
Edited by  

Lin Qi, Zhigang Liu, Linhui Wang, Hongzhou Cai 

and Ouyang Chen

Published in  

Frontiers in Pharmacology 

Frontiers in Genetics

Multi-omics approaches 
for decoding heterogeneity 
in cancer immunotherapy

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/research-topics/54533/multi-omics-approaches-for-decoding-heterogeneity-in-cancer-immunotherapy
https://www.frontiersin.org/research-topics/54533/multi-omics-approaches-for-decoding-heterogeneity-in-cancer-immunotherapy
https://www.frontiersin.org/research-topics/54533/multi-omics-approaches-for-decoding-heterogeneity-in-cancer-immunotherapy
https://www.frontiersin.org/journals/genetics


November 2023

Frontiers in Pharmacology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3965-1 
DOI 10.3389/978-2-8325-3965-1

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


November 2023

Frontiers in Pharmacology 2 frontiersin.org

Multi-omics approaches for 
decoding heterogeneity in cancer 
immunotherapy

Topic editors

Lin Qi — Central South University, China

Zhigang Liu — The Fifth Affiliated Hospital of Sun Yat-sen University, China

Linhui Wang — Second Military Medical University, China

Hongzhou Cai — Nanjing Medical University, China

Ouyang Chen — Duke University, United States

Citation

Qi, L., Liu, Z., Wang, L., Cai, H., Chen, O., eds. (2023). Multi-omics approaches for 

decoding heterogeneity in cancer immunotherapy. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-3965-1

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3965-1


November 2023

Frontiers in Pharmacology frontiersin.org3

05 Editorial: Multi-omics approaches for decoding 
heterogeneity in cancer immunotherapy
Aimin Jiang, Ying Liu, Ouyang Chen, Zhigang Liu, Hongzhou Cai, 
Linhui Wang and Lin Qi

10 A senescence-associated signature refines the classification 
of different modification patterns and characterization of 
tumor immune microenvironment infiltration in 
triple-negative breast cancer
Renhong Huang, Han Wang, Jin Hong, Zheng Wang, Jiayi Wu, 
Ou Huang, Jianrong He, Weiguo Chen, Yafen Li, Xiaosong Chen and 
Kunwei Shen

27 Integrated high-throughput analysis identifies super 
enhancers in metastatic castration-resistant prostate cancer
Jie Zeng, Jiahong Chen, Maozhang Li, Chuanfan Zhong, Zezhen Liu, 
Yan Wang, Yuejiao Li, Funeng Jiang, Shumin Fang and Weide Zhong

40 Constructing a cancer stem cell related prognostic model for 
predicting immune landscape and drug sensitivity in 
colorectal cancer
Jianfang Chen, Shuang Wu, Yu Peng, Yang Zhao, Yan Dong, 
Fengwei Ran, Haofei Geng, Kang Zhang, Jianjun Li, Shuo Huang and 
Zhe Wang

56 Efferocytosis signatures as prognostic markers for revealing 
immune landscape and predicting immunotherapy response 
in hepatocellular carcinoma
Ke Xu, Yu Liu, Huiyan Luo and Tengfei Wang

71 Identification and validation of SERPINE1 as a prognostic and 
immunological biomarker in pan-cancer and in ccRCC
Lingqin Li, Fan Li, Zhehao Xu, Liyang Li, Haiyi Hu, Yang Li, 
Shicheng Yu, Mingchao Wang and Lei Gao

93 Identification of a ferroptosis-related gene signature 
predicting recurrence in stage II/III colorectal cancer based 
on machine learning algorithms
Ze Wang, Chenghao Ma, Qiong Teng, Jinyu Man, Xuening Zhang, 
Xinjie Liu, Tongchao Zhang, Wei Chong, Hao Chen and Ming Lu

107 Heterogeneity and potential therapeutic insights for 
triple-negative breast cancer based on metabolic‐associated 
molecular subtypes and genomic mutations
Lijuan Li, Nan Wu, Gaojian Zhuang, Lin Geng, Yu Zeng, Xuan Wang, 
Shuang Wang, Xianhui Ruan, Xiangqian Zheng, Juntian Liu and 
Ming Gao

122 Integrated multi-omics identified the novel intratumor 
microbiome-derived subtypes and signature to predict the 
outcome, tumor microenvironment heterogeneity, and 
immunotherapy response for pancreatic cancer patients
Biao Zhang, Jifeng Liu, Han Li, Bingqian Huang, Bolin Zhang, 
Binyu Song, Chongchan Bao, Yunfei Liu and Zhizhou Wang

Table of
contents

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/


November 2023

Frontiers in Pharmacology 4 frontiersin.org

141 Heterogeneity characterization of hepatocellular carcinoma 
based on the sensitivity to 5-fluorouracil and development of 
a prognostic regression model
Xinyu Gu, Shuang Li, Xiao Ma, Di Huang and Penghui Li

154 Identification of prognostic and diagnostic signatures for 
cancer and acute myocardial infarction: multi-omics 
approaches for deciphering heterogeneity to enhance 
patient management
Na Yuan, Hai-Hua Pan, Yan-Shan Liang, Hui-Lin Hu, Chang-Lin Zhai 
and Bo Wang

169 Comprehensive analysis of Cuproplasia and immune 
microenvironment in lung adenocarcinoma
Junjie Kuang, Zemao Zheng, Wen Ma, Shaohui Zeng, Dehua Wu, 
Xie Weng and Yuming Chen

184 A glycosylation risk score comprehensively assists the 
treatment of bladder neoplasm in the real-world cohort, 
including the tumor microenvironment, molecular and 
clinical prognosis
Jinhui Liu, Yunbo He, Weimin Zhou, Zhuoming Tang and 
Zicheng Xiao

198 Decoding tumor heterogeneity in uveal melanoma: basement 
membrane genes as novel biomarkers and therapeutic 
targets revealed by multi-omics approaches for cancer 
immunotherapy
Yunyue Li, Huabao Cai, Jinyan Yang, Xixi Xie, Shengbin Pei, Yifan Wu, 
Jinhao Zhang, Guobin Song, Jieying Zhang, Qinhong Zhang, Hao Chi 
and Guanhu Yang

218 Isoform switching leads to downregulation of cytokine 
producing genes in estrogen receptor positive breast cancer
Mohammad Shahbaz Khan, Waqar Hanif, Nada Alsakhen, 
Basit Jabbar, Israa M. Shamkh, Ahad Amer Alsaiari, Mazen Almehmadi, 
Saad Alghamdi, Afnan Shakoori, Dunia A. Al Farraj, 
Saeedah Musaed Almutairi, Yasser Hussein Issa Mohammed, 
Amr S. Abouzied, Aziz-Ur Rehman and Bader Huwaimel

234 Comprehensive multi-omics analysis of tryptophan 
metabolism-related gene expression signature to predict 
prognosis in gastric cancer
Peng Luo, Guojun Chen, Zhaoqi Shi, Jin Yang, Xianfa Wang, 
Junhai Pan and Linghua Zhu

251 Applying machine learning algorithms to develop a survival 
prediction model for lung adenocarcinoma based on genes 
related to fatty acid metabolism
Dan Cong, Yanan Zhao, Wenlong Zhang, Jun Li and Yuansong Bai

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/


Editorial: Multi-omics approaches
for decoding heterogeneity in
cancer immunotherapy

Aimin Jiang1†, Ying Liu1†, Ouyang Chen2, Zhigang Liu3,
Hongzhou Cai4, Linhui Wang1* and Lin Qi5,6*
1Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China, 2Department of
Cell Biology, Duke University Medical Center, Durham, NC, United States, 3Dongguan Key Laboratory of
Precision Diagnosis and Treatment for Tumors, Dongguan, Guangdong, China, 4Department of Urology,
Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing
Medical University, Nanjing, Jiangsu, China, 5Department of Orthopedics, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China, 6Hunan Key Laboratory of Tumor Models and
Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, China

KEYWORDS

multi-omics, tumor microenvironment, tumor heterogeneity, cancer immunotherapy,
personalized medicine

Editorial on the Research Topic
Multi-omics approaches for decoding heterogeneity in cancer
immunotherapy

The emergence of cancer immunotherapy has brought about a significant revolution in
the field of oncology (Hegde and Chen, 2020). This innovative approach offers new
possibilities for treating a wide range of malignancies by leveraging the immune system’s
power. Nevertheless, the effectiveness of such therapeutic strategies can be restricted by the
inherent heterogeneity present within and between tumors. Consequently, deciphering this
heterogeneity represents a critical challenge in optimizing the efficiency of
immunotherapies. Tumor heterogeneity refers to the observed biological diversity among
cancer cells residing in a single tumor or across different tumors. It arises from a variety of
factors, including genetic variations, epigenetic modifications, transcriptional changes, and
alterations in protein expression or metabolic profiles (Jia et al., 2022). This intricate
interplay complicates efforts to elicit consistent and sustained responses to immunotherapy,
as various cell populations may display different susceptibility to immune attack or exert
diverse influences on the tumor microenvironment.

This is where the importance of multi-omics approaches comes into play. By
incorporating genomics, transcriptomics, proteomics, metabolomics, and other “-omics”
technologies, multi-omics provides a comprehensive view of the various biological layers
present within tumors (Lee et al., 2022). It enables the characterization of genomic
alterations, mRNA expression levels, protein abundance, and metabolic profiles across
diverse cellular populations, allowing for a comprehensive understanding of the molecular
landscape of carcinomas. Such high-resolution mapping facilitates the identification of
distinctive molecular signatures linked to either response or resistance to immunotherapy. It
also helps in elucidating the underlying mechanisms governing tumor-immune interactions
and the discovery of novel targets for immunotherapy. Furthermore, temporal multi-omics
analyses can track the dynamic changes occurring within tumors over time or in response to
treatment, providing valuable insights into the evolution of tumor heterogeneity and its
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impact on treatment outcomes. In summary, multi-omics represents
a powerful tool in unravelling the complexity of tumor
heterogeneity, a critical factor in fully unlocking the potential of
cancer immunotherapy. The knowledge gained from these
investigations is expected to significantly contribute to
personalized medicine and ultimately improve patient outcomes
in the era of immunotherapy.

Given the vast amount of multi-omics data available and the
advanced approaches for high pathway data analysis, this Research
Topic has been thoroughly explored through 16 original research
articles authored by a total of 137 individuals. These articles provide
a comprehensive overview of the role played by multi-omics
approaches in decoding tumor heterogeneity and enhancing the
efficacy of immunotherapy.

Uveal melanoma (UVM) represents a primary intraocular
malignancy that not only significantly impairs patients’ visual
function and overall health but also poses a significant
therapeutic challenge. The basement membrane (BM), critical in
instigating and preserving diverse biological processes such as cell
polarity, organ morphogenesis, and adult function, houses certain
genes responsible for synthesizing basement membrane proteins
which serve as valuable prognostic biomarkers across various cancer
types. In their pioneering study, Li et al. adeptly employed multi-
omics UVM datasets to develop an innovative risk assessment
framework predicated on BM-associated genes. This system lays
a robust theoretical groundwork for crafting precise, personalized
treatment approaches. Immunotherapy appears particularly
beneficial for high-risk group UVM patients, while those within
the low-risk group enjoy enhanced survival benefits. Interestingly,
in vitro assays established that inhibiting ITGA5 expression, a BM-
related gene, effectively stymies the proliferation, migration, and
invasive capabilities of UVM cells. In essence, the BM-related model
proposed by Li et al. study demonstrates exceptional predictive
prowess, markedly influencing patient prognosis and guiding
individualized treatment strategies. Furthermore, this novel
model paves the way for evaluating the effectiveness of pre-
immune interventions.

Abundant empirical research has underscored the pivotal roles
that cancer stem cells (CSCs) assume in driving and disseminating
cancer. A study spearheaded by Chen et al. centered specifically on
CSCs, identifying a selection of CSC marker genes predicated on
scRNA-seq data procured from colorectal cancer samples. Through
analyzing these markers’ expression profiles, the team singled out
29 CSC marker genes. Two distinctive phenotypes were identified
and termed as CSC1 and CSC2. CSC2 owned a shorter disease
specific survival or DSS and heightened oxidative stress response.
Notably, drug sensitivity analyses suggested that CSC2 was more
receptive to 44 chemotherapy drugs relative to CSC1. To bolster
prognostication, the researchers devised a seven-gene prognostic
model, adept at distinguishing high-risk from low-risk patients.
Specifically, 14 chemotherapy drugs were found to be more
beneficial for the high-risk group, while 13 were more effective
for the low-risk group. Collectively, these insights enhance our
comprehension of CSCs’ role in shaping the evolution and
progression of colorectal cancer. Importantly, the seven-gene
prognostic model shows promise as an indicator for predicting
responsiveness to immunotherapy and chemotherapy, concurrently
supplying valuable prognostic information for colorectal cancer

patients. Given the global prevalence of colorectal cancer and the
inherent heterogeneity-induced survival paradox in stage II/III CRC
tumor biology, tumor progression is intimately linked with
ferroptosis. As such, ferroptosis-related genes (FRG) may
constitute novel biomarkers for predicting cancer prognosis. In
their study, Wang et al. crafted a machine learning framework,
which was consisted of 83 combinations of 10 algorithms to
pinpoint the most robust and stable colorectal cancer model
derived from FRG signatures. Strikingly, the FRG signature
outperformed the clinicopathological features, and significantly
correlated with BRAF mutation and microsatellite instability.
Furthermore, the FRG signature was segregated into a high-risk
group and a low-risk subgroup. Notably, high FRG signature
corresponded to poorer prognosis across all datasets. Crucially,
sensitivity analysis affirmed the FRG signature as a significant
prognostic indicator, underscoring its potential in guiding clinical
decision-making and facilitating personalized therapy for stage II/III
colorectal cancer patients.

Recent studies have unveiled the pivotal role that microbes
assume in the onset, evolution, metastasis, and treatment
response of diverse tumor types. This influence is especially
pronounced in the context of the tumor microenvironment and
immune response. A multitude of research has demonstrated that
the intratumor microbiome can shape the progression, metastases,
prognosis, and immunotherapy outcomes in cancer patients. This
modulation occurs via control of oxidative stress, Toll-like receptor-
mediated immune response, and tumor cell metabolism, which
engages several signaling pathways including mTOR, STAT3,
Wnt, and MAPK. However, current understanding falls short of
comprehensively elucidating the relationship between the
intratumor microbiome and clinicopathological features,
prognosis, heterogeneity of the tumor microenvironment, and
therapeutic response in pancreatic cancer (PC). In a study
spearheaded by Zhang et al., 26 prognostic genera associated
with PC were identified. The PC samples were categorized into
two microbiome-related subtypes: Mcluster A and B. Patients in
Mcluster B exhibited poorer prognosis, higher TNM stage, and
pathological grade compared to those in Mcluster A. Immune
analysis exposed significantly elevated levels of infiltrated CD8+

T cells, M1 and M2 macrophages, cancer-associated fibroblasts,
myeloid dendritic cells, neutrophils, regulatory T cells, and activated
mast cells in Mcluster B. Conversely, patients in Mcluster A were
more likely to benefit from CTLA-4 blockers and exhibited
heightened sensitivity to several agents including oxaliplatin, and
epirubicin. Moreover, a microbe-derived model was devised to
predict the outcome in PC, with ROC curves illustrating this
model’s high predictive performance. Single-cell analysis
identified the presence of monocytes/macrophages, endothelial
cells, and fibroblasts along with cancer cells within the PC tumor
microenvironment. Notably, LIPH and LAMA3 displayed relatively
higher expression in cancer cells and neutrophils. Collectively, these
insights offer new perspectives on outcome assessment and
therapeutic strategies for PC.

The 5-year survival rate for patients with advanced-stage gastric
cancer (GC) remains disappointingly low. Studies have proposed a
role for tryptophan metabolism in cancer progression, implicating it
in eliciting immunosuppressive responses and bolstering the
malignancy of cancer cells. Thus, unraveling the roles of
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tryptophan and its metabolism is key to comprehending the
molecular mechanisms implicated in GC evolution. In a recent
study spearheaded by Luo et al., public datasets were employed to
identify genes associated with tryptophanmetabolism. Single sample
gene set enrichment analysis, and correlation analysis were utilized
to this end. Consequently, two molecular subtypes linked with
tryptophan metabolism were pinpointed. The first subtype,
coined C1, exhibited a more favorable prognosis than the second
subtype, C2. This observation was accompanied by an uptick in
CD4 positive memory T cells and activated dendritic cells (DCs)
within the tumor microenvironment, along with a suppression of
M2-phenotype macrophages. Furthermore, immune checkpoint
activity was detected to be downregulated in the
C1 subgroup. To construct a prognostic risk model, eight pivotal
genes were identified as critical to predict the prognosis of GC
patients. In sum, this study underscores the potential utility of
tryptophan metabolism-associated genes in forecasting the
prognosis of GC patients. The risk model devised in this study
demonstrated remarkable precision in predicting survival outcomes
in GC patients.

Hepatocellular carcinoma (HCC) represents an assertive form of
liver cancer typically diagnosed at advanced stages, thereby
contributing to high mortality rates. Hence, the discovery of new
biomarkers for early detection and patient outcome improvement is
imperative. Efferocytosis, a sophisticated process wherein one cell
engulfs another, involves diverse immune cells like macrophages,
dendritic cells, and natural killer (NK) cells. This process,
intriguingly, plays a dual role in tumor development—sometime
fostering, other times inhibiting tumorigenesis. Nevertheless, our
understanding of efferocytosis-related genes’ (ERGs) role in HCC
progression remains incomplete, particularly their influence on
immunotherapy and targeted drug treatments. In a recent study
helmed by Xu et al., a risk model predicated on six ERGs was
designed, leading to the identification of two distinct HCC subtypes
corresponding to these genes. The identified subtypes exhibited
significant disparities in the tumor immune landscape and
prognosis, accentuating efferocytosis status’s importance in HCC.
Collectively, this investigation illuminates the critical role of
efferocytosis in HCC and lays a solid groundwork for further
exploration into this disease’s progression and treatment
response. It holds potential in shaping clinical decision-making
in HCC management. Additionally, 5-FU, a traditional
chemotherapeutic drug utilized in various cancers, has been
demonstrated to elicit an effective response not only by targeting
cancer cells but also by stimulating an anti-tumor immune response
mediated by the STING pathway within the cancer cells themselves.
The cGAS-STING pathway activation by 5-FU treatment instigates
local production of type I interferons (IFNs), implying that 5-FU
could trigger IFN production specifically in the tumor
microenvironment, even in cancers traditionally unaddressed
with 5-FU. In a study conducted by Gu et al., HCC subtypes
were classified based on their 5-FU sensitivity. The findings
corroborated the observed prognostic disparities in HCC and
underscored the heterogeneity of genomic variations, the tumor
immune microenvironment, and pathological pathways.
Additionally, the study devised an independent prognostic risk
regression model incorporating five 5-FU-related genes,
promoting individualized HCC monitoring advancement. In

conclusion, these studies affirm 5-FU’s crucial role in bolstering
anti-tumor immunity and offer valuable insights into this drug’s
potential application in HCC treatment.

We have gathered three research papers on breast cancer for our
Research Topic analysis. One crucial mechanism that has been
widely recognized as a natural defense against tumors is cellular
senescence. Oncogene-induced senescence (OIS), which involves
the activation of proto-oncogenes or the deactivation of tumor
suppressor genes, leads to cell growth arrest. Notably, Huang
et al. conducted a comprehensive study using both in-silicon and
experimental approaches and categorized triple-negative breast
cancer (TNBC) into two subtypes, namely, TNBCSASP1 and
TNBCSASP2. They based this classification on the set of genes
associated with the senescence-associated secretory phenotype.
Unfortunately, the TNBCSASP1 subtype displayed a poor
prognosis. It was found to exhibit immunosuppression, with
reduced activity in immune-related signaling pathways and
limited infiltration of immune cells. The likelihood of TP53 and
TGF-β pathways mutations contributing to the unfavourable
prognosis of the TNBCSASP1 subtype was suggested.
Additionally, the authors uncovered FAM3B as a key biomarker
influencing the prognosis of patients with TNBC. In TNBC, FAM3B
expression was lower than in normal breast tissue. Survival analysis
demonstrated that patients with high FAM3B expression had
significantly shorter overall survival rates. Unfortunately, due to
the lack of effective treatments, triple-negative breast cancer has an
extremely poor prognosis. Metabolic reprogramming is a
fundamental aspect of tumorigenesis, cancer diagnosis, prognosis,
and treatment. Li et al. conducted a fascinating study in which they
identified two metabolically distinct subtypes of TNBC. The
C1 subtype exhibited high expression of immune checkpoint
genes and immune and stromal scores, suggesting sensitivity to
PD-1 inhibitors. Conversely, the C2 subtype exhibited significant
variation in carbohydrate, lipid, and amino acid metabolism
pathways. Importantly, C2 lacked immune signatures, displayed
late pathological stage, low immune infiltration, and
correspondingly had a poor prognosis. C2 also had a high
mutation frequency in PIK3CA, KMT2D, and KMT2C, and
exhibited significant activation of the PI3K and angiogenesis
pathways. In conclusion, the authors successfully identified two
TNBC subtypes with distinct metabolic characteristics, offering
valuable insights into TNBC heterogeneity and providing a
theoretical foundation for potential therapeutic strategies.
Among the various types of breast cancer, estrogen receptor
(ER) breast cancer is the most prevalent, characterized by the
expression of estrogen receptors. Globally, it affects
approximately 2.26 million women. Khan et al. conducted a
study that identified differentially expressed genes and isoform
switching between ER-positive and triple-negative breast cancer
samples. Specifically, they pinpointed six genes predominantly
associated with ER-positive breast cancer, as well as a novel set of
ten genes not previously reported in ER-positive breast cancer.
Additionally, alternative splicing and subsequent isoform usage
in genes related to the immune system were identified. This study
sheds light on the differential isoform usage occurring in cancer
cells and its potential implication in immunosuppression
through dysregulation of CXCR chemokine receptor binding,
iron ion binding, and cytokine activity.
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Copper, an indispensable mineral vital for enzyme activity
and transcription factor function, can trigger proteotoxic stress
and a unique form of cell death known as cuproptosis when in
excess, due to the accumulation of lipoylated dihydrolipoamide
S-acetyltransferase (DLAT), linked with the TCA cycle.
Cuproptosis, implicated in cancer progression, presents a
promising therapeutic target. In their study, Kuang et al.
utilized multi-omics datasets and extensive in vitro
experiments to probe the biological and clinical significance of
cuproptosis in lung adenocarcinoma (LUAD). Employing lasso
regression analysis, they developed a cuproptosis-related
signature (CRS) based on 24 specific genes. According to
findings, high-risk CRS patients portended poorer prognosis
in both TCGA-LUAD and GSE31210 datasets. Further
enrichment analysis disclosed that copper proliferation
primarily transpired via chromosome-related pathways, cell
cycle regulation, DNA replication, and G2M checkpoint
activation. Additionally, differences in macrophage levels were
observed between low and high CRS groups through immuno-
infiltration analysis. Crucially, these cuproptosis-related genes
might serve as potential prognostic predictors and
immunotherapy effectiveness indicators for LUAD patients by
influencing chromosome-related pathways and macrophage
activity. Concurrently, Cong et al. study employed machine
learning algorithms such as GBM, lasso, xgboost, SVM,
random Forest, and Decision Trees to construct a novel risk
stratification system based on fatty acid metabolism (FAM)-
related signatures. Lower FAM-related pathway scores were
noted in LUAD samples. Three molecular subtypes C1, C2,
and C3 were defined, with differential prognostic analysis
revealing the most favorable prognosis in C1 subtype, followed
by C2, and the worst prognosis in C3 subtype. The C3 subtype
also displayed lower levels of immune infiltration. A risk score
model was developed using 12 key identified genes where high-
risk score patients demonstrated significantly lower survival
rates. Conversely, the low-risk score group showed higher
immune scores and increased expression of immune
checkpoint genes. Moreover, high-risk score patients were
more likely to benefit from six anti-cancer drugs screened in
this study. In essence, these studies offer valuable insights into the
role of cuproptosis and fatty acid metabolism in LUAD’s
prognosis and treatment. They underscore the potential utility
of cuproptosis-related genes and fatty acid metabolism-related
signatures in predicting patient outcomes and informing
therapeutic strategies, including immunotherapy and targeted
drug interventions.

The amplified cardiovascular event risk experienced by cancer
patients presents a substantial concern. Extensive research suggests
that cancer survivors are more prone to cardiac complications,
including myocardial infarction, heart failure, and arrhythmias,
relative to the general populace. Yuan et al. recent study
illuminates that distinct monocyte-derived biomarkers harbor
significant promise in prognosticating cancer outcomes and acute
myocardial infarction (AMI). The researchers applied an innovative
formula to examine mRNA levels in clinical samples from AMI and
cancer-diagnosed patients, leading to the construction of a novel risk
score based on expression profiles. By classifying patients into high-
risk and low-risk groups according to the median risk score,

noticeably poorer overall survival rates were observed among
high-risk patients within the cancer cohorts, as corroborated by
Kaplan-Meier analysis. Key to note is the concurrent activation of
the Notch signaling pathway, potentially shedding light on shared
high-risk factors affiliated with both AMI and cancer. Moreover, the
researchers confirmed the differential expression of these genes in
cell lines and clinical samples, further reinforcing their relevance as
potent biomarkers. Crucially, these findings highlight the potential
utility of shared biomarkers in accurately predicting patient
outcomes for both cancer and AMI.

Serine protease inhibitor clade E member 1 (SERPINE1), or
PAI-1, is a pivotal modulator of the plasminogen activation
system, with roles extending beyond mere plasminogen
regulation. Implicated in numerous physiological processes,
SERPINE1’s multifaceted functions hint at its potential
contribution to diverse disease processes. In an effort to
demystify the role of SERPINE1, Li et al. conducted an
exhaustive analysis across multiple cancer types. The study
unveiled dysregulated SERPINE1 expression in cancer cells,
noting enrichment in endothelial cells and fibroblasts. This
irregularity can be partially attributed to copy number
amplification and reduced DNA promoter methylation.
Crucially, heightened SERPINE1 expression was linked with
adverse prognosis in 21 disparate cancer types. Further scrutiny
using gene set enrichment analysis (GSEA) presented
SERPINE1 as a player in immune response regulation and
tumor malignancy. Correlations were drawn between
SERPINE1 expression, immunoregulator expression, and
immune cell infiltration, suggesting a potential role for
SERPINE1 in immunosuppression. Intriguingly, associations
were also found linking SERPINE1 expression with tumor
mutation burden (TMB), microsatellite instability (MSI),
responses to immunotherapy, and drug sensitivity across
various cancers. Collectively, this study emphasizes the
anomalous expression of SERPINE1 in numerous cancer types
and its consequent implications for cancer immunity and tumor
behavior. Such findings furnish invaluable insights that could steer
the development of personalized cancer treatments meticulously
tailored to individual patients.

Metastatic castration-resistant prostate cancer (mCRPC), an
intensely aggressive prostate cancer stage, exhibits progression
largely driven by non-mutational epigenetic reprogramming.
Super enhancers (SE), a category of epigenetic elements, are
implicated in myriad tumor-promoting signaling pathways,
though the precise modus operandi of SE mediation in mCRPC
remains enigmatic. Zeng et al. employed a CUT&Tag assay on
mCRPC C4-2B cell lines to identify SE-associated genes and
transcription factors. Merging these overlapping genes, or SE-
related DEGs, they developed a recurrence risk prediction model.
A time-dependent receiver operating characteristic (ROC) curve
analysis affirmed the robust predictive capacity of their risk score
system at the 1-year (0.80), 3-year (0.85), and 5-year (0.88) stages. In
sum, their study offers a comprehensive comprehension of the SE
element landscape and related genes in mCRPC and furthers
discourse on potential clinical implications and transitions to
clinical practice.

Bladder cancer, a prevalent urologic malignancy associated with
significant morbidity and mortality, presents varying patient
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response rates to the promising potential of immunotherapy. The
process of glycosylation, characterized by sugar molecule
attachment to proteins or lipids, has been implicated in tumor
development and immune regulation. Yet, the clinical implications
and understanding of its role in bladder cancer remain
underdeveloped. Liu et al. sought to bridge this knowledge gap
by conducting a multi-cohort study of bladder cancer patients,
developing a unique risk scoring system cantered on
glycosylation-related genes. In particular, the authors segmented
the training cohort into two clusters based on distinct patterns of
glycosylation-related gene expression. Prognostic analysis unveiled
worse survival outcomes for Cluster 2 than Cluster 1. Cluster 2 also
showcased elevated levels of tumor microenvironment-immune
cells and amplified activity in crucial phases of the cancer
immune response cycle. To corroborate their findings, a
standalone prognostic risk score was developed, aiding in the
construction of a reliable prognostic prediction nomogram.
Patients with high glycosylation risk scores demonstrated an
increase in tumor immune cell infiltration, higher enrichment
scores within immune related pathways. Conversely, patients
with lower risk scores exhibited minimal immune cell infiltration
and tended towards a luminal subtype. These findings held true even
in real-world examination, as evidenced by the Xiangya cohort. In
essence, the study underscores that a multi-omics glycosylation
score derived from these identified genes can reliably elucidate
bladder cancer heterogeneity and predict immunotherapy
effectiveness and molecular subtypes. Such pivotal insight
empowers refined individual treatment decisions for bladder
cancer patients.

Tumorigenesis, a multifaceted process marked by the
perturbation of assorted genetic and non-genetic mechanisms
that amass over a duration, is characterized by the inherent
genomic instability of neoplastic cells. Such unstable features
often yield serendipitous tumorigenic events throughout disease
progression. These stochastic occurrences play a crucial role in
molding an eclectic immune microenvironment—spatially or
temporally—which introduces a degree of heterogeneity. The
introduction of multi-omics profiling technologies has
heralded a transformation in our comprehension of the
labyrinthine and heterogeneous character of the Tumor
Microenvironment (TME) at unparalleled resolution. These
advanced multi-omics modalities offer unmatched granularity
in deciphering the orchestrated modifications in composition
and status of immune and stromal components within the TME.
This results from cancer treatment responses, thus enabling a
comprehensive and nuanced insight into cancer progression and
immunotherapeutic outcomes.
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A senescence-associated
signature refines the classification
of different modification patterns
and characterization of tumor
immune microenvironment
infiltration in triple-negative
breast cancer

Renhong Huang†, Han Wang†, Jin Hong†, Zheng Wang*, Jiayi Wu,
Ou Huang, Jianrong He, Weiguo Chen, Yafen Li, Xiaosong Chen*
and Kunwei Shen*

Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China

Background: Recent studies have found that senescence-associated genes play a
significant role in cancer biological processes. We aimed to analyze the
characteristics and role of senescence-associated genes in triple-negative
breast cancer (TNBC).

Methods: We systematically screened senescence-associated secretory
phenotype (SASP) genes based on the gene expression information in the
TCGA database. According to the expression levels of senescence-associated
genes, TNBC was classified into two subtypes, namely, TNBCSASP1 and
TNBCSASP2, using an unsupervised cluster algorithm. We then performed
gene expression, enrichment pathway, immune infiltration, mutational profile
characterization, drug sensitivity and prognostic value analyses for the two
subtypes. The reliability and prognostic predictive utility of this classification
model were validated. The most prognostically relevant gene, FAM3B, was
comprehensively identified and validated by tissue microarray in TNBC.

Results: TNBC was classified into two senescence-associated subtypes,
TNBCSASP1 and TNBCSASP2, based on the set of senescence-associated
secretory phenotype genes, among which the TNBCSASP1 subtype had a poor
prognosis. The TNBCSASP1 subtype was immunosuppressed, with suppressed
immune-related signaling pathways and low immune cell infiltration. The effect of
the mutation on the TP53 and TGF-β pathways could be related to the poor
prognosis of the TNBCSASP1 subtype. Drug sensitivity analysis showed that
AMG.706, CCT007093, and CHIR.99021 were potential targeted drugs for the
TNBCSASP1 subtype. Finally, FAM3B was a key biomarker affecting the prognosis
of patients with triple-negative breast cancer. Compared to normal breast tissue,
the expression of FAM3B was reduced in triple-negative breast cancer. Survival
analysis showed that overall survival was significantly shorter in triple-negative
breast cancer patients with high FAM3B expression.
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Conclusion: A senescence-associated signature with different modification
patterns has critical potential for providing a better understanding of TNBC
biological processes, and FAM3B might serve as an applicable target for TNBC
therapy.

KEYWORDS

senescence-associated genes, triple-negative breast cancer, modification patterns, tumor
immune microenvironment, FAM3B

Introduction

Triple-negative breast cancer is a special subtype of breast cancer,
accounting for approximately 15%–20% of all breast cancers (Garrido-
Castro et al., 2019). Compared with other subtypes of breast cancer,
triple-negative breast cancer is more aggressive, with an earlier onset
age, larger tumor volume, higher histological grade, early recurrence
and distant metastasis, and poor overall survival (Garrido-Castro et al.,
2019). With advances in research, it has been gradually revealed that
triple-negative breast cancer is highly heterogeneous in biological
aspects. In recent years, with the rapid development of multiomics
technology, the heterogeneity of triple-negative breast cancer has been
further confirmed at the genomic level, transcriptome level, and
proteome level. Therefore, it is necessary to study different
classification methods and identify the specific subtypes of triple-
negative breast cancer to provide direction for the development of
new targeted therapy strategies.

Cellular senescence is a permanent state of cell cycle arrest
accompanied by changes in cell secretory characteristics (Campisi and
dʼAdda di Fagagna, 2007). Cellular senescence is a stress response that
can be induced by various internal or external damage signals, including
telomere dysfunction, oncogene activation, oxidative stress, and
persistent DNA damage. Cellular senescence has long been
considered a natural antitumor mechanism. Among them, one of the
key mechanisms is oncogene-induced senescence (OIS) (Serrano et al.,
1997), in which the activation of proto-oncogenes or the inactivation of
tumor suppressor genes triggers cell growth arrest. Increasing evidence
shows that cell senescence is also closely related to the occurrence and
development of tumors. Through the mechanism of the senescence-
associated secretory phenotype, senescent cells can act on surrounding
tumor cells in a paracrine manner and change the tumor
microenvironment to promote the occurrence and development of
tumors. In the tumor microenvironment, cellular senescence is
immunogenic, enhances MHC-1 antigen delivery, and can activate
anti-tumor immune responses mediated by dendritic cells and CD8+

T cells (Marin et al., 2023). Based on the above effects, senescent cells have
the potential to become emerging markers of cancer (Hanahan, 2022).
The senescence-related secretory phenotype is one of the important
characteristics of senescence (Rodier and Campisi, 2011). Senescent cells
undergo significant changes at the secretion level and secrete many
substances dominated by proinflammatory factors, including cytokines,
chemokines, growth factors and extracellular matrix proteases. By
activating the above transcriptome, senescent cells can enhance their
own senescence process in an autocrine manner and send signals to
neighboring cells in a paracrine manner, thereby affecting the tissue
microenvironment. Senescence cells can enhance macrophage display of
senescence characteristics by secreting SASP factors. Senescence
macrophages can affect other parts of the immune system to evade

immune surveillance and clearance of senescence cells (Prieto and Baker,
2019). In addition, the accumulation of senescent cells in the tumor
microenvironment will also promote the release of SASP factors and
promote the growth of tumor cells. The relationship between senescence-
related secretory phenotypes and tumor development is complex and is
manifested by the pleiotropic effects of senescence-related secretory
phenotypes. With the development of multiomics technology, the
genes that play a key role in cellular senescence have been gradually
identified by researchers, and senescence-related genomes have been
formed. The proposal of senescence-related genomes provide data
support for further research on the relationship between senescence
and tumors. Using senescence-related datasets from the literature, a
comprehensive pancancer analysis was conducted (Zhao et al., 2022).
The results showed that senescence-related genes are widely different in
different cancers and that cell senescence has an important impact on the
tumor immune microenvironment. Wang et al. (Wang et al., 2022) used
the senescence-related gene set to define a cellular senescence score in
pancancer and demonstrated that this score can represent the degree of
immune activation in the tumor microenvironment and can identify
groups with better prognosis. In specific cancers, researchers have also
constructed classificationmodels and prognostic predictionmodels based
on senescence gene sets, including clear cell renal cell carcinoma (Lu et al.,
2022), hepatocellular carcinoma (Luo et al., 2022), glioblastoma (Tan
et al., 2022), etc., and explored the relationship between senescence-
related genes and clinical characteristics, tumor microenvironment,
immunotherapy, etc. These studies demonstrate the importance of
senescence genes in cancer therapy.

The aim of this study was to construct a classification model for
triple-negative breast cancer based on the expression profile of
senescence-associated secretory phenotype genes and to explore
the prognostic value of this classification model. The differences
in different senescence-related subtypes were compared at the
multiomics level, including gene enrichment pathways, immune
infiltration, genomic mutations, drug sensitivity, etc. The
classification model was validated on external datasets.
Furthermore, based on the senescence-related subtypes of triple-
negative breast cancer, the key genes affecting the prognosis of
different subtypes were explored, and the prognostic role of these
genes in triple-negative breast cancer was analyzed.

Method and material

Data collection and processing

The pan cancer expression profiles and survival information,
which included 110 triple-negative breast cancer patients
from TCGA-BRCA, were retrieved from the XENA datasets
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(http://xena.ucsc.edu/) (Tomczak et al., 2015). Genomics
information, containing copy number variation and SNV of
BRCA, was downloaded from The Cancer Genome Atlas
(TCGA) (Blum et al., 2018). Three independent TNBC cohorts
were used: GSE21653 (252 samples), GSE25066 (205 samples) and
GSE103091 (111 samples) (Hatzis et al., 2011; Sabatier et al., 2011;
Jézéquel et al., 2015). For cohorts downloaded from public datasets,
instructional review board approval or informed consent was not
needed. A novel senescence-associated signature was acquired from
the Supplementary Material from the Saul et al. search
(Supplementary Table S1).

Unsupervised cluster analysis

First, we performed univariable Cox analysis to filter prognosis-
related genes from the senescence-associated signature. Finally, a
three-signature-based expression matrix of TCGA-TNBC, including
CXCL1, CCL13 and ACVR1B, was maintained to perform
unsupervised clustering analysis to identify novel senescence
subtypes of TNBC with the use of the ConsensusClusterPlus
package (Wilkerson and Hayes, 2010). The optimal cluster
number k of TNBC was evaluated by the proportion of
ambiguous clustering (PAC score) and consensus cumulative
distribution function (CDF) curve.

Differential expression and enrichment
analysis

The count mRNA expression matrix of TNBC was used to
conduct differential expression analysis through the
DEseq2 package and visualized by the EnhancedVolcano package
(Love et al., 2014). The threshold was set as abstract log-fold
change = 1.5 and p-adjusted value <0.01. In addition, common
enrichment, including Gene Ontology (GO), gene set enrichment
analysis (GSEA) and gene set variation analysis (GSVA), was also
performed with the ClusterProfiler package (Yu et al., 2012). For
differential expression gene annotation, we downloaded cancer-
related hallmarks from the MSigDB dataset and IOBR package
(Liberzon et al., 2011).

Immune infiltration analysis

Five immune-related signature gene sets, containing
chemokines, chemokine receptors, MHCs, immunoinhibitors and
immune stimulators, were compared between subtypes. Several
immune-related deconvolution algorithms, including TIMER,
CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL and EPIC,
were adopted to compare the different immune components. The
tumor immune dysfunction and exclusion (TIDE) algorithm was
further utilized to estimate the immunotherapy response score for
TNBC. In addition, the Tracking Tumor Immunotype (TIP)
algorithm was also applied to compare antitumor immunity
differences between subtypes, which included 7 steps as follows:
release of cancer cell antigens (step 1), cancer antigen presentation
(step 2), priming and activation (step 3), trafficking of immune cells

to tumors (step 4), infiltration of immune cells into tumors (step 5),
recognition of cancer cells by T cells (step 6), and killing of cancer
cells (step 7) (Xu et al., 2018). The Estimate package was further
adopted to verify the immune infiltration degree difference between
subtypes.

Mutation spectrum characteristics

We downloaded genomic mutation, except for germline
mutation, profiles of TNBC from TCGA GDC database, then we
compared and visualized the difference between subtype through
Maftools package (Mayakonda et al., 2018). Multilevel differences in
the genomic profile, including onco-pathway, somatic interaction,
mutation prognostic impact and drug categories, were also
compared by Maftools and ggpubr packages.

Validation of remodeling results in validation
cohorts

After identifying subtype biomarkers of each subtype, we next
applied the nearest template prediction (NTP) algorithm to perform
remodeling analysis in three independent TNBC cohorts. After
estimating each sample’s cluster tendency, we compared the
prognostic difference to verify the reproductivity of unsupervised
cluster results.

Potential implications of preclinical
treatment agent analysis

For therapeutic sensitivity analysis, we first collected the subtype
and mRNA expression of TNBC; then, the cell line’s expression
profile and therapeutic information from genomic of drug sensitivity
in cancer (GDSC) datasets were also downloaded (Cokelaer et al.,
2018). We next applied Ridge’s regression and 10-fold cross
validation to identify subtype molecular agents by the
pRRophetic package (Geeleher et al., 2014). Half maximal
inhibitory concentration (IC50) values were applied to compare
different sensitivities between subtypes.

Clinical data collection and follow-up

The clinicopathological data of the patients in this study were
obtained from the Shanghai Jiao Tong University-Breast Cancer
Database (SJTU-BCDB). The included clinicopathological features
were the following: age, menstrual status, tumor location, tumor
size, number of lymph node metastases, TNM stage, histological
grade, lymph vascular invasion, Ki-67 index, and adjuvant therapy
information. A Ki-67 index >30% was defined as high Ki-67
expression, and a Ki-67 index ≤30% was defined as low Ki-67
expression. All breast cancer patients received regular follow-up
in the clinic or by telephone. Patients were followed up every
3 months for 2 years after surgery. Follow-up was performed
every 6 months for 3–5 years, and follow-up was performed
annually 5 years after surgery until event and death. The
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follow-up data were recorded and summarized by the breast
specialist nurses and clerks in our department. Overall survival
(OS) and disease-free survival (DFS) were defined as reported in our
previous study (Huang et al., 2022). The last follow-up was in
January 2023. Patients’ inclusion and exclusion criteria were
described in the Supplementary Figure S2. The detail information
of these patients was shown in Supplementary Table S5.

Immunohistochemistry (IHC) of tissue
microarray

IHC staining of FAM3B protein expression in the tissue
microarray was performed by incubation with rabbit polyclonal
antibodies against human FAM3B antibody (27131-1-AP,
Proteintech, 1:200) overnight, followed by incubation with goat
monoclonal antibody against rabbit antibody (111-035-003,
JACKSON, 1:1,000) for 1 h at room temperature. The
immunohistochemical evaluation of FAM3B was employed and
analyzed by two individual pathologists, Anqi Li and Miao Ruan,
who were blinded to the clinical information of the patients. The
immunohistochemical staining results were analyzed by ImageJ
processing software. Protein expression was evaluated based on
the optical density (OD) value of the images.
Immunohistochemical staining was evaluated at the same
magnification (×40) in five randomly selected fields of tumor
tissue from each patient. After setting a specific threshold for
each image, the integrated optical density (IOD) value was
calculated in the positive area. The average optical density
(AOD) was calculated by the ratio of IOD to the area of the
positive area. The average AOD value of the five regions was
taken as the result of the AOD value of the patient, which
represented the expression level of the markers.

Statistical analysis

All multiomics dataset processing, plotting and statistical tests
were performed using R software (Version 4.1.0). Student’s t tests
and Mann–Whitney U tests were applied for continuous variables
with normal or skewed distributions. The chi-square test or Fisher’s
exact test was utilized to compare categorical variables. Spearman
correlation was used to calculate the correlation index between
quantitative variables by the corrplot package. Kaplan‒Meier and
time ROC curves were depicted by the survival package. All
statistical tests were two-sided with a level of significance set as
p < 0.05.

Results

Expression of senescence-associated genes
in pancancer

To initially explore the expression of senescence-related genes in
tumors, the expression levels of senescence-related genes in tumor
tissues and normal tissues were compared in 20 cancer types
(Figure 1A). The results showed that in several cancer types,

including breast cancer, the expression of senescence-related
genes was lower in tumor tissues than in normal tissues,
indicating that the expression of senescence-related genes was
suppressed. Activating senescence-related pathways may be a
potential way to treat breast cancer.

Next, the enrichment of senescence-related genes in classical
tumor pathways was investigated. Senescence-related genes were
associated with multiple immune pathways, including the KRAS
upregulation pathway, IFNγ response pathway, IFNα response
pathway, immune response pathway, IL-6/JAK/STAT3 pathway,
and IL-2/STAT5 pathway (Figure 1B). The activation status was
consistent in many cancer types. Therefore, targeting senescence-
related pathways may activate immune regulation and other
pathways, thereby promoting the occurrence and development of
tumors.

Construction and functional enrichment
analysis of senescence-associated subtypes
in TNBC

By analyzing the senescence-related genes, three genes
significantly associated with prognosis were screened out among
the 125 genes in the senescence-related gene set using univariate Cox
regression analysis (p < 0.05) (Figure 2A). CXCL1 (p = 0.026, HR =
0.723) and CCL13 (p = 0.035, HR = 0.761) were protective factors
related to prognosis, while ACVR1B (p = 0.049, HR = 1.945) was a
risk factor related to prognosis. Unsupervised cluster analysis was
performed using the Consensus Cluster Plus package in the TNBC
population of the TCGA database. According to the cumulative
distribution function (CDF) and the proportion of ambiguous
clustering (PAC) (Figures 2B–D), by analyzing the distribution of
the CDF curve and the change in the area under the curve, the
classification reliability was evaluated, and the optimal number of
Clusters k = 2 was obtained. According to the clustering results, the
population in TCGA-TNBC was divided into two senescence-
related subtypes, named TNBCSASP1 and TNBCSASP2. The
results of principal component analysis (PCA) based on
senescence-related genotyping were analyzed (Figure 2E). Further
analysis of the gene expression profiles of CXCL1, CCL13, and
ACVR1B in the two senescence-related subtypes and normal breast
tissues (Figure 2F) showed that CXCL1 and CCL13 were
significantly downregulated in the TNBCSASP1 subtype.

Next, the clinical significance of senescence-related subtyping in
terms of prognosis was evaluated by comparing the survival
outcomes of the two subgroups. Kaplan‒Meier survival analysis
showed that patients in the TNBCSASP1 group had poor survival
outcomes (Figure 3), and the OS, DSS, and PFI of the
TNBCSASP1 group were significantly lower than those of the
TNBCSASP2 group (p < 0.05). TNBCSASP classification based
on senescence-related genes can predict the prognosis of TNBC
patients to a certain extent. Based on the different prognoses of the
TNBCSASP1 and TNBCSASP2 groups, it was necessary to further
explore the specific biological differences between the two subtypes.
The differentially expressed genes of the two subtypes were analyzed
using the DEseq2 package (Figure 4). Next, functional enrichment
analysis of differentially expressed genes was performed using the
ClusterProfiler package. GO (Gene Ontology) enrichment analysis
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showed that in terms of biological process (BP), differentially
expressed genes were mainly involved in antibacterial humoral
response, antimicrobial peptide-mediated humoral immune
response, negative regulation of peptidase activity and other
processes. In terms of cell component (CC), the differentially
expressed genes were mainly located in the tertiary granule
cavity, specific granule cavity and platelet α granule cavity. In
terms of molecular function (MF), the differentially expressed
genes were mainly involved in receptor ligand activity, signal
receptor activator activity, peptidase inhibitor activity and other
functions. GSEA of senescence-related differentially expressed genes
showed that oxidative phosphorylation, cAMP signaling pathway,
and estrogen signaling pathway were activated, while cytokine
receptor interaction pathway, primary immunodeficiency
pathway, and antigen processing and presentation pathway were
inhibited in TNBCSASP1 subtypes (Figure 5). These results suggest
that the TNBCSASP1 subtype tumors may be in a state of poor
immune response due to the inhibition of immune-related
pathways, leading to a poor prognosis of patients with this subtype.

Analysis of immune infiltration in
senescence-associated subtypes of TNBC

Based on the above functional enrichment analysis results, the
TNBCSASP1 and TNBCSASP2 isoforms showed significant
differences in immune-related pathways. To further characterize
the immune profile of the senescence-related subtypes of TNBC, five
immune-related signature gene sets were analyzed (Figure 6A),
including chemokines, chemokine receptors, MHC,
immunosuppressive factors, and immune stimulating factors. The

results showed that CXCL1, CXCL13, CXCL10, CCL13, CCL18,
CCL8, IDO1 and other immune-related characteristic genes were
significantly downregulated in TNBCSASP1 subtypes.
Subsequently, deconvolution algorithms such as TIMER,
CIBERSORT, CIBERSORT-ABS, MCPCOUNTER, QUANTISEQ,
EPIC and XCELL were used to compare the composition of
immune-infiltrating cells in the tumor microenvironment of the
TNBCSASP1 and TNBCSASP2 subtypes. The results showed that
the TNBCSASP1 subtype had less infiltration of immune cells,
including monocytes, macrophages, myeloid dendritic cells, CD8+

T cells, and others, than the TNBCSASP2 subtype (Figure 6B).
Therefore, based on the results of the above analysis, the
TNBCSASP1 isoform can be defined as an senescence-related
isoform in an immunosuppressed state.

Next, the ESTIMATE algorithm was used to explore
components of the tumor microenvironment in the two
senescence-related subtypes to assess tumor purity (Figures
7A–C). These include the stromal score and immune score,
which are used to evaluate the composition of stromal cells and
immune cells in tumor samples, respectively. The results showed
that the immunoscore and ESTIMATE score of the
TNBCSASP1 subtype were significantly lower than those of the
TNBCSASP2 subtype, indicating that the TNBCSASP1 subtype had
a lower degree of immune cell infiltration and a higher proportion of
tumor cells in the tumor microenvironment. Comparing the
antitumor activities of the TNBCSASP1 and
TNBCSASP2 isoforms (Figure 7D), the TNBCSASP1 isoform was
found to be less active during most antitumor steps. Cancer cell
antigen release (step 1), CD4 T cells, CDB T cells, macrophages, and
other cell recruitment (step 4), T-cell-to-tumor cell recognition (step
6), tumor cell clearance (step 7), etc. Further analysis of the

FIGURE 1
The expression of SASP genes across cancers. (A) The landscape of SASP gene set scores (based on NES and p values) in 20 cancer types. (B) The
association between SASP gene set score and expression with HALLMARKS enrichment scores in 20 cancer types.
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composition of immune-infiltrating cells in the tumor
microenvironment of senescence subtypes of TNBC showed that
the TNBCSASP1 subtype had a lower infiltration of DCs than the
TNBCSASP2 subtype (Figure 7E).

Somatic mutations in senescence-related
subtypes of TNBC

Based on the genome mutation spectrum of TNBC in the
TCGA GDC database, Maftools and ggpubr packages were used
to analyze the differences in somatic mutations between the
TNBCSASP1 and TNBCSASP2 subtypes and to explore the
potential carcinogenic factors in the two senescence subtypes.

We also identified the top 20 most frequently mutated genes in
the two senescence subtypes, with similar mutation rates in the
two groups (96% vs. 95%) and high-frequency mutations in
TP53 and TTN. MUC17, PIK3CA, ABCA13, ZKSCAN7 and
other genes had higher mutation frequencies in the
TNBCSASP1 subtype than in the TNBCSASP2 subtype
(Figures 8A, B). The somatic comutations of the two
senescence subtypes were shown (Figures 8C, D). The
TNBCSASP1 subtype had comutations in MUC16-SI, ABCA1-
MUC16, CACNA1F-PCDH15, F5-SI, and MAP1A-NF1 (p <
0.01). There were comutations of CSMD3-HMCN1, FAT3-
PKHD1L1, FAT3-LRP2, RELN-CASR, APOB-DNAH2, and
PTEN-AHNAK (p < 0.01) in the TNBCSASP2 subtype. TP53-
TTN mutations were mutually exclusive. Subsequently, somatic

FIGURE 2
Clustering of SASP genes for the identification of different cancer modification patterns in TNBC. (A) Univariate Cox regression analysis of SASP
genes in TNBC. (B) Consensus matrix heatmap displaying the scale for two cleanly separated clusters. (C) CDF plot shows flattening of the consensus
index curve for every consensus matrix from two to nine. (D) Delta area curve of consensus clustering, which indicates the relative change in area under
the CDF curve for each category number k compared to that of k-1. The horizontal axis represents the category number k, and the vertical axis
represents the relative change in area under the CDF curve. (E) Principal component analysis was carried out based on the results of consensus clustering.
(F) The expression profiles of SASP regulator genes among the two subtypes and normal tissues.
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mutations in common tumor-related pathways in both subtypes
were evaluated, including the RTK-RAS, NOTCH, WNT, Hippo,
PI3K, TP53, TGF-Beta, NRF2, MYC, and Cell Cycle pathways.
The results showed that TP53 and TGF-beta pathway receptor
cell mutations had the greatest impact on the
TNBCSASP1 subtype, whereas TP53, PI3K, and RTK-RAS
pathway receptor cell mutations had the greatest impact on
the TNBCSASP2 subtype (Figures 8E, F). Next, based on data
from the somatic mutant gene set, the DGIdb database and the
Maftools package were used to analyze drug-gene interactions in
the two senescence-related subtypes to identify potential drug-
target genes (Figures 8G, H). The drug target genes of the two
senescence-related subtypes could be divided into 18 and
23 types, including druggable genomes, clinically operable
genomes, kinase genomes, transport-related genomes, etc.

Drug sensitivity analysis of senescence-
related subtypes in TNBC

The analysis of drug sensitivity to chemotherapy agents (Figures
9A, B) showed that the semi-inhibitory concentration of the
TNBCSASP1 subtype was higher when treated with either
paclitaxel or cisplatin, indicating that the TNBCSASP1 subtype
was less sensitive to chemotherapy agents, which is consistent
with the previous results of worse prognosis of the
TNBCSASP1 subtype. We further analyzed the drug
responsiveness of the TNBCSASP1 and TNBCSASP2 isoforms to
molecular inhibitors and presented the top 10 potential drugs with
the most significant therapeutic differences between the two
senescence-related isoforms (Figures 9C, D). TNBCSASP1 was
more sensitive to AMG.706, CCT007093, and CHR.99021, while

FIGURE 3
Prognostic value of TNBCSASP1 and TNBCSASP2 in TNBC. Survival analysis for OS (A), DSS (B), PFI (C) and DFI (D) among the TNBCSASP1 and
TNBCSASP2 subtypes of TCGA data.
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TNBCSASP2 was more sensitive to sunitinib, mitomycin C, and
camptothecin. It can be predicted that drugs such as AMG.706,
CCT007093, and CHIR.99021 are expected to become new
development targets for TNBCSASP1, a subtype with poor
prognosis, and provide more precise treatment strategies for
TNBC patients.

The prognostic value of senescence-related
subtypes and the hub gene FAM3B in TNBC

To confirm the reliability of the senescence-related classification,
external datasets were used to validate the classification model. The
independent TNBC cohort GSE103091 was divided into two distinct
subtypes using the nearest template prediction (NTP) algorithm
using the senescence subtype-specific genes identified in the TCGA-
TNBC dataset and the classification model reconstruction

(Supplementary Figure S1A). A subsequent survival analysis
showed that the TNBCSASP1 subtype had a significantly lower
survival rate than the TNBCSASP2 subtype (Supplementary Figure
S1B, p = 0.007), which was consistent with the results of the previous
analysis. Therefore, the reliability and stability of senescence-related
typing were verified. Based on the above two subtypes, we identified
the key differentially expressed gene FAM3B. We used random
forest algorithm to identify the gene FAM3B which is most relevant
to the prognosis of TNBC (Figure 10A). The expression of FAM3B
in triple-negative breast cancer was further analyzed. The relevant
data in the GSE21653 cohort were obtained, and the expression level
of FAM3B in different subtypes was analyzed based on
PAM50 typing (Figure 10B). Compared with normal tissues, the
expression level of FAM3B in basal-like subtypes was lower. In
addition, proteomic information was obtained from the CPTAC
database, and the results similarly showed that the expression level
of FAM3B was lower in triple-negative breast cancer tissues

FIGURE 4
Functional enrichment analysis of the TNBCSASP1 and TNBCSASP2 subtypes. (A) Volcano plot of the landscape of gene expression changes
between the 2 subtypes. (B–D) The GO terms of the BP, CC, and MF categories enriched in the senescence-associated differentially expressed genes.
genes.
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(Figure 10C). Single-cell analysis of triple-negative breast cancer was
performed in different independent datasets, and FAM3B
expression in different cells was investigated (Figure 10D). The
results of the analysis of different datasets all showed that FAM3B

was specifically highly expressed in malignant epithelial cells in the
triple-negative breast cancer population.

From January 2009 to March 2021, 1469 patients with triple-
negative invasive breast cancer underwent surgery at our center,

FIGURE 5
GSEA depicting the enriched pathways of senescence-associated differentially expressed genes in TNBC. These pathways include oxidative
phosphorylation (A), cAMP signaling pathway (B), estrogen signaling pathway (C), cytokine‒cytokine receptor interaction (D), primary immunodeficiency
(E), and antigen processing presentation (F).
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FIGURE 6
Comprehensive analysis of immune landscapes in TNBCSASP1 and 2 subtypes. (A)Heatmap showing differential immune-related genes among the
TNBCSASP1 and TNBCSASP2 subtypes. (B) Heatmap plot of tumor-related infiltrating immune cells based on TIMER, CIBERSORT, CIBERSORT-ABS,
MCPCOUNTER, QUANTISEQ, EPIC, and XCELL algorithms among the TNBCSASP1 and TNBCSASP2 subtypes.
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and 122 patients were finally included for survival analysis in the
study. Univariate analysis of clinicopathological features of
patients with different FAM3B expression levels was further
performed, and the results showed that there were no
significant differences between the FAM3B high expression
group and the FAM3B low expression group in each
clinicopathological feature (Supplementary Table S2).
Univariate analysis of clinicopathological features for predicting
prognosis showed that lower clinicopathological stage was
associated with longer OS. Higher clinicopathological stage and
lymph node metastasis were associated with DFS events. Low
FAM3B expression was associated with longer OS and DFS.
Other pathological factors did not predict the prognosis of
patients (Supplementary Tables S3, S4). Further Kaplan‒Meier
survival analysis of the FAM3B high and low expression groups
showed that OS (p = 0.036) and DFS (p = 0.031) in the FAM3B high
expression group were significantly lower than those in the FAM3B
low expression group (Figures 10E, F). Survival analysis showed
that high FAM3B expression was associated with poor prognosis in
triple-negative breast cancer.

Discussion

Triple-negative breast cancer (TNBC) is a subtype of breast
cancer with poor prognosis due to its high invasiveness and lack of
specific therapeutic targets. As triple-negative breast cancer is highly
heterogeneous, it is necessary to characterize different molecular
subtypes from a variety of biological perspectives to identify patient

risk stratification, predict disease prognosis, and provide potential
therapeutic targets.

Based on the existing senescence-associated secretory phenotype
gene sets, we constructed a senescence-related classification model
for TNBC and defined the two groups as the TNBCSASP1 and
TNBCSASP2 subtypes. Survival analysis and multiomics analysis
showed that the TNBCSASP1 subtype tumors were in an
immunosuppressed state. Immune-related pathways were
inhibited, the expression of immune-related factors was lower,
the number of immune infiltrating cells was lower, and the
TNBCSASP1 subtype showed lower antitumor activity and worse
prognosis. Based on the above two subtypes, we identified the key
differentially expressed gene FAM3B. Compared with normal breast
tissue, FAM3B expression was different in different subtypes of
breast cancer. The results showed that high expression of FAM3B in
TNBC tumor tissues was related to poor prognosis in patients,
suggesting that FAM3B may play a carcinogenic role in TNBC.

Cellular senescence is an important mechanism to maintain
tissue homeostasis and aims to eliminate the stress response of
damaged cells. Cellular senescence can be induced by damage factors
such as DNA damage, reactive oxygen species, activation of
oncogenes and inactivation of tumor suppressor genes (Herranz
and Gil, 2018). However, recent studies have found that cellular
senescence plays an important role in the tumor-promoting process
and has been included as one of the emerging markers of cancer
(Hanahan, 2022). SASP is characterized by the secretion of many
inflammatory factors involved in the immune response, and its
dynamic components affect the tumor microenvironment and
participate in the regulation of the immune response. SASP can

FIGURE 7
Immune landscapes in TNBCSASP1 and 2 subtypes. Comparison of stromal score (A), immune score (B), and ESTIMATE score (C) among the
TNBCSASP1 and TNBCSASP2 subtypes. (D–E) The immune pathways and anticancer steps among the TNBCSASP1 and TNBCSASP2 subtypes.
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FIGURE 8
Profiles of somatic mutations and potential targets among the TNBCSASP subtypes. (A,B) Waterfall plot showing the mutation patterns of the top
20most frequentlymutated genes. (C,D)Cooccurringmutations in TNBCSASP1 and TNBCSASP2. (E,F) The fraction of pathways or samples of oncogenic
signaling pathways among TNBCSASP1 and TNBCSASP2. (G,H) Potential druggable gene categories from the mutation dataset among TNBCSASP1 and
TNBCSASP2.
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continuously secrete a variety of inflammatory factors, maintain a
low adaptive immune response in the tissue microenvironment, and
form a “chronic inflammatory” environment (López-Otín et al.,
2013). Important related factors include IL-1, IL-6, GM-CSF, IFNγ,
TNF and CRP (Zinger et al., 2017). In vitro experiments showed that
the senescence-related proinflammatory cytokines IL-6 and IL-8
were important for maintaining the invasive properties of the triple-
negative breast cancer cell line MDA-MB-231. In a study of the
breast cancer population (Knüpfer and Preiss, 2007), IL-6, as a key
inflammatory factor, plays an important role in promoting tumor
progression, and high circulating levels of IL-6 and age are
associated with poor prognosis in breast cancer patients. In vivo
experiments on breast cancer (Wang et al., 2019), the number of
MDSs in the tumor microenvironment of senescence mice was
significantly increased, and depletion of MDSCs significantly
reduced tumor growth in senescence mice. In vitro experiments
confirmed that these tumor-specific MDSCs had a highly
immunosuppressive effect. In addition, factors in the tumor
microenvironment can also induce T-cell senescence and inhibit

the immune response. Preclinical studies have shown that the
senescence of CD8+ T cells plays a key role in the development
of breast cancer (Onyema et al., 2015). According to our study, the
degree of infiltration of CD8+ T cells with immune response function
in the TNBCSASP1 subtype was significantly reduced, reflecting the
immunosuppressive state of this subtype. On the other hand, the
expression of proinflammatory factors and immunosuppressive
MDSCs was also generally low in this subtype.
TNBCSASP1 subtype has an immune desert phenotype and is
more likely to be defined as a “cold tumor” in which effector
T cells are unable to infiltrate into the tumor microenvironment,
making it difficult for them to exert anti-tumor immune effects.
Activating immune cells infiltration may be an effective therapeutic
strategy to address the immune escape mechanism in
TNBCSASP1 subtype. Since senescent cell types, senescence-
inducing factors, tumor progression and other factors affect the
pleiotropic effects of SASP, the specific mechanism of SASP on the
TNBCSASP1 subtype tumor microenvironment needs to be further
explored. Based on the results in this study, we identified

FIGURE 9
Drug sensitivity analysis of the TNBCSASP subtypes. (A,B) Estimated IC50 of the indicated molecular-targeted drugs among TNBCSASP1 and
TNBCSASP2. (C,D) Estimated IC50 of the potential molecular inhibitors in TNBCSASP1 and TNBCSASP2.
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TNBCSASP1, a subtype with a worse prognosis based on the
difference in expression of SASP-related genes, whose expression
of immune-related factors and immune cell infiltration were both at
a lower level, indicating that this subtype is in an
immunosuppressive state. It can be hypothesized that the
difference in expression of SASP factors to some extent makes
the two subtypes have different immune microenvironment,
which involves the regulation of inflammatory factors, crosstalk

of related pathways and gene mutations. The specific mechanism
needs to be further investigated.

In addition to the stage of tumor development, senescence also
affects the therapeutic response of diseases through its complex
mechanism in the treatment stage. Antitumor therapies, including
chemotherapy and radiotherapy, can induce cellular senescence in
tumor tissues and normal tissues and cause the accumulation of
senescent cells (Roberson et al., 2005), namely, therapy-induced

FIGURE 10
The hub gene FAM3b and its prognostic value in TNBC. (A)Number of trees showing the importance proportion of SASP regulator genes. (B) FAM3B
expression in paired tumor and normal tissues in BRCA from the TCGA database. (C) FAM3B expression according to the molecular subtypes of breast
cancer. (D) UMAP plot of intratumoral immune cells and FAM3B showing the correlation between infiltration of different immune cells and FAM3B
expression in the Alex, EMTAB8107, GSE150660 and GSE161529 datasets. (E,F) The impact of FAM3B on OS and DFS in breast cancer tissue
microarray using Kaplan-Meier analysis.
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senescence (TIS). Senescence-related markers such as p16INK4a, p21,
p53 and SA-β-gal can be detected in the tumor tissues of breast cancer
patients receiving chemotherapy (te Poele et al., 2002). Another study
(Sanoff et al., 2014) showed that cytotoxic chemotherapy induced
cellular senescence in hematopoietic tissues of breast cancer patients
and prolonged the increase in SASP factors VEGFA and CCL2 levels. In
addition, targeted therapies can induce tumor cell senescence. CDK4/
6 inhibitors (Goel et al., 2016) can reverse the resistance of HER2-
positive breast cancer to anti-HER2-targeted therapy and induce tumor
cells to enter cell cycle arrest and have a senescent cell phenotype by
inhibiting Rb and S6RP activity. The above evidence suggests that TIS is
one of the mechanisms by which antineoplastic therapy works and that
cellular senescence is an outcome produced by antineoplastic therapy.
However, related studies have shown that TIS cells can produce SASP
with cancer-promoting and immunosuppressive functions, which affects
the clinical outcome of patients. In non-small cell lung cancer (Wang
et al., 2013), TIS is associated with lower overall survival. In the p53wild-
type breast cancer model (Jackson et al., 2012), chemotherapy-induced
cell senescence causes tumor regression, and the accumulated senescent
cells can secrete cancer-promoting SASP, leading to early recurrence of
breast cancer. After neoadjuvant chemotherapy (Morales-Valencia et al.,
2022), the exposure of residual breast cancer cells to SASP can lead to the
upregulation of intracellular LCN2, enhance tumor invasiveness and is
related to tumor chemotherapy resistance. In another study (Muñoz
et al., 2019), therapy-induced senescent breast cancer cells could evade
immune clearance by paracrine inhibition ofNKG2D receptor-mediated
immune surveillance. In conclusion, TIS has both antitumor and
protumor effects in tumor treatment. Therefore, more studies are
needed to quantify the degree of cellular senescence and further
evaluate the long-term role of cellular senescence in antitumor therapy.

Current studies have shown that senescence plays an important and
complex role in tumors. Therefore, it is necessary to develop new
therapeutic regimens for senescence-related targets and incorporate
related therapies into future antitumor treatment strategies. In our
study, triple-negative breast cancer patients with different senescence
subtypes had different drug sensitivities, and small molecule drugs such
as the VEGFR inhibitor AMG.706, PPM1D inhibitor CCT007093, and
GSK-3α/β inhibitor CHR.99021 were more effective in the
TNBCSASP1 subtype. It is expected that senescence-related genes
will be used as targets for the development of new drugs in the
future. At present, therapies targeting senescent cells have been
gradually studied, including the elimination of senescent cells and
regulation of senescent cell phenotype. Senolytic drugs are a class of
drugs that eliminate senescent cells. Drugs such as ABT-737 and ABT-
263 can induce senescent cells to initiate an apoptotic program by
inhibiting the activity of BCL-2 family members. In vivo experiments
have shown (Leverson et al., 2015) that the addition of the BCL-2 family
inhibitor A-1331852 enhances the therapeutic effect of docetaxel in a
triple-negative metastatic breast cancer model. Senomorphism plays a
role by regulating the characteristics of senescent cells, including
regulating the SASP and changing the state of cellular senescence.
Targeting the mTOR pathway using rapamycin (Zhang et al., 2018)
reduces the secretion of the protumorigenic SASP and prevents cellular
senescence. Inhibitors of the p38MAPK/MK2 pathway can reduce
SASP secretion, thereby inhibiting tumor metastasis in the TIS
breast cancer mouse model (Murali et al., 2018). These two
approaches to targeting senescence inhibit the tumor-promoting
effects of senescence based on different mechanisms. In addition,

some new senescence-related markers have also been identified in
recent studies, which will help to develop new senescence-related
therapeutic targets. Differentiated Embryonic Chondrocyte Gene 1
(DEC1) is one of the target genes of p53, which mediates cell
senescence by regulating the phosphorylation of Rb2 protein and
acting on the Rb pathway. In vitro experiments showed that
overexpression of DEC1 could arrest the cell cycle and induce cell
senescence. DEC1 downregulation can attenuate DNA damage-
induced cellular senescence (Qian et al., 2008). During the
progression from normal breast to breast cancer (Chakrabarti et al.,
2004), increased expression of DEC1 was observed, suggesting that
DEC1 may contribute to the progression of breast cancer to an
aggressive phenotype. Human tumor necrosis factor-related
apoptosis-inducing ligand receptor 4 (TRAFE-R4) is also one of the
target genes of p53. p53 acts on TRAFE-R4 to inhibit its induction of
apoptosis. It has been found (Ganten et al., 2009) that breast cancer
patients with high expression of TRAFE-R4 have reduced overall
survival and disease-free survival. Therapeutic regimens targeting
senescence have potential application value, and the development of
related drugs still needs to be further verified by experiments.

FAM3B plays an important role in tumor development,
disease prognosis, and drug resistance. He et al. (2019)
demonstrated that the expression of FAM3B in human
esophageal squamous cell carcinoma (ESCC) was higher than
that in adjacent tissues, its expression level was significantly
related to the clinical stage of ESCC patients, and the high
expression level of FAM3B was related to the poor prognosis
of patients. Further studies confirmed that FAM3B
overexpression could inhibit ESCC cell death by regulating the
AKT-MDM2-p53 signaling pathway and affect the epithelial-
mesenchymal transition process by regulating Snail and
E-cadherin to promote ESCC cell migration and invasion.
Cisplatin is one of the main chemotherapy drugs for patients
with gastric cancer, but it easily leads to drug resistance during
treatment. Song and Duan (2020) found that FAM3B expression
was upregulated in cisplatin-resistant gastric cancer cell lines,
and FAM3B overexpression affected the epithelial-mesenchymal
transition process and induced drug resistance in gastric cancer
cells by regulating Snail. Knockdown of FAM3B increased the
drug sensitivity of drug-resistant cell lines. Alternatively, the
potential role of FAM3B in tumor suppression has been
reported. Liao et al. (Liao et al., 2022) used public databases
to explore the feasibility of the FAM3 family as a prognostic
factor for head and neck squamous cell carcinoma, and the
analysis results showed that the low expression level of
FAM3B in head and neck squamous cell carcinoma was
related to poor prognosis of patients. FAM3B may be related
to the increase in immune cell infiltration in the tumor
microenvironment, the inhibition of the epithelial-
mesenchymal transition process and cytochrome P450 and
other targets. In a study on bladder cancer, FAM3B was listed
as one of the immune-related genes involved in the construction
of a prognosis-related index for bladder cancer, indirectly
indicating the association of FAM3B with tumor immunity
(Tian et al., 2020).

This study still has some limitations. First, the sample size in
this report is limited, and the findings are not fully representative
of the overall population of triple-negative breast cancer. Second,
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the results of this study are based on multiomics bioinformatics
analysis, and further experimental verification is needed to
explore the specific mechanism of senescence. In addition, the
classification model obtained in this study may be affected by
some confounding factors, such as race and region, so more
independent datasets are needed to validate the classification
model. This retrospective study of FAM3B is based on the clinical
data of a single center. Complete follow-up data is limited, and
there is a bias in population selection. In addition, this study only
preliminarily described the expression of FAM3B in triple-
negative breast cancer and its effect on prognosis, and the
specific mechanism needs to be explored by basic experiments
to evaluate the reliability of the results of this study.

Therefore, based on the expression profile of senescence-related
secretory phenotype genes, this study created a classification model
for TNBC and explored the differential biomarkers of senescence
subtypes, which can provide theoretical guidance for the treatment
of TNBC.
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Background: Metastatic castration-resistant prostate cancer (mCRPC) is a
highly aggressive stage of prostate cancer, and non-mutational epigenetic
reprogramming plays a critical role in its progression. Super enhancers
(SE), epigenetic elements, are involved in multiple tumor-promoting
signaling pathways. However, the SE-mediated mechanism in mCRPC
remains unclear.

Methods: SE-associated genes and transcription factors were identified from a
cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed
genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in
the GSE35988 dataset were identified. What’s more, a recurrence risk
prediction model was constructed based on the overlapping genes (termed
SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor
JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell
analysis was performed to visualize cell subpopulations expressing the key SE-
associated DEGs.

Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were
identified. 142 overlapping SE-associated DEGs showed excellent
performance in recurrence prediction. Time-dependent receiver operating
characteristic (ROC) curve analysis showed strong predictive power at 1 year
(0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has
also been validated in external datasets. In addition, FKBP5 activity was
significantly inhibited by JQ1.

Conclusion: We present a landscape of SE and their associated genes in mCPRC,
and discuss the potential clinical implications of these findings in terms of their
translation to the clinic.
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Introduction

Prostate cancer (PCa) is a prevalent malignant tumor affecting
the male genitourinary system (Siegel, et al., 2021). According to the
World Health Organization (WHO) 2020 GLOBOCAN statistics, it
ranks second in incidence amongmalignancies inmen globally, after
lung cancer, and has the fifth highest mortality rate among all
malignancies in men (Sung, et al., 2021). Progression from local PCa
to castration-resistant prostate cancer (CRPC) is inevitable (Davies,
et al., 2019). Approximately 35% of patients with early-stage
localized cancer and 50% of locally advanced prostate cancer
have recurrence and metastasis (Djavan, et al., 2003). And the 5-
year survival rate of metastatic prostate cancer is 28% (Nandana and
Chung, 2014).

Epigenetic programming has emerged as a critical step in the
activation and maintenance of aberrant transcriptional programs in
CRPC pathogenesis (Cimadamore, et al., 2017; Yegnasubramanian,
et al., 2019; Sugiura, et al., 2021). Recent studies have shown that
hypermethylation of androgen receptor (AR) leads to loss of AR
expression in CRPC patients (up to 30%) (Suzuki, et al., 2003;
Chmelar, et al., 2007), driving CRPC progression. Epigenetic
regulatory heterogeneity could lead to intratumoral phenotypic
plasticity (Ateeq, et al., 2016). Phenotypic plasticity increases the
probability of tumor cells successfully migrating to and surviving in
different metastatic environments (Klein, 2013). In addition,
nonmutational epigenetic reprogramming, an emerging feature,
has been added to the list of hallmarks of cancer (Hanahan, 2022).

Super enhancers (SEs) are important elements of epigenetic
regulation (Hah, et al., 2015; Thandapani, 2019), the concept of
which was first proposed by Professor Young R.A. (Whitehead
Institute for Biomedical Research) in 2013. SEs are a large cluster
of active transcriptional enhancers spanning a long-range region of
genomic DNA. SE binding sites are occupied by high-density
transcription factors (TFs), coactivators (mediators), and histone
modification marks (Ing-Simmons, et al., 2015; Sengupta and
George, 2017). Compared to typical enhancers (TEs), which only
recruit one TF, SEs recruit multiple TFs to one site and drive
stronger transcriptional activation. Therefore, SEs participate in
multiple signaling pathways and facilitate tumor-promoting gene
changes (Hnisz, et al., 2015). SEs are essential for maintaining the
stemness of embryonic stem cells (Whyte, et al., 2013) and
maintaining tumor characteristics by facilitating special gene
expression patterns (Hnisz, et al., 2013; Thandapani, 2019).

Specifically, SEs facilitate the dysregulation of transcriptional
programs mediated by BRD4 (Urbanucci and Mills, 2018), CDK7,
ERG, and other factors in PCa cells. BRD4, a member of the
bromodomain and extraterminal domains (BETs) family (Chen
et al., 2020), is a critical SE-related protein in PCa (Donati, et al.,
2018; Shafran, et al., 2019). It acts as an epigenetic “reader” that
binds to specific acetylated lysine residues on histone tails,
facilitating the assembly of transcription complexes.
BRD4 exhibits dense binding activity in SE and drives cell-
identical gene expression (Lee, et al., 2017). In particular,
BRD4 physically interacts with the N-terminal domain of AR,
driving AR-mediated gene transcription. AR signaling remains
the most common resistance mechanism in most CRPC patients
(Dai, et al., 2017; Aurilio, et al., 2020). Moreover, BET inhibitors
could resensitize drug-resistant CRPCs to enzalutamide (Shah, et al.,

2017). The above evidence suggests that SE may be closely related to
mCRPC.

To reveal the epigenetic dysregulation mechanism of mCRPC,
SEs and TFs were first screened from C4-2B cells by CUT&Tag. We
present a landscape of SE and their associated genes in mCPRC.

Materials and methods

Cell culture

The human PCa cell line C4-2B, a subline of human PCa
LNCaP-derived C4-2 cells, was purchased from the BeNa Culture
Collection (BNCC) (BNCC341733). Cells were cultured at 37°C in
an atmosphere humidified with 20% O2 and 5% CO2 and were
cultivated in RPMI-1640 medium (MA0215, Meilunbio) containing
10% fetal bovine serum (A3160802, Gibco) and 1% (100 μg/mL)
penicillin/streptomycin (15140-122, Gibco).

Cell line treatment conditions

To verify the hub SE-associated DEGs, C4-2B cells were treated
with 500 nM and 2 μM JQ1 (CAS No.:1268524-70-4,
MedChemExpree) for 24 h. Equal volumes of the carrier (DMSO)
were used as control.

High-throughput CUT&Tag

The Cleavage Under Targets and Tag mentation (CUT&Tag)
assay was performed as previously described (Kaya-Okur, et al., 2019).
Briefly, 1 × 105 C4-2B cells were carefully washed twice with wash
buffer (20 mMHEPES pH7.5; 150 mMNaCl; 0.5 mM spermidine; 1×
protease inhibitor cocktail). Ten microliters of concanavalin A-coated
magnetic beads (Bangs Laboratories) were added to each sample and
incubated at RT for 10 min. The unbound supernatant was removed,
and bead-bound cells were resuspended in dig wash buffer (20 mM
HEPES pH 7.5; 150 mM NaCl; 0.5 mM spermidine; 1× protease
inhibitor cocktail; 0.05% digitonin; 2 mM EDTA) and a 1:
50 dilution of primary antibody (ab4729 for H3K27ac, Abcam;
ab8895 for H3K4me1, Abcam). Then, the cells were incubated
overnight at 4°C on a rotating platform. The primary antibody was
removed using a magnet stand. Secondary antibody (goat
monoclonal: Millipore AP132) was diluted 1:100 in digitonin wash
buffer, and the cells were incubated at room temperature for 1 h. The
cells were washed 3 times with a magnet stand in digitonin wash
buffer. A 1:100 dilution of the pA-Tn5 adapter complex was prepared
in Dig-med Buffer (0.01% digitonin; 20 mMHEPES pH 7.5; 300 mM
NaCl; 0.5 mM spermidine; 1× protease inhibitor cocktail) and
incubated with cells at room temperature for 1 h. The cells were
washed 3× for 5 min in 1 mL Dig-med buffer, resuspended in
tagmentation buffer (10 mM MgCl2 in Dig-med Buffer) and
incubated at 37°C for 1 h. DNA was purified using phenol‒
chloroform-isoamyl alcohol extraction and ethanol precipitation.
For amplification of the libraries, 21 μL DNA was mixed with 2 μL
of a universal i5 primer and a uniquely barcoded i7 primer. A volume
of 25 μL NEBNext HiFi 2× PCR Master mix was added, and the
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sample was mixed. The sample was placed in a thermocycler with a
heated lid, and the following cycling conditions were applied: 72°C for
5 min (gap filling); 98°C for 30 s; 14 cycles of 98°C for 10 s and 63°C for
30 s; final extension at 72°C for 1 min and holding at 8°C. The library
clean-up was performed with XP beads (Beckman Counter).

Identification of predicted SEs and TFs

H3 lysine 4 monomethylation (H3K4me1) and
H3K27 acetylation (H3K27ac) (Creyghton, et al., 2010), both
active histones, are associated with active enhancers and the
presence of actively transcribing Pol II (McVicker, et al., 2013).
Therefore, antibodies against active histones were used to bind
target chromatin proteins between nucleosomes in the genome.
Then, target peaks were detected in purified DNA by CUT&Tag
(Kaya-Okur, et al., 2019). Active enhancers were those enriched
in both H3K4me1 and H3K27ac (Li, et al., 2020). H3K4me1 can
mark active or poised enhancers. H3K27ac distinguishes active
enhancers from inactive/poised enhancer elements. Thus, the
H3K4me1 peaks file identified by MACS2 and the H3K27ac BAM
file were used as input to the algorithm firstly. Then, sort the
enhancer according to the signal value of H3K27ac by SEs
software (ROSE). The regions of SE or TE units and the
200 bp extending on both sides were used as input regions.
Then, hypergeometric optimization of motif enrichment

(HOMER) was used to predict enriched motifs. Detailed
information about TFs was obtained from the Human TFs
website (http://humantfs.ccbr.utoronto.ca/) (Lambert, et al.,
2018). Information on over 1,600 human TFs has been
deposited on this website.

Data acquisition

GSE35988 (Grasso, et al., 2012), containing mCRPC patients, was
obtained from Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo). Then, DEGs betweenmCRPC (n = 27) and localized
PCa (n = 49) tissue were compared via the online tool PCaDB (http://
bioinfo.jialab-ucr.org/PCaDB/). The analysis method was limma, and
the thresholds were |fold change| > 2 and p-value <0.01.

The training cohort (Taylor) and the validation cohorts (TCGA-
PRAD, DKZF, GSE54460, CancerMap, Cambridge, Belfast, CPC-
Gene, and Stockholm) of SE-associtated DEGs prognostic model
were downloaded from PCaDB.

Single-cell RNA-seq of mCRPC tissue was performed by the
Dana-Farber/Harvard Cancer Center Institutional Review
Board with ethics approval and informed consent (He, et al.,
2021).

Gene expression values of C4-2B, PC-3, LNCaP under
JQ1 treatment were extracted from GSE98069 (Coleman, et al.,
2019) using the edgeR package (Shen, et al., 2021).

FIGURE 1
Study design and pathway diagram. (A) Study design. (B) Pathway diagram.
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Functional enrichment analysis

SE-associated DEGs are the intersection of SE-associated genes
and DEGs of mCRPC. Enrichment analyses of SE-associated genes,
DEGs and SE-associated DEGs were performed based on various
online databases. Hallmark enrichment analysis based on The
Molecular Signatures Database (MSigDB) was performed using
gene set enrichment analysis (GSEA). In addition, genes were
subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) enrichment analysis. |Fold change|>1 and
p-value < 0.05 were considered to indicate statistical significance.

Ratio model training

For SE-associtated DEGs prognostic model training,
94 upregulated SE-associated DEGs and 48 downregulated SE-
associated DEGs were used as candidates; CoxRidge, a package
for fitting Cox models with penalized ridge-type partial likelihood,
was used as the method.

SE − associated DEGs score � ∑N

i�1 Coef f icienti × Expression level of mRNAi( )

Where “N” (N = 13) represents the total number of the SE-
associated DEGs in the training model, “Coefficienti” denotes a
specific mRNA’s coefficient of SE-associated genes, and
“Expression level of mRNAi” refers to the relative expression
level of a certain mRNA.

Given the median scores in Taylor dataset, the low risk group
and high risk group were defined. The Kaplan-Meier (KM) survival
analysis depicted the BCR-free survival probability curves between
the low risk group and high risk group. ROC curves of 1-, 3-, and 5-
year evaluate the predictive power of SE-associated DEGs score.

Subsequently, 8 independent validation cohorts (TCGA-PRAD,
DKZF, GSE54460, CancerMap, Cambridge, Belfast, CPC-Gene, and
Stockholm) were used for depicted the BCR-free survival
probability, which are the classic PCa datasets currently
retrievable. Forest plots (http://vip.sangerbox.com/home.html)
were used for visualization.

RNA isolation and RT‒qPCR

Total RNA was extracted from C4-2B cells using the RNA
Quick Purification Kit (RN001; esunbio) according to the
manufacturer’s instructions. The RNA concentration was
measured using a DS -11+ Spectrophotometer (DeNovix,
United States). cDNA was synthesized from the extracted
RNA by reverse transcription using HiScript II Q RT
SuperMix for qPCR (+gDNA wiper) (R223; Vazyme Biotech)
in the Veriti™ 96-Well Fast Thermal Cycler (catalog number:
4375305, Thermo Fisher Scientific). RT‒qPCR was performed
using ChamQ Universal SYBR qPCR Master Mix (Q711-02;
Vazyme Biotech) and a QuantStudio™ 1 Real-Time PCR
System (catalog number: A40427, Thermo Fisher Scientific).
Primers were chemically synthesized by Tsingke Biotechnology
Co., Ltd. (Guangzhou, China).

Primer sequences for amplification are listed in the
supplemental information (Supplementary Table S9).

Interaction network analyses

TFs were predicted by HOMER’s findMotifsGenome.pl tool
based on the C4-2B CUT&Tag peak file. The interaction network
between TFs and SE-associated DEGs was determined by utilizing
the STRING (http://string-db.org) online database and then
constructed using Cytoscape software.

Results

Flowchart of this study

The study design is illustrated in Figure 1A. To reveal the
epigenetic dysregulation mechanism of mCRPC, super-enhancer
(SE) associated genes and transcription factors were first screened
from C4-2B cellsusing CUT&Tag assay. The differentially expressed
genes related to mCRPC were identified from the GSE35988 dataset,
and the SE-associated DEGs were obtained by taking the
intersection of SE-associated genes and DEGs. Subsequently, a
recurrence prediction model was constructed based on SE-
associated DEGs, and a SE-mediated TF regulatory network was
built using TFs and SE-associated DEGs. JQ1, a BET inhibit BCR or,
was added to block SE-mediated TF transcription and identify key
SE-associated DEGs, which were found to include FKBP5 and
TACC3 genes. The hypothesis diagram depicted in Figure 1B
suggests that H3K4me1 and H3K27ac histone marks can recruit
active SEs, which can bind multiple TFs to drive stronger
transcriptional activation.

Identification of SE-associated genes

SEs can be found according to H3K4me1 and H3K27ac histone
marks. Specifically, H3K4me1 enrichment indicates regions related
to poised or less active enhancers. Enrichment of H3K27ac is a
marker of active regulatory elements, including enhancers and
promoters. Therefore, to identify SEs of C4-2B, a CUT&Tag
assay was performed with H3K4me1 and H3K27ac.
H3K4me1 can mark active enhancers as well as those in a poised
or predetermined state. And H3K27ac distinguishes active
enhancers from inactive/poised enhancer elements containing
H3K4me1 alone (Creyghton, et al., 2010).

In this study, we firstly evaluated the epigenetic landscape based
on two active histonemarks (H3K4me1 andH3K27ac). Annotations
of the peaks showed that H3K4me1 modification was mainly found
in intron (43.06%) and distal intergenic (23.06%) regions. In
contrast, H3K27ac modification was mainly found in promoter
(47.02%) and intron (32.2%) regions (Figure 2A). The
H3K4me1 and H3K27ac marks showed the same profile
surrounding the transcription start site (TSS) (Figures 2B, C).
H3K4me1 and H3K27ac histone marks identify regions that
likely contain enhancers. Importantly, SEs could be found in
regions with H3K4me1 and H3K27ac histone marks. Moreover,
the peaks of H3K4me1 and H3K27ac were highly colocalized in the
promoter and distal intergenic regions (Figure 2D), suggesting that
H3K4me1 and H3K27ac histone marks were also highly enriched in
the promoter and distal intergenic regions.
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Immediately afterward, we identified SEs and their associated
genes. H3K4me1 is used to find out poised enhancer. Then, sort
the enhancer according to the signal value of H3K27ac by SE
software (ROSE) (Figure 3A). According to the rank ordering of
ROSE, 867 activated SEs were identified, and the cutoff value was
13537.2441 (Figure 3B). These SEs could be annotated to
867 genes (Supplementary Table S1). Among them, there were
486 protein-coding RNAs, 68 ncRNAs, 50 pseudogenes and
1 snoRNA. In the present study, only protein-coding RNA
was selected for further investigation. Therefore, we defined
486 SE-related protein-coding RNAs as SE-associated genes
(Figure 3C). Hallmark enrichment analysis showed that C4-2B
may be greatly influenced by the early estrogen response,
P53 signaling pathway, and G2/M checkpoint (Figure 3D).
KEGG analysis revealed that the SE-associated genes are
involved in the Rap1 signaling pathway, tight junctions, the
AMPK signaling pathway, and adherens junctions (Figure 3E).
GO enrichment analysis confirmed the perturbation of Wnt
signaling pathways (Figure 3F).

Overall, we not only screened 486 SE-associated genes related to
mCRPC but also proposed a possible mechanism connecting

mCRPC and the Rap1 signaling pathway, tight junctions, the
AMPK signaling pathway, or adherens junctions.

Analysis of the differential expression
pattern of mCRPC

The GSE35988 dataset contains information on 49 localized PCa
patients and 27 mCRPC patients (Figure 4A) and was used for
differential expression pattern analysis of mCRPC. First, we
observed that localized PCa patients and mCRPC patients could
be divided into two groups according to principal component
analysis (PCA) (Figure 4B). Then, we identified 5,798 statistically
significant DEGs between the two groups (Figure 4C;
Supplementary Table S2). These DEGs of mCRPC could be
divided into 5,417 protein-coding RNAs, 262 ncRNA,
111 pseudogenes, and 1 snoRNA. and 1 snRNA (Figure 4D).
Subsequently, 5,417 protein-coding RNAs were used for
enrichment analysis. In the hallmark enrichment analysis, DEGs
were found to be enriched in epithelial-mesenchymal
transformation, E2F targets, the G2/M checkpoint, and the

FIGURE 2
Active histone mark distributions in C4-2B cells. (A) The distribution of genomic regions modified by H3K4me1 and H3K27ac, which were classified
into six region types (promoter, 5′UTR, 3′UTR, exon, intron, and intergenic). (B) Heatmap of active histone modifications detected in C4-2B cells. (C)
Density profiles of H3K4me1 (purple) and H3K27ac (orange) at C4-2B. Profiles included 3 kb upstream of TSS and 3 kb downstream of TES. (D) The
overlapping region between H3K4me1 and H3K27ac in promoters and distal intergenic regions.
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androgen response (Figure 4E). KEGG enrichment analysis showed
that DEGs were involved in theMAPK-type pathway, focal adhesion
and the Rap1 signaling pathway (Figure 4F). Moreover, GO
enrichment analysis demonstrated that Neurogenesis was the
main enriched term for DEGs in mCRPC (Figure 4G).

Application of SE-associated DEGs to
predict biochemical recurrence (BCR) in PCa
patients

SEs have been considered important epigenetic regulators.
Therefore, we aimed to investigate the clinical significance of SEs
in mCRPC. First, we took the intersection of 486 specific SE-
associated genes, 2,418 upregulated DEGs and

3,269 downregulated DEGs. We obtained 94 upregulated SE-
associated DEGs and 48 downregulated SE-associated DEGs
(Figure 5A; Supplementary Table S3). These SE-associated DEGs
were presumed to be involved in the progression. Thus, we
performed hallmark, KEGG, and GO enrichment analyses of SE-
associated DEGs. Hallmark enrichment analysis showed that
estrogen response signaling and androgen response signaling
were the most prominent signaling pathways (Figure 5B). KEGG
enrichment analyses showed that the Hippo signaling pathway,
MAPK signaling pathway, and Ras signaling pathway may be
vital (Figure 5C). The GO enrichment analysis supported the
Wnt signaling pathway result (Figure 5D).

BCR, which is characterized by an increase in prostate-specific
antigen (PSA) after completed surgery (Moul, 2000) or radiation
(Roach et al., 2006), was used to reflect the treatment effect. Here, we

FIGURE 3
Identification of SEs in C4-2B cells. (A) The flow of SE identification. (B) Ranking of enhancers using the ROSE algorithm. (C) Classification of SE-
related genes; protein-coding RNAs, namely, SE-associated genes, were the focus. (D–F)Hallmark, KEGG and GO enrichment analyses of SE-associated
genes in C4-2B cells.

Frontiers in Pharmacology frontiersin.org06

Zeng et al. 10.3389/fphar.2023.1191129

32

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1191129


established a BCR prediction model based on SE-associated DEGs.
First, the above SE-associated DEGs were selected for training in the
Taylor dataset using the CoxRidge. Kaplan–Meier survival analysis
of biochemical recurrence-free survival (BRFS) showed a
significantly worse prognosis in the high-risk group, implying
that the high-risk group was likely to relapse earlier than the
low-risk group in the Taylor cohort (HR = 4.98) (Figures 5E, F;
Supplementary Tables S4, S5). Time-dependent ROC curve analysis
revealed that the BCR model performed well in predicting outcomes
at 1 year (0.80), 3 years (0.85), and 5 years (0.88) (Figure 5F).
Consistently, the model of SE-associtated DEGs also predicted
BRFS well in multiple established validation cohorts (Figure 5G,
Supplementary Table S6), such as the TCGA-PRAD, DKZF,
GSE54460, CancerMap, Cambridge, Belfast, CPC-Gene, and
Stockholm cohorts.

TF regulatory network of mCRPC

Together, SEs, TFs, and multiple genes form a transcriptional
regulatory loop. Notably, TFs in particular play a crucial role in SE-

mediated transcriptional regulation. To explore the mechanism of
epigenetic dysregulation of mCRPC, we predicted TFs to establish a
TF regulatory network, which consisted of three layers of elements of
regulation: SEs, TFs and SE-associated DEGs.

First, TFs of mCRPC were predicted by HOMER based on the
DNA-binding motifs of C4-2B. HOMER motif discovery revealed
14 knownmotifs and 36 de novomotifs as the highest-scoring motifs
(p < 0.01). Analysis of these known motifs revealed 3 human TFs:
AR, NKRF and RFX2. Moreover, de novo motif analysis identified
6 probable human TFs, including NFIC, NKX2-5, SP2, AHR, ARNT
and FOXL1. According to DNA-binding domain (DAB)
classification, AR is a TF of nuclear receptors; RFX2 is a TF of
regulatory factor binding to the X-box (RFX); NFIC is a TF of
SMAD; NKX2-5 is a TF of homeodomain genes; SP2 is a TF of Cis2-
His2 zinc finger (C2H2-ZF); AHR and ARNT are basic helix-loop-
helix (bHLH) TFs; and FOXL1 is a forkhead box (FOX) TF
(Figure 6A).

Subsequently, 3 human TFs revealed by known motif analysis
and 6 human TFs identified by de novomotif analysis were found to
interact with SE-associated DEGs using the STRING database and
visualized by Cytoscape. The TF regulatory network of mCRPC was

FIGURE 4
Identification of DEGs between mCRPC and primary PCa patients in GSE35988. (A) Composition of sample types in GSE35988 dataset. (B) Principal
component analysis (PCA) of GSE35988 dataset. (C) Volcano plot of DEGs betweenmCRPC patients and primary PCa patients. (p < 0.01, |fold change| > 2,
limma methods). (D) Classification of DEGs. (E–G) Hallmark, KEGG and GO enrichment analyses of DEGs of mCRPC.
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constructed from TFs and their potential regulatory SE-associated
DEGs (Figure 6B).

Consistent with a previous report (Mulholland, et al., 2011), AR
was associated with FKBP5 in CRPC. FKBP5 is considered to be an
androgen-inducible gene that physically interacts with AR (Zheng,
et al., 2015). Moreover, the ARNT/TACC3 axis was apparent in the
TF regulatory network. An association study showed that
TACC3 was markedly upregulated in CRPC (Qie, et al., 2020). In
addition, the ARNT/TACC3 complex is active in a hypoxic
environment (Guo, et al., 2013), a signature of the tumor

environment. Thus, it is reasonable to assume that progression to
mCRPC may be regulated by the AR/FKBP5 and ARNT/
TACC3 axis.

Harnessing inhibitor sensitivity reveals hub
genes

The bromodomain and extraterminal (BET) family, including
BRD2, BRD3, and BRD4, which are partially enriched at termed SEs

FIGURE 5
Predicting BCR based on the SE-associated DEGsmodel. (A) Screening of SE-associated DEGs. (B–D)Hallmark, KEGG and GO enrichment analyses
of SE-associated DEGs. (E,F) Recurrence-free survival (RFS) in the training cohort (Taylor) (Method: CoxRidge). (G) ROC curves test the predictive value of
the risk score in the training cohort. (H) Forest plot analysis of RFS in the validation cohort.
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(Ribeiro, et al., 2012; Jin, et al., 2019), can regulate the activity of SEs
and promote SE-mediated transcriptional regulatory programs
(Shankar, et al., 2015). In other words, some SE-related genes
could be affected by BET inhibitors. Surprisingly, JQ1, a known
BET inhibitor, was reported to block the growth of PCa cells (Chen
and Song, 2016; Coleman, et al., 2019). Therefore, JQ1 was used in
the present study for further screening of SE-associated CRPC
recurrence genes.

First, the publicly available dataset GSE98069 was searched and
used to rapidly detect the JQ1-sensitive genes of C4-2B. Treatment
with 500 nM JQ1 for 24 h, the appropriate dose and time period,
significantly reduced proliferation (Urbanucci and Mills, 2018). A
total of 1423 genes were upregulated and 1680 genes were
downregulated in C4-2B (Figure 7A; Supplementary Table S7). Of
SE-associated CRPC recurrence genes, a total of 10 highly expressed
SE-associated CRPC recurrence genes were downregulated by
JQ1 treatment (Figure 7B). Among them, TACC3, FKBP5 and
NAV1 had the largest fold changes and greatest significant. Next,
the intersecting genes among the top 10 SE-associated genes (in terms
of fold change) and JQ1-sensitive genes, which are considered to be

key SE-mediated regulatory genes, were selected for PCR validation.
Strikingly, KLK3, the protein-coding RNA of AR, was selected as a
positive control and has been reported to be downregulated by JQ1 in
PCa cells (Chen and Song, 2016) (Figure 7C; Supplementary Table
S8). Our RT‒qPCR results were consistent with the RNA-Seq results
of C4-2B cells treated with 500 nM JQ1. To further validate the
expression changes of intersecting genes, we treated C4-2B cells with a
higher dose of JQ1 (2 mM). These results indicated that even a high
dose caused expression changes (Figure 7D).

To simplify, TACC3, FKBP5, and NAV1 were the most likely
SE-mediated regulatory genes, and they were expressed at higher
levels in mCRPC than in localized PCa. We further investigated the
localization of TACC3, FKBP5, and NAV1 in single cells isolated
from prostate tissue of CRPC patients. FKBP5 was obviously highly
expressed in PCa cells. TACC3 was highly expressed in CD4+ Treg
cells and CD14+ monocytes. NAV1 was mainly expressed in
plasmablasts (Figures 7E, G). Surprisingly, we found that
FKBP5 interacts closely with AR (Figure 7F). Strikingly,
FKBP5 is considered to be an androgen-inducible gene that
physically interacts with AR (Zheng, et al., 2015).

FIGURE 6
Predicted TFs and their interaction with SE-associated DEGs. (A)Detailed information of selected human TFs. (B) TFs regulatory network of mCRPC.
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Discussion

The therapeutic options are limited in the stage of mCRPC
patients. SEs, epigenetic regulators, have been implicated in
tumorigenesis (Cucchiara, et al., 2017; Hankey, et al., 2020).
Therefore, inhibtion of SEs might be a valid strategy in the
treatment of patients with refractory mCRPC.

In this study, we characterized the landscape of active histone
modifications in C4-2B cells representative of mCRPC.
H3K4me1 and H3K27ac are known markers of active
enhancers and important indicators of enhancer activity. In
particular, H3K4me1 is located in many type-specific enhancer
sites. Most enhancer regions labeled with H3K4me1 are active
(Calmasini, et al., 2020). H3K27ac is a candidate for
distinguishing active from inactive enhancer elements (Xu,
et al., 2018) A total of 867 SEs were identified in C4-2B cells
by detecting both H3K4me1-and H3K27ac-enriched regions (Xu,
et al., 2018). Our data showed that SE-associated genes involved
in the early estrogen response and G2/M checkpoint contribute to
the pathogenesis of mCRPC. Analysis of mCRPC tissues also
supported this conclusion. To further prove this hypothesis, we

overlapped SE-associated genes in C4-2B cells versus normal
control cells and DEGs in mCRPC versus primary PCa. The
overlapping genes were involved in the estrogen response,
androgen response, Hippo signaling pathway, MAPK signaling
pathway, and so on. These genes are closely related to mCRPC.

Local therapies, including radical prostatectomy or primary
definitive radiotherapy, are the initial treatments for primary
PCa. However, many patients will eventually reach the mCRPC
stage (Cornford, et al., 2021). BCR reflects the effects of
treatment. Therefore, SE-associated DEGs, namely, SE-
associated mCRPC recurrence genes, were used to construct
the BCR prediction model. This model displayed a
significantly excellent predictive power for mCRPC recurrence
at the 1-year, 3-year and 5-year follow-up. This implies that
mCRPC patients with high predictive scores might benefit from
BET inhibitors.

SEs activate transcription by recruiting TFs. Therefore, we
further sought TFs of mCRPC and then established a TF
regulatory network. Reliable studies have summarized
1,639 known or probable human TFs (Lambert, et al., 2018).
Fortunately, 9 human TFs were explored in C4-2B cell lines.

FIGURE 7
Verification of SE-associated CRPC recurrence genes. (A) Fast screening of BET inhibitor-sensitive SE-associated DEGs. (B) Selection of SE-
associated CRPC recurrence genes. (C) Relative expression of selected genes based on GSE98069 (***p < 0.001, 500 nM JQ1 vs. DMSO). (D) Verification
of selected genes by RT‒qPCR (***p < 0.001, 500 nM or 2 mM JQ1 vs. DMSO). (E–G) Single-cell analysis of TACC3, FKBP5 and NAV1.
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Undoubtedly, it has been widely assumed that AR signaling is
related to CRPC biology (Watson, et al., 2015). The AR gene body
and/or the enhancer are amplified in 81% of mCRPC cases
(Quigley, et al., 2018; Zhao, et al., 2020). NF-κB repressing
factor (NKRF), an inhibitor of NF-KB-mediated gene
transcription, has been associated with tumor invasion,
migration, and progression (Hsu, et al., 2012; Xu, et al., 2022).
Regulatory factor X2 (RFX2) has been identified as the major
master TF in regulating the angiogenesis signature in renal
carcinoma (Zheng, et al., 2021). Furthermore, the RFX2/
RFX3 complex could only be detected in the nuclear extract of
FGF-1B-positive cells; it directly binds the 18-bp cis-element
(−484 to −467) and contributes to the regulation of the
fibroblast growth factor 1 (FGF1) promoter, which has been
shown to regulate cell proliferation and cell division (Hsu,
et al., 2012).

Acetylated chromatin, particularly in SE regions, is associated
with bromodomain and extraterminal (BET) proteins to facilitate
transcriptional activation (Li, et al., 2020). BET inhibitors disrupt
the interaction of bromodomains with acetylated histones and
result in the loss of enhancer-promoter long-range interactions.
Several BET inhibitors are currently being investigated in
phase I/II in mCRPC patients, including ZEN003694
(NCT02711956, NCT02705469), GS-5829(NCT02607228), and
OTX015/MK-8628 (NCT02259114) (Zheng, et al., 2015). JQ1, a
well-known BET inhibitor, was reported to block PCa cell growth
(Chen and Song, 2016; Coleman, et al., 2019). Thus, JQ1 was used
in the present study to further screen the hub SE-
associated DEGs.

FKBP5 and TACC3 were still the key players deactivated by
JQ1, while they were upregulated in mCRPC. Thus, we confirmed
that FKBP5 and TACC3 might be the key candidates regulated by
SEs in the pathogenic process of mCRPC. The TF regulatory
network of mCRPC, the AR/FKBP5 axis and the ARNT/
TACC3 axis were the focuses of our study. Consistent with a
previous report (Mulholland, et al., 2011), AR was associated with
FKBP5 in CRPC. Moreover, ARNT is a TF of basic helix-loop-
helix/per-arnt-sim (PAS) family members, and predominantly
heterodimerizes with the aryl hydrocarbon receptor (AHR) or
hypoxia-inducible factor-1 alpha (HIF-1α), which has been
linked to PCa angiogenesis (Fritz, et al., 2008). TACC3, which
is involved in the pathogenesis of several cancers (Qie, et al.,
2020), was markedly upregulated in CRPC. The ARNT/
TACC3 complex is active in a hypoxic environment (Guo,
et al., 2013). Our data suggest that CRPC progression may be
regulated by the ARNT/TACC3 axis.

Single-cell analysis revealed that FKBP5 is mainly expressed
in PCa cells of CRPC tissues. Therefore, FKBP5 might be a crucial
SE-mediated gene in mCRPC. FKBP5, an androgen-inducible
gene, physically interacts with AR (Zheng, et al., 2015). Recent
studies have identified widespread activation of
FKBP5 transcription in PCa cells by AR via distal intronic
enhancers (Zheng, et al., 2015), which is related to
chemoresistance in cancer (Li, et al., 2019). By contrast, little
attention has been paid to the effects on ARNT/TACC3 axis in
prostate cancer. Our previous study has demonstrated that

CCR8-ARNT increased lactate production, and promoted
aerobic glycolysis, which was related to poor outcomes of
patients with advanced PCa (Chen G et al., 2020; Chen X
et al., 2020). What’s more, recent studies showed that ARNT
was related to tumor heterogeneity (Watkins, et al., 2020) and
resistance of enzalutamide (Zhang, et al., 2022). ARNT, also
known as hypoxia-inducible factor-1β (HIF-1β), has been
recognized as an oncoprotein that promotes tumor growth in
response to hypoxia (Harris, 2002), including multiple myeloma
(Hassen, et al., 2015; Huang, et al., 2021), lymphoid cancer
(Gardella, et al., 2016) and melanoma (Leick, et al., 2019).
ARNT PAS-B domain was reported to interact directly with
TACC3, which is a necessary step for transcriptional responses
to hypoxia (Partch and Gardner, 2011). TACC3 gene is a
centrosomal protein that is, involved in mitotic spindle
assembly and chromosome segregation. Recent studies have
shown that TACC3 is over-expressed in prostate cancer, and is
associated with tumor progression and poor prognosis.
Overexpression of TACC3 in prostate cancer cells has been
shown to promote cell proliferation and migration. Therefore,
it is reasonable to speculate that AR/FKBP5 axis and ARNT/
TACC3 axis might play important roles in the progression of
mCRPC.

Conclusion

Our study provides valuable insights into the role of SEs in
mCRPC development and suggests potential clinical applications
for SEs.
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Constructing a cancer stem cell
related prognostic model for
predicting immune landscape and
drug sensitivity in colorectal
cancer
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and Zhe Wang*

Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical
University (Army Medical University), Chongqing, China

Background: Colorectal cancer (CRC) ranks the second malignancy with high
incidence and mortality worldwide. Cancer stem cells (CSCs) function critically in
cancer progression and metastasis via the interplay with immune cells in tumor
microenvironment. This study aimed to identify important CSC marker genes and
parsed the role of these marker genes in CRC.

Materials and methods: CRC samples’ single-cell RNA sequencing data and bulk
transcriptome data were utilized. Seurat R package annotated CSCs and identified
CSC marker genes. Consensus clustering subtyped CRC samples based on CSC
marker genes. Immune microenvironment, pathway and oxidative stress analysis
was performed using ESTIMATE, MCP-counter analysis and ssGSEA analysis. A
prognostic model was established by Lasso and stepAIC. Sensitivity to
chemotherapeutic drugs was determined by the biochemical half maximal
inhibitory concentration with pRRophetic R package.

Results: We identified a total of 29 CSC marker genes related to disease-specific
survival (DSS). Two clusters (CSC1 and CSC2) were determined, and CSC2 showed
shorter DSS, a larger proportion of late-stage samples, and higher oxidative stress
response. Two clusters exhibited differential activation of biological pathways
associated with immune response and oncogenic signaling. Drug sensitivity
analysis showed that 44 chemotherapy drugs were more sensitive to
CSC2 that those in CSC1. We constructed a seven-gene prognostic model
(DRD4, DPP7, UCN, INHBA, SFTA2, SYNPO2, and NXPH4) that was effectively
to distinguish high-risk and low-risk patients. 14 chemotherapy drugs were more
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sensitive to high-risk group and 13 chemotherapy drugs were more sensitive to
low-risk group. Combination of higher oxidative stress and risk score indicated
dismal prognosis.

Conclusion: The CSC marker genes we identified may help to further decipher the
role of CSCs in CRC development and progression. The seven-gene prognostic
model could serve as an indicator for predicting the response to immunotherapy
and chemotherapy as well as prognosis of CRC patients.

KEYWORDS

colorectal cancer, cancer stem cells, single-cell analysis, CSC marker genes, clustering,
prognostic model, oxidative stress, drug sensitivity

Introduction

According to global cancer statistics in 2020, colorectal cancer
(CRC) is one of the most contributable malignancies worldwide,
resulting in around 9.8% of new cancer cases and 9.2% of new cancer
deaths worldwide (Sung et al., 2021). Males have both higher
incidence and mortality rates than females, which may result
from more frequent smoking in males. The gender disparity also
varies greatly by age. For instance, incidence of aging from 55–74 is
40%–50% higher in male population than in females, while the close
incidence is shown between men and women in ages beneath
45 years (Murphy et al., 2011). The incidence markedly escalates
with the increasing age from 40 years, presented with almost or even
over double increase per 10 years (Siegel et al., 2020). With the
developing and popularization of screening methods like
colonoscopy, the incidence rate of CRC drastically declined from
late 20th century to 2017 (Laiyemo et al., 2010; Fedewa et al., 2017).
Nevertheless, survival rate for 5 years is still extremely low, about
12% for metastatic CRC patients (Siegel et al., 2019). Further
investigation on molecular mechanisms and screening or
prognosis predicting methods is needed for facilitating survival of
CRC patients.

In recent years, molecular stratification therapy based on tumor
biological characteristics has improved the prognosis of patients
with advanced colorectal cancer to some extent. For example, anti-
D-1 and anti-CTLA-4 monoclonal antibodies for metastatic disease
with MSI or high TMB (Hong et al., 2016; Tamura, 2018) and
verofinil for colorectal cancer with BRAFV600E. Dienstmann et al.
(Dienstmann et al., 2017) pointed out that precision therapy for
colorectal cancer will shift from single-gene single-drug to multi-
gene-multi-drug as well as multi-molecular multi-drug, i.e., from a
clonal perspective to a clone-stromal-immune perspective, which
represents the future direction of colorectal cancer treatment.

The substantial proliferation and invasion of cancer cells are
tightly linked to cancer stem cells (CSCs). CSCs possess a solid self-
renewal ability to expand cancer cell growth and promote
tumorigenesis (Bjerkvig et al., 2005). In addition to the self-
renew, CSCs can also differentiate into other cell types such as
endothelial cells that are responsible for angiogenesis (Xiong et al.,
2009; Ricci-Vitiani et al., 2010). Therefore, CSCs generate intra-
tumor heterogeneity by differentiating a range of different cell types.
On top of that, CSCs interact with epithelial–mesenchymal
transformation (EMT) process to promote cancer cell invasion
and migration (Kong et al., 2011). CSCs share some of same
pathways with normal stem cells, such as Hedgehog signaling,

Wnt/β-catenin, and Notch signaling pathways that maintain their
self-renewal ability as well as confer the resistance to chemotherapy
and radiotherapy in CRC (Baumann et al., 2008; Dylla et al., 2008;
Colak et al., 2014; Yang et al., 2020). A Phase II clinical trial study
confirmed the effect of metformin on CSCs in ovarian cancer,
suggesting that epigenetic changes in tumor stroma may drive
platinum sensitivity in vitro (Brown et al., 2020). Overall, the
properties of CSCs endow them to complicate tumor
microenvironment and enhance resistance to clinical therapy.
Consequently, targeting CSCs could be a promising strategy for
CRC treatment. For example, a phase I/II clinical trial employed
CSC-loaded dendritic cells as vaccine using in metastatic CRC
patients (https://clinicaltrials.gov/ct2/show/NCT02176746).

Given that CSCs function critically in cancer progression and
therapy, we sought to emphasize and decipher the role of CSC
markers in CRC development and therapy. Single-cell RNA
sequencing data of CRC samples was analyzed for accurately
annotating CRC marker genes. We identified two clusters
through molecular subtyping based on CRC marker genes and
parsing the difference of two clusters from various aspects
including prognosis, immune microenvironment, biological
pathways, and response to clinical therapy. Importantly, we
established a CRC-based prognostic model which was reliable
and effective for the survival prediction of CRC.

Materials and methods

The acquisition and preprocessing of bulk
transcriptome data

The bulk RNA sequencing (RNA-seq) data of CRC samples and
para-cancerous (normal) samples were obtained from The Cancer
Genome Atlas (TCGA) database through Sangerbox platform in
30 September 2022 (named as TCGA dataset) (Tomczak et al., 2015;
Shen et al., 2022). Microarray data of CRC samples (GSE17538 and
GSE39582) were downloaded from Gene Expression Omnibus
(GEO, specific links please see https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE17538, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE39582) (Clough and Barrett, 2016).

For RNA-seq data of TCGA dataset, we removed the samples
without clinical information and survival information. Ensembl IDs
were transferred to gene symbols, and averaged expression levels
were selected in the condition that one gene had multiple Ensembl
IDs. Finally, 438 CRC samples were included in TCGA dataset
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(Supplementary Table S1). For microarray data, only samples with
survival information were remained. Probes were transferred to gene
symbols. We eliminated probes matching to multiple genes and
selected averaged expression value when one gene had multiple
probes. After preprocessing, a total of 232 and 556 CRC samples
were remained in GSE17538 and GSE39582 datasets, respectively
(Supplementary Tables S2, S3).

The acquisition and processing of single-cell
RNA sequencing data

Single-cell RNA sequencing (scRNA-seq) dataset (GSE200997)
was downloaded from GEO. We retained 16 CRC samples in the
dataset. ScRNA-seq data was filtered under following conditions: 1)
each gene expressed at least in three cells; 2) each cell expressed at
least 250 genes; 3) the percentage of mitochondria is less than 10%;
4) UMI of each cell >500 and log10(GenesPerUMI) > 0.8. After
preprocessing, we analyzed the scRNA-seq data using Seurat R
package according to following procedures (Gribov et al., 2010).
Firstly, the expression profiles were log-normalized. Then we
removed the batch effects of 16 tumor samples using
FindVariableFeatures and FindIntegrationAnchors functions, and
integrated data through IntegrateData function. Next, ScaleData
function was conducted to scale data and identify the anchor for
principal component analysis (PCA). Single cells were clustered with
dim = 40 and Resolution = 0.5 based on FindNeighbors and
FindClusters functions. Subsequently, we annotated the cell
clusters according to the cell markers of eight cell types (B cells,
T cells, CSCs, endothelial cells, fibroblasts, mast cells, myeloid cells,
NK cells, and T cells) from CellMarker 2.0 and previous studies
(Supplementary Table S4) (Peng et al., 2019; Zhang et al., 2019; Lee
et al., 2021; Su et al., 2021). Finally, FindAllMarkers function was
performed to discriminate differentially expressed genes (DEGs)
among eight cell types.

Analysis of cancer stemness

We used mRNA stemness index (mRNAsi) to measure cancer
stemness at RNA expression level. Following a previous study, one-
class logistic regression (OCLR) machine-learning algorithm was
used to calculate the mRNAsi (Malta et al., 2018). The DEGs of CSCs
were determined as CSC marker genes. Single sample gene set
enrichment analysis (ssGSEA) calculated the score of CSC
marker genes through GSVA R package (Hänzelmann et al.,
2013). The mRNAsi and ssGSEA score of CSC marker genes
were calculated for each tumor and normal sample in TCGA,
GSE17538 and GSE39582 datasets. Pearson correlation analysis
assessed the correlation between mRNAsi and CSC marker genes
using Hmisc R package.

Mutation analysis

Copy number variation (CNV) and single nucleotide variation
(SNV) data were obtained from TCGA dataset, where SNV data had
been processed by mutect2 software. Genes mutated in more than

three tumor samples were retained and examined by Fisher’s exact
test to determine significantly mutated genes (p < 0.05). The top
15 highly mutated genes were visualized.

Molecular subtyping based on CSC marker
genes

First of all, to identify disease-specific survival (DSS)-associated
CSC marker genes (p < 0.05), we performed univariate Cox
regression analysis. Then based on the expression profiles of
DSS-associated CSC genes, tumor samples were subtyped by
unsupervised consensus clustering in ConsensusClusterPlus R
package with parameter settings were as follows: reps = 50,
pItem = 0.8, pFeature = 1, and distance = Euclidean (Wilkerson
and Hayes, 2010). We determined the optimal cluster number k
referring to cumulative distribution function (CDF) curves, relative
area change under CDF curves, and consensus matrix.

Immune and pathway analysis

We obtained a group of gene sets of 28 immune cells, innate and
adaptive immunity from previous research (Charoentong et al.,
2017; He et al., 2018), and measured their enrichment scores
using ssGSEA. ESTIMTAE algorithm evaluated the enrichment
scores of immune cells and stromal cells, and outputted an
ESTIMATE score representing the combined immune and
stromal scores (Yoshihara et al., 2013). Microenvironment Cell
Populations (MCP)-counter method was employed to assess the
enrichment scores of nine immune cells and fibroblasts (Becht et al.,
2016). We obtained a total of 47 immune checkpoint genes from a
previous study (Danilova et al., 2019). For pathway analysis,
hallmark pathways (h.all.v7.4. symbols.gmt) were collected from
Molecular Signature Database (MSigDB) (Liberzon et al., 2015). The
ssGSEA score for each pathway was calculated and compared
between different groups.

Assessment of oxidative stress

Oxidative stress related genes were collected from “GOBP_
RESPONSE_TO_OXIDATIVE_STRESS” in MSigDB. Distribution
of this GOBP gene set was analyzed in GSE17538, GSE39582, and
TCGA. Pearson’s correlation analysis was performed to evaluate the
relationship between risk score and oxidative stress. surv_cutpoint
function embedded in survminer package was employed to
determine the optimal cutoff and generate survival curves.

Predicting the response to immunotherapy
and chemotherapy

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
(http://tide.dfci.harvard.edu/) was implemented to estimate the
potential response of tumor samples to immune checkpoint
inhibitors (ICIs) (Jiang et al., 2018). A higher TIDE score is
positively correlated with a higher possibility of immune escape
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from ICIs. T cell exclusion and T cell dysfunction were examined by
TIDE, and the enrichment scores of immunosuppressive cells
including tumor-associated macrophages (TAM), myeloid-derived
suppressor cells (MDSC), cancer-associated fibroblasts (CAF) were
also calculated. The sensitivity to chemotherapeutic drugs was
determined by the biochemical half maximal inhibitory
concentration with pRRophetic R package (Geeleher et al., 2014).

Constructing and validating a prognostic
model

Under the threshold of |fold change| > 1.5 and false discovery
rate (FDR) < 0.05, DEGs between different clusters were identified
by limma R package (Ritchie et al., 2015). WebGestaltR package was
used to annotate significantly enriched KEGG pathways for DEGs
(Liao et al., 2019). Then TCGA dataset was randomly assigned at a
ratio of 1:1 into training and testing groups. We screened DSS-
associated DEGs through univariate Cox regression analysis in the
training group (p < 0.01). To reach an optimal prognostic model, we
conducted least absolute shrinkage and selection operator (Lasso)
with glmnet package and stepwise Akaike information criterion
(stepAIC) with MASS package to determine the most contributable
genes to the model (Friedman et al., 2010; Zhang, 2016). The
prognostic model was defined as: risk score = Σβi×Expi, where β
indicates Lasso coefficients and Exp indicates the expression levels of
prognostic genes (i).

According to the optimal cut-off determined by survminer R
package, each tumor sample obtained a risk score and was classified
into high-risk and low-risk groups. Survival time between two risk
groups was shown by Kaplan-Meier survival analysis. Receiver
operation characteristic (ROC) curve analysis was used to predict
the efficiency of the prognostic model in predicting different survival
time through timeROC R package (Blanche et al., 2013). The
effectiveness and reliability of the model was validated in TCGA
and GSE17538 datasets.

Statistical analysis

The statistical analysis in this study was conducted and
outputted by R software (version 4.1.0). Two-group statistical
difference was examined by Wilcoxon test. Log-rank test was
used in survival analysis and univariate Cox regression analysis.
We considered p < 0.05 as statistically significant.

Results

Identification of CSC markers and their
relation with mRNAsi

First of all, we used scRNA-seq data to identify different cell
types based on their markers. Single cells were filtered to ensure the
quality of data (see details in materials and methods). The gene
counts, UMI counts, and mitochondrial percentage of 16 CRC
samples before and after quality control were shown in
Supplementary Figure S1. After quality control, we normalized

the data and removed the batch effects based on highly variable
genes (Supplementary Figure S2). Then single cells were further
scaled and grouped into 21 clusters (Supplementary Figure S3).
Using cell markers from CellMarker 2.0 and based on previous
research, we annotated cells into eight cell types including B cells,
T cells, endothelial cells, fibroblasts, mast cells, cancer stem cells,
myeloid cells, and NK cells (Figures 1A, B; Supplementary Table S4).
T cells contributed the largest proportion followed by B cells and
CSCs in most tumor samples (Figure 1C). Subsequently,
differentially expressed genes (DEGs) were identified from each
cell type and the top five DEGs (bright yellow) were visualized
(Figure 1D). For CSCs, we identified a total of 257 DEGs
(Supplementary Table S5).

To evaluate the reliability of 257 DEGs as marker genes of CSCs,
we introduced mRNA stemness index (mRNAsi) to assess the
correlation between 257 DEGs and mRNAsi. We firstly
calculated the ssGSEA score of 257 DEGs and mRNAsi score in
three independent datasets (TCGA, GSE17538, and GSE39582). By
comparing the ssGSEA score and mRNAsi score in normal and
cancer samples, we observed that cancer samples had higher scores
of both ssGSEA and mRNAsi than normal samples in TCGA and
GSE39582 datasets (p < 0.001, Figures 2A, B). In addition, the
ssGSEA score of CSC marker genes was significantly positively
related to mRNAsi score, with coefficients of 0.443, 0.380, and
0.477 in TCGA, GSE39582, and GSE17538, respectively (p <
0.0001, Figures 2A–C). Therefore, it is reasonable to determine
the 257 DEGs as CSC marker genes.

Identification of molecular subtypes based
on CSC marker genes

To identify which CSC marker genes were associated with CRC
progression, we performed univariate Cox regression based on DSS
time. Of 257 CSC marker genes, we identified a total of 29 genes
(20 risk genes and 9 protective genes) significantly associating with
DSS (Supplementary Figure S4A; Supplementary Table S6). Within
these 29 genes, 22 of them were differently expressed in cancer and
para-cancerous samples (Supplementary Figure S4B). We also
analyzed the gene mutations and genomic variations of 29 genes
in cancer samples. PLEC, PLCG2, and LENG8 were the top three
frequently mutated genes, with mutation frequencies of 10%, 7%,
and 5%, respectively (Supplementary Figure S4C). CNV results
showed that the frequency of gain of CNVs was larger than that
of loss of CNVs (Supplementary Figure S4D). Especially, BRI3,
CEBPB, HSPB1, and PLEC had frequencies of gain of CNVs over
than 25%.

Given that 29 CSC marker genes were closely related to patients’
prognosis, we then studied the role of these marker genes in CRC.
Therefore, the expression profiles of 29 CSC marker genes in TCGA
dataset were used in consensus clustering on CRC samples.
According to CDF curve and consensus matrix, cluster number
k = 2 was determined as the optimal and samples were classified into
two clusters (CSC1 and CSC2) (Figures 3A–C). In GSE17538 and
GSE39582 datasets, we used the same method to cluster samples and
consensus matrix results showed that samples were evidently
divided into two clusters (Figures 3D, E). Then we compared the
prognosis of two clusters in three datasets. In TCGA dataset,
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CSC1 and CSC2 showed significantly different disease-specific
survival (DSS) (p < 0.0001), progression-free interval (PFI) (p =
0.0011), and overall survival (OS) (p = 0.00023) (Figure 3F). In
GSE39582 dataset, CSC1 and CSC2 had different prognosis on
recurrence-free survival (RFS) (p = 0.026) and OS (p = 0.018)
(Figure 3G). In GSE17538 dataset, two clusters had different DSS
(p = 0.048) and disease-free survival (DFS) (p = 0.005), but no
significant difference on OS (Figure 3H). Overall, CSC1 had better
prognosis than CSC2. PCA plot presented that two clusters were
evidently separated (Figure 3I). Therefore, we considered that the
clustering of CRC samples based on 29 CSC marker genes was
effective and reliable.

Mutation and clinical characteristics of two
clusters

We assessed the mutation data of TCGA dataset, and identified a
total of 380 genes that had significantly higher mutation frequencies
in CRC samples that in normal samples. The top 15 mutated genes
were visualized, where XIRP2 and SCN1A had frequencies of over
than 10% (Supplementary Figure S5A). However, there was no
significant difference on tumor mutation burden between cancer
and normal samples (Supplementary Figure S5B).

In addition, we compared the clinical characteristics including
gender, age, stage Ⅰ toⅣ, TNM stage in two clusters. The distribution
of different ages and genders did not show significant differences
between two clusters (Supplementary Figure S5C, D). Noteworthy,
CSC2 had markedly larger proportions of the samples with late
stages than CSC1, with ratios of 0.14 and 0.09 in T4 stage, 0.24 and
0.12 in N2 stage, 0.22 and 0.10 in M1 stage, 0.21 and 0.09 in stageⅣ
for CSC2 and CSC1 respectively (Supplementary Figure S5E–H).
The findings suggested that CSC marker genes may have an
influence on the progression of CRC.

Immune microenvironment and oxidative
stress differences of CSC1 and CSC2 clusters

We applied different methods to evaluate the immune
microenvironment in CSC1 and CSC2. SsGSEA on the gene sets
of 28 immune cells showed that 14 immune cells were differently
enriched in two clusters, and CSC1 had higher enrichment scores
in most of them such as natural killer cells, activated CD4 T cells,
memory B cells (Figure 4A). In the response of adaptive and innate
immunity, CSC1 also performed higher enrichment score than
CSC2 but the difference was not significant in the innate immune
response (Figure 4B). ESTIMATE analysis revealed higher

FIGURE 1
Analysis of scRNA-seq data. (A) T-SNE plot showed the distribution of eight cell types with different colors. (B) The expression of cell markers in
different cell types. Pct. exp (dot) indicates the percentage of cells expressing marker genes. Blue color from light to dark indicates the expression from
low to high. (C) The percentage of eight cell types in 16 tumor samples. 16 samples were indicated in the left and percentage was indicated in the bottom.
(D) The top five DEGs of eight cell types. Yellow and purple represents high and low normalized expression respectively.
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infiltration of immune cells and stromal cells in CSC1 than that in
CSC2 (Figure 4C). Moreover, MCP-counter manifested that of
10 immune-related cells, three cell types including monocytic
lineage, endothelial cells, myeloid dendritic cells had noticeably
higher enrichment scores in CSC1 compared with CSC2
(Figure 4D). The above results assessed by different methods
were consistent with each other, suggesting a difference of
immune cell infiltration and immune microenvironment
between two clusters. Immune checkpoints are essential linkage
of different immune cells for enhancing or inhibiting the
cytotoxicity of immune cells. The expression levels of a total of
47 immune checkpoints were compared in two clusters. As a result,
26 of 47 immune checkpoints showed a significant difference
between two clusters, with most of them were higher expressed
in CSC1 (Figure 4E). Different expression levels of these immune

checkpoints may contribute to the difference immune response
between two clusters.

Furthermore, we reckoned the scores of hallmark pathways
using ssGSEA to unveil the potential molecular mechanisms
resulting in different prognosis in two clusters. As a result,
25 pathways were differently enriched between two clusters
(Figure 4F). CSC1 displayed relatively enhanced activation of
immune-correlated pathways, for example, complement and
inflammatory response, IL2-STAT5 signaling, in accordant with
the result of immune analysis. In addition, reactive oxygen species
pathway, p53 signaling pathway and Wnt signaling pathway that
were associated with oncogenesis were more activated in
CSC2 compared with CSC1. Moreover, Figure 5 revealed that the
score of “GOBP_RESPONSE_TO_OXIDATIVE_STRESS” was
significantly increased in CSC2 in GSE17538 and GSE39582.

FIGURE 2
The relation between CSC markers and mRNAsi. (A) The ssGSEA score of CSC markers and mRNAsi in normal and tumor samples in TCGA dataset.
Pearson correlation analysis between CSC markers and mRNAsi. (B) The ssGSEA score of CSC markers and mRNAsi in normal and tumor samples in
GSE39582 dataset. Pearson correlation analysis between CSC markers and mRNAsi. (C) Pearson correlation analysis between CSC markers and mRNAsi
in GSE17538 dataset.
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The predicted response of two clusters to
immunotherapy and chemotherapy

We employed TIDE analysis to estimate the response to
immunotherapy for two clusters. No significant difference was

detected in TIDE score between two clusters. Higher TIDE score
suggested lower sensitivity to immunotherapy. Although two
clusters showed similar response to immunotherapy,
CSC2 had higher score of T cell dysfunction and higher
enrichment of MDSC, but lower score of CAF than CSC1

FIGURE 3
Molecular subtyping based on CSC markers. (A, B) CDF curves and relative change under CDF curves when cluster number k was 2–10 in TCGA
dataset. (C–E) Consensus matrix when k = 2 in TCGA (C), GSE39582 (D) and GSE17538 (E) datasets. (F–H) Kaplan-Meier survival curves of CSC1 and
CSC2 for different survival time in TCGA (F) GSE39582 (G) and GSE17538 (H) datasets. (I) PCA plots of CSC1 and CSC2 in three datasets. OS, overall
survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; RFS, recurrence-free survival; DFS, disease-free
survival.
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(Figure 6A). The function of T cells and infiltration levels of
immunosuppressive cells (MDSC and CAF) can affect the
response to immunotherapy.

In the predicted response of two clusters to chemotherapy, we
evaluated a number of chemotherapeutic drugs using pRRophetic
package. We identified a total of 51 chemotherapeutic drugs with

FIGURE 4
Immune microenvironment and pathway analysis of two clusters in TCGA dataset. (A) The estimated proportion of 28 immune-related cells by
ssGSEA. (B) The ssGSEA score of adaptive and innate immune cells. (C) The stromal and immune scores measured by ESTIMATE. (D) MCP-counter
assessed the enrichment score of 10 immune-related cells. (E) The expression levels of immune checkpoints. (F) A heatmap showed the z-score
expression levels of differentially enriched pathways between two clusters. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 5
Difference of oxidative stress response of two clusters in TCGA, GSE17538 and GSE39582 datasets.
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different sensitivities to two clusters, where 44 drugs were more
sensitive to CSC2 and 7 drugs were more sensitive to CSC1
(Figure 6B). Therefore, we inferred that CSC marker genes for
molecular subtyping may be involved in the response to these
chemotherapeutic drugs.

Constructing a prognostic model based on
DEGs between CSC1 and CSC2

In the above sections, we illustrated that CSC1 and
CSC2 exhibited different prognosis, immune microenvironment
and activated pathways. To identify which genes had a difference
to the outcome of clusters, we performed differential analysis on the

expression profiles between CSC1 and CSC2and screened DEGs
under |log Foldchange (FC)| > 1.5 and FDR <0.05. Consequently,
598 DEGs including 214 downregulated genes and 384 upregulated
genes were identified in CSC1 (Supplementary Figure S6A). The
DEGs were significantly enriched in pathways like drug metabolism,
TGF-β signaling pathway, and gap junction, as shown by KEGG
pathway analysis (Supplementary Figure S6B).

TCGA dataset was randomly divided into two groups, training
and testing groups at a ratio of 1:1. To determine prognostic genes,
we performed univariate Cox regression on 598 DEGs in the training
group and screened 26 genes significantly related to DSS
(Figure 7A). Furthermore, we used Lasso and stepAIC to
decrease the number of prognostic genes for constructing a
prognostic model efficiently applied in clinics. Lasso regression

FIGURE 6
The sensitivity of two clusters to immunotherapy and chemotherapy. (A) TIDE analysis showed the scores of TIDE, T cell function, and infiltration of
immunosuppressive cells. (B) A heatmap showed the estimated half maximal inhibitory concentration (IC50) of two clusters to different
chemotherapeutic drugs. The drugs with significantly different IC50 in two clusters were visualized. MDSC, myeloid-derived suppressor cells; CAF,
cancer-associated fibroblasts; TAM. M2, M2 tumor-associated macrophages. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 7
Construction and validation of the prognostic model. (A) Volcano plot of 26 CSC marker genes significantly associated with DSS in the training
group. (B, C) Lasso regression analysis on 26 CSC marker genes. The coefficients of marker genes close to zero with the increasing value of lambda. Red
dotted line and red dot represents the optimal lambda value of the model. (D) The Lasso coefficients of seven prognostic genes in the prognostic model.
(E, F) Kaplan-Meier survival plots based on DSS of high-risk and low-risk groups in the TCGA training and testing groups. (G) Kaplan-Meier survival
plots for DSS, OS, PFI, and DFI of high-risk and low-risk groups in TCGA dataset. (H) Kaplan-Meier survival plots for DSS, DFS and OS of high-risk and low-
risk groups in GSE17538 dataset.
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analysis determined 14 prognostic genes when the lambda value
reached the optimal (lambda = 0.023, Figures 7B, C). Then stepAIC
compressed 14 genes to 7 for the final prognostic genes in the model.
Finally, the prognostic model was defined as: risk score =
0.722*DRD4 + 0.619*DPP7 +0.358*UCN +0.335*INHBA
+0.162*SFTA2 + 0.279*SYNPO2 + 0.151*NXPH4.

We calculated risk score for each sample in TCGA dataset and
classified samples into two groups (high risk and low risk) by the
optimal cut-off determined by survminer package. In both training
and testing groups, high-risk group showed evidently inferior DSS
than low-risk group (p < 0.0001, Figures 7D, E). ROC curve analysis
presented favorable AUC values of the model in predicting 1-year, 3-
year, and 5-year DSS with over than 0.70 (Figures 7E, F). We verified
the effectiveness of the prognostic model in the whole TCGA
dataset. The model showed a good performance in predicting
patient survival with different status (Figure 7G). Moreover, we
used an independent dataset (GSE17538) to validate the reliability of
the prognostic model (Figure 7H). In the DSS, DFS, and OS
prediction and classification, the model showed a good efficiency
(Figure 7H). In addition, samples with advanced T stage, N stage, M
stage and Stage had a higher risk score in TCGA dataset, and

similarly situation was observed in GSE17538 dataset samples along
with Stage and Grade (Supplementary Figure S7).

Pathway analysis of two risk groups

Next, we assessed the enrichment of biological pathways in two
risk groups to identify key pathways in tumor progression. Using
ssGSEA we distinguished a total of 26 pathways that were
differentially enriched in high-risk and low-risk groups (p < 0.05,
Figures 8A, B). High-risk group exhibited relatively more activated
oncogenic pathways than low-risk group, such as P53 signaling,
angiogenesis, EMT, hypoxia, and Notch signaling pathways. Also,
we examined the correlation between risk score and these pathways
delineated by a heatmap. The result showed that risk score was
positively correlated with most of these pathways, such as Notch
signaling (R = 0.41), Hedgehog signaling (R = 0.40), apical junction
(R = 0.48), EMT (R = 0.34), angiogenesis (R = 0.33), hypoxia (R =
0.36), P53 signaling (R = 0.37), reactive oxygen species pathway (R =
0.30), KRAS signaling down (R = 0.41) and Wnt-beta catnin
signaling (R = 0.43) (Figure 8C).

FIGURE 8
Analysis of hallmark pathways in two risk groups in TCGA dataset. (A) A heatmap displayed the normalized ssGSEA score of 26 pathways in two risk
groups. (B) Box plots of ssGSEA score of 26 pathways in two risk groups. (C) Pearson correlation analysis between risk score and 26 pathways. Red and
blue represents positive and negative correlation respectively. Fork indicates not significant.
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FIGURE 9
Oxidative stress analysis of two risk groups. (A), Distribution of GOBP gene set in TCGA and GSE17538 datasets. (B, C), Pearson correlation analysis of
risk score with the response to oxidative stress in TCGA and GSE17538 datasets. (D), Pearson correlation analysis of risk score and risk genes with the
response to oxidative stress in TCGA and GSE17538 datasets. (E, F), Kaplan-Meier survival curves of two risk groups or combination of risk score and
oxidative stress in TCGA. (G, H), Kaplan-Meier survival curves of two risk groups or combination of risk score and oxidative stress in GSE17538.
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Oxidative stress analysis of two risk groups

In addition, we emphatically analyzed the relation between risk
score and response to oxidative stress. Figure 9A showed that high
risk patients in GSE17538 possessed higher oxidative stress score
that of low risk patients (p = 8.6e-10). Not surprisingly, risk score
was positively correlated with GOBP response to oxidative stress in
both TCGA (R = 0.288, p = 1.74e-09) and GSE17538 datasets (R =
0.457, p = 1.54e-10) (Figures 9B, C). Besides, GOBP response to
oxidative stress was positively correlated with INHBA, SFTA2, and
SYNPO2 both in TCGA and GSE17538 datasets (Figure 9D).
Furthermore, we found that high patients exhibited dismal
prognosis in TCGA (p = 0.0041) and GSE17538 (p = 0.015).
Meanwhile, patients with high risk combined with high oxidative
stress had the poorest prognosis (Figures 9E–H).

The responses of two risk groups to
immunotherapy and chemotherapy

Similarly, we applied ESTIMATE algorithm to evaluate immune
cell infiltration and stromal cell infiltration in two risk groups. High-
risk group manifested both higher stromal score and immune score
than low-risk group, but immune score was not significantly different
(Figure 10A). Generally, high immune infiltration is beneficial to
immune response and prognosis. To address this puzzle, we further
used TIDE analysis to predict the T cell function. As a result, high-risk
group displayedmore significant impairment of T cell function, where

higher scores of T cell dysfunction and exclusion were shown in high-
risk group in comparison to low-risk group (Figure 10B).
Accordingly, high-risk group had higher TIDE score, indicating a
higher immune escape possibility in the high-risk
group. Supportively, risk score had a highly positive correlation
with TIDE, T cell exclusion, T cell dysfunction, in accordant with
the above findings (Figure 10C). The result also demonstrated that
risk score was a potential indicator to predict the response to
immunotherapy and T cell function. Furthermore, TIDE analysis
generated the association of seven prognostic genes with T cell
dysfunction, T cell exclusion, immune checkpoint blockade (ICB)
outcome, and the efficiency of tumor killing in CRISPR-based models
(Figure 10D). but, no significance of TMB was observed in high-risk
group and low-risk group (Supplementary Figure S8A). 17 of
47 immune checkpoint genes expressions were enhanced in high-
risk group (Supplementary Figure S8B). Drug sensitivity analysis
revealed that two risk groups had different sensitivity to
27 chemotherapeutic drugs in which 14 drugs were more sensitive
to high-risk group and 13 drugs were more sensitive to low-risk group
(Figure 10E). Based on the above findings, we could speculate that risk
score was predictive to indicate the response of CRC patients to
different chemotherapeutic drugs.

Discussion

The important roles of CSCs in cancer development and
metastasis have been substantially demonstrated in the previous

FIGURE 10
Prediction of response of two risk groups to immunotherapy and chemotherapy in TCGA dataset. (A) ESTIMATE analysis calculated the stromal score
and immune score of two risk groups. (B) TIDE analysis predicted the response to immune checkpoint inhibitors. (C) Pearson correlation analysis of risk
score with TIDE score, T cell dysfunction and T cell exclusion. (D) Enrichment of seven prognostic genes in T cell dysfunction score (how a gene interacts
with cytotoxic T cells to influence patient survival outcome), ICB outcome (genes whose activities are correlated with ICB benefit), log-fold change
(logFC) in CRISPR screens (the efficacy of lymphocyte-mediated tumor killing in cancer models) and T cell exclusion score (the gene expression levels in
immunosuppressive cell types). Colors from red to blue indicates expression levels from high to low. (E) The estimated IC50 of two risk groups shown as
heatmap. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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studies (Ayob and Ramasamy, 2018; Prager et al., 2019). In this
study, we focused on CSCs and screened a group of CSC marker
genes based on scRNA-seq data of CRC samples. Using the
expression profiles of CSC marker genes, we subtyped CRC
samples into two clusters (CSC1 and CSC2). We compared
clinical characteristics, immune microenvironment and biological
pathways in two clusters. Based on DEGs between CSC1 and CSC2,
we established a prognostic model for predicting the prognosis and
therapeutic response of CRC patients.

From scRNA-seq data, we detected 257 CSC marker genes that
showed a consistent performance with mRNAsi score. The mRNAsi
score denotes the stemness degree using expression profiles (Malta
et al., 2018). Compared with the normal samples, the ssGSEA score
of CSC marker genes and mRNAsi score were both significantly
higher in CRC samples. Moreover, CSC marker genes was
noticeably positively related to mRNAsi, which proved the
reliability of identification method for CSC marker genes. Of
257 CSC marker genes, 29 of them were found to be significantly
related to DSS. Some CSCmarker genes showed extremely disparate
expression levels between normal and tumor samples, such as
PLCG2, DDX11, IER5L, LENG8, HAGHL and CPNE7
(Supplementary Figure S4). They were reported to contribute
cancer progression and metastasis. For example, small cell lung
cancer cells with PLCG2-high phenotype had stem-like and pro-
metastatic features (Chan et al., 2021). DDX11 is essential for DNA
replication and genomic stability, and is considered to have an
oncogenic role (Mahtab et al., 2021). Some marker genes had a large
percentage of gain of CNVs, particularly BRI3, CEBPB, HSPB1, and
PLEC. CEBPB was identified as a prognostic biomarker in CRC and
was found to participate CRC metastasis (Rahman et al., 2019; Shao
et al., 2021). HSPB1 was highly expressed in tumor tissues
correlating with poor prognosis in CRC (Nagaraja et al., 2012).
However, a few studies reported the roles of these CSCmarker genes
in cancer stemness. We considered these CSC marker genes as
important candidates for exploiting the mechanisms of CSCs
in CRC.

To figure out the effects of 29 CSC marker genes in CRC
prognosis and tumor microenvironment, we used consensus
clustering to subtype tumor samples into two clusters (CSC1 and
CSC2) based on the expression profiles of 29 genes. CSC1 had
evidently longer disease-specific survival than CSC2 in both TCGA
and GSE17538 datasets, indicating these CSC marker genes were
involved in CRC progression. The speculation was further
demonstrated by the distribution of clinical characteristics in two
clusters. Tumor samples with late stages like T4, N2, M1, and stage
Ⅳ had substantially higher proportion in CSC2 than that in CSC1.
Therefore, the 29 CSC marker genes played important roles in CRC
progression and metastasis.

Previous studies have outlined the intense linkage between
CSCs and tumor microenvironment (Zhang et al., 2018; Khosravi
et al., 2020), which enables targeting CSCs as a possible strategy to
eradicate CRC (Jahanafrooz et al., 2020). The inflammatory
cytokines, for instance, interferons (IFN), transforming growth
factor (TGF)-β, tumor necrosis factor (TNF)-α secreted from
immune cells especially TAMs of M2 phenotype exert profound
effects on maintaining the stemness of CSCs and promoting
immunosuppression through pathways such as NF-κB, STAT3,
and Notch (Zhang et al., 2018; Bayik and Lathia, 2021).

Reciprocally, CSCs can recruit TAMs through expressing
immunomodulatory factors thereby intertwining with CSC
stemness programming and transcriptional activity. In
comparison on immune microenvironment between CSC1 and
CSC2, we observed discrepant immune infiltration and stromal
infiltration. CSC1 showed higher infiltration of immune cells such
as monocytic lineage, dendritic cells, activated CD4 T cells, and
natural killer cells than CSC2. Although two clusters had similar
proportions of CD8 T cells and cytotoxic lymphocytes,
CSC2 presented more severely impaired T cell function, which
resulted in its poor prognosis. Notably, CSC2 also showed a higher
proportion of MDSCs and M2 TAMs than CSC1. CSC-TAM and
CSC-MDSC crosstalk promoting stemness and
immunosuppression have been underlined by previous studies.
TAMs can facilitate CSC phenotypes by mediators such as IL-6,
TGF-β, andWNT ligands (Jinushi et al., 2011; Fan et al., 2014;Wan
et al., 2014). Mechanistic analysis suggested that Nos2 and nitric
oxide (NO) produced by MDSCs fostered CSC phenotypes via
activating Notch and STAT3 pathways in cancer cells (Peng et al.,
2016; Ouzounova et al., 2017). In addition, pathway analysis
revealed that tumor-associated pathways such as TGF-β and
Wnt-β catenin signaling, cell cycle-related pathways such as
MYC, and immune-related pathways such as inflammatory
response and IL2-STAT5 signaling were distinctly enriched in
CSC1 and CSC2, which was responsible for their different anti-
cancer response and prognosis. It’s worth noting that difference in
TIDE score between two clusters was not been observed. Although
two clusters showed similar response to immunotherapy,
CSC2 had higher score of T cell dysfunction and higher
enrichment of MDSC, but lower score of CAF than CSC1. The
function of T cells and infiltration levels of immunosuppressive
cells (MDSC and CAF) can affect the response to immunotherapy
(Tamura, 2018).

Given the discrepant clinical characteristics and molecular
features between CSC1 and CSC2, we established a prognostic
model based on DEGs between two clusters. Finally, we confirmed
seven prognostic genes in the model, including DRD4, DPP7,
UCN, INHBA, SFTA2, SYNPO2, and NXPH4. DRD4 belongs
to dopamine receptor (DR) family that is associated with the
progressive phenotypes of cancer (Wang et al., 2019). A
machine learning study identified DRD4 as a survival-related
candidate gene for CRC patients (Lee et al., 2022). DPP7 is a
member of dipeptidyl peptidase (DPP) family, a high expression of
which was related to a favorable prognosis in breast cancer (Choy
et al., 2021). Ahluwalia et al. developed a four-gene signature where
DPP7 was included for predicting survival of CRC patients
(Ahluwalia et al., 2019). INHBA is a member of TGF-β
superfamily and can accelerate migration and invasion of
gastric cancer cells via TGF-β signaling pathway (Chen et al.,
2019). INHBA was identified as an independent risk factor for both
OS and DFS in colon cancer (Li et al., 2020). SFTA2 was also
identified as a prognostic gene for colon cancer (Li et al., 2018;
Gong et al., 2020). Other three genes were few reported in the
relation with CRC.

The seven-gene prognostic model effectively classified CRC
patients into two risk groups. Specifically, high-risk group
showed evidently inferior OS and DSS than low-risk group. In
addition to different prognosis, two risk groups also manifested
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different activation of biological pathways and different response to
immunotherapy and chemotherapy. Oncogenic pathways such as
Wnt-β catenin, hypoxia, EMT, angiogenesis, Hedgehog signaling,
and Notch signaling were more activated in high-risk group than in
low-risk group. Simultaneously, risk score showed a positive
correlation with the above pathways. High-risk group was less
responsive to ICB therapy, resulting from T cell exclusion and
dysfunction. Moreover, two risk groups performed different
sensitivity to different chemotherapeutic drugs.

Conclusion

In conclusion, this study harnessed scRNA-seq data to identify
CSC marker genes in CRC and demonstrated the important roles of
CSC marker genes in CRC progression by delineating CSC-based
subtyping (CSC1 and CSC2). The 29 CSC marker genes were
considered as candidate genes for further exploring the
mechanism of CSC in CRC. Importantly, we developed a seven-
gene prognostic model for not only predicting OS and DSS of CRC
patients, but also guiding immunotherapy and chemotherapy in
clinics for CRC treatment.
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Background: Hepatocellular carcinoma (HCC) is a highly lethal liver cancer with
late diagnosis; therefore, the identification of new early biomarkers could help
reduce mortality. Efferocytosis, a process in which one cell engulfs another cell,
including macrophages, dendritic cells, NK cells, etc., plays a complex role in
tumorigenesis, sometimes promoting and sometimes inhibiting tumor
development. However, the role of efferocytosis-related genes (ERGs) in HCC
progression has been poorly studied, and their regulatory effects in HCC
immunotherapy and drug targeting have not been reported.

Methods: We downloaded efferocytosis-related genes from the Genecards
database and screened for ERGs that showed significant expression changes
between HCC and normal tissues and were associated with HCC prognosis.
Machine learning algorithms were used to study prognostic gene features.
CIBERSORT and pRRophetic R packages were used to evaluate the immune
environment of HCC subtypes and predict treatment response. CCK-8
experiments conducted on HCC cells were used to assess the reliability of
drug sensitivity prediction.

Results: We constructed a prognostic prediction model composed of six genes,
and the ROC curve showed good predictive accuracy of the risk model. In
addition, two ERG-related subgroups in HCC showed significant differences in
tumor immune landscape, immune response, and prognostic stratification. The
CCK-8 experiment conducted on HCC cells confirmed the reliability of drug
sensitivity prediction.

Conclusion: Our study emphasizes the importance of efferocytosis in HCC
progression. The risk model based on efferocytosis-related genes developed in
our study provides a novel precision medicine approach for HCC patients,
allowing clinicians to customize treatment plans based on unique patient
characteristics. The results of our investigation carry noteworthy implications
for the development of individualized treatment approaches involving
immunotherapy and chemotherapy, thereby potentially facilitating the
realization of personalized and more efficacious therapeutic interventions
for HCC.
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1 Introduction

HCC is the most common type of liver cancer and accounts for a
significant proportion of cancer-related deaths worldwide (Yang
et al., 2019a). Despite advances in medical treatment, the overall
survival (OS) of HCC patients remains suboptimal, and the precise
molecular mechanisms underlying HCC prognosis are poorly
understood. Currently, HCC prognostic models rely on clinical
indicators such as grading and TNM staging, which may have
limited accuracy (Icard et al., 2021; Zhai et al., 2022; Wang et al.,
2023a; Conche et al., 2023). Therefore, it is imperative to identify
novel and effective prognostic biomarkers for HCC, which may help
to determine specific therapeutic targets. Molecular immune-
targeted therapy represents a promising avenue for future HCC
treatment.

“Efferocytosis” refers to the process by which one cell engulfs
another cell, usually referring to macrophages engulfing apoptotic
cells (Zhou et al., 2020a; Wang et al., 2023b). In addition, there are
other cells such as neutrophils, which release DNA fiber networks
during the inflammatory process and can engulf these DNA fiber
networks and cell debris on DNA (Bukong et al., 2018; Lee et al.,
2022); natural killer cells (NK cells), which are usually part of the
immune system and can kill infected cells or cancer cells, and can
also clear dead cells through efferocytosis (Jensen et al., 2020);
malignant tumor cells, some of which can express efferocytosis-
related receptors and ligands, enabling them to engulf surrounding
apoptotic cells and evade the immune system’s attack (Brightwell
et al., 2016; Zhang et al., 2022); dendritic cells and some other
immune cells also play a role in efferocytosis (Maschalidi et al., 2022;
Nino-Castano et al., 2022). The function of efferocytosis in tumors is
complex and can sometimes promote tumor development and other
times inhibit it (Banerjee et al., 2021; Tajbakhsh et al., 2021; Lin et al.,
2022). In the early stages of tumor development, efferocytosis can
promote tumor growth by reducing immune system attacks and
promoting the growth of tumor cells by clearing apoptotic cells
around them. In addition, tumor cells can further promote tumor
development by expressing efferocytosis-related receptors and
ligands to evade the immune system’s attack. However, in the
late stages of tumor development, efferocytosis can inhibit tumor
growth by promoting the immune system’s attack on the tumor.

After engulfing apoptotic cells, antigens in the cells can be
presented to T cells by macrophages, thereby activating T cells to
attack the tumor (Lu et al., 2022; Zhou et al., 2023). Macrophages
play a significant role in the progression of HCC. Recent
investigations have revealed significant findings regarding the
impact of tumor-derived alpha-fetoprotein (tAFP) on
macrophage polarization and its influence on HCC cells.
Specifically, tAFP has been shown to promote the differentiation
of M0 macrophages into M2 macrophages, while concurrently
suppressing the efferocytosis of M1 macrophages towards HCC
cells (Zhang et al., 2023a). Polarization of M1 macrophages
contributes to the protection against HCC, while
M2 macrophages emerges as a prominent factor driving HCC
development (Liu et al., 2022a). In view of this, it is necessary to
study the role of efferocytosis in the progression of HCC. In
addition, efferocytosis can also promote anti-inflammatory
responses, thereby inhibiting tumor development (Zhou et al.,
2020b). Therefore, the role of efferocytosis in tumors is different

from its role in normal physiological conditions and needs to be
analyzed according to specific circumstances. In the treatment of
tumors, efferocytosis can be used as an important target for
intervention to achieve treatment goals (Lahey et al., 2022;
Mehrotra and Ravichandran, 2022). However, the role of
efferocytosis-related genes in the progression and prognosis of
HCC remains poorly understood.

We have developed a risk model based on six efferocytosis-
related genes and identified two ERG-associated subtypes that
exhibit significant differences in tumor immune landscape and
prognostic stratification, highlighting the importance of
efferocytosis status in HCC. Importantly, our study reveals
patterns of immune therapy and chemotherapy response, and
in vitro validation confirms the predictive ability of the
prognostic model for drug response. These findings underscore
the significance of efferocytosis in HCC and suggest potential
therapeutic strategies for patients with different efferocytosis
statuses. This study may provide a basis for future research on
the mechanisms underlying HCC progression and treatment
response, as well as inform clinical decision-making in HCC
management.

2 Materials and methods

2.1 Acquisition of TCGA-LIHC data

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) has aggregated and scrutinized genomic, transcriptomic,
epigenomic, and proteomic data obtained from thousands of
individuals afflicted with various forms of cancer, culminating in
an extensive data repository exceeding 2.5 petabytes. This
compendium of knowledge has unveiled potential hereditary
drivers of cancer, identified plausible pharmacological targets,
and catalyzed the development of customized cancer therapeutics
(Wang et al., 2016). We obtained the TCGA-LIHC cohort,
comprising transcriptome data of 374 HCC tumor patients and
50 normal liver tissue samples, from TCGA. Additionally, clinical
data of 374 HCC tumor patients were downloaded. After rigorous
selection, we retained clinical data for a total of 370 HCC patients
with comprehensive clinical information.

2.2 ERGs from genecards portal

GeneCards is a portal website and database that furnishes a
wealth of information on more than 155,000 human genes,
encompassing details on gene expression, function, protein
domains, and interactions (Safran et al., 2021). Given its
comprehensiveness and timeliness, GeneCards represents a
valuable resource for investigating the intricacies of human genes
and their implications for disease (Sun et al., 2023; Zhong et al.,
2023). We employed the following approach to obtain the
efferocytosis-related genes. Firstly, we utilized highly relevant
keywords and gene descriptions provided in Genecards, such as
“efferocytosis,” “phagocytosis of apoptotic cells,” and “clearance of
dying cells.” Subsequently, we reviewed the literature to carefully
screen and manually confirm these keywords and descriptions to
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ensure that the final selected genes are indeed closely related to the
efferocytosis process. Finally, we obtained a total of 111 genes related
to efferocytosis (ERGs) from the GeneCards database.

2.3 Prognostic ERGs signature identification

Through the use of univariate Cox regression analysis, we
identified a set of 13 genes that displayed a significant correlation
with the survival rates of patients with HCC. Then, optimal lambda
(λ) was determined to be the ideal value by 10-fold cross validation
when performing the LASSO Cox regression analysis to screen the
core ERGs that were strongly linked with HCC patients’ prognosis
(Chi et al., 2022a; Wang et al., 2022). Using the “glmnet” R package,
6 core genes were subsequently utilized to create a risk signature
(Engebretsen, 2019). The risk score was calculated by integrating the
expression profile of ERGs with the paired multivariate Cox
regression values (β) (Ni et al., 2022; Xu et al., 2022; Zhao et al.,
2023a). Based on their respective gene expression profiles, we
computed a risk score for each patient in the cohort as follows:
Risk score = ê(Exp.GAPDH*0.1481 + Exp.ADAM9*0.1581 +
Exp.SIRT6*0.1247 + Exp.LGALS3*0.0666 - Exp.CD5L*0.0144 -
Exp.IL33*0.0985).

2.4 Evaluating infiltration of immune cells

We employed the CIBERSORT and ssGSEA R scripts to assess the
levels of infiltrating immune cells (Newman et al., 2015; Chi et al.,
2023a). The CIBERSORT algorithm was used to calculate the immune
cell type scores for individual samples, and then the corresponding
scores for each sample were calculated based on the estimated immune
cell type scores (Chi et al., 2022b). In addition, spearman correlation
analysis was used to investigate the relationship between immune cell
and risk scores. Using the immune cell profiles of HCC patients, we
used the ssGSEA method to distinguish individuals classified as
different risks (Zhao et al., 2023b).

2.5 Evaluating the accuracy of
chemotherapy response predictions

We employed the “pRRophetic” R software package for
evaluating the therapeutic response in patient subgroups
classified as high-risk and low-risk, based on the half-maximal
inhibitory concentration (IC50) values obtained from each
individual with HCC from the Genomics of Drug Sensitivity in
Cancer (GDSC) dataset (Geeleher et al., 2014; Chi et al., 2023b).
Further, the transcriptional profiles of HCC cell lines were obtained
from the CCLE website, and risk scores for different HCC cell lines
were calculated using the ERGs risk scoring formula. Based on the
computed results, Huh7 was identified as having a high risk score,
while HepG2 exhibited a comparatively lower risk score. Then, the
sensitivity of HCC cells to the drug was evaluated through
implementation of the CCK-8 assay (Zhang et al., 2023b).

2.6 KEGG and GO analysis

Two frequently utilized bioinformatics resources for
investigating the functional and metabolic pathways of genes
and proteins, as well as other biological features, are the KEGG
and GO databases. Annotations provided by these tools can
facilitate a more comprehensive comprehension of gene and
protein function, ultimately leading to enhanced insights into
gene expression and metabolic regulation. In this study, we
performed enrichment analysis using Gene Set Variation
Analysis (GSVA) and utilized the
“c2.cp.kegg.v7.4.symbols.gmt” data set derived from the
MSigDB database (Hanzelmann et al., 2013; Liu et al., 2023a).

2.7 Statistical analysis

All data analyses were conducted using R version 4.1.3. For
variables that exhibited a normal distribution, the Student’s t-test
was employed, whereas Pearson’s correlation coefficient was used to
evaluate the association between variables. The levels of statistical
significance were set at p < 0.05*, p < 0.01**, and p < 0.001***,
respectively.

3 Results

3.1 Efferocytosis-based gene signature
construction

We retrieved 111 genes associated with efferocytosis from the
Genecards website. The HCC dataset comprising 370 tumor
samples and 50 adjacent normal tissue samples was sourced
from the TCGA database. We employed the “limma” R
package to identify ERGs that were differentially expressed
between HCC tumor and adjacent normal samples. This
analysis identified 20 ERGs with significant differences
(Figure 1A). Next, we utilized the “survival” and “survminer”
R packages to investigate the association between ERGs and
survival in HCC patients. Thirteen out of the 20 ERGs were
significantly linked to survival in HCC patients based on a
p-value cutoff of less than 0.05 and a km score less than 0.05
(Figure 1B). All ERGs except for CD5L, PLG, and IL33 were
found to be poor prognostic factors. To develop an HCC
prognostic model, we conducted Lasso analysis using these
13 ERGs (Figure 1C; Supplementary Table S1). The time-
dependent ROC curve illustrated the favorable predictive
accuracy of the model at 1, 3, and 5 years (Figure 1F). Based
on the median riskscore, we divided the 370 HCC patients into
high-risk and low-risk subgroups, and the high-risk subgroup
displayed a shorter overall survival time than the low-risk
subgroup (Figure 1E), with median survival times of 2.7 and
6.7 years, respectively. Furthermore, we generated a heatmap to
depict the expression levels of the top 10 ERGs in various
riskscore groups (Figure 1D).
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3.2 ERGs expression variations among
subtypes

Using mRNA expression levels as a metric, we proceeded to
assess the expression levels of the six ERGs in both normal and
tumor tissues (Figure 2A). Notably, we observed a significantly
higher expression of all six ERGs in tumor tissues compared to
their adjacent non-tumor counterparts (p < 0.001), with
GAPDH exhibiting the highest level of expression. To further

elucidate the biological significance of these findings, we also
examined the expression levels of the six ERGs in high-risk
versus low-risk subgroups. Interestingly, we found that the
expression trend of the six ERGs in this subgroup mirrored
that of Figure 1A (Figure 2B). Moreover, we employed Kaplan-
Meier curves to establish the correlation between each key ERG
gene and the prognosis of HCC patients, and our analysis
revealed that all six ERGs were significantly linked to a poor
prognosis (p < 0.05).

FIGURE 1
Constructing a prognostic model based on efferocytosis-related genes in HCC. (A) Differential gene screening was conducted to identify ERGs
associated with hepatocellular carcinoma (HCC). (B) 13 genes of prognostic significance, which we refer to as ERGs, were identified from the differential
gene screening analysis. These ERGs demonstrated an association with survival in HCC patients. (C) Utilizing the Lasso method, a prognostic model was
constructed based on the identified ERGs. (D) The risk scores, survival status, and expression levels of the top 6-ERGs were plotted to visualize the
distribution of prognostic risk. (E) Kaplan-Meier (KM) analysis was performed to further investigate the prognostic significance of the 6-ERGs in different
HCC subtypes. (F) The predictive efficiency of the prognostic model was evaluated using ROC analysis.
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3.3 GO and KEGG enrichment analysis

We examined the impact of various signaling pathway
activations on the growth and progression of tumor cells, as well
as their effect on the tumor microenvironment. To identify genes
that were differentially expressed between high-risk and low-risk
groups, we conducted a comparative analysis of gene expression
levels (Figure 3A). In high-risk patients with HCC, several pathways
including Cytoplasmic, Ribosomal Protein, Eukaryotic Translation
Elongation, Developmental Biology, and lnfectious Disease were
significantly enriched (Figure 3B). Additionally, our Gene Ontology
enrichment analysis revealed that the humoral immune response
process was notably upregulated in the high-risk subgroup
(Figure 3C). Furthermore, we investigated the GO pathways that
corresponded to the most differentially expressed genes between the
high-risk and low-risk subgroups (Figures 3D, E).

3.4 Differential immune infiltration levels in
HCC patients with diverse risk profiles

Using the Lasso method, we employed dimensionality reduction
and clustering on a set of 6-ERGs selected for HCC patients, and our
results indicate that these 6-ERGs effectively differentiate between
HCC patients of varying risk levels (Figure 4A). Subsequently, we
investigated the immune infiltration patterns in HCC patients with

distinct prognostic risks (Figures 4B, C). The riskscore values were
sorted in ascending order to represent the proportion of each
immune cell type (Figure 4B). Remarkably, our analyses revealed
significant infiltration of Macrophage M2, activated CD4 memory
T cells, and Tregs in HCC patients classified as high-risk, whereas
Macrophage M1 was notably decreased in this group (Figure 4C).
Additionally, Neutrophils were increased in the high-risk group,
suggesting that the HCC patients with high-risk scores may be
experiencing an immune-suppressed state, which may be associated
with immune checkpoint expression. During our analysis of HCC,
we discovered noteworthy distinctions in the expression of both
macrophage M1 and macrophage M2 between the high- and low-
risk subgroups.

In order to explore this finding further, we sought to investigate
the association between macrophage M1 and macrophage M2, and
ERGs which have been linked to poor prognosis (Figure 4D).
According to the data presented in Figure 4D, the expression
levels of ADAM9, GAPDH, and LGALS3 were observed to be
positively associated with the abundance of Macrophage M2,
while conversely associated with the levels of Macrophage M1.
Furthermore, we conducted a more detailed examination of the
relationship between the 6-ERGs and immune cells (Figure 5A).
Notably, we observed that ADAM9 and GAPDH expression levels
exhibited associations with the concentrations of several distinct
immune cell types (Figures 5B, C).

3.5 Investigating the correlation between
ERG expression and immunotherapy
efficacy

The results of the prior analysis indicate that high-risk and low-
risk groups display dissimilar immune microenvironments,
characterized by increased infiltration of Tregs, activated
CD4 memory T cells, and Macrophage M2 in the high-risk
group. These changes create an immunosuppressive
microenvironment, which influences the efficacy of
immunotherapy differently between the groups. Notably, patients
with elevated expression levels of 6-ERGs are more likely to respond
to Anti-PD-L1 and Anti-PD-1 therapy (Figure 6). Moreover, 6-
ERGs can serve as a predictive tool for the accuracy of immune
checkpoint blockade (ICB) in HCC patients (Figures 6A, B).
ADAM9 expression gradually increases in cancer tissue and is
recognized as a negative prognostic biomarker for prostate cancer
patients. Elevated ADAM9 expression is shown to regulate the
inflammatory state of the tissue by modulating the efferocytosis
of macrophages in vitro and in vivo. In HCC patient tissues,
ADAM9 expression is significantly upregulated (Figure 2A),
indicating a higher immune response compared to lower
ADAM9 expression subgroups (Figure 7A). To investigate the
response of high-risk and low-risk HCC patients to ICB, we used
the TIDE algorithm to combine ADAM9 expression levels with
HBV infection factors (Figure 7B). We found that high
ADAM9 expression predicts a higher immune response score,
independent of HBV infection status. Given the effect of
ADAM9 on the immune response score, we further explored the
expression levels of immune checkpoints in HCC patients with
different ERGs riskscores. Surprisingly, we observed that most

FIGURE 2
Expression levels of 6-ERGs. (A) Expression levels of 6-ERGs in
HCC tumor tissues and adjacent tissues. (B) Expression levels of 6-
ERGs in HCC risk subgroups. (*p < 0.05, **p < 0.01, ***p < 0.001).
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immune checkpoints, including PDCD1, CTLA4, and PDCD1LG2,
are significantly upregulated in the high ADAM9 expression group
(Figures 7C, D). Finally, we employed Cibersort to analyze the level
of immune cell infiltration in tissue samples categorized into normal,
low-risk, and high-risk groups (Figures 7E, F), which revealed
significant differences in infiltration levels among the groups.

3.6 Prediction and authentication of drug
sensitivity

To develop targeted therapies for patients with HCC, we
investigated variations in chemotherapy drug sensitivity between
subgroups with high- and low-risk scores. Our analysis compared
the IC50 levels of sixteen chemotherapy drugs in the high-risk score
and low-risk score subgroups (Figure 8). The results revealed
significant differences in IC50 values for some drugs, such as
Etoposide, suggesting that patients with high-risk scores may be
more responsive to this type of chemotherapy (Supplementary Table
S1). To further validate our findings, we assessed riskscores in
various HCC cell lines based on gene expression profiles
(Figure 9; Supplementary Table S2). For drug sensitivity

experiments, we selected Huh7 and HepG2 cell lines to represent
the high-risk score and low-risk score subgroups of HCC patients,
respectively. Consistent with the drug sensitivity prediction results,
our CCK-8 assay data showed that Huh7 cells with a high-risk score
were more sensitive to Etoposide than HepG2 cells (Figure 10A),
supporting the notion that this chemotherapy drug may be a
promising candidate for precision therapy in HCC patients
(Figure 10B).

4 Discussion

While the rise in the incidence of HCC has shown a decelerating
trend in recent times, the morbidity and mortality associated with
this disease remain significant (Yang et al., 2019b; Sung et al., 2021).
As per current estimates, over 70% of patients who undergo radical
resection experience recurrence of the disease within 5 years (Xu
et al., 2019; Zhou et al., 2020c). Given these challenges, developing
an accurate predictive model for postoperative recurrence and
identification of HCC patients with a reduced overall survival is
crucial for optimal clinical decision-making and prognostic
outcomes.

FIGURE 3
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (A) Volcanomap screening for differential genes. (B)Mountain
map showing the enriched KEGG pathway. (C–E) GO enrichment analysis.
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Efferocytosis is an important process in the immune system,
which maintains tissue health by clearing apoptotic cells. It plays a
crucial role in both normal physiology and pathological conditions,
particularly in tumor progression (Morioka et al., 2019; Myers et al.,
2019; Yang et al., 2022). In HCC tissue, tumor cells continuously
proliferate, die, and undergo apoptosis, leading to the release of
various cytokines and chemicals that trigger inflammatory reactions
and immune responses. These reactions lead to the accumulation of
macrophages, dendritic cells, and NK cells, which control
inflammation and immune responses by clearing apoptotic cells
(Yang et al., 2019a; Garcia-Pras et al., 2021; Leone et al., 2021).
However, tumor cells can exploit the mechanism of efferocytosis to
evade immune system attack (Werfel and Cook, 2018). Studies have
shown that tumor cells can express efferocytosis-related receptors
and ligands, which attract immune cells to clear apoptotic cells
around them and evade immune system attack by interfering with

the activation of M1 macrophages and increasing the number of
M2 macrophages (Graham et al., 2014; Poon et al., 2014; Soki et al.,
2014). Therefore, efferocytosis plays an important role in tumor
progression. It has been demonstrated regulation of efferocytosis
processes enhances immune cell attack on tumors and increases
apoptosis of tumor cells, thereby delaying tumor growth and
metastasis (Vaught et al., 2015). Therefore, understanding the
relationship between efferocytosis and tumors is of great
significance for the development of more effective tumor
treatment methods.

Utilizing machine learning to construct a reliable prognostic
model based on known efferocytosis-related genes is essential for
improving the accuracy of personalized diagnosis and treatment
prediction for patients with HCC. Such an approach holds great
potential for enhancing the clinical management of HCC patients.
We conducted an investigation to identify differential genes from

FIGURE 4
Identify immune landscape of HCC based on efferocytosis-associated signature. (A) UMAP demonstrates different immune profiles among HCC
subgroups. (B) Proportion of immune cells in HCC tissues. (C) Differences in immune infiltration between HCC subgroups. (D) Correlation between
immune cells and 6-ERGs.
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111 ERGs and subsequently explored their potential prognostic
relevance (Figures 1A, B). The identified differential genes were
regarded as promising markers with the potential to influence the
survival outcomes of HCC patients. Six ERGs, specifically ADAM9,
GAPDH, SIRT6, LGALS3, CD5L, and IL33, were selected for the
development of an HCC prognostic model (Figure 1C). Our model
accurately predicted overall survival of HCC patients at 1, 3, and
5 years, demonstrating its robust predictive ability (Figures 1D–F).

Cell death frequently occurs in solid tumors during malignant
progression, and is influenced by the tumor microenvironment
(TME), which plays a crucial role in tumor heterogeneity and
tumorigenesis (Roy et al., 2018; Gadiyar et al., 2020; Lahey et al.,
2022; Li et al., 2023a; Sandri et al., 2023). The nature of cell death and
the mechanisms involved in corpse clearance can significantly
impact the immune phenotype within the TME (Werfel et al.,
2019). The process of efferocytosis, which clears dying cell
corpses in the TME, has conventionally been viewed as
immunosuppressive (Poon et al., 2014). Our investigation
revealed that individuals exhibiting high ERG levels exhibited
elevated infiltration of Tregs, activated CD4 memory T cells,
Macrophages M2, and neutrophils, in comparison to those with
low ERG levels (Figure 4C). Notably, Tregs have been implicated in
regulating immune response during the development of HCC, from
the early stages to advanced disease. Additionally, Tregs may exert a
suppressive influence on liver function, thereby contributing to the
emergence of primary liver cancer. The role of M2 macrophages in
promoting tumor progression has been widely explored in HCC.

The polarization of TAMs towards the M2 macrophage activation
state plays a crucial role in anti-inflammatory and pro-tumor
activity during tumor progression, which is in stark contrast to
the cytocidal and tumoricidal properties of M1 activation states.
These fuctions of TAMs partly explain the pronounced enrichment
of M2 macrophages in patients with high ERGs, while a divergent
trend was observed for M1 macrophages (Figure 4D). The results
provide insight into the potential role of macrophage polarization in
the prognosis of HCC patients and suggest that targeting ERGs
could be a promising therapeutic strategy for the treatment of HCC.
However, additional research is needed to elucidate the underlying
mechanisms of this relationship and to further evaluate the clinical
relevance of these findings.

Immunotherapy has become an essential therapeutic strategy for
cancer and has been extensively investigated (Gong et al., 2022; Jin
et al., 2022; Zhao et al., 2022; Wang et al., 2023c). This approach
involves leveraging the immune system to recognize and eradicate
cancerous cells. Numerous types of immune therapies, such as
checkpoint inhibitors, adoptive cell transfer, and cancer vaccines,
have been developed (Llovet et al., 2022; Peng et al., 2022; Liu et al.,
2023b). PD-1 and PD-L1 have been closely associated with
macrophages (Liu et al., 2018). Moreover, Abrogation of
Efferocytosis leads to diminished immunosuppressive
characteristics of macrophages, as evidenced by a reduction in
the expression of M2-associated markers such as PD-L1 and PD-
L2 (Cruz Cruz et al., 2023). Our study results demonstrate that high
ERGs group exhibited elevated PD-1 and PD-L1 expression levels in

FIGURE 5
Correlation between immune cells and 6-ERGs. (A)Heatmapwas used to show the correlation between immune cells and 6-efferocytosis genes (6-
ERGs). (B,C) Bar plots were used to illustrate the relationship between GAPDH and ADAM9 with immune cell infiltration.
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comparison with the low ERGs group, which could be linked to the
macrophage infiltration phenomenon (Figures 7C, D). This
observation provides a partial rationale for the superior efficacy
of anti-PD-1 and anti-PD-L1 immunotherapy among high ERGs
group patients with HCC, emphasizing the important value of the
ERGs model in immunotherapy strategies (Figure 6). To further
advance the clinical application of this model for predicting anti-
PD-1 and PD-L1 response, our subsequent investigations will focus
on the evidence from in vivo immunotherapy experiments. It is
crucial and valuable to assess the accuracy of the ERGs-based model
in predicting immunotherapy response by utilizing different risk-
scored HCC cell lines or ERGs gene knockout mice. HBV, one of the
etiological factors contributing to hepatocellular carcinoma (HCC),
exerts a significant impact on the progression of this malignancy.
However, in our study, HBV-positive HCC patients did not exhibit

significant differences in immune therapy response scores compared
to HBV-negative patients (Figure 7B). We postulate that this
observation may be closely associated with the viral load of HBV.
Despite both groups being HBV-positive HCC patients, variations in
viral load could lead to divergent responses to immune therapy.
Therefore, overall, HBV-positive HCC patients may demonstrate
immune response outcomes comparable to those of HCC patients
without HBV infection.

In addition to the interplay between tumor-immune cells,
disrupted pathways within tumor cells can also affect the
advancement of HCC (Llovet et al., 2018). To gain deeper
insights into the differences in pathway enrichment among
HCC patients with varying risks, we performed GO and
KEGG analyses (Figure 3C). Our findings revealed significant
differences in the enrichment of immune response pathways

FIGURE 6
Immunotherapy response prediction. (A) Prediction of immune therapy response to anti-PD-L1 treatment in HCC patients based on 6-ERGs. (B)
Prediction of immune therapy response to anti-PD-1 treatment in HCC patients based on 6-ERGs.
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within HCC subgroups classified based on ERGs. These results
suggest that ERGs may have an impact on the immune response
outcomes of HCC patients (Chang et al., 2013; Fenutria et al.,
2014; Braga et al., 2017; Kornberg et al., 2018; Fu et al., 2020; Nie
et al., 2020).Our pathway enrichment analysis revealed
significant enrichment in cytoplasmic ribosomal proteins,
eukaryotic translation elongation, humoral immune response,
and cytosolic large ribosomal subunit pathways in HCC patients
with high expression of ERGs (Figures 3B–E), which could
potentially influence the response of HCC patients to
chemotherapy. Drug resistance is also an important factor in
persistent tumor progression. Leveraging the six ERGs, we
identified sixteen potential clinical drugs that could be tailored
to specific subtypes of HCC (Figure 8). We then tested the
reliability of our predictions by selecting etoposide as a
representative drug. Based on the expression levels of ERGs,
HCC cell lines were classified into high and low ERG expression
groups, with Huh7 and HepG2 representing the high and low
groups, respectively (Figure 9). Our results demonstrated that
Huh7 cells exhibited greater sensitivity to etoposide, with a lower

IC50, compared to HepG2 cells when treated with various
concentrations of the drug (Figure 10A). Furthermore, under
identical treatment conditions with the same concentration of
etoposide, the drug exhibited greater cytotoxicity to Huh7 cells
(Figure 10B). Our findings are in agreement with our initial
predictions of drug sensitivity and underscore the reliability of
ERGs in predicting chemotherapy response. Based on the drug
sensitivity list provided in Supplementary Table S1, the
implementation of combination therapeutic strategies
involving specific drugs in conjunction with first-line
treatments may potentially enhance the anti-tumor therapeutic
efficacy for high-risk or low-risk hepatocellular carcinoma
patients. It is important to note that prior to implementation,
rigorous in vivo experiments are required to validate these
approaches adequately.

In recent years, the connection between efferocytosis and
tumors has garnered notable interest. The expression of glycolytic
metabolic genes is known to influence the TME and thus the
susceptibility of HCC cells to immunotherapy or chemotherapy.
As such, personalized therapeutic approaches should be

FIGURE 7
The level of immune checkpoint in HCC subtypes. (A) The TIDE score between ADAM9 subgroups. (B) HBV infection does not affect the
effectiveness of immunotherapy. (C,D) There are differences in the expression of immune checkpoint markers between the high-risk and low-risk groups
of HCC. (E,F) CIBERSORT analysis revealed differences in immune infiltration between the subgroups.
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implemented for cancer patients based on their specific degree of
efferocytosis. The classification of tumor samples using gene
expression profiling has been well-established as a reliable
technique (Werfel et al., 2019; Gong et al., 2022; Zhao et al.,
2022). In the present investigation, we classified HCC patients
based on the expression levels of efferocytosis-related genes,
revealing significant differences in prognostic outcomes and
immune infiltration profiles among patients with varying ERG
expression levels. Our findings support the use of a six-gene
efferocytosis-related model to accurately predict patient
prognosis. Furthermore, our cell toxicity assays have confirmed
the efficacy of our chemotherapy sensitivity predictions, which
could aid clinicians in selecting optimal treatment regimens (Jin
et al., 2021; Liu et al., 2022b; Zhong et al., 2022). These results
emphasize the capability of our 6-gene model to serve as a reliable
prognostic indicator for overall survival in individuals with HCC.
Furthermore, our findings suggest that this model could be
instrumental in pinpointing novel therapeutic targets for high-
risk patient cohorts.

Despite the valuable clinical implications of our investigation
regarding prognostic assessment and treatment selection for
patients diagnosed with HCC, it is essential to acknowledge
the limitations present in our study. Primarily, our research is
retrospective in nature, necessitating validation through
prospective studies in the future. Due to the unavailability of
mRNA expression profile data for HCC patients undergoing
immunotherapy, an indirect assessment was conducted to
explore the predictive capability of this signature in terms of
immunotherapy response. It is important to note that this
approach may deviate from the actual circumstances,
introducing a potential limitation in the analysis.
Consequently, it is imperative to conduct further validation
studies that incorporate data obtained from HCC patients
undergoing immunotherapy. Besides, the migratory capacity of
tumor cells is closely associated with unfavorable prognosis and
recurrence (Wu et al., 2021; Li et al., 2023b). However, the
relationship between efferocytosis and the migratory potential
remains understudied in our investigation. Ultimately, the

FIGURE 8
Drug sensitivity prediction.
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current study lacks sufficient in vivo experiments to enhance the
reliability of drug prediction outcomes, thus impacting their
potential for further clinical applications. These limitations
warrant the need for future investigations aimed at refining
and expanding upon these aspects.

5 Conclusion

Efferocytosis plays a critical role in both normal physiological
processes and pathological conditions, particularly in tumor
progression, within the immune system. Despite this, the
function of efferocytosis-related genes in HCC progression and
prognosis remains largely unexplored. To address this gap, we
developed a risk model based on six efferocytosis-related genes
and identified two subtypes associated with ERG that demonstrate
significant differences in both tumor immune landscape and
prognostic stratification. Our results underscore the importance
of efferocytosis status in HCC, and have significant implications
for predicting patterns of immune therapy and chemotherapy
response. Furthermore, in vitro validation confirms the model’s
predictive ability for drug response, offering important insights into
potential therapeutic strategies for patients with different
efferocytosis statuses. Overall, our study highlights the crucial
role of efferocytosis in HCC and serves as a valuable foundation
for further research into HCC progression and treatment response,
as well as for guiding clinical decision-making in HCCmanagement.

FIGURE 9
6-ERGs expression levels in HCC cell lines.

FIGURE 10
Drug sensitivity testing. (A,B) The CCK-8 assay revealed the
cytotoxic effects of Etoposide on Huh7 and HepG2 cells at different
concentrations.
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Background: SERPINE1, a serine protease inhibitor involved in the regulation of
the plasminogen activation system, was recently identified as a cancer-related
gene. However, its clinical significance and potential mechanisms in pan-cancer
remain obscure.

Methods: In pan-cancer multi-omics data from public datasets, including The
Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and online
web tools were used to analyze the expression of SERPINE1 in different cancers
and its correlation with prognosis, genetic alteration, DNA promoter methylation,
biological processes, immunoregulator expression levels, immune cell infiltration
into tumor, tumor mutation burden (TMB), microsatellite instability (MSI),
immunotherapy response and drug sensitivity. Further, two single-cell
databases, Tumor Immune Single-cell Hub 2 (TISCH2) and CancerSEA, were
used to explore the expression and potential roles of SERPINE1 at a single-cell
level. The aberrant expression of SERPINE1 was further verified in clear cell renal
cell carcinoma (ccRCC) through qRT-PCR of clinical patient samples, validation in
independent cohorts using The Gene Expression Omnibus (GEO) database, and
proteomic validation using the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) database.

Results: The expression of SERPINE1 was dysregulated in cancers and enriched in
endothelial cells and fibroblasts. Copy number amplification and low DNA
promoter methylation could be partly responsible for high SERPINE1
expression. High SERPINE1 expression was associated with poor prognosis in
21 cancers. The results of gene set enrichment analysis (GSEA) indicated SERPINE1
involvement in the immune response and tumor malignancy. SERPINE1
expression was also associated with the expression of several
immunoregulators and immune cell infiltration and could play an
immunosuppression role. Besides, SERPINE1 was found to be related with
TMB, MSI, immunotherapy response and sensitivity to several drugs in cancers.
Finally, the high expression of SERPINE1 in ccRCC was verified using qRT-PCR
performed on patient samples, six independent GEO cohorts, and proteomic data
from the CPTAC database.

Conclusion: The findings of the present study revealed that SERPINE1 exhibits
aberrant expression in various types of cancers and is associated with cancer
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immunity and tumor malignancy, providing novel insights for individualized cancer
treatment.

KEYWORDS

SERPINE1, pan-cancer, multi-omics, clear cell renal cell carcinoma, cancer immunity

1 Introduction

As one of the leading causes of death worldwide, cancer imposes
an immense burden on the human society every year (Sung et al.,
2021; Siegel et al., 2023). Despite significant advances in cancer
treatment and early screening over the recent years, the overall
survival prognosis for patients with cancer remains unsatisfactory,
especially in certain cancer types (Sung et al., 2021; Hu et al., 2022).
As such, there is an urgent need to explore new targets for cancer
diagnosis and treatment.

Serine protease inhibitor clade E member 1 (SERPINE1, also
known as PAI-1) is a serine protease inhibitor that plays key roles in
regulating the plasminogen activation system (Placencio and
DeClerck, 2015). By binding to and inactivating tissue-type
plasminogen activator (tPA) and urokinase-type plasminogen
activator (uPA), SERPINE1 exerts antifibrinolytic effects
(Declerck and Gils, 2013). The inhibition of PAI-1 leads to
increased thrombolysis in artery disease (Kohler and Grant,
2000). SERPINE1 consists of 379 amino acids and is synthesized
and secreted primarily by vascular endothelial cells, adipocytes, and
platelets (Chen et al., 2021).

In addition to regulating the plasminogen/plasminase
system, SERPINE1 has been found to be involved in a variety
of other processes, such as pericellular proteolysis, tissue
remodeling, cell migration, inflammation, angiogenesis, and
apoptosis, implying its involvement in various diseases
(Placencio and DeClerck, 2015; Sillen and Declerck, 2021). In
recent years, the abnormal expression of SERPINE1 has been
found in various cancer types. Specifically, SERPINE1
overexpression has been observed in breast cancer (Duffy
et al., 2014; Jevrić et al., 2019), melanoma (Hanekom et al.,
2002), non-small cell lung cancer (Sotiropoulos et al., 2019),
bladder cancer (Becker et al., 2010), and ovarian cancer
(Nakatsuka et al., 2017). The inhibition of SERPINE1
expression has been shown to impede tumor progression and
angiogenesis in several cancer types (Gomes-Giacoia et al., 2013;
Masuda et al., 2013; Mashiko et al., 2015; Placencio et al., 2015;
Takayama et al., 2016). SERPINE1-deficient mice also exhibited
delayed tumor development, cancer invasion, and
vascularization (Bajou et al., 1998; Gutierrez et al., 2000).
Therefore, SERPINE1 is expected to be a promising novel
target for the diagnosis and treatment of cancers. However,
the detailed mechanisms underlying the involvement of
SERPINE1 in cancers remain unclear.

Currently, there is no comprehensive study on the role of
SERPINE1 in pan-cancer. In the present study, we performed a
multi-omics analysis of SERPINE1 in pan-cancer. Our results
confirmed the aberrant expression of SERPINE1 in multiple
cancers and the relationship of SERPINE1 expression with the
tumor microenvironment and cancer immunity. Furthermore,

qRT-PCR was performed to validate the abnormal expression of
SERPINE1 in clear cell renal cell carcinoma samples.

2 Materials and methods

2.1 The workflow of the study

Based on several public datasets, we analyzed the expression
of SERPINE1 in pan-cancer and explored the possible causes of
its abnormal expression. Then we evaluated the prognostic and
diagnostic value of SERPINE1 in pan-cancer to assess its clinical
value. Next, we explored the biological functions associated with
SERPINE1 expression and found that it was associated with
tumor malignancy and cancer immunity. Co-expression
analysis, immune cell infiltration analysis, and cancer
immunity cycle analysis were performed as well to validate its
association with cancer immunity. Then we analyzed the
correlation of SERPINE1 expression with response of cancer
treatments to further explore its clinical value. At last,
validation analyses were performed in ccRCC. A summary of
the workflow of this study is shown in Figure 1.

2.2 Tissue samples and sample size
calculation

The Ethics Committee of the Sir Run Run Shaw Hospital,
Zhejiang University approved this study, and written informed
consent was obtained from all participating patients. The
research procedures adhered to the guidelines of the Declaration
of Helsinki. For assessing SERPINE1 expression, 26 tissue samples
(13 tumor tissues and 13 paired adjacent normal tissues) were
randomly selected from clear cell renal cell carcinoma patients.
The power analysis was performed using G*Power (G*Power,
version 3.1 for MAC, Dusseldorf, North Rhine-Westphalia).
According to the TCGA-KIRC project, the SERPINE1 expression
of tumor samples (with available paired adjacent normal tissue data)
were 5.8746 ± 1.6083 (log2FPKM) and the expression of adjacent
normal tissues were 3.9290 ± 1.7263 (log2FPKM), indicating a effect
size of 0.8615 (Cancer Genome Atlas Research Network, 2013).
With power (1-β) of 0.85 and α error of 0.05, the sample size was
calculated to be 13 pairs of samples.

2.3 Gene expression analysis of SERPINE1 in
pan-cancer

Transcriptional data of tumor and normal samples were
collected from the UCSC Xena (https://xenabrowser.net/
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datapages/) dataset (Goldman et al., 2020). Expression data of
cancer cell lines were downloaded from the Cancer Cell Line
Encyclopedia (CCLE, https://sites.broadinstitute.org/ccle)
(Barretina et al., 2012). The abbreviations of cancer names are

presented in Supplementary Table S1. Wilcox rank sum test was
used to compare gene expression levels. R (version 4.2.3) and R
package “ggplot2” were used for statistical analysis and
visualization.

FIGURE 1
The flow chart of this study.

Frontiers in Pharmacology frontiersin.org03

Li et al. 10.3389/fphar.2023.1213891

73

https://xenabrowser.net/datapages/
https://sites.broadinstitute.org/ccle
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1213891


2.4 Single-cell analysis of SERPINE1
expression

Expression of SERPINE1 at a single-cell level was analyzed using
Tumor Immune Single-cell Hub 2 (TISCH2), based on the
MAESTRO workflow (Han et al., 2022). The following
parameters were used for analysis: SERPINE1 (Gene), major
lineages (Cell-type annotation), and all cancers (Cancer type).
The R Package “ComplexHeatmap” (version 2.14.0) was used for
data visualization (Gu et al., 2016).

2.5 Genetic alteration and DNA methylation
analysis

Genetic alteration and DNA methylation data from the
TCGA database were download from The cBioPortal (http://
cbioportal.org) and GSCA (http://bioinfo.life.hust.edu.cn/
GSCA/#/) (Cerami et al., 2012; Liu et al., 2023). Spearman’s
rank correlation coefficient was used to evaluate the correlations
between copy number variation, the DNA methylation level, and
SERPINE1 expression.

2.6 Clinical and prognostic value analysis of
SERPINE1

Clinical data and different types of prognostic data were
extracted from UCSC Xena (https://xenabrowser.net/datapages/)
(Goldman et al., 2020). Both Cox regression and Kaplan–Meier
analysis were conducted to assess the correlation between SERPINE1
expression and patient prognosis. The cutoff value of the
Kaplan–Meier estimator was determined using the “surv-
cutpoint” function of the R package “survminer” (version 0.4.9).
Information regarding immune subtypes was obtained from a
previous report (Thorsson et al., 2018). Moreover, six
independent datasets from BEST (https://rookieutopia.com/) were
analyzed to validate the prognostic value of SERPINE1 expression in
clear cell renal cell carcinoma, including the GSE167573, GSE29609,
and GSE22541 cohorts from GEO (https://www.ncbi.nlm.nih.gov/),
the E-MTAB-1980 cohort from EMBL’s European Bioinformatics
Institute (EMBL-EBI, https://www.ebi.ac.uk/), and Renal Cell
Cancer-European Union (RECA-EU) project data from the
International Cancer Genome Consortium (ICGC, https://dcc.
icgc.org/). The diagnostic value of SERPINE1 was assessed by
receiver operating characteristic curve (ROC) using R package
“pROC” (version 1.18.4).

2.7 Functional enrichment analysis and gene
set enrichment analysis of SERPINE1

The associations between SERPINE1 expression and several
biological processes were examined using GSEA and ssGSEA.
Gene sets were downloaded from the Molecular Signatures
Database (MSigDB, https://www.gsea-msigdb.org/gsea/index.
jsp). Samples were grouped according to the median
SERPINE1 expression for each cancer in GSEA. The R

package “GSVA” (version 1.46.0) was used for the GSEA and
ssGSEA analyses.

2.8 Single cell-level analysis of SERPINE1

CancerSEA, which is based on Gene Set Variance Analysis
(GSVA), was used to assess the functional status of cancer cells
at the single-cell level and Spearman’s rank correlation test were
used to calculate their relationship to SERPINE1 expression (Yuan
et al., 2019).

2.9 Correlation analysis of SERPINE1 with
immune-associated genes, immune cell
infiltration, and cancer-immunity cycle

Based on TCGA in pan-cancer data, the correlation of
SERPINE1 expression with several immunoregulators, infiltration
scores of different cells in the tumor microenvironment, and cancer-
immunity cycle were evaluated using Pearson’s correlation
coefficients. A log2 (TPM+1) transformation was performed
before analysis. There were four types of immune-associated
genes analyzed, including immune checkpoints, chemokines,
chemokine receptors, and MHC-related genes. The infiltration
scores of different cells in tumor microenvironment were
evaluated by seven algorithms, including ESTIMATE (Yoshihara
et al., 2013), TIMER (Li et al., 2020), MCP-counter (Becht et al.,
2016), CIBERSORT(Newman et al., 2015), quanTIseq (Finotello
et al., 2019), xCell (Aran et al., 2017), and EPIC(Racle et al., 2017),
using R package “IOBR” (version 0.99.9) (Zeng et al., 2021). The
correlation between the expression of SERPINE1and marker genes
of immune cells, which was obtained from a previous study, was
assessed using the “Gene_Corr” module of TIMER2.0 tool (Li et al.,
2020; Li et al., 2023). The activity scores of each step of cancer-
immunity cycle, which reflects the stepwise events of immune
systems’ response to cancer (Chen and Mellman, 2013), were
calculated by Tracking Tumor Immunophenotype (TIP, http://
biocc.hrbmu.edu.cn/TIP/) (Xu et al., 2018).

2.10 Analysis of the relationships of
SERPINE1 expression with TMB, MSI,
immunotherapy response, and drug
sensitivities

The simple nucleotide variation in pan-cancer data of TCGA
annotated by MuTect2 were downloaded from the TCGA GDC
(https://portal.gdc.cancer.gov/), and the R package “Maftools”
(version 2.8.05) was used to calculate the TMB (Beroukhim et al.,
2010; Mayakonda et al., 2018). The MSI in pan-cancer data from
TCGAwere obtained from a previous study (Bonneville et al., 2017).
Cancers with a sample size less than three were eliminated from the
TMB and MSI analyses. The relationship between SERPINE1
expression and immune checkpoint blockade (ICB) therapy
response was evaluated by Tumor Immune Syngeneic MOuse
(TISMO, http://tismo.cistrome.org/), a syngeneic mouse tumor
database for investigation of tumor immunity and
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FIGURE 2
SERPINE1 expression in pan-cancer. (A) The expression of SERPINE1 in human cancers and normal tissues based on TCGA database. (B) The paired
analysis of SERPINE1 expression in human cancers with adjacent normal tissues. (C) The differential expression of SERPINE1 between tumor and normal
tissues among cancers based on the integrated data from TCGA and GTEx datasets. (D) The expression levels of different cancer cell lines according to
CCLE database. *p < 0.05; **p < 0.01; ***p < 0.001.
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immunotherapy response (Zeng et al., 2022). The accuracy of
SERPINE1 in predicting ICB therapy response was further
verified by comparing it with other well-known biomarkers in
human cohorts based on data from Tumor Immune Dysfunction
and Exclusion (TIDE, http://tide.dfci.harvard.edu/) (Fu et al., 2020).
Drug sensitivity and mRNA expression data of the NCI-60 cell lines
were downloaded from CellMiner (http://discover.nci.nih.gov/
cellminer/) (Luna et al., 2021). The relationships of SERPINE1
expression with TMB, MSI, and drug sensitivities were evaluated
using Pearson’s correlation test and the differences between groups
are statistically evaluated by Wald test using DESeq2 (Love et al.,
2014).

2.11 Validating the expression of SREPINE1 in
tissue samples using qRT-PCR

Total RNA was isolated using the TRIzol reagent
(Invitrogen). This was followed by its reverse transcription
into cDNA using the HiFiScript cDNA Synthesis Kit (CWBio).
Quantitative PCR was then conducted using the SYBR Green
method in the LightCycler® 480 System (Roche). The relative
expression levels of genes were calculated using the 2−ΔΔCT

method, with β-actin as the internal reference gene. The
forward and reverse primer sequences for SERPINE1 were 5′-
CTCATCAGCCACTGGAAAGGCA-3′ and 5′-GACTCGTGA
AGTCAGCCTGAAAC-3′, respectively.

2.12 Independent cohorts and proteomic
level validation of SERPINE1 abnormal
expression in ccRCC

Six ccRCC cohorts were downloaded from the GEO database
to verify the abnormal mRNA expression of SERPINE1 in
ccRCC: GSE14994, GSE17895, GSE53000, GSE53757,
GSE68417, and GSE71963. Proteomic data and corresponding
clinical data from the CPTAC ccRCC discovery Study
(PDC000127) were downloaded from CPTAC (https://pdc.
cancer.gov/pdc/) to further explore its expression at the
protein level (Clark et al., 2019).

3 Results

3.1 Aberrant expression of SERPINE1 in pan-
cancer

To explore the expression of SERPINE1 among cancers,
mRNA expression data from the TCGA, GTEx, and CCLE
databases were analyzed. Based on the TCGA database alone,
the mRNA expression of SERPINE1 was significantly increased in
BRCA, COAD, ESCA, GBM, HNSC, KIRC, READ, STAD, and
THCA, but significantly decreased in KICH, KIRP, LIHC, and
UCEC (Figure 2A). The paired analysis results were consistent
with those of unpaired analysis, except that the result of UCEC
was no longer significant (Figure 2B). When analyzed in

conjunction with data from the GTEx database, SERPINE1
expression was also increased in DLBC, PAAD, TGCT, and
THYM and decreased in LAML, LUAD, LUSC, OV, PRAD,
SKCM, and THYM (Figure 1C). Analysis of data from the
CCLE database also indicated that the expression of
SERPINE1 was increased in various cancer types, including
BLCA, MESO, GBM, and KIRC, similar to analysis of TCGA
data (Figures 2A, D).

3.2 SERPINE1 is enriched in endothelial cells
and fibroblasts

Considering the boundedness of bulk RNA-seq, we further
investigated the expression of SERPINE1 at a single-cell level
using TISCH2. The results indicated that the expression of
SERPINE1 was enriched in endothelial cells and fibroblasts in
most cancer types (Figure 3A). The results for GSE11360 and
GSE172301 are shown as examples (Figures 3B–E).

3.3 Genetic alteration and DNA methylation
analysis of SERPINE1 in pan-cancer

Considering that the mRNA expression level of a gene can be
influenced by epigenetics, we investigated the genetic alteration and
DNA methylation level of SERPINE1 using cBioPortal and GSCA
datasets. Amplification is the most common type of genetic
alteration in most cancers, dominated by heterozygous
amplification, followed by mutation, dominated by missense
mutation (Figures 4A–C). Correlation analysis showed that the
expression of SERPINE1 was negatively correlated with the DNA
methylation level and positively correlated with the DNA copy
number in most cancer types (Figure 4D).

3.4 SERPINE1 is a prognostic and diagnostic
factor for various cancers

To evaluate the prognostic capacity of SERPINE1 in cancers,
both univariate Cox regression and Kaplan–Meier analysis were
performed. SERPINE1 was found to significantly reduce overall
survival in ACC, BLCA, BRCA, CESC, COAD, GBM, HNSC,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD,
SARC, STAD, THCA, UCEC, and UVM, while it was found to
play a protective role for overall survival in PCPG and SKCM
(Figure 5A). Besides, it is noteworthy that SERPINE1 was
associated with poor prognosis for all four types of prognostic
outcomes in LUAD and PAAD (Figure 5A). Univariate Cox
regression results for the OS of all cancers are shown in
Figure 5B. These findings suggested the general prognostic value
of SERPINE1 expression in various cancers. The diagnostic value of
SERPINE1 was examined using ROC curve as well. As shown in
Supplementary Figure S1, SERPINE1 showed high diagnostic value
in 11 kinds of cancers (AUC > 0.7), including CHOL, COAD, ESCA,
GBM, HNSC, KICH, KIRC, KIRP, LIHC, READ, and STAD,
indicating its crucial role in cancer diagnosis.
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3.5 SERPINE1 is associated with the immune
response and tumor malignancy in pan-
cancer

To better understand the biological roles of SERPINE1, we
evaluated the enrichment of pathways associated with SERPINE1
expression using GSEA at the bulk-RNA level and CancerSEA at the
single-cell level. The GSEA results revealed that a number of

immune-related pathways were enriched in samples with high
SERPINE1 expression in most cancers, including TNF-α signaling
via NF-κB, IFN-γ response, IFN-β response, inflammation response,
IL-6-JAK-STAT3 signaling, IL-2-STATA5 signaling, and
complement and allograft rejection, indicating a potential
relationship between SERPINE1 and cancer immunity
(Figure 6A). The results of ssGSEA for selected gene sets were
consistent with those of GSEA (Figure 6B). The results from

FIGURE 3
Single cell expression of SERPINE1 in pan-cancer. (A) The expression of SERPINE1 in different cell types across cancers. (B) The distribution of cell
types in KIRC GSE111360 cohort. (C) The single cell expression of SERPINE1 in GSE111360 cohort. (D) The distribution of cell types in PRAD
GSE172301 cohort. (E) The single cell expression of SERPINE1 in GSE 172301 cohort.
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FIGURE 4
The genetic alteration and DNA methylation profile of SERPINE1 in pan-cancer. (A) The genetic alteration condition of SERPINE1 among cancers
based on cBioPortal database. (B) The composition of SERPINE1 mutation in pan-cancer according to cBioPortal database. (C) The composition of
SERPINE1 copy number variation according to GSCA database. d_total, total copy number deletion percentage; d_homo, homozygous copy number
deletion percentage; d_hete, heterozygous copy number deletion percentage; a_total, total copy number amplification percentages percentage;
a_homo, homozygous copy number amplification percentage; a_hete, heterozygous copy number amplification percentage. (D) Spearman’s rank
correlations of SERPINE1 expression with the DNA methylation level and copy number variance.
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CancerSEA demonstrated that SERPINE1was positively related with
angiogenesis, hypoxia, inflammation, andmetastasis in most cancers
and negatively related with DNA damage, DNA repair, and
stemness in some cancers (Figures 7A, B), which were consistent
with the abovementioned results. Based on these results, we
speculated that SERPINE1 may regulate tumor progression by
influencing immune-related processes within tumors.

3.6 SERPINE1 expression is correlated with
the expression of various immunoregulators
in pan-cancer

Given the well-known roles of immunoregulators in cancer
immunity, the relationships between SERPINE1 and immune
checkpoints, chemokines, chemokine receptors, and MHC-related
genes were analyzed. The results demonstrated that SERPINE1
expression was positively correlated with the expression of most
inhibitory immune checkpoints, including CD274 (PD-L1), PDCD1
(PD-1), CTLA4, and HAVCR2 (TIM-3) in most cancers, especially
GBM-LGG, KIPAN, UVM, PAAD, and COAD-READ (Figure 8A).
Moreover, expression of SERPINE1 was found to be significantly

associated with expressions of various immunostimulators,
chemokines, chemokine receptors and MHC-related genes in pan
cancer as well (Figures 8B–E).

3.7 SERPINE1 expression is correlated with
immune cell infiltration and cancer-
immunity cycle in pan-cancer

To gain further insight into the relationship between SERPINE1
and cancer immunity, we conducted immune cell infiltration
analysis using different algorithms across a range of cancers. All
algorithms showed that SERPINE1 expression was significantly
correlated with the infiltration scores of multiple immune cells,
although there was some variation in the results for specific cell
types. The results from ESTIMATE indicated that SERPINE1
expression was positively correlated with both the immune score
and stromal score in most cancers, especially KIPAN, GBM-LGG,
and COAD-READ. Notably, no significantly negative relationship
was found between SERPINE1 expression and stromal score in all
cancers (Supplementary Figure S2). According to the CIBERSORT
algorithm, SERPINE1 expression was negatively correlated with the

FIGURE 5
Prognostic value of SERPINE1 in pan-cancer. (A) Correlations of SERPINE1 expression with overall survival (OS), disease-specific survival (DSS),
disease-free interval (DFI) and progression-free interval (PFI) based on univariate Cox regression and Kaplan-Meier method. Red indicates a risky role of
SERPINE1 for prognosis, while green represents a protective role. (B) The prognostic role of SERPINE1 expression to patients’ overall survival (OS) in
cancers by univariate Cox regression. Significant results (p < 0.05) are highlighted in red.
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FIGURE 6
Gene function analysis of SERPINE1 in pan-cancer based onGSEA and ssGSEA. (A) The hallmarks gene set enrichment analysis (GSEA) of SERPINE1 in
pan-cancer. The size of circle represents the FDR value of enrich term in each cancer, and the color indicates the normalized enrichment score (NES) of
each term. (B) The single sample gene set enrichment analysis (ssGSEA) of SERPINE1 in pan-cancer. Cancer typeswith significant positive correlations (p <
0.05) with ssGSEA scores are highlighted in red, while those with significant negative correlations (p < 0.05) are highlighted in blue.
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infiltration of plasma cells, memory B cells, naïve CD4+ T cells, CD8+

T cells, follicular helper T cells, regulatory T cells, activated NK cells,
and resting mast cells and positively correlated with the infiltration
of activated memory CD4+ T cells, macrophages, activated mast

cells, and neutrophils in most cancers (Figure 9A). As for the xCell
algorithm, its results indicated that SERPINE1 expression was
negatively correlated with the infiltration of CD4+ Tcm cells,
NKT cells, plasma cells, and Th1 cells and positively correlated

FIGURE 7
Functional relevance analysis of SERPINE1 in single-cell resolution by CancerSEA. (A) The association between SERPINE1 expression and single-cell
states in cancers. (B) Single-cell states that significantly associated with each cancer. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 8
Co-expression analysis of SERPINE1 with immunoregulators in pan-cancer. (A) The Pearson’s correlation of SERPINE1 with inhibitory immune-
checkpoints genes in cancers. (B) The Pearson’s correlation of SERPINE1 with stimulatory immune-checkpoints genes in cancers. (C) The Pearson’s
correlation of SERPINE1 with chemokines. (D) The Pearson’s correlation of SERPINE1 with chemokine receptors (E) The Pearson’s correlation of
SERPINE1 with MHC-related genes in cancers. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9
Correlations of SERPINE1 expression with immune cells infiltrations in pan-cancer. (A) The correlations of SERPINE1 expression with infiltration of
22 types of immune cells in cancers based on CIBERSORT algorithm. (B) The correlations of SERPINE1 expression with infiltration of 64 types of immune
and stromal cell in cancers based on xCell algorithm. (C) The correlations of SERPINE1 expression with infiltration of six types of immune cell in cancers
based on TIMER algorithm. (D) Correlation between SERPINE1 expression and cancer-immunity cycle. The size of circle represents the p-value of
correlation test, and the color indicates the Pearson’s correlation coefficient. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 10
Relevance analysis of SERPINE1 expression with tumor mutation burden (TMB), microsatellite instability (MSI), immunotherapy response, and drug
sensitivity. (A) The correlation of SERPINE1with TMB in pan-cancer. (B) The correlation of SERPINE1withMSI in pan-cancer. (C) Expression of SERPINE1 in
mice with different responses to immune checkpoint blockade (ICB) therapy based on data from TISMO database. (D) The area under the receiver
operating characteristic curve (AUC) of SERPINE1 and other biomarkers in predicting ICB therapy response. (E) The association of SERPINE1
expression with drug sensitivity based on CellMiner database. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Pharmacology frontiersin.org14

Li et al. 10.3389/fphar.2023.1213891

84

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1213891


with the infiltration of fibroblasts, macrophages, neutrophils and
regulatory T cells (Figure 9B). The results from TIMER algorithm
revealed that SERPINE1 expression was positively correlated with
the infiltration of all cell types, except B cells which did not reach
significance in most cancers (Figure 9C). The results of MCP-
counter algorithm were similar with that of TIMER algorithm,
except that the infiltration of T cells showed significant negative
correlation with SERPINE1 expression in 10 types of cancers
(Supplementary Figure S3A). The results of the quanTIseq
algorithm indicated that SERPINE1 expression was positively
correlated with M1 macrophages, M2 macrophages, neutrophils
and regulatory T cells (Supplementary Figure S3B). The results of
the EPIC algorithm showed that SERPINE1 expression was
positively correlated with the infiltration of cancer associated
fibroblasts (CAFs), endothelial cells, and macrophages, and
negatively correlated with the infiltration of CD8+ T cells
(Supplementary Figure S3C). We also analyzed the correlation
between the expression of SERPINE1 and immune cells’ marker
genes. The results showed the expression of SERPINE1 was
positively correlated with that of most immune cells’ marker
genes in most cancer, especially the maker genes of neutrophils,
monocyte, tumor-associated macrophages (TAMs),
M2 macrophages, and regulatory T cells (Supplementary Figure
S4). These results suggested that SERPINE1 may regulate the
immune response of cancers.

The relationship between SERPINE1 expression and the cancer-
immunity cycle, which can reflect the stepwise events in anticancer
immune response, was analyzed as well. As shown in Figure 8D,
high expression of SERPINE1 was positively correlated with the
activities of step 1 and step 4, which represents the release of cancer
cell antigen and the recruiting of immune cells respectively, but
negatively correlated with the activities of step 5, 6 and 7, which
represents the infiltration of immune cells into tumors, the
recognition of cancer cells by T cells, and the killing of cancer
cells, in lots of cancer types. These results provide further evidence
that SERPINE1 may be involved in the regulation of the immune
response to cancer.

3.8 SERPINE1 is associated with TMB, MSI,
immunotherapy response, and drug
sensitivity in pan-cancer

Due to the predictive value of TMB andMSI for immunotherapy
response, the relationships between TMB, MSI, and SERPINE1
expression were evaluated. SERPINE1 expression was found to be
positively associated with TMB in THYM, COAD, COADREAD,
SARC, and OV and negatively correlated with STES, STAD, and
HNSC (Figure 10A). In addition, SERPINE1 expression levels in
seven cancers were also significantly correlated with MSI in GBM-
LGG, KIPAN, STES, HNSC, STAD, CHOL, SARC and THYM
(Figure 10B). Then, we directly analyzed the relationship between
SERPINE1 expression and immunotherapy response. As shown in
Figure 10C, SERPINE1 expression could significantly predict the
immunotherapy response in nine murine cohorts, with responders
showing elevated SERPINE1 expression levels in six cohorts and
decreased SERPINE1 expression levels in three cohorts. We also
compared the predictive power of SERPINE1 to ICB response with

other biomarkers in human cohorts. The area under curve (AUC) of
SERPINE1 was above 0.5 in 12 cohorts and above 0.7 in two cohorts,
which is similar to T clonality but lower than other classical
biomarkers such as MSI, TMB, and CD274 (Figure 10D). These
results indicated that SERPINE1 could predict the response of cancer
patients to immunotherapy to some extent, though its predictive
power might be lower than that of some classical markers.
Furthermore, the correlations between SERPINE1 expression and
drug sensitivities were explored using CellMiner. We found that
SERPINE1 expression was positively correlated with sensitivities
towards 13 drugs, including simvastatin, staurosporine, and
pazopanib, and negatively correlated with sensitivities towards
30 drugs, including tamoxifen, tanespimycin, and nilotinib
(Figure 10E).

3.9 Elevated expression of SERPINE1 is
associated with unfavorable prognosis in
patients with ccRCC

Given the limited availability of reports on the role of SERPINE1
in ccRCC, we investigated the role of SERPINE1 in ccRCC. Our
findings revealed that SERPINE1 expression is associated with male
sex, lymph nodemetastasis, higher T stage, higher histological grade,
higher pathological stage, and different immune subtypes (Figures
11A–H). Cox regression analyses revealed upregulated SERPINE1
expression as a risk factor for OS, DSS, and PFS using data from the
TCGA database and as a risk factor for OS using GSE167573 cohort
data from the GEO database (Figure 11I). However, the result of Cox
regression using RECA-EU project data from ICGC database
indicated upregulated SERPINE1 expression as a protective factor
for OS (Figure 11I). The multivariate Cox regression was performed
based on TCGA database, and the results verified the independence
of SERPINE1’s prognostic value for patient with ccRCC
(Supplementary Figure S5).

3.10 SERPINE1 expression is associated with
the tumor microenvironment in clear cell
renal cell carcinoma

To further investigate the role of SERPINE1 in ccRCC, gene set
enrichment analysis was performed. The results revealed that
SERPINE1 expression was significantly related with various
biological processes. Further, GO analysis showed that SERPINE1
expression was positively correlated with collagen fibril
organization, collagen biosynthetic process, and the regulation of
T helper 1 type immune response, while it was negatively correlated
with metabolism-related processes, such as tricarboxylic acid cycle,
fatty acid beta oxidation, and the alpha amino acid catabolic process
(Figure 12A). In the KEGG pathway analysis, several malignancy-
related pathways, such as the P53 signaling pathway, cell cycle and
DNA replication pathways, as well as immunity-related pathways,
such as natural killer cell mediated cytotoxicity and T cell receptor
signaling pathways, were found to be significantly positively
correlated with SERPINE1 expression (Figure 12B). Similar
results were obtained through the hallmark analysis
(Figures 12C, D). These findings revealed that SERPINE1 may be
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FIGURE 11
Association between SERPINE1 and clinicopathological characteristics of clear cell renal cell carcinoma. (A) The expression of SERPINE1 in patients
of different ages. (B) The expression of SERPINE1 in patients of different genders. (C) The expression of SERPINE1 in patients of different lymph node
metastasis statuses. (D) The expression of SERPINE1 in patients of different remote metastasis statuses. (E) The expression of SERPINE1 in patients of
different primary tumor stages. (F) The expression of SERPINE1 in different histological grades. (G) The expression of SERPINE1 in different cancer
stages. (H) The expression of SERPINE1 in different immune subtypes. (I) The correlation of SERPINE1 with prognosis based on different datasets. OS,
overall survival; DFS, disease-free survival; DSS, disease-specific survival; PFS, progression-free survival; *p < 0.05; **p < 0.01; ***p < 0.001.
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involved in the formation of the tumor microenvironment in ccRCC
and were consistent with the results in pan-cancer.

3.11 Validation of SERPINE1 expression in
tumor tissues using qRT-PCR, independent
cohorts, and proteomic data

Finally, we confirmed the aberrant expression of SERPINE1 in
ccRCC samples. Our ccRCC patient samples and six independent
GEO cohorts exhibited significantly increased levels of SERPINE1
expression, as expected (Figures 13A, B). Additionally, analysis of
CPTAC data revealed that SERPINE1 expression was also elevated at
the protein level in ccRCC samples (Figures 13C–F), which further
enhanced the credibility of our study findings.

4 Discussion

SERPINE1, a regulator of the fibrinolytic system, was found to be
associated with tumor progression and metastasis in several cancers;
however, its detailed mechanisms of action in various cancers
remain obscure (Hanekom et al., 2002; Becker et al., 2010; Duffy
et al., 2014; Mashiko et al., 2015; Jevrić et al., 2019; Sotiropoulos
et al., 2019). In the present research, we performed a multi-omics
integrated analysis to explore the expression, prognostic value, and
possible underlying mechanisms of action of SERPINE1 in pan-
cancer.

Expression analysis based on the TCGA and GTEx databases
indicated the aberrant expression of SERPINE1 in several cancers.
Overexpression of SERPINE1 and its correlation with poor
prognosis has been reported in several cancers (Hanekom et al.,

FIGURE 12
Gene set enrichment analysis (GSEA) of SERPINE1 in clear cell renal cell carcinoma (ccRCC). (A) The associations of SERPINE1 expressionwith several
Gene Ontology (GO) terms. (B) The associations of SERPINE1 expression with several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (C)
The associations of SERPINE1 expression with several Hallmark terms. (D) The GSEA results of certain Hallmark terms.
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FIGURE 13
Validation of aberrant expression of SERPINE1 in ccRCC by qRT-PCR, independent cohorts and proteome. (A) qRT-PCR analysis of SERPINE1
expression in clear cell renal cell carcinoma and paired adjacent normal tissues based on patient samples from Sir Run Run Shaw Hospital. (B) Analysis of
6 GEO cohorts regarding SERPINE1 expression in ccRCC and normal samples. (C) Unpaired analysis of SERPINE1 protein abundance in ccRCC and
adjacent normal tissue based onCPTAC database. (D) The SERPINE1 protein abundance in patients with different stages of ccRCC. (E) Paired analysis
of SERPINE1 protein abundance in ccRCC and adjacent normal tissue based on CPTAC database. (F) The SERPINE1 protein abundance in patients with
different histological grades of ccRCC *p < 0.05; **p < 0.01; ***p < 0.001.
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2002; Becker et al., 2010; Duffy et al., 2014; Nakatsuka et al., 2017;
Jevrić et al., 2019; Sotiropoulos et al., 2019). The results of the
present study confirmed the prevalence of aberrant SERPINE1
expression among cancers. Given the bulk RNA sequencing data
is the average expression of different cells, which will lead to the loss
of information about cells heterogeneity, we analyzed the expression
of SERPINE1 at single-cell level as well, and the results showed that
SERPINE1 expression was enriched in the endothelial cells and
fibroblasts, consistent with the findings of a previous study,
indicating the functions of SERPINE1 might be related with these
two cell types, such as angiogenesis and regulating TME (Placencio
and DeClerck, 2015; Clark et al., 2019; Chen et al., 2021b; de Visser
and Joyce, 2023). Subsequently, we analyzed possible reasons for the
aberrant expression of SERPINE1 in cancers. DNAmethylation level
and DNA copy number variation are well-known ways to influence
the gene expression, thus their correlation with SERPINE1 was
analyzed (Morgan et al., 2018; Pös et al., 2021). SERPINE1
expression showed a positive correlation with copy number
variance and a negative correlation with the DNA promoter
methylation level in most cancers, suggesting its potential role in
CNV and the DNA methylation level. Some studies have indicated
that somemicroRNAs and long noncoding RNAs are involved in the
regulation of SERPINE1 expression (Tan et al., 2021; Teng et al.,
2021; Zhao and Liu, 2021). Moreover, transforming growth factor β
(TGF-β) has been implicated in the regulation of SERPINE1
expression (Kutz et al., 2001; Ma et al., 2002), and a positive
correlation of TGF-β expression with SERPINE1 expression was
observed through the GSEA analysis conducted in the present study.

Next, we explored the relationship between SERPINE1
expression and the prognosis of cancer patients. High SERPINE1
expression was found to be a risk factor for overall survival in several
cancers, consistent with the findings of previous studies (Hanekom
et al., 2002; Becker et al., 2010; Duffy et al., 2014; Nakatsuka et al.,
2017; Jevrić et al., 2019; Sotiropoulos et al., 2019). Hence, we
speculated that SERPINE1 may be a prognostic biomarker for
various cancers.

To further explore the mechanisms underlying the role of
SERPINE1 in cancers, we performed GSEA on pan-cancer data
from TCGA. Several immune-related pathways were found to be
significantly associated with high SERPINE1 expression in most
cancers, including TNF-α signaling via NF-κβ, INF-γ response, and
inflammation response. Similar results were also found in the single
cell-level analysis performed by us using CancerSEA. Therefore, we
believe that SERPINE1 is involved in cancer immunity and tumor
malignancy (Iwaki et al., 2012; Declerck and Gils, 2013; Placencio
and DeClerck, 2015; Chen et al., 2021; Sillen and Declerck, 2021).

Since immunoregulators are known to be important for the
immune response, we next performed a co-expression analysis of
SERPINE1 to further understand its roles in cancer immunity. The
results demonstrated that SERPINE1 expression was positively and
significantly correlated with the expression of immune-checkpoints,
chemokines, chemokine receptors, and MHC-related genes in most
cancers, indicating the remarkable effect of SERPINE1 on the
immune system and consistent with previous studies about the
pro-inflammatory and pro-angiogenesis roles of SERPINE1 (Iwaki
et al., 2012; Declerck and Gils, 2013; Placencio and DeClerck, 2015).
Traditionally, CD8+ T cells, memory B cells, plasma cells, follicular
helper T cells, activated NK cells, NKT cells, and M1 macrophages

are thought to be anti-cancer cells in the tumor microenvironment
(TME), while regulatory T cells, M2 macrophages, and cancer
associated fibroblasts are considered to be pro-cancer cells
(Fridman et al., 2012; Sica and Mantovani, 2012; Bae et al., 2019;
Chen and Song, 2019; Togashi et al., 2019; St Paul and Ohashi, 2020;
Laskowski et al., 2022; Laumont et al., 2022; Li H. et al., 2023; Cai
et al., 2023; Gutiérrez-Melo and Baumjohann, 2023). Therefore, we
speculated that high SERPINE1 expression may play an
immunosuppressive role in the tumor microenvironment due to
its inverse correlation with several anti-cancer cells and positive
correlation with several pro-cancer cells. The result of cancer-
immunity cycle analysis further validated our speculation.
Although SERPINE1 expression was positive correlated with the
recruiting of most immune cells, the infiltration of immune cells into
tumors, recognition of cancer cells by T cells, and killing of cancer
cells were found to be negatively correlated with SERPINE1
expression in lots of cancers. However, given that our
bioinformatic analysis based on bulk-RNA sequencing data has
several limitations, further investigations are warranted.

Next, we validated the abnormal expression of SERPINE1 and its
potential biological functions in clear cell renal cell carcinoma.
Upregulated SERPINE1 expression was found to be associated
with several clinical features of ccRCC, such as lymph node
metastasis, high T stage, high histological grade, and high
pathological stage. As for the gene function analysis performed
using GSEA, collagen-associated processes, immune-associated
processes, and malignancy-related pathways were found to be
positively correlated with SERPINE1 expression in ccRCC. These
findings are consistent with our speculation that SERPINE1
expression is involved in the regulation of the tumor
microenvironment. Next, we further explored SERPINE1
expression in ccRCC in clinical patient samples and independent
datasets.

Given the role of abnormal SERPINE1 expression in cancer
development, it is important to consider how to interfere its
expression to benefit cancer patients. As PAI-1 is a well-known
regulator of the plasminogen activation system, many efforts have
been devoted to the development of selective PAI-1 inhibitors
(Fortenberry, 2013; Placencio et al., 2015; Sillen and Declerck,
2020; 2021). Some marketed drugs, including insulin-sensitizing
agents, angiotensin-converting enzyme inhibitors (ACEI), and
statins, have shown the ability to attenuate the synthesis or
secretion of SERPINE1 (Brown et al., 2002b; Ersoy et al., 2008;
Baluta and Vintila, 2015). Specifically, insulin resistance has been
found to be associated with elevated plasma PAI-1 levels (Juhan-
Vague and Alessi, 1997), and both proinsulin and insulin can
stimulate PAI-1 expression (Sakamoto et al., 1999; Nordt et al.,
2001), thus insulin-sensitizing agents such as metformin may have
independent effects in decreasing PAI-1 levels in patients with type
2 diabetic (Ersoy et al., 2008). Besides, activation of renin-
angiotensin-aldosterone system (RASS) has also been found to be
involved in the regulation of PAI-1 levels, and ACEI, such as
quinapril, ramipril, and perindopril, have shown the ability to
reduce PAI-1 level in both healthy people and hypertensive
patients (Brown et al., 1998; 2002a; 2002b; Erdem et al., 1999).
Statins can inhibit the production of PAI-1 by regulating a variety of
signaling pathways as well (Ma et al., 2002; Laumen et al., 2008;
Dunoyer-Geindre et al., 2011; Ni et al., 2013). However, the role of
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these drugs in cancer remains unclear. Apart from these traditional
drugs, there are many more novel drugs under development. Due to
the crucial role of reactive center loop (RCL) in inhibitory
mechanism of PAI-1, several synthetic peptides that mimic
various parts of the RCL of PAI-1 were developed (Eitzman
et al., 1995; Kvassman et al., 1995; Xue et al., 1998; D’Amico
et al., 2012). In general, peptides mimicking the C-terminal part
of the loop can accelerate the irreversible transition of PAI-1 to its
latent form, while peptides mimicking the N-terminal part can
induce it to be cleaved (D’Amico et al., 2012). In addition,
several RNA aptamers designed to block the interaction of pai-1
with its partner have been developed as well, and have shown the
ability to reduce cancer migration, invasion, and angiogenesis (Blake
et al., 2009; Damare et al., 2014; Fortenberry et al., 2016). Another
class of PAI-1 inhibitors is small molecules. These compounds work
by binding a common binding pocket within the flexible joint region
of PAI-1 or by interfering structural elements within that region
through interactions at the surface of PAI-1, thereby inducing the
substrate behavior of PAI-1 and its conversion to an inert form
(Egelund et al., 2001; Fjellström et al., 2013; Lin et al., 2013; Sillen
et al., 2021). There are also lots of antibody based PAI-1 inhibitors,
including antibodies and antibody derivatives. Their target sits and
mechanisms are more extensive and complex than drugs mentioned
above (Sillen and Declerck, 2020). However, although these different
types of novel PAI-1inhibitors have been shown to be efficient in
vivo or in vitro, their role and safety in cancers remain unclear and
require more research and clinical trials to understand them, but
they still promise a bright future for cancer therapies based on
SERPINE1

Admittedly, there are several limitations to our study. First, there
are some contradictory findings in our study. For example, in the
Cox regression analysis, the result based on RECA-EU project data
from ICGC database indicated a protective role of SERPINE1 in
renal cell carcinoma, which is contrary to the results of other
datasets. We speculate that this may be related to the
heterogeneity of samples from different datasets, and the sample
size of this dataset (n = 91) is smaller than that of TCGA database,
but further studies and follow-up are still needed to verify it. In
addition, the results of different cancers are not always consistent in
pan-cancer analysis. Therefore, further research focused on the
differences in SERPINE1 roles among cancers is needed as well.
Second, although we have identified the prognostic value and
possible action mechanisms of SERPINE1 in cancers through
correlation analysis in the present study, direct evidence
supporting these conclusions are required. Finally, our research is
mainly based on public databases, which may have inevitably
introduced systemic bias; further experimental verification is
therefore needed.

5 Conclusion

In the present study, we conducted a comprehensive multi-
omics analysis of SERPINE1 in pan-cancer, revealing its
prognostic value and potential action mechanisms in cancers.

The aberrant expression of SERPINE1 is common in cancers and
is associated with patient prognosis, cancer immunity,
immunotherapy response and drug sensitivities. SERPINE1
may thus be a promising new target for cancer diagnosis and
treatment.
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Background: Colorectal cancer (CRC) is one of the most prevalent cancer types
globally. A survival paradox exists due to the inherent heterogeneity in stage II/III CRC
tumor biology. Ferroptosis is closely related to the progression of tumors, and
ferroptosis-related genes can be used as a novel biomarker in predicting cancer
prognosis.

Methods: Ferroptosis-related genes were retrieved from the FerrDb and KEGG
databases. A total of 1,397 samples were enrolled in our study from nine
independent datasets, four of which were integrated as the training dataset to
train and construct the model, and validated in the remaining datasets. We
developed a machine learning framework with 83 combinations of
10 algorithms based on 10-fold cross-validation (CV) or bootstrap resampling
algorithm to identify themost robust and stablemodel. C-indice and ROC analysis
were performed to gauge its predictive accuracy and discrimination capabilities.
Survival analysis was conducted followed by univariate and multivariate Cox
regression analyses to evaluate the performance of identified signature.

Results: The ferroptosis-related gene (FRG) signature was identified by the
combination of Lasso and plsRcox and composed of 23 genes. The FRG signature
presentedbetter performance thancommonclinicopathological features (e.g., age and
stage), molecular characteristics (e.g., BRAF mutation and microsatellite instability) and
several published signatures in predicting the prognosis of the CRC. The signature was
further stratified into a high-risk group and low-risk subgroup, where a high FRG
signature indicated poor prognosis among all collected datasets. Sensitivity analysis
showed the FRG signature remained a significant prognostic factor. Finally, we have
developed a nomogram and a decision tree to enhance prognosis evaluation.

Conclusion: The FRG signature enabled the accurate selection of high-risk stage
II/III CRC population and helped optimize precision treatment to improve their
clinical outcomes.
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Introduction

Colorectal cancer (CRC) is a common and deadly disease with
147,950 new cases estimated in 2020 (Siegel et al., 2020; Mi et al., 2023).
Early detection through regular screening, effective treatment options
such as adjuvant chemotherapy and targeted therapies, and promoting
healthy lifestyle choices can all help reduce the CRC recurrence risk and
improve survival rates (Dekker et al., 2019). The pathological staging at
the time of diagnosis is a crucial determinant of both the recurrence risk
and survival (Jeffery et al., 2019).Meanwhile, stage II/III CRC represents
a significant proportion, accounting for about 70% of all CRC cases (Liu
et al., 2022). Unfortunately, even with curative resection, 30–40% of the
patients will experience recurrence, which can significantly impact their
survival rates (Jeffery et al., 2019). More importantly, a survival paradox
exists for patients with stage IIB/IIC and IIIA CRC, which cannot be
well explained by traditional clinicopathological features or molecular
signatures (Kim et al., 2015; Kim et al., 2019). Meanwhile, evidence in
previous studies showed that patients who routinely received adjuvant
chemotherapy after surgery did not respond equally even with the same
stage (Shiovitz et al., 2014). Therefore, there is still a need to establish a
novel recurrence-related prognostic model to identify the high-risk
population of stage II/III CRC for clinical decision-making.

Recent studies have brought light to various molecular features in
CRC that have been highly correlated with the prognosis and therapy
response. Notably, these features include CMS classification, genomic
alterations such as TP53, KRAS, and BRAF mutation, microsatellite
instability (MSI), and tumor mutational burden (TMB), which have
been recognized as relatively reliable biomarkers (Dienstmann et al.,
2017; Dienstmann et al., 2019; Chong et al., 2022). The
immunohistochemistry technique, particularly the multiplex
immunohistochemistry or immunofluorescence (mIHC/IF) method,
is frequently used to aid in pathology diagnosis as it reduces inter-
observer variability and has the ability to label multiple markers per
tissue section. However, it is important to point out that one potential
disadvantage of mIHC is that the number of markers that can be
simultaneously labeled is typically limited, usually between 3 and 7,
which may not capture the full complexity of the biomolecular
interactions underlying the disease pathology (Tan et al., 2020). It is
worth mentioning that the CMS classification, which employs bulk
RNA-seq data to stratify CRC patients into four subtypes, has emerged
as a highly effective tool for identifying strong prognostic effects for both
recurrence and survival, warranting further attention and analysis
(Guinney et al., 2015; Stintzing et al., 2019).

Several molecular models have been developed to predict the
recurrence and survival of stage II/III CRC, including lncRNA,
hallmark-based, immune-based, methylation-based, and
epithelial–mesenchymal transition (EMT)-related signatures, among
others (Li et al., 2020a; Chong et al., 2021; Liu et al., 2022; Ren et al.,
2022; Li et al., 2023). Ferroptosis plays a critical role in the development
of CRC through several mechanisms, such as the build-up of lipid
peroxides, disruption of the balance between glutathione and
glutathione peroxidase 4, and disturbances in iron homeostasis
(Song et al., 2023). Accumulating evidence has shown that the
induction of ferroptosis in CRC successfully eliminates cancer cells

resistant to other modes of cell death (Wang et al., 2022a). Several
studies also established ferroptosis-related gene (FRG) or lncRNA
signatures to predict stage II/III CRCs recurrence or prognosis (Wu
et al., 2021; Yu et al., 2021; Du et al., 2022). However, the performance of
these molecular models in prediction was different, and several studies
did not emphasize sufficient validation with multiple datasets and
attempt at the multiple modeling algorithm. The modeling
algorithm combination should be further fine-tuned, and the
validation procedure for the signature should be intensified to
improve the credibility of the model.

Accordingly, the aim of the present study was to construct an
mRNA expression signature using FRGs to identify patients at risk of
relapse via a 10-fold and bootstrap machine learning framework. The
constructed signature was also validated in five independent datasets
and compared with clinical traits and molecular features and published
signatures. Sensitivity analysis was performed to test the performance of
the signature. A nomogram and decision tree, which integrated clinical
and molecular features with the signature, were established to improve
clinical outcomes and guide clinical practice.

Materials and methods

Data collection and preprocessing

The overall workflow of the study is shown in Figure 1. Gene
expression data and corresponding clinical features of stage II/III CRC
samples were collected from publicly available datasets of the NCBI
GEO (https://www.ncbi.nlm.nih.gov/geo/), cBioPortal (https://www.
cbioportal.org/), and TCGA (https://cancergenome.nih.gov/)
database. Seven microarray datasets from GEO (GSE14333,
GSE37892, GSE39582, GSE103479, GSE29621, GSE92921, and
GSE12945) were sequenced by using Affymetrix HG-U133 Plus 2.
0 Array, and TCGA (the combination of TCGA-COAD/READ) and
MSK-READ datasets were produced from Illumina high-throughput
sequencing platform. A total of 1,397 samples enrolled in the
establishment and validation of the model met the following criteria:
1) primary tumor in colorectum; 2) with clinical information and gene
expression data; and 3) stage II/III in the AJCC staging system.

Four cohorts (GSE14333, GSE37892, GSE39582, and TCGA-
CRC, 1,000 samples) of the total patients were combined as the
training dataset. The other five cohorts were used as independent
validation datasets. The combined gene expression data in the
training dataset was collected from the study of Guinney et al.
(2015). Careful data preprocessing before the merge was
implemented to address the batch effect among datasets due to
the different platforms, labs, and time points. The raw data of the
four GEO validation datasets were processed by the robust
multiarray averaging (RMA) algorithm with ‘affy’ package, and
the duplicate probes were merged via the median number. TCGA
RNA FPKM format sequencing data were curated from UCSC Xena
(https://xenabrowser.net/datapages/). TCGA-COAD/READ data
were merged after removing the batch effect by Combat
algorithm via “sva” package. Then, they were converted into
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TPM format and further log-2 transformed. The log-2 transformed
RNA-seq data from theMSK dataset were collected from cBioPortal.
All gene expressions were transformed into Z-score among samples
when training the model.

Acquisition and screening of ferroptosis-
related genes

We obtained FRGs from the public databases FerrDb (http://
www.zhounan.org/ferrdb/current/) and KEGG. A total of 846 RNAs
were obtained, including those from the driver, suppressor, marker,
and unclassified categories (Supplementary Table S1). After

removing duplicates, a total of 546 RNAs remained. Since low-
expressed or non-varying genes usually represent noise, the
transcriptome data in the training dataset were downloaded with
nearly 6,000 genes by the largest median absolute deviation (MAD).
These genes were measured by at least one probeset in all datasets,
and each gene was represented by the probeset with the largest MAD
(Guinney et al., 2015). We took the intersection of the curated FRGs
andMAD-filtered genes as the variable features in the training meta-
cohort and performed univariate Cox regression analysis to screen
out disease-free survival (DFS)-associated genes. A total of
80 representative recurrence-related ferroptosis genes were
enrolled in the machine learning framework as initial variables
(Supplementary Table S2).

FIGURE 1
Workflow of the study.
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Construction of a prognostic gene signature

A total of 10 separate machine learning algorithms and their
combinations composed the machine learning framework. The
10 algorithms included random survival forest (RSF), elastic
network (ENet), least absolute shrinkage and selection operator
(Lasso), ridge, stepwise Cox proportional hazards regression
(Stepwise Cox), CoxBoost (Boosting Cox’s proportional
hazards regression), generalized boosted regression modeling
(GBM), supervised principal components (SuperPC), partial
least squares regression for Cox (plsRcox), and survival
support vector machine (survival-SVM). Six algorithms,
including Lasso, RSF, CoxBoost, ridge, ENet, and stepwise Cox,
could be used to perform feature selection. Within this
framework, we utilize six specific algorithms for feature
selection: Lasso, RSF, CoxBoost, ridge, ENet, and stepwise Cox.
These algorithms play a fundamental role in the preliminary
phase of gene screening, working synergistically with other
algorithms. Both individual algorithms and combinations of
two algorithms contribute to this comprehensive framework.
To optimize the performance of each algorithm, we employed
either 10-fold cross-validation (CV) or bootstrap resampling
techniques. These approaches assist us in evaluating and
honing the models. Finally, a total of combined 83 algorithms
based on 10-fold CV or bootstrap resampling were utilized to
select the optimistic performance model. The implementation of
machine learning algorithms framework and corresponding
hyperparameter optimization function are shown in
Supplementary Table S3. The Harrell’s concordance index
(C-index) was calculated among all datasets. The algorithm
with the highest average C-index across all validation datasets
was regarded as the optimal model to generate the FRG signature.
The samples were categorized into high and low risk based on the
optimal thresholds for signature scores determined by the surv_
cutpoint function of the R package “survminer”.

Collection of published signatures

To further assess our identifiedmodel’s performance, we curated
five previously published mRNA signatures (Supplementary Table
S4). These signatures were constructed by using diverse
computational algorithms and curated from various biological
processes, including hypoxia and the tumor microenvironment.
To evaluate the performance of each signature, we employed
univariate Cox regression analysis and computed the C-index
across all cohorts.

Construction and validation of the
nomogram

A novel nomogram for predicting relapse in patients with stage
II/III CRC was established by the “rms” package. We integrated
common clinical and molecular features in the nomogram with our
signature to compose a comprehensive model applying Cox
proportional hazards regression. The samples in the training
meta-cohort, which had these relevant variables (632 samples),

were enrolled in the analysis. The calibration curve was used to
visualize the relationship between the predicted probability
generated by the nomogram and the actual observations. The
decision curve analysis (DCA) results could be performed to
obtain the clinical net benefit of different models, and all and
none strategies (Van Calster et al., 2018). Finally, we employed
recursive partitioning analysis with the R package “rpart” to
construct a decision tree model for DFS, aiming to refine risk
stratification.

Additional bioinformatic analysis

The deconvolution approach xCell algorithm was selected to
exhibit molecular features regarding immunology between risk
groups by ‘xCell’ packages (Newman et al., 2015; Aran et al.,
2017). xCell could utilize bulk RNA-seq data to infer infiltrating
immune and stromal cell subsets. The correlation coefficients
between the signature scores and each gene expression acquired
were calculated. The sorted correlation coefficients were used as
the ranked gene list input to perform gene set enrichment
analysis (GSEA) via the “clusterProfiler” package against
KEGG and REACTOME reference gene set (Subramanian
et al., 2005).

Statistical analysis

The data processing, statistical analysis, and plotting were
generated in the R 4.2.2 software. The heatmap of genes enrolled
in the signature with clinical annotations was generated using the R
package “ComplexHeatmap.” Correlations between two continuous
variables were evaluated via Spearman correlation coefficients. The
Wilcoxon rank-sum test or t-test was applied to compare the
difference between two groups for quantitative data. Two-sided
Fisher exact tests were used to analyze categorical variables. The
Cox proportional hazards model and Kaplan–Meier analysis were
performed with the ‘survival’ or ‘rms’ package. Receiver operating
characteristic curves (ROCs) were used to evaluate the prognostic
classification performance of the signature with the ‘timeROC’
package. The C-index comparisons between clinical and
molecular traits and the risk score were implemented by the
“compareC” package. All statistical tests were two-sided. p <
0.05 was considered as statistically significant. The length of error
bars represented 95% confidence intervals. The
Benjamini–Hochberg method was applied to control the false
discovery rate (FDR) for multiple hypothesis testing in
appropriate conditions.

Results

Development of machine learning-based
ferroptosis-related gene signature

The meta-cohort of the four datasets (GSE14333, GSE37892,
GSE39582, and TCGA-CRC) was regarded as the training
dataset, and the principal component analysis showed no
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significant batch effects within the meta dataset (Supplementary
Figure S1A). The expression profiles of the 80 ferroptosis-related
prognostic genes were subjected to the machine learning-based

modeling framework. We fitted 83 kinds of prediction models via
10 machine learning algorithms based on the 10-fold cross-
validation or bootstrap resampling algorithm to optimize the

FIGURE 2
Identification and construction of the best performance signature. (A) C-indices of 83 combinations of machine learning prediction models in five
validation cohorts. (B) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the minimum value and further
generated the gene features with non-zero coefficients. (C) Lasso coefficient profiles of the candidate genes for FRG signature construction. (D)
Determination of the optimal number of components when the iAUC reached themaximumvalue. (E)Categories and coefficients of 23 genes finally
obtained in plsRcox regression.
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model parameter in the training meta-cohort. The C-indices were
calculated exclusively in the five validation cohorts of all models,
and the model that exhibited the highest average C-index was
deemed the optimal solution. The most robust model with the
highest mean C-index in the five validation datasets was the
combination of Lasso and plsRcox (Figure 2A). Using Lasso

regression and 10-fold CV, we found that 23 FRGs had non-
zero Lasso coefficients and were associated with recurrence in
stage II/III CRC. The regression partial likelihood deviance
reached its minimum value, indicating that these FRGs are
important predictive features for recurrence (Figures 2B, C).
The chosen features underwent a 10-fold cross-validation

FIGURE 3
Evaluation indicators and prognostic value of the FRG signature. (A) Time-dependent ROC analysis for predicting DFS at 1-, 3-, and 5-year across the
trainingmeta-cohort and all validation datasets. (B)C-indices of the signature across all datasets. (C) Kaplan–Meier survival curve of DFS between patients
with a high-signature score and with a low-signature score in the training meta-cohort and five validation datasets. (D) Kaplan–Meier survival curve of
DFS between patients in stage II vs. stage III patients and with respect to the stage and the identified gene signature of the meta-cohort.
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plsRcox to build a predictive model with the optimal number of
components. The incremental area under the curve (iAUC) value
reached its maximum at nine components (Figure 2D), so the
model used components 0–9 to obtain fit statistics using both the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) (Supplementary Figure S1B). Finally, the risk
score for each patient was calculated using the expression of
23 gene features multiplied by their corresponding coefficients to
generate the FRG signature (Figure 2E).

The predictive and prognostic value of FRG
signature

We used ROC analysis to measure the DFS discrimination of
the signature, with 1-, 3-, and 5-year AUCs of 0.682, 0.738, and
0.720 in the training meta-cohort; 0.697, 0.649, and 0.707 in
GSE103479; 0.875, 0.716, and 0.660 in GSE12945; and 0.707,
0.775, and 0.760 in GSE92921, respectively (Figures 3A, B). The
3-year AUC of GSE103479 and the 1-year AUC of
GSE29621 were 0.670 and 0.739, respectively. The model had
an overall certain decent degree of 3-year AUCs across all
independent datasets. Both the training meta-cohort and
validation datasets also showed stable C-indices around 0.7
(Figure 3C).

In our independent datasets, we divided the samples into
high- and low-risk groups using the optimal cutoff for the
predicted signature risk score. By analyzing the expression
patterns of the 23 identified genes, we observed clear
differences between the high- and low-risk groups
(Supplementary Figure S1C). Specifically, genes such as
ZFP36, KLF2, PML, PTPN18, MAPK3, SMPD1, SLC2A3,
RARRES2, CAV1, and SAT1 were found to be highly
expressed in the high-risk group. On the other hand, other
genes showed predominant expression in the low-risk
group. These findings suggest that these genes may play a
significant role in distinguishing different risk groups in stage
II/III CRC. Patients in the high-risk group had significantly
shorter DFS compared to the low-risk group in the training
meta-cohort (p < 0.0001), and similar trends were also
observed in the validation datasets such as GSE103479 (p =
0.00012), GSE92921 (p = 0.0031), and MSK-READ (p =
0.00043) (Figure 3D). The results of Kaplan–Meier survival
analysis in two cohorts, GSE29621 and GSE12945, reached a
marginal statistical significance (p = 0.083 and 0.085,
respectively), considering the smaller sample size. Meanwhile,
the discriminatory power of the FRG signature scores was similar
to the hazard obtained through pathological staging. In both
stage II and stage III subgroups, patients with high signature
scores had significantly shorter DFS (p < 0.0001) (Figure 3E). In
addition, we integrated patients into a pooled cohort containing
the training and validation cohorts to revalidate the prognostic
value. The pooled cohort still showed a significant difference in
DFS between the high- and low-risk groups (p < 0.0001), and this
difference was also observed within both stage II and stage III
subgroups (p < 0.0001) (Supplementary Figures S2A–C). Totally,
the FRG-based model provided the promising potential in
predicting the recurrence risk of stage II/III CRC.

The comparisons with other features and
collected signatures

Apart from selecting the most suitable model combination,
we also compared the C-index of the signature with clinical
characteristics and other molecular features in all the datasets
included in our study. The clinical characteristics included
demographic information, such as age, race, and gender, as
well as tumor histology data such as AJCC stage, pT, pN,
grade, tumor size, and chemotherapy response. Molecular
features were specific to several mutational alterations (KRAS
mutations, BRAF mutations, and microsatellite state) and
molecular classification (such as CMS classification). These
characteristics are commonly used in clinical evaluation of
patients (Ng et al., 2019; Timar and Kashofer, 2020;
Battistuzzi et al., 2021; Chen et al., 2021). The FRG signature
score basically had the highest C-index compared to these clinical
and molecular features in the training and validation cohorts,
demonstrating the survival prediction capability of our signature
(Figure 4A). Furthermore, our FRG signature achieved the
highest C-index among five published molecular signatures in
four datasets (Figure 4B). The multifaceted evaluation
demonstrated that the FRG signature performed well in
identifying stage II/III CRC patients with distinct clinical
outcomes.

Sensitivity analysis

Table 1 summarized the distribution of demographics,
tumor-related clinical characteristics, and molecular features
of the four cohorts in the training meta-cohort, which
included 1,000 patients identified as the high-risk group (N =
307) or low-risk group (N = 693) with the FRG signature. We
recognized that stage, pN status, KRAS mutation, and CMS
classification were significantly differentially distributed
between high- and low-risk groups. To further inspect the
robustness of the model, clinicopathological and molecular
features, together with the identified signature, were assessed
in univariate and multivariate models (Figures 5A, B).
Importantly, only pT stage, KRAS mutation, and signature
scores were independent recurrence prognostic factors in
multivariable models. Gender, AJCC stage, and pN stage did
not significantly improve prognosis prediction over pT stage and
KRAS mutation when the FRG signature was considered.
Sensitivity analysis showed that the FRG signature was still
robust within the subgroups of clinicopathological and
molecular annotation variables of interest, including pT4 and
KRAS mutation (Figure 5C).

Potential molecular processes associated
with FRG signature

To explore possible underlying molecular mechanisms for the
FRG signature, we utilized the xCell method to analyze the immune
infiltration landscape with our signature. A total of 14 immune
infiltrating cells were correlated with the FRG signature
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(Supplementary Figure S3A). Representative cells, T cells and B cells,
scored significantly higher in the low-risk group than in the high-
risk group, while the levels of endothelial cells and epithelial cells
were significantly higher in the high-risk group. To gain the
comprehensive biological mechanisms of the FRG signature, we

used the correlation coefficients between two major gene sets
(KEGG and REACTOME) and signatures to perform GSEA. The
extracellular matrix, cell adhesion processes, and elastic fiber
formation were found positively correlated with the signature
score. On the contrary, base excision repair, cell cycle, and RNA

FIGURE 4
Comparisons of clinical and molecular characteristics, and published signatures with the FRG signature. (A) C-index comparisons between clinical
andmolecular variables and signature in the trainingmeta-cohort and validation datasets. (B)C-index comparisons between signature and five published
signatures. * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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processes were found negatively correlated with the signature
(Supplementary Figure S3B). In addition, the expression of key
ferroptosis-related genes was also compared. We found DHFR and
CYB5R1 were highly expressed in low- and high-risk groups,
respectively (Supplementary Figure S3C).

Establishment of predictive nomogram and
decision tree

To provide potential clinical tool for recurrence prediction, we
attempted to establish a nomogram together with the clinical and
molecular features, and our signature. Age, gender, and stage status
are considered primary characteristics that are routinely obtained in
clinical practice. In addition, the results of a multivariate Cox
regression analysis demonstrated that the FRG signature, pT, and
KRAS mutation remained statistically significant even after
adjusting for other factors. As a result, these specific
characteristics were utilized in the development of a nomogram
model (Figure 5D). In the calibration analysis of the nomogram, the
prediction lines for 1-, 3-, and 5-year survival probability were
closely aligned with the ideal reference line, indicating the favorable
performance of the nomogram (Figure 5E). The DCA showed that
the predictive model with the FRG signature yielded a higher net
benefit compared to traditional prognostic factors enrolled in the
nomogram (Figure 5F). In order to refine risk stratification, a
recursive partitioning analysis was conducted on the
1,000 patients with the known tumor stage and FRG signature,
resulting in a classifier decision tree (Figure 5G). The corresponding
complexity parameter (CP) value with a minimum CV error at the
first level was used to prune the decision tree (Supplementary Figure
S4). In this analysis, the stage and FRG signature were identified as
key determinants. Specifically, patients with stage II and a low FRG
signature were categorized as the new low-risk group, while those
with stage III and a high FRG signature were labeled as the new high-
risk group. Patients who failed to align with these specific
classifications were assigned to the intermediate-risk
group. Overall, this approach helped to optimize risk
stratification for each patient based on their unique characteristics.

Discussion

The tumor AJCC stage is still the most widely used biomarker in
clinical practice to provide guidance for treatment (Yoshihara et al.,
2013). CRC shows apparent tumor heterogeneity in prognosis and
therapy response, even with the same stage (Srdjan et al., 2016). In
addition, the five-year postoperative recurrence rate for patients
with stage II/III CRC is approximately 10–30% (Osterman et al.,
2020; Xu et al., 2020; Benson et al., 2021). It is controversial to give
all of them identical adjuvant therapies, regardless of the tumor
genetic and molecular heterogeneity. Ferroptosis is a regulated form
of cell death that is driven by iron-dependent lipid peroxidation. It
plays a critical role in various physiological and pathological
processes (Cui et al., 2020). There is emerging evidence
suggesting that ferroptosis may be involved in cancer progression
and treatment response, which has led to the interest in exploring its
potential as a prognostic biomarker (Zuo et al., 2022). Accordingly,
it is reasonable for us to use comprehensive FRG signature to
develop the prognosis model and recognize high-risk
subpopulations.

Several ferroptosis signatures for CRC have been developed,
demonstrating the prognostic significance. However, these
signatures primarily rely on Lasso and multivariable Cox
regression analyses, without considering the combination of

TABLE 1 Distribution of clinicopathological characteristics with low- and high-
risk groups in the identified signature.

Variables Level Low High p-
value

N 693 307

Age (Sd) 67.380 (12.934) 66.897 (12.906) 0.6036

Gender (%)

Female 318 (45.89) 138 (44.95) 0.8373

Male 375 (54.11) 169 (55.05)

Stage (%)

II 428 (61.76) 130 (42.35) <0.0001

III 265 (38.24) 177 (57.65)

pT (%)

1/2 22 (4.16) 5 (2.23) 0.232

3 431 (81.47) 179 (79.91)

4 76 (14.37) 40 (17.86)

pN (%)

0 320 (60.61) 99 (45.21) <0.0001

1 141 (26.70) 55 (25.11)

2/3 67 (12.69) 65 (29.68)

MSI status (%)

MSI 85 (17.31) 27 (11.84) 0.0765

MSS 406 (82.69) 201 (88.16)

CIMP (%)

High 90 (19.48) 34 (17.71) 0.6528

Low 117 (25.32) 55 (28.65)

Negative 255 (55.19) 103 (53.65)

KRAS mutation (%)

No 310 (68.43) 110 (55.84) 0.0027

Yes 143 (31.57) 87 (44.16)

BRAF mutation (%)

No 388 (88.58) 159 (88.83) 1

Yes 50 (11.42) 20 (11.17)

CMS label (%)

CMS1 113 (17.94) 42 (15.11) <0.0001

CMS2 297 (47.14) 84 (30.22)

CMS3 90 (14.29) 35 (12.59)

CMS4 130 (20.63) 117 (42.09)
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FIGURE 5
Interaction and combinations of the FRG signature with clinical and molecular features. Univariate Cox regression analysis (A) and multivariate Cox
regression analysis (B) of prognostic factors for DFS for the training meta-cohort. (C) Subgroup analysis of the identified signature in clinical and
molecular markers. (D) Prognostic nomogram predicting the probability of 1-, 3-, and 5-year DFS. (E) Calibration plot of the nomogram for 1-, 3-, and 5-
year DFS prediction. Model performance is shown by the plot, relative to the 45-degree line, which represents perfect prediction. (F) DCA curve of
the FRG signature and established risk factors in terms of DFS in the training cohort. The x-axis indicates the threshold probability, and the y-axis
represents the net benefit. (G) A decision tree classifies patients into low-risk, intermediate-risk, and high-risk according to the probability of recurrent
disease. * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.
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multiple algorithms to determine the optimal solution and
performing thorough evaluations of the models on the validation
set to assess their performance (Shao et al., 2021; Wang et al., 2022b;
Du et al., 2022; Feng et al., 2022). To address this limitation, it is
important to consider the combination of multiple algorithms and
perform thorough evaluations of the models on the validation sets to
assess their performance. This can help identifying the optimal
solution and improve the robustness and generalizability of the
prognostic signature. Machine learning algorithms have the
advantages in making accurate predictions based on bulk data
and using these predictions to guide future research efforts
(Greener et al., 2022). Therefore, we were able to maximize the
predictive accuracy of our model while also ensuring rigor and
reproducibility. Additionally, the use of multiple independent
validation datasets allowed us to evaluate the generalizability of
the model and its performance in diverse population groups.
However, while machine learning algorithms have shown great
potential in making accurate predictions, selecting the optimal
algorithm for model fitting can be challenging. Simply relying on
researcher preference may not yield the best results and can lead to
inefficiencies. One approach to address this issue is to use
standardized methods for algorithm selection and model fitting.
In our study, we took advantage of the strengths of machine learning
and curated 10 different algorithms commonly used in survival
analysis to generate an FRG signature for predicting stage II/III CRC
prognosis. Rather than relying on a single algorithm or researcher
preference, we utilized a combination of algorithms to create a
framework and highlighted the importance of careful validation in
this process. We calculated the C-index in multiple independent
validation datasets to identify the best-performing model for
predicting CRC recurrence.

In our study, we recognized 23 ferroptosis-related prognostic
genes determined by the combination of Lasso and plsRcox with the
highest average C-indices in validation datasets. The identified gene
signature includes several FRGs associated with different aspects of
cancer development. SAT1 plays a key role in immune regulation
and metabolic signaling pathways, and it has been closely associated
with chemoradiotherapy resistance and disease recurrence (Mou
et al., 2022). MAPK3, a component of the RAS/MAPK pathway, may
promote ferroptosis while potentially inhibiting antitumor
immunity (Sun et al., 2022). NR1D2 is a transcriptional repressor
that has been implicated in the epithelial–mesenchymal transition
(EMT), a process that is crucial for cancer metastasis (Tong et al.,
2020). Its knockdown could potentially slow down cancer
progression by inhibiting EMT. CAV1 is a protein that plays a
role in various cellular processes, including endocytosis and signal
transduction. It has been identified as a suppressor of ferroptosis, a
form of regulated cell death, and its high levels have been associated
with the poor prognosis in cancer patients. Therefore, targeting
CAV1 could potentially enhance the effect of ferroptosis and inhibit
cancer progression (Lu et al., 2022). PTPN18 stabilizes the MYC
protein level, leading to the activation of the MYC-CDK4 axis and
promoting CRC development (Li et al., 2021). YTHDC2 is a tumor
suppressor gene that is typically expressed at high levels in normal
tissues and at low levels in tumor tissues. It has been associated with
immune infiltrating levels, suggesting a role in the immune response
to cancer (Li et al., 2020b). PAQR3 has been shown to induce
apoptosis and inhibit proliferation and invasiveness of cancer cells

when its expression is restored (Yu et al., 2015). Therefore, strategies
to restore PAQR3 expression could potentially have therapeutic
benefits in cancer treatment. Overall, these findings highlight the
complex interplay between identified FRG genes and proteins in
cancer progression.

In addition to the AJCC stage, several current and emerging
clinically relevant biomarkers, such as BRAF mutations,
HER2 overexpression and microsatellite state, were utilized to
guide therapy in stage II/III CRCs (Sveen et al., 2020). To further
validate the performance of the model, we compared C-index
between the common clinical and molecular features (e.g., age,
gender, T, N, AJCC stage, TMB, microsatellite state, and TP53,
KRAS, or BRAF mutations) and our signature. Aging, male gender,
and late stages are considered risk factors of CRC (Baraibar et al.,
2023). TMB, KRAS, BRAF, and TP53 mutations were associated
with worse prognosis, while high microsatellite instability (MSI-H)
is a favorable prognostic biomarker and has been suggested as the
predictors of immunotherapy response (Ganesh et al., 2019;
Koncina et al., 2020). Our signature had high C-index levels in
our comparisons with these common features, and the AUC of the
1- or 3-year relapses survival was robust across all datasets.
Importantly, these markers of interest were found to be
significant for recurrence in the univariate test, and the signature
remained strongly predictive even after adjusting for them in the
multivariate model. Moreover, our model demonstrated consistent
predictive performance across subgroups with different clinical and
molecular characteristics, further highlighting the robustness of the
FRG signature as a prognostic tool. Collectively, these findings
demonstrated that our signature could be a promising biomarker
for predicting the high-risk recurrence population of stage II/III
CRC in clinical practice.

The remarkable potential of the FRG signature score lies in its
ability to precisely stratify patients into distinct high- and low-risk
subgroups. This consequential stratification provides tailored and
timely guidance regarding adjuvant therapy, specifically for stage II/
III CRC patients. The FRG signature emerges as an effective tool in
identifying stage II/III patients who are particularly susceptible to
recurrence. Patients classified as stage III with a high FRG signature
exhibited markedly decreased prognosis in comparison to those in
stage II with a low FRG signature, while the intermediate-risk group
comprising high-risk stage II and low-risk stage III patients shows
similar outcomes.

The relevant biological activities of the extracellular matrix and
cell adhesion and endothelial and epithelial cells were enriched in
the high-risk group. They have been implicated in fibrosis,
inflammation, thrombosis, cell division, and metastasis (Lin et al.,
2021; Matthews et al., 2022). Several tumor suppressor pathways
(e.g., base excision repair and cell cycle) were also enriched in the
low-risk group. Alterations in iron metabolism and oxidative stress,
key processes involved in ferroptosis, can be influenced by ECM
remodeling and cell adhesion. Changes in iron import, export, and
storage, as well as the presence of reactive oxygen species, can be
regulated by ECM-related signals and cell adhesion molecules,
thereby affecting the occurrence and progression of ferroptosis
(He et al., 2023). Among the FRGs that we have identified in the
signature, CAV1 plays a crucial role in the efficient deposition of
ECM by fibroblast-derived exosomes, ultimately promoting tumor
invasion. The activation of SIRT1 has a positive impact on the
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expression of the major ECM components and helps to regulate
ECM organization (Albacete-Albacete et al., 2020; Smith et al.,
2022). T cells and B cells were found highly infiltrated in the
low-risk group. T cells have emerged as powerful allies in the
fight against cancer, while B cells play a crucial role by
presenting tumor-associated antigens to T cells. Recent studies
have revealed that activated CD8+ T cells can enhance
ferroptosis-specific lipid peroxidation in tumor cells, and this
increased ferroptosis contributes to the antitumor efficacy of
immunotherapy (Wang et al., 2019). KLF2 in the FRG signature
is a transcription factor that has been demonstrated to play a crucial
role in regulating the quiescence and trafficking of T lymphocytes.
SATB1 directs lineage-specific transcriptional programs in the
thymus, thereby influencing the development of the primary
T-cell pool (Kakugawa et al., 2017; Wittner and Schuh, 2021). In
addition, B cells can produce antibodies that enhance antigen
presentation to T cells or directly target and kill tumor cells. This
dynamic cooperation between T cells and B cells has a positive
clinical impact (Waldman et al., 2020; Fridman et al., 2021). We
found DHFR and CYB5R1, critical genes in ferroptosis, were highly
expressed in low- and high-risk groups, respectively. Blockade of
DHFR, either genetically or pharmacologically, enhances the
effectiveness of GPX4 inhibition in triggering ferroptosis (Zheng
and Conrad, 2020). Ferroptosis can also be induced by incidental
electron transfer facilitated by POR/CYB5R1 oxidoreductase (Yan
et al., 2021). This suggests that therapeutic approaches targeting
ferroptosis induction may achieve favorable outcomes in the high-
risk group. Overall, the underlying molecular mechanism suggested
the biological plausibility and reliability in predicting the prognosis
of the signature.

The nomogram we finally built present excellent performance. The
capability of the FRG signature was validated with the calibration curve
and DCA. The DCA curve demonstrated that incorporating the FRG
signature yielded greater net benefit improvement compared to the
conventional prognostic evaluation system. The prediction lines of the
calibration curve for 1-, 3-, and 5-year survival probability were also
fitted with the ideal reference line. In decision tree analysis, the
intermediate-risk group regrouped stage II patients with a high
signature and stage III patients with a low signature, thus enhancing
the rationalization of risk groupings for stage II/III CRC patients. These
results reinforced the potential for the FRG signature to guide
personalized treatment decisions, improve outcomes for patients
with CRC, and exhibit usability in daily routine practice.

Some limitations must be underscored with the current study even
though the results of our investigation were profound. First, although a
total of 1,397 patients were included with both microarray and RNA-seq
platforms, they were all from retrospective cohorts. The signature should
be further validated in a prospective study. Second, our study concentrated
on the scope of ferroptosis-related mRNAs. Using the combination of
lncRNA andmRNAmight generate amore robust signature, which could
be explored in future research. Last, the nomogram has been developed
and validated in a computational model. However, it requires further
clinical trials to confirm its effectiveness in real-world clinical settings and
to evaluate its cost-effectiveness.

Identifying specific molecular targets involved in ferroptosis
opens up avenues for developing novel therapeutic interventions.
By targeting these genes or biological pathways in the FRG signature,
it may be possible to modulate or inhibit ferroptosis, leading to

improved treatment strategies for CRC. This could include
developing small-molecule inhibitors or therapeutic agents that
selectively target ferroptosis-related pathways. Moreover,
integrating these FRGs and pathways with other omics data, such
as proteomics and metabolomics, has the potential to uncover novel
biomarkers and therapeutic targets. By combining multiple layers of
molecular information, we can further gain insights into the
complex interplay between different biological processes and
identify key molecular players that can be targeted for
therapeutic intervention.

In conclusion, our analysis established a stable and powerful
ferroptosis-related signature based on consensus machine learning
algorithms by sequencing the data of genes. The performance of the
signature has been validated in multiple independent datasets and in
comparison with the common clinical and molecular features.
Furthermore, the model had great implications in the prognosis,
even in subgroup analyses and after adjusting for common clinical
and molecular markers. Finally, the developed nomogram, utilizing
the common features and the signature, can potentially be a valuable
tool to categorize high-risk patients. These findings indicate that the
FRG signature shows promise in aiding clinical decision-making
and facilitating personalized therapy for stage II/III CRC patients.
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Objective:Due to a lack of effective therapy, triple-negative breast cancer (TNBC)
is extremely poor prognosis. Metabolic reprogramming is an important hallmark in
tumorigenesis, cancer diagnosis, prognosis, and treatment. Categorizing
metabolic patterns in TNBC is critical to combat heterogeneity and targeted
therapeutics.

Methods: 115 TNBC patients from TCGA were combined into a virtual cohort and
verified by other verification sets, discovering differentially expressed genes
(DEGs). To identify reliable metabolic features, we applied the same
procedures to five independent datasets to verify the identified TNBC
subtypes, which differed in terms of prognosis, metabolic characteristics,
immune infiltration, clinical features, somatic mutation, and drug sensitivity.
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Results: In general, TNBC could be classified into two metabolically distinct
subtypes. C1 had high immune checkpoint genes expression and immune and
stromal scores, demonstrating sensitivity to the treatment of PD-1 inhibitors. On
the other hand, C2 displayed a high variation in metabolism pathways involved in
carbohydrate, lipid, and amino acid metabolism. More importantly, C2 was a lack of
immune signatures, with late pathological stage, low immune infiltration and poor
prognosis. Interestingly, C2 had a high mutation frequency in PIK3CA, KMT2D, and
KMT2C and displayed significant activation of the PI3K and angiogenesis pathways.
As a final output, we created a 100-gene classifier to reliably differentiate the TNBC
subtypes and AKR1B10 was a potential biomarker for C2 subtypes.

Conclusion: In conclusion, we identified two subtypes with distinct metabolic
phenotypes, provided novel insights into TNBC heterogeneity, and provided a
theoretical foundation for therapeutic strategies.

KEYWORDS

metabolic subtypes, triple-negative breast cancer, metabolic pathway, immune signature,
immunotherapy response, mutation landscape

1 Introduction

In 2020, breast cancer become the main cause of malignant
tumors and the fifth leading cause of death. Three million new
patients and 685,000 deaths (Sung et al., 2021). As a disease with
high heterogeneity, the treatment and prognosis of patients are
greatly different. With the definition of breast cancer molecular
subtypes being proposed, triple-negative breast cancer (TNBC) is
classified as a type of breast cancer. This type has no expression of
estrogen receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 (HER2) (also known as
ERBB2) (Goldhirsch et al., 2013; Waks and Winer, 2019).
TNBC accounts for 10%–20%, with being prone to recurrence
and metastasis. Due to the high early recurrence rate and limited
treatment, the prognosis is very poor (Denkert et al., 2017;
Garrido-Castro et al., 2019). Much effort has been devoted to
classifying TNBC into subtypes of several molecular with
different mutational characteristics and genomic changes
(Bareche et al., 2018; Garrido-Castro et al., 2019; Jiang et al.,
2021). Previous studies showed that cluster analysis identified
TNBC subtypes, which provided new ideas for the treatment of
TNBC (Lehmann et al., 2011; Jiang et al., 2019; Xiao et al., 2022).

Metabolic reprogramming, as an emerging hallmark, is a new
tumor biomarker that plays a major role in the occurrence,
progression, diagnosis, treatment, and prognosis (Martinez-
Outschoorn et al., 2017; Xia et al., 2021). Due to the
heterogeneous metabolic dependencies existing across different
tumor types and even the same tissue (Hensley et al., 2016; Kim
and DeBerardinis, 2019), we know little about the impact of tumor
metabolic reprogramming on TNBC. In addition to some previous
pan-cancer analysis (Rosario et al., 2018), the understanding of
TNBC metabolic heterogeneity is still insufficient. Thanks to
advancements in bioinformatics, we are now equipped to analyze
high-throughput genetic data to gain insights into diseases, such as
autoimmune disorders (Li et al., 2022; Li et al., 2023a; Li et al.,
2023b) or cancers (Cheng et al., 2023; Tu et al., 2023). Building on
this, our study delves into classifying Triple-Negative Breast Cancer
(TNBC) from a metabolic perspective, shedding light on its
underlying heterogeneity.

We used the screened metabolic genes to systematically check
the diverse metabolic signatures of TNBC and identify two distinct
metabolic subtypes. Differentially expressed genes (DEGs) were
revealed by comparing transcriptome levels of patients with
different subtypes. Subtyping TNBC Prognosis, metabolic
characteristics, immune infiltration, clinical features, in vivo cell
mutation characteristics, and drug sensitivity vary. Finally, a 100-
gene classifier was designed and preliminarily verified to determine
the classification of TNBC. This investigation may also provide
insightful information into tumor-immune cell interactions, which
retains tremendous potential for clinical therapeutic interventions in
TNBC patients.

2 Materials and methods

2.1 Patients and samples

BRCA gene expression profiles were downloaded from five
independent cohorts of patients, including TCGA-BRCA,
GSE25066, GSE21653, GSE103091and METABRIC. Only
samples from TNBC were reserved in all cohorts. Survival
analysis only considered overall survival (OS) and disease-free
survival (DFS). In the above five cohorts, METABRIC had no
patient prognostic information. The remaining histological data
were obtained from the TCGA-BRCA cohort, including copy
number variant data obtained via firehose, and mutation MAF
files obtained from the cBioPortal Pancancer Project. TCGA-
BRCA partial samples of the predicted neoantigen numbers
were obtained from published literature (Rooney et al., 2015).
The metabolic gene file used for clustering (Possemato et al., 2011),
the metabolism signatures (Rosario et al., 2018), the immune
pathway signatures (Bindea et al., 2013) and the oncogenetic
signature.txt (Sanchez-Vega et al., 2018) from different
published literature. The drug information is from the GDSC
database involving the drug’s R package “pRRophetic” for use
in predicting the drug’s IC50. The external datasets were used to
determine whether the defined subtypes are likely to respond to
immunotherapy (Roh et al., 2017).
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Limma package used for identifying DEGs (|log2FC| > 1 and p <
0.01). Genetic feature set files “c2.cp.kegg.v6.2.symbols.gmt” and
“h,all,v60.2.symbols” were obtained from the Molecular Signature
Database (MSigDB). Then, Clusterprofiler R package was used for
Gene Set Enrichment Analysis (GSEA) (Yu et al., 2012).

To identify Aldo-Keto reductase family 1 member B10
(AKR1B10), we collected peripheral blood samples from
30 TNBC patients and 30 healthy individuals as controls from
Tianjin Medical University Cancer Institute and Hospital
(Tianjin, China) in 2022 for RT-qPCR, and their paraffin-
embedded tissues for IHC. All patients were female patients who
were recently admitted and had not undergone radiotherapy,
chemotherapy, or surgery. Control group was determined to be
free from TNBC and other malignant tumors.

2.2 Identification of TNBC subtypes through
non-negative matrix factorization clustering

Because all data used in this study were derived from five
platforms, and some of the data were normalized, we combined the
data after normalizing each data using z-score to eliminate
potential batch effects. We performed consensus NMF
(Possemato et al., 2011) with 2-5 cluster numbers using TCGA
data expression profiles and calculated the covariance coefficients
for each decomposition. The MOVICS package (Lu et al., 2021)
was used for differential expression analysis of these two subtypes,
while the top 50 most significantly upregulated genes in each
subtype were used as biomarkers for the different subtypes (p <
0.05, FDR < 0.25). In addition, we constructed a template using
MOVICS.

2.3 Gene mutation analysis and single-
sample gene-set enrichment analysis
(ssGSEA)

Genomic variation analysis (GSVA) is a method genome
augmentation, which calculates the characteristics of certain
pathways or different populations based on expression spectra.
The differences of gene sets between samples were investigated
by GSVA R software package from relevant metabolic pathway
gene sets (Rosario et al., 2018). Then, the limma package (Liu et al.,
2019) was used to obtain the substitution gene scores, analyze the
differences, and screen for DEGs features.

To identify the extent to which genes are up or
downregulated within a single sample, ssGSEA is used for
quantifying the immune composition of tumors. Here, we
assessed the enrichment fraction of gene sets representing
biological processes as well as biological pathways in bulk
tumors or individual cancer cells by ssGSEA.

2.4 Detection of tumor microenvironment
characteristics

The ESTIMATE algorithm (Yoshihara et al., 2013) can be
applied to calculate the permeability and matrix content of

immune cells (immune fraction) and stromal content (stromal
fraction) of different subtypes, thus reflecting the
microenvironmental characteristics of tumors.
Microenvironmental Cell Population counter (MCPcounter)
(Becht et al., 2016) was used for evaluating the penetration
frequency of immune and non-immune cell populations in two
subtypes.

2.5 Evaluation of genomic changes, number
of new antigens, tumor mutation burden
(TMB) and copy number variant (CNV) in
different groups

The detection of co-occurrence and mutually exclusive
mutations mainly relied on the CoMEt algorithm. Next, we
predicted the different genotypes between different subtypes,
including the number of neoantigens, TMB, copy number
amplification, and the frequency of copy number deletions. We
also performed an online analysis using GISTIC2 (Cibulskis et al.,
2013) to obtain the number of amplifications and deletions for all
samples and to calculate arm- and focal level somatic copy-number
alterations (SCNAs) and G-scores in tumors with the input of
“SNP6” files.

2.6 Prediction of treatment for each
subgroup of immune checkpoint

MD-Anderson melanoma cohort treated with anti-CTLA-4 or
anti-PD-1 is considered to be used to predict immunotherapy
response (Roh et al., 2017). And then, we analyzed the sub map
from the Genomics of Drug Sensitivity in Cancer (GDSC) database
(Roh et al., 2017) and studied the sensitivity differences between the
C1 and C2 groups after multiple drug treatments.

2.7 IHC staining

IHC staining was used to slice the dewaxed tissue portion of
TNBC samples and cure with 3% hydrogen peroxide for a period of
time. Block endogenous peroxidase for 30 min, then solidify with
appropriate horseradish AKR1B10 antibody. The IHC fraction is
calculated by multiplying the dyeing intensity by the percentage of
cells. Definition of intensity: 0 (unstained), 1 (soft), 2 (medium), 3
(strong). Definition of percentage of cells: 1 (25%), 2 (26%–50%), 3
(51%–75%), and 4 (>75%). More than 3 was defined as positive,
while less than or equal to 3 as negative.

2.8 RNA isolation and RT-qPCR

Triazole solution (AC0101-B; SparkJade, China) was used for
extracting RNA from blood and tissues samples. 2×HQ SYBR qPCR
Mix (ZF501; ZOMANBIO; Beijing, China) was used for PCR
reaction. Primer sequences were listed in Supplementary Table
S1. The levels of AKR1B10 expression were calculated by the
method of 2−ΔΔCq.
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FIGURE 1
Subtyping of TNBC tumors according to non-negative matrix factorization (NMF) in five datasets. (A) Principal component analysis (PCA) of
integrated expression profiles based on five TNBC datasets. (B) After comprehensive consideration, the optimal clustering number (k value) was 2. (C) PCA
dimension reduction analysis was used to support the classification into two TNBC-subtypes. (D) Overall survival (OS) analysis of two subtypes in TCGA
datasets. (E–G) Overall survival (OS) analysis of validation datasets (GSE25066, GSE21653, and GSE103091, excluding METABRIC with a lack of
patient OS). The results of OS revealed that C1 had significantly better than C2 in TCGA datasets and validation datasets (GSE25066, GSE21653, and
GSE103091) (p = 0.014, p = 0.014, and p = 0.017, respectively).
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FIGURE 2
TNBCmetabolic subtypes and tumor progression-related features. (A)Heatmap ofmetabolism-related features in the two subtypes. C1 and C2 had
specific metabolic characteristics, with 2 metabolism-related pathways upregulated in C1 and 17 metabolism-related pathways significantly upregulated
in C2. (B) Box plots of tumor progression-related signaling pathways in the two subtypes. After quantifying 11 carcinogenic pathways, the results showed
differences between the them onmultiple classic carcinogenic pathways. (C) Box line plots of the immune fraction andmatrix fraction of ESTIMATE
in the two subtypes (*p < 0.05, **p < 0.01, ***p < 0.001).
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2.9 Statistical analysis

R software (version 4.0.2) was used to process all data.
Contingency table (χ2) variables used the chi-square test and
Fisher’s precision probability test for statistical significance.
Kaplan-Meier method was used for survival analysis and
compared the results by the log-rank test. Z test was used to
assess whether there was a significant difference between the two
groups. Univariate Cox proportional hazards regression models
were used to assess the risk ratio for univariate analysis. A two-
tailed p-value < 0.05 was considered statistically significant.

3 Results

3.1 NMF distinguishes two subtypes of TNBC

Based on TCGA database and NMF algorithm analysis, we divided
TNBC into two subtypes with differentmetabolic characteristics. In this
study, 115 cases of TCGA-TNBC patients were screened.
Supplementary Table S2 showed clinical characteristics of TNBC
patients. Before analyzing the TNBC NMF algorithm, we used the
ComBat algorithm to eliminate batch processing effects in the TNBC
queue. And after deleting the batch processing effect, draw a key
element analysis diagram (Figure 1A). Previously, a total of
2,752 reported metabolic related genes (Possemato et al., 2011) were
screened and downloaded as the basis for analyzing metabolomics in
our study (Supplementary Table S3).

To identify subtypes in TNBC, Cox regression was used. A total
of 637 prognostic genes were obtained (Supplementary Table S4).
After a further adjusted p-value (p < 0.05), 277 candidate genes were
identified (Supplementary Table S5). We then used the NMF
algorithm to cluster the 277 candidate genes and drew the NMF
with two to five sets (Figure 1B). After comprehensive consideration,
the optimal clustering number (k value) was 2, defining two subtypes
C1 (n = 80) and C2 (n = 35). To verify the consistency between
subtype designations and two-dimensional distribution patterns, we
reduced the PCA dimension (Figure 1C). Subsequently, the same
conclusion was validated in the validation set (GSE25066,
GSE21653, and GSE103091, excluding METABRIC with a lack of
patient OS).

Finally, two TNBCmolecular subtypes were established.We also
used the survival information in the four queues to analyze the
subtype survival of TNBC subsets. The OS of C1 was verified better
than that of C2 in TCGA-TNBC patients (p = 0.014, Figure 1D) and
other datasets patients (GSE25066 and GSE103091) (p = 0.014 and
p = 0.017, respectively) (Figures 1E, G). No significant difference was
observed in datasets (GSE21653) (p = 0.15) (Figure 1F).

3.2 Association of TNBC subtypes with
metabolism-related signatures

In this study, we analyzed whether different TNBC subtypes
have their own characteristics in distinct metabolic pathways.
Firstly, we used the GSVA R package to score metabolic
pathways (Rosario et al., 2018) (Supplementary Table S6). Limma
difference test cross group was performed to confirm subtype-

specific differential metabolic pathways, and heatmaps were
constructed for visualization (Supplementary Figure S1).

Furthermore, the DEGs between two groups were detected by
GSVA enrichment again, and it was found that C1 and C2 had
specific metabolic characteristics (Figure 2A). There were
17 metabolism-related pathways in C2 that were significantly
upregulated, mainly involving pentose and glucuronate
interconversion, steroid hormone biosynthesis, tyrosine
metabolism, oxidative phosphorylation, ketone biosynthesis and
metabolism. Similar outcomes that 17 metabolism-related
pathways were activated in C2 were observed in the validation
datasets (GSE25066, GSE21653, GSE103091 and METABRIC)
(Supplementary Figures S2, S3). To determine the different
activities of metabolic pathways, we represented the two subtypes
in the TCGA-TNBC cohorts and validation cohorts and revealed
that C2 contained the highest activation of metabolic pathways in all
cohorts (Supplementary Figure S4).

In analyze the differences between the two subtypes in
carcinogenesis-related pathways, we counted the GSVA
enrichment points and plotted box-line plots. Eleven
carcinogenesis-related pathways were selected and quantified. The
results showed that different subgroups were closely related to the
activation of different carcinogenic signaling pathways, which
mainly involved cell cycle, PI3K, RTK-RAS, and angiogenesis
(Figure 2B). C2 displayed significant activation of the PI3K and
angiogenesis pathways. C1 had a stronger cell cycle, HIPPO, RTK-
RAS andWNT signature than C2. These differences in carcinogenic
pathway activity may affect their prognosis. After evaluating
whether the subtype was related to the tumor microenvironment,
it was found that the immune score of C1 was higher than that of C2
(p = 0.046), and the stromal score had no significant difference
(Figure 2C).

3.3 Association of TNBC subtypes with
immune infiltration

To evaluate the immune status of two subtypes, the MCP
counter and ssGSEA algorithm were used to estimate the
abundance of immune cells (Figure 3A). The results showed
significant differences between different immune cell groups
between the two subtypes (Figures 3B, C). Especially, the
immune value of C2 in most immune cells was obvious lower
than that of C1, except for neutrophils, fibroblasts and
Th17 cells. According to this study, C1 was rich in more
immune cells and had the highest immune score, which
indicated that differences in the distribution of different immune
cells may be the reason for the poorer prognosis of C2 than C1.

3.4 Association of TNBC subtypes with
clinical features

To explore the relationship between these subtypes and clinical
features, we analyzed the clinicopathological parameters between
the two subtypes and constructed a clinical information heatmap
of subtypes (Figure 3A). The results revealed that larger tumor
size (p = 0.007) and advanced pathologic stage (TNM III/IV stage)
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(p = 0.001) were related to the C2 subtype (Supplementary Table S7).
We also constructed a clinicopathological variables heatmap of
subtypes in the validation cohorts and presented detailed data

(Supplementary Figure S2; Supplementary Table S2). It is well
known that larger tumor size and advanced TNM stage represent
shorter survival in TNBC (Johansson et al., 2021).

FIGURE 3
Immune characteristics of the two subtypes in the TCGA datasets. (A) Expression heatmap of immune cell and stromal cell populations in two TNBC
subtypes. (B) Eight immune checkpoint genes in two TNBC subtypes. (C) Expression of different immune cells and stromal cells in C1 and C2 subtypes
(*p < 0.05, **p < 0.01).
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FIGURE 4
Relationship between TNBC subtypes and tumor mutation-related features. (A)Driver-type oncogenic mutations according to TCGA-TNBC typing
with intragroup aggregation waterfall plots (see detailed statistical analysis in Supplementary Table S8). (B) Violin plots of gene mutations. There was a
trend to show that the TMB of C1 was higher than that of C2, however there was no difference (p = 0.16). (C) Violin plots of predicted neoantigens. The
quantity between two subtypes were significantly different (p=0.0033). (D,E) Violin plots of copy number amplification and copy number deletion in
TNBC subtypes. Patients within C1 only showed higher amplification than C2 (p = 0.043).
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FIGURE 5
The landscape of somatic copy-number alterations in the two subtypes. (A) After adjusting p < 0.05, the genes with the most significant mutation
frequencies between C1 and C2 groups were displayed. Specifically, C2 had a significantly higher mutation frequency of PIK3CA, KMT2D, KMT2C, and so
on (see detailed statistical analysis in Supplementary Table S9). (B,C) Cytoband indicated differences in genomic copy-numbers between the two
subtypes, with red representing amplification and blue representing deletion.
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3.5 Association of TNBC subtypes with
mutations and created heatmaps for
visualization

Breast cancer has been closely related to many genomic
mutations in the body (Kim et al., 2021). To investigate the
difference of somatic mutations frequency between TNBC
subtypes, we applied specific driver mutations for breast cancer
(Bailey et al., 2018) to estimate gene mutations and draw waterfall
map. High mutation frequencies of TP53, BRCA1, PIK3CA, PTEN,
FBXW7, NF1, RB1, KMT2C, and PTPRD in both TNBC subtypes
were observed (Figure 4A; Supplementary Table S8). We found that
C2 exhibited different mutation characteristics from C1. Specifically,

C2 has a higher mutation frequency, such as PIK3CA, KMT2D,
KMT2C, and so on (Figure 5A; Supplementary Table S9). We
calculated the TMB for each metabolic subtype (Figure 4B).
Although there was no difference (p = 0.16), a trend showed that
the TMB of C1 was higher than that of C2.We also analyzed the total
number of mutations and expected neoantigens (Figure 4C) and
observed a significant difference between them (p = 0.0033).
Subsequently, the frequency of amplification (Figure 4D) and
deletion (Figure 4E) was showed and found that patients within
C1 only showed higher amplification than C2 (p = 0.043).

Finally, we mapped a cell column to change the number of
copies of each group by performing online GISTIC2.0 analysis, in
which red represented gains and blue represented losses (Figures 5B,

FIGURE 6
Immunotherapy and targeted therapy sensitivity of different subtypes. (A) The box plots of sensitivity to chemotherapy drugs in the two subtypes.
The results indicated that C2 may not be sensitive to chemotherapy (All p < 0.001). (B) C1may be more effective to PD1 inhibitors (Bonferroni correction,
p = 0.02), and C2 may be more effective to CTLA4 inhibitors.
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FIGURE 7
Performance validation of predictive metabolic-genes, and expression signature and preliminary validation of AKR1B10. (A) A 100-gene classifier
was composed of the top 50 genes with significant differences in each TNBC subtype, and visualized by a heatmap. (B)Constructing a 100 gene classifier
for identifying TNBC classification. (C) Expression of AKR1B10 was significantly increased in peripheral blood of TNBC patients (***p < 0.0001). (D) IHC
score of AKR1B10. (E,F) The difference of tumor size and number of lymph nodemetastasis between AKR1B10 positive group and AKR1B10 negative
group (**p < 0.005). (G) AKR1B10 was significantly overexpressed in part of TNBC tissues. From left to right, they were HE staining, negative and positive
respectively (×200 in the upper section, ×400 in the lower section).
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C). Both C1 and C2 observed copy number alterations in
chromosome regions, including amplification at 11p13 and
deletion at 8p23.2, 9p21.3, 13q14.2, and 19p13.3. In contrast to
C1, C2 has significant amplification at 1q23.3 and 7p11.2. These
differences could also explain that C2 has a better prognosis than C1.
Therefore, changes in copy quantity might be the main mechanism
behind the differences in metabolism and prognosis between the two
group.

3.6 Specific sensitivity of TNBC subtypes for
potential therapy

The difference in sensitivity to chemotherapeutic drugs and
targeted drugs between two groups was analyzed by using the GDSC
drug sensitivity database. The top 12 drugs with differential
responses were plotted and listed (Figure 6A). After estimating
the IC50 value, we found that C2 may be less sensitive to
chemotherapy, including bleomycin, vinorelbine and doxorubicin
(all p < 0.001).

The different immune infiltration patterns among TNBC
subtypes suggested that further research on the response of
immunotherapy was needed. To this aim, we matched the
expression spectra of two subspecies to determine the similarity
of the TCGA reaction spectra (Figure 6B). The results indicate that
C1 may be more sensitive to PD1 treatment (p = 0.02), and C2 may
have a better therapeutic effect on anti-CTLA4.

3.7 Performance validation of one hundred-
gene classifier, and expression signature of
Aldo-Keto reductase family 1 member B10
(AKR1B10)

And then, we extracted the top 50 genes of each metabolic
specificity as biomarkers and constructed clinical models, and
plotted correlation heatmaps using MOVICS (Bailey et al., 2018)
package analysis. The classifier based on 100 genes was generated
and visualized by heatmap (Figure 7A; Supplementary Table S10). In
order to predict the identification of metabolic subtypes in each
sample, we conducted consistency testing on the results of the two
subtypes using the NTP algorithm and indicated that the
characteristics of these genes can be replicated to determine the
TNBC type (Figure 7B).

To better distinguish the two subtypes, we assume that
AKR1B10 was an effective biomarker for C2. RT-qPCR and IHC
staining were used to preliminarily verify this hypothesis.
AKR1B10 were overexpressed in peripheral blood of TNBC
patients than in healthy control (Figure 7C). IHC showed that
AKR1B10 were positive in 11 cases of TNBC, with a positive rate
of 36.7% (Figures 7D, G). The average tumor size of
AKR1B10 positive group was 2.2 cm from 0.8 to 3.5 cm, which
was higher than that of negative group (Figure 7E). In addition, the
number of lymph node metastasis in AKR1B10 positive group were
more than that in negative group (Figure 7F). Large tumor andmany
lymph node metastases often indicate poor prognosis of TNBC,
which was consistent with C2 subtype. These results were listed in
Supplementary Table S11.

4 Discussion

It is well known that the overall prognosis of TNBC is poor
(Bianchini et al., 2016). With the increased understanding of
metabolic reprogramming in breast cancer, traditional molecular
characterization is no longer sufficient to fully elucidate tumor
heterogeneity. As an important hallmark of tumors (Pavlova and
Thompson, 2016; Pavlova et al., 2022), metabolic reprogramming
may be beneficial to targeted therapy of TNBC. Recently, many
TNBC classifications methods have been proposed, but a consensus
on molecular taxonomy has not been reached. Thus, deeply
exploring the metabolic characteristics and heterogeneity of
TNBC is the key to providing provide precise treatment.

In this study, TNBC could be divided into two different
metabolic related subtypes. Each subtype had different metabolic
characteristics, prognoses, clinical features, tumor
microenvironment characteristics, and so an. For C1, it was rich
in immune signals and hardly involved in metabolic signals, gene
expression was relatively high at immune monitoring points and
scoring points. The increase of immunity and matrix indicated that
these patients were allergic to drug allergy containing PD-1
inhibitor. In contrast, the C2 subtype displayed high variation in
metabolism pathways involved in carbohydrate, lipid, and amino
acid metabolism and a lack of immune signatures, with late
pathological stage, weakened immunity and poor prognosis.

Our study indicated that C1 had abundant immune signatures
and that C2 had overactivated metabolic related pathways.
Considering the above results, we named C1 as the immune-
related subtype and C2 as the metabolically active subtype.
Subsequently, Patients in C2 had larger tumor size and later
pathological stages, which implied that their overall prognosis
were poor. The difference in metabolic characteristics and
immune infiltration might be the important reason for the
different prognoses of them. In this study, 17 associated
metabolic pathways were significantly upregulated in C2,
including pentose and glucuronate interconversions, oxidative
phosphorylation, amino acid metabolism, steroid hormone and
so on.

Previous studies have shown that glucose, amino acids and free
fatty acids are important energy sources for tumor growth (Pavlova
and Thompson, 2016), and metabolic disorders have a crucial
impact on cancer (Micalizzi et al., 2021). Oxidative
phosphorylation can promote distant metastasis and even induce
chemotherapy resistance in TNBC (Davis et al., 2020; Evans et al.,
2021). Tyrosine phosphorylation is an important mechanism for
regulating signal transduction pathways and is also a common
feature in oncogenic activation in cancer (Ostman et al., 2006;
Taddei et al., 2020). Hence, the relationship between TNBC
molecular subtypes may reveal the determining factors for TNBC
metabolic differentiation classification.

Recently, more and more studies have confirmed that the tumor
microenvironment (TME) plays an important role in the formation
of breast cancer (Reis et al., 2018). Neoantigens can regulate the
interaction between breast tumor cells and immune cells. This effect
is presented by antigen-presenting cells (APCs) (Harbeck et al.,
2019; Lhuillier et al., 2021). Although immune checkpoint inhibitors
have achieved great advances in TNBC treatment, it is necessary to
clearly distinguish which patients can benefit the most from this
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treatment (Li et al., 2021). Therefore, we compared the response to
immune checkpoints of two TNBC-subtypes to obtain the potential
significance of immunotherapy. Our results showed that C1 was
significantly superior to C2 in both immune cell infiltration and
neoantigens, which indicated that C1 has a higher response to
treatment targeting immune checkpoints. Due to the inconsistent
in carcinogenic signaling pathways, C1 may benefit from RAS
inhibitors and WNT inhibitors in the future, while C2 may
benefit from targeting PI3K and anti-angiogenesis. A series of
studies have shown that targeting RAS, WNT, and
PIK3 signaling pathways and angiogenesis are potential strategies
to enhance the efficacy of cancer therapy (Verret et al., 2019; Xu
et al., 2020).

In order to identify the molecular driving factors between two
groups, we noticed that C2 had significant mutation frequencies in
PIK3CA, KMT2D, KMT2C, and so on. Notably, C2 was
accompanied by special chromosome copy number alterations,
such as amplification at 7p11.2 and deletion at 9p21.3 and
13q14.2. Amplification at chromosome 7p11.2 (EGFR) can
promote the invasion and metastasis of breast tumors (Chen
et al., 2022). EGFR was overexpressed in metaplastic breast
cancer, and EGFR inhibitor was potential therapeutic agent for
metaplastic breast cancer with 7p11.2 amplification (Reis-Filho
et al., 2006). Patients with 9p21.3 deletion and concomitant
PIK3CA mutation were prone to recurrence and distant
metastasis (Bartels et al., 2018). The mutation frequency of
PIK3CA is only second to TP53 (Pascual and Turner, 2019). The
same characteristics were obtained in our study.

Multiple studies have clarified that PI3K inhibitors are beneficial
in enhancing the sensitivity of PIK3CA mutant TNBC to CDK4/
6 inhibitors (Asghar et al., 2017), and have a good effect on HR+
breast cancer carrying PIK3CA mutations (Di Leo et al., 2018),
which indicates the potential of combined targeted therapy. In this
study, C2 was not sensitive to a variety of chemotherapies and
immunotherapies, with high PI3K mutations and amplification at
7p11.2 (EGFR), suggesting that these TNBC patients may receive
good treatment outcomes after receiving PI3K inhibitors or EGFR
inhibitors. Previous studies have shown that When PIK3CA
mutates, the glutamate pyruvate transaminase 2 in colorectal
cancer (CRC) cells is significantly upregulated, thereby affecting
the reprogramming of glutamine metabolism (Hao et al., 2016). The
metabolites of glutamine can be used not only to produce ATP, but
also to synthesize certain macromolecules to promote tumor
formation. For example, the ATP concentration and ATP/ADP
ratio in PIK3CA mutant cells were higher. Mutations in PIK3CA
in adipose tissue can lead cells to acquire many characteristic
changes of cancer cells, such as increased glucose uptake,
enhanced Warburg effect activity, and increased synthesis of
oncogenic macromolecules (Ladraa et al., 2022). KMT2D
mutations can significantly alter the biosynthesis of various
metabolic products within cells, such as aerobic glycolysis and β-
Oxidation, degradation, and uptake of lipids (Koutsioumpa et al.,
2019). The above results indicate that these gene mutations can
promote the differentiation of C2 subtypes by affecting metabolic
reprogramming. Meanwhile, once these genes undergo mutations,
they will further promote tumor progression by altering the activity
of glucose and lipid metabolism in C2 patients. This may be the root
cause of poor prognosis in C2 patients.

Our study had some limitations. First, bioinformatic analysis of
metabolic and genomic alterations failed to pinpoint the precise
cause of the difference in prognosis between the two subtypes.
Second, the two subtypes classified according to immune and
metabolic conditions need to be functionally validated further.
Furthermore, the sensitivity of different subtypes of drugs must
also be validated through clinical trials to explore the feasibility of
translating these results into clinical practice. Finally, although it was
preliminarily verified to identify the subtypes of TNBC, data from
multiple centers and large samples will be needed to support this
conclusion in the future.

5 Conclusion

In summary, this study revealed differences in TNBC
metabolism and identified two subtypes. Subtype C1 was
abundant in immune signatures but barely active in metabolic
signatures, with higher gene expression at immune checkpoints
and higher immune and matrix scores. This indicated that the
C1 was allergic to PD-1 inhibitors. Subtype C2, on the other
hand, had a high variation in metabolic pathways and a lack of
immune signatures, as well as late pathological stage, low immune
infiltration and poor prognosis. By dividing TNBC into two clusters,
this study elucidated the reasons for the differences in prognosis of
TNBC from the perspectives of metabolism and immune response.
For the first time, we proved that C1 may be more sensitive to
immunosuppressive drugs. RAS inhibitors and WNT inhibitors,
whereas C2 may benefit from targeting PI3K and anti-angiogenesis.
Furthermore, AKR1B10 based on the one hundred-gene classifier
was a potential biomarker for identifying C2 subtypes. This provides
a theoretical basis for further rationalizing TNBC subtypes to
provide precise therapeutic strategies.
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SUPPLEMENTARY FIGURE S1
Heatmap of metabolic related characteristics in TCGA cohorts. Univariate
Cox regression was used to identify metabolic related genes related to OS
and visualized with heatmap.

SUPPLEMENTARY FIGURE S2
TNBC metabolic subtypes and tumor progression-related features in
validation datasets. Heatmap of all metabolism-related genes were
structured between two subtypes in the GSE25066 cohorts (A),
GSE21653 cohorts (B), GSE103091 cohorts (C) and METABRIC cohorts (D) to
verify the initial classification in TCGA cohorts. The results showed that the
classification was consistent.

SUPPLEMENTARY FIGURE S3
Association between 17 metabolism-related signatures and the TNBC
subtypes in validation datasets. There were 17metabolism-related pathways
in C2 that were significantly upregulated in GSE25066 cohorts (A),
GSE21653 cohorts (B), GSE103091 cohorts (C) and METABRIC cohorts (D).

SUPPLEMENTARY FIGURE S4
Validation of the differential activity of metabolic pathways between the
two subtypes. The nearest template prediction (NTP) indicated two
subtypes in TCGA-TNBC cohorts and validation cohorts, and
demonstrated that C2 subtypes from five cohorts had stronger metabolic
activity. Representing the two subtypes in the TCGA-TNBC cohorts (A),
GSE25066 cohorts (B), GSE21653 cohorts (C), GSE103091 cohorts (D)
and METABRIC cohorts (E).
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Background: The extremely malignant tumour known as pancreatic cancer (PC)
lacks efficient prognostic markers and treatment strategies. The microbiome is
crucial to how cancer develops and responds to treatment. Our study was
conducted in order to better understand how PC patients’ microbiomes
influence their outcome, tumour microenvironment, and responsiveness to
immunotherapy.

Methods: We integrated transcriptome and microbiome data of PC and used
univariable Cox regression and Kaplan–Meier method for screening the
prognostic microbes. Then intratumor microbiome-derived subtypes were
identified using consensus clustering. We utilized LASSO and Cox regression to
build the microbe-related model for predicting the prognosis of PC, and utilized
eight algorithms to assess the immune microenvironment feature. The
OncoPredict package was utilized to predict drug treatment response. We
utilized qRT-PCR to verify gene expression and single-cell analysis to reveal
the composition of PC tumour microenvironment.

Results:We obtained a total of 26 prognostic genera in PC. And PC samples were
divided into two microbiome-related subtypes: Mcluster A and B. Compared with
Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage
and pathological grade. Immune analysis revealed that neutrophils, regulatory
T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts,
myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated
levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A
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were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-
fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin.
Moreover, we built a microbe-derived model to assess the outcome. The ROC
curves showed that the microbe-related model has good predictive performance.
The expression of LAMA3 and LIPH was markedly increased within pancreatic
tumour tissues and was linked to advanced stage and poor prognosis. Single-cell
analysis indicated that besides cancer cells, the tumour microenvironment of PC
was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH
and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils.

Conclusion: The intratumor microbiome-derived subtypes and signature in PC
were first established, and our study provided novel perspectives on PC prognostic
indicators and treatment options.

KEYWORDS

microbiome, pancreatic cancer, prognosis, tumour microenvironment, immunotherapy,
single-cell analysis

1 Introduction

An extremely dangerous tumour of the digestive tract,
pancreatic cancer (PC) has a sneaky onset and quick progression.
Clinical practise for PC lacks efficient therapeutic medications, and
the prognosis is extremely poor (Chi et al., 2022a; Zhang B. et al.,
2023). With over 459,000 new cases and 432,000 fatalities per year,
epidemiological studies have shown that PC is the seventh greatest
cause of cancer-related deaths globally (Ryan et al., 2014; Bray et al.,
2018). Since most PCs are not discovered until they are advanced,
the probability of surviving more than 5 years is low, at only 9%
(Mizrahi et al., 2020; Siegel et al., 2020). Surgery combined with
adjuvant chemotherapy is currently the standard treatment for PC.
However, due to the complexity and heterogeneity of the tumour
microenvironment of PC, it often leads to the generation of
treatment resistance and the differential response of different
patients to treatment. Therefore, the development of indicators
for early detection as well as risk assessment is an important
clinical problem to be solved urgently. So far, many studies have
developed biomarkers for early diagnosis and risk assessment of PC
from the perspectives of subcellular organelle function, tumour
immune response, and gene modification (Romero et al., 2020;
Xiao et al., 2022; Zhuo et al., 2022). Nevertheless, clinically effective
early diagnostic markers, therapeutic targets, and risk assessment
schemes in PC are still lacking.

Recent studies have shown that microbes have been considered
to influence the occurrence, development, metastasis, as well as
therapy response of different tumours, especially closely related to
tumour microenvironment and immune response (Sepich-Poore
et al., 2021). Many basic researches revealed that intratumor
microbiome could affect the progression, metastases, prognosis,
as well as immunotherapy of cancer patients by regulating
oxidative stress, Toll-like receptors-mediated immune response,
and tumour cell metabolism, involving mTOR, STAT3, Wnt,
MAPK and other signaling pathways (Pushalkar et al., 2018;
Wang et al., 2019; Wei et al., 2019). The diversity and
composition of microbiome play crucial functions in the
prognosis of PC, and can regulate the tumour immune
microenvironment (Riquelme et al., 2019; Kartal et al., 2022).
Mao et al. (Mao et al., 2022) have constructed the intratumor

microbiome signature for breast cancer to predict the outcome.
However, the correlation of intratumor microbiome with the
clinicopathological features, prognosis, tumour microenvironment
heterogeneity, and therapeutic response in PC is still not reported.

Our study first constructed intratumor microbiome-derived
subtypes for PC by integrating microbiome and transcriptome
data, and comprehensively analyzed the important role of
microbiome in clinicopathological characteristics, prognosis,
tumour immune microenvironment, and immunotherapy
response of PC patients. Meanwhile, we also identified the
microbiome-related differentially expressed genes and utilized
them to build a prognostic model. Subsequently, we verified the
LIPH and LAMA3 mRNA expression by real-time quantitative PCR
(qRT-PCR). Finally, we used single-cell analysis to further reveal the
cell subpopulation composition in pancreatic tumour
microenvironment, as well as the relative expression of LIPH and
LAMA3 in different cell subpopulations. This study can provide
innovative ideas for the outcome assessment as well as therapy
of PC.

2 Materials and methods

2.1 Data acquisition

Transcriptome data (containing 178 PC tissues and
4 paracancerous tissues) of PC, along with clinical data
(containing 185 PC samples), were downloaded via The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). Microbiome
data of PC were obtained via the cBioPortal platform (https://www.
cbioportal.org/) (Cerami et al., 2012; Mao et al., 2022). Gene
expression data and survival information for GSE62452
(containing 69 PC tissues), GSE28735 (containing 45 PC tissues
and paracancerous tissues), and GSE57495 (containing 69 PC
tissues and paracancerous tissues) datasets were obtained via the
Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/geo/). Using “sva” R package to eliminate batch effects
between different datasets (Chi et al., 2023a). Microbiomes
associated with PC prognosis were identified by univariable Cox
regression analysis as well as Kaplan-Meier (KM) method (Chi et al.,
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2023b). These microbes associated with PC prognosis were used in
subsequent analyses.

2.2 Clustering analysis

Consensus cluster was carried out utilizing
“ConsensusClusterPlus” R package for PC samples based on the
relative abundance of prognosis-related microbes (Zhang X. et al.,
2023). The ideal clustering number was established based on the
cumulative distribution function (CDF) curve as well as variations of
CDF curve area. Using principal component analysis (PCA) as well
as t-distributed stochastic neighbor embedding (t-SNE) analyses to
demonstrate the accuracy of our clustering findings. Then the
prognosis and clinical pathological features between different
subtypes were further compared. Additionally, the differences in
the relative abundance of prognosis-associated microbes among
different subtypes were compared.

2.3 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was performed using the
gene sets “c2.cp.kegg.v7.5.1.symbols.gmt” as well as
“c5.go.v7.5.1.symbols.gmt” to compare the putative mechanisms
behind the variations between the different intratumor
microbiome subtypes (Subramanian et al., 2005). GSEA
enrichment analysis was conducted using the R packages
“limma”, “org.Hs.e.g.,.db”, “clusterProfiler”, and “enrichplot”. An
adjusted p-value <0.05 were considered statistically significant.

2.4 Immune analysis

To analyze the differences in tumour immune
microenvironment among different intratumor microbiome
subtypes, the stromal, immune, and ESTIMATE score of every
PC patient were evaluated utilizing “ESTIMATE” algorithm
(Yoshihara et al., 2013). For evaluating the variations in
infiltrated levels of immune cell subset between different
subtypes, the infiltration scores calculated utilizing eight
algorithms were downloaded from the Tumor Immune
Estimation Resource database (TIMER, http://timer.cistrome.org/)
(Yuan et al., 2022). The Cancer Immunome Atlas (TCIA, https://
tcia.at/) is a database developed based on the TCGA database, which
analyzes the tumour immune microenvironment and tumor antigen
genes in 20 solid tumours (Charoentong et al., 2017). The
immunophenoscore (IPS) of PC patients from TCIA database
were downloaded. Then the differences in the responsiveness to
cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell
death protein 1 (PD-1) blockers between the different intratumor
microbiome subtypes were further analyzed.

2.5 Drug sensitivity analysis

OncoPredict is an R package created via Maeser et al., which is
used to predict drug response and biomarkers in vivo or in cancer

patients based on cell line screening data (Maeser et al., 2021).
OncoPredict was employed to assess the variations of drug
sensitivity between the patients with different intratumor
microbiome subtypes.

2.6 Differential expression analysis

In order to further analyze the differences between intratumor
microbiome subtypes, we utilized “limma” package to find
differentially expressed genes (DEGs), which were defined as
intratumor microbe-related DEGs (Chi et al., 2022b). The
filtering criteria were |log2FC| > 1, the adjusted p-value <0.05.
Additionally, PC patients of TCGA, GSE28735, GSE62452, and
GSE57495 datasets were merged for identifying DEGs between
PC tissues and paracancerous tissues. The DEGs obtained from
both approaches were then combined, then we utilized Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses to assess the biological processes and
functions they participate in (Ashburner et al., 2000; Kanehisa and
Goto, 2000). For assessing the prognostic value of these DEGs in PC,
consensus clustering was carried out. Survival times of the various
subtypes were compared using KM curve.

2.7 Construction of the prognostic signature

For accurately assessing the prognosis of individual PC samples, we
employed LASSO regression and Cox regression analysis to build a
prognostic signature utilizing intratumor microbe-related DEGs.
Samples from TCGA dataset were grouped into a training cohort as
well as an internal validation cohort utilizing “caret” package in a 5:
5 ratio, while samples from GEO dataset were utilized as an external
validation cohort. The score for every sample could be computed using
risk score formula. Additionally, a comparison with themedian score of
the training cohort was used to categorise each sample into high- or
low-risk score categories or groups. Utilizing KM curve to compare the
prognosis between different risk categories. The performance of the
signature was appraised by plotting time-dependent receiver operating
characteristic (ROC) curve as well as figuring out the area under the
curve (AUC).

2.8 Correlation of clinicopathological
features, independent prognostic analysis,
and construction of nomogram prediction
model

Our study combined the clinicopathological information of PC
samples with the risk scores and grouped them based on
clinicopathological characteristics. Risk scores between different
categories were compared utilizing Wilcoxon signed-rank test and
Kruskal–Wallis rank sum test. Utilizing univariable as well as
multivariable Cox regression to identify the independent prognostic
factor of PC. Subsequently, the clinicopathological features and risk
score were utilized for building a nomogram predictionmodel by “rms”
R package (Park, 2018). Utilizing calibration curve to appraise the
predictive accuracy of the nomogram.
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2.9 Expression analysis of model genes and
single-cell analysis

The GEPIA platform (http://gepia.cancer-pku.cn/) can allow for
gene differential expression as well as survival analysis utilizing data
of TCGA and GTEx databases (Tang et al., 2017). We utilized it to
examine the expressed variations in LAMA3 and LIPH at RNA level
between pancreatic cancer and normal tissues as well as the
prognostic significance of LAMA3 and LIPH. Human Protein
Atlas database (HPA, version22, https://www.proteinatlas.org/)
aims at creating expressed patterns in protein of cells as well as
tissues (Pontén et al., 2011). We can download
immunohistochemistry images of pancreatic cancer and normal
tissues via HPA platform. The tumor immune single-cell hub
database (TISCH, http://tisch.comp-genomics.org) as a single-cell
RNA-seq platform, focuses on the tumour microenvironment. It
was utilized to reveal the composition of various cell subpopulations
in the pancreatic tumour microenvironment and the relative
expressed level of LAMA3 and LIPH within various cell
subpopulations (Sun et al., 2021).

2.10 Real-time quantitative PCR

RNAs were extracted from cell lines, including a normal
pancreatic epithelial cell line (HPDE6-C7) as well as three PC
cell lines (CF-PAC1, PANC-1, and BxPC-3). The cDNAs were
prepared using Reverse Transcription Reagent. Subsequently,
PCR was performed. GAPDH served as the reference standard.
Utilizing the ΔΔCt method to illustrate the relative expressed level of
LAMA3 and LIPH. The primer sequences for human genes,
including LAMA3 (Forward: 5′-ATTGAATTGAGCACCAGC
GATAGC-3′, Reverse: 5′-CGATGAGAAGCCGTAGTCCAGAG-
3′) as well as LIPH (Forward: 5′-TACGGGACTAAATGTGAG
GC-3′, Reverse: 5′-CCTAGACTTACTCCGATCATG-3′).

2.11 Data analysis

Data analysis was performed utilizing R (Version 4.1.2) as well
as GraphPad Prism 9. For normally distributed quantitative data,
utilizing t-test to compare the differences. For non-normally
distributed quantitative data, utilizing Wilcoxon signed-rank test
to compare the differences between two groups, and utilizing
Kruskal–Wallis rank sum test to compare the differences among
multiple groups. KM curve was utilized to compare the prognosis
between different subtypes or categories. The
p-value <0.05 represented remarkable significance.

3 Results

3.1 Identification of intratumor microbiome-
derived subtypes

The workflow of our research was depicted in Figure 1. Totally
1406 genera were obtained from the pancreatic tumour
microenvironment through the cBioPortal platform

(Supplementary Table S1). Univariate Cox regression analysis
identified 63 genera associated with the prognosis of PC, with
24 genera associated with a favorable prognosis and 39 genera
associated with a poor prognosis (Figure 2A). KM method
identified 44 genera related to PC patients’ prognosis
(Supplementary Table S2). The intersection of genera obtained
from univariate Cox regression analysis and Kaplan-Meier
analysis yielded 26 genera: Alpharetrovirus, Azohydromonas,
Bacteroides, Carlavirus, Chlamydia, Derxia, Domibacillus,
Francisella, Gemmatimonas, Halothermothrix, Histophilus,
Holospora, Hylemonella, Indibacter, Mesoplasma,
Natronolimnobius, Paucibacter, Pseudarthrobacter,
Puniceibacterium, Riemerella, Ruegeria, Runella, Silanimonas,
Starkeya, Vagococcus, and Xanthobacter (Figure 2B). Correlation
analysis revealed complicated relationships among the 26 genera.
For example, Vagococcus had positive correlations with
Puniceibacterium, Halothermothrix, Derxia, Starkeya,
Pseudarthrobacter, Domibacillus, Gemmatimonas, and
Silanimonas, while had negative correlations with Ruegeria,
Chlamydia, Francisella, Carlavirus, and Alpharetrovirus
(Supplementary Figure S1). Subsequently, consensus clustering
was carried out utilizing the abundance of 26 genera. The CDF
curve as well as the area variation under the curve were depicted in
Supplementary Figures S2, S3, which indicated the ideal k value was
2. The consensus matrix at k = 2 was shown in Figure 2C. PC
patients were divided into two intratumor microbiome-derived
subtypes: Mcluster A and Mcluster B. PCA as well as t-SNE can
clearly differentiate samples of Mcluster A and Mcluster B (Figures
2D, E). Survival analysis indicated a significantly better prognosis for
Mcluster A compared to Mcluster B (Figure 2F). Compared to
Mcluster B, a higher proportion of T1-2 stage, N0 stage, M0 stage,
Stage I, and pathological grade G1 was observed in Mcluster A
(Figures 2G–K). Furthermore, the abundance differences of
26 genera in different subtypes were analyzed. The results
showed that Azohydromonas, Derxia, Holospora, Hylemonella,
Paucibacter, Silanimonas, Starkeya, and Xanthobacter had
remarkably higher abundance in Mcluster A, while
Alpharetrovirus, Indibacter, Riemerella, and Ruegeria had
remarkably higher abundance in Mcluster B (Figure 2L).

3.2 Gene set enrichment analysis

For investigating putative molecular mechanisms between different
intratumor microbiome-derived subtypes, we performed GSEA
analysis. In “c5.go.v7.5.1.symbols.gmt” gene set, we found that
Mcluster A was mainly enriched in cell body, presynapse, gated
channel activity, as well as potassium channel activity (Figure 3A).
And Mcluster B was significantly more abundant in cytokine-mediated
signaling pathway, immune response-regulating signaling pathway,
immunoglobulin production, as well as membrane invagination
(Figure 3B). In “c2.cp.kegg.v7.5.1.symbols.gmt” gene set, Mcluster A
was found to be enriched in pathways containing oxidative
phosphorylation, Parkinson’s disease, ribosome, and steroid
hormone biosynthesis (Figure 3C). Conversely, Mcluster B was
enriched in pathways including cytokine-cytokine receptor
interaction, ECM-receptor interaction, focal adhesion, JAK-STAT
signaling pathway, etc (Figure 3D).
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3.3 Immune analysis

We evaluated the variations in immune infiltration between
distinct subtypes using various algorithms to investigate the
association between intratumor microbiome-derived subtypes and
tumour microenvironment. The “ESTIMATE” algorithm showed
that Mcluster B had higher stroma as well as ESTIMATE score

(Figures 4A, C), whereas there was no discernible difference in
immunological score between Mcluster A and Mcluster B
(Figure 4B). For investigating the infiltrated variations in
immune cell subpopulations between different subtypes, the
infiltrated scores of immune cell subpopulations were obtained
from the TIMER database. We found that neutrophils, regulatory
T cell (Treg), CD8+ T cell, macrophages M1 and M2, cancer-

FIGURE 1
The study’s general procedure.
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FIGURE 2
Identification of intratumor microbiome-derived subtypes. (A) Volcanic map of prognostic genera screened by univariable Cox regression. (B)
Intersection of prognostic genera found by univariable Cox regression and Kaplan-Meier method. (C) Heatmap of consensus matrix when the cluster
number was 2. PCA (D) and t-SNE (E) can clearly distinguish samples betweenMcluster A and B. (F) Survival curves for Mcluster A and B. The proportion of
T (G), N (H), M (I), TNM (J) stage and pathological grade (K) between Mcluster A and B. (L)Differences in genera abundance between Mcluster A and
B. (ns, no significant; *p < 0.05; **p < 0.01; ***p < 0.001).
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associated fibroblasts, myeloid dendritic cell, as well as activated
mast cell exhibited remarkably higher infiltration levels within
Mcluster B (Figure 4D). Then, we further utilized the TCIA
platform to investigate the response of PC to immune checkpoint
blockers. In the matter of overall immunophenoscore,
immunophenoscore for PD-1 blocker, and immunophenoscore for
CTLA-4 and PD-1 blocker, our investigation could not detect any
remarkable variations between the two subtypes (Figures 4E, F, H).
However, the immunophenoscore forCTLA-4 blocker had a remarkably
higher score inMcluster A (Figure 4G), suggesting that patients with PC
in Mcluster A may have a better response to CTLA-4 blockers.

3.4 Drug sensitivity analysis

Drug adjuvant therapy is an important means for enhancing PC
patients’ prognoses. Nevertheless, the emergence of primary and
secondary drug resistance often leads to treatment failure. To
enhance the curative impact, it is crucial to choose medications
with high sensitivity for various patients. Our results showed that
patients in Mcluster A were more sensitive to 5-fluorouracil,

cisplatin, gemcitabine, irinotecan, oxaliplatin, sorafenib, and
epirubicin (Figures 5A–G), while patients in Mcluster B were
more sensitive to sapitinib and osimertinib (Figures 5H, I). Thus,
intratumormicrobiome-derived subtypes can provide new strategies
for personalized therapy in PC.

3.5 Identification and analysis of
differentially expressed genes

To explore the transcriptional differences in genes among
different intratumor microbiome-derived subtypes, we identified
4716 DEGs, with 281 genes having higher expression within
Mcluster A as well as 4435 genes having higher expression
within Mcluster B (Figure 6A). Additionally, between pancreatic
tumour tissue and paracancerous tissues, we identified 230 DEGs,
with 107 genes had higher expression within tumour tissues and
123 genes had higher expression within paracancerous tissues
(Figure 6B). Further intersection analysis obtained 29 DEGs
(Figure 6C). To analyze the biological processes associated with
these 29 genes, we carried out GO as well as KEGG analyses. GO

FIGURE 3
Gene set enrichment analysis. The remarkably enriched pathways of Mcluster A (A) and B (B) in “c5.go.v7.5.1.symbols.gmt” gene set. The remarkably
enriched pathways of Mcluster A (C) and B (D) in “c2.cp.kegg.v7.5.1.symbols.gmt” gene set.

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2023.1244752

128

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1244752


analysis identified the enriched pathways such as cell-matrix
adhesion, endoderm development, endoderm formation,
endodermal cell differentiation, extracellular matrix organization,
formation of the primary germ layer, gastrulation, and integrin-
mediated signaling pathway (Figure 6D). KEGG analysis revealed
the enriched pathways containing amoebiasis, dilated
cardiomyopathy, ECM-receptor interaction, focal adhesion,
human papillomavirus infection, hypertrophic cardiomyopathy,
PI3K-Akt signaling pathway, and small cell lung cancer (Figure 6E).

We further carried out consensus clustering analysis to
investigate the prognostic usefulness of these 29 microbiome-
related genes in PC. Five subtypes were identified for all PC
patients: MRDEGclusters A through E (Figure 6F). PCA as well as
t-SNE analysis clearly distinguished the five subtypes (Figures
6G, H). KM curves indicated that the five subtypes’ prognoses
varied significantly, with MRDEGcluster B having the best
prognosis and MRDEGcluster D having the worst prognosis
(Figure 6I).

FIGURE 4
Immunoassay. The stroma (A), immune (B) as well as ESTIMATE (C) scores betweenMcluster A and Bwere evaluated using “ESTIMATE” algorithm. (D)
Variations in infiltrated levels of different immune cell subpopulations in Mcluster A and B. The overall immunophenoscore (E), immunophenoscore for
PD-1 blocker (F), CTLA-4 blocker (G), and immunophenoscore for CTLA-4 and PD-1 blocker (H) between Mcluster A and B.
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3.6 Building and testing a prognostic
signature

For predicting each PC patient’s prognosis more accurately, we
constructed a prognostic signature utilizing microbiome-derived
DEGs. Firstly, 21 genes linked to PC patients’ prognosis were
found using univariable Cox regression analysis Supplementary
Figure S4. Then, utilizing LASSO regression to eliminate genes
overfitting (Figures 7A, B). Finally, utilizing multivariable Cox
regression to construct the prognostic model, which included two
genes: LIPH and LAMA3 (Figure 7C). PC patients with low-risk
scores had considerably longer overall survival times than those with

high-risk scores (Figure 7D). The prognostic model’s dependability
was further attested to by the internal as well as external validation
sets (Figures 7E, F). The AUC values of 1, 3, and 5-year survival rates
were 0.726, 0.743, and 0.832 in the training set (Figure 7G), 0.713,
0.670, and 0.669 in the internal validation set (Figure 7H), and 0.568,
0.642, and 0.847 in the external validation set (Figure 7I), indicating
good predictive value. PCA and t-SNE analyses clearly distinguished
patients between high- and low-risk categories in the training
(Figure 7J), internal validation (Figure 7K), and external
validation sets (Figure 7L).

We used a Sankey diagram to illustrate the association between
the prognostic model and intratumor microbiome-derived subtypes

FIGURE 5
Drug sensitivity between Mcluster A and B. Patients with Mcluster A had high sensitivity to 5-Fluorouracil (A), Cisplatin (B), Gemcitabine (C),
Irinotecan (D), Oxaliplatin (E), Sorafenib (F), and Epirubicin (G). Patients with Mcluster B were more sensitive to Sapitinib (H) and Osimertinib (I).
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(Figure 8A). PC patients in Mcluster A had considerably lower risk
scores than those in Mcluster B (Figure 8B). Besides, it was found
that Riemerella had remarkably higher abundance in patients with
high scores, while Azohydromonas, Derxia, Hylemonella,
Paucibacter, and Silanimonas had remarkably higher abundance
in patients with low scores (Figure 8C). Subsequently, we further
investigated the association between gene expression and microbial
abundance. Results showed that the abundance of Riemerella was
remarkably related positively to the expression of LIPH and
LAMA3, while the abundance of Silanimonas and Hylemonella
was remarkably related negatively to the expression of LIPH and
LAMA3 (Figure 8D).

3.7 Correlation of clinicopathological
features, independent prognostic analysis,
and construction of nomogram prediction
model

Risk scores did not differ remarkably between groups generated
by age, gender, and M stage (Figures 9A, B, E). Patients with
N1 stage had higher risk scores compared to those with
N0 stage, which were approaching statistical significance
(Figure 9D). Patients’ risk scores were noticeably greater in those
with higher T stage, TNM stage, and pathological grade (Figures 9C,
F, G). Additionally, age and risk score were found to be independent

FIGURE 6
Identification and analysis of differentially expressed genes (DEGs). (A) Volcanic map of DEGs between Mcluster A and B. (B) Volcanic map of DEGs
between PC tissues and normal tissues. (C) Intersection of DEGs. (D) GO enrichment analysis. (E) KEGG enrichment analysis. (F) Heatmap of consensus
matrix when the cluster number was 5. PCA (G) and t-SNE (H) can clearly distinguish samples among different MRDEGclusters. (I) Survival curves among
different MRDEGclusters.
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FIGURE 7
Building and testing a prognostic signature. (A) The coefficient path graph. (B) The cross validation curves. (C) Coefficient of LAMA3 and LIPH.
Survival curve of the training (D), internal validation (E), and external GEO (F) dataset. The time-dependent ROC curve of the training (G), internal validation
(H), and external GEO (I) dataset. PCA and t-SNE for the training (J), internal validation (K), and external GEO (L) dataset.
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poor prognostic variables of PC in both the univariable and
multivariable Cox regression analyses (Figures 9H, I). Then, for
further evaluating the prognosis of PC patients, we created a
nomogram prediction model utilizing clinicopathological
variables and risk scores (Figure 9J). The calibration curve
demonstrated that our nomogram model had strong predictive
value because the predictive 1, 3, and 5-year survival rates were
relatively close to the actual 1, 3, and 5-year survival rates
(Figure 9K).

3.8 Drug sensitivity analysis in different risk
groups

For exploring the potential relationship of risk score and drug
sensitivity, the “oncoPredict” package was utilized to predict the
drug sensitivity of PC patients. The results indicated that PC with
low scores had higher sensitivity to cisplatin, epirubicin, fludarabine,
irinotecan, KRAS (G12C) Inhibitor-12, oxaliplatin, and sorafenib
(Figures 10A–G). On the other hand, PC with high scores exhibited
higher sensitivity to trametinib and sapitinib (Figures 10H, I).

3.9 Experimental validation and single-cell
analysis

Utilizing GEPIA platform, the mRNA expression of
LAMA3 and LIPH between pancreatic tumour and normal
tissues was investigated. The expression of LAMA3 was markedly
increased within pancreatic tumour tissues (Figure 11A) and was
linked to the advanced stage and poor prognosis (Figures 11B, C).
Similarly, LIPH also exhibited higher expression in pancreatic
tumour tissues (Figure 11D) and was linked to the advanced
stage and poor prognosis (Figures 11E, F). Furthermore, the
immunohistochemistry images from HPA database showed that
compared to normal pancreatic tissues, the protein expression of
LAMA3 and LIPH was higher within PC tissues (Figures 11G, H).
To further validate the reliability of our study, we performed qRT-
PCR to confirm the expression of LAMA3 and LIPH. Similarly,
LAMA3 and LIPH had higher expressed levels in PC cell lines than
normal pancreatic cell lines (Figures 12A, B). Lastly, we performed
single-cell analysis using the single-cell dataset GSE111672
(containing 3 samples and 6122 cells) to further uncover the cell
subpopulations within the tumour microenvironment of PC. In

FIGURE 8
The correlation of microbiome-derived subtypes and signature. (A) Alluvial diagram for the microbiome-derived subtypes and signature. (B)
Differences in risk score of Mcluster A and Mcluster B. (C) Variations in genera abundance between the high- and low-risk group. (D) Correlation of
LAMA3 and LIPH and different genera. (ns, no significant; *p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 9
Independent prognostic analysis and constructing nomogram prediction model. The comparison of risk score in different age (A), gender (B), T (C),
N (D), M (E), TNM (F) stage, and pathological grade (G). Forest map for univariate (H) andmultivariate (I) Cox regression. (J)Nomogram prediction model.
(K) Calibration curve of nomogram model.
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addition to cancer cells, the tumour microenvironment of PC is also
rich in monocytes/macrophages, endothelial cells, and fibroblasts
(Figures 13A–C). LIPH and LAMA3 exhibited relatively higher
expression in cancer cells and neutrophils (Figures 13D–G).

4 Discussion

PC, a highly lethal malignancy characterized by early metastasis
and resistance to anticancer treatments, has become the seventh
most common cause of cancer-related death globally. Despite the
rapid development of diagnostic and therapeutic strategies for

malignancies, patients with PC are frequently discovered at a late
stage, and current treatments have little effect (Zhu et al., 2018).
Therefore, there is significant clinical value in developing
biomarkers for PC early diagnosis and risk assessment. Recently,
the regulatory function of microbiome in cancer occurrence and
development has been intensively studied, which can influence the
occurrence, progression, metastasis as well as therapy response in
various tumours. In this study, the important role of microbiome in
the outcome, tumour microenvironment heterogeneity, and
treatment response for PC patients was investigated by
integrating microbiome and transcriptome data, and first
constructed the microbiome-related subtypes and signature in PC.

FIGURE 10
Drug sensitivity in the high- and low-risk group. Patients with low-risk scores were more sensitive to Cisplatin (A), Epirubicin (B), Fludarabine (C),
Irinotecan (D), KRAS (G12C) Inhibitor-12 (E), Oxaliplatin (F), and Sorafenib (G). Patients with high-risk scores had higher sensitivity to Trametinib (H) and
Sapitinib (I).
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We constructed the intratumor microbiome-derived
subtypes by consensus cluster analysis. Survival analysis
results suggested that Mcluster A had a remarkably better
outcome compared with Mcluster B. What’s more, compared
with Mcluster B, the proportion of T1-2 stages, N0 stages,
M0 stages, Stage I, and pathological grade G1 in Mcluster A
was higher. Next, we analyzed the abundance differences of
26 genera in the two subtypes, and found that
Azohydromonas, Derxia, Holospora, Hylemonella, Paucibacter,

Silanimonas, Starkeya, and Xanthobacter have significantly
higher abundance in Mcluster A, and Alpharetrovirus,
Indibacter, Riemerella, and Ruegeria have significantly higher
abundance in Mcluster B. It has been reported that
Alpharetrovirus can achieve almost complete elimination of
leukemia cells by enhancing the toxicity of NK cells to
leukemia cells (Suerth et al., 2016). We speculated that the
tumour cells of PC patients with Mcluster B were more
malignant. In order to enhance the killing ability of NK cells

FIGURE 11
LAMA3 and LIPH. The expressed levels of LAMA3 in PC tumour tissue was remarkably higher withinmRNA level (A), and it was linked to TNM stage (B)
and poor prognosis (C). The expression of LIPH in PC tumour tissue was significantly higher within mRNA level (D), and it was linked to TNM stage (E) and
poor prognosis (F). Immunohistochemical images indicated that the expression of LAMA3 (G) and LIPH (H)was significantly higher in pancreatic tumour
tissues. (*p < 0.05).
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to fight against tumour cells, the body upregulated the level of
Alpharetrovirus. Based on the above findings, microbiome was
tightly connected with PC patients’ outcomes.

Then, we delved into the molecular mechanisms underlying the
differences in prognosis of patients with different subtypes of PC.
GSEA revealed that signaling pathways associated with ion-gated

FIGURE 12
The validation of gene expression. LAMA3 (A) and LIPH (B) have higher expressed levels in PC cell lines than normal pancreatic cell lines. (*p < 0.05;
**p < 0.01; ***p < 0.001).

FIGURE 13
Single-cell analysis. (A)Annotation based on sample source. (B)Annotation based on cluster results. (C)Annotation based on the various cell subsets.
(D) The distribution of LAMA3 expression within various cell subsets. (E) The distribution of LIPH expression within different cell subsets. (F) The relative
expressed level of LAMA3 within various cell subsets. (G) The relative expressed level of LIPH within various cell subsets.

Frontiers in Pharmacology frontiersin.org16

Zhang et al. 10.3389/fphar.2023.1244752

137

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1244752


channels in tumour cells in patients with Mcluster A were
remarkably enriched, while the activity of immune response
signaling pathways in patients with Mcluster B were significantly
enhanced. Ion-gated channels are responsible for tumour cell
proliferation and are key factors in PC progression and invasion
(Yee et al., 2012; Liu et al., 2018), and are also a key therapeutic
target for PC (Yee, 2016). The microbiome with high abundance in
Mcluster A patients may influence the prognosis of PC by regulating
ion-gated channels. What’s more, previous studies have revealed that
microbiome can participate in the immune response, which resulted in
the prognostic change in patients with PC. Therefore, microbiome can
influence the progression as well as outcome of PC through regulating
ion-gated channels or immune response pathways. We further
analyzed the relationship between intratumor microbiome-derived
subtypes and tumour microenvironment heterogeneity, and found
that Mcluster B had higher stromal and ESTIMATE scores.
Neutrophil, Treg, CD8+ T cell, macrophages M1 and M2, cancer
associated fibroblasts, myeloid dendritic cell, as well as activated
mast cell had remarkably higher infiltrated levels within Mcluster B.
CD8+ T cells can recognize and eliminate tumor cells through multiple
mechanisms (Borst et al., 2018; Terrén et al., 2019; Philip and
Schietinger, 2022). Studies indicated that the higher infiltrated levels
of CD8+ T cell were linked to significantly longer survival time of PC
patients (Carstens et al., 2017). Therefore, intratumor microbiome are
likely to participate in shaping the tumour immunemicroenvironment,
thereby affecting the immune response of tumor cells. The response of
different intratumor microbiome-derived subtypes to immunotherapy
was evaluated in this study.We found that the use of a CTLA-4 blocker
was found to be more likely to be beneficial for PC patients inMcluster
B. Therefore, the study of microbiome in the tumour
microenvironment of PC can help provide new strategies for the
selection of immunotherapy for patients with PC.

For accurately predicting the prognosis for every PC patient, we
utilized microbiome-related DEGs to construct and validate a
prognostic signature. KM curves indicated that the survival time of
PC patients with high-risk scores was remarkably lower, and ROC
curves also indicated that the signature had a good predictive
performance. What’s more, we explored the differences in the
abundance of microbiome between the high and low-risk categories,
and found that Riemerella had a significantly higher abundance in PC
with high-risk scores and was linked to the poor outcome of PC.
Riemerella is a Gram-negative rod-shaped bacterium that can cause
acute infectious disease as well as an inflammatory response (Afrin et al.,
2018; Li et al., 2023). However, Riemerella has not been reported in PC.
Our study provides a new therapeutic target for PC. Correlation analysis
indicated that the abundance of Riemerella was significantly linked
positively to the expression of LIPH and LAMA3. LIPH is a new
member of the triglyceride lipase family located on human
chromosomes. The protein encoded by LIPH can hydrolyze
triglycerides and phospholipids to produce fatty acids, which can
then promote intestinal absorption or serve as an energy source or
energy reserve (Jin et al., 2002). Studies indicated that LIPHhad a higher
expressed level in breast tumor tissue, and it affected the distant
metastasis of breast cancer by regulating CAPN2 and paxillin (Seki
et al., 2014; Zhang et al., 2020). According to the findings of our
investigation, LIPH can be exploited as a possible therapeutic target for
PC because it was found to be increased expression in PC tissues and to
be related to the disease’s progression and bad prognosis. The

LAMA3 gene can encode the α3 chain of laminin-5, which is an
important cell membrane component and regulates cell adhesion and
migration (Zhang et al., 2018; Xu et al., 2019). Studies indicated that
LAMA3 is a promising target for cancer therapy since it may accelerate
the growth and invasion of tumour cells (Xu et al., 2019; Shu et al.,
2023). This agrees with our research suggesting that LAMA3might be a
useful treatment target for PC.

Drug-assisted therapy is one of the main ways to treat PC and
can help improve the prognosis of patients. For example, modified
FOLFIRINOX (containing oxaliplatin, irinotecan, leucovorin, and
fluorouracil) and gemcitabine, as first-line chemotherapy regimens
for PC, could result in 5-year disease-free survival rates of 26% and
19%, respectively, for patients with PC after surgery (Conroy et al.,
2022). But the intricate PC tumour microenvironment frequently
promotes the development of treatment resistance, which ultimately
results in the failure of medication therapy. To improve treatment
efficacy and prognosis, it is crucial to determine the medications to
which each patient is sensitive. Our research assessed the
relationship between intratumor microbiome-related subtypes
and drug sensitivity. PC patients in Mcluster B or high-risk
group had higher sensitivity to sapitinib, but PC patients in
Mcluster A or low-risk group had higher sensitivity to cisplatin,
irinotecan, oxaliplatin, sorafenib, and epirubicin. These findings
provide a basis for individualized treatment of PC patients and
are of great significance for improving the efficiency of drug
treatment. The anti-tumor medication sapitinib has dual anti-
tumor actions and can act on tumour blood vessels and tumour
cells simultaneously (Gao et al., 2020; Attwa et al., 2023).Whether its
curative effect on PC will be affected by intratumor microbiome and
the specific mechanism still needs further basic research to explore.

However, our research has a few limitations that should be
acknowledged. Firstly, this study belonged to retrospective research
and was performed mainly based on data from public databases.
Therefore, the prediction capability of our prognostic model should
be validated in the prospective clinical research with large samples.
Secondly, further investigation of molecular mechanism is required
for exploring the function of intratumor microbiome in the
occurrence and development of PC.

5 Conclusion

In the present study, we first constructed intratumor
microbiome-derived subtypes in PC, and clarified the crucial role
of microbiome in the outcome, tumor microenvironment shaping,
and immunotherapy response for PC through multi-omics analysis,
providing the novel microbiome-related targets for the treatment of
PC. Meanwhile, we also built a prognostic signature utilizing
intratumor microbiome-related genes to predict PC patients’
outcomes. In conclusion, this study can provide a novel insight
for the prognosis prediction and treatment decision-making of PC.
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Background: 5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in
clinical cancer treatment, including hepatocellular carcinoma (HCC). A correct
understanding of the mechanisms leading to a low or lack of sensitivity of HCC to
5-FU-based treatment is a key element in the current personalized medical
treatment.

Methods: Weighted gene co-expression network analysis (WGCNA) was used to
analyze the expression profiles of the cancer cell line from GDSC2 to identify 5-
FU-related modules and hub genes. According to hub genes, HCC was classified
and themachine learningmodel was developed by ConsensusClusterPlus and five
different machine learning algorithms. Furthermore, we performed quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) analysis on the genes
in our model.

Results: A total of 19 modules of the cancer cell line were divided by WGCNA, and
the most negative correlation with 5-FU was the midnight blue module, from
which 45 hub genes were identified. HCC was divided into three subgroups (C1,
C2, and C3) with significant overall survival (OS) differences. OS of C1 was the
shortest, which was characterized by a high clinical grade and later T stage and
stage. OS of C3 was the longest. OS of C2 was between the two subtypes, and its
immune infiltration was the lowest. Five out of 45 hub genes, namely, TOMM40L,
SNRPA, ILF3,CPSF6, andNUP205, were filtered to develop a risk regressionmodel
as an independent prognostic indicator for HCC. The qRT-PCR results showed
that TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were remarkably highly
expressed in hepatocellular carcinoma.
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Conclusion: The HCC classification based on the sensitivity to 5-FUwas in line with
the prognostic differences observed in HCC and most of the genomic variation,
immune infiltration, and heterogeneity of pathological pathways. The regression
model related to 5-FU sensitivity may be of significance in individualized prognostic
monitoring of HCC.

KEYWORDS

5-fluorouracil, hepatocellular carcinoma, machine learning, genomic variation, immune
infiltration, prognosis

Introduction

Hepatocellular carcinoma (HCC) is a critical global healthcare
issue with a mortality-to-morbidity ratio as high as 91.6%
(Villarruel-Melquiades et al., 2023). Patients with HBV/HCV
infection, cirrhosis of any cause, alcoholism, non-alcoholic
steatohepatitis, or family history of HCC are considered high-risk
groups for HCC, especially among men aged over 40 years old (Xie
et al., 2023). Surgical treatment, including hepatectomy and
orthotopic liver transplantation, is widely used for tumor
eradication (Kawaguchi et al., 2016), but it is also restricted by
the applicability of patients and the availability of organs (Koza et al.,
2023). In a clinical practice, more than 60% of HCC cases are
diagnosed in the late stage, suggesting possible missed diagnostic
opportunity. At present, the best choice for advanced HCC is
systemic treatment, with sorafenib and lenvatinib as the first
choice (Yang et al., 2023). However, patients treated with drugs
will have to face the problem of drug resistance after drug treatment.
Improving the understanding of the mechanism of HCC resistance
is expected to bring further benefits to patients.

As a synthetic fluorinated pyrimidine analog, 5-fluorouracil (5-
FU) enters cells as an anti-metabolite, imitates molecules vital to cell
growth, interferes with basic biosynthetic activity by inhibiting the
effect of thymidylate synthase (TS), or mistakenly mixes its
metabolites into DNA and RNA, thereby inducing cytotoxicity
(Blondy et al., 2020; Mafi et al., 2023). Since its approval by FDA
in 1962, 5-FU has been widely applied alone or together with other
drugs in treating various cancers, such as advanced head and neck
squamous cell carcinoma (Yamauchi et al., 2023), colorectal cancer
(Wosiak et al., 2023), gastric cancer (Kang et al., 2014), and metastatic
breast cancer (Karapetis et al., 1999; Holmes et al., 2018). 5-Fu is also a
widely used chemotherapeutic drug for patients with HCC. There is
an urgent need to better improve the sensitivity of HCC to
chemotherapy (Hu et al., 2016), and an accurate understanding of
mechanisms that contribute to a lack of or a low sensitivity of HCC to
5-FU-based treatment is a critical component of the current trend of
individualized medical care. Identifying and confirming current 5-
FU-based predictive biomarkers, as well as developing novel targeted
medicines for HCC therapy, may enhance patients’ prognoses in the
future (Vodenkova et al., 2020).

In this study, genes related to 5-Fu sensitivity were screened from
large data sets for identification of HCC, in order to characterize the
heterogeneity of HCC from molecular aspects and tumor
microenvironment (TME). Genes suitable for constructing a risk
model were identified from those related to 5-Fu sensitivity, hoping
to provide a promising target for understanding 5-FU resistance
of HCC.

Materials and methods

Data source

Clinical data and RNA sequencing of HCC were downloaded
from the LIHC project of The Cancer Genome Atlas (TCGA)
database (https://cancergenome.nih.gov), and a total of
50 corresponding paracancerous tissues and 365 HCC tumor
tissues were incorporated into the analysis. A set of HCC chip
data numbered GSE14520 were collected from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Another set of data were downloaded from the HCCDB database
(http://lifeome.net/database/hccdb/download.html), which provides
expression profiles of HCC samples. Meanwhile, pan-cancer cell line
drug sensitivity and genomic data resources were acquired from the
Genomics of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/) (Yang et al., 2013).

Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed for analyzing the expression profiles of
cancer cell lines downloaded from GDSC2. Samples were clustered
and used to construct a gene co-expression network, from which
modules were identified and then related to external data. Key
drivers in the “WGCNA” package (Langfelder and Horvath,
2008) of R were analyzed based on the relationships among the
module. Under the selected parameters, the sampleTree function
provided by “WGCNA” was used to cluster the HCC cell lines and
present the outliers. The gene expression matrices of the retained
samples were extracted, and Pearson correlation was computed to
calculate the correlation between twisted genes. Under different
power values, we selected the optimal soft threshold β by analyzing
the scale independence and average connectivity of modules using
the “pickSoftThreshold” function provided by the “WGCNA”
package. The “scaleFreePlot” function was adopted to evaluate
whether the topology of the network was scale-free. The
hierarchical clustering of genes was implemented by using the
“hclust” function. The distance clustering threshold (height =
0.25, deepSplit = 3) was set by the cutreeDynamic function in
the dynamicTreeCut package, and the minimum number of
genes was 30 in each module. The automatic module merge step
was performed using the mergeCloseModules function. The
interested modules were the most relevant to 5-fluorouracil;
therefore, the IC50 value of 5-fluorouracil for module–trait
relationships was analyzed.
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Unsupervised clustering on HCC

The “limma” package (Ritchie et al., 2015) was employed to
discriminate differentially expressed genes (DEGs) meeting
FDR<0.05 and log2(Fold Change) > 1. DEGs were then
screened by overlapping analysis with gene modules
associated with 5-fluorouracil. The “ConsensusClusterPlus”
package was applied to run the consensus clustering on the
TCGA-LIHC data matrix (Wilkerson and Hayes, 2010). The
initial step was to subsample 80% items and features. Each
subsample was then partitioned into k groups. Afterward,
consensus values were calculated and stored in a consensus
matrix for each k-value. The output graphical plots included the
consensus matrix plot and the empirical cumulative
distribution function (CDF) plot.

Single-nucleotide variant (SNV) and
copy-number variant (CNV) analyses

Genomic variation analysis

Genomic variation includes small insertions or deletions
(indels), single-nucleotide variants, and CNVs. SNVs and
CNVs, all belong to the category of genomic variation. After
reading the MAF file from TCGA-LIHC, the generated MAF
object was passed to the “maftools” package (Mayakonda et al.,
2018) for SNV analysis and oncoplot drawing. GISTIC 2.0, which
calculates a statistic involving the occurrence frequency and
distortion amplitude, was employed to analyze CNV data. The
characteristic of this method is to identify the regions of the
genome, where anomalies occur more frequently than

FIGURE 1
Identification of the gene module most related to 5-fluorouracil. (A) Bar chart shows the sensitivity of 5-fluorouracil in different hepatoma cell lines.
(B)Clustering tree of cell samples fromGDSC2. (C) Average connectivity corresponding to the scale-free fitting index and each soft threshold. (D)Cluster
tree of genes in all hepatoma cell lines from GDSC2. (E) Correlation analysis of 19 clustered modules with 5-fluorouracil IC50. The upper numbers
represented correlation coefficients, and the lower numbers represented statistical p-values. (F)GOentries and KEGGpathways of gene enrichment
in the midnight blue module.
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accidentally expected and gives more weight to high-amplitude
events (high-level copy number gain or homozygous deletion)
that are unlikely to represent random distortions. For each
important region, the method defines a “peak region” with a
maximum aberration frequency and amplitude (Beroukhim et al.,
2007).

Immune cell infiltration analysis

The ESTIMATE algorithm, which leverages the properties
of the TCGA-LIHC transcriptional profiles to infer the degrees
of stromal and immune cell infiltration, was applied to
determine the ESTIMATE score (Yoshihara et al., 2013).
Different methods for assessing the level of immune
infiltration, including CIBERSORT, ssGSEA, MCPcounter,
and TIMER, were properly applied. CIBERSORT was used to
measure the intra-sample (within-leukocyte) proportions of
immune cell populations (Newman et al., 2015). Different
from CIBERSORT, MCPcounter outputs the estimated
abundance of each cell population, thereby enabling a
comparison between samples to be expressed in arbitrary
units (Becht et al., 2016). TIMER takes tissue specificity into
account when estimating immune cell populations (Li et al.,
2017), and this method helps identify associations between six
types of immune cell infiltration and clustering in the TCGA-
LIHC cohort.

Establishment of a risk stratification tool
using multiple machine learning analysis

Univariate COX regression analysis identified prognostic genes
from the intersection of DEGs and 5-fluorouracil-related gene
modules, and introduced five different machine learning algorithms
to complete the task of variable selection, including gradient boosting
machine (GBM), least absolute shrinkage and selection operator
(LASSO) regression, support vector machines (SVM), Decision
Trees, and Random Forest. The intersection of genes selected by
each machine learning algorithm was used for stepwise regression
analysis in multiple linear regression to generate a fitting regression
model to evaluate the risk of samples in different HCC cohorts.

Nomogram construction

This study integrated age, gender, T stage, stage, grade, and
RiskScore information, and performed univariate COX and
multivariate COX analyses to determine independent prognostic
factors which influenced the prognosis of HCC. Based on these
independent prognostic factors, we developed a nomogram for
predicting HCC survival. Based on the actual and predicted
survival outcomes, we developed calibration curves to validate
the predictive power of the nomogram. In addition, we also
graphed decision curves to determine the prognostic guidance
value of the nomogram and RiskScore.

FIGURE 2
HCC was classified by identifying hub genes in the midnight blue module. (A) Difference analysis of log2 (TPM+1) of TCGA-LIHC between normal
and HCC tissues. (B) The Hub gene of themidnight bluemodule was identified by overlap analysis of differential genes and themidnight bluemodule. (C)
CDF plot displays consensus distributions for each k-value. (D) Consensus matrix shows the clustering partition of k = 3. The blue color represented the
distance-based similarity between the samples. (E–G) Survival curves of three clusters in TCGA-LIHC, HCCB18, and GSE145203 cohorts. (H)
Expression of 43 genes is shown in the form of a heatmap.
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Cell culture and transient transfection

HCC cell lines including Hep3B2.1-7 and Huh-7 were obtained
from COBIOER (Nanjing, China). Hep3B2.1-7 and Huh-7 cells
were cultured in DMEM F12 with 10% FBS (Gibco, Thermo Fisher,
USA). Human liver epithelial cells (THLE-3) were obtained from
ATCC (Manassas, VA, USA) and stored in BEGM (Lonza,
Walkersville). Cells were grown at 37°C in a humidified
environment containing 5% CO2.

Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

TRIzol reagent (Thermo Fisher, USA) was used to extract
total RNA from the Hep3B2.1-7, Huh-7, and THLE-3 cell lines.
Using FastStart Universal SYBR Green Master (Roche,
Switzerland), quantitative reverse transcription polymerase
chain reaction (qRT-PCR) was performed on the RNA
extracted from each sample (2 μg) on a LightCycler 480 PCR
System (Roche, USA). The cDNA was utilized as a template with
a reaction volume of 20 μl (2 μl of cDNA template, 10 μl of PCR
mixture, 0.5 μl of forward and reverse primers, and an
appropriate water volume). The following procedures were

utilized for the PCR reactions: cycling conditions started
with an initial DNA denaturation phase at 95°C for 30 s,
followed by 45 cycles at 94°C for 15 s, 56°C for 30 s, and 72°C
for 20 s. Three separate analyses were performed on each
sample. Based on the 2−ΔΔCT method, data from the threshold
cycle (CT) were obtained and standardized to the levels of
GAPDH in each sample. The expression levels of mRNA
were compared to controls obtained from normal tissues.
Sequence lists of primer pairs for the target genes are
summarized in Supplementary Table S1.

Statistical analysis

All statistical analysis and verification were conducted in the
R code. A chi-squared test was adopted to detect differences in
clinical characteristics between subtypes. The survival of the
samples was presented by the Kaplan–Meier curve. Statistical
survival difference was analyzed using the log-rank test. The
time-dependent receiver operating characteristic (ROC) curve
and the area under the curve (AUC) of the risk layering tool were
generated and calculated using the timeROC package. p <
0.05 meant that the difference was statistically significant. For
the results of the statistical analyses, ns indicated no significance,

FIGURE 3
Clinical and genomic alteration features of molecular subtypes (A) Waterfall map of somatic mutation in three subtypes. (B) Manhattan plot shows
the CNV situation of each subtype at the chromosomal level. (C) Analysis and comparison of clinical features of three subtypes. The red represents the
q-arm of the chromosome, and the blue represents the p-arm of the chromosome.
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* indicated p < 0.05, ** indicated p < 0.01, *** indicated p < 0.001,
and **** indicated p < 0.0001.

Results

Identification of the gene module most
related to 5-fluorouracil

We initially examined the sensitivity of different HCC cell lines
to 5-fluorouracil. The IC50 value of 5-fluorouracil was the lowest in
Hep3B2-1-7 cells and the highest in HuH-7 cells, meaning that
Hep3B2-1-7 cells were the most sensitive to 5-fluorouracil and
HuH-7 cells had the strongest resistance to 5-fluorouracil
(Figure 1A). All cell samples from GDSC2 were clustered
(Figure 1B). The soft-threshold power satisfying the scale-free
topology of the network was 6, the corresponding R2 value was
0.86, and the average connectivity was very close to 0 (Figure 1C).
Next, all genes were clustered into 19 interacting modules
(Figure 1D). Among the 19 clustering modules, their correlations
with 5-fluorouracil resistance were analyzed. The result showed that
midnight blue was the module with the highest significant negative
correlation with 5-fluorouracil sensitivity (Figure 1E). We analyzed
GO and KEGG annotation of genes within the midnight blue
module. Biological process was annotated to regulation of mRNA
processing, regulation of mRNA polyadenylation, and positive
regulation of telomere capping in GO terms. The protein
products of these genes might be the components of the
transcription elongation factor complex, DNA polymerase III
complex (Figure 1F).

HCC was classified by identifying hub genes
in the midnight blue module

The differences between normal tissues and HCC tissues of log2
(TPM+1) of TCGA-LIHC were analyzed. A total of 2,356 genes with
log2 (Fold Change) > 1 and FDR <0.05, as well as 462 genes with log2
(Fold Change) <-1 and FDR <0.05, were identified (Figure 2A), and
35 upregulated and 8 downregulated DEGs were also detected from the
midnight blue module (Figure 2B). The samples of TCGA-LIHC were
clustered according to the expression of the aforementioned 43 genes.
The CDF plot helps in finding the k-value that reached the approximate
maximum value of 3 (Figure 2C). The consensus matrix showed the
clustering partition was k = 3 (Figure 2D). Complete separation of
survival curves and overall survival (OS) of the three clusters in the
detected TCGA-LIHC, HCCB18, and GSE145203 cohorts had
significant differences among subtypes. Specifically, C3 had the most
satisfactory survival outcome when compared with C1 and C2, while
C1 had the shortest OS (Figures 2E–G). Next, the expression of 43 genes
was also shown in a heatmap, which demonstrated thatmost geneswere
highly expressed in C1 than C3 and C2 (Figure 2H).

Clinical and genomic alteration features of
molecular subtypes

Here, in the C1, C2, and C3 subtypes, we analyzed the status of
genomic variations. The TP53 mutation rate of C1 was also
significantly higher than that of C2 and C3. The mutation rate of
CTNNB1 in C2 was the highest, which was significantly higher than
that of C1 and C3. The mutation rate of TTN in C3 was the highest,

FIGURE 4
Immune filtration mode for three clusters (A) Subtype stromal score, immune score, and ESTIMATE score obtained from running ESTIMATE. (B–E)
Enrichment differences among subtypes of immune cells judged by CIBERSORT, ssGSEA, MCPcounter, and TIMER. (F) Differences in enrichment of
pathways in clusters were archived in a heatmap.
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which was significantly higher than that of C1 and C2 (Figure 3A).
From the Manhattan plot, we observed the CNV of each subtype at
the chromosomal level, the number of high-level DNA copies
amplified, and deleted in C2 was significantly less than that in
C1 and C3 (Figure 3B). Comparison of the clinical characteristics of
the three subtypes showed that there were more male subject
samples than female subject samples in each subtype. Differences
in sex, age distribution and grade, and T stage and stage
characteristics were statistically significant among the three
subtypes. Compared with the other two clusters, C2 had the
highest proportion of male subjects and samples aged over
60 years old. C1 with the shortest OS was characterized by a high
proportion of clinical grade and later T stage and stage (Figure 3C).

Immune filtration mode for three clusters

By running ESTIMATE, the ESTIMATE score, stromal score,
and immune score of each cluster were calculated, which showed

significant differences among the three clusters, and the level was the
lowest in C2 (Figure 4A). Of the 22 immune cells provided by
CIBERSORT, 15 showed significant differences in infiltration
among three subtypes (Figure 4B). Memory cells,
immunosuppressive cells (regulatory T cells (Treg) and myeloid-
derived suppressor cells (MDSC)), and cytotoxic cells (CD8 T cells,
natural killer (NK) cells, and NK T cells) identified in 28 TIL
subpopulations showed differential infiltration among the three
subtypes, and almost all of them had the least infiltration in C2
(Figure 4C). Combining the results of MCPcounter and TIMER
analysis, the infiltration of CD4 T cell, T cells, B cells, macrophage,
neutrophils, CD8 T cells, endothelial cells, and dendritic cells, and
fibroblasts in C2 was significantly lower than that in C1 and C3
(Figures 4D, E). The differences in enrichment of pathways in
clusters were archived in a heatmap, from which we could
observe that the enrichment level of most pathways relevant to
metabolism decreased in C1, such as linoleic acid metabolism,
tyrosine metabolism, phenylalanine metabolism, and pyruvate
metabolism (Figure 4F).

FIGURE 5
Selection and verification of genes suitable for constructing a risk model in the midnight blue module. (A) Volcanic map showing univariate Cox
regression analysis for 43 genes. (B) Intersection of genes selected by LASSO regression, GBM, SVM, random forest, and decision tree. (C–E) Survival
stratification curve of the regression model in the test set TCGA-LIHC and two independent verification sets, namely, HCCDB18 and GSE14520. (F) ROC
curve of regression model in predicting 1–5 years survival of cases in TCGA-LIHC and GSE14520.
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Selection and verification of genes suitable
for constructing a risk model in the midnight
blue module

In the midnight blue module, a total of 43 genes were
identified as hub genes, and 25 HCC prognostic genes were
screened from these hub genes by univariate Cox regression
analysis (Figure 5A). Machine learning models of these genes
were established based on machine learning methods, including
LASSO regression, GBM, SVM, Random Forest, and Decision
Tree. A total of 21 genes belonged to the intersection of five
machine learning models (Figure 5B). The stepwise regression
method screened five genes from the 21 genes suitable for
constructing a risk model, including TOMM40L, SNRPA, ILF3,
CPSF6 and NUP205. The risk coefficient of each gene was obtained
frommultivariate Cox regression analysis, and a fitted regressionmodel
was generated: RiskScore = 0.293*TOMM40L+0.558*SNRPA-
0.823*ILF3+0.493*CPSF6+0.464*NUP205. Regression models were
used to calculate risk scores in the test set TCGA-LIHC and two
independent verification sets HCCDB18 and GSE14520. A significant
negative correlationwith the sampleOS in their cohorts was found, with
the patients of a high-risk score showing a shorter survival time (Figures
5C–E). Meanwhile, the regression model showed stability and

availability in predicting 1–5 year(s) OS of cases in TCGA-LIHC
and GSE14520 (Figure 5F).

Regression model was an independent
predictor of the prognosis and clinical
characteristics of HCC

The heatmap of clinical characteristics corresponding to risk
score was drawn. Differences in molecular subtypes, survival status,
T stage and stage, and grade proportion were statistically significant
between low-risk and high-risk groups. The high-risk group was
characterized by a high C1 ratio, high mortality rate, later T stage
and stage, and grade distribution, while these clinical traits in the
low-risk group were significantly weaker (Figure 6A). The actual
univariate Cox regression analysis showed that the risk score and T
stage and stage were significantly correlated with HCC prognosis.
The risk score was identified as an independent prognostic index of
HCC by Multivariate Cox regression analysis (Figures 6B, C).
Synthesizing information on T Stage, Stage, and RiskScore, we
constructed the nomogram for assessing clinical outcomes of
HCC patients at 1, 3, and 5 years (Supplementary Figure S1A).
The calibration curves showed that the predicted clinical outcomes

FIGURE 6
Regression model was an independent predictor of prognosis and clinical characteristics of HCC. (A) Heatmaps of clinical traits corresponding to
risk score. (B) Univariate Cox regression analysis of the risk score and clinical traits. (C) Multivariate Cox regression analysis of prognostic traits of HCC
based on univariate Cox regression analysis. (D)Difference in the risk score between samples stratified according to the T stage. (E)Differences in the risk
score between samples stratified by stage. (F) Correlation between the grade and the risk score of the sample.
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fit well with the actual observed clinical outcomes and that the
nomogram had a good predictive value (Supplementary Figure S1B).
In addition, the decision curve also showed that there is an excellent
applicability of the nomogram and RiskScore in assessing clinical

outcomes in HCC (Supplementary Figure S1C). The risk score of the
T3–T4 stage, stage Ⅲ–Ⅳ, and G3–G4 samples was significantly
higher than that of the T1–T2 stage, stage Ⅰ–Ⅱ, and G1–G2 samples,
respectively (Figures 6D–F).

FIGURE 7
Relationship between the risk score and immune infiltration. (A) Immune cell infiltration was evaluated according to the risk score stratification. (B)
Correlation of the ssGSEA score of the risk score and immune cells.
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Relationship between the risk score and
immune infiltration

The degree of immune cell infiltration was evaluated according to
the risk score. We detected that the cells with the most different degrees
of infiltration in the high-risk and low-risk groups were type 2 T helper
cells, central memory CD4 T cells, type 1 T helper cells, plasmacytoid
dendritic cells, effector memory CD4 T cells, activated CD4 T cells,
activated CD8 T cells, eosinophils, natural killer T cells, CD56 dim
natural killer cells, activated dendritic cells, and effector memory
CD8 T cells (Figure 7A). The ssGSEA score correlation analysis of
the risk score and immune cells showed that the degree of correlation
between the 12 cells had infiltration and risk score differences between
the high-risk and low-risk groups. The correlation between risk score
and CD56 dim natural killer cells was almost negligible, and the other
11 cells showed a significant correlation with risk score. Among them,
effector memory CD4 T cells, activated CD4 T cells, natural killer
T cells, plasmacytoid dendritic cells, type 2 T helper cells, central
memory CD4 T cells, and activated dendritic cells showed a
significant positive correlation with the risk score, while activated
CD8 T cells, effector memory CD8 T cells and type 1 T helper cells,

and eosinophils were significantly negatively correlated with the risk
sore (Figure 7B).

PCR validation of RiskScore

To verify the reliability of the RiskScore, we detected the
expression of the five genes by PCR. The results of PCR
corroborated the reliability of the RiskScore, and we found that
TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were significantly
upregulated in the HCC cell lines Hep3B2.1-7 and Huh-7 compared
to human normal liver epithelial cells THLE-3 (Figures 8A–E).

Discussion

The large-scale drug genome cell line database has in-depth multi-
group characterization and extensive pharmacological characteristics of
human cancer cell lines, and is an important tool to reveal the potential
mechanism of inducing drug sensitivity of anticancer drug compounds
(Kusch and Schuppert, 2020). This study explored how HCC

FIGURE 8
Results of qRT-PCR of the five genes that composed the RiskScore. (A) TOMM40L; (B) SNRPA; (C) ILF3; (D) CPSF6; (E) NUP205.
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heterogeneity of HCC was affected by the molecules related to 5-FU
sensitivity based on the expression profile of the cancer cell line in the
largest public resource and the sensitivity data on 5-FU, a commonly
used cancer chemotherapy drug. The WGCNA analysis identified the
midnight blue gene module with the highest correlation with 5-FU
sensitivity and 43 hub genes in the module. Three subgroups of HCC
were defined according to their expression. This classification supported
most of the genomic variation, TME, and pathological pathway
heterogeneity observed in HCC.

Currently, 5-FU was the mainstream tumor chemotherapeutic
agent (Blondy et al., 2020; Vodenkova et al., 2020). Accumulating
evidence illustrated that 5-FU exhibited cytotoxicity by binding to
DNA or RNA and modulating DNA synthesis-induced cell cycle
disruption or apoptosis (Sethy and Kundu, 2021). Cell cycle
abnormalities are typical in tumor cells, and inhibition of the
tumor cell cycle is essential for suppressing cell proliferation and
spreading, and even restoring immune cell surveillance functions
(Liu et al., 2022). Based on the results of GO and KEGG annotations,
we showed that midnight blue endogenous genes were closely
associated not only with mRNA processing, regulation of mRNA
polyadenylation, and positive regulation of the telomere capping
pathway but also with the transcription elongation factor complex,
DNA polymerase III complex synthesis. 5-FU disrupted the
homologous recombination repair process in cells, leading to
DNA damage and inhibition of proliferation in tumor cells
(Srinivas et al., 2015). The mRNA processing, regulation of
mRNA polyadenylation, and positive regulation of telomere
capping were important regulators in the cell cycle in normal
cells. The genes within the midnight blue module were
recognized as gene modules sensitive to 5-FU treatment,
suggesting the possibility that HCC might act through these
biological processes when treated with 5-FU.

In terms of survival outcomes, C3 possessed the most satisfied
survival outcome when compared with C1 and C2, and
C1 demonstrated the shortest OS. Each subgroup also showed its
own unique clinical characteristics, C2 had the highest proportion of
male subjects and samples aged over 60 years old than C1 and C3.
C1 with the shortest OS was characterized by a high proportion of
clinical grade and later T stage and stage, and most metabolic
pathways of this subtype were significantly inhibited. These bad
characteristics were also reflected in OS, and C1 had the most
unfavorable survival outcome. The gene with the highest mutation
rate was TP53 in C1, CTNNB1 in C2, and TTN in C3. This indicated
that C1 was a tumorigenesis subtype driven by TP53 mutation,
C2 was a tumorigenesis subtype driven by CTNNB1 mutation, and
C3 was a tumorigenesis subtype driven by TTN mutation.
TP53 mutations and CTNNB1 mutations were most common in
HCC. In a study by Gao et al. (2019), HCC patients characterized by
TP53 mutations had a dysregulated cell cycle and DNA damage
repair pathways, and TP53 was the gene with the highest mutation
frequency. Low TP53 levels inhibited HCC development. Significant
activation of metabolic reprogramming was demonstrated in
patients enriched with CTNNB1 mutations. This phenomenon
promoted glycolytic metabolic intensity and cell proliferation in
HCC. It was also confirmed that the frequency of the R249S
mutation in TP53 revealed the risk of HCC, and TP53 deletion
increased the viability of hepatocellular carcinoma cells and the
trend of poor prognosis (Lam et al., 2022). Interestingly, the

C3 isoform might be a TTN mutation-driven molecular subtype
that exhibited a high mutational profile. However, Kunadirek et al.
(2021) noted that TTN mutations in blood predicted unfavorable
prognostic status in HCC patients. The results of survival analysis in
this study demonstrated that the C1 subtype predicted had an
unfavorable prognosis, C2 subtype had a moderate prognosis,
and C3 subtype had the best prognosis. However, we must point
out that there were differences in sampling between them as tissue
samples in our study were different from the blood samples in
Kunadirek’s. Second, HCC was a highly heterogeneous tumor both
in terms of genomic composition and gene mutations (Jeng et al.,
2015). The research challenges posed by the heterogeneity remain
difficult to resolve. Overall, the C1 subtype in our study was enriched
with TP53 mutations, and patients enriched with TP53 mutations
tended to have unfavorable survival outcomes. Patients enriched
with CTNNB1 mutations showed significant metabolic
reprogramming activity, and inhibition of glycolytic signaling
could be considered to target the C2 subtype to improve
prognosis. Different treatment options could be considered
for patients with C1 and C2 subtypes to achieve precision cancer
treatment.

Personalized treatment for HCC patients has been increasingly
recognized and applied in the clinical field. The development of risk
models represents an important step toward personalized HCC
monitoring. Although many risk models have been published,
few are used in routine nursing to provide information for HCC
monitoring decisions (Innes and Nahon, 2023). In this study, five of
the 43 hub genes in the midnight blue module were used to develop a
risk regression model, which was independent and had strong
discriminating power for predicting HCC prognosis and
indicating clinical traits. The pathological role and regulatory
mechanism of some of them in cancerization have been
recognized. SNRPA is a shear factor associated with
microvascular invasion and promotes the metastasis of HCC by
activating the NOTCH1/Snail pathway mediated by the circSEC62/
miR-625–5p axis (Mo et al., 2023). ILF3 is overexpressed in patients
with primary colorectal cancer and promotes tumor growth by
directly regulating the mRNA stability of SGOC gene (Li et al., 2020).
CPSF6 is upregulated in HCC and induces metabolic changes in
hepatocytes through the alternative polyadenylation of NQO1 (Tan
et al., 2021). Although the potential effects of these genes on cancer
have been reported, the risk model integrating these genes was an
innovative exploration and could be used as an indicator of the
prognosis of HCC.

In summary, this study classified HCC subtypes based on the
sensitivity to 5-FU. The results supported the prognostic differences
observed in HCC and the heterogeneity of most genomic variations,
TME, and pathological pathways. This study also provided an
independent prognostic risk regression model integrated with five
5-FU-related genes, contributing to the study of individualized HCC
monitoring.
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deciphering heterogeneity to
enhance patient management

Na Yuan1†, Hai-Hua Pan1†, Yan-Shan Liang2, Hui-Lin Hu1,
Chang-Lin Zhai1* and Bo Wang3*
1The First Hospital of Jiaxing Affiliated Hospitial of Jiaxing University, Jiaxing, Zhejiang, China, 2Affiliated
Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China, 3The Second Affiliated
Hospital of Jiaxing University, Jiaxing, Zhejiang, China

Patients diagnosed with cancer face an increased risk of cardiovascular events in
the short term, while those experiencing acute myocardial infarction (AMI) have a
higher incidence of cancer. Given limitations in clinical resources, identifying
shared biomarkers offers a cost-effective approach to risk assessment by
minimizing the need for multiple tests and screenings. Hence, it is crucial to
identify common biomarkers for both cancer survival and AMI prediction. Our
study suggests that monocyte-derived biomarkers, specifically WEE1, PYHIN1,
SEC61A2, and HAL, hold potential as predictors for cancer prognosis and AMI. We
employed a novel formula to analyzemRNA levels in clinical samples frompatients
with AMI and cancer, resulting in the development of a new risk score based on
expression profiles. By categorizing patients into high-risk and low-risk groups
based on the median risk score, we observed significantly poorer overall survival
among high-risk patients in cancer cohorts using Kaplan-Meier analysis.
Furthermore, calibration curves, decision curve analysis (DCA), and clinical
impact curve analyses provided additional evidence supporting the robust
diagnostic capacity of the risk score for AMI. Noteworthy is the shared
activation of the Notch Signaling pathway, which may shed light on common
high-risk factors underlying both AMI and cancer. Additionally, we validated the
differential expression of these genes in cell lines and clinical samples,
respectively, reinforcing their potential as meaningful biomarkers. In
conclusion, our study demonstrates the promise of mRNA levels as biomarkers
and emphasizes the significance of further research for validation and refinement.
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Introduction

Acute myocardial infarction (AMI) and cancer are significant
contributors to morbidity and mortality globally (Psaty and Vasan,
2023). Despite limited references on the relationship between these
two conditions, research indicates that patients diagnosed with
cancer are at a higher short-term risk of experiencing
cardiovascular events, while those with acute myocardial
infarction have an increased incidence of cancer (Rinde et al.,
2017; Leening et al., 2023). These potential links imply a latent
connection exists between cancer survival and AMI incidence.
Therefore, identifying common biomarkers for both cancer
survival and AMI prediction is of utmost importance.

The observation that cancer patients face an elevated risk of
cardiovascular events is a matter of concern. Studies have shown
that cancer survivors experience cardiac complications, such as
myocardial infarction, heart failure, and arrhythmias, at rates higher
than the general population (Howard et al., 2019). It is hypothesized
that this increased risk is multifactorial, involving both direct effects of
cancer treatment (e.g., chemotherapy-induced cardiotoxicity) and
shared risk factors between cancer and cardiovascular diseases
(Shaikh and Shih, 2012). For instance, inflammation, oxidative
stress, and endothelial dysfunction, which are common processes in
both cancer and cardiovascular diseases, may contribute to the
development of adverse cardiac events in cancer patients (Libby and
Kobold, 2019). Therefore, identifying common biomarkers that can
predict both cancer survival and AMI might help identify patients at
higher risk for cardiovascular complications during cancer treatment.

On the other hand, the association between AMI and the
subsequent occurrence of cancer has also been documented.
Multiple studies have demonstrated an increased incidence of
various types of cancer, including lung, colorectal, and hematological
malignancies, among individuals with a history of AMI (Leening et al.,
2023). Given the potential bidirectional relationship between AMI and
cancer, it is vital to explore common biomarkers that might aid in early
detection and improve patient outcomes for both conditions. In recent
years, advances in molecular profiling technologies have paved the way
for the discovery of potential shared biomarkers for cancer survival and
AMI prediction (Zhao et al., 2022). Transcriptomics has emerged as a
powerful tool for comprehensively analyzing gene expression patterns
and identifying differentially expressed genes associated with both
diseases (Wang et al., 2009; Ding et al., 2022). Integration of multi-
omics data, combining transcriptomics with other molecular profiling
techniques such as genomics and proteomics (Reel et al., 2021), holds
even greater potential in unraveling the complex interplay between
cancer and AMI. In our study, we used ovarian cancer (OC) samples to
explore the common diagnostic and prognostic signature of AMI may
seem unconventional at first. However, OC and AMI might share
certain risk factors, such as obesity, diabetes, and smoking, which can
predispose individuals to both conditions (Stewart et al., 2019; Kuhn
et al., 2020). In this study, we used OC samples as an example. By
studyingOC samples, we can investigate if there are commonmolecular
pathways or biomarkers (Aydin et al., 2019) associated with these
shared pathways that might contribute to the development of both OC
and AMI.

In our study, we applied a novel formula to analyze mRNA levels
in clinical samples from AMI and OC. The calculation resulted in
the generation of a new risk score based on the expression profiles.

The utilization of risk scores demonstrates the ability to accurately
predict the probability of AMI incidence and the prognosis of OC
patients. Most important of all, these findings demonstrate the
potential of utilizing shared biomarkers (WEE1, PYHIN1,
SEC61A2, and HAL) to predict outcomes in both cancer and
AMI patients.

Materials and methods

Pre-processing of bulk transcriptome data

For theAMI cohort, two independent datasets were analyzed on the
GPL6244 platform, namely, GSE59867 (111 AMI patients and 46 stable
CAD patients at admission) and GSE62646 (28 AMI patients and
14 stable CAD patients at admission) (Pan et al., 2023). The peripheral
blood cohort of OC was obtained from GSE31682, which comprises
20 healthy controls and 48 OC patients. After excluding patients with
incomplete follow-up information (Feng et al., 2022), we obtained RNA
sequencing (RNA-seq) data from both the Cancer Genome Atlas
(TCGA) database (Blum et al., 2018) and the International Cancer
Genome Consortium (ICGC) database. Additionally, data from the
Gene Expression Omnibus (GEO) database (Barrett et al., 2013) was
obtained for theGPL570 platform (n= 597), which includedGSE19829,
GSE18520, GSE9891, GSE26193, GSE30161, and GSE63885. To
integrate the ICGA and TCGA data and define the meta-RNA-seq
dataset, the meta-microarray dataset was defined using the
GPL570 platform. Finally, the “sva” package was utilized to
effectively address and eliminate batch effects across the different
datasets.

Pre-processing of single-cell RNA
sequencing data

Considering the limited availability of human AMI single-cell
RNA (scRNA) sequencing datasets, we employed amouse single-cell
sequencing dataset (GSE135310) as an alternative (Pan et al., 2023).
This dataset includes single-cell RNA sequencing files for cardiac
CD45+ total leukocytes, isolated from mice subjected to AMI or
sham surgery at various time points. As we lacked peripheral blood
single-cell data from healthy individuals within the same batch, we
focused on analyzing datasets obtained before and after
chemotherapy from the same batch. In this regard, we obtained
the GSE213243 dataset, comprising 2 peripheral blood samples from
OC patients. In summary, we performed a series of data filtering
steps to ensure the quality of our scRNA data. We retained cells with
an expression of RNA features ranging from 200 to 2500 while
keeping the percentage of mitochondrial RNA content below 10%.
Additionally, we employed the Harmony algorithm to mitigate
batch effects in our analysis. To annotate all clusters, we utilized
the “SingleR” package for comprehensive annotation.

Clinical samples

As consistent with our previous publication (Pan et al., 2023), we
performed mRNA validation of peripheral blood samples using the
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same cohort of patients. In brief, ten early AMI patients and ten
CAD patients were recruited from our hospital between January
2023 and March 2023. Blood samples were collected from the
patients shortly after experiencing chest pain, before the
administration of antiplatelet or anticoagulant drugs. Peripheral
blood mononuclear cells (PBMCs) were isolated from the collected
blood samples using established techniques (Boyum, , 1968).

Immunohistochemical techniques and RT-
qPCR

Immunohistochemistry (IHC) staining involves the use of
antibodies that are specifically designed to recognize and bind to
target antigens of interest. The antibodies are labeled with a
chromogenic or fluorescent dye, enabling the visualization and
localization of the target molecules under a microscope. The IHC
sections utilized in this study were obtained from the Human
Protein Atlas (HPA) database. To validate the mRNA expression
levels of AMI, PBMCs from patients were utilized. As for OC, cell
lines were employed for the validation of mRNA expression levels.
IOSE-80 (CP-H055), and SKOV3 (CL-0215) were purchased from
Procell Life Science and Technology Co. Ltd. They were cultured in
RPMI 1640 medium supplemented with 10% FBS and 1% penicillin/
streptomycin at 37°C in a humidified incubator with 5% CO2. In
short, total RNA was extracted from samples using the FastPure
Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, Nanjing, China).
Subsequently, RT-qPCR was performed on a LightCycler 480 II
Real-time PCR instrument with the HiScript III All-in-one RT
SuperMix Perfect for qPCR (Vazyme, Nanjing, China) and
ChamQ universal SYBR qPCR Master Mix (Vazyme, Nanjing,
China). We used the 2-̂ΔΔCt method to calculate gene expression
levels. The primer sequences used were designed based on
previously published references and PrimerBank database (Wang
et al., 2012), including WEE1 (Ma et al., 2022), PYHIN1 (Lee et al.,
2019), SEC61A2, and HAL (Kozaczek et al., 2019).

CIBERSORT

CIBERSORT is a widely used computational tool for analyzing
gene expression data and estimating the relative abundance of
immune cell populations within complex tissue samples (Chen
et al., 2018). It utilizes a deconvolution algorithm to infer cell
type proportions from bulk RNA sequencing data. We used the
mRNA expression profile data from GSE59867, GSE31682, and
meta-RNA-seq datasets (TCGA-OV and ICGC-OV) as inputs. The
algorithm utilizes a support vector regression model trained on the
signature matrix to determine the relative abundance of each
cell type.

Weighted gene co-expression network
analysis

In our study, we utilized the Weighted Gene Co-expression
Network Analysis (WGCNA) (Langfelder and Horvath, 2008) in
order to investigate gene expression patterns and identify gene

modules with similar expression profiles. WGCNA is a powerful
tool that allows us to construct a co-expression network based on
correlations between genes across different samples. By analyzing
the module and module-trait (monocyte score from CIBERSORT)
relationships, we can uncover biologically relevant modules
associated with specific traits or phenotypes of interest. We
established the optimal soft thresholding powers (β) for OC and
AMI samples to be β = 7 and β = 9, respectively. Additionally, we
ensured that each module consisted of no fewer than 50 genes.

Least absolute shrinkage and selection
operator regression

We used cross-validation (10-flod) to determine the optimal
value for λ. In short, our objective was to determine the optimal
model λ value by constructing a penalty function with the
occurrence of AMI as the endpoint event and the variation in
gene expression as the variable for each sample. The Least
absolute shrinkage and selection operator (LASSO) regression
model is fit on the training set for each λ value (Cheng et al.,
2022), and the performance is evaluated on the validation set using a
chosen metric, such as mean squared error or area under the curve.
The λ value that minimizes the error on the validation set is
considered the optimal choice. Hence, we conducted a more
comprehensive screening of potential diagnostic genes from the
pool of monocyte-associated genes.

Establishment and validation of the logstic
regression model

We utilized a nomogram based on Logistic regression to facilitate
predictive modeling and risk assessment (Zhang et al., 2022). By fitting
the logistic regression equation, we estimated the coefficients of the four
variables (WEE1, PYHIN1, SEC61A2, and HAL) and captured their
contributions to the probability of the outcome. Each predictor variable
was assigned a corresponding point value based on its coefficient. The
total points were summed up to determine the individual’s predicted
probability of the outcome. Moreover, we utilized calibration curves,
decision curve analysis (DCA) curves, and clinical impact curves to
validate the performance of the nomogram in GSE62646 and
GSE59867.

Establishment and validation of the Cox
regression model

The Cox regression model, also referred to as the proportional
hazards model, is a widely employed statistical approach utilized in
survival analysis to analyze time-to-event data. To construct the Cox
regression model, we initially selected a group of potential predictor
variables, namely, WEE1, PYHIN1, SEC61A2, and HAL. Subsequently,
we performed model training by fitting the Cox regression equation to
the meta-RNA-seq cohorts, thereby estimating the coefficients for each
gene. The risk score was then calculated using the formula: risk score =
Σ (Expi * coefi), where coef and Exp represent the coefficient and
expression of each gene, respectively. After establishing the Cox
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regression model, we proceeded to validate its performance utilizing
meta-microarray cohorts. We employed calibration plots, receiver
operator characteristic (ROC) curves, and log-rank tests to assess the
model’s efficacy in distinguishing between high-risk and low-risk
individuals.

Enrichment analysis

We employed hallmark gene sets (h.all.v7.5.1.symbols.gmt)
(Liberzon et al., 2015), which are collections of genes

representing key biological processes and signaling pathways.
These gene sets cover a wide range of fundamental cellular
activities, such as cell cycle regulation, DNA repair, immune
response, and metabolism. By applying Gene Set Variation
Analysis (GSVA) (Hanzelmann et al., 2013), we transformed our
gene expression data into pathway enrichment scores for each
sample. This was achieved by comparing the expression levels of
genes within each hallmark gene set to the background distribution
in our dataset. The resulting enrichment scores provided
quantitative measures of the activity levels of these pathways in
individual samples.

FIGURE 1
Analysis of cell proportions in AMI and CAD patients and OC patients. (A) Comparison of cell proportions using the CIBERSORT algorithm in
peripheral blood microarray dataset of AMI and CAD patients. (B) Comparison of cell proportions using the CIBERSORT algorithm in peripheral blood
microarray dataset of OC patients compared to normal individuals. (C) Dimensionality reduction analysis on single-cell data from sham and AMI. (D) The
proportion of cells in sham and AMI groups. (E) Dimensionality reduction analysis on single-cell data fromOC patients. (F) The proportion of cells in
OC groups (Before and after chemotherapy).
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Statistical analysis

Statistical analysis was performed using R software (v4.1.2). To
evaluate differences, the significance of most cases was assessed using
the Wilcoxon rank-sum test. Statistical significance was defined as a
p-value below 0.05 and indicated as *p< 0.05, **p< 0.01, or ***p< 0.001.

Results

Monocytes may serve as indicators for
predicting AMI and the prognosis of cancer

Coronary artery disease (CAD) is a principal cause of morbidity
and mortality worldwide. Patients with stable CAD are still at risk of
AMI, which is a severe complication of CAD. Thus, in clinical settings,
patients with CAD are commonly used as control groups to investigate
changes in blood indicators among AMI patients. In our study, we first
compared differences in cell proportions using the CIBERSORT
algorithm on a peripheral blood microarray dataset consisting of
AMI and CAD patients. AMI patients exhibit decreased levels of
CD8+ T cells, memory CD4+ T cells, resting NK cells, and M2-type
macrophages. Conversely, they have increased levels of Tregs, resting
mast cells, neutrophils, and monocytes (Figure 1A). Subsequently, we
further investigated the changes in cell content in the peripheral blood
of OC patients compared to normal individuals. Interestingly, only the
trend of monocytes cell changes was consistent with that of AMI
patients. This suggests a potential common role of monocytes in both
conditions (Figure 1B). To further validate the robustness of our results,
we conducted dimensionality reduction analysis on single-cell data
from both the sham and AMI patients, resulting in six distinct clusters
that could be clearly distinguished: monocytes, endothelial cells,
macrophages, granulocytes, NK cells, and B cells (Figure 1C). Of
note, after AMI occurred, the proportion of monocytes increased,
consistent with the results of bulk transcriptome analysis. Due to the
lack of peripheral blood single-cell data from healthy individuals from
the same batch, we analyzed the datasets obtained before and after
chemotherapy from the same batch. Similarly, the single-cell data from
patients were sorted into four clusters (Figure 1D), with a significant
decrease in the proportion of monocytes observed after chemotherapy.
Therefore, the proportion of monocytes in the peripheral blood of
patients decreased when the tumor-load was reduced by chemotherapy.
Conversely, monocytes proportion significantly increased when the
tumor occurred (Figure 1E). Given that pathology is often considered
the gold standard for cancer diagnosis, we re-assessed the prognostic
value of monocytes (CD14 is a typical marker for monocytes) in the
TCGA-OV cohort (cancer tissues). Our results also demonstrate that
monocytes are a risk factor for OC prognosis. Specifically, as the
expression of CD14 increases in bulk tissues, the prognosis of
patients worsens (Supplementary Figure S1).

Biomarkers derived from monocytes using
WGCNA in AMI and cancer

To enhance gene filtration frommonocytes, we integrated the entire
gene expression profile into WGCNA. Additionally, we utilized the
score ofmonocyte expression in the CIBERSORT algorithm as a clinical

feature to identify key modules most pertinent to monocyte expression.
During the construction of the co-expression network, we observed
optimal soft threshold powers of β = 7 for OC (Figure 2A) and β = 9 for
AMI samples (Figure 2B). Through careful examination of correlation
coefficients and p-values (Figures 2C, D), we determined that the purple
and brown modules exhibited the strongest absolute correlation with
the monocyte score in OC (Figure 2E), while in AMI, the purple and
yellowmodules displayed the strongest absolute correlation (Figure 2F).
As a result, we designated these four modules as key modules and
subsequently identified 23 overlapping genes within them (Figure 2G).
Subsequently, we conducted further screening of the aforementioned
23 genes in the AMI dataset using the LASSO algorithm. Our objective
was to determine the optimal model λ value by constructing a penalty
function with the occurrence of AMI as the endpoint event and the
variation in gene expression as the variable for each sample (Figures 2H,
I). Consequently, we identified seven genes: HRH4, LTBR,WEE1,HAL,
PYHIN1, S100A12, and SEC61A2. Of particular significance, based on
these seven genes, we proceeded with prognostic validation utilizing the
RNA-seq cohort of OC. Our findings indicated that WEE1, PYHIN1,
and SEC61A2 served as risk factors impacting the prognosis of ovarian
cancer, while HAL demonstrated a protective effect (Supplementary
Figure S2).

In summary, our findings suggest that WEE1, PYHIN1,
SEC61A2, and HAL derived from monocytes may serve as a
potential predictor for AMI and cancer prognosis.

Establishment of the monocytes-related
diagnostic signature in AMI

In the AMI dataset, we made noteworthy observations. Firstly,
WEE1 (p = 2.4e-11) exhibited significant downregulation and displayed
superior diagnostic potential, as evidenced by anAUCof 0.839 (95%CI:
0.768–0.899), as shown in Figure 3A. Similarly, PYHIN1 (Figure 3B)
and SEC61A2 (Figure 3C) were markedly downregulated in AMI
samples and demonstrated favorable diagnostic performance, with
AUCs of 0.782 and 0.747, respectively. It is worth mentioning that
HAL exhibited significant upregulation in AMI samples, yielding an
AUC of 0.766 (Figure 3D). To further enhance the diagnostic accuracy
of the model and facilitate its clinical application, we developed a
nomogram utilizing the aforementioned four genes as predictors for
AMI (Figure 3E). The calibration curve demonstrated the ability of the
nomogram to accurately and reliably diagnose AMI among CAD
patients (Figure 3F). Moreover, the DCA curve (Figure 3G) and
decision curve analysis (Figure 3H) provided further evidence of its
robust diagnostic capacity. Importantly, in the validation dataset
(GSE62646), the calibration curve (Figure 3I), DCA curve
(Figure 3J), and clinical impact curve (Figure 3K) consistently
underscored the excellent external validation capability of the
nomogram.

Establishment of the monocytes-related
prognostic signature in cancer

Considering that cancer treatment primarily involves surgery
and tissue samples are readily available, we conducted a
comprehensive investigation into the expression of the
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aforementioned four genes across various tissue samples by
combining the GTEx database and the HPA database. At both
the protein and mRNA levels, WEE1 exhibited significantly
higher expression in tumor samples (Figure 4A). Similarly,
PYHIN1 displayed significantly higher mRNA expression in
tumor samples, although no significant protein staining

(Figure 4B). In contrast, HAL did not exhibit significant
differences in mRNA expression between the two sample
types, but protein upregulation was evident in tumor samples
(Figure 4C). Unfortunately, an IHC antibody for SEC61A2 was
unavailable. However, we characterized the protein’s structure
and confirmed its significant upregulation at the mRNA level in

FIGURE 2
Construction and Analysis of Co-expression Networks for Monocyte-Related Genes. (A)Determination of soft threshold powers (β) for OC samples
in the co-expression network construction. (B) Determination of soft threshold powers (β) for AMI samples in the co-expression network construction.
(C) Clustering dendrograms, with dissimilarity based on topological overlap, together with assigned module colors in OC datasets. (D) Clustering
dendrograms, with dissimilarity based on topological overlap, together with assignedmodule colors in AMI datasets. (E)Correlation coefficients and
p-values used to identify key modules most correlated with the monocyte score in OC datasets. (F) Correlation coefficients and p-values used to identify
key modules most correlated with the monocyte score in AMI datasets. (G) Venn plot of key modules. (H) The gene signature selection of optimal
parameter (lambda). (I) LASSO coefficient profiles genes were selected by the optimal lambda.

Frontiers in Pharmacology frontiersin.org06

Yuan et al. 10.3389/fphar.2023.1249145

159

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249145


normal samples (Figure 4D). Subsequently, to quantify the
survival risk for each ovarian cancer patient, we developed a
risk model utilizing a multi-factorial Cox formula (Figure 4D)
based on the four aforementioned genes (WEE1, PYHIN1,
SEC61A2, and HAL). The risk score for each OC patient was
calculated using the equation: Risk score = (−0.195 ×

WEE1 expression) + (−0.335 × PYHIN1 expression) +
(−0.191 × SEC61A2 expression) + (0.137 × HAL expression).
Subsequently, survival curves were generated for each gene in the
model, revealing intriguing findings. PYHIN1, SEC61A2, and
WEE1 emerged as protective genes, suggesting that reduced
expression of these genes may contribute to prolonged overall

FIGURE 3
Evaluation of Diagnostic Performance and Clinical Application of the AMI Nomogram. (A) ROC curve and box plot of differential expression of
WEE1 in different samples. (B) ROC curve and box plot of differential expression of PYHIN1 in different samples. (C) ROC curve and box plot of differential
expression of SEC61A2 in different samples. (D) ROC curve and box plot of differential expression of HAL in different samples. (E) Development of a
nomogram utilizing WEE1, PYHIN1, SEC61A2, and HAL as predictors for AMI diagnosis. (F) Calibration curve showing the accuracy and reliability of
the nomogram in diagnosing AMI among CAD patients. (G)DCA curve demonstrating the diagnostic capacity of the nomogram. (H)Clinical impact curve
illustrating the robustness of the nomogram for AMI diagnosis. (I) External validation of the nomogram using calibration curve. (J) External validation of
the nomogram using DCA curve. (K) External validation of the nomogram using clinical impact curve.
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survival in patients (Figure 4F). Conversely, HAL was identified
as a high-risk gene, implying that increased expression of HAL
may be associated with decreased patient survival. Notably, our
expression level assessment demonstrated predominantly
negative correlations among the genes (Figure 4G).
Specifically, HAL displayed negative correlations with
WEE1 and PYHIN1, while exhibiting a positive correlation
with SEC61A2. Regarding risk scores, a noteworthy positive

correlation was solely observed with HAL (R = 0.442, p <
0.001). The formula described above was applied to both the
meta-RNA-seq cohort and the meta-microarray cohort, resulting
in the generation of a new risk score based on the expression
profile. Patients were then classified into high-risk and low-risk
categories using the median risk score. Kaplan-Meier survival
analysis conducted in the meta-RNA-seq cohort revealed that
high-risk patients exhibited significantly worse overall survival

FIGURE 4
Expression Analysis and Prognostic Model Development. (A) The expression level (protein and mRNA) of WEE1 in different samples levels. (B) The
expression level (protein andmRNA) of PYHIN1 in different samples levels. (C) The expression level (protein andmRNA) of HAL in different samples levels.
(D) The expression level (mRNA) protein structure and of SEC61A2 in different samples levels. (E)Development of a risk model using a multi-factorial Cox
formula based on the four genes (WEE1, PYHIN1, SEC61A2, and HAL). (F) Survival curves showing the impact of each gene in the model on overall
survival. (G) Correlations among the genes involved in risk model.
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compared to low-risk patients (Figure 5A). Similarly, in the meta-
microarray cohort, the high-risk group had a lower likelihood of
survival (Figure 5B). To assess the prognostic accuracy of the
prognostic features, ROC curves for 1, 3, 5, and 10-year OS were
analyzed. In the meta-RNA-seq training cohort, the AUC values
for these time points were 0.728, 0.692, 0.673, and 0.708,
respectively, (Figure 5C). Similarly, the meta-microarray
validation set showed superior AUC values of 0.595, 0.578,

0.625, and 0.697 for the 1, 3, 5, and 10-year AUCs,
respectively, (Figure 5D).

To ensure consistency with the AMI risk signature, we
utilized a visual nomogram to evaluate the risk of OC
patients by integrating FIGO staging and risk stratification
(Figure 5E). The accuracy of nomogram was assessed and
found to be superior in both the meta-RNA-seq cohort and
the meta-microarray cohort (Figure 5F). Additionally, ROC

FIGURE 5
Prognostic Analysis and Nomogram Evaluation. (A) Kaplan-Meier survival analysis in the meta-RNA-seq cohort. (B) Kaplan-Meier survival analysis in
themeta-microarray cohort. (C) Evaluation of prognostic accuracy using ROC curves for 1, 3, 5, and 10-year overall survival in themeta-RNA-seq cohort.
(D) Evaluation of prognostic accuracy using ROC curves for 1, 3, 5, and 10-year overall survival in the meta-microarray cohort. (E) Utilization of a visual
nomogram integrating FIGO staging and risk stratification to evaluate the risk of ovarian cancer patients. (F)Calibration curve of nomogramaccuracy
in both the meta-RNA-seq cohort and the meta-microarray cohort. (G) ROC analysis comparing the performance of the nomogram with other clinical
models and risk scores.
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analysis was performed, indicating that early survival
prediction using the nomogram outperformed other clinical
models and risk scores, whereas for long-term survival
prediction (>5 years), utilizing the risk score alone yielded
better results (Figure 5G).

Immune cell infiltration in AMI and cancer

We utilized the CIBERSORT method to analyze the immune
cell composition of tissue samples, comparing the high-risk and
low-risk groups, and associating them with model genes.
Interestingly, we discovered that the high-risk group exhibited

lower levels of CD8+ T cells and M1 macrophages (Figure 6A).
CD8+ T cells, typically referred to as cytotoxic T lymphocytes,
secrete various cytokines involved in immune responses
(Mittrucker et al., 2014), while M1-type macrophages are
capable of producing pro-inflammatory cytokines (Mills et al.,
2016). The reduction of CD8+ T cells and M1 macrophages may
indicate an “cold environment” in high-risk patients.
Furthermore, we observed a significant positive correlation
between the expression of the PYHIN1 gene and CD8+ T cells,
suggesting that the PYHIN1 gene primarily influences changes in
the tumor microenvironment by regulating the proliferation of
cytotoxic T lymphocytes (Figure 6B). We demonstrated the
specific distribution of risk scores and different immune cell

FIGURE 6
Immune Cell Composition Analysis and Model Gene Correlation. (A) Analysis of immune cell composition utilizing the CIBERSORTmethod in tissue
samples of high-risk and low-risk groups. (B) Characterization of the correlation between gene expression and immune cell. (C) Characterization of the
correlation between model genes and immune cells in AMI samples.
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types, revealing a negative correlation between CD8+ T cells and
risk scores. Moreover, it appears that changes in risk scores also
influence the proportions of M0/M1/M2 macrophages.
Furthermore, we characterized the correlation between model
genes and immune cells in AMI samples, which similarly showed
a strong significant positive correlation between PYHIN1 gene
expression and CD8+ T cells, potentially regulating the
proliferation of resting NK cells (Figure 6C).

Enrichment analysis

The analysis of hallmark pathway gene features using the
GSVA method reveals distinct differences between high-risk and
low-risk groups in OC. A direct comparison between these
groups demonstrates specific enrichment features. In the high-
risk group, the top five enriched features include Estrogen
Response Early, Myogenesis, Notch Signaling, Bile Acid
Metabolism, and Heme Metabolism (Figure 7A). Conversely,
the low-risk group exhibits the top five enriched features: E2F
Targets, G2M Checkpoint, PI3K/AKT/MTOR Signaling, MYC
Targets V1, and Mitotic Spindle. Additionally, we investigated
the significantly different pathway signals between patients with
AMI and coronary artery disease. The findings reveal substantial
activation of the P53 Pathway, Hypoxia, and Notch Signaling in
AMI patients (Figure 7B). Of particular interest is the shared
activation of the Notch Signaling pathway, which may provide
insight into the common high-risk factors underlying both AMI
and cancer.

Validation of mRNA levels in clinical samples

To validate the reliability of the four prognostic genes
identified, qRT-PCR testing was performed on both clinical
samples and cell lines. In PBMC samples, we observed
consistent differential expression patterns of the four genes
with the results obtained from the microarray analysis
(Figures 3A–D). Specifically, compared to CAD, WEE1,
PYHIN1, and SEC61A2 were downregulated in AMI, while
HAL exhibited upregulation (Supplementary Figure S3A).
Furthermore, it is noteworthy that the validation performed at
the cell lines also demonstrated consistent results with RNA-seq
analysis. Specifically, when compared to IOSE-80 cells,
SKOV3 cells exhibited upregulation in the expression of
WEE1, PYHIN1, and HAL, while the expression of
SEC61A2 was downregulated (Supplementary Figure S3B).

Discussion

Acute myocardial infarction (AMI) and cancer are two
prevalent and devastating health conditions that contribute
significantly to morbidity and mortality worldwide (Rinde
et al., 2017). While extensive research exists on each of these
diseases independently, the relationship between AMI and cancer
remains relatively understudied. Common biomarkers could help
identify patients who are at higher risk of developing either
cancer or AMI, enabling tailored preventive strategies. By
stratifying individuals based on their risk profiles, healthcare

FIGURE 7
Enrichment analysis. (A) The results of Gene Set Variation Analysis in OC samples. (B) The results of Gene Set Variation Analysis in AMI samples.
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providers can offer targeted interventions, such as lifestyle
modifications, pharmacological interventions, and regular
surveillance, with the goal of mitigating the risk of both
diseases. Moreover, in a clinical setting where resources are
often limited, utilizing shared biomarkers may offer a cost-
effective approach to risk assessment by reducing the need for
multiple tests and screenings.

In our study, our findings suggest that WEE1, PYHIN1,
SEC61A2, and HAL derived from monocytes may serve as a
potential predictor for AMI and cancer prognosis. WEE1, a
protein kinase involved in cell cycle regulation, acts as a critical
regulator of the DNA damage response pathway and plays a
crucial role in maintaining genomic stability (Okabe et al., 2023;
Su et al., 2023). Its overexpression has been observed in various
tumor types, contributing to tumor growth, chemoresistance,
and poor prognosis. Mohamed et al. (Mohamed et al., 2018)
discovered that overexpression of cyclin-dependent kinase 1
(CDK1), CDK4, cyclin B1, and cyclin D1 in adult
cardiomyocytes induces stable cell division, leading to
significant cardiac regeneration after myocardial infarction.
Importantly, they found that inhibition of Wee1, along with
Tgf-β, made CDK1 and cyclin B dispensable, highlighting the
role of WEE1 as a potential target for promoting cardiomyocyte
proliferation. Chen and Gardner (Chen and Gardner, 2004)
found that endothelin (ET) promotes proliferation of rat aortic
smooth muscle cells by increasing CDK2 and CDC2 activity
through the MEK/ERK/RSK signal transduction pathway. They
observed that ET treatment led to phosphorylation and
inactivation of the inhibitory kinase WEE1, along with
upregulation of CDC25A phosphatase, highlighting the role
of WEE1 in ET-dependent mitogenesis. PYHIN1, a member
of the PYHIN (pyrin and HIN domain-containing) protein
family, exerts complex functions ranging from tumor
suppression to tumor promotion, depending on the specific
tumor (Tong et al., 2019; Ding et al., 2022). Its involvement in
DNA damage repair, cell cycle regulation, immune responses,
and inflammation contributes to its multifaceted role in cancer
progression. de Las Fuentes et al. (2013) investigated the role of
SNP-loop diuretic interactions in hypertension across different
ethnic groups. In their study on African Americans (AA) and
European Americans (EA), they identified several promising
loci, including genes such as NUDT12, CHL1, GRIA1,
CACNB2, and PYHIN1 for systolic blood pressure (SBP) in
AA, and ID3 for diastolic blood pressure (DBP) in AA. These
findings suggest that PYHIN1 may play a role in the regulation
of blood pressure and response to anti-hypertensive drugs,
although no SNP reached genome-wide significance in this
small study. Further research in more diverse populations is
needed to identify additional variants. SEC61A2, a key
component of the SEC61 protein complex, plays a crucial
role in protein translocation across the endoplasmic
reticulum (ER) membrane (Connerly et al., 2005; Vendrov
et al., 2006) investigated NAD(P)H oxidase-mediated
signaling in atherosclerosis and identified several genes
regulated by thrombin-induced NAD(P)H oxidase, including
SEC61A2, in vascular smooth muscle cells (VSMCs). They
demonstrated that NAD(P)H oxidase plays a role in the
regulation of CD44 and BMP4-Id signaling pathway, which

are implicated in restenosis and atherosclerosis. These
findings suggest that SEC61A2 and other genes controlled by
NAD(P)H oxidase may have important implications for
vascular lesion formation. Homo sapiens histidine ammonia-
lyase (HAL) is an enzyme involved in the catabolism of
histidine. It plays a crucial role in modulating histidine
metabolism, which influences the immune response, and
angiogenesis (Krzymuska, 1964; Blaeschke et al., 2019)
conducted a study on pediatric medulloblastoma, a brain
tumor with minimal mutational load and low
immunogenicity. Despite this, they identified immunogenic
tumor-specific peptides in each patient, including peptides
derived from the HAL gene. These findings suggest that even
in tumors with low mutational load, specific T-cell
immunotherapy targeting neoantigens is feasible and may
guide future therapeutic approaches. Yu et al. (2015)
conducted a study on the association between genetic
variants, histidine levels, and incident coronary heart disease
(CHD). They identified three rare loss-of-function (LoF)
variants in the HAL gene, which encodes histidine ammonia-
lyase, and found that these variants had significant effects on
blood histidine levels. Furthermore, high blood histidine levels
were associated with a reduced risk of developing CHD,
suggesting a potential protective role of histidine in both
African Americans and European Americans. By identifying
these genes as potential biomarkers for both cancer prognosis
and AMI prediction, we aim to shed light on the shared
molecular mechanisms underlying these diseases. However,
further experimental studies are needed to elucidate the
specific roles of WEE1, PYHIN1, SEC61A2, and HAL in
disease occurrence, progression, and response to treatment in
both cancer and AMI.

Moreover, we also applied a novel formula to analyze mRNA
levels in clinical samples from a meta-RNA-seq cohort and a
meta-microarray cohort. The calculation resulted in the
generation of a new risk score based on the expression
profiles. Patients were classified into high-risk and low-risk
categories using the median risk score, and Kaplan-Meier
survival analysis revealed that high-risk patients exhibited
significantly poorer overall survival compared to low-risk
patients in both cohorts. These findings demonstrate the
potential of utilizing shared biomarkers to predict outcomes in
cancer patients. Furthermore, our study assessed the prognostic
accuracy of the obtained risk score using ROC curves for various
time points of overall survival. In the meta-RNA-seq training
cohort, the AUC values demonstrated moderate to good accuracy
for predicting 1, 3, 5, and 10-year overall survival. Similarly, in
the meta-microarray validation set, the AUC values indicated fair
to good accuracy for the same time points. To ensure consistent
presentation and enhance clinical utility, we integrated FIGO
staging and risk stratification into a visual nomogram. Similarly,
we created a nomogram for the diagnosis of AMI patients. The
calibration curve demonstrated the ability of the nomogram to
accurately and reliably diagnose AMI among CAD patients.
Moreover, the DCA curve and decision curve analysis
provided further evidence of its robust diagnostic capacity.
Importantly, in the validation dataset (GSE62646), the
calibration curve, DCA curve, and clinical impact curve
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consistently underscored the excellent external validation
capability of the nomogram.

In the context of cancer, the correlation between the risk
score and immune signatures indicates that patients with a higher
risk score may have a more dysregulated immune system, which
could influence their response to immunotherapy.
Immunotherapies, such as immune checkpoint inhibitors, have
revolutionized cancer treatment by enhancing the immune
system’s ability to recognize and eliminate tumor cells.
Therefore, our findings suggest that patients with a higher risk
score may be more suitable candidates for immunotherapeutic
approaches, as they may have a greater potential to respond to
these treatments. Similarly, in the context of AMI, the correlation
between the risk score and immune signatures implies that the
immune response plays a crucial role in the pathogenesis and
progression of cardiac injury. Targeting immune-related
pathways involved in AMI may provide new avenues for
therapeutic interventions. Modulating the immune response,
reducing inflammation, and promoting tissue repair are
potential strategies for improving outcomes in patients with
AMI. Therefore, understanding the relationship between the
risk score and immune signatures can guide the development
of novel therapies targeted at modulating the immune response
in the context of AMI.

Of particular interest is the shared activation of the Notch
Signaling pathway, which may provide insight into the common
high-risk factors underlying both AMI and cancer. The role of
Notch signaling in cancer is complex and contributes to
enhanced tumorigenesis through various mechanisms such as
angiogenesis, drug resistance, and epithelial to mesenchymal
transition. Inhibiting the Notch pathway has emerged as a
promising therapeutic strategy, and studies have shown
promising results with Notch inhibitory agents in reducing
tumorigenic aggressiveness (Sen and Ghosh, 2023; Yu et al.,
2023) investigated the role of Notch signaling in innate
lymphoid cells (ILCs) in acute coronary syndrome. The study
found that activation of the Notch signaling pathway was
associated with a shift from ILC1 to ILC2 subsets in
peripheral blood of AMI patients, and inhibiting Notch
signaling increased ILC1 frequency and interferon-γ secretion
while reducing ILC2 frequency and interleukin-5/interleukin-
13 production. These findings suggest that Notch signaling may
play a role in regulating ILC subsets in AMI patients. Liu et al.
(2019) investigated the role of miR-29b and its effect on
myocardial infarction (MI) in rats through the Notch
signaling pathway. The study demonstrated that
downregulation of miR-29b in the MI group was associated
with increased expression of Notch1, DII4, Hesl, and NICD1,
suggesting that miR-29b inhibits myocardial fibrosis and cardiac
hypertrophy by activating the Notch signaling pathway,
providing protection against MI. Matsuda et al. (2014)
investigated the impact of Notch signaling on human cardiac
stem cells (CSCs) and their therapeutic potential in an AMI rat
model. They found that reducing Notch signaling by culturing
CSCs at low plating density enhanced their proliferation, multi-
differentiation potential, and therapeutic efficacy, highlighting
the importance of optimizing culture conditions for CSCs in
clinical applications.

One practical application of the common signature is its
potential in guiding treatment decisions. By profiling the
common signature in individual patients, clinicians could
better stratify patients and predict their response to specific
therapies. For example, if a patient with cancer or AMI has a
dysregulated immune-related common signature, it suggests that
they may be more likely to benefit from immunotherapeutic or
immune-modulatory interventions. This information can help
inform treatment selection and improve personalized medicine
approaches. Furthermore, the common signature can also guide
the development of novel therapeutic strategies. By targeting the
shared dysregulated pathways identified in the common
signature, researchers and pharmaceutical companies can
develop new drugs or repurpose existing ones to effectively
treat both cancer and AMI. This approach could lead to the
development of combination therapies that simultaneously target
the common dysregulated pathways, potentially improving
treatment efficacy and patient outcomes. Additionally, the
common signature can have implications for prognosis and
risk stratification. By assessing the expression levels or
activation states of the common signature genes, clinicians
may be able to predict disease progression, recurrence, or
complications in both cancer and AMI patients. This
information can aid in tailoring surveillance strategies and
determining appropriate follow-up care for patients at
higher risk.

There are several limitations to consider in this study.
Firstly, the sample size of the clinical samples used for
mRNA analysis was not clearly stated, which may affect the
generalizability and statistical power of the findings.
Additionally, the study focused on a specific set of
biomarkers derived from monocytes, and it is possible that
other relevant biomarkers were not considered. The study
also primarily relied on retrospective data analysis, which
may introduce biases and limit causal interpretations.
Further prospective studies are needed to validate the
predictive value of these biomarkers in larger, diverse patient
populations. Finally, although the shared activation of the
Notch signaling pathway is mentioned as a potential
underlying factor, the specific mechanistic links between the
identified biomarkers, AMI, and cancer prognosis are not fully
explored or elucidated. Future research should aim to
investigate these mechanisms in order to better understand
the biological significance of these biomarkers.

Conclusion

In conclusion, the identification of shared biomarkers for cancer
survival and AMI prediction represents a critical step toward
improving patient care for individuals affected by these
conditions. By understanding the underlying pathophysiological
mechanisms and implementing personalized preventive strategies,
healthcare providers can potentially reduce the burden of both
diseases and improve patient outcomes. Our study demonstrates
the potential of utilizing mRNA levels as biomarkers and highlights
the importance of further research in this area to validate and refine
these findings.
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Background: Trace elements such as copper are essential for human health.
Recently the journal Nat Rev Cancer has put forward the concept of Cuproplasia, a
way of promoting tumor growth through reliance on copper. We attempted to
conduct a comprehensive analysis of Cuproplasia-related genes in lung
adenocarcinoma (LUAD) to explore the mechanism of action of Cuproplasia-
related genes in LUAD.

Method: Transcriptome data and clinical information of LUADwere obtained from
TCGA-LUAD and GSE31210, and prognostic models of Cuproplasia-related genes
were constructed and verified by regression analysis of GSVA, WGCNA, univariate
COX and lasso. The signal pathways affected by Cuproplasia-related genes were
analyzed by GO, KEGG and hallmarK pathway enrichment methods. Five
immunocell infiltration algorithms and IMVIGOR210 data were used to analyze
immune cell content and immunotherapy outcomes in the high-low risk group.

Results: In the results of WGCNA, BROWN and TURQUOISE were identified as
modules closely related to Cuproplasia score. In the end, lasso regression analysis
established a Cuproplasia-related signature (CRS) based on 24 genes, and the
prognosis of high-risk populations was worse in TCGA-LUAD and
GSE31210 datasets. The enrichment analysis showed that copper proliferation
wasmainly through chromosome, cell cycle, dna replication, g2m checkpoint and
other pathways. Immunoinfiltration analysis showed that there were differences in
the content of macrophages among the four algorithms. And IMVIGOR210 found
that the lower the score, the more effective the immunotherapy was.

Conclusion: The Cuproplasia related gene can be used to predict the prognosis
and immunotherapy outcome of LUAD patients, and may exert its effect by
affecting chromosome-related pathways and macrophages.

KEYWORDS

Cuproplasia, lung adenocarcinoma (LUAD), prognostic models, gene signatures,
immunotherapy

OPEN ACCESS

EDITED BY

Lin Qi,
Central South University, China

REVIEWED BY

Hongyu Zhao,
Hackensack University Medical Center,
United States
Liu Xiufeng,
Sun Yat-sen University Cancer Center,
China

*CORRESPONDENCE

Dehua Wu,
18602062748@163.com

Xie Weng,
wengxie.100@163.com

Yuming Chen,
chenyumingdg@163.com

†These authors have contributed equally
to this work

RECEIVED 15 June 2023
ACCEPTED 04 September 2023
PUBLISHED 15 September 2023

CITATION

Kuang J, Zheng Z, Ma W, Zeng S, Wu D,
Weng X and Chen Y (2023),
Comprehensive analysis of Cuproplasia
and immune microenvironment in
lung adenocarcinoma.
Front. Pharmacol. 14:1240736.
doi: 10.3389/fphar.2023.1240736

COPYRIGHT

© 2023 Kuang, Zheng, Ma, Zeng, Wu,
Weng and Chen. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 15 September 2023
DOI 10.3389/fphar.2023.1240736

169

https://www.frontiersin.org/articles/10.3389/fphar.2023.1240736/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1240736/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1240736/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1240736/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1240736&domain=pdf&date_stamp=2023-09-15
mailto:18602062748@163.com
mailto:18602062748@163.com
mailto:wengxie.100@163.com
mailto:wengxie.100@163.com
mailto:chenyumingdg@163.com
mailto:chenyumingdg@163.com
https://doi.org/10.3389/fphar.2023.1240736
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1240736


Introduction

There are currently more deaths from lung cancer than any
other type of cancer worldwide (Bray et al., 2018). Lung
adenocarcinoma (LUAD) is the most common pathological
type of lung cancer, and the incidence of LUAD is increasing
year by year. They tend to be younger, with fewer initial
symptoms and more rapid onset, The fatality rate is high and
the prognosis is poor. Most patients are diagnosed late period
(Hong et al., 2020).

The human body contains trace elements, which constitute a
minute fraction, 0.005%–0.01%, of its total composition, including
iron, zinc, nickel, copper, selenium, iodine, manganese, cobalt,
chromium, vanadium, fluorine, silicon, molybdenum, and tin
(Costa et al., 2023; Frydrych et al., 2023; Xie et al., 2023; Yang
et al., 2023). Despite their minimal content, trace elements are
crucial for human health as they perform essential physiological
and biochemical functions. Recent studies have revealed a significant
association between trace elements and tumor progression and
mortality (Aishajiang et al., 2023). One element of particular
interest is copper, the level of which is critical for tumor
development (van Renterghem et al., 2023). Both tumor tissue
and serum copper levels in cancer patients are significantly
elevated, with increased copper concentrations observed in a
variety of tumors, including breast, prostate, lymphoma, cervical,
lung, and stomach cancers (Denoyer et al., 2015).

Clinical evidence further underscores the importance of copper
in cancer development. Specifically, abnormal copper accumulation
in Wilson disease patients fosters malignant transformation of liver
cells (Jopowicz and Tarnacka, 2023). Moreover, the Mitogen-
activated protein kinases (MAPK) signaling pathways, which are
intimately involved in the development of various cancers (Turski
et al., 2012), are influenced by copper levels. Approximately 40%–

50% of melanomas and other common tumors, such as lung,
thyroid, and colorectal cancers, exhibit BRAF gene mutations,
resulting in the constitutive activation of MAPK channels
(Dankner et al., 2018). Dankner et al. (2018) discovered that
intracellular copper directly binds and activates MAPK kinase
(MEK), promoting MAPK signaling in Drosophila melanogaster
and consequently leading to tumor development. Additionally,
Brady DC et al. (Brady et al., 2014) demonstrated that copper
ions enhance MEK phosphorylation of downstream extracellular
signal-regulated kinase (ERK) throughMEK interaction. Decreasing
intracellular Ctr1 expression inhibits BRAF-mediated downstream
ERK signaling pathway activation. Similarly, mutating the
MEK1 copper binding site achieves the same inhibitory effect.
Interestingly, Tsang T et al. (Tsang et al., 2020) identified MeK1-
like copper binding sequences in unc-51-like kinase 1 (ULK1) and
unc-51-like kinase 2 (ULK2). Further experiments confirmed that
copper ions binding to ULK1 or ULK2 activates them, stimulating
the autophagy pathway and resulting in mouse lung cancer
proliferation.

The influence of copper ions extends to other signaling
pathways as well. Some studies have demonstrated that copper
ions bind to 3-phosphoinositide-dependent protein kinase-1
(PDK1), enhancing its interaction with serine/threonine
protein kinase AKT (also known as protein kinase B) and
activating AKT’s oncogenic signaling in a

phosphatidylinositol-3-kinase (PI3K)-dependent manner.
Inhibiting the copper axis diminishes AKT signaling and
suppresses tumor development, indicating a close relationship
between the PI3K-PDK1-AKT axis and tumor proliferation (Guo
et al., 2021).

Recently, the concept of Cuproplasia was first proposed in the
journal nature reviews cancer to try to explain the cell proliferation
mode dependent on copper ions. In this study, we carried out
landscape description of the Cuproplasia genes summarized in
this review in LUAD. The Cuproplasia risk score (CRS) was
established by Least absolute shrinkage and selection operator
(LASSO) regression analysis to predict the overall survival (OS)
of LUAD patients, and multiple omics analysis was used to try to
explain the specific role of Cuproplasia.

Materials and methods

Data collection and collation

In The Cancer Genome Atlas-lung adenocarcinoma (TCGA-
LUAD) database, data categories were selected as transcrip-tome
profiling and raw counts, including 535 primary lung
adenocarcinoma samples and 59 normal samples. Clinical
information including complete gender, age, survival time,
survival status, and pathological stage of 201 cases was
downloaded from UCSC for subsequent analysis.
Transcriptome data and clinical information of 210 patients in
GSE31210 were downloaded from the (Gene Expression
Omnibus) GEO database. R software is used to process the
data sets of TCGA and GEO. Gene expression levels are
determined by the average value of expression if multiple
probes correspond to the same gene. The Benjamini–Hochberg
method is adopted to adjust the p value to control the false
discovery rate (FDR). After removing duplicate genes and their
expression in the original data downloaded from the TCGA
database, the CPM function of the R software edgeR package
was used to correct and standardize the data, and the mean CPM
(count value of each transcript per million bases) ≤1 was deleted,
and then we take the logarithm base 2. The copper proliferation
gene was obtained from the literature (Ge et al., 2022).

Gene set variation analysis (GSVA) scores of
Cuproplasia genes

GSVA is a method that can be applied to Microarray and RNA-
sequence data sets of enrichment under the conditions of no
parameters and without supervision by a trained scientist
(Hänzelmann et al., 2013). GSVA can convert a gene-sample
data matrix into gene-set - sample matrix. Based on this matrix,
the enrichment of gene sets (such as KEGG pathway) in each sample
can be further analyzed. Since GSVA is a gene-sample Enrichment
matrix, downstream Analysis would be allowed more freedom than
other Gene Set enrichment methods, such as Gene Set Enrichment
Analysis (GSEA) (Yi et al., 2020). In this study, we scored the copper
proliferation level of patients in TCGA-LUAD based on the
Cuproplasia-related genes.
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Weighted gene co-expression network
analysis (WGCNA)

From whole-genome expression analysis, WGCNA provides
valuable information about gene function and gene association,
and can be used to detect module-membership (MM) of highly
correlated genes and a module related to gene-significance (GS) that
provides insight into the function of co-expressed genes, it can also
assist in the identification of genes that play a critical role in the
development of human diseases (Zhang and Horvath, 2005; Saris
et al., 2009; Li et al., 2022; Cheng et al., 2023). The co-expression
network was constructed by using the WGCNA package of R
software to construct the TCGA data set. The Pearson coefficient
between each gene was firstly calculated to convert it into a similar
matrix, and the soft threshold β was automatically selected for
network topology analysis through the pick soft threshold
function of the WGCNA package. β can emphasize the strong
and weak correlation between genes (Langfelder and Horvath,
2008) and β is set to 4, scale-free = 0.9. After β was determined,
the similar matrix was transformed into an adjacency matrix, and
then the adjacency matrix was transformed into a topological
overlap matrix (TOM). The minimum number of genes in the
module was set as 50, and the shear height was set as 0.25. The
genes with similar expressions were placed in the same gene module
through hierarchical clustering, and the threshold was set as
20,000 to eliminate outliers. Genes that express similar patterns
are grouped into different modules. Gene modules closely related to
tumorigenesis were selected based on correlation coefficients
between genes and phenotypes (cancer tissue and normal
samples). If a gene in the module has both large MM and GS, it
is considered to be the core gene in the module, and the MM >
0.7 and GS > 0.35 was defined as the candidate core gene. Then,
intersection of central genes selected by Cytohubba and core genes
selected by modules was selected, and genes in the intersection were
defined as the final key genes.

Acquisition of differential genes in cancer
tissue and normal tissue

A powerful transcriptomics technique is differential gene
expression analysis, which demonstrates quantitative changes in
gene expression between normal and cancer cells based on
molecular mechanisms. Such differences in gene expression can
reveal potential biomarkers for specific diseases. We use R software
packages for key genes Limma for differences in gene screening
(Ritchie et al., 2015), selection criteria for: | log2 (fold—change)
| ≥1 and the corrected p value (false discovery rate, FDR) ≤ 0.05.

Screening of prognostic related copper
proliferating genes

Univariate Cox regression analysis was performed for
differential gene expression and overall survival between tumor
and normal tissues to screen out prognostic copper proliferating
genes. The screening criteria were p value less than 0.05 (Lunn and
McNeil, 1995).

LASSO regression analysis

The Least Absolute Shrinkage and Selection Operator (LASSO)
is a regression analysis method that performs both variable selection
and regularization in order to enhance the prediction accuracy and
interpretability of the statistical model it produces (Li et al., 2023; Tu
et al., 2023). By using the glmnet package, survival status was used as
the dependent variable, and the expression value of the selected
differential prognostic genes was used as the response variable.
1,000 Lasso regression analyses were carried out to reduce the
number of genes, so as to reduce the error of the model and
obtain a generalized linear model (Tibshirani, 1997). The
Prognostic genes were identified using multivariate Cox
proportional risk regression analysis. Predicting prognosis status
was based on CRS. Molecular expressions of individual genes in the
sample were taken into account in determining the multivariate Cox
proportional risk regression scores for each patient. Following is a
detailed description of the calculation formula:

CRS � ∑
n

i�1
Exp i p Coef i

Receiver operating curve (ROC curve) of the
relationship between CRS and prognosis

We calculated the CRS for the training dataset (TCGA-
LUAD) and validation (GSE31210) using the prognosis model,
and we divided the validation and training sets by the median
CRS. The survival curve was drawn based on the survival
information to obtain the survival status of high and low risk
expression, and the prediction effect of the model was evaluated
(≤0.05), the statistical method used in this process is the log-rank
test. To evaluate regression models’ predictive ability in 1-year, 3-
year, and 5-year survival, the time-dependent ROC curve was
calculated using R software’s “survival ROC” package. When the
AUC is larger than 0.5 and closer to 1, the prediction effect is
better.

Functional enrichment analysis

To explore the pathogenesis and development mechanism of
lung adenocarcinoma, gene function analysis (gene ontology,
GO) and pathway analysis (Kyoto encyclopedia of genes and
genomes, Genomes, KEGG) for detailed biological annotation
and description of the function of gene products. GO covers
molecular function (MF), cellular components (CC) and
biological processes (BP). The functional information of a
given gene was comprehensively summarized through
enrichment analysis (Harris et al., 2004). KEGG incorporates
information about genomics, chemical processes, and systematic
functions. The method analyzes gene function from all angles of
gene and molecular networks, which are thought to be
responsible for identifying metabolic and functional pathways
(Kanehisa and Goto, 2000). The path enrichment analysis was
also carried out by hallmark.
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Relationship between GSVA score and
riskscore

Spearman method was used to analyze the correlation between
GSVA score and riskScore of Cuproplasia gene set.

Immune checkpoint analysis

The expression levels of 10 common immune checkpoints
(CTLA4, PDCD1, CD274, ICOS, LAG3, BTLA, TNFRSF14,
NRP1, CD28, and CD44) were analyzed among high and low
risk groups in the TCGA-LUAD cohort to determine whether
the CRS could be used in the treatment of immune checkpoints.

Relationship between CRS and
immunotherapy

Scoring and immunotherapy were performed using the
IMVIGOR210 CoreBiologies. We downloaded the data of TCGA-
LUAD patients from this dataset for analysis. The specific method of
analysis was to compare immunotherapy outcomes in low-risk
patients, including complete response (CR), partial response
(PR), stable disease (SD) and progressive disease (PD).

Hierarchical analysis

To observe the effectiveness of riskScore in different clinical
stages, LUAD patients were divided into four stages according to
the American Joint Committee on Cancer staging (AJCC) staging
method, and K-M survival curves of high and low risk groups
were drawn in each stage according to the median CRS.

Analysis of immune cell infiltration

Immune cell infiltration and risk scoreUtilizing the xCell
method (Aran et al., 2017), we assessed the enrichment levels of
64 immunological markers to evaluate the immune cell invading the
microenvironment. Using techniques including CIBERSORTx
(Steen et al., 2020), ssGSEA (Yi et al., 2020), quanTIseq
(Finotello et al., 2019), TIMER, and MCPcell from the R package
immunedeconv version 2.0.4, we conducted more exhaustive
analyzes.

Cell culture

The human LUAD cell line A549 was purchased from the
American Type Culture Collection (ATCC) and cultured in
RPMI 1640 medium supplemented with 10% fetal bovine serum
(FBS) and 105 IU/L penicillin and 0.1 g/L streptomycin, at 37°C in a
humidified atmosphere containing 5% CO2.

siRNA transfection

Lipofectamine 2000 was used for transient transfection of
siRNA. Cells were plated in advance and A549 cells in
logarithmic growth phase were adjusted to a density of 1 ×
10̂5 cells/mL. When the confluence reached 60%, the siRNA
complexes were added to the plated cells along with the
transfection reagent in serum-free medium, and after 6 h, the
medium was replaced with serum-containing medium. 48 h post-
transfection, RNA or protein was extracted to assess transfection
efficiency.

RT-qPCR

Cells were seeded in 6-well plates and transfected with si-
LAG3 for 48 h, then the medium was discarded and cells were
collected. Total RNA was extracted using the Trizol one-step
method. The reaction system was prepared according to the
instructions of the kit, and mRNA was reverse transcribed to
cDNA at 37°C for 60 min. The PCR reaction system was prepared
with 2.5×RealMaster Mix/20×SYBR solution 4.5 μL, 1 μL of each
primer, 2 μL cDNA, and 1.5 μL of triple-distilled water, making
up a total of 10 μL. The primer sequences are shown in
Supplementary Table S1. The reaction conditions were 94°C
for 15 min, followed by 40 cycles of 94°C for 20 s, 56°C for
30 s, and 68°C for 30 s. GAPDH was used as an internal
control to calculate the expression of the target RNA. The
primer sequence for si-LAG3 is as follows: GGAGACAAU
GGCGACUUUA (5’-3’).

Western blot

Cells were seeded in 6-well plates and transfected with si-
LAG3 for 48 h. The medium was then discarded, and the cells
were collected and lysed on ice for 30 min. After centrifugation,
the supernatant was collected, and protein concentration was
determined using a BCA protein assay kit. The proteins were then
separated by SDS/PAGE electrophoresis and transferred onto
PVDF membranes. The membranes were blocked, incubated
with primary antibodies overnight at 4°C, then with secondary
antibodies for 1 h at room temperature, and finally, the bands
were visualized using an ECL detection kit.

CCK8 assay

Cells in logarithmic growth phase were prepared into a cell
suspension at a density of 5 × 10̂3 cells/mL, and 100 µL of the cell
suspension was seeded into each well of a 96-well plate and
incubated. At 1d, 2d, 3d, and 4d post-seeding, 10 µL of CCK-8
solution was added to each well and incubated for 1–2 h. The
absorbance at 450.0 nm was measured using a microplate
reader.

Frontiers in Pharmacology frontiersin.org04

Kuang et al. 10.3389/fphar.2023.1240736

172

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1240736


Transwell cell migration assay

Adherent cells were digested and resuspended in serum-free
medium. The cell suspension was counted and diluted to a density of
2 × 10̂6 cells/mL with serum-free medium. A pipette was used to mix
the cell suspension thoroughly. Transwell chambers with 8.0 µm
pores were placed into a 24-well plate, and 400 µL of the cell
suspension was added to the upper chamber, while the lower
chamber was filled with medium containing 20% FBS. The plate
was incubated at 37°C. After 36 h, the chambers were removed, and
the cells were fixed with 4% paraformaldehyde for 20 min. The
paraformaldehyde was then washed off with ultrapure water, and the
cells were stained with crystal violet for 5 min. Excess stain was
washed off with water, and the cells in the upper chamber were
gently removed with a cotton swab. The chambers were observed
under a microscope, and images were captured from five different
fields of view. The cells were counted using ImageJ software.

Wound healing assay

Logarithmically growing cells were resuspended in culture
medium and seeded into 6-well plates. When the cell density
reached 90%, a straight line was scratched in the center of each
well using a 200 µL plastic pipette tip. The scratched cells and debris
were washed off with PBS, and serum-free medium was added to
each well. The plate was incubated at 37°C, and images of the
wounds were captured at 0 h and 24 h. The wound area was
measured using ImageJ software.

EDU/DAPI staining for cell proliferation

After seeding and transfecting cells with siRNA, 2xEDU solution
was added to an equal volume of culture medium containing the
experimental cells and co-incubated for 12 h. The medium was then
discarded, and the cells were fixed with 2.5 mL of PBS containing
paraformaldehyde for 15 min at room temperature. The fixative was
removed, and the cells were washed three times with PBS. Then, 2.5 mL
of permeabilization solution was added, and the cells were incubated for
20 min at room temperature. The permeabilization buffer was removed,
and the cells were washed twice with PBS. The staining reactionmixture
was prepared according to the instructions of the EDU staining kit, and
100 mL of the mixture was added to each well. The cells were incubated
in the dark for 30 min at room temperature, then washed once with
PBS. Under a fluorescence microscope, the proliferating cells stained
with EDU appeared red, while the cell nuclei stained with DAPI
appeared blue.

Statistical analysis

In comparing two categories with normal distributions and non-
normally distributed data, statistical significance was determined using
independent t-tests and Mann–Whitney U tests. Multiple category
differences were compared using one-way analysis of variance
(ANOVA) and Kruskal–Wallis analyses. The R package Hmisc
4.4.1 was employed to conduct Spearman and distance correlational

analysis. Objects having a correlation coefficient greater than 0.5 were
considered highly related. To determine the prognostic variables, Cox
regression analysis was carried out. Prior to creating the survivorship
curves using the R package survminer, the overall survival (OS) and
CRS were calculated with the R package survival, and cutoff values were
set with the R program survminer. Utilizing the R package Complex
Heatmap 2.4.3, every heatmap was generated. Using the
ggplot2 R software, data comparisons were illustrated. All statistical
analyzes were performed on both sides of the data using R software.
Statistical significance was determined by a p-value of 0.05.

Results

WGCNA result

Cuproplasia scores were performed for each patient in TCGA-
LUAD through GSVA function in GSEA, and the scores of patients
were shown in Supplementary Table S2 list.

The WGCNA process is as follows: The gene co-expression
network was established (Figures 1B,C), and the process of module
identification was shown in Figures 1A,D,E. The results show that
the correlation coefficients between BROWN and TURQUOISE and
copper proliferation mode are 0.41 and 0.38 respectively (Figure 1F).
Therefore, BROWN and TURQUOISE are considered as modules
closely related to copper proliferation. There were 1,593 genes in
BROWN and 3,194 genes in TURQUOISE, and the causes of
4,787 of these modules were included in subsequent analyses ().

Construction and validation of CRS

A total of 9,064 differentially expressed genes were obtained
between tumor tissues and normal tissues in the TCGA-LUAD
dataset, and the results were presented in. We combined
9,064 differentially expressed genes with overall survival and
performed univariate cox analysis to obtain 1,439 prognostic related
genes. The intersection of 1,439 prognostic genes with the
aforementioned BROWN and TURQUOISE genes obtained
214 prognostic genes related to copper proliferation.The formula of
Lasso regression after dimensionality reduction is as follows: risk
socres = −0.1004*PLA2G4F + 0.155*NIM1K + 0.0277*PLEK2 +
0.0402*SIRPA + 0.1713*FABP5 + 0.2555*PTX3 + 0.1306*CCT6A +
0.2177*STARD4 + 0.1917*SEC61G + −0.0174*BEX4 +
0.2549*LINC02535 + 0.2983*SHC1 + −0.269*MBOAT1 +
0.043*KRT81 + 0.0063*MT1X + −0.1954*BCAS4 + 0.0302*KRT6A
+ 0.0432*CD109 + −0.1846*HS3ST2 + 0.111*TINAG + 0.0055*LHX2
+ 0.069*CNTNAP2 + 0.0063*KLK8 + 0.1446*CALML5。

According to K-M survival curves, the high risk group had a
significantly higher survival rate than the low risk group (p ≤ 0.001)
(Figure 2A). ROC curve showed that the value of AUC in the first
year, the third year and the fifth year were 0.785, 0.714, and
0.701 respectively, demonstrating fair prediction ability (Figure 2B).

Similar results were observed in the validation set GSE31210, with
worse survival in the high-risk group (p = 0.01) (Figure 2C). These
results suggest that the risk score constructed by Cuproplasia-related
genes can predict the OS of LUAD patients and can be used as a
prognostic indicator for patients.

Frontiers in Pharmacology frontiersin.org05

Kuang et al. 10.3389/fphar.2023.1240736

173

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1240736


Pathway of enrichment of Cuproplasia-
related genes

GO, KEGG andHallmark pathway enrichment methods were used
to analyze the possible influence of copper proliferation-related genes
on the differential genes between high and low risk groups. We showed
the top ten pathways with the most significant p value of GO

enrichment analysis, and the results were respectively enriched in
mitotic sister chromatid segregation, nuclear chromosome
segregation, sister chromatid segregation, chromosome segregation,
chromosome centromeric region, condensed chromosome
centromeric region, mitotic nuclear division, condensed
chromosome, organelle fission, regulation of mitotic nuclear division.
These results mainly suggest that risk scores are related to biological

FIGURE 1
Weighted correlation network analysis results. (A) Sample clustering to detect outliers. (B) Scale independence results. (C) Mean connectivity. (D)
Gene dendrogram and module colors. (E) Clustering of module eigengenes. (F) Module−trait relationships.

FIGURE 2
Development and validation of prognostic model. (A) Kaplan-Meier curves between high and low risk groups in the training cohort. (B) AUC values in
the first, third and fifth year prognostic model. (C) Verify the K-M curve between high—and low-risk groups in the cohort.
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processes such as chromosomes. The bubble diagram is used to sort
enrichment pathways by GeneRatio, and is shown in Figure 3B
according to p-value. Figure 3C shows the four pathways with the

highest NES value in the GO analysis. KEGG analysis revealed that risk
scores were closely related to the following 20 pathways, and the results
are shown in Figures 3 D,E. The top four pathways with the most NES

FIGURE 3
Functional enrichment analysis. Bubble diagram (A), Ridge map (B), GSEA diagram (C) of GO functional enrichment analysis. Bubble diagram (D),
Ridgemap (E), GSEA diagram (F) of GO functional enrichment analysis. Bubble diagram (G), Ridgemap (H), GSEA (I) diagram of GO functional enrichment
analysis.
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score are alpha linolenic acid metabolism, cell cycle, DNA replication,
vascular smooth muscle contraction (Figures 3F, G). It is suggested that
Cuproplasia-related genes may play a role through these pathways and
affect the OS of LUAD.HALLMARK enrichment analysis found that
risk scores were closely related to the following pathways: E2F targets,
G2M checkpoint, KRAS signaling down, xenobiotic meta (Figures 3H,
I). LUAD’s occurrence and development may be influenced by CRS
through these pathways, which affects patients’ survival chances as well.

Risksores is closely related to
immunotherapy

The correlation between GSVA score of copper proliferation gene
set and riskScore was observed, and a strong positive correlation was
found (Figure 4A). Analysis of the expression levels of 10 immune
checkpoints in the high-low risk group showed that PDCD1, CD274,
LAG3 were highly expressed in the high-risk group, and
TNFRSF14 and NRP1 were highly expressed in the low-risk
group. These results suggest that CRS is a predictor of LUAD
immune checkpoint therapy (Figure 4B). stack plots showed that
there were more patients in the low-risk group with CR and that
the difference in survival was not significant (Figure 4C). The
IMVIGOR210 analysis showed that the lower the risk score, the
better the treatment outcome (Figure 4D). However, binary

comparisons did not show any significant differences between
reactive and non-reactive groups (Figure 4E).

Risk scores are also prognostic indicators in
different clinical stages

According to the AJCC, patients at different stages were divided
into high-low risk group according to the median risk score, and it was
found that patients in the high-risk group of stage III and stage IV
patients also had worse prognosis (Figures 5C,D). However, the high-
risk group in stage I and stage II also had a worse trend (Figures 5A,B).
This suggests that the higher the stage, the greater the clinical value of
the risk score. Figure 5E shows the relationship between risk scores and
stages, and the results show that the risk scores of stage I, stage II and
stage III are different. These results indicate that risk score is closely
related to clinical stage and has better clinical predictive value in stage III
and IV patients.

The relationship between risk scores and
immune cells

The results of six immune cell analysis algorithms between high
and low risk groups are shown in Figure 6, in which immune cells

FIGURE 4
Relationship between risk scores and immunotherapy. (A) Relationship between gsvascore and riskScore. (B) The percentage of different treatment
outcomes in the high-low risk group. (C) Expression levels of 10 immune checkpoints in different risk groups. (D) Risk scores in epidemic groups. (E) Risk
scores for responders and non-responders.

Frontiers in Pharmacology frontiersin.org08

Kuang et al. 10.3389/fphar.2023.1240736

176

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1240736


with significant differences are specially labeled, and multiple types
of immune cells are decreased. The analysis results of each algorithm
are shown separately in Figure 7. CIBERSORT algorithm in
Figure 7A shows that there are NK cells resting, T cells
CD4 memory resting, T cells CD4 memory activated, Monocytes
and Macrophages M0 The infiltrate contents of Dendritic cells
resting and Mast cells resting were different between high and
low risk groups. MCPcells showed that NK cella, Myeloid
dendritic cells, and Endothelial cells were differentially expressed
in high and low risk groups. quanTIseq analysis showed that the
infiltrate content of acrophages.M2, Tregs and Dendritic.cell were
significantly different among the high and low risk groups.
CD4 T cell, Macrophage had significant difference between high
and low risk groups. xcell analysis suggested significant differences
in the content of a large number of immune cells between high and
low risk groups. It should be noted that the content of macrophages
was significantly different among the four algorithm analyses. These
results suggest that copper proliferating genes may influence the
development of LUAD patients through these immune cells.

Inhibition of cell proliferation and migration
by LAG3 knockdown

To investigate the specific mechanism of LAG3 in LUAD, we
initially constructed A549 cells with stable knockdown of LAG3. The
results of qPCR and Western blot experiments indicated that the
expression of LAG3 in A549 cells was significantly lower after si-

LAG3 treatment compared to the control group of A549 cells
(Figures 8A–C). The effect of LAG3 on cell proliferation was
assessed using the CCK8 assay. The results revealed that
knocking down LAG3 significantly inhibited the proliferation of
A549 cells (Figure 8D). Results from the Transwell cell migration
assay indicated that suppressing LAG3 expression significantly
inhibited the migration of A549 cells (Figures 8E,F). The scratch
wound healing assay also corroborated these results (Figures 8G,H).
Furthermore, we evaluated cell proliferation activity by observing
cell staining under a fluorescence microscope after EDU/DAPI
staining. Our experimental results showed that the intensity of
red fluorescence was significantly reduced in A549 cells after si-
LAG3 treatment (Figures 8I,J), suggesting that downregulating
LAG3 expression in LUAD A549 cells will inhibit tumor cell
proliferation.

Discussion

Different trace elements serve distinct biological functions in
vivo, contributing to the onset and progression of cancer to varying
degrees (Cheng et al., 2019). Copper, a crucial cofactor of tyrosine
kinase and ceruloplasmin, plays an indispensable role in organism
growth and development. Research indicates that copper is vital for
maintaining the body’s normal biological functions due to its redox
properties, which enable catalysis, oxidation, cell respiration, and
various other life-sustaining activities (Li, 2020). Additionally,
studies have highlighted that copper ions can modulate the

FIGURE 5
Stratified analysis based on clinical stage. K-M survival curve of high and low risk groups in Stage1 (A), Stage II (B), Stage III (C), Stage IV (D). (E)
Comparison of risk scores in different stages.
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oxidative phosphorylation and growth processes of tumors,
participate in the carcinogenic signal transduction pathway via
BRAF transduction and tumorigenesis, and exhibit potential
toxicity to organisms (Ishida et al., 2013; O’Leary et al., 2019;
Antsotegi-Uskola et al., 2020). Hence, it is imperative to

maintain the copper ion content of an organism in a relatively
stable state to prevent disrupting the homeostasis of the internal
environment, inducing stress responses, and causing unnecessary
harm. Recently, research on cuproptosis has garnered attention. The
specific mechanism involves copper ions binding to fatty acylated

FIGURE 6
Results of six immune cell analysis algorithms in high—and low-risk groups.
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proteins in the mitochondrial respiration process of the TCA cycle,
leading to protein aggregation. This, in turn, promotes the
downregulation of Fe-S cluster proteins, inducing protein-toxic
stress and ultimately resulting in cell death (Antsotegi-Uskola

et al., 2020). The study of cuproptosis has piqued the interest of
researchers, and some studies based on extensive transcriptome data
have shed light on the mechanism of copper-induced cell death in
lung adenocarcinoma (LUAD) (Wang X. et al., 2023; Wang T. et al.,

FIGURE 7
Immune cell analysis results. CIBERSORT (A), quanTIseq (B), mcp cells (C), TIMER (D) and xcell (E) algorithms were used to analyze the immune cells
in high and low risk groups. (F) Radar map of immune cells in relation to risk scores in CIBERSORT.
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2023; Ma et al., 2023). The recent evolution of perspectives on
Cuproplasia may pave the way for novel avenues of research into the
role of copper in tumorigenesis.

In this study, we initially identified 40 Cuproplasia-related genes
and scored 313 LUAD patients based on their transcriptome using
the GSVA scoring method. ThroughWGCNA analysis, we screened
4,787 genes in the BROWN and TURQUOISE modules, which are
closely related to the Cuproplasia score. Subsequently,
214 prognostic-related genes were identified through univariate
Cox analysis, and a prognostic model was established based on
24 genes through lasso regression analysis. We found that risk scores
could predict overall survival (OS) in both TCGA-LUAD and
GSE31210 cohorts. These results suggest that genes related to
copper proliferation play a significant role in the prognosis of
LUAD patients. Among the genes included in the prognostic
model, PLEK2 has been reported in five studies as a prognostic
marker for lung adenocarcinoma (Cheng et al., 2019; Li, 2020; Ishida
et al., 2013; O’Leary et al., 2019; Antsotegi-Uskola et al., 2020). Cell
invasion, cell cycle, DNA damage, and DNA repair are positively
correlated with PLEK2 expression in LUAD cells (Jiang et al., 2020;
Zhang et al., 2020; Wu et al., 2021; Zhou et al., 2022). Promoter

hypomethylation may underlie its upregulation (Zhang et al., 2020).
In vitro, FABP5 regulates fat metabolism by diverting fat into
complex lipid synthesis instead of catabolism. FABP5 is also
essential for cell cycle progression, migration, and tumor growth
in vivo (Garcia et al., 2022). EC61γ has been shown to promote
LUAD proliferation, metastasis, and invasion through the EGFR
signaling pathway, suggesting this gene as a potential therapeutic
target. Previous literature has indicated that the BEX family has
diagnostic and prognostic value in LUAD, and that BEX4 is
associated with clinicopathologic features, especially in higher-
grade LUAD. LINC02535 has been shown to promote LUAD
development through the NF-κB signaling pathway, and further
pan-carcinoma analysis has demonstrated extensive prognostic
value for LINC02535 in pan-carcinoma. While the mechanism of
action of these genes in LUAD has been partially explored, their
correlation with copper proliferation has not been investigated.

In the subsequent functional enrichment analysis, GO was used
to analyze the differential genes of patients in the high-low risk
group, which were mainly concentrated in chromosome-related
signaling pathways, and studies have shown that copper ions can
promote the formation of reactive oxygen species, which can

FIGURE 8
Effects of LAG3 Knockdown on A549 Cells. (A–C) Expression of LAG3 in A549 cells after si-LAG3 treatment assessed by qPCR and Western blot. (D)
CCK8 assay showing the inhibition of A549 cell proliferation after LAG3 knockdown. (E, F) Transwell migration assay demonstrating the inhibitory effect of
LAG3 suppression on A549 cell migration. (G, H) Scratch wound healing assay corroborating the inhibitory effect of LAG3 suppression on A549 cell
migration. (I, J) Fluorescence microscopy images of EDU/DAPI stained A549 cells showing reduced red fluorescence intensity, indicative of
inhibited cell proliferation, after si-LAG3 treatment. *p < 0.05, **p < 0.01, ***p < 0.001.
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damage DNA and chromatin (Garcia et al., 2022).The most
significant pathways identified by KEGG analysis included cell
cycle and DNA replication. The most significant pathways in
HALLMARK enrichment analysis include G2M chekpoint.
Studies have shown that copper oxide nanoparticles can reduce
the activity of mouse embryonic fibroblasts and stop the cell cycle at
G2M (Luo et al., 2014). The binding of copper and DNA bases has a
concentration dependent tolerance relationship, which can reshape
the integrity of DNA by affecting the structure of B-DNA, and affect
the process of DNA replication and transcription (Govindaraju
et al., 2013). These results further reveal the role of copper
proliferation-related genes in LUAD and provide a new direction
to explore the role of copper proliferation-related genes in LUAD in
the future.

According to the immunocheckpoint analysis between high and
low risk groups, the expression of
PDCD1 CD274 LAG3 TNFRSF14 NRP1 was differentially
expressed. Studies have shown that the variation of PDCD1 and
CD274 genes regulates the risk and prognosis of LUAD and LUSC.
The IMVIGOR210 analysis found that the lower the risk score, the
better the treatment effect.

Subsequent stage-based stratified analysis found that patients in
the high-risk group had worse prognosis, and the difference between
the high-low risk groups was more significant in stage 3 and stage
4 patients. These results increased the application value of risk scores
in LUAD. Subsequently, five algorithms were used to analyze the
degree of immune cell infiltration between TCGA-LUAD high and
low risk groups, and it was found that there were statistical
differences in macrophages among the four algorithms, and the
proportion of some types of macrophages was higher in high risk
groups. Studies have shown that targeting macrophages in drug-
resistant advanced LUAD is a therapeutic approach (Yin et al.,
2023), and recent single-cell sequencing data further revealed that
macrophages may play an important role in LUAD brain metastasis
patients (Sun et al., 2022). These results suggest the research
direction of copper proliferation-related genes in LUAD.

There are still some limitations in our study. First of all, we only
described the genes related to copper proliferation through two
publicly available data sets, which were not verified in vitro and in
vivo experiments. Secondly, the accuracy of the prognostic model
lacks the validation of multi-center data, which may limit the scope
of the prognostic model. Subsequently, the predictive effects of
immune checkpoints and immunotherapy still need to be further
demonstrated in clinical trials. Finally, the effects of copper
proliferation-related genes on chromatin and other signaling
pathways still need further molecular biological experiments to
prove.

Conclusion

In conclusion, we first conducted a comprehensive analysis of
copper proliferating genes in the LUAD landscape and found that
prognostic models constructed with copper proliferation-related

genes could predict OS, immune checkpoint, and
immunotherapy in LUAD. Further pathway enrichment analysis
revealed that copper proliferation-related genes may affect
chromatin structure and DNA replication and translation, thus
influencing cell cycle. Meanwhile, immune cell infiltration
analysis revealed that macrophages may be the key immune cells
in this process.
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A glycosylation risk score
comprehensively assists the
treatment of bladder neoplasm in
the real-world cohort, including
the tumor microenvironment,
molecular and clinical prognosis

Jinhui Liu1,2, Yunbo He1,2, Weimin Zhou1,2, Zhuoming Tang1,2 and
Zicheng Xiao1,2*
1Department of Urology, Xiangya Hospital, Central South University, Changsha, China, 2National Clinical
Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China

Background: Bladder cancer is a common urological cancer associated high
significant morbidity and mortality rates. Immunotherapy has emerged as a
promising treatment option, although response rates vary among patients.
Glycosylation has been implicated in tumorigenesis and immune regulation.
However, our current comprehensive understanding of the role of
glycosylation in bladder cancer and its clinical implications is limited.

Methods: We constructed a training cohort based on the downloaded TCGA-
BLCA dataset, while additional datasets (Xiangya cohort, GSE32894, GSE48075,
GSE31684, GSE69795 and E-MTAB-1803) from Xiangya hospital, GEO and
ArrayExpress database were obtained and used as validation cohorts. To
identify glycosylation-related genes associated with prognosis, univariate Cox
regression and LASSO regression were performed. A Cox proportional hazards
regression model was then constructed to develop a risk score model. The
performance of the risk score was assessed in the training cohort using
Kaplan-Meier survival curves and ROC curves, and further validated in multiple
validation cohorts.

Results: We classified patients in the training cohort into two groups based on
glycosylation-related gene expression patterns: Cluster 1 and Cluster 2.
Prognostic analysis revealed that Cluster 2 had poorer survival outcomes.
Cluster 2 also showed higher levels of immune cell presence in the tumor
microenvironment and increased activation in key steps of the cancer immune
response cycle. We developed an independent prognostic risk score (p < 0.001)
and used it to construct an accurate prognostic prediction nomogram. The high
glycosylation risk score group exhibited higher tumor immune cell infiltration,
enrichment scores in immune therapy-related pathways, and a tendency towards
a basal subtype. Conversely, the low-risk score group had minimal immune cell
infiltration and tended to have a luminal subtype. These findings were consistent in
our real-world Xiangya cohort.

Conclusion: This multi-omics glycosylation score based on these genes reliably
confirmed the heterogeneity of bladder cancer tumors, predicted the efficacy of
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immunotherapy and molecular subtypes, optimizing individual treatment
decisions.

KEYWORDS

glycosylation, multi-omics, tumor heterogeneity, immunotherapeutic efficacy, molecular
subtype, bladder carcinoma

Introduction

Bladder cancer (BLCA) is a prevalent malignancy worldwide,
characterized by high morbidity and mortality rates (Siegel et al.,
2020). Non-muscle invasive bladder cancer (NMIBC) accounts for
three-quarters of initial diagnoses, while the remaining cases are
categorized as either muscle-invasive bladder cancer (MIBC) or
BLCA with distant metastasis (Powles et al., 2022). Despite
advancements in treatment options, such as surgery and
chemotherapy, the prognosis for patients with advanced stage
BLCA remains suboptimal (Antoni et al., 2017; Lenis et al.,
2020). Recent studies have shown that monoclonal antibodies
targeting PD-1 and its ligands have emerged as a therapeutic
strategy with encouraging clinical benefits for metastatic BLCA
(Rosenberg et al., 2016; Plimack et al., 2017; Rijnders et al., 2017;
Hu et al., 2022). However, only a subset of patients can achieve
beneficial (Jenkins et al., 2018; Schoenfeld and Hellmann, 2020).
Although increased expression of PD-L1 on tumor cells and/or
immune cells is currently used as a diagnostic method for immune
therapies targeting PD-1, it only partially correlates with the clinical
benefits of these drugs (Ma et al., 2016). Therefore, there is an urgent
requirement to discover novel biomarkers that can assist in
treatment decision-making and improve patient outcomes.

The tumor immune microenvironment (TIME) is an intricate
milieu consisting of immune cells and immune-related molecules
(Binnewies et al., 2018), and its importance in immunotherapy has
gained widespread recognition. Chen DS et al. categorized TIME
into three subtypes: “immune inflamed,” “immune excluded,” and
“immune desert,” based on their distinct characteristics and
potential responsiveness to immunotherapy (Chen and Mellman,
2017). Similarly, Duan Q et al. classified tumors as either “hot” or
“cold” tumors depending on the level of immune infiltration (Duan
et al., 2020). Cold and immune desert tumors are characterized by
limited immune cell infiltration, resulting in a poor response to
immunotherapy (Galon and Bruni, 2019). Emerging therapeutic
strategies are focused on enhancing immune infiltration to
transform the tumor microenvironment (TME), from a poorly
infiltrated “cold” phenotype to an immune-rich “hot” phenotype
(Bonaventura et al., 2019; Vonderheide, 2020). Therefore, analyzing
the TIME is crucial for enhancing the efficacy of immunotherapy.

Glycosylation, a common post-translational protein
modification process, occurs in all domains of life (Pinho and
Reis, 2015). It involves the attachment of monosaccharides or
polysaccharides (i.e., oligosaccharides or complex glycans) to
specific residues of target proteins (Eichler, 2019). This
modification has been reported to impact various biological
processes, including protein secretion, degradation, transport to
receptor interactions, and modulation of immune responses
(Moremen et al., 2012; Varki, 2017). Glycosylation is associated
with the pathogenesis of numerous prevalent diseases, including

cancer (Eichler, 2019). Glycosylation modification affects
tumorigenesis through its influence on growth, differentiation,
metastasis, and immune surveillance. Altered glycosylation
profiles have been detected in various types of cancer, including
BLCA (Przybylo et al., 2002; RodrÍguez et al., 2018). For instance,
the invasive capacity of BLCA cells has been linked to the
N-glycosylation of cadherin (Przybylo et al., 2002). Furthermore,
glycosylation has been implicated in the regulation of immune
responses within the TIME (Badmann et al., 2020; Sun et al.,
2021). However, our understanding of the glycosylation
landscape in BLCA and its clinical implications is still limited.
Given the critical role of glycosylation in both tumorigenesis and
immune regulation, it is plausible that glycosylation patterns could
serve as potential biomarkers for predicting the response to
immunotherapy in BLCA patients.

In this study, our research objective is to develop a new
glycosylation risk score based on a multi-omics study to evaluate
the prognosis comprehensively and individually,
immunophenotype, and tumor heterogeneity of BLCA patients.
In addition, we aim to study the glycosylation risk score to
provide valuable insights into the potential of BLCA patients to
make treatment decisions such as personalized immunotherapy and
improve their prognosis.

Materials and methods

Data collection

Training set
We established a dataset consisting of 408 patients with BLCA

by selecting individuals from the Cancer Genome Atlas (TCGA)
database. The mRNA expression matrix and clinical information
corresponding to these patients were downloaded from the Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/) (Colaprico
et al., 2016). We converted the fragments per kilobase of exon model
per million mapped fragments (FPKM) and count value in the
original expression matrix to transcripts per kilobase of exon model
per millionmapped reads (TPM). Subsequently, we merged this data
with clinical information to create a new dataset. After excluding
5 patients due to duplicated or missing follow-up data, a total of
403 patients formed the training cohort.

Validation cohorts
In our early-stage study (Li et al., 2021), we constructed a dataset

called the Xiangya cohort and have uploaded it to the Gene
Expression Omnibus (GEO) database. This dataset includes
56 patients with BLCA and encompasses complete survival
information along with RNA-sequencing (RNA-seq) data
(GSE188715). We also downloaded relevant data from the GEO
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database (https://www.ncbi.nlm.nih.gov/geo/) to construct four
additional external validation cohorts (GSE32894, GSE48075,
GSE31684 and GSE69795). Duplicate patients or those with
incomplete survival information were excluded during data
preprocessing, resulting in a final inclusion of 224 (GSE32894),
73 (GSE48075), 93 (GSE31684) and 38 (GSE69795) individuals in
the four cohorts, respectively. Download the dataset with accession
number E-MTAB-1803 from the ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/) as an additional external validation
cohort.

Supplementary Table S1 displays the clinical information of
patients in the training and six validation cohorts.

Consensus clustering

We obtained a list of 628 glycosylation-related genes from the
gene set enrichment analysis (GSEA) (Supplementary Table S2).
To analyze the expression pattern of these genes in training
cohort, we utilized the consensus clustering function in the
“ConsuClusterPlus” R package (Wilkerson and Hayes, 2010).
The parameters were set as follows: distance = “manhattan”,
clusterAlg = “pam”, maxK = 5, Reps = 1,500, pItem = 0.8,
pFeature = 1. By applying this approach, we identified distinct
glycosylation expression patterns.

Describing the TIME of BLCA

To characterize the TIME of BLCA, we utilized the tracking
tumor immunophenotype (TIP) database (http://biocc.hrbmu.edu.
cn/TIP/) (Xu et al., 2018) to obtained the activation levels of the 7-
step Cancer Immunity Cycle (CIC) (Chen and Mellman, 2013).
Furthermore, we compiled a summary of 22 immune checkpoint
inhibitor (ICI) genes, 18 T cell-associated inflammatory signature
(TIS) genes, and effector genes of various immune cells, including
CD8 T cells, dendritic cells (DCs), macrophages, natural killer (NK)
cells, and type 1 T helper (Th1) cells, based on our previous study
(Hu et al., 2021a) (Supplementary Table S3).

Development of glycosylation risk score

To identify candidate genes associated with glycosylation
patterns and clinical prognosis, we employed two methods:
Univariate Cox analysis and the least absolute shrinkage and
selection operator (LASSO) algorithm. The “glmnet” R package
was utilized for the LASSO algorithm. Initially, Initially, we
conducted univariate Cox analysis on a set of 628 genes and
identified 30 genes that were strongly correlated with prognosis
(p < 0.005). Subsequently, the LASSO algorithm was applied to
further refine the prognostic genes. The “glmnet” R package
facilitated this process. From the LASSO analysis, we identified
20 candidate genes. Finally, the glycosylation risk score was
constructed using the Cox proportional hazard regression model
with the “glmnet” R package, incorporating 20 genes.

Glycosylation Score � ∑ βi*RNAi

Evaluation and verification of glycosylation
risk score

In the training set, patients were divided into high-risk and low-risk
groups based on their risk scores, using themedian of the risk score as the
threshold. Kaplan-Meier (K-M) survival curves were plotted and the log-
rank test was performed using the “survminer” R package to assess the
differences in survival between the two groups. The predictive accuracy of
the risk score was evaluated using the time-dependent receiver operating
characteristic (tROC) analysis, implemented with the “tROC” R package.
Additionally, a nomogram was constructed incorporating clinical
information related to prognosis and the glycosylation risk score. The
predictive efficacy of the nomogramwas verified using calibration curves.

For external validation, the samemethod used in the training set was
applied to an independent cohort of BLCA patients. In brief, the risk
scores were calculated using the glycosylation risk scoring formula, and
patients were classified into high-risk and low-risk groups using the
median risk score as the threshold. The survival outcomes between the
two groups were compared using theK-Mmethod and log-rank test. The
predictive accuracy of the risk scores was evaluated using tROC analysis.

Identification ofmolecular subtypes of BLCA
by glycosylation risk score

In our previous studies, our team conducted an extensive review
and summary of the existing seven molecular typing criteria for
BLCA, including the TCGA, UNC, and Consensus systems, et al. To
achieve a unified classification approach, we utilized two R packages,
namely, “BLCAsubtyping” and “ConsensusMIBC”. Additionally, we
incorporated BLCA-related pathways identified by Kamoun, A. et al.
(Kamoun et al., 2020) (Supplementary Table S4). To enhance
clinical applicability, we further reclassified the different
molecular subtypes into “luminal” and “basal” subtypes, aiming
to provide a more concise and efficient clinical guidance.

Statistical analysis

Correlations between variables were assessed using either Pearson
or Spearman coefficients, depending on the nature of the data.
Differences between binary groups in continuous variables were
evaluated using the t-test or Mann-Whitney U test. To examine the
survival prognosis, the K-Mmethod was employed to generate survival
curves, and statistical significance was determined using the log-rank
test. The relationship between candidate genes and survival prognosis
was determined through univariate Cox analysis, and the LASSO
algorithm was used to select and refine the candidate genes for
constructing the glycosylation risk score. The hazard ratio (HR) and
independent prognostic values of the glycosylation risk score were
calculated using univariate andmultivariate Cox regressionmodels. The
glycosylation risk score was constructed using the Cox proportional
hazard regression model, and its accuracy was assessed by drawing
time-dependent receiver operating characteristic (ROC) curves and
calculating the area under the curve (AUC). All statistical analyses were
conducted using R software (version 4.22) with a significance level set at
p < 0.05. The adjusted p-value was obtained using the false discovery
rate (FDR) method, and all tests were two-sided.
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Results

Construction of glycosylation genes
expression patterns related to prognosis and
tumor immune microenvironment

We constructed expression patterns based on glycosylation
genes features using unsupervised clustering analysis in the
TCGA-BLCA cohort, by “ConsenseClusterPlus” R package. And
we found that dividing into two patterns was the most appropriate,
named glycosylation cluster 1 and glycosylation cluster 2.

(Figure 1A). Subsequently, we conducted a detailed analysis to
investigate the disparities between the two mentioned
glycosylation clusters. In terms of prognosis, compared to cluster
1, cluster 2 has a significantly poorer prognosis (p = 0.024,
Figure 1B). As for the TIME, as depicted in Figure 1C
(Supplementary Table S5), the infiltration level of most of
immune cells including activated and immature B cell, activated
and central memory CD4 T cell, activated and central memory
CD8 T cell, natural killer cell and macrophage in TME was
apparently higher in cluster 2 compared to cluster 1. In addition,
in the 7-step CIC, cluster 2 exhibited a higher activation level in the

FIGURE 1
Construction of Glycosylation genes expression patterns related to prognosis and tumor immune microenvironment. (A) The unsupervised cluster
analysis based on all the 628 Glycosylation-related genes; Light blue and dark blue lines represented Glycosylation cluster 1 and 2, separately. (B) Kaplan-
Meier plot of OS between two Glycosylation-related patterns; Light green and red lines represented Glycosylation cluster 1 and 2, separately. (C) The
different infiltration levels of 28 immune cells in the TME using ssGSEA algorithm between two Glycosylation-based patterns; Light green and red
lines represent Glycosylation clusters 1 and 2, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant. (D) The
different levels of anticancer immunity between two Glycosylation-based patterns; Light green and red lines represent Glycosylation cluster 1 and 2,
respectively; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant.
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main anti-tumor immune steps, including step 1 (release of cancer
cell antigens), step 4 (recruitment of immune cells such as T cell,
CD8 T, macrophage, NK cell, dendritic cell), step 6 (recognition of
cancer cells by T cells) and step 7 (killing of cancer cells) (Figure 1D;
Supplementary Table S6).

Developing glycosylation-related risk scores
and predicting clinical outcomes in multiple
cohorts

The completely different manifestations of these two
glycosylation clusters mentioned above in the prognosis and
TIME of BLCA aroused our interest. Therefore, we planned to
develop a quantitative risk score utilizing the expression patterns of
glycosylation genes. This risk score will be used to predict the clinical

prognosis of each patient, aiming to achieve the accuracy treatment
of BLCA.

Firstly, we selected 30 independent prognostic genes strongly
associated with prognosis from glycosylation-related genes through
univariate analysis (p < 0.005, Supplementary Table S7).
Subsequently, LASSO regression helped us identify the 20 most
suitable candidate genes in those 30 independent prognostic genes
above for constructing glycosylation-related risk models (Figures
2A, B; Supplementary Table S8). And we choose the minimum
lambda for the optimal cutoff value, and selected ten-fold cross
validation method as correction. Finally, based on those
20 candidate glycosylation genes above, we employed the
“glmnet” R software package to construct a Cox proportional risk
regression model. This model allowed us to generate a risk score,
known as the glycosylation-based risk score, in the TCGA-BLCA
training cohort. The median glycosylation risk score would be used

FIGURE 2
Developing Glycosylation-related risk scores and predicting clinical outcomes in multiple cohorts (A) Coefficients of Glycosylation-related
prognosis genes value are shown by lambda parameter. (B) Partial likelihood deviance versus log (lambda) drawn by LASSO algorithm and 10-fold cross-
validation. (C,D) Forest plots of univariate and multivariate Cox analysis of Glycosylation-based risk score combined with age, gender, tumor grade and
stage of BLCA. (E) Nomogram developed by using age, tumor stage, and Glycosylation-based risk score. (F) Calibration curves of the nomogram.
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as a standard to classify the patients in cohorts into high and low
score groups.

To investigate the potential clinical utility of glycosylation risk
score, we first included it as an independent clinical indicator
through univariate COX analysis. Our findings revealed that the
glycosylation risk score, along with other clinical pathological factors
such as tumor grade, stage of BLCA, age, and gender, significantly

influenced prognosis (p < 0.001, Figure 2C). As shown in Figure 2D,
subsequent multivariate Cox analysis demonstrated that the
glycosylation risk score remains an independent prognostic
indicator (p < 0.001). A glycosylation specific nomogram was
developed using those independent prognostic factors identified
by multivariate COX analysis (glycosylation risk score, age, and
tumor stage) suggested that glycosylation risk score, like other

FIGURE 3
Verifying the accuracy of Glycosylation score in predicting prognosis in multiple cohorts (A) Kaplan-Meier (K–M) plot of OS between Glycosylation
risk score groups in TCGA-BLCA cohort; Light red and green lines represented high and low Glycosylation risk score groups, separately. (B) The area
under curves (AUCs) plot of Glycosylation risk score in TCGA-BLCA cohort. (C,D) K-M plot of OS between Glycosylation risk score groups and AUCs plot
of the risk score the in Xiangya validation cohort, separately. (E,F) K-M plot of OS between Glycosylation risk score groups and AUCs plot of the risk
score the in E-MTAB-1803 validation cohort, separately. (G,H) K-M plot of OS betweenGlycosylation risk score groups and AUCs plot of the risk score the
in GSE32894 validation cohort, separately. (I,J) K-M plot of OS between Glycosylation risk score groups and AUCs plot of the risk score the in
GSE48075 validation cohort, separately.
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clinical information, have important predictive value for prognosis
(Figure 2E). The results indicated that glycosylation score accounted
for a considerable proportion of the nomogram score, so its level
could largely accurately predict the survival probability of a single
patient at 1, 3, and 5 years. Furthermore, it was found that patients
with higher glycosylation score had poorer prognosis, and there was
an urgent need for new treatment methods to improve prognosis of
these patients. In addition, the calibration curve indicated that the
predicted OS of the glycosylation specific nomogram was very close
to the real OS (Figure 2F), and the Q-Q plot had verified the
normality of the above data (Supplementary Figure S1).

To further determine the prognostic significance of
glycosylation risk score in BLCA, we validated its predictive value
in multiple cohorts, including both public databases and our own
real-world study. In the training cohort TCGA-BLCA, we observed
that patients with a high glycosylation risk score had significantly
worse prognosis compared to those with a low glycosylation risk
score (p < 0.0001, Figure 3A). Additionally, the glycosylation risk
score exhibited high accuracy in predicting 1-year, 3-year, and 5-
year survival rates, with respective values of 0.75, 0.74, and 0.75
(Figure 3B). Meanwhile, in our real-world cohort (Xiangya BLCA
cohort), the prognosis of the high glycosylation score group
remained significantly poor (p = 0.014, Figure 3C) and its

predictive accuracy was relatively high (1, 3, and 5 years
accuracy: 0.75, 0.71 and 0.56 separately, Figure 3D). The above
results remain robust: the prognosis of the high glycosylation score
group presented obviously worse, in other public database cohorts,
including E-MTAB-1803 (p = 0.00019, 1-year, 3-year, and 5-year
accuracy: 0.73, 0.76 and 0.77 separately, Figures 3E, F), GSE32894
(p < 0.0001, 1-year, 3-year, and 5-year accuracy: 0.83, 0.89 and
0.88 separately, Figures 3G, H), GSE48075 (p = 0.00012, 1-year, 3-
year, and 5-year accuracy: 0.82, 0.78 and 0.76 separately, Figures 3I,
J), and two other GEO BLCA cohorts (Supplementary Figure S2).

The above results fully confirmed that glycosylation risk score
can reliably predict the clinical outcomes of BLCA, and its predictive
value had high accuracy and internal and external authenticity,
which can be widely promoted to other cohorts.

Exploring the relationship between
glycosylation score and TIME in the
TCGA-BLCA cohort

The accurate prediction of glycosylation score for prognosis had
sparked our interest in deeper research, therefore, we continued to
investigate its association with the TIME in the TCGA-BLCA

FIGURE 4
Exploring the relationship between Glycosylation score and TIME in the TCGA-BLCA cohort. (A) The association between Glycosylation risk score
and immune cells in the Glycosylation in the TCGA-BLCA cohort, high Glycosylation score vs. low Glycosylation score. (B) The relationship between
central memory CD8 T cells and Glycosylation score. (C) The association between Glycosylation risk score and cancer immunity cycles in the TCGA-
BLCA cohort. (D) The different activated levels of gene signatures associated with ICB response between different Glycosylation-based risk score
groups. Light red and green lines represent high and low Glycosylation-based risk score, respectively; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001;
ns, not statistically significant. (E) The association between Glycosylation-based risk score and T cell-associated inflammatory signature (TIS) score.
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cohort. As shown in the single-sample gene set enrichment analysis
(ssGSEA) analysis (Figure 4A; Supplementary Table S9), we found
that compared to the low glycosylation score patients, the infiltration
level of major tumor immune cells significantly increased in patients
with high glycosylation score, such as central memory CD8/
CD4 T cell, natural killer T cell, natural killer cell, regulatory
T cell and memory B cell. The correlation between representative
immune cells infiltration and glycosylation score were shown in
Figure 4B and Supplementary Figure S3, Meanwhile, the activation
of major steps of 7-step CIC, such as release of cancer cell antigens,
immune cells recruiting and killing of cancer cells, was significantly
higher in patients with high glycosylation score than those with low
glycosylation score (Figure 4C; Supplementary Table S10).

Furthermore, we examined the relationship between the
glycosylation risk score and the enrichment score of gene
features related to 21 immunotherapy-related pathways that
summarized by Mariathasan et al. (2018). The findings revealed
that the glycosylation score group exhibited higher pathway
enrichment scores (Figure 4D). Finally, based on the TIS score of
predicting immune checkpoint blocker (ICB) efficacy summarized
by our team’s previous research, we observed that the patients with
higher glycosylation score also had higher TIS scores (Figure 4E).
The consistency of the above results indicated that the high
glycosylation score group was more inclined to express the “hot-
immune” TME, and was predicted to be more sensitive to
immunotherapy.

FIGURE 5
Verifying the relationship between Glycosylation score and TIME in a real-world BLCA cohort. (A) The association between Glycosylation-based risk
score and cancer immunity cycles (left) and immune cells in the TME (right). The different types of lines represent the positive or negative relations. The
different colors of the lines represent the p values of the relations, and the thickness of the lines represents the strength of the relations. (B) The
association between Glycosylation risk score and T cell-associated inflammatory signature (TIS) genes (up) and immune checkpoint inhibitor (ICI)
genes (down), separately. (C) The different expression patterns of effector genes of immune cells between different Glycosylation risk score groups, Light
red and green lines represented high and low Glycosylation risk score groups, separately.

Frontiers in Pharmacology frontiersin.org08

Liu et al. 10.3389/fphar.2023.1280428

191

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1280428


Verifying the relationship between
glycosylation score and TIME in a real-world
BLCA cohort

Based on glycosylation scores to predict the expression of TME
immunophenotype in TCGA-BLCA, we verified how glycosylation
affects the TIME in real BLCA patients in Xiangya Hospital. Like
previous research ideas, in 7-step CIC (Figure 5A, left;
Supplementary Table S11), we found that patients with high
glycosylation scores were more activated in the main anti-tumor
immune steps, including. Correspondingly, the level of immune cell
infiltration in the TIME was significantly increased in patients with
high scores (Figure 5A, right; Supplementary Table S12), including.
Furthermore, as shown in Figure 5B (Supplementary Table S13),
patients with high glycosylation scores also expressed more ICI (up)
and TIS (down) related genes, further confirming the activity of
immune cells in their TME. As for immune cell effector genes, the
results strongly suggested that patients with higher glycosylation
score express more effector genes for CD8+T cells, DC,
macrophages, NK cells, and Th1 cells (Figure 5C). Based on the
multiple verifications of glycosylation and immunity in TCGA-
BLCA and Xiangya-BLCA, we conclude that patients with higher
glycosylation scores often exhibited a “hot” TIME, which mad their
efficacy in immunotherapy more ideal.

Glycosylation score guided precision
medicine in BLCA by predicting molecular
subtypes

The gene expression profiling of MIBC has revealed that it was a
heterogeneous disease, that can be sub-grouped into a variety of
molecular subtypes, and shared significantly different prognoses and
responses to anti-tumor treatments (Sjödahl et al., 2012;
Comprehensive molecular characterization of urothelial, 2014; Fu
et al., 2018; McConkey and Choi, 2018). The most common and
recognized molecular typing standards were as follows, consensus
subtype (Kamoun et al., 2020), TCGA subtype (Robertson et al.,
2017), Cartes d’Identité des Tumeurs-Curie (CIT) subtype
(Rebouissou et al., 2014), Lund subtype (Marzouka et al., 2018),
Baylor subtype (Mo et al., 2018), University of North Carolina
(UNC) subtype (Damrauer et al., 2014), MDAnderson Cancer
Center (MDA) subtype (Choi et al., 2014). Our previous research
integrated and simplified the above 7 typing standards to promote
the clinical implementation of BLCA molecular subtypes (Li et al.,
2021).

We found high consistency in the results between the public
training cohort TCGA-BLCA (Figure 6A, up) and our real-world
research cohort Xiangya-BLCA (Figure 6A, down). Among all the
classification criteria, the basal subtype was more inclined to obtain
higher glycosylation score, while the luminal subtype was more
inclined to obtain lower glycosylation score. And, patients with high
glycosylation score tend to exhibit basal differentiation
characteristics, such as EMT differentiation, Immune
differentiation, basal differentiation, interferon response, and so
on. Simultaneously, patients in the with low glycosylation score
were more inclined to exhibit luminal differentiation, like luminal
differentiation and urothelial differentiation. As for the accuracy of

glycosylation score in predicting BLCA molecular subtype, in
TCGA-BLCA (Figure 6B), most AUCs exceed 0.73, and in
Xiangya BLCA (Figure 6C), most AUCs even exceed 0.87.

Previous studies (Seiler et al., 2017; Kamoun et al., 2020) have
shown that the differentiation of the Basal subtype BLCA is lower
than that of the Luminal subtype, resulting in poorer prognosis.
However, it has a higher response rate to immunotherapy such as
cisplatin and ICB. Our study showed that BLCA patients with high
glycosylation score had poor prognosis but more immune cell
infiltration due to a tendency towards lower differentiated Basal
subtype.

Discussion

Neoadjuvant chemotherapy based on cisplatin, followed by
radical cystectomy and urinary tract diversion, remains the
standardized treatment plan for locally advanced MIBC since the
early 21st century (Author Anonymous, 1999; Grossman et al.,
2003). Glycosylation is involved in many fundamental cellular
events, including cell migration, cell signaling, growth and
intercellular adhesion, cell signaling, and growth, and is one of
the most common post translational modifications of proteins
(Fuster and Esko, 2005). And, abnormal glycosylation is also
considered an indispensable part of the carcinogenesis process
(Ni et al., 2014), including BLCA. The research on protein
modification and tumor heterogeneity, as well as the prediction
of immunotherapy efficacy such as ICB, remains a hot topic in many
cancers (Liu et al., 2021; Liu et al., 2022). Therefore, our research was
dedicated to deeply exploring the association between glycosylation
and BLCA, with the goal of accurately predicting prognosis and
individualized guidance for treatment of BLCA.

Firstly, based on the expression feature of 628 glycosylation
genes in each TCGA-BLCA patient, we obtained the most
appropriate two clusters through consensus clustering, named
glycosylation cluster 1 and glycosylation cluster 2. The results
indicated that the patients in glycosylation cluster 2 had poor
prognosis but more immune cell infiltration into the TME. The
poor prognosis and unsatisfactory treatment response of cancer are
mostly related to complex TME (Siegel et al., 2021), with the role of
immune cells and related pathways being important factors.
Therefore, we hoped to further develop the quantitative value of
glycosylation genes in predicting prognosis and immunophenotype
of BLCA. In addition, in recent years, research on the mechanism of
glycosylation in BLCA had made progress (Wu et al., 2021; Tan
et al., 2022), but research on the development of risk score to
evaluate the prognosis of BLCA was still lacking. Therefore, we
constructed a model by screening candidate genes that were strongly
correlated with prognosis and most representative of glycosylation
gene expression characteristics, and for the first time developed a
glycosylation risk score that can comprehensively predict the
prognosis, immune phenotype, and molecular subtype of BLCA.

Tumor cells had a faster rate of protein glycosylation than
normal cells (Beatson et al., 2016), and a prospective multi-omics
study on ovarian cancer by Hu et al. (2020). Further demonstrated
that there was a significant differential expression of glycosylation
between cancer cells and normal cells, and the degree of
glycosylation difference could be reflected by the expression of
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glycoproteins in cancer cells. Some studies had shown that the
abnormal mutation of the glycosylation related gene
GALNT1 would lead to the occurrence and progression of a
variety of cancers, including BLCA (Dyrskjøt et al., 2009). The
activity of tumor infiltrating immune cells (TIICs), especially tumor
infiltrating lymphocytes (TIL), in TME directly determines the
survival outcome of tumor patients (Fridman et al., 2012),
including early pT1 BLCA (Hülsen et al., 2020). In addition, the
development of new targets, such as BCAT2, EMT-related signature
and S100A5 (Xiao et al., 2022; Cai et al., 2023; Li et al., 2023), was
playing an increasingly important role in immunotherapy for BLCA.
A multicenter cohort study involving 709 patients (Bajorin et al.,
2021) suggested that BLCA patients who still had a high risk of
recurrence after surgery should be assisted with nivolumab. In this
study, patients with high glycosylation scores had worse prognosis
but presented a “hot” TIME (Duan et al., 2020) with high immune
cell infiltration, and this result was highly consistent in the training
set TCGA-BLCA and our own real-world cohort Xiangya-BLCA.
Badmann S. et al.’s study (Badmann et al., 2020) provided a possible

explanation for this phenomenon: in ovarian cancer, glycosylation
could promote macrophage differentiation towards anti-
inflammatory M2 type, leading to immune escape of cancer cells
in immune activated TME.

Previous studies had shown that molecular typing can refine the
prognosis and immune microenvironment of tumors. For example,
in the study of breast cancer, it was found that the TILs infiltration
level of different molecular subtypes of HR + breast cancer was quite
different, in which TILs infiltration only prolongs OS, not disease-
free survival (DFS) (Denkert et al.,2018). That was to say, different
molecular subtypes exhibit different TIME (Goldberg et al., 2021).
Rethinking the criteria for tumor molecular typing had become a hot
topic, such as refining, updating, integrating, and simplifying. For
example, the 5 mC regulator subtype system developed by our team
in the previous study can accurately predict molecular typing in
BLCA (Hu et al., 2021b). Moreover, the establishment of a consensus
molecular subtype standard in gastric adenocarcinoma (GAC) to
reclassify it and predict the response rate to ICB treatment (Wu
et al., 2022), and a new standard developed by our team (Li et al.,

FIGURE 6
Glycosylation score guided precision medicine in BLCA by predicting molecular subtypes. (A) The heatmap of different Glycosylation risk score
groups, seven molecular subtype classifications and bladder cancer associated signatures in the TCGA-BLCA (up) and Xiangya cohort (down). Activated
or inhibited pathways are marked as red or green, separately. (B,C) ROC plot of the Glycosylation risk score for predicting seven molecular subtype
classifications in BLCA in the TCGA-BLCA and Xiangya cohort.
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2021) that integrate multiple mainstream molecular subtypes of
BLCA will bring molecular typing closer to tumor treatment
practice. In addition, Miao et al. (2022) reported that a
glycosylation related protein B3GNT5 was specifically
overexpressed in basal-like breast cancer (BLBR), revealing the
close relationship between glycosylation and cancer molecular
subtype. In this study, BLCA patients with high glycosylation
score tended to differentiate into basal subtype, and they had
“hot” TIME characteristics, but had poor prognosis. However,
patients with low glycosylation score exhibited opposite luminal
subtype, as well as corresponding prognosis and immune
phenotype. In summary, patients with high glycosylation score
would have better expected efficacy in receiving immunotherapy
such as ICB, so more efforts should be made to explore new
immunotherapies to improve the prognosis after treatment. On
the contrary, patients with low glycation score should focus more on
the development of targeted therapies and other therapies. This
result also confirmed the previous research on the impact of
molecular subtype on tumor prognosis and immunity phenotype
(Choi et al., 2014; Hodgson et al., 2018).

Finally, there are some limitations that need to be further
explored and supplemented in future research in this study. First,
the materials of this study were retrospective data, and the influence
between glycosylation and prognosis, immunophenotype and
molecular typing of BLCA mostly stops at the level of
correlation. Therefore, we plan to take this study as a pre-study
and carry out prospective research on glycosylation and
immunotherapy and targeted therapy of BLCA in the follow-up
series of studies. In addition, based on this study and more literature
review, combined with experimental conditions, we will conduct
research on the mechanism of glycosylation related genes affecting
BLCA treatment, committed to developing new therapeutic targets
to promote precise treatment of BLCA.

Conclusion

Our study constructed a glycosylation score related to BLCA
through multi-omics data, and predicted the tumor heterogeneity,
prognosis and immunophenotype of BLCA. Glycosylation score can
reliably predict the efficacy of immunotherapy and molecular
subtypes of BLCA, which is conducive to individualized
treatment decisions of BLCA patients.
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Glossary

BLCA bladder cancer

NMIBC non-muscle invasive bladder cancer

MIBC muscle-invasive bladder cancer

TIME tumor immune microenvironment

TME tumor microenvironment

TCGA the Cancer Genome Atlas

GDC Genomic Data Commons

FPKM fragments per kilobase of exon model per million mapped fragments

TPM transcripts per kilobase of exon model per million mapped reads

GEO Gene Expression Omnibus

RNA-seq RNA-sequencing

GSEA gene set enrichment analysis

TIP tracking tumor immunophenotype

CIC Cancer Immunity Cycle

ICI immune checkpoint inhibitor

TIS T cell-associated inflammatory signature

DCs dendritic cells

NK natural killer

Th1 type 1 T helper

LASSO least absolute shrinkage and selection operator

K-M Kaplan-Meier

tROC time-dependent receiver operating characteristic

HR hazard ratio

ROC receiver operating characteristic

AUC area under the curve

ssGSEA single sample gene set enrichment analysis

ICB immune checkpoint blocker

TIICs tumor infiltrating immune cells

TIL tumor infiltrating lymphocytes

DFS disease-free survival

GAC gastric adenocarcinoma

BLBR basal-like breast cancer
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Decoding tumor heterogeneity in
uveal melanoma: basement
membrane genes as novel
biomarkers and therapeutic
targets revealed by multi-omics
approaches for cancer
immunotherapy
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Qinhong Zhang6*, Hao Chi7* and Guanhu Yang8*
1Queen Mary College, Medical School of Nanchang University, Nanchang, China, 2Department of
Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China, 3School of Stomatology,
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Chinese Medicine, Tianjin, China, 6Heilongjiang University of Chinese Medicine, Harbin, China, 7Clinical
Medical College, Southwest Medical University, Luzhou, China, 8Department of Specialty Medicine, Ohio
University, Athens, OH, United States

Background: Uveal melanoma (UVM) is a primary intraocular malignancy that
poses a significant threat to patients’ visual function and life. The basement
membrane (BM) is critical for establishing and maintaining cell polarity, adult
function, embryonic and organ morphogenesis, and many other biological
processes. Some basement membrane protein genes have been proven to be
prognostic biomarkers for various cancers. This research aimed to develop a novel
risk assessment system based on BMRGs that would serve as a theoretical
foundation for tailored and accurate treatment.

Methods:We used gene expression profiles and clinical data from the TCGA-UVM
cohort of 80 UVM patients as a training set. 56 UVM patients from the combined
cohort of GSE84976 and GSE22138 were employed as an external validation
dataset. Prognostic characteristics of basement membrane protein-related genes
(BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate
analysis revealed BMRGs to be independent predictors of UVM. The TISCH
database probes the crosstalk of BMEGs in the tumor microenvironment at the
single-cell level. Finally, we investigated the function of ITGA5 in UVM using
multiple experimental techniques, including CCK8, transwell, wound healing
assay, and colony formation assay.

Results: There are three genes in the prognostic risk model (ADAMTS10,
ADAMTS14, and ITGA5). After validation, we determined that the model is quite
reliable and accurately forecasts the prognosis of UVMpatients. Immunotherapy is
more likely to be beneficial for UVM patients in the high-risk group, whereas the
survival advantage may be greater for UVM patients in the low-risk
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group. Knockdown of ITGA5 expression was shown to inhibit the proliferation,
migration, and invasive ability of UVM cells in vitro experiments.

Conclusion: The 3-BMRGs feature model we constructed has excellent predictive
performance which plays a key role in the prognosis, informing the individualized
treatment of UVM patients. It also provides a new perspective for assessing pre-
immune efficacy.

KEYWORDS

uveal melanoma, basement membrane genes, machine learning, multi-omics, tumor
heterogeneity, cancer immunotherapy

1 Introduction

Uveal melanoma (UVM) is a rare yet aggressive primary
intraocular malignancy arising from ocular melanocytes,
constituting a small fraction of all melanomas (Singh et al., 2005;
Singh et al., 2011; Chattopadhyay et al., 2016; Chi et al., 2022). It
imposes significant threats to patients’ visual function and overall
survival, with a high mortality rate of up to 50% attributed to its
severe clinical presentation, malignancy, and limited treatment
options (Andreoli et al., 2015). Notably, UVM exhibits a
propensity for metastasis, with approximately half of the patients
developing distant organ metastases, most commonly involving the
liver, lung, and bone (Rusňák et al., 2020). Unfortunately, current
therapeutic modalities for UVM have shown limited efficacy in
managing metastatic disease (Augsburger et al., 2009; Damato,
2018). As a result, recent research endeavors have focused on the
development of targeted therapeutics and immunotherapeutic
strategies, including immune checkpoint inhibitors, vaccines, and
adoptive cell therapy, to address the unmet medical needs in UVM
(Curran et al., 2010; Larkin et al., 2015; Bol et al., 2016). However,
the underlying etiology and molecular mechanisms driving UVM
remain largely elusive (Smit et al., 2020; Derrien et al., 2021;
Katopodis et al., 2021). Consequently, there is a critical need to
identify novel prognostic biomarkers and molecular targets that can
accurately predict patient outcomes and facilitate personalized
treatment approaches, ultimately improving the quality of life for
individuals affected by UVM.

The basement membrane (BM) is a specialized extracellular
matrix located at the basal aspect of epithelial tissues, primarily
composed of collagen IV, laminin, heparan sulfate proteoglycans,
BM-40, and nidogen (Timpl, 1989). Its crucial role in establishing
and maintaining cellular polarity and providing mechanical support
to tissues is well-recognized (Banerjee et al., 2022). Moreover, BMs
play critical roles in various physiological processes, including
embryonic development, organ morphogenesis, and adult tissue
homeostasis (Li et al., 2003). Perturbations in BM protein expression
and turnover have been implicated in tumorigenesis, and
dysregulation of BM integrity has been associated with tumor
metastasis (Valastyan and Weinberg, 2011; Naba et al., 2014).
While BM-related genes have shown prognostic significance in
several cancers, their role, and prognostic implications in uveal
melanoma (UVM) remain poorly understood. To elucidate the
immunological status of UVM patients and accurately predict
prognosis, this study aimed to develop a novel risk-scoring
system based on BM-related genes. The objective was to establish
a theoretical foundation for personalized therapeutic interventions

tailored to individual patients. By comprehensively characterizing
the expression and functional relevance of BMRGs, this risk-scoring
system would enable precise prognostic stratification and facilitate
tailored treatment strategies in UVM.

Following the rapid advancement of bioinformatics (Song et al.,
2022a; Zhao et al., 2022a; Jin et al., 2022), a considerable amount of
research has been conducted to establish models for predicting the
prognosis of UVM through machine learning. For example, Zheng
et al. established an autophagy-related gene (ARG) risk model and
validated it with TCGA and four external independent UVM
cohorts, revealing that UVM patients with higher risk scores
exhibited higher levels of immune cell infiltration and
enrichment of tumor markers (Zheng et al., 2021); Lv et al.
constructed a UVM prognostic model based on the Epithelial-
mesenchymal transition (EMT) signature, which found that
patients with high EMT scores potentially had higher response
rates to immunotherapy (Lv et al., 2022); Yang et al. utilized
immune markers systematically to develop a prognostic six-
immune-gene signature via RNA sequencing data from TCGA
and GEO databases for predicting the overall survival outcome of
UVM patients (Yang et al., 2023). Meanwhile, several studies have
reported that BMRG signatures could predict the prognosis of
tumor survivors and provide a potential target for
immunotherapy (Cai et al., 2022; Shen et al., 2023). However,
BMRG-related models have not yet been established and
validated for prognostic prediction in UVM patients (Song et al.,
2022a).

In this study, we developed a prognostic model for UVM using
the TCGA-UVMcohort.We carefully selected three reliable basement
membrane-related genes (BMRGs) through a rigorous screening
process and employed two machine learning techniques to
construct the model. By integrating genetic information from
UVM patients, we aimed to explore the prognostic value of these
three BMRGs and develop novel tools to enhance therapeutic
strategies. Our analysis involved assessing the interaction between
BMRGs and the immunemicroenvironment, as well as evaluating the
impact of BMRGs on immunotherapy and chemotherapy sensitivity.
We eventually verified the functional role of the ITGA5, the gene with
the highest absoluteHR value, in UVM cells by an in vitro experiment.
By leveraging advanced computational methods and integrating
multi-dimensional data, we sought to gain insights into the role of
BMRGs in determining the prognosis of UVM, identify potential
avenues for improving treatment regimens, and offer possibilities for
developing personalized therapeutic approaches. These findings have
the potential to enhance patient outcomes and pave the way for
further advancements in UVM research and clinical practice.
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2 Materials and methods

2.1 Patient data sources

We utilized the TCGA-UVM cohort, obtained from the publicly
available TCGA database, as our training set, consisting of gene
expression profiles and clinical data from 80 tumor patients. To
ensure accurate analysis, we performed preprocessing steps on the
data. Initially, we converted the level 3 HTSeq-fragments per
kilobase (FPKM) data into transcripts per million reads (TPM)
to account for gene length and sequencing depth variations across
samples. This conversion was done using a formula that normalized
the TPM values. Subsequently, we applied a logarithmic
transformation to the TPM values to normalize the data and
enhance comparability between samples. It is important to note
that due to significant variation in sample sizes among UVM
patients at stages M and N, these stages were excluded from our
analysis to ensure robustness and reliability. Furthermore, we
incorporated two external validation datasets, GSE84976 and
GSE22138, from the GEO database. It is worth noting that
datasets GSE84976 and GSE22138 were merged together to act as
a validation set, and in order to mitigate the effects of batch
differences between the microarray expression data, we utilized
the ComBat function in the R package “sva” to achieve
correction for batch effects. For comprehensive details on these
datasets, see Supplementary Material. These datasets included
genetic profiles and clinical data from 56 UVM patients, and
their inclusion aimed to enhance the validity and generalizability
of our analyses. In the training cohort, we transcribed and analyzed
tissue samples from eye cancer patients for comparative analyses to
obtain genes that were aberrantly expressed in eye cancer patients.
While in the external validation set, we only included samples from
eye cancer patients analyzed. In addition, we required complete
patient follow-up and clinical information in the cohort and
complete micro-matrix data in the cohort to ensure data quality
for subsequent bioinformatics analysis. By employing these rigorous
preprocessing steps and integrating multiple datasets, we aimed to
improve the accuracy and reliability of our findings, providing
valuable insights into the molecular characteristics and clinical
implications of UVM.

2.2 Consensus clustering analysis

To gain deeper insights into the mechanistic implications of
BMRGs in UVM, we employed advanced analytical methodologies.
The “Consensus Cluster Plus” R package (Zhao et al., 2022b; Wang
et al., 2022) was leveraged to classify UVM patient samples into
distinct clusters based on the expression patterns of BMRGs, thereby
unveiling unique gene expression profiles associated with specific
subtypes. Differential expression patterns of BMRGs across clusters,
along with clinicopathological parameters, were visualized using the
“pheatmap” R package (Bhattacherjee et al., 2019; Song et al.,
2022b). To elucidate the distinct biological pathways and
processes underlying these clusters, we retrieved the “c2.
cp.kegg.v7.4. symbols.gmt” file from the MSigDB database
(Liberzon et al., 2015) for genomic variation analysis via GSVA.
Employing the “GSVA” R package (Hänzelmann et al., 2013), we

systematically analyzed pathway differences between clusters,
revealing noteworthy disparities in key pathways among diverse
UVM subtypes. Furthermore, the Single Sample Genome
Enrichment Analysis (ssGSEA) algorithm (Zhuang et al., 2021;
Huang et al., 2023) was applied to assess the infiltration levels of
immune cells and expression levels of immune checkpoints within
the identified clusters. This integrative approach shed light on
potential variations in the immune microenvironment across
UVM subtypes, offering crucial insights into the prospective
efficacy of immune checkpoint-based therapies in specific patient
cohorts.

2.3 Model construction and validation

The dataset of basement membrane (BM) genes was obtained
from the Basement Membrane BASE database (https://bmbase.
manchester.ac.uk), comprising a comprehensive collection of
224 genes associated with the basement membrane protein. To
explore the potential prognostic relevance of these genes, univariate
Cox regression analysis was performed, resulting in the
identification of 81 genes significantly associated with survival
outcomes. To further refine the gene set and mitigate the risk of
overfitting, we employed the LASSO (Least Absolute Shrinkage and
Selection Operator) method, a powerful machine learning approach
(Chi et al., 2023a; Chi et al., 2023b). The “glmnet” R package
(Engebretsen and Bohlin, 2019; Ren et al., 2023) was utilized to
implement LASSO, which involves adding a penalty term to the
regression model. This penalty encourages the coefficients of less
influential predictors to shrink toward zero, effectively selecting the
most informative subset of predictors. By applying LASSO, we
successfully narrowed down the candidate genes to eight.
Subsequently, a stepwise multi-factor Cox regression model was
employed to identify and estimate the coefficients of the core genes
from the selected set. Through this iterative procedure, we ultimately
derived a risk profile consisting of four BMRGs. For each patient, the
risk score was calculated by combining the expression levels of these
genes with their corresponding coefficients: Risk score =
ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×
CoefmRNA2 + ExpressionmRNAn × CoefmRNAn. By leveraging
these analytical approaches, we aimed to establish a robust and
concise set of BMRGs with prognostic implications in order to
facilitate risk stratification and inform personalized treatment
strategies for patients.

2.4 Correlation between clinicopathological
features and risk scores

Investigating the relationship between risk scores and relevant
clinical features in patients with uveal melanoma (UVM) can
provide valuable insights for clinical prognostic assessment. To
visualize the associations between clinical features and the
modeled genes, we employed the “pheatmap” R package (Lu
et al., 2021) to generate heat maps displaying multiple groups of
clinical features. To gain a deeper understanding of the differences in
risk scores among various patient subgroups, we performed clinical
analyses on the entire sample cohort. The patients were stratified
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based on different clinical characteristics, including age
(≤65 and >65 years), sex (male and female), pathological stage
(II and III-IV), and T-stage (T2 and T3-4). Between-group
differences were assessed using the “ggpubr” package (Whitehead
et al., 2019). By examining the relationships between risk scores and
clinical subgroups, we aimed to identify potential variations in risk
profiles based on different demographic and pathological factors.
These analyses would contribute to a more comprehensive
understanding of the prognostic implications of risk scores in
UVM patients and their clinical relevance.

2.5 Independent prognostic analysis and
nomogram construction

To evaluate the independent prognostic value of the risk score in
predicting uveal melanoma (UVM) outcomes, we conducted both
univariate and multivariate Cox regression analyses. These analyses
aimed to assess whether the risk score could serve as a reliable
prognostic factor, independent of conventional clinicopathological
characteristics. The “rms” R package (Zhang et al., 2022) was
employed to construct a nomogram incorporating the risk score
and clinicopathological features. This nomogram provided a visual
tool for predicting the survival of patients in the TCGA-UVM
cohort, enabling clinicians to estimate individual patient
prognoses more accurately. To assess the predictive performance
of the nomogram, we utilized the “ggDCA” R package (Mao et al.,
2021) to develop decision curve analysis (DCA) and calibration
curves. The DCA allowed us to evaluate the clinical benefits of using
the nomogram compared to other predictive models or strategies.
Calibration curves were generated to assess the calibration accuracy
of the nomogram in predicting patient survival. These
comprehensive analyses aimed to validate the prognostic value of
the risk score and provide clinicians with a practical tool for
prognostic assessment in UVM patients. By integrating the risk
score with clinicopathological characteristics, the nomogram offered
improved prognostic accuracy, ultimately enhancing patient
management and treatment decision-making.

2.6 Establishing the equations for signatures

After scoring all UVM patients based on the risk model
equation, we determined the median risk score using the
‘survminer’ R package. Subsequently, we categorized the patients
into a low-risk group and a high-risk group. Survival curves were
plotted for both groups to visually compare their survival outcomes.
To evaluate the predictive performance of the risk model, we
calculated the C-index using the ‘pec’ R package. The C-index
provides a measure of concordance between predicted risk scores
and actual survival outcomes. To further assess the predictive power
of the genetic traits, we conducted an analysis of receiver operating
characteristic (ROC) curves using the ‘time-ROC’ R package. ROC
curves allow us to evaluate the sensitivity and specificity of the
genetic traits in predicting survival outcomes. Additionally, decision
curve analysis (DCA) was performed for the multi-factor Cox
regression model using the ‘ggDCA’ R package. DCA provides
insights into the clinical utility of the predictive model by

assessing the net benefits of different strategies or models across
a range of threshold probabilities. Through these analyses, we aimed
to assess the predictive accuracy and clinical usefulness of the risk
model in UVM patients. The survival curves, C-index, ROC curves,
and DCA plots provide valuable information for understanding the
prognostic value and potential application of genetic traits in UVM
patient management and treatment decision-making.

2.7 Enrichment analysis

To analyze the Gene Ontology (GO) pathway, we utilized the
“ClusterProfiler” R package (Song et al., 2023; Zhang et al., 2023). In
the generated graphs, a p-value of less than 0.05 indicated a
statistically significant difference, highlighting the enriched
pathways and functional categories associated with the genes of
interest. For further enrichment analysis, we conducted GSVA using
the “GSVA” R package. The data from “c2. cp.kegg.v7.5.1.
symbols.gmt” in the MSigDB database were utilized to explore
the functional annotation and enrichment pathways. To visualize
the results, heatmaps were generated using the ‘heatmap’ R package.
Adjusted p-values of less than 0.05, obtained through the ‘limma’ R
package, indicated the statistical significance of subgroup differences
in the heatmap. Through functional enrichment analysis, we aimed
to gain insights into the biological functions, pathways, and
processes associated with differentially expressed genes related to
BMRGs in UVM. These analyses contribute to a better
understanding of the molecular mechanisms underlying UVM
and provide valuable information on functional annotations and
enriched pathways associated with BMRGs in the context of UVM.

2.8 Immuno-infiltration analysis

Multiple methods have been developed to quantify immune
infiltration scores, including XCELL, TIMER, QUANTISEQ,
MCPCOUNT, EPIC, CIBERSORT, and CIBERSORT-ABS. These
methods offer diverse approaches for evaluating the presence and
abundance of immune cells within the tumormicroenvironment. To
investigate the association between immune cells and risk scores,
Spearman correlation analysis was employed, allowing for a
comprehensive understanding of the immune landscape in UVM.
Utilizing the immune cell profiles of UVM patients, we applied the
ssGSEA method to stratify patients into distinct low- and high-risk
groups based on their immune signatures. Furthermore, we
examined the differential expression of 20 suppressive immune
checkpoints between the identified high-risk and low-risk groups,
shedding light on the potential influence of immune checkpoint
blockade therapies. To assess and visualize the impact of
immunotherapy in UVM patients, we utilized the widely adopted
‘limma’ and ‘ggpubr’ R packages. To expand our understanding of
the genetic underpinnings related to cancer and immunity, we
referred to the curated collection of genes provided by Xu et al.,
available on their website (Xu et al., 2018). Employing the R package
“ggcor,” we explored the correlation between risk scores and these
two genetic traits, unraveling potential associations between genetic
alterations and disease prognosis in UVM. Additionally, to predict
immune infiltration estimates and immunotherapy response data,
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we leveraged the computational tool ImmuCellAI (Miao et al.,
2020). This powerful resource enables comprehensive analyses of
the immune landscape and aids in guiding immunotherapeutic
strategies for UVM patients.

2.9 TISCH analysis

The Tumor Immunological Single Cell Centre (TISCH) hosts a
comprehensive single-cell RNA sequencing database that focuses on
investigating the intricate tumor microenvironment (TME). This
valuable resource facilitates detailed annotation of various single-cell
types, enabling in-depth analysis of gene expression within distinct
cellular populations. By examining gene expression patterns across
different cell types, we can unravel the intricate variations within the
tumor microenvironment of individual UVM patients, thus
shedding light on the underlying heterogeneity of UVM. This
comprehensive characterization of the TME aids in elucidating
the complex dynamics and functional implications of different
cell types within the UVM context.

2.10 Cell culture

The human uveal melanoma cells (MuM-2B, OCM-1) utilized
in this investigation were generously provided by the Cell Resource
Center at Shanghai Life Sciences Institute. These cells were
cultivated under controlled conditions in Dulbecco’s Modified
Eagle’s Medium (DMEM) (Gibco, United States), supplemented
with 1% penicillin/streptomycin and 10% fetal bovine serum (FBS)
(Gibco, United States), within a humidified incubator set at 37°C
with a 5% CO2 atmosphere.

2.11 CCK-8 assay

To assess the impact of ITGA5 on the proliferative capacity of
uveal melanoma (UVM) cells, the Cell Counting Kit-8 (CCK-8)
assay was employed. UVM cells were cultured in 96-well microplates
in triplicate, with each well initially seeded with 5,000 cells.
Subsequent to transfection, the cells were subjected to treatment
at 37°C for a duration of 2 h, utilizing 10 μL of CCK-8 solution
(A311-01, vazyme, Nanjing, China) mixed with 90 μL of complete
media in each well at specific time points (0, 24, 48, 72, or 96 h).
Following the respective incubation periods, the absorbance of each
well was quantified at 450 nm using a microplate reader.

2.12 Wound-healing assay

The wound healing assay was employed to evaluate the
migratory behavior of MuM-2B and OCM-1 cells, providing
valuable insights into their migratory patterns. The transfected
cells were cultured in a six-well plate and incubated at 37°C until
they reached approximately 80% confluence. To create a
standardized wound, a sterile 200 μL pipette tip was carefully
used to generate a linear scrape across the cell monolayers.
Following this, the medium was replaced with serum-free

medium after two washes with phosphate-buffered saline (PBS)
to eliminate any cellular debris. The movement of cells into the
wound area was monitored at 0 h and 48 h using an inverted
microscope (Olympus, Japan), enabling the quantification of the
distance traveled by the cells into the wound surface.

2.13 Transwell assay

Cell migration was assessed using the Transwell migration assay,
which involved a 24-well Transwell plate equipped with 8 μm-pore
membrane filters. Briefly, the bottom chamber of the Transwell plate
was supplemented with media containing 10% fetal bovine serum
(FBS), while the top chamber was coated with 2 × 10̂5 cells
suspended in serum-free medium. Following a 48-h incubation
period, the cells that had migrated to the bottom chamber were
fixed in 4%methanol for 10 min and subsequently stained with 0.1%
crystal violet (Solarbio, Beijing, China) for 15 min.

2.14 Statistical analysis

The statistical analysis was conducted using R software version
4.1.3. To compare the overall survival (OS) between the high-risk
and low-risk groups, Kaplan-Meier (KM) survival curves and log-
rank tests were employed. In addition, Lasso regression analyses
were performed to assess the potential relevance of BMRGs. A
stepwise multivariate Cox regression analysis was then employed to
construct a BMRG signature. The predictive performance of the
model was evaluated using a time-dependent ROC curve. The
relationship between the risk score and immune cell infiltration
was assessed using Spearman correlation analysis. To compare the
ratios of tumor immune infiltrating cells (TIIC), immunological
checkpoints, and immune function between the two groups, the
Wilcox test was applied. Statistical significance was determined by
p-values <0.05, and a false discovery rate (FDR) < 0.05 was
considered statistically significant. The CCK-8 data analysis was
conducted using GraphPad Prism Software version 8.3.0. The mean
values ±standard deviation (SD) were determined based on data
obtained from three independent experiments. Statistical
significance was assessed using analysis of variance (ANOVA),
with a significance level set at p < 0.05.

3 Results

3.1 Consensus clustering determined the
molecular subtypes of BMRGs

The primary study design is presented in Figure 1, illustrating
the overall flow of the investigation. The cumulative distribution
function (CDF) values demonstrated an increasing trend in relation
to the consensus index, indicating successful classification. To assess
cluster composition and quantity, the consensus matrix serves as an
excellent visual tool. We generated a color-coded heat map based on
the consensus matrix, which revealed higher intra-cluster
correlations and lower inter-cluster correlations when considering
k = 2. These findings strongly support the acceptance of two
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subtypes (Cluster A and Cluster B) for categorizing UVM patients.
Based on the CDF curves and the Delta area, k = 2 represents the
optimal point to achieve maximal inter-cluster differences as the
clustering index “k” increases from 2 to 9. Consequently, we divided
the UVM patients into two subgroups (Figures 2A–D).

Furthermore, we investigated the differential survival
prognosis across clusters using the Cluster Survival R package.
The results indicated that patients in cluster A exhibited
significantly better survival prognoses than those in cluster B
(p < 0.001) (Figure 2E).

Principal component analysis (PCA) was performed to visualize
risk distribution among different patient groups. The PCA plot
(Figure 2F) demonstrated distinct differences between Cluster A and
Cluster B patients. Additionally, we conducted further analysis to
explore metabolic variations in BMRGs between clusters A and B.
The heat map revealed notable expression differences and clinical
traits associated with BMRGs in cluster B (Figure 2G).

To investigate potential biological pathways, we performed an
enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database on the clustered samples. We
explored correlations among various cancer-related pathways, such
as apoptosis, transporters, and the MAPK signaling pathway
(Figure 2H). Moreover, we employed the ssGSEA algorithm to
assess the distribution and correlation of 23 tumor-infiltrating

immune cells (TIICs) to guide immunotherapy. Notably, cluster
B exhibited higher levels of immune cell infiltration compared to
cluster A (Figure 2I). Considering the critical role of immune
checkpoints in tumor immunotherapy effectiveness and their
prominence within the tumor microenvironment (TME), we
evaluated immune checkpoint expression between the two patient
clusters. The analysis revealed significantly upregulated immune
checkpoint expression in Cluster B patients, except for TMIGD2 and
CD44. Based on these findings, we conclude that Cluster B
demonstrates a more favorable response and effectiveness toward
immunotherapy (Figure 2J).

3.2 Development and validation of the
BMRGs signature

We developed a risk score model based on BMRGs to identify
prognostic biomarkers in UVM patients. Differentially expressed
BMRGs with prognostic value were selected using LASSO regression
analysis, and the resulting LASSO regression curves and cross-
validation plots are shown in Figures 3A,B, respectively. To
address batch effects between GSE22138 and GSE84976 datasets,
we employed the R package “Combat” for batch effect removal
(Figures 3C,D). The prognostic index (PI) was calculated using the

FIGURE 1
Flow chart of this study.
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formula (−0.974 * ADAMTS10 exp.) + (1.015 * ADAMTS14 exp.) +
(0.026 * CSF2 exp.) + (2.973 * ITGA5 exp.), and the risk score for
each UVM patient was determined based on the median score using

the equation. The optimal number of genes for cross-validation plots
was 3, and the selected genes were ADAMTS10, ADAMTS14, and
ITGA5.

FIGURE 2
Consensus clustering determined the molecular subtypes of BMRGs. (A) Consensus clustering CDF with K = 2 to 9. (B) Consensus matrix heatmap
for K = 2 clusters. (C) CDF plot illustrating the consensus clustering results for K = 2 to 9. (D) Tracking plot displaying the sample classification across K =
2 to 9 clusters. (E) Kaplan-Meier survival curves comparing the survival outcomes between Cluster A and Cluster B. (F) Principal component analysis (PCA)
plot visualizing the distribution of samples. (G) Correlation analysis depicting the relationship between BMRGs expression and clinicopathological
parameters. (H) Enrichment analysis of KEGG pathways in Cluster A and Cluster B. (I) Comparison of immune cell infiltration levels between clusters. (J)
Differential expression of immune checkpoints between Cluster A and Cluster B. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ns > 0.05.
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Further analysis revealed a strong correlation between the
expression of the investigated BMRGs and the risk score. The
risk score correlation heatmap (Figure 3E) and dot plot
(Figure 3F) indicated that the expression levels of
ADAMTS10 and ITGA5 were positively correlated with the risk

score, while ADAMTS14 was negatively correlated. The TCGA-
UVM cohort was used as the training set, and the de-batched
GSE84976 dataset was used for validation. In the TCGA-UVM
cohort, the low-risk group demonstrated significantly better
prognostic outcomes (p < 0.001) (Figure 3G). The predictive

FIGURE 3
Development and validation of the BMRGs signature. (A) Ten-fold cross-validation for parameter selection using the LASSO model. (B) Profiles of
LASSO coefficients. (C) Principal component analysis (PCA) plot of GSE22138. (D) PCA plot of GSE84976 after removing batch effects using Combat. (E)
Heatmap illustrating the risk factors in high- and low-risk patients. (F) Correlation between three BMRGs and the risk score. (G, K) Kaplan-Meier curves
comparing overall survival between low- and high-risk groups in the TCGA-UVM cohort and the GSE84976 cohort. (H, L) Time-dependent receiver
operating characteristic (ROC) curves analysis of the TCGA-UVM cohort and the GSE84976 cohort. (I, M) Distribution of risk scores and survival status of
UVM patients in the low- and high-risk groups in the TCGA-UVM cohort and the GSE84976 cohort. (J, N) PCA plot of the TCGA-UVM cohort and the
GSE84976 cohort.
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model showed excellent performance as evidenced by the ROC
curves, with high sensitivity and specificity reflected by the AUC
values at 1, 2, 3, 4, and 5 years (0.831, 0.916, 0.913, 0.952, and 0.870)
(Figure 3H). Moreover, there was an observed increase in mortality
and a decrease in survival with higher risk scores (Figure 3I).
Principal component analysis (PCA) clearly distinguished low-
risk and high-risk patients from each other (Figure 3J). The
results obtained in the GSE41613 cohort replicated those of the
TCGA-UVM cohort (Figure 3K-N), indicating the reliability and
consistency of our predictive model. In conclusion, our prediction
model demonstrates high accuracy and reliability, providing
valuable guidance for clinical management.

3.3 Construction of nomograms based on 3-
BMRGs signatures with clinical features

Given the strong correlation between our constructed risk model
and poor prognosis, we conducted univariate and multivariate Cox
analyses to determine whether the prognostic characteristics based
on the 3-BMRGs could serve as independent predictors of prognosis
in UVM patients. In the univariate analysis, age (p = 0.011), T-stage
(p = 0.033), and risk scores (p < 0.001) showed significant
correlations with prognosis (Figure 4A). The subsequent
multivariate analysis confirmed that age (p = 0.009), T-stage (p =

0.011), and risk scores (p < 0.001) remained accurate and
independent predictors in this patient cohort (Figure 4B).

To enhance the clinical applicability and usability of the risk
model, we developed Nomogram plots that incorporated age,
gender, clinical stage, T-stage, and risk scores as predictors of
survival probability at 1, 2, and 3 years for UVM patients. The
risk score exhibited a substantial impact on predicting overall
survival (OS), as demonstrated by the model analysis, indicating
that the BMRGs-based risk model could provide more accurate
prognostic predictions for UVM patients (Figure 4C). Additionally,
we found that the risk score (AUC = 0.882) and Nomogram (AUC =
0.862) outperformed single independent clinical indicators in terms
of predictive performance and discriminatory power (Figure 4D).
Furthermore, the calibration analysis showed relatively consistent
results between the predicted and observed 1-year, 3-year, and 5-
year OS rates, as indicated by the calibration line closely aligning
with the ideal 45-degree line (Figure 4E).

3.4 Clinical correlation and survival analysis
of BMRGs in patients with UVM

A heat map was generated to visualize the correlation between
the prognostic risk model identified using the 3-BMRGs and the
clinical characteristics, risk scores, and expression levels of the 3-

FIGURE 4
Building nomograms based on clinical characteristics. (A) Univariate Cox regression analysis of the signature and various clinical profiles. (B)
Multivariate Cox regression analysis incorporating the signature and clinical characteristics. (C)Nomogram depicting age, gender, stage, T-stage, and risk
score. (D) Calibration curves of the nomogram for 1-, 3-, and 5-year survival. (E) Time-dependent ROC curve.

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2023.1264345

206

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1264345


BMRGs in all UVM patients from the TCGA dataset (Figure 5A).
Additionally, we compared the distribution of patients with different
clinicopathological features between the high-risk and low-risk
groups (Figure 5B). To further examine the association between
risk scores and clinicopathological characteristics, box plots were
constructed for different subgroups based on gender (male and
female), age (>65 and ≤65 years), clinical stage (II and III-IV), and
T-stage (T2, T3, T4). Notably, the analysis revealed that patients
with stage T4 had significantly higher risk scores compared to those
with stage T3 (p = 0.045) (Figures 5C–F).

Considering the significant differences in individual clinical
characteristics between the high-risk and low-risk groups for
overall survival (OS), we further divided UVM patients into
subgroups based on age (≤65 years, >65 years), gender (male and
female), pathological stage (II and III-IV), and T-stage (T2 and T3-
4). Remarkably, except for patients in stage T2, the low-risk
subgroup exhibited a significant survival advantage with longer

survival times compared to the high-risk subgroup (Figure 6).
Based on these analyses, the 3-BMRGs risk model demonstrated
its reliability as a clinical prediction tool for UVM patients.

3.5 3-BMRGs signatures exhibit superior
performance compared to others in
prognostic prediction

In order to assess the predictive performance of our BMRGs
signature in UVM patients, we compared it with five previously
published prognostic signatures, namely, the Xia signature, Xie
signature, Zhang signature, Shi signature, and Hu signature.
Using the same method, we calculated risk scores for each UVM
sample in the entire TCGA cohort and found that our signature
exhibited the highest correlation with survival outcomes
(Figure 7AB, IJ). Despite successfully stratifying UVM patients

FIGURE 5
Clinical correlation and survival analysis of BMRGs in UVMpatients. (A)Heatmap showing the relationship between clinical features and high-risk and
low-risk scores in UVM patients. (B) Histogram presenting the distribution of clinical characteristics, including stage, T-stage, gender, and age
percentages for each category. BMRGs can identify high-risk patients across different subgroups based on various clinicopathological traits. (C) Gender,
(D) T-stage, (E) age, and (F) stage were analyzed for clinical correlation and survival in UVM patients.
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into two subgroups with significantly different prognoses, the AUC
values of the five compared signatures at 1-, 3-, and 5-year survival
were lower than those of our model (Figures 7E,F,K,L). Additionally,
the C-index analysis demonstrated that our signature outperformed
the other signatures (Figure 7M). Overall, our study indicates that
our constructed BMRGs signature possesses excellent predictive
ability in prognosticating UVM patients.

3.6 Functional enrichment analysis of DEGs
in TCGA-UVM

In order to gain insights into the potential bioactivities and
signaling pathways involved in UVM, and to understand the
molecular mechanisms underlying UVM progression, we
conducted Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis and gene ontology (GO) functional analysis.
We applied stringent thresholds of FDR<0.05 and p < 0.05 to select
significantly enriched items, as depicted in Figure 8A and
Supplementary Table S1. The biological process (BP) analysis
revealed enrichment in various processes such as rhythmic
process, regulation of hormone levels, and circadian rhythm.
Cellular component (CC) analysis highlighted correlations with
neuronal cell body, presynaptic active zone, and terminal bouton,
among others. Molecular function (MF) analysis indicated
associations with functions such as G protein-coupled receptor
binding, receptor-ligand activity, and signaling receptor activator.
Furthermore, the KEGG enrichment analysis unveiled disease
pathways including Circadian entrainment, Allograft rejection,
and the Chemokine signaling pathway (Figure 8B). Moreover, the
Gene Set Variation Analysis (GSVA) identified 50 significantly
enriched pathways (Figure 8C). In-depth analysis revealed that in

the low-risk population, pathways related to the Regulation of
autophagy and RNA degradation were enriched. Conversely, in
the high-risk population, pathway enrichment primarily involved
immune and substance metabolism pathways such as leukocyte
transendothelial migration and antigen processing and presentation.
These findings contribute to our understanding of the molecular
mechanisms underlying UVM andmay provide valuable insights for
the development of effective therapeutic strategies for UVM
patients.

3.7 Risk score predicts TME and immune cell
infiltration

Interactions between cancer cells and the tumor
microenvironment (TME) play a crucial role in tumorigenesis,
progression, and treatment outcomes. Tumor-infiltrating immune
cells (TIICs) are integral components of the TME, and their
distribution and alterations are closely associated with tumor
progression. In this study, we investigated the relationship
between risk scores and immune cell infiltration in the context of
3 BMRGs using seven algorithms: XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, CIBERSORT, CIBERSORT-ABS, and EPIC. Our
results revealed a positive correlation between risk scores and the
presence of T cell CD8+ cells across multiple algorithms (Figure 9A).
Furthermore, we analyzed the proportions of 22 immune cell
infiltrates between the high-risk and low-risk groups of TCGA-
UVM patients using the CIBERSORT algorithm. The results were
visualized using stacked plots, demonstrating differences in immune
cell composition between the two risk groups (Figure 9B). We also
utilized the immune AI portal to assess immunotherapy response in
UVM patients. Our analysis revealed that patients with higher risk

FIGURE 6
Clinical correlation and survival analysis of 3-BMRGs in UVM patients. (A, B) Age, (C, D) gender, (E, F) tumor grade, and (G, H) T-stage evaluated for
clinical correlation and survival in UVM patients.
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scores were more likely to benefit from immunotherapy (Figures
9C,D), while those with lower risk scores exhibited a survival
advantage. The ROC curves demonstrated the excellent
performance of the 3-BMRGs biomarkers in predicting treatment
outcomes for patients (Figure 9F). To further explore the immune
profile of the tumor microenvironment, we plotted a correlation
butterfly diagram to examine the relationship between risk scores
and various steps of the tumor immune cycle. The analysis revealed a
positive correlation between risk scores and most immune cycle
steps, suggesting potential implications for immune modulation in
UVM (Figure 9G).

3.8 Relationships between 3-BMRGs
signatures and tumor microenvironment

In order to investigate the expression patterns of the 3-BMRGs
in the tumor microenvironment, we utilized the cellular dataset
UVM_GSE139829 obtained from the TISCH database. The
distribution and numbers of 31 cell populations and 8 immune
cell types in the UVM_GSE139829 dataset were analyzed and
displayed (Figures 10A–D). Furthermore, we examined the
expression of the 3-BMRGs in different immune cell populations.
The expression of BMRGs was found to be lower in the

FIGURE 7
The BMRGs signature demonstrated superior prognostic prediction performance compared to other signatures. (A, E) Kaplan-Meier (KM) and
receiver operating characteristic (ROC) curves of the BMRGs signature. (B, F) KM and ROC curves of the Xia signature. (C, G) KM and ROC curves of the Xie
signature. (D, H) KM and ROC curves of the Zhang signature. (I, K) KM and ROC curves of the Shi signature. (J, L) KM and ROC curves of the Hu signature.
(M) C-indexes of the six risk models.
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ADAMTS14 immune microenvironment (Figure 10E). On the other
hand, ADAMTS10 and ITGA5 were expressed in various immune
cell populations, as demonstrated in Figures 10F,G, respectively.
Notably, ITGA5 showed predominant expression in CD8 Tex,
Mono/Macro, and CD8T immune cell populations. These
findings provide insights into the expression patterns of the 3-
BMRGs within the immune cell landscape of UVM.

3.9 ITGA5 facilitates the proliferation,
migration, and invasion of uveal melanoma
(UVM) cells

Considering the identification of ITGA5 as a high-risk gene
exhibiting a maximum absolute hazard ratio (HR) in uveal
melanoma (UVM) patients, we conducted additional in vitro
experiments to elucidate the specific role of ITGA5 in UVM.
Knockdown systems targeting ITGA5 were established in OCM-1

and MUM-2C cell lines. The CCK-8 assay, and colony formation
assay demonstrated a significant reduction in the proliferation rate
of UVM cells following ITGA5 silencing (Figures 11A,B). Moreover,
both the Transwell assay and the wound healing assay revealed
diminished migration and invasiveness of UVM cells after
ITGA5 knockdown, in comparison to cells transfected with si-
NC (Figures 11C,D). Collectively, these findings provide evidence
that ITGA5 functions as an oncogene, promoting the malignant
characteristics of UVM cells, including proliferation, invasion, and
migration.

4 Discussion

Although the prevalence of UVM is not extremely high, it
accounts for 85% of all ocular melanomas, with up to 50% of
patients of primary UVM developing distant metastases, 90%
with liver damage, and a median survival of 4–5 months

FIGURE 8
Functional enrichment analysis of Differentially ExpressedGenes (DEGs) in TCGA-UVMwas performed. (A)GeneOntology (GO) enrichment analysis
was conducted to investigate the differences in basement membrane x genes between UVM and normal samples. The analysis included biological
processes (BP), cellular components (CC), and molecular functions (MF). (B) KEGG enrichment analysis was performed to identify enriched pathways
associated with the DEGs. (C) Gene Set Variation Analysis (GSVA) was utilized to compare the enrichment scores between high-risk and low-risk
cohorts, providing insights into the functional differences between these groups.
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(Baggetto et al., 2005; Tabernero, 2007; Carvajal et al., 2017; Brouwer
et al., 2019). Additionally, the metastatic rates for UVM throughout
the course of 5 and 10 years are roughly 25% and 34%, respectively,
and the mortality rate for UVM 1 year after metastasis is 80%. After
diagnosis, the majority of patients with metastatic UVM have a
survival span of 6–12 months for which metastatic UVM is virtually
always challenging to treat. Due to the poor prognosis of UVM, few
individuals can receive possibly curative surgery (Singh et al., 2005;

Straatsma et al., 2018). Meanwhile, 5-year survival rates have
remained essentially unchanged over the past 3 decades despite
the development of efficient local therapy. There are currently no
effective adjuvant systemic medications that have been proven to
lower the risk of metastasis as well as actually extend survival,
according to a recent review study (Triozzi and Singh, 2014).

Actually, early diagnosis and therapy are crucial to improving
prognosis, while UVM diagnosis and prognosis prediction are

FIGURE 9
The risk score is predictive of the tumor microenvironment (TME) and immune cell infiltration. (A) An immune cell bubble plot was generated to
visualize the composition of immune cell types. (B) A stacked plot illustrates the differences in immune cell infiltration between the high-risk and low-risk
groups. (C, D) The expression levels of the 3-BMRGs were utilized to predict the response of patients to immune therapy. (E) Kaplan-Meier (KM) curves
compare the survival outcomes between the high-risk and low-risk groups after receiving immunotherapy. (F) The receiver operating characteristic
(ROC) curve analysis demonstrates the robust predictive performance of the marker model. (H) The correlation between risk scores and immune
checkpoint blockade (ICB) response characteristics was examined. (G) The correlation between risk scores and each step of the tumor immunization
cycle was investigated.
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currently reliant on clinical presentation and histological
examination, which are insufficient to identify tumor
heterogeneity and developmental patterns. Therefore, using the
TCGA-UVM dataset, this study constructed a multigene
prognostic model of genes related to basement membrane
proteins from a molecular perspective in order to better predict
the diagnosis and prognosis of UVM. It opens up new avenues for
the investigation of individualized treatment strategies and
prognosis prediction.

Defects in BMprotein expression and turnover play amajor role in
the development of cancer, fibrosis, and diabetes (Tsilibary, 2003; Naba
et al., 2014; Foster, 2017). Specifically, the overexpression of laminin, a
component of BM protein, is closely associated with the
overproliferation of certain tumor cells, such as those found in
colon and breast cancer (Jayadev and Sherwood, 2017). Moreover,
BM is significantly involved in the progression of tumors. During the
early development of breast cancer, cancer cells invade through the BM

foramen, which is a crucial step in metastasis (Sikic et al., 2022). In
addition, the level of netrin-4 in BM is highly correlated with the
prognosis of breast cancer, renal cancer, and uveal melanoma (Reuten
et al., 2021). Several recent studies have already attempted to mine
public databases to identify prognostic gene signatures related to BM
proteins in tumors. For example, Cai et al. identified a 7-gene signature
associated with basement membrane proteins that predicted the
prognostic status of breast cancer patients and provided insights for
immunotherapy (Cai et al., 2022); Zhou et al. developed a risk model
using 8 BMRGs, which revealed that clear-cell renal cell carcinoma
patients in the low-risk group had a better response to immunotherapy
(Zhou et al., 2022); Lin et al. established a 7-BMRG signature and
identified five small compounds that could potentially be used for the
treatment of pancreatic cancer patients, providing new perspectives for
a deeper understanding of this disease (Lin et al., 2023). Overall, these
studies highlight the significance of basement membrane proteins in
the precise treatment of tumors.

FIGURE 10
Association of BMRGs with the tumor microenvironment. Annotation of (A) 31 cell clusters and (B) 8 cell types in UVM_GSE139829. (C, D) The
distribution and proportion of each cell type, including CD8T cells, endothelial cells, B cells, etc. Expression and percentage of (E) ADAMTS14, (F)
ADAMTS10, (G) ITGA5.
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In our study, we selected three basement membrane related-
genes (ADAMTS10, ADAMTS14, and ITGA5) to create the novel
prognostic model by utilizing Lasso regression analysis, SVM-RFE,
and stepwise multiple COX regression analysis. Numerous studies
have proven that the ADAMTS (a disintegrin and metalloproteinase
with thrombospondin motif) family of proteins contributes to the
development of malignant tumors, cell proliferation, apoptosis,
migration, invasion, and angiogenesis (Held-Feindt et al., 2006;
Rocks et al., 2006; Filou et al., 2015; Sun et al., 2015). ADAMTSs
have a negative impact on the prognosis of patients with 24 tumors,
in particular the patients with Adrenocortical carcinoma, Uveal

Melanoma, Kidney renal clear cell carcinoma, Colon
adenocarcinoma, Thyroid carcinoma, etc. (Wu et al., 2021).
Although the precise mechanism by which ADAMTS play a role
in tumor progression and metastasis remains uncertain, several
research has explored these protein hydrolases and confirmed
their relevance in various tumor types. ADAMTS10 expression is
significantly downregulated in tumors (Sun et al., 2015).
Furthermore, a variety of ADAMTSs, including ADAMTS20,
ADAMTS10, and ADAMTS3, exhibit significant levels of
methylation in a range of tumors. Analysis of the relationship
between methylation and gene expression levels reveals a

FIGURE 11
ITGA5 facilitates the proliferation, migration, and invasion of UVM cells. (A) CCK-8 assay showed that the proliferative capacity of UVM cells was
significantly reduced after silencing of ITGA5. (B)Colony formation assays showed that the ability of UVM cells to form colonies was significantly reduced
after ITGA5 silencing. (C, D) In wound healing and transwell assays, silencing of ITGA5 significantly reduced the migratory and invasive capacity of MuM-
2B and OCM-1 cell lines.
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negative relationship between the two, suggesting that the main
function of ADAMTS methylation is to silence the ADAMTS gene,
leading to a decrease in its expression (Wu et al., 2021). Besides,
ADAMTS10 is frequently mutated in metastatic colorectal cancer,
and mutated ADAMTS10 transcripts are actively expressed in the
corresponding tumors implicating a possible role for ADAMTS10 in
tumor metastasis (Oga et al., 2019). According to numerous
research, the ADAMTS14 gene has been associated with an
elevated likelihood of developing tumors. The expression of
ADAMTS14 was identified to be considerably higher in human
breast cancer tissues, according to Porter et al. (2004). As reported
by Sheu et al., ADAMTS14 gene polymorphisms serve a part in the
progression of hepatocellular carcinoma (Sheu et al., 2017). The
expression of ADAMTS14 in oral squamous carcinoma (OSCC) is
low. In OSCC patients, the downregulation of ADAMTS14 may be
an effective independent prognostic marker for predicting overall
survival because it is predictive of unfavorable clinicopathological
characteristics (Lin et al., 2020). Furthermore, there is mounting
evidence that Integrin A5 (ITGA5), which plays a major role in the
adhesion, migration, and invasion of cancer cells, is highly expressed
in several malignancies and contributes to tumor progression
(Ohyagi-Hara et al., 2013). One of the markers of invasiveness in
head and neck squamous cell carcinoma has been identified as
ITGA5 (Yu et al., 2008). Additionally, a study demonstrated that
pancreatic ductal malignant adenomas upregulate the ITGA5 gene.
Silencing of ITGA5 inhibits the differentiation of human pancreatic
stellate cells and reduces connective tissue formation (Kuninty et al.,
2019). Furthermore, ITGA5 promotes the development, migration,
and invasion of cells that undergo an epithelial-mesenchymal
transition in oral cancer (Deng et al., 2019).

The 3-BMRGs we constructed proved to be an independent
prognostic factor for UVM. Based on median risk ratings, patients
with UVM were separated into high-risk and low-risk groups;
there were notable prognostic differences between the two groups.
The 3-BMRGs that we created turned out to be a reliable indicator
of UVM’s future. Based on median risk ratings, individuals with
UVM were separated into high-risk and low-risk groups; there
were notable prognostic differences between the two groups.
Additionally, evaluations of the ROC and calibration curves
revealed that the 3-BMRGs signature had excellent predictive
power. To extend the predictive ability of the 3-BMRGs
signature and to demonstrate its utility in the prognostic
evaluation of UVM patients, we plotted a line graph based on
clinical factors and risk scores. Meanwhile, we discovered that the
3-BMRGs signature has better predictive power than
clinicopathological features, which could offer clinicians a basis
for decision-making.

The tumor microenvironment (TME) is crucial to the
metastasis and progression of cancer (Zhao et al., 2022c; Gong
et al., 2022; Xiong et al., 2023). The TME comprises cancer cells,
surrounding stromal cells, and tumor-infiltrating immune cells,
with immune cells playing a dominant role in the TME (Hinshaw
and Shevde, 2019; Shen et al., 2022). Through the strengthening of
a weakened immune response to tumor cells and the resultant
production of an immunological-mediated anti-tumor impact,
immunotherapy has made significant strides in the treatment of
cancers in recent years (Zhang et al., 2021). As a result, we assessed
immune checkpoint expression and discovered that, with the

exception of TMIGD2 and CD44, it was highly elevated in the
high-risk group of UVM patients. Immune infiltration is closely
related to immunotherapy’s efficacy (Nishida and Kudo, 2020).
The high-risk group exhibited higher levels of immune cell
infiltration, which suggested that they responded more
favorably to immunotherapy, according to the ssGSEA
enrichment score. Meanwhile, we performed GO and KEGG
enrichment analysis to provide more light on the biological
pathways and putative molecular mechanisms associated with
the BMRG signature. We noted that in the high-risk
population, pathway enrichment mainly involved immune and
substance metabolism pathways, such as leukocyte
transendothelial migration, antigen processing, and
presentation. In contrast, pathways related to the regulation of
autophagy and RNA degradation were enriched in the low-risk
population.

Immune checkpoint blockade has shown significant benefits in
the treatment of malignant tumors. Nevertheless, its non-response
rate and side effects have posed challenges in clinical practice (Hodi
et al., 2010; Kennedy and Salama, 2020; Su et al., 2022). Thus, it is
critical to identify individuals who are responsive to different
immune checkpoint medicines based on the expression of
immune checkpoint genes. Our model has demonstrated
excellent results in this regard. In our study, we found that UVM
patients with higher risk scores were more likely to benefit from
immunotherapy, while patients with lower risk scores could have a
higher survival advantage. Furthermore, the TME is closely
correlated to the risk model that we built based on the BMRGs.

Our study suffers from the following limitations. Firstly, our
study is retrospective, and based on data analysis in public databases
with limited inclusion of UVM patients which still demands more
clinical data and prospective studies to validate the model and
improve the credibility of risk scores; Meanwhile, the
extrapolation of our findings is limited due to the possible
inherent bias and limitations of the TCGA-UVM and GEO
cohorts themselves; In addition, the mechanisms by which
BMRGs affect the prognosis of UVM patients are required to be
further explored in more in vivo experiments.

5 Conclusion

To sum up, we have developed a model of the BMRG prognostic
signatures including ADAMTS10, ADAMTS14, and ITGA5. Two
external validation cohorts were employed to verify the reliability
and applicability of the BMRGs scores. This constructed model
exhibited robust predictive ability which could act as an independent
prognostic factor for UVM, assisting clinicians to identify specific
subgroups of patients who may benefit from immunotherapy and
chemotherapy, and providing a novel strategy for individualized
treatment of UVM patients.
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Objective: Estrogen receptor breast cancer (BC) is characterized by the
expression of estrogen receptors. It is the most common cancer among
women, with an incidence rate of 2.26 million cases worldwide. The aim of
this study was to identify differentially expressed genes and isoform
switching between estrogen receptor positive and triple negative BC
samples.

Methods: The data were collected from ArrayExpress, followed by preprocessing
and subsequent mapping from HISAT2. Read quantification was performed by
StringTie, and then R package ballgown was used to perform differential
expression analysis. Functional enrichment analysis was conducted using
Enrichr, and then immune genes were shortlisted based on the ScType marker
database. Isoform switch analysis was also performed using the
IsoformSwitchAnalyzeR package.

Results: A total of 9,771 differentially expressed genes were identified, of
which 86 were upregulated and 117 were downregulated. Six genes were
identified as mainly associated with estrogen receptor positive BC, while a
novel set of ten genes were found which have not previously been reported in
estrogen receptor positive BC. Furthermore, alternative splicing and
subsequent isoform usage in the immune system related genes were
determined.
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Conclusion: This study identified the differential usage of isoforms in the immune
system related genes in cancer cells that suggest immunosuppression due to the
dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine
activity.

KEYWORDS

estrogen receptor, breast cancer, isoform switching, differential expression, functional
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Introduction

Breast cancer (BC) is one of the most commonly diagnosed
global malignancies and is a leading cause of mortality among
women. BC is a heterogeneous disease involving multiple
environmental and genetic factors such as age, hormones,
unhygienic diet, or toxic environmental exposure. The
BRCA1 and BRCA2 tumor suppressor genes play a significant
role in BC development (Li et al., 2017). Despite advances in
treatments like chemotherapy, endocrine therapy, and human
epidermal growth factor receptor-2 (HER2)-targeted therapy, the
chance of relapse and BC metastasis remains a great challenge (Zhu
and Yu, 2022). BC is a global health challenge as the most commonly
diagnosed cancer, with an estimated incidence of 2.26 million cases
worldwide according to GLOBOCAN 2020 global cancer statistics.
The reported BC incidence rate is higher in Asia at 45.4% (Sung
et al., 2021). There are different types of BC, depending on which
cells in the breast become cancerous. Estrogen receptor positive
(ERP) and triple-negative BC (TNBC) are the most aggressive types
of BC. ERP BC is characterized by the presence of estrogen receptors
(ERs) on tumor cells that help them grow and proliferate rapidly
based on estrogen fueling. It is the largest subtype of BC as it involves
the expression and activity of the estrogen receptor. It is estimated
that approximately 80% of BCs are ERP (Lamb et al., 2019). TNBC is
defined as a type of BC with a negative expression of ER,
progesterone receptor (PR), and HER2. The mortality rate of
TNBC is higher because of its high invasiveness and because
approximately 46% of TNBC patients are more likely to have
distant metastasis (Yin et al., 2020).

The ERP BC microenvironment (BCM) consists of immune
cells, fibroblasts, adipocytes, mesenchymal stem cells, extracellular
matrix, and tumor-associated macrophages (TAMs) (Munir et al.,
2021). During breast tumorigenesis, tumor cells escape the immune
surveillance by modifying surface antigens and altering their
surrounding environment (Segovia-Mendoza and Morales-
Montor, 2019). Chemokine, a family of signaling proteins,
functions to induce leukocyte migration. Chemokine CC receptor
type 5 (CCR5) is a cell surface receptor that has a high affinity for
chemotropic cytokines called chemokines. A 32-bp deletion in this
receptor (CCR5Δ32) results in a non-functional and deformed
receptor which, in turn, results in the activation and invasion of
immune cells at the site of tumorigenesis and ultimately leads to its
progression (Fatima et al., 2019). In mammalian cells, alternative
splicing (AS) is a key mechanism of gene expression regulation. AS
occurs when intron and exon elements become rearranged by
splicing at different splice-sites, resulting in multiple RNA
transcripts. AS regulation is influenced by multiple factors such
as cancer or other diseases (Vitting-Seerup and Sandelin, 2017). It

occurs when there is differential usage of gene transcripts between
different conditions (Baralle and Giudice, 2017). Thus, gene
expression should be analyzed at the isoform level because
isoform switching (IS) with predicted functional consequences is
more common and important in dysfunctional cells (Kahraman
et al., 2020).

RNA sequencing (RNA-seq) is a proven quantitative tool for the
expression estimation of cells and facilitates the detection and
identification of novel transcripts generated by AS. This study
identified differential isoform usage (DIU) across conditions
(ERP vs. TNBC) in immune system-related genes that may assist
targeted therapies for ERP BC. Identifying novel biomarkers and
isoform switching may pave the way for the early detection and
successful treatment of ERP BC (Chen et al., 2022).

Methodology

Overview of the protocol

The data were collected from ArrayExpress: E-MTAB-4993.
Further processing and analysis were performed by RNA-seq
analysis consisting of preprocessing, mapping, quantifying, and
differential expression analysis (DEA) methods (Costa-Silva
et al., 2017). Isoform switching and DIU were ultimately
detected in immune system-related dysregulated genes in ERP
vs. TNBC. This study considered two biological conditions of BC,
ERP, and TNBC. The raw data comprised 63 samples (ERP = 51,
TNBC = 12).

RNA-seq data preprocessing and mapping

The data obtained from ArrayExpress were in the form of raw
reads and required preprocessing and quality control to reduce noise
by trimming poor quality reads, adaptors, and primers. The first step
in data preprocessing was quality assessment, which was performed
by the FastQC tool to generate individual quality reports for each
sample (v0.11.9) (Rostovskaya et al., 2022). The fastp tool (v0.20.0)
was then used to trim poor quality reads to remove primer and
adaptor content, resulting in filtered reads (Chen et al., 2018). These
filtered reads then underwent quality check analysis by FastQC.
Next, the filtered reads were used as input in the HISAT2 tool
(v2.1.0) for mapping against the reference genome of Homo sapiens
(GRCh38) (Kim et al., 2015). This generated files in SAM (sequence
alignment map) format which contained aligned reads. Mapping
rates indicative of the quality of RNA sequencing are presented in
Supplementary File 6.
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Read quantification and DEA

Before read quantification, the SAM files were first converted to
BAM (binary alignment map) format, which is the compressed and
binary format of aligned reads, using Samtools (v1.16) (Danecek
et al., 2021). Next, BamUtil (v1.0.15) was used to remove duplicates
(deduplication) from mapped reads (Jun et al., 2017). The
quantification of deduplicated sorted reads was then performed
using StringTie (v2.2.0) (Shumate et al., 2022) in three steps. In the
first step, the StringTie assembler was employed to assemble the
aligned reads of each sample into a transcriptome. In the second
step, the full set of transcriptome assemblies was passed to the
StringTie merge module to merge the genomic features among all
samples to create a consistent set of transcripts across all samples. In
the final step, this merged assembly was used to estimate the
transcript abundances (Pertea et al., 2016). The identification of
differentially expressed genes (DEGs) and their enrichment analysis
offers biological insights into the processes that are affected by
certain conditions (Frazee et al., 2015). R package ballgown (v3.15)
was used to perform differential gene expression (DGE) analysis of
all the transcripts and abundances in ERP vs. TNBC (Frazee et al.,
2014). Criteria of a p-value less than 0.05 and log2 FoldChange value
of <1.5 and >1.5 were used to identify biologically and statistically
significant DEGs in ERP vs. TNBC. DEGs were graphically
represented by the volcano plot (Nisar et al., 2021).

Functional enrichment analysis

For Gene Ontology (GO) and pathway enrichment analysis, the
Enrichr package was used (Xie et al., 2021). The analysis of both up-
and downregulated DEGs was performed separately. The plotEnrich
() function was used to plot bar charts of biological processes (BP),
molecular functions (MF), cellular components (CC), and KEGG
pathways. The results were ordered according to p-value.

Identification of immune system-related
genes

The ScType cell marker database was used to filter the genes
involved in immune functions (regulation of immune cells through
signaling pathway and immune response against tumors) from the
DEGs identified in the previous step (Gonzalez et al., 2018;
Ianevski et al., 2022). Genes common to the DEGs set and the
ScType database (immune system) were selected for further
analysis.

Identification of isoform switching in DEGs

Isoform switch analysis was performed to identify transcript-level
expression profiles between ERP and TNBC to detect potential
functional consequences resulting from isoform switch. The
IsoformSwitchAnalyzeR package (v1.16.0) was used for this analysis
(Vitting-Seerup and Sandelin, 2017). The package’s input was the
quantification files from StringTie, transcript files, a file containing
merged annotations of all samples, and a design file containing sample

IDs and relevant condition status. The IsoformSwitchTestDEXSeq ()
function was used to identify DIU based on differential isoform (dIF)
cutoff. A dIF criteria of 0.1 was used to find the relative abundances of
all isoforms of a gene between two sample groups, and gene
ExpressionCutoff of 0.5 was applied. The open reading frames
(ORF) were analyzed using the analyzeORF() function, where the
longest orfMethod was selected in order to shortlist only long ORFs
due to their functional importance. The longest ORFs were then
extracted using the extractSequence () function that outputs two
files—one containing nucleotide sequences and the other including
protein sequences. The functional consequences of ORFs were
identified in order to add functional knowledge to the transcripts.
Four types of functional consequences were identified for ORFs: coding
potential, protein domains, signal peptides, and intrinsically disordered
regions (IDRs). The coding potential of the genes was identified through
the CPC2 tool that takes nucleotide sequences as an input. The Pfam
tool was used to predict protein domains. The signal peptides of ORFs
were identified through SignalP, whereas intrinsically disordered
regions (IDRs) were predicted by the IUPred3 tool. To assign the
predicted functional consequences to the transcripts, R package was
employed using functions such as analyzeCPC2 (), analyzeSignalP (),
analyzePFAM (), and analyzeIUPred2A (). Moreover, the switchPlot ()
function was used to plot the shortlisted immune system-related genes
that were dysregulated in ERP BC.

Results

Identification of upregulated and
downregulated genes

The gene expression profiling of 63 samples (ERP = 51, TNBC =
12) by ballgown R/Bioconductor identified 15,947 DEGs between
ERP and TNBC tissue samples. Genes with no annotation were
filtered out, with 9,771 DEGs remaining. Using DEA, 86 genes were
identified as upregulated (logFC >1.5 and p-value <0.05) and
117 were downregulated (logFC < −1.5 and p-value <0.05)
(Figure 1). The top 10 upregulated DEGs were FOXA1,
RHOB, AR, CMBL, AGR2, ESR1, TFF3, SYBU, CBLC, and
DNALI1 (Table 1; Supplementary Information S1); the top
10 downregulated DEGs were CENPW, EN1, A2ML1, TMSB15A,
FOXC1, KRT16, SLC7A5, CDK6, MELTF, and CA9 (Table 2;
Supplementary Information S2).

Gene Ontology analysis

Both up- and downregulated DEGs were subjected to GO
enrichment analysis. This analysis revealed BP, CC, and MF that
were affected due to change in gene expression. Upregulated
DEGs of biological processes were enriched in steroid hormone-
mediated signaling pathway, intracellular steroid hormone
receptor signaling pathway, regulation of smooth muscle cell
proliferation, and response to estrogen, indicating that
upregulated genes are involved in the regulation of breast
stem cells, increased cell proliferation, increased estrogen
hormone and cancerous T-cells, angiogenesis, and excessive
mitochondrial and sodium ion transport (Figure 2A; Table 3).
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The downregulated DEGs enriched in mitotic spindle
organization, chemokine-mediated signaling pathway, cellular
response to chemokine, microtubule cytoskeleton organization
involved in mitosis, antimicrobial humoral immune response
mediated by antimicrobial peptides, neutrophil chemotaxis,
granulocyte chemotaxis, and the attachment of mitotic spindle
microtubules to kinetochore and kinetochore organization
indicated that they may have cancer development-related
functions because of disrupted cell signaling and a
dysregulated cell cycle due to incorrectly organized proteins
and a suppressed immune system (Figure 2B; Table 4).
Alternatively, the upregulated DEGs of molecular functioning
show transcription coactivator binding, RNA polymerase II
general transcription initiation factor binding, epidermal
growth factor receptor binding, BMP receptor binding,

SH3 domain binding, ATPase binding, general transcription
initiation factor binding, metallocarboxypeptidase activity, and
IgG binding (Figure 3A; Table 5). This denotes disrupted cell
signaling, increased cell proliferation, growth, differentiation,
and epithelial–mesenchymal transition (EMT) due to
upregulated transcription. On the other hand, the
downregulated DEGs were mainly enriched in CXCR3 and
CXCR chemokine receptor binding, chemokine and cytokine
activity, peptidase inhibitor activity, L-leucine transmembrane
transporter activity, and chitinase activity, which indicate
suppressed immune system response and increased abnormal
proteins which may result in cancer progression and
development (Figure 3B; Table 6). The cellular component
enrichment of upregulated DEGs, collagen-containing
extracellular matrix, elastic fiber, Golgi lumen, intracellular

FIGURE 1
Volcano plot for DEGs. The red dots represent up- (right) and downregulated (left) DEGs. Upregulated genes having logFC >1.5 and
p-value <0.05 can be seen on the right of the plot; downregulated genes having logFC < −1.5 and p-value <0.05 can be seen on the left of the plot.

TABLE 1 Top 10 differentially expressed upregulated genes.

Gene name p-value log2FoldChange Expression

FOXA1 4.44E-16 4.03 Up

RHOB 2.75E-12 1.79 Up

AR 4.69E-12 2.19 Up

CMBL 5.16E-12 1.86 Up

AGR2 4.93E-11 4.93 Up

ESR1 5.81E-11 3.32 Up

TFF3 7.72E-11 4.75 Up

SYBU 8.24E-11 1.91 Up

CBLC 2.37E-10 1.67 Up

DNALI1 3.04E-10 2.06 Up

TABLE 2 Top 10 differentially expressed downregulated genes.

Gene name p-value log2FoldChange Expression

CENPW 6.66E-16 −1.84 Down

EN1 2.06E-14 −2.98 Down

A2ML1 2.95E-12 −2.52 Down

TMSB15A 8.07E-12 −1.95 Down

FOXC1 1.47E-11 −2.20 Down

KRT16 3.93E-11 −2.63 Down

SLC7A5 3.98E-11 −2.18 Down

CDK6 5.90E-11 −1.60 Down

MELTF 1.66E-10 −1.85 Down

CA9 2.41E-10 −2.45 Down
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organelle lumen, basement membrane, and sodium:potassium-
exchanging ATPase complex indicate that these may have been
involved in the initiation and progression of cancer due to
changes in the cellular cytoskeleton, membrane remodeling,
and alterations in protein secretions (Figure 4A; Table 7).
Moreover, the downregulated DEGs of cellular components
show intermediate filament, intermediate filament
cytoskeleton, polymeric cytoskeletal fiber, spindle, cornified
envelope, desmosome, and endoplasmic reticulum lumen,
which indicate cancer development and progression due to

disrupted cytoskeletal proteins, dysregulated cell division,
misfolded proteins, and DNA damage (Figure 4B; Table 8).

KEGG pathway analysis

KEGG pathways were predicted using Enrichr for the DEGs to
identify biological pathways that are disrupted due to the up- and
downregulation of genes involved in those pathways. As indicated in
Figure 5A, upregulated genes such as BMP4, GSTM3, FOS,

FIGURE 2
GO biological processes up- and downregulated by DEGs. Bar chart plots of top 15 BPs in ERP vs. TNBC. The x-axis is the gene ratio, while the color
represents p-value. (A) Steroid hormone-mediated signaling pathway and response to estrogen and endothelial tube morphogenesis as significant
upregulated BP. (B) Chemokine-mediated signaling pathway, cellular response to chemokine, granulocyte chemotaxis, and attachment of mitotic
spindle microtubules to kinetochore as significant downregulated BP.

TABLE 3 GO analysis of BP of upregulated DEGs according to Enrichr (p-value<0.05).

Biological process Gene ratio p-value Genes

Steroid hormone-mediated signaling pathway 4/15 4.19E-07 BMP4; AR; PGR; ESR1

Intracellular steroid hormone receptor signaling pathway 4/44 3.79E-05 AR; SCGB2A1; PGR; ESR1

Regulation of smooth muscle cell proliferation 4/49 5.82E-05 BMP4; ELN; OGN; APOD

Regulation of cell proliferation involved in heart morphogenesis 2/5 0.00018 BMP4; TBX3

Negative regulation of cell population proliferation 8/379 0.00022 BMP4; AR; BTG2; CAMK2N1; ERBB4; OGN; APOD; TBX3

Negative regulation of cell cycle 4/80 0.00039 BMP4; BTG2; CAMK2N1; RHOB

Response to estrogen 3/35 0.00045 GSTM3; AR; ESR1

Endothelial tube morphogenesis 2/10 0.00080 BMP4; RHOB

Positive regulation of osteoblast differentiation 3/44 0.00089 BMP4; NPNT; IL6ST

Axonal transport of mitochondrion 2/11 0.00098 MAPT; SYBU

Keratan sulfate catabolic process 2/12 0.0011 OMD; OGN

Positive regulation of sodium ion transmembrane transport 2/12 0.0011 FXYD1; WNK4

Negative regulation of myoblast differentiation 2/13 0.0013 BMP4; TBX3

Mitochondrion transport along microtubule 2/13 0.0013 MAPT; SYBU
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HMGCS2, ADH1B, COL4A5, ESR1, NAT1, IL6ST, and PGR were
enriched in pathways in cancer, chemical carcinogenesis,
ECM–receptor interaction, tyrosine metabolism, valine, leucine
and isoleucine degradation, the PI3K-Akt signaling pathway,

estrogen signaling pathway, caffeine metabolism, signaling
pathways that regulate the pluripotency of stem cells, and BC
(Table 9). This indicates that the upregulation of genes promotes
pathways that are mainly involved in DNA repair, cell motility and

TABLE 4 GO analysis of BP of downregulated DEGs according to Enrichr (p-value<0.05).

Biological process Gene
ratio

p-value Genes

Mitotic spindle organization 10/157 2.89E-08 CDC20; STMN1; NUF2; CDCA8; BIRC5; KIF23; KIF2C; BUB1; NDC80;
AURKB

Chemokine-mediated signaling pathway 7/56 3.58E-08 CXCL10; CXCL9; FOXC1; CXCL11; CXCL8; CXCL13; CCL18

Cellular response to chemokine 7/60 5.85E-08 CXCL10; CXCL9; FOXC1; CXCL11; CXCL8; CXCL13; CCL18

Microtubule cytoskeleton organization involved in mitosis 9/128 6.26E-08 CDC20; STMN1; NUF2; CDCA8; BIRC5; KIF2C; BUB1; NDC80;
AURKB

Antimicrobial humoral immune response mediated by antimicrobial
peptide

6/64 2.00E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; KRT6A

Neutrophil chemotaxis 6/70 3.40E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Granulocyte chemotaxis 6/73 4.36E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Neutrophil migration 6/77 5.95E-06 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Attachment of mitotic spindle microtubules to kinetochore 3/12 4.13E-05 NUF2; KIF2C; NDC80

Kinetochore organization 3/13 5.35E-05 CENPW; NUF2; NDC80

Lymphocyte chemotaxis 4/44 0.00012 CXCL10; CXCL11; CXCL13; CCL18

Regulation of chromosome segregation 3/18 0.00014 KIF2C; BUB1; AURKB

Mitotic metaphase plate congression 4/51 0.00022 NUF2; CDCA8; KIF2C; NDC80

Inflammatory response 7/230 0.00041 CXCL10; CXCL11; CXCL9; CXCL8; KRT16; CXCL13; CCL18

Positive regulation of calcium ion transmembrane transport 3/27 0.00051 CXCL10; CXCL9; CXCL11

FIGURE 3
GO molecular functions up- and downregulated by DEGs. Bar chart plots of top 15 MF in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Transcription coactivator binding, RNA polymerase II general transcription initiation factor binding, epidermal growth factor
receptor binding, and BMP receptor binding as significant upregulated MF. (B) CXCR3 chemokine receptor binding, CXCR chemokine receptor binding,
chemokine activity, and L-leucine transmembrane transporter activity as significant downregulated MF.
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proliferation, cell cycle regulation, the inhibition of apoptosis, and
increased EMT, resulting in tumor development and prognosis. The
downregulated genes such as CXCL8, CXCL10, CXCL11, CDC20,
CDK6, CDKN2A, CXCL13, and SHC4 (Table 10) were enriched in
chemokine signaling pathway, toll-like receptor signaling pathway,
cell cycle, bladder cancer, IL-17 signaling pathway, cellular
senescence, p53 signaling pathway, and microRNAs in cancer

(Figure 5B). The downregulation of genes involved in these
pathways plays a crucial role in the tumor microenvironment by
disrupting immune response, cell cycle arrest in the G2/M phase,
increased cell growth, metastasis, proliferation and invasiveness, and
the angiogenic potential of cancer cells. The analysis revealed that
cancer-related pathways that were dysregulated due to DEGs have
also been reported in various other cancers.

TABLE 5 GO analysis of MF of upregulated DEGs according to Enrichr (p-value<0.05).

Molecular function Gene ratio p-value Genes

Transcription coactivator binding 3/20 8.30E-05 AR; PGR; ESR1

RNA polymerase II general transcription initiation factor binding 2/5 0.00018 AR; ESR1

Epidermal growth factor receptor binding 3/26 0.00018 ERBB4; AGR2; CBLC

Growth factor receptor binding 4/105 0.0010 ERBB4; AGR2; CBLC; IL6ST

BMP receptor binding 2/13 0.0013 BMP4; GDF15

Transcription coregulator binding 3/53 0.0015 AR; PGR; ESR1

Transmembrane receptor protein serine/threonine kinase binding 2/16 0.0021 BMP4; GDF15

SH3 domain binding 3/62 0.0024 CBLC; EVL; MAPT

ATPase binding 3/73 0.0038 AR; PGR; ESR1

General transcription initiation factor binding 2/26 0.0055 AR; ESR1

Metallocarboxypeptidase activity 2/29 0.0068 CPA3; CPE

Sequence-specific double-stranded DNA binding 8/712 0.0114 FOXA1; AR; ERBB4; FOSB; FOS; LMX1B; ESR1; TBX3

Carboxypeptidase activity 2/38 0.0116 CPA3; CPE

Transcription regulatory region nucleic acid binding 4/212 0.0132 FOXA1; AR; ERBB4; FOS

IgG binding 1/5 0.0213 PIP

TABLE 6 GO analysis of MF of downregulated DEGs according to Enrichr (p-value<0.05).

Molecular function Gene ratio p-value Genes

CXCR3 chemokine receptor binding 4/5 5.54E-09 CXCL10; CXCL11; CXCL9; CXCL13

CXCR chemokine receptor binding 5/17 3.68E-08 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13

Chemokine activity 6/46 2.73E-07 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Chemokine receptor binding (GO:0042379) 6/50 4.54E-07 CXCL10; CXCL9; CXCL11; CXCL8; CXCL13; CCL18

Cytokine activity 6/173 0.00054 CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

Metalloendopeptidase activity 3/82 0.01235 ADAMDEC1; MMP7; MMP1

Peptidase inhibitor activity 2/40 0.02289 A2ML1; PI3

CCR chemokine receptor binding 2/42 0.02508 CXCL13; CCL18

Cyclin-dependent protein serine/threonine kinase regulator activity 2/44 0.02735 CCNB2; CDKN2A

D-loop DNA binding 1/5 0.02891 RAD51AP1

L-Leucine transmembrane transporter activity 1/5 0.02891 SLC7A5

Endopeptidase regulator activity 2/46 0.02970 A2ML1; PI3

Metallopeptidase activity 3/121 0.03415 ADAMDEC1; MMP7; MMP1

Tubulin binding 5/307 0.03443 STMN1; BIRC5; KIF23; KIF2C; FAM83D

Chitinase activity 1/6 0.03459 CHI3L2
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Selection of immune system genes

A total of 86 upregulated and 117 downregulated genes were
used as a query against the marker genes database of the ScType R
package, revealing that three upregulated and 10 downregulated
genes were directly involved in immune system-related functions
(Table 11, 12).

Isoform switching

Isoform switching analysis was performed on shortlisted immune
system related genes, facilitating the identification of known and novel
isoform switches from RNA-seq derived quantification data. Of
10 downregulated immune genes, three (STMN1, MELTF, and
CXCL8) were found to have isoforms that were significantly used in

FIGURE 4
GO cellular components up- and downregulated by DEGs. Bar chart plots of top-15 CC in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Collagen-containing extracellular matrix, elastic fiber, Golgi lumen, and intracellular organelle lumen as significant upregulated
CC. (B) Intermediate filament, intermediate filament cytoskeleton, polymeric cytoskeletal fiber, spindle, and desmosome as significant
downregulated CC.

TABLE 7 GO analysis of CC of upregulated DEGs according to Enrichr (p-value<0.05).

Cellular component Gene ratio p-value s

Collagen-containing extracellular matrix 14/380 8.27E-10 CPA3; TPSB2; COL14A1; GDF15; ELN; HTRA1; NPNT; ASPN;
THSD4; THBS4; MFAP4; CILP; OGN; COL4A5

Elastic fiber 2/5 0.00018 MFAP4; ELN

Supramolecular fiber 2/19 0.00298 MFAP4; ELN

Golgi lumen 3/100 0.00919 MUCL1; OMD; OGN

Intracellular organelle lumen 9/848 0.01058 BMP4; MUCL1; COL14A1; ERBB4; OMD; OGN; COL4A5;
ABAT; HMGCS2

Basement membrane 2/52 0.02108 COL4A5; THBS4

Neurofibrillary tangle 1/5 0.02131 MAPT

Sodium:potassium-exchanging ATPase complex 1/10 0.04218 FXYD1

Microtubule 3/182 0.04380 KIF12; MAPT; SYBU

Microfibril 1/11 0.04630 MFAP4

Lysosomal lumen 2/86 0.05294 OMD; OGN

Glial cell projection 1/14 0.05856 MAPT

Cation-transporting ATPase complex 1/16 0.06664 FXYD1

Vesicle 3/226 0.07374 OGN; TSPAN1; SYBU

Connexin complex 1/21 0.08656 GJC3
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ERP andhave been validated through the ExpressionAtlas (Supplementary
Information Table S3). Moreover, no significant isoform switch was
observed in upregulated immune genes.

Isoform usage

STMN1, MELTF, and CXCL8 represent significant switches in
isoform usage across ERP vs. TNBC, as shown in sashimi plots in

Supplementary Information Figures S1–S3 respectively. By comparing
the isoform usage across conditions, it was revealed that STMN1 has a
single isoform (ENST00000485226) which was overexpressed in ERP.
CXCL8 also has one isoform (ENST00000483500) which was significantly
used in ERP. Furthermore, it was found that a novel isoform
(MSTRG.29921.1) of MELTF was overexpressed in ERP (Figure 6).

Gene Ontology analysis of downregulated immune genes
indicates that these genes may be involved in key immune
system molecular functions such as CXCR chemokine receptor

TABLE 8 GO analysis of CC of downregulated DEGs according to Enrichr (p-value<0.05).

Cellular component Gene ratio p-value Genes

Intermediate filament 5/50 1.08E-05 SYNM; KRT16; PKP1; KRT75; KRT6C

Intermediate filament cytoskeleton 5/84 0.00013 SYNM; KRT16; PKP1; KRT75; KRT6C

Polymeric cytoskeletal fiber 7/256 0.00077 SYNM; KRT16; PKP1; KIF23; KIF2C; KRT75; KRT6C

Spindle 6/192 0.00093 CDC20; BIRC5; KIF23; KIF2C; FAM83D; AURKB

Cornified envelope 3/43 0.00203 PKP1; PI3; DSC3

Desmosome 2/17 0.00435 PKP1; DSC3

Endoplasmic reticulum lumen 6/285 0.00664 SPP1; COL9A3; MELTF; MSLN; MFGE8; CP

Cyclin-dependent protein kinase holoenzyme complex 2/30 0.01326 CCNB2; CDK6

Microtubule cytoskeleton 6/331 0.01326 CDC20; CCNB2; KIF23; KIF2C; FAM83D; AURKB

Serine/threonine protein kinase complex 2/37 0.01977 CCNB2; CDK6

Microtubule 4/182 0.02221 BIRC5; KIF23; KIF2C; AURKB

Cortical actin cytoskeleton 2/42 0.02508 GYS2; SLC2A1

External side of apical plasma membrane 1/5 0.02891 SLC7A5

Barr body 1/5 0.02891 MACROH2A2

Bleb 1/5 0.02891 ANLN

FIGURE 5
KEGG pathways analysis of upregulated DEGs. Bar chart plots of top 15 KEGG pathways in ERP vs. TNBC. X-axis is the gene ratio, while the color
represents p-value. (A) Pathways in cancer, chemical carcinogenesis, ECM–receptor interaction, and tyrosine metabolism as significant upregulated
pathways. (B) Chemokine signaling pathway, toll-like receptor signaling pathway, cell cycle, bladder cancer, and IL-17 signaling pathway as significant
downregulated pathways.
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binding, chemokine activity, iron ion binding, and cytokine activity
(Figure 7).

Discussion

BC is the most prevalent type of cancer worldwide. It is thus
essential to understand and explore ways to prevent its occurrence

while identifying the genetic changes that are more susceptible to its
incidence. The present study identified 9,771 DEGs, of which
86 genes were significantly upregulated and 117 were
downregulated. The identified upregulated genes were FOXA1,
RHOB, AR, CMBL, AGR2, ESR1, TFF3, SYBU, CBLC, and
DNALI1; the downregulated genes were CENPW, EN1, A2ML1,
TMSB15A, FOXC1, KRT16, SLC7A5, CDK6, MELTF, and CA9.
Functional enrichment analysis of these DEGs revealed that the

TABLE 9 Pathway prediction for upregulated DEGs according to Enrichr (p-value<0.05).

KEGG pathway Gene ratio p-value Genes

Protein digestion and absorption 4/90 0.00061 CPA3; COL14A1; ELN; COL4A5

Pathways in cancer 8/530 0.00200 BMP4; AR; GSTM3; IGF2; COL4A5; FOS; IL6ST; ESR1

Chemical carcinogenesis 3/82 0.00532 GSTM3; NAT1; ADH1B

ECM–receptor interaction 3/82 0.00532 CHAD; COL4A5; THBS4

Butanoate metabolism 2/28 0.00642 ABAT; HMGCS2

Tyrosine metabolism 2/36 0.01047 ADH1B; TAT

Drug metabolism 3/108 0.01133 GSTM3; NAT1; ADH1B

Valine, leucine, and isoleucine degradation 2/48 0.01813 ABAT; HMGCS2

PI3K–Akt signaling pathway 5/354 0.01831 ERBB4; CHAD; IGF2; COL4A5; THBS4

Estrogen signaling pathway 3/137 0.02129 PGR; FOS; ESR1

Caffeine metabolism 1/5 0.02131 NAT1

Phenylalanine, tyrosine, and tryptophan biosynthesis 1/5 0.02131 TAT

Fluid shear stress and atherosclerosis 3/139 0.02211 BMP4; GSTM3; FOS

Signaling pathways regulating pluripotency of stem cells 3/139 0.02211 BMP4; IL6ST; TBX3

BC 3/147 0.02555 PGR; FOS; ESR1

TABLE 10 Pathway prediction for downregulated DEGs according to Enrichr (p-value<0.05).

KEGG pathway Gene ratio p-value Genes

Chemokine signaling pathway 7/190 0.00012 SHC4; CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

Toll-like receptor signaling pathway 5/104 0.00036 CXCL10; CXCL11; CXCL9; CXCL8; SPP1

Cell cycle 5/124 0.00081 CDC20; CCNB2; CDK6; CDKN2A; BUB1

Bladder cancer 3/41 0.00176 CXCL8; CDKN2A; MMP1

IL-17 signaling pathway 4/93 0.00217 CXCL10; CXCL8; MMP1; LCN2

Cellular senescence 5/160 0.00251 CCNB2; CDK6; CXCL8; CDKN2A; MYBL2

Cytokine–cytokine receptor interaction 6/294 0.00769 CXCL10; CXCL11; CXCL9; CXCL8; CXCL13; CCL18

p53 signaling pathway 3/72 0.00868 CCNB2; CDK6; CDKN2A

Human T-cell leukemia virus 1 infection 5/219 0.00936 CDC20; CCNB2; MMP7; CDKN2A; SLC2A1

Glioma 3/75 0.00970 SHC4; CDK6; CDKN2A

Chronic myeloid leukemia 3/76 0.01006 SHC4; CDK6; CDKN2A

Protein digestion and absorption 3/90 0.01585 KCNK5; COL9A3; KCNN4

MicroRNAs in cancer 5/299 0.03125 SHC4; CDK6; CDKN2A; STMN1; KIF23

Oocyte meiosis 3/125 0.03706 CDC20; CCNB2; BUB1

Central carbon metabolism in cancer 2/65 0.05559 SLC7A5; SLC2A1
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intracellular steroid hormone receptor signaling pathway,
chemokine-mediated signaling pathway, kinetochore
organization, pathways in cancer, BC, toll-like receptor signaling
pathway, and cell cycle were the most dysregulated biological
pathways and processes.

In the present study, FOXA1 was found to be upregulated and
has been reported to inhibit STAT2, a transcription factor and its
target IFN signaling pathway in BC; this may result in cancer
progression due to suppressed immune response (He et al.,
2021). Furthermore, upregulated RHOB results in ER-α (estrogen
receptor alpha) overexpression that leads to increased estrogen
uptake by BC cells which helps them grow and proliferate
(Médale-Giamarchi et al., 2013). It has been reported that AR
overexpression increases the transcription of genes involved in
the cell cycle, resulting in increased proliferation of prostate
cancer cells (Formaggio et al., 2021). This study found that
CMBL (p-value: 0.00003) is suppressed in TNBC compared to
non-TNBC types of BC, such as ERP. It encodes a cysteine
hydrolase that cleaves cyclic esters which activate an angiotensin
receptor blocker that helps lower blood pressure (Guo et al., 2017).
Upregulated AGR2 is found in BC due to ER signaling and
endoplasmic reticulum stress, and it results in increased cell
proliferation, survival, and metastasis in BC (Ann et al., 2018).
Moreover, ESR1 upregulation makes BC cells more prone to
estrogen uptake which may lead to the increased growth and
proliferation of cancer cells (Lei et al., 2019). According to the
literature, TFF3 acts as an oncogene because it regulates other genes
(FOXA1, HER2, and AR) involved in EMT, thus promoting
invasiveness, survival, and increased proliferation in multiple
carcinomas such as gastric cancer, mammary carcinoma, and

prostate cancer (Yuan et al., 2017). It has been reported that
SYBU, a microtubule-associated protein, is overexpressed in
hepatocellular carcinoma (HCC), which results in disrupted cell
cycle and increased proliferation (Zheng and Yu, 2021). Breast
tumor formation is increased by CBLC overexpression, which
suppresses TGF-β (transforming growth factor beta). This results
in the deactivation of its target Smad3 pathway which is responsible
for proliferation, differentiation, and apoptosis (Kang et al., 2012).
This study found that DNALI1 (p-value: 0.0000148), a flagellar
protein, is overexpressed in BC, which has not been reported
previously for any other carcinoma.

According to the literature, CENPWwas downregulated in BC
and HCC. It is involved in kinetochore organization and
centromere complex assembly. This downregulation results in
subsequent function disruption, resulting in chromosomal
instability due to mis-segregation of chromosomes (Liu and
Liu, 2022). It has been reported that EN1 is downregulated in
lung cancer due to altered DNA methylation which promotes cell
proliferation and differentiation (Jiang et al., 2017). The
downregulation of A2ML1, a protease inhibitor, results in
MAPK pathway mutation, which leads to apoptotic resistance
and uncontrolled cell division in BC (Li et al., 2016).
FOXC1 suppression induces ER-α expression in BC cells,
which helps in increased estrogen uptake, resulting in the
growth and proliferation of tumor cells (Wang et al., 2017). It
has been reported that KRT16 is overexpressed in basal-like
TNBC, along with increased expression of EMT-associated
proteins. In contrast, in luminal A and B subtypes of BC which
include ER+ and PR+ tumors, KRT16 expression was suppressed,
but E-cadherin (CDH1), an EMT protein was overexpressed,

TABLE 11 Shortlisted upregulated DEGs involved in the immune system (p-value<0.05).

Gene name p-value LogFC Function Expression

CPA3 1.02E-05 1.84048 Generates mature protease; released by mast cells Up

THBS4 1.60E-05 1.95670 Adhesive glycoprotein Up

CXCL14 5.20E-05 2.25235 Chemotactic factor for monocytes Up

TABLE 12 Shortlisted downregulated DEGs involved in the immune system (p-value<0.05).

Gene name p-value LogFC Function Expression

MELTF 1.66E-10 −1.85184 Cell surface glycoprotein Down

STMN1 4.25E-08 −1.53543 Integrate intracellular regulatory signals Down

CXCL8 5.51E-05 −1.97224 Chemotactic factor Down

CXCL11 0.00020 −1.67806 Regulate cell trafficking Down

PI3 0.00020 −1.59618 Antimicrobial peptide Down

CXCL10 0.00022 −2.01352 Stimulates monocytes, natural killer, and T-cells migration Down

CD24 0.27436 −1.86584 Essential role in cell differentiation Down

CD24P4 0.28050 −1.83388 Pseudogene Down

CCL18 0.00771 −1.73928 Chemotactic factor, attracts only lymphocytes Down

CXCL13 0.01855 −1.62905 Chemotactic factor for B-lymphocytes Down
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leading to metastasis due to increased cellular motility (Elazezy
et al., 2021). SLC7A5 has been reported to be overexpressed in
TNBC due to its glutamine transporting activity to tumor cells for
energy production—TNBC is thus glutamine dependent and
requires glutaminase for its catabolism. In addition, cells with
increased proliferation use transaminases to catabolize glutamate,

in contrast to glutamate dehydrogenase (GLUD), to reduce
ammonia production. However, ER+ tumors are glutamine-
independent and show increased GLUD expression (Wang
et al., 2020). It has been reported that the downregulation of
CDK6 also suppresses its interacting gene, RB1—a tumor
suppressor gene. This results in dysregulated cell growth,

FIGURE 6
Isoform switch of differentially expressed immune genes. “*” represents significant isoform usage.

FIGURE 7
GOmolecular functions of downregulated immune system genes (STMN1, MELTF, and CXCL8) having significant isoform switches (p-value <0.05).
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apoptosis, and increased proliferation in tumor cells (Knudsen
et al., 2020). MELTF downregulation also dysregulates its
interacting genes such as ACO2, a gene-encoding Krebs’ cycle
enzyme. The disruption of Krebs’ cycle enzymes leads to the
production of oncometabolites, which stabilize hypoxia-inducible
factor 1 and activate cell growth signaling by regulating DNA
methylation—crucial factors in cancer progression (Sajnani et al.,
2017). CA9 suppression leads to the disruption of interacting
genes such as HIF3A and EPAS1 which are involved in regulating
hypoxic conditions. Such conditions are favorable for the
increased proliferation of tumor cells (Jun et al., 2017).
TMSB15A has been reported to be upregulated in TNBC; it
plays a crucial role in the organization of the cytoskeleton,
which is responsible for cancer cell motility and is involved in
cancer metastasis (Darb-Esfahani et al., 2012).

KEGG pathway enrichment analysis revealed protein digestion
and absorption, pathways in cancer, chemical carcinogenesis, and
ECM–receptor interaction as upregulated pathways, while
downregulated pathways include chemokine signaling, toll-like
receptor signaling, cell cycle, bladder cancer, IL-17 signaling,
cellular senescence, cytokine–cytokine receptor interaction, and
p53 signaling. We found that the protein digestion and
absorption pathway was upregulated, which demonstrates the use
of proteins as an alternative fuel by tumor cells to fulfill their
metabolic needs. This occurs due to the limited supply and
metabolism of glucose by cancer cells (Lieu et al., 2020).
Moreover, it was found that pathways in cancer were upregulated
that involve the disruption of the ErbB, p-53-mediated apoptotic,
and GSK3 signaling pathways, which are involved in DNA repair,
cell growth, migration, differentiation, and metabolism (Yip and
Papa, 2021). The upregulation of chemical carcinogenesis activates
certain hormonal pathways that make mammary glands more
susceptible to carcinogenesis due to altered DNA repair genes
(Rodgers et al., 2018). Furthermore, upregulated ECM–receptor
interaction results in interaction with HMMR and SDC1 genes,
the dysregulation of which promotes BC cell motility and
differentiation (Yeh et al., 2018). A downregulated chemokine
signaling pathway and cytokine–cytokine receptor interaction
cannot recruit immune cells (leukocytes) to the tumor
microenvironment, thus resulting in tumor progression (Gil Del
Alcazar et al., 2020). The downregulation of toll-like receptor
signaling pathways results in non-recognition and the escape of
cancer cells from the immune system, leading to the invasiveness,
migration, and angiogenic potential of cancer cells (Javaid and Choi,
2020). The disruption of the cell cycle at the G2/M phase results in
cells that contain damaged DNA and genomic instability, a hallmark
of cancer (Thu et al., 2018). It has been reported that increased ER-α
in BC cells suppresses bladder cancer cell growth by downregulating
INPP4B which, in turn, suppresses the AKT signaling pathway (Hsu
et al., 2014). Research has found that the IL-17 signaling pathway
becomes downregulated due to increased estrogen receptor
expression, resulting in dysregulated PD-1/PD-L1 and CD8+

T cell expression—a suppressed immune response (Shuai et al.,
2020). Furthermore, downregulated cellular senescence results in
increased cell proliferation and tumor development (Milczarek,
2020). Moreover, a downregulated p53 signaling pathway cannot
perform DNA damage repair and cell death, thereby facilitating the
increased growth and metastasis of tumor cells (Marei et al., 2021).

According to the GTEx portal, cells express an average of
3.42 transcripts per gene (Tung et al., 2020). The expression
dominance of major isoform transcripts compared to others from
the same gene is crucial for normal cellular homeostasis (Hu et al.,
2017). However, splicing regulation is often disrupted in cancer with
a dominant expression of alternative transcripts in a tumor
microenvironment (TME) which promotes switches that
contribute to tumor progression and metastasis (Kahraman et al.,
2020). The interaction pattern of the cancer-specific most dominant
transcript (cMDT) differs from the generally expressed isoform of
normal cells because of changes caused by alternative splicing; this
could affect protein domains due to mutations caused by tumor and
subsequent disruption in cancer-related pathways (Yang et al., 2016;
Climente-González et al., 2017). According to the literature,
apoptosis, ubiquitin, signaling, and spliceosomes were the most
disrupted protein interactions (Kahraman et al., 2020). It has
been reported that isoform switching leads to the loss of the
DNA sequence that encodes for protein domains, promoting
functional loss. The subsequent switches have functional
consequences for cancer development and progression (Vitting-
Seerup and Sandelin, 2017).

The present study has identified the differential usage of
transcript isoforms among ERP and TNBC. It revealed isoforms
that are significantly expressed and used by shortlisted
downregulated genes (STMN1, MELTF, and CXCL8).
CXCL8 encodes a protein that is involved in chemotaxis
(Łukaszewicz-Zając et al., 2020). It transcribes five
transcripts; among them, only one isoform transcript was
significantly used. Differential gene expression plotting shows
that CXCL8 is downregulated in ERP (Figure 6). On the other
hand, there is in isoform usage an increased use of isoform
ENST00000483500 in ERP. However, this isoform is non-coding
due to retained introns and the unavailability of any domain,
leading to functional loss of CXCL8 and immune suppression as
a consequence of the non-recruitment of macrophages and
neutrophils to the TME (Xiong et al., 2022). STMN1, a
cytosolic phosphoprotein, is involved in microtubule
destabilization by regulating the microtubule filament system
and signal transduction (Bao et al., 2017). It transcribes four
known and two novel isoforms (Figure 6). The isoform usage
plot indicates that a single isoform (ENST00000485226) is
significantly used in ERP, as compared to TNBC. However, it
lacks a domain, which results in its non-coding behavior.
Furthermore, STMN1 is repressed in ERP, as shown in
differential gene expression plotting which promotes ERP
progression due to the disruption of microtubules and their
subsequent role in the growth of immune cells such as T-cells
and natural killer cells (Zhang et al., 2022). MELTF, a cell
surface glycoprotein, is involved in cellular iron uptake
(Sawaki et al., 2019). MELTF could transcribe six novel and
two known isoforms (Figure 6); however, increased use of the
single isoform MSTRG.29921.1 has been identified in ERP.
Moreover, this isoform contains nonsense codons that
prematurely terminate translation—nonsense-mediated decay
(NMD). Differential gene expression plotting also shows that
MELTF is downregulated in ERP, leading to the decreased
proliferation and maturation of immune cells such as
lymphocytes due to decreased iron uptake (Roemhild et al.,
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2021). Gene Ontology analysis of shortlisted immune genes
revealed that CXCR chemokine receptor binding, iron ion
binding, and cytokine activity are the most dysregulated
molecular functions (Figure 7). These functions mediate
immune response by recruiting immune cells such as
monocytes, T cells, lymphocytes, and natural killer cells, and
assist their growth and proliferation. The downregulation of
these functions promotes ERP BC due to suppressed immune
response in TME (Bates et al., 2018).

This research therefore provides key insights into the genes that
are differentially expressed in ERP. Moreover, DNALI1 is a novel
gene that has not been previously reported and is involved in ERP
BC development. Furthermore, the identification of three immune
system-related genes (STMN1,MELTF, and CXCL8) reveals that the
dysregulation of the immune system due to isoform switching is the
major factor in ERP BC development and progression.
Downregulation and isoform switching of key immune system
genes suggest BC progression and possible metastasis due to the
non-recruitment of cytokines in the TME.

Conclusion

ERP BC is characterized by the growth of tumor cells in response
to estrogen hormone. The dysregulation of gene expression results
in the development of significant biological changes that are key
features of multiple human carcinomas such as prostate cancer,
gastric cancer, hepatocellular carcinoma, and lung cancer. In this
study, 9,771 DEGs were identified; among these, 86 genes were
upregulated and 117 were downregulated. Six genes (FOXA1,
RHOB, AGR2, ESR1, CBLC, and FOXC1) were found to be
significantly associated with the development and progression of
ERP BC. This study also identified a novel set of genes (DNALI1,
TMSB15A, AR, TFF3, SYBU, CENPW, EN1, CDK6, MELTF, and
CA9) not previously reported positive for estrogen receptors but that
has been reported in other carcinomas. Moreover, alternative
splicing and subsequent isoform expression in three
downregulated immune system genes (STMN1, MELTF, and
CXCL8) had been identified that were mainly responsible for
ERP progression due to suppression of the immune system and
the non-recruitment of cytokines against cancer cells. It was found
that CXCR chemokine receptor binding, iron ion binding, and
cytokine activity were the most dysregulated functions due to
immune system suppression. This study reveals that
dysregulation of the immune system due to isoform switching is
the major factor in ERP BC development and progression.
Therefore, these crucial immune system genes should be targeted
as therapeutic biomarkers.
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Introduction: The 5-year survival of gastric cancer (GC) patients with advanced stage
remains poor. Some evidence has indicated that tryptophan metabolism may induce
cancerprogression through immunosuppressive responsesandpromote themalignancy
of cancer cells. The role of tryptophan and its metabolism should be explored for an in-
depth understanding of molecular mechanisms during GC development.

Material and methods: We utilized the Cancer Genome Atlas (TCGA) and Gene
ExpressionOmnibus (GEO)dataset to screen tryptophanmetabolism-associatedgenes
via single sample gene set enrichment analysis (ssGSEA) and correlation analysis.
Consensus clustering analysis was employed to construct different molecular
subtypes. Most common differentially expressed genes (DEGs) were determined
from the molecular subtypes. Univariate cox analysis as well as lasso were
performed to establish a tryptophan metabolism-associated gene signature. Gene
Set Enrichment Analysis (GSEA) was utilized to evaluate signaling pathways. ESTIMATE,
ssGSEA, and TIDEwere used for the evaluation of the gastric tumormicroenvironment.

Results: Two tryptophan metabolism-associated gene molecular subtypes were
constructed. Compared to the C2 subtype, the C1 subtype showed better
prognosis with increased CD4 positive memory T cells as well as activated
dendritic cells (DCs) infiltration and suppressed M2-phenotype macrophages inside
the tumor microenvironment. The immune checkpoint was downregulated in the
C1 subtype. A total of eight key genes, EFNA3, GPX3, RGS2, CXCR4, SGCE, ADH4,
CST2, and GPC3, were screened for the establishment of a prognostic risk model.

Conclusion: This study concluded that the tryptophan metabolism-associated
genes can be applied in GC prognostic prediction. The risk model established in
the current study was highly accurate in GC survival prediction.
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tryptophan metabolism, tumor microenvironment, immune cell infiltration, prognosis,
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Introduction

Gastric cancer (GC) has been recognized as a main cancer
type that leads to cancer-associated mortality worldwide, with
millions of new cases being diagnosed annually (Lambert et al.,
2002; Brenner et al., 2009). Inflammation is typically related to
GC development with both acute and chronic inflammatory
cells, resulting in aggressive damage of gastric mucosa and
ultimately transformation to cancer tissue (Demaria et al.,
2010; Wang et al., 2014). In most cases, the 5-year survival
of late-stage GC patients remains poor although current
combination therapy of chemotherapy, radiation, and surgery
has improved (Li et al., 2009; Song et al., 2017). Cancer
immunotherapy has emerged recently as a promising and
powerful cancer therapy that drives the patient’s own
immune system against cancer (De Felice et al., 2015;
Whiteside et al., 2016; Bruni et al., 2020). The combination
therapy involving first-line Opdivo (nivolumab)
immunotherapy and chemotherapy was approved in 2021 for
advanced or metastatic GC patients (Twomey and Zhang, 2021;
Yoneda et al., 2021). The mechanism of GC progression and its
related tumor immune microenvironment should be analyzed
to develop novel cancer immunotargets against GC.

As an essential amino acid, L-tryptophan serves as an
indispensable material and regulates protein synthesis during
cell proliferation (Conejos et al., 2021). Tryptophan and its
metabolites play critical roles in various physiological
processes (Hoseini et al., 2019; Conejos et al., 2021). Most free
tryptophan is a biologically active substrate for the function of
the kynurenine (Kyn) signaling pathway (KP) that produces
several metabolites related to the immune response and
neurotransmission (Platten et al., 2019; Tanaka et al., 2021).
Many studies have focused on the imbalances in tryptophan
metabolism by targeting the KP, especially ryptophan-2,3-
dioxygenase (TDO), indoleamine-2,3,-dioxygenase 1 (IDO1),
and IDO2 (Platten et al., 2019; Yao et al., 2021). It has been
demonstrated that the tryptophan depletion by IDO1 and
IDO2 was highly associated with cellular function and survival
(Zhai et al., 2018; Souissi et al., 2022). However, phase III clinical
trials of IDO inhibitors against cancers were disappointing,
although they did show promising outcome in early-stage
cancer immunotherapy (Günther et al., 2019; Chen et al.,
2021). Some evidence has indicated that tryptophan
metabolism may induce cancer development and progression
through the inhibition of immune responses in the tumor site and
promoting the malignancy of cancer cells (Platten et al., 2019).
Although it is still unclear whether KP-related enzymes are
essential for cancer progression, the role of tryptophan and its
metabolism should be explored for in-depth understanding of
molecular mechanism during GC development.

Thus, in this study, we used genes significantly associated with
tryptophan metabolism pathway score to determine the molecular
subtypes. Specifically, consensus clustering followed by subsequent
comparison of clinical signatures, different signaling pathways, and
immune-related properties among different subtypes will be
performed. We then identified genes associated with the
tryptophan metabolism phenotype by differential expression
analysis and LASSO. We further predict GC patients’ outcome by

constructing a risk model, which is also used for personalized
treatment.

Materials and methods

Data sources, collection, and preprocessing

The data related to mutation, copy number variation, and RNA-
Seq profile of TCGA-STAD via TCGA GDC API were downloaded
first (http://cancergenome.nih.gov/). GSE66229 expression data
from the GEO database were obtained (https://www.ncbi.nlm.nih.
gov/geo/). Samples need to be processed as follows (Brenner et al.,
2009): excision of samples of primary tumors (Lambert et al., 2002);
removal of incomplete samples with clinical characteristic
information to ensure that samples have complete clinical
prognostic information and transcriptome expression data.
TCGA-STAD was the training set and the GSE66229 dataset was
the validation set. We excluded samples without survival time or
status. Finally, a sum of 350 primary tumor samples together with
32 normal matches were screened. We kept the protein-encoding
genes for TCGA RNA-seq data analysis. Meanwhile, all data were
log2 transformed, and RNA expression data were normalized. For
the GEO dataset, 300 GC samples were finally screened. Specifically,
the annotation information for each chip platform was acquired and
subsequently utilized to map probes with all the detected genes.
Then, we removed the probes that matched more than one gene.
When one gene can be matched by more than one probes, the mean
value of the gene expression was calculated and set as the value for
that specific gene.

The tryptophan metabolism-related gene information is derived
from a specific pathway named “KEGG_TRYPTOPHAN_
METABOLISM”, which can be found in the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/).

Molecular subtypes of tryptophan
metabolism-associated genes

We constructed a consensus matrix and clustered the samples
through consensus clustering (Wilkerson and Hayes, 2010). The
transcriptional expressions of prognostic genes, which are involved
in the tryptophan metabolism score, were subsequently evaluated to
determine the molecular subtypes. We executed 500 bootstraps
employing the “hc” algorithm and “pearson” as the metric
distance. Each bootstrap process involved around 80% of the
training set patients. The cluster number was set within a range
of 2–10, and we determined the optimal classification via cumulative
distribution function (CDF). Notably, the consistency of CDF was
carefully evaluated when constructing various molecular subtypes
for GC samples.

Risk model

The distinctly expressed genes were identified among the
molecular subtypes, and then the distinctly expressed genes
associated with statistical significance for prognosis were
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FIGURE 1
Genetic variation landscape of tryptophan metabolism-related genes in GC. (A)Mutational map of genes associated with tryptophan metabolism in
primary tumor samples; (B) Primary tumor samples GSEA analysis between mutated and non-mutated groups; (C) CNVs of genes associated with
tryptophan metabolism within primary tumor samples; (D)Gene expression between different types of copy number variation in primary tumor samples;
(E) Differential expression of tryptophan metabolism-related genes between tumor and normal tissue samples. * means p-value less than 0.05; **
means p-value less than 0.01; *** means p-value less than 0.001, and **** means p-value less than 0.0001. ns means there is no significant difference
between the two groups. The same statistical criteria apply to the following figures.
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sorted out (|Log2FC|>1 and FDR<0.05). The gene numbers were
further condensed by Lasso regression, and the prognostic genes
potentially contributing to the tryptophan metabolism
phenotype were filtered. Then, the risk score for each patient
was calculated by the formula:

RiskScore = Σβi×Expi, where Expi is the expression value of each
prognostic gene that determines tryptophan metabolism phenotype.
The Cox regression coefficient of corresponding prognostic gene is
referred to as β. Based on the calculated numbers, samples were then
distributed into two subgroups, that is, RiskScore-high and
RiskScore-low groups, with the threshold set as “0". The
commonly used Kaplan-Meier method was utilized to analyze
patient survival, and the patients’ statistical significance was
calculated via a log-rank test.

GSEA

In different molecular subtypes, pathways of different
biological processes were investigated by performing GSEA
for signaling pathway analysis based on the candidate gene
sets from the KEGG/hallmark (https://www.gsea-msigdb.org/
gsea/index.jsp).

Calculation of cell invasion abundance in
tumor microenvironment

Relative abundance of 22 immune cells in tumor tissues and
percentage of immune cells was determined using CIBERSORT
algorithm (https://cibersort.stanford.edu/) and ESTIMATE
software (Wilkerson and Hayes, 2010), respectively. A total of

28 immune cells were scored using ssGSEA function
(Charoentong et al., 2017).

Prediction of patients’ responsiveness to
immunotherapy

The TIDE, as a widely used algorithm for immune
checkpoint blockade (ICB) responsiveness prediction
(Thorsson et al., 2018), was applied to verify the prediction of
clinical responsiveness to ICB, which evaluated various cell
types including tumor-related fibroblasts, which are
responsible for excessive extracellular matrix deposition,
immunosuppressive cells such as the M2 subtype of tumor-
associated macrophages, and myeloid-derived suppressor cells
that suppressed the T cell infiltration inside the tumor
microenvironment, and two distinct mechanisms involved in
escaping immune surveillance, including the score determining
the dysfunctionality of tumor-infiltrating cytotoxic T
lymphocytes (CTLs) and the score showing the rejection of
CTLs by immunosuppressive factors.

Results

Genetic variation landscape of tryptophan
metabolism-associated genes in GC

A total of 40 genes were involved in tryptophan metabolism.
To determine the genetic alteration of tryptophan metabolism in
GC, mutation frequency of cells was analyzed among the
tryptophan metabolism-associated genes. Among the

FIGURE 2
Molecular typing on genes that are associated with tryptophan metabolism. (A) The result of correlation analysis on genes that are significantly and
prognostically associated with tryptophan metabolic pathway scores is summarized into a heatmap; (B) Cumulative distribution function curves for
samples that are from TCGA cohorts; (C). Curves for the delta area under the cumulative distribution function curves for samples that are from TCGA
cohorts; (D). The second sample clustering (k = 2) is displayed as a heatmap; (E). The prognosis of two TCGA subtypes is displayed as a KM curve; (F)
The prognosis of the twoGSE66229 cohort subtypes is displayed as a KM curve; (G,H): The statistical differences of tryptophanmetabolism scores among
different molecular subtypes in the TCGA cohort (G) and in the GSE66229 cohort (H) were analyzed by one-way ANOVA.
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437 tumor samples, 121 (27.69%) samples had tryptophan
metabolism mutations. As shown in Figure 1A, AOX1 and
OGDHL genes had the highest mutation frequencies, and no
mutation was found in theWARS1 gene. To understand the effect
of mutations on tryptophan metabolism-related genes, we
analyzed the biological signaling pathways in wild-type (WT)
and mutant (Mut) groups through GSEA enrichment analysis. It
shows that tumor-associated pathways, including TNFA_
SIGNALING_VIA_NFKB, P53_PATHWAY, and MYC_
TARGET, were enriched in the mutant group (Sanchez-Vega
et al., 2018) (Figure 1B). We then examined the somatic copy
number variations of these tryptophan metabolism-associated
genes in GC tumor samples and discovered a lower frequency of
copy number variation (CNV) deletion or amplification
(Figure 1C). In order to explore mRNA expression of CNV
value in tumor tissue, the samples were distributed into
different groups relying on CNV value, including increase and
loss of CNV, as well as no obvious variation in CNV. Comparison
of the expression of genes correlating with tryptophan
metabolism between these groups showed that patients with
CNV gain had a higher mRNA expression level compared to
those with CNV loss (Figure 1D). To determine the expression of
the tryptophan metabolism-associated genes between tumor
tissue samples and adjacent normal tissues. As indicated in
Figure 1E, most tryptophan metabolism genes were
significantly differentially expressed, such as AANAT, AFMID,
HADH, IDO1, IDO2, IL4I1, KMO, KYNU, MAOA, MAOB,
TDO2, and WARS2.

Molecular subtyping based on genes related
to tryptophan metabolism

The tryptophan metabolism score in the TCGA dataset was
calculated by the ssGSEA, and then Pearson was used to estimate
the relationship between the protein-encoding genes and the
tryptophan metabolism score. A total, 30 prognostic genes
associated with tryptophan metabolism score were screened.
Figure 2A showed the correlation between the 30 genes and
tryptophan metabolism scores. We classified patients based on
the consensus clustering on 30 prognosis-correlated gene
expression profiles and selected the optimal cluster number
based on the CDF. With relatively stable clustering results
shown in Figures 2B, C, we finally chose k = 2 to acquire two
molecular subtypes (Figure 1D). We further performed the
prognostic analysis of these two molecular subtypes. As
shown in Figure 2E, we found that the overall survival of
C1 was significantly better than that of C2. In addition, a
sample of GC patients from the GSE66229 dataset showed
similar results. This suggests that GC patients in C1 would
have a better prognosis relative to the C2 subtype (Figure 2F).
Meanwhile, we determined the tryptophan metabolism scores of
each sample in the TCGA and GSE66229 datasets, which showed
the score of C2 was higher compared to that of the C1 subtype
with a good survival benefit (Figures 2G, H). Furthermore,
differences in clinicopathological characteristics of TCGA
molecular subtypes were analyzed. As indicated in Figure 3,
we found significant differences between the two molecular

FIGURE 3
Clinical information distribution of molecular subtypes for the TCGA cohort.
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FIGURE 4
Differences in immune signatures between molecular subtypes treated with immunotherapy or chemotherapy. (A) The abundance of 22 immune
cells shows differences among various molecular subtypes; (B) ESTIMATE immune infiltration differences among various molecular subtypes; (C) The
scores for 28 immune cells vary among different molecular subtypes; (D)Differentially expressed immune checkpoints between different groups; (E) The
results of TIDE analysis show significant differences comparing different TCGA cohort groups; (F) The estimated IC50 values for drugs in TCGA-
STAD are displayed as box plots.
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subtypes in terms of age, disease stages, grade classification, and
patient survival status.

Various immune characteristics and
responses to immunotherapy and
chemotherapy between molecular
subtypes.

As shown in Figure 4A, some immune cell types were
significantly different among the subtypes. Compared to the
C2 subtype, activated dendritic cells (DCs) and CD4 positive

memory T cells were significantly upregulated while the M2-
phenotype macrophages were suppressed in the C1 subtype.
Meanwhile, ESTIMATE was applied to evaluate the level of
immune cells inside tumor tissues. Figure 4B showed that the
ImmuneScore of the C2 subtype was significantly higher
compared to that of other groups, indicating that C2 has a
high level of immune cell infiltration. In addition, ssGSEA
demonstrated significant differences in most immune cell
scores between different subtypes (Figure 4C). We further
analyzed the responsiveness to immunotherapy between
different TCGA cohort molecular subtypes. As shown in
Figure 4D, compared to C1 subtype, the gene expression of

FIGURE 5
The molecular subtypes within the TCGA cohort show genomic variations. (A) Comparison of Homologous Recombination Defects, Aneuploidy
Score, Fraction Altered, Number of Segments, Nonsilent Mutation Rate, and Tumormutation burden in the TCGA cohortmolecular subtypes; (B) Somatic
mutations in the two molecular subtypes.
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immune checkpoints such as IDO1, IDO2, and CD274 were
increased dramatically in the C2 subtype.

We did this by employing the TIDE algorithm in order to
assess the potential response of tumor samples to immune
checkpoint inhibitors. Higher TIDE scores represent a higher
likelihood of immune escape in response to immune checkpoint
therapy (Jiang et al., 2018). As shown in Figure 4E, in the TCGA
cohort, the C2 subtype showed a much higher TIDE score than the
C1 subtype with best prognosis, indicating that the C2 subtype had
greater potential of immune escape. In addition, analysis on the
response of different molecular subtypes to conventional
chemotherapeutic drugs showed that C2 patients were more
sensitive to these drugs including sunitinib, MG-132,
saracatinib, dasatinib, and CGP-60474 (Figure 4F).

Mutational signatures and pathway analysis
between molecular subtypes

Further, differences in genomic alterations between two
different molecular subtypes in the TCGA cohort were analyzed.
Here, we obtained molecular information of TCGA-STAD collected
from a pan-cancer study (Thorsson et al., 2018). The C1 subtype
showed a higher aneuploidy score, fraction altered, homologous
recombination defects, non-silent mutation rate, tumor mutation
burden (TMB), and number of segments (Figure 5A). Gene
mutation differences between different molecular subtypes were
also studied. The top 10 genes were exhibited in Figure 5B,
which showed significant differences of TTN, TP53, and
MUC16 genes in mutation frequency between the two molecular
subtypes. Similarly to our results, it has been reported that TTN,

TP53 andMUC16 are the most significantly mutated driver genes in
GC, which is closely related to the prognosis of cancer patients
(Dong et al., 2022).

We then performed GSEA analysis which showed that DNA
replication, spliceosome and base excision repair signaling
pathways were highly enriched in the C1 subtype, while the
C2 subtype had high enrichment of the phagocytosis,
chemokine, and leukocyte transendothelial migration
signaling pathways (Figure 6A). We also evaluated the
10 oncogenic pathways from the previous study (Sanchez-
Vega et al., 2018). The differences showed statistical
significance in the rest of the pathways except for the
TP53 and NRF1 signaling pathways (Figure 6B). Compared
to the C2 subtype, the oncogenic pathways, such as the Wnt,
PI3K, and RAS pathways (Zhang et al., 2001; Zhang et al., 2019;
BY et al., 2020), were significantly downregulated in the
C1 subtype, which indicated an association between activated
oncogenic pathways and tryptophan metabolism that may result
in poor prognosis in C2.

Identification of key genes for the
tryptophan metabolism phenotype

As shown above, we identified two different molecular
subtypes with distinct prognostic, immune, mutational, and
pathway signatures. Next, we screened genes which are
differentially expressed in C1 subtypes compared with
C2 subtypes (|Log2FC| > 1; FDR <0.05), and a sum of
618 distinctly expressed genes were obtained as shown in the
volcano plot of differential analysis (Figure 7A) in which 36 genes

FIGURE 6
Signaling analysis between molecular subtypes. (A) The GSEA results of the TCGA cohort; (B) The scores of 10 signaling pathways associated with
tumor abnormalities for various TCGA cohort molecular subtypes.
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were significantly increased and 582 genes were decreased. We
next utilized univariate cox analysis on the 618 differentially
expressed genes and identified a total of 218 genes that showed
the greater impact on prognosis, including 217 Risk genes and
1 Protective gene (Figure 7B). Subsequently, we compressed these
218 significant differentially expressed genes through lasso
regression. As shown in Figures 7C, D, 10-fold cross-
validation was used to construct the model and eight genes at
lambda = 0.0356 were screened for further analysis: EFNA3,
GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, GPC3. The final 8-
gene signature formula was as follows:

RiskScore=(0.024*EFNA3)+0.079*GPX3+0.102*RGS2+0.051*
CXCR4+0.014*SGCE+0.076*ADH4+0.067*CST2+0.066*GPC3.

Establishment and validation of clinical
prognostic model

The risk score for each TCGA sample was separately calculated,
followed by conducting a receiver operating characteristic (ROC)
analysis on the prognostic classification of the RiskScore. The
prediction classification efficiency from 1 year to 4 years was
calculated to have an area under the time-dependent ROC curves
(AUC) of 0.7, which validated the prediction capability of the model
(Figure 8A). We then performed the zscore on the RiskScore. When the
RiskScore was lower than zero, the samples were separated into the low-
risk group, while those with a RiskScore higher than zero were in the
high-risk group. As shown in Figure 8B, the low-risk group showed

FIGURE 7
Determination of predominant genes contributing to phenotypes related to tryptophanmetabolism. (A)Gene expression difference is displayed by a
volcano plot; (B) A total of 218 potential candidates were determined among the differentially expressed genes; (C) Trajectory schemes were drawn for
every independent variable associated with lambda; (D) Confidence interval under lambda.
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prolonged survival time, indicating the good performance of this
prognostic model. Additionally, GSE66229 dataset was utilized to test
the robustness and validate the risk model constructed by these eight
genes. As shown in Figures 8C, D, similar results were observed, which
indicated the excellent predictive ability of this model.

RiskScore performance on
clinicopathological features and different
molecular subtypes

We analyzed the differences in RiskScore betweenGender, Age, TNM
grades, Stage clinical grades, andGrade grades in theTCGA-STADdataset
to explore the relationship betweenRiskScore and clinical characteristics of
GC. With the increase in the clinical grade, the RiskScore also increased

(Figure 9A). Moreover, we analyzed the difference in RiskScores among
different molecular subtypes. The RiskScore of the C2 subtype with worse
prognosis was obviously higher compared to that of the C1 molecular
subtype with the best prognosis. Clinicopathological characteristics
between the RiskScore groups in the TCGA-STAD cohort were
analyzed, and the high-risk group was found to have a higher clinical
grade (Figure 9B), which was consistent with previous results.

Immune infiltration/pathway characteristics
between RiskScore groups

Next, the enrichment of 22 immune cells in the high and low
RiskScore groups was analyzed between RiskScore groups. As
shown in Figure 10A, compared to the high-risk group, resting

FIGURE 8
Establishment as well as validation of clinical prognosticmodel. (A–B) ROC curves and KM curves for eight genes derived from TCGA dataset; (C–D)
ROC curves and KM curves for eight genes derived from GSE66229 dataset.
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NK cells, activated CD4 T cells, and activated DCs were increased
dramatically while M2 macrophages were substantially decreased
in the low-risk group. ESTIMATE was also utilized to evaluate
the level of immune cells in the tumor tissues. As shown in
Figure 10B, the ImmuneScore in the high-risk group is much

higher. Although it showed a higher level of immune cells in the
high-risk group, the immunosuppressive cells such as MDSC and
M2-phenotype macrophages also increased significantly, which
might result in a poor prognosis. Further, we also used the
ssGSEA function to analyze the scores of 28 types of immune

FIGURE 9
RiskScore performance on various clinicopathological features and variousmolecular subtypes. (A) Various clinicopathological groups derived from
TCGA cohort are compared pairwise in the parameter of RiskScore; (B)Clinicopathological characteristics between RiskScore groups derived from TCGA
cohort. G2 and G3 stages were selected for comparison. For M stage, there were 312 patients in M0 stage, and only 23 patients in M1 stage. Therefore, the
difference in RiskScore between M stages was not compared in this study.
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FIGURE 10
Immune infiltration/pathway characteristics between RiskScore groups. (A) The abundance of 22 immune cells in TCGA cohort between high and
low risk groups is shown as boxplot; (B) Boxplot of differences in immune scores calculated by ESTIMATE software in TCGA cohort; (C) Boxplots of
differences in 28 immune cell scores calculated by ssGSEA in TCGA cohort; (D) Correlation analysis between 28 immune cell scores and RiskScore in the
TCGA cohort; (E) The enrichment scores for signaling pathways in high-risk and low-risk groups with a correlation factor larger than 0.6 are
displayed as a heatmap; (F)Correlation relationship betweenGSEA pathways and RiskScore was performed and thosewith a correlation factor larger than
0.6 are displayed; (G) Correlation scatter plot between RiskScore and tryptophan scores.
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cells, and most of the immune cell scores were significantly different
between high- and low-risk groups (Figure 10C). The correlation
between immune cells and RiskScore was further evaluated. As
shown in Figure 10D, the RiskScore positively correlated with most
immune cells, especially CD4 T cells, DCs, NK cells, and MDSCs, which

could support the prediction of prognoses. This suggests that the
infiltration of these immune cells increases as the risk score rises.

In Figures 10E–G, the most signaling pathways were positively
correlated with the RiskScore of the samples and a significant
positive correlation could be found between RiskScore and

FIGURE 11
Genomic variations after immunotherapy and chemotherapy among RiskScore groups. (A) Differentially expressed immune checkpoint genes
among different TCGA cohort groups; (B) The TIDE analysis results were compared between different TCGA cohort groups to show differences; (C)
Within the TCGA cohort, a correlation relationship was performed between RiskScore and TIDE results; (D) The estimated IC50 values for drugs in TCGA-
STAD were displayed as box plots.
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tryptophan metabolism ssGSEA scores, indicating that the activated
tryptophan metabolism may induce poor prognosis.

Differences in immunotherapy/
chemotherapy between RiskScore groups

We further explored the expression level of immune checkpoints
between RiskScore groups. As shown in Figure 11A, some immune
checkpoint genes, including NRP1, CD200, and CTLA4, were
significantly downregulated in low-risk groups. We further
analyzed the difference in immunotherapy among different
RiskScore groups. TIDE software was applied to evaluate the
immunotherapy response in the high and low RiskScore groups.

We can find that in the TCGA cohort, the high-risk group showed
a higher TIDE score (Figure 11B), indicating that the high-risk group
showed greater potential of immune escape and less sensitive to
immunotherapy. We further analyzed the relationship between
RiskScore and TIDE score. Figure 11C showed a positive
correlation between RiskScore and TIDE, IFNG, Exclusion, and
Exclusion scores and a significant negative correlation with MDSC.
In addition, we also analyzed the response of RiskScore groups to
chemotherapeutic drugs in the TCGA cohort and found that the high
RiskScore group was more sensitive to chemotherapeutic drugs
including MG-132, dasatinib, CGP-60474, WH-4-023, and CMK
(Figure 11D).

Combining RiskScore and clinicopathological features to
optimize prognostic model and survival prediction.

FIGURE 12
Combining RiskScore with clinicopathological features for the optimization of prognostic model and survival prediction. Patient samples with
RiskScore, stage, and age were utilized to generate the survival decision tree; (A,B): Overall survival among the different risk groups; (C,D): Comparative
analysis was performed between different groups; (E): Univariate cox analysis of RiskScore and clinical features; (F): Multivariate Cox analysis of RiskScore
and clinical features; (G): Nomogram model; (H): Compared with other clinicopathological features, the nomogram showed the most powerful
capacity for survival prediction; (I): 1- and 3-year calibration curves of nomograms; (J): Decision curves of nomograms.
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Here, patient age, gender, TNM stage, Stage clinical grade, Grade,
and RiskScore in the TCGA-STAD cohort were used to develop a
decision tree. Only age, T stage, and RiskScore remained in the decision
tree, where RiskScore was the most effective parameter (Figure 12A).
Figure 12B showed a significant overall survival differences among the
four risk subgroups. C2, C3, and C4 were all high-risk patients
(Figure 12C). A significantly decreased survival benefit was found in
the C2, C3, and C4 subgroups (Figure 12D). RiskScore, age, and Stage
were significant prognostic factors, as confirmed by Univariate and
multivariate Cox regression analysis on the clinical characteristics and
RiskScore (Figures 12E, F). A nomogram combining the RiskScore with
other clinicopathological characteristics was developed for the risk
assessment and survival probability evaluation for patients. On
survival rate prediction, the RiskScore showed the greatest impact.
The accuracy of the prediction model was evaluated by the calibration
curve (Figure 12G). As displayed in Figure 12H, the predicted
calibration curve at 1 and 3 years(s) almost overlapped with the
standard curve, indicating a strong prediction of the nomogram.
Further decision curve analysis (DCA) demonstrated that the
Riskscore and nomogram showed noticeably greater benefits than
extreme curves. Additionally, both nomogram and RiskScore
demonstrated the most powerful survival predictors compared to
other clinicopathological features (Figures 12I, J).

Discussion

Inflammation is typically associated with GC development and
migration in damage of gastric mucosa (Demaria et al., 2010; Wang
et al., 2014). The large number of immune cells, inflammatory cells and
cytokines often present in the tumormicroenvironment leads to a state
of immunosuppression and chronic inflammation (Li et al., 2020).
Although FDA approved combination therapy for the treatment of
early stage and advanced GC patients recently, the 5-year survival of
GC patients with advanced stage remains poor. We still need to
investigate the mechanism of GC progression and its related tumor
immune microenvironment for the development of novel cancer
immunotargets against GC. Cancer is a typical metabolic disease.
Nie et al. developed a prognostic model based on the metabolic
profile of TCGA that can well predict the prognosis of STAD
patients. This new metabolism-related feature can respond to the
dysregulated STAD metabolic microenvironment (Nie et al., 2021).
In addition, numerous studies have proved that the tryptophan
metabolism could progress the GC development (Platten et al.,
2019; Tanaka et al., 2021; Yao et al., 2021). Free tryptophan is a
substrate for the kynurenine signaling pathway, which produces
various metabolites related to the immune response. IDO1 and
IDO2 were most popular rate-limiting enzymes to catabolize
tryptophan, and many studies have focused on the blockade of
IDO1 to active the antitumor immunity (Günther et al., 2019).
However, phase III clinical studies of IDO inhibitors against
cancers were unsatisfying (Chen et al., 2021). Although it is still
unclear whether IDO enzymes are essential for cancer progression,
tryptophan metabolism-related genes and signaling pathways were
highly related to the GC immune microenvironment. Long et al.
showed that tryptophan metabolism-related genes were significantly
associated with immune infiltration of different cells in hepatocellular
carcinoma (Long et al., 2023). Similarly, Zhang et al. showed that

tryptophan metabolism-related genes play an important role in the
immune microenvironment of gliomas. They constructed a
tryptophan metabolism-related predictive model and found that
higher tryptophan metabolism-related gene markers were
significantly associated with immune cell infiltration (Zhang et al.,
2022).

We therefore explored the molecular mechanism of tryptophan
metabolism in GC by using RNA-seq data from human samples to
establish the risk model used for predicting clinical results. Firstly,
RNA-seq data derived from patients with GC were collected, and we
analyzed the expression signatures and mutation profiles of
tryptophan metabolism-associated genes. Then, two tryptophan
metabolism-associated molecular subtypes were constructed to
investigate the role of tryptophan metabolism in tumor immune
microenvironment and further developed and verified the use of the
model in a clinical setting.

It has been shown that Kynurenine, a catabolic metabolite of
tryptophan, is able to bind to receptors for transcription factors,
which in turn induces tumor cell invasion and immunosuppression
of the tumor microenvironment (Xu et al., 2021). This suggests that
amino acid metabolism plays a key role in the immunoregulatory
mechanisms in tumor cells and the tumor microenvironment. In this
study, we obtained a total of 40 genes that were highly related to
tryptophan metabolism. Around 27.69% samples were found with
tryptophan metabolism gene mutations, which was consistent with
previous studies (Santhanam et al., 2016; Lu et al., 2020; Pirzadeh et al.,
2022). This study classified two molecular subtypes and found that the
C1 subtype showed better prognosis comparedwith the C2 subtype. But
the immune cell infiltration and the ratio of some key immune
activation cells especially naïve and memory CD8 T cells in the
C1 molecular subtype were significantly more suppressed than those
in C2 subtype. As demonstrated, CD8 T cell infiltration in the tumor
microenvironment was critical in reviving antitumor immunity (Rahir
and Moser, 2012; Chen et al., 2018). The suppressed immune cell
infiltration in the C1 subtype might be induced by other
immunosuppressive signals such as MDSC and the M2-phenotype
macrophage, which were also important to form an
immunosuppressive tumor microenvironment and inhibit the
migration and penetration of immune cells into tumor tissues (Sica
andMassarotti, 2017;Wang et al., 2021).We also analyzed the immune
checkpoint gene expression in these two subtypes. Interestingly, more
immune checkpoint genes were found to be suppressed in the
C1 subtype compared with the C2 subtype, indicating that immune
checkpoint blockade instead of immune cell infiltration resulted in a
good clinical outcome for the C1 subtype. Additionally, the tumor-
related signaling pathways such as theNuclear Factor kappa B (NF-κB)/
P53 pathway and MYC targets pathways were enriched in the mutant
group. As reported, the NF-κB family was considered as a key regulator
of immune responses and inflammation. Some literature has
demonstrated that NF-κB/P53 signaling pathway activation was
associated with human cancer development, progression, and
metastatic potential (Tilborghs et al., 2017; Thorsson et al., 2018;
Marei et al., 2021). Moreover, several studies have indicated that the
transcription factor MYC served as a proto-oncogene in multiple
cancers, which can result in transcriptional activation or repression
of specific genes including those involved in tumor cell growth,
proliferation, and survival (Zhang et al., 2010; Hu et al., 2018). The
tumor-related signaling pathways enriched in the mutant group
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suggested that the mutation may result in functional changes and
survival benefits for GC patients.

This study determined that eight significant genes (EFNA3,
GPX3, RGS2, CXCR4, SGCE, ADH4, CST2, and GPC3) are
correlated genes to construct the risk model. Among these
genes, the chemokine receptor CXCR4 and its ligand
CXCL12 were widely reported to be involved in cancer cell
survival, proliferation, and migration (O’Boyle et al., 2013; Lee
and Jo, 2012). Preliminary in vivo experiments suggested that
CXCR4 might be essential in the development of a range of
cancer malignancies (Conley-LaComb et al., 2013; Xue et al.,
2017). The CXCR4/CXCL12 signaling could be considered as a
therapeutic target in antitumor immunity and more in-depth
exploration should be performed for the prediction of clinical
outcomes. Moreover, some studies have demonstrated that
glypican-3 (GPC3) was closely associated with tumor
progression and acted as an oncogene in GC (Zhu et al., 2002;
Ushiku et al., 2009), which was consistent with our findings.
GPC3 might provide another potential therapeutic target for the
treatment of GC.

We further established the risk model to predict the clinical
outcome, which has been evaluated and verified with good
performance and high survival prediction accuracy. The potential
therapeutic targets among the tryptophan metabolism-related genes
and signaling pathways could be applied in the clinical GC diagnosis
and treatment. However, there are some limitations to note in this
study. First, our study data were obtained from the TCGA and GEO
databases, which were analyzed only by bioinformatics. In further
studies, we should conduct relevant in vivo and in vitro validation
experiments to verify the effect of risk modeling. In addition, the
molecular mechanisms related to tryptophan metabolism in GC
remain to be further verified.

Conclusion

In this study, we screened and determined eight key genes that
are related to the phenotype of tryptophan metabolism through
differentially expressed gene analysis between molecular subtypes
and constructed the risk model based on these key genes, which
showed strong robustness and stable predictive performance with
independence of clinicopathological characteristics. To optimize the
risk model and prognostic prediction, we combined the RiskScore
with clinicopathological features, which showed high accuracy and
capability for survival prediction.
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Applying machine learning
algorithms to develop a survival
prediction model for lung
adenocarcinoma based on genes
related to fatty acid metabolism

Dan Cong†, Yanan Zhao†, Wenlong Zhang, Jun Li* and
Yuansong Bai*

Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun,
China

Background: The progression of lung adenocarcinoma (LUAD) may be related to
abnormal fatty acid metabolism (FAM). The present study investigated the
relationship between FAM-related genes and LUAD prognosis.

Methods: LUAD samples from The Cancer Genome Atlas were collected. The
scores of FAM-associated pathways from the Kyoto Encyclopedia of Genes and
Genomes website were calculated using the single sample gene set enrichment
analysis. ConsensusClusterPlus and cumulative distribution function were used to
classify molecular subtypes for LUAD. Key genes were obtained using limma
package, Cox regression analysis, and six machine learning algorithms (GBM,
LASSO, XGBoost, SVM, random forest, and decision trees), and a RiskScore model
was established. According to the RiskScore model and clinical features, a
nomogram was developed and evaluated for its prediction performance using
a calibration curve. Differences in immune abnormalities among patients with
different subtypes and RiskScores were analyzed by the Estimation of STromal and
Immune cells inMAlignant Tumours using Expression data, CIBERSORT, and single
sample gene set enrichment analysis. Patients’ drug sensitivity was predicted by
the pRRophetic package in R language.

Results: LUAD samples had lower scores of FAM-related pathways. Three
molecular subtypes (C1, C2, and C3) were defined. Analysis on differential
prognosis showed that the C1 subtype had the most favorable prognosis,
followed by the C2 subtype, and the C3 subtype had the worst prognosis. The
C3 subtype had lower immune infiltration. A total of 12 key genes (SLC2A1, PKP2,
FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2, CDC45, IGF2BP1, ANGPTL4, and
CD109) were screened and used to develop a RiskScoremodel. Survival chance of
patients in the high-RiskScore group was significantly lower. The low-RiskScore
group showed higher immune score and higher expression of most immune
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checkpoint genes. Patients with a high RiskScore were more likely to benefit from
the six anticancer drugs we screened in this study.

Conclusion: We developed a RiskScore model using FAM-related genes to help
predict LUAD prognosis and develop new targeted drugs.

KEYWORDS

lung adenocarcinoma, fatty acid metabolism, RiskScore, machine learning, survival
probability, prognosis

1 Introduction

Lung adenocarcinoma (LUAD) accounts for about 40% of
primary lung tumors. LUAD is one of the tumor types that have
rapid metastasis and high mortality, with a survival time shorter
than 5 years (Denisenko et al., 2018; Hutchinson et al., 2019; Shi
et al., 2022). LUAD, at an early stage, usually has no obvious clinical
symptoms and is often diagnosed by adjuvant methods at the middle
and late stages or whenmetastasis occurs (Patz et al., 2014; Skřičková
et al., 2018; Sung et al., 2021). Although significant advances have
been made in the research and clinical treatment of LUAD, the
prognosis of LUAD remains dismal, despite the clinical use of
chemoradiotherapy, targeted therapy, and immunotherapy.
Currently, the underlying cellular and molecular mechanisms of
tumor behavior remain unclear (Lin et al., 2021; Chen et al., 2022a).
Therefore, molecular characteristics of LUAD should be

comprehensively investigated to improve clinical therapies and
the accuracy of prognosis prediction for LUAD.

Lipid metabolism is an important metabolic process for cells.
Abnormal fatty acid metabolism (FAM) in cancer cells has been
increasingly studied. Carcinogenesis mechanisms of various cancers
vary greatly, but they often show similar abnormalities in metabolism.
Reprogramming the metabolism of glucose, fatty acids, and other
biomolecules could promote the progression of tumor cells (Li and
Zhang, 2016). Growing evidence demonstrated that some changes
occur in tumor tissues in different processes of FAM (Amiri et al.,
2018), including in deciding the types, abundance, and mechanisms of
action of lipid-signaling molecules with regulatory functions (Santos
and Schulze, 2012). Changes of FAM also affect the proliferation,
differentiation, and metastasis of tumor cells (Yu et al., 2018).
However, the characteristics and functions of genes related to FAM
in LUAD have not been fully explored.

FIGURE 1
Abnormal FAM-related pathway genes in LUAD. (A) Proportion of gene deletion and amplification in the CNV of FAM-related pathway genes. (B)
Waterfall diagram of mutant information in the SNV of FAM-related pathway genes. (C) Comparison of FAM pathway scores in LUAD and para-cancer
tissues. (D) Comparison of expression of FAM-related pathway genes in LUAD and para-cancer tissues.
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FIGURE 2
Construction of molecular subtypes based on genes related to FAM pathways. (A) CDF curve of TCGA cohort samples. (B) Clustering heatmap of
samples in the TCGA cohort when consensus k = 3. (C) Relationship between the prognoses of three TCGA subtypes is shown by the K–Mcurve. (D)CDF
curve of GSE31210 cohort samples. (E) Clustering heatmap of samples with consensus k = 3 in the GSE31210 cohort. (F) K–M curve of the relationship
between the prognoses of three subtypes of GSE31210. (G) Heatmap of the expression of FAM-related pathway genes between three subtypes in
the TCGA cohort.
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A previous study investigating abnormal FAM showed that the
overexpression of fatty acid-binding protein 5 (FABP5) is related to
the poor prognosis in LUAD andmay be a new clinical target to treat
LUAD (Garcia et al., 2022). The downregulation of fatty acid
synthase (FASN) interferes with the progression of LUAD
through regulating the glucose metabolism and inhibiting the
AKT/ERK pathway (Chang et al., 2019). Related drugs could act
on the FAM process in LUAD. For example, anlotinib controls
LUAD progression through inhibiting FASN-mediated FAM (Shen
et al., 2022). Chaoyang Liang et al. also showed that the
overexpression of genes related to FAM enzymes (ACOT11)
regulates the growth, differentiation, and metastasis of LUAD
cells through a variety of signaling pathways (Liang et al., 2020).
In addition, Wang et al. developed a fatty acid-related RiskScore
model to predict the prognosis of lung cancer patients and identified
38 fatty acid-related genes. Among these 38 genes, eight genes
(HGNAT, MCTP2, ENPP5, PLEKHA6, ANKRD29, CNTNAP2,
SLC4A5, and ZNF738) have not been reported in previous lung
cancer-related studies (Wang et al., 2022a). Therefore, the
identification and verification of genes related to FAM may have
great potential for developing new prognostic models and
improving clinical treatment for LUAD.

In this study, we downloaded genomic information about the
clinical characteristics of LUAD from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) databases.
Molecular subtypes related to FAM pathways were developed for
LUAD, and we further established a risk assessment model based on

FAM-related genes using six machine learning algorithms. In
addition, we assessed the level of immune cell infiltration and
sensitivity to common drugs in different risk groups. The current
study provided a better understanding of the mechanism of
abnormal FAM in LUAD cells, helping to improve the
therapeutic strategies for treating LUAD patients.

2 Materials and methods

2.1 Data downloading and preprocessing

2.1.1 TCGA-LUAD dataset downloading and
preprocessing

Data with clinical phenotypes were obtained from the TCGA
database (Liu et al., 2020). Samples without the survival time or state
were eliminated to ensure that the survival time of all the included
samples was longer than 0 days. Finally, 500 tumor samples and
59 para-cancer tissues samples from the TCGA dataset were
obtained.

2.1.2 GEO data download and preprocessing
A set of chip data was obtained from the GEO (Barrett et al.,

2013), and the probe was converted into symbol according to the
annotation file. Normal tissue samples or those without clinical
information were excluded to ensure that the survival time of all the
included samples was longer than 0 days, and only LUAD samples

FIGURE 3
Differences in clinical characteristics among molecular subtypes. (A) Bar chart of pair-to-pair comparison of three molecular subtypes in the TCGA
cohort. (B) Comparative table of each clinical characteristic molecular subtype.
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were retained through data filtering. Specifically, 289 samples were
obtained from the GSE30219 dataset; 226 samples were from the
GSE31210 dataset; 196 samples were from the GSE37745 dataset;
and 127 samples were from the GSE50081 dataset.

2.1.3 Acquisition of FAM-related genes
From the Kyoto Encyclopedia of Genes and Genomes (KEGG), a

collection of 42 related genes was downloaded (Kanehisa and Goto,
2000).

FIGURE 4
Mutant characteristics and differential activation pathways of molecular subtypes. (A) Different molecular subtypes in the TCGA cohort were
analyzed by somatic mutation analysis. (B) Heatmap of functional enrichment scores of each subtype in the TCGA cohort.
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2.2 Classification of molecular subtypes

The ConsensusClusterPlus package was used to cluster the
TCGA-LUAD and GSE31210 dataset, and the clustering heatmap
of the samples was drawn (Liu et al., 2022a). Cumulative distribution
function (CDF) was used to obtain the optimal clustering number
and relatively stable clustering results. Three molecular subtypes
(C1, C2, and C3) were then identified. To further analyze the
prognosis of different molecular subtypes, Kaplan–Meier (KM)
curves were drawn using the survminer package.

2.3 Filtering of differentially expressed genes
and enrichment analysis

In order to further screen gene sets related to FAM subtypes, we
used the limma package to analyze the differences between C1 and
C2+C3, C2 and C1+C3, and C3 and C1+C2 in the TCGA-LUAD
dataset under the threshold of | log2 (a Fold Change) | > 1,
FDR <0.05 (Ritchie et al., 2015). GO and KEGG enrichment
analysis were performed on genes showing abnormal expression
using the clusterProfiler software package (Yang et al., 2023).

2.4 Construction of the RiskScore model

We used univariate Cox analysis for analyzing the differentially
expressed genes (DEGs) (Peng et al., 2021). The prognostic genes
with p < 0.001 were screened. Machine learning models can be
widely used in themedical field due to their excellent performance in
predicting classification problems (Choi et al., 2020). Therefore,
based on six machine learning algorithms, namely, GBM (Dash

et al., 2022), LASSO (Kang et al., 2021), XGBoost (Li et al., 2022a),
SVM (Zhou, 2022), random forest (Utkin and Konstantinov, 2022),
and decision trees (Streeb et al., 2022), the DEGs in the comparison
pairs of C1 and C2+C3, C2 and C1+C3, and C3 and C1+C2 were
comprehensively analyzed, and the characteristic genes were
obtained by overlapping analysis. A stepwise regression method
was used to further compress the characteristic genes. We calculated
the β value by multivariate Cox analysis (Zhang et al., 2021a). The
calculation formula of the model is as follows:

RiskScore � Σβi × Expi.

In the formula, Expi is the expression value of key FAM-related
genes and β is the Cox regression coefficient of the key genes.

According to the abovementioned formula, the RiskScore of
each TCGA-LUAD sample was determined and then processed
by the Z-score (DeVore, 2017). Then, the samples with a
RiskScore less than 0 were categorized as the low-RiskScore
group, while those with a RiskScore greater than 0 were
categorized as the high-RiskScore group. Five sets of chip data
(GSE31210 cohort, GSE19188 cohort, GSE30219 cohort,
GSE37745 cohort, and GSE50081 cohort) were used to
calculate the RiskScore by the same method. A receiver
operating characteristic (ROC) curve was obtained using the
timeROC package (Lu et al., 2022a).

2.5 Comparison of clinical features

The clinicopathological features (Gender, Event, T. Stage, M.
Stage, N. Stage, and Stage) in different molecular subtypes and
different RiskScore groups in the TCGA cohort were analyzed. The
pheatmap package of R software was applied to plot a heatmap to

FIGURE 5
Analysis of immune abnormalities of molecular subtypes and enrichment analysis of differential genes. (A) Comparison of immune scores among
different subtypes. (B) Comparison of 22 immune cell scores among different subtypes. (C) Comparison of the abundance of 28 immune cells among
different subtypes; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns represents p > 0.05. (D) Circle diagram of the top five functional
enrichment analyses of differential genes GO enrichment analysis. (E) Circle diagram of the top 15 functional enrichment analyses for KEGG
enrichment analysis of differential genes.
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examine the distribution of samples with different clinical features
(Zhang et al., 2021b).

2.6 Establishment of a nomogram

The relationships between clinical features, RiskScore, and
prognosis were assessed applying univariate and multivariate Cox
analyses (van de Vijver et al., 2002). The model prediction efficiency
was evaluated by developing a nomogram combining key
clinicopathological features using the rms package (Liu et al.,
2021a). A calibration curve was used to evaluate the predictive
power of the model and to test the prediction performance of the
nomogram (Van Calster et al., 2019). We also used the ggDCA

package to assess the stability of the decision curve analysis
(DCA) and to plot the calibration curve and DCA for the
nomogram in predicting 1-, 3-, and 5-year prognosis (Van
Calster et al., 2018).

2.7 Mutation analysis

Data for copy number variant (CNV) were downloaded to
compare the deletion or amplification of genes associated with
FAM pathways (Wu et al., 2020). Then, mutation data of single
nucleotide variants (SNVs) were downloaded and a waterfall map
was generated using the maftools package to display SNVmutations
in FAM-related pathway genes (Li et al., 2022b).

FIGURE 6
Key characteristic genes screening and K–M curves of six datasets. (A) Scatter plot of univariate Cox analysis of 493 genes associated with subtypes
of FAM. (B) Venn diagram comparing C1 and C2 + C3 for characteristic gene screening of six algorithms. (C) Venn diagram comparing C2 and C1 + C3 for
characteristic gene screening of six algorithms. (D) Venn diagram comparing C3 and C1 + C2 for characteristic gene screening of six algorithms. (E) K–M
curve of the RiskScoremodel developed by the 12 genes in the TCGA cohort. (F) K–Mcurve of the RiskScoremodel developed by the 12 genes in the
GSE31210 cohort. (G) K–M curve of the RiskScore model developed by the 12 genes in the GSE19188 cohort. (H) K–M curve of the RiskScore model
developed by the 12 genes in the GSE30219 cohort. (I) K–M curve of the RiskScore model developed by the 12 genes in the GSE37745 cohort. (J) K–M
curve of the RiskScore model developed by the 12 genes in the GSE50081 cohort. (K) Line graph of AUC for 1–5 years of RiskScore for six datasets.
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Differences in genomic changes were examined in different
molecular subtypes. Mutated datasets were processed using
mutect2 software (Pei et al., 2021). Genes showing a mutation
frequency greater than 3 were filtered. Fisher’s test was applied to
detect frequently mutated genes in each subtype (p < 0.05).

2.8 Pathway difference analysis

The FAM pathway scores were calculated by single sample gene
set enrichment analysis (ssGSEA) (Zhuang et al., 2021). Differences
in FAM-related pathway scores between LUAD and para-cancer
tissues were compared by the Wilcoxon signed-rank test (Divine
et al., 2013). We used the pheatmap package to draw heatmap to
show the expression of related genes (Zheng et al., 2022).

In order to characterize biological process pathways, the GSVA
software package (Hänzelmann et al., 2013) was used to analyze all
the relevant gene sets in the Hallmark database. The Kruskal test was
performed to examine differentially activated pathways in different
molecular subtypes (Liu et al., 2021b). Significant pathways were
selected under p < 0.05, and the heatmap of functional enrichment
scores of each subtype was generated.

2.9 Comparison of immune abnormalities

Immune infiltration was evaluated by Estimation of STromal
and Immune cells in MAlignant Tumors using Expression

(ESTIMATE), and the differences in immune scores were
compared (Yang et al., 2021). Then, CIBERSORT algorithm
was used to calculate the abundance of 22 kinds of immune
cells and compare the differences in immune cell scores (Zhang
et al., 2022a). A variety of immune cell characteristic genes were
identified (Charoentong et al., 2017). We compared the
differences of 28 immune cell scores using the ssGSEA.
Furthermore, the expression of gene multiple immune
checkpoint genes was analyzed between different RiskScore
groups (Danilova et al., 2019).

2.10 Drug sensitivity analysis

The R language pRRophetic package could be used to predict
patient sensitivity to drugs. Several commonly used drugs such
as erlotinib, paclitaxel, MG-132, rapamycin, sunitinib, and
cisplatin were selected (Skalniak et al., 2013; Landi and
Cappuzzo, 2015; Bhaoighill and Dunlop, 2019; Wang et al.,
2020; Lu et al., 2022b).

2.11 Statistical analysis

This study mainly used R software for statistical analysis. A p <
0.05 was defined as a statistically significant difference. The
Wilcoxon test was used to assess differences in immune
abnormalities between RiskScore groups.

FIGURE 7
RiskScore combined with clinical characteristics to analyze the predictive performance of the model. (A) Heatmap of the distribution of clinical
features in the high- and low-RiskScore group samples. (B) Univariate Cox analysis of clinical features and RiskScore. (C) Multivariate Cox analysis of
clinical features and RiskScore (univariate prognostic correlation was selected here). (D) Nomogrammodel. (E) Calibration curves of the nomogram in 1,
3, and 5 years. (F) Decision curve of the nomogram.
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FIGURE 8
Combinedwith the RiskScoremodel, potential regulatory pathways were identified. (A) Pathway enrichment score heatmap obtained by six datasets
in the HALLMARK gene set. (B) Heatmap of correlated pathway scores in the KEGG database TCGA cohort in high- and low-RiskScore groups.
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3 Results

3.1 Abnormal FAM-related pathway genes in
LUAD

After selecting FAM-related pathway genes, we found that some
genes, such as ACADM, ACSL1, and CPT1C, tended to show
deletion, while some genes, such as ALDH9A1, CPT1A, and
ACOX1, tended to show amplification (Figure 1A). The SNV of
the genes related to FAM pathways was shown in waterfall diagram,
and it was found that ACSL6 had the highest mutation rate and was
mostly missense mutation (Figure 1B). A comparison of scores of
FAM pathways showed that LUAD tissues had a lower score of FAM
pathways compared to para-cancer tissues (Figure 1C). The
expression of 24 FAM-related pathway genes was more active in
para-cancer tissues than that in LUAD tissues, such as ACAA1,
ACAT2, and ADH1B (Figure 1D). These results suggested that
FAM-related genes may have an impact on the progression
of LUAD.

3.2 Classification of molecular subtypes
based on genes related to FAM pathways

In the TCGA dataset, the CDF curve showed that cluster 3 was a
relatively stable clustering (Figure 2A). Finally, three molecular
subtypes of C1, C2, and C3 were defined based on the sample
clustering heatmap (Figure 2B). Further analysis of the K–M curves
for the three molecular subtypes showed significant differences in
terms of prognostic survival among the three subtypes (p = 0.0027).
Overall, C1 had the best survival outcome, followed by C2 and C3
(Figure 2C).

We used the abovementioned methods to analyze and classify
the GSE31210 dataset. The CDF results showed that cluster 3 also
had relatively stable clustering results (Figure 2D). At k = 3, the three
molecular subtypes were significantly different (Figure 2E). There
were also significant differences in prognostic survival among the
three subtypes (p = 0.00041). The survival of C1 was found to be the
most favorable, while that of C3 was the worst, and the overall results
were similar to those of the TCGA dataset (Figure 2F).

FIGURE 9
Comparison of high- and low-RiskScore groups with immune abnormalities. (A) Immune score was compared between low- and high-RiskScore
groups. (B) In total, 22 immune cell scores were compared between low- and high-RiskScore groups. (C) In total, 28 immune cell scores were compared
between low- and high-RiskScore groups. (D) Immune checkpoint gene expression was compared between low- and high-RiskScore groups. (E) Drug
susceptibility was compared in low- and high-RiskScore groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns represents p > 0.05.
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The gene expression of FAM-related pathways in the three
subtypes was shown in the heatmap. It was found that the gene
expression of FAM-related pathways in C1 was relatively active,
while that in C3 was relatively poor (Figure 2G). These results
suggested that FAM-related subtypes were associated with different
prognosis, and that tumors of different subtypes had large
differences in the FAM status.

3.3 Significant differences in
clinicopathological characteristics among
the three subtypes

The clinicopathological characteristics of different subtypes in
the TCGA cohort were analyzed. There were significant differences
in three clinical indicators (Event, N Stage, and Stage) of the three
subtypes (p < 0.05). Event showed that C1 had a significantly higher
survival probability compared to C2 and C3, while C3 had the worst
survival outcomes. As for N stage, C1 had the highest proportion of
N0, while C3 had the highest proportion of N2. In Stage, C1 had the
largest proportion in stage I, while C3 had the largest proportion in
stage IV. Therefore, the outcome, clinical grade, and staging of
C1 were relatively favorable, while those of C3 were unfavorable
(Figure 3).

3.4 Mutant characteristics and differential
activation pathways of the three subtypes

Differences in genomic changes among subtypes in the TCGA
cohort were analyzed. The mutation dataset of TCGA was processed
by mutect2 software, and a total of 9,922 genes were screened.
Fisher’s test was used for screening with p < 0.05, which filtered
770 genes. The top 20 genes were selected for further analysis on the
characteristics of somatic mutations. The results showed that C1 had
the lowest mutation rate and C3 had the highest mutation rate
(Figure 4A). Moreover, whether differentially activated pathways
were present in different subtypes were explored. Some screened
pathways were found to be significantly differentially activated in
different subtypes, for example, PI3K AKT MTOR SIGNALING,
G2M CHECKPOINT, and FATTY ACID METABOLISM. The
FATTY ACID METABOLISM pathway was actively expressed in
the C1 and C2 subtypes but less expressed in the C3 subtype
(Figure 4B). This could explain a poorer prognosis of C3.

3.5 Analysis of immune abnormalities of
subtypes

Analysis on differences in the immune microenvironment
among the three subtypes showed that C3, with a poor
prognosis, had the lowest scores of StromalScore, ImmuneScore,
and ESTIMATEScore, which indicated lower immune infiltration of
C3 (Figure 5A). The abundance of 18 kinds of immune cells, such as
B-cell memory, was different among the three subtypes (Figure 5B).
The calculation results of 28 immune cell scores, such as activated
B cells and activated CD4 T cells, demonstrated differences in
26 immune cell scores among the three subtypes (Figure 5C).

3.6 Screening and enrichment of FAM-
related genes

To screen gene sets associated with FAM subtypes, differential
analysis was performed for C1 and C1+C2, C2 and C1+C3, and
C3 and C1+C2. A total of 124 upregulated genes and
123 downregulated genes were screened in the comparison
between C1 and C2+C3; 59 upregulated genes and four
downregulated genes were screened in the comparison between
C2 and C1+C3; and 160 upregulated genes and 276 downregulated
genes were screened in the comparison between C3 and C1+C2.
There were 493 DEGs in total. Circle diagrams of GO enrichment
analysis on the top five functional enrichment analyses were
plotted, and we observed that mitotic sister chromatid
segregation was the most significant biological process. The
condensed chromosome centromeric region was the most
prominent cellular component. The MHC class II receptor
activity was the most active molecular function (Figure 5D).
Asthma was found to be the most significant pathway in the circle
diagram of the top 15 functional enrichment analyses on the
differential genes (Figure 5E).

3.7 Construction and evaluation of a
RiskScore model

Building upon these findings, univariate Cox analysis was used
to perform prognostic analysis on 493 genes related to FAM
subtypes, and 143 were screened to be prognostic genes relevant
to LUAD (p < 0.001) (Figure 6A). Subsequently, we determined
feature genes using six machine algorithms (including LASSO,
GBM, random forest, SVN, XGBoost, and decision trees) for
C1 and C2+C3, C2 and C1+C3, and C3 and C1+C2. Through
the Venn diagram, we found a total of 18 characterized genes
between C1 and C2+C3 (Figure 6B), a total of 16 genes between
C2 and C1+C3 (Figure 6C), and a total of 12 genes between C3 and
C1+C2 (Figure 6D). Further comparison and screening showed
34 important genes for subsequent studies. Finally, the number of
important genes was reduced to 12 key genes (SLC2A1, PKP2,
FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2, CDC45,
IGF2BP1, ANGPTL4, and CD109) by the stepwise regression
method.

The calculation formula is as follows:
RiskScore = −0.293*SLC2A1+0.145*PKP2+0.113*FAM83A+

0.092*TCN1-0.142*MS4A1-
0.081*CLIC6+0.24*UBE2S+0.217*RRM2-
0.286*CDC45+0.162*IGF2BP1+0.093*ANGPTL4+0.112*CD109.

The RiskScore of the sample in TCGA was calculated by the
abovementioned model formula, and high- and low-RiskScore
groups were classified. The K–M curve results showed that the
survival probability of the high-RiskScore group was lower (p <
0.0001, Figure 6E). At the same time, five sets of chip data
(GSE31210, GSE19188, GSE30219, GSE37745, and GSE50081)
were used to draw K–M curves, and the survival probability of
the high-RiskScore group was still lower (Figures 6F–J). The AUC
values of the 1-, 3-, and 5-year RiskScore of six datasets were
observed, and it was found that the values of six datasets were all
around 0.7 and that the AUC values of three datasets were
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consistently above 0.7, indicating that the model had a strong
predictive performance (Figure 6K).

3.8 Testing the predictive performance of
the RiskScore model combined with clinical
characteristics

Combined with the RiskScore, the distribution of samples
with multiple clinical characteristics was presented in the form of
a heatmap. The results showed that the distribution of five
clinical characteristics (Cluster, Event, T Stage, N Stage, and
Stage) was closely correlated with that of the RiskScore
(Figure 7A). Meanwhile, the univariate Cox analysis between
each clinical feature and the RiskScore showed that the p-values
of T Stage, N Stage, Stage, and RiskScore were all less than 0.001.
The multivariate Cox analysis showed that the p-values of
RiskScore, T Stage, and N Stage were all less than 0.05.
Therefore, T Stage, N Stage, and RiskScore were independent
prognostic factors (Figures 7B, C). A nomogram was established
by the abovementioned factors. According to the results, the
RiskScore had the strongest survival prediction ability
(Figure 7D). The slope and distance between all the
calibration curves and standard ones were similar, which
verified the nomogram’s prediction capability (Figure 7E). The
benefit rates of the RiskScore and nomogram were significantly
higher than the extremum curves, which proved that the
nomogram and RiskScore had the greatest power for survival
prediction (Figure 7F).

3.9 Potential regulatory pathways identified
by the RiskScore model

The HALLMARK gene set was enriched in six datasets by GSEA,
and it was found that E2F target and G2M checkpoint pathways had
the highest scores, while bile acid metabolism and other pathways
had lower scores. The FAM pathway score was also generally low
(Figure 8A). We compared the predicted pathway scores of
RiskScore groups in the TCGA cohort and observed that the
scores of 15 pathways including ubiquitin-mediated proteolysis
were higher in the high-RiskScore group, while the scores of five
pathways including FAM were lower in the high-RiskScore group
(Figure 8B).

3.10 Immune status and immunotherapy
preference predicted by the RiskScore

The ImmuneScore and ESTIMATEScore were higher in the
high-RiskScore group compared to those in the low-RiskScore
group (Figure 9A). Among the 22 immune cell scores predicted,
11 immune cell scores, such as T-cell CD4 memory resting,
showed significant differences between the two RiskScore
groups (Figure 9B). Among the 28 immune cell scores
predicted, 18 immune cell scores, such as activated
CD4 T cells, showed differences between the two RiskScore
groups (Figure 9C). The expression of 48 different immune

checkpoint genes was compared between the two RiskScore
groups, and higher expression of 19 immune checkpoint
genes, such as BTLA, TNFRSF14, ICOS, and CD48, was found
in the low-RiskScore group (Figure 9D).

Cisplatin, erlotinib, rapamycin, sunitinib, MG-132, and
paclitaxel were all found to be more sensitive to the high-
RiskScore group, suggesting that patients in high-RiskScore
groups might respond better to these drugs (Figure 9E).

4 Discussion

Lung cancer is one of the most deadly malignant tumors
worldwide (Wang et al., 2022b). The metabolic reprogramming
of cancer cells, particularly the modification of FAM, is firmly
connected with tumor growth (Maan et al., 2018). Abnormal
FAM is associated with the growth, differentiation, and
metastasis of LUAD cells. Acetyl-coA carboxylase 2 (ACC2)
is a key FAM enzyme. Fei-Yuan Yu et al. found that ACC2 is low-
expressed in tumor cells, and its expression is negatively
correlated with tumor progression (Yu et al., 2022). FASN is
a homodimeric multienzymatic protein that inhibits and blocks
the adipogenic pathway and hinders fatty acid synthesis. This
causes apoptosis in tumor cells to overexpress FASN without
affecting non-malignant cells (Relat et al., 2012). Recent studies
showed that FASN expression is upregulated and overactivated
in LUAD, which may be related to the progression of LUAD
(Relat et al., 2012). Drug targeting FAM pathways in LUAD has
been designed. For example, AZ12756122, a novel FASN
inhibitor, can induce cell apoptosis, downregulate FASN
expression and activity, and reduce EGFR and Akt/mTOR
pathway activation (Polonio-Alcalá et al., 2022). Although the
relationship between the gene expression of FAM pathways and
the prognosis of LUAD has been explored, this study introduced
a variety of machine learning analysis algorithms to more
comprehensively analyze the genetic characteristics of FAM
pathways (Ganggayah et al., 2019), which can help establish a
more effective risk prediction model for LUAD based on the
FAM pathway genes.

Using LUAD data from the TCGA dataset, GEO dataset, and
FAM-related gene sets obtained by KEGG analysis, we found that
LUAD had lower scores of FAM-related pathways. Molecular
subtypes were classified using the genes related to FAM
pathways, and six machine learning methods were applied to
select key genes related to the three LUAD subtypes. A total of
12 key genes (SLC2A1, PKP2, FAM83A, TCN1, MS4A1, CLIC6,
UBE2S, RRM2, CDC45, IGF2BP1, ANGPTL4, and CD109) were
determined to be closely related to LUAD prognosis. The
downregulation of SLC2A1-AS1 can inhibit LUAD cell growth
and expansion, and its overexpression increases tumor cell
proliferation and differentiation. PKP2 promotes the growth,
division, and migration of cancer cells through activating the
EGFR signaling pathway in LUAD cells (Hao et al., 2019).
FAM83A-AS1 knockdown can suppress the proliferation of
LUAD cells, can inhibit the expression of HIF-1α and glycolytic
genes, and also plays a role in FAM (Chen et al., 2022b). High
expression of TCN1, a vitamin B12-binding protein, is positively
associated with cancer aggressiveness and a poor prognosis (Li et al.,
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2022c). The expression level of MS4A1 in colorectal cancer is
positively correlated with patients’ prognosis. CLIC6 is
upregulated in most obese patients with endometrial cancer
(López-Ozuna et al., 2021; Mudd et al., 2021). Mengjun Zhang
et al. observed that UBE2S can promote PI3K or mTOR signaling
pathway, block the regulation of cell cycle, inhibit cell apoptosis, and
promote the proliferation, migration, and prognosis of ovarian
cancer (Zhang et al., 2022b). RRM2 is upregulated in LUAD, and
high RRM2 expression is associated with a poorer survival and lower
immune infiltration (Ma et al., 2020). In addition, Zhou et al.
demonstrated that RRM2 is overexpressed in the cell lines and
clinical samples of bladder cancer and that blocking RRM2 inhibits
the growth and proliferation of cancer cells (Zhou et al., 2022).
CDC45, a key protein involved in the initiation of DNA replication,
is upregulated in many cancers, and its expression is significantly
negatively correlated with patient prognosis (Lu et al., 2022c).
JinFeng Liu et al. found that IGF2BP1 is significantly abnormally
expressed in LUAD samples. Moreover, ANGPTL4 is also
significantly upregulated in LUAD samples, which are all closely
related to the development and a poor prognosis of LUAD (Liu et al.,
2022b; Yang et al., 2022). Tetsuro Taki et al. demonstrated the
biological significance of regulating the TGF-β signal in the cancer
cell matrix through the correlation verification of CD109 and
LTBP1, and they indicated that the expression level of
CD109 plays an important role in promoting the proliferation
and diffusion of LUAD cells (Taki et al., 2020). Furthermore, Lee
et al. demonstrated that C109 expression is correlated with the
invasiveness and metastasis of LUAD. They observed that
CD109 expression is mechanistically mediated by binding to
EGFR to regulate AKT/mTOR signaling (Lee et al., 2020).
Therefore, in this study, the selected FAM-related genes may all
be involved in the progression of LUAD and can serve as biomarkers
for the clinical diagnosis and treatment of cancer. Therefore, the
12 key genes were used to construct a RiskScore model, laying a
foundation for the survival prediction and further study of LUAD.

LUAD tissues had a lower score of the FAM-related pathway
compared to para-cancer tissues. This also indicated that
abnormal FAM was involved in the progression and
prognosis of LUAD, which is consistent with the
characterization results of FAM in LUAD by Wang et al.
(2022a). As a new treatment method, immunotherapy has
become an effective strategy to treat cancers (Riley et al.,
2019). The level of immune cell infiltration in the tumor
microenvironment has also been used as an important
indicator for assessing lung cancer (Liu et al., 2021c). There
are many studies investigating the effect of FAM on
immunotherapy in various cancers (Bleve et al., 2020). The
differential expression of FASN is closely correlated with
immune cell infiltration, and patients with a low expression
of FASN have active response to immune checkpoint inhibitor
treatment (Xiong et al., 2022). The analysis and comparison of
various tumor-related studies showed that the upregulated
FASN gene expression and activity is negatively correlated
with tumor immune infiltration. The methylation of the
FASN promoter in DNA can be used to serve as a new
biomarker for cancer (Zhang et al., 2022c). Hence, a better
understanding of the correlation between FAM and the
immunological signature of the tumor microenvironment could

facilitate the identification of new therapeutic targets for
improving clinical cancer therapies.

However, this study also had certain limitations. The tumor
and gene sample data collected were all from the database with a
small number of samples, which demanded further in vivo or
in vitro validation experiments to verify the predictive
performance of the prognostic model. At the same time, the
specific mechanism of abnormal FAM in LUAD was not clearly
studied, and its interactions and regulatory mechanisms should
be explored in depth.

5 Conclusion

In summary, this study determined 12 key genes (SLC2A1,
PKP2, FAM83A, TCN1, MS4A1, CLIC6, UBE2S, RRM2,
CDC45, IGF2BP1, ANGPTL4, and CD109) using six machine
learning methods. A RiskScore model was constructed based on
the 12 key genes mentioned previously. The model can
accurately predict the survival of LUAD patients. We
demonstrated that a specific model based on FAM could
provide significant benefits for the precision treatment of
LUAD and was effective in improving the prediction of
patients’ prognoses.
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