals
who have not determined their attitude toward SST and their
decision-making, by using a detailed analysis of the data from
the records of the airline system. We clarify the effectiveness of
this proposed agent-based model by utilizing logistic regression
analysis. At the end of this section, we discuss the fact that the
experimental space creates stylized facts similar to those in the
real world.

3.1. Narrowing the Data Scope
The experimental results support the idea that individuals’
choices depend on situations, as claimed by Dabholker. However,
we reconsider the scope of the data because the results of the 2017
model, in which traits are given stochastically, are not as close
to the actual recorded activity as the results of the 2014 model,
which assigns random traits to passenger agents.

The examined data for the replicated SST adoptionmodel [18]
was collected during five days of operation time and covers both
quiet and busy times. As the experiment tries to explicate the peak
hours of the real world, we extract data from the peak hours of
operation (7:00–8:15) from DatasetB (Figure 4).

We examine data from a total of 4,440 passengers and divided
these data into 36 segments using two variables that explicate
the usage of the self-service kiosk the most according to multiple
regression analysis (Table 3) [18]. The flight frequency is divided
into 6 categories; FF-0 classified passengers have no flight record

TABLE 3 | Distribution of SST usage rate.

Flight

frequency

SST recency

SR-0 SR-1 SR-2 SR-3 SR-4 SR-5

FF-0 0.406

FF-1 0.338 0.571 0.636 0.813 0.688 0.750

FF-2 0.266 0.143 0.500 0.478 0.538 0.080

FF-3 0.091 0.583 0.364 0.471 0.583 0.798

FF-4 0.132 0.000 0.333 0.333 0.400 0.750

FF-5 0.043 0.000 0.000 1.000 0.867

FF-0, No flight record; FF-5, more flight record.

SR-0, No SST usage record; SR-5, Using SST most recently.

Weak-SST-user use SST, usage_rate < 0.37; Frequent_SST_user use SST,

usage_rate > 0.68.

Total passengers = 4,440 ( Weak = 705, neutral = 3,450, Frequent = 285).

Weak-SST-user = 15.9% of all users; 22% of Weak-SST-user selected SST.

Frequent_SST_user = 6.4% of all users; 78% of Frequent_SST_user selected SST.

Neutral_SST_user = 77.7% of all users.

during the last 24 months from the departure date. Passengers
who fly more frequently are divided into higher classes. Recent
SST usage is also divided in the same manner: passengers
classified as SR-0 have no record of using SST within the past
2 years, and SR-5 passengers have used SST recently. Table 3
lists the SST usage rate in each passenger segment. We classified
passengers into three categories: Weak-SST-user, Neutral-SST-
user, and Frequent-SST-user by investigating the SST usage rate
of each segment. In this particular dataset, 15.9% were Weak-
SST-users and 6.4% were Frequent-SST-users with SST usage
rates of 22 and 78%, respectively.

3.2. Mapping the Stepwise
Decision-Making of Service Selection
The replicated adoption model based on ABM is modified such
that each agent is generated with a categorized trait toward
SST according to the result shown in section 3.1. This takes
into consideration that actual passengers with certain traits
decide whether to use SST after arriving in the departure lobby.
This sequence of step-wise decision-making is introduced into
the proposed ABM. Further, a Weak-SST-user is stochastically
allocated a 12.5% intention of using interpersonal service,
because 78% of Weak-SST-users select not to use SST in this
particular dataset. In the same way, a Frequent-SST-user is
assigned a stochastic SST-using intention of 5%, because 78% of
them ultimately used SST. The remaining agents move in the
experimental space without antecedent conditions. They perceive
the situation and make decisions according to the behavior rules.
We would like to discern the behavior of those passengers who
have not made up their mind. In the next section, we focus on
validating how those who have a neutral trait toward SST make
their decisions.

3.3. Validating ABM from a Different
Perspective
It has long been known that a single pattern observed at a
specific scale and hierarchical level in a complex system is not
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sufficient for reducing the uncertainty in the model structure and
parameters [17]. In this section, we illustrate that a phenomenon
not incorporated in the model has emerged from ABM. Its
occurring pattern is statistically similar to the pattern in the real
world, which is another stylized fact of the proposed model.
The outline of the experiment is illustrated in section 3.3.1. The
results of the experiment are shown in section 3.3.2, in order to
discuss what they indicate. We summarize the experiments and
discussion to evaluate the proposed model in section 3.3.3.

3.3.1. Outline of ABM Validation
According to the experimental result in section 2.4.4, we can
assume that the proposed model closely approximates the real-
world situation because the SST usage rate of various simulation
results is approximately equal to the actual recorded activity. In
section 3.2, deeper insight into passenger traits and decision-
making processes enhances themodel.We validate the core of the
decision-makingmechanism by examining the simulation results
of the enhanced model.

Thirty simulation runs with one of the datasets are conducted
to accumulate the activity record; 2,700 passenger agents are
generated for the experimental space. Dataset412 is chosen
because on that day, we observed that lobby service staff had not
interacted or guided passengers much and little positive feedback
was received from passengers. Equivalent amounts of records
representing (1) the actual passengers and (2) the generated
passenger agents are randomly selected from both the real world
and ABM experiments to form six datasets. These datasets are
analyzed by logistic regression, and we examine the ability of
the model to accurately predict the usage or non-usage of SST

(that is the objective variable). We focus on the passengers and
agents with neutral traits because we aim to identify the decision-
making mechanism of those who have not determined their
choice.

We compare and discuss the accuracy of the predictions
for the two groups by using the same explanatory variables
(Figure 5).

3.3.2. Experimental Results and Discussion
The ABM experimental space emulates the real, existing world;
however, it is difficult to cover all the necessary data to represent
complex real-world scenarios. The airline stores its vast volume
of activity records in their data warehouse. However, it does
not cover all passenger activities. The question as to what types
of information we need in order to represent the real world
always remains. We select three explanatory variables (travel
condition, individual traits, and operational busyness) to conduct
the logistic regression analysis for predicting SST use. These
variables were selected to help explain the objective variable: SST
use or not (Table 4).

A total of 1,200 datasets are selected randomly to form three
datasets containing the real world data. Each dataset contains an
equal number of two different passenger groups: those using and
those not using SST. The results of the logistic regression analysis
of each experiment are listed in Table 5.

It displays the correct rate of SST usage prediction
(Equation 2) of neutral trait groups for each experiment. We can
see that the experimental results of real-world data (0.549) are
close to those of the ABM data (0.537). This result, a slight gap
in prediction accuracy by logistic regression, implicates that two

FIGURE 5 | Framework of experiment.
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different spaces hold data that have the same degree of difficulty
explaining the complex world.

Correct_rate =
Passenger_with_correct_predict

All passenger
(2)

3.3.3. Summary of the Validation
We focus on passengers who have not decided whether to use
the SST to validate the extent to which the proposed ABM
approximates the real world and to assess the robustness of
its core mechanism. Passenger traits are examined with the
narrowed range of data, namely the busy peak time. The model
is thereby enhanced because it provides deeper insight into
passenger trait analysis as a result of stepwise decision-making,
as implemented in section 3.2.

In addition to the SST usage rate, focusing on the SST usage
prediction accuracy, we observe that the experimental space
contains variables to explain it to the same degree as the real
world. It means that the logistic regression analysis outcomes
of the real world and ABM both indicate that each space has
almost the same complexity to predict. Through our experiments,
we observe multiple patterns in the real system at different
hierarchical levels; the SST usage rate is a statistical feature
of the group behavior, and the prediction accuracy is another
statistical feature of individual behavior. With two dimensions
of observable simplified presentation of empirical findings—in

TABLE 4 | Variables explanation.

Variable Dataset Remarks

Real world (RW) ABM

Travel condition BagClass Bag-bit Baggage volume #

Individual

trait

flightFreqClass*

recent SST usage*

Passenger

trait

*Two variables are

combined into one

ABM variable #

Operational

busyness

CKIN_Density

wzin15min

TD

wizin15min

Number of check-in

passengers per

unit-time, not including

waiting time #

Congestion – TDave Number of queuing

passengers ##

Decision index – PSPIave Average score of SPI ##

# Common variable, ## ABM-generated variable.

other words, the stylized facts—it can be presumed that the ABM
experimental space approximates the real world.

If a model is overly complex, the analysis of its results is
likely to be cumbersome and likely to be complicated by details.
Conversely, an over-simplified model would neglect the essential
mechanisms of the real system, thus limiting its potential to
provide an understanding of and testable predictions regarding
the problem it addresses. Thus, we need a method that would
optimize the model complexity [17].

This study demonstrates a method suitable for extracting
essential principles and minimal information from real-world
situations to represent existing phenomena. It also implicates
that the knowledge of front-line experts is helpful in constructing
an ABM.

4. SCENARIO ANALYSIS

In this section, we conduct scenario experiments using the
proposed model and discuss cooperation and coordination in
the passenger service operation. Section 4.1 explains the series of
scenarios. The experimental results are presented in section 4.2;
the results are analyzed, discussed, and evaluated in section 4.3,
followed by a summary of the scenario analysis in section 4.4.

4.1. Experimental Scenarios
We conducted experiments with different scenarios based on
the proposed model (2014 model) and discuss cooperation and
coordination in passenger service operations. The main purpose
of the scenario analysis is to examine the extent to which the
coordination of service resources are effectively managed and
to determine the approach the service provider could follow to
cooperate with service recipients.

The scenario analysis involves examining the effect of (1)
increasing and decreasing the quantity of service functions and
(2) replacing the role of service staff. We discuss the simulation
results in terms of the business needs of airport managers,
including the cost effectiveness of current staff, increasing the
number of future SST users, and moderating the impact of
customer service. Table 6 displays the series of scenarios and a
reference case as the benchmark.

(1) The impact of reducing the number of service staff is
examined in the following cases.

• Scenario 1: Reducing 1 Baggage check-in counter (BD).
• Scenario 2: Reducing 1 Interpersonal check-in counter (IPC).

TABLE 5 | Summary of logistic regression analysis of experimental results.

Analysis# Dataset Predit

correct rate

Common variable ABM-generated Variable

Travel Individual Operation Congestion SPI

Condition Trait Busyness

rw-0 RW 0.549 X X X — —

abm-0 ABM 0.537 X X X — —

abm-1 ABM 0.921 X X X X X

abm-2 ABM 0.925 X X X — X

abm-3 ABM 0.763 X X X X —
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TABLE 6 | Results of experimental scenario.

Scenario IPC BD CSR SST No. of Staff Usage rate WP (Peak) Staff

(Signif.) Reducing Replacing

(Benchmark) 3 3 0 4 6 0.306 — 12.6 — —

Scenario 1 3 2 0 4 5 0.301 12.2 X

Scenario 2 2 3 0 4 5 0.357 *** 13.3 X

Scenario 3 2 2 0 4 4 0.378 *** 13.4 X

Scenario 4 3 2 1 4 6 0.320 * 12.2 X

Scenario 5 2 3 1 4 6 0.372 *** 12.8 X

Scenario 6 2 2 1 4 5 0.382 *** 13.1 X X

Scenario 7 2 2 2 4 6 0.414 *** 13.3 X

IPC, Interpersonal check-in counter; BD, Baggage check - in counter. If there is no passenger waiting for baggage check-in, passenger waiting for check-in at IPC can be pulled in.

CSR, Customer Service Representative (lobby service agent) who guide and support passenger.

Usage rate, Self-service usage rate.

WP, The number of waiting passenger agent (peak).

Signif. codes: 0 “***” 0.001, “**” 0.01, “*” 0.05, “.” 0.1, “_” 1.

• Scenario 3: Reducing 1 BD and 1 IPC.

(2) We examine the effect of replacing the position and role of
service agents in the following scenarios.

• Scenario 4: Changing 1 BD staff to lobby service agent (CSR).
• Scenario 5: Changing 1 IPC staff to CSR.
• Scenario 6: Reducing 1 IPC and 1 BD replace 1 service staff to

CSR.
• Scenario 7: Reducing 1 IPC and 1 BD and change them to CSR.

4.2. Results for Experimental Scenario
Each scenario is simulated 50 times, and the average value of
the following items is observed: Self-service usage rate, the total
number of waiting passenger agents recorded at each step of the
simulation (proxy variables of waiting time).

The simulation results of the planned scenarios and a
reference case are shown Table 6. The table presents the average
SST utilization of 50 experimental results for each scenario, and
the average peak numbers of the total number of passenger agents
waiting for check-in options.

The following result was obtained regarding the impact of
reducing the number of staff. The results of scenario 1 show
that a reduction in the number of IPC staff does not necessarily
cause service quality to deteriorate because of an increase in
waiting time. In the reference case, it can be assumed that there
was a margin in the processing capacity of check-in options for
the amount of work required to manage arriving passengers.
Regarding the location and role changes in service staff, scenario
5 shows that the SST usage rate significantly increases when
IPC staff are replaced in the lobby and used instead to guide
passengers and assist them with SST operation. In scenario 4, we
presume that the waiting time has decreased because the lobby
service staff redeployed from IPC serves to guide passengers to
utilize SST and other check-in options.

4.3. Scenario Analysis and Discussion
We comprehensively evaluated the scenario experiments by
considering whether they contributed from the following

TABLE 7 | Comprehensive scenario evaluation.

Contribution perspective Scenario 3 Scenario 6 Scenario 7

(1) Self-service usage rate increase 3 2 1

(2) Reducing cost 1 2 5

(3) Moderating waiting time increase 3 1 2

three perspectives: (1) increasing the self-service usage
rate, (2) reducing cost, and (3) moderating the waiting
time.

Scenario 6 has a relative advantage over scenarios 4 and 5 in
terms of cost efficiency and self-service usage rate. Table 6 shows
that scenario 7 is the best in terms of self-service usage rate, and
Scenario 6 is the second best. Similarly, the best scenario in terms
of cost efficiency is scenario 3, and the second best are scenarios
1, 2, and 6, which entail a reduction in one member of the service
staff. We narrow down the target of evaluation by selecting the
top scenario in perspective (1) or (2) and the scenario that is
ranked higher than the second-place scenario for perspectives
(1) and (2).

This ranked result is displayed inTable 7with the relative rank
of the third perspective among them, which shows that scenario
6 generates the smallest queue among 3 scenarios.

The comprehensive evaluation of the narrowed-down
scenario from three viewpoints suggests that scenario 6 is
considered relatively balanced and superior among the three.

The experimental space is presumed to reproduce the
following situation with scenario 6.

• The elimination of two interpersonal positions leads a
passenger to perceive that the expected waiting time for IPS
is relatively longer, resulting in more passengers choosing SST.

• As a result of the increase in passengers using SST, passengers
arriving at the airport lobby have more opportunities to
encounter the moment at which the perceived availability of
SST is high.

Frontiers in Physics | www.frontiersin.org February 2018 | Volume 6 | Article 5113

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ueda and Kurahashi ABM SST Adoption Model for Air-Travelers

• The use of redeployed service staff in the lobby to contact
passengers reduces the hesitation to use SST and promotes SST
usage.

• Once all SSTs are occupied, passenger motivation to use SST is
reduced, because the “expected waiting time” of SST increases.

• As more passengers wait to use SST, its perceived availability is
reduced because it is less visible.

The scenario analysis indicates that a reduction in the quantity
of service resource (e.g., check-in counter, service staff) does
not simply cause a deterioration of service. The experiment
illustrates that the full utilization of each service resource is
a key to maintaining good service quality. This is Chang and
Yang [21] indicates: the “potential kiosk users expect their check-
in environment to be highly controlled”. The scenario analysis
outcome and the result of calibration of agent speed [18] give
us some implication that we need to control the walking speed
and course of passenger and keep letting them recognize the
“usefulness” and “ease of use” of SST in promoting the usage
of SST.

4.4. Summary of Scenario Analysis
In the context of service delivery at the airport, passengers
definitely have a choice of service options. Airline staff needs
to inform passengers about the additional options, especially
for those who are unaware of them, and encourage those who
have not made up their mind to attempt to use these options
even though they may already know about them. This effort
helps both the airline and customer to reach the same goal
to minimize stress. This model demonstrates that service staff
responds to passengers with different traits arriving at different
times without overlapping, which is similar to the real world. We
demonstrate that this model is capable of emulating the situation
of congestion at the airport. Passengers who move autonomously
capture external factors that are necessary for decision-
making, and change their internal status by interacting (or not
interacting) with the service staff diligently working with the
passenger.

It is also important to determine the appropriate allocation of
service resources to handle the expected passenger volume. The
service quality depends on the extent to which local management
prepares before passenger arrival; this includes determining
the number of check-in positions, self-service kiosks, and
service staff. This model enables us to perform the trials
under different conditions. Exploring best practices involves the
examination of how we consider redeploying multiple service
options and increasing the processing capacity of the lobby as a
whole.

ABM simulation helps us to optimally balance the quantity
of different service options. In other words, it is a useful tool
for exploring the structure of cooperation and coordination
by mapping the existing phenomenon and its mechanism.
Cooperation between service staff and passengers to minimize
the waiting time determines the degree of optimization of
check-in options. Coordination of service resources is critical
in maintaining a certain level of service that is intangible and
perishable. It is difficult for airport managers to quantitatively

measure the handling quality and grasp the handling situation
in daily operation. However, ABM can provide, via a simulation
result, quantitative facts and the process of service operations.
ABM offers a tool for desktop trial simulation that would
enable those who are involved in service operations to
obtain a solution that would not cause the service quality to
deteriorate.

5. CONCLUSIONS

5.1. Summary
5.1.1. Constructing the ABM
In this study, we reviewed and enhanced the SST adoption model
and propose a new validation methodology for the agent-based
model. The enhanced ABM SST adoption model uses logistic
regression analysis and provides statistical features similar to
those in the real world.

This exploratory approach is based on the interdisciplinary
outcomes of multiple academic disciplines, including innovation
diffusion, services marketing, and ABM. Innovation diffusion
provides the basic viewpoint fromwhich to promote the adoption
of new service model. Large-scale studies and implications in the
field of services marketing are reported in the literature regarding
SST. We selected to utilize the concept of the “core” Technology
Acceptance Model, which is refined by Dabholkar and Bagozzi
[11]. ABM plays the role of a combining device for dynamically
reproducing these studies.

In constructing an experimental space that maps the real
world, many on-site observations of passenger behavior have
been conducted, and we explored and extracted the data from
the actual system log. Knowledge of front-line experts was drilled
down to a simple rule. Along with a thorough survey, we include
the necessary functions in ABM, such as the promoting agent and
productive properties (mapping the same amount of self-service
kiosks, check-in positions, and baggage drops). Utilizing the
actual data, the aggregated analysis is also mapped to the ABM as
much as possible. Following the Bottom-up simulation modeling
approach, we compile relevant information about entities at a
lower level of the system, formulate theories about paasenger
behavior, implement these theories in a computer simulation
[17].

The approach we followed to enhance the validity of the
ABM is mainly discussed in this study. One of the measures of
approximation is the SST usage rate. We compared the results
of the simulation with those obtained in the real world, and
showed that they are almost identical to each other. However,
the experimental results showed that the replicated model, which
introduces individual traits, has a slightly higher RMSE against
the real world than the original model [22]. Another measure
is the correct prediction rate of SST usage, which is calculated
by logistic regression. We found the outcomes of the prediction
accuracy from both spaces to be almost equivalent, using the
same variable combination as in the real world to explain SST
use. We analyze multiple patterns in the real system at different
hierarchical levels and demonstrate similar statistical features.
The group behavior is examined by the SST usage rate and the
individual behavior is analyzed by the prediction accuracy. We
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presume that the experimental space with the proposed ABM
approximates the real world, because two dimensions of the
stylized facts, observable simplified presentation of empirical
findings, are sufficiently close.

The unique feature of this study is that it utilized data
collected from the airline system. The system contains actual
passenger demographics with historical activity records, and the
huge amount of data could have been used to build this model,
if necessary. The critical findings obtained through the series
of SST adoption models indicate that it is important to keep
us from building models that are too simple in structure and
mechanism, or too complex and uncertain [17]. We need to
carefully extract relevant elements and adequate range of data
sufficiently to explicitly formulate rigorous and comprehensive
strategy.

ABM is a deductive approach and its advantages are that it
not only enables the individual theory of behavior to be explored
but it can also be used to verify large-scale phenomena [20]. This
study demonstrates the advantage of using ABM as a combining
function for interdisciplinary outcomes of multiple academic
disciplines.

5.1.2. Scenario Analysis with ABM
Service encounters are critical moments of truth in which
customers often develop indelible impressions of a firm [5]. For
air-travelers, the departure lobby of the airport is the first physical
point of contact with the airlines. It is important for airlines to
deliver sufficient service levels to retain their customers. By using
the proposed model with ABM, several scenarios are examined.
The scenarios are carefully prepared by focusing on the topic
of airline on-site managers of passenger-handling operations.
We evaluate the experimental results from three perspectives, in
which both the airline management and its customers achieve
a mutual goal. The best scenario is derived through multiple
simulation experiments, which are literally difficult to conduct in
the real world.

We analyzed the best practice to explain the improved result
compared to other scenarios. The role of service staff guiding
passengers toward the SST is important, because passengers may
not be able to choose the additional option unless knowing
about the available service option. An appropriate allocation
of service resources for the expected work volume was found
to be critical. The best practice is observed with scenario 6,
which eliminates one staff member and relocates check-in staff
to provide lobby service. The elimination of one staff member
from the interpersonal check-in service does not increase the
waiting time much, and the usage of the self-service kiosk
increases by 7.6% (Table 6). On the basis of our scenario analysis,
we recognized the importance of cooperation between service
staff and their customers in achieving a certain level of service,
which is the result of their work toward more optimal customer
throughput. It is also clear that the coordination of service
resources is one of the largest success factors for the optimal
utilization of their capacity.

ABM is a powerful instrument for exploring the structure of
cooperation and coordination because it is capable of equipping
the mechanisms of reproducing an existing phenomenon in

a simplified context. It also provides on-site managers with
facts, simulation results, and animations of ongoing experiments,
which helps them to understand the level of service provided and
the possibility for improvement. Cooperation between service
staff and passengers to minimize the waiting time determines
the degree of optimization of check-in options. The coordination
of current resources is critical for maintaining and improving
the level of service. This experiment demonstrated a trial-and-
error method that neither sacrifices passenger convenience nor
services.

ABM provides a reproduction of dynamic phenomena
visually and quantitatively, which promotes an understanding
of factors and countermeasures for on-site management.
Although a service is characterized by properties such as
intangibility, heterogeneity, perishability, and inseparability,
ABM can visualize the process and outcome of the operations.
Therefore, ABM may help to explore the existing situation
and possible future solutions with regard to customer service
improvement.

5.2. For Future Study
This paper presented suggestions as to how to improve the
validity of the ABM. This study proposed that two stylized
facts of an experimental space and the real world are quite
similar. As mentioned in section 2.3, many stylized facts can
be used to explain the extent to which the model approximates
the real world. In this regard, it is important to determine
the appropriate stylized facts, as they help to explain that the
simulation represents the real world. As there are vast volumes
of stored data in the active system, we need to explore more
empirical findings that explain how the experimental space
approximates the real world. ABM can observe and report the
activity of an experiment involving autonomous agents who
can hold multiple variables. This study calculates the prediction
correctness within experiments and compares them with real-
world prediction correctness rates to assess the extent to which
they approximate each other. It therefore seems worthwhile to
find ways in which the respective results of ABM can relate to
real-world individual data. Connecting the ABM agent with the
real-world individual data may enable us to exactly simulate the
phenomena more precisely.

This model is applicable and can be expanded to discuss
observable phenomena with multiple variables that interact
with one another. However, this model is not designed to
take into account customers’ emotions and satisfaction, which
are invisible. In general, despite firms continued efforts to
improve service delivery, not all encounters are successful.
Effective service recovery is expected by customers and failure to
accomplish this effectively results in losing customers. Moreover,
it is evident that positive employee responses to service failures
can lead directly to customer satisfaction [5]. Even though this
model can examine operational excellence, it does not imply that
it enhances customer experience.

The real world is difficult to map comprehensively.
We need to continue to pursue a method to extract the
essence of circumstances that would enable us to understand
important phenomena.
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The increasing poverty rate for elderly women is a growing concern in Japan and is

generally due to their lifestyle changes and the public pension system based on the

pre-1980s (old) lifestyle. At that time, women were expected to get married and become

homemakers. Therefore, the public pension system is generous for married women and

widows but not for never-married and divorced women. Using a dynamic microsimulation

model, the Integrated Analytical Model for Household Simulation (INAHSIM), previous

research has shown that poverty rates for elderly people will increase significantly in the

future due to changes in nuptiality behavior after the 1980s. However, this approach is

an indirect method, and the mechanism of impoverishment remains unclear. This study

uses the same dynamic microsimulation model but attempts a more direct approach

to interpret the effects of these behavioral changes on poverty rates for elderly women.

Specifically, under the baseline scenario, it makes future projections on key distributions

related to poverty by marital status and illustrates how they will face the poverty problem.

It shows the future projections of (1) the distribution of pension amounts by gender and

marital status, (2) poverty rates for elderly women by marital status, and (3) poverty rates

for elderly people by gender. After the 1980s in Japan, the marriage rate decreased

and the divorce rate increased significantly. Nevertheless, society still suffers from wage

inequality betweenmen andwomen. As a result, the number of never-married or divorced

women will increase and these women will receive poor pension benefits due to an

unfavorable public pension system. In addition, they have a higher risk of living in a

single-person household because they have no or very few children. In the end, they

will face the risk of poverty and raise the overall poverty rate.

Keywords: microsimulation, poverty rate, public pension, nuptiality, marital status, family, household

INTRODUCTION

The increasing poverty rate for elderly women1 is a growing concern in Japan and is generally due
to lifestyle changes and an inadequate public pension system for those women. Using a dynamic
microsimulation model for Japan, the Integrated Analytical Model for Household Simulation
(INAHSIM), Inagaki [1] projected that poverty rates by gender for elderly people will increase
significantly in the future and showed that changes in nuptiality behaviors after the 1980s will affect
poverty rates for elderly women but not for elderly men.

1In this article, “elderly people” is defined as those aged 65 and over.
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His approach was an indirect method. He assumed alternative
scenarios in which nuptiality behaviors return to those before the
1980s and compared future trends in poverty rates by gender with
those of the baseline scenario2. The simulation results indicated
that if nuptiality behaviors return to the 1980s scenario in the
future, then the poverty rate for women will be much lower than
that for the baseline scenario while that for men will not change.
Based on these simulation results, he concluded that behavioral
changes will raise the poverty rates for elderly women in the
future.

Normally, it should show what would happen in the poverty
rates in the future if nuptiality behaviors had not changed after
the 1980s. However, the initial population used in the INAHSIM
is the population in 2004, and it is difficult to simulate the
population backward. In other words, it is difficult to simulate the
population using the assumption that nuptiality behaviors from
1980 to 2004 were the same as those in the 1970s. Therefore, he
took an indirect approach.

This study uses the same dynamic microsimulation model
but attempts a more direct approach to interpret the effects of
these behavioral changes on poverty rates in elderly women.
Specifically, under the baseline scenario, it makes future
projections of (1) the distribution of pension amounts by gender
and marital status, (2) poverty rates for elderly women by marital
status, and (3) poverty rates for elderly people by gender. Then,
it clarifies the mechanism of their impoverishment based on
these results. Marital status is the key to understanding the
impoverishment of elderly women.

The rest of this paper proceeds as follows. Section Public
Pension System in Japan illustrates the public pension system
in Japan. Section Method outlines the dynamic microsimulation
model used to estimate poverty rates and related indicators for
elderly women in the future by their marital status. Section
Results presents the results of the future estimates and discusses
why elderly women will be impoverished. Section Conclusion
concludes3.

PUBLIC PENSION SYSTEM IN JAPAN

Japan achieved dramatic economic growth from 1954 to 1973.
At that time, people’s lifestyles were uniform, and families were
often referred to as “post-war families.” The various kinds of
social systems in Japan today developed during this period of
high economic growth. These systems were established based on
standard households and the division of gender roles. The public
pension system is one of those systems.

Gender roles were as follows: (1) most women resigned from
their jobs during their twenties; (2) women got married, had
children, and took care of their families as homemakers; and
(3) women were generally employed to do simple clerical work,
with restrictions on their advancement. Therefore, the social

2The baseline scenario assumes that current people’s behaviors will continue in the
future.
3An ethics approval was not required as per institutional and national guidelines
and all data used are publicly available or have been provided to the authors in a
de-identifiable format.

systems, including the public pension system, are very generous
for homemakers.

Japan’s public pension scheme, depicted in Figure 1, is a
two-tier system that consists of a flat-rate benefit called the
basic pension and an earnings-related pension for regular
employees (Category 2 subscribers). Category 2 subscribers
receive both the basic pension and earnings-related pension,
whereas subscribers to Categories 1 and 3 receive only the
basic pension. Category 1 subscribers include self-employed
workers, non-regular employees, and the unemployed. Category
2 subscribers include regular employees. Category 3 subscribers
include the dependent spouses of Category 2 subscribers.

Table 1 summarizes the contributions and benefits by
category in 2017. Category 1 subscribers pay a monthly
contribution of JPY16,490 ($146)4 in exchange for receiving a
basic pension of JPY64,900 ($576). However, if they do not
pay their contributions for any period, their basic pensions are
reduced according to the length of the non-payment period.

The basic pension contributions for Category 2 subscribers are
included in the insured person’s contribution to the Employees’
Pension Insurance (EPI). The 2017 contribution is 18.3% of
a Category 2 subscriber’s pensionable remuneration, for which
the employer and employed are liable in equal amounts. The
average monthly employee contribution is JPY38,223 ($339)
in exchange for receiving pension benefits totaling JPY155,486
($1,380). Employers deduct employees’ contributions from their
salaries and pay those contributions to the insurers. Therefore,
the problem of the reduction of pension benefits due to non-
payment, as in the case of Category 1 subscribers, does not
exist.

Category 3 subscribers do not have to contribute to the basic
pension, but they are deemed to have paid their contributions;
thus, they are entitled to full basic pensions. In addition, if
their spouse dies, they will be entitled to the survivors’ pension,
which amounts to three-quarters of the spouse’s earnings-related
pension benefit. The total amount of the basic pension and
survivors’ pension is JPY132,840 ($1,179) on average.

As illustrated above, the public pension system is particularly
generous toward dependent spouses (mainly homemakers) and
widows/widowers. From the viewpoint of the public pension
system, men and women are treated equally. However, the
division of gender roles remains, and wage inequality between
men and women still exists. Consequently, there exists inequality
in pension benefits between men and women because the wage
inequality leads to inequality in pension benefits.

Table 2 shows the difference in employment by gender. The
percentages of regular employees are 72.9% for men and 44.0%
for women. Category 2 subscribers receive the earnings-related
pension and the basic pension, whereas Category 1 subscribers
receive only the basic pension (at most, JPY64,900 [$146] per
month). The basic pension for Category 1 subscribers may be
reduced according to the non-payment period. In addition, a
significant difference exists in the pensionable remuneration (PR)
that affects the earnings-related pension. The average PR for
men is JPY417,743 ($3,807) while the average PR for women is

4The exchange rate was $1= JPY112.67 on October 10, 2017.
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FIGURE 1 | Public pension scheme in Japan. Source: Inagaki [2]. The amount of pension benefit is recalculated pursuant to the National Pension Act.

TABLE 1 | Contributions and benefits (per month).

Contributions Benefits (40 years of service)

Category 1 JPY 16,490 ($146) Basic pension: JPY 64,900 ($576)

(The amount will be reduced

according to the non-payment

period)

Category 2 18.3% of PR(*)

Employee: JPY 38,223 ($339)

Employer: JPY 38,223 ($339)

Basic pension: JPY 64,900 ($576)

Earnings-related benefit: 21.924%

of PR(*), JPY 90,586 ($804)

Total amount: JPY 155,486 ($1,380)

Category 3 None Basic pension: JPY 64,900 ($576)

Survivors’ pension: JPY 67,940

($603)

Total if spouse is deceased: JPY

132,840 ($1,179)

Source: Inagaki [2]. The amounts of pension benefit are recalculated pursuant to the

National Pension Act and Employees’ Pension Insurance Act. Average Pensionable

Remuneration (PR) for men was JPY 417,743 ($3,807) in 2015 Ministry of Health, Labor,

and Welfare [3]. (*) PR is an abbreviation for pensionable remuneration.

JPY273,645 ($2,429). As a result, it is anticipated that women
who are never married or divorced will suffer from low pension
benefits. Married women or widows will not face this problem
because married women will live with their husbands and share
their pension benefits and widows will receive survivor pension
benefits.

Currently, elderly people enjoy their pension benefits because
they are married and seldom get divorced. Their lifestyle in
their working-age was the “post-war family” that the current
pension system supposes. On the contrary, future elderly people
or current working-age people’s lifestyles are diversified. If their
lifestyle is the “post-war family,” they can receive an adequate

TABLE 2 | Numbers of subscribers by gender and category (in thousands).

Men Women

Total 32,074 (100.0%) 30,620 (100.0%)

Category 1 8,590 (26.8%) 8,089 (26.4%)

Category 2 23,376 (72.9%)

Average PR: JPY 417,744

($3,708)

13,488 (44.0%)

Average PR: JPY 273,645

($2,429)

Category 3 108 (0.3%) 9,043 (29.5%)

Source: Ministry of Health, Labor, and Welfare [3].

amount of pension benefits. If not, they may be unable to receive
an adequate amount of pension benefits.

Sustainability and adequacy are important points for a
pension system. Because Japan is a super-aging society, a
discussion on the public pension system focuses mainly on
its sustainability. The discussion on its adequacy is paid less
attention and is focused on post-war families only. According
to the reported 2009 actuarial valuation [4], the current pension
system ensured a replacement rate of 50% at the age of 65,
newly awarded the pension, for a specific single-income couple5

covered by the EPI.

METHODS

The method used in this study is the INAHSIM dynamic
microsimulation model. The INAHSIM was originally developed
in the early 1980s as a household simulation model tailored

5In the post-war family, the husband is covered by the EPI from 20 to 59 years and
the wife, who is the same age as her husband, has always been dependent on him.
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to Japanese society [5]. The first version was a tool for
household simulation that only incorporated demography and
household changes after demographic events. It continues to
be upgraded, and the current version of INAHSIM 3.8 is a
comprehensive model for Japanese society. As illustrated in
Figure 2, it can simulate not only individual incomes but also
living arrangements with one’s family.

The first version of INAHSIM includes only three elements—
“demography,” “young people leaving home,” and “living with
elderly parents.” However, these are both necessary and sufficient
for simulation for families and households in Japan.

“Demography” includes not only demographic events but also
household changes following demographic events such as (1)
Newborn babies adding to their mother’s households; (2) Couples
deciding to live with the groom’s or the bride’s parents or starting
a new household, after marriage; (3) the divorced husband or wife
deciding to return to his/her parents’ household or form a new
household, in the event of a divorce and once custody is settled.

The transition probabilities in the first version of the model
were based on people’s behavior in the early 1980s. Those of the
current version are determined based on people’s behaviors in the
early 2,000s.

Regarding household changes (2), the probabilities used in
the first version were 58% that the couple lives with the groom’s
parents, 25% that they live with the bride’s parents, and 17%
that they form a new household. In contrast, those used in the
current version are 20, 5, and 75%, respectively. One sees that the
probability that the couple forms a new household has increased
dramatically.

Regarding custody, the first version assumes that 69% of wives
obtain custody rights. The corresponding figure in the current
version is 80%. Regarding household changes (3), the first version
assumes that 50% of divorced wives return to their parents’
household, and 50% of divorced husbands return to their parents’
household. The corresponding figures for the current version are
35 and 43%, respectively.

Although, overall, the marriage rates have decreased
significantly, it is difficult to compare the two versions. This
is because marriage rates in the current version are controlled
by employment status, in addition to age and sex. Again,
although divorce rates have increased significantly, it is difficult
to compare the two versions. This is because divorce rates in
the current version are controlled by whether the couple has
dependent children.

“Young people leaving home” refers to young people
leaving their parents’ households for higher education, to find
employment, or to change jobs. The probability of unmarried
men aged 20–24 leaving home in the first version is about
4%. Although this is lower in the current version, it is difficult
to compare with the first version because the probabilities are
controlled by employment status in the current version6.

“Living with elderly parents” refers to those situations in
which children move in with their elderly parents to take care of
them. This is an important event to secure the life of the elderly
in Japan. These probabilities in the first version are 10% for those

6The probabilities in the first version are controlled by sex and age but those in the
current version are controlled by sex, age, and employment status.

aged 70 and over. In contrast, those in the current version are
controlled by age and sex, and are 1.5–20.7% for those aged 65
and over.

The current version adds “Changes in the need for long-term
care,” “Changes in employment status,” “Estimating earnings,”
“Determining pension benefits,” “Entering an institution,” and
“Social security premium/tax”7. These new elements help
estimate the poverty rates for elderly people.

In Japan, there are few dynamicmicrosimulationmodels other
than INAHSIM. Shiraishi [6] developed a model for pension
benefits, and Koshio [7] developed one for long-term care needs.
However, their models simulate pension benefits or long-term
care needs at a personal level, not a family or household level.

Studies that use INAHSIM are also few. The initial population
of INAHSIM is based on micro data of the Comprehensive
Survey of Living Conditions (CSLC) conducted by the Ministry
of Health, Labor, and Welfare. However, the use of micro data
from government surveys is very restricted, and only a few
studies can use them. In addition, the computer program of
INAHSIM8 is too complicated for the average researcher. Only
Fukawa [8] estimated health and long-term expenditure using
INAHSIM. Although he revised the second version of INAHSIM
for simulations without using micro data of the CSLC [9], this is
also not used extensively.

The poverty rate is the ratio of the number of people
whose income falls below the poverty line. One-half of the
median household income of the total population is typically
used as the poverty line. This household income is adjusted by
household size; specifically, the household income is divided by
the square root of the household size. However, a minimum
standard of living varies in household composition. For example,
the minimum standard of living differs between elderly couple
households and single-mother families. Livelihood assistance is
determined based on household size; the composition of the
household, e.g., ages and characteristics of members; and place
of residence. Therefore, this study uses livelihood assistance as
the poverty line to evaluate poverty more properly. The amounts
of the livelihood assistance in 2012 for some specified households
in Japan are shown in Table 3.

To analyze poverty, it is necessary to simulate not only
individual incomes but also living arrangements with one’s
family to measure the poverty rate. In other words, it is
necessary to simulate people’s life events, such as demographic
events (e.g., birth, death, marriage, divorce, and international
migration), employment status, earnings, and pension amounts
simultaneously and individually. INAHSIM is a suitable tool for
this kind of simulation.

Individual incomes, household income, and living
arrangements are necessary to evaluate poverty rates. The
life events of changes in employment status, estimating earnings,
determining pensions, and social security premium affect
people’s incomes. Demographic changes, such as young people
leaving home and residing in an institution, affect people’s living
arrangements. In addition, there are many mutual interactions

7See Aoi et al. [5], $Inagaki [10], Inagaki [11], Inagaki [12], and Inagaki [1] for
details.
8Published in Inagaki [11].
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FIGURE 2 | INAHSIM simulation cycle. Source: Inagaki [2].

TABLE 3 | Amounts of livelihood assistance (2012).

Type of household Household members Livelihood assistance

(per month)

Nuclear family 33-year-old husband

29-year-old wife

4-year-old child

JPY 145,770

($1,294)

Single-person household 68 years old JPY 72,370

($642)

Couple-only household 68-year-old husband

65-year-old wife

JPY 109,440

($971)

Single-mother household 30-year-old mother

4-year-old child

2-year-old child

JPY 128,420

($1,140)

Source: Inagaki [2]. The amounts of livelihood assistant are recalculated pursuant to the

Public Assistance Act.

among life events, e.g., employment status affects household
changes and the number of children affects demographic
events. INAHSIM incorporates these mutual interactions.
Inagaki [1, 10–12] summarized these life events and transition
probabilities considering those interactions.

The initial population is prepared using micro data from
the 2004 Comprehensive Survey of Living Conditions (CSLC)9

conducted by the Ministry of Health, Labor, and Welfare. As

9The data used in this study were made available to the author by the Ministry of
Health, Labor, and Welfare of Japan, notice No. 0531-2, dated May 31, 2016.

in the previous studies, the initial population includes 126,570
household members in 49,307 private households and 1,212
elderly people in institutional households. The initial population
reflects Japan’s society on a 1/1,000 scale. All results take an
average of 100 simulation runs, and the stochastic errors can
be small. Inagaki [11] estimated the stochastic error as derived
from theMonte Carlo method, and pointed out that the standard
error rates for the number of elderly people is only 0.2%. In other
words, its 95% confidence interval is about plus minus 0.4%10.

RESULTS

Distribution of Public Pension Amounts by
Gender and Marital Status
Figure 3 compares the distribution of pension amounts in 2012
between men and women. There are two peaks of 0.75–0.99
and 1.75–1.99 million yen for men. For elderly men, Category
1 subscribers comprise the first peak and Category 2 subscribers
form the second peak.

On the other hand, there is one peak only of 0.50–0.74
million yen for women. The peak is formed by elderly women
in Categories 1 or 3. The second peak is not formed because
the percentage of Category 2 subscribers for women is much
lower than that for men. In addition, women do not continue
to work over lengthy periods and their wages are relatively low.
As a result, the women’s earnings-related pensions are not high
enough to form a peak.

10The stochastic error of the poverty rates estimated in this article should be larger
than this. This is left to future research.
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FIGURE 3 | Distribution of pension amounts by gender (2012). Simulation results.

Figure 4 compares the distribution of pension amounts in
2030 between men and women. The shape of the distributions
is similar to those in 2012. However, the distributions will shift to
the left because an automatic pension amount reduction system
is incorporated to ensure the sustainability of the public pension
system. This reduction system, called the “macroeconomic slide
system,” reduces about 1% of the pension benefits every year
until the financial equilibrium is achieved. According to the 2009
actuarial valuation, the reduction will last until 2038.

Figure 5 shows the trends in the quartiles of pension amounts
by gender. Themedian of women’s pension amounts will be lower
than the first quartile of men’s. The median will be 0.7 million
yen, and the first quartile will be 0.5 million yen. These are only
15 or 11% of average disposable wages for men. This means most
elderly women may be unable to live alone.

Figure 6 shows the trends in the first quartiles of pension
amounts for women by marital status. Married women usually
live with their husbands; thus, the first quartile is calculated using
half of couples’ pension amounts. A significant difference exists
in the pension amounts among marital statuses. Married women
and widows will receive a higher amount of pension benefits than
never-married and divorced women.

Poverty Rates for Elderly Women by
Marital Status
In addition to their lower amounts of pension benefits, never-
married or divorced women will have a higher risk of living in
a single-person household. After the death of their parents, they
will be more likely to live alone because they have no or very few
children.

Figure 7 shows the trends in the percentages of single-person
households (including institutional households) for elderly

women by marital status. Never-married women will be most
likely to live in a single-person household, and divorced women
will be the second most likely after they reach old age. There
will be a small difference in the percentage between divorced
women and widows, but most widows will receive survivors’
pension benefits while divorced women will receive only their
own pension benefits.

In simpler terms, never-married and divorced women will
receive lower pension benefits and will be more likely to live in
single-person households than married women and widows. As a
result, never-married and divorced women are more likely to live
in poverty when they reach old age. Figure 8 shows the trends in
poverty rates for elderly women by marital status. As anticipated,
their poverty rates will reach around 50% in the future.

Poverty Rates for Elderly People by Gender
There are significant differences in poverty rates among elderly
women by marital status. However, if the percentage of never-
married and divorced women is small, then the poverty
rate for elderly people will not be high. According to the
Population Census 2010, the percentages of never-married and
divorced women among elderly women were only 4.0 and 4.7%,
respectively. Therefore, the poverty rates for elderly people in
2010 were 6.1% for men and 11.1% for women. The poverty
problem is not serious currently.

As Inagaki [1] estimated, the percentages of never-married
and divorced women among elderly women will increase
significantly to 15.4 and 11.9% in 2050 and 17.6 and 12.7%
in 2100, respectively. This is due to the changes in nuptiality
behaviors that occurred among young people after the 1980s. It
takes time for such behaviors to affect the percentages of marital
statuses for elderly women. The effect of the changes on the
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FIGURE 4 | Distribution of pension amounts by gender (2030). Simulation results.

FIGURE 5 | Trends in quartiles of pension amounts by gender. Simulation results.

marital statuses of elderly women will appear after two or three
decades.

Figure 9 shows trends in poverty rates for elderly people
by gender. Those for elderly women will increase by around
25%. This is due to the increase in the percentages of never-
married or divorced women, who are very likely to live in
poverty. If the poverty rate is low, then the problem is limited,
and those people’s lives can be secured by social assistance
programs. Of course, if their pension benefits are adequate for

their lives, the problem is also limited. However, the public
pension system is not generous for women such as homemakers
or widows.

CONCLUSION

Increasing poverty rates for elderly women is a growing
concern in Japan. Inagaki [1] quantitatively projected
future poverty rates using a dynamic microsimulation
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FIGURE 6 | Trends in first quartiles of pension amounts for women by marital status. Simulation results.

FIGURE 7 | Trends in percentages of single-person households for elderly women by marital status. Simulation results.

model (INAHSIM). He then pointed out that changes
in nuptiality behaviors after the 1980s will cause the
increase.

However, his approach is an indirect method, and the
mechanism of impoverishment has remained unclear.
This study attempts to reveal this problem more directly.
Specifically, it breaks down the simulation results into
key factors such as individual pension benefits and
incomes and living arrangements by marital status. The
results showed that marital status is the most important

factor that will lead to poverty for the elderly in the
future.

One reason behind this is the concept of the public pension
system in Japan. The public pension system was established
in the mid-1980s as a social insurance system based on the
division of gender roles established during the period of high
economic growth from 1954 to 1973. The system is very generous
for dependent wives and widows but not for never-married or
divorced women. At that time, most women resigned from their
jobs during their twenties, gotmarried, and became homemakers.
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FIGURE 8 | Trends in poverty rates of elderly women by marital status. Simulation results.

FIGURE 9 | Trends in poverty rates by gender. Simulation results.

However, after the period of high economic growth, nuptiality
behaviors, and lifestyles changed completely. Nevertheless, the
division of gender roles remains, and wage inequality between
men and women still exists. Consequently, inequality exists in
pension benefits between men and women because the wage
inequality leads to inequality in pension benefits. Thus, never-
married and divorced women will suffer from poverty when they
reach old age.

Using a dynamic microsimulation model, this study makes
future projections of (1) the distribution of pension amounts by
gender and marital status, (2) poverty rates for elderly women
by marital status, and (3) poverty rates for elderly people by
gender. The results indicate a huge difference in poverty rates
among elderly women by their marital status and illustrate the
mechanism by which the poverty rate for elderly women will
increase significantly.
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At this moment, this poverty problem is hidden and not
very serious because many in this cohort live with their
parents. However, when they reach old age, the poverty
problem will come to the surface because their parents will
pass away and their public pensions will not be enough
to sustain them. These problems will become apparent to
everyone in the near future. Pension reform for a super-aging
society is important. However, it is also urgent to reform the
public pension system to be consistent with people’s current
behaviors.
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Many phenomena with power laws have been observed in various fields of the natural

and social sciences, and these power laws are often interpreted as the macro behaviors

of systems that consist of micro units. In this paper, we review some basic mathematical

mechanisms that are known to generate power laws. In particular, we focus on stochastic

processes including the Yule process and the Simon process as well as some recent

models. The main purpose of this paper is to explain the mathematical details of their

mechanisms in a self-contained manner.

Keywords: power law, Zipf’s law, Pareto’s law, preferential attachment, geometric brownian motion

1. INTRODUCTION

Many phenomena with power laws have been observed in various fields of the natural and social
sciences: physics, biology, earth planetary science, computer science, economics, and so on. These
power laws can be interpreted as the macro behaviors of the systems that consist of micro units
(i.e., agents, individuals, particles, and so on). In other words, the ensemble of dynamics of these
micro units is observed as the behavior of the whole system such as a power law1. To obtain a
deep understanding of the phenomenon for the system, we must first observe the behavior on the
macro side, then assume the stochastic dynamics on themicro side, and finally reveal the theoretical
method connecting both sides. Thus, the mechanisms generating power laws have been studied as
the second and final steps in the study of power laws.

Next, we mathematically define the power law. When the probability density function p(x) for a
continuous random variable2 X̂ is given by

p(x) = Cx−α (x ≥ xmin) , (1)

we say that X̂ satisfies the power law. The exponent α is called the exponent of power law, C is the
normalization constant, and xmin is the minimum value that x satisfies the power law. The power
law is the only function satisfying the scale-free property [1]

p(bx) = f (b)p(x) for any b. (2)

Then we define the cumulative distribution function P>(x) as

1For the example of a city, the micro dynamics correspond to immigration, emigration, births, and deaths, and the macro
behavior is the distribution of the population.
2The hat of Ômeans that Ô is a random variable.
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P>(x) := P{X̂ ≥ x} =

∫

∞

x
p(x)dx. (3)

When the probability density function satisfies the power law
p(x) = Cx−α ,

P>(x) ∝ x−α+1. (4)

The behavior of the cumulative distribution function with the
power law is a straight line in a log–log plot for x ≥ xmin

(Figure 1).
Next, we list some examples of power laws in various

phenomena.

(a) Populations of cities [2].
(b) Frequency of use of words [3, 4].
(c) Number of papers published by scientists [5].
(d) Number of citations received by papers [6].
(e) Number of species in biological genera [7, 8].
(f) Number of links on the World Wide Web [9].
(g) Individual wealth and income [10].
(h) Sizes of firms (the number of employees, assets, or market

capitalization) [11–17].
(i) Sizes of earthquakes [18].
(j) Sizes of forest fires [19].

Furthermore, we partly list the generating mechanisms that
are important for applications, and the phenomena to which
they are applied in the above list, such as “mechanism ⇒

phenomena.”

• Growth and preferential attachment:

- Yule process [20]⇒ (e);
- Simon process [21]⇒ (a), (b), (c), (e), and (g);
- Barabási–Albert (BA) model [22]⇒ (d) and (f).

• Stochastic models based on Geometric Brownian motion
(GBM):

- GBM with a reflecting wall [23]⇒ (a), (g), and (h);
- GBM with reset events [24, 25]⇒ (g).
- Kesten process [26]⇒ (g).

FIGURE 1 | Log–log plot for the cumulative distribution function of the

populations of Japanese cities in 2015, with xmin ≃ 100, 000. Data from the

basic resident register.

- Generalized Lotka–Volterra (GLV) model [27–29]⇒ (g);
- Bouchaud–Mézard (BM) model [30]⇒ (g).

• Combination of exponentials (change of variable) [31]⇒ (b).
• Self-organized criticality [32]⇒ (i) and (j).
• Highly optimized tolerance [33, 34]⇒ (j).

Though there are many other generating mechanisms besides
them3, the mechanisms of the above list are particularly
well known and widely applied to phenomena in various
fields.

In this paper, we focus on the generating mechanisms with the
stochastic processes in the above list4: the growth and preferential
attachment and the stochastic models based on the GBM, which,
in particular, are widely applied in social science. In addition, we
explain about the combination of exponentials that is related to
the mechanism of the Yule process. We mainly give full details
of the mathematical formalisms for these mechanisms in self-
contained manner, because understanding them is important for
researchers in any field to create new models generating power
laws in empirical data. The necessary mathematical supplements
to understand these mechanisms are given in the Appendix at the
end of this paper.

2. GROWTH AND PREFERENTIAL
ATTACHMENT

As the name suggests, this mechanism consists of the two
characteristics: growth and preferential attachment. In the
example of a city, the meanings of growth and preferential
attachment are as follows.

• Growth: The number of cities increases.
• Preferential attachment: The more populated cities become,

the higher the probability that the population will increase.
Namely, it is “the rich get richer” process5.

In this section, we deal with the Yule process, the Simon process,
and the BA model, which all have these two characteristics. The
Yule process generates the power law about the number of species
within genera in biology. The Simon process generates the power
laws about the frequency of use of a word in a text, the population
of cities, and so on (see the list in the Introduction for details).
The BA model generates the power law about the number of
edges incident to nodes in the network. We now explain in detail
how these three mechanisms mathematically generate the power
laws.

3Readers interested in more phenomena with power laws and their generating
mechanisms should refer to the reviews and textbooks by Mitzenmacher [35],
Newman [1], Sornette [36], Hayashi et al. [37], Farmer and Geanakoplos [38],
Gabaix [39, 40], Simkin and Roychowdhury [41], Pinto et al. [42], Piantadosi [43],
Machado et al. [44], and Slanina [45].
4Though the multiplicative process [46] is also the stochastic process, it is not
explained in this paper because the multiplicative process is interpreted as the
discrete-time version of the GBM of the continuous-time stochastic process.
Namely, the multiplicative process is essentially equivalent to the GBM (see
Appendix A.4).
5Preferential attachment is also called the Matthew effect [47] or the cumulative
advantage [48].
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2.1. Yule Process
The Yule process [20] was invented to model stochastic
population growth with the preferential attachment process for
the model of speciation in biology. In this process, new species
and genera are born by biological mutations that are interpreted
as the branchings from the lines of existing species in the
evolutionary tree (Figures 2, 3).

These branchings occur as Poisson processes and add
lines of new genera or species to the evolutionary tree. The
Yule process mathematically corresponds to the stochastic
process that the numbers of genera and species increase
independently by following the linear birth processes (see
Appendix A.3)6. In other words, we consider the evolutionary
tree of species (Figure 2) and that of genera (Figure 3)
separately.

In short, the Yule process is the combination of the stochastic
processes for the numbers of species and genera (Figure 4) [41,
49, 50].

• The number of species within a genus increases as the linear
birth process with the Poisson rate λsns, where λs is a positive
constant and ns is the number of species within the genus at
that time.

• The number of genera within a family increases as the linear
birth process with the Poisson rate λgng, where λg is a positive

FIGURE 2 | An example of the evolutionary tree of species in the Yule process.

FIGURE 3 | An example of the evolutionary tree of genera in the Yule process.

6The characteristic of growth is the increase in the number of genera. The
characteristic of preferential attachment is that the more species within a genus,
the more new species are born.

constant and ng is the number of genera within the family at
that time.

To obtain the probability distribution of the number of species
within genera at a large time7, we need the conditional probability
distribution of the number of species included in the genus whose
age (i.e., the time intervals elapsed since the birth) is t. Let us use
rs(n, t) to denote its conditional probability distribution, where
n (∈ N) is the number of species and t (∈ R) is the age of the
genus.

First, rs(1, t) is equivalent to the probability that no
new species is born in (a, a + t] after the genus is born8

at an arbitrary time a. Accordingly, we obtain rs(1, t)
from (A.2) as

rs(1, t) = P{N̂s(a+ t)− N̂s(a) = 0; rate λs} = e−λst , (5)

where N̂s(t) is the number of species born in (0, t] by the Poisson
process with the Poisson rate λs .

Second, we calculate rs(2, t). It is equivalent to the probability
that one new species is born in (a, a + t] after the genus is born
at an arbitrary time a. Then we assume that one new species is
born in the infinitesimal time interval [a + τ1, a + τ1 + dτ1).
From (A.2) and (A.3), we obtain the probabilities for one

FIGURE 4 | An example of the evolutionary tree for the Yule process. The

black solid lines show the branchings of species. The black broken lines show

the branchings of genera. One genus is represented by the part surrounded by

the red dotted lines. In this figure, though, the probability of branching for a

new genus seems to depend on the number of species in the original genus

and, in fact, the Poisson rate for branching of a genus is constant in the Yule

process.

7We consider the probability distribution only at a large time for the stationary
state.
8This new genus is equivalent to the first species born in its own genus. Therefore,
the new genus is counted as one for the number of species.
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birth or no birth in each of the three divided time intervals:


















P{no birth in(a, a+ τ1); rate λs} = e−λsτ1 ,

P{one birth in [a+ τ1, a+ τ1 + dτ1); rate λs} = P{N̂s(a+ τ1 + dτ1)− N̂s(a+ τ1) = 1; rate λs}

= e−λsdτ1λsdτ1 ≃ λsdτ1,

P{no birth in [a+ τ1 + dτ1, a+ t); rate 2λs} = e−2λs(a+t−τ1−dτ1) ≃ e−2λs(a+t−τ1).

(6)

Integrating the product of these probabilities with respect to τ1,
we obtain

rs(2, t) =

∫ t

0
e−λsτ1λse

−2λs(t−τ1)dτ1 = e−λst(1− e−λst). (7)

Similarly, rs(3, t) is given by

rs(3, t) =

∫ t

0
e−λsτ1λsdτ1

∫ t

τ1

e−2λs(τ2−τ1)(2λs)e
−3λs(t−τ2)dτ2

= e−λst(1− e−λst)2.
(8)

Finally, repeating the same procedure, we obtain rs(n, t), that is,
the conditional probability distribution of the number of species
included in the genus at the age of t:

rs(n, t) = e−nλst
n−1
∏

k=1

[

∫ t

τk−1

eλsτkkλsdτk

]

(τ0 := 0)

= e−nλst(n− 1)!
n−1
∏

k=1

[

∫ eλst

xk−1

dxk

]

(xk := eλsτk , x0 := 1)

= e−λst(1− e−λst)n−1.
(9)

Next, let ℓg(t) be the probability distribution function for the age
of genera at a large time in the linear birth process. It is given by
(A.15) as

ℓg(t) = λge
−λgt . (10)

Consequently, the probability density of the number of species
within genera at a large time, denoted by q(n), is given
by integrating the product of the conditional probability
distribution of the number of species within genera and the
probability density function for the age of genera at a large time:

q(n) =

∫

∞

0
rs(n, t)ℓg(t)dt =

∫

∞

0
e−λst(1− e−λst)n−1λge

−λgtdt

=
λg

λs

∫ 1

0
x

λg
λs (1− x)n−1dx (x : = e−λst)

= :

λg

λs
B

(

λg

λs
+ 1, n

)

,

(11)

where the beta function B(a, b) is defined as

B(a, b) :=
Ŵ(a)Ŵ(b)

Ŵ(a+ b)
=

∫ 1

0
xa−1(1− x)b−1dx

(

Ŵ(a) :=

∫

∞

0
ta−1e−tdt

)

. (12)

When b takes a large value, the beta function is approximately

B(a, b) ∝ b−a (b≫ 1). (13)

Therefore, for a large number of species, the probability
distribution of the number of species within genera at a large time
satisfies the power law as

q(n) ∝ n
−

(

λg
λs
+1
)

(n≫ 1), (14)

where the exponent of power law is
λg
λs

+ 1.

2.2. Simon Process
The Simon process [21] is interpreted as a discrete-time
stochastic process for the growth in the numbers of urns and
balls contained in those urns: an urn and the number of balls
in the urn correspond to a word and the number of times that
the word is used. In this stochastic process, a certain number of
balls are newly added and stochastically distributed to the existing
urns containing some balls at each time step. After that, one urn
containing a certain number of balls (it need not be the same as
the number of balls added above) is also added newly. Repeating
this procedure, the number of balls and urns grows stochastically.

We calculate the stationary probability distribution of balls
contained in urns at a large time.

First, we define all quantities for the Simon process by using
the following notation:

• t (= 0, 1, 2, · · · ), discrete time;
• k0, number of balls contained in each urn in the initial state

(before balls are added);
• m, number of balls added at each time step;
• B(t) (= B(0) + t(m + k0)), total number of balls before balls

are distributed at t;
• U(t) (= U(0)+ t), number of urns before balls are distributed

at t;
• group-(k), group of all the urns containing k balls;

• f̂ (k, t), number of urns belonging to the group-(k) before balls
are distributed at t.

Next, we provide the detailed procedure with the stochastic rule
as follows (Figure 5).
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1. There are U(0) urns containing k0 balls at the initial time9

t = 0.
2. Them balls are newly added at each time step10.
3. Each of them balls is distributed once for each group-(k) with

the probability
kf̂ (k, t)

B(t)
11.

4. Then the balls distributed to the group-(k) are further
distributed to the urns within the group with arbitrary
probabilities12 with the assumption that each urn can only get
up to one ball at each time step13.

5. At the end of each time step, one urn containing k0 balls is
added.

6. We repeat steps 2–5.

Then we can obtain the expectation values of E[f̂ (k, t + 1)] (k ≥

k0) from the above stochastic rule as































E[f̂ (k, t + 1)] = f̂ (k, t)−
mkf̂ (k, t)

B(t)
+

m(k− 1)f̂ (k− 1, t)

B(t)
(k > k0),

E[f̂ (k0, t + 1)] = f̂ (k0, t)−
mk0 f̂ (k0, t)

B(t)
+ 1.

(15)
At a large time t, we can make an approximation f̂ (k, t) ≃

E[f̂ (k, t)] for k ≥ k0 and obtain







































E[f̂ (k, t + 1)] ≃ E[f̂ (k, t)]−
mkE[f̂ (k, t)]

B(t)
+

m(k− 1)E[f̂ (k− 1, t)]

B(t)
(k > k0)

E[f̂ (k0, t + 1)] ≃ E[f̂ (k0, t)]−
mk0E[f̂ (k0, t)]

B(t)
+ 1.

(16)

The probability distribution of the number of balls in urns,

denoted by p(k, t), can be represented by E[f̂ (k, t + 1)]:

p(k, t) =
E[f̂ (k, t)]

U(t)
. (17)

9Since we finally take the limit t → ∞, the initial state does not actually affect the
stationary state. However, to make it easier to imagine the procedure, we set the
initial state in this manner.
10This shows the characteristic of growth.
11This shows the characteristic of preferential attachment.
12When distributing balls in the group-(k), we do not set the probability that each
urn in the group gets one ball. To obtain a master equation later, we only have
to know the number of the balls distributed to the group-(k) under the condition
that each urn can only get one ball at most. Namely, setting those probabilities is
equivalent to imposing too strong a condition to obtain the master equation.
13Though one urn can get two or more balls, this possibility is small enough in
the limit of large time. This is because the number of urns is large enough in a
large time so that this possibility is ignored. Similarly, though more balls can be
distributed than the number of urns in a group-(k), this possibility is also small
enough in the limit of large time.

Consequently, the master equation for p(k, t) is given by































U(t + 1)p(k, t + 1) = U(t)p(k, t)−
mkU(t)

B(t)
p(k, t)+

m(k− 1)U(t)

B(t)
p(k− 1, t) (k > k0),

U(t + 1)p(k0, t + 1) = U(t)p(k0, t)−
mkU(t)

B(t)
p(k0, t)+ 1.

(18)
We are interested in only the stationary distribution function p(k)
that is defined as p(k, t) in the limit of large time:

p(k) := lim
t→∞

p(k, t). (19)

Then, considering

lim
t→∞

U(t)

B(t)
=

1

m+ k0
(20)

and taking the limit t → ∞ for Equation (18), we obtain



















p(k) =
k− 1

k+ 1+ k0
m

p(k− 1) (k > k0),

p(k0) =
m+ k0

k0(m+ 1)+m
.

(21)

We can solve these equations recursively:

p(k) =
(k− 1)(k− 2) · · · k0

(

k+ 1+ k0
m

) (

k+ k0
m

)

· · ·

(

k0 + 2+ k0
m

)p(k0)

=
(k− 1)(k− 2) · · · k0

(

k− 1+ α
) (

k− 2+ α
)

· · ·
(

k0 + α
)p(k0)

(

α := 2+
k0

m

)

=
Ŵ(k)Ŵ(k0 + α)

Ŵ(k0)Ŵ(k+ α)
p(k0)

=
B(k,α)

B(k0,α)
p(k0).

(22)

For the large k, the stationary probability distribution of the
number of balls in urns satisfies the power law as

p(k) ∝ k
−

(

k0
m +2

)

(

k≫ 1
)

, (23)

where the exponent of power law is k0
m + 2.

2.3. Barabási–Albert Model
The BAmodel [22] is one of the scale-free networkmodels for the
growth in the number of nodes and edges. Mathematically, the
BAmodel can be interpreted as a special case of the Simonmodel.
In particular, the nodes and edges in the BAmodel correspond to
the urns and balls in the Simon model, respectively (Figure 6).
In this model, one node with a certain number of edges are
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FIGURE 5 | An example of the Simon model with k0 = 2, U(0) = 4, and m = 3.

FIGURE 6 | An example of equivalence between a networks and the urns

containing balls.

newly added at each time step. Then following a stochastic rule,
the edges of new node are connected to the existing nodes.
Repeating this procedure, the number of nodes and edges grows
stochastically.

We calculate the stationary probability distribution of edges
connecting to nodes at a large time. First, we define all quantities
for the BA model by using the following notation:

• t (= 0, 1, 2, · · · ), discrete time;
• k0, number of edges that the additional new node has;
• B(t) (= B(0) + 2tk0), total number of degrees in the network

before the new node is added at t;
• U(t) (= U(0)+ t), number of nodes in the network before the

new node is added at t;
• f̂ (k, t), number of nodes with the degree k before the new node

is added at t;
• k̂i(t), number of the edges of node-i (where i is the label of the

node) before the new node is added at t.

Next, we give the detailed procedure with the stochastic rule for
the BA model as follows (Figure 7).

1. At the initial time t = 0, there is an arbitrary connected
network withU(0) nodes that are all connected to nodes other
than themselves14.

2. One new node with k0 edges is added15.

14Since we finally take the limit t → ∞ as in the Simon model, the initial state
does not actually affect the stationary state.
15This shows the characteristic of growth.

3. The k0 edges of the new node are connected to the existing
nodes following the stochastic rule16,17: the probability that

one edge is connected to the existing node-i is
k̂i(t)

B(t)
under the

assumption that each node can only connect to one node at
each time step18.

4. We repeat steps 2 and 3.

Consequently, we obtain the same master equation for the
probability distribution of edges as (18) withm = k0:



























U(t + 1)p(k, t + 1) = U(t)p(k, t)−
k0kU(t)

B(t)
p(k, t)+

k0(k− 1)U(t)

B(t)
p(k− 1, t) (k > k0),

U(t + 1)p(k0, t + 1) = U(t)p(k0, t)−
k0kU(t)

B(t)
p(k0, t)+ 1.

(24)
We can solve this master equation and obtain the stationary
distribution function p(k) := limt→∞ p(k, t) for the large k from
Equations (21–23):

p(k) ∝ k−α

(

α := 2+
k0

k0
= 3

)

, (25)

where the exponent of power law is 3.

3. STOCHASTIC MODELS BASED ON
GEOMETRIC BROWNIAN MOTION

In this section we look at five stochastic processes, generating
power laws, which can be represented by the stochastic
differential equations (SDEs). They all are mathematically based
on the GBM and accompanied by a constraint (i.e., additional
condition) or additional terms to the SDE. The constraints
correspond to a reflecting wall19 as a boundary condition [23],

16This shows the characteristic of preferential attachment.
17This setting of probability is equivalent to the balls distributed to the group-(k)
being further distributed to the urns within the group with equal probabilities in
step 4 in the Simon model. That is, the stochastic rule for the BA model is stronger
than that of the Simon model as a condition.
18Though one node can actually connect two or more nodes, this possibility is
small enough in the limit of large time. This is because the number of nodes is
large enough in a large time so that this possibility is ignored.
19The reflecting wall means that there is the minimum value for a random variable
(e.g., population of a city).
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FIGURE 7 | An example of the BA model with k0 = 2 and U(0) = 4 and the Simon model equivalent to it.

and reset events (i.e., birth and death process20) [25]. The
stochastic processes with additional terms to the SDE of GBM are
the Kesten process, the GLV model, and the BM model. Though
the effect of additional term to the GMB in the Kesten process is
similar to a reflecting wall, those of the GLVmodel and BMmodel
correspond to the interactions between particles, agents, or
individuals. Wemainly explain the mathematical formalisms and
properties of these qualitatively different stochastic processes.

3.1. Geometric Brownian Motion
The GBM, on which many models for power laws are based,
is one of the most important stochastic processes. It is
mathematically defined by the SDE

dX̂(t) = µX̂(t)dt + σ X̂(t)dB̂(t), (26)

where B̂(t) is a standard Brownian motion, µ is the drift, and σ is
the volatility.

The SDE (Equation 26) gives us the partial differential
equation (PDE), that is, the Fokker–Planck equation (FPE) [51]:

∂p(x, t)

∂t
= −

∂

∂x
{µxp(x, t)} +

∂2

∂x2

{

σ 2x2

2
p(x, t)

}

, (27)

where p(x, t) is the probability density function. The solution of
Equation (27) with the initial distribution p(x, 0) = δ(x− x0) is

p(x, t) =
1

x
√

2πσ 2t
exp






−

{

log x− log x0 −
(

µ −
σ 2

2

)

t
}2

2σ 2t






,

(28)
where x0 is the initial position of the particle. This solution is the
log-normal distribution where the expectation value and variance
are

E[x̂] = x0e
µt , Var[x̂] = x0

2e2µt(eσ
2t
− 1). (29)

In the limit t → ∞, the log-normal distribution never converges
to the stationary solution. To obtain it, therefore, we need to

20The birth and death process means that a new unit (e.g., city or firm) can be born
at a rate and die at the same rate.

impose some additional conditions on the SDE (Equation 26)
or modify the SDE itself. We introduce the conditions and
modifications in the following sections.

3.2. GBM With a Reflecting Wall
We consider the GBM with the reflecting wall (see Appendix A.5
for details). The stationary solution p(x) for the FPE (Equation
27) is defined by

∂p(x)

∂t
= 0, (30)

which is equivalent to the second-order ordinary differential
equation (ODE):

0 = −
d

dx
{µxp(x)} +

d2

dx2

{

σ 2x2

2
p(x)

}

. (31)

As a result, we obtain the first-order ODE:

µxp(x)−
d

dx

{

σ 2x2

2
p(x)

}

= D, (32)

where D is an arbitrary constant. We take D = 0 to obtain a
normalizable power-law probability distribution. The solution of
Equation (32) with D = 0 is

p(x) = Cx−α

(

C := p(x0)x0
α , α := 2−

2µ

σ 2

)

, (33)

where x0 is an arbitrary constant. For this stationary solution p(x)
to exist, it must satisfy the normalization condition:

1 =

∫ xmax

xmin

p(x)dx. (34)

We set the reflecting wall at x = xmin(> 0) and take xmax = ∞.
The existence of the reflecting wall is mathematically equivalent
to the conditions X̂(t) > xmin and p(x) = 0 for x < xmin. Then
we assume α > 1. The normalization condition

1 =

∫

∞

xmin

p(x)dx =
C

α − 1
(xmin)

−α+1 (35)
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determines the constant C as

C = (α − 1)(xmin)
−α+1. (36)

Thus, we have the normalized stationary solution

p(x) = (α − 1)(xmin)
−α+1x−α

(

α = 2−
2µ

σ 2
> 1

)

, (37)

where the exponent of power law is 2− 2µ
σ 2 .

Next, we generalize this formalism from the GBA to the Itô
process which can have the stationary solution [52]:

dX̂(t) = a(X̂(t))dt + b(X̂(t))dB̂(t). (38)

The stationary solution (see Appendix A.5 for details) is given by

p(x) =
C

b(x)2
exp

[∫ x

x0

2a(x′)

b(x′)2
dx′
]

, (39)

where C is the normalization constant. Following Yakovenko and
Rosser [53] and Banerjee and Yakovenko [54], we take a(x) and
b(x) as

a(x) = µx+ µ∗, b(x) = σ

√

2(x2 + x∗2), (40)

which is interpreted as a kind of qualitative combination of the
generalizedWiener process21 andGBM. Consequently, we obtain
the stationary solution

p(x) = C

[

1+
( x

x∗

)2
]

µ

2σ2
−1

exp

[

µ∗

σ 2x∗
arctan

( x

x∗

)

]

. (41)

For x ≪ x∗, the stationary solution becomes the exponential
distribution while for the large x, it satisfies the power law as

p(x) ∝ x
−

(

2− µ

σ2

)

(

x≫ x∗
)

, (42)

where the exponent of power law is 2− µ

σ 2 .

3.3. GBM With Reset Events
We consider the particles that follow the GBM with the
reset events, that is, the birth and death events22. For
simplicity, we assume that particles can disappear with a certain
probability by following a Poisson process and immediately
appear at a point so that the number of particles is
conserved. By these reset events, the FPE (Equation 27) is
changed into

∂p(x, t)

∂t
= −

∂

∂x
{µxp(x, t)} +

∂2

∂x2

{

σ 2x2

2
p(x, t)

}

+ ηδ(x− x∗)− ηp(x, t), (43)

21The SDE of generalized Wiener process is represented by dX̂(t) = adt + bdB̂(t),
where a and b are constants.
22Following Gabaix [39] and Toda [55], we derive the stationary probability
density function.

where η is the probability for a particle in [x, x+dx) to disappear
per the time interval dt, and the particle reappears immediately
at x = x∗(> 0). Accordingly, we obtain the second-order ODE
for the stationary solution p(x):

0 = −
d

dx
{µxp(x)} +

d2

dx2

{

(σx)2

2
p(x)

}

− ηp(x), (44)

which is held except for x = x∗. To solve this equation easily, we
change the variable x into y := log x. The new probability density
function q(y) is determined by

q(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

. (45)

Then we obtain the ODE for q(y):

0 = −

(

µ −
σ 2

2

)

dq(y)

dy
+

σ 2

2

d2q(y)

dy2
− ηq(y), (46)

except for y = y∗ (y∗ := log x∗). The general solution of this
second-order ODE is







































q(y) = C1e
λ1y + C2e

λ2y,

λ1 =
1
σ 2

(

µ −
σ 2

2 +

√

(

µ −
σ 2

2

)2
+ 2σ 2η

)

> 0,

λ2 =
1

σ 2



µ −
σ 2

2
−

√

(

µ −
σ 2

2

)2

+ 2σ 2η



 < 0,

(47)

where C1 and C2 are the arbitrary constants determined by the
normalization condition:

1 =

∫

∞

0
p(x)dx =

∫

∞

−∞

q(y)dy. (48)

To normalize the solution (Equation 47), we impose the
boundary conditions q(∞) = q(−∞) = 0, which result in
C1 = 0 for y ≥ y∗ and C2 = 0 for y < y∗, that is,

q(y) =







C1eλ1y (y < y∗),

C2eλ2y (y ≥ y∗).
(49)

Accordingly, the normalization condition

1 =

∫ y∗

−∞

C1e
λ1ydy+

∫

∞

y∗
C2e

λ2ydy (50)

and the continuous condition at y = y∗, namely, C1eλ1y
∗

=

C2eλ2y
∗

give us the normalized solution of Equation (46) as

q(y) =















λ1λ2

λ2 − λ1
eλ1(y−y∗) (y < y∗),

λ1λ2

λ2 − λ1
eλ2(y−y∗) (y ≥ y∗).

(51)
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Consequently, we obtain the solution of Equation (44):

p(x) =
q(log x)

x
=















λ1λ2

λ2 − λ1
(x∗)−λ1xλ1−1 (0 < x < x∗),

λ1λ2

λ2 − λ1
(x∗)−λ2xλ2−1 (x∗ ≤ x),

(52)
which is called the double Pareto distribution [25]. The exponents
of the power law are 1− λ1 and 1− λ2.

Next, we derive the probability density function (Equation 52)
by another method as follows [56]. The lifetimes of particles are
independently distributed with the exponential distribution as
ℓLT(τ ) = ηe−ητ , because the death events occur as a Poisson
process, with rate η, which have the time-reversal symmetry
property. Accordingly, the ages of particles (i.e., the time intervals
elapsed since the birth of them) at a large time are also
independently distributed with the exponential distribution:

ℓA(t) = ηe−ηt . (53)

The probability density function of particles of age t as the
conditional probability distribution is given by the log-normal
distribution (Equation 28) with x0 = x∗. Consequently, the
probability density function of the coordinate of particle at a
large time, denoted by p(x), is given by integrating the product
of Equations (53) and (28):

p(x) =

∫

∞

0
ηe−ηt 1

x
√

2πσ 2t
exp






−

{

log x− log x∗ −
(

µ −
σ 2

2

)

t
}2

2σ 2t






dt.

(54)

We can calculate this with the change of variable u2 := t and the
identity [35]

∫

∞

0
exp

(

−au2 −
b

u2

)

du =
1

2

√

π

a
exp(−2

√

ab). (55)

Thus, we obtain the same result with Equation (52)23 without
solving the ODE (Equation 44).

3.4. Kesten Process
The Kesten process [26] is defined as a stochastic process whereby
an additional term is added to the SDE of the GBM; namely, the
SDE is represented by

dX̂(t) = µX̂(t)dt + σ X̂(t)dB̂(t)+ ĉdt, (56)

where ĉ, in the additional term, is a random variable. We can
expect that the additional term prevents X̂(t) from decreasing
toward−∞ in a similar way as the reflecting wall in section 3.2

23The two solutions in Equation (52) result from

√

(

log
x

x∗

)2
= − log

x

x∗
for

(0 < x < x∗), and

√

(

log
x

x∗

)2
= log

x

x∗
for (x∗ ≤ x).

Here, we simply take ĉ as a positive constant: ĉ = c (> 0). We
then obtain the FPE for the probability density function:

∂p(x, t)

∂t
= −

∂

∂x
{(µx+ c)p(x, t)} +

∂2

∂x2

{

σ 2x2

2
p(x, t)

}

. (57)

The ODE for the stationary solution p(x) is given by

0 = −
d

dx
{(µx+ c)p(x)} +

d2

dx2

{

(σx)2

2
p(x)

}

. (58)

Consequently, we obtain the normalized stationary solution of
Equation (58)24:

p(x) =
1

Ŵ(α − 1)

(

2c

σ 2

)α−1

exp

[

−
2c

σ 2x

]

x−α

(

α := 2−
2µ

σ 2

)

,

(59)
where Ŵ(α) is the gamma function defined in Equation (12). For
the large x, the stationary solution satisfies the power law given as

p(x) ∝ x−β (x≫ 1), (60)

where the exponent of the power law is 2− 2µ
σ 2 . Although c, in the

additional term, achieves the stationary state, it is independent of
the exponent. It is worth noting that the exponent of the power
law is affected not by the constant c of the additional term, but
by the drift µ and volatility σ of the GBM. The additional term
affects only the lower tail of the probability density function. Even
for c as a random variable, these properties are invariant.

3.5. Generalized Lotka–Volterra Model
The GLV model was introduced for the analysis of individual
income distribution. We consider the dynamical system
composed of N agents (individuals) with incomes that grow by
the GBM process and have the interactions for the redistribution
of wealth [27–29]. The GLV model is represented by the system
of SDEs called the GLV equations:

dX̂i(t) = µX̂i(t)dt + σ X̂i(t)dB̂i(t) + ξ Û(t)dt − ηÛ(t)X̂i(t)dt
(

Û(t) : =
1

N

N
∑

i=1

X̂i(t), ξ > 0

)

, (61)

where X̂i(t) is the individual income of agent i (i = 1, 2, · · · ,N)
at t, and Û(t) is the average income for the whole system. To keep
X̂i(t) > 0, the third term in RHS of Equation (61) redistributes
a fraction of the total income for the whole system. This term
can be interpreted as the effect of a tax or social security policy.
The fourth term controls the growth of whole system and can be
interpreted as the effect of finiteness of resources, technological
innovations, wars, natural disasters, and so on.

The GLV equations have no stationary solution, and the total
income for the entire system is not constant with time. Here, we
introduce the new random variable as the relative value:

Ŷi(t) : =
X̂i(t)

Û(t)
. (62)

24Following Slanina [45], we solve the ODE.
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Then we obtain the SDEs for Ŷi(t) as

dŶi(t) =
dX̂i(t)

Û(t)
−

X̂i(t)dÛ(t)

Û(t)2

= ξ (1− Ŷi(t))dt + σ Ŷi(t)dB̂i(t)−
σ Ŷi(t)

NÛ(t)

N
∑

i=1

X̂i(t)dB̂i(t),

(63)

where the last term in the second row is of the orderN−
1
2 , because

the standard deviation of
∑N

i=1 X̂i(t)dB̂i(t) is of the order
√
N.

We then take the large N limit as the mean field
approximation and obtain the new system of SDEs:

dŶi(t) ≃ −ξ Ŷi(t)dt + σ Ŷi(t)dB̂i(t)+ ξdt, (64)

which has the same form as the SDE of Equation (56) in the
Kesten process. We can use the result of Equation (59) to obtain
the normalized stationary probability density:

q(y) =
1

Ŵ(α − 1)

(

2ξ

σ 2

)α−1

exp

[

−
2ξ

σ 2y

]

y−α

(

α := 2+
2ξ

σ 2

)

.

(65)
For large y, the stationary solution satisfies the power law as
follows:

q(y) ∝ y−α (y≫ 1), (66)

where the exponent of the power law is 2+ 2ξ
σ 2 . Consequently, by

a change of variables, and the mean field approximation, the GLV
model with interactions gives us the same result as that obtained
by the Kesten process without interactions.

3.6. Bouchaud–Mézard Model
The BM model was introduced for the analysis of wealth
distribution [30, 57–59]. We suppose there is an economic
network composed of N agents (individuals) with wealth that
grows by the GBM process and is redistributed by the exchanges
between agents. The BM model is represented by the system of
SDEs as follows:

dX̂i(t) = µX̂i(t)dt+σ X̂i(t)dB̂i(t)+
∑

j( 6=i)

aij(X̂j(t)− X̂i(t))dt (67)

where X̂i(t) is the individual wealth of agent i at t, and aij is
the positive exchange rate between agent i and j. The wealth is
exchanged by the third term in RHS of Equation (67), which can
be interpreted as a kind of trading in the economic network.

For simplicity, we take aij as the constant a
N (> 0) in

preparation for the mean field approximation. Here, we again
introduce the new random variables as the average of wealth and
the relative value:

Ŷi(t) :=
X̂i(t)

Û(t)

(

Û(t) :=
1

N

N
∑

i=1

X̂i(t)

)

. (68)

We then obtain the SDEs for Ŷi(t) in the mean field
approximation:

dŶi(t) =
dX̂i(t)

Û(t)
−

X̂i(t)dÛ(t)

Û(t)2

≃ −aŶi(t)dt + σ Ŷi(t)dB̂i(t)+ adt,

(69)

which has the same form as the SDE of Equation (64) in the
LV model. Consequently, we obtain the normalized stationary
solution:

q(y) =
1

Ŵ(α − 1)

(

2a

σ 2

)α−1

exp

[

−
2a

σ 2y

]

y−α

(

α := 2+
2a

σ 2

)

.

(70)
For large y, the stationary solution satisfies the following power
law:

q(y) ∝ y−α (y≫ 1), (71)

where the exponent of the power law is 2+ 2a
σ 2 . It is worth noting

that though the forms of the additional terms in the GLV model
and BM model are quantitatively different from those of the
Kesten process, the results are eventually the same in the mean
field approximation.

4. COMBINATION OF EXPONENTIALS

When we have a probability density or distribution function
for a random variable, we can obtain a new distribution by
a change of variable. In particular, we can obtain a power
law function from an exponential distribution by taking a new
variable as the exponential function of the original variable.
This mechanism was used to interpret the observed power
law for the frequency of use of words with the assumption
of random typings on a typewriter [31]. In this section, firstly
we formalize this mechanism. Then we give the examples of
applications to the Yule process and critical phenomena in
physics.

4.1. General Formalism
Suppose the probability density function for a continuous
random variable x is given by

p(x) = Aeax (A > 0). (72)

We change the variable x into the new variable y as

y = Bebx (B > 0). (73)

Thus the new probability density function q(y) is obtained
as

q(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
A

|b|B
a
b

y
a
b
−1

∝ y
a
b
−1, (74)

where the exponent of power law is a
b
− 1.
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Similarly, when the x is a discrete random variable, the new
probability distribution function q(y) is obtained as

q(y) = p(x) =
A

B
a
b

y
a
b ∝ y

a
b , (75)

where the exponent of power law is a
b
.

4.2. Application to Yule Process
The power law of the Yule process can be interpreted using a
combination of exponentials with a rough approximation [41].
Firstly, by changing the Poisson rate λs into λg in (A.15), the
probability density function of the age of genera at a large time
is obtained as

p(t) = λge
−λgt . (76)

Then, from (A.12) with ns0 = 1, we approximately obtain the
number of species within the genus of age t as

n(t) ≃ E[N̂s(t)] = eλst . (77)

Finally, taking A = λg, a = −λg, B = 1, and b = λs in
Equation (74), the probability density function of the number of
species within genera is

q(n) =
λg

λs
n
−

(

λg
λs
+1
)

, (78)

where the exponent of power law is
λg
λs

+ 1. This exponent
coincides with Equation (14). Thus the generating mechanism
of power law in the Yule process can be roughly interpreted as
a combination of exponentials as well.

4.3. Application to Critical Phenomena
It is well-known that in certain critical phenomena, some
physical quantities (e.g., correlation length, susceptibility, and
specific heat) take the form of power functions of the reduced
temperature T−Tc

Tc
near the critical temperature Tc. By the

renormalization group analysis [60], this property can be
interpreted as emerging from a combination of exponentials [41].

We consider two physical quantities x and y whose
scaling dimensions are dx and dy, respectively. When we
perform the scale transformation (i.e., renormalization group
transformation) by the scaling factor b near the critical point, we
suppose that x and y are multiplied by λx and λy, respectively. By
the dimensional analysis, we obtain

λx = bdx , λy = bdy
(

log λy

log λx
=

dy

dx

)

. (79)

Then we obtain geometric progressions for the transformed x
and y:

{

x : x0 → λxx0 → (λx)
2x0 → · · · ,

y : y0 → λyy0 → (λy)
2y0 → · · · ,

(80)

where x0 and y0 are the initial values of the transformation. Let
us denote x and y transformed n times by xn and yn, respectively.

Accordingly, xn and yn are defined as






xn := (λx)
nx0 = x0e

(logλx)n,

yn := (λy)
ny0 = y0e

(logλy)n,
(81)

which constitute a combination of exponentials. Therefore,
taking A = y0, a = log λy, B = x0, and b = log λx in Equation
(75), we can write down yn as a function of xn as

yn = y0

(

xn

x0

)

log λy
log λx

∝ xn
dy
dx , (82)

where the exponent of power law is−
dy
dx
. We emphasize that this

is a simple consequence of the dimensional analysis.
Furthermore, if y := p(x), the two geometric progressions

(Equation 80) lead to

λyy = p(λxx), (83)

which satisfies the scale-free property (Equation 2) with b =

λx and f (b) = λy. Namely, the two geometric progressions,
equivalent to a combination of exponentials by the scale
transformation, assures that the scale-free property holds25.

5. CONCLUSIONS

We have reviewed nine generating mathematical mechanisms
of power laws (i.e., Yule process, Simon process, Barabási–
Albert model, geometric Brownian motion with a reflecting wall
and reset events, Kesten process, Generalized Lotka–Volterra
model, and Bouchaud–Mézard model, and the combination of
exponentials) that are widely applied in the social sciences. Since
these mechanisms are only prototypes, the exponents of the
power laws derived from them may not match those of real
phenomena (e.g., number of links on the WWW, and so on).
As explained in this paper, however, these mechanisms have been
improved so that the exponents match those of real phenomena,
while the basic principles of the improved mechanisms remain
the same. Though many power laws as macro behaviors of
systems have been studied, the mechanisms generating them
from micro dynamics are not yet completely understood. In
physics, however, the understanding of thermodynamics of
macro behavior from quantum mechanics of micro dynamics
has been advanced considerably based on statistical mechanics. A
similar development may also be possible in the study of power
laws.
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APPENDIX

Some mathematical supplements are given in this appendix.

A.1. Poisson Process
We consider the Poisson process [61, 62] with the Poisson rate λ

(a positive constant), that is, the events occur on average λ times
per unit time. The probability that an event occurs n times in
(t, t + h] follows the Poisson distribution:

P{N̂(t+ h)− N̂(t) = n; rate λ} = e−λh (λh)
n

n!
, (n = 0, 1, 2, · · · )

(A.1)
where N̂(t) denotes the number of times that the events occur in
(0, t]. When h is the infinitesimal time interval, the probabilities
of event occurrence can be expressed by o(hk). The probability
that no event occurs in (t, t + h] is

P{N̂(t + h)− N̂(t) = 0; rate λ} = e−λh

= 1− λh+ o(h).

(

lim
h→0

o(hk)

hk
= 0

)

.(A.2)

Similarly, the probability that one event occurs is

P{N̂(t + h)− N̂(t) = 1; rate λ} = e−λhλh = (1− λh+ o(h))λ
h = λh+ o(h), (A.3)

and the probability that more than two events occur is

P{N̂(t + h)− N̂(t) ≥ 2; rate λ} =

∞
∑

n=2

e−λh (λh)
n

n!

= e−λh

(

∞
∑

n=0

(λh)n

n!
− 1− λh

)

= 1− e−λh(1+ λh)

= 1− (1− λh+ o(h))(1+ λh)

= o(h).
(A.4)

A.2. Pure Birth Process
We generalize the Poisson process so that the Poisson rate
depends on the number of times that the events have already
occurred. To apply this generalized Poisson process to the
evolution model in biology, we interpret the occurrence of events
as the births of new species without deaths [61, 62].

First, we are interested in the probability that the number of
species becomes n (∈ N) at time t (∈ R) with the initial number of

species ns0 at time 0. It is denoted by p(n, t)
(

: = P{N̂s(t) = n}
)

,

where N̂s(t) is the number of species at time t. Then, we derive
the time evolution equation of p(n, t). The probability p(n, t + h)
is given as the sum of the following probabilities:

• the probability that N̂s(t) = n and no birth occurs in (t, t + h]
with rate 3s(n);

• the probability that N̂s(t) = n − 1 and one birth occurs in
(t, t + h] with rate26 3s(n− 1);

• the probability that N̂s(t) = n − 2 and two births occur in27

(t, t + h];
...

• the probability that N̂s(t) = n−k and k births occur in (t, t+h];
...

where 3s(n) is the Poisson rate when the number of species is n.
Accordingly, we obtain

p(n, t + h) = P{N̂s(t) = n ∩ no birth occurs in (t, t + h]

with 3s(n)}

+P{N̂s(t) = n− 1 ∩ 1 birth occurs in (t, t + h]

with 3s(n− 1)}

+

n−ns0
∑

k=2

P{N̂s(t) = n− k ∩ k births occur in

(t, t + h]}. (A.5)

From equations (A.2), (A.3), and (A.4), the probabilities on the
right-hand side of (A.5) are expressed respectively as the orders
of h:























































P{N̂s(t) = n ∩ no birth occurs in (t, t + h]}

= p(n, t)×
{

1− 3s(n)h+ o(h)
}

,

P{N̂s(t) = n− 1 ∩ 1 birth occurs in (t, t + h]}

= p(n− 1, t)×
{

3s(n− 1)h+ o(h)
}

,

n−ns0
∑

k=2

P{N̂s(t) = n− k ∩ k births occur in (t, t + h]} = o(h).

(A.6)

We combine (A.5) with (A.6), and obtain the difference equation:

p(n, t + h)− p(n, t)

h
= −3s(n)p(n, t)+3s(n−1)p(n−1, t)+

o(h)

h
.

(A.7)

26Strictly speaking, the Poisson rate is not constant at 3s(n − 1) in (t, t +

h], that is, the Poisson rate change into 3s(n) from 3s(n − 1) when the
birth occurs. Therefore, the accurate probability is P{N̂s(t) = n − 1} ×

P{ one species is born in(t, t+ j] with rate3s(n−1)}×P{ no species is born in(t+
j, t+ h] with rate 3s(n)}, where t+ j (0 < j < h) is the time of the birth. However,
since we take the limit h → 0 at the end, even if we deal with the probability this
strictly, the time evolution equation of the final result will be the same.
27Even if we precisely consider the changing Poisson rate with births, this
probability will eventually be o(h). Therefore, we do not need the precise values
for the exact Poisson rate and the probabilities that k(≥ 2) species are born in
(t, t + h].
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We take the limit h → 0 and obtain the ODEs with the initial
conditions:

for n > ns0,







∂p(n, t)

∂t
= −3s(n)p(n, t)+ 3s(n− 1)p(n− 1, t),

p(n, 0) = 0,

for n = ns0,







∂p(ns0, t)

∂t
= −3s(ns0)p(ns0, t),

p(ns0, 0) = 1,

(A.8)

which are called the Kolmogorov’s forward equations. The ODEs
(A.8) can be solved and yield











p(n, t) =

∫ t

0
e−3s(n)(t−s)3s(n− 1)p(n− 1, s)ds for n > ns0,

p(ns0, t) = e−3s(ns0)t .
(A.9)

A.3. Linear Birth Process
Next, we consider the linear birth process [61, 62] that is
mathematically defined as a special case of the pure birth process.
When the Poisson rate 3s(n) is proportional to the number of
species n,

3s(n) = λsn, (A.10)

where λs is a positive constant, this pure birth process is called
the linear birth process28. Then, we can interpret the birth of
new species in this process as the occurrence of branching in the
evolutionary tree (Figure 2). In particular, the linear birth process
means that the branchings occur independently on each line of a
species as the Poisson processes with the Poisson rate λs, which is
common for all existing species.

The solutions of (A.9) for the Yule process can be recursively
calculated and yield































p(n, t) =

(

n− 1

n− ns0

)

(

e−λst
)ns0 (1− e−λst

)n−ns0

(

(n
m

)

: =
n!

m!(n−m)!

)

for n > ns0,

p(ns0, t) = e−λsnt .

(A.11)

Then, the expectation value and the variance of the number of
species at time t is given by

E[N̂s(t)] =

∞
∑

n=ns0

np(n, t) = ns0e
λst ,

Var[N̂s(t)] = E[N̂s(t)
2]− E[N̂s(t)]

2
= ns0e

λst(eλst − 1).

(A.12)

28Though this process is also called the Yule–Furry process, we call it the linear
birth process in this paper to distinguish it from the Yule process that generates a
power law.

Let Ps{0 < age ≤ t at τ } be the probability of the species whose
age, that is, the time intervals elapsed since the birth, is t or less at
time τ (> t). This probability is given by

Ps{0 < age ≤ t at τ } = E

[

N̂s(τ )− N̂s(τ − t)

N̂s(τ )

]

= 1− E

[

N̂s(τ − t)

N̂s(τ )

]

≃ 1−
E[N̂s(τ − t)]

E[N̂s(τ )]
= 1− e−λst ,

(A.13)

where the approximately equal symbol holds only for a large
time29 τ . Therefore, it no longer depends on τ . Let us use ℓs(s)
to denote the probability density function for the age s of species
at a large time. By the probability of the species whose age is t or
less at a large time, it is defined as

∫ t

0
ℓs(s)ds = Ps{0 < age ≤ t at a large time}. (A.14)

Differentiating both sides of (A.14) with respect to t, we obtain

ℓs(t) =
dPs{0 < Age ≤ t at a large time}

dt
= λse

−λst . (A.15)

A.4. Multiplicative Process
The multiplicative process is the discrete-time stochastic process
defined as

X̂(t + 1) = r̂(t)X̂(t) (t = 0, 1, 2, · · · ), (A.16)

where r̂(t), for all times t, are independent and equally-
distributed random variables with ν : = E[log r̂(t)] and σ 2

: =

Var[log r̂(t)]. This process is essentially equivalent to the GBM
because both probability density functions are identically the
log-normal distributions in the large time limit.

We can easily obtain the solution of (A.16) in the logarithmic
form as follows:

log X̂(t) =
t−1
∑

i=0

log r̂(i)+ log x0, (A.17)

where x0 is the initial value of X̂(t). We then define the new
variable Ŷ(t) as

Ŷ(t) : =
log X̂(t)− log x0 − tν

√
t

=

t−1
∑

i=0

(

log r̂(i)− ν
)

√
t

. (A.18)

29We consider only the probability in a large time, because we are interested in
only the power-law distribution as the stationary state at a large time.
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By the central limit theorem, we obtain the probability density
function of Ŷ(t) in the time limit t → ∞:

q(y) =
1

√

2πσ 2
exp

[

−
y2

2σ 2

]

, (A.19)

which is the normal distribution. Consequently, by a change of
variables, we obtain the probability density function of X̂(t) as
follows:

p(x) =
1

x
√

2πσ 2t
exp

[

−

{

log x− log x0 − tν
}2

2σ 2t

]

, (A.20)

which is the same as the log-normal distribution as (28) of the

GBM with ν = µ −
σ 2

2 .

A.5. Stationary Solution of the
Fokker–Planck Equation With Reflecting
Wall
Here we provide a stationary solution of the FPE with reflecting
wall [23, 39, 55].

The SDE30 of an Itô process for the random variable X̂(t) is
given by

dX̂(t) = a(X̂(t), t)dt + b(X̂(t), t)dB̂(t), (A.21)

where B̂(t) is a standard Brownian motion; E[dB̂(t)] =

0, Var[dB̂(t)] = dt. This SDE is equivalent to the Langevin
equation [51]:

dX̂(t)

dt
= a(X̂(t), t)+ b(X̂(t), t)Ŵ̂(t), (A.22)

where the noise term Ŵ̂(t) satisfies

{

E[Ŵ̂(t)] = 0,

E[Ŵ̂(t)Ŵ̂(t′)] = δ(t − t′).
(A.23)

We can obtain the FPE for the random variable X̂(t) with the
probability density p(x, t) as

∂p(x, t)

∂t
= −

∂

∂x
{a(x, t)p(x, t)} +

∂2

∂x2

{

b(x, t)2

2
p(x, t)

}

. (A.24)

Then we define the flux J(x, t) as

J(x, t) : = a(x, t)p(x, t)−
∂

∂x

{

b(x, t)2

2
p(x, t)

}

, (A.25)

so that we can interpret (A.24) as the continuity equation

∂p(x, t)

∂t
+

∂J(x, t)

∂x
= 0. (A.26)

30In the Stratonovich convention this SDE is represented by dX̂(t) =
{

a(X̂(t), t)−
1

2
b(X̂(t), t)

∂b(X̂(t), t)

∂X̂(t)

}

dt + b(X̂(t), t) ◦ dB̂(t).

When a(x, t) and b(x, t) are the time-independent functions,
that is, a(x, t) = a(x) and b(x, t) = b(x), the stationary solution
p(x) is defined by the condition31

∂p(x)

∂t
= 0, (A.27)

that is equivalent to

∂J(x)

∂x
= 0, (A.28)

where J(x) is the stationary flux. Accordingly, the stationary flux
J(x) must be constant.

When the stationary flux J(x) takes a nonzero value, the
stationary state means that particles flow in from one side of
infinity and out the other side. This situation causes the stationary
probability density function p(x) to be nonzero at x = ±∞.
Consequently, the nonzero stationary flux cannot give us a
power-law probability density function that can be normalized,
because any power function blows up at one side of infinity. In
contrast, when the stationary flux J(x) vanishes anywhere, we
can set the reflecting wall at x = xmin so that the stationary
probability density function p(x) vanishes outside of the wall.
The reflecting wall enables us to obtain a power-law probability
density function that can be normalized, because we can cut
out the side of infinity where the power function blows up. For
this reason, we consider only the case that the flux vanishes at a
boundary, that is, the reflecting wall.

In this case, we obtain the second-order ODE

J(x) = a(x)p(x)−
d

dx

{

b(x)2

2
p(x)

}

= 0 (A.29)

that the stationary solution p(x) satisfies.
The stationary solution is obtained as the solution of (A.29):











p(x) = p(x0)b(x0)
2ef (x),

f (x) : = −2 log{b(x)} +

∫ x

x0

2a(x′)

b(x′)2
dx′,

(A.30)

where x0(≥ xmin) is an arbitrary constant. If a(x) and b(x) are the
power functions that satisfy the condition

a(x)

b(x)2
∝

1

x
, (A.31)

namely,






a(x) = ax2n−1 (a : constant),

b(x) = bxn (b : constant),
(A.32)

we obtain the stationary solution as the power function of x:

p(x) = Cx−α

(

C : = p(x0)x0
α , α : = 2n−

2a

b2

)

. (A.33)

31Though the existence of the stationary solution is nontrivial, we assume it here.
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This stationary solution p(x) must satisfy the normalization
condition

1 =

∫

∞

xmin

p(x)dx, (A.34)

where we set the reflecting wall at x = xmin(> 0) and assume
α > 1. The normalization condition

1 =

∫

∞

xmin

p(x)dx =
C

α − 1
(xmin)

−α+1. (A.35)

determines the constant C as

C = (α − 1)(xmin)
−α+1. (A.36)

Thus, we have the stationary solution

p(x) = (α − 1)(xmin)
−α+1x−α

(

α = 2n−
2a

b2
> 1

)

. (A.37)
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As a method of analyzing and predicting social phenomena using social media as data,

we present analyses based on the mathematical model of the hit phenomenon, which

is one of the established models of sociophysics. The dynamics of the number of social

media posts for movies, events, and a YouTube movie are explained. For entertainment

topics, the direct communication strength, “D,” indicates the satisfaction of the current

interested people or supporters, whereas the indirect communication strength, “P,”

indicates the power to acquire a new support layer. Thus, this is effective not only for

the analysis of entertainment and marketing strategy but also for burst analysis on the

social media.

Keywords: social media, blog, Twitter, advertisement, popularity, mathematical model of the hit phenomena,

sociophysics, rumor-spread

INTRODUCTION

In the present age, where consumer behavior remains on record through the internet, the purchase
and action records of numerous consumers are available. Analyses reveal that there are many
cases, where it is possible to incorporate natural science methodology, such as physics, apart
from conventional social science. Therefore, sociophysics, which studies society using physics, has
developed significantly, of late [1, 2]. In this paper, we present certain results based on sociophysics
for analyzing and forecasting social phenomena, and the possibility of applying it for marketing,
etc., using the voice of the society recorded in blogs and Twitter as data. Sociophysics is a new
frontier of physics alongside economic physics; however, if vast amounts of data are available, the
methodology of physics that has been the subject of experimental data on natural phenomena can
also be applied to social science. Nowadays, we can use the vast stock of digital data on human
communication as the observation data of real society [3–6]. Therefore, sociophysics is progressing
rapidly.

As a sociophysics theory for analyzing society based on social media writing, a mathematical
model for the hit phenomenon has been developed by Ishii et al. [7]. Here, mathematical equation
inspired from physics are used to explain people’s interest due to the influence of advertisement
and communication with other people. Ishii et al. [7] utilized the effects of advertisement and
verbal communication to form a model that successfully predicted the outcome of each film, which
was screened. For the analysis of the film market in marketing science, although several researches
use regression analysis [8–15], it is very difficult to analyze the dynamics of consumers, using this
analysis.
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In the mathematical theory of the hit phenomenon, the effect
of advertisement and the propagation of reputation and rumors
by human communication are incorporated into the statistical
physics of human dynamics. The propagation of information,
reputation, and rumors has been studied in several works. For
example, the SIR model is a simple mathematical model for
epidemics [16], which is applicable not only to the spread of
infectious diseases but also to the spread of information. The
equations of the SIR model are as follows:

dS

dt
= −βS (t) I (t) ,

dI

dt
= βS (t) I (t) − γ I (t) ,

dR

dt
= γI (t) ,

where, S is the number of susceptible, I is the number of
infectious, and R is the recovered individuals. In the case of
information spread, S indicates the non-adopters, I are the
contagious adopters, and R are the non-contagious adopters.

The other famous model for the spread of information is the
Bass model [17, 18]. The equation of the Bass model is as follows:

dN(t)

dt
= a

(

m− N(t)
)

+ b
(

m− N(t)
)

N(t),

where m is the total number of people and N(t) is the number
of adopters. The first term of the equation indicates a constant
propensity to adopt, independent of the number of customers,
who have adopted the innovation before time, t. The second term
is proportional to the number of customers, who have already
adopted the innovation by t; this term represents the extent of
favorable exchange of word-of-mouth (WOM) communication
between the innovators and the other adopters of the new
product.

There are several problems in the above two models. In the
SIR model, the spread of information is assumed to happen as
communication between an adopter and non-adopter, and the
mass media effects are not included. Moreover, the exchange
of WOM communication is assumed to be proportional to the
number of adopters. In the Bass model, it is assumed that once
a consumer adopts a new product, he influences other non-
adopters to adopt the product at all later times. In order to
overcome these disadvantages, the Bass-SIRmodel was presented
[19].

Another similar mathematical model for calculating the
spread of information is the opinion dynamics model by Galam
[1] based on the Ising model of statistical physics. It is considered
that accumulation of the opinions of individuals (agents) is
similar to the mathematical model of the hit phenomenon,
considering the interaction between people. In Galam’s opinion
dynamics model, a variable, ci = ±1, represents the choice of
agents, I, with Yes= 1 and No=−1. Galam expressed the group
conflict function, G, as

G = J
∑

i,j

cicj + S
∑

i

ci +
∑

i

Sici,

where the first term corresponds to the direct communication
between people and the second to the external field effect. The
third term can correspond to more complex communication.
This model is applied to the modern politics [20].

Our approach is different. Here, we use the mathematical
model of the hit phenomenon [7], where the intention of people
for a certain topic is calculated. In this model, the calculated
intention is not on/off. Thus, the value of the intention in
the mathematical model of the hit phenomena has no upper
limit. The upper-limit value of the intentions of N people
is not N. On the contrary, for the SIR model, the Bass
model, or the model of Galam, the calculated value of each
person is on/off or in-between on and off; the upper limit
is unity and is N for N persons. Hence, in the mathematical
model of the hit phenomenon, the calculated intention of an
adopter can increase to a very large value far beyond unity,
depending on mass media advertisement and communication,
although the upper limit of each adopter is unity for the
SIR model, Bass model, and the opinion dynamics model of
Galam.

The target of the mathematical model of the hit phenomenon
is the “hits” phenomenon. The hits on social media are
similar to the burst phenomenon, which is found to evolve
through non-Poissonian dynamics [21]. The similarity between
the burst and hit phenomena is that specific topics that
are referred to widely, occur frequently in the social media.
The difference is that the burst phenomenon is spontaneous,
whereas the hit phenomenon is artificially drawn. Nonetheless,
the hit and burst phenomena are similar, and the study of
the hit phenomenon is useful for the research of the burst
phenomenon.

There many investigations on the hit phenomenon, other
than our works [22–34]. In contrast to other works on the
hit pheonomenon, in our model, the effect of advertisements,
and the propagation of reputation and rumors by human
communication are incorporated into the statistical physics of
human dynamics. The mathematical model has been applied
to the motion picture business in the Japanese market, and
the calculations have been compared to the reported revenue
and observed number of blog posts for each film. Furthermore,
in several recent papers, it has been shown that the theory is
not only applicable to the box office, but also to other social
entertainment, such as local events [35], animated dramas on TV
[36], the “general election” of the Japanese girl-group, AKB48
[37], online music [38], plays [39], music concerts [40, 41],
Japanese stage actors [42], Kabuki players of the nineteenth
century [43], and TV drama [44]. In these works, an extended
mathematical theory of the hit phenomena was used to apply
the model to general entertainment in society. Thus, it is very
natural to use this theory for the prediction of the motion picture
business.

In this paper, after screening a movie/ drama and expanding
the topic of the social incident using the mathematical model of
the hit phenomenon, which is modified slightly from the original
model of Ishii et al. [7], we analyze the result of the mathematical
model of the hit phenomenon for the analysis and prediction of
social dynamics.
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THEORY

Mathematical Model of the Hit
Phenomenon
The mathematical model of the hit phenomenon within a society
is presented as a stochastic process of the interaction of human
dynamics as in the many-body theory in physics [7]. In this
model, we assume that the intentions of humans in society are
affected by three mechanisms: advertisement, communication
with friends, and rumor. Advertisements are the external forces
for each person in society. Communication with friends is
called the direct communication effect and is considered as
interaction with the intentions of friends. The rumor effect is
considered as interaction among three persons and called indirect
communication, as described in Galam [1]. In the model, we
use only the time distribution of the advertisement budget as
the input, and the WOM represented by posts on social network
systems (SNS) is used as the observed data for comparison with
the calculated results. The parameters in the model are adjusted
in comparison with the calculation and observed SNS posting
data.

Here, we introduce the intention of a person, “i,” as Ii (t) ,
where this quantity is assumed to be a real number and
proportional to the number of posting in a blog or Twitter.
Although Ii(t) itself is not expected to be measured directly
in experiments or in social media analysis, we expect that it
to be proportional to the number of postings on the internet.
According to Ishii et al. [7], we express the equation of the
intention of each person using the exponential form as

dIi (t)

dt
= −aIi (t) +

∑

j

DijIj (t) +
∑

j

∑

k

PijkIj (t) Ik (t) + fi (t),

(1)
where Dij, Pijk, and fi(t) are the coefficient of direct
communication, coefficient of indirect communication, and
the random external force effect for a person, i, respectively.
As we consider the above equation for every consumer, i =
1, . . . , Np. Considering the effect of direct communication,
indirect communication, and the decline of the audience, we
obtain the above equation for the mathematical model of the hit
phenomenon. The advertisement and publicity effect for each
person can be described as the mean field value of the random
external force effect, <fi(t)>. Here, it is assumed that people’s
height of interest, I (t), attenuates exponentially. Although
this is known to occur in movies and as mentioned in Allsop
et al. [3], attention to events and anniversaries is known to
attenuate as per the power function [45, 46]. In the case of social
interest, we attenuate the intermediate between the exponential
and power functions [47], but here we adopt exponential
decay.

Generally, information spreads through WOM, which
sometimes has a significant effect on the spread of topics.
The WOM effect can be distinguished into two types: WOM
direct from friends and indirect WOM as rumors. We call the
WOM effect between friends “direct communication” because
customers obtain information directly from their friends. In
previous marketing theories based on the Bass model [17, 18],

communication from the adopter to non-adopter alone are
generally are taken into account. Here, in this paper, we include
the communication between non-adopters, in addition. We
consider here that person, i, hears information from person,
j. The probability per unit time for the information to affect
the purchase intention of person, i , can be noted as DijIj (t),
where Ij (t) is the purchase intention of person, j , and Dij is the
coefficient of direct communication. Thus, we can describe the
effect of direct communication as follows:

N
∑

j=1

DijIj (t) ,

where the summation is done without j = i.
In this paper, the rumor is called indirect communication.

In this form of communication, a person hears a rumor while
chatting on the street, overhearing a conversation from the next
table in a restaurant or on a train, or finds the rumor in blogs
or on Twitter. To construct a mathematical model, we focus
on a person, who listens to a conversation happening around
him/her. We consider that person, i, overhears the conversation
between person, j, and person, k. The strength of the effect of
the conversation of j and k can be described as DjkIj (t) Ik (t).
The probability per unit time for the conversation between j
and k to affect the purchase intention of person, i, is defined as
QijkDjk

Ij (t) Ik (t) , where Qijk is the coefficient of indirect effect

to i. Thus, the indirect communication coefficient can be defined
as Pijk = QijkDjk.

Equation (1) is for individuals; however, it is not convenient
for analysis. Thus, we consider the ensemble average of the
purchase intention of individuals, as follows:

〈I (t)〉 =
1

N

∑

i

Ii (t). (2)

Considering the effect of direct and indirect communication, and
the decline of the audience, we obtain the above equation for the
mathematical model of the hit phenomenon. The advertisement
and publicity effect for each person can be described by the
random effect, fi(t).

For the ensemble average of Equation (1), we obtain for the
left-hand side,

〈
dIi (t)

dt
〉 =

1

N

∑

i

dIi (t)

dt
=

d

dt

(

1

N

∑

i

Ii (t)

)

=
d 〈I〉

dt
. (3)

For the right-hand side, the ensemble average of the first, second,
and third are as follows:

〈−aIi〉 = −a
1

N

∑

i

Ii (t) = −a 〈I (t)〉 , (4)

〈

∑

j

DijIj (t)〉 = 〈

∑

j

DIj (t)〉 =
1

N

∑

i

∑

j

DIj (t)

=

∑

i

D
1

N

∑

j

Ij (t) = ND 〈I (t)〉, (5)
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〈

∑

j

∑

k

PijkIj (t) Ik (t)〉 = 〈P
∑

j

∑

k

Ij (t) Ik (t)〉

=
1

N

∑

i

P
∑

j

∑

k

Ij (t) Ik (t)

=

∑

i

P
1

N

∑

j

∑

k

Ij (t) Ik (t)

= NP
∑

i

1

N

∑

j

Ij (t)
1

N

∑

k

Ik (t)

= N2P 〈I (t)〉2 , (6)

where we assume that the coefficients of the direct and indirect
communication can be approximated by

Dij
∼= D,

PijkDjk = pijk ∼= P

under the ensemble average.
For the fourth term, which is the random effect term, we

consider that the random effect can be divided into two parts:
the collective and individual effects:

fi (t) =
〈

f (t)
〉

+ 1fi (t) , (7)

〈

fi (t)
〉

=
1

N

∑

i

fi (t) =
〈

f (t)
〉

, (8)

where 1fi (t) is the deviation of the individual external effects
from the collective effect,

〈

f (t)
〉

. Thus, we consider here that
the collective external effect term,

〈

f (t)
〉

, corresponds to the
advertisements and publicity, for the persons in society. The
deviation term, 1fi (t) , corresponds to the deviation effect from
the collective advertisement and publicity effect for individuals,
which can be assumed to be

〈

1fi (t)
〉

=
1

N

∑

i

1fi (t) = 0. (9)

Taking the above ensemble average of Equation (1), we obtain the
following form as the intention of society as a collective mode:

d 〈I (t)〉

dt
= −a 〈I (t)〉 + D 〈I (t)〉 + P 〈I (t)〉2 +

∑

ξ
CξAζ (t),

(10)
where Nd = D and N2h = P. The detailed derivation is shown
in Allsop et al. [3]. We represent the external effect as

〈

f (t)
〉

=
∑

ξ CξAζ (t). Hereafter, we denote
〈

I(t)
〉

as I(t). Equation (10) is
modified slightly from the original model in Ishii et al. [7]. In
the original mathematical model for the hit phenomenon, direct
and the indirect communication are distinguished as the roles
of known and unknown people, respectively, for a certain topic.
Thus, in the original model, five parameters are to be determined
for direct and indirect communication. Moreover, in the original
model, we assume different parameters for the before-open and
after-open periods. Thus, at least 10 parameters need to be
adjusted in the original model, for the communication effects.
In the model of this paper, for simplicity, we do not distinguish

between known and unknown people for the topic of concern.
Hence, the number of parameters that should be adjusted using
real data are only two, D and P. The decay rate, a, in Equation
(10) can be assumed to be 0.5, which is same as that in the original
model [7]. The strength of each media, Cξ , should be determined
separately. Thus, if the number of media is one, the number
of parameters that should be adjusted using real data is only
three.

In the following calculation, coefficients C, D, and P are
determined such that the calculated value according to the
Equation (10) coincides with the daily change in the observed
tweet number; the Monte Carlo method is used, and the details
are available in Ishii et al. [7], as given below.

The advertisement and publicity effects are included inAξ (t) ,
which is treated as an external force. The index, ξ , sums up the
mass media exposures. TheWOM, represented by posts on SNSs,
such as blogs or Twitter, is used as the observed data, which can
be compared with the calculated results of the model. The unit of
time is a day.

The advertisement and publicity effects are obtained from M
Data Co. Ltd (http://mdata.tv/en/) as the TV metadata of real-
time advertisement and publicity on television for a certain topic.
TV metadata includes text data containing the summary of TV
programs and commercials with time stamp. M Data records
them immediately after broadcast. It captures TV metadata by
verifying the aired content with human eyes and ears. This
metadata contains the summary of the broadcast contents,
performer’s name, brand name, company name, place name, and
duration of exposure. The WOM, represented by posts on SNSs,
are observed using the social media analysis tool, Kuchikomi
@ Kakaricyo by Hottolink Co. Ltd (https://www.hottolink.co.jp/
english/).

Parameter Estimation
For reliability, we introduce the “R-factor” (reliability
factor), which is well-known in the field of low-energy
electron diffraction (LEED) [48]. In LEED experiments, the
experimentally observed curve of the current vs. voltage is
compared to the corresponding theoretical curve, using the
R-factor.

For our purpose, we define the R-factor as follows:

R =

∑

i

(

f (i) − g(i)
)2

∑

i

[

f 2 (i) + g2(i)
]

, (11)

where f(i) and g(i) correspond to the calculated I(t) and the
observed number of blog posts or tweets, respectively. The
smaller the value of R, the better are the functions, f and g.
Thus, we use a stochastic method to search for the parameter
set that minimizes R. This random number technique is similar
to the Metropolis method [49], which we have used previously
[7]. In the actual calculation, we change each parameter within
10% of its value, using the random number per turn. We
perform such calculations for more than one-hundred-thousand
turns, similar to the Metropolis method for molecular dynamics.
For the molecular dynamics, we try to obtain the parameter
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configuration that gives the lowest total energy. In our case,
we try to obtain the parameter configuration with the least
R-factor.

In the real calculation, for adjusting parameters Cξ , D,
and P, the local minimum trapping, as in the first principle
calculation in material physics, needs to be avoided. There
are several ways to determine the minimum condition,
including the steepest descent, equation of motion method,
and conjugate gradient method. Even in the actual first
principle calculation or density functional theory, local minimum

trapping needs to be avoided. In this paper, we only calculate,
using several initial values in a Metropolis-like method
to avoid local minimum trapping. To check the accuracy
of the parameter adjustment, we use the R-factor value.
For every calculation shown in this paper, the R-factor is
below 0.01.

Although parameters Cξ , D, and P in Equation (10) can be
considered as functions of time, we retain Cξ , D, and P as
constant values to examine whether Equation (10) can be applied
to any social phenomena.

FIGURE 1 | Calculated and observed data for Japanese Famous Food WOM of “Case A” in 2014/1/1–2014/12/31. The histograms are the daily total advertisements

on TV (Green) and the internet (Purple). The blue curve corresponds to the observed number of daily Blog postings and the red curve is our calculation.

FIGURE 2 | Calculated and observed data for the movie, “Case B” in Japan. The histogram indicates [ADV (s)] is the number of daily exposures on TV information

about “Case B” in seconds. The blue curve corresponds to the observed number of daily Twitter postings and the red curve is our calculation.
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FIGURE 3 | Reputation of films (A) “Case C” and (B) “Case D” based on analysis using the mathematical model of the hit phenomenon. The line chart is the number

of daily blog posts and the corresponding calculated values. The histogram (Case C) indicates [ADV (s)] is the number of daily exposures on TV information about

“Case C” in seconds. And The histogram (Case D) indicates [ADV (s)] is the number of daily exposures on TV (Green) and the internet (Orange).
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RESULTS

In this section, we present the analysis results of social-media
posts, using the mathematical model of the hit phenomenon.
The actual analysis of the direct and indirect communication
are presented, which are critical in the mathematical model of
the hit phenomenon. Other examples include Japanese group
events, reputation of popular videos, and the results before the
conclusion of event-ticket reservation.

Case A
In Figure 1, the mathematical model of the hit phenomenon
is applied to a “Case A.” Our target is Japanese Famous Food
WOM of “Case A.” The horizontal axis in the figure represents
the date from 2014/1/1 to 2014/12/31. The peaks in the figure
correspond to the number of daily exposures on Blog and the
internet of “Case A.” As can be seen, our calculation results
demonstrate that the number of social media posts are measured
with sufficient precision. Thus, the mathematical model of the hit
phenomenon can be applied to Japanese Famous Food WOM of
“Case A.”

Case B
A movie example is shown in Figure 2, our calculation for
the American movie, “Case B” (2015), is depicted [50]. The
histogram indicates the number of seconds of exposure
by advertisement or publicity on television. Excluding
small fluctuations, the calculation result matches with the
number of Twitter postings accurately. Thus, the mathematical
model of the hit phenomenon can be used for movies,
as well.

Strong Indirect Communication
In the analysis, we present an example, where indirect
communication, which is a characteristic action in the
mathematical model of the hit phenomenon, has significant
effect. According to the mathematical-model analysis of
the hit phenomenon, several movies show large indirect
communication. The results for movies, “Case C” and “Case
D,” are depicted in Figure 3. The calculation result by the
mathematical model of the hit phenomenon matches well with
the number of blog posts. Considerable indirect communication
enhances the movie’s reputation.

Another typical break is “Case E,” a Japanese Tarent who
became a hit in September 2016. Figure 4 shows the analysis
of the reputation of “Case E” using the number of blog posts,
which are calculated using the mathematical model of the
hit phenomenon. The calculation agrees well with the actual
measurement [50].

Figure 5 compares the coefficients determined, before and
after the day influencer introduced the video. The strength,
“P,” of the indirect communication significantly increased,
after introduction. Response to media exposure also increased
considerably. Thus, it is considered that an explosive epidemic
appears as an increase in the strength, “P,” of the indirect
communication.

FIGURE 4 | Analysis of “Case E.” The red curve is our calculation using the

model, the blue curve is the observed daily number of postings in blogs, in

Japanese language, and the histograms are the daily total advertisements on

TV (Orange) and the internet (Green).

On the other hand, the direct communication strength, “D,” is
rather weak. Although this movie was spreading through breaks,
it shows there is no increase in the number of “Case E” ’s
core interested people. This indicates that even in the midst of
an explosive epidemic, the direct communication strength, i.e.,
the satisfaction of the core interested people is not necessarily
increased or limited. We also did a similar calculation on the
explosive epidemic for “Pokemon GO” [51].

Direct and Indirect Communication
The following example is of the reputation of the Japanese
Famous group, “Case F” for event. We analyzed the reputation,
before and after event held in summer 2015, using the
mathematical model of the hit phenomenon [52]. The result is
shown in Figure 6.

Several Famous groups participated in this event and
gathered a vast audience. Before event, the indirect
communication strength, “P,” was large, whereas that of
the direct communication, “D,” increased, after the event.
Indirect communication shows the strength with which people,
other than the interested people, are interested and direct
communication indicates the interest of interested people. In the
“Case F,” it appears that those who were interested, before the
event, became core interested people of “Case F,” after the event.

In hit contents, indirect communication increases after
publication. The “Case E” epidemic is consistent with the
increase in break and indirect communication. Hence, the
reputation breaks, when indirect communication increases
rapidly. Additionally, convergence occurs, when indirect
communication decreases.

On the other hand, the strength of direct communication
shows the enthusiasm of core interested people but does not
imply that there are numerous core interested people. The
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FIGURE 5 | Observed parameters “P,” “D,” and Cadv for TV, and Cadv for the internet, as per the calculations in of Figure 4.

FIGURE 6 | Analysis of the “Case F,” before and after event in Japan, in the summer of 2016.

increase in direct communication, after the event at “Case F,”
indicates an increase in the number of enthusiastic interested
people. However, the fact that there is no increase in direct
communication in the “Case E” indicates that “Case E” is only
a topicality and there is no increase in “Case E” ’s core interested
people.

DISCUSSION

Using the mathematical model of the hit phenomenon,
we analyzed the reputations of a movie, a YouTube movie
that became a global topic, and the popular event trend
in Japanese. Important factors in the mathematical model
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of the hit phenomenon include the direct communication
strength, “D,” the indirect communication strength,
“P,” and the coefficient, “C,” of the media response
strength.

The results indicate that for the reputation of “Case E” ’s
movie, the indirect communication strength, “P,” increased, with
the world-wide reputation. “P” tends to be large, for hit movies
also. Therefore, the indirect communication strength, “P,” was
found to be related to the wide propagation of the topic.

On the other hand, the comparison of the reputation, before
and after the group event, shows that the direct communication
strength, “D,” appears to be the satisfaction level of the support
layer.

Hence, “D” indicates whether the current support layer is
satisfied, and P indicates the power to acquire a new support
layer. This can be said to be effective not only for the analysis
of entertainment and marketing strategy but also for political
election analysis.

As the mathematical model of the hit phenomenon is a theory
of sociophysics, it is possible to describe how a person in society
causes interest, and follow the time change of this interest.
Therefore, expansion is easy. For example, to determine which
among two competing topics shows interest, a theory has already
been proposed, which generates two mathematical models of the
hit phenomenon simultaneously [53, 54].

In addition, it is possible to solve the influence of social media
on the market share of products by the simultaneous theory of

the market share, in economics, and the mathematical model of
the hit phenomenon [55].

The hits on social media are similar to the burst phenomenon,
which evolves through non-Poissonian dynamics.

CONCLUSION

In this paper, using the mathematical model of the hit
phenomenon, which is one of the theories of sociophysics,
the rise of topics and convergence in society were calculated,
even for movies, and events, and the reputation of a YouTube
movie that became a global topic. This establishes that the
mathematical model of the hit phenomenon can explain the
spread of topics as a social phenomenon. Using this model, it
can be determined whether the topic is spread beyond clusters by
social dynamics; if the indirect communication is considerable,
it becomes a hit. Additionally, it is possible to quantitatively
analyze the propagation mechanism of popular topics, using
the mathematical model of the hit phenomenon. It may be
possible to clarify the mechanism for information propagation
as a social epidemic phenomenon, according to the utilization of
the corresponding parameter.
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