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Editorial on the Research Topic 


Artificial intelligence and Internet of Things for smart agriculture




1 Introduction

In recent years, in the field of smart agriculture, many advanced technologies and data-driven approaches have been widely applied to crop yield estimation, soil and water conservation, pest and disease detection and severity evaluation, species classification and farmland ridge segmentation, and have achieved remarkable results. This Research Topic highlights several issues that still need further research and discussion in smart agriculture, such as Agricultural UAV (AUAV), Agricultural Remote Sensing (ARS), Agricultural Internet of Things (AIoT), Agricultural Artificial Intelligence (AAI), Agriculture Digital Twin (ADT), Deep Learning and their combinations.




2 AUAV and ARS

AUAV and ARS can capture field surface information, provide a wide range of agricultural monitoring, and help farmers and agricultural managers make better decisions. In recent years, combining AUAV, ARS and AI have been widely applied to real-time monitoring and analysis of crop growth status, crop health status and growth stage, and assessment of the impact of natural disasters, such as droughts, floods and storms, and help farmers understand the field situation and develop responses and reduce risks in time. Garofalo et al. highlighted the potential of combining AUAV, ARS and AI in precision agriculture, with the goal of effectively monitoring physiological parameters. By analyzing AUAV and ARS data, farmers can optimize fertilization, irrigation, and pest control strategies to improve crop yield and quality, reduce waste and promote sustainable agricultural development. The application of AUAV, ARS and AI technologies is constantly developing, and combined with big data and deep learning, will provide more powerful support for agricultural production in the future. Jafar et al. reviewed the methods, applications and limitations of AAI and AIoT in crop disease detection, provided detailed steps for crop disease prediction using AAI and AIoT, and discussed the application of machine learning and deep learning in crop pest detection, and pointed out the future research prospect of combining AAI with intelligent AUAV and AIoT for field disease detection and monitoring.




3 AIoT and mobile devices

AIoT and MDs aim to combine AIoT and MD with AI to provide solutions for smart agriculture. Various AIoT sensors are installed in the field to collect soil moisture, temperature, humidity, crop health, weather conditions and other data in real time, and transmit the collected data to the cloud platform to achieve optimal irrigation, fertilization, disease and pest control, and accurate resource management. MDs such as smartphone and AUAV are used to capture crop images in the field to realize real-time monitoring of farmland, including crop variety classification, crop disease severity estimation and pest detection (Pan et al.; Bedi et al.). The widespread application of AIoT and MDs is transforming the agricultural landscape, making it more efficient, sustainable, and able to meet the challenges of smart agriculture. Li et al. introduced a variable direction irrigation decision-making method of east-west ridge based on the AIoT management control system. This study provides a new irrigation decision-making way to improve the efficiency of crop production. Li et al. summarized the latest development of AAI and AIoT, and proposed an efficient deep learning architecture based on Mobile Vision Transformer (MobileViT) for real-time detection of crop disease. It is designed with high-accuracy and low-cost, making it suitable for deployment on MDs with limited resources. Qiu et al. proposed a method for measuring water content of millet by using AIoT differential capacitance sensor. It provides a reliable means for the accurate determination of crop water content, and provides a strong support for improving agricultural production efficiency and resource utilization.




4 Agricultural Digital Twin

Digital twins have been applied to various fields, including smart agriculture. ADT is one example of many digital farming innovations. It relies on the integration of state-of-the-art agricultural technologies, including big-data analytics, AAI, AIoT, ARS, AUAV, Information & Communication Technology, Geographic Information Systems (GIS). It helps farmers monitor crop growth, soil conditions and climate change in real time, optimize the use of water, fertilizers and pesticides, reduce resource waste and environmental impact, predict potential risks, such as pests and diseases, climate change, and take steps to reduce losses, create a comprehensive basis for data-driven policy decisions, and promote sustainable development of agriculture. Recently, ADT has promoted the application of new technologies such as AIoT, AAI and big-data analytics to smart agriculture, and become an important tool for modern agricultural management. The application of ADT will revolutionize agricultural production, improving overall efficiency and sustainability. Garske et al. reviewed “digital twin sustainable development”, “digital twin”, “digital twin agriculture”, “Data governance”, “Destination Earth”, “EU Data Strategy”, and “EU Data Governance Act”. By collecting and analyzing large amounts of data, ADT can provide scientific basis for agricultural management, facilitate data-driven decision-making processes, enable precision agriculture, drive sustainable development, reduce negative impacts on the environment, and implement the EU Green Deal-in line with internationally binding climate and environmental targets.




5 Conclusion

Smart agriculture integrates advanced agricultural technologies, including AUAV, ARS, AIoT, AAI, ADT and deep learning. It can provide farmers with tools and platforms for automated irrigation, fertilization, pest control, crop pest detection, growing environment monitoring, unmanned farm management and automatic crop harvesting, so as to improve efficiency and optimize agricultural production, minimizing environmental impact and resource use. At present, there are still several open research problems that need to be further studied and perfected. Due to the complexity and diversity of agricultural big-data, as well as its large scale and universal distribution, many challenges are presented in terms of network speed, computing storage, and operations management. This topic will introduce new achievements in the fields of AUAV, ARS, AIoT, AAI, ADT, deep learning and their integration and application in sustainable smart agriculture.
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Due to the constraints of agricultural computing resources and the diversity of plant diseases, it is challenging to achieve the desired accuracy rate while keeping the network lightweight. In this paper, we proposed a computationally efficient deep learning architecture based on the mobile vision transformer (MobileViT) for real-time detection of plant diseases, which we called plant-based MobileViT (PMVT). Our proposed model was designed to be highly accurate and low-cost, making it suitable for deployment on mobile devices with limited resources. Specifically, we replaced the convolution block in MobileViT with an inverted residual structure that employs a 7×7 convolution kernel to effectively model long-distance dependencies between different leaves in plant disease images. Furthermore, inspired by the concept of multi-level attention in computer vision tasks, we integrated a convolutional block attention module (CBAM) into the standard ViT encoder. This integration allows the network to effectively avoid irrelevant information and focus on essential features. The PMVT network achieves reduced parameter counts compared to alternative networks on various mobile devices while maintaining high accuracy across different vision tasks. Extensive experiments on multiple agricultural datasets, including wheat, coffee, and rice, demonstrate that the proposed method outperforms the current best lightweight and heavyweight models. On the wheat dataset, PMVT achieves the highest accuracy of 93.6% using approximately 0.98 million (M) parameters. This accuracy is 1.6% higher than that of MobileNetV3. Under the same parameters, PMVT achieved an accuracy of 85.4% on the coffee dataset, surpassing SqueezeNet by 2.3%. Furthermore, out method achieved an accuracy of 93.1% on the rice dataset, surpassing MobileNetV3 by 3.4%. Additionally, we developed a plant disease diagnosis app and successfully used the trained PMVT model to identify plant disease in different scenarios.




Keywords: plant disease identification, vision transformer, lightweight model, attention module, APP




1 Introduction

Plant disease is one of the contributing factors to the global decrease in grain production (Savary et al., 2019), and real-time detection of plant disease has an important impact on the agricultural industry. Applying deep learning models significantly simplifies the entire process and enables end-to-end technical services. Currently, there are two typical architectures for plant disease recognition: convolutional neural network (CNN)-based architectures and vision transformer (ViT)-based architectures. These methods extract explicit features from images and automatically perform classification, which is key for plant disease recognition.

Over the past few years, the application of CNNs to identifying plant diseases has gained in popularity with the development of artificial intelligence technology. For instance, Akshai and Anitha (2021) compared various CNNs using the PlantVillage dataset (Hughes and Salathe 2015) and reported that the DenseNet model with feature map reuse achieved the highest accuracy of 98.27%. Another study by Yu et al. (2022a) used a ResNet network with a residual structure to identify apple leaf diseases, and it obtained an average F1-score of 95.70%. CNNs can efficiently extract significant features from images and accomplish plant disease identification automatically. The primary reason for this is that CNNs have the characteristic of parameter sharing, which reduces the number of parameters in the model and addresses the overfitting issue seen in computer vision tasks. Therefore, the application of deep learning technology based on CNNs has made significant progress in plant disease diagnosis (Hasan et al., 2020; Xiong et al., 2021; Ahmad et al., 2022). Nonetheless, there will be an increase in unnecessary computational overhead as a network’s depth increases. Simultaneously, the convolutional layer of CNNs only considers the characteristics of the local area during convolution and does not explicitly incorporate the positional information of pixels. This will impact the effectiveness of a plant disease identification model.

To address the above issues, Dosovitskiy et al. (2020) proposed a vision transformer (ViT) architecture based on a self-attention mechanism (Vaswani et al., 2017) to replace the traditional CNN for image recognition. A ViT architecture divides an image into non-overlapping patches and applies multi-head self-attention within the transformer encoder to learn representations of patches. Although this paradigm considers the global relationship of images and has achieved satisfactory results in plant disease recognition, it usually requires a large quantity of training data to achieve relatively high accuracy. Hence, alternating the use of CNNs and ViTs to extract more comprehensive features has become a better choice in plant disease diagnosis. Take a classic case: Lu et al. (2022) introduced a ghost module into the ViT encoder, which extracts different levels of features in an image. Their model achieved an accuracy rate of 98.14% in detecting grape leaf diseases and insect pests in the field. Similarly, Yu et al. (2023) used inception blocks to enhance the ability of the ViT encoder to extract local information; they achieved optimal performance on four typical plant disease datasets. As an alternative architectural paradigm to CNNs, the ViT has attracted significant attention and achieved considerable success in the field of computer vision (Khan et al., 2022; Lin et al., 2022).

With the significant advancements of CNNs and ViT networks in plant disease recognition technology, a prevailing trend among network models is to augment the number of parameters in order to enhance performance. These enhancements in performance are accompanied by an increase in model size (network parameters) and latency (Han et al., 2021; Wu et al., 2021; Yu et al., 2022b). They overlook a common issue: plant disease identification is typically conducted on edge devices, such as smartphones and embedded devices. Such devices usually have restricted computing power, storage capacity, and energy supply. Hence, using a lightweight network can decrease the size and computational complexity of the model, thereby improving its compatibility with resource constraints. Numerous researchers have recently been studying the application of affordable network models for real-time plant disease detection. Concretely, Bao et al. (2021) proposed SimpleNet, which achieved 94.10% wheat recognition accuracy with only 2.13 million (M) parameters. In addition, the apple leaf disease identification method based on the cascade backbone network (CBNet) proposed by (Sheng et al., 2022) achieved an accuracy rate of 96.76%. Moreover, the VGG-ICNN model proposed by Thakur et al. (2023) has 6 M parameters, which is lower than most deep learning models; and it performs well on multiple datasets such as apple, corn, and rice. Generally, the methods mentioned above primarily concentrate on identifying a single plant disease, while other methods exhibit imbalances in identification accuracy and calculation cost. Hence, to enhance the real-time performance of plant disease identification, it is crucial to employ a low-latency and highly accurate network model.

Achieving high-accuracy and low-cost plant disease identification in agricultural environments with limited computing resources presents a significant challenge. The majority of existing lightweight networks focus on a single plant disease. However, when faced with numerous types of plant diseases, they fail to deliver satisfactory performance. In this paper, we introduced a lightweight model for plant disease diagnosis based on MobileViT (Mehta and Rastegari, 2021), which has a low computational cost and is competitive in terms of inference speed. In particular, the crisscrossing leaves in the agricultural dataset lead to an unsatisfactory recognition effect with MobileViT. Thus, we consider using a larger convolution kernel (7 × 7) to analyze the connection between different leaves. Using larger convolution kernels allows us to model the dependencies between long-distance pixels (Liu et al., 2021; Liu et al., 2022) and enhance the ability of the model to capture global information from plant disease images. Additionally, focusing on the salient leaf regions in plant images can improve the robustness of the model. We used the CBAM (Woo et al., 2018) to adjust feature weights in various channels of the transformer encoder. Finally, we employed a residual network to fuse the initial feature map and improve the fitting ability of the model. We named this model plant-based MobileViT (PMVT) and deployed it to identify plant diseases in datasets and in various scenarios. Experimental results indicate that PMVT surpasses the current leading lightweight networks and heavyweight models, thereby demonstrating its effectiveness as a versatile backbone network across various datasets.

The main contributions of this paper are as follows.

	We used a low-cost ViT model for plant disease diagnosis. This model is computationally efficient and can function as a generic backbone network on mobile devices.

	We introduced a 7 × 7-sized convolution kernel into the convolution block for modeling long-distance pixel-to-pixel dependencies. Moreover, the CBAM guides the network to learn the weights between various channels, which enhances the fitting ability of MobileViT to image feature representation.

	We conducted comparative experiments on several datasets obtained under different scenarios, and the results revealed that our method not only competes with similarly sized lightweight networks but also outperforms state-of-the-art heavyweight networks.






2 Materials and methods



2.1 Datasets

We randomly divided three datasets into a training set, validation set, and testing set according to the ratio of 8:1:1. Table 1 shows the details of each dataset and how many samples comprised each subset. Figure 1 displays some samples of the datasets.


Table 1 | Data distributions for the datasets used in our comparative experiments.






Figure 1 | Sample images from the (A) wheat dataset, (B) coffee dataset, and (C) rice dataset.





2.1.1 Wheat

The wheat (Lian, 2022) dataset comprises 4087 images of varying sizes depicting seven different categories of wheat diseases. The images include the real-world environmental factors that interfere with identifying the wheat crop, such as sky, soil, and weeds.




2.1.2 Coffee

The coffee (Parraga-Alava et al., 2019) dataset contains three types of coffee leaves: healthy, red spider mite, and rust. Images of the same size and resolution are included in each category of leaves. The dataset was collected in a natural field environment, where the background of the pictures contains various disturbances such as weeds and soil. Since some sample features are not significant enough, we selected a thousand of them to build a new dataset.




2.1.3 Rice

The rice (Sethy, 2020) dataset lends itself to the classical binary classification problem as it contains samples classified simply as either healthy or unhealthy rice. The resolution of the images in this dataset varies in size. Furthermore, some of the images in this dataset have a uniform white background, which makes the dataset ideal for testing model performance in both a controlled laboratory environment and a real field environment.





2.2 Our proposed method



2.2.1 Overall structure of PMVT

Figure 2 depicts the overall structure of our model, which comprises five layers. Before pushing input into the block, the feature map is downsampled using a 3 × 3 convolution; this is followed by an inverted residual block or a standard transformer encoder. The inverted residual block is used to extract local features of the image and capture the long-distance dependencies between distant pixels. The MobileViT block uses a self-attention mechanism to model the global relationship of the image and employs a CBAM block to make up the channel attention and spatial attention information. The channel dimension is expanded by four times using a 1 × 1 convolution in the last layer of the network to better adapt to computer classification tasks. PMVT contains three different network sizes: extra extra small (XXS); extra small (XS); and small (S)). These sizes correspond to those in MobileViT.




Figure 2 | Overview of the PMVT model. ↓2 means to downsample the feature map twice, and L stands for repeated stacking of L MobileViT blocks. For computer vision classification tasks, we use a classifier composed of an average pooling layer and a fully connected layer.






2.2.2 Inverted residual block

An inverted residual block is a standard convolutional structure comprising three convolution kernels. Before extracting image features, a 1 × 1 convolution kernel is used to increase the channel dimension, generally by two times. Then, we replace the 3 × 3 convolution kernel of the original MobileViT with a 7 × 7 convolution kernel, thus making it easier to capture long-distance dependencies between pixels. In addition, depthwise separable convolutions are used to reduce the computational complexity of the model and increase the inference speed. Finally, we use a 1 × 1 convolution kernel to restore the channel dimension of the image. Figure 3 shows the overall structure of the inverted residual block.




Figure 3 | Structure of the inverted residual block. C× represents the feature information obtained by convolving each channel of the feature map using a convolution kernel.






2.2.3 Mobile ViT block

As described in Figure 4A, learning global representations of feature maps using 1 × 1 and 3 × 3 convolutions. Before entering the standard transformer encoder, the same color patch at the same position is taken out and put into the same sequence for self-attention calculation. This measure allows us to learn the global representation information of the image in a more blocky manner and reduce the computational cost of the self-attention mechanism. Through the 1 × 1 convolution kernel, the output of the transformer is restored to the original channel dimension, and the channel attention and spatial attention information are learned through the CBAM block. Finally, the obtained feature map is spliced with the original feature map to prevent loss of feature information and is then input to the next stage after a 3 × 3 convolution.




Figure 4 | Detailed description of the vision transformer block. (A) The overall structure of the vision transformer block; (B) the structure of the vision transformer block encoder; and (C) the architecture of the CBAM block, where ⊗ represents the multiplication with the original feature map.






2.2.4 Vision transformer encoder

As shown in Figure 4B, the encoder used to learn image features consisting of standard transformer blocks. First, an image with dimensions [C,H,W] is divided into patches of P size, and a linear transformation is applied to each patch for flattening. Positional encoding information is then applied to each patch; through this, each patch then has dimensions of  . Next, we use three learnable parameter matrices to multiply each patch to get queries(WQ), keys (WK), and values (WV). For patch i, we apply the dot product to the query matrix with the key matrix of the remaining patches, and then we divide by the number of key matrix elements. Finally, we apply the softmax function to obtain the attention scores of the remaining patches for patch i. These attention scores are multiplied by the value matrix of patch i to obtain the feature information. Equation 1 illustrates the process of the entire attention mechanism. MLP comprises two fully connected layers and employs an incentive compression mechanism to learn interaction information between different dimensions.






2.2.5 CBAM block

The CBAM block is composed of a channel attention module and a spatial attention module, and it uses a 3 × 3 convolution kernel to preprocess the feature map before insertion. We pass the input feature map through a parallel average pooling layer and max pooling layer, and then we change the feature map from [C,H,W] to [C,1,1] dimensions. The shared MLP module comprises two 1 × 1 convolution kernels, which compress the number of channels to R times the original number and then expand it back to the original number of channels. The feature maps obtained by the average pooling layer and the max pooling layer are spliced to obtain the weights of each channel, which are finally multiplied by the original feature map. Equation 2 describes the weight assignment process of the channel attention module. σ stands for using Sigmoid as the activation function, W1 ∈ ℝC/r×C, and W1 ∈ ℝC/r×C. W1 and W0 are shared weights for the two inputs of the max pooling layer and the average pooling layer.



The output of the channel attention module is obtained through the max pooling layer and average pooling layer. We acquire two feature maps with dimensions of [1,H,W], and then we splice them. Through a 7 × 7 convolution, we obtain a feature map of one channel and multiply it by the original feature map. Equation 3 shows the forward process of the spatial attention module, while Figure 4C shows the forward process of the entire CBAM block.







2.3 App for plant disease identification

We export the trained model to an open neural network exchange (ONNX) file format to preserve crucial details such as structure and weights. The model is converted into an NCNN file format for storage to facilitate deployment on a mobile terminal for inference because the NCNN format is a high-performance neural network inference framework optimized for mobile platforms. Subsequently, the structure and weight information of the model are extracted for plant disease identification using the C++ language. The XML language is used to define the layout and appearance of the application front-end interface. Lastly, the back-end interaction of the application is developed using the JAVA language, while the MySQL database is used for storing plant diseases and related information. As shown in Figure 5, the app possesses the capability to perform photo identification using the camera of the device (Figure 5B). Alternatively, it allows users to select pictures from their album for identification (Figure 5C). Furthermore, users have the option to search for plant diseases based on specific conditions or criteria (Figure 5D). The application then presents the relevant categories of plant diseases based on the selected pictures or conditions. Figure 5E displays the final identification results of plant diseases and the corresponding control methods.




Figure 5 | Introduction of plant disease identification app. (A) the main page of the app; (B) the page for camera recognition; (C) the page to select local albums for recognition; (D) the page for disease search; and (E) the page displaying disease identification results.






2.4 Experimental details

Data augmentation has been shown to improve model robustness and generalization. Before training the network, all images are uniformly resized to 224 × 224. The samples in the training, validation, and test sets are randomly rotated and cropped along the center. Finally, we normalize all images using standard deviation and mean square deviation. Table 2 describes our hyperparameter settings for model training.


Table 2 | Hyperparameter settings for training.






2.5 Model evaluation

In this study, we use top-1 accuracy (Equation 4) to determine the highest accuracy that the model can achieve. We also use precision (Equation 5) and recall (Equation 6) to evaluate the performance of the model. Parameters, floating point operations per second (FLOPs), and frames per second (FPS; the number of images the model processes per second) are used to express the inference speed of the model. True positive (TP) means that the predicted positive sample is actually a positive sample; false positive (FP) indicates that the predicted positive sample is actually a negative sample; true negative (TN) means that the predicted negative sample is actually a negative sample; and false negative (FN) means that the predicted negative sample is actually a positive sample.










2.6 Experimental setup

All experiments run on a deep learning–based cloud platform. The hardware configuration is a 14-Core VV Intel(R) Xeon(R) Gold 6330 CPU @ 2.00 GHz, with 45 GB of RAM and an NVIDIA GeForce RTX 3090 GPU. The operating system is Ubuntu 18.04, and PyTorch 1.9.0 and Python 3.8 are used as software support.





3 Results and conclusions



3.1 Results

We selected several typically used CNN-based and ViT-based networks for comparison with our model. These include lightweight networks such as SqueezeNet (Iandola et al., 2016), ShuffleNetV2 (Ma et al., 2018), MobileNetV3 (Howard et al., 2019), MobileFormer (Chen et al., 2022), EfficientNet (Tan and Le, 2019), and Deit (Touvron et al., 2021) models. We also chose many heavyweight networks such as PoolFormer (Yu et al., 2022b), CVT (Wu et al., 2021), TNT (Han et al., 2021), and ResNet (He et al., 2016) for comparison. Additionally, we chose a wheat dataset with multiple components (such as roots, stems, and leaves) to evaluate model performance on images depicting diverse conditions. The coffee dataset was employed to assess the performance of our method when confronted with complex backgrounds. Moreover, the rice dataset was used to investigate the classical binary classification problem.

We chose the wheat dataset to verify the generalizability of PMVT under a real crop growth cycle. We can see from Table 3 that our proposed network achieved the best top-1 accuracy when compared with networks with similar parameters. Among the lightweight networks, MobileNetV3 achieved an accuracy rate of 92.0%, whereas EfficientNet-B0 achieved a higher accuracy rate of 94.1%. Our PMVT reached state-of-the-art accuracy with rates of 93.6 and 94.7, respectively. In comparing heavyweight networks, the PMVT model achieved an accuracy rate of 94.9% using only 5.06 M parameters, outperforming ResNet-101, which achieved an accuracy of 94.1% but used 42.5 M parameters. This proves that the proposed model is effective compared to the original MobileViT. Figure 6 presents the confusion matrix of our proposed model. Figure 7 depicts the precision of the PMVT model, while Figure 8 illustrates its recall.


Table 3 | Comparison of the PMVT model with other backbone models on three datasets (the FPS indicator is calculated on the desktop computer, and bold text highlights the best-performing network).






Figure 6 | Confusion matrix of the PMVT model on the wheat dataset.






Figure 7 | Precision of the PMVT model on the wheat dataset.






Figure 8 | Recall of the PMVT model on the wheat dataset.



The coffee dataset was used to compare the performance of the PMVT models in the field environment. As can be seen from Table 3, the traditional lightweight networks did not achieve acceptable accuracy rates. The XXS version of the PMVT model achieved a top-1 accuracy rate of 85.4%, which was 3.5% higher than that of the SqueezeNet-1.1 model. Compared with the MobileFormer-96M model, the XS version of the PMVT model improved accuracy by 2.3% to reach 86.5%. Finally, the S version of the PMVT model achieved an accuracy rate of 87.6% on this dataset; this was an improvement of 2.2% over that obtained by the PoolFormer-S12 model. Figures 9 and 10 present the confusion matrix, precision, and recall of the PMVT model. It can be seen from the figures that our model does not achieve satisfactory results in identifying red spider mite diseases.




Figure 9 | Confusion matrix of the PMVT model on the coffee dataset.






Figure 10 | Precision and recall of the PMVT model on the coffee dataset.



We applied the rice dataset to simultaneously testing the fitting ability of the PMVT model in a controlled laboratory environment and in a real natural condition. Surprisingly, the XS version of PMVT achieved 97.7% accuracy on this dataset, which was 5.8% higher than the second-highest accuracy (obtained by the MobileNetV3-large model). In addition, the XXS version attained an accuracy of 93.1%, which was 3.4% higher than the baseline of the MobileNetV3-small model. The S version of the PMVT model performed the worst, with an accuracy of 92%; however, it still outperformed the ShuffleNetV2-2.0 model with similar parameters by 0.6%. Upon comparing models with similar sizes, we found that the PMVT model has achieved the best accuracy rate. This proved that our model is very competitive on the classic binary classification problem. Figures 11 and 12 depict the confusion matrix, precision, and recall of the PMVT model on the rice dataset.




Figure 11 | Confusion matrix of the PMVT model on the rice dataset.






Figure 12 | Precision and recall of the PMVT model on the rice dataset.



As seen in Table 3, our method does not excel in terms of FPS and FLOPs metrics. This because the self-attention mechanism computes the weights between image patches, resulting in numerous matrix calculations and multiplication operations during inference. Consequently, this increases the computational time. Additionally, because of the current immaturity of deep learning framework technology, numerous attention-weight matrices must be stored and processed, thereby occupying a significant amount of memory. Nevertheless, PMVT achieves the best accuracy with only 0.98M parameters. This makes it low-cost and high-accuracy for plant disease identification. As artificial intelligence technology advances, ViT can be better applied to the visual task of plant disease identification.




3.2 Ablation studies

The data given in Table 4, it demonstrates the effectiveness of each module in our models. +Conv7 × 7 represents using a convolution kernel of size 7 instead of the 3 × 3 convolution in the CNN block based on the MobileViT model. +CBAM uses channel attention and spatial attention integrated in the ViT block based on the MobileViT model. PMVT represents a new backbone network built on the basis of MobileViT using both 7 × 7 convolution kernels and CBAM modules. It can be seen that each component can improve the accuracy of the model to varying degrees.


Table 4 | Ablation experiments investigating each component in the PMVT model (bold text highlights the best-performing network).






3.3 Conclusion

In this paper, we constructed a computationally efficient vision transformer (ViT) model, referred to as PMVT, for the identification of plant diseases. Furthermore, larger convolution kernels and CBAM modules enhanced the model’s feature extraction capability. Comparative experiments were conducted on multiple datasets containing images of plant diseases, thus demonstrating that PMVT outperforms both lightweight and heavyweight networks. Additionally, PMVT outperforms both lightweight and heavyweight networks. PMVT has more powerful generalization capabilities and can be deployed on mobile devices for diagnosing plant diseases in field environments. However, due to the shorter development time of ViT, lightweight ViT models are comparatively slower than traditional lightweight CNNs when processing images. The advancement of deep learning framework technology enables ViT to perform computer vision tasks more effectively.
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Crop disease-pest question classification is an essential part of pest knowledge intelligent question answering system. A crop disease-pest question classification method is proposed on the basis of bidirectional encoder representations from transformers (BERT), bidirectional gated unit (BiGRU), capsule network (CapsNet), and BERT-BiGRU-CapsNet with attention pooling (BBGCAP). In BBGCAP, the unstructured text data are preprocessed vectorically using BERT, BiGRU is used to extract the deep features of the text, attention pooling is used to assign the corresponding weights to the extracted deep information, and CapsNet is used to route the right alternative. BBGCAP is a synthetic model by integrating the advantages of BERT, BiGRU, CapsNet, and attention pooling. The experimental results on the cucumber-pest question database show that the proposed method is superior to the methods based on traditional template matching, support vector machines (SVM), and convolutional neural network–long short-term memory (LSTM), and the accuracy rates of precision, recall, and F1 are all above 902.15%. This method provides technical support for intelligent question answering system of crop disease-pests.
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1 Introduction

Crop pest-diseases are one of the important factors that seriously threaten crop yield and quality. Early correct diagnosis and control of pest-diseases can effectively reduce the economic losses caused by pest-diseases (Wang et al., 2022; He et al., 2023). The disease-pests can be effectively prevented and controlled by only timely obtaining crop disease-pest and disease information and taking suitable control measures. Diagnosing and identifying the types of pest-diseases is not an easy task for farmers, especially considering the various pest-diseases and complex environment. The knowledge management of crop disease-pests can provide guidelines for the diagnosis and prevention of pest-diseases, which is a new way to obtain crop pest information in time in precision agriculture (Waheed et al., 2022). However, with the development of the Internet-of-Things technology and the explosive growth of network data, the data related to crop disease-pests also show a highly dispersed, complex, and heterogeneous state, which brings difficulties to farmers, plant-protection experts, and other personnel to quickly and accurately obtain the required information about disease-pests (Cherif, 2022).

It is a key issue to accurately extract useful knowledge such as pathogens, damage sites, and control agents from massive and complex crop pest-related data, where integrating crop disease-pest knowledge is an approach to pest control that aims to maintain harmful insects at tolerable levels, keeping pest populations below the economic damage levels. Bidirectional encoder representations from transformers (BERT) is the first unsupervised, depth bidirectional model for pre-training. It can learn surface features, phrase-level syntactic level features, and semantic level information from a shallow level to a high level, so that the word vector obtained by BERT not only implicitly contains context-level features but also effectively captures sentence-level features (Guo et al., 2021). In recent years, the amount of literature related to pest management has increased rapidly, and a large number of valuable crop pest information is still hidden in unstructured social media, such as the Chinese Agricultural Technology Promotion Q&A community, which adds nearly 10,000 crop pest data every day. Therefore, an effective classification of question sentences is a key technical link in achieving intelligent Q&A by crop producers and managers. At present, in the crop disease-pest knowledge answering system, a lot of question answering systems have been constructed by gradually integrating deep learning–related technologies into the process of practical agricultural production, but there are still some problems (Miguel et al., 2021). (1) There are many types of crop diseases and pests, and relevant knowledge is highly fragmented. (2) Due to the small number of natural language open datasets, short text, sparse features, and difficulty to learn the hidden semantic information in the field of agricultural pests and diseases, it is still difficult to parse and classify pest and disease questions and link attributes from questions to the system. Therefore, it is necessary to conduct the integrated research on pest knowledge and research on Q&A in agricultural pest-disease field to explore a more efficient and accurate Q&A model.

Integrating BERT, bidirectional gated unit (BiGRU), capsule network (CapsNet) and attention pooling, a crop disease-pest question classification method, namely, BBGCAP is proposed. This method has the characteristics of simple structure, fewer training parameters, and fast training speed, which can meet the response time requirements of the question answering system. The main contributions of this paper are summarized as follows:

	(1) The unstructured text data are preprocessed vectorically using BERT text pre-training model based on the agricultural domain corpus, and the obtained word vector not only implicitly contains context-level features but also effectively captures sentence-level features.

	(2) BiGRU is employed to extract the deep global features of the text, and CapsNet is used to extract the local features of text. CapsNet replaces scalar-output features of convolutional neural network (CNN) with vector-output capsules and pooling layer with dynamic routing algorithm.

	(3) Attention pooling is adopted to assign the corresponding weights to the extracted deep information and retain the most significant information at the pooling stage. An intermediate sentence representation generated by BiGRU is used as a reference for local representations produced by the convolutional layer to obtain attention weights. The sentence representation is formed by combining local representations using obtained attention weights.



The rest of this paper is organized as follows. Section 2 simply introduces the related works. BERT-BiGRU-CapsNet with attention pooling, namely, BBGCAP, is described in detail in Section 3. Section 4 shows a preliminary validation analysis of the model in a simulated environment, and, finally, our conclusions and future work are put forward in Section 5.




2 Related works

Pest and diseases are two major factors affecting crop yield and quality. Correct detection, diagnosis, and prevention of various crop pest-diseases are the basis of pest-disease management. Farmers have traditionally relied on manual methods to judge and identify pests and diseases, which are time-consuming, expensive, and inaccurate. Traditional crop disease-pest information acquisition methods mainly use keyword-based search engines or shallow semantic analysis, but the returned results are a large number of related websites with vague and redundant answers (El-Ghany et al., 2020; Liu and Wang, 2020).

Deep learning has gained great advantages in crop pest management and has become the standard method for solving most of the technical challenges of crop pest detection, identification, and classification (Liu and Wang, 2021; Lu et al., 2021). Miao et al. (2022) summarized the applications of deep neural networks in pest detection in recent years into three categories, introduced the characteristics and research status of each network, and provided a direction for solving the current problem by describing the methods of multi-information fusion and dataset enhancement. Aiming at the problems of large computational resource and low precision in most CNNs, Zuo et al. (2020) proposed an attention-based lightweight residual network for plant disease recognition. It employs depthwise separable convolution instead of the conventional convolution on the basis of traditional residual neural network. The attention module is introduced to effectively prevent the overfitting problem of the network and enrich local feature learning. To achieve rapid recognition of the common pests in agriculture and forestry, Wang et al. (2020) proposed a pest image recognition method based on deep CNN and compared the performance of different models on Chlamydial Protease-Like Activity Factor (CPAF) dataset, which has 73,635 insect images, including 4,909 original images and 68,726 enhanced images. To enhance the learning ability of micro-lesion features, Chen et al. (2021) selected MobileNet-V2 pre-trained on ImageNet as the backbone network and added the attention mechanism to learn the importance of inter-channel relationship and spatial points for input features. Xin and Wang (2021) proposed a deep convolutional neural network and Google data (DCNN-G) model based on deep learning and fusion of Google data analysis and compared its accuracy with the conventional recognition model. Using CNNs to classify crop pest–disease image quality not only expands the application field of deep learning but also provides a new method for crop pest–disease image quality assessment.

Many deep learning–based entity recognition methods have been presented to identify crop diseases, pests, drug names, and other nouns related to disease-pests. It is a basic part of agricultural knowledge graph, question and answer, and will be implemented as a web application to provide the public with solutions for the prevention and control of crop pest-diseases (Nandhini and Ashokkumar, 2021; Thanammal Indu and Suja Priyadharsini, 2022). The named entities of crop pest-diseases have the common phenomena of complex word formation, word combination, and entity embedding. In particular, in the field of Chinese crop pest-diseases, there are many problems such as multiple entity naming methods, fuzzy entity boundary, inadequate feature extraction, and inconsistent entity boundary labeling. The crop disease-pest–related information is described by complex word-formation and universal phenomena of word combination and entity embedding. To address the above problems, Wang et al. (2022) combined discourse topic and attention mechanism, and proposed the attention-based SoftLexicon with term frequency–inverse document frequency (TF-IDF) for crop disease-pest entity recognition, designed a flow chart to explain the major principles and steps, and explained the model through visual methods. The recognition accuracy of Chinese agricultural pest-diseases was improved by dividing the word sets according to the position of the characters in the word, integrating the discourse theme features into the calculation of lexical information, and introducing the attention mechanism. Guo et al. (2021) used the fine-tuned BERT model to generate context-character–level embedded representations with specific knowledge, introduced adversarial training, and enhanced the generalization and robustness of recognizing rare entities. Miguel et al. (2021) proposed a first step toward a mature, semantically enhanced decision support system for integrated pest management, by collecting data from multiple heterogeneous sources to build a complete agricultural knowledge base and developing a system to help farmers make decisions about pest control. Guo et al. (2020) established an available corpus toward agricultural disease-pests, which contains 11 categories and 34,952 samples, and proposed a Chinese named entity recognition model via joint multi-scale local context features and the self-attention mechanism. The crop disease-pest knowledge Q&A system, as a key module of question answering systems, plays a decisive role in the efficiency of system retrieval. It can answer the questions that farmers encounter during agricultural production and planting, with the core of question sentence classification to match user questions. BiGRU can better understand and deal with dependencies in a language and improve the comprehension of text sequences by considering both historical and future contextual information and using the context information of text to extract the global features of text (Islam et al., 2022). It uses the same parameters to process both forward and backward sequence data, effectively reducing the number of parameters in the model, reducing the risk of overfitting, and improving training and inference efficiency. CapsNet has inherently better generalization capabilities and could theoretically use a considerably smaller number of parameters and get better results (Tao et al., 2022). Attention mechanism can be introduced to assign different weights to BiGRU hidden states through mapping weighting and learning parameter matrix, allocate sufficient attention to key information, highlight the influence of important information, reduce the loss of feature information, and strengthen the influence of important information, so as to improve the accuracy of the model (Meng et al., 2016). As for the complex and diverse semantic information of user questions in agricultural question answering systems, a crop disease-pest question classification method (BBGCAP) is proposed based on BERT, BiGRU, CapsNet, and attention pooling, meeting the needs of users to quickly and accurately obtain the classification results of crop disease questions.




3 Classification of crop disease-pest questions

Aiming at the characteristics of small vocabulary, strong sparse features, large noise, and poor normalization in crop disease-pest Q&A questions, a crop disease-pest question classification method, namely, BBGCAP is proposed. Its basic architecture is shown in Figure 1.




Figure 1 | Architecture of BBGCAP, consisting of input and output layers, BERT vector embedding layer, BiGRU feature extraction layer, attention pooling layer, and capsule network layer.



In the method, question feature vocabulary is extended, word vector is weighted according to the importance of the vocabulary, text features are extracted using BiGRU and CapsNet, and its structure and parameters are further optimized by cross-validation strategy. The main components of BBGCAP are introduced in detail as follows.



3.1 Question participle

In question-answer system, each sentence is first segmented. Word segmentation is the addition of boundary markers between words in Chinese sentences. There are many methods for word segmentation, including shortest path word segmentation, N-Gram word segmentation, recurrent neural network (RNN) word segmentation, and transformer word segmentation. There are also many word segmentation tools, such as Jieba, HanLP, and FoolNLTK. Most word segmentation tools, such as Institute of Computing Technology Chinese Lexical Analysis System (ICTCLAS) of the Chinese Academy of Sciences, Language Technology Platform (LTP) of Harbin Institute of Technology, and Jieba, have accuracy rates of more than 95%. This paper uses the Jieba word splitter and adds it to the agricultural domain dictionary, so that domain vocabulary can be correctly segmented, with spaces between words as segmentation, as shown in Table 1.


Table 1 | Crop pest question sentence segmentation.






3.2 BERT vector embedding

BERT is a pre-trained language model for bidirectional encoding representation of transformers. It generates deep bidirectional language representation, has a deeper understanding of context than Word2vec and unidirectional language models, and can extract more efficient vector features from corpus. After inputting the word segmentation of crop disease-pest question sentences into BERT, it is transmitted to the word embedding layer, including marker word embedding, sentence word embedding, and positional word embedding, as shown in Figure 2.




Figure 2 | BERT structure, where [CLS] and [SEP] are marked at the beginning and end of the sentence, respectively, and Toki is the ith token, randomly blocking some characters; Ei is the embedding vector of the ith token, and Ti is the feature vector obtained from the ith token after BERT processing.



Output the corresponding word vector for each word in the sentence through BERT, where the maximum length of the sentence is set to L, and the word vector dimension is V. Generate the word vector matrix X as follows:

 




3.3 BiGRU feature extraction

LSTM and GRU are two variants of RNNs that use gating mechanisms to track the sequence state, where GRU is simpler and superior to LSTM when the input data are scarce or the risk of overfitting is high. GRU consists of reset gates and update gates, which selectively pass through information through a “gate” structure, capturing sequence length dependencies and contextual information, thereby solving the problem of gradient vanishing or exploding in recursive networks. Their structures are shown in Figures 3A, B.




Figure 3 | Structure of LSTM, GRU, and BiGRU, where i, f, and o in (A) represent input, forgetting, and output gates, respectively; C and   represent memory cells and new memory cell contents, respectively; r and z represent reset and update gates in (B), respectively; and h and   are activation and candidate activation gates, respectively. xt in (C) is the input vector at time t, yt is the output vector at time t, h1 and h2 are the output of the hidden layer state and update state at time, respectively.



For time t, its GRU state is calculated as follows (Islam et al., 2022; Ma et al., 2022):

 

where   is the input vector at time t; σ is the sigmoid activation function;   and Wh are the weights;   and bh are bias; Zt and rt are the current unit state of the control gate and update gate at time t, respectively;   and   are the output of the hidden layer state and update state at time t, respectively.

GRU ignores future contextual information, where BiGRU can train a GRU model forward and backward using the same training sequence and then linearly combine the outputs of the two models to ensure that each node in the sequence can fully rely on all contextual information. Therefore, for question classification tasks, BiGRU is often used to better understand the user intentions. Its structure is shown in Figure 3C. For a given ith participle, BERT embeds the word E(wordi), and its output at time t is calculated as follows:

 

where   and   are the outputs of forward GRU and backward GRU at time t, respectively.




3.4 Attention pooling

Attention mechanism is often embedded in machine learning and natural language processing models, such as YoloV3, U-Net, BERT, GPT, and transformer. It aims to allow the model to focus on the most crucial feature information relevant to the current task, thereby reducing attention to other irrelevant or noisy information. It can automatically learn and calculate the contribution of the input data to the output data. Its structure is shown in Figure 4.




Figure 4 | Structure of attention mechanism, where xi is the ith input and αi is the ith weight coefficient of the state hi..



To highlight the importance of different words in the entire question-answer classification, BiGRU introduces an attention layer. Its input is the output vector hit activated by BiGRU in the previous layer, and the attention score ait is calculated as follows:

 

where hit is the output vector of the previous layer of BiGRU, ww is the weight coefficient, and bw is the bias coefficient.




3.5 Capsule network

CapsNet consists of three layers: convolutional layer, main capsule layer using vectorized capsules, and convolutional capsule layer using dynamic routing mechanism. Let this layer contain N1 convolution kernel  , and the word vector element yi is convoluted as follows:

 

where f is a ReLU activation function and b represents its bias.

Calculate the feature matrix Y as follows:

 

The main capsule layer is different from CNNs. This layer integrates semantic features of the same position in sentences, saves them as vectorized capsules, and converts the feature matrix obtained in the previous step into a capsule matrix Z through N2 m-dimensional transformation matrices  :

 

Perform a linear transformation on the K1-row capsules of Z through N3 transformation matrices of m × m, transformation matrix of N3, and calculate the prediction vector   as follows:

 

Weighted sum operation on   yields uj

 

where ci is the coupling coefficient updated during the dynamic routing process, which is obtained by calculating bi of the connection between capsule   in this layer and capsule uj in the upper layer through the softmax function. The update method for bi is

 

where   is the weight obtained from the previous iteration, initialized to 0.

Calculate the capsule matrix U as follows:

 

Finally, softmax is adopted as the feature classifier. Softmax normalizes the output feature vector and maps it to the (0, 1) interval to obtain the probability values of the corresponding output features for each type of question, thereby classifying the question.

The gradient descent–based method is adopted to learn the parameters of BBiQLSTMA. In each training time, for L input samples ⟨xi, yi⟩, the gradient of each parameter relative to the model loss is calculated and then updated each parameter with learning rate λ:

 

where θ is the super parameter and λ is learning rate.

From the above analysis, a BBGCAP-based crop disease-pest knowledge question classification method is proposed. Its flowchart is shown in Figure 5.




Figure 5 | The flowchart of the methodology.



The pseudocode of the algorithm is given as follows:

Input crop disease-pest question text T: mini-batch  :

	

Output:The label of crop disease-pest question text T.

1.  , the corresponding word vector for each word in the sentence through BERT(  ), T is a text.

2.  ,     and   are the outputs of forward GRU and backward GRU at time t, respectively.

3.  ,  ,  , where hit is the output vector of the previous layer of BiGRU, ww is the weight coefficient, and bw is the bias coefficient.

4. Calculate the prediction vector  .

5. Weighted sum operation on   yields uj,  .

6. Update method for bi,  .

7. Calculate the capsule matrix U,  .

8. Label (T) = Softmax(U), it maps the output of multiple neurons to the interval (0, 1), which can be understood as a probability, so as to carry out multi-classification.

9. Output the label of T.





4 Experimental results and analysis

BBGCAP is verified on the constructed crop disease-pest question dataset and compared with three crop disease-pest knowledge question classification methods: Chinese agricultural disease-pests named entity recognition with multi-scale local context features and self-attention mechanism (MSLCFSA) (Guo et al., 2020), question classification method based on merge-convolutional neural networks-deep pyramid convolutional neural networks–long short-term memory (MCDPLSTM) (Yu et al., 2021), and text classification model based on CNN and BiGRU fusion attention mechanism (CNNBiGRUA) (Ma et al., 2022). Among them, Word2vec is used for word embedding, whereas BBGCAP employs BERT for word embedding. The model parameters are initialized using Xavier normal distribution. The experimental conditions are set as follows: the hidden state dimension of GRU unit is set to 100; the output vector dimension of BiGRU is also set to 100; the iteration number of CapsNet is set to 10 (default is 5); the embedding size is 128; the hidden size is 768; the batch size is 32; the original learning rate is 0.001; the number of iterations is 3,000; the hidden activation is ReLU; the attenuation rate is 0.1, the hidden layer attenuation rate is 0.5; and other weights, biases, and other parameters change continuously with model optimization. BiGRU and CapsNet are conducted on Keras, TensorFlow1.7.0, and PyTorch library frameworks, whereas Direct Data Ingestion (DDI) extraction experiments are conducted on Ubuntu 18.04LTS as the operating system, 32GB of memory, Intel Core i5-4200U CPU @ 2.30 GHz, GPU GEFORCE GTX 1080ti, and Ubuntu 14.0. BERT, BiGRU, and CapsNet are optimized by Adam Optimizer. Evaluate its performance using precision, recall, and F1 and calculate as follows:

 

where TP (true positive) is the number of correctly classified positive instances, FP (false positive) is the number of misclassified positive instances, and FN (false negative) is the number of misclassified negative instances.



4.1 Dataset

Through Scrapy crawler framework, various Chinese text corpora of common crop disease-pests are captured on various Baidu Encyclopedia, Interactive Encyclopedia, Chinese Wikipedia, as well as crop management websites such as “Expert Online System,” “Planting Q&A Network,” and “Nanjing Agricultural Commission,” including various questions and sentences from agricultural producers about common crop disease-pests. Some crop disease-pest information processing methods are adopted to correct the crawled corpus, remove duplicate and unclear data, and select 3,000 clear question-answer pairs as the dataset of frequently asked questions and corresponding answers. The questions are converted into narrative sentences to construct a dataset of common crop disease questions. Some questions and their classification are shown in Table 2.


Table 2 | Examples of crop pest questions.






4.2 Results

In the experiments, the word vector dimension is set to 128, the maximum length of the question is set to 100, and each GRU output feature dimension in the BiGRU layer is set to 128. Stacking mode is selected to connect the outputs of forward and backward GRUs. The experiments are conducted using a 10-fold cross-validation method, i.e., conducting 10 experiments. During each experiment, 10% of the questions in each category are randomly selected as the test dataset, and the remaining data are used as the training dataset. The test dataset and training dataset do not overlap. The average test results of the 10 test datasets are used as an evaluation indicator for the model classification performance. In the data preprocessing process, impurity questions are removed, and the Jieba word segmentation tool is used to segment user questions, removing stop words, punctuation marks, and special characters. Then, BERT is provided by Google open-source is used for training to quantify questions. CapsNet first extracts a set of features, then makes a cluster on this set of features, predicts with the clustering results, carries out backpropagation according to the predicted results, updates the matrix of extracted features that can be understood as changing a set of features or fine-tuning the features, and continues to cluster, and the cycle repeats. Finally, softmax is used to classify questions. The precisions versus iteration of BBGCAP and BBLCAP are shown in Figure 6, where BBLCAP is a variation of BBGCAP with BiLSTM replacing BiGRU, and the rest remaining unchanged. From Figure 6, it is seen that BBGCAP and BBLCAP converge at 2,500 iterations, and the convergence performance of BBGCAP is better than that of BBLCAP. In the following, the number of iterations is set as 3,000.




Figure 6 | The precision versus iteration.



The overall classification performances of BBGCAP and three comparative models on the test set are shown in Table 3.


Table 3 | Word segmentation classification of crop pest questions.



From Table 3, it can be seen that the proposed model in this article is superior to the other three methods. The main reason is that the proposed model BBGCAP outperforms other models because it fully utilizes the advantages of three components: BERT is superior to Word2vec, BiGRU is superior to BiLST, and attention pooling is better than attention mechanism in MSLCFSA and CNNBiGRUA. MSLCFSA is superior to CNNBiGRUA and MCDPLSTM because it can obtain the multi-scale local context features and utilizes attention mechanism to fully reflect the keyword features in questions, making the question classification model have better accuracy in question feature extraction, thereby improving classification accuracy. Hybrid model CNNBiGRUA is little better than MCDPLSTM because it utilizes the advantages of CNN, BiGRU and attention mechanism, where BIGRU fully uses the positional information before and after sentence segmentation.

To test the impact of the number of training samples on the question classification results, different fold cross-validation experiments are carried on and the results are shown in Table 4.


Table 4 | Results of BBGCAP with different fold cross-validation experiments.



From Table 4, it is seen that the number of training samples has a significant impact on the effectiveness of the model, mainly due to the variety of user questions and the lack of a fixed format, requiring a large number of samples for training. As the dataset increases, the classification results significantly increase.

To test the advantages of BERT, BiGRU, and attention pooling mechanisms, we improve the structure of the proposed model BBGCAP and conduct 10-fold cross-validation experiments under the unchanged experimental conditions. The results are given in Table 5.


Table 5 | Results of ablation experiments.



From Tables 3–5, it can be seen that the effectiveness of crop disease-pest question classification not only depends on the selection of question classification algorithms but also has a significant impact on the size of the model training dataset. The experimental results in Tables 3–5 validate that BBGCAP is effective and feasible for crop disease-pest intelligent question answering system, which is a real-time and practical system and requires high accuracy. As a key step of problem classification, when training the selected model, the training data should contain as many problems as possible to improve the accuracy of the whole system.





5 Conclusion

The crop disease-pest–related question classification is an important and challenging problem in the crop disease-pest question answering system. A BERT-BiGRU-CapsNet with attention pooling model, namely, BBGCAP, is constructed for the crop disease-pest Q&A system. BBGCAP is a hybrid network model, integrating the advantages of BERT, BiGRU, CapsNet, and attention pooling. The experimental results demonstrate that BBGCAP outperforms the other methods. In fact, BBGCAP has hierarchical structures and requires a lot of optimization in sample training. The future work is to optimize BBGCAP and aims to address the complex and diverse semantic information of crop disease-pest user-questions.
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Problems

Plant Disease diagnosis based on deep learning mechanisms has been extensively studied and applied. However, the complex and dynamic agricultural growth environment results in significant variations in the distribution of state samples, and the lack of sufficient real disease databases weakens the information carried by the samples, posing challenges for accurately training models.





Aim

This paper aims to test the feasibility and effectiveness of Denoising Diffusion Probabilistic Models (DDPM), Swin Transformer model, and Transfer Learning in diagnosing citrus diseases with a small sample.





Methods

Two training methods are proposed: The Method 1 employs the DDPM to generate synthetic images for data augmentation. The Swin Transformer model is then used for pre-training on the synthetic dataset produced by DDPM, followed by fine-tuning on the original citrus leaf images for disease classification through transfer learning. The Method 2 utilizes the pre-trained Swin Transformer model on the ImageNet dataset and fine-tunes it on the augmented dataset composed of the original and DDPM synthetic images.





Results and conclusion

The test results indicate that Method 1 achieved a validation accuracy of 96.3%, while Method 2 achieved a validation accuracy of 99.8%. Both methods effectively addressed the issue of model overfitting when dealing with a small dataset. Additionally, when compared with VGG16, EfficientNet, ShuffleNet, MobileNetV2, and DenseNet121 in citrus disease classification, the experimental results demonstrate the superiority of the proposed methods over existing approaches to a certain extent.





Keywords: plant disease diagnosis, citrus, Denoising Diffusion Probabilistic Models (DDPM), Transfer Learning, Swin Transformer




1 Introduction

Early detection of crop disease symptoms is a vital means of protecting crops and containing outbreaks (Thomas et al., 2018). Machine vision provides an intuitive and visual representation of crop growth, fruit quality, maturity, and can accurately identify healthy crops, diseased crops, and the types of pathogens (Sankaran et al., 2010; Jahanbakhshi et al., 2021; Momeny et al., 2022; Azadnia et al., 2023; Hadipour-Rokni et al., 2023). Throughout the various stages of crop cultivation, plant diseases often manifest in the leaves, making leaf disease identification critically important (Kailasam et al., 2022).

Research has been conducted on the automatic recognition of plant disease leaf images using machine learning techniques. Hossain et al. (2019) proposed a method for detecting and characterizing plant leaf diseases using KNN classifiers. Gupta et al. (2021) introduced a machine learning-based intelligent optimization algorithm to handle noise in dataset for plant leaf disease diagnosis. Zhu et al. (2017) proposed a hyperspectral imaging method for pre-detecting tobacco disease symptoms based on continuous projection algorithm and machine learning classifiers. Iniyan et al. (2020) utilized Support Vector Machines and Artificial Neural Networks for plant disease recognition and detection. Bhatia et al. (2020) investigated the application of Extreme Learning Machines in predicting plant diseases in highly imbalanced dataset. Arora et al (Arora and Agrawal, 2020). developed a deep forest method for classifying maize plant leaf diseases.

The aforementioned research were based on shallow machine learning models, and their identification performance heavily depended on expert experience, which limited their generalization ability (Sujatha et al., 2021). In contrast, deep learning models can effectively reduce the interference of expert experience while ensuring recognition accuracy (Lee et al., 2020). Currently, mainstream methods are shifting towards the application of deep learning (Lee et al., 2020; Sujatha et al., 2021). Intelligent diagnostic methods based on deep learning mechanisms can effectively address complex input and classification problems and have been applied to establish intelligent models for disease and pest diagnosis in crops such as maize, wheat, citrus, and potatoes (Lee et al., 2020; Sujatha et al., 2021). However, the complex and dynamic agricultural growth environment results in significant variations in the distribution of state samples, with existing research mostly relying on laboratory public dataset, such as Plantvillage (Hughe and Salathé, 2015). The scarcity of real disease databases weakens the information carried by the samples (Arnal, 2018), posing higher requirements for establishing deep learning intelligent diagnosis models.

In recent years, the combination of diffusion models and the Swin Transformer model has proven to be highly effective in small sample application environments, yielding satisfactory results. Inspired by non-equilibrium thermodynamics, the Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) define a Markov diffusion step chain, where each diffusion step depends solely on the data distribution state of the previous step. Compared to Generative Adversarial Networks (GANs), DDPM offers more stable training and can generate more diverse samples (Croitoru et al., 2023). The Self-Attention Mechanism (SAM) (Yang, 2020; Pan et al., 2022) is widely used in various fields of artificial intelligence and has successfully boosted the performance of different models. Swin Transformer (Liu et al., 2021) introduces a hierarchical transformer structure, giving the transformer a layered structure similar to Convolutional Neural Networks (CNNs), with multi-scale features. Swin Transformer has achieved promising results in object recognition tasks on datasets such as CIFAR-10, CIFAR-100, SVHN, and ImageNet (Lee et al., 2021).

This paper establishes a practical citrus disease database and proposes two methods to test the effectiveness of diffusion models and the Swin Transformer model in diagnosing citrus diseases with small-sample. Furthermore, we compare the method 2 with various deep learning approaches, and the results indicate certain advantages of the proposed methods.

The subsequent organization of this paper includes: the second part, which presents related research; the third part, explaining the principles and the two proposed methods; the fourth part, which covers the experiments and discussions; and the final part, providing conclusions and future work.




2 Related research

Deep learning models can effectively reduce the reliance on expert experience while ensuring satisfactory recognition performance. In recent years, there has been much research in the field of intelligent diagnosis utilizing deep learning. Sujatha et al. (2021) compared various machine learning and deep learning methods for plant disease detection, such as Support Vector Machines (SVM), Random Forest (RF), and deep learning models like Inception-v3, VGG-16, and VGG-19. Their experimental results showed that deep learning outperformed machine learning methods in citrus plant disease detection accuracy. Zhang et al. (2019) proposed a cucumber leaf disease recognition method based on CNN. Geetharamani et al (Geetharamani and Pandian, 2019). employed a nine-layer deep CNN for plant leaf disease recognition. Tang et al. (2020) utilized CNN for grape disease image classification. Agarwa et al (Agarwal et al., 2020). developed an Efficient CNN model for tomato crop disease recognition. Sathiand et al (Dananjayan et al., 2022). studied advanced CNN detectors for citrus leaf disease detection and evaluated each model based on parameters such as accuracy and recall rate, finding that CenterNet2 and Res2Net-101-DCN-BiFPN achieved high-precision prediction of early citrus leaf diseases.

Few-shot learning and Transfer Learning were initially introduced within the context of applications with limited sample sizes. Argueso et al (Argüeso et al., 2020). studied Few-shot learning methods for plant disease classification using field-collected images. They employed Few-shot Learning algorithms to learn new plant leaf and disease types from extremely small dataset, achieving superior performance compared to classical learning methods while reducing training data by approximately 90%. Lee et al (Douarre et al., 2019). designed two new data generation methods, based on plant canopy simulation and GAN, to address the challenging segmentation task of apple scab disease in apple canopy images using CNN, obtaining satisfactory results on small dataset. Atila et al. (2021) proposed an efficient deep learning architecture for plant leaf disease classification, using Transfer Learning to train EfficientNet and other deep learning models. Jiang et al. (2021) improved the VGG16 model based on multi-task learning for the identification of three types of rice leaf diseases and two types of wheat leaf diseases, using pre-trained models from ImageNet for transfer learning, resulting in simultaneous recognition of rice and wheat leaf diseases and providing a reliable method for identifying multiple plant leaf diseases. Chen et al. (2020) studied Transfer Learning with deep CNNs for identifying plant leaf diseases, considering using pre-trained models learned from massive dataset and then transferring them to specific tasks. Compared to other methods, their validation accuracy on public dataset was not lower than 91.83%. Even under complex background conditions, their method achieved an average classification prediction accuracy of 92.00% on rice plant images.

While deep learning and its related techniques have demonstrated impressive results in the diagnosis of plant diseases, obtaining a sufficient number of disease samples continues to be a challenge. This difficulty hampers the development of robust deep diagnostic models. Moreover, employing models optimized in a controlled laboratory setting proves ineffective in real-world scenarios due to the challenge of meeting the independent and identically distributed condition between experimental data and practical application data. Addressing these challenges and harnessing the full potential of deep learning mechanisms to create intelligent diagnostic models tailored for agricultural applications represents a crucial problem that needs to be addressed.




3 Principles and methods



3.1 DDPM

The DDPM (Sohl-Dickstein et al., 2015) can be used as a data augmentation technique to increase the size of the dataset and prevent overfitting of the network. DDPM consists of two processes: the Forward Diffusion Process and the Reverse Denoising Diffusion Process. Both processes are parameterized Markov Chains. The essence of the DDPM diffusion model is learning a “denoising” process, as shown in Figure 1. From an individual image’s perspective, the Forward Diffusion Process gradually adds Gaussian Random Noise to the image until it becomes a pure noise image. On the other hand, the Reverse Denoising Diffusion Process generates an image from a pure noise image. By training the DDPM diffusion model to learn the diffusion process of the image data, when properly trained, random noise images are input into the DDPM. The Reverse Denoising Diffusion Process is executed, gradually “denoising” the pure noise image, resulting in a synthesized image similar to the real image.




Figure 1 | DDPM.






3.2 Transfer Learning

Transfer Learning (Zhuang et al., 2020) is a training method that involves transferring the network architecture and weights originally used for solving task A to task B, and achieving good results in task B as well. In scenarios with a small sample size, Transfer Learning can be employed to transfer the learned generic features from other pre-trained networks, saving training time and obtaining better recognition results. Fine-Tuning (Too et al., 2019) is a commonly used implementation approach within transfer learning. Fine-Tuning preserves the existing network architecture and pre-trained model parameters while retraining, making minor adjustments to the model parameters. It does not involve pruning and reconstructing network parameters, making it a holistic, global, and subtle improvement.

In this study, we used Transfer Learning with Fine-Tuning, implemented as follows: we imported pre-trained weights into the classification model, removed the weights related to the fully connected layer for classification, retained the other weights in the model, and did not freeze the weight parameters. We modified the model’s classification output categories (from 1000 to 3), and trained the modified classification model with the training data in batches. This process resulted in retraining the weights of the fully connected layer and fine-tuning the other pre-trained weight parameters in the model.




3.3 Self-attention mechanism

The SAM (Vaswani et al., 2017) is a neural network architecture that allows the computer to automatically learn and focus on the most important information when processing input data, thus improving its processing efficiency and reducing the time spent in noise. The implementation of SAM can be divided into three steps: (1) Building the attention layer, which uses learnable parameters to measure the importance of input information; (2) Mapping the input data and the attention layer’s parameters to the output information; (3) Calculating the loss function and updating the parameters of the attention layer to enable better focus on the most important information.

Figure 2 illustrates the application of SAM to an image. The self-attention computation for input feature maps, denoted as Image Feature Map X, can be expressed as shown in Equation 1.




Figure 2 | Self-attention mechanism.



 

Where Q, K, and V represent Query, Key, and Value, respectively. Query can be considered as the Question, Key as the Index, and Value as the Answer.  ,  , and   is the vector corresponding to the position on the input matrix X. Reshape X into three matrices: K, Q, and V. Compute the product of the Transpose of K and Q, then divide the result by  . Apply the Softmax Function to normalize the values and obtain the Attention Map. Finally, multiply the Attention Map by V and reshape it using W to obtain the output feature maps, known as Self-Attended Feature Maps.




3.4 Swin Transformer

The Swin Transformer model is illustrated in Figure 3, and the model parameters are shown in Table 1. As an instance of the ‘encoder-decoder’ architecture of the Transformer, its encoder and decoder consist of stacked modules based on self-attention. The embeddings of the source (input) sequence and the target (output) sequence are augmented with positional encoding and then separately fed into the encoder and decoder. The Swin Transformer introduces a hierarchical structure, which differs from the standard Transformer architecture, as it computes non-overlapping windows for self-attention. This endows the Transformer with a hierarchical structure similar to CNN, providing multi-scale features and better applicability in downstream tasks.




Figure 3 | Diagram of Swin Transformer (tiny) network architecture.




Table 1 | Parameters of the Swin-T (tiny) network architecture.



In the Swin Transformer network architecture, the Swin Transformer Block employs Windows Multi-Head Self-Attention (W-MSA) (Li et al., 2021) and Shifted Window Multi-Head Self-Attention (SW-MSA) (Han et al., 2023). The purpose of W-MSA is to reduce computational complexity. As illustrated in Figure 4, Figure 4A depicts a standard Multi-Head Self-Attention (MSA) (Rao et al., 2021), where each pixel (or token, patch) in the Feature Map needs to compute attention with all other pixels during the Self-Attention process. In Figure 4B, when utilizing W-MSA, the Feature Map is initially divided into separate windows of size M*M (where M=2 in the example), and then Self-Attention is independently calculated within each window.




Figure 4 | W-MSA example.



When using the W-MSA module, Self-Attention calculations are performed only within each window, and there is no information exchange between different windows. To address this issue, Swin Transformer introduces SW-MSA. As shown in Figure 5A, W-MSA and SW-MSA are used in pairs. W-MSA is used in the Lth layer, and since W-MSA and SW-MSA are used in pairs, the (L+1)th layer uses SW-MSA, as shown in Figure 5B. In Figure 5A, windows have been shifted, and by comparing the left and right diagrams, it can be observed that the windows have shifted. For example, the 2x4 window in the first row and second column can facilitate information exchange between the two windows in the Lth layer; similarly, the 4x4 window in the second row and second column can facilitate information exchange between the four windows in the Lth layer, and so on for others. This effectively solves the problem of no information exchange between different windows.




Figure 5 | SW-MSA example.






3.5 Method

In this study, we established our own practical on-site citrus disease database to test the feasibility and effectiveness of diagnosing citrus diseases with small samples. Two testing methods were employed.



3.5.1 The Method 1

The DDPM model was used to generate synthetic images for data augmentation, and the Swin Transformer model was pre-trained on the synthetic dataset generated by DDPM. Subsequently, Fine-Tuning was performed on the original citrus leaf images for disease classification using the pre-trained Swin Transformer model, as illustrated in Figure 6.




Figure 6 | The Method 1.






3.5.2 The Method 2

The DDPM model was used to generate synthetic images for data augmentation. We utilized the pre-trained Swin Transformer model on the ImageNet dataset (Deng et al., 2009) and performed Transfer Learning by Fine-Tuning it on an expanded dataset composed of the original dataset and the synthetic images generated by DDPM, as depicted in Figure 7.




Figure 7 | The Method 2.








4 Experiment and discussion



4.1 Dataset preparation

The original dataset used in this project was a citrus image dataset established by the project team. Figure 8 is an example of Citrus Dataset Images. The dataset has 2,648 images and consists of three categories: Huanglongbing-infected leaves (758 images), Magnesium-deficient leaves (739 images), and Healthy leaves (1,151 images). The images are in the format of 4000 * 3000 * 3. The citrus image dataset was collected in the field under adaptive photography mode, making it more suitable for practical application environments.




Figure 8 | Example of citrus dataset images.






4.2 Algorithm performance metrics

The performance of the proposed methods was evaluated using nine performance metrics: Accuracy, Precision, Recall, F1 score, F2 Score, Specificity, Matthews correlation coefficient (MCC), True Positive Rate (TPR), and False Positive Rate (FPR). The descriptions of these performance metrics are shown in Table 2.


Table 2 | Performance metrics.



We use Confusion Matrix (Görtler et al., 2022) as a visualization tool to compare the classification results with the actual values. As shown in Figure 9, each column of the Confusion Matrix represents the predicted class, and the total count in each column indicates the number of data instances predicted as that class. Each row represents the true class of the data, and the total count in each row indicates the number of data instances belonging to that class. The Receiver Operating Characteristic Curve (ROC Curve) is a graphical analysis tool used to determine the optimal threshold within the same classifier model. The ROC Curve is a plot with the False Positive Rate (FPR) on the x-axis and the True Positive Rate (TPR) on the y-axis, allowing the classifier to be mapped to a point on the ROC plane (FPR, TPR). By adjusting the threshold used for classification in this classifier, a curve passing through points (0, 0) and (1, 1) can be obtained, which is the ROC Curve for that classifier. The Area Under the Curve (AUC) is defined as the area under the ROC Curve, and a higher AUC value, closer to 1.0, indicates greater classifier accuracy.




Figure 9 | Confusion matrix.






4.3 Experimental configuration



4.3.1 Experimental environment

The experiments were conducted on a Lenovo R7000P2020 edition device (running Windows 11 with an AMD Ryzen 7 4800H processor and an RTX 2060 6GB graphics card). The Python environment used was Anaconda3 (Python 3.7), with Torch 1.9.0, Torchvision 0.10.0, and OpenCV 4.5.1 installed. The training process was accelerated using the GPU.




4.3.2 Data classification

The experiment utilized a citrus leaf dataset for training. The dataset was split into training (train), validation (val), and testing (test) sets in an 8:1:1 ratio. The input images were normalized to 224 x 224 x 3 and fed into the neural network for training and evaluation. During the training process, the training and validation sets were used, while the testing set was utilized for subsequent performance testing.




4.3.3 Parameter settings

The training process employed the SGDM optimizer with L2 regularization. The momentum was set to 0.9, and the weight decay was set to 5E-5. The batch_size was 16, and num workers was set to 0. The Initial Learning Rate was set to 0.001, and the Cosine Annealing Learning Rate adjustment strategy was used. The Minimum Learning Rate was set to 0, and the learning rate was reduced in a cosine manner over 100 epochs.





4.4 Algorithm performance experiments

The Algorithm Performance Experiments aimed to test and evaluate the performance of the proposed methods, and were divided into four experiments:

	Experiment 1: DDPM Synthetic Citrus Leaf Dataset Generation. The DDPM model was trained on the original citrus leaf dataset, and the model’s fitting effect was evaluated and the weights were updated after each training epoch to produce synthetic images that closely resembled real images. After the network training was completed, the DDPM model was used to generate synthetic citrus leaf images for each of the three categories, resulting in a total of 1000 synthetic images for each citrus leaf category to form the synthetic citrus leaf dataset.

	Experiment 2: Swin-T (Orgin). The Swin Transformer model was trained on the original citrus dataset for 100 epochs without utilizing any pre-trained weight models, serving as the control group.

	Experiment 3: Swin-T (DDPM data Pre-train model + Orgin data). The Swin Transformer model was initially pre-trained using the DDPM synthetic citrus leaf dataset and subsequently fine-tuned on the original citrus leaf dataset. The pre-training on the DDPM synthetic dataset was conducted for 100 epochs, followed by fine-tuning on the original dataset for an additional 100 epochs. This experiment employed the method proposed in this study.

	Experiment 4: Swin-T (ImageNet data Pre-train model + Expanded data). The Swin Transformer model, pre-trained on the ImageNet dataset, was fine-tuned on the extended dataset comprising the original citrus leaf dataset and the DDPM synthetic dataset. The pre-trained model from the ImageNet dataset was transferred to the extended dataset for fine-tuning, which was conducted for 100 epochs. This experiment also employed the method proposed in this study.



The comparison of accuracy between the Experiment 2 and the Experiment 3 aimed to verify the superiority of the proposed Method 1 in the training process. Similarly, the comparison of accuracy between the Experiment 2 and the Experiment 4 aimed to verify the superiority of the proposed Method 2.

The evaluation metrics for different disease categories in the Experiments 2, 3, and 4 are shown in Tables 3–5, respectively. In the three different training approaches, Swin-T(Original), Swin-T (DDPM data Pre-train model + Original data), and Swin-T(ImageNet data Pre-train model + Expanded data), the ROC Curves are shown in Figures 10–12, respectively. The Confusion Matrixs are shown in Figure 13. The training validation accuracy data curve is depicted in Figure 14, while the cumulative training time for each epoch is shown in Figure 15. We evaluated the performance of the proposed method for the citrus disease leaf classification task. Table 6 represents the classification performance of the proposed method on the original citrus leaf dataset. The proposed method achieved the highest validation accuracy of 99.8% for citrus disease leaf classification. From Table 6, it can be observed that compared to the original dataset, the Swin Transformer model showed improvements in accuracy, precision, recall, F1 score, and specificity for all classes after using the expanded dataset composed of original citrus data and DDPM-generated synthetic data, along with transfer learning. This improvement in classification performance clearly indicates that data augmentation with the DDPM model and the Transfer Learning method effectively prevent overfitting of the network and enhance its generalization ability.


Table 3 | Experiment 2: Results of Swin-T(orgin).




Table 4 | Experiment 3: Results of Swin-T(DDPM data Pre-train model + Orgin data).




Table 5 | Experiment 4: Results of Swin-T(ImageNet data Pre-train model + Expanded data).






Figure 10 | ROC Curve of the Experiment 2.






Figure 11 | ROC Curve of the Experiment 3.






Figure 12 | ROC curve of the Experiment 4.






Figure 13 | Confusion matrix of the Experiment 2-4.






Figure 14 | Validation accuracy of the Experiment 2-4.






Figure 15 | The cumulative training time for each epoch of the Experiment 2-4.




Table 6 | Evaluation results of the three different training methods.



We evaluated the training speed of the proposed methods for citrus disease leaf classification tasks, as shown in Table 7, Figure 14, and Figure 15. In the Experiment 2, employing the Orgin training approach, the average time per epoch was 6.337 minutes. The initial validation accuracy (epoch 1) was 0.591, and the best validation accuracy (epoch 89) reached 0.948, with a total training duration of 559.162 minutes. In the Experiment 3, employing the Swin-T (DDPM data Pre-train model + Orgin data) training approach, the average time per epoch was 6.286 minutes. The initial validation accuracy (epoch 1) was 0.817, and the best validation accuracy (epoch 85) achieved 0.963, with a total training duration of 534.425 minutes. In the Experiment 4, employing the Swin-T (DDPM data Pre-train model + Orgin data) training approach, the average time per epoch was 1.671 minutes. The initial validation accuracy (epoch 1) was 0.949, and the best validation accuracy (epoch 35) reached 0.998, with a total training duration of 58.901 minutes. Comparatively, it was shown that the training time for the Swin-T (DDPM data Pre-train model + Orgin data) group is slightly shorter than that of the Orgin group, and significantly shorter than both the Swin-T (DDPM data Pre-train model + Orgin data) and Orgin groups. The experimental data clearly demonstrates that, on the Swin-T model, the first proposed method exhibits slightly faster training speed than the original training method, while the second proposed method exhibits significantly faster training speed.


Table 7 | Time parameters of the Swin-T model under the three training methods.



We evaluated the performance of the proposed methods for citrus disease leaf classification tasks. As depicted in Table 8, when compared to the original dataset, the Swin Transformer model demonstrated significant enhancements in various critical performance metrics, including accuracy, precision, recall, F1 score, F2 score, specificity, and MCC across all categories. These improvements were observed when the model was trained on an augmented dataset, which combined the original citrus dataset with a synthetic dataset generated by DDPM, followed by the application of transfer learning techniques. This notable enhancement in classification performance unequivocally signifies the effectiveness of data augmentation using the DDPM model and the transfer learning. These strategies not only mitigated overfitting but also bolstered the network’s capacity for generalization, underlining their crucial role in our approach.


Table 8 | The performance of the three training methods.






4.5 Algorithm performance comparison experiments

The algorithm performance comparison experiment involves applying the Swin Transformer, VGG16 (Xuemei et al., 2017), EfficientNet (Heidary-Sharifabad et al., 2021), ShuffleNet (Pani et al., 2019), MobileNetV2 (Dong et al., 2020), and DenseNet121 (Nandhini and Ashokkumar, 2022) models to the task of citrus disease classification. All six algorithm models undergo three sets of experiments.

Experiment 5 (Orgin): The six algorithm models are trained on the original dataset without using pre-trained weights, serving as the control group.

Experiment 6 (DDPM data Pre-train model + Orgin data): The six algorithm models are first pre-trained on the synthetic dataset generated by the DDPM model and then fine-tuned on the original citrus leaf dataset.

Experiment 7 (ImageNet data Pre-train model + Expanded data): The six algorithm models use their respective pre-trained models on the ImageNet dataset and then fine-tune on the expanded dataset consisting of the original citrus dataset and the DDPM synthetic dataset.

The experimental results are shown in Table 9. The Swin Transformer model achieves a validation accuracy of 94.8% in Experiment 5 (Orgin), ranking in the middle among the six trained models. In Experiment 6 (DDPM data Pre-train model + Orgin data), the Swin Transformer model achieves a validation accuracy of 96.3%, ranking the lowest among the six trained models. However, in Experiment 7 (ImageNet data Pre-train model + Expanded data), the Swin Transformer model achieves a validation accuracy of 99.8%, ranking first among all six training models, and achieving the highest rank in all experiments.


Table 9 | Validation accuracy of different models under three training methods.






4.6 Abalation experiments

Neural networks are also a black box system, and conducting ablation experiments can verify the connection between the proposed method and the component as a whole. Five Abalation experiments were conducted for each of the six different models, namely Swin-T, Vgg16, EfficientNet, ShuffleNet, MobileNetv2, and Densenet121, as outlined in Table 10. These experiments correspond to five training methods: Base, Base+A, Base+B, Base+C, and Base+B+C. Comparing the results between Base and Base+A reveals the effectiveness of Component A in improving overall accuracy. Likewise, the comparison between Base and Base+B demonstrates the impact of Component B on enhancing overall accuracy, and the comparison between Base and Base+C illustrates the contribution of Component C to overall accuracy improvement. Furthermore, by comparing the results of Base+A, Base+B, and Base+C, we can evaluate the performance differences among the three components in terms of their effect on overall accuracy improvement.


Table 10 | Abalation experiments.



As shown in Table 11, the comparisons of accuracy between Base and Base+A, Base+B, and Base+C across different models confirm that components A, B, and C individually contribute to improving model accuracy. For the Swin-T, EfficientNet_b0, ShuffleNet_v2_x0_5, and MobileNetv2 models, Component C has the most significant impact on improving accuracy. However, for the Vgg16 and Densenet121 models, Component A has the greatest influence on accuracy improvement. Notably, for the Vgg16 and Densenet121 models, the first proposed method (Base+A) achieves the highest model accuracy among the five groups. On the other hand, for the Swin-T, EfficientNet_b0, ShuffleNet_v2_x0_5, and MobileNetv2 models, the second proposed method (Base+B+C) attains the highest model accuracy among the five groups. It’s worth mentioning that in all five sets of experiments for each model, the Swin-T model in the Base+B+C group, using the Method 2 presented in this paper, achieves the best performance, reaching an impressive accuracy of 99.8%.


Table 11 | Verifying accuracy of ablation experiments.






4.7 Discussion

In general, the CNN architecture has proven to be highly successful in visual tasks. It efficiently learns from samples by performing hard feature induction. The hierarchical structure of CNN is achieved through convolution and pooling operations, which capture local features in images and gradually abstract higher-level features. CNN models capture local context relationships through local receptive fields and parameter sharing. Compared to Transformers, CNNs generally have lower computational complexity and a stronger hierarchical structure.

The strong inductive bias of CNNs enables them to achieve high performance even with minimal data (high lower bounds). However, this same inductive bias may limit these models when abundant data is available (low upper bounds). As shown in the Table 9, CNN architectures such as VGG16, EfficientNet, ShuffleNet, MobileNetV2, and DenseNet121 generally outperform the Swin Transformer model in Experiment 5 (Orgin) and Experiment 6 (DDPM data Pre-train model + Orgin data) in terms of accuracy.

Visual models based on self-attention mechanisms do not perform well with small-scale data (low lower bounds) but have the potential to surpass CNN performance on large-scale datasets (high upper bounds). Unlike CNNs, self-attention-based visual models can capture global relationships between image elements and have stronger representational capabilities. However, Transformer architecture models need to learn this type of information from a large amount of data.

Since this study uses a small sample dataset, Swin Transformer’s performance on Experiment 5 and Experiment 6 with this dataset does not significantly outshine CNN models. However, when a pre-trained model from the large-scale ImageNet dataset is used and fine-tuning is performed with the original citrus dataset and DDPM synthetic dataset, the Swin Transformer achieves the best performance in Experiment 7 among all models. Therefore, when balancing factors such as dataset size, training approach, and the choice between CNN and Transformer models, decisions should be made based on the specific experimental conditions.

Both the Method 1 and the Method 2 proposed in this paper can be applied to both CNN and Transformer visual applications, as shown in Table 8. In Experiments 5, 6, and 7, when CNN and Transformer models use the Method 1 or the Method 2, model performance is generally improved compared to the original (Orgin) training method.





5 Conclusion and future work

In response to the challenges of difficult data collection, limited dataset size, and the diversity of plant diseases, in the context of recognition tasks using small-scale datasets, this paper proposes the use of the DDPM for data augmentation and dataset expansion. The DDPM can generate high-quality images, providing better coverage of the sample distribution compared to GANs and producing more diverse data compared to OpenCV-based augmentation techniques. In contrast to traditional data augmentation techniques such as OpenCV and GAN-based methods, DDPM diffusion model augmentation enhances the model’s generalization capabilities more effectively. Furthermore, this paper introduces a training approach using transfer learning fine-tuning. In cases of limited samples, transfer learning is applied to transfer the model’s generic features from other pre-trained networks, leading to better initial model performance, improved training convergence, and greater progressive learning. The methods proposed in this paper, Method 1 and Method 2, can be applied to various model types, including CNN and vision-based Transformers.

In future work, we will carry out the following research:

	(1) To address the challenge of recognizing plant leaf disease images with high complexity, which makes training more difficult, our research team will enhance relevant model structures to cater to different needs. For example, we will explore the use of swarm intelligence techniques to optimize the Swim Transformer, thereby further improving the recognition of citrus leaf diseases and pests. We will also attempt to incorporate the ‘FreeU’ technique to enhance the DDPM diffusion model, thereby improving the quality of samples generated by the diffusion model.

	(2) We will attempt to apply the research findings to plant inspection vehicles or drones. On one hand, this will enable the automated collection of field plant leaf disease datasets. On the other hand, by using improved training methods and models for image classification and object detection, our goal is to deploy them on unmanned vehicles and drones to achieve automated plant disease inspection. This, in turn, will provide support for plant disease prevention and control.

	(3) We will further delve into the research of plant disease recognition, collecting datasets with a wider variety of plant species and different types of diseases, including those in peppers, grapes, apples, and more. Our aim is to transfer and apply the findings from this paper and future related work to these new datasets.
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Introduction

Recognizing wheat ears plays a crucial role in predicting wheat yield. Employing deep learning methods for wheat ears identification is the mainstream method in current research and applications. However, such methods still face challenges, such as high computational parameter volume, large model weights, and slow processing speeds, making it difficult to apply them for real-time identification tasks on limited hardware resources in the wheat field. Therefore, exploring lightweight wheat ears detection methods for real-time recognition holds significant importance.





Methods

This study proposes a lightweight method for detecting and counting wheat ears based on YOLOv5s. It utilizes the ShuffleNetV2 lightweight convolutional neural network to optimize the YOLOv5s model by reducing the number of parameters and simplifying the complexity of the calculation processes. In addition, a lightweight upsampling operator content-aware reassembly of features is introduced in the feature pyramid structure to eliminate the impact of the lightweight process on the model detection performance. This approach aims to improve the spatial resolution of the feature images, enhance the effectiveness of the perceptual field, and reduce information loss. Finally, by introducing the dynamic target detection head, the shape of the detection head and the feature extraction strategy can be dynamically adjusted, and the detection accuracy can be improved when encountering wheat ears with large-scale changes, diverse shapes, or significant orientation variations.





Results and discussion

This study uses the global wheat head detection dataset and incorporates the local experimental dataset to improve the robustness and generalization of the proposed model. The weight, FLOPs and mAP of this model are 2.9 MB, 2.5 * 109 and 94.8%, respectively. The linear fitting determination coefficients R2 for the model test result and actual value of global wheat head detection dataset and local experimental Site are 0.94 and 0.97, respectively. The improved lightweight model can better meet the requirements of precision wheat ears counting and play an important role in embedded systems, mobile devices, or other hardware systems with limited computing resources.
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1 Introduction

Wheat is one of the primary food crops, and its steady yield is required for both economic growth and human food security (Xiao et al., 2020). Wheat ears counting is an important method to predict wheat yield. However, conventional methods often rely on subjective and time-consuming visual inspection, making it difficult to identify and count wheat ears rapidly and accurately (Chen et al., 2017; Fernandez-Gallego et al., 2020). With the progression of image recognition technology, utilizing image data for wheat ears detection and counting has become a more effective approach. (Prakash et al., 2017). Traditional image processing methods can achieve wheat ears counting in simple environments, but they also have shortcomings such as complexities in feature engineering, low recognition accuracy, and weak transferability. Relatively, the deep learning-based method for wheat ears recognition provides a more efficient practical solution. However, higher accuracy also entails an increased number of parameters and large computational costs. These factors restrict the lightweight application of these methods, preventing their deployment on mobile devices for the swift execution of recognition tasks.

In recent years, most deep learning-based wheat ears recognition technology have employed various methods to optimize the backbone network, feature pyramid module, and loss function of the existing models. Although multiple lightweight wheat ears detection models have been proposed, the deployment and operation of these lightweight models still face significant challenges on embedded systems and mobile devices. To address this issue, it is essential to conduct in-depth research into a lightweight real-time wheat ears detection model that is better suited for devices with lower computational capabilities and limited memory in embedded systems and mobile devices.

This paper proposes a lightweight wheat ears detection method, S-YOLOv5s, based on YOLOv5s. By optimizing the backbone network, neck network, and head network of the model, the weight, parameters, and computational load of model are significantly superior to previous methods. The model can be applied to real-time detection tasks on low-performance devices in complex field environments. The main contributions are summarized as follows:

	Establishing a completely new wheat ears dataset by incorporating the local experimental site into the Global Wheat Head Detection Dataset (GWHD) to enhance the robustness and generalization of the proposed model.

	Reducing the parameters and computational complexity of the proposed model by adopting SmallConv (3 x 3 Conv) and the lightweight network ShuffleNetV2 to replace the backbone network (CSPDarknet) of the YOLOv5s model.

	Introducing the lightweight upsampling operator Content-Aware ReAssembly of Features (CARAFE) to replace the upsampling operation in the Path Aggregation Network (PANet). It improves feature information extraction, enhances the spatial resolution of feature maps, and addresses challenges in detecting difficult scenarios such as high wheat density and severe occlusion.

	Utilizing the attention-based Dynamic Target Detection Head (DyHead) to flexibly adjust the shape of the detection head and feature extraction strategy, enabling adaptation to the diversity of wheat ears in different scales, shapes, and orientations.






2 Literature review

The current methods for wheat ears recognition mainly include conventional image recognition and deep learning-based techniques (Yuan et al., 2022). Traditional image recognition techniques typically use feature extraction algorithms and image processing techniques to obtain wheat ears features (such as filtering, edge detection, etc.) in order to accurate identify wheat ears (Grillo et al., 2017; Dhingra et al., 2018; Ganeva et al., 2022). The frequently used features include edge, corner point, texture, temperature, color histogram, etc. (Li et al., 2017; Yuan et al., 2020; Rui et al., 2022a; Dandrifosse et al., 2022). Fernandez-Gallego et al. (2019) used a thermal infrared camera to segment wheat ears based on the temperature difference between the wheat leaves and the wheat ears. This method can alleviate the effect of overlapping wheat ears on counting. However, obtaining useful photos becomes challenging when the temperature difference between wheat ears and leaves is minimal. Cheng et al. (2018) used multi-feature fusion (for example, color, texture, and special image features) and dual support vector machine methods (Gholami and Fakhari, 2017), efficiently achieving wheat ear counting by classifying pixels and performing image segmentation.

With the rapid development of deep learning technology, the capability of target detection models in image recognition and classification has significantly improved (Mu and Zeng, 2019). The target detection models are divided into single-stage models (e.g., Single Shot MultiBox Detector, You Only Look Once) and two-stage models (e.g., R-CNN, Faster R-CNN)(Ning et al., 2017; Bharati and Pramanik, 2020; Wu et al., 2022; Xu et al., 2023). Both the single-stage and two-stage models have high accuracy on wheat ears detection tasks. Mehedi et al. (2018) used a two-stage R-CNN model trained on wheat at various growth stages to generate four models, which can be used to classify the four growth stages of the spike dataset, the average detection accuracy of the model ranges between 88% and 94%. Compared to the two-stage model, the single-stage model YOLO has faster detection speed (Jing et al., 2021), fewer model parameters, and lower weight, which is more suitable for field lightweight applications, such as being deployed on mobile platforms for real-time detection tasks. Bhagat et al. (2021) proposed a lightweight wheat ears detection method called WheatNetLite based on YOLOv3. This model utilizes Mixed Depthwise Convolution (MDWConv) with inverted residual blocks to construct the backbone feature extraction network of WheatNetLite, reducing the parameter count of the model. As a result, the weight of the YOLOv3 model was reduced from 54.2 MB to 8.2 MB, while achieving a mean Average Precision (mAP) of 91.3%. Shi et al. (2023) constructed a dataset covering three growth stages of wheat: flowering, grain filling, and maturity. After performing pruning on the YOLOv5s algorithm, they proposed a new wheat ear detection algorithm named YOLOv5s-t by altering the convolution kernel sizes in the spatial pyramid to reduce the number of model convolutions, thereby decreasing the parameter count of the model. The model weight is 9.1 MB, indicating a reduction of 5.3 MB. The mAP is 97.4, reflecting a decrease of 1.09%. Shu et al. (2022) optimized the original YOLOv5 model structure using a local wheat dataset to optimize the structure of YOLOv5 using the GhostNet lightweight modules (Han et al., 2020), reducing the parameters and computational complexity of the model. They further transformed the loss function from Complete Intersection-Over-Union (CIOU) to Efficient Intersection Over Union (EIOU), directly minimizing the difference in width and height between target and anchor boxes (Zhang et al., 2021), which accelerated the convergence speed. The improved model boasts a mAP of 96.60%, a detection time of 0.0181s, and a model size of 8.12 MB, which is 2.3 MB smaller than YOLOv5.

In general, the target detection models based on deep learning demonstrate more robust functionality in object recognition tasks and are in line with the development trends of modern smart agriculture. Therefore, achieving model lightweighting based on existing research and applying it to small mobile devices is of significant importance.




3 Materials and methods



3.1 Data sources

Two different datasets were used in this study to ensure the accuracy and generalizability of the model training results, as outlined in Table 1. The first dataset (GWHD, http://www.global-wheat.com/) was sourced from the global wheat public dataset, from which 2090 images captured in complex scenes, including blurred, dark, and sunny conditions, were selected. An actual field experiment produced the second dataset (Experimental Site) in Huzhou City, Zhejiang Province, China, as shown in Figure 1. Under sunny conditions, wheat images at the heading stage were captured from multiple angles using an iPhone 12. The camera resolution is 3024 x 4032 pixels, and the camera was positioned approximately 400 - 600 mm above the wheat heads. A total of 527 images were saved in JPG format. Subsequently, image processing techniques were employed to introduce noise and reduce brightness to a subset of these images. Following this, the photos were scaled to 2048 x 2048 pixels through a resampling process to ensure that the image parameters met the requirements for model training.


Table 1 | Wheat ears datasets.






Figure 1 | Experimental site and cell phone images of wheat ears.



This study uses the machine learning and deep learning general image annotation tool labelme (http://labelme.csail.mit.edu/Release3.0/) to annotate the wheat images in the datasets. Once the labeling process is completed, a JSON data file containing the coordinate information and class names of the wheat ears is generated. Subsequently, this data is converted to a txt format using Python and serves as the training input of the model, containing 107,600 labels. The processed 2617 images were randomly divided into training set, validation set and test set in the ratio of 8:1:1, and the labeled images are shown in Figure 2.




Figure 2 | Manual annotation of images for datasets.






3.2 Model structure and optimization



3.2.1 YOLO model series

YOLO is a widely utilized single-stage object detection algorithm, and YOLOv5 represents the fifth iteration in this series. Compared to YOLOv7, YOLOv5 offers significant advantages in terms of inference speed, lightweight model weights, reduced memory usage, and rapid deployment. In comparison to YOLOv8, YOLOv5 is more hardware-friendly in deployment and exhibits superior frame rate performance on CPUs. This makes YOLOv5 a more efficient and practical choice, especially for applications that require lightweight object detection solutions. As a result, it is better suited to serve as a baseline for lightweight model research, and can perform real-time object detection in images. YOLOv5 is primarily divided into four versions: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. This study primarily focuses on model optimization based on YOLOv5s. In comparison to other versions of the YOLOv5 algorithm, this model has fewer parameters and requires less computational resources. Additionally, three modules have been introduced in the YOLOv5s model: ShuffleNetV2, CARAFE, and DyHead.




3.2.2 ShuffleNetV2

For the backbone network of the YOLOv5s model, CSPDarknet, as shown in Figure 3, the excessive use of convolutional layers and numerous cross-convolution operations lead to a significant amount of gradient information being reused for weight updates. The number of parameters and computing effort of the model both increased.




Figure 3 | Network structure of CSPResNet50, the backbone network of YOLOv5s.



Therefore, this study attempts to replace the backbone feature extraction network of the YOLOv5s model with three currently popular lightweight networks: Ghost, MobileNetV3, and ShuffleNetV2 to reduce the parameter and computational complexity of the model. Comparative results are shown in Table 2, where ShuffleNetV2 achieves a significant advantage in lightweight network comparison with a model weight of 2.1 MB. Ghost and MobileNetV3, with model weights nearly 5 times and 3.5 times that of ShuffleNetV2, respectively, only outperform detection accuracy of ShuffleNetV2 by 2.6% and 1.2%. Therefore, this study adopts the SmallConv (3 x 3 Conv) and ShuffleNetV2 to replace the backbone feature extraction network of the YOLOv5s.


Table 2 | Comparison results between the YOLOv5s algorithm and the fusion of three lightweight networks.



ShuffleNetV2 (Ma et al., 2018) is a lightweight neural network architecture designed specifically for mobile and embedded devices. It reduces computational and memory overhead while maintaining high accuracy by introducing techniques such as ShuffleUnit, grouped convolution, and channel shuffling. ShuffleUnit utilizes channel interleaving and lightweight convolution methods to promote information flow and feature mixing. Grouped convolution performs independent convolution operations on grouped input channels and then concatenates the results to reduce computational complexity and enhance information exchange between features. Channel rearrangements the channels of input feature maps into smaller groups, reducing parameters and computational overhead. The architecture of ShuffleNetV2 is illustrated in Figure 4.




Figure 4 | ShuffleNetV2 network architecture.






3.2.3 CARAFE

During the recognition of wheat ears, issues such as mutual shadowing between the ears of wheat and a poor ability to distinguish between the colors of the wheat and weeds can impair the extraction of features and significantly impact the detection accuracy. As a result, more details about edges, textures, and colors must be extracted. However, when using a conventional upsampling method (such as bilinears interpolation or transposed convolution, etc.) to map a low-resolution image with fewer pixels to the target high-resolution image, this step merely expands the size of the feature map rather than adding more specific details. Consequently, CARAFE (Wang et al., 2019) is introduced without significantly increasing the parameter to replace the upsampling method in the PANet. CARAFE is a lightweight, general-purpose upsampling operator that optimizes image detail and quality by feature reassembly and fusion, making the generated high-resolution feature maps more realistic and distinct.

CARAFE comprises a kernel prediction module and a content-aware reassembly module. Through these two modules, it has the capacity to generate output feature maps X´ (σH × σW × C) from the input feature maps X (H × W × C). Specifically, the kernel prediction module utilizes the input feature map for predicting the reassembly kernel, while the content-aware reassembly module performs pointwise multiplication between the predicted reassembly kernel and the feature map obtained from conventional up-sampling completing the feature reassembly. The structural representation of CARAFE is illustrated in Figure 5.




Figure 5 | The structure of CARAFE. C represents the input channel of the feature map; H is the height of the image; W is the image width; Cm is the compressed channel; Ken2 is the encoder size; σ is the upsampling ratio, and Kup2 is the reassembly kernel size.






3.2.4 DyHead

Wheat ears closest to the device seem larger than those farther away due to the perspective shifts of the camera in wheat ears detection. Furthermore, variations in shooting angles can lead to differences in the shape and relative locations of wheat ears, making it difficult for the model to interpret and use spatial information in the photos correctly. At the same time, this study hopes to express wheat ears in a diversified manner by employing multi-level representation methods such as feature points or detection boxes, which is intended to enable the algorithm to showcase optimal performance in specific tasks. In order to address these challenges and enhance the robustness of the wheat ears recognition model, DyHead is introduced as part of the head layer of the model. DyHead (Dai et al., 2021) is a dynamic object detection head based on attention mechanisms, which considers improvements in detection performance from three dimensions: scale perception, spatial perception, and task perception. The corresponding multiple attention mechanisms are effectively combined and integrated into a unified framework, addressing the feature layer of scale perception, spatial location for spatial perception, and the output channel for task perception. This significantly enhances the representation of the target detection head and successfully resolves issues related to perspective changes, spatial transformations, and diverse representations. The adoption of the dynamic target detection head enables the model to better adapt to wheat targets in complex scenes. The workflow diagram of the detection head is shown in Figure 6.




Figure 6 | Workflow diagram of the detection head.






3.2.5 Model optimization

This paper proposes an improved model named S-YOLOv5s, which organically combines the ShuffleNetV2, CARAFE, and DyHead methods. The model structure is illustrated in Figure 7, successfully reducing the computational cost and model parameters of the YOLOv5s while enhancing its compatibility with less efficient devices. Among these, the lightweight ShuffleNetV2 network can drastically reduce the model parameters and computational complexity by replacing the backbone network CSPDarknet of YOLOv5s. Meanwhile, the lightweight generalized upsampling algorithm CARAFE is employed to replace the traditional upsampling method in PANet to improve the model detection accuracy of the lightweight network. This substitution results in high-quality feature mappings using a limited number of additional parameters and computational effort. Then, the model incorporates a DyHead attention-based detection head, which introduces relevant attention to the three dimensions of scale, space, and task. It also adjusts the weights of objects at different scales and locations within the space of the model, consolidating the three dimensions of scalability, spatiality, and task into a single dynamic detection head, effectively enhancing model accuracy.




Figure 7 | The network structure of S-YOLOv5s.







3.3 Model performance evaluation

The performance of the wheat ears detection algorithm is evaluated by mAP, coefficient of determination (R2), Floating-Point Operations (FLOPs), Frames per second (FPS). Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The Intersection over Union (IOU) value determines whether the detection box matches the wheat ears bounding box.

Average Precision (AP) is introduced to represent detection accuracy. AP is a metric that measures the accuracy of object detection predictions of the algorithm at different confidence degrees. The higher the AP value, the higher the accuracy of the network. mAP is the average of the AP values for all classifications. Speed is measured by FPS. The calculation for AP, mAP, and FPS as shown in Equations 1–3.

 

 

 

The accuracy of the model detection results was assessed using the coefficient of determination R2, the MAE, and the RMSE metrics. R2 is a statistical measure used to assess the fit performance of a model, with values ranging from 0 to 1. A value closer to 1 indicates a better-fit result. MAE and RMSE are indicators of the error between the predicted and actual values. Smaller MAE and RMSE values indicate smaller errors between predicted and actual values, indicating higher accuracy and performance of the model. The calculation for R2, MAE, and RMSE as shown in Equations 4–6.

 

 

 

where m represents the number of wheat ears images, Sj and Sj respectively denote the manually annotated number of wheat ears and the model-detected count of wheat ears in the j-th image, and Sj represents the average wheat ear number.





4 Results



4.1 Experimental environment

A PyTorch 1.11.0 framework-based experimental environment was used to train a wheat image recognition model. The GPU was an NVIDIA GeForce RTX 3090 with 24 GB of video memory, and the CPU was an AMD EPYC7543 with 80 GB of RAM. CUDA 11.3 and CUDNN 8.2 were used to provide GPU acceleration.

Stochastic Gradient Descent (SGD) was employed as the optimizer throughout the model training, and the starting learning rate was set at 3E-2. The weight decay value was set at 0.937 to manage the complexity and prevent overfitting. Two hundred training epochs (iterative rounds) were conducted using the cosine annealing method for learning rate decay. In each epoch, a batch of 32 photos was utilized for training. By observing the convergence in the training process, the model started to show a convergence trend at close to 180 epochs. There was no overfitting, underfitting or gradient explosion problems in the whole training process, which indicates that the parameter settings used in the training process are appropriate, and the change of loss function is shown in Figure 8.




Figure 8 | The loss function of the improved network S-YOLOv5s based on YOLOv5s.






4.2 Ablation experiments

YOLOv5s is used as the baseline model, and improvement modules are gradually incorporated to assess their effectiveness through ablation experiments. Model performance is evaluated based on average precision, model weights, F1-Score, and computational complexity, as shown in Table 3.


Table 3 | Ablation experiments.



The experiment is divided into three stages to demonstrate the superiority of the S-YOLOv5s model. The ShuffleNetV2 lightweight network structure is incorporated in the first stage to replace the original backbone network. According to the findings, the weight of the model is 2.1 MB, which is 12.4 MB less than the original model weight, its computational volume is 1.9 * 109, which is 14 * 109 less, and its detection accuracy is 92.9%, which is 3.2% less. The results mentioned above demonstrate the effectiveness of the lightweight approach in the target detection task, showing that the model can still maintain high accuracy and strong detection performance. In the second stage, without significantly increasing the number of parameters or computational effort, the lightweight upsampling operator is further introduced to replace the upsampling operator of the neck module. As a result, the weight of the model, the computation, and the detection accuracy increased by 0.2 MB, 0.2 * 109, and 0.5%, respectively. In the third stage, the DyHead was introduced to the head layer, and the weight of the model, the computational load, and the detection accuracy were increased by 0.6 MB, 0.4 * 109, and 1.4%, respectively. The experimental results demonstrate that these optimization strategies successfully raise the performance of the model to a higher level while also contributing to its enhancement.




4.3 Comparison of different detection models

This study conducts comparative experiments with the top three state-of-the-art lightweight models in the current object detection field to demonstrate the effectiveness of the S-YOLOv5s model. Under the same conditions of training, validation, and testing sets, a comparison is made with the YOLOv6n, YOLOv7-tiny, and YOLOv8n models. The results are presented in Table 4.


Table 4 | Comparison of detection results from different models based on the same dataset.



Comparative analysis shows that at an IOU value of 0.5, the mAP of the S-YOLOv5s model reaches 94.8%. The weight of model is merely 2.9 MB, with FLOPs at 2.5 * 109, a parameter quantity of 1.26 * 106, and an FPS of 88. Compared to YOLOv6n, YOLOv7-tiny, and YOLOv8n, S-YOLOv5s has reduced weights by 29%, 24.7%, and 46%, computational load by 22%, 18.9%, and 28%, and parameters by 29.3%, 20.9%, and 41.8%, respectively. In terms of mAP, it decreases by 1.3% and 0.8% compared to YOLOv7-tiny and YOLOv8n, while increasing by 1.4% compared to YOLOv6n. Although S-YOLOv5s has a lower FPS compared to YOLOv6n, YOLOv7-tiny, and YOLOv8n, it still exceeds 30 FPS, making it suitable for real-time detection tasks. The significantly reduced weights, parameter count, and computational load of S-YOLOv5s compared to other advanced lightweight detection models demonstrate the suitability of the lightweight model constructed in this paper for deployment on mobile devices.




4.4 Verifying model effects on different datasets

To validate the robustness, validity, and generalization ability of the model, 25 images from each of the two datasets were selected to form a mixed dataset (Mix). In this paper, the model results were validated in three datasets: the Global Wheat Head Detection (GWHD) dataset, the Experimental Site dataset and the Mixed Dataset. The test results of S-YOLOv5s are shown in Figure 9, and linear regression analysis was used to evaluate the prediction effects of the YOLOv5s, S-YOLOv5s models, as shown in Figure 10.




Figure 9 | The detection counts of S-YOLOv5s were compared with the actual values in three different datasets. TV represents true value and DV represents detection value.






Figure 10 | The linear fitting results of YOLOv5s and S-YOLOv5s for different wheat ears datasets, (A) the GWHD dataset, (B) the experimental site dataset, (C) the mixed dataset.



As shown in Figure 8, both methods demonstrate good testing accuracy across different datasets, and the three evaluation parameters of the constructed fitting curves are quite close. The S-YOLOv5s model exhibits better predictive performance on the experimental site dataset, with R2, MAE, and RMSE values of 0.98, 1.41, and 1.77, respectively. This is possibly due to the high clarity of the images in the experimental field dataset, allowing for more accurate extraction of wheat ears features and edge information. The S-YOLOv5s model shows slightly inferior predictive performance on the public dataset compared to the experimental site dataset, with R2, MAE, and RMSE values of 0.94, 3.01, and 3.53, respectively. The possible reason for this difference could be that the public dataset contains various wheat ears types with significant variations in shape, color, and texture, making it challenging for the model to capture subtle feature differences among them accurately. In addition, some images in the dataset may be blurry, which could lead to unclear edges and details of the target, negatively affecting the accuracy of predictions. Based on the testing results presented in this study, the S-YOLOv5s model achieves a balance between accuracy, reduced computational complexity, and model weights compared to YOLOv5s. Meanwhile, this research expands the dataset range, enhancing the detection performance of the model.





5 Discussion

This study introduces a wheat ears detection method called S-YOLOv5s. Compared to YOLOv5s, S-YOLOv5s experiences a 1.2% reduction in detection accuracy, primarily attributed to the use of a lightweight feature extraction network. While this network offers faster computation and fewer model parameters, it significantly reduces wheat ears feature extraction in complex scenes, potentially leading to instances of missed detections during the process. The size and diversity of the dataset are also crucial factors influencing the training results. Although the model achieved weight reduction by adopting a lightweight feature extraction network, the inference speed and detection speed of S-YOLOv5s did not show significant improvements, likely due to hardware limitations. Moreover, the choice of optimization techniques plays a crucial role in determining the inference speed of the model. Exploring optimization methods such as model quantization, pruning, and hardware acceleration can be considered to further enhance the efficiency of the model.

This study also compares the proposed algorithm against the detection results of other relatively lightweight YOLO structure-based wheat ears recognition studies, as shown in Table 5. Yan et al. (2022) proposed a lightweight self-attention wheat spike detector, LE-SPSANet, which utilized an asymmetric lightweight feature extraction network to reduce model parameters. They also employ the TanhExp activation function to reduce model training time and accelerate inference speed, resulting in a mAP of 94.4%. The model weight is 9 MB, with an FPS of 25. Rui and Yan (2022b) introduced a four-fold downsampling technique in the feature pyramid of YOLOv5 to increase the receptive field and enhance the detection capability for small objects. In addition, they incorporated a Convolutional Block Attention Module (CBAM) model into the neural network, which combines spatial attention and channel attention. This integration aimed to address the issue of gradient vanishing during the training process while simultaneously improving the feature extraction capability. The achieved mAP was 94.3%. Wu et al. (2023) optimized YOLOv7 by incorporating the Global Context Network (GCNet) and the Coordinated Attention (CA) mechanism in the backbone network to effectively utilize wheat characteristics. They introduced the Full-Dimensional Dynamic Convolution (ODConv) design into the network structure, which enhanced the interaction between dimensions and improved the performance of the detection model. The model weight is 40.4 MB, with a mAP of 96.2%.


Table 5 | Comparing with the methods proposed in other wheat spike recognition studies.



Based on the comparative results, the proposed S-YOLOv5s demonstrates higher recognition rates than the LE-SPSANet and attention-based YOLOv5 detection methods. In terms of weight, the LE-SPSANet detection method surpasses S-YOLOv5s by 6.1 MB. Although the detection accuracy of S-YOLOv5s is 1.4% lower compared to the improved YOLOv7, it has significant advantages in weight and detection speed.

In summary, the lightweight wheat ears detection network S-YOLOv5s constructed in this study has improved model efficiency and adaptability to resource-constrained scenarios while maintaining high detection accuracy. In real-time detection scenarios, it can better cope with limited computational resources. The following steps of this research will focus on increasing the size and diversity of the dataset to improve the generalization and detection accuracy of the proposed S-YOLOv5s. The issue of missed detections in complex scenes, such as occlusions might be solved using more advanced feature extraction methods, like incorporating multi-scale feature fusion, to enhance the robustness and generalization ability of S-YOLOv5s. There is still room for optimization in the existing network structure, and other acceleration techniques can be applied to improve the inference and detection speed.




6 Conclusion

This study presents S-YOLOv5s, a lightweight wheat ears detection network based on a modified YOLOv5s architecture. By integrating the ShuffleNetV2 lightweight network to replace the backbone network CSPDarknet of YOLOv5s, the model significantly reduces parameters and computational costs while enhancing feature communication. The use of the lightweight CARAFE usampling operator in this model optimizes traditional upsampling in the PANet, enhancing edge information extraction. The model leverages DyHead, a dynamic target detection head based on an attention mechanism, to enhance feature fusion and detection performance.

The improved lightweight wheat ears detection network, S-YOLOv5s, achieves a mAP of 94.8%, slightly lower than the original YOLOv5s by 1.3%. The model weighs 2.9 MB, has 1.26 * 106 parameters, and performs 2.5 * 109 FLOPs, constituting 20%, 17.3%, and 15.7% of the original YOLOv5s, respectively. The R2 for GWHD and the experimental site are 0.94 and 0.98, respectively. Compared to the original YOLOv5s, S-YOLOv5s only exhibits a slight decrease of 0.01 on the GWHD dataset, demonstrating that the lightweight wheat ears detection model, S-YOLOv5s, still possesses excellent detection performance. This study also compares S-YOLOv5s with three advanced lightweight object detection models, YOLOv6n, YOLOv7-tiny, and YOLOv8n. The results indicate that S-YOLOv5s excels in terms of model weight, parameter count, and computational load. Therefore, S-YOLOv5s is more easily deployable on memory-limited devices with low computational power, enabling mobile and real-time wheat spike recognition tasks without relying on expensive high-performance processing devices. Future research will introduce methods such as model quantization, pruning, hardware acceleration, and knowledge distillation to further optimize the model and enhance its deployment and detection capabilities.
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Plant disease diagnosis with estimation of disease severity at early stages still remains a significant research challenge in agriculture. It is helpful in diagnosing plant diseases at the earliest so that timely action can be taken for curing the disease. Existing studies often rely on labor-intensive manually annotated large datasets for disease severity estimation. In order to conquer this problem, a lightweight framework named “PDSE-Lite” based on Convolutional Autoencoder (CAE) and Few-Shot Learning (FSL) is proposed in this manuscript for plant disease severity estimation with few training instances. The PDSE-Lite framework is designed and developed in two stages. In first stage, a lightweight CAE model is built and trained to reconstruct leaf images from original leaf images with minimal reconstruction loss. In subsequent stage, pretrained layers of the CAE model built in the first stage are utilized to develop the image classification and segmentation models, which are then trained using FSL. By leveraging FSL, the proposed framework requires only a few annotated instances for training, which significantly reduces the human efforts required for data annotation. Disease severity is then calculated by determining the percentage of diseased leaf pixels obtained through segmentation out of the total leaf pixels. The PDSE-Lite framework’s performance is evaluated on Apple-Tree-Leaf-Disease-Segmentation (ATLDS) dataset. However, the proposed framework can identify any plant disease and quantify the severity of identified diseases. Experimental results reveal that the PDSE-Lite framework can accurately detect healthy and four types of apple tree diseases as well as precisely segment the diseased area from leaf images by using only two training samples from each class of the ATLDS dataset. Furthermore, the PDSE-Lite framework’s performance is compared with existing state-of-the-art techniques, and it is found that this framework outperformed these approaches. The proposed framework’s applicability is further verified by statistical hypothesis testing using Student t-test. The results obtained from this test confirm that the proposed framework can precisely estimate the plant disease severity with a confidence interval of 99%. Hence, by reducing the reliance on large-scale manual data annotation, the proposed framework offers a promising solution for early-stage plant disease diagnosis and severity estimation.
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1 Introduction

The agricultural sector can potentially impact the economies of various agrarian countries. In India, the agriculture sector contributes around 18.3% of the country’s Gross Domestic Product, and more than 50% workforce is engaged in agriculture or allied fields (Ministry of Statistics & Programme Implementation, 2023). Furthermore, the agricultural sector’s growth is also essential to fulfill the world’s food demand, which has been increasing exponentially in the past few decades. The growth of the agricultural sector is hindered by many hurdles, and as a result, a sustainable food grain production system is continually being developed by agrarian scientists. Early-stage plant disease detection with its severity estimation is a major challenge in front of agrarian researchers as it hampers both food grain quality and quantity. Moreover, plant disease severity estimation is also necessary for tracking plant diseases and treatment planning. Conventionally, farmers and agricultural scientists do the manual examination of plant leaves to detect the probable disease and then estimate disease severity with their expertise. As a result of technical developments in the computer vision domain, nowadays, plant disease detection and severity estimation, is being done by using computational intelligence techniques and digital leaf images. In computer vision, the problem of detecting plant diseases can be viewed as an image classification task, wherein a Machine Learning (ML) or Deep Learning (DL) model is trained to categorize leaf images as either healthy or diseased based on their visual characteristics. The process of plant disease severity estimation via digital leaf images can be conceptualized in two ways. In the first scenario, plant leaf images can be categorized in various severity scales with the help of plant pathologists. Then, these images can be classified by designing any image classification model based on ML or DL. In the second case, this problem is solved in two steps; initially, the diseased regions are identified by segmenting the corresponding pixels in the leaf image via image segmentation. Subsequently, the disease severity is computed via calculating percentage of diseased pixels out of total leaf pixels.

Nowadays, DL-based models are widely used by researchers for automatic plant disease recognition and severity estimation. However, limited research works are available in the literature on plant disease severity estimation compared to plant disease detection. The existing research works focused on plant disease severity estimation are divided into four broad groups. First group of research works applied various Digital Image Processing (DIP) techniques like image thresholding, Otsu segmentation, etc., to segment out the diseased area from leaf images (Bock et al., 2010; Patil and Bodhe, 2011; Barbedo, 2014; Dhingra et al., 2018). Although these DIP methods can segment the diseased areas from leaf images, but their performance significantly decreases when applied to leaf images captured from the real field with complex backgrounds. Second category of research works done for segmenting diseased areas from plant leaf images is based on ML techniques like Fuzzy C-Means clustering, K-Means clustering, etc., (Biswas et al., 2014; Mwebaze and Owomugisha, 2016; Sethy et al., 2018). Though the results achieved via ML techniques are much better than the DIP techniques, but they suffer from some major drawbacks. K-means clustering is sensitive to hyperparameter initialization, leading to variable segmentation outcomes. Furthermore, Fuzzy C-Means clustering faces high computational complexity and dependence on the fuzziness parameter, requiring careful parameter selection for accurate results. The third category of research works has used DL techniques for plant disease severity identification by classifying the leaf image into one of the severity level classes (Wang et al., 2017; Haque et al., 2022a). Though these works can identify various severity levels of plant disease, but they are unable to quantify the severity of plant disease in percentage. Moreover, classifying leaf images into predefined severity level classes instead of evaluating the severity percentage has various drawbacks, such as limited granularity, subjective interpretation, loss of information, and the inability to track disease changes over time. Assessing the severity percentage provides more detailed information for informed decision-making in plant health management. The fourth type of research works has leveraged various DL segmentation techniques for segmenting the diseased area from leaf images for quantifying plant disease severity in percentage (Chen et al., 2021; Wang et al., 2021a; Pal and Kumar, 2023). However, training these models requires a large amount of annotated leaf images for precise segmentation of disease areas from leaf images, and in the real world, creating such datasets is a very laborious task. Furthermore, training any DL model with a limited amount of annotated leaf images would result in model overfitting. Various researchers have primarily used two types of data augmentation techniques, namely, Digital Image Processing-based techniques (Chohan et al., 2020; Haque et al., 2022b) and Generative Adversarial Networks (Abbas et al., 2021; Zhang et al., 2022) to conquer this problem of limited annotated data. Though these data augmentation techniques can generate an adequate amount of leaf images along with their annotations, but the performance of any model trained on these images drastically decreases when deployed in the real world. Therefore, the advantages of Few Shot Learning, which uses few instances for training, can be leveraged to develop a Machine Intelligence model for plant disease severity estimation.

Conventional ML and DL techniques necessitate a huge annotated dataset for better generalization. However, in the real world, acquiring abundant labeled data requires a lot of human effort. Therefore, FSL techniques are utilized in this research work to conquer this drawback of ML or DL models by using limited labeled data for training. The FSL techniques are based on Meta-Learning or Learning to Learn approaches. These techniques draw inspiration from human developmental theory, which emphasizes the acquisition of priors from past experiences to enhance the effectiveness of learning new tasks. For example, a traditional ML or DL model only tackles individual classification tasks, whereas a Meta-learning-based ML or DL model comprehends the process of acquiring skills for solving classification tasks through exposure to numerous analogous tasks. Hence, when the Meta-learning-based ML or DL model tries to work on a similar but new task, then it can solve the new task quickly and better than a traditional ML or DL model, which has no prior experience in solving this task (Yang et al., 2020). This motivated different researchers to solve many real-world problems by utilizing FSL approaches which require a limited amount of data for training (Wang et al., 2021b; Kumar and Mishra, 2023). Various researchers have also leveraged FSL in the agricultural sector for plant disease recognition with severity estimation (Argüeso et al., 2020; Liang, 2021; Tassis and Krohling, 2022). However, most of these works are either focused only on plant disease detection or identifying plant disease severity by classifying the leaf image into one of the several predefined severity level classes. To the best of our information, none of the existing research works quantify the severity level of plant diseases between 0% to 100% by utilizing few training instances. Hence, in order to bridge this research gap, a lightweight framework named “PDSE-Lite” based on CAE and FSL is proposed in this manuscript for plant disease detection and severity quantification. The major contributions of this paper have been listed below:

	• A few-shot and lightweight framework named “PDSE-Lite” based on CAE and FSL is designed and developed to detect disease presence within leaf images accurately and then precisely segment the diseased pixels for quantifying the plant disease severity in the range of 0% to 100% by using only a few annotated leaf images for training.

	• The PDSE-Lite framework has been trained and tested on an in-field Apple leaf disease dataset (Feng and Chao, 2022) to showcase its pertinence in real-world scenarios. Additionally, the comparison of the proposed framework is done with the existing state-of-the-art models for plant disease recognition and segmentation of diseased areas from leaf images.



The remainder of the paper comprises six sections. Section 2 delves into the pertinent literature related to this research work. Section 3 describes the PDSE-Lite framework, while Section 4 describes the experimentation done in this research. Section 5 provides the results obtained from experimentation, which are further analyzed and discussed in Section 6. Lastly, in Section 7, the conclusion and future perspectives of this research work have been given.




2 Related work

Numerous research works have been done in recent years for automatically diagnosing plant diseases via Machine Intelligence and digital images of plant leaves. The plant disease diagnosis process typically involves two steps: disease detection and severity identification. While there are ample research works available on disease detection, the literature addressing the quantification of plant disease severity is relatively limited. In this section, firstly, the research works focused on plant disease detection are given in subsection 2.1. Subsequently, the research efforts undertaken for plant disease severity estimation are discussed in subsection 2.2.



2.1 Research work focused on plant disease detection

The research pertaining to plant disease recognition is categorized into two groups based on the number of diseases they can identify. First group of research works is based on binary classification, i.e., only identifying whether the leaf image is healthy or diseased. For example, Bedi and Gole (2021a) utilized a combination of CNN and CAE for diagnosing bacterial spot disease in peach plants. In their research work, they achieved 98.38% using only 9914 trainable weight parameters. Another study conducted by Chowdhury et al. (2021) employed EfficientNetB7 model for recognizing diseases in tomato plants. According to their findings, this CNN architecture achieved a testing accuracy of 99.95 ± 0.03 with 95% confidence interval for identifying diseased tomato plant leaves. Kukreja et al. (2021) built a custom CNN model to diagnose disease in potato plants. Their proposed CNN model achieved a testing accuracy of 90.77% in detecting diseased potato plant leaves. In another work, Bedi and Gole (2021b) proposed a novel PlantGhostNet model encompassing Squeeze-and-Excitation and Ghost modules for diagnosing bacterial spot disease of peach plants. Their PlantGhostNet model detected the peach plant’s bacterial sport disease with 99.51% testing accuracy. Classifying plant leaf images to either diseased or healthy class without identifying the specific disease hampers appropriate treatment selection, targeted control measures, understanding disease dynamics, and precise monitoring and tracking. Therefore, researchers are actively developing machine intelligence models that not only identify the presence of disease but also focus on accurately identifying diseases affecting plants. Nigam et al. (2023) evaluated the performances of eight variants of EfficientNet model to diagnose diseases in wheat plants. The authors of this paper concluded that the EfficientNet-B4 variant achieved highest accuracy among other variants, i.e., 99.35%. The research work done by Shewale and Daruwala (2023) proposed a novel custom CNN architecture for identifying nine diseases of tomato plants. As reported by the authors, their model achieved higher accuracy than other predefined CNN architectures with 99.81% accuracy. Gole et al. (2023) proposed a modified lightweight Vision Transformer (ViT) model named “TrIncNet” to identify plant diseases. They evaluated the TrIncNet model’s performance on Maize dataset (comprising in-field healthy and diseased leaf images of Maize plants) and PlantVillage dataset. As per their paper, the TrIncNet model achieved 96.93% and 99.93% testing accuracy on Maize and PlantVillage datasets, respectively.

Furthermore, the research works present in the literature are majorly divided into two categories based on the technology used to build Machine Intelligence models for plant disease detection. First type of research works are based on ML models like K-Nearest Neighbor (KNN), Decision Tree, etc. Ramesh et al. (2018) employed the Histogram of an Oriented Gradient algorithm to extract various important features from leaf images. Then, they trained various ML algorithms like Naïve Bayes classifier, Logistic Regression, etc., with these extracted features to identify plant diseases accurately. According to their paper, the Random Forest classifier outperformed others with 70.14% accuracy. In another research work, Tulshan and Raul (2019) designed and developed an ML-based framework for automatically recognizing plant diseases. Their proposed framework first extracts essential features by computing Gray-Level-Cooccurrence Matrix (GLCM) from leaf images. Thereafter, they applied the KNN classifier for identifying plant diseases. Sujatha et al. (2021) analyzed the potential of various traditional ML techniques and CNN models in detecting plant disease by their leaf images. As per their paper, the VGG-19 CNN model outperformed other ML methods with a testing accuracy of 89.5%. This outperforming nature of CNN models over traditional ML models can be argued on the fact that the ML techniques have two major shortcomings. Firstly, they cannot extract different spatial features automatically from leaf images, and secondly, they are not developed in a way that they can use Graphic Processing Units (GPUs) for faster training. These drawbacks of ML techniques are conquered through DL techniques. Therefore, various researchers tried to use DL techniques, particularly CNN, for automatically detecting plant diseases via their digital leaf images. For example, Bedi et al. (2021) experimented with five popular predefined CNN architectures (AlexNet, LeNet5, GoogLeNet, VGG16, and ResNet50) to evaluate their performance in identification of bacterial spot disease of peach plants. As per their paper, the AlexNet CNN model outperformed other models with 98.5% testing accuracy. In another work, Atila et al. (2021) trained an EfficientNet model on the PlantVillage dataset to detect plant diseases, and it achieved 99.91% testing accuracy. Zhao et al. (2023) presented a novel self-supervised contrastive learning-based plant disease detection framework with the advantage of domain adaption. Their proposed method addresses the challenges faced in plant leaf disease identification by using self-supervised learning with large-scale unannotated dataset for pre-training, followed by fine-tuning with domain adaptation. It achieved improved performance by aligning labeled and unlabeled data, resulting in more general visual representations and achieving a high accuracy of 90.52%.

Although the abovementioned research works can accurately detect plant diseases, but all these ML or DL models necessitate huge amount of labeled data to get high accuracy. Nevertheless, in the real world, creating such dataset is very laborious task. Moreover, training these models with limited annotated data can lead to model overfitting problem. In order to address this issue, researchers have predominantly employed two types of data augmentation techniques, namely, image processing-based techniques and GANs. Although these techniques can produce a sufficient number of annotated leaf images, but models trained on such data exhibit significant performance degradation when deployed in the real world. Therefore, various researchers leveraged the advantages of FSL and developed different DL models for plant disease recognition with limited training data. For example, Argüeso et al. (2020) developed an FSL framework based on transfer learning to recognize plant diseases. In order to train their proposed FSL framework, they used the PlantVillage dataset comprising of digital plant leaf images distributed in 38 classes. They divided the PlantVillage dataset into source and target domain, which encompasses of 32 and 6 classes, respectively. They first trained an InceptionV3 CNN model on the source domain and transferred this trained knowledge to learn the features of leaf images present in the target domain. Their proposed model achieved 94% and 91% testing accuracy in target and source domains, respectively. A similar kind of work was also done by Garg and Singh (2023). They trained the MobileNetV2 model and achieved 75.3% accuracy when it was trained with only one image per class in the target domain. Whereas the maximum accuracy claimed in the paper, i.e., 98.17%, is achieved when the model is trained on 100 images per class in the target domain. In the subsequent section, the research works focused on plant disease severity estimation are discussed.




2.2 Research work focused on plant disease severity identification

In the literature, researchers have done the plant disease severity estimation using two approaches. In first approach, plant leaf images are classified into predefined severity levels by training any image classification model based on ML or DL techniques. The severity levels are defined with the assistance of plant pathologists. Most of the research works present in the literature based on the first approach have leveraged various predefined CNN models to classify leaf images into various severity levels. For example, Liang et al. (2019) built a PD2SE-Net CNN model by combining ShuffleNetV2 and ResNet units for plant disease detection and severity estimation. They trained their proposed model on a manually annotated PlantVillage dataset (plant pathologists manually divided diseased leaf images into general and serious severity classes) and achieved 90.81% accuracy. Similarly, Zhao et al. (2021) also trained their proposed models named SEV-Net on manually annotated PlantVillage dataset for plant disease recognition with severity estimation. The SEV-Net model was built via adding Spatial and Channel Attention blocks in the existing ResNet-50 CNN architecture, and it achieved 95.37% testing accuracy. Some researchers like Haque et al. (2022a), Shu et al. (2023), and Dhiman et al. (2022) trained various state-of-the-art CNN models for classifying plant leaf images into one of the predefined disease severity levels on their own collected in-field leaf images. Verma et al. (2023) established a disease severity estimation framework named for early and late blight diseases in tomato plants. They first captured digital photographs of several infected and healthy tomato plants. Thereafter, these captured leaf images are manually categorized into three severity levels (Early, Middle, Late) with the assistance of agricultural scientists. The MobileNetV2 CNN model was utilized in this research work, and it achieved 94.47% accuracy.

Estimating plant disease severity via first approach, i.e., classifying plant leaf images into predefined severity levels, has various drawbacks, such as limited granularity, subjective interpretation, loss of information, and the inability to track disease changes over time. Thus, in order to conquer these drawbacks, researchers tried to estimate plant disease severity using another approach where plant disease severity is estimated in two steps. In this approach, first, the diseased regions are detected by segmenting the corresponding pixels in the leaf image using image segmentation methods. After that, the disease severity is estimated between 0% and 100% by computing the percentage of diseased pixels out of total leaf pixels. In literature, this approach was followed in several research works like (Wspanialy and Moussa, 2020; Wang et al., 2021a; Ji and Wu, 2022; Divyanth et al., 2023). These research works utilized U-Net and DeepLab-based image segmentation models for segmenting disease pixels from leaf images to further compute disease severity as the percentage of diseased pixels present out of total leaf pixels. In another research work (Pal and Kumar, 2023) built a novel AgriDet model by using the Inception-VGG Network model along with the Kohonen Learning layer for plant disease detection, and it achieved 96% validation accuracy, as claimed in the paper. Furthermore, the Multi-Variate-Grabcut algorithm was also utilized for segmenting the diseased lesions from leaf images. Thereafter, the percentage of diseased pixels out of total leaf pixels was calculated to measure plant disease severity.

Despite of high performance exhibited by aforementioned research works in segmenting diseased areas from leaf images, their training process requires a huge amount of labeled leaf images to precisely segment the disease areas from leaf images. However, in real-world scenarios, creating such datasets is a very challenging and laborious task. Additionally, when training an ML or DL model using limited labeled leaf images, there is a high risk of model overfitting. To address this issue, researchers have predominantly employed two types of data augmentation techniques in their work: image processing-based techniques and Generative Adversarial Networks. These techniques alleviate the problem by artificially generating leaf images with their corresponding segmentation masks. However, the performance of models trained on these artificially generated images significantly decreases when deployed in real-world scenarios. Therefore, various researchers have leveraged the advantages of FSL to develop and train a DL model for plant disease severity quantification only with a few instances for training. For example, (Pan et al., 2022) proposed a two-stage severity estimation framework for leaf scorch disease of strawberry plants using FSL. In the first phase, they utilized the faster RCNN segmentation model to segment strawberry leaves from the captured image, encompassing other objects like mud, plant stems, etc. Afterward, they applied the Siamese Network to classify the leaf images into either healthy, serious scorch, or general scorch severity levels. In order to test their proposed framework on unseen data, they evaluated the model’s performance on 60 new strawberry plant leaf images and claimed that their framework achieved 88.33% accuracy on these images. (Tassis and Krohling, 2022) presented a case study on two FSL techniques, i.e., triplet networks and prototypical networks, which were applied to estimate severity in coffee plant leaves. Moreover, they reported that these FSL techniques achieved 93.25% accuracy in classifying coffee plant leaf images into one of the five severity levels: Very High, High, Low, Very Low, Healthy. Although, (Pan et al., 2022; Tassis and Krohling, 2022) developed a state-of-the-art framework via FSL for estimating the severity of plant diseases, but these research works suffer from a major drawback that they cannot measure the exact amount of disease severity between 0% to 100%. Furthermore, there is still a scope for performance improvement in the aforementioned frameworks, as they have achieved 88.33% and 93.25%, respectively.

Conclusively, it can be observed from the above discussion and Table 1 that most of the aforementioned research works are either focused on only detecting plant diseases or they estimated plant disease severity via classifying diseased leaf images into one of the several predefined severity levels. Though few works also focus on plant disease severity estimation via computing the percentage of diseased pixels out of total leaf pixels present in any leaf image, but they necessitate a huge amount of labeled leaf images for model training so that it could generalize well on new leaf images. However, annotating huge number of leaf images is a very challenging and laborious task. Thus, the objective of this research work is to design and develop an effective and efficient framework for automatically estimating the severity of plant disease between 0% and 100% using few training samples. Hence, a novel few-shot and lightweight framework named “PDSE-Lite” based on CAE and FSL has been proposed in this research work for diagnosing plant diseases automatically and estimating the severity of identified disease between 0% and 100%. As the proposed framework leveraged the advantages of FSL, and thus, it utilizes only a few training samples for training. Hence, in this way, the proposed framework significantly reduces the human efforts required for annotating leaf images. The next section of this manuscript describes the proposed PDSE-Lite framework.


Table 1 | Summary of some of the existing research works done for automatic plant disease severity estimation.







3 Proposed PDSE-Lite framework

This paper proposes a few-shot and lightweight framework named “PDSE-Lite” based on CAE and FSL for automatic plant disease detection and severity quantification. The PDSE-Lite framework’s flow diagram has been given in Figure 1. The motivation to build such type of framework comes from the hypothesis that if a DL model (i.e., CAE) can reconstruct leaf images from original leaf images with minimal information loss, then leveraging its learned knowledge will enable the development of DL models for detecting plant diseases and segmenting disease areas from leaf images using limited training data. Thus, in order to design the PDSE-Lite framework, first, a lightweight CAE model has been designed and trained to reconstruct the leaf images from original leaf images with minimum reconstruction loss. Thereafter, in second stage, a few-shot image classification and segmentation models are built by utilizing the pre-trained layers of the CAE model to detect plant diseases and segment diseased areas from leaf images, respectively. The details of these models have been provided in subsections 3.1, 3.2, and 3.3. After training the few-shot image classification and segmentation models, these models are further utilized in the testing or inference stage to detect plant diseases and estimate the severity of identified diseases by computing the percentage of diseased pixels out of total leaf pixels.




Figure 1 | Flow diagram of proposed PDSE-Lite framework’s training and testing phase.





3.1 Lightweight Convolutional Autoencoder (CAE)

The first stage of proposed PDSE-Lite framework focuses on learning to reconstruct the leaf images from original leaf images with minimum reconstruction loss, and this learning has been done via training a lightweight CAE model. The Convolutional Autoencoder (CAE) is a type of Autoencoder which effectively and efficiently deals with image data as compared to other types of Autoencoders. Like other Autoencoders, CAE also encompasses of one encoder block, bottleneck layer, and decoder block. The encoder block of CAE captures different spatial features of leaf images with the help of multiple convolutional and downsampling (max-pooling) layers and encodes them to a compressed domain representation. This compressed domain representation is stored in the bottleneck layer of CAE, and it comprises of all essential features which are further used by the decoder block of CAE to reconstruct leaf images with minimum reconstruction loss. The decoder block of CAE comprises of same number of layers as of encoder block but in reverse order and upsampling layers are utilized instead of downsampling (max-pooling) layers (Bedi and Gole, 2021a). The CAE model’s encoder block used in this research work comprises of three convolutional layers, each succeeded by a max-pooling layer that decreases the feature map’s spatial dimensionality via factor of two. Similarly, the decoder block of the CAE model also encompasses of three convolutional layers, each preceded by an UpSample layer, which increases the feature map’s spatial dimensionality via factor of two (Bedi and Gole, 2021a). The architectural diagram of CAE model utilized in the PDSE-Lite framework’s first stage has been shown in Figure 2, and its implementation details are given in Supplementary Table 1. This model has been trained via the Backpropagation algorithm to minimize the Normalized Root Mean Squared Error (NRMSE) reconstruction loss (Feng et al., 2015). The mathematical formula to compute the NRMSE loss (denoted by  ) between   input leaf image   and reconstructed leaf image   has been given in Equation 1, where   represents total number of leaf images,   and   represent maximum and minimum values of any pixel present in leaf images (i.e., 255 and 0), respectively.




Figure 2 | Architectural diagram of the CAE model.



 




3.2 Few-shot image classification model for detecting diseases from leaf images

During second stage of the PDSE-Lite framework, a few-shot image classification model is designed and developed to identify diseases in plants by using their leaf images. This model encompasses of pretrained encoder block and bottleneck layer of CAE model discussed in subsection 3.1. Furthermore, a classification block is appended ahead of the CAE’s pretrained bottleneck layer in order to fine-tune this model for plant disease recognition. The classification block comprises of two convolutional layers, one max-pooling, global-average-pooling, and dense layers. The architectural design of this model has been shown in Figure 3, and its implementation details are given in Supplementary Table 2. The training of this model has been done on few training instances using the Backpropagation algorithm, which minimizes the categorical crossentropy loss (denoted by  ) between predicted labels   and actual labels   of leaf images. The mathematical formula of categorical crossentropy loss, i.e.,   is shown in Equation 2, where   represents number of instances taken into account,   denotes the predicted label of   instance, and   represents the actual label of   instance.




Figure 3 | Architectural design of few-shot image classification model used for detecting diseases from leaf images.



 




3.3 Few-shot image segmentation model for segmenting disease areas from diseased leaf images

In order to estimate the severity of detected plant disease via the few-shot image classification model described in section 3.2, a few-shot image segmentation model has been designed and implemented for segmenting disease areas from leaf images. This model encompasses of pretrained CAE (described in subsection 3.1) and segmentation block. In the segmentation block, first, the output features maps of pretrained bottleneck, Conv2D #5, and Conv2D #6 layers are upsampled by a factor of 8, 4, and 2, respectively. Thereafter, these up-sampled feature maps have been concatenated channel-wise. By this concatenation, all features extracted by different convolutional layers of the CAE model’s decoder block are merged to form a combined feature map. Subsequently, this combined feature map is passed to three stacked convolutional layers having 12, 6, and 3 filters, respectively. The last convolutional layer, which has three filters, acts as an output layer that generates the segmentation mask for a given leaf image. Each pixel of this segmentation mask can have either of three values, i.e., 0 is for the background, 1 is for leaf pixels, and 2 is for diseased pixels. Furthermore, the architectural design of few-shot image segmentation model is depicted in Figure 4, and its implementation details have been given in Supplementary Table 3.




Figure 4 | Architectural design of few-shot image segmentation model used to segment diseased areas from leaf images.



This few-shot model for segmenting disease areas from leaf images has been trained on few leaf images from diseased classes of the ATLDS dataset, as its output is only needed when the leaf images are classified into any diseased class. This model is also trained using the Backpropagation algorithm, which minimizes the sum of categorical cross-entropy loss ( ) and jaccard loss ( ) between predicted and ground truth segmentation masks. The mathematical formulas for   and   are given in Equations 3, 4 correspondingly. In these equations,   and   represents predicted and ground truth segmentation masks for   leaf image, respectively. Furthermore,   denotes the number of instances taken into consideration.

 



The flow of plant disease diagnosis and severity quantification through the proposed framework is given in the testing or inference stage of Figure 1. It can be observed from this figure that, in order to diagnose disease in a symptomatic leaf image, first, it is passed through the trained few-shot image classification model, which classifies the given leaf image into either healthy or one of diseased classes. If the given leaf image is classified as diseased, then only it is passed to the few-shot image segmentation model, which generates its segmentation mask. This segmentation mask encompasses of three values, i.e., 0 is for background, 1 is for leaf pixels, and 2 is for diseased pixels. After getting the segmentation mask from the few-shot image segmentation model, the disease severity is calculated via computing the percentage of diseased pixels present in the given leaf image out of the total leaf pixels. The formula to compute the disease severity with the help of predicted segmentation mask has been given in Equation 5. In next section, the experimentations performed in this research work have been discussed.







4 Experimental study

The Apple-Tree-Leaf-Disease-Segmentation (ATLDS) dataset is utilized in this research work to test the applicability of PDSE-Lite framework. The description of ATLDS dataset has been given in subsection 4.1, and in subsection 4.2, details of experimentations done in this research work have been provided.



4.1 Dataset description

In this manuscript, the ATLDS dataset (Feng and Chao, 2022) has been employed to test the effectiveness of PDSE-Lite framework in detecting plant diseases with severity estimation. This dataset comprises of healthy and four types of diseased apple tree leaf images, i.e., Alternaria Leaf Spot, Brown Spot, Gray Spot, and Rust. The leaf images of ATLDS dataset were captured under varying degrees of disease, with approximately 51.9% acquired in controlled laboratory settings and 48.1% collected from real cultivation fields. These images were gathered across varied weather conditions and different times of the day. Furthermore, this dataset comprises of annotated segmentation masks corresponding to each leaf image of this dataset. Few leaf images from each class of the ATLDS dataset, along with their annotated segmentation masks, are given in Figure 5, and their class-wise distribution is presented in Table 2.




Figure 5 | Leaf images representing each class within ATLDS dataset, along with their annotated segmentation masks. The black, green, and red colors in segmentation masks represent the background, leaf, and diseased pixels, respectively.




Table 2 | Class-wise distribution of ATLDS dataset.






4.2 Experimental setup

This research work involves utilizing the Nvidia DGX Server, which has been equipped with an Intel Xeon CPU, 528 Gigabytes of RAM, and NVidia Tesla V100-SXM2 32 Gigabyte GPU, to conduct experiments. The scripts for the experimentation are written in the Python programming language, although other programming languages can also be used for experimentation. Furthermore, the models of proposed framework are implemented using the Keras library, which is embedded in Tensorflow 2.6.0. The proposed framework has been designed and implemented in two stages. In first stage, a lightweight CAE model has been built to reconstruct leaf images from the original leaf images with minimum reconstruction loss, and subsection 4.2.1 provides the details of the experimentation done to train and test this model. Moreover, in the second stage, a few-shot image classification and segmentation models are developed to identify plant diseases and segment diseased areas from symptomatic leaf images. The details of experimentation done to train and test these models are given in subsections 4.2.2 and 4.2.3.



4.2.1 Experiment 1: training CAE model of the PDSE-Lite framework

In first stage of the PDSE-Lite framework, a lightweight CAE model is designed and developed to reconstruct leaf images from original leaf images with minimal reconstruction loss. In order to train this model, the ATLDS dataset’s leaf images are randomly arranged into training, validation, and testing subsets with 70:15:15 ratio of sizes. The details of leaf images present in training, validation, and testing subsets are given in Supplementary Table 4. This model is trained via Adam optimizer to minimize the NRMSE reconstruction loss (defined in Equation 1). During training of the CAE model, the batch size has been kept as 32, and number of epochs are 500. Furthermore, the Rectified Linear Units (ReLU) activation function is applied on every convolutional layer of the CAE model. In order to prevent this model from overfitting, the Earlystopping callback of Keras has been utilized with patience value of 20. The values of these hyperparameters have been obtained through extensive experimentation.




4.2.2 Experiment 2: training few-shot image classification model of the PDSE-Lite framework for plant disease detection

In second stage of the PDSE-Lite framework, a few-shot image classification model has been developed to detect plant diseases through their digital leaf image. To assess this model’s ability toward identifying plant disease with limited training data, it has been trained on  -training-samples per class of ATLDS dataset, where  . Furthermore,   and   leaf images from different classes of dataset have been utilized for validating and testing the few-shot image classification model, where   is the number of leaf images present in   class. This model is trained for 100 epochs with a batch size of   to minimize categorical crossentropy loss (defined in Equation 2) using the Adam optimizer, and the ReLU activation function is utilized in every convolutional layer of the model. Additionally, Early stopping callback of Keras with patience value 10 is applied during model training to prevent it from overfitting. Extensive experimentation has been conducted to determine the values of the aforementioned hyperparameters. This model’s performance is compared with eight different state-of-the-art CNN architectures, i.e., MobileNetV2 (Sandler et al., 2018), InceptionV3 (Szegedy et al., 2016), GoogLeNet (Szegedy et al., 2015), Xception (Chollet, 2017), ResNet-50 (He et al., 2016), NASNetMobile (Zoph et al., 2018), EfficientNetV2B0 (Tan and Le, 2021), and ConvNeXtTiny (Liu et al., 2022).




4.2.3 Experiment 3: training few-shot image segmentation model of the PDSE-Lite framework to segment diseased areas from diseased leaf images

In order to quantify the severity of detected plant disease between 0% to 100%, a few-shot image segmentation model has also been implemented in second stage of the PDSE-Lite framework. This model has been trained on  , leaf images from the dataset’s diseased classes, as its output is only needed when a leaf image is classified into one of the diseased class by the few-shot image classification model described in section 3.2. On the other hand, remaining   and   leaf images from different diseased classes of the ATLDS dataset divided into validation and testing subsets, respectively. Furthermore, this few-shot image segmentation model has also been trained with a batch size of   for 100 epochs to minimize the sum of   and   (defined in Equations 3, 4) via Adam optimizer. Early stopping callback with patience value 10 is applied during model training to stop the model from overfitting. The performance of this few-shot image segmentation model has been compared with U-Net3+ (Huang et al., 2020) and DeepLabV3+ (Chen et al., 2018) image segmentation models using MeanIoU and Dice-Score metrics. The mathematical formulas of MeanIoU and Dice-Score metrics have been given in Equations 6, 7, respectively. In these equations,  , and   represents predicted and ground truth segmentation masks for   leaf image, respectively. Additionally,   denotes the number of instances taken into consideration. In this section, the experimental details of the research work are discussed, and in the next section, the experimental results obtained from the experimentation are presented.










5 Experimental results

In this research work, a few-shot and lightweight framework named “PDSE-Lite” has been designed and developed for detecting plant diseases and estimating the severity of identified disease by utilizing digital plant leaf images. During the first stage of the proposed framework’s development, a lightweight CAE model is built, which aims to learn reconstructing leaf images from original leaf images without losing much information. This CAE model’s training, validation, and testing results have been given in subsection 5.1. In the second stage of proposed framework’s development, a few-shot image classification and segmentation models are implemented. The results obtained from the training, validation, and testing phases of these models have been provided in subsections 5.2 and 5.3, respectively. In subsection 5.4, an ablation study to test the significance of pre-trained CAE model has been presented. Moreover, subsection 5.5 provides the statistical analysis of the proposed PDSE-Lite framework.



5.1 Results obtained from experiment 1

During the first phase of proposed framework’s development, a lightweight CAE model is trained to reconstruct the leaf images from the original leaf images without losing much information. In order to ensure this, the CAE model has been trained to minimize the NRMSE loss (defined in Equation 1) between original and reconstructed leaf images. The trend of CAE model’s training and validation NRMSE loss w.r.t. the number of epochs is shown in Figure 6. It can be seen from this figure that both training and validation NRMSE loss of the CAE model have been reduced to 0.002746 and 0.002851 till the end of 500th epoch. Whereas the value of NRMSE loss obtained on the test subset of ATLDS dataset is 0.003. Furthermore, few leaf images and their reconstructed images from each class of the ATLDS dataset using the CAE model have been given in Figure 7.




Figure 6 | Trend of CAE model’s training and validation NRMSE loss.






Figure 7 | Few leaf images and their reconstructed images from each class of ATLDS dataset using the CAE model of PDSE-Lite framework.






5.2 Results obtained from experiment 2

In the second stage of proposed framework’s development, a few-shot image classification model is implemented to diagnose plant diseases through their leaf images. This model’s performance has been evaluated on the ALTDS dataset’s test subset via accuracy, precision, recall, and f1-measure. The comparison of these metrics for different values of   are given in Figure 8. It can be seen by this figure that the 2-shot image classification model has attained 98.35% accuracy and 98.30% f1-measure on the dataset’s test subset. Moreover, the performances of the 3-Shot, 4-Shot, and 5-Shot models are comparable to the 2-Shot model. Therefore, the 2-Shot image classification model has been employed in the PDSE-Lite framework to detect plant diseases, as it requires a minimum number of leaf images for training.




Figure 8 | Accuracy, precision, recall, and f1-measure of various few-shot image classification models used to detect plant diseases by visualizing their digital leaf images.



The performance of PDSE-Lite framework’s 2-Shot image classification model on the validation subset of the ATLDS dataset has been compared with eight CNN architectures via validation accuracy and loss. The variation of validation accuracy and loss w.r.t. number of epochs for these models has been depicted in Figure 9), respectively. It can be observed from these figures that the 2-Shot image classification model has achieved maximum accuracy and minimum loss, i.e., 98.49% and 0.03, respectively. Furthermore, ResNet-50 achieved minimum accuracy and maximum loss, i.e., 71.40% and 0.91, correspondingly, among other models.




Figure 9 | Trend of validation accuracy and validation loss for the 2-Shot image classification model of PDSE-Lite framework and the eight different CNN architectures.



In order to examine the 2-Shot model of PDSE-Lite framework more thoroughly, its performance on the ATLDS dataset’s test subset is compared with eight CNN architectures via accuracy, precision, recall, and f1-measure. The scores of these metrics for the 2-Shot image classification model of PDSE-Lite framework and eight CNN architectures are given in Figure 10. It can be perceived from this figure that the 2-Shot image classification model of PDSE-Lite framework outperformed other CNN architectures with 98.35% testing accuracy and 98.30% f1-measure. In addition, GoogLeNet, InceptionV3, Xception, MobileNetV2, NASNetMobile, and EfficientNetV2B0 achieved comparable performance. On the other hand, ResNet-50 and ConvNeXtTiny attained minimum values for the aforementioned metrics.




Figure 10 | Accuracy, precision, recall, and f1-measure of 2-Shot image classification model of PDSE-Lite framework and eight CNN models on ATLDS dataset’s test subset.



In order to examine the lightweight nature of the 2-Shot image classification model, the number of trainable weight parameters employed in this model and eight other state-of-the-art CNN architectures have been compared in Table 3. It can be perceived from Table 3 that the 2-Shot image classification model requires the least trainable weight parameters, i.e., 8749, among other CNN architectures. Furthermore, ResNet-50 and ConvNeXtTiny architectures utilized comparable trainable weight parameters. The predictions obtained from the 2-Shot image classification model for some sample leaf images representing each class within the ATLDS dataset, along with their ground truth labels, have been given in Figure 11. It can be perceived from this figure that 2-Shot image classification model correctly identifies the healthy and diseased classes by visualizing the given leaf images.


Table 3 | Number of trainable weight parameters employed in 2-Shot image classification of PDSE-Lite framework and eight CNN architectures.






Figure 11 | Predictions obtained from the 2-Shot image classification model of PDSE-Lite framework for some sample leaf images from each class of ATLDS dataset, along with their ground truth labels.






5.3 Results obtained from experiment 3

The model described in section 3.2 only identifies the disease occurrence in a given leaf image. However, it does not quantify the severity of identified disease between 0% to 100%. Thus, a few-shot image segmentation model has also been implemented in second stage of the PDSE-Lite framework’s development. The evaluation of this model has been done on the test subset of the dataset with the help of two widely used evaluation metrics: MeanIoU and Dice-Score, shown in Equations 6, 7. The score of these metrics for different   values is given in Figure 12. It can be perceived from this figure that the results obtained for   are comparable. Thus  , i.e., the 2-Shot image segmentation model has been further used in the proposed framework to segment the diseased from leaf images, as it uses minimum leaf images per class in model training.




Figure 12 | MeanIoU and Dice-Score of various few-shot image segmentation models used to segment plant diseases areas from leaf images.



The performance of the 2-Shot image segmentation model of PDSE-Lite framework has also been evaluated on the validation subset of dataset with the help of validation MeanIoU and validation loss. Furthermore, this model’s performance has been compared with DeepLabV3+ and U-Net3+ image segmentation models. The plot of validation MeanIoU and loss w.r.t. number of epochs for the 2-Shot image segmentation model along with the U-Net3+ and DeepLabV3+ models is given in Figure 13, respectively. It can be perceived from these figures that the 2-Shot image segmentation model of PDSE-Lite framework outperformed U-Net3+ and DeepLabV3+ models by achieving the highest validation MeanIoU score, i.e., 94.87% and least validation loss, i.e., 0.09. On the other hand, U-Net3+ and DeepLabV3+ models achieved comparable performances.




Figure 13 | Plot of validation MeanIoU and validation loss for the 2-Shot image segmentation model of PDSE-Lite framework along with U-Net3+ and DeepLabV3+ models.



The performance of the 2-Shot image segmentation model has also been compared with the U-Net3+ and DeepLabV3+ model on the test subset of ATLDS dataset using MeanIoU and Dice-Score. This comparison is shown via a bar graph in Figure 14. It can be perceived from Figure 14 that the 2-Shot image segmentation model outperformed the DeepLabV3+ and UNet3+ models on the test subset also by attaining 94.54% and 97.59% MeanIoU score and Dice-Score, respectively. In order to measure the lightweight nature of 2-Shot image segmentation model, its number of trainable weight parameters is compared in Table 4 with the trainable weight parameters used by U-Net3+ and DeepLabV3+ models. It can be observed from Table 4 that the 2-Shot image segmentation model uses significantly fewer trainable weight parameters, i.e., 7223. The predicted segmentation masks for some sample leaf images from each diseased class of dataset and ground truth segmentation masks have been given in Figure 15. Furthermore, the severity percentages obtained from predicted and ground truth segmentation masks have been computed and written above the segmentation masks. It can be seen from Figure 15 that predicted and ground truth masks are looking very similar to each other. In addition, the severity percentages computed for these segmentation masks are also comparable, which confirms the effectiveness of the proposed framework in identifying and quantifying plant diseases in the real world.




Figure 14 | MeanIoU and Dice-Score of 2-Shot image segmentation model of PDSE-Lite framework, U-Net3+, and DeepLabV3+ models.




Table 4 | Number of trainable weight parameters used by 2-Shot image segmentation model, U-Net3+, and DeepLabV3+ models.






Figure 15 | Predicted segmentation masks for some sample leaf images from each diseased class of dataset along with ground truth segmentation masks. The severity percentage obtained from predicted and ground truth segmentation masks have been written above the segmentation masks.






5.4 Ablation study to test the significance of pretrained CAE model

In order to test the significance of pretrained CAE model in the 2-Shot image classification and 2-Shot image segmentation models of PDSE-Lite framework, these models are also trained without utilizing the pre-trained CAE model. The results obtained from this experiment on test subset of ATLDS dataset have been tabulated in Table 5 along with the results of 2-Shot image classification and 2-Shot image segmentation models of PDSE-Lite framework in which the pre-trained CAE model is employed.


Table 5 | Results obtained with and without utilizing the pre-trained CAE model in the 2-Shot image classification and 2-Shot image segmentation models of PDSE-Lite framework.






5.5 Statistical analysis of PDSE-Lite framework

The applicability of PDSE-Lite framework in estimating plant disease severity has also been tested using statistical hypothesis testing via the Student t-test on the severity values obtained for ground truth and predicted segmentation masks. The t-test has been utilized to test the null hypothesis, which states that the severity values calculated by the PDSE-Lite framework are very similar to the severity values obtained by ground truth segmentation masks. The paired t-test with two samples for means assuming unequal variance is employed in this research work to test the null and alternate hypothesis given in Equations 8, 9, respectively.

 

 

where,   mean of disease severity values obtained from ground truth segmentation masks   mean of disease severity values obtained from predicted segmentation masks.

During experimentation, the probability   value is computed for the t-test at  , i.e., if the obtained   value is lesser than 0.01, then the null hypothesis ( ) is rejected, and the alternate hypothesis is accepted with 99% confidence. After analyzing the experimental results of the t-test,   value for the t-test is obtained as 0.008, which is lesser than 0.01. Thereby, the null hypothesis is rejected, and the alternate hypothesis is accepted with 99% confidence. Hence, this showcases the applicability of PDSE-Lite framework in precisely estimating plant disease severity. The next section of the paper discusses the results presented in this section.





6 Discussion

Plant disease detection with severity estimation is still a prominent challenge in agricultural research. The majority of research works present in the literature utilized large amount of manually annotated plant leaf images to train an ML or DL model for plant disease severity estimation (Wspanialy and Moussa, 2020; Wang et al., 2021a; Ji and Wu, 2022). However, annotating large amount of leaf images is laborious and time-consuming. Therefore, in this research work, a few-shot and lightweight framework named “PDSE-Lite” based on CAE and FSL has been proposed to reduce the reliance on large-scale manually labeled datasets and offer a promising solution for early-stage plant disease detection with severity estimation. The proposed framework is designed and developed in two stages. In the first stage of proposed framework’s development, a lightweight CAE model (Bedi and Gole, 2021a) is built and trained to efficiently reconstruct leaf images from original leaf images with minimal reconstruction loss. The layers of pretrained CAE model are then utilized to build a few-shot image classification and segmentation models. These models are subsequently trained with a limited number of leaf images to accurately detect plant diseases and precisely segment the diseased regions from leaf images for severity estimation. Thereafter, the disease severity is calculated by computing the percentage of diseased leaf pixels obtained through segmentation out of the total leaf pixels.

To assess the PDSE-Lite framework’s applicability, it is trained and tested on ATLDS dataset comprising of diseased and healthy leaf images of apple trees along with their segmentation masks. Experimental results revealed that the CAE model used in the first phase of proposed framework’s development can reconstruct the given leaf images from original leaf images without losing much information, as very low value of NRMSE loss, i.e., 0.003, is obtained during experimentation (discussed in section 5.1). In this research work, five variants of the few-shot image classification and segmentation models have been implemented and trained on   leaf images representing each class within ATLDS dataset. Further, these variants are referred as 1-Shot, 2-Shot, 3-Shot, 4-Shot, and 5-Shot image classification and segmentation models, respectively. It can be observed from Figures 8, 12 that 2-Shot, 3-Shot, 4-Shot, and 5-Shot variants of few-shot image classification and segmentation models have achieved comparable performances. Thus, out of these variants, the 2-Shot variant of image classification and segmentation models is exploited in the proposed PDSE-Lite framework to identify plant diseases from leaf images and segment diseased areas from leaf images, as it uses the minimum leaf images for training. The performance of the 2-Shot image classification model of PDSE-Lite framework is compared with eight CNN architectures, and it is found that the 2-Shot image classification model outperformed other CNN architectures by achieving 98.35% testing accuracy. Additionally, the performance of 2-Shot image segmentation model of PDSE-Lite framework has been compared with DeepLabV3+ and UNet3+ image segmentation models. After comparison, it is found that the 2-Shot image segmentation model achieved 97.59% Dice-Score and 94.54% MeanIoU. The proposed framework’s applicability has also been verified with the help of statistical hypothesis testing via applying the Student t-test on the severity values obtained from predicted and ground truth segmentation masks. After analyzing the Student t-test results, it is found that the PDSE-Lite framework can accurately estimate the severity of plant diseases with 99% confidence interval.

The proposed PDSE-Lite framework is compared in Table 6 with existing state-of-the-art research works available in the literature. It can be seen from this table that despite of using minimum trainable weight parameters and limited number of training samples, the proposed PDSE-Lite framework has achieved state-of-the-art performance in plant disease detection with severity estimation. Hence, it can be concluded that the proposed PDSE-Lite framework has several advantages over existing state-of-the-art research works present in the literature. First advantage of the PDSE-Lite framework lies in its ability to significantly reduce the reliance on large-scale manually annotated datasets, thereby minimizing the human efforts required to create such datasets. Moreover, the lightweight nature of the PDSE-Lite framework makes it suitable to be deployed on low-powered edge devices for on-site plant disease monitoring and timely intervention, aiding farmers in decision-making and crop management. In this research work, the applicability of proposed framework has been evaluated only on the ATLDS dataset. Nevertheless, future research works would involve training on other plant disease detection and severity estimation datasets having broader range of leaf images of various plants suffering from different diseases. Additionally, in the future, the proposed framework can also be deployed on various IoT devices like Unmanned Aerial Vehicles (UAVs) to facilitate real-time plant disease monitoring in agricultural fields.


Table 6 | Comparison of proposed PDSE-Lite framework with state-of-the-art research works present in the literature.






7 Conclusion

Plant disease identification with severity estimation is still a prominent research challenge in front of agricultural scientists, as it has the potential to maximize the crop yield, which further increases the farmer’s profit. In the literature, the majority of research works focused only on plant disease detection. However, a limited number of studies are available on plant disease severity estimation, and all of these research works have used large amount of manually annotated plant leaf images to train their models. Furthermore, creating such dataset is quite a cumbersome and time-consuming task. Hence, in this research work, a few-shot and lightweight framework named “PDSE-Lite” was proposed to recognize plant diseases and estimate the severity of identified disease between 0% to 100%. The PDSE-Lite framework was designed and developed in two stages with the help of CAE and FSL. In the first stage, a lightweight CAE model was used to reconstruct the leaf images from the original leaf images with minimum loss of information. In the second phase of proposed framework’s implementation, a few-shot image classification and segmentation models were developed to accurately identify plant diseases and precisely segment the diseased areas from given leaf images, respectively. The applicability of proposed PDSE-Lite framework was verified on a publicly available ATLDS dataset comprising apple tree leaf images and their annotated segmentation masks. The proposed framework outperformed various state-of-the-art techniques present in the literature by identifying and segmenting diseased areas from apple leaf images with 98.35% accuracy and 97.59% Dice-Score, respectively. Furthermore, the PDSE-Lite framework requires only two images per class of the ATLDS dataset for training, thus significantly reducing the human efforts required to annotate leaf images. To showcase the lightweight nature of the PDSE-Lite framework, the trainable weight parameters utilized by few-shot image classification and segmentation models of the proposed framework were compared with existing state-of-the-art techniques. After analyzing the results of trainable parameter comparison, it was found that the models of the proposed framework require minimum trainable weight parameters, i.e., 8749 and 7223 for image classification and segmentation models, respectively. The applicability of the proposed framework was further verified through statistical hypothesis testing, which employs the Student t-test on severity values extracted from predicted and ground truth segmentation masks. Upon analyzing the results of the Student t-test, it was determined that the PDSE-Lite framework accurately estimated the severity of plant diseases with a 99% confidence interval. In conclusion, the proposed framework effectively addressed the challenge of early-stage plant disease diagnosis and severity estimation without extensive manual data annotation.

In this study, the proposed framework’s effectiveness was only evaluated on the ATLDS dataset. However, in forthcoming research works, it can be trained on different plant disease detection and severity estimation datasets, which comprise of a wider range of leaf images of various plants suffering from different diseases. Furthermore, the future work of this research also includes the deployment of the PDSE-Lite framework on different IoT devices, such as Unmanned Aerial Vehicles (UAVs), to enable real-time monitoring of plant diseases in agricultural fields.
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Introduction

Date palm species classification is important for various agricultural and economic purposes, but it is challenging to perform based on images of date palms alone. Existing methods rely on fruit characteristics, which may not be always visible or present. In this study, we introduce a new dataset and a new model for image-based date palm species classification.





Methods

Our dataset consists of 2358 images of four common and valuable date palm species (Barhi, Sukkari, Ikhlas, and Saqi), which we collected ourselves. We also applied data augmentation techniques to increase the size and diversity of our dataset. Our model, called DPXception (Date Palm Xception), is a lightweight and efficient CNN architecture that we trained and fine-tuned on our dataset. Unlike the original Xception model, our DPXception model utilizes only the first 100 layers of the Xception model for feature extraction (Adapted Xception), making it more lightweight and efficient. We also applied normalization prior to adapted Xception and reduced the model dimensionality by adding an extra global average pooling layer after feature extraction by adapted Xception.





Results and discussion

We compared the performance of our model with seven well-known models: Xception, ResNet50, ResNet50V2, InceptionV3, DenseNet201, EfficientNetB4, and EfficientNetV2-S. Our model achieved the highest accuracy (92.9%) and F1-score (93%) among the models, as well as the lowest inference time (0.0513 seconds). We also developed an Android smartphone application that uses our model to classify date palm species from images captured by the smartphone’s camera in real time. To the best of our knowledge, this is the first work to provide a public dataset of date palm images and to demonstrate a robust and practical image-based date palm species classification method. This work will open new research directions for more advanced date palm analysis tasks such as gender classification and age estimation.
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1 Introduction

Date palms are a vital crop for many regions of the world, especially in arid and semi-arid regions of the Middle East and North Africa (Chao and Krueger, 2007; Rathore et al., 2020). They provide food, income, and livelihood for millions of people and have important cultural and religious significance. However, not all date palms are the same. Different species have different features such as fruit size, shape, color, texture, taste, sugar content, yield, and resistance to biotic and abiotic stresses (Al-Shahib and Marshall, 2003). These characteristics determine the quality and market value of date fruits and the suitability of date palm varieties for different environmental conditions and consumer preferences (Farooq et al., 2021). Therefore, accurate and efficient identification of date palm varieties is essential for various applications, such as breeding, management, conservation, and trade. However, date palm trees are a diverse group of plants that can be hard to tell apart by the untrained eye (Zaid and de Wet, 2002). A reliable way to identify date palm species is by using DNA tests that can tell the difference between species based on their genetic code (Al-Khalifah and Askari, 2003; Awan et al., 2017; Mahdy and El-Sharabasy, 2021; Rahman et al., 2022). However, this method is expensive, complicated, and requires specialized equipment and laboratory facilities. Alternatively, the most common way to identify date palm species is by looking at their fruits and comparing their shape, size, color, texture, and taste (Kamal-Eldin and Ghnimi, 2018). However, this method has many drawbacks: it needs experts and manual work; it takes a lot of time and effort; it can be inaccurate and subjective; and it cannot be used when the fruits are not present or visible. Consequently, there is a growing need for an efficient (real-time) and automated date palm species classification system.

In recent years, deep learning has shown remarkable success in image classification tasks in plant species identification and other domains (Kussul et al., 2017; He et al., 2018; Kamilaris and Prenafeta-Boldú, 2018; Li et al., 2018; Zhang et al., 2021; Bouguettaya et al., 2022). As a result, deep learning methods have emerged as a promising alternative for date palm variety identification (Haidar et al., 2012; Altaheri et al., 2019; Nasiri et al., 2019; Albarrak et al., 2022; Jintasuttisak et al., 2022; Alsirhani et al., 2023; Noutfia and Ropelewska, 2023a; Noutfia and Ropelewska, 2023b). Deep learning is a branch of machine learning that uses artificial neural networks with multiple layers to learn complex features from large amounts of data (LeCun et al., 2015; Goodfellow et al., 2016). Deep learning can automatically extract relevant features from raw images without the need for manual feature engineering or domain knowledge. Deep learning methods have several advantages over traditional and molecular methods: they are fast and easy to use; they do not require expert knowledge or manual intervention; and they can work with any parts of the date palm plant (such as leaves, stems, or fruits). Recent deep learning methods have been proposed to identify date palm species based on their fruits (Haidar et al., 2012; Altaheri et al., 2019; Nasiri et al., 2019; Albarrak et al., 2022; Jintasuttisak et al., 2022; Alsirhani et al., 2023; Noutfia and Ropelewska, 2023a; Noutfia and Ropelewska, 2023b). The main drawback of these methods is that they are designed for harvesting purposes when fruits are present; however, they cannot be used to identify date palm species when the fruits are not present or visible. Moreover, these methods only aim for classification accuracy and neglect real-time applicability. In this work, we present a novel method for automatically classifying four common date palm species from their images captured by cameras or smartphones. The date palm species we consider in this study are Barhi, Sukkari, Ikhlas, and Saqi. An example of each date palm species is shown in Figure 1.




Figure 1 | The four date palm species are: (A) Barhi, (B) Ikhlas, (C) Saqi, and (D) Sukkari.



This article reports our work and brings in the following main contributions:

	We introduce a novel self-collected dataset of 2358 images of four common and valuable date palm species (Barhi, Sukkari, Ikhlas, and Saqi) from different farms in Saudi Arabia.

	We propose DPXception, a lightweight and efficient CNN model that is trained and fine-tuned on our dataset to classify date palm species from images. Unlike the original Xception model, our DPXception model utilizes only the first 100 layers of the Xception model for feature extraction (resulted in an adapted Xception), making it more lightweight and efficient. We further apply normalization prior to adapted Xception and reduce the model dimensionality by adding an extra global average pooling layer after feature extraction by adapted Xception to improve the accuracy and robustness of our model.

	We evaluate our model on our dataset and compare it with seven representative CNN models trained on our dataset. Our results show that our model outperforms the others in terms of accuracy, F1-score, and inference time.

	We develop an Android smartphone application that incorporates our model and can classify date palm species from images captured by the phone’s camera in real-time. This demonstrates the practical applicability and usefulness of our work.



The remainder of this article is organized as follows. Section 2 surveys related works on deep learning for date palm classification and its fruit classification. Section 3 discusses the proposed approach including system pipeline, dataset collection process, DPXception architecture, model deployment, and development process of the proposed Android application. Section 4 reports and discusses experimental results. Finally, Section 5 concludes the article and suggests future work.




2 Literature review

Date palm analysis is a broad field that covers various tasks such as date palm tree and fruit classification, date palm sex identification, date palm age estimation, date palm disease detection, and date palm yield prediction. These tasks have various applications in agriculture, economy, and environment. In this section, we review the existing works that are related to our work in terms of the problem, the data, the method, and the results. We divide the related works into three subsections: date palm tree classification from aerial images, date fruit classification from orchard images, and date palm sex identification from seedling images. We then demonstrate the uniqueness of our work and how we advance the state-of-the-art in comparison with the existing works.



2.1 Date palm tree classification from aerial images

Aerial images, obtained from satellites, drones, or other platforms, can be used for the classification and identification of date palms. This can help in mapping, monitoring, and managing date palm plantations. Several studies have applied machine learning and deep learning techniques to this problem.

Some studies have used satellite images to identify date palms and other land covers using supervised classification methods. For example, Rahnama et al. (2018) compared the performance of Sentinel and Landsat satellites using four methods: Neural Network (NN), Maximum Likelihood Classifier (MLC), Support Vector Machines (SVM), and Mahalanobis Distance Classifier (MDC). Both satellites were able to identify the date palm areas with an average overall accuracy of more than 99%. Issa et al. (2020) used a hierarchical integrated approach to produce a detailed map of date palm plantations in the Emirate of Abu Dhabi using Landsat-8 and Worldview-2 imagery. The map depicted three different categories of date palms at three different age stages: young, medium, and mature. The map was used as input to a remote sensing-based biomass estimation model for the assessment of the above-ground biomass and carbon sequestered by date palms. Date palms were mapped with an overall accuracy of 94.5%. Another study by Culman et al. (2021) used deep learning object detection to classify and locate the Phoenix palm trees in different scenes using Sentinel-2 images over the Spanish island of La Gomera. The palm tree sub-pixel classification model achieved an overall accuracy of 0.921, with a recall and precision of 0.438 and 0.522, respectively.

Some studies have used drone images to detect and locate date palms in different scenes using deep learning object detection models. For example, Jintasuttisak et al. (2022) used YOLO-V5 to detect date palms in images captured by a drone over farmlands in the Northern Emirates of the UAE. The YOLO-V5m model achieved the highest accuracy, resulting in a mean average precision (mAP) of 92.34%.

Some studies have used UAV RGB imagery to detect other types of palm trees based on their physical morphology using transfer learning models. For example, Letsoin et al. (2022) used transfer learning to detect sago palms based on their physical morphology from the UAV RGB imagery. The ResNet-50 model was the preferred base model for sago palm classifiers, with a precision of 75%, 78%, and 83% for sago flowers, sago leaves, and sago trunk, respectively.

Some studies have used multiscale and multisource VHSR images to extract date palms from aerial images using deep vision transformers. For example, Gibril et al. (2023) investigated the reliability and the efficiency of various deep vision transformers in extracting date palms from multiscale and multisource VHSR images. The deep vision transformers achieved satisfactory results in mapping date palms from the UAV images, with a mean intersection over union (mIoU) ranging from 85% to 86.3% and a mean F1-score ranging from 91.62% to 92.44%.




2.2 Date fruit classification from orchard images

Orchard images, obtained from cameras mounted on robots, smartphones, or other devices, can be used for the classification of date fruits according to their type, maturity, and quality. This can help in date fruit harvesting, grading, and quality assessment. Researchers have applied machine vision and deep learning techniques to this problem.

Some studies have used Convolutional Neural Network (CNN) models to classify date fruits into different varieties and maturity stages using transfer learning and data augmentation techniques. For example, Albarrak et al. (2022) proposed a deep learning-based model that can classify date fruits into 12 varieties and maturity stages using a dataset of 12,000 images. They reported an accuracy of 98.8% for variety classification and 97.6% for maturity classification.

Some researchers have also used CNN models to classify date fruits based on their surface quality, which affects the date fruit industry. For example, Almomen et al. (2023) developed a system that can classify date fruits into excellent or poor surface quality using a new image dataset of 898 date fruits. They achieved an accuracy of 97% and stated that their system can help date fruit production and quality control. Nasiri et al. (2019) proposed a method for discriminating healthy date fruits from defective ones using a CNN model based on the VGG-16 architecture. The model was trained and tested on an image dataset containing four classes: Khalal, Rutab, Tamar, and defective date fruits. The model achieved an overall classification accuracy of 96.98%.

Some studies have used CNN models to classify date fruits based on their physical attributes or morphology using smartphone cameras or other devices. For example, Neji et al. (2021) implemented three CNN models for date fruit and leaf classification using smartphone cameras: the first classifies fruit and leaf image (binary classification) achieving accuracy of 99.97%, the second classifies fruit varieties achieving accuracy of 99.82%, and the third classifies the leaves varieties achieving accuracy of 99.73%. Bindu et al. (2022) presented a CNN architecture for classifying date fruits into four different classes based on their physical attributes: Khalas, Fardh, Khunaizi, and Qash. The system achieved a validation accuracy of 97.2%. Alaskar et al. (2022) presented a CNN architecture for classifying three varieties of date fruits (Ekhlas, Nbute Sultan, and Shayshi) using a dataset of 3165 images. The results showed that CNN can discriminate date cultivars with high accuracy.

Some researchers have proposed machine vision frameworks for date fruit harvesting robots that consist of multiple classification models based on deep learning techniques. For example, Altaheri et al. (2019) proposed a machine vision framework that consists of three classification models based on deep convolutional neural networks with transfer learning and fine-tuning on pre-trained models. The models classify date fruit images according to their type, maturity, and harvesting decision using a rich image dataset of date fruit bunches in an orchard that consists of more than 8000 images of five date types in different prematurity and maturity stages. The models achieve accuracies of more than 97% with classification times of less than 36 msec for each task. Faisal et al. (2020) proposed a smart harvesting decision system that consists of three sub-systems: Dates maturity estimation system (DMES), type estimation system (DTES), and dates weight estimation system (DWES). The DMES and DTES use four DL architectures: ResNet, VGG-19, Inception-V3, and NASNet; while the DWES uses Support Vector Machine (SVM) (regression and linear). The DTES achieves a maximum performance of 99.175% accuracy; the DMES achieves a maximum performance of 99.058% accuracy; and the DWES achieves a maximum performance of 84.27%. Al-Sabaawi et al. (2021) proposed a machine vision framework for date classification in an orchard environment using pre-trained deep learning models, with ResNet-50 achieving the highest F1-score (98.14%) and accuracy (97.37%).




2.3 Date palm sex identification from seedling images

Seedling images, obtained from DNA markers or other sources, can be used for the identification of the sex of date palms at the seedling stage. This is a crucial problem for date growers, as only female date palms produce fruits, and male date palms are only needed for pollination. The conventional method of sex identification relies on phenotypic characteristics that appear after several years of growth, which is costly and time-consuming. Some studies have applied machine learning and deep learning techniques to this problem. For example, Naeem et al. (2023) proposed a technique for the sex identification of date palms at the seedling stage using supervised machine learning techniques, with the Support Vector Machine (SVM) algorithm achieving 97% accuracy.




2.4 Discussion

We herein discuss how our work differs from the existing related works in terms of the problem, the data, the method, and the results.

	Our work focuses on date palm species classification, which poses a more fine-grained and challenging task compared to date palm detection and fruit classification. Unlike existing datasets that primarily rely on aerial images, we utilize orchard images to capture more detailed leaf and trunk characteristics. These features, including leaf morphology and trunk attributes such as bark texture, thorns, and leaf scars, play a vital role in distinguishing between different date palm species. Incorporating these important data characteristics into our dataset enhances the accuracy and robustness of our species classification approach.

	Our work introduces a novel self-collected dataset of 2358 images of four common and valuable date palm species (Barhi, Sukkari, Ikhlas, and Saqi). This is the first public dataset of date palm images that covers multiple species. Our dataset can be used as a benchmark for future research on date palm analysis tasks such as gender classification and age estimator.

	Our work demonstrates a robust and practical image-based date palm species classification method using a lightweight and efficient model called DPXception. Our model achieved the highest accuracy and inference time compared to other similar proposed approaches. We also developed an Android smartphone application that incorporates our model and can classify date palm species from images captured by the smartphone’s camera in real-time. This provides a convenient and low-cost solution for date growers and others who want to identify date palm species in the field.

	Our work differs from the existing works in several aspects. We do not rely on fruit characteristics, which are not always available or visible, especially in early stages of growth. We do not use robotmounted cameras, which are expensive and complex to operate and maintain. We do not use seedling images, which are not representative of mature date palms and may vary depending on environmental factors. We do not use DNA markers or other sources, which are invasive and time-consuming to obtain and analyze.







3 Proposed approach

This section outlines our proposed system pipeline for image-based date palm species classification and its main components. We also introduce the self-collected date palm dataset and the preprocessing techniques we applied before training. Moreover, we explain the proposed DPXception architecture. Finally, we discuss the model deployment and demonstrate the development process of the proposed Android application that can accurately classify date palms in real time using a mobile camera.



3.1 System pipeline

The proposed system pipeline for image-based date palm species classification is depicted in Figure 2. The system consists of several components as follows: (1) date palm dataset creation: we collect and annotate images of four distinct types of date palms to create a comprehensive dataset; (2) data preprocessing: we apply various data augmentation techniques, such as resizing, flipping, and rotation, to enhance the quality of the dataset; (3) data partitioning: we split the dataset into three subsets: training, validation, and testing, ensuring a balanced distribution of date palm types in each subset; (4) CNN model generation: we generate an improved version of Xception CNN architecture named DPXception that is tailored for the date palm dataset we constructed; (5) CNN model training with transfer learning: we experiment with well-known CNN models and fine-tune them on our date palm dataset, comparing their performance to DPXception; (6) CNN model evaluation: we evaluate the performance of the CNN models on the test subset using various classification metrics, such as accuracy, precision, recall, F1-score, and inference time; (7) CNN model deployment: we deploy the DPXception model to the cloud; (8) API establishment: we establish an API gateway to access the DPXception model on the cloud and make predictions; and (9) Android application development: we develop and publish an Android application called MouarfAlNakheel, which enables users to upload and classify date palms from their images in real time.




Figure 2 | Proposed system pipeline of the image-based date palm species classification.






3.2 Dataset

We searched for an existing image-based dataset for date palm species classification that could be used to train our model, but we found none. Therefore, we collaborated with the National Center for the Prevention & Control of Plants Pests & Animal Diseases (WEQAA, 2023) to create a novel dataset from scratch. Experts at the WEQAA Center identified the most prevalent date palm species in Saudi Arabia: Barhi, Sukkari, Ikhlas, and Saqi. Our team and voluntary field supervisors from the WEQAA Center then collected and annotated images of these species from farms across different regions of Saudi Arabia. The annotations were verified and validated by experts at the WEQAA Center. We obtained a total of 2358 images: 568 of Barhi, 623 of Sukkari, 635 of Ikhlas, and 523 of Saqi. Samples of the four date palm species are shown in Figure 3. We divided the dataset of the date palm species into three subsets as follows: 80% for training (1885 images), 10% for validation (234 images) and 10% for testing (239 images). We used stratified random sampling to ensure a balanced distribution of labels across all the subsets. Table 1 illustrates the details of the date palm dataset and the label distribution for each subset.




Figure 3 | Samples of the four date palm species in the dataset.




Table 1 | Date palm dataset details.



In this study, we applied data augmentation techniques such as rotation, flipping, and cropping to the images to increase the diversity and generalization ability of the training data. These techniques also helped to prevent overfitting the data. Figure 4 illustrates some examples of the augmented images. The original images were modified by adjusting the brightness, flipping horizontally, and rotating randomly to create new images.




Figure 4 | Samples of image augmentation on Ikhlas (first row) and Sukkari (second row).






3.3 Proposed CNN architecture

We propose an improved version of Xception, named DPXception, specifically tailored for image-based date palm species classification. Unlike the original Xception model, our DPXception model utilizes only the first 100 layers of the Xception model for feature extraction, making it more lightweight and efficient. Moreover, our model applies normalization and augmentation techniques prior to the adapted Xception and also reduces the model dimensionality through newly added global average pooling layer after feature extraction.

To help us find a customized model for our dataset, we used Autokeras (Jin et al., 2023), a tool that applies Neural Architecture Search (NAS) to automatically search for the optimal architecture for a model. We set the maximum number of trials to 120 with the aim of finding the model that achieves the highest validation accuracy. Each trial was run for 20 epochs as our primary interest was in evaluating the architecture’s suitability for the dataset.

As shown in Figure 5, the DPXception model begins with an input layer that accepts an image of shape (224, 224, 3). This is followed by a CastToFloat32 layer that converts the data type to float32 and a normalization layer that normalizes pixel values to a 0-1 scale. Data augmentation techniques are then applied directly using random translation with 0.1 height and width factors and a random horizontal flipping layer. These techniques enhance the diversity of our dataset and improve our model’s robustness.




Figure 5 | DPXception architecture.



Feature extraction is performed by our adapate Xception model, which uses 75% of the original Xception layers - specifically, the first 100 out of 132 layers. It starts with an input layer followed by Conv2D, BatchNormalization, Relu layers with an output shape of (111, 111, 32), and continues through a series of layers until it concludes with a set of SeparableConv2D, BatchNormalization, Relu layers with an output shape of (14, 14, 728). Through experimentation with different sets of layers in Xception and comparison with the original Xception, we found that selecting the first 100 layers resulted in the optimal performance for our dataset.

Following feature extraction, dimensionality is reduced by a Global Average Pooling layer which is a new layer added after the adapted Xception model. A Softmax Layer then maps this 1D feature vector to a 4D vector where each element corresponds to one of the classes in our dataset and applies the softmax function to produce class probabilities. In total, DPXception has 11,366,052 parameters, with 11,331,524 being trainable and 34,528 being non-trainable, making it nearly a half of the size of the original Xception model.




3.4 Evaluation metrics

We use several evaluation metrics to compare the performance of our proposed DPXception model and other CNN models on our date palm dataset. These metrics quantify how well the models can correctly identify the date palm species from images. The following are the evaluation metrics that we use:

Accuracy: This metric measures how many samples were correctly classified by the model. It is calculated as follows:

	

Precision: This metric measures how many of the positive predictions made by the model were actually positive. It is calculated as follows:

	

Recall: This metric measures how many of the actual positive samples were correctly predicted by the model. It is calculated as follows:

	

F1-score: This metric provides a balanced measure of the model’s performance by combining precision and recall. It is calculated as follows:

	

Inference Time: This metric measures the time it takes for the model to make a prediction on new data. It is usually measured in milliseconds or seconds and can vary depending on the complexity of the model, the size of the input data, and the hardware used for inference.




3.5 Model deployment

After selecting the best-performing model, we deployed it to Amazon Web Services (AWS) (AmazonWeb-Services, 2023), a cloud computing platform offered by Amazon. To deploy our model, we first stored it in an S3 bucket, a scalable object storage service provided by AWS. We then created an endpoint to access the model stored in the S3 bucket.

Next, we connected the model to a Lambda function, a serverless computing service provided by AWS. The Lambda function takes an input image, resizes it to the appropriate dimensions and passes it to the model to generate a prediction. The prediction is then returned to the user as the output of the Lambda function.

To facilitate access to the model from our Android application (will be discussed next), we established an API gateway, a fully managed service provided by AWS that enables developers to create and manage APIs allowing us to easily interact with the Lambda function from our Android application.




3.6 The date palm identifier app

To utilize the model we deployed to the cloud, we incorporated it into an Android mobile application named MouarfAlNakheel1. The main workflow of MouarfAlNakheel is illustrated in Figure 6. The development stages of MouarfAlNakheel app for image-based date palm classification are illustrated in Figure 7. MouarfAlNakheel allows users to take or upload an image of a date palm tree using their mobile phones, and then crop the image to remove unnecessary details (as depicted in Figure 8A). The application sends the cropped image to the deployed model on AWS to make a prediction, and then returns the date palm tree type along with the confidence score to the user as well as an option to view general information of the predicted type (as depicted in Figure 8B). The application also provides general information about the four date palm types on its home page (as depicted in Figure 8C), as well as displaying the total number of identifications or predictions made by users and the total number of users. Additionally, the application displays previous identifications made by the user on its history page (as depicted in Figure 8D), specifying the date palm type, location where the image was taken or uploaded, date of identification, and confidence score. The history page also includes a filter that allows users to select a specific date palm type or date, and then displays only the previous identifications of that type or date.




Figure 6 | MouarfAlNakheel workflow.






Figure 7 | The development stages of the MouarfAlNakheel app for image-based date palm classification.






Figure 8 | The MouarfAlNakheel Screenshots where (A) is the new classification page, (B) is the results page, (C) is the home page, and (D) is the history page.







4 Results and discussion

This section reports the experimental results of DPXception model and compares it with seven representative CNN models that are trained on our date palm dataset. We first present the experimental setup, including the hardware and software specifications, and explain the hyperparameters used to train DPXception and other CNNs. Then, we evaluate and compare the performance of DPXception with selected alternative CNN models. Finally, we investigate the impact of data augmentation on enhancing the effectiveness of DPXception model.



4.1 Experimental setup

To implement and generate our convolutional neural networks, we used the Python programming language and Google’s TensorFlow framework (TensorFlow, 2023), an open-source platform for machine learning, deep learning, and other data-driven workloads. We conducted our experiments on Jupyter Notebook, using the TensorFlow 2.13.0 library to create artificial neural networks and a NVIDIA GeForce GTX 1660 SUPER GPU to speed up training. We obtained all models used in this experiment from TensorFlow Hub (TensorFlowHub, 2023).




4.2 CNNs and hyperparameter settings

To compare the performance of our DPXception model with other models, we trained seven representative models of similar size on our date palm species dataset. The selected models are Xception, ResNet50, ResNet50V2, InceptionV3, DenseNet201, EfficientNetB4, and EfficientNetV2-S. We used the Adam optimizer with learning rate 0.0001 for all experiments, as it outperformed other optimizers such as Stochastic Gradient Descent (SGD) in our preliminary tests. The batch size was set to 16 for all models and the learnable parameters were initialized using Keras’ default values. We used categorical crossentropy as the loss function, as it is suitable for multi-class classification problems with mutually exclusive classes. We did not use any dropout layers or regularization layers as they did not improve our results, possibly because our dataset is relatively large and balanced. We evaluated the models using both loss and accuracy metrics. We trained all models for 100 epochs, but we used an early stopping callback function that monitors the validation loss and saves the model based on the minimum validation loss during training. The early stopping function has a patience of 10, which means that it stops the training if the validation loss does not improve for 10 consecutive epochs. The hyperparameters for the experimented CNNs are shown in Table 2.


Table 2 | Hyperparameter values.






4.3 Experimental results

We evaluated the performance of our proposed model, DPXception, on our date palm dataset. We compared it with seven other models based on their accuracy, F1 score, inference time, and model size. We also analyzed the accuracy and loss plots, the confusion matrix, and the class-wise metrics of our model.



4.3.1 Model comparison

Table 3 summarizes the results of the comparison in terms of accuracy, F1-score, and model size. DPXception outperforms the other models, achieving the highest accuracy and F1-score of 92.9% and 93%, respectively. Xception and InceptionV3 are the second most effective models, with identical accuracy and F1-score of 92.4% and 93%, respectively. EfficientNetB4 ranks the third, with an accuracy and F1-score of 91.6% and 92%, respectively. ResNet50V2 and DenseNet201 have comparable performance, with an accuracy and F1-score of 90.3% and 91%, respectively. ResNet50 is the fourth most effective model, with an accuracy and F1-score of 89.9% and 90%, respectively. EfficientNetV2-S is the least effective model, with the lowest accuracy and F1-score of 88.2% and 88%, respectively.


Table 3 | Comparison of performance metrics of the CNN models on the test dataset.



Table 4 summarizes the average inference time of each model in seconds on both GPU and CPU devices. DPXception is the fastest model on both GPU and CPU platforms, with an inference time of 0.0513 seconds and 0.1175 seconds, respectively. Xception is the second fastest model on GPU, with an inference time of 0.0799 seconds, while ResNet50V2 is the second fastest model on CPU, with an inference time of 0.1614 seconds. DenseNet201 is the slowest model on both GPU and CPU platforms, with an inference time of 0.2085 seconds and 0.4705 seconds, respectively. These results demonstrate that our DPXception model not only achieved the highest accuracy and F1-score, but also the lowest inference time among all compared models.


Table 4 | Comparison of inference time of the CNN models.






4.3.2 Model analysis

Figure 9 shows the accuracy and loss plots of our DPXception model during training and validation. The plots indicate that the model performs well in accurately classifying data, with both training and validation accuracy increasing over time. Early stopping was employed during training to prevent overfitting, and while there are some fluctuations in the validation loss, it is possible that overfitting may not be a significant issue.




Figure 9 | Training and validation behaviors across the 100 epochs for DPXception where (A) represents the training and validation accuracy and (B) represents the training and validation loss.



Figure 10 shows the confusion matrix of our DPXception model on the test dataset. The confusion matrix summarizes the number of correct and incorrect predictions for each class. Additionally, Table 5 displays the precision, recall, and F1 score for each class of DPXception. As shown in Table 5 and Figure 10, the classes with the lowest F1 scores (88% and 91%) are Ikhlas and Sukkari, respectively. This is due to the misclassification of 5 Ikhlas images as Sukkari and 5 Sukkari images as Ikhlas by the DPXception model. This is likely because these two classes of date palm trees have similar features such as leaf brightness and shapes.




Figure 10 | Confusion matrix of the DPXception model.




Table 5 | Accuracies of DPXception for each class on test set.



Our model differs from the original Xception model in several aspects. Firstly, our model uses only the first 100 layers of Xception, making it more lightweight and efficient. Secondly, our model applies normalization and augmentation prior to adapted Xception, which improves the accuracy and robustness of our model. Thirdly, our model reduces the dimensionality by adding an extra global average pooling layer after feature extraction by adapted Xception, which affects the performance and interpretability of our model. These design decisions are the potential causes that lead to our model’s outperformance over the original Xception model and other contrastive models in terms of accuracy, F1-score, and inference time.





4.4 Effect of data augmentation

Data augmentation is a common and useful technique in deep learning, especially when dealing with small or imbalanced datasets. We experimented with several data augmentation techniques, including random rotation, random flipping, random brightness, and random translation. Each of these techniques contributed to improving the performance of our model by increasing the diversity of the training data and reducing overfitting. By introducing variations in rotation, flipping, brightness, and translation, our model was able to learn more robust features that are invariant to these transformations, resulting in better generalization to new images.

The results showed that data augmentation significantly improved the accuracy of our model from 89% to 92.9%, indicating that it can generalize well to new images. It is important to note that the same data augmentation has been applied to all the models experimented in this work, and here we only show the effect of data augmentation on our model. Similar effects were observed with all other models experimented – data augmentation does help all the models achieve better accuracy and robustness.





5 Conclusion and future work

In this paper, we have proposed a novel method for image-based date palm species classification using a lightweight and efficient CNN model called DPXception. We have also introduced a new dataset of 2358 images of four common and valuable date palm species. To increase the size and diversity of our dataset, we applied data augmentation techniques. Our model differs from the original Xception model in several aspects. Firstly, our model uses only the first 100 layers of Xception (resulted in an adapted Xception) for feature extraction, making it more lightweight and efficient. Secondly, our model applies normalization prior to adapted Xception, which improves the accuracy and robustness of our model. Thirdly, our model reduces the dimensionality by adding an extra global average pooling layer after feature extraction, which affects the performance and interpretability of our model. Our experimental results show that our model outperforms the original Xception model and other contrastive models in terms of accuracy, F1-score, and inference time. We have also demonstrated the practical applicability of our model by developing a smartphone application that can classify date palm species in real-time from the camera. To the best of our knowledge, this is the first work to provide a public dataset of date palm images and to show a robust and practical image-based date palm species classification method. This work will pave the way for more advanced date palm analysis tasks such as gender and age estimation.

For future work, we plan to extend our method to other date palm species and to other types of date palm images. We also intend to explore the use of our model for other date palm analysis tasks, such as gender and age estimation, disease detection, and yield prediction. We hope that our work will inspire more research on image-based date palm analysis and contribute to the advancement of date palm agriculture and economy.
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Efficient and precise thinning during the orchard blossom period is a crucial factor in enhancing both fruit yield and quality. The accurate recognition of inflorescence is the cornerstone of intelligent blossom equipment. To advance the process of intelligent blossom thinning, this paper addresses the issue of suboptimal performance of current inflorescence recognition algorithms in detecting dense inflorescence at a long distance. It introduces an inflorescence recognition algorithm, YOLOv7-E, based on the YOLOv7 neural network model. YOLOv7 incorporates an efficient multi-scale attention mechanism (EMA) to enable cross-channel feature interaction through parallel processing strategies, thereby maximizing the retention of pixel-level features and positional information on the feature maps. Additionally, the SPPCSPC module is optimized to preserve target area features as much as possible under different receptive fields, and the Soft-NMS algorithm is employed to reduce the likelihood of missing detections in overlapping regions. The model is trained on a diverse dataset collected from real-world field settings. Upon validation, the improved YOLOv7-E object detection algorithm achieves an average precision and recall of 91.4% and 89.8%, respectively, in inflorescence detection under various time periods, distances, and weather conditions. The detection time for a single image is 80.9 ms, and the model size is 37.6 Mb. In comparison to the original YOLOv7 algorithm, it boasts a 4.9% increase in detection accuracy and a 5.3% improvement in recall rate, with a mere 1.8% increase in model parameters. The YOLOv7-E object detection algorithm presented in this study enables precise inflorescence detection and localization across an entire tree at varying distances, offering robust technical support for differentiated and precise blossom thinning operations by thinning machinery in the future.




Keywords: pear tree inflorescence, long-distance detection, YOLOv7, EMA, SPPCSPCS, Soft-NMS




1 Introduction

An excessive number of blossoms on fruit trees can lead to unnecessary nutrient depletion, insufficient resources for fruit development, resulting in numerous but small-sized fruits with low sugar content and poor quality (Kweon and Sagong, 2021). This increases the probability of larger tree sizes, diminishing the economic benefits of orchards. In some newly established orchards, the lack of effective blossom thinning can disrupt the balance between the tree’s growth and fruiting, adversely affecting the development and formation of tree branches and root systems, thereby extending the orchard’s revenue cycle (Reighard et al., 2015).With the continuous advancement of technological capabilities, there is an increasingly profound understanding of the relationship between the load capacity of branches, the balance between nutritional supply and consumption in tree canopies, and the correlation between the amount of retained blossoms and fruiting rates in fruit trees (Liu et al., 2017). Thinning blossoms not only serves to control fruit quality but can also be employed to estimate optimal yields. The distribution and total number of fruits significantly impact fruit size and other quality parameters, making blossom thinning a key technique in regulating both size and quality (Xia et al., 2022).

Iwanami et al. (2018) proposed a crop load management technique based on determining the optimal number of fruits per inflorescence over a decade. According to their findings, effective blossom thinning during the flowering period of fruit trees, guided by the optimal number of fruits per inflorescence, can maintain total fruit yield while effectively enhancing fruit quality. Iwanami et al. (2019) focused on Fuji apples and, over a two-year period, developed a theoretical model elucidating the relationships among blossom thinning timing, crop load, fruit weight, and flowering. The study revealed that when there are three fruits per square centimeter of branch cross-sectional area, the individual fruit weight is 270 g. However, with a crop load of six fruits per square centimeter of branch cross-sectional area, the individual fruit weight decreases to 180 g. This research underscores the significance of efficient blossom thinning during the flowering period of fruit trees, demonstrating its crucial role in extending the peak fruiting period, ensuring fruit quality, and enhancing overall fruit tree yield.

In practical orchard management, orchard owners aim to maximize economic returns by removing excess pear blossoms during orchard blossom period. Blossom thinning methods include manual, chemical, and mechanical thinning. However, these three methods primarily focus on the sole objective of reducing the number of blossoms. They often overlook the scientific requirements regarding the quantity and spatial distribution of blossoms on pear tree branches (Reighard et al., 2015). This limitation arises because both manual and mechanical thinning rely on human visual observation, making it challenging to accurately assess blossom density (Kon et al., 2013). With technological advancements, orchard owners increasingly seek intelligent blossom thinning operations. This approach allows them to save on labor costs while simultaneously determining fruit yield and quality from the thinning phase. Therefore, there is a need for intelligent blossom thinning machinery capable of precise and rapid thinning (Palacios et al., 2020). However, the prerequisite for intelligent blossom thinning machinery is the real-time and accurate acquisition of information about pear tree inflorescences (Farjon et al., 2020).

In recent years, with the continuous innovation of deep learning networks, the application of computer vision technology in the field of agriculture has become increasingly widespread, and the technological bottlenecks for accurate detection of fruit tree blossoms are diminishing (Xu et al., 2021). Tian et al. (2020) proposed an apple blossom segmentation algorithm based on the U-Net backbone network. They improved the Mask RCNN (Girshick, 2015) head network using the U-Net backbone (He et al., 2017), enhancing the original network’s utilization of image features. The segmentation accuracy for apple blossoms at different stages reached 96.43%, with a recall rate of 95.90%. Wang et al. (2020) introduced a pixel-level apple blossom segmentation algorithm based on a fully convolutional network. The F1 score on low-resolution images reached 0.85. However, this type of algorithm is susceptible to lighting conditions and lacks robustness. Zhang et al. (2022) used drones to capture RGB images of fruit trees and matched these images with three-dimensional point cloud information from the trees. This approach enabled the visualization-based estimation of apple tree inflorescence density. While this method offers high accuracy and excellent visualization, the process of fruit tree 3D reconstruction and point cloud processing involves significant computational demands. The fitting of RGB images with point clouds is slow and cannot meet the requirements of real-time detection (Tian et al., 2020).

In recent years, one-stage object detection algorithms, with the YOLO series as a representative example, have undergone continuous iterations and updates. These algorithms are characterized by their fast detection speed, high accuracy, and real-time output of detected object categories and positions, making them better suited for the practical requirements of blossom thinning work (Xia et al., 2022).

Wu et al. (2020) improved the YOLOv4 object detection algorithm by implementing channel reduction. This simplification of the model network maintained the accuracy of apple blossom detection, achieving an average detection accuracy of 97.31% across three apple varieties: Fuji, Red Delicious, and Gala. Li et al. (2022) proposed a method for kiwifruit blossom recognition and localization based on YOLOv5l. The method achieved an average accuracy of 91.60%, with a high matching accuracy of 97.60% for identifying individual blossoms and clusters. Shang et al. (2023) introduced an apple blossom detection method based on the YOLOv5S algorithm. This model utilized Ghost modules and ShuffleNetv2 modules to replace the Conv modules in the original network’s Neck section and backbone network. The detection accuracy for apple blossoms under various weather conditions was 88.40%, with a recall rate of 86.10%. The mean average precision was 91.80%. However, the input images mainly consisted of close-up shots and did not satisfy the actual requirements for blossom thinning at a distance. Xia et al. (2023) proposed a whole-tree object detection algorithm by incorporating the Spatial Temporal Pyramid Attention Feature Pyramid Network (He et al., 2015) into the MTYOLOX backbone network. This enhancement increased the network’s focus on small target blossoms, resulting in a precision and recall rate of 83.4% and 93.3%, respectively. Additionally, it facilitated tree-level blossom density mapping. However, this method targeted early-stage apple tree blossoms, which exhibit uniform features and no leaf occlusion. Further research is needed to address scenarios where blossoms overlap and branches or leaves obstruct the view in practical blossom thinning operations.

In summary, both two-stage and one-stage object detection algorithms have made significant advancements in the field of fruit blossom detection. However, they also face certain challenges. Blossom detection typically occurs during the early or late stages of inflorescence, and there is limited research on reducing false negatives and distinguishing between blossoms and buds, especially in scenarios where blossoms heavily overlap during actual blossom thinning operations (Wu et al., 2020). Most detection scenarios involve close-up shots of individual blossoms, and long-range detection is limited by the convolutional layers’ ability to capture only local relationships. Although reducing the number of channels has been employed to enhance inflorescence discrimination, it often neglects the extraction of precise positional information of inflorescences.

In light of the current research status on inflorescence recognition, and to further advance the development of intelligent blossom thinning, this paper focuses on pear tree inflorescences as the detection target. Building upon the YOLOv7 neural network model, we propose a YOLOv7-E object detection algorithm to address the following issues:

	(1) Currently, most applications of object detection algorithms involve close-up shots of blossoms, with limited research on long-distance tree-level inflorescence detection. This does not align with the normal working distance requirements for blossom thinning equipment.

	(2) Existing studies often concentrate on early or late stages of inflorescence development. However, given the rapid changes during the flowering period of fruit trees, it is impractical for blossom thinning operations to be completed entirely within a specific time frame. In practical blossom thinning work, the object detection algorithm needs to adapt to the varying characteristics of blossoms at different stages, supporting continuous operation of intelligent blossom thinning equipment throughout the entire period.

	(3) In the context of long-distance tree-level inflorescence recognition, as the distance increases, discernible features of blossoms in input images become smaller, leading to increased overlap between flowers and greater influence from leaf occlusion. Addressing how to reduce the probability of missed detections and false positives in long-distance detection scenarios is crucial.



The work outlined in this paper is structured as follows:

	Chapter 2 begins by introducing the sources and classification of the datasets used in the experiments. It then proceeds to elucidate the methods employed and the evaluation metrics for enhancing the original YOLOv7 object detection algorithm.

	Chapter 3 provides an in-depth explanation of the experimental details and carries out experiments to address the established research objectives.

	Chapter 4 validates the effectiveness of the proposed methods and conducts comparative evaluations with similar detection algorithms under the same conditions. This validation aims to achieve precise blossom detection on entire trees at long distances. Finally, based on the experimental result, the paper concludes its research findings and presents future prospects.






2 Data and methods



2.1 Data

The dataset in this study consists of pear tree inflorescence images, collected from the pear orchard at the Fruit Tree Institute of Jiangsu Academy of Agricultural Sciences. The collection period spans from March 2, 2023, to March 27, 2023, covering an entire pear tree flowering season. Data was gathered between 14:00 and 16:00. The collection device used was a Huawei AL10 smartphone with a resolution of 3000×4000 pixels and a focal length of 26 mm.

The inflorescence images in this research are categorized into A, B, and C classes. The specific experimental data is outlined in Table 1. To avoid potential overfitting due to insufficient dataset size, data augmentation techniques were applied to the A, B, and C datasets using the OpenCV library. Geometric transformations such as rotation, translation, jittering, and splicing, as well as pixel changes such as Gaussian noise, HSV contrast adjustment, and histogram equalization, were employed. Each augmented image was expanded fivefold, resulting in a final dataset comprising 3,390 images. The training, validation, and test sets were proportionally composed of A, B, and C class images in a 3:4:3 ratio. LabelImg software was used for inflorescence image preprocessing, and the flower category classification included two classes: flowers and flower buds.


Table 1 | Details of the captured images.



The inflorescence characteristics of pear trees vary significantly at different stages. In the early stages, there is minimal overlap among blossoms, and the inflorescence features primarily consist of flower buds with almost no leaf occlusion. In the middle stages, blossoms coexist with flower buds, and leaf occlusion is generally moderate. In the later stages, the inflorescence features are predominantly blossoms, with a high degree of overlap and mutual occlusion among them. To ensure that the proposed model accommodates inflorescence detection at different stages, the A-class dataset, as depicted in Figures 1A–C, includes inflorescence images from the early, middle, and late stages.




Figure 1 | Inflorescence at different stages. (A) Early stage (B) Mid-stage (C) Late stage.



With increasing distance, the pixel values of inflorescences in input images decrease, and the difficulty of extracting effective image features increases due to the combined effects of leaf occlusion and blossom overlap. To enable the proposed model to adapt to inflorescence detection at different distances, the B-class dataset, as illustrated in Figures 2A–C, includes inflorescence images taken at close-up (10-30 cm), intermediate (40-60 cm), and panoramic (80-120 cm) distances.




Figure 2 | Inflorescence at different distances. (A) Close-up (B) Branches (C) Panoramic.



Variations in lighting conditions are a crucial factor to consider in target recognition. Blossom thinning operations often occur on sunny days; however, the weather during the flowering period of fruit trees is variable. To ensure that the proposed model can achieve inflorescence detection under challenging lighting conditions, the C-class dataset, as depicted in Figures 3A–C, comprises inflorescence images taken on sunny, overcast, and rainy days.




Figure 3 | Inflorescence in different weather conditions. (A) Sunny (B) Overcast (C) Rainy.






2.2 Methods



2.2.1 YOLOv7 network

YOLOv7 (Xia et al., 2023) stands as the current leading object detection algorithm, offering optimal speed ranging from 5FPS to 160FPS while maintaining accuracy. Its network architecture, as illustrated in Figure 4, comprises the input, backbone, and head components. Image inputs undergo preprocessing before being fed into the Backbone network for feature extraction. The input to the head layer consists of three feature maps of different sizes. These maps are processed using Rep VGG blocks and convolution layers for tasks such as image classification, foreground-background classification, and bounding box refinement, ultimately yielding the detection results (Chen et al., 2017).




Figure 4 | YOLOv7 network architecture.



What sets YOLOv7 apart from previous detectors in the YOLO series is its foundation on the Rep VGG structure (Ding et al., 2021). It introduces a novel reparameterization convolution module, which accelerates network inference performance without sacrificing accuracy. Additionally, a coarse-to-fine label assignment method is proposed, wherein initial training utilizes the prediction results from a guidance head, increasing the number of positive samples to expedite training efficiency. The optimal results are subsequently selected based on precision. The ELAN-W module extends the feature dimension of channel and computational modules using three distinct convolution combinations. It merges different features through shuffle and merge cardinality methods, gradually enhancing the network’s capacity for diverse feature learning without compromising the existing gradient pathways (Zhao et al., 2023).The unique label assignment strategy, efficient aggregation network, and reparameterization methods of YOLOv7 are well-suited to address the detection scenarios posed by pear tree inflorescence images, which involve a high number of small-sized blossoms with similar features.




2.2.2 Multi-scale attention module

While ensuring the accuracy of flower recognition, it is essential to detect the precise spatial information of the blossoms, which is a necessary condition for ensuring the precise operation of the thinning equipment. Detecting inflorescences on an entire tree poses a significant challenge. As the distance increases, the size of the target blossoms in the image becomes progressively smaller. This diminishes the contrast, making it difficult to label and identify inflorescences. To enhance the YOLOv7 algorithm’s capability for detecting small, distant targets, a novel Efficient Multi-Scale Attention (EMA) (Ouyang et al., 2023) mechanism is introduced, as shown in the structural diagram in Figure 5. EMA is an efficient multi-scale attention mechanism based on Coordinate Attention (CA). It employs a parallel strategy to divide the original input feature map of size CHW into G (G≤C) sub-features. Three path ways, A, B, and C, are utilized to extract feature information weights from different channels. The A branch represents the original input feature map, while the B branch consists of feature maps with sizes G×1×W and G×H×1. After applying global average pooling, these branches retain feature information in the vertical and horizontal directions. Subsequently, one 1x1 convolution is applied to share similar features, resulting in two 1D feature encoding vectors. These vectors are then processed with a Sigmoid function to adjust the encoding weights for precise spatial information. The feature map in the C branch undergoes one 3×3 convolution to obtain finer-grained local channel features without significantly increasing computational complexity. To further collect spatial information at multiple scales without reducing channel dimensions or increasing computational load, the channel attention maps from the C branch, which have not been subjected to normalization probability processing, are multiplied by the attention maps from the B branch. This multiplication is performed after applying Group Normalization to the B branch’s channel attention maps (Simonyan et al., 2014).




Figure 5 | EMA architecture.



In a nutshell, EMA achieves the linkage between spatial positions and channels through a parallel structure. It encodes global positional information for both the B and C branches by utilizing two-dimensional global average pooling. This encoding is established through simple multiplicative operations, creating a set of spatial attention weight values. This approach maximizes the capture of pixel-level relationships across the feature map while retaining precise positional information. Moreover, the Group Normalization (Wu and He, 2018) applied to the B branch is unaffected by batch size variations, rendering it highly advantageous in scenarios involving long-distance small targets with high similarity.

It should be noted that the EMA attention mechanism performs exponential weighted averaging on historical attention weights. This process, particularly in scenarios involving long sequences and large-scale models, can lead to an increase in computational complexity. Furthermore, during the application, continuous adjustments to the decay factor are necessary, introducing added difficulty to the model tuning process.




2.2.3 SPPCSPCS module

As neural network designs continue to evolve, enhancing algorithm performance using methods like NAS has become increasingly challenging (Gao et al., 2018). In YOLOv7, we have taken a foundational approach to optimize network layers, aiming to improve the accuracy of the original network without significantly increasing computational costs. In practical applications, variations in the distance between image capture devices and pear trees result in differences in the sizes of pear inflorescences within the input network. Inflorescences are less noticeable as the distance increases, and they appear larger when the distance is shorter. Furthermore, different image capture devices have varying image resolutions. To enhance the algorithm’s ability to handle a broader range of scale features and improve compatibility with edge devices, solely adding attention mechanisms is insufficient to achieve optimal results.

Therefore, we proposed an improved SPPCSPCS module based on the original SPPCSPC module within the network, as illustrated in Figure 6. Initially, input features are split into two branches. The first branch undergoes conventional processing with a 1×1 convolution having a stride of one. The second branch first passes through four different pooling layers for multi-scale feature fusion, followed by a 1×1 convolution with a stride of one and a 3×3 convolution with a stride of two. Finally, the outputs of the two branches are merged, resulting in a minimal increase in computational load while significantly improving the model’s accuracy and compatibility with images of varying resolutions.




Figure 6 | SPPCSPCS architecture.



Based on the characteristics of actual inflorescence images, the original network architecture’s SPPCSPC module utilizes max-pooling. However, in inflorescence images, neighboring and similar features are abundant, and applying max-pooling tends to retain only the most prominent features, making it prone to missing the detection of identical objects. Soft-pooling (Stergiou et al., 2021) employs a weighted approach based on soft-max to retain the original attributes of the input while enhancing features. Its computation is defined as in Equations 1 and 2.

 

Where, R represents the selected local region, a denotes a feature value, and Wi represents the weight of the feature value.

 

Where,   represents the summation of the product of relevant feature values and their corresponding weights.

The Soft-pooling method begins by calculating the weights of the corresponding feature values within the selected regions through an exponential computation. Subsequently, it multiplies each feature value by its respective weight and performs a weighted sum. This approach allows for a comprehensive consideration of feature values from all regions, categorizing important features based on weight magnitudes. In contrast to the direct selection of the maximum value in the former approach, Soft-pooling retains more information. Additionally, Soft-pooling is differentiable, which means it can provide minimal gradient values during the backpropagation process, making it more conducive to model training.




2.2.4 Soft-NMS

In computer vision technology, generating corresponding bounding boxes for target categories has always been a fundamental challenge, especially in tasks involving densely occluded object detection. The process of filtering candidate bounding boxes is directly linked to the algorithm’s detection accuracy, as cited in reference (Tychsen-Smith and Petersson, 2018). During our use of the YOLOv7 network for pre-training, we observed that the non-maximum suppression (NMS) method used by YOLOv7 resulted in numerous missed detections and false alarms in scenarios where pear blossoms are densely clustered and occluding each other (Hosang et al., 2017).

As illustrated in Figures 7A, B, the scores for two pear blossoms, f1 and f2, are 0.9 and 0.8, respectively. According to the NMS strategy, despite f2 having a high score of 0.8, it would still be deleted due to the excessive overlap with f1 and leading to a missed detection. If we simply raise the NMS threshold, it could easily result in false alarms as depicted in Figure 7C.




Figure 7 | NMS detection performance.



In response to the aforementioned scenario, the Soft Non-Maximum Suppression method is introduced (Bodla et al., 2017). The algorithm conceptual pseudo code is illustrated in Figure 8. In this method, B represents the collection of scores for all candidate bounding boxes. After obtaining the highest score M, it is extracted from the B collection and added to the final detection box set D. Simultaneously, for candidate bounding boxes in the B set that have an overlap with M greater than the threshold Nt, a lower score Si is assigned. What sets Soft-NMS apart from traditional NMS is its approach to candidate bounding boxes with the same overlap values. Instead of directly removing them, Soft-NMS applies a decay function. In simpler terms, if a candidate bounding box significantly overlaps with the bounding box with the highest score M, it is assigned a lower score rather than being eliminated. This approach helps prevent missed detections. The calculation of the decay function Si is defined as shown in Equation 3.




Figure 8 | The concept of the Soft-NMS algorithm.



 

Where, Si is equivalent to the confidence score bi of the prior box, M represents the prior box with the highest confidence score in the confidence branch, and σ is a hyper parameter.

It is important to note that while Soft-NMS does not impact model size and is plug-and-play, it exhibits sensitivity to the sizes and shapes of bounding boxes. In scenarios where there is a significant disparity in object sizes, Soft-NMS may not perform as well as traditional NMS. Therefore, if applied to detect diverse floral arrangements, adjustments to the decay function parameters are necessary.





2.3 Evaluation metrics

This study employs four metrics, precision (P), recall (R), mean average precision (mAP), and F1 score, to evaluate the accuracy of the proposed pear blossom detection model. Model efficiency is assessed based on model parameters, frames per second (FPS), and floating-point operations per second (FLOPS). The formulas for these metrics are provided in Equations 4–7.

 

 

 

 

Where, true positives (TP), false positives (FP), and false negatives (FN) represent the number of detection boxes correctly predicting positive samples, the number of detection boxes incorrectly predicting positive samples when they are negative, and the number of actual positive samples incorrectly predicted as negative, respectively. The mean average precision (mAP) measures the model performance across each class. Ni represents the total number of classes the model can detect. In this study, there are two detection classes: buds and blossoms, thus Ni =2.





3 Results and discussions



3.1 Experimental details

All experiments in this study were conducted on a desktop server equipped with an Intel Core i5-13600 (3.49 GHz) CPU, an NVIDIA Tesla A100 (80 GB) GPU, and 125 GB of RAM. The software environment included Windows 10 Professional, CUDA 11.8, Python 3.8, and PyTorch 1.13 deep learning frame work. During the training phase, the initial weights were initialized using YOLOv7 weights from the CoCo dataset. Our training strategy involved the use of weighted image strategy and multi-scale training methods to address the class imbalance issue, enhance model robustness, and cache images in memory for faster training. The training parameters for the model are summarized in Table 2.


Table 2 | Model training parameters.






3.2 Results



3.2.1 Visual detection results of YOLOv7-E

To validate the detection performance of the proposed model across different stages of pear tree inflorescences, testing was conducted using images from dataset A representing various inflorescence stages (with no significant changes in distance and weather conditions). Figures 9A–C depict the detection results for the early, middle, and late stages of inflorescences, respectively. According to the evaluation, the YOLOv7-E model achieves an average precision of 92.27%, 91.24%, and 90.06% for the early, middle, and late stages of pear inflorescences, with a variance of 0.8. The results demonstrate that the proposed model can accurately identify pear inflorescences across different stages and possesses the capability for inflorescence detection throughout the entire flowering period.

To validate the inflorescence detection performance of the proposed model at different distances, testing was conducted using inflorescence images from the B-class dataset captured at various distances. Figures 9D–F present the detection results for late-stage pear inflorescences at distances of 30 、60 and 120 centimeters, respectively. Upon evaluation, the average precision of detection was determined to be 91.51%, 90.41%, and 89.43% for the respective distances, with a variance of 0.7. The results indicate that the YOLOv7-E model maintains consistent precision under varying distances, aligning with the practical requirements of blossom thinning operations.




Figure 9 | Detection results in different scenarios. (A) Early stage (B) Mid-stage (C) Late stage (D) Close-up (E) Branches (F) Whole tree.



As it is well known, blossom thinning operations predominantly occur on sunny days; however, the weather during the flowering period is subject to variability. To validate the inflorescence detection performance of the improved model under different weather conditions, testing was conducted using inflorescence images from the C-class dataset captured under diverse weather conditions. Figures 10A, B depict the detection results for late-stage pear inflorescences (distance: 30-40 cm) on overcast and sunny days, respectively. Upon evaluation, the average precision of detection under overcast and sunny conditions was determined to be 88.14% and 91.28%, respectively. As illustrated in Figure 10 (1, 2, 3, 4), whether on overcast or sunny days, the YOLOv7-E model demonstrates the capability to correctly identify occluded blossoms even in situations of high blossom overlap. The results indicate that the proposed model achieves precise inflorescence detection under varying weather conditions.




Figure 10 | Detection results under different lighting conditions. (A) Overcast (B) Sunny.







3.3 Discussion



3.3.1 Ablation experiment

In order to assess the effectiveness of the interactions among the various modules in the proposed YOLOv7-E model, this study conducted ablation experiments using the same training and test datasets. The performance metrics for each model are presented in Table 3. In Table 2, YOLOv7 represents the original YOLOv7 model, YOLOv7-EMAindicates the model with the efficient attention mechanism introduced, YOLOv7-SPPCSPCS represents the model with the improved SPPCSPCS module, and YOLOv7-Soft NMS is the model using the Soft Non-Maximum Suppression method.


Table 3 | Performance parameter comparison between improved YOLOv7 and original YOLOv7.



According to Table 3, it is evident that the YOLOv7-EMA and YOLOv7-SPPCSPCS models, in comparison to the original YOLOv7 model, exhibit improvements in mAP by 4.2% and 1.7%, respectively. Furthermore, they demonstrate an increase in recall rates by 5.9% and 2%. The model size experiences slight increments of 1% and 0.5%, while the GFLOP increases by 2.3% and 0.3%. However, it’s important to note that the detection speed is slower by 2.6 ms and 0.3 ms for these models. In the case of YOLOv7-Soft NMS, there is a noticeable enhancement in mAP and recall rates by 3.1% and 4.4%, respectively, when compared to the original network model. However, this improvement leads to a slight reduction in detection speed by 1.9 ms. The model size remains unchanged. This indicates that Soft Non-Maximum Suppression, without impacting the original network structure and model size, can significantly improve the original network’s detection accuracy in scenarios with high overlap. This is achieved through the effective allocation of a decay function strategy, which reduces both missed detections and false positives.

For YOLOv7-E, there is a notable increase in mAP and recall rates by 4.9% and 5.3%, respectively, when compared to the original network. However, this improvement comes at the cost of a 3.7% increase in GFLOP and a 1.8% growth in model size. The average detection speed is slightly slower by 6.7 ms. The results suggest that the EMA, based on parallel strategies, effectively captures finer-grained local channel features without significantly increasing computational demands. It does so through the construction of a set of spatial attention weight values, thereby enhancing the capture of pixel-level relationships for small targets on the feature map in long-distance detection scenarios. Additionally, the Soft-pooling-enhanced SPPCSPCS module, as training progresses during backpropagation, accelerates the update of target weight values and retains a greater amount of regional feature information. From the experimental results, it can be concluded that the proposed YOLOv7-E model, with only a minimal increase in model size, effectively enhances the YOLOv7 network model’s accuracy in detecting highly overlapping inflorescences at long distances while maintaining the overall model structure.




3.3.2 Performance comparison of different models

To further validate the effectiveness of the proposed YOLOv7-E network model, this study conducted a comparative analysis with four other object detection algorithms, namely, MTYOLOX、YOLOv7、YOLOv5、Faster R-CNN and YOLOv8. All models were trained using the same training dataset, and the training process consisted of 300 epochs. Given the primary focus of this study on enhancing the original network model’s ability to detect overlapping inflorescences at long distances, testing was performed without the use of a separate test dataset. Figure 11 displays the Precision-Recall (P-R) curves obtained with different test datasets. In Figure 11A represents a test dataset equally divided into three classes (ABC) in a 3/3/4 ratio, while (b) depicts a test dataset with classes (ABC) divided in a 2/6/2 ratio.




Figure 11 | P-R curve. (A) P-R curve at 30-60 cm. (B) P-R curve at 80-120 cm.



From Figures 11A, B, it is evident that YOLOv7-E exhibits excellent P-R curves in both close-range and long-range scenarios. This observation suggests that the proposed method can effectively meet the practical requirements of sparse flower operation, enabling accurate detection of pear inflorescences at distances ranging from 80 to 120 centimeter.

As shown in Table 4, the improved YOLOv7-E model in this study demonstrates a 4.9% increase in Mean Average Precision (MAP) and a 5.3% increase in recall compared to the original model. While enhancing accuracy, the model also reduces the false-negative rate. Regarding model parameters and inference speed, YOLOv7-E exhibits an increase of 0.7 M in parameter count and 6.7 ms in inference speed compared to the original model. Without compromising detection speed, the slight increase in model parameters results in a noticeable improvement in model inference accuracy, making it an acceptable trade-off.


Table 4 | Performance comparison of different object detection algorithms.



The MAP values of the YOLOv7-E model are respectively 1.2%, 10.6%, and 20.1% higher than those of MTYOLOX, YOLOv5, and Faster RCNN object detection algorithms. The recall rate is 8.6% and 16.4% higher than YOLOv5 and Faster-RCNN, and 2.3% lower than MTYOLOX. In terms of detection speed, YOLOv7-E outperforms Faster RCNN, MTYOLOX, YOLOv5, and YOLOv8. Regarding model size, YOLOv7-E is 35.6 M, 68.4 M, 9.2 M, and 6.1 M smaller than MTYOLOX, Faster-RCNN, YOLOv5, and YOLOv8, respectively, making it more convenient for deployment on embedded devices.

It is noteworthy that, in comparison to the latest YOLOv8 object detection algorithm, YOLOv7 exhibits a 1.3% decrease in Mean Average Precision (MAP) and a 1.7% decrease in recall. However, in this study, YOLOv7-E surpasses YOLOv8 in both average precision and recall by 3.6%. This suggests that the Exponential Moving Average (EMA) attention mechanism, through the aggregation of spatial attention weight values, effectively preserves the pixel-level relationships of each inflorescence in the input images. Moreover, by employing a unique decay function, YOLOv7-E captures inflorescence information that was missed in the original model and YOLOv8. Furthermore, YOLOv8 has 5.1M more parameters and 36.5 additional GFLOPS compared to YOLOv7. The results indicate that the approach of YOLOv7-E, which links spatial position and channel information, is more flexible and efficient than YOLOv8. Unlike YOLOv8, which abandons predefined anchor boxes and uses feature maps of different scales to detect targets of various sizes, YOLOv7-E requires fewer computational resources while demonstrating more flexible and efficient performance.




3.3.3 Problem analysis

To further verify the inflorescence detection capabilities of the improved YOLOv7-E model at operational distances in flower thinning machinery, experiments were conducted on Y-trellis pear trees in the mid-flowering stage at the pear orchard of the Jiangsu Academy of Agricultural Sciences. The detection results are depicted in Figures 12A–C. Figure 12A shows the real image captured at a distance of 120 cm from the Y-trellis pear tree. Figure 12B presents the detection results obtained using YOLOv7-E, which identified 246 blossoms and 73 buds. In Figure 12C, the inflorescence detection results were visualized as a heat map using the Grad-CAM (Class Activation Mapping method), with red areas indicating blossoms and blue areas representing buds. The results demonstrate that the EMA attention mechanism and the improved SPPCSPCS module introduced in this study effectively capture the overall inflorescence features at long distances, reduce the focus on irrelevant information, maximize the retention of global image features and positional information. Additionally, the soft-NMS algorithm allows for distinguishing between blossoms and buds, even when they overlap.




Figure 12 | The detection results of the Y-trellis pear tree. (A) Y-trellis pear tree (B) Detection results (C) Class activation map.



As shown in Figure 12B, the inflorescence within the yellow circle was not detected. The reasons for this false negative (missed detection) are analyzed as follows.

	(1) The pear inflorescence images were captured using a Huawei AL10 smartphone. During photography, the focal point of camera was in the densely populated flower area, causing background blurring within the yellow circle area and resulting in the loss of inflorescence features.

	(2) The images were taken on an overcast day, and the inflorescence within the yellow circle was located at a greater distance. Since pear blossoms are white and tend to blend with the color of the sky in the background as the distance increases, it added difficulty to feature extraction, leading to the missed detection.



The edge device utilized for image processing in this experiment is the NVIDIA Jetson AGX Orin (64GB) Developer. With an input resolution of 1024×1024 images, the detection speed reached 40fps, and the detection performance was minimally impacted, marking the achievement of an initial milestone. However, in practical blossom thinning operations, the development kit employed in this study, despite its superior performance, proves cost-prohibitive for integration into blossom thinning equipment. Considering the performance of embedded devices in real-world applications, the proposed YOLOv7-E algorithm faces the following limitations:

	(1) The model size is slightly large, occupying excessive memory and limiting the system’s ability to simultaneously run multiple tasks.

	(2) The high detection accuracy and lengthy inference time demand significant computational resources, potentially causing performance bottlenecks in embedded systems and compromising real-time responsiveness.

	(3) The power consumption during the inference process is substantial, leading to device overheating and requiring high thermal dissipation capabilities in embedded systems.








4 Conclusion

With the continuous development of smart agriculture, to facilitate the precision and intelligence of blossom thinning processes, this study, taking into consideration the practical requirements of blossom thinning work, addresses challenges related to high overlap of inflorescences, abundant similar features in pear blossom images, and the difficulty of long-distance detection. In response to these challenges, the study introduces a YOLOv7-E object detection algorithm. The main research findings are as follows.

	(1) The YOLOv7-E object detection algorithm proposed in this paper achieves cross-channel feature interaction, maximizing the retention of positional information in inflorescence images captured at long distances. It effectively detects tree-level inflorescences at distances of 80 cm to 120 cm during different stages of pear tree flowering. The average detection precision reaches 91.4%, with a recall rate of 89.8%. The detection speed is measured at 80.9 ms. This ensures that intelligent blossom thinning equipment can operate throughout the entire flowering period of pear trees, adapting to the variable weather conditions, and maintaining effective performance within normal working distances.

	(2) The Soft-NMS strategy and the improved SPPCSPCS module introduced in this paper effectively reduce the likelihood of false negatives and false positives when dealing with dense tree-level inflorescences. This approach maximally retains the global feature information of the input inflorescence images, enabling intelligent blossom thinning equipment to more accurately obtain the count of blossoms and buds for each inflorescence on the entire tree. Consequently, based on the varying inflorescence density, the thinning axis rotation speed can be adjusted, providing reliable data support for achieving differentiated and precise blossom thinning.

	(3) The YOLOv7-E model proposed in this paper achieves effective detection of tree-level pear inflorescences at long distances in complex scenarios. However, the model exhibits a slightly larger size and demands high computational resources. In the future, there is a need for the model to evolve towards greater lightweight characteristics, enhancing compatibility with edge devices. A potential avenue for improvement is through Model Pruning, where certain threshold-weighted and redundant channel weights are removed. For instance, the introduction of Ghost modules, which partition input channels into two parts and employ shallow convolutions through the Ghost path, can reduce computational load. Alternatively, inspiration can be drawn from the depth-wise separable convolution concept in MobileNetV3, decomposing the standard convolution into depth-wise and point-wise convolutions to maintain performance while reducing model size.
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The east-west ridge orientation has recently become an important agronomic method to improve mechanization in solar greenhouses. However, these ridge orientation changes shape differences between different ridges in crop water consumption, and there is a lack of research on the regulation and adaptation of water consumption. Therefore, this study introduces a variable irrigation decision-making method based on the Internet of Things management and control system for an east-west ridge orientation. To replenish water on demand, this study seting the variable irrigation decision-making (VRI) methods and traditional average irrigation decision-making (URI) methods in the system, and lettuce cultivation experiments were conducted to verify the effectiveness of the model and system. The results show that the difference of accumulated photosynthetically active radiation is the most significant between different ridges of the east-west ridge orientation, and the coefficient of variation is 43.77 %, which can be used as an activating factor for VRI methods. The irrigation water consumption, yield, water-use efficiencies, and irrigation water utilization of lettuce at different levels of irrigation were 307.12 L/m2, 5854.07 kg·ha-1, 1391.47 kg·ha-1·mm-1, and 7.63 kg·cm-3, respectively. Compared with the URI methods, the VRI method saved 10.02 % of water, increased yield by 9 %, and enhanced water use efficiency and irrigation water use efficiency by 12 % and 21.32 %, respectively. This study provides a new approach for improving crop production efficiency under an east-west ridge orientation.




Keywords: solar greenhouse, east-west ridge orientation, variable irrigation, internet of things (IoT), water management




1 Introduction

The United Nations Food and Agriculture Organization (FAO) survey results show that the world is worried about future food demand, and the world’s population is expected to reach 9.73 billion by 2025 (FAO, 2017). In addition, sudden weather changes and water shortages have increased pressure on food production. Facility agriculture has become an important source of agricultural products for urban and rural residents. Therefore, it is considered a solution to ensure food security and sustainability (Rayhana et al., 2020). China has the largest agricultural facility area in the world. The total area of horticultural facilities was more than 3.9 million hectares in China, accounting for more than 80% of the total area of horticultural facilities worldwide in 2022 (Sun et al., 2019). Solar greenhouses are the main type of facility and accounting for more than 70% of the total in China. Most solar greenhouses to date face south, and the planting mode is mainly along the north-south ridge orientation with long and numerous characteristics. The average solar greenhouse is usually 50–100 m long and 6–12 m wide. As a result, the length and number of ridges in north-south ridge orientation are 0.1–0.12 times and 8.75–8.88 times more than those in east-west ridge orientation, respectively.

Sustainable mechanized operation is challenging, Because mechanical work must be turned around frequently in the north-south ridge orientation, (Yang et al., 2021a; Yang et al., 2021b; Yang et al., 2022). As the population grows and ages, the number of people engaged decreases, increasing labor costs in agriculture. Therefore, it is important to improve the mechanized operations of solar greenhouses. China has started to develop an east-west ridge orientation instead of the north-south ridge orientation to lengthen the ridge, reduce the number of ridges, and improve the degree of mechanization in the solar greenhouses (Song, 2018). Studies have shown that the mechanization efficiency of ridge breaking is 14 times higher than that of manual labor, the soil crushing rate is up to 90%, and the cost savings are 13 times greater than those of manual labor (Wang et al., 2023). Another study compared the effects of east-west and north-south ridge orientations on tomato yield in a sliding solar greenhouse and reported that the yield of tomatoes in the east-west ridge orientation was higher than that in the north-south ridge orientation (Yang et al., 2020). Similarly, Na Liu et al. showed that the yield of machine-planted chili peppers was 2380 kg, which was 11.21% higher than that in the east-west ridge orientation planting (Liu et al., 2021). Yang Yandong et al. planted tomatoes with the same density and different ridge distances in the east-west ridge orientation. The results showed that increasing the ridge orientation was beneficial for increasing light transmittance, and yield and fruit quality were improved (Yang et al., 2021a; Yang et al., 2021b; Yang et al., 2022). The planting density differed in the east-west ridge orientation, and the light transmittance range of the tomato population increased with decreasing density (Yang et al., 2021a; Yang et al., 2021b; Yang et al., 2022). In summary, the variable irrigation decision-making method has been applied in many areas, such as Ningxia and Shenyang, and has become a main development direction.

Solar greenhouses shield against rainfall; therefore, irrigation is the only water source for crops. Water regulation is key for promoting crop growth and utilization. There are differences in water use characteristics of crops (Zhang et al., 2023). However, existing research has mainly focused on the downward planting density of the east-west ridge orientation and the changes in the crop growth environment caused by the change in ridge orientation; however, there is a gap in research on precise water control. In actual production, the average irrigation of the entire greenhouse limited the increase in production capacity, which follows the traditional north-south ridge orientation. Many studies have shown that variable irrigation can improve crop yield, quality, and water-use efficiency, while reducing agricultural water consumption. Previous studies have reported that intelligent irrigation management strategies can reduce irrigation water consumption by 13% without affecting yield or quality (Touil et al., 2022). Other studies have demonstrated that variable irrigation increases crop yield and improves water use efficiency better than uniform irrigation (Sui and Yan, 2017). Liakos et al. identified that the UGA smart sensor array is highly compatible with the VRI system, which kept the soil moist without affecting crop growth and used 25% less irrigation water than in traditional methods (Liakos et al., 2017). In summary, variable-rate irrigation is expected to become an important way to improve productivity under east-west ridge orientation in solar greenhouses.

In this study, a VRI method and an Internet of Things (IoT) management and control system are proposed for east-west ridge-oriented planting in solar greenhouses. The purpose of this study was to (1) determine whether the distribution of environmental parameters in solar greenhouses affects crop growth and water consumption in east-west ridge-oriented planting to provide a basis for regional irrigation and identify top influencing factors; (2) develop a VRI method driven by accumulated photosynthetic active radiation and an IoT management of control system to carry out zonal management according to the law of light distribution, arrange the variable irrigation system, and control the internal operation of the system by an algorithm; and (3) compare the effects of VRI methods with those of traditional URI methods on water consumption, growth rate, photosynthetic parameters, yield, water use efficiency, and irrigation water use efficiency in Loose leaf lettuce planted in the east-west ridge orientation.




2 Materials and methods



2.1 Intelligent variable irrigation system setup

Figure 1 shows the proposed intelligent variable irrigation system for a solar greenhouse and its workflow. The system comprises an environmental online monitoring module, a central control module, a wireless valve control module, a ridge irrigation execution module, and an irrigation monitoring module. The functions of each module are as follows:

	(1) The online environmental monitoring module includes greenhouse multiparameter sensors that monitor air temperature, air humidity, and photosynthetic active radiation in the solar greenhouse. The collection frequency of air temperature and humidity was 1 h/times, and the collection frequency of photosynthetically active radiation was 5 min/times. The collected data were transmitted to the central control module through a wired network. The greenhouse multiparameter sensor was set 20 cm above the crop canopy, and its height was adjusted with the growth of the crop.

	(2) The central control module first receives the data transmitted by the environmental online sensor, determines the irrigation time by accumulating photosynthetically active radiation, irrigation water consumption was calculated the Penman-Monteith (modified) formula (Allen et al., 1998), and issues the instructions of irrigation (QNopen and QNstop) to the wireless valve control module via wireless network transmission.

	(3) The wireless valve control module consists of a wireless valve controller and a solenoid valve, which receives relevant commands from the central control module via wireless network transmission and executes the irrigation instructions(QNopen and QNstop) of the ridge irrigation execution module through the solenoid valve.

	(4)The ridge-divided irrigation execution module includes the main pipe, sub-main pipe, and drip irrigation belt at the end, which are arranged in an east-west ridge orientation; the water is transported to the crop root through the pipeline and drip irrigation belt. The ridging layout is shown in Figure 1. The environmental online monitoring module is set up on each ridge in the green area, which is controlled by the central monitoring module. The entire study area is divided into ridges according to environmental parameters.

	(5) The irrigation-monitoring module includes a wireless collector, water meter, and pressure gauge. A water meter and wireless collector were installed to measure the irrigation water consumption of each ridge at the back end of the solenoid valve, and a pressure gauge was installed on the main road.






Figure 1 | On the left is the Intelligent irrigation system detailed diagram. On the right is the Intelligent irrigation system workflow The blue and red lines represent the execution mechanism and the feedback mechanism, respectively. Circled numbers indicate unique parts of the system: ① solar greenhouse, ② shelter membrane, ③ instrument placement, ④ East-West ridge planting, ⑤ pressure gauge, ⑥ bucket, ⑦ rear wall, ⑧ central control cabinet, ⑨ photosynthetic radiation sensor, ⑩ soil moisture sensor, ⑪ greenhouse environment sensor, ⑫ water meter, ⑬ wireless collector ⑭, wireless valve controller, and ⑮ solenoid valve.



An intelligent variable-irrigation system was built around the VRI model. The underlying logic of the VRI model is detailed in Figure 2, in which the light heterogeneity that exists under east-west ridge orientation planting is used to delineate the area. Meanwhile, real-time collection of photosynthetic active radiation was performed to determine the irrigation time and consumption of water using the Penman-Monteith (modified) formula to achieve dynamic and accurate replenishment of water. The resulting instruction abbreviations are shown in Table 1.




Figure 2 | Irrigation decision model logical flow diagram with ridge splitting.




Table 1 | Abbreviated instruction summary table.



First, the photosynthetically active radiation sensor receives light in the solar greenhouse and measures its cumulative photosynthetically active radiation (RNtotal) based on the density of the light quantum flux. RNtotal is then used to dynamically collect and calculate the hourly rate for each ridge, VRI1, VRI2, VRI3, and VRIN. The cumulative photosynthetically active radiation was the real-time total photosynthetically active radiation value at the sensor monitoring location, which was calculated using the numerical integration method (Equation 1):

 

where   is the cumulative photosynthetically active radiation at the location of the monitoring point (sW/m3),   is the total active photosynthetic radiation at a time point   (W/m3), and   is the total active photosynthetic radiation at   (W/m3).

The distribution of cumulative photosynthetic active radiation in the greenhouse from south to north is closely related to the distance to the center of the greenhouse and the angle of solar radiation. The cumulative photosynthetic active radiation of the greenhouse was calculated and then used to calculate the cumulative photosynthetic active radiation value of each ridge using Equation 2:

 

where   is the cumulative photosynthetic active radiation value at the position of the Nth ridge in the east-west orientation (sW/m3),   is the current time (s),   is the total time of the day (s),   is the cumulative photosynthetic active radiation value at the position of the monitoring point (sW/m3),   is the distance from the center of the Nth ridge to the back wall (m),   is the distance of the monitoring point from the back wall (m),   is the total length of the greenhouse in the north-south orientation (m), and  ,   are constants, whose values vary in different greenhouses; therefore, these values must be obtained by actual calibration.

Furthermore, the decision threshold for photosynthetically active radiation (RNmax) was set for the intelligent variable irrigation system. When RNtotal = RNmax, the central control module initiates a program to calculate the crop water demand.

Second, the greenhouse environment sensor records real-time data, such as air temperature, humidity, and photosynthetically active radiation, and transmits them to the central control module. The user dynamically calculates the crop water requirement INdemand using the Penman-Monteith (modified) formula (Equation 3) and inserts the results into the central control module:

 

where   denotes the reference crop emersion (mm·day-1),   denotes net surface radiation (MJ·m-2·day-1),   denotes soil heat flux (MJ·m-2·day-1),   denotes the saturated water vapor pressure (kPa),   denotes the actual water vapor pressure (kPa),   denotes the change of the saturated water vapor pressure curve (kPa·°C-1),   denotes the wet and dry table constants (kPa·°C-1), and   denotes the average indoor air temperature (°C).

Third, when the cumulative photosynthetic active radiation (RNtotal) reaches the photosynthetic active radiation decision threshold (RNmax) and after the crop water demand, INdemand is calculated using the Penman-Monteith (modified) formula, the central monitoring module instructs the wireless valve control module to turn on the irrigation. If RNtotal< RNmax, the central control module checks whether RNtotal is equal to RNmax.

Fourth, the irrigation monitoring module checks the flow rate of the water meter and the main pipe pressure during irrigation. When the irrigation water consumption INcapacity = INdemand, the central monitoring module issues a stop irrigation instruction to the wireless valve control module and executes QNstop. If INcapacity< INdemand, the central control module continues to evaluate whether INcapacity is equal to INdemand. When there were multiple ridges of irrigation simultaneously, the irrigation-monitoring module monitored the pressure of the main pipe. If the pressure was deficient to ensure the uniformity of irrigation, the controller actively suspended part of the ridge irrigation to ensure the uniformity of the front and back ends of the drip irrigation belt.

Finally, when RNtotal = RNmax, QNopen was executed, irrigation was activated, the RNtotal was reset to zero, and the accumulation was restarted to begin the next cycle. Various farmed ridges were maintained under different light and heat conditions based on the intelligent variable irrigation systems, and the irrigation cycle and irrigation water consumption appeared distinct.

The core module of the above intelligent variable irrigation system is the central controller, which has multiple signal interfaces and can be used for various types of sensors. The main ways for the central controller to connect the sensor include a wired connection and a wireless connection, and the wireless connection includes an analog signal interface and a digital signal interface. The analog signal interface is standard signal acquisition (4-20 mA current, 0-5 V voltage), which can be connected to a soil moisture sensor, soil temperature sensor, total radiation sensor, and photosynthetically active radiation sensor. Digital signal interfaces include RS485 and SDI-12 to connect flowmeters, water level sensors, multi-profile soil moisture sensors, and digital water meters. This experiment used a photosynthetic active radiation sensor, the soil moisture sensor, and the digital meter through the digital signal interface for RS485 connected to the control cabinet. In addition, a wireless greenhouse sensor can be connected to the central controller via a wireless module. Therefore, this test builds an intelligent variable irrigation system that has extensive adaptability.




2.2 Validation of the intelligent variable irrigation system in lettuce cultivation experiments

The study site was located in Xiaotangshan Town, Changping District, Beijing, China (E 116° 20’ 26”, N 40° 07’ 03”, 50 m above sea level), which has Warm temperate humid monsoon climate. The experiment used a 45-m-long and 7.15-m-wide solar greenhouse sitting north-facing south, with a planting area of 182 m2 in the east-west ridge orientation. In the solar greenhouse, “American Large Fast-Growing” Lactuca sativa L. (loose-leaf lettuce) was planted. On August 1, 2022, lettuce was planted in two rows on one ridge at a spacing of 20 × 20 cm, with a density of 6.12 plants/m2. Before planting, 400 kg of organic fertilizer and 40 kg of compound fertilizer were applied to each ridge of the solar greenhouse. Drip irrigation tubes with a diameter of 16.2 mm, wall thickness of 0.38 mm, rated flow rate of 1.35 L/h, and drip head spacing of 0.3 m, were placed along the roots of each row to water the lettuce. The plants were harvested on September 9 after a 40-day growth period. The growth period was divided into seedling stage (8.1-8.23) for 23 days, rosette stage (8.24-9.02) for 10 days, and mature stage (9.03-9.09) for 7 days.

The solar greenhouse was separated into two water management regions in this study: the VRI region and the URI region. The VRI region differs from the URI region in that it has light heterogeneity under the east-west ridge planting in the solar greenhouse, and it was constructed to regulate the VRI region using a VRI method. As illustrated in Figure 3, four photosynthetically active radiation sensors were mounted on each of the four ridges to manage irrigation water consumption in the VRI region.




Figure 3 | Environmental parameters at various locations within the solar greenhouse.






2.3 Data acquisition and analysis



2.3.1 Data collection and analysis of the intelligent variable watering system

(1) An online environmental monitoring module included a greenhouse environment and photosynthetically active radiation sensors. A greenhouse environment sensor (greenhouse doll II, National Agricultural Informatization Engineering Technology Center) automatically monitored the environmental parameters in the solar greenhouse, such as air temperature, air humidity, and light intensity, such that it was always located above the crop canopy at a height of 20 cm, with a data collection frequency of 1 h/times. The photosynthetically active radiation sensor (RS-GH-I20-AL, Shandong Renke Measurement and Control Technology Co., Ltd.) automatically monitored the photosynthetically active radiation in the solar greenhouse, keeping it at the same height as the canopy and collecting data for 5 min/times.

(2) Irrigation monitoring included a wireless collector, water meter, and manometer. Irrigation water consumption was always recorded using an automatic water meter and a wireless collector (SM-10 electronic remote water meter, Nanjing Watergate Electronics Co., Ltd.).




2.3.2 Data collection and analysis for crop growth

(1) The plant variables measured include plant height, plant width, number of leaves, leaf length, and leaf width. Six lettuce plants with uniform growth were selected and labeled at each locus. The above data were measured and recorded every five days from the end of the slow seedling stage to the end of the growth period.

(2) Photosynthetic parameters: During the rosette stage of lettuce development, single plants with uniform and robust growth and mature functional leaves in the same direction of light exposure were selected for measurement of photosynthetic parameters, it including the net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), and intercellular carbon dioxide (Ci) by clipping the middle part of the leaves with transparent leaf chambers.

(3) The total yields of the URI and VRI regions were calculated, and then the VRI region was subdivided, and the total yield was calculated per ridge.




2.3.3 Water use efficiency calculations

(1) The water use efficiency (WUE) was calculated using Equation 4:

 

where   denotes water use efficiency (Kg·ha-1·mm-1),   denotes yield (kg·ha-1), and   denotes crop evaporative transpiration under standard conditions (mm).

(2) Irrigation Water Use Efficiency (IWUE) was calculated using Equation 5:

 

where   denotes irrigation water utilization efficiency (kg·m-3),   denotes yield (kg·ha-1), and   denotes irrigation water use (m3·ha-1).




2.3.4 Statistical analysis

All statistical analyses were carried out using Excel 2016 and IBM SPSS Statistics 26 software. A one-way analysis of variance (ANOVA) was used to identify significant differences between treatment groups. P<0.05 denotes statistical significance. Finally, data visualizations were created in Excel 2016 and Origin 2022.






3 Results and analysis



3.1 Spatial and temporal patterns of environmental parameter changes in the solar greenhouse with the east-west ridge orientation

The fluctuation in environmental characteristics among different locations under the east-west ridge orientation is depicted in Figure 3. Figures 3A–D depict the environmental characteristics on the same ridge in an east-west ridge orientation. In contrast, Figures 3E–H depict the same axis in a north-south ridge orientation. The variations in air temperature, air humidity, light intensity, and photosynthetic active radiation in the solar greenhouse through the growth period ranged from 20.12–29.95°C, 79.78–97.5%, 3.91–114.12 W/m2, and 156–24,522 mmol/m2/s, respectively. The maximum light intensity and photosynthetic active radiation values occurred on August 31, 2022, with values of 2052.55 W/m2 and 424425 mmol/m2/s in West-2, respectively. The absolute differences in air temperature, air humidity, light intensity, and photosynthetic active radiation between East-2 and West-2 over the growth period were 0.71°C, 0.18%, 265.55 W/m2, and 12610 mmol/m2/s, respectively. However, none of the differences were significant in environmental parameters (P>0.05).

Except for air temperature, there were significant differences of changes in environmental parameters among the different ridges throughout the growth period (P<0.05). The average air humidity ranged were from, West-1 > West-2 > West-4 > West-3, with values of 90.88%>89.78%>88.03% >86.10% in descending order, respectively; the largest absolute difference was 4.78%. The cumulative light intensity and cumulative photosynthetically active radiation were West-2 > West-3 > West-1 > West-4, with values of 2052.55 W/m2>1905.10 W/m2>1641.24 W/m2 >1620.99 W/m2 >424425 mmol/m2/s >363607 mmol/m2/s >348661 mmol/m2/s >284,550 mmol/m2/s in descending order. The cumulative light intensity and cumulative photosynthetic active radiation showed that the center two ridges were higher than the two sides, with maximum absolute differences of 431.56 W/m2 and 139875 mmol/m2 s, respectively. West-2 exhibited the highest cumulative light intensity and cumulative active photosynthetic radiation during the growth period. The coefficients of variation of air temperature, air humidity, cumulative light intensity, and cumulative photosynthetically active radiation between different ridges were 7.99%, 4.10%, 40.58%, and 43.77%, respectively. Overall, the coefficient of variation value of cumulative photosynthetic active radiation was the highest when compared to air temperature, air humidity, and cumulative light intensity. The variability of cumulative photosynthetic active radiation was the highest among different ridges. Therefore, active photosynthetic radiation was used as an initiating factor for irrigation decisions in this study.




3.2 Water consumption analysis using variable irrigation decision-making methods

As shown in Figure 4, the total irrigation water consumption was 341.33 L/m2 and 307.12 L/m2 in the URI and VRI regions, respectively. Irrigation water consumption of VRI region was 10.02% less than URI region that was reduced by 7.39%, 14.12%, and 3.74% at the seedling, rosette, and maturity stages, respectively. This shows that the VRI method can reduce irrigation water consumption, which is most evident in the rosette stage.




Figure 4 | Irrigation water consumption in URI and VRI regions.



Figure 5 depicts the analysis of water consumption of different ridges in the VRI region. The irrigation water consumptions of VRI1, VRI2, VRI3, and VRI4 were 61.40 L/m2, 104.72 L/m2, 90.94 L/m2, and 50.06 L/m2, and the number of irrigation times was 12, 16, 14, and 10 times, respectively. The URI was compared with VRI2 and VRI3 irrigation water consumption increased by 22.72% and 6.57%, respectively. VRI2 and VRI3 of the number of irrigation cycles increased by two and did not increase, respectively. In contrast, the irrigation water consumption of VRI1 and VRI4 decreased by 35.07% and 41.33%, while the number of irrigation cycles decreased by two and four, respectively. The ranges of variation among different ridges within the seedling, rosette, and maturity stages were 23.03–33.31 L/m2, 21.93–59.73 L/m2, and 5.10–11.68 L/m2, respectively. The maximum absolute differences were 10.28 L/m2, 37.8 L/m2, and 6.58 L/m2, respectively, with the maximum difference in irrigation water consumption among different ridges observed during the rosette stage. The differences in irrigation water consumption among the different ridges proved the importance and necessity of a VRI method.




Figure 5 | Water consumption for irrigation in the VRI region between different ridges.






3.3 The impact of different VRI methods on crop growth and water utilization



3.3.1 Impacts on crop growth

The response of the growth rate to the VRI method is discussed in Table 2. The absolute differences in the growth rates of plant height, plant width, number of leaves, and leaf area were 1.14%, 0.83%, 1.28%, and 1.12% between the URI and VRI regions, respectively. The absolute difference was slightly higher in the VRI region than in the URI; however, the difference was not statistically significant. The difference of the growth rates for plant height, plant width, leaf number, and leaf area was 35.34%, 30.98%, 48.64%, and 60.52% in VRI area of different points, respectively. The maximum absolute differences were 69.7%, 13.4%, 83.34%, and 308.02%. VRI2 and VRI3 benefited from adequate light and irrigation water, and their growth rates were higher than those of VRI1 and VRI4, resulting in inter-row growth rates among the different ridges.


Table 2 | Variable irrigation-decision method affects growth rate and photosynthetic factors.



The responses of photosynthetic parameters to the VRI methods are shown in Table 3. Throughout the growth period, photosynthetic metrics, including (A), (E), (gs), and (Ci), were measured on sunny and cloudy days. As indicated in Table 1, A and Ci increased by 23.2% and 8%, E and gs decreased by 4.44% and 11.28% in the VRI region under sunny conditions compared with those in the URI region, respectively. Under cloudy conditions, A, E, gs, and Ci all decreased by 8.9%, 5.9%, 7.46%, and 7.8% in the VRI region compared to those in the URI region, which suggests that VRI methods improve photosynthesis on sunny days and decrease photosynthesis on cloudy days. Further exploration of the photosynthetic parameters under sunny and cloudy states revealed that the maximum absolute differences for A, E, gs, and Ci were 1.05 μmol m-2 s-1, 0.85 mmol m-2 s-1, 315.16 mol m-2 s-1 and 1.6 μmol mol-1; 1.67 μmol m-2 s-1, 0.93 mmol m-2 s-1, 78.46 mol m-2 s-1, and 50.15 μmol mol-1 in VRI area of different points. The photosynthetic parameters of different ridges are thus quite different. VRI2 and VRI3 received sufficient light and irrigation water consumption; therefore, their photosynthetic activity was higher than that of VRI1 and VRI4, which led to larger disparities in photosynthesis and, thus, growth among the different ridges.


Table 3 | Variable irrigation-decision method affect and photosynthetic factors.






3.3.2 Impacts on yield, WUE, and IWUE

Table 4 displays crop yield, WUE, and IWUE under the VRI method. Yield, WUE, and IWUE were higher in the VRI region than that in the URI region, with a significant difference (P<0.05). Specifically, yield, WUE, and IWUE grew by 9.12%, 12.00%, and 21.32% in the VRI region compared to those of the URI region, respectively. The yield and WUE of VRI1, VRI2, and VRI3 were greater than that in URI2, while the yield and WUE of VRI4 were 1.50% and 2.64% lower than that in URI2, respectively. The IWUEs of VRI1, VRI3, and VRI4 were higher than those of URI2; of these, the IWUE of VRI2 was 3.50% lower than that of URI2. The experimental results demonstrated that the VRI method improved crop yield, water use efficiency, and irrigation water use efficiency while reducing irrigation water consumption through controlled irrigation in ridges.


Table 4 | Responses of yield, WUE, and IWUE to various irrigation-decision methods.








4 Discussion

Planting crops in the east-west ridge orientation can considerably enhance the efficiency of mechanized production. For example, Ningxia conducted an in-depth study on the mechanized cultivation mode of protected vegetables. The results showed that planting of the east-west ridge orientation promoted plant growth in a solar greenhouse. Further, researchers screened out suitable machinery for deep turning, rotary tillage, ridging, transplanting, stubble elimination, and inter-row operation. They observed that the mechanization rate increased from 29.0% to 67.8%, and the labor cost decreased by 8.1% (Yang et al., 2021a; Yang et al., 2021b; Yang et al., 2022). The light distribution in the solar greenhouse revealed that the light was concentrated in the middle of the greenhouse. In contrast, the wall obstructed the two sides, which limited the lighting. Further, the light distribution within the same ridge is not consistent in typical north-south ridge orientation planting, and there are many ridges, making it impossible to manage the ridges based on light distribution; however, east-west ridge orientation on the same ridge has fewer ridges, and it improved the consistency of the light and heat distribution. However, light and heat distributions differed between ridges, resulting in differences in crop growth based on ridge. The current method of average irrigation in solar greenhouses cannot meet the water demand of crops between different ridges, and there is excessive/insufficient water supply in some ridges, affecting crop growth and yield and lowering the efficiency of water use (Gundim et al., 2023). Therefore, based on the change in ridge orientation, ridge irrigation can be carried out according to the environmental differences in crop populations and water consumption.

In this study, the differences of environmental parameters were significant (P<0.05) in the north-south orientation, except for in air temperature, where the coefficient of variation of photosynthetic active radiation was the highest; thus, it was selected as an initiating factor to regulate the time and amount of irrigation between different ridges. This pattern occurred because active photosynthetic radiation directly affects water consumption. In the production system, the water is absorbed by the crop root system in the soil and, under the influence of transpiration, passes through the stems to reach the leaves and then evaporates into the air, forming a dynamic water cycle system, the soil-plant-atmosphere continuum (SPAC) (Zhang et al., 2021). Photosynthetic active radiation is the main influencing factor of transpiration; when photosynthetic active radiation is strong, it promotes the movement of water in the soil and crop to the air, increasing crop water consumption. Conversely, weak photosynthetic active radiation slows the movement of water in the soil and crop to the air, thereby lowering crop water consumption, as shown in Figure 6. The cumulative photosynthetic active radiation in the solar greenhouse, which was West-2>East-2>West-3>West-1>West-4 over the growth period, indicating that the photosynthetic active radiation on the west side of the solar greenhouse was higher than that on the east side and confirming that the photosynthetic active radiation of the middle two rows was higher than that of the other two rows.




Figure 6 | Total photosynthetically active radiation.



The validation experimental results demonstrated that irrigation water consumption decreased by 10.02%, yield increased by 9.12%, and WUE and IWUE increased by 12% and 21.32%, respectively, under the VRI method. A related study discovered that variable irrigation reduced total irrigation water consumption by 25%, increased yield by 2.8% and 0.8% for soybeans and corn, respectively, and increased water use efficiency by 31.2% and 27.1%, respectively. Therefore, the results of this study are consistent with those of previous studies. To conserve water, this study implemented an on-demand water supply in the sub-row, utilizing active photosynthetic radiation as the initiating factor. The main advantage of the VRI method for reducing irrigation water use is that it can accommodate the different resource allocation needs of multiple ridges on demand based on the received photosynthetically active radiation. The URI method, meanwhile, is based only on one ridge; thus, it ignores the difference in illumination between the different ridges.

A few studies have reported that uncontrolled or deficient water affects yield (Liu et al., 2022). In this study, change in irrigation water consumption led to an increase of 8.06%, 18.55%, and 11.36% in yields of VRI1, VRI2, and VRI3, respectively, compared with those of URI, except for the yield of VRI4, which was 1.50% lower than that of URI. The VRI method provides appropriate water consumption to increase yield. VRI1 had a higher yield with less irrigation water consumption, whereas the URI method may cause excessive water in certain areas, thereby reducing yield. WUE was influenced mostly by yield and improved in all treatments except for VRI4. Although irrigation water consumption was the most important factor determining IWUE, there was a negative correlation between IWUE and irrigation water consumption. Except for VRI2, IWUE increased in all treatments. According to a related study, grape growth and water status could be better controlled when there is a clear relationship between soil water content and ETa (Wilson et al., 2020). Therefore, in this study, the soil water content of the different ridges was analyzed. Pei Yun et al. reported that when the soil water content was 28.0–32.9 cm-3, the growth and photosynthesis of loose-leaf lettuce were optimal (Pei et al., 2015). Additionally, as shown in Figure 7, water homogeneity and on-demand supply among different ridges were achieved using the VRI method under inconsistent light conditions. Therefore, it can be concluded that the VRI method regulated by the intelligent irrigation system under east-west ridge-oriented planting is feasible for sustainable crop production, even under inconsistent conditions.




Figure 7 | Soil moisture content varies between ridges in the T region.






5 Conclusion

In this study, an IoT control system was used to develop a VRI method, and the effects of the VRI method were compared with those of URI methods. The results showed that the performance of the VRI method was better than that of the URI method in all respects. Compared to the URI method, the VRI method reduced irrigation water consumption by 10.02%, increased yield by 9.12%, increased WUE by 12%, and increased IWUE by 21.32. Additionally, using the VRI method, VRI1, and VRI4 obtained higher WUE and IWUE despite reduced irrigation water consumption, which verifies the advantage of variable irrigation. The results of this study may help produce solar greenhouses and obtain the most from limited water resources to achieve higher yields, WUE, and IWUE. Further investigations should be conducted on different light-sensitive crops, such as tomatoes and cucumbers, to verify the applicability of this method in other crop systems.
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In order to effectively support wheat breeding, farmland ridge segmentation can be used to visualize the size and spacing of a wheat field. At the same time, accurate ridge information collecting can deliver useful data support for farmland management. However, in the farming ridge segmentation scenarios based on remote sensing photos, the commonly used semantic segmentation methods tend to overlook the ridge edges and ridge strip features, which impair the segmentation effect. In order to efficiently collect ridge information, this paper proposes a segmentation method based on encoder-decoder of network with strip pooling module and ASPP module. First, in order to extract context information for multi-scale features, ASPP module are integrated in the deepest feature map. Second, the remote dependence of the ridge features is improved in both horizontal and vertical directions by using the strip pooling module. The final segmentation map is generated by fusing the boundary features and semantic features using an encoder and decoder architecture. As a result, the accuracy of the proposed method in the validation set is 98.0% and mIoU is 94.6%. The results of the experiments demonstrate that the method suggested in this paper can precisely segment the ridge information, as well as its value in obtaining data on the distribution of farmland and its potential for practical application.
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1 Introduction

One of the most fundamental uses of remote sensing data in the field of agriculture management is mapping and monitoring farmland information. Field ridges are used in farming information to divide farmland into several crop zones and assist farmers in planning and managing their crops logically (Li et al., 2020; S. Wang et al., 2023). In wheat breeding, the division of ridges can help control the spread of pests and diseases and cross-contamination (Jiaguo et al., 2023), and the reasonable distribution of ridges can help provide crops with appropriate moisture and temperature to improve crop yield and quality (Zhang et al., 2023). Therefore, reliably and effectively extracting farmland ridge information from low-altitude remote sensing data is crucial for farmland management and decision-making.

More and more researchers have been utilizing remote sensing photos to carry out in-depth research on the distribution of farmland in recent years. When working with remote sensing images, the process of manually drawing farmland distribution information is easily influenced by subjective variables, and the data sources are dispersed, which makes it difficult to meet the demands of effective farmland management. The development of machine learning enables the automatic segmentation of farming data (Adebiyi et al., 2020; Kilwenge et al., 2021; Ibrahim Mohammad Abuzanouneh et al., 2022) and provides the corresponding algorithm support for remote sensing picture processing. For instance, to address the issue of similar objects having different spectra, (Xiao et al., 2019) utilized the CART decision tree classification algorithm and produced a spatial distribution map of farmland based on the spectral similarity between picture pixels. A stratified object-based farmland extraction method based on image region division was also proposed by (Xu et al., 2019) at the same time. To divide up farmland in remote sensing images with high spatial resolution, the image region was divided using the grey level co-occurrence matrix method over the whole image, and scale segmentation parameters were computed in local regions. The concept of regional division was also employed by (Cai et al., 2022). In the study of extracting cropland parcels, the image was first broadly segmented into several regions, and then the final cropland parcels were finely segmented based on average local variance function. In order to automatically segment and extract selected farmland regions, (Li et al., 2019) proposed an edge-preserving smoothing method to automatically segment and extract selected farmland regions, which segments and extracts farmland information with different features from remote sensing images based on the features of the ideally smoothed image, and maintains the boundaries of the farmland regions by using a maximum a posteriori estimation model. In order to overcome the effects of unstructured environments like uneven illumination, shadows and weather, (Liu et al., 2016) converted the original color image to grayscale and minimized the intuitionistic fuzzy divergence to obtain the ideal threshold for detecting various types of obstacles in segmented farmland.

However, the implementation of the above methods relies more on the similarity of pixels, and lacks the extraction of spatial and texture features of high-resolution images, resulting in limited accuracy of obtained farmland information. With the rapid development of deep learning, convolutional neural networks have been able to extract rich semantic information, (Hamano et al., 2023; J. Wang et al., 2023; Punithavathi et al., 2023) thereby alleviating the above deficiencies. (Masoud et al., 2020) designed a multiple dilation fully convolutional network to detect boundaries of agricultural fields and achieve farmland segmentation. To achieve pixel-by-pixel segmentation using a full convolutional network, however, takes a lot of time and more processing resources during training. As a result, some lightweight CNN models that perform well and have fewer parameters have drawn a lot of interest. Through the use of the spatial attention module and the channel attention module, respectively, (Cao et al., 2023) based on the Mask R-CNN network and combined with the feature pyramid of the dual attention mechanism, realized the automatic division of small farm farmland. In order to improve the detection of the edge region in the task of segmenting farmland, (Huan et al., 2022) proposed a multiple attention encoder–decoder network, designed a dual-pooling efficient channel attention module, and added a global-guidance information upsample module to the decoder. To more accurately capture the detailed information and boundary information in farmland segmentation, (Shunying et al., 2023) created a boundary-semantic-fusion deep convolution network. This network fused the boundary features and semantic features together and retained the spatial details and boundary information in the features. Despite this, when completing the task of field segmentation, it is important to take into account the unique characteristics of the vast span and narrow shape of the ridge. Therefore, (Zhang et al., 2021) created the strip pooling module and the mixed pooling module in conjunction with strip pooling in their study of ridge and farmland vacancy segmentation, which can capture the shape features and edge information of ridges well. However, the model is unable to obtain rich contextual semantic information when extracting the high-level semantic features using downsampling due to the limitation of the receptive field, which affects the connectivity of segmentation.

To address the above problems, this paper develops a segmentation method based on encoder-decoder architecture of strip pooling and atrous spatial pyramid pooling module (ASPP) to realize the segmentation of ridge information in crop fields using high-resolution farmland remote sensing images as a dataset. In this study, the model is referred as ASPNet for short. By comparing with several other existing semantic segmentation models, the model achieves the best results in accuracy and mean Intersection over Union (mIoU), and the output ridge shapes have good connectivity. The main contributions of this paper are as follows:

1. An encoder-decoder architecture is utilized because of the intricacy and irregularity of ridge edges. The architecture performs feature fusion during upsampling and gradually restores the feature map to the original feature map resolution size. The shallow edge texture features are preserved during the layer-by-layer feature fusion process.

2. Strip pooling is added to the standard decoder in response to the ridge’s slender and narrow shape. During the fusion process, it can enhance the feature map’s long-distance dependence in both the vertical and horizontal directions and capture the ridge’s strip-like shape characteristics.

3. ASPP architecture is added at the end of the encoder since the ridge information in remote sensing images involves a variety of widely fields. Different receptive fields are constructed by atrous convolution with different sampling rates to enhance the correlation of global spatial information, thus improving the connectivity of the ridge segmentation effect.

The rest of this paper is organized as follows. The materials and methods are described in Section 2 of this paper. Section 3 of this paper presents the results of experimental. The discussion of the experimental results is presented in Section 4. Finally, Section 5 gives conclusions and suggestions for future work.




2 Materials and methods

As shown in Figure 1. This is the flowchart of the whole study. The methodology consists of three main phases: ridge dataset collection and processing, model design and model validation. Detailed descriptions of these steps are given in sections 2.1-2.3.




Figure 1 | Research process flow chart.





2.1 Data collection

The image data were taken in March 2023 at Shiyezhou, Zhenjiang, Jiangsu Province, China, covering an area of 7,063 square meters (shown in Figure 2). The shooting location was Yangzhou University Wheat - Zhenjiang Dantu Experimental Base, and the experimental data were provided by Yangzhou University, Jiangsu Province, China. The shooting equipment was a DJI Mavic 3M aerial photography drone with a shooting altitude of 25 meters. In order to solve the problem that the pixels of each image are too large and unfavorable for training, this study adopts a random cropping method, in which the original images are randomly cropped into 600 images of field ridges with a size of 512 × 512 pixels, and the dataset is divided into a training set and a validation set according to the ratio of 5:1.




Figure 2 | Data collection information.



This remote sensing dataset is primarily used for farmland ridge segmentation. As shown in Figure 2. The area of field ridges in agricultural fields is relatively small. The ridge has a regular shape in the whole, showing a thin and narrow strip, but still has complex and irregular edge texture information at the edge of the ridge. At the same time, there are tiny vacancies in the crop area of some fields, and these vacancies will directly affect the correct detection of ridges, thus, when marking the dataset, it is necessary to make accurate identification and judgment of the ridge information.

Based on the characteristics mentioned above, this study labeled the dataset using ENVI software, which has robust data processing capabilities. The software supports users with high quality data processing, analysis and applications. It can be accurately labeled for high-resolution remote sensing photos and edge complex ridge information. In this study, the fields are labeled in yellow and the crops are labeled in black to help distinguish between the ridges and the fields.




2.2 Experimental design

Since the connectivity of ridge shape is an important characteristic of ridges and the edges of ridges are complex and irregular, it makes it necessary to take into account the rich contextual information and long-distance feature dependencies when designing the model. For this reason, this study designs a segmentation method based on encoder-decoder architecture with strip pooling and ASPP to capture the complete shape of the ridge and clearly delineate the edges of the ridge.



2.2.1 Encoder–decoder architecture

The encoder-decoder architecture used by ASPNet allows it to combine features extracted by the encoder with features upsampled on the decoder. Additionally, it enables the output result to retain the effective edge texture features while restoring to the original resolution size (Ilyas et al., 2022; Zhou et al., 2022; Ren et al., 2023).

Figure 3 depicts the structure of the model. The encoder receives the input image initially, and the convolutional blocks in the encoder extract and output the ridge features at various scales. As the entire network is deepened, the size of the output feature maps of each block gradually decreases. In the encoder, except for the last layer of the feature map passed into the ASPP, the feature maps output from the first four convolutional blocks have two branches, one branch is used as an input to the next convolutional block, and the other is used for the feature fusion operation in the decoder. The feature maps after ASPP processing are up-sampled and used as input to the decoder. In the decoder, the up-sampled feature map will be feature fused with the output of the encoder. This feature fusion operation helps the decoder to better understand the feature information of the input image and generate more accurate predictions. Following a strip-pooling process, the fused features are then used as input for the subsequent up-sampling, and so on, repeating till the output.




Figure 3 | Model structure diagram.






2.2.2 Strip pooling module

There is a high demand for the strip-shape ridge segmentation effect in the farmland ridge segmentation scene, so the model must accurately capture the complete shape of the ridge and distinguish clearly between the field’s boundary and other features. The strip pooling module in SPNet (Hou et al., 2020) is cited in this paper as serving this purpose. To acquire dependencies over long distances, strip pooling uses 1×N or N×1 strip pooling kernels. It differs from traditional pooling processes, which based on square windows to extract valid features from input images and demand a significant amount of computation to create associations at pertinent regions. However, in some application scenarios such as roads and farmland ridges that have narrow and large spans, conventional pooling is difficult to capture the remote context information of features, which causes the model to miss some of the features during processing. When the input image’s features are long and narrow, strip pooling can capture their relationship in both the horizontal and vertical directions, combine them, and establish remote dependencies throughout the entire scene. It also prevents irrelevant regions from interfering with feature learning.

As shown in Figure 4, in order to average all the features in a row or column during a certain operation phase, the strip pooling module moves the strip-shaped pooling kernel in two directions, horizontal and vertical, respectively. The output of the above-mentioned pooling is then afterwards enlarged by convolution in the corresponding up-down and left-right directions. Following expansion, two H×W feature maps are created, and an H×W feature map is created by performing a pixel-by-pixel summing operation on the features corresponding to the identical positions in the two expanded feature maps. After applying a layer of convolution and sigmoid activation function processing, the output of the module is obtained by multiplying with the corresponding pixels of the original input feature map.




Figure 4 | Schematic illustration of the strip pooling.






2.2.3 ASPP

Due to the narrow shape, vast span and wide coverage of the ridge in the image, the standard convolution procedure is constrained by the receptive field and is unable to capture the rich contextual information. As a result, the atrous spatial pyramid pooling module is utilized to widen the receptive field (Chen et al., 2018), which can enhance the connectivity of ridge detection and better capture the whole contour of the ridge.

To collect multi-scale contextual data, this module employs atrous convolution with various sampling rates. The output feature maps from each atrous convolution operation are then spliced and fused after the convolution operations with various sampling rates are conducted on distinct branches. Without introducing additional parameters, the expansion of the modular receptive field is achieved. The first is a 1×1 standard convolutional branch, while the following three are 3×3 convolutional branches with various sampling rates to create convolutional kernels with various receptive fields, as illustrated in Figure 5. In order to improve perceptual ability and semantic information, the ASPP is positioned after the encoder to process the encoder’s deepest feature output.




Figure 5 | Schematic illustration of the ASPP.







2.3 Network training and performance evaluation

A computer with a processor of Inter(R) Core(TM) i7-11700k @3.60GHz, 32G RAM, and a graphics card of NVIDIA GeForce RTX 3070 (8G RAM) was used in this study. The software environment consists of Python 3.8, CUDA 11.4, Linux 10, and PyTorch 1.8.0. This study set the starting learning rate to 0.01, the initial batch size of all the datasets to 4, the input image resolution size to 512×512, and the epoch to 100 for training the model. Additionally, the model uses SGD as the optimizer to get better training results because SGD has good randomness and simplicity in updating the learning rate, and it can have better stability throughout the model training process. This prevents the model from fitting too quickly in the early stages of training, which can result in overfitting.

The cross-entropy loss function is used in this work to quantify the discrepancy between model predictions and actual results (Zhang et al., 2021). The loss function (Equation 1) looks like this:



Where, x denotes the input vector and each value in the vector denotes the model predicted value. class denotes the labeled values of the different classes and a label value of 0 denotes the background and 1 denotes the ridge information.

Four quantitative criteria were employed in this study to assess the segmentation findings. The segmentation performance (Zou et al., 2022; Shunying et al., 2023) is assessed and compared using the following metrics: overall pixel accuracy (Acc), precision (Pr), recall (Re), and intersection ratio union (IoU) (Equations 2-5). The test set’s photos are averaged for Acc, Pr, Re, and IoU.









In the above formula, TP is true positive, the model prediction is the positive example, and the label is the positive example; FP is false positive, the model prediction is the positive example, and the label is the negative example. FN is false negative, the model prediction is the negative example, and the label is the positive example. TN is true negative, the model predicts the negative example, and the reality is the negative example.





3 Results



3.1 Training process presentation

In order to validate the effectiveness of the models proposed in this study, ASPNet is compared with DeepLabv3 (Chen et al., 2018), FC-Densenet (Jegou et al., 2017), PSPNet (Zhao et al., 2017), DenseASPP (Yang et al., 2018) and SPNet. To achieve a fair comparison, the same training dataset and validation set are used. Figure 6 shows the variation of the loss function of the above models during the training process. In the graph, the training batch is taken as the horizontal coordinate and the corresponding loss and acc values are taken as the vertical coordinates.




Figure 6 | (A) shows the changes in loss during the training process. (B) is the change in accuracy during the training process.



As demonstrated in Figure 6A, the loss function values of FC-DenseNet, SPNet, DeepLabv3 and our proposed ASPNet, are high when the model is first trained. As the model is trained, the loss function values decrease, with ASPNet being the first to converge to the lowest values. While PSPNet and DenseASPP exhibit an undulating trend during training, this indicates that the model’s training is unstable and susceptible to overfitting. On the whole, the loss function value of the ASPNet tends to be stable during training rather than experiencing significant up or down swings. It indicates that the model is not easily affected by outliers, and the fitting to the noisy data is smoother and more stable, with good robustness.

Figure 6B shows the variation of model accuracy during training. As shown in the figure, the model recognition accuracies of the three models, SPNet, DeepLabv3, and our proposed ASPNet, show an overall upward trend during validation. While the segmentation accuracies of PSPNet and DenseASPP fluctuated significantly in the first 80 batches and gradually stabilized in the last 20 batches. The accuracy scores after stabilization, although between 0.9 and 1, are still lower than the ASPNet and SPNet accuracy values. FC-DenseNet has the most obvious oscillation trend, and combined with the gradual smoothing of its loss curve, it can be seen that the model is overfitted during the training process, ignoring some of the main features of the dataset. In summary, compared with other models, ASPNet reaches the highest accuracy the fastest during the training process and tends to stabilize with an upward trend, which shows that ASPNet can learn the feature information of ridge quickly.




3.2 Evaluation of segmentation

In order to verify the generalization and superiority of the proposed model, this study evaluates ASPNet and the above comparative models on a validation set. Table 1 displays the segmentation performance scores for the various models based on the four assessment criteria Accuracy, mIoU, Precision, and Recall.


Table 1 | Evaluation of segmentation results of different segmentation methods.



As shown in Table 1, in terms of the segmentation performance of the agricultural ridge region, the proposed model ASPNet achieves the accuracy of 98.0%, the mIoU of 94.7%, the precision of 94.3%, and the recall of 96.5%. In order to get a more intuitive feel of the performance effects of the models on different evaluation metrics, this study further presents a visualization comparison of the segmentation effects of different models by line chart. Combined with the line chart in Figure 7, it can be seen that in terms of Accuracy, the model in this study achieved an improvement relative to DeepLabv3, FC-Densenet, PSPNet, DenseASPP, and SPNet model, with an improvement of 3.2%, 0.5%, 2.1%, 2.3%, and 0.7%, respectively. In terms of mIoU metrics, the model in this study also showed superiority, improving by 7.4%, 1.5%, 5.5%, 5.7%, and 1.9% with respect to DeepLabv3, FC-Densenet, PSPNet, DenseASPP, and SPNet model, respectively. For recall, the models in this study improved 3.4%, 3.3%, 8.2%, 7.6%, and 3% relative to DeepLabv3, FC-Densenet, PSPNet, DenseASPP, and SPNet model, respectively. Notably, the model proposed in this study scored 0.7% lower than FC-Densenet on Precision, but the error is within 1%, which is within the acceptable range.




Figure 7 | Line chart of different evaluation results.






3.3 Visualization results

Results of segmentation for ASPNet and comparative models are provided in this paper. As seen in Figure 8. Among them, the group of Figure 8A shows the input images used to test the segmentation effect, and all of these farmland images have different ridge distributions, but have obvious horizontal or vertical strip-like features. Some of the ridges in the images have distinctive features and cover a large area, while others are thin and narrow between crops. In addition, there are some tiny vacancies in two crop fields, which can be used as interference information in the ridge prediction segmentation process. This provides an intuitive reference basis for observing the segmentation effect in this study. The areas in the label and segmentation result map, with the exception of the ridge, are painted in black as the background in order to make the segmentation effect more obvious. In Figure 8, group (B) shows the ridge data labels, group (C) shows the segmentation results of ASPNet, the model proposed in this study, and group (D)-(H) shows the segmentation results of the comparison model.




Figure 8 | Segmentation results of different models. (A) Original image, (B) ground truth, and (C) visual results of our proposed, and (D) for the visual results of DeepLabv3, (E) visual results of PSPNet, (F) visual results of FC-DenseNet, (G) visual results of SPNet, and (H) visual results of DenseASPP.



According to the segmentation results of different models, in the segmentation results of groups (D) and (E), DeepLabv3 and PSPNet’s prediction of narrow field ridge information between crops is incomplete. Some of the ridge information is therefore missing in the segmentation map since they are unable to accurately detect the ridge information in the image. As demonstrated in group (F), FC-DenseNet improperly segments the interference information of fine vacancies on the field into ridge categories, as well as the segmentation outcomes of DenseaASPP in group (H). It also fails to accurately distinguish parts of the fine and narrow ridge information. This shows that the model only picks up on a limited number of characteristics during training, and that it struggles to pick up on the spatial aspects characteristics of the ridges. As a result, the model’s judgment of the interference information during the detection segmentation phase is not accurate enough, which leads to low model robustness. The model is not fine enough to segment the ridge boundary, as shown by the SPNet segmentation results in group (G). And the effect of the model proposed in this study is shown in (C), the segmentation results are very similar to the markers in the labels, the model is able to exclude the interference of small vacancies in the agricultural field blocks, even the shape of thin and narrow ridges can be recognized and marked by the model, and it has the ability to capture the complex boundaries of the ridges.




3.4 Results of Large-farmland

Considering that in practical application scenarios, ridge segmentation is required for large-area farmland. In this study, based on the above small-resolution ridge segmentation process, the farmland image with a resolution of 10752×8704 is segmented to realize the acquisition of ridge distribution information for farmland covering an area of about 7000 square meters. The ASPNet proposed in this study is primarily for the segmentation of 512×512 resolution images due to assure the processing speed and accuracy of the model. In order to be able to adapt to the needs of ridge segmentation in a larger area, this study has considered the reliability and applicability of the actual segmentation results in designing the segmentation task for large-area farmland. The whole segmentation process firstly splits the input image into n×m small blocks with the resolution of 512×512; then inputs each small block into the model of this study for segmentation; and finally splices the n×m small blocks together to create the segmentation result of the large-area farmland. This end-to-end farmland ridge segmentation method makes the processing flow simpler while guaranteeing accurate segmentation. The segmentation process is shown in Figure 9.




Figure 9 | Operational flow of large-area farmland segmentation.



During the above data processing, it took 26.115 seconds to cut the large farmland image into small resolution images. All small resolution images were transferred into the model for processing in 24.148 seconds, with an average processing time of 0.047 seconds per small resolution image. 4.729 seconds were used in stitching into a large agricultural field ridge segmentation map. It can be seen that the model proposed in this study can extract ridge information accurately and efficiently from farmland images of about 7000 square meters in one minute. In addition, the ridge segmentation was also tested in another experimental field in this study. The experimental field is located in Wanfu Experimental Base in Yangzhou City, Jiangsu Province, covering an area of 1,314 square meters with a shooting height of 20 meters. The segmentation results are shown in Figure 10.




Figure 10 | Result of ridge segmentation in another experimental field.







4 Discussion

A segmentation model that can learn accurately on small datasets must be designed in order for the model to accurately and efficiently identify the ridge information because the use of remote sensing equipment carried by unmanned aerial vehicles (UAVs) to acquire remote sensing data of field ridges necessitates consideration of geographic and time scale issues as well as seasonal variations. The convolutional neural network is one of the most utilized machine learning models today that can accurately perform farmland segmentation. (Potlapally et al., 2019), in order to advance the automated analysis of remote sensing data for land use, used Mask R-CNN to classify and segment farmland of various crop types, which is a model that adds pixel-level segmentation of each target instance on the basis of target detection. Additionally, the encoder-decoder architecture provides a method for pixel-by-pixel segmentation that is efficient. To help the model better capture detail information and increase segmentation accuracy, it fuses the low-level features of the encoder with the high-level features of the decoder. (Wang et al., 2023) inspired by the encoder-decoder architecture, proposed a multi-task deformable UNet combinatorial enhancement network based on UNet, which consists of a shared universal encoder part and three independent decoder parts, to realize high-precision segmentation of farmland boundaries, effectively preserving the edge texture information. Therefore, this study adopts the encoder-decoder architecture to accurately and efficiently realize the pixel-by-pixel segmentation of the whole image. In the encoder stage, conventional convolution is used for local feature extraction. The features output from the encoder are then mixed with those from the decoder, and the output is up-sampled to return to the original input resolution size. The issue of pixel space information loss can be effectively dealt with by making good use of the shallow texture information and deep semantic information of the feature map.

However, the above improved models based on Mask R-CNN and U-Net lack the extraction of information between different receptive fields during feature extraction. The appearance of atrous convolution can help the model to establish the connection between different receptive fields in the feature map. In the study of farmland segmentation by (Du et al., 2019), the DeepLabv3+ model with atrous convolution is used to extract and map the distribution of the crops in order to accurately describe the small and irregular fields in the farmland. It is demonstrated by experimental comparisons that DeepLabv3+ with atrous convolution is effective in obtaining the information about the distribution of the farmland. In order to increase the precision of farmland segmentation, (Sun et al., 2022) suggested a DeepLabv3+ based deep edge enhanced semantic segmentation network. While keeping the atrous convolution, they added supplementary labels to strengthen the model’s learning capabilities and increase the performance of ridge and cropland recognition. Considering the effectiveness of atrous convolution, this study adds ASPP module in the middle of encoder and decoder. By using the atrous convolution in ASPP to widen the receptive field, the model is better able to capture the overall contour of the ridge.

The pooling kernel in traditional convolutional neural networks is typically square and only takes into account local contextual information, neglecting the interdependence of distant features. A novel pooling processes called strip pooling is presented in the paper by (Hou et al., 2020). To represent remote dependencies, it utilizes a long and narrow pooling kernel. By contrasting strip pooling with conventional spatial pooling, the study highlights the extraction capability of strip pooling on banded features (Mei et al., 2021). (Zhang et al., 2021) applied strip pooling module in ridge segmentation to capture the effective information of ridges. By contrasting it with well-known semantic segmentation models, the study showed the strip pooling module’s dependability in ridge segmentation settings. Therefore, considering that stripes are one of the main features of ridges in ridge segmentation scenarios, this study adds the strip pooling module to the decoder to enhance the extraction of strip features of ridges and to delineate the edges of ridges from other elements.

In summary, we propose a ridge segmentation method based on an encoder-decoder architecture, which incorporates an ASPP module after the encoder and the strip pooling modules in the decoder. The experimental results demonstrate that this method has good segmentation effect in ridge segmentation scenarios.




5 Conclusion

In this study, a segmentation method for farmland ridges is proposed for the characteristics of narrow shape, complex and irregular edges. Firstly, in order to provide effective data support, the ridge dataset from remote sensing images of agricultural fields was collected and produced in this study. Then, a segmentation method based on encoder-decoder architecture with strip pooling and ASPP is designed to achieve accurate segmentation of ridge information in agricultural fields. Finally, the model is evaluated based on the validation set, and the evaluation results show that the model outperforms the comparison model in terms of ridge segmentation effect, in which the accuracy reaches 98% and the mIoU score is 94.6%. In practical application scenarios, it can quickly realize the accurate segmentation of ridges in large-area farmland images and output the segmentation results of complete farmland. The method can not only accurately segment the shape information and fine edge information of field ridges, but also avoid the interference caused by the tiny vacancies between farm fields. In addition, it can promote the optimal use of resources by farmers, thus improving productivity as well as reducing environmental impact and accelerating the realization of unmanned farmland management.

Since producing a dataset for segmentation of agricultural field ridges is labor-intensive and time-consuming, in future research, we expect to combine semi-supervised and unsupervised learning approaches to achieve segmentation of agricultural field ridges using a small number of datasets. And the model can be lightweighted so that make it more easily applicable to edge devices in farmland for completing mechanical work.
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Introduction: Digital twins can accelerate sustainable development by leveraging big data and artificial intelligence to simulate state, reactions and potential developments of physical systems. In doing so, they can create a comprehensive basis for data-driven policy decisions. One of the purposes of digital twins is to facilitate the implementation of the EU's Green Deal-in line with internationally binding climate and environmental targets. One prerequisite for the success of digital twins is a comprehensive, high-quality database. This requires a suitable legal framework that ensures access to such data.

Methods: Applying a qualitative governance analysis, the following article examines if the EU's strategies and legal acts on data governance are paving the way for digital twin projects which promote sustainability.

Results: Results show important starting points for open and fair data use within the growing field of EU digital law. However, there is still a lot of progress to be made to legally link the use of digital twins with binding sustainability objectives.
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1 Introduction

The Green Deal (European Commission, 2019) is the EU's attempt to meet the ecological challenges of the twenty first century and to implement the legally binding environmental targets of the Paris Agreement (United Nations, 2015a), i.e., the 1.5°C temperature limit, and of the Convention on Biological Diversity (UNEP, 1992) which aims at halting biodiversity loss. Besides, the policies and laws adopted under the Green Deal should contribute to the achievement of the legally non-binding Sustainable Development Goals (SDGs) (United Nations, 2015b). The key objectives of the European Green Deal are illustrated in Figure 1.


[image: Figure 1]
FIGURE 1
 Objectives of the European green deal (own figure based on European Commission, 2019).


One crucial element of the European Green Deal is an openly accessible and interoperable European dataspace as a central hub for informed decision-making on sustainability issues. Hence, the digital transformation is an important building block of achieving the goals of the Green Deal (European Commission, 2020b; Bauer et al., 2021) and digital and sustainable transition are interlinked in various – also ambivalent – ways (Ekardt, 2022).

Advances in high-performance computing, big data analytics, artificial intelligence (AI) and particularly machine learning (ML) as well as progress in Earth system observation and prediction have enabled increasing precision in digitally representing physical systems (Bauer et al., 2021; Tzachor et al., 2022b; Fissore et al., 2023; Purcell et al., 2023). High quantities of near-real-time data from satellites and sensors are supported by novel observational instruments such as miniaturized satellites, drones, undersea cables and buoys, smart sensor arrays in crop fields and an expanding Internet of Things and – together with physics-based models and ML – allow for highly detailed simulations of real-world objects (Bauer et al., 2021; Li et al., 2023).

Such dynamic, real-time, virtual replicas of physical and biological entities are called digital twins (DTs) (Botín-Sanabria et al., 2022; Kepka et al., 2022; Tzachor et al., 2022b; Fissore et al., 2023; Li et al., 2023; Mehrabi, 2023; Purcell et al., 2023; Ruangpan et al., 2023). They promise deep insights on the functioning of real-world objects and enable predictions about the behavior of the simulated systems over different timescales and under different conditions and constraints (Botín-Sanabria et al., 2022; Tzachor et al., 2022b).

Originally, in silico equivalents of real-world objects simulated manufacturing processes in product and process engineering and for space technology (Bauer et al., 2021; Tzachor et al., 2022b). Today, DTs offer substantial modeling potential ranging from molecular to landscape scales, encompassing domains such as meteorology, personalized medicine and public health, urban planning, construction, logistics, industry, agriculture and food systems, power grids, control and prevention of epidemics or disaster prediction (Botín-Sanabria et al., 2022; Tzachor et al., 2022b).

For instance, DTs can simulate and predict energy production by various energy sources including renewable energies or even consumption behavior. In doing so, they help to plan smart and stabile energy infrastructure or make personal recommendations for energy efficiency measures (Tzachor et al., 2022b). In urban planning, DTs can, among others, support noise, pollution and heat monitoring, improve traffic planning or waste and water management. DTs allow stress-testing and real-time responses to systemic shocks such as pandemics, wars or extreme weather events (Mehrabi, 2023). A broad application field for DTs is in the food and agricultural sector, whose transgression toward sustainability can be supported by digital innovations (Garske et al., 2021; Tzachor et al., 2022a; Heyl et al., 2023). With a view to the vulnerability of agricultural sites to external stressors such as climate warming, DT's ability to monitor and predict environmental changes seems to be a very valuable part of smart agriculture. DTs enable stakeholders in the food and agricultural sector to optimize resource and infrastructure use through monitoring and process evaluation, e.g., of environmental data, livestock emissions, inputs to crops such as Phosphorus and Nitrogen fertilizers, consumption data and supply chain tracking (Botín-Sanabria et al., 2022; Tzachor et al., 2022a,b; Purcell et al., 2023). Besides, DTs allow experimenting with nature-based solutions, e.g., for land management and flood reduction (Tzachor et al., 2022a; Ruangpan et al., 2023). In providing a virtual laboratory for what-if simulations, DTs empowers users to evaluate the state and predict the impact of intended or unintended alternations of real-world systems and their management, thus allowing for optimal mitigation or adaption strategies (Tzachor et al., 2022a; Purcell et al., 2023). This is possible not only for individual products, agricultural sites, cities, etc., but ultimately for the whole planet (Li et al., 2023).

With Destination Earth (DestinE), the EU established the goal to generate a highly accurate, complete DT of the Earth by 2030 (Bauer et al., 2021; European Commission, 2022b; Li et al., 2023). Aiming at monitoring and predicting environmental change and human impact, DestinE shall support the EU's green transition toward climate neutrality by 2050 and to reach further environmental goals of the European Green Deal including fossil-free, circular production with zero waste and zero pollution (Bauer et al., 2021). The initiative seeks to develop a knowledge platform for multi-stakeholder collaboration, information sharing, and policy advice to enable the EU and Member States decision-makers at all levels to adapt policies to deal with ecological challenges regarding adaptation and mitigation (Botín-Sanabria et al., 2022; European Commission, 2022b). The Earth DT shall combine observations with an Earth system model and human subsystems such as water, food, energy and resource management to make predictions about their influences on each other (Bauer et al., 2021). For instance, the simulation of atmosphere, oceans, ice and land-cover with high precision, i.e., with a 1-km resolution in real-time, enables forecasts of floods, droughts and fires (Fissore et al., 2023; Li et al., 2023). In a first step, DTs for disaster forecasting and climate adaptation are created (European Commission, 2022b). In parallel, an open core service platform and a data lake are developed in the first 30 months implementation period in 2021–2024. While the core service platform encompasses open, cloud-based and secure decision-making tools, the data lake will provide storage and access to data. The initial digital services will serve users from the professional public sector. It is foreseen to expand the services to scientists, the private sector and the general public (European Commission, 2022b). Figure 2 provides an overview of the data sources for the data lake of DestinE, illustrating that vast amounts of natural and socio-economic information have to be collected and processed to build the Earth DT.
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FIGURE 2
 Data lake (data sources for DestinE) (European Commission, 2022b).


Like conventional simulation models, DTs can help to understand the drivers of change and identify options for future adaption to and mitigation of change (Bauer et al., 2021). However, in comparison, traditional simulation models use offline and a more static data basis (Bauer et al., 2021; Botín-Sanabria et al., 2022; Tzachor et al., 2022b). DTs in turn use AI and mathematical techniques to combine observation data and model simulations optimally to close gaps in the other: variables not observed everywhere all the time are filled by models and ML, while approximations for unknown and spatially unresolved processes of models are constrained by observations (Bauer et al., 2021; Tzachor et al., 2022b). The resulting data assimilation helps to depict evolving states of the represented system over time (Li et al., 2023). Hence, one advantage of DTs compared to model simulations is that they can assess and compensate model process errors and gaps through data assimilation. Further benefits of DTs over Earth system modeling include a much greater spatial and thereby physical realism and the ability to monitor and predict natural and human perturbations even on multi-decadal time scales. Besides, DTs are able to combine various sources of big data and optimize observation networks by evaluating their information content (Bauer et al., 2021; Li et al., 2023). Moreover, using a cloud-based infrastructure, DTs can give even non-expert users full access to data and data analytics toolkits (Bauer et al., 2021).

DTs should integrate the human dimension of the Earth system, i.e., impacts such das greenhouse gas emissions, land-use change, resource consumption and pollution (Bauer et al., 2021). They should enable scientists and policymakers to assess environmental change and human influence to make decisions supporting sustainable development within safe planetary boundaries (Li et al., 2023; Rockström et al., 2023).

General prerequisites for developing and implementing DTs successfully include sufficient computational and technological capacity including enabling technologies for DTs such as 5G, high performance computing for ML, big data assimilation, and cloud computing. Moreover, data availability, i.e., available, accessible and compatible data as well as standardized, interoperable tools for data processing and usage are necessary (Botín-Sanabria et al., 2022; Tzachor et al., 2022b). To this end, large-scale and high-frequency data collection, among others by sufficient sensor coverage, is required. At the same time, related to data, issues of trust, privacy, security, convergence and governance, acquisition and large-scale analysis arise (Botín-Sanabria et al., 2022). Furthermore, sufficient funding for DT projects is necessary, including for poorer nations which struggle to build and use expensive DTs due to lacking funds and underdeveloped digital infrastructure. In general, DT technology development und usage should be inclusive, i.e., accessible for people from various countries and sectors, neither excluding small enterprises nor minorities and overcoming the digital divide (Botín-Sanabria et al., 2022; Tzachor et al., 2022a,b; Mehrabi, 2023).

This article focusses on data governance as prerequisite for DT projects in the EU. It examines whether the political and legal provisions of the EU on data governance enable or hinder the successful implementation of DTs. The focus is on DTs which aim at supporting the sustainable transformation. Since environmental damage is – besides using fossil fuels – strongly connected to land-use and thus to agriculture and livestock farming in particular (IPBES, 2019; Ekardt, 2020; Weishaupt et al., 2020; Stubenrauch et al., 2021; IPCC, 2022), accessible and high-quality Earth observation data play an crucial role for the following analysis. The article is structured as follows: after a description of the methodology, the results of the legal analysis of the EU data governance are presented, starting with an overview of the EU Data Strategy (Chapter 3.1), followed by an examination of cross-sectoral (Chapter 3.2) and sector-specific legislation (Chapter 3.3). The last chapters discuss whether the existing EU strategies and legal acts on data governance promote the development of DTs for sustainable transformation in line with the EU Green Deal and international binding environmental targets on climate and biodiversity protection.



2 Materials and methods

This article applies a qualitative governance analysis (Ekardt, 2020; Weishaupt et al., 2020), also called legal impact analysis, to evaluate the impact of the EU's legal acts and policy strategies on data governance with relevance for DTs in the field of sustainable transition. The analysis seeks to complement the natural scientific and technical research on DTs by governance aspects. It aims at answering the following research questions: How can DTs support the transition toward sustainability? What are the success factors for DTs? In particular, how must data governance be designed to successfully implement DTs for sustainability? With its legal acts and strategies on data governance adopted in recent years, does the EU paves the way for DTs that promote sustainability?

To answer the first two research questions and to give an overview on DTs, the first step of our analysis was a literature review. The review encompassed Google Scholar and the portfolios of relevant scientific publishers and pertinent journals such as Springer, Frontiers, MDPI and Nature. Search terms included “digital twin,” “digital twin sustainability,” “digital twin agriculture,” “Destination Earth,” “data governance,” “EU data strategy,” “EU data governance act.” The focus of the review was on publications published from 2021 to 2023 and particularly DT publications with a focus on sustainability, SDGs and the EU Green Deal as well as on challenges related to data governance. However, none of the publications evaluated the EU's Data Governance. Furthermore, we used snowballing to identify further relevant publications. Besides, the EU Project DestinE was investigated using the relevant websites of the EU and the implementing organizations. The findings of the literature review are primarily included in the first chapter of the article.

The second step of the qualitative governance analysis encompassed the legal analysis, starting with the search in the data base for EU law eurlex and the website of the EU Commission to identify the relevant legal acts and strategies. These acts and strategies were assessed with regard to their potential to promote DTs for sustainability, keeping in mind the prerequisites for implementing and applying DTs. The legal analysis includes the interpretation of legal norms with the usual legal methods of grammatical, systematic, teleological and historical interpretation.

The qualitative governance analysis measures the effectiveness of legal instruments against the internationally binding environmental targets that provide the framework for any legal and policy initiative. Hence, DTs, which are supposed to support sustainability, shall never counteract the goal of the Paris Agreement and the Convention on Biological Diversity. Both environmental targets have a basis in human rights that also include a precautionary dimension and the polluter-pays principle (Ekardt, 2020; Ekardt et al., 2022). Moreover, when assessing the effectiveness of legal acts and policy instruments, findings from behavioral studies which shed light on typical governance problems such as shifting and rebound effects, enforcement and depicting problems, and lacking target stringency were taken into account (Paul et al., 2019; Ekardt, 2020; Kanter et al., 2020; Ekardt et al., 2022). The findings of the governance analysis are presented in Chapter 3 and critically discussed in Chapter 4.



3 Results–legal analysis of the EU data governance

Every day, large amounts of data related to Earth systems, i.e., big Earth data, are gathered (European Commission, 2020b; Li et al., 2023). These large-volume datasets have to be processed, organized and governed (Li et al., 2023). Big Earth data has a wide range of data sources including remote sensing by satellites and drones and ground-based sensors, in situ and laboratory analysis including field experiments and surveys, data collected by smartphones and the Internet of Things, simulation and re-analysis and social sensing, i.e., diverse data related to human activities, behavior and population (Li et al., 2023). Data from all these categories provide the basis for representing the Earth system or its subsystems in a DT (Li et al., 2023).

Yet, the advantages of big data processing and digital innovations including DTs can only be exploited when an appropriate data governance is in place, providing for effective, open and fair (see below) data use and collaboration (Li et al., 2023; Purcell et al., 2023). From a legal perspective, the use and deployment of DTs raises questions about the generation, use, processing, and storage of data. The first legal question concerns the data sources for DTs, in particular whether the data is obtained purely from internal or external data sets. In the legally more challenging case of external data mining, trustworthy data spaces that facilitate data access as well as leeway for individual agreements are required. For DT applications which affect the source code of a software, appropriate rights of use must be granted. If, in addition, data sets are processed that allow conclusions to be drawn about natural persons, a conflict with the provisions of data protection legislation arises, calling for an adequate normative and technical response. Once a DT has already been implemented and third parties are supposed to use it, the question arises as to what extent the DT can be protected against duplication, unlawful reading and disclosure of relevant information. While the exchange of data between the data owner and the producer of a DT is regulated by the General Data Protection Regulation (EU) 2016/679 (GDPR) (European Union, 2016) and further EU legislation, the transfer and reproduction of code primary concerns the areas of product liability, copyright and tort law, for which the national legislator must establish suitable mechanisms. In the following, the national legislation framework will be left aside and attention will be focused on the level of Union law. Given the project's ambition to bring together data from various public and private sources to develop an Earth DT, cross-sector and sector-specific regulation become relevant – with tensions arising between data access/data use and data privacy. How all this is regulated within the framework of the EU data governance is examined in the following. Figure 3 shows the most relevant EU legal acts for DT projects in the area of environment and agriculture and highlights the need of concrete ecological normative specifications when developing DTs that should promote sustainability.
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FIGURE 3
 Digital twins, EU data governance and sustainability goals (own figure).



3.1 The EU data strategy

The EU data governance, consisting of a bundle of data-related legal acts and policy strategies, aims at creating a single European data market which ensures availability and flow of data, investments in standards, tools, infrastructures and competences for handling data.

According to the EU Data Strategy from 2020, data collection and use shall comply with the European rules and values such as personal data protection, consumer protection and competition law – and be consistent with the EU's goals of the Green Deal (European Commission, 2020b). At the same time, the potential of using large amounts of data shall be exploited and should be made available to all instead of being owned by a small number of big tech firms or being accessible only for government authorities (European Commission, 2020b). One main principle of the EU's data governance is the FAIR-Principle, meaning that data needs to be findable, accessible, interoperable and reusable (European Commission, 2020b).

Before this background, the EU has taken various steps to accelerate the digital transformation in the EU. Among them is the EU Data Strategy from 2020 (European Commission, 2020b), which is also part of the Commissions' Communication on “Shaping Europe's digital future” (European Commission, 2020c) and a White Paper on AI (European Commission, 2020a). The Strategy outlines policy measures and funding opportunities for the EU data economy and points the way for future legal acts on data governance (European Commission, 2020b).

In addition, one priority of the Data Strategy is to operationalise a legislative framework for the governance of common European data spaces for strategic sectors such as mobility, health, energy, agriculture, industry and finances (European Commission, 2020b, 2022c). The spaces, which will make data available on a voluntary basis, shall ensure availability, quality and interoperability of data. They shall include data-sharing tools and platforms as well as enabling data governance frameworks (European Commission, 2020b, 2022c). The design of the data spaces has to comply with European rules and values. Access and use of data shall take place in a secure, clear, fair, transparent, proportionate and non-discriminatory manner (European Commission, 2022c). The spaces shall be interconnected with the European Open Science Cloud (EOSC) and the Copernicus services (European Commission, 2020b). The latter are important services for making freely available data related to atmosphere, marine, land, climate change, security and emergency in the EU. They are managed through access points called Data and Information Access Services (DIAS) and the Copernicus Reference Data Access dashboard (CORDA). Further environmental data, e.g., on hydrography, elevation, land cover, natural hazards and fire are available through the INSPIRE Geoportal. Also, the European Environmental Agency provides free environmental data and services in its geoportals (Fissore et al., 2023). Besides, the land-use database Open Land Use (OLU) can support DT projects such as DestinE in developing a high-precision digital model of the Earth by providing land-use and land-cover data (Kepka et al., 2022).

The Green Deal data space is one data space envisaged by the European Data Strategy (European Commission, 2020b, 2022c; Kepka et al., 2022). It encompasses DestinE and “GreenData4All,” an initiative that includes, among others, the evaluation of the INSPIRE Directive (European Union, 2007) and the Access to Environmental Information Directive (European Union, 2003; European Commission, 2020b, 2022c) (see Chapters 3.3.2 and 3.3.3). Moreover, the Green Deal data space is strongly connected to further data spaces such as the data space for agriculture. While the Green Deal data space aims at supporting actions on climate change, circular economy, zero-pollution and biodiversity, the agriculture data space shall enhance sustainability of the agricultural sector. Yet, sustainability in the agricultural sector makes compliance with the Green Deal goals necessary. Thus, both data spaces show strong interlinkages and can hardly be developed and implemented separately from each other. This is also true for all other planned data spaces, in particular those for energy, mobility or health.

Creating data spaces to ensure cross-border data use and re-use as well as further ideas and plans presented in the European Data Strategy are promising. However, their success depends on the design of legally binding acts which ensure, e.g., the implementation of FAIR principles and the success of data-driven projects. The relevant legal acts adopted to date include the General Data Protection Regulation (GDPR) (European Union, 2016) and the Data Governance Act (DGA) (European Union, 2022a). Supplementing the DGA, the Commission proposed a Data Act (DA) (European Commission, 2022a). In addition, sector-specific legislation on data exists. For the present topic, the Open Data Directive (ODD) (European Union, 2019a) and the INSPIRE Directive (European Union, 2007) as well as the Environmental Information Directive (EID) (European Union, 2003) are relevant. Further regulations encompassed by the EU Data Strategy include the Regulation on the free flow of non-personal data (European Union, 2018) and the Cybersecurity Act (European Union, 2019b). Moreover, in the rapidly developing field of digital law, many other legal acts have been adopted or proposed in recent years, including the Digital Markets Act (European Union, 2022b), the Digital Services Act (European Union, 2022c) and the draft for an AI Act (European Commission, 2021). All these acts support the development of the single market for data from various legal perspectives such as competition law.

Below, we analyse the most important legal acts for realizing DTs, starting with the DGA and the proposed DA as cross-sectoral legislation including their relations to the GDPR. Examinations on the relevant sector-specific legislation follow.



3.2 Cross-sectoral legislation
 
3.2.1 EU data governance act
 
3.2.1.1 Objective

As the first element for implementing a single European data market and for establishing the necessary data infrastructure for a DT, the Regulation (EU) 2022/868, also known as Data Governance Act (European Union, 2022a), entered into force in June 2022. The horizontal regulation is binding in its entirety and directly applicable in all Member States by the end of September 2023 [Art. 38 DGA and Art. 288 para. 2 TFEU (European Union, 2009)]. The primary purpose of the DGA is to increase trust in data intermediaries, i.e., organizers of data sharing such as data marketplaces, and thus increase the availability of data (recitals 5, 32 DGA). The current reluctance of companies to use data intermediation services and share their data with other companies is, in the Commission's view, primarily caused by trust deficits in data markets (European Commission, 2020d). By helping to establish the necessary trust in data intermediaries, the DGA supports these intermediaries in gaining a larger user base. This aims to support a flourishing data exchange in the EU (European Commission, 2020d). In addition, the DGA is intended to prevent potentially anti-competitive behavior of data intermediation service providers such as self-preferences or unequal treatment (recital 33 DGA) (European Commission, 2020d).



3.2.1.2 Subject of regulation–data altruism and data intermediaries

The DGA is intended to facilitate the enhanced re-use of data in the possession of public bodies that are protected by other rights. These special protection rights include commercial and statistical confidentiality, the protection of intellectual property of third parties and the protection of personal data (Art. 3 para. 1 DGA). The EU legislator stipulates certain requirements for the further use of personal data. Such data must either be anonymised, modified or made accessible only within a secure processing environment as defined in Art. 2 No. 20 DGA (Art. 5 para. 3 DGA). Any conditions for re-use must be non-discriminatory, transparent, proportionate and objectively justified (Art. 5 para. 2 DGA). However, the DGA does not oblige public sector bodies to allow the re-use of data (Art. 1 para. 2 DGA). In particular, it does not grant users a right to access data.

To help users find their way through the “data and information jungle,” the DGA demands Member States to establish central information points that provide easy access to relevant information. Furthermore, Member States are required to designate one or more competent bodies to assist public authorities in fulfilling their new responsibilities (Art. 7 DGA). For instance, the public sector bodies should receive support in ensuring data processing that preserves privacy, confidentiality, integrity and accessibility of data.

The core concern of the DGA is to ensure that data is made available quickly. The public sector bodies (if applicable also the competent bodies according to Art. 7 DGA) must therefore decide on a request for further data use within 2 months (Art. 9 para. 1 DGA). The DGA also aims at supporting data altruism, i.e., “the voluntary sharing of data on the basis of the consent of data subjects to process personal data pertaining to them, or permissions of data holders to allow the use of their non-personal data without seeking or receiving a reward […] for objectives of general interest as provided for in national law” (Art. 2 No. 16 DGA). The legal definition gives examples of the public purposes which include healthcare, combating climate change, improving mobility, public policy making or scientific research purposes in the general interest.

In addition to the provisions of Art. 5, the DGA mainly establishes basic organizational conditions: these include, for example, regulations for a public register on recognized data altruistic organizations (Art. 17 et seq. DGA), transparency requirements (Art. 20 DGA), specific requirements to safeguard rights and interests of data subjects and data holders (Art. 21 DGA), provisions for a so-called rulebook (Art. 22 DGA) as well as regulations for monitoring by the competent authorities (Art. 23 et seq. DGA). Finally, Art. 25 DGA contains requirements for a “European data altruism consent form.” The EU legislator hopes that the standardized form will make it easier to collect data on the basis of data altruism (Art. 25 para. 1 DGA). To allow its use in certain sectors and for different purposes, the consent form is intended to be modular (Art. 25 para. 2 DGA). The Commission is empowered to adopt implementing acts specifying the details.

Moreover, the DGA establishes a notification and monitoring framework for so-called data intermediation service providers (Art. 2 No. 11 DGA). These aim to establish business relationships to share data between an undetermined number of data subjects or data owners (Art. 2 No. 7, 8 DGA) on the one hand and data users (Art. 2 No. 9 DGA) on the other. Data intermediation service providers are generally obliged to be registered by the competent authority of the Member State (Art. 11 para. 1 DGA). In addition, anyone offering data intermediation services must fulfill several conditions (Art. 12 DGA), in particular the principle of purpose limitation: the provider is not allowed to use the data for which it provides services for purposes other than to put them at the disposal for data users (Art. 12 lit. a DGA). Changes of purpose are thus excluded in principle. Metadata may only be used to further develop the service (Art. 12 lit. c DGA). These conditions express the special neutrality responsibility of the data intermediation service provider (Spindler, 2021). The intermediary is also obliged to provide for appropriate technical, legal and organizational measures to prevent the unlawful transfer of or access to non-personal data (Art. 12 lit. j DGA). In addition, the provider must ensure an adequate level of security for the storage, processing and transmission of non-personal data and especially of sensitive information (Art. 12 lit. l DGA).

Monitoring compliance with the requirements on data intermediary services according to Chapter III (Art. 10-14) of the DGA ex post is the responsibility of the competent authority (Art. 14 para. 1 DGA) (Spindler, 2021). If the authority finds an infringement, it can demand within a reasonable period of time (or immediately in the case of serious violations) that the provider ceases the infringement. In addition, the authority can, for example, impose dissuasive financial penalties (Art. 14 para. 4 lit. a DGA).

Besides, the DGA calls for establishing a European Data Innovation Board (EDIB) as an advisory and support unit. The Board is an expert group composed of, among others, representatives of certain Member State authorities, the European Data Protection Board (EDPB), the European Data Protection Supervisor (EDPS), the European Union Agency for Cybersecruity (ENISA) and the European Commission (Art. 29 para. 1 DGA). In particular, the EDIB shall advise and assist the Commission in developing a consistent practice of data altruism across the EU. In addition, the EDIB shall propose guidelines for the Common European data space (Art. 30 DGA).



3.2.1.3 Relation to the GDPR

The DGA does not affect the scope of the GDPR, so that both regulatory provisions apply in parallel (European Union, 2022a; Specht-Riemenschneider, 2022). However, given the fact that certain elements of the DGA affect personal data, the measures of the DGA have been designed to fully comply with data protection rules and to strengthen the control of natural persons over the data they generate. As far as the re-use of public sector data is concerned, the fundamental rights to data protection, privacy and property (ownership rights to certain data containing, e.g., trade secrets or intellectual property rights) are respected (European Union, 2022a). Data intermediaries must also comply with the existing data protection regulations. Hence, the provisions of the DGA are in line with the existing rules on data protection of the EU (European Union, 2022a).




3.2.2 EU data act proposal
 
3.2.2.1 Objective

In February 2022, the Commission presented a proposal for a Regulation on harmonized rules on fair access to and use of data, also known as the Data Act. It is a key pillar of the European Data Strategy. The DA is intended to supplement the provisions of the DGA on the basis of Article 114 TFEU in order to create a single market for data that grants consumers more rights, strengthens the negotiating position of smaller companies and de-monopolizes data (European Commission, 2020b; Specht-Riemenschneider, 2022). On the normative foundation of the DGA, the DA specifies the preconditions for specific data use or value creation. Another aim of the DA is to strike a balance between the needs of the digital economy and a fair and secure data use. Both aspects are important in order to implement innovations such as DTs (European Commission, 2022a).



3.2.2.2 Subject of regulation–interoperability and “access by design”

Like the DGA, the proposed DA is based on a horizontal approach (Art. 1 DA Proposal) (Specht-Riemenschneider, 2022). Existing sectoral rights and obligations on data access and use must not be changed. However, subsequent legal acts have to be oriented toward the future DA and are therefore to be brought into line with its provisions. At the same time, the EU Commission emphasizes that the DA leaves enough scope to adopt detailed regulations if required by sector-specific regulatory objectives (European Commission, 2022a).

Chapters I–IV of the draft regulation focus on rules for governing data access between data owners, users and third parties as data recipients. Chapter V specifies the access rights of public authorities. Chapters VI, VII, IIX DA Proposal include regulations on the portability of data between processing services and guarantees the protection of non-personal data against unlawful transfers to or state access from third countries. Besides, interoperability requirements for data are stipulated. The regulations are highly relevant for the functioning of the single data market. In particular, in order to promote the European data market and reduce existing hurdles, the DA intends to create a legally secure framework for data transfers. It seeks to cushion the effects of asymmetric market positions: small and medium-sized enterprises (SMEs) are to be protected by the development and provision of – optionally usable – fair model contractual terms and conditions in the value-creating transfer of data (Art. 34 DA Proposal).

The draft DA grants public bodies the right to privileged access to data if they can prove an “exceptional need,” e.g., due to a natural disaster (Art. 14 para. 1 DA Proposal). This may concern not only company data, but also personal data. If necessary, this data must be pseudonymised in accordance with Art. 4 No. 5 GDPR before government agencies receive them (European Commission, 2022a).

In order to facilitate switching between data processing services and to counteract dominant market positions of individual companies, in particular to prevent so-called “lock-in effects,” the draft DA stipulates interoperability requirements (Art. 28 DA Proposal). This is consistent with the protection of the individual data user by access rights to data: the data holder should make the data available to the user of a networked product or related service without delay, free of charge and, where appropriate, continuously and in real time (Art. 4 para. 1 DA Proposal). Moreover, the idea of Art. 3 para. 1 DA Proposal is “access by design”: products are to be manufactured in a way that the data generated during their use is easily and securely accessible. For projects that rely on data, such as DTs, this regulation is quite beneficial.



3.2.2.3 Relation to the GDPR

The application scope of the proposed DA includes personal and non-personal data. Thus, the protection of privacy may be affected by the DA. In principle, Art. 1 No. 3 and the recitals of the DA Proposal state that the Regulation merely complements Union law on data protection and privacy, in particular the GDPR and the Directive on privacy and electronic communications 2002/58/EC (European Union, 2002; European Commission, 2022a). No provision of the DA shall be applied or interpreted in a way that weakens or restricts the right to protection of personal data or the right to privacy and confidentiality of communications. Hence, the DA is no lex specialis to the GDPR (Specht-Riemenschneider, 2022). As a result, in cases in which the DA applies to personal data, provisions of the DA and the GDPR must be complied with. In order to mitigate the risk that the application of existing data protection rules could be affected or undermined by an interpretation or implementation of the DA, the EDSA and the EDPS call on the legislator to strengthen the wording of Art. 1 para. 3 DA Proposal. They propose to explicitly state that, as far as personal data is concerned, data protection rules shall prevail over the provisions of the DA in case of conflict (EDPS and EDPB, 2022; Specht-Riemenschneider, 2022). Yet, in general, the proposed DA is designed in a way that avoids conflicts of data access claims of data users, third parties and data subjects (Specht-Riemenschneider, 2022). One striking difference between the regulations, however, is that according to Art. 4 and Art. 5 DA Proposal, the user now has a right to data being made available to him or to third parties continuously and in real time instead of only once upon request. This provision could accelerate data use for DT projects.




3.3 Sector-specific legislation
 
3.3.1 Open data directive

As part of the European Strategy for Data, the Directive (EU) 2019/1024 on open data and the re-use of public sector information (Open Data Directive) (European Union, 2019a) applies to government-held data (public sector information) (European Union, 2019a; European Commission, 2020b). The European legislator has revised the ODD in 2019 and adapted it to the data use requirements of key technologies such as AI, which are also relevant for the development DTs. Since 2003, the goal of the ODD is to promote data-based business models on the basis of publicly financed data. The regulatory content can basically be divided into two dimensions: on the one hand, the ODD aims at preventing distortions of competition in the internal market through public authorities with regard to value-added services that are developed and offered based on public sector data. This purpose is pursued by the principle of non-discrimination and the prohibition of exclusive arrangements (Art. 11, 12 ODD). On the other hand, the Directive harmonizes conditions for the re-use of accessible data regarding, e.g., formats and charges (Art. 5, 6 ODD). With the revised version, the EU legislator has extended the application scope beyond public bodies to include public undertakings in specific areas of services of general interest. Furthermore, research data is now covered. In detail, publicly funded research data shall be openly available by default and their access shall be compatible with the FAIR principles (Art. 10 ODD) (see above).

The new ODD sharpens the principles of limiting charges on data re-use and introduces special requirements for dynamic data. In the future, data that is regularly updated, such as sensor data, should be available in real time via application programming interfaces (APIs) (Art. 5 ODD). In addition, so-called high-value data sets are introduced, which are to be specified in thematic categories by implementing acts. In Art. 13 para. 1 in conjunction with Annex I ODD, the Directive defines broad thematic categories (geospatial, earth observation and environment, metrology, statistics, enterprise and mobility), whose legal scope could potentially cover most data types. The specific data covered by the abstract legal wording of “high-quality data sets” is determined by the Commission through delegated acts (Art. 13, 14 ODD). High-quality data sets are considered to be of particular importance for society, the environment and the economy. Public bodies and companies providing services of general interest are required to make such data available not only free of charge, but also in machine-readable formats through suitable programming interfaces and, where appropriate, as a mass download free of charge. These data requirements may well benefit DT projects.




3.3.2 INSPIRE

For the creation of an Earth DT, as envisaged in DestinE, spatial environmental data from the Member States are invaluable. These data can be used to analyse, derive and assess environmentally relevant parameters, such as the distribution of agricultural land or natural hazard risks. To improve the availability, quality, organization, accessibility, and shared use of spatial data, the legal, organizational, and technical basis for a pan-European spatial data infrastructure was created in 2007 with the Directive 2007/2/EC establishing an Infrastructure for Spatial Information in the European Community (INSPIRE Directive) (European Union, 2007). For the necessary integration of national infrastructures, the Member States were obliged to provide access to information on spatial data or spatial data sets via a geoportal managed by the Commission and via self-established access points. Additionally, requirements are placed on the properties and contents of the spatial data sets, i.e., they must be available in electronic form and relate to one or more of the topics listed in Annexes I-III of the Directive (Art 4 para. 1 INSPIRE Directive). Spatial data services are used to process the spatial data and the associated metadata. The services shall be easy to use, available to the public and accessible via the Internet or other appropriate means of telecommunication (Art. 11 INSPIRE). However, access to such spatial data sets is not granted unlimitedly. Access may be restricted or require a consent of the data holder, if it would adversely affect, e.g., international relations, public security or national defense or the confidentiality of personal data, commercial or industrial information, provided that such confidentiality is granted under national or Union law (Art. 4, 13 INSPIRE Directive). However, the public interest in disclosure shall be weighed against the interest in imposing restrictions or conditions on access in each individual case (Art. 13 para. 2 No. 2 INSPIRE Directive).

As mentioned above, the INSPIRE Directive as well as the Environmental Information Directive (see below) are revised within the GreenData4All initiative. Both directives will be modernized and adapted to the current state of the art, so that data necessary for ensuring compliance with the EU environmental legislation can be collected, processed, analyzed, and shared on a large scale (European Commission, 2020b, 2022c). It remains to be seen whether the revision can solve, for example, existing licensing problems of the INSPIRE Directive. Currently, the INSPIRE licensing agreement for open publication of spatial data cannot be used for all situations where vast, multi-temporal, multi-scale and multi-platform datasets are combined due to single restrictions (Kepka et al., 2022). Besides, neither all data nor all data licenses are compatible, which makes data combination complicated even in cases of open data, e.g., when it is forbidden to alter or add data (Kepka et al., 2022). Yet, using data for DestinE and other DT projects by various users, makes openly published data without major restrictions necessary (Kepka et al., 2022).



3.3.3 Environmental information directive

Access rights to environmental information have a long tradition. They date back to the Aarhus Convention (UNECE, 1998) of 1998 and were comprehensively broadened under the Directive 2003/4/EC on public access to environmental information (Environmental Information Directive) (European Union, 2003). The Directive stipulates comprehensive obligations to provide all information that may be relevant to environmental protection and an almost unrestricted access right upon request (Art. 2 No 1 lit. a-e EID). Requested environmental information must be made available as soon as possible (Art. 3 para. 2 EID). Besides, officials are required to support the public in seeking access to information. Public authorities have to inform the public adequately of the access rights they enjoy (Art. 3 para. 5 EID). Finally, in cases in which the requested information is not available to the authority, authorities are obliged either to forward the request as quickly as possible or to inform the applicant of the authority to which, in their opinion, he can apply for this information (Art. 4 para. 1 lit. a EID). The extensive right to data access for everyone may only be restricted for reasons of ensuring effective public authority action, or if the disclosure of the requested information negatively impacts legal interests such as trade secrets, the protection of intellectual property, the confidentiality of personal data or the protection of the environment, e.g., regarding the location of rare species (Art 4 para. 2 EID). The principle “as open as possible, as closed as necessary” is also enshrined in the EU Framework Programme for Research and Innovation Horizon Europe (European Union, 2021). With respect to research data, Regulation (EU) 2021/695 establishing Horizon Europe [Horizon Europe Regulation (European Union, 2021)] once again anchors that research data should be findable (openly) accessibly, interoperable and reusable according to the FAIR principles (Art. 14 Horizon Europe Regulation). These principles have the potential to support the development and application of DTs in various fields including those connected to sustainable development.





4 Discussion

The EU's strategies and legal acts on data governance set the course for transparent structures and for making data accessible, thus supporting DT projects such as DestinE which aim at stopping environmental degradation and promoting sustainable transition. In addition, some cross-sectoral provisions such as Art. 5 II DGA, build a link between data use and the dissemination of “European values.” Such a value link can also be found in the European Data Strategy, in which open data access is positively linked to sustainability goals. However, the provisions fail to show why and how the creation of a single European data market and open and fair data use should automatically reduce environmental pressure. At first glance, the logic behind this seems plausible: the more data is used, e.g., for DTs, the more societal value can be derived from it. However, environmental protection and the development of sustainable products and services do not primarily depend on the existence of a functioning data space. Rather, the legal framework that applies for the data space is decisive. Yet, neither the DGA nor the DA Proposal are sufficient to guarantee an effective link between data governance and sustainability goals.

The sector-specific regulation, i.e., the INSPIRE Directive, the ODD and the EID, are comparatively more suitable to promote sustainability objectives within the framework of digitalisation. Taking into account that environmental change does not stop at borders, the INSPIRE Directive creates an EU-wide infrastructure for spatial information including cross-border use and interoperability of data, thus supporting the development of EU environmental legislation. Besides, the extended scope of the ODD to research data improves knowledge dissemination and reduces knowledge dependencies. In addition, the access rights to environmental information guaranteed by the EID create a culture of participation (Stuermer et al., 2017).

In fact, much of the data needed for developing and implementing DTs already exists. For instance, crop production is monitored by satellites; traffic data for major roads, railways, waterways and ports are available due to GPS; production, consumption and trade data exist for many commodities and regions (Mehrabi, 2023). Putting together all these pieces and closing knowledge gaps in predicting the future, DTs provide a chance for informed, data-driven decision-making and thereby supporting sustainable development (Bauer et al., 2021; Li et al., 2023; Mehrabi, 2023). In particular, a good database can help to derive concrete, effective political measures, e.g., for climate protection. However, a DT cannot decide whether measures to protect the climate and other environmental goods are necessary at all. Neither can the start of ambitious measures to tackle the pressing ecological and societal challenges of the twenty first century wait for more data to become available or processed. Hence, collecting, using and sharing data are only single steps for environmental policy which need to be complemented by enacting effective policies.

Moreover, several scientific organizations have been presenting data and scenarios on environmental change for a long time, e.g., the Intergovernmental Panel on Climate Change (IPCC) on climate change. Yet, these studies did not trigger the necessary rapid transition to sustainability. Likewise, Earth system models, e.g., on land use or climate trends, have existed for a long time. However, their precision and completeness are often overestimated and they are mistaken as predictions or even as normative statements (Wieding et al., 2020). While DTs offer advances on spatial precision and real-time data availability, they will not automatically stimulate the necessary shift in environmental and climate protection – especially since factual knowledge is not the major motivational factor for sustainable transition and behavior anyway (Ekardt, 2020; Heyl and Ekardt, 2022).

In contrast, proposals such as “testing climate targets virtually” (Li et al., 2023) cannot fall within the scope of DTs, since these targets are legally binding under international law and ambitious climate protection is also required under human rights law (Ekardt et al., 2022). Rather, DTs must incorporate the mandatory environmental goals of international, regional and national law. Similarly, suggestions that DTs offer a virtual space for newly developed technologies that may cause unintended harm und thus may be inhibited by the precautionary principle (Tzachor et al., 2022b; Li et al., 2023), must be taken with a pinch of salt. In virtual space, of course, experimentation is allowed. Yet, a direct transfer to the real world is not permissible, since no absolutely reliable DT of the Earth will ever exist.

DTs can only be an approximation to a real-world object, and every prediction of the future development bears uncertainties (Tzachor et al., 2022a). Although data on the Earth system is large, some data-related challenges such as quantifying ecological and social tipping points remain (Li et al., 2023). Since the Earth system is open, complex, non-linear and chaotic, ML methods and in particular deep learning can help to gain insights into these systems. However, despite methodological progress, limitations regarding interpretability and transferability are likely to remain, at least in the short-term (Li et al., 2023). Thus, DTs can fail to represent hidden biophysical feedback processes (Purcell et al., 2023). And although social sensing data are evolving and bring new opportunities to capture and quantify human dynamics, they are connected to high uncertainties (Li et al., 2023). Such uncertainty impedes decision-making, for example with regard to identifying sustainable development paths.

Moreover, as it is true for all AI applications, DTs and their predictions are only as good as their design and inputs allow them to be. In fact, the design of DTs might incorporate biases such as racism, sexism or misrepresentation of minorities. Design weaknesses may be further aggravated by combining multiple and co-depended ML models (Tzachor et al., 2022b; Purcell et al., 2023). Thus, again, informed decision-making is hindered and discrimination, exclusion and the digital divide may be fostered (Tzachor et al., 2022a,b). So far, the EU does not propose a sufficient remedy to overcome such difficulties.

Besides, similarly to other big technological innovations, DTs may potentially accelerate market centralization, external dependencies and wealth inequality, e.g., when small holdings cannot afford high investment costs for new technologies which provide competitors with a competitive advantage (Purcell et al., 2023). This makes a legal framework necessary which counteracts the concentration of power by individual tech companies and helps to overcome exclusion. The EU has laid the foundation for such a framework with the legal acts adopted or proposed as part of the data strategy, in particular with the DA Proposal.

In general, DT projects such as DestinE are more likely to succeed if the wide range of data sources and new technologies is made openly available (Kepka et al., 2022). A set of open-source gold standards to support open and equitable DT development in line with sustainability goals should be further developed and applied (Purcell et al., 2023). This also helps to ensure that public funding for DT projects is used efficiently and that data does not, e.g., have to be collected twice. Specifically, combining data for DT projects bears a chance to harmonize many mapping and modeling initiatives for various ecosystems (Fissore et al., 2023). Data-related standards should encompass data acquisition and processing, data representation, type of information including meta data and conditions under which different information can be used (Fissore et al., 2023). In addition, data quality, i.e., completeness and accuracy (Kepka et al., 2022), shall be ensured. High quality data needs to be available for the public good (European Commission, 2020b). Again, the EU data governance provides important starting points, particularly with regard to data altruism as stipulated in the DGA and the FAIR principles as laid down, i.e., in the ODD.

Moreover, the EU linked the legal framework on promoting data availability to data protection. Nevertheless, the EU legislator must continue to ensure data protection by using the latest technologies, e.g., regarding cryptographic tools, and to reduce security risks due to hacking, e.g., with a view to transport infrastructure, food or energy system fragilities (Mehrabi, 2023).



5 Conclusion

DTs are one example of many digital innovations that promise to promote sustainability. For instance, in the agricultural sector, which is strongly affected by environmental change such as extreme weather events on the one hand and is a major driver of environmental degradation on the other, DTs offer many opportunities for optimized resource management. But also with a view to further applications in other sectors, the goals of DTs and of sustainability show many interlinkages, e.g., regarding greenhouse gas reduction, resource-use optimisation or adaption to environmental change (Purcell et al., 2023). In line with that, the EU highlights the strong connection between sustainable and digital transformation in the context of the Earth DT (European Commission, 2022b).

If, as demanded by the EU itself, DTs should contribute to the implementation of the SDGs and the Green Deal (European Commission, 2020b; Bauer et al., 2021; Botín-Sanabria et al., 2022), internationally binding objectives on climate and biodiversity from the Paris Agreement of the Convention on Biological Diversity have to provide the framework for the development and application of DTs. However, due to the lack of concrete normative ecological specifications within the EU provisions on data governance, no sufficient regulatory responsibility for environmental protection was taken. Instead it remains with the vague hope for responsible action on the part of the actors, especially the companies, to promote sustainability by their DT projects. Thus, the EU still has some catching up to do in order to better support the development and application of DTs that promote sustainable transition.

Moreover, not only the application scope of DTs should consequently be linked to sustainability goals. DTs themselves should also be designed as sustainably as possible. This includes especially energy and resource consumption of a high-performance computational infrastructure, big data processing as well as expansive earth observation. The ICT sector is estimated to contribute 5% to 9% of the world's total electricity use and more than 2% of all emissions (European Commission, 2020b). Hence, in addition to covering energy consumption from renewable energy sources, energy consumption for this sector as a whole must be reduced as far as possible (Li et al., 2023). Besides, technology production should be oriented toward the principles of circular economy, zero waste and zero pollution.
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Consistent root orientation is one of the important requirements of Panax notoginseng transplanting agronomy. In this paper, a Panax notoginseng orientation transplanting method based on machine vision technology and negative pressure adsorption principle was proposed. With the cut-main root of Panax notoginseng roots as the detection object, the YOLOv5s was used to establish a root feature detection model. A Panax notoginseng root orientation transplanting device was designed. The orientation control system identifies the root posture according to the detection results and controls the orientation actuator to adjust the root posture. The detection results show that the precision rate of the model was 94.2%, the recall rate was 92.0%, and the average detection precision was 94.9%. The Box-Behnken experiments were performed to investigate the effects of suction plate rotation speed, servo rotation speed and the angle between the camera and the orientation actuator(ACOA) on the orientation qualification rate and root drop rate. Response surface method and objective optimisation algorithm were used to analyse the experimental results. The optimal working parameters were suction plate rotation speed of 5.73 r/min, servo rotation speed of 0.86 r/s and ACOA of 35°. Under this condition, the orientation qualification rate and root drop rate of the actual experiment were 89.87% and 6.57%, respectively, which met the requirements of orientation transplanting for Panax notoginseng roots. The research method of this paper is helpful to solve the problem of orientation transplanting of other root crops.
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1 Introduction

Panax notoginseng, a highly regarded Chinese medicinal herb, holds significant medicinal and economic value within China (Gao et al., 2016; Gao et al., 2022; Thorpe et al., 2023). In the cultivation process of Panax notoginseng, the transplanting of roots plays a pivotal role. To ensure optimal growth conditions, it is crucial to plant Panax notoginseng roots in a uniform orientation (Lai et al., 2021). This uniformity promotes efficient absorption of light and nutrients, leading to improved root survival rates. Despite the importance of root orientation, most current automatic transplanting machines lacking this capability. The orientation of Panax notoginseng roots mainly relies on manual labour to complete (Qin et al., 2022). The low efficiency and high cost of manual work constrain the long-term development of Panax notoginseng industry. Therefore, solving the problem of automatic orientation transplanting of Panax notoginseng roots is of great significance for improving the level of mechanisation of Panax notoginseng and the economic benefits of the industry.

Many scholars have conducted some researches on the orientation of crops (Li et al., 2020; Cheng et al., 2023; Zhu et al., 2023). In the orientation of regularly shaped crops, Hou et al. (2020) and Geng et al. (2018) designed a double duckbill orientation device and a three-stage conical hopper orientation device to achieve consistent tail orientation of garlic. These devices were oriented based on the principle that the centre of gravity of cloves is close to the tail and were suitable for regular shaped garlic. Cui et al. (2021) proposed a conical roller kale orientation device based on the principle of moment of inertia. Under the support force and friction force of the rollers, the kale rotates along the central axis with the smallest moment of inertia to achieve automatic orientation of the kale. However, Panax notoginseng root is an irregularly shaped crop, although it has obvious centre of gravity characteristics. Most of the roots have curved roots and are easily damaged. Therefore, these devices may not be suitable for transplanting Panax notoginseng roots. In the previous research of Panax notoginseng root transplanting, our team successively developed a double suction hole orientation transplanting device and a root guiding tube transplanting device by using air suction force and centrifugal force, and achieved good performance in orientation transplanting (Lai et al., 2021; Qin et al., 2022). Unfortunately, both devices have the problem of low efficiency. Furthermore, the mechanical orientation process itself entails unavoidable collisions and friction, which in turn results in surface damage to the roots.

With the emergence of machine vision technology in the agricultural field (Chen et al., 2002; Makky and Soni, 2013; Sofu et al., 2016), it provides a new idea for efficient orientation. San et al. (2021) used image processing Harris corner point detection algorithm to identify the head and tail of the fish, combined with the adjustment device to achieve the head and tail orientation of the fish body. Ai et al. (2022) identified the head and tail orientation of the fish body based on Resnet-18 classification network, identified the ventral and dorsal orientation of the fish body through image processing, and design an orientation and finishing device for the fish body. Li et al. (2020) proposed a multi-feature algorithm for effectively identifying the orientation of garlic in the image. The algorithm has higher accuracy than single-feature recognition methods for garlic varieties with large differences in features. The above recognition method is mainly based on traditional image processing, which recognizes the posture based on colour or shape features. Such methods are greatly disturbed by light and environmental background and have low robustness. The YOLO family of algorithms, as excellent deep learning models with high detection capability and low cost, have been widely used in crop recognition such as pineapple and cherry (Meng et al., 2023). Wang et al. (2023) developed an image algorithm for recognising lychee picking points using YOLOv8-Seg model. Hou et al. (2023) proposed an improved YOLOv7 model for recognising occluded cherry tomato. Therefore, the YOLO model will be used in this paper for identifying Panax notoginseng root features for fast and accurate orientation operations.

To solve the problem of automatic root orientation during Panax notoginseng root transplanting, this paper incorporated machine vision technology and orientation control system based on existing research. The transplanting quality and performance of the device proposed in this paper was significantly improved as compared to the existing transplanting devices. By adjusting the working parameters and picture databases, it enables efficient orientation transplanting of other root crops. The main contributions are summarized as follows:

	(1) Combining machine vision technology and negative pressure adsorption principle, an efficient and low-loss method for orientation transplanting of Panax notoginseng roots was proposed.

	(2) A Panax notoginseng root feature detection model was proposed based on the YOLOV5s model.

	(3) A control method for vision-based automatic orientation of Panax notoginseng roots was developed.

	(4) The optimal operating parameters of the orientation transplanting device for Panax notogiseng roots were obtained by Box-Behnken experiment.






2 Materials and methods



2.1 Shape parameters of Panax notoginseng root

In this paper, annual Panax notoginseng roots produced in Wenshan, Yunnan Province were chosen as the research object. A total of 300 Panax notoginseng roots were randomly selected for a measurement experiment. The main root length (l1), main root diameter (d1), cut length (l2), and cut diameter (d2) of each root were measured using a vernier calliper (Lai et al., 2018). The parameter diagram of the Panax notoginseng root is presented in Figure 1, and the measurement results are summarized in Table 1.




Figure 1 | The parameter diagram of Panax notoginseng root. (A) Schematic diagram of the appearance of the roots; (B) Schematic diagram of key parameters.




Table 1 | Size parameters of Panax notoginseng root.






2.2 Overall structure and working principle

The Panax notoginseng root orientation transplanting device consists of machine frame, root suction device, orientation actuator and orientation control system, as shown in Figure 2. The root suction device mainly includes root box, suction plate, main shell, airflow inlet and transmission shaft; the orientation actuator mainly includes linear actuator, brush and SG90 servo; the orientation control system mainly includes PC, STM32, L298N driver module and depth camera (Intel, D435). The orientation actuator is mounted on the upper part of the suction plate by a connection frame. The orientation actuator is adjusted to a position with a reasonable distance between the suction hole and the orientation actuator. The backside of the suction plate fits tightly with a sealing air cushion. A vacuum fan is connected to the airflow inlet to generate negative pressure in the air chamber. The motor rotates the suction plate by the transmission shaft.




Figure 2 | Schematic diagram of the structure of the transplanting device. 1. machine frame; 2. root box; 3. depth camera; 4. suction plate; 5. main shell; 6. brush; 7. SG90 servo; 8. linear actuator; 9. STM32; 10. L298N driver module; 11. PC; 12 transmission mechanism; 13. transmission shaft; 14. airflow inlet.



The whole working process can be divided into five areas, as shown in Figure 3, including root-filling area, image acquisition area, orientation area, root-carrying area and root-unloading area. When the transplanting device works, the roots in the root box are moved up and down by vibration. The suction holes on the suction plate adsorb the roots through negative airflow. The motor drives the transmission shaft to control the rotating of the suction plate. When the root reaches the image acquisition area, the camera collects the image information of the root and transmits the image information to the PC The PC processes the image and sends the position information of the cut and main root to the STM32; the STM32 determines the current root posture based on the position of the cut; subsequently, the root’s orientation adjustment instruction is sent to the orientation actuator through the control circuit. The orientation actuator performs corresponding orientation actions for roots with different postures. Specifically, the brush is driven by linear motor to press the root on the suction plate, and then the brush is rotated by servo control at the corresponding angle as programmed, and finally the actuator is reset; after the completion of the orientation adjustment, the root maintains the ideal posture(as shown in Figure 4) to pass through the root-carrying area and the root unloading area; the negative pressure airflow disappears in the unloading area, and the root is discharged under the action of gravity and centrifugal force.




Figure 3 | Schematic representation of working area division of the transplanting device.






Figure 4 | Schematic diagram of the ideal posture of the root.






2.3 Design of key components



2.3.1 root suction device

The root suction device is the key component for realising the low damage transport of roots. Roots in the root box are adsorbed by means of a negative air flow. This method is less damaging to the roots and can be adapted to different shapes.

The structural parameters of the suction plate directly affect the root filling performance (Xu et al., 2023). In general, the longer the residence time of the suction holes in the root-filling area, the more favourable the root filling. The passage time t0 of any suction hole in the root filling area can be expressed as:

 

where L0 is the arc length of the root-filling area, m; v0 is the linear velocity at the suction hole, m/s; D is the suction plate diameter, mm; np is the rotation speed of the suction plate, r/min; r is the arc degree of the root-filling area, rad.

According to (Equation 1), the passage time t0 of the suction hole in the root area is related to the arc length of the root-filling area and the suction plate rotation speed, but not related to the suction hole diameter. Therefore, the main factors affecting the suction plate diameter are the size of the root, the volume of the device and the operating speed. In the existing studies, the suction plate diameter of the suction device is generally 140-260 mm (Gao et al., 2023). Due to the large size of Panax notoginseng roots, an appropriate increase in the suction plate diameter is favourable for the filling of the roots. Considering the above factors, the suction plate diameter D was selected as 250 mm.

The suction hole diameter has a significant effect on the filling quality. When the negative pressure is constant, the suction hole diameter increases to make the filling capacity decrease; the suction hole diameter becomes smaller, then the suction force per unit area increases. However, the root was not adsorbed stably due to the small negative pressure area. In order to facilitate processing, the type of suction hole is selected as a cylindrical hole. Referring to the design formula of the suction hole of the air-suction seed-metering device (Equation 2), the suction hole diameter is determined as d = 8.6 mm.

 

When the suction hole passes through the root filling zone, the root is captured by the negative pressure airflow generated by the fan. The roots adsorbed on the suction hole pass through the orientation area, root carrying area and root unloading area in turn to complete the transplanting operation. The force analysis of the root in the adsorption state is carried out by taking a single root adsorbed by the suction hole as the research object; and assuming that the root is a rigid body of homogeneous material, the friction and collision between the root and the suction plate are not considered. The force analysis is shown in Figure 5.




Figure 5 | Force analysis of root during adsorption process.



Based on the theory of fluid mechanics and rigid body dynamics, the force equation of the root was established as in Equation 3:

 

where Fs is the suction force on the root, N; N is the support force of the suction plate on the root, N; l is the distance between the centre of gravity of the root and the suction plate, mm; d is the suction hole diameter, mm; FL is the combined force of the root’s gravity and the centrifugal force, N; α is the angle between gravity and centrifugal force; ω is the angular velocity of the suction plate, rad/s; r is the distance between the centre of the suction hole and the centre of the plate, mm; P0 is the negative pressure provided by the fan, kPa; S is the cross-sectional area of the suction hole, mm2.

If N=0, the negative pressure P0 provided by the fan can be expressed as:

 

During the operation of the device, the adsorption status of the root is influenced by its own conditions (sealing between the gas chamber and the suction plate) and objective conditions (vibrations generated by the drive shaft). Therefore, the actual required negative pressure should be multiplied by the suction reliability coefficient and the operational reliability coefficient. According to Equation 4, the required negative pressure is maximum when cosα = 1, i.e., when gravity is in the same direction as the centrifugal force. The minimum negative pressure Pt which satisfies the adsorption of a single root is expressed as in Equation 5:

 

where K1 is the reliability coefficient of root suction, taking 1.8~2.0; K2 is the reliability coefficient of orientation transplanting device operation, taking 1.6~2.0.




2.3.2 Design of the orientation control system

The orientation control system is used to complete the acquisition of root images, the identification of root posture and orientation of root during transplanting of Panax notoginseng roots. Orientation control system components are shown in Figure 6.




Figure 6 | Orientation control system composition.



The orientation control system is mainly composed of camera, PC, target detection programme, STM32, L298N driver module, linear actuator, SG90 servo, power supply,etc. When the root enters the image acquisition area, the camera collects the image of the root and transmits it to the PC; the detection program in the PC identifies the position information of the cut and main root, and transmits the identification result to the STM32. STM32 determines the current root posture based on the cut position and controls the orientation actuator to adjust the cutting direction. The whole process is divided into the following 5 steps:

	(1) The target detection algorithm in the PC identifies the cuttings feature and the main root feature of Panax notoginseng roots. Extract the centre coordinates of the prediction frame, i.e. extract the cut coordinates H and the main root coordinates T.

	(2) Root coordinates are input to the STM32 through the serial port, The STM32 uses the DMA method to filter and eliminate the duplicate coordinates received. In the filtered coordinate group, the plural of the coordinate value is selected as the actual coordinate value of the root.

	(3) Convert the coordinate system where the root is located from the original coordinate system of the image to the rectangular coordinate system with the suction hole as origin, as shown in Figure 7A.

	(4) Mark the root posture according to the quadrant where the cut is located. Then, calculate the angle between the current posture and the second quadrant angular bisector, as shown in Figure 7B.

	(5) After receiving the orientation command, the linear motor drives the brushes to approach the root. The servo rotates the angle calculated by the STM32 to adjust the root posture.






Figure 7 | Flow of root posture recognition. (A) coordinate conversion; (B) servo rotation angle.



when the root enters the orientation area, the STM32 controls the orientation actuator to complete the corresponding orientation action based on the posture of the root. The signal delay timing of the orientation action is determined by the angle between the camera and the orientation actuator(ACOA) and the suction plate rotation speed, which can be calculated by Equation 6. The control program flow of the orientation control system is shown in Figure 8.




Figure 8 | Flow chart of the control program of the orientation control system.



 

where t0 is the actuation delay time, s; α0 is the ACOA, °, as shown in Figure 9; D is the suction plate diameter, mm; v0 is the suction hole linear velocity, m/s; l0 is the distance between the suction plate and the orientation actuator, mm; vt is the movement speed of the linear actuator.




Figure 9 | Schematic diagram of angle between the camera and orientation actuator.







2.4 Panax notoginseng root feature detection model based on YOLOv5s



2.4.1 Panax notoginseng root image preprocessing

300 roots were selected for root filling test, and 1200 images of Panax notoginseng roots in random posture were collected. The images were obtained in pixel sizes of 4032 × 3024. To improve the generalisation ability of the root posture recognition model, the original images were preprocessed. The total number of images in the dataset was expanded to 2500 by brightness enhancement, random flipping and Gaussian noise processing, as shown in Figure 10. The constructed root image dataset was labelled using LabelImg, as shown in Supplementary Figure 1. By randomly dividing the labelled root image dataset into two sets with an 8:2 ratio, 2000 images in the training set, 500 in the test set were obtained.




Figure 10 | Processed image dataset. (A) original images; (B) rotation and cutting; (C) adding Gaussian noise.






2.4.2 YOLOv5s detection model

Accuracy, real-time and lightweight of root feature detection model are the key to identify the Panax notoginseng root posture.YOLOv5, as a single-stage target detection algorithm, has faster speed, better accuracy and smaller model size compared with its previous versions (Zhang P. et al., 2022; Tan et al., 2023; Zhao et al., 2023). Therefore, in this study, YOLOv5s model was selected for root feature recognition to achieve efficient detection of root cut and main root. The structure of the model includes four parts: input, backbone, neck and head (Zhang B. et al., 2022; Li et al., 2023; Xiao et al., 2023), as shown in Figure 11. The Backbone network is used to achieve the extraction of root features; the Neck network integrates the feature graphs of different scales to improve the detection performance; and the detection network obtains the root feature types, confidence level, and detection box position.




Figure 11 | Labeling interface.






2.4.3 Model training

The root characterisation recognition model was trained under Windows 10 operating system. The system CPU is Intel XeonW-214, GPU is NVIDIA RTX2080Ti(11GB), and the RAM is 64G.The deep learning framework is Pytorch 11.6, and the software environment is Python 3.9, cuda11.6. Supplementary Figure 2 shows the training loss curve for the YOLOv5s model. As the number of iterations increases, the total loss of the model essentially converges to a stable value.




2.4.4 Model evaluation indexes

The model evaluation indexes include precision, recall, F1, and mAP, as shown in Equations 7–10.

 

 

 

 

where TP is the total number of correct predictions for positive samples, FP is the total number of incorrect predictions for positive samples, FN is the total number of incorrect predictions for negative samples, APi is the detection accuracy of category i, and N is the number of categories.




2.4.5 Comparison of recognition results of different detection models

In order to objectively evaluate the performance of the selected models, YOLOv5s, YOLOv5x, Faster R-CNN, and SSD network models were selected to conduct comparative experiments on the test set; using precision, recall, and average precision value as the evaluation indexes, the performance comparison of each network model is shown in Table 2.


Table 2 | Comparison of detection results of different target detection algorithms.



As shown in Table 2, the mAP of each detection model reaches over 91% except for the SSD model.YOLOv5s has the highest precision, recall, F1, and mAP, while the precision, recall, F1, and mAP values of YOLOv5x and Faster R-CNN are not much different.

The FPS is extremely important in the target detection process. Higher FPS means faster detection speed. Furthermore, the comparison of image FPS and video FPS for different detection models is shown in Figure 12. As shown in Figure 12, with the same hardware configuration, SSD can provide the fastest frame rate in image detection and video detection; YOLOv5 series provide about 35Hz in video detection; while Faster R-CNN detection is the slowest, and the average frame rate of video detection is only 3~5 Hz.




Figure 12 | Network structure of root feature detection model.



The operation of the orientation transplanting device is a continuous process. As the speed of operation increases, the number of roots passing the image acquisition area per unit of time gradually increases. This requires a higher detection speed for the detection model. The YOLOv5s has an obvious advantage over other algorithm models in detection speed with a high detection accuracy. Therefore, the YOLOv5s selected in this paper can achieve the fast real-time detection of the cuttings and main roots of Panax notoginseng roots.





2.5 Experimental scheme

The detection accuracy of the YOLOv5s model is the key to accurately identify the root posture. Whereas, the overall performance of the orientation transplanting device is determined by the working parameters. From the previous analysis, the suction plate rotation speed, the ACOA, and the servo rotation speed may affect the root orientation performance. Therefore, in this section, a single-factor experiment and Box-Behnken experiment were designed for analysing the effects of these factors on the orientation performance.



2.5.1 Evaluation indexes and experimental equipment

When the orientation transplanting device is in operation, the root rotates with the suction plate to complete the orientation and root discharge work. During this process, due to the rapid rotation speed of the suction plate or the movement of the orientation actuator, the root may be detached from the suction hole and drop, resulting in failed orientation transplanting. Therefore, the orientation qualification rate and root drop rate were selected as evaluation indexes for the experiment, as shown in Equations 11, 12.

 

 

where W1 is the root orientation qualification rate, %; Wo is the number of roots qualified for orientation in each experiment, %; Wall is the number of roots in each experiment, %; W2 is the root drop rate, %; and Wd is the number of roots dropped from the suction plate in each experiment, %.

Figure 13 shows custom-made orientation transplanting device for Panax notoginseng roots. The orientation transplanting device was installed in the JPS-12 seed arrangement test stand (Harbin Autobona Technology Co., Ltd., Harbin, China). The JPS-12 seed arrangement test stand provided the power source and negative airflow for the device.




Figure 13 | Training loss curve.






2.5.2 Single-factor experimental design

The suction plate rotation speed, the ACOA, and the servo rotation speed were selected as the experimental factors to carry out the single-factor experiment. The factor levels of the single-factor experiment are listed in Table 3. The orientation transplanting effect of 100 Panax notoginseng roots was continuously measured in each group of experiments. Each group of experiments was repeated three times, and the experimental results were averaged. Considering that the negative pressure was significant to the adsorption stability of roots, the negative pressure was set to 3 kPa to ensure that the roots were stably adsorbed on the suction plate.


Table 3 | Levels of factors in the single-factor experiment.






2.5.3 Box-Behnken experimental design

In order to determine the optimum combination of operating parameters, A Box Behnken experiment was conducted to analyse the effect of suction plate rotation speed, ACOA and servo rotation speed on the indexes, based on the single-factor experiment. The level code table of experimental factors is shown in Table 4. The experimental programme and results are shown in Supplementary Table 1. Where X1, X2 and X3 are the coded values of the suction plate rotation speed, servo rotation speed and ACOA, respectively. The experimental indexes are orientation qualification rate Y1 and root drop rate Y2 respectively.


Table 4 | Box-Behnken experimental factors of codes.








3 Results



3.1 Results and analyses of the single-factor experiment

The single-factor experiment of suction plate rotation speed was carried out under the conditions that the suction plate rotation speed was 5, 5.5, 6, 6.5 and 7 r/min, the servo rotation speed was 1 r/s, and the ACOA was 30°. The experimental results are shown in Figure 14A. Figure 14A shows that with the increase of suction plate rotation speed, the orientation qualification rate decreases and the root drop rate increases. When the suction plate rotation speed was 7 r/min, the root drop rate reached 15.21% and the orientation qualification rate reached 90.23%. At this time, the centrifugal force on the root increased, and the root was easily detached from the suction hole. Meanwhile, the working time used for the orientation actuator decreased, and the root was not easy to be adjusted to the best posture.




Figure 14 | Results of single-factor experiments on (A) suction plate rotation speed, (B) servo rotation speed, (C) ACOA.



The single-factor experiment of the servo rotation speed was carried out under the conditions that the servo rotation speed was 0.8, 0.9, 1, 1.1, 1. 2 r/s, the suction plate rotation speed was 6 r/min, and the ACOA was 30°. The experimental results are shown in Figure 14B. Figure 14B shows that the orientation qualification is firstly increases and then decreases with the increase of the servo rotation speed. When the servo rotation speed is 0.9 r/s, the orientation qualification index is the highest. This indicates that the increase of servo rotation speed in a certain range accelerates the orientation efficiency of the servo. And when the servo rotation speed is 1.2 r/s, due to the speeding up of the orienting action, the root is more disturbed by the brush and easily falls off. The root drop rate is highest.

The single-factor experiment of the ACOA was carried out under the conditions that ACOA was 10, 20, 30, 40, 50°, the suction plate rotation speed was 6 r/min, and the servo rotation speed was 1 r/s. The test results are shown in Figure 14C. Figure 14C shows that with the increase of the ACOA, the orientation qualification rate first increases and then decreases. When the ACOA is 30°, the orientation qualification rate reaches the highest, is 88.47%. At this time, when the root enters the orientation execution area, the orientation data of the root reaches the orientation actuator at the same time, and the orientation effect is optimal.




3.2 Results and analyses of Box-Behnken experiment



3.2.1 Regression equation and significance analysis

To investigate the effects of the factors and their interactions on the experimental indices further, the experimental results were analysed by analysis of variance (ANOVA) using Design-expert (Stat-Ease, Minneapolis, Minnesota, USA). The ANOVA results are shown in Supplementary Table 2.

As shown in Supplementary Table 2, the suction plate rotation speed X1, the servo rotation speed X2 and the interaction term (X1X2) between suction plate rotation speed and servo rotation speed had a highly significant effect on the orientation qualification rate. The ACOA X3,and the interaction term (X2X3) between the servo rotation speed and the ACOA had a significant effect on the orientation qualification rate. The interaction term(X1X3) between suction plate rotation speed and the ACOA had non-significant effect on orientation qualification rate. The primary and secondary order of factors affecting the orientation qualification rate are suction plate rotation speed, servo rotation speed, and ACOA. After removing the non-significant factors, the regression equations of the factors with qualification rate were established as in Equation 13.

 

Suction plate rotation speed X1 and servo rotation speed X2 had a highly significant effect on root drop rate. the interaction term (X1X2) between suction plate rotation speed and servo rotation speed, and the interaction term (X1X3) of suction plate rotation speed and ACOA had a significant effect on the root drop rate. the interaction term (X2X3) of servo rotation speed and ACOA had a non-significant effect on the root drop rate. The primary and secondary order of factors affecting the orientation qualification rate are servo rotation speed, suction plate rotation speed, and ACOA. After removing the non-significant factors, the regression equations of the factors with drop rate were established as in Equation 14.

 




3.2.2 Response surface analysis

As shown in Supplementary Table 2, the interaction term (X1X2) between suction plate rotation speed and servo rotation speed and the interaction term (X2X3) of servo rotation speed and ACOA have a non-negligible effect on the orientation qualification rate. Figure 15 shows the response surface plot of the two interaction terms affecting the orientation qualification rate. As shown in Figure 15A, the qualification rate first increases and then decreases with the increase of servo rotation speed and suction plate rotation speed. When the servo rotation speed is less than 0.95 r/s and the suction plate rotation speed is less than 6 r/min, the qualification rate increases with the increase of servo rotation speed and suction plate rotation speed. The increase of servo rotation speed and suction plate rotation speed increases the efficiency of the orientation actuator, and the cumulative error of the programme decreases, which is conducive to the improvement of the qualification rate. The servo rotation speed and suction plate rotation speed continue to increase, the interference of the orientation actuator on the root increases, and the centrifugal force on the root increases, which reduces the qualification rate. As shown in Figure 15B, as the ACOA and the servo rotation speed increase, the qualification rate first increases and then decreases. When the servo rotation speed is lower, the qualification rate increases with the increase of the ACOA; when the servo rotation speed is higher, the increase of the ACOA decreases the growth of the qualification rate.




Figure 15 | Test bench for orientation transplanting device. 1. root suction device; 2. orientation actuator; 3. orientation control system; 4. PC; 5. target detection model running interface.



Figure 16 shows the response surface plot of the two interaction terms affecting the root drop rate. As shown in Figure 16A, the drop rate increases as the servo rotation speed and suction plate rotation speed increase. When the servo rotation speed is lower, as the drop rate increases with the increase of suction plate rotation speed; when the servo rotation speed is higher, the increase of suction plate rotation speed decreases the increase of drop rate. When the suction plate rotation speed is greater than 6.5 r/min, the drop rate first decreases and then increases as the servo rotation speed increases. This indicates that there exists an optimal servo rotation speed that minimises the drop rate when the device is operating in high speed. As shown in Figure 16B, as ACOA and the suction plate rotation speed increase, the qualification rate first increases and then decreases. When the suction plate rotation speed is lower, ACOA has less effect on the drop rate; when the suction plate rotation speed is higher, the drop rate increases with the increase of ACOA. When ACOA is lower, the suction plate rotation speed has less effect on the drop rate; when ACOA is higher, the drop rate increases with the increase of suction plate rotation speed.




Figure 16 | Influence of interactive factors on the root drop rate. (A) Y1=f(X1, X2, 0); (B) Y2=f(X1, 0, X3).






3.2.3 Parameter optimisation

Reasonable matching between parameters is the key to improve the operation performance. To accurately obtain the optimal parameter combination of each factor, the quadratic regression model established was optimally solved using Design-Expert software. In order to achieve a significant reduction of the drop rate, the weight of the root drop rate in the model is set to be 70%, and the weight of the orientation qualification rate in the model is set to be 30%, and the solution is carried out by using the set objective function, as shown in Equation 15.

 

The optimisation results show that the operation performance reaches the best predicted value when the suction plate rotation speed is 5.73 r/min, the servo rotation speed is 0.86 r/s, and ACOA is 35°. At this time, the orientation qualification rate was 90.86% and the root drop rate was 6.86%.Three validation tests were conducted under these parametric conditions to verify the accuracy of the optimisation results. The test results were averaged. The validation results showed that the orientation qualification rate was 89.87% and the root drop rate was 6.57%, which were basically consistent with the optimisation prediction results. All the test results met the requirements of Panax notoginseng root transplanting.






4 Discussion

Orientation transplanting of Panax notoginseng roots plays an important role in the growth and field management of Panax notoginseng. Early researchers developed the semi-automatic transplanting device to replace manual transplanting, which was used to improve the transplanting efficiency (Huang et al., 2023). However, at the root splitting stage, it is needed to manually adjust the root position and place it into the root dropping device. (Zhang J. et al., 2020; Zhang K. et al., 2020). With the increase of labour cost, this type of operation is not conducive to the development of Panax notoginseng industry. Furthermore, orientation transplanting devices based on robotic arms are currently only adapted to stationary greenhouse crop transplanting operations (Yang et al., 2018; Liu et al., 2021), and are not controlled in field operations. The transplanting quality and service life of the robotic arm are seriously affected by the uneven road surface and machine-induced vibration. Mature transplanting robots are applied in static situations, and the transplanting efficiency is limited. Lai et al. (2021) and Qin et al. (2022) successively developed automated devices for orientation transplanting of Panax notoginseng roots, but suffered from the problems of high breakage rate and low efficiency. In this background, this paper designed a new orientation transplanting device based on the negative pressure adsorption principle and machine vision technology for the low-loss and high-efficiency transplanting of Panax notoginseng roots. The experimental results of this paper were compared with the research progress, as shown in Supplementary Table 3, the orientation qualification rate increased by 4.2%, and the operating efficiency increased by 23.9%. The root surface damage after transplanting was significantly reduced. The proposed device provides an efficient and accurate solution for achieving consistent root orientation. This research has practical implications for improving transplanting efficiency in the cultivation of various root crops, leading to enhanced agricultural productivity and yield.

It is worthy of note that the current device has some defects. In the experiment, we found that the initial suction posture of the root would affect the transplanting performance. When the root’s centre deviated from the suction hole centre, the drop rate would increase. In future work, the control of the suction posture of the root should be the research focus. In addition, the current device is in the laboratory stage. In field experiments, the detection performance of the model may be disturbed by the environment. In the subsequent work we will use new detection models or improve the current model to enhance the detection performance of the model.




5 Conclusions

	This paper proposed a orientation transplanting device for Panax notoginseng roots based on YOLOv5. The automatic orientation and orderly delivery of roots are realised based on negative pressure adsorption and machine vision technology. The orientation method based on machine vision can adapt to the root transplanting operation with shape differences. The orientation method and device proposed in this paper provide ideas for the orientation transplanting of root crops such as Panax notoginseng.

	A detection model for Panax notoginseng root cut-main root position was constructed based on YOLOv5s. The detection results show that the precision rate of the model is 94.2%, the recall rate is 92.0%, and the average detection precision is 94.9%; meanwhile, the video detection FPS of the model is 27.13Hz, and the image detection FPS is 42.12Hz.

	The single-factor experiment and Box-Behnken experiment were carried out on an self-designed test platform. The experimental results were optimised using an objective optimisation algorithm. The optimisation resulted in a suction plate rotation speed of 5.73 r/min, a servo rotation speed of 0.86 r/s and an ACOA of 35°. The theoretical orientation qualification rate under this parameter combination is 90.86% and root drop rate is 6.86%. And the optimisation results were verified. The validation results show that the average value of orientation qualification rate of orientation transplanting device is 89.87%, and the average value of root drop rate is 6.57%. The experimental results are generally consistent with the optimization results, and meet the requirements of orientation transplanting of Panax notoginseng roots.
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Accurate and rapid plant disease detection is critical for enhancing long-term agricultural yield. Disease infection poses the most significant challenge in crop production, potentially leading to economic losses. Viruses, fungi, bacteria, and other infectious organisms can affect numerous plant parts, including roots, stems, and leaves. Traditional techniques for plant disease detection are time-consuming, require expertise, and are resource-intensive. Therefore, automated leaf disease diagnosis using artificial intelligence (AI) with Internet of Things (IoT) sensors methodologies are considered for the analysis and detection. This research examines four crop diseases: tomato, chilli, potato, and cucumber. It also highlights the most prevalent diseases and infections in these four types of vegetables, along with their symptoms. This review provides detailed predetermined steps to predict plant diseases using AI. Predetermined steps include image acquisition, preprocessing, segmentation, feature selection, and classification. Machine learning (ML) and deep understanding (DL) detection models are discussed. A comprehensive examination of various existing ML and DL-based studies to detect the disease of the following four crops is discussed, including the datasets used to evaluate these studies. We also provided the list of plant disease detection datasets. Finally, different ML and DL application problems are identified and discussed, along with future research prospects, by combining AI with IoT platforms like smart drones for field-based disease detection and monitoring. This work will help other practitioners in surveying different plant disease detection strategies and the limits of present systems.




Keywords: artificial intelligence, plant disease detection, crop production, machine learning methods, vegetables, disease classification, internet of things




1 Introduction

Plant infections significantly impact both crop quality and quantity. Early prediction and recognition of these infections are vital to prevent crop damage and enhance yield. In India, agriculture only contributes around 17% to the country’s GDP (Agarwal et al, 2019). India ranks top in critical crops like tomatoes, potatoes, and pepper (Tm et al., 2018; Thapa and Subash, 2019; Zunjare et al., 2023). Various factors, including environmental factors and cross-contamination, influence the emergence and spread of infections in agricultural areas (Kodama and Hata, 2018). Various crops are growing in the world of agricultural cultivation, and they are open to our study. The pest infestations cause an annual decrease in crop productivity of 30-33% (Kumar et al, 2019). Fungal, viral, and bacterial organisms cause infectious diseases in plants. Due to the multitude of infections and various contributing factors, agricultural practitioners need help shifting from one infection control strategy to another to mitigate the impact of these infections. Therefore, the quality and quantity of the crop’s overall production is directly impacted by this situation.

In the current era characterized by significant technological advancements, it is noteworthy that farmers continue to follow traditional practices regarding disease identification in crops. Rather than depend on modern specialized tools, farmers persist in personally and visually examining the crops to detect any signs of disease (Ayoub Shaikh et al, 2022). The traditional methods of visually inspecting and evaluating crops solely based on the farmer’s expertise present several challenges and limitations in agricultural research. In the worst-case scenario, an undetected crop infection might cause the entire crop to decline, hurting yield. Certain agricultural diseases may exhibit inconspicuous symptoms, posing challenges in determining the appropriate way of action. In such situations, it can be confusing to ascertain the optimal judgment, nature, and intervention methodology. Therefore, it becomes essential to conduct advanced and comprehensive research (Munjal et al., 2023).

To address the challenges mentioned above that are prevalent in modern agricultural settings, computer-aided automated studies such as ML and DL can be instrumental in facilitating precise, rapid, and early identification of diseases. The advantages of employing these technologies lie in their ability to provide fast and accurate outcomes through computerized detections and image processing techniques. Utilizing AI techniques in agriculture can reduce labor costs, decrease time inefficiencies, and enhance crop quality and overall yield. The deployment of appropriate management approaches can facilitate the implementation of disease control plans by utilizing the earliest data regarding the health condition of crops and the specific location of diseases.



1.1 Contribution

The following list summarizes the primary findings and contributions of this study:

	The classification of common diseases in vegetables such as tomato, chilli, potato, and cucumber are discussed.

	Predetermined steps for automated disease detection along with various methodologies and algorithms are explained.

	The literature covers the presentation of AI methodologies for plant disease identifications. Especially ML and DL-based models are discussed in detail. These models are designed to detect vegetable diseases in various plant species.

	We discussed the AI based plant disease classification, where, the automated approaches to classify disease in each respective vegetable are provided.

	Finally, the challenges associated with applying AI models in disease detection are described in-depth and underlined in this study.






1.2 Organization of this study

Our thorough study focused mainly on the use of automated strategies to diagnose plant diseases. The study is categorized into five distinct sections. In Section 2, we focus on the background knowledge for automated plant disease detection and classification. Various predetermined steps are required to investigate and classify the plant diseases. Detailed information on AI subsets such as ML and DL are also discussed in this section. A detailed examination of the joint disease symptoms that could affect the vegetables is provided in Section 3. Section 3 also highlights the AI-based disease detection by providing previous agricultural literature studies to classify vegetable diseases. After reviewing various frameworks in the literature, Section 4 discusses the challenges and unresolved issues related to classification of selected vegetable plant leaf infections using AI. This section also provides the future research directions with proposed solutions are provided in Section 6. We conclude the study in Section 5.





2 Background required for automated plant disease detection

Automated technologies to detect plant diseases are currently essential. They prevent crop diseases from occurring frequently and the losses that follow from them. The automated disease detection system that uses AI follows predetermined steps. The procedures involve several steps, including installing various sensors in the agricultural field to collect and record plant images. The collected images are then processed and segmented to be used as data in machine learning algorithms. The ML models then predict whether a leaf is healthy or diseased (Ayaz et al., 2019). The framework with predetermined steps to predict the plant disease is presented (Figure 1).




Figure 1 | Plant disease prediction system with all important steps.





2.1 Plant image acquisition

In this phase, relevant images of the object are captured and acquired to perform classification using automated approaches. A picture is a collection of binary data, which can then be manipulated and analyzed on a computer. This section uses high-resolution digital cameras to capture images (Camargo and Smith, 2009). Smartphones have proven useful by recording image samples in various supported formats such as jpg, png, tif, and more. After all the required images have been captured, they are sent to the image preprocessing stage to be adjusted before use. If the collected images do not fulfill the processing requirements, there is a need to employ image-enhancing methods (Basavaiah and Anthony, 2020).

For an accurate disease classification, the image acquisition phase is crucial. The efficiency of the entire framework is highly dependent on the images acquired. ML models are trained on these images (Camargo and Smith, 2009). The agricultural research literature shows plenty of well-known image datasets for various plant species. The datasets include healthy and unhealthy leaves, making it possible to examine and assess the effects of different diseases on plant health. Several vegetable plant infection-related datasets are available online, such as PlantVillage (Arya and Rajeev, 2019), New Plant Diseases (Wani et al., 2022), IPM Images, APS Images, Plant Doc (D. Singh et al., 2020), PLD (Rashid et al., 2021), and many more. The publicly available datasets of selected plant diseases are provided (Table 1).


Table 1 | Datasets description for the selected vegetables.






2.2 Image preprocessing

It is an essential step in the initial phase of image acquisition. The captured images contain various factors such as noise, blur, low or high illumination, unwanted background, etc. Therefore, it is crucial to process this raw data and make it worthy to classify the disease efficiently using automatic approaches. The raw data is converted into a specific format and cleaned up by removing any noise or distortion. In the next phase, images are passed to the step where the essential segmentation and feature extraction procedures are carried out.

Preprocessing allows researchers to maximize the efficiency of their computing resources and maintain uniformity in their image resolutions relative to a set benchmark. Several preprocessing approaches include standardization, image size regularization, color scale, distortion removal, and noise removal, which provide for scaling the image to the specified dimensions performed at this stage. In addition, the image is adjusted to fit the fixed color scale for best analysis and interpretation. Previous studies have shown that a white background for images can help make them easier to understand (Militante et al, 2019). A standard preprocessing methodology in agricultural research uses the type, capacity, and value (HSV) method, closely mimicking human observers’ capabilities (Jadhav and Patil, 2016).To improve processing efficiency and accuracy, agricultural researchers frequently use masking and background removal techniques (Sannakki et al., 2013). Due to its resemblance to the perceptual traits of human vision, the conversion of a colored image into the renowned HSI (Hue, Saturation, Intensity) color space representation is used. According to previously published research (Liu and Wang, 2021), the H component of the Hyperspectral Imaging (HSI) system is the most frequently used for further analysis. Low-pass filters are used to reduce high-frequency noise. At the same time, the high-pass filter’s negative weighting factors increase those regions with a dramatic intensity gradient. The procedure highlights the most relevant features (Zhang et al, 2020). The Laplacian filter is a typical method used in agricultural research to improve the clarity of image outline structures. Using a Fast Fourier Transform method (Packa et al., 2015), the Fourier transform (FT) filter successfully transforms the images into the spatial frequency domain. The sigma probability of the Gaussian distribution uses a commotion smoothing channel, a straightforward method with impressive results. The quality of plant disease images can be improved using histograms, a technique that changes the power distribution of images (Makandar and Bhagirathi, 2015). Segmenting the image of the infected leaf is crucial for achieving pinpoint accuracy in disease diagnosis.




2.3 Image segmentation

Segmentation is a fundamental technique used in agricultural science, wherein an image is meticulously divided into its components. The primary goal is to analyze each object in more detail, extracting beneficial features that might enhance our understanding and knowledge (Jafar et al., 2022). Distinguishing between unaffected and infected regions is possible based on the retrieved features (Makandar and Bhagirathi, 2015) Segmenting the preprocessed images to classify diseased leaves is crucial to extract various potentially helpful features.

Traditional approaches, such as thresholding, edge detection, region-based, and clustering, rely on mathematical and image processing knowledge to segment the given images. Thresholding is one of the most effective segmentation approaches, segmenting images based on pixel intensity values. It is widely used in various applications such as classification, detection, and remote sensing. The three subtypes of thresholding segmentation are global, variable, and adaptive. Each category has its methods for segmenting images; for example, Global Thresholding methods include mean, median, and Otsu thresholding (Makandar and Bhagirathi, 2015). Edge detection is a process where an image is partitioned based on its edges, typically known as the boundaries of the image. The strengths and weaknesses of this approach are discussed in detail (Table 2). Some famous methods for edge detection include the Sobel operator, Canny edge detector, and Laplacian of Gaussian (LoG) filter.


Table 2 | Image segmentation Approaches with their advantages and drawbacks.



Region-based segmentation divides the image into multiple regions based on the similarity of pixels in terms of intensity value, color, and shape. Two well-known region-based segmentation methods are Region Growing and Region Splitting (Aubry et al., 2014). The methods to segment the image in both are vice versa, with one growing the region by adding seed pixels of neighboring pixels. Clustering, another image segmentation approach, groups pixels together based on their similarity in texture, color, or other required features. K-means (Ell and Sangwine, 2007) and Fuzzy C-means (Camargo and Smith, 2009) are famous clustering algorithms for image segmentation and are widely used in various applications. However, traditional approaches lack efficiency in handling complex images with fine details, as provided in the weakness (Table 2).

In recent years, deep learning-based automatic segmentation approaches have outperformed traditional methods in terms of performance. Two well-known DL-based segmentation approaches are Semantic Segmentation and Instance Segmentation. Semantic segmentation assigns a category label to each pixel in an image, dividing the image into mutually exclusive sets, with each set identifying a valuable region of the original image (Jafar et al., 2022). DL models, such as Convolutional Neural Network (CNN), outperform and enhance higher-level segmentation accuracy. Instance segmentation is an updated improvement in semantic segmentation designed to handle complex or challenging tasks. This approach predicts instances of object classes from images. Various techniques have been developed and each technique uses famous DL architectures like RCNN, YOLO, Instance Cut, Deep Mask, Tensor Mask, etc. The advantages and drawbacks of semantic and instance segmentation are provided (Table 2).




2.4 Feature extraction

In agriculture, the procedure of extracting features from raw data is known as feature extraction. The input image feature descriptors are shape, color, and texture properties. It plays an essential character in classification tasks. In the context of ML, feature engineering is a fundamental technique that includes transforming raw data into a set of meaningful and relevant features (Basavaiah and Anthony, 2020). The dataset is provided as input to this step to determine whether plants are healthy or not.

The basic features in an image include color, texture, morphology, and other related characteristics. When identifying the spot on a leaf that’s been damaged, morphological traits prove more effective than others (Yao et al., 2009; Khirade and Patil, 2015). Color features like color moments and Gabor texture are frequently used. Several methods are available for obtaining these characteristics, such as the color histogram (Sugimura et al., 2015), the color correlogram (Huang et al., 1997), the color R moment (Rahhal et al., 2016), and others. Contrast, homogeneity, variance, and entropy are all potential additions to the texture. In the context of plant disease identification problems, it has been discovered that texture feature usage yields more favorable outcomes (Kaur et al, 2019). By using the grey-level co-occurrence matrix (GLCM) method, one may determine the area’s energy, entropy, contrast, homogeneity, moment of inertia, and other textural features (Mokhtar et al., 2015; Islam et al., 2017). Texture characteristics may be separated using FT and wavelet packet decomposition (Kaur et al, 2019). Additional features such as the Speed-up robust feature, the Histogram of Oriented Gradients, and the Pyramid Histogram of Visual Words (PHOW) have shown greater effectiveness (Kaur et al, 2019).




2.5 Artificial intelligence

Artificial intelligence (AI) is becoming increasingly important in agricultural research, particularly in identifying and classifying plant diseases. Classification is the first stage of this process, which involves separating data into classes. In this context, we are particularly interested in plant leaf detection and classification, specifically in differentiating between healthy and diseased examples. To perform, there is a need to know about the classification and detection algorithms of ML and DL.



2.5.1 Machine learning algorithms

To understand AI’s involvement in this domain, it’s essential to realize that machine learning is a subset of AI. ML aims to allow computers to learn from experience (Verma, 2023). Currently, we come across various subtypes within the ML domain, each suited to different learning scenarios. Supervised learning involves providing the system with input data and the corresponding goal values predicted from the data. The goal is clear: to learn and develop a relationship that allows the system to predict outputs based on inputs (Radivojević et al., 2020). This involves training algorithms to classify leaves into plant disease groups using labeled. In contrast, unsupervised learning relies on a different strategy. In this case, the system is given data without explicit input-output specifications. It aims to search for hidden patterns or relationships in the data (Attri et al, 2023). Semi-supervised learning arises when some data is labeled, like in supervised learning, while some data is unlabeled, like in unsupervised learning (Engelen and Hoos, 2020).

Distinguishing between classification and regression tasks in ML is also crucial because they produce different output data types. Classification tasks seek qualitative results and organize inputs into classes. One use of the classification is categorizing plant leaf diseases into distinct groups (Shoaib et al., 2022). In contrast, regression tasks deal with numerical results, trying to estimate values based on input data. There is a wide variability of methods available in supervised ML, each with advantages and limitations and are presented in Table 3. Decision trees, random forests, k-nearest neighbors, support vector machines, artificial neural networks, naive Bayes, linear regression, and linear discriminant analysis are among the frequently used approaches (Linardatos et al, 2021).


Table 3 | ML supervised classification algorithms.






2.5.2 Deep learning models

Deep learning (DL) is a branch of AI and ML that has significantly impacted areas such as image classification, object recognition, and natural language processing (Sarker, 2021). DL employs neural networks for autonomous feature selection, eliminating the intensive artificial feature engineering requirement. It improves accuracy and generalizability in tasks such as image recognition and target identification by combining low-level information to build abstract, high-level features. The development of DL can be split into two eras: the first, from 1943 to 1998, and the second, from 2006 to the present (Lavecchia, 2019). In the first stage, ground-breaking innovations were developed, including backpropagation, the chain rule, Neocognitron, and architectures like LeNet for handwritten text recognition. Modern algorithms and architectures such as deep belief networks (DBN), autoencoders, CNN, and their variants emerged during the second phase of DL (Figure 2). They can be used in various fields, including self-driving cars, healthcare, text recognition, earthquake prediction, marketing, finance, and picture recognition (Sengupta et al., 2020).




Figure 2 | DL evolution from 1943 to present (Saleem et al, 2019; Mourtzis and Angelopoulos, 2020; Mathew et al, 2021).



DL comprises a wide range of neural network architectures, each best suited to a different class of problems. Among the most well-known are multilayer perceptron (MLP), backpropagation (BP), and deep neural networks (Naskath et al, 2023). While the original MLP was best suited for linear classification tasks, the BP method developed in the second iteration helped with nonlinear classification and learning challenges. The second phase, DL, appeared in 2006, bringing solutions to the gradient vanishing problem. The Hinton team’s success in the 2012 ImageNet competition with the DL model AlexNet heralded the ascendance of convolutional neural networks (CNNs) (Arya and Rajeev, 2019). The development of DL architectures has impacted various fields, including plant disease diagnosis, image detection, segmentation, and classification. It is worth noting that several pre-trained models tailored to deep neural networks (DNN) already exist within agricultural research. Keras’s cited work describes that these models are deployed in agriculture to aid in prediction, feature extraction, and tweaking. CNN’s performance is very sensitive to the complexity of their underlying architectures. Image classification has seen the development and study of several well-known CNN architectures. Several empirical studies have shown that these structures perform better than alternatives. VGG-16 (Simonyan and Zisserman, 2015), GoogleNet (Jahandad et al., 2019), ResNet (Jafar and Lee, 2021), DenseNet (G. Huang et al., 2017), Genetic CNN (Xie and Alan, 2017), SqueezeNet (Iandola et al., 2016), LeNet (LeCun et al., 1999), Inception (LeCun et al., 1999), MobileNet (Howard et al., 2017), and Xception (Chollet, 2017) are a few examples.






3 AI-based automated vegetables disease detection classification

Plant pathology divides plant diseases into biotic and abiotic diseases. The fungus, bacteria, insects, and viruses cause biotic diseases (Figure 3). Non-living causes like environmental nutritional deficits, chemical imbalances, metal toxicity, and physical traumas produce abiotic disorders (Husin et al., 2012). Plants can also show signs of abiotic diseases when exposed to unfavorable environmental conditions such as high temperatures, excessive moisture, inadequate light, a lack of essential nutrients, an acidic soil pH, or even greenhouse gases (Figure 3). Plant infections can be challenging to spot with the naked eye, making detection and classification an enormous problem (Liu and Wang, 2021). It’s also important to remember that many plant diseases share symptoms. Because of their similarities in appearance, determining which plant disease is causing harm can be difficult. Some signs that can be difficult to analyze and identify are irregular leaf development, distortion of leaf pigmentation, slowed growth, reduced and weakened pods, etc (Manavalan, 2021). These visible signs, such as affected leaves, help to identify the disease. To maintain a healthy ecosystem, maximizing vegetable production and ensuring the agricultural sector’s economic viability is important (Mitra, 2021).




Figure 3 | Abiotic plant stress and biotic plant diseases.



The primary goal of this study is to determine the root causes of leaf diseases. Previous studies have consistently shown that the health of a plant’s leaves is directly related to the strength of its immune system (Qiu et al., 2022). When a plant’s leaves are healthy, the plant’s immune system strengthens and becomes better able to tackle diseases that might appear in other parts of the plant. The disorders of the vegetables such as tomato, chili, potato, and cucumber plants are frequent and can have a devastating effect on the leaves (Qi et al., 2021) (Khirade and Patil, 2015) (Shin et al., 2023) (Wani et al., 2022) (Krithika and Veni, 2017). These diseases are quite dangerous because they can spread swiftly and cause much damage.

This section presents a comprehensive overview of plant disease detection and classification frameworks utilizing cutting-edge techniques such as ML and DL. These frameworks have been extensively documented in the existing literature for the prescribed vegetables such as tomato, chili, potato, and cucumber.



3.1 Automated tomato disease detection

The tomato, scientifically known as Solanum Lycopersicon, is an important agricultural crop cultivated throughout Asia for human use. Some of the most prominent nutrients in this formula include vitamin E, vitamin C, and beta-carotene. These crops are rich in potassium, a crucial mineral for health. Because of its popularity and nutritional value, this vegetable is grown worldwide. The tomato crop is vulnerable to several diseases brought on by bacterial infections, microbes, and pest infestations (Lal, 2021). In contrast, the disease name, diseased image, and unique symptoms that damage specific tomoato plant parts are highlighted (Table 4). Furthermore, the detailed explanations of the previous studies to predict the tomato diseases automatically are provided below.


Table 4 | The tomato crop diseases with their symptoms based on causative agents (bacteria, virus, and fungus).



Previous research (Francis and Deisy, 2019) proposed a CNN model to discriminate between healthy and diseased tomato and apple leaves. The proposed model comprises four convolutional layers, followed by equivalent pooling layers. The model also uses a sigmoid activation function and two dense layers that are fully coupled. A total of 3663 image samples were used during training and testing, all carefully selected from the extensive PlantVillage dataset. The system’s output demonstrates an impressively high accuracy rate (87%).Similarly, researchers (Basavaiah and Anthony, 2020) observed the practice of various ML approaches to identify tomato plant disease. In this study, 200 images from 5 classes were used. Texture, color, and form were used since they are well-known global feature descriptors. The authors used KNN, LR, DT, RF, SVM, and other algorithms for model training. The RF model outperformed many other ML algorithms in our analysis with an impressive 94% accuracy rate (Table 5).


Table 5 | Tomato vegetable classification using AI.



The authors (K and Rao, 2019) use KNN and probabilistic neural networks (PNN) to detect and categorize different diseases affecting tomato leaves. The dataset comprises 600 picture samples from healthy and diseased tomato leaves in the field. The model accurately identified Verticillium wilt, powdery mildew, leaf miners, Septoria leaf spot, and spider mites. The results demonstrated that the classification performance of the PNN model surpassed that of the KNN model, achieving an accuracy of 91.88%.

A feature extraction using the K-means method was performed (Vadivel and Suguna, 2022). The BPNN method was then applied to the task of labeling diseased leaves. The model classified leaf diseases using the augmented data with 10000 images from online sources. Seven different features, including contrast, correlation, energy, homogeneity mean, standard deviation, and variance, have been extracted from the dataset. Several models, such as BPNN, neural network, K-mean cluster, and CNN, were used for training. The proposed optimized model achieved a surprising 99.4% accuracy in classification has been attained by the model (Table 5).

Another study (Chakravarthy and Raman, 2020) used DL to identify early blight disease in tomato leaves. The dataset included 4281 image samples carefully collected from a trusted agriculture source. The authors offer a model to distinguish between healthy and early blight-affected tomato leaves. ResNet and Xception were fine-tuned for tomato plant leaf classification. With this refinement process, the system could discriminate between healthy and early blight-infected leaves on tomato plants with an astounding accuracy of 99.95%.

(Kumar and Vani, 2019), the authors analyze several CNN architectures trained to identify diseases in tomato leaves. The PlantVillage dataset is used for this analysis and consists of 14,903 images. There are a total of ten disease types found in tomatoes in this data set. Some diseases that may damage plants are target spots, septoria leaf spots, mosaic viruses, leaf molds, healthy spots, and bacterial spots. The research investigated four common transfer learning-based architectures: LeNet, Xception, ResNet50, and VGG16. Classification accuracies of 96.27%, 98.13%, 98.65%, and 99.25% were achieved by evaluating the efficacy of these architectures. Based on our in-depth evaluation, we found that the VGG16 model outperformed its competitors.




3.2 Automated Chilli disease detection

One of India’s most important agricultural products is the chilli, a veggie with a spicy flavor widely used in regional and international cuisines. Chilli pepper, also known as Lanka and Mirchi, has several names. Many varieties can be used as seasonings, dyes, oils, and medicinal compounds. Approximately 45 different viruses are known to infect chilli plants. Only 24 are known to occur naturally; the rest may be brought on through vaccination or other ways (Duranova et al, 2022). Various chilli disease such as Down curl, gemini virus, cercospora, leaf spot etc. are caused by bacteria, virus, and fungus causative agents. The disease name, diseased image, and unique symptoms that damage specific chili plant parts are provided (Table 6). Furthermore, we provided a detailed explanation of the previous studies to predict the chilli diseases automatically below.


Table 6 | The Chilli crop diseases with their symptoms based on causative agents (Bacteria, Virus, and Fungus).



This study (Naik et al, 2022) examines the effectiveness of DL and ML techniques for classifying chilli leaf disease. Twelve pre-trained DL networks were employed, and the dataset features images of five critical diseases. Without augmentation, VGG19 had the highest accuracy (83.54%), whereas DarkNet53 performed exceptionally well with augmentation. A unique squeeze-and-excitation-based convolutional neural network (SECNN) model outperformed the rest, obtaining 98.63% accuracy without augmentation and 99.12% with augmentation, respectively (Table 6).

This research examines the prevalence of pests and diseases in growing chili peppers, a vital vegetable crop worldwide. Automated image analysis tools are used to spot obvious signs of disease. Researchers examined 974 self-collected images of chilli leaves from Malaysia. They used three machine learning classifiers, an SVM, an RF, and an ANN, with features extracted from six classical methods of each ML and DL. Combined with the SVM classifier, the DL strategies surpassed the conventional approaches with an accuracy rate of 92.10% (Ahmad Loti et al, 2021).

This study (Sachdeva et al, 2021) introduces a DCNN model with Bayesian learning to improve plant disease classification. Early disease diagnosis is critical for crop health. The study includes 20,639 PlantVillage images of healthy and diseased potato, tomato, and pepper bell plant samples. A Bayesian procedure has been built into the structure of a residual network. The model has a remarkable accuracy of 98.9% without any overfitting issues (Sachdeva et al, 2021).

This study presents a new data augmentation method that uses geometric modifications to expand a small dataset depicting healthy and diseased chilli leaves. Convolutional Neural Network (CNN) and ResNet-18 were tested and compared using both the raw data and the data that had been artificially enhanced. The results showed that the trained models were effective, with an average accuracy performance of 97% (Table 7). This research demonstrates the significance of data augmentation in improving the accuracy of DL models for assessing chilli health, which could increase agricultural output (Aminuddin et al., 2022).


Table 7 | Chilli vegetable classification using AI.



The study (Mustafa et al., 2023) uses a dataset of 2475 images of pepper bell leaves to classify plant leaf diseases. The method uses an image enhancement technique, enhancing the effectiveness of the Convolutional Neural Network (CNN) model. The dataset is expanded to 20,000 images, improving the model’s effectiveness. The optimized CNN model includes four preprocessing stages, including filter width variations, hyper-parameter optimization, max-pooling, and dropout layers, yielding promising results. The optimized CNN model, trained for 25 epochs, achieved an accuracy rate of 99.99% (Table 7).

The study (Karadağ et al., 2020) focuses on early recognition of diseases in plant health by using advanced computerized diagnostic systems. The research uses light leaf reflections to distinguish between healthy and fusarium-diseased peppers. The data includes four groups of pepper leaves: healthy, fusarium-diseased, mycorrhizal fungus infections, and combinations of leaves with both. The process involves generating feature vectors and undergoing rigorous classification using machine learning algorithms like ANN, NB, and KNN. The classification algorithms achieved impressive success rates of 100% for KNN, 97.5% for ANN, and 90% for NB in distinguishing between diseased and healthy pepper plants.

In this paper (Kanaparthi and Ilango, 2023), DL methods investigated the training issues on the Chilli leaf diseases dataset. This research uses 160 images from the public domain repository on Kaggle to assess the efficacy of the Squeeze-Net training architecture in identifying Geminivirus and Mosaic-infected Chilli leaves. Training accuracy varies from 50% to 100% as a function of settings like CNN optimizers, Max-epochs, dropout probability, strides, dilation factor, and padding values. Adopting Adam and RMSprop optimizers with epochs of 40 and 35, respectively, leads to a perfect accuracy score for the Squeeze-Net CNN architecture (Lin et al., 2019a) and achieves 100% accuracy.

This study used chili crop images to diagnose two primary illnesses, leaf spot, and leaf curl, under real-world field circumstances. YOLOv5 was used in this research to identify diseases in chilli crops. The model predicted disease with an accuracy of 75.64% for those with disease cases in the test image dataset (KM et al, 2023).




3.3 Automated potato disease detection

The potato maintains its prestigious position as the fourth-largest crop in global cultivation. However, it has difficulties, especially with regard to disease susceptibility. The potato is one of the most widely affected crops in agriculture due to the prevalence of numerous diseases (Wani et al., 2022). These diseases are Black scurf, common scab, black leg, pink rot etc. are caused by different causative agents. The disease name, diseased image, and unique symptoms that damage specific potato plant parts are provided (Table 8). Furthermore, literature’s efforts to identify and detect potato crop diseases automatically are highlighted below.


Table 8 | The potato crop diseases with their symptoms based on causative agents (Bacteria, Virus, and Fungus).



The authors of (Patil et al., 2017) compared three ML methods, RF, SVM, and ANN, for spotting blight disease in potato leaf images. These techniques were trained and tested using the PlantVillage dataset and from the University of Agricultural Sciences India. The dataset consisted of 892 images depicting healthy leaves, leaves with early blight, and leaves with late blight. Applying the fuzzy c-mean clustering technique to each image helped identify and distinguish healthy and diseased categories. The simulation showed that the ANN was the most accurate ML technique for detecting diseases. ANN has an impressive 92% accuracy, followed by SVM at 84% and RF at 79% (Table 9).


Table 9 | Potato vegetable classification using AI.



A machine learning-based automated approach (Suttapakti and Bunpeng, 2019) for classifying potato leaf diseases was introduced in a separate study. The maximum-minimum color difference technique was used alongside a set of distinctive color attributes and texture features to create this system. Image samples were segmented using k-means clustering and categorized using Euclidean distance. Three hundred potato leaf images were attained from the PlantVillage database. The author’s suggested approach by integrating MCD and TTF (three texture characteristics). This method correctly diagnosed late blight, early blight, and healthy potato leaf images with 91.67% accuracy.

In this study (Arshaghi et al, 2023), machine vision and AI identify defects in agricultural goods like potatoes. A CNN is employed in this study to classify potato diseases. Potato diseases include healthy, black scurf, common scab, black leg, and pink rot. They used a dataset with 5000 images of the following classes. Compared to previous approaches, the accuracy of the suggested DL methodology was much more significant, reaching 100% and 99% in various disease groups (Table 9).

(Arya and Rajeev, 2019), the authors investigated the viability of using CNN and AlexNet architectures for disease detection in potato and mango leaves. The training and testing dataset consisted of 4004 potato photos obtained from the PlantVillage database. The training and validation datasets comprised 3523 photos, where testing dataset had 481 images. Based on models’ simulation and analysis, the AlexNet architecture demonstrated outstanding performance, with an accuracy rate of 98.33%, which is very impressive.

An enhanced DL method is presented in this article (Mahum et al., 2023) to detect various potato plant leaf diseases. The potato leaf diseases are categorized into five groups: healthy, late blight, early blight, leaf roll, and verticillium wilt. The model employs a reweighted cross-entropy loss and is pre-trained on Efficient DenseNet to handle unbalanced data. Its testing set accuracy of 97.2% is higher than that of competing models, and it offers a unique approach to identifying and categorizing potato leaf diseases.

In another study (Al-Amin et al, 2019), researchers used a DCNN to identify late and early blight in potato harvests. Their research aimed to identify diseased potato leaves from healthy ones so that the infections may be detected early. To train and test the model, 2250 image samples of potato leaves were used. The DCNN was developed using a custom-built architecture for identifying diseased potato leaves. The model achieves a respectable level of accuracy in its predictions, with a maximum value of 98.33%.

A study (Sharma et al., 2021) overcomes sustainable intensification and boosts output without negatively impacting the environment. This approach considers potato and rice crops, and diseases are detected. Various ML algorithms and DL CNN are supposed to predict the disease. DL CNN outperformed all the ML classifiers (SVM, KNN, DT, and RF) and achieved accuracy rates of 99.58% for rice and 97.66% for potato leaf diseases in this research.

The health of crops depends on the prompt diagnosis of plant diseases (Singh and Yogi, 2023). In this investigation (Singh and Yogi, 2023), CNNs are used to apply DL to automate the diagnosis of diseases in potato leaves. The paper uses a dataset of 1700 images of potato leaves (600 for training and 300 for testing) to showcase the utility of CNNs in disease identification in intelligent farming. The citrus potato diseases are considered to be classified. The CNN model outperforms all other models in accuracy tests, reaching an impressive 99.62% (Table 9).




3.4 Automated cucumber disease detection

Cucumbers, a much-loved and renewing vegetable, belong to the prestigious Cucurbitaceae family of plants. The crop is well-known for its high-water content, making it a refreshing and hydrating choice even during the hottest times. In addition, cucumber plants are susceptible to several ailments, such as anthracnose and angular leaf spots, which cause various leaf problems (Vishnoi et al, 2021).Cucumber plants are particularly susceptible to powdery mildew in their later stages of development. The disease name, diseased image, and unique symptoms that damage specific cucumber plant parts are provided (Table 10). Furthermore, previous automated cucumber crop diseases detection studies are explained in detail below.


Table 10 | The cucumber crop diseases with their symptoms based on causative agents (bacteria, virus, and fungus).



A study (Lin et al., 2019a) presents a novel CNN-based U-Net semantic segmentation approach to overcome these obstacles. Over twenty test samples, the model correctly segments images of cucumber leaves damaged by powdery mildew with an average pixel accuracy of 96.08%, an intersection over union score of 72.11%, and a dice accuracy of 83.45% (Table 8). The proposed method shows tremendous potential in pixel-level segmentation of powdery mildew in cucumber leaf diseases.

This paper presents a systematic approach to detecting and classifying diseases on cucumber leaves (Khan et al., 2020). The methodology is divided into five stages: image enhancement, segmentation of contaminated areas, deep feature extraction, feature selection, and disease classification. The first stage involves improving images by amplifying local contrast, segmenting regions using the Sharif saliency-based (SHSB) method, and extracting characteristics from images using pre-trained models like VGG-19 and VGG-M. The process involves using local entropy, standard deviation, and interquartile range for feature selection and a multiclass support vector machine to detect illnesses. The suggested methodology achieves a classification accuracy rate of 98.08% showcasing their authenticity and potential as a reliable tool for identifying and classifying diseases.

This research aims to introduce a unique Global Pooling Dilated CNN (GPDCNN) for plant disease identification (Zhang et al., 2019). The advantages of GPDCNN over conventional CNN and AlexNet models are enhanced convolutional receptive field expansion, restoration of spatial resolution through the addition of dilated convolutional layers without increasing training parameters, and the synergistic utilization of dilated convolution algorithms and global pooling. Experimental evaluations on datasets including six common cucumber leaf diseases demonstrate the model’s efficacy. Yangling Agriculture Zone China collected the dataset, which has 600 images. The proposed GPDCNN achieved a remarkable 95.18% accuracy rate in cucumber disease recognition (Table 11).


Table 11 | Cucumber Vegetable classification using AI.



The proposed cucumber disease recognition method (Zhang et al., 2017) employs a three-step process involving K-means clustering, shape/color feature extraction, and sparse representation classification. It overcomes the limitation of treating features equally, achieving efficient computation and improved performance. Various cucumber diseases were classified, such as mildew, bacterial, and powdery mildew. Compared to four other methods, the SR classifier effectively recognizes seven major cucumber diseases, achieving an 85.7% overall recognition rate.

This research (Kianat et al., 2021) proposes a hybrid framework for disease classification in cucumbers, emphasizing data augmentation, feature extraction, fusion, and selection over three stages. The number of features is cut down with Probability Distribution-Based Entropy (PDbE) before a fusion step, and feature selection with Manhattan Distance-Controlled Entropy (MDcE) is done. Finally, classifiers are used to categorize the features that have been chosen. Multiple machine-learning classifiers were applied to over 900 images from six different classes. The quadratic SVM attained an accuracy rate of 93.50% on the selected set of features.

In this analysis (Zhang et al, 2020), AI is used to detect and categorize diseases affecting greenhouse plants, particularly those that affect the leaves of cucumbers. Powdery mildew, downy mildew, healthy leaves, and combinations of these diseases were all included in the dataset. They used the cutting-edge EfficientNet-B4-Ranger architecture to create a classification model with a 97% success rate. The model was determined to be the best option for this application.

This research introduces DUNet (Wang et al., 2021), a two-stage model that combines the benefits of DeepLabV3+ and U-Net for disease severity classification in cucumber leaf samples against diverse backgrounds. Disease spots on leaves can be identified with U-Net, while DeepLabV3+ segregates healthy parts from complex backdrops. The experimental results demonstrate the efficacy of this two-stage approach in accurately segmenting disease severity based on the position of leaves and disease spots against diverse backgrounds. The model can accurately segment leaves at a rate of 93.27%, identify disease spots with a Dice coefficient of 0.6914, and classify disease severity with an average accuracy of 92.85% (Table 11).





4 Limitations of AI in disease detection along with future directions



4.1 Limitations

Previously, we detailed how AI applications are being used to improve agriculture, most notably in disease detection in vegetable plants. We investigated several automated frameworks and models that have been proposed by researchers from across the world and are described in the literature. It is clear that AI holds great promise in the field of agriculture and, more specifically, in the area of plant disease identification. However, there is a need to recognize and solve the various issues that limit these models’ ability to identify diseases. In this part, we list the primary challenges that reduce the efficiency of automatic plant disease detection and classification.



4.1.1 Noise and background analysis

In agricultural research, the plant disease captured images has needless noise and backgrounds in various colors and additional elements like roots, grass, soil, etc. It is crucial to identify such factors and isolate them. Segmentation is a method used to isolate contaminated regions from the captured images. To facilitate real-time identification of plant diseases, the proposed automatic system must eliminate extraneous components within the image, isolating only the desired segment to identify diseases in the fields effectively.




4.1.2 Factors influencing image acquisition

The current datasets primarily consist of images captured in controlled environments, often in laboratory settings. However, obtaining a comparable image can be challenging due to varying factors like light intensity, moisture levels, and environmental variables. To achieve research objectives, getting visual representations of the same leaf specimen from different perspectives, time intervals, and environmental settings is crucial. The selection of tools for image acquisition is essential in influencing the system’s performance. Various factors, including the kind of sample-taking instrument, light intensity, time of day, and amount of moisture, impact the precision of forecasts. Therefore, it is crucial to integrate training and immediate implementation of the automated illness prediction model to tackle these issues efficiently.




4.1.3 Identification and isolation of disease symptoms

Digital image processing plays a crucial role in agricultural research, particularly in identifying and isolating similar symptoms of various diseases. Segmenting symptoms of diseases exhibiting similar characteristics is vital for better performance. However, this task becomes challenging when numerous diseases have similar symptoms and environmental factors. Alternative segmentation methodologies must be explored to identify vegetable diseases with isolating symptoms.




4.1.4 Impact of dataset size on model performance

From the literature, most authors use a few thousand images for training models, and it highlights the need for more data for specific vegetable diseases. The DL-based data augmentation approach addresses this, enhancing the total training images. A covariate shift arises in this scenario due to the disparity between the training data used for model acquisition and the data on which the model is implemented. Sing extensive datasets can improve model performance but also introduce computational burdens.




4.1.5 Data imbalance for various diseases

The automated detection approaches face challenges due to imbalanced patterns in the training dataset. As discussed above, various vegetable diseases have limited data and non-uniformity between the classes. To prevent bias, it’s vital to represent diseases by vegetable samples of similar size, both infected and healthy, to maintain a balanced and unbiased dataset for accurate analysis and prediction.




4.1.6 Multiple concurrent diseases

The assumption that each image contains only one disease is only sometimes accurate, as multiple diseases, nutritional deficiencies, and pests can coexist within the same image simultaneously. This makes identifying and tracking a specific disease more challenging, and the manifestation of symptoms can vary based on the particular geographic location. Therefore, it’s crucial to consider these factors when analyzing images.




4.1.7 Disease with similar symptoms

Identifying diseases in agriculture is challenging due to the similarity in symptoms and patterns. Researchers typically use the visible spectrum for investigations. Incorporating infrared spectral bands could help differentiate diseases, but it increases complexity, cost, and challenges. Current methodologies may still be susceptible to errors, but these innovative methodologies could reduce reliance on extensive datasets and the risk of errors in agricultural practices.





4.2 Future directions

Image processing and AI methodologies offer significant benefits in plant disease detection and classification, but they also have limitations. Image processing techniques can distinguish and separate afflicted segments within an image, but new methodologies are needed to address noise management and extraneous background elements. His manuscript acknowledges various computer vision methods and techniques that have emerged as a prominent area of research in the agricultural domain.

Real-time machine learning-based systems are scarce for disease identification in the agricultural domain. Investigating suitable chemical solutions and their optimal proportions for mitigating disease proliferation is crucial, as improper or inadequate formulations can negatively impact crop productivity and nutritional value. Farmers often need more thorough assessments to combine chemicals, leading to chemical reactions that pose significant environmental risks. Furthermore, leaf images can detect nutrient deficiencies and water scarcity in plants through careful observation of leaves. There is a pressing demand for advanced, hybridized, automated systems capable of overcoming these challenges.

Early disease detection is pivotal in agricultural research, but there is a need for mobile-based applications and websites tailored to the needs of the general public. While existing literature reports on efficient and accurate disease identification models, rigorous testing, and real-time implementation in mobile applications and web services. Drones, often considered expensive gadgets, have garnered significant attention in various fields, particularly agriculture. Developed nations utilize drones for diverse agricultural purposes, including crop health monitoring, weed control, and spraying. To address these challenges, we propose a generic framework that involves training AI models using plant disease datasets and utilizing transfer learning techniques for model validation. The trained models are then deployed to mobile applications or smart drones (Figure 4). Other platforms can capture plant leaf images in real-time and perform necessary processing to optimize performance. His approach enables both methods to identify plant diseases promptly and accurately and highlights the potential to integrate AI with IoT sensors.




Figure 4 | This figure illustrates the overview to detect the plant leaf disease in a real-time.







5 Conclusion

Accurate identification and classification of plant diseases are crucial for successful crop cultivation. Annual detection presents challenges such as significant investment in resources, labor, and expertise and the need to consider factors like agricultural operations, disease classifications, and similar symptoms across different diseases. His affects crop productivity and quality. To address these issues, AI methodology can be employed for automated disease detection. I methods can predict diseases through the analysis of plant foliage. To optimize their use, it is essential to identify relevant and practical models and understand the fundamental steps involved in automated detection. His comprehensive analysis explores various ML and DL models that enhance performance in diverse real-time agricultural contexts. Challenges in implementing machine learning models in automated plant disease detection systems have been recognized, impacting their performance. Strategies to enhance precision and overall efficacy include leveraging extensive datasets, selecting training images with diverse samples, and considering environmental conditions and lighting parameters. ML algorithms such as SVM, and RF have shown remarkable efficacy in disease classification and identification, while CNNs have exhibited exceptional performance in DL. Especially since significant progress in plant disease prediction through image-based methodologies has been made, it is crucial to prioritize accuracy enhancement, real-time testing, and deployment. Exploring potential chemical and pesticide recommendations for identified diseases presents a promising avenue for agricultural research. The review presented herein would be beneficial not only to researchers and specialists in the field but also to pathologists and farmers seeking to predict plant diseases.
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Introduction

In the context of climate change, monitoring the spatial and temporal variability of plant physiological parameters has become increasingly important. Remote spectral imaging and GIS software have shown effectiveness in mapping field variability. Additionally, the application of machine learning techniques, essential for processing large data volumes, has seen a significant rise in agricultural applications. This research was focused on carob tree, a drought-resistant tree crop spread through the Mediterranean basin. The study aimed to develop robust models to predict the net assimilation and stomatal conductance of carob trees and to use these models to analyze seasonal variability and the impact of different irrigation systems.





Methods

Planet satellite images were acquired on the day of field data measurement. The reflectance values of Planet spectral bands were used as predictors to develop the models. The study employed the Random Forest modeling approach, and its performances were compared with that of traditional multiple linear regression.





Results and discussion

The findings reveal that Random Forest, utilizing Planet spectral bands as predictors, achieved high accuracy in predicting net assimilation (R² = 0.81) and stomatal conductance (R² = 0.70), with the yellow and red spectral regions being particularly influential. Furthermore, the research indicates no significant difference in intrinsic water use efficiency between the various irrigation systems and rainfed conditions. This work highlighted the potential of combining satellite remote sensing and machine learning in precision agriculture, with the goal of the efficient monitoring of physiological parameters.
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1 Introduction

Despite the growing scarcity of water and the deterioration of its quality, irrigated agriculture plays a fundamental role in meeting the current and future demand for food production (UN-Water, 2021) which aligns with the sustainable development goal (SDG6): zero hunger set by the United Nations. Carob tree demonstrates to have at least three competitive advantages over other silviculture species: i) ranks first as an agriculture product, with very high annual revenues; ii) very resistant to drought iii) and very resistant to forest fires, in particular when compared to pine forests (Dimitrakopoulos and Papaioannou, 2001). Another added value of the carob tree is the health properties. The natural antioxidants present in plant-derived foods and products include vitamins (e.g., vitamin C) and bioactive phenolics (e.g., flavonoids, procyanidins, etc.). These natural antioxidants once ingested and metabolized can reach target cells and organs to exert a beneficial effect on health. Also, the carob tree is a rich source of phenolics and (poly)phenolics (Goulas et al., 2016). Although it may seem that carob tree has a low carbon fixation potential when compared to other species, both due to a slow growth rate and small densities, this crop has the potential to grow faster and with high density if conservative irrigation is applied and cultural practices are implemented. Therefore, Carob tree can be considered as a CO2 sink under the Kyoto Protocols Article 3.3, due to the lower risk of lost revenues in the future, which has been keeping investors away from the market (more on this may be found in Hamilton et al., 2010 and Chenost et al., 2010). Nowadays, in the context of sustainable agriculture, the importance of rationalizing water uses and improving its use efficiency is increasing (Garofalo et al., 2023a). To apply the correct amount of water in quantity and quality under the conservative agriculture recommendations, plant-based sensing methods provide the most precise measure of plant water status for irrigation management and water stress monitoring, as they provide the integrated response of the plant to soil moisture availability and atmospheric influences. These data could be used to train models for Decision Support System (DSS) and obtain an optimized irrigation management. Most of these variables could be continuously monitored using sensors and could provide a reliable estimate of crop water status (Fernández, 2017), but their local application does not allow the variability existing within the plot to be known. Mapping the plot heterogeneity and variability in plant and soil water status with geospatial models (Panda et al., 2010; Tsoulias et al., 2019) could support the application of precision agriculture approaches aimed at identifying and irrigating different sectors of the plot (management zones) according to their current water status. This is of much interest especially because of the huge variation of leaf water parameters (Boutasknit et al., 2020, 2021) under drought conditions and throughout the course of the growth cycle. To this, using remote sensing tools, those variations could be captured/sensed and then translated into efficient irrigation management.



1.2 Remote sensing in agriculture

Remote sensing consists of detecting and monitoring the properties of an object present on the surface of the Earth by measuring its reflected (or emitted) radiation at a distance (Weiss et al., 2020); these data are typically acquired by using satellites, aircraft, and more recently Unmanned Aerial Vehicles (UAVs), with accurate results and affordable costs (Corwin and Scudiero, 2019). The application of remote sensing technologies in agriculture has greatly increased in recent past years (Weiss et al., 2020). UAVs images have been successfully employed to predict several crop traits, for example, Kasper et al. (2019a and 2019b) used UAV imagery to predict the salt-stressed tomato biomass and yield at harvesting time and to map the phenotypic traits, providing farmers with a way to monitor the effects of salt stress during the plant cycle. Nevertheless, the use of aircraft and drones is still expensive and requires operation time; using satellite images to estimate plant-related parameters could be a viable option to obtain spectral images to process for agricultural issues with a low cost and relatively higher rapidity. Also, the application of GIS software (Geographic information system, e.g., QGIS) is proving to be useful for mapping the variability of several parameters existing at field and regional scale (Alhajj Ali et al., 2023). In agricultural applications, three different approaches are commonly used with remote sensing data to map the variability of the agronomic or biophysical plant traits within the field: parametric, physical-based, and non-parametric. Parametric approaches are the easiest to study the relationship between remote sensing data and crop variables, nonetheless, they require that specific assumptions be respected (e.g., normal distribution of the data); physical-based approaches (e.g., radiative transfer models) are based on physical laws, but due to their complexity the applicability is low; non-parametric approaches (e.g., machine learning methods) are useful for their abilities to find hidden information and relationship between the data and low sensitivity to non-normally distributed data (Jiang et al., 2022). The use of machine learning, combined with remote sensing data, has greatly grown in recent years in many areas of agriculture (Sharma et al., 2021a). One of the most widely used machine learning algorithms in agricultural remote sensing applications is the supervised ensemble-learning algorithm random forest, for solving classification and regression problems (Belgiu and Drăgu, 2016). Random forest has been used in different remote sensing applications; Jiang et al. (2022) demonstrated that the combination of UAV-based remote sensing and machine learning can predict important traits of quinoa under abiotic stress conditions. In addition, machine learning has also been used in combination with satellite remote sensing. For example, Laroche-Pinel et al. (2021) used Sentinel-2 imagery to map vine water status in the south of France, comparing the performances of different machine learning algorithms.

The aim of the presented research work was the developing of machine learning models to predict net assimilation and stomatal conductance of the carob tree, using satellite bands reflectance data as predictors; additionally, these models were used to understand the differences in the aforementioned parameters across the various irrigation systems.





2 Materials and methods



2.1 Experimental farm conditions

The experiment was conducted in 2023, at an 8-ha commercial carob tree orchard (Ceratonia siliqua, L., 1753; cv. Ramillete) located in Fuente Álamo de Murcia, Murcia region (South-East of Spain; 37°45’57.1”N, 1°14’39.6”W; 218 m a.s.l.) (Figure 1); the orchard was planted in 2014 with a spacing of 12 x 12 m between trees and rows. The soil has been characterized at two distinct depths, 30 cm and 90 cm, with 10 soil samples collected at representative points across the farm for each depth. These samples have been subsequently mixed based on their respective depths. Soil parameters were analyzed by a private laboratory in Murcia (Fitosoil Laboratories, Alcalde Clemente García, 24/37, 30169 San Ginés – Murcia). The soil texture within the first 30 cm depth was classified as clay loam (36% clay, 38% silt, and 26% sand), with an average bulk density of 1.37 g cm−3, a pH of 7.67 and electrical conductivity of 180 µS/cm. Within the first 90 cm depth it had a loamy texture (22% clay, 30% silt, and 48% sand) with an average bulk density of 1.49 g cm−3), a pH of 7.85 and electrical conductivity of 154 µS/cm. In Supplementary Materials, the complete results of the soil analyses at the two reported depths are presented. The orchard management followed the organic farming guidelines, fertilizers were not applied during 2023. Carob trees were harvested on the 9th of August; 2023 was not a productive year, in fact, the average production per tree was 14 kg.




Figure 1 | (A) Murcia region, Spain (yellow ring); (B) experimental field, red areas indicate zones under subsurface drip irrigation system with 2.3 liters per hour (SDI 2.3 L) green areas indicate zones under subsurface drip irrigation system with 1.6 liter per hour (SDI 1.6 L), white area indicate rainfed zone (RD). Orange circles indicate carob trees used to acquire ground data. Images from Google Earth Pro for desktop (7.3.6.9345); Map data ©2015 and ©2020, Google.



The climate of the experimental area is Mediterranean, classified as BSk, according to Köppen and Geiger; the amount of annual rainfall is generally little (321 mm), the driest month is July (3 mm), the warmest month is August (average temperature of 25.5°C) and the coldest is January (average temperature of 10.3°C) (Climate-Data.org, 2023). Data related to reference evapotranspiration (ETo), average temperature, rainfall, and vapor pressure deficit (VPD) during the period of the experiment were provided by the agricultural information system of Murcia (“Sistema de información agrario de Murcia”).

The irrigation system was installed 7 years after the orchard planting, and it consisted of a double lateral drip line laid on the subsurface soil at 0.30 cm 1.5 m from the tree trunk and 1.5 between the drip lines. It provided three self-pressure compensating on-line emitters per tree discharging 2.3 L h-1 and 1.6 L h-1, spaced 1 m apart. The irrigation water quality was a mix of rainwater harvesting and well water with an EC of 1.76 dS/m and a pH: 7.87.

The orchard was divided into three zones under different irrigation management: subsurface drip irrigation with 2.3 liters per hour (SDI 2.3 L), subsurface drip irrigation with 1.6 liters per hour (SDI 1.6 L) and Rainfed (RD) (Figure 1). Irrigation was applied eight times during the year on the critical phenological stages for carob tree (Correia and Martins-Loução, 2004; Tous et al., 2013) - emergency of axillary and apical buds, floral induction, fruit growth, post-harvesting - on DOYs 10, 114, 135, 136, 198, 233, 240 and 247, for a total amount of 322.56 m3/ha (SDI 1.6 L) and 463.68 m3/ha (SDI 2.3 L); considering that, as for other rainfed species there are no literature reference for irrigating carob trees, it was decided to apply the same irrigation time for all the irrigation interventions, except for the first two (12 hours of irrigation instead of 6, as for the following ones). Table 1 reports the amount of water applied per each irrigation intervention.


Table 1 | Amount of water applied per irrigation intervention in the year of the experiment for both the irrigation systems: subsurface drip irrigation with 1.6 liter per hour (SDI 1.6 L) and subsurface drip irrigation with 2.3 L per hour (SDI 2.3 L).






2.2 Plant physiological measurements

A gas exchange system (LI-6400, LI-COR Inc., Lincoln, NE, USA) was used to determine net assimilation – the amount of carbon dioxide used by the leaves per square meter per second - (Pn, µmol CO2 * m-2 s-1) and stomatal conductance – the stomatal gas exchanges per square meter per second - (gs, mmol H2O * m-2 s-1); these parameters were acquired between 11.00 to 13.00 hr solar at light saturation (PAR ≥ 1600 mol photons * m-2 s-1) on healthy, mature, fully expanded and sun-exposed leaves on 8 trees per irrigation system. The intrinsic water use efficiency (iWUE) was calculated as the ratio between Pn and gs (Haider et al., 2018). Measurements were taken around irrigation days and during the growing season up to pre-harvest.




2.3 Satellite images

Planet Labs PBC (from now on “Planet”) is an American company that is specialized in capturing high-resolution spectral images of Earth with high frequency. The spectral images were acquired from the third-generation satellite of PlanetScope (Equator crossing time of 7.30-11.30 a.m., local solar time) with eight spectral bands (PBs) and a spatial resolution of 3 meters (Imagery© 2023, Planet Labs PBC, San Francisco, CA, USA); the PBs were coastal blue (431-452 nm), blue (465-515 nm), green I (513-549 nm), green (547-583 nm), yellow (600-620 nm), red (650-680 nm), red edge (697-713 nm) and NIR (845-885 nm) (Planet Imagery Product Specifications, 2022). All the images were downloaded from the online tool “Planet explorer” (www.planet.com/explorer) as orthorectified and radiometrically corrected TIFFs to maintain consistency across localized atmospheric conditions and to reduce the uncertainty of the spectral response in time and place to a minimum (Planet Imagery Product Specifications, 2022). Then the images were converted to surface reflectance following the instructions in the metadata provided by Planet. For each tree considered in the study, the reflectance was considered as the mean value of the reflectance of the pixels by using the plugin “Zonal statistics” in QGis (Qgis, 2023).




2.4 Statistical analysis and machine learning

In this work, Pn and gs measured on field were independently considered as response variables, using the reflectance of the 8 PBs as predictors; each dataset (n = 217) was randomly split into a training dataset (80%) and a testing dataset (20%). The training dataset was used to fit the developed model and the testing dataset was used to test the model performance and robustness. The machine learning algorithm random forest (RF) was used to predict the variables. RF is a supervised ensemble-learning algorithm that improves regression combining multiple decision trees to enhance the accuracy of the model and its generalization. Due to its accuracy and ability in finding non-parametric relationships, RF is used in the fields of remote sensing and agronomy for prediction and modeling (Belgiu and Drăgu, 2016; Nayak et al., 2022; Silva et al., 2023). In this work, RF model implemented in the “ranger” package in RStudio was used (Wright and Ziegler, 2017); to avoid the overfitting of the model, the 10-fold-cross-validation was applied, by using the trainControl function of the package “caret” (Kuhn, 2008). In the ranger implementation of RF model, several hyper-parameters were fine-tuned, including the quantity of the variables to potentially split each node (mtry), the splitting rule, and the minimum size of the node. The fine-tuning model procedure involved several iterations of these parameters, except for the number of trees, fixed at 500, due to the absence of a significant impact on the global performance of the model. The importance of each variable was assessed through permutation (Janitza et al., 2013). Furthermore, a linear model (LM) for each variable to predict was trained with the goal of establishing a baseline useful for the evaluation of the results; in LM, avoiding using all the predictors, only the statistically significant variables were maintained (p< 0.05). To compare the performance of the models and their robustness, coefficient of determination [R2 (Equation 1)], root mean square error [RMSE (Equation 2)], normalized root mean square error [nRMSE (Equation 3)] and mean absolute error [MAE (Equation 4)] were calculated as follows:









where S were the simulated values, E the expected values and n the number of the observations.

Finally, by using the package “raster” (Hijmans and van Etten, 2012), the RF-based model was applied to further 16 spectral images downloaded from Planet Explorer to model the trend of the carob trees physiological parameters from January to September.

To detect the statistical differences between the irrigation system, the Analysis of Variance test (ANOVA) was carried out, followed by Tukey’s multiple comparisons test, with significance level set at 0.05.

RStudio software (RStudio, 2020 for Windows, Version 2023.06.0 + 421, PBC, Boston, MA) and SigmaPlot (SigmaPlot, Systat Software Inc, Version 14 for Windows) were used for machine learning and statistical analyses, modeling, and graph plotting.





3 Results



3.1 Field data



3.1.1 Climatic conditions

During the experiment, the lowest average temperature was recorded in January on DOY 29 (5.4°C) and the highest in July on DOY 200 (31.89°C); during the growing season, the daily average temperature remained around 20°C in the first part of May, until DOY 131, reaching 24.14°C on DOY 119, then dropped to temperatures around 16°C and started to increase again in the last part of May and June; particularly, during the summer and until the harvest the daily average temperature remained above 25.24°C; the highest monthly values of ETo there were in June (154.46 mm) and in July (172.02 mm). The lowest values of VPD were recorded in the second half of May and June, peaks of VPD have occurred in June (DOY 177, 2.42 kPa), July (DOY 200, 2.33 kPa and DOY 206, 2.98 kPa) and August (DOY 214, 2.31 kPa) (Figure 2). The rainiest months were May (84.10 mm concentrated in the last 10 days of May) and June (14.50 mm concentrated in the first 10 days of June), the driest months were July (2.80 mm) and August (0.20 mm).




Figure 2 | Daily variation of average temperature, reference evapotranspiration (ETo) and Vapour Pressure Deficit (VPD) in the area of the experiment (Fuente Álamo de Murcia, Spain).






3.1.2 Plant physiological parameters

From January to May, until DOY 137, the level of Pn was generally low: over this period, the means of the Pn values of both SDI systems and RD remained below 10 µmol CO2 * m-2 s-1. In DOY 118, after the second irrigation application, no statistically significant difference was observed between the SDI systems and RD, but an increase of Pn was recorded for both SDI systems compared with the previous date, except for RD. A peak of the values was registered in the middle of June (DOY 164) for both systems and RD; then, in the last two measurement dates (DOY 180 and 194) the values of Pn dropped again, those of RD remained higher than the two irrigation systems, in Doy 180 SDI 2.3 L carob trees showed significant lower Pn (12.06 µmol CO2 * m-2 s-1) than SDI 1.6 L and RD carob trees; in DOY 194 Pn of RD carob trees was significantly higher than SDI 2.3 L and SDI 1.6 L carob trees (Figure 3A).




Figure 3 | Boxplot of the field data used to train the models; (A) net assimilation (Pn) and (B) stomatal conductance (gs) of the carob trees under subsurface drip irrigation with 1.6 l/h (SDI 1.6 L), subsurface drip irrigation with 2.3 l/h (SDI 2.3 L) and rainfed carob trees (RD). Letters indicate significant differences among the systems (p< 0.05).



For most of the measurement period, gs remained stable and low until June (average gs values lower than 90 mmol H2O * m-2 s-1), with a slight increase on the measurement date after the second irrigation (DOY 118), when the medians of both the irrigation systems were higher than those recorded on the previous date; on DOY 114 RD, gs was significantly higher (59.94 mmol H2O * m-2 s-1) than SDI 2.3 L and SDI 1.6 L, on DOY 118 no statistical significant differences were found between the irrigation systems and RD. On DOY 164, SDI 2.3 L carob trees showed significantly higher values of gs (56.68 mmol H2O * m-2 s-1) compared with SDI 1.6 L, but not compared with RD carob trees. Generally, high values of gs were recorded in the two last dates of measurement (DOY 180 and 194), with higher values for RD in both dates (Figure 3B).





3.2 Random forest and linear model prediction performance



3.2.1 Random forest

The modeling procedure to predict Pn involving RF in training had good fit (R2 = 0.96) and low error (nRMSE = 4.6%), the performance of the model in testing was positive, with an R2 = 0.81 and a nRMSE of 11.7% (Table 2). The results of the optimization of the model parameters are reported in Figure 4A: based on the lowest RMSE value, 8 variables as mtry, extratrees as splitting rule and 1 as minimum node size were used in the final model. The two most important bands in the prediction of Pn were yellow and NIR (Figure 5A).


Table 2 | Performance parameters of Random Forest (RF) and Linear Model (LM) predicting stomatal conductance (gs) and net assimilation (Pn).






Figure 4 | Optimization of Random Forest parameters (splitting rule; min. node size; mtry) for the predictive model of net assimilation (A) and stomatal conductance (B) of the carob tree under different drip irrigation systems.






Figure 5 | Results of the permutation process showing the importance (%) of the predictors in Random Forest modeling used for the prediction of net assimilation (A) and stomatal conductance (B) of the carob tree under different drip irrigation systems.



In the prediction of gs, RF had a R2 = 0.89 and a nRMSE of 6.7% in training and maintained good performance in testing (R2 = 0.70 and nRMSE = 11.6%) (Table 2). Figure 4B shows the results of the optimization of the model parameters: based on the lowest RMSE value, 5 variables as mtry, extratrees as splitting rule and 3 as minimum node size were used in the final model. The two most important bands in the prediction of gs were red and coastal blue (Figure 5B).




3.2.2 Linear model

In the prediction of Pn, LM showed low fit in training with a R2 = 0.53 and nRMSE = 16.3% and poor performance in testing (R2 = 0.52; nRMSE = 18.7%) (Table 2). Based on the p-value, the predictors maintained in LM were the spectral bands: coastal blue, green, yellow, red, red edge and NIR.

In the prediction of gs, results were similar in terms of performance parameters (R2 = 0.35 and nRMSE = 17.9% in testing) (Table 2). The spectral bands maintained in LM for the prediction of gs were blue, green I, yellow and red edge.





3.3 Remote sensing physiology modeling

Each RF-based model found for the prediction of the physiological parameters was applied to further Planet spectral images; thus, information on physiological patterns of the carob trees were obtained even in the phase of the growing season in which there were no field data.



3.3.1 Predicted net assimilation

The values of Pn remained low until mid-February, without differences among the systems and RD. From the end of February values started to increase until mid-March, particularly, at the end of February SDI 1.6 L Pn (11.45 µmol CO2 * m-2 s-1) was significantly higher than RD (7.42 µmol CO2 * m-2 s-1), but not statistically significantly different than SDI 2.3L (9.79 µmol CO2 * m-2 s-1). From the end of March to the end of April, Pn decreased and no statistically significant differences there were among the systems and RD; at the end of March Pn values of SDI 2.3 L and SDI 1.6 L (11.84 and 13.11 µmol CO2 * m-2 s-1, respectively) were significantly higher than RD (10.31 µmol CO2 * m-2 s-1). After the third irrigation in mid-May, no statistically significant differences were found between the systems and RD, then Pn values started to increase in all the systems, reaching a peak in mid-June, when Pn of SDI 2.3 L and SDI 1.6 L carob trees (20.35 and 19.63 µmol CO2 * m-2 s-1, respectively) were statistically significant higher than RD carob trees (17.10 µmol CO2 * m-2 s-1); at the end of June Pn values dropped again. From mid-July a weak increasing recovery of Pn was recorded for all the systems, with a further decline in mid-August, when SDI 2.3 L and SDI 1.6 L Pn (13.19 and 12.09 µmol CO2 * m-2 s-1, respectively) were significantly higher than RD Pn (10.51 µmol CO2 * m-2 s-1) (Figure 6).




Figure 6 | Inter-seasonal trend (mean and standard error) of net assimilation (Pn) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h (SDI 1.6) carob trees and rainfed (RD) carob trees, predicted with Random Forest. Letters indicate significant differences among the systems (p< 0.05).






3.3.2 Predicted stomatal conductance

From January to mid-February no statistically significant differences were observed between the systems and RD; from the end of February gs increased until the end of March, with significantly higher values observed on carob trees under SDI 2.3 L and SDI 1.6 L systems (60.78 mmol H2O * m-2 s-1 and 68.99 mmol H2O * m-2 s-1, respectively) than RD (45.52 mmol H2O * m-2 s-1). Then, from mid-April, gs decreased in all systems and RD, and no statistically significant differences were found after the second and the third irrigation application. At the end of March gs values of both systems and RD markedly increased and then sharply decreased again in mid-June, without any significant difference. At the end of June a peak of gs values, with significantly higher gs for SDI 1.6 L carob trees (176.93 mmol H2O * m-2 s-1) than RD carob trees (148.81 mmol H2O * m-2 s-1), but not significantly differences were observed between SDI 1.6 L and SDI 2.3L and between SDI 1.6 L and RD. Afterwards, gs values dropped again for all systems and RD until mid-August, when gs was significantly higher for irrigated carob trees than RD carob trees (Figure 7).




Figure 7 | Inter-seasonal trend (mean and standard error) of stomatal conductance (gs) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h (SDI 1.6) carob trees and rainfed (RD) carob trees, predicted with Random Forest. Letters indicate significant differences among the systems (p< 0.05).






3.3.3 Intrinsic water use efficiency

Calculated as the ratio between predicted-Pn and predicted-gs, iWUE had no statistically significant differences among the systems until mid-April, when the RD iWUE was significantly higher than the two irrigation systems; after the second irrigation application the SDI 2.3 and SDI 1.6 iWUE remained stable and RD iWUE decreased, without statistically significant differences; after the third irrigation, iWUE values were comparable with the previous and dropped at the end of May. Higher values of iWUE were obtained in mid-June for both systems and RD, without significant differences; in mid-June iWUE dropped and started to rise gradually from mid-July (Figure 8).




Figure 8 | Inter-seasonal trend (mean and standard error) of intrinsic water use efficiency (iWUE) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h (SDI 1.6) and rainfed (RD) carob trees, predicted with Random Forest. Letters indicate significant differences among the systems (p< 0.05).






3.3.4 Relationship between the physiological parameters

The relationship between predicted-Pn and predicted-gs was investigated for both systems and RD, in each case the relationship was significant (p< 0.01); nonetheless the higher R2 (0.49) was found for RD carob trees, and the lower (R2 = 0.32) for SDI 2.3 L carob trees (Figure 9A). Furthermore, the relationship between the reciprocal of the iWUE and gs was significant (p< 0.01) for the SDI and RD carob trees, with a higher R2 (0.59) for RD carob trees than SDI carob trees (Figure 9B).




Figure 9 | (A) relationship between net assimilation (Pn) and stomatal conductance and (B) relationships between the reciprocal of the water use efficiency (1/iWUE) and stomatal conductance of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h (SDI 1.6) and rainfed (RD) carob trees, predicted with Random Forest.








4 Discussion

Crop monitoring is a key factor in understanding the response of plants to the environment and agronomic practices; nonetheless, it requires time-consuming fieldwork and efforts in order to get sufficiently representative data (Sishodia et al., 2020). Field measurements require a lot of effort to obtain data sufficiently representative from a spatial and temporal point of view, resulting in time-consuming and expensive work for farmers and technicians. In this work a method based on the integration of machine learning and remote sensing techniques has been proposed, with the purpose of having a tool to understand the variability of Pn and gs between systems and over time, reducing fieldwork.

According to the performance parameters of the RF-based modeling procedure, high accuracy in predicting both the physiological parameters considered was obtained in this work. RF has been widely employed in remote sensing applications for classification problems (Belgiu and Drăgu, 2016), while few studies have been conducted to predict continuous data. Until now, the combination of RF and remote sensing has been used more in forestry than agriculture; for example, D’este et al. (2021) implemented an RF regression algorithm using satellite data to estimate fine dead fuel and improve fire risk assessment. In agriculture, RF has mainly been used to predict the yield of herbaceous crops (Johansen et al., 2020; Dhillon et al., 2023); furthermore, Lee et al. (2020) used RF and UAV spectral imagery to predict nitrogen management in maize, achieving good results (R2 = 0.85). For agricultural issues and in combination with satellite data, RF modeling has had less application, especially considering high-resolution satellite images (Planet imagery). The results obtained in the present research are comparable to those obtained by Garofalo et al. (2023b) in the prediction of the water status of the olive tree (stem water potential) in the south of Italy, using Planet imagery and an RF model; moreover, the authors found that RF outperformed the LM, as in the present research for both the targeting variables considered. Thus, these results confirm the applicability and the benefits of combining the machine learning approaches and data from high-resolution satellites. Nevertheless, it should be considered that other satellite platforms (e.g., Sentinel 1 and 2, Landsat 8) provide images freely, instead of Planet, whose images are not available for free; this could certainly represent a limitation of the applicability of the workflow presented in this study in commercial farming.

The results of the variable importance in RF modeling suggest that the spectral bands used as predictors didn’t have the same power to estimate the physiological variables. In the prediction of Pn, the yellow band had the highest importance, appearing directly linked to the photosynthetic rate of the leaves. In a previous study, Adams et al. (1999) found that a vegetation index considering the spectral region of yellow, the Yellowness Index, could measure leaf stress linked to alterations in pigment absorption, particularly chlorophyll; total chlorophyll content is well known to be closely associated with the photosynthetic rate, due to the requirement of chlorophyll molecules in driving the electron transport reaction (Buttery and Buzzell, 1977; Croft et al., 2017). In the prediction of gs, the most important band was red; according to Rapaport et al. (2015), this spectrum region is generally related to pigments that could react to water stress (e.g., xanthophyll), which directly affects gs through osmotic stress (Chaves et al., 2009), explaining the importance of the red band for the gs prediction found in this study.

Given the good performance of RF-based approach, the developed models were utilized to predict and analyze the seasonal trends of Pn and gs, and then to calculate the iWUE. The behavior of Pn and gs appeared linked to temperature, considering that, generally, with higher temperatures, Pn increases up to an optimum temperature, and gs increase exponentially (Yamori et al., 2005). Probably, the peak in Pn occurred in mid-March was due to the precipitations that fell in the first half of the month. The sharp decrease of gs found in mid-June could be explained by an asphyxia condition caused by soil flooding (as shown in the results section, a large amount of rainfall fell in May and June), in fact a reduction in oxygen concentration in the root zone could determine a rapid decline of gs (Smith et al., 1989; Barickman et al., 2019). Nevertheless, waterlogging could also affect the activity of photosynthetic enzymes, resulting in decreased Pn (Sharma et al., 2021b); during the above-mentioned period, as explained, a reduction of gs was recorded, but Pn had a peak, probably due to the optimal high temperatures recorded in the first part June and the rainfall occurred before the waterlogging; moreover, the negative effects of waterlogging might be manifested more gradually on Pn than gs (Yordanova and Popova, 2007), in fact, a sharp decline of Pn was observed at the end of June, when, on the other hand, gs had recovered, maybe due to high temperatures and no precipitations in the second part of June, resulting in evaporation of the water from the soil and then better conditions of the root system. However, based on the current knowledge it is not possible to determine with accuracy the temporal dynamics of the effects of waterlogging specifically on carob trees. iWUE also had a peak in mid-June, suggesting that under waterlogging conditions, carob tree might prevent the stress driven by soil flooding with a reduction of water losses, as also reported in a study on pepper (Ou et al., 2011); in another study on forest tree species (Schinus terebinthifolius and Rapanea ferruginea), flooding system significantly increased iWUE compared to the control (Mielke et al., 2005). August was the hottest month of the season, Pn slightly declined and gs sharply increased until September, confirming the previously mentioned relationship with the temperature trend; furthermore, irrigation was applied after the harvest, leading to higher values of Pn and gs for SDI than RD carob trees; according to Tous et al. (2013), the cambium of the carob tree is active until September, hence, better physiological conditions in this period may result in a better overall status of the trees in the following productive year as well.

The study revealed that the RD system consistently exhibited higher gs values, particularly noticeable at specific stages of the vegetative cycle. This observation aligns with the findings of Ezzine et al. (2023), regarding the resilience of C. siliqua stomata under low water potentials, demonstrating their ability to maintain high relative water content through osmotic adjustment. Additionally, the notable Pn increase of the RD carob trees underscores their complex adaptive mechanisms for sustaining photosynthetic activity under drought conditions, a phenomenon previously documented by Lo Gullo and Salleo (1988). A similar trend was also observed in the later stage of the growth cycle, corroborating the patterns reported in Battle and Tous (1997).




5 Conclusions

This study successfully integrated machine learning, specifically the Random Forest model, with high-resolution satellite imagery to monitor carob trees’ physiological parameters (net assimilation, stomatal conductance and intrinsic water use efficiency). The approach presented in the study tries to provide technicians and farmers with a tool to reduce the time and labor typically required for field measurements, aligning with the need for efficient and representative data collection in agriculture. The significant role of specific spectral bands in predicting physiological parameters has been highlighted in the study. For instance, the yellow band was closely associated with Pn, highlighting its connection to photosynthetic rates and chlorophyll content, while the red band played a crucial role in predicting gs. The results of the research also indicated that carob trees might mitigate the stress caused by soil flooding through adaptive mechanisms. In addition, the importance of irrigation management in influencing Pn and gs, especially after harvest, has been demonstrated. The study’s findings contribute significantly to the understanding of carob tree-environment interactions and the potential of technology in enhancing agricultural productivity and resource management.
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Introduction

In agriculture, especially wheat cultivation, farmers often use multi-variety planting strategies to reduce monoculture-related harvest risks. However, the subtle morphological differences among wheat varieties make accurate discrimination technically challenging. Traditional variety classification methods, reliant on expert knowledge, are inefficient for modern intelligent agricultural management. Numerous existing classification models are computationally complex, memory-intensive, and difficult to deploy on mobile devices effectively. This study introduces G-PPW-VGG11, an innovative lightweight convolutional neural network model, to address these issues.





Methods

G-PPW-VGG11 ingeniously combines partial convolution (PConv) and partially mixed depthwise separable convolution (PMConv), reducing computational complexity and feature redundancy. Simultaneously, incorporating ECANet, an efficient channel attention mechanism, enables precise leaf information capture and effective background noise suppression. Additionally, G-PPW-VGG11 replaces traditional VGG11’s fully connected layers with two pointwise convolutional layers and a global average pooling layer, significantly reducing memory footprint and enhancing nonlinear expressiveness and training efficiency.





Results

Rigorous testing showed G-PPW-VGG11's superior performance, with an impressive 93.52% classification accuracy and only 1.79MB memory usage. Compared to VGG11, G-PPW-VGG11 showed a 5.89% increase in accuracy, 35.44% faster inference, and a 99.64% reduction in memory usage. G-PPW-VGG11 also surpasses traditional lightweight networks in classification accuracy and inference speed. Notably, G-PPW-VGG11 was successfully deployed on Android and its performance evaluated in real-world settings. The results showed an 84.67% classification accuracy with an average time of 291.04ms per image.





Discussion

This validates the model's feasibility for practical agricultural wheat variety classification, establishing a foundation for intelligent management. For future research, the trained model and complete dataset are made publicly available.





Keywords: classification, lightweight, field environment, G-PPW-VGG11, partially mixed depth separable convolution, Android




1 Introduction

With the rising global population, the need for high-yielding, quality wheat varieties is crucial amid shrinking farmland and climate change (Anagun et al., 2023). China, a leading wheat producer, contributed 41.54% to its total grain production in 2023 (Yearbook, 2023). In China, the family responsibility system governs agricultural development. This results in dispersed wheat cultivation without unified management, negatively impacting yield and quality (Dong et al., 2020). To reduce yield loss from depending on a single wheat variety, farmers often use diversified cropping strategies and cultivate multiple varieties. However, subtle morphological differences in leaves make visual identification of these varieties challenging, causing potential confusion in later field management stages. Accurate wheat identification using canopy leaf characteristics is thus a vital technique. This method assists farmers in distinguishing wheat varieties and guides the selection of those with superior yield and quality for future cultivation. Additionally, this technique offers researchers a way to monitor wheat growth and compare it with harvest data, contributing to the scientific basis for crop improvement and management strategies.

The traditional wheat classification depends largely on expert knowledge. However, this traditional method is inefficient and subjective (Ansari et al., 2021). Machine learning methods, known for their speed and convenience, are addressing these challenges in crop classification (Li et al., 2023a). Crop classification methods have advanced, with diverse approaches emerging (Alqahtani et al., 2023; Dogra et al., 2023; Li et al., 2023b). For instance, Dogan and Ozkan (2023) enhanced the Extreme Learning Machine (ELM) model using Harris Hawks’ Optimizer (HHO) and Particle Swarm Optimizer (PSO) for wheat grain classification. Results showed binary and multi-class accuracies of 99.32% and 95.95%, respectively. Singh et al. (2020) extracted wheat grain parameters using digital image processing (DIP), including groove area and asymmetry coefficient. They then classified wheat grains using a fuzzy clustering random forest (FCRF) based on the extracted parameters. This approach improved classification accuracy by an average of 7% over existing methods. Agarwal and Bachan (2023) preprocessed wheat grains by removing shadows and segmenting. They extracted color and texture features from the grains thereafter. Using cross-validation, they evaluated Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), and Naive Bayes (NB) algorithms to select the optimal classifier. The classification accuracy reached 93%. Current wheat classification research, focusing on grain characteristics, is limited by growth stages and collection periods. Leaf image acquisition, possible throughout the wheat growth cycle, allows for continuous monitoring. Zhou et al. (2023) used a compact separation-based feature selection algorithm (FS-CS) to filter spectral and texture features from UAV images. They achieved over 70% accuracy in wheat phenology classification using a multilevel correlation vector machine (mRVM). While these studies report high accuracy, feature selection requires domain-specific knowledge and expertise.

The advancement of deep learning, especially the advent of convolutional neural networks (CNNs), has supported diverse image-based classification and recognition due to its robust feature extraction and task transferability (Yasar, 2023). Alom et al. (2023) successfully classified flowers, stems, and leaves of two oilseed rape varieties using transfer learning with five neural networks in visible light crop classification studies. Their method involving background removal and CLAHE preprocessing achieved 100% accuracy in flower classification and 97% in stem and leaf classification. Wei et al. (2022) trained on both fluorescence and white light images of five tea varieties using VGG16 and ResNet34. They observed that fluorescence imaging, induced by ultraviolet (UV) LEDs at 370 nm, yielded a higher classification accuracy of 97.5% compared to white light imaging. Gao et al. (2021) achieved up to 99.51% accuracy in classifying wheat leaves at three fertility stages using a bagging-based algorithm and ResNet models. However, their dataset was collected in a controlled lab setting with a uniform background. Sun et al. (2023) used MixNet XL CNN and KNN to classify 21 leaf types, achieving a 99.86% accuracy rate. Chen et al. (2021) introduced a localized soft-focus mechanism to MobileNet-V2, attaining an average accuracy of 99.71% for crop disease classification on the PlantVillage dataset. The core goal of the aforementioned research is to enhance model accuracy by increasing extracted feature values. However, deploying these models on hardware or mobile devices is challenging due to significant memory usage and processing power requirements.

Tang et al. (2022) introduced a geometric distance-based pruning and grafting (P&GGD) optimization strategy. This method successfully classified nine maturity levels across three tea types, balancing model accuracy and size. Consequently, the method achieved a classification accuracy of 96.296%, exceeding MobileNetV2 by 2.395% and reducing FLOPs by 45%. Yang et al. (2021) replaced VGG16’s F6 and F7 layers with Conv6 and global average pooling. They added a batch normalization layer, increasing peanut variety classification accuracy to 97.7%, an 8.9% improvement. Nasiri et al. (2021) modified VGG16, incorporating global average pooling, dense, batch normalization, and culling layers. Using leaf images in the visible spectrum (400-700 nm), this method classified six grape varieties with over 99% accuracy. In summary, these studies sought to develop lightweight models with reduced computational demands. This was achieved by integrating batch normalization and global average pooling, enhancing feature extraction. This strategy balances memory usage with classification accuracy effectively. However, these advanced strategies are seldom applied to wheat variety identification.

This study addresses the technical challenges in classifying and identifying wheat varieties by analyzing canopy leaf images from mobile devices in field settings for six distinct wheat types. The VGG11 model was chosen for its structural simplicity as our baseline, applying a series of targeted optimizations to improve its performance. The model was refined using three specific strategies.

First, we addressed feature redundancy and receptive field limitations in traditional convolution by replacing standard convolutions with partial and depthwise separable convolutions. This modification enhanced the model’s feature extraction and discrimination among wheat varieties.

Second, we replaced the fully connected layers with pointwise convolutions and global average pooling, significantly reducing the model’s parameters. This improvement reduces overfitting risk and maintains global connectivity, allowing the model to capture image information comprehensively and accurately.

Lastly, we incorporated an efficient channel attention mechanism to reduce background noise in the model’s predictions. This strategy further improved the model’s sensitivity to wheat features and its classification accuracy. Collectively, these modifications represent our novel approach to wheat variety classification and identification.

The enhanced G-PPW-VGG11 model was benchmarked against classical lightweight networks: FasterNet (Chen et al., 2023), MobilNet-V2 (Sandler et al., 2018), MobilNet-V3 (Howard et al., 2019), EfficientNet-V2 (Tan and Le, 2021), and ShuffleNet-V2 (Ma et al., 2018). The enhancements in this study improved wheat variety identification accuracy and achieved lightweight modeling. This lays a strong foundation for swiftly identifying wheat varieties in field conditions.




2 Materials and methods

The experimental design is illustrated in Figure 1. The following four subsections detail the data acquisition, preparation, modelling improvements, and wheat variety classification and identification application.




Figure 1 | Flowchart of the experimental design.





2.1 Data acquisition

Experimental Area: Figure 2 shows the location near County Road 015, Longyang Town, Qiaocheng District, Bozhou City, Anhui Province, China (33°46′9.06″N, 115°54′57.63″E), where the wheat dataset images were collected.




Figure 2 | Experimental area (Bozhou City, Anhui Province) and data collected.



Collection Objects: This study includes six machine-seeded wheat varieties cultivated by local farmers: Zhengmai101, Xinmai20, Gaomai6, Jimai22, Wanmai51, and Wunong981.

Data Acquisition Equipment: Data was collected on April 04, 2022, from 14:00 to 18:00.

Data Acquisition Time: The data collection occurred on April 04, 2022, specifically between the hours of 14:00 and 18:00.

Acquisition Methods: The smartphone was held 30-50 cm above the wheat leaves, focusing on three rows with the leaves in the foreground and external elements as the background.




2.2 Data preparation

In this study, the dataset was randomly split into training (60%) and testing (40%) datasets. This split was designed to facilitate effective learning and improve the model’s adaptability across various classification scenarios. To enhance robustness, a subset of images was randomly selected for data augmentation, creating additional datasets that mimic natural conditions. The following augmentation techniques were employed:

	Images were flipped vertically and horizontally and randomly rotated between -30° and 30° to simulate different angles and reduce positioning errors.

	Brightness was randomly adjusted between 0.9 and 1.1 to mimic natural lighting variations.

	Hue and saturation were independently adjusted between 0.9 and 1.1 to replicate the diversity of light and environmental conditions.



These augmentation strategies were designed to enhance the model’s generalization capabilities. After augmentation, images retained a resolution of 3,000×4,000 pixels. Using high-resolution images directly for training would significantly increase the number of parameters. Therefore, the enhanced images were first randomly cropped to 300×400 pixels, as shown in Supplementary Figure 1. These cropped images were then resized to 224×224 pixels. This process effectively expanded the dataset and reduced the model’s parameter count. Table 1 outlines the detailed quantities of the processed dataset and the abbreviated names of the wheat varieties. The dataset can be accessed at the provided URL (https://pan.baidu.com/s/107ICGZOxmOXURkZQcHgbeQ) with the access code: 6666.


Table 1 | Number of wheat datasets before and after processing.



To assess the refined model’s stability, we constructed a cross-validation dataset using the original data. Ensuring data consistency as per Table 1, we employed a 3-fold cross-validation technique to evaluate the model’s robustness. Table 2 provides a detailed overview of the dataset’s quantitative distribution.


Table 2 | 3-fold cross-validation dataset.






2.3 APP development



2.3.1 APP development environment

The application was developed on a Windows 10 operating system, utilizing a specific set of tools tailored for Android application development:

	JDK (Java Development Kit) Version 17: This is essential for Java development, encompassing the Java runtime environment, tools, and basic libraries.

	Android Studio Version 3.1: The chosen Integrated Development Environment (IDE) for facilitating app development and debugging.

	Android SDK (Software Development Kit): Includes necessary tools, libraries, emulators, and documentation for Android app development, with a specific mention of the Android SDK Build-Tools version used.






2.3.2 Functional design and implementation

The development process incorporates four optimization strategies into the mobile-optimized G-PPW-VGG11 model. Key steps include:

1. Image acquisition.

a) Local Photo Albums: “AlbumA.java” utilizes “android.intent.action.GET_CONTENT” to select images from the device’s album.

b) Camera Shooting: Establishing “Camera.java” for capturing images directly via the app, checking permissions with “ContextCompat.checkSelfPermission” and “ActivityCompat.requestPermissions”, and capturing images with “android.media.action.IMAGE_CAPTURE”.

2. Image preprocessing.

This method resizes images longer than 300 pixels to 300×300, then downscales them to 224×224 pixels to prevent distortion and preserve classification accuracy.

3. Application development.

a) Model Format Conversion: Converting the model from “.pth” to “.pt” format for Android compatibility and placing it in the “app/src/main/assets” directory.

b) Label File: Creating a “label.java” file for required label information.

c) Configuration File: Adding functional buttons for album and camera access, linking to “Albums.java” and “Camera.java” for respective functionalities.

d) APK File Generation: Outlining the process for generating an installable “.apk” file via the Android Studio environment.






3 Algorithm and improvement of wheat classification



3.1 VGG network model

Among various classification algorithms, the VGG network model is notable for its simplicity, making it an ideal basis for network optimization. The VGGNet family, proposed by Simonyan and Zisserman (2014), includes structures such as VGG11, VGG13, and VGG16. Aligned with the goal of devising a lightweight model for classifying wheat varieties, VGG11 was selected as the baseline due to its minimal layer count.




3.2 VGG11 network improvements

This study achieved model parameter optimization by adjusting the number of convolutional kernels in the VGG11 architecture. Considering the impact of convolutional kernels on model parameters, the original configuration was revised from 64, 128, 256, 256, 512, 512, 512, 512, 4,096, 4,096, classifier to a more efficient 32, 64, 64, 64, 128, 128, 256, 256, 1,024, 1,024, classifier. This modification streamlined the model without compromising classification performance.

Following Ioffe and Szegedy (2015), batch normalization (BN) was added after each convolutional layer. Integrating BN normalizes data distribution, enabling faster and more robust model training. The improved model, RE-VGG11, forms the basis for all further optimization experiments in this study.

Compared to lightweight models like MobileNet, EfficientNet, and ShuffleNet, RE-VGG11 faces several challenges:

	Extracted feature values across channels show high similarity (Chen et al., 2023). Partial convolution was introduced to minimize feature redundancy.

	The small 3×3 kernels in RE-VGG11 limit its receptive field’s diversity. Incorporating mixed depthwise separable convolutions alleviates this, reducing weight bias and enhancing feature integration from diverse receptive fields.

	Fully connected layers comprised 92.02% of the original model’s parameters. Replacing them with pointwise convolution and global average pooling addressed this imbalance.

	The field-acquired dataset contained multiple interference sources, prompting the introduction of an efficient channel attention mechanism. This enhances the model’s focus on relevant leaf information, improving feature discernment in noisy data and classification capabilities.



Enhancements addressing these challenges have been implemented in RE-VGG11. Figure 3 shows the comprehensive structure of the refined model, G-PPW-VGG11, and its structural modules. Specific improvement strategies will be detailed accordingly.




Figure 3 | G-PPW-VGG11 model structure diagram (A) General structure of the improved G-PPW-VGG11 model. (B) Improved basic modules of the G-PPW-VGG11 model.





3.2.1 Partial convolution

The model exhibits a high degree of similarity among features extracted from different channels. This similarity causes the model to disproportionately favor redundant features during weight allocation, leading to excessive weighting (Chen et al., 2023). However, this bias in weight distribution leads to the neglect of smaller, yet crucial, feature components essential for accurate performance. The neglect of these components can undermine the model’s precision and, consequently, its overall performance.

Partial convolution (PConv), introduced by Chen et al. (2023), replaces traditional convolution in neural networks with a lightweight alternative. Its principle aims to address the high similarity issue between channels in standard convolution layers. PConv selectively uses a subset of channels for feature extraction, rather than all channels. Extracted features are concatenated with remaining channels, followed by pointwise convolution to enhance channel correlation. Adopting this method significantly reduces computational demands and weight bias, improving classification accuracy. Figure 4 illustrates the operational process of PConv.




Figure 4 | Schematic diagram of the partial convolution structure (A) PConv. (B) Point-by-point convolution.






3.2.2 Partial mixed depth separable convolution

Partial mixed depthwise separable convolution (PMConv) integrates the strengths of Partial convolution (PConv) and Mixed depthwise separable convolution (MixConv), as developed by Tan and Le (2019). Figure 5A provides a clear visualization of this integrated architecture. In PMConv’s workflow, an initial screening selects a subset of channels for convolution with various kernel sizes to generate feature maps. Subsequently, pointwise convolution concatenates these feature maps with unused channels, enhancing information exchange and inter-channel correlation. This design enhances the model’s representational capabilities and overall performance.




Figure 5 | Partial mixed depth separable convolution (A) PMConv. (B) Point-by-point convolution.



PMConv reduces computational complexity by excluding redundant features, preventing weight shifts caused by duplicate feature values. It also integrates MixConv, allowing for the integration of feature mappings from diverse receptive fields. Figure 5 schematically depicts this process. In this approach, PMConv selectively processes a subset of channels, using diverse-sized kernels for convolution to generate feature maps. Subsequent pointwise convolution strengthens the correlation between generated feature maps and unused channels. This approach enables PMConv to combine the advantages of Partial Convolution—significantly reducing computational demands and avoiding weight biases—and the strengths of Mixed Depthwise Separable Convolution to effectively merge features from different receptive fields.




3.2.3 Efficient channel attention mechanism

ECANet (Wang et al., 2020) enhances SENet (Hu et al., 2018). Analysis and evaluation reveal that dimensionality reduction hampers channel attention prediction and that capturing dependencies across all channels is inefficient and superfluous. Conversely, suitable cross-channel interactions can simplify the model without significantly compromising performance.

ECANet retains channel dimensionality after global average pooling, obviating reduction. Moreover, its architecture enables local interactions by considering each channel and its adjacent k channels. This approach boosts efficiency in managing channel relationships, enhancing performance. Figure 6 clearly illustrates ECANet’s structure, showcasing its innovations and advantages. These refinements allow ECANet to overcome SENet’s limitations, offering a streamlined, effective solution for channel attention prediction.




Figure 6 | Diagram of efficient channel attention module.



ECANet and SENet differ in several key aspects. Firstly, the conventional MLP module, comprising a fully connected layer (FC1), ReLU activation function, and another fully connected layer (FC2), undergoes an innovative transformation in ECANet, where a one-dimensional convolutional form replaces it. This shift reduces computational burden and enhances efficiency by simplifying parameter calculations. Secondly, the one-dimensional convolution interacts with a subset of channels, streamlining the computation process. This design enables effective cross-channel interactions, maintaining performance while reducing complexity. Lastly, ECANet features an adaptive mechanism that dynamically adjusts the one-dimensional convolution kernel size (k), determining interaction coverage. The value of k proportionally scales with channel dimensions, defined by a specific formula. This strategy endows ECANet with flexibility to adapt to varied data characteristics and demands, enhancing performance and generalization. It is calculated as shown in Equation 1:

 

Where: C indicates the number of channels, ||odd means that k can only take odd numbers, γ and b are set to 2 and 1 in the paper and are used to vary the ratio between the number of channels C and the size of the convolutional kernel sum.




3.2.4 Convolutional layer replacing fully connected layer

Pointwise convolution, defined by a 1×1 kernel size, offers several advantages. It functions similarly to a fully connected layer, processing feature maps globally. Additionally, pointwise convolution increases the model’s nonlinearity, thereby enhancing its expressive capabilities. Considering these advantages, this study utilizes pointwise convolution layers as replacements for fully connected layers.

In the RE-VGG11 model, fully connected layers constitute 92.02% of the total parameters. To optimize model structure, this study replaces the original fully connected layers with two pointwise convolutions and a global average pooling layer. This refinement simplifies the architecture and potentially improves model performance. Figure 7 illustrates the modifications to the fully connected layers, providing a visual representation of the enhancement.




Figure 7 | Schematic diagram of the full connectivity layer improvement (A) Original fully connected layer. (B) Improved fully connected layer.







3.3 Parameter setting



3.3.1 Test environment

This study conducted model improvement testing on a laptop using Python in the PyCharm integrated development environment (IDE). Table 3 meticulously details the laptop’s hardware specifications and PyCharm’s relevant software settings.


Table 3 | Test equipment parameters.






3.3.2 Hyperparameter setting

During the training phase, this study utilized the AdamW optimizer (Loshchilov and Hutter, 2018) instead of the original Adam optimizer, significantly improving network model performance.

Table 4 presents the detailed parameter settings of the network model, carefully adjusted during training to optimize performance.


Table 4 | Model parameter configuration.







3.4 Evaluation metrics

This study uses a rigorous assessment framework to evaluate the improved model’s performance, covering key metrics such as average accuracy (ACC), F1-score, precision, computational complexity (Flops), memory usage, and runtime. These multi-dimensional evaluation parameters allow for an accurate quantification of the model’s performance, ensuring the experimental results’ reliability and validity. Notably, all mentioned evaluation metrics depend on the confusion matrix for detailed calculations. For matrix parameters involved in training, refer to Supplementary Table 1.

(1) Average accuracy rate (ACC).

The average accuracy rate (ACC) is a quantitative metric assessing the model’s prediction accuracy, defined as the ratio of correctly predicted samples to the total predicted samples. It is calculated as shown in Equation 2

 

(2) Precision and Recall.

Precision and recall are essential for evaluating classifier performance in predicting positive instances, focusing on accuracy and completeness, respectively. Precision represents the ratio of correctly identified positive instances to those classified as positive by the classifier. High precision indicates the classifier’s effectiveness in reducing false positives (FP) by minimizing misclassification of negative instances as positive. It is calculated as shown in Equation 3.

 

Recall measures the ratio of actual positive instances correctly identified by the classifier. High recall indicates the classifier effectively reduces misclassifications of positive instances as negative, thus lowering the rate of false negatives (FN). It is calculated as shown in Equation 4

 

(3) F1-score.

The F1-score, incorporating both precision and recall, evaluates the accuracy of model classification. An elevated F1-score signifies enhanced classification performance. It is calculated as shown in Equation 5.

 

(4) Flops (Floating point operations).

Flops serve as a metric for quantifying an algorithm or model’s computational complexity, offering insights into resource requirements and efficiency.

(5) Model Memory Occupancy (MB).

This study aims to minimize the model’s parameter count while maximizing accuracy. The model’s memory footprint is a key metric for assessing its superiority in this research context.

(6) Inference speed.

The model’s inference speed is assessed by the total time it takes to process 6,381 testing images. It is calculated as shown in Equation 6:

 

where x denotes the total inference time spent by the original model and x1 denotes the total inference time spent by the improved model.





4 Results and analysis



4.1 Comparison of classification modeling results

The original VGG11 and optimized G-PPW-VGG11 models were tested on a dataset of 6,381 testing images. To visually represent prediction outcomes, we used t-SNE (t-Distributed Stochastic Neighbor Embedding) for analysis before and after optimizing the VGG11 model. Results are detailed in Figure 8. t-SNE, a two-dimensional dimensionality reduction technique, effectively preserves the local characteristics of high-dimensional data. This ensures data points close in high-dimensional space remain close in the two-dimensional representation. Consequently, the t-SNE visualization in Figure 8 clearly depicts relationships between different wheat varieties.




Figure 8 | t-SNE visualization of prediction results from different models (A) VGG11. (B) G-PPW-VGG11.



Figure 8 illustrates the relationships among six wheat varieties, showing inter- and intra-class distances and misclassifications. Specifically, Xinmai20, Wanmai51, and Wunong981 show distinct inter-class separations from the other three varieties. Conversely, Zhengmai101 is positioned close to Gaomai6 and JiMai22, indicating less discernible inter-class boundaries.

A comprehensive comparative analysis between the enhanced G-PPW-VGG11 and the original VGG11 models revealed key disparities: (1) A notable increase in the inter-class distance between Jimai22 and Gaomai6 indicates a significant improvement in distinguishing between these varieties. (2) Despite some classification errors among Zhengmai101, Gaomai6, and Jimai22, the model significantly increased the inter-class distances between these varieties. Additionally, the intra-class sample distribution for each variety has become more coherent, demonstrating stronger internal cohesion and reducing intra-class errors. (3) The enhanced model shows a more prominent inter-class distance between Wanmai51 and Gaomai6, with a notable reduction in misclassification events. This underscores the model’s effectiveness in enhancing the discrimination capability between these two varieties.

In conclusion, the findings demonstrate the G-PPW-VGG11 model’s significant advantages in enhancing inter-class distances and minimizing intra-class dispersions. These improvements have enabled the model to achieve superior discrimination between wheat varieties, providing a more accurate and reliable classification approach.




4.2 G-PPW-VGG11 ablation test performance comparison

This study performed systematic ablation tests on a dataset comprising 6,381 testing images to assess the efficacy of different optimization strategies. Table 5 presents the comprehensive results of the ablation experiments.


Table 5 | Comparison of model improvement results.



Table 5 data indicates Scheme 4’s superior performance, leading to its selection as the final optimized model, G-PPW-VGG11, for this study. The G-PPW-VGG11 model achieved a classification accuracy of 93.52% and a processing time of 93.45s. Notably, the model demonstrated exceptional memory efficiency, using only 1.79 MB. Compared to RE-VGG11, G-PPW-VGG11 improved classification accuracy by 1.76%, speed by 33.48%, AUC value by 0.05%, and reduced memory usage by 96.89%. Additionally, computational complexity decreased by 51.41%. These results indicate that G-PPW-VGG11 significantly optimized resource utilization efficiency while maintaining high classification performance.

Introducing PConv boosted classification speed by 34.98% and reduced computational complexity by 50.69% (445.35 M). FL2PWConv significantly optimized memory, reducing usage by 96.91% (55.85 MB). Incorporating PMConv slightly increased memory use by 0.01 MB but improved classification accuracy by 0.25%. The integration of ECANet improved classification accuracy by 0.52%, without increasing memory usage or computational complexity.

These findings highlight G-PPW-VGG11’s successful balance between classification accuracy and inference speed. The optimized model, G-PPW-VGG11, marks a significant advancement, offering a solution for memory-constrained environments without compromising performance.

Figure 9 shows a comparative analysis of classification accuracy and precision for six wheat varieties using the optimized models listed in Table 5. The results indicate that introducing PMConv enhances classification accuracy for the Zhengmai101 variety without affecting overall accuracy. Furthermore, the evolution into G-PPW-VGG11 results in significant improvements in classification precision and overall accuracy for all wheat varieties. These findings underscore the proposed model’s efficacy in wheat variety classification, particularly highlighting G-PPW-VGG11’s enhanced classification performance.




Figure 9 | Comparison chart of ablation test results.



An in-depth comparative analysis of confusion matrices, as depicted in Figure 10, showed varied improvements in classification accuracy across all six wheat varieties. Specifically, Zhengmai101’s classification accuracy improved by 16.22%, underscoring the substantial enhancement from model optimization. In contrast, Wanmai51’s classification accuracy improved by a modest 1.8%. Nevertheless, this underscores the model improvement’s positive impact on overall classification performance.




Figure 10 | Confusion matrix for VGG11 and G-PPW-VGG11.



Furthermore, the analysis shows a significant reduction in the probability of Zhengmai101 being misclassified as Gaomai6 post-optimization, crucial for minimizing misidentification. Remarkably, post-optimization, the misclassification of Xinmai20 as Jimai22 and Wanmai51 dropped to zero, affirming the optimized model’s efficacy in improving accuracy and reducing misclassifications.

In conclusion, the improved model exhibits superior classification performance for wheat varieties by enhancing accuracy and significantly reducing misclassification risks. This results in a more accurate and reliable tool for wheat variety identification.

Figure 11 presents a comparative analysis of ROC curves for various wheat varieties, before and after model improvement, using confusion matrix data. The results show that the enhanced model, G-PPW-VGG11, has ROC curves closer to the point (0,1) across all varieties, with higher AUC values. This trend signifies a substantial improvement in the AUC metric for the refined model, indicating superior classification performance. It can be concluded that modifications have significantly enhanced the G-PPW-VGG11 model’s classification accuracy, demonstrating improved discriminatory power and practical value. This finding highlights the critical role of model optimization in improving the accuracy and reliability of wheat variety classification.




Figure 11 | Comparison of ROC curve results (A) VGG11. (B) G-PPW-VGG11.






4.3 Experimental comparison of different lightweight classification models

This study introduces G-PPW-VGG11, a performance-optimized deep learning model designed for wheat canopy leaf image cultivar classification. To validate this model’s effectiveness and superiority, a systematic comparative analysis was conducted against prevalent lightweight network architectures. Specifically, the comparison included benchmark models such as FasterNet, MobileNet_V2, MobileNet_V3 (large and small variants), ShuffleNet_V2 (x1_0 and x1_5 configurations), and EfficientNet’s baseline and sub-baseline models, b0 and b1. The comprehensive results of these comparative experiments are documented in Table 6. Meticulous analysis of the experimental data unequivocally demonstrated G-PPW-VGG11’s exceptional performance in wheat canopy leaf image classification, highlighting its potential advantages and application prospects compared to leading lightweight models.


Table 6 | Comparison of experimental performance of different network models.



The results (Table 6) reveal that the G-PPW-VGG11 model achieved a classification accuracy of 93.52% and an inference time of 93.45s. Compared to state-of-the-art models like FasterNet, MobileNet_V2, MobileNet_V3_large, MobileNet_V3_small, ShuffleNet_V2_x1_0, ShuffleNet_V2_x1_5, EfficientNet_b0, and EfficientNet_b1, the G-PPW-VGG11 showed superior performance. Specifically, it outperformed these models in terms of classification accuracy by 4.33%, 3.56%, 5.20%, 5.74%, 5.67%, 4.83%, 0.91%, and 1.16%, respectively. Moreover, the model reduced inference time by 29.07s, 38.59s, 49.98s, 40.13s, 44.83s, 53.39s, 74.34s, and 117.25s compared to the aforementioned models.

Notably, the G-PPW-VGG11 model achieved the highest classification accuracy with minimal inference time. Additionally, its 1.79 MB memory footprint makes it highly suitable for mobile deployment, facilitating portable wheat variety classification. These characteristics make the G-PPW-VGG11 model a promising candidate for real-world applications prioritizing accuracy, efficiency, and portability.

Figure 12 presents a comparative diagram of prediction results from various models. Rigorous analysis reveals that the optimized G-PPW-VGG11 model exhibits notable superiority in precision and accuracy (ACC). Among the models compared, G-PPW-VGG11 achieves the highest precision and accuracy, demonstrating its exceptional performance in wheat varieties classification.




Figure 12 | Comparison of model prediction results for each variety.






4.4 Research on model stability testing based on cross-validation

To assess the model’s stability, 3-fold cross-validation was performed on the dataset shown in Table 2. The experimental results are detailed in Table 8.

The results (Table 7) show that the model attained an average classification accuracy of 92.78% following a 3-fold cross-validation process. Compared to the results from the dataset in Table 1, there was a minor decrease in classification accuracy, a reduction of 0.74%. This observation suggests that dataset selection influences the model’s classification accuracy. However, the overall impact was not significant, demonstrating the improved model’s robust stability.


Table 7 | 3-fold cross-validation results.






4.5 APP result demo

The combined experimental results from Sections 4.3 and 4.4 indicate that the G-PPW-VGG11 model exhibits outstanding classification performance. Specifically, the model achieved an average classification accuracy of 93.52% with a compact size of 1.79MB, making it suitable for use in mobile devices for portable applications. The model was successfully transferred to a Xiaomi 10s Android smartphone using a network/data cable. Practical runtime tests on the device showed a memory usage of 88.50 MB, indicating efficient performance on mobile platforms.

To validate the APP’s practical effectiveness in wheat variety classification, a test dataset of 300 wheat canopy leaf images was collected under field conditions using a smartphone. Rigorous testing and analysis yielded the experimental results presented in Table 8. These findings offer valuable insights for future research and contribute to advancing agricultural intelligence.


Table 8 | Results of the APP identification results.



The results (Table 8) show that testing large images (4,000×3,000 pixels) with the APP resulted in an average classification accuracy of 84.67% and an average inference time of 291.04ms. This performance suggests the model meets real-time classification requirements for wheat varieties in field environments, highlighting its practicality and application value.

Supplementary Figure 2 demonstrates the APP’s ability to read and identify images from the photo gallery. Upon image selection, the APP interface displays the chosen image, predicted variety, inference time, variety characteristics, and cultivation site information. The example shows the predicted wheat variety as Gaomai6, with an inference time of 280ms, confirming the model’s efficiency and accuracy in practical applications.





5 Conclusion

This study presents an innovative lightweight convolution method, partial mixed depthwise separable convolution (PMConv), integrating the principles of partial and mixed depthwise separable convolution. Rigorous ablation experiments reveal PMConv’s significant advantages in improving model classification performance.

Employing VGG11 as the baseline architecture, this study integrates PConv with PMConv techniques to accurately capture wheat leaf features. This design reduces misclassification due to weight bias and enhances the model’s feature fusion capabilities. Additionally, the study replaces traditional fully connected layers with FL2PWConv, enhancing nonlinear expressiveness and reducing parameter size for model lightweight. Integrating ECANet allows the model to focus more precisely on critical wheat leaf features, effectively filtering out background noise and significantly improving classification accuracy.

The G-PPW-VGG11 model, as improved in this study, demonstrated exceptional performance with a memory footprint of merely 1.79 MB and a classification accuracy of 93.52%. To validate the model’s capabilities comprehensively, an experimental comparison was conducted between G-PPW-VGG11 and classic lightweight models such as FasterNet, MobileNet_v2, MobileNet_v3_large, MobileNet_v3_small, EfficientNet_b0, EfficientNet_b1, ShuffleNet_V2_x1_0, and ShuffleNet_V2_x1_5. Experimental results showed significant improvements in G-PPW-VGG11 across multiple evaluation metrics. Specifically, G-PPW-VGG11 showed notable improvements over the baseline VGG11 in ACC, F1-score, and precision, with increases of 5.89%, 5.93%, and 5.78%, respectively. These enhancements substantiate the improved model’s superiority in classification performance. Additionally, G-PPW-VGG11 showed a 35.44% improvement in inference time, significantly enhancing response speed. Furthermore, the model reduced memory usage by 99.64% compared to the VGG11 model’s 489.5 MB memory footprint.

To improve portability and classification efficiency, the enhanced model was adapted for testing on the Android smartphone platform. Actual measurements showed that the model recognized a single image in an average of 291.04ms, meeting the stringent criteria for real-time classification. In natural environments, the model’s recognition of wheat varieties demonstrated superior performance, offering valuable insights for research and applications in intelligent agriculture.

To facilitate further research, the trained model and complete dataset from this study have been made publicly accessible. The model code is located in https://github.com/mengyuqq/G-PPW-VGG and The dataset is available at the following URL (https://pan.baidu.com/s/107ICGZOxmOXURkZQcHgbeQ) with the access code: 6666. These contributions are anticipated to serve as valuable resources, providing significant data support and a strong foundation for enhancing the accuracy and efficiency of wheat variety classification in the field.
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Moisture content testing of agricultural products is critical for quality control, processing efficiency and storage management. Testing foxtail millet moisture content ensures stable foxtail millet quality and helps farmers determine the best time to harvest.  A differential capacitance moisture content detection device was designed based on STM32 and PCAP01 capacitance digital converter chip. The capacitance method combined with the back-propagation(BP) algorithm and the extreme learning machine(ELM) algorithm was chosen to construct an analytical model for foxtail millet moisture content, temperature, and volume duty cycle. This work performs capacitance measurements on foxtail millet with different moisture contents, temperatures, and proportions of the measured substance occupying the detection area (that is, the volumetric duty cycle). On this foundation, the sparrow search algorithm (SSA) is used to optimize the BP and ELM models. However, SSA may encounter problems such as falling into local optimization solutions due to the reduction of population diversity in the late iterations. As a consequence, Logistic algorithm is introduced to optimize SSA, making it more appropriate for solving specific problems. Upon comparative analysis, the model predicted using the Logistic-SSA-ELM algorithm was more accurate. The results indicate that the predicted values of prediction set coefficient of determination (RP), prediction set root mean square error (RMSEP) and prediction set ratio performance deviation (RPDP) were 0.7016, 3.7150 and 1.4035, respectively. This algorithm has excellent prediction performance and can be used as a model for detection of foxtail millet moisture content. In view of the important role of foxtail millet moisture content detection in acquisition and storage, it is particularly important to study a nondestructive and fast online real-time detection method.  The designed capacitive sensor with differential structure has well stabilization and high accuracy, which can be further studied in depth and gradually move towards the general trend of agricultural development of smart agriculture and precision agriculture.
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1 Introduction

Foxtail millet is a major food crop in China, and how much water it contains after harvest is related to various aspects such as yield issues, sales price and storage with processing, while at the same time, it is also an essential indicator of the quality of the foxtail millet. Excessive moisture content of foxtail millet can easily lead to mold, germination, deterioration and other problems, so that it loses its commodity value, reduces the nutritional value, and even causes hidden food safety hazards; while too low a moisture content will interfere with the nature of the processing and storage, increase energy consumption, and negatively affect the efficiency of production (Qian et al., 2018; Zeyu et al., 2021). Therefore, the determination of foxtail millet moisture content is an integral part of grain science and technology and processing production. To this end, this paper designs a differential capacitance sensor which can detect moisture content online in real time. This can be used to infer the foxtail millet quality within a small area based on the online real-time detection results and further develop towards modernized precision agriculture. In this regard, it is of great significance to conduct accurate online real-time measurement of foxtail millet moisture content.

At present, the research of online moisture content detection system in foreign countries is relatively mature, but the domestic research on this aspect started late, and the application is few. However, after many years of experimental analysis, domestic scholars have also achieved some obvious results in moisture content detection. Liu Jin et al. designed a portable grain moisture content detection device based on a microstrip microwave sensor. The results show that when microwave attenuation, phase shift and temperature are selected as inputs to the Random Forest Algorithm model, the prediction results show the best accuracy and stability, with a maximum average absolute error of 0.55 per cent and a maximum standard deviation of 0.41 per cent. The device can be well applied to the moisture content detection of three kinds of grains: rice, soybean and wheat. The designed portable grain moisture content detection device is small in size, light in weight, fast and accurate in detection results, and provides important reference significance for real-time measurement of agricultural products and the development and application of intelligent agricultural equipment (Jin et al., 2023). Zhang Y et al. introduced a new approach based on near-infrared (NIR) hyperspectral imaging for the detection of moisture content in maize seeds and investigated the extraction of the centre of mass region using averaged spectra. The evidence suggests that the PLSR model built by extracting the average spectrum from the center-of-mass region performs well and has a high potential (Zhang and Guo, 2020). Based on the principle of dielectric properties of wheat, An Xiaofei et al. designed an on-line moisture detection device for combine harvester, which realized fast and stable on-line detection of wheat moisture content under the operating conditions of combine harvester. The test results showed that the online detection error of moisture content was within 3% under static conditions. Under the dynamic change conditions in the field, a moisture detection model based on dielectric constant and temperature factor was established, and the correlation coefficient between measured and detected values reached 0.92, and the online detection error was less than 5 per cent. The method of dynamic continuous sampling and static intermittent measurement significantly improves the accuracy of on-line detection of moisture content, and provides a rapid measurement means for realizing accurate wheat production (Xiaofei et al., 2022). Wang Xiao et al. designed and processed a microstrip patch antenna to achieve non-contact, real-time and high-precision water content detection using rice as the detection object. Using both contact and non-contact detection methods, the relationships among rice water content, bulk density, detection height and resonance frequency, return loss and phase were investigated. The detection sensitivity of the proposed microstrip antenna is characterised by resonance frequency, return loss, and phase as 600 kHz/%, 0.149 dB/%, and 1100 kHz/%, respectively, and the minimum average relative error of detection is 0.026%, 0.083%, and 0.028%, respectively. The results demonstrate that the microstrip antenna has special advantages in grain moisture content detection, which provides an important reference for real-time moisture content detection during grain storage and transport (Xiao et al., 2021). By determining the hyperspectral reflectance and water content of summer maize leaves, Zheng Zhikang et al. constructed spectral indices in any two bands using the original and converted spectra and analysed the relationship between spectral indices and leaf water content. The results showed that the spectral reflectance in the short-wave infrared band decreased with the increase of leaf water content, and the constituent bands of the optimal spectral indices were mainly located in the short-wave infrared band, among which the ratio spectral indices based on the first-order derivative spectra (R1 563/R1 406) and the normalised spectral indices [(R1 563 - R1 406)/(R1 563 + R1 406)] had the best correlation with leaf water content, with correlation coefficients of 0.83 in absolute value. The multifactor regression model was simulated better than the single-factor regression model, and the sparrow search-based random forest regression model had the highest accuracy, with a validation set coefficient of determination (R2) of 0.78, and root-mean-square error (RMSE) and relative error (RE) of 1.14 per cent and 1.09 per cent, respectively. In this study, a remote sensing estimation model was established by analysing the relationship between maize leaf water content and hyperspectral reflectance to provide a basis for water management of summer maize production in Guanzhong region (Zhikang et al., 2023).

The significance of using physical modelling i.e. capacitive sensors combined with algorithms to predict moisture content in this study is to achieve real-time monitoring and prediction of moisture content, which can provide real-time data support in multiple fields. It can help to improve the efficiency of resource utilization, reduce costs, and achieve the goal of sustainable development, thus providing important information and application value in a variety of fields. The common methods of measuring moisture content mainly include direct drying oven method, resistance method, ray method, microwave method (Lin et al., 2022), near infrared method (Chen et al., 2017), capacitance method (Fridh et al., 2018; Deng et al., 2020; Oommen and Philip, 2023), etc. Drying oven method which measures moisture content has accurate measurement results, but this method is time-consuming and not easy to realize on-line real-time detection, normally the measurement results of this drying method are used as the standard results (jing et al., 2018). Resistance method of measuring moisture content is inexpensive and has a rapid test speed, but it is limited by the influence of material distribution, which leads to low signal strength and low accuracy (Shibiao et al., 2019). Ray method of measuring moisture content detects with fast speed, wide range and excellent penetrability, which can quickly carry out non-destructive testing of the moisture content of the measured substance. However, there are radiation hazards in the ray, and the equipment is costly, which is not favourable to the agricultural testing environment (Yitong et al., 2021). Microwave method of measuring water content has low energy consumption, high testing speed and superior anti-interference ability. Nevertheless, the lower limit of detection is insufficiently low, which may easily cause standing wave interference. Meanwhile, the measured value is associated with the composition of materials, and different varieties need to be calibrated individually (Chenyu, 2023). Near infrared method to measure the moisture content analytic rate is fast, no damage to the test sample, but the detection accuracy is affected by the test sample particle size, density and other factors (Leblon et al., 2013).

Considering the shortcomings of the above methods, this paper applied the capacitance method and designed a differential capacitance sensor to measure the moisture content. The capacitance method for measuring water content provides relatively low cost, with a fast response time and comparatively simple structure, which can satisfy the accuracy requirements. The principle is according to varying dielectric constants of foxtail millet with different moisture content, there will be a difference in the capacitance value when passing through the two sides of the pole plate (Yin, 2018; Nath and Ramanathan, 2020; Hao et al., 2021; Lev et al., 2021; Danyang et al., 2022; Shekhar and Prasad, 2023). Analyse the change of capacitance value when the moisture content of foxtail millet, ambient temperature, and volumetric duty cycle are varied. And then, a relevant mathematical model is established, and the model is used as a benchmark in order to calculate the moisture content of the foxtail millet.

A graphical abstract of this paper is shown in Figure 1 below:




Figure 1 | Graphical abstract.






2 Material and methods



2.1 Experimental materials

The test site was Taigu District, Jinzhong City, Shanxi Province, which has a warm temperate continental climate. Spring has a higher temperature than fall, while summer is warm, hot and rainy, as well as long and cold in winter. In this experiment, Zhangza foxtail millet planted in Taigu District, Jinzhong City, Shanxi Province was used as the sample, which was collected at the beginning of October, 2022. Since the experiment tested the moisture content of the cereal granules, the earhead was required to be threshed as shown in Figure 2. Wherein, Figure 2A shows the state of the foxtail millet ears, and Figure 2B shows the state of the foxtail millet ears after threshing. The harvested foxtail millets were randomly divided into 48 samples of 720g each. Simultaneously, each sample was placed in a plastic self-sealing bag (size 240 mm × 350 mm) so as to prevent the evaporation of water. Thereafter, they were stored at room temperature of 22°C.




Figure 2 | The state of foxtail millet before and after threshing. Figure (A) shows the state of the foxtail millet ears. Figure (B) shows the state of the foxtail millet ears after threshing.



A total of 16 different gradients of moisture content were formulated for this study and each of them was divided into three samples for testing experiments, summarizing a total of 48 foxtail millet samples. The initial moisture content of the harvested foxtail millets was measured to be 14.42% using a rapid moisture meter (Model HM-101X, Shanghai Hegong Scientific Instrument Co., Ltd., precision 0.001g). Weighing was done using a balance (Model ACS-30, Shanghai Kaishi Electronics Co., Ltd., 10g divisional value) with 720g for the each portion. In order to prepare the samples with different moisture contents of the gradient, the weighed foxtail millet samples were taken out first. After that, the samples that are higher than the initial moisture content were obtained by spraying deionized water, and the samples that are lower than the initial moisture content were obtained by placing them in an electric thermostatic blower drying oven (GZX-GF101-2-BS-II/H type, Shanghai Yuejin Medical Equipment Co., Ltd., max. temperature 300°C) in various times, set the temperature to 105°C. And cool them down to room temperature. Using the rapid moisture meter again, the remaining 15 kinds of moisture content were measured as 5.64%, 8.36%, 8.62%, 11.65%, 12.04%, 12.17%, 13.57%, 15.99%, 16.26%, 17.65%, 19.52%, 21.51%, 22.58%, 23.27%, and 23.52%, respectively. Ultimately, a sum of 16 kinds of foxtail millet samples with different moisture contents were acquired and numbered. For ensuring uniform water absorption in each sample, the prepared samples were put into plastic self-sealing bags. They were set in a room temperature environment at 22°C for 1 to 2 days. During this period, the samples were removed 3 to 4 times a day, stirred thoroughly, then poured back into the bag and sealed well again. This ensures that the moisture in each sample is individually distributed evenly.




2.2 Differential capacitance sensor detection principle

In this study, a capacitive sensor with differential structure is designed to be constructed on the basis of a capacitive sensor with parallel plate structure. Differencing is the method of subtracting the two adjacent values in a series of output data to obtain the amount of change in the two adjacent values. In the process of data analysis, only the results after differencing are analysed. This means that only changes between successive data are analysed, ignoring trends or seasonality formed through the accumulation of the data itself. Thus, the role of differencing is to mitigate irregular fluctuations between the data and make their fluctuation curves smoother. It is also capable of minimizing the negative impact of external disturbances, such as environmental factors, on the measured capacitance value. The differential handling of the data yields an increment of the data rather than the data itself, and generally the data will be more stable after first-order differencing, so the differenced data is used for analysis (Heming et al., 2019).

Since water and foxtail millet have distinct dielectric properties, variations in the capacitance values detected by the sensor arise when foxtail millets with different moisture contents fill the detection area.

While the foxtail millets fulfil the analyzed moisture content condition, the sensor output capacitance C is:

 

Where, S is the relative area of the pole plate in m2;   is the vacuum dielectric constant, which is specified in the International System of Units as   =8.854187818×10-12 F/m;   is the relative permittivity of the foxtail millets in the detection area; d is the pole plate spacing in m.

The inter-polar plate medium is composed of air and foxtail millets, while the foxtail millets contain varying amounts of water, so that the total volume V can be expressed as:

 

 

Where,   is the volume occupied with dry foxtail millets in the detection area in m3;   is the volume occupied with moisture in the detection area in m3;   is the volume occupied with air in the detection area in m3;   is the relative permittivity of dry foxtail millets;   is the relative permittivity of moisture;   is the relative permittivity of air. Substituting Equation 3 into Equation 1 to get Equation 4 which can be written as:

 

 

Here,   is the foxtail millet pore ratio in the detection area. According to the formula for the calculation of moisture content, it is known that the moisture content W of the foxtail millet can be written as:

 

Where,   is the dry foxtail millet density in kg/m3 and   is the moisture density in kg/m3.

Once the capacitive sensor dimensional structure is specified,  ,  , and   are determined. Furthermore,  ,  ,  ,  ,  , and   are determined by the substance itself and are known values. In this study,   =600kg/m3,   =10³kg/m³,   =3,   =81,   =1.00053. Thus A, B, D, and F can be expressed as:

 

 

 

 

According to Equations 4–10, the capacitance C can be expressed as the following equation:

 

In the formula, A, B, D and F are all structural constants of the sensor.

From Equation 11, it can be observed that the value of moisture content of the foxtail millet can be derived from the value of capacitance C.

During the capacitive sensor functioning, the relative dielectric constants  ,  , and   are associated with the temperature (Jinwu et al., 2021). Therefore, for this affecting factor, it should be considered.

At room temperature, the relative dielectric constant of foxtail millets is 2.5 to 4.5, while the relative dielectric constant of water is 81. Obviously, when the moisture content of the foxtail varies, there will be a consequent change in its relative dielectric constant, which will affect the capacitance value. It can be seen that both are positively proportional to each other. When foxtail millets with different moisture content are placed in the detection area,   is different, which in turn affects the capacitance value of the output in the detection area, and the moisture content of the foxtail millets can be estimated according to the corresponding mathematical model.




2.3 System design

An electrode line is drawn from each of the two pole plates on each side of the detection area, and from each of the other two pole plates that form a differential structure with it, to connect to the PCAP01 capacitive-digital converter chip. The chip covers a measurement range from a few fF to several hundred nF with high measurement accuracy, low power consumption and extremely fast measurement speed. As a result, it has a wide range of applications.

(1) Differential capacitance sensor design.

The designed differential capacitive sensor is composed of two pieces of brass plates 150mm long and 100mm wide as well as two pieces of brass plates 100mm long and 50mm wide, both 2mm thick. This structure consists of two pairs of pole plates with a total of two capacitance detection areas. One way is the detection capacitance and the other way is the reference capacitance, that is to say, it constitutes a differential structure. The designed differential structure capacitance sensor can attenuate the interference and enhance the detection accuracy of the sensor with high sensitivity and fine stability. The principle of the capacitance sensor as shown in Figure 3.




Figure 3 | Schematic diagram of differential capacitance sensor.



(2) Distribution of the sensor electric field.

Edge effects in electric fields refer to the phenomenon of the existence of charges or electric fields at the edges or margins of electrodes (Wei et al., 2022). At the edges of the electrodes, there is an increase or decrease in charge density due to uneven charge distribution on the electrode surface. This affects the potential and electric field distribution throughout the electrode. Again, changes in charge density can make the electric field stronger or weaker at the edges, causing the electric field distribution to appear more sophisticated at the edges, which in turn affects the performance of the electrodes and the measurement results.

In view of this above, the electric field simulation of the designed differential structure capacitance sensor is carried out using ANSYS software. The primary steps of the simulation are as follows: utilize SolidWorks to establish the model, create a new electric field analysis in Workbench, and import the model; add copper material in Engineering Data Sources; enter the model module, add environment variables; build local coordinate system of the new model, modify the model’s coordinate system and the material; carry out mesh delineation, and its Element Size is 5mm; apply the current load, Magnitude is set to 4uA; then install the air-domain magnetic flux parallel boundary conditions; set the current density to view the result model, and the electric field strength of the whole result, and lastly, perform the solution. The result is displayed in Figure 4. From the solution results, it can be seen that the differential capacitive sensor electric field distribution is fairly uniform, while getting uniform electric field distribution, the differential structure still cripples the influence of external interference, which can broaden the application field.




Figure 4 | Electric field distribution of differential capacitive sensor.






2.4 Data processing and sample set division

This study focuses on the effect of foxtail millet moisture content, ambient temperature, and volumetric duty cycle on capacitance. The above proportioned foxtail millets with moisture content ranging from 5.64% to 23.52% were subjected to ambient temperatures of 15°C, 22°C and 33°C, with the volume duty cycle set to 0, 1/6, 1/4, 1/3 and 1/2, respectively. The capacitance values collected for each sample at three temperatures and five volume duty cycles, separately, were detected using the designed sensor. Parallel experiments were conducted in each group and repeated three times, which not only prevented the generation of chance errors, but also observed the stability of the sensors during detection. Observe the acquired data so as to search for some abnormal data owing to the test operation and instrumentation, and re-test them after eliminating them. Eventually, 720 sets of capacitance data were obtained. Wherein, the capacitance value data for performing model training is obtained by the following steps: firstly, the output capacitance of foxtail millets with different moisture content in the detection area of the larger size pole plate is recorded. Secondly, the output capacitance of air detected by the smaller size pole plate is recorded. Finally, the two simultaneous output capacitance signals are differenced to obtain the training data for the final model. Generally, when performing model construction, the dataset is divided into training set, validation set and test set. However, in this study, the dataset is directly divided into training and testing sets due to the fact that too much segmentation in a smaller dataset results in a smaller training set, which may lead to overfitting (Ashtiani et al., 2021). In order to provide sufficient training data, this study uses a test set to evaluate the performance of the model. Randomly selected 3/4 of the collected data as the training set for model establishment, and the other 1/4 of the data as the prediction set. The results of their division are shown in Table 1.


Table 1 | Statistics of foxtail millet moisture content data set.






2.5 Modeling methodology and evaluation indicators

The Extreme Learning Machine (ELM) algorithm and the Backpropagation algorithm (BP) are both common machine learning algorithms that are capable of handling complex nonlinear relationships. Therefore, they are able to show excellent performance in many practical problems. At the same time, it is flexible and scalable, and can be adapted to a variety of different problems and tasks. And the performance and complexity of the model can be improved by adding hidden layers or adjusting the network structure. In some cases, both algorithms have superior generalisation capabilities and are able to accurately predict or classify unseen data. Therefore, they are a vital choice of algorithms in the field of machine learning. In this study, these two algorithms are selected for modelling according to the characteristics of the specific problem and dataset, combined with the actual application scenarios and requirements, and weighed and compared to finally select the optimal model.

Extreme Learning Machine (ELM) is a rapid, simplistic and efficacious artificial neural network algorithm. The ELM initializes the connection weights between the input and hidden layers in a random manner, and then maps the input signals to the hidden layers using a high-dimensional nonlinear function. After the mapping is complete, the ELM quickly learns the weights of the output layer by least squares or regularization methods to approximate the objective function (Li and Wu, 2022; Qiaoyun et al., 2023). Compared with traditional neural networks, ELM does not require iterative weight adjustment, has fast training speed and well generalization ability.

Back Propagation (BP) is a popular algorithm which is used to train neural networks. The BP algorithm is based on the gradient descent method, where the weights and biases of the neural network are updated through continuous iterations thereby minimizing the loss function. The BP algorithm first calculates the predicted output of the network through forward propagation, then calculates the error between the predicted output and the actual output through back propagation and passes that error back to the network. The gradient of each layer is calculated in accordance with the chain rule and the weights are updated (Chen et al., 2022b; Li et al., 2022; Zhijun et al., 2022; Lihua et al., 2023). This process is iterated until the loss function is minimized.

Sparrow Search Algorithm (SSA) is a population optimization algorithm. Based on observing the local optimal solution of the target problem, the SSA algorithm iteratively searches for the global optimal solution, which has the characteristics of global exploration and local optimization (Dong et al., 2022; Yan et al., 2022; Yue et al., 2023). Through the global search strategy and the ability to regenerate the initial solution, the sparrow search algorithm can help ELM and BP algorithms to jump out of the local optimal solution and discover a better combination of weights. Moreover, the sparrow search algorithm can also optimize the current solution through local search, and gradually improve the accuracy of the weight (Gao et al., 2022). Taken together, the sparrow search algorithm is more flexible in the global and local optimization process and has the advantages of fewer iterations, faster convergence speed and higher search efficiency.

During the search for food in sparrow populations, populations are laid out in synergy in the form of predators, followers, and early warners. The n×d dimensional vector population consisting of n sparrows is represented by a matrix, which can be expressed as follows in Equation 12:

 

Where, Xij is the jth dimensional position of the ith sparrow; n is the number of individual sparrows in this sparrow population; d is the dimension of the variable space of the objective function. The fitness of the sparrow population can be expressed as follows in Equation 13:

 

Where, f is the individual fitness of the sparrow.

The SSA algorithm in the merit seeking process, the discoverer with higher fitness will have priority in acquiring food during the iterative search process. Since discoverers provide foraging search direction for the entire population, discoverers have a larger search range than joiners (Tang et al., 2023). In the iterative process, the finder position update formula is as follows in Equation 14:

 

Where, t is the current number of iterations; T is the maximum number of iterations; XFi,j is the position of the ith sparrow in the j-th dimension. α∈ (0, 1] are uniform random numbers. R∈[0, 1] and ST∈[0.5, 1] are the early warning values and safety values, respectively. Q is a random variable obeying a normal distribution. When R<ST, no natural enemies are found in the vicinity of the population and the foraging environment is safer. At this point the discoverer can conduct an extensive search. When R≥ST, part of the sparrows in the population have detected the predator and started to alert the other sparrows in the population. The population tunes into an anti-predator mode and needs to seek a safe area as soon as possible (Chen et al., 2022a).

For joiners, whose behavioural characteristics are influenced by the discoverer, the location update formula as Equation 15:

 

Where, XP is the current optimal position in which the discoverer is located; XL is the current global worst position; L is a matrix of dimension 1×d and all elements are 1; A is a matrix of dimension 1×d and each element of which is randomly 1 or -1, and A+=AT(AAT). While i>0.5n, the ith joiner is less acclimatized and does not receive food, is in a very starved state, which requires flying to other regions in order to replenish its energy. While i ≤ 0.5n, the ith joiner will forage randomly in the vicinity of XP.

Throughout the population, some of the sparrows serve as early warning scouts, responsible for spreading warning signals to the entire population, and thereby leading the population to a new safe area. Sparrows accounting for 10% ~20% of the total population are randomly selected in each generation of the population to perform the early warning function, and their location update formulas are as follows in Equation 16:

 

Where, XB is the current global optimal position; fi is the fitness of the current sparrow individual; fg as well as fw are the current global optimal and worst sparrow individual fitnesses, respectively. β is a step control parameter that obeys a normally distributed random number with variance 1 and mean 0. K∈[-1, 1] is a random number, an infinitesimal constant, mainly to avoid zeros in the denominator of the fraction. While fi>fg, the sparrow is at the edge of the population and is vulnerable to predators. While fi≤fg, the sparrow in the middle of the population realizes the danger, which requires approaching other sparrows in the population so as to reduce the probability of predation (Xue and Shen, 2020).

Sparrow search algorithm (SSA) may encounter some problems in solving optimization problems such as getting stuck in the local optimal solution, failing to find the global optimal solution, convergence may be slower, requiring more iterations to reach the optimal solution, and the performance is highly dependent on the selection of parameters like the generation of the initial solution and the scope of the search, and some other issues, which can be optimized by Logistic algorithms (Wanli et al., 2019; Dingjie et al., 2021; Xin et al., 2021). Logistic chaotic mapping is a typical representative of chaotic mapping, which is more extensively applied due to its simple mathematical form. Logistic chaotic mapping is used to particle swarm algorithm, which can optimize the initial population. The mathematical expression is as follows in Equation 17:

 

Here, Yn∈[0, 1] and a∈[0, 4] are the Logistic parameters.

As a gets closer to 4, the range of values of Y is more nearly evenly distributed over the entire [0, 1] region. When a is taken as 4, the system is in a completely chaotic state and the uniformity of the mapping distribution reaches an extreme value. That is, with the initial condition Y0, the sequence generated by the Logistic mapping is non-periodic and non-convergent. Outside this range, the sequence must converge to a particular value. With the increase of a, the value of Y tends to be uniformly distributed in the interval [0, 1] (Andi et al., 2021). Applying Logistic chaotic mapping to SSA increases the homogeneity of the initial solution distribution, enhances the optimization efficiency and traversal uniformity, as well as improves the population search capability. In addition, it also overcomes the shortcomings of the swarm intelligence algorithm to a certain extent, such as the reduction of population diversity when approaching the optimal solution, the tendency to fall into the local optimum, and the reduction of search accuracy.

In summary, the Logistic algorithm can optimize the problems encountered by SSA in finding the global optimal solution, accelerating the convergence speed and optimizing the parameter selection, improving the optimization ability and efficiency of SSA so that it is more suitable for solving specific problems (Wang et al., 2021; Zhang et al., 2022).

In order to strengthen the accuracy and stability of the prediction model, Logistic algorithm is used to optimize Sparrow Search Algorithm (SSA), and then Back Propagation (BP) algorithm and Extreme Learning Machine (ELM) algorithm are optimized again individually. After that, the input and output layers are modeled and analysed. Using the test set correlation coefficient R as the model evaluation index, the inverse estimation model that can accurately predict foxtail millet moisture content was preferred after comparative analysis. Ambient temperature, volumetric duty cycle, and detected capacitance values were used as independent variables, and foxtail millet moisture content was used as the dependent variable to establish a prediction model. The evaluation metrics of the prediction model are correlation coefficient (R), root mean square error (RMSE) and relative percent deviation (RPD). The expressions are given in the following Equations 18–20. A larger correlation coefficient R of the prediction model indicates a higher correlation. The smaller the RMSE of the prediction model is, the better the prediction effect of the model is. When RPD< 1.4, the constructed model is regarded as unreliable. When 1.4< RPD< 2.0, the constructed model is regarded as relatively reliable. When RPD > 2.0, the constructed model is regarded as having high reliability and can be taken into account for model analysis (Tian et al., 2023). In this study, when using the ELM algorithm, the number of hidden layers was set to 100, the number of populations was set to 20, and the maximum number of iterations was set to 20. When using the BP algorithm, the number of nodes in the input layer was set to 3, the number of nodes in the output layer was set to 1, the number of nodes in the hidden layer was set to 5, the number of populations was set to 20, and the maximum number of iterations was set to 20, and the target error for the training of the neural network was 0.01.

 

 

 

Where, xi is the moisture content data;   and   are the average values of the corresponding variables; yi is the actual value;   is the predicted value; N is the number of samples.





3 Results and analysis



3.1 Effect of moisture content on foxtail millet capacitance

The capacitance variation curves for foxtail millets with different moisture contents at the same temperature (22°C) and the same volume duty cycle (1/3) are shown in Figure 5. This is due to the fact that the capacitance of different samples is affected variously by the moisture content of the wet base, which is mainly manifested by the fact that the higher the moisture content of the wet base of the foxtail millet sample, the higher the capacitance. Foxtail millet moisture content refers primarily to the amount of internal free water. While the moisture content is low, the foxtail millets are mainly bound water inside, the intensity of cellular respiration is weak, the intracellular ionic movement is not active, and the effect of moisture on the capacitance is not significant. Along with the increase of moisture content, the free water content increases and eventually extends to the outside to form a multilayer molecular membrane, and the dipole moment then becomes larger. At the same time, cellular respiration is strengthened and internal ionic activity is enhanced, at which time the capacitance tends to increase (Pan et al., 2016; Chengjie et al., 2021; Guangyu et al., 2021; Xianglin et al., 2022). The specific relationship is shown in Equation 21:




Figure 5 | The relationship among moisture content and capacitance values.



 

Where C denotes the capacitance value and W denotes the foxtail millet moisture content.




3.2 Effect of temperature and volume duty cycle on foxtail millet capacitance

Figure 6 shows the curves on the effects of volumetric duty cycle (which can also be called volumetric concentration) and temperature for the foxtail millet capacitance.




Figure 6 | Effect of volume duty cycle and temperature on foxtail millet capacitance. Figure (A) demonstrates the volume duty cycle versus capacitance. Figure (B) demonstrates temperature versus capacitance.



It can be seen from Figure 6A that at a certain temperature (22°C) and constant moisture content, the foxtail millet capacitance has an increasing trend as the volume duty cycle increases. This is due to the fact that the density of the foxtail millet increases when it is squeezed, with a consequent increase in the amount of foxtail millet per unit volume, and more electric field energy can be stored, so that the measuring instrument will measure a greater capacitance (Zhiheng et al., 2019; Wenchuan et al., 2023).

It can be seen from Figure 6B that at the same duty cycle (1/3), when the moisture content is constant, the value of the foxtail millet detection capacitance gets larger with the increase in temperature as a whole. The tendency to change is more pronounced in the high moisture content samples than in the low moisture content samples. The reason for this is that the rising temperature causes ionization of water molecules and the ion concentration goes up, which will accelerate the steering polarization of water molecules under the action of electric field. In the meanwhile, the rise in temperature enhances the thermal motion of water molecules, accelerating the orientation motion of polar molecules and the Brownian motion of free water within the foxtail millet. The generating polarization effect is greater than the thermal motion effect, which results in an increase in the relative dielectric constant of the foxtail millet, and therefore leads to an increase in its detection capacitance value.




3.3 Modeling and comparative analysis

In order to verify the reasonableness of the optimization algorithm, this study chooses six benchmark functions, i.e., F1, F2, F3, F4, F5, and F6, for testing, and sets the relevant parameters of the Logistic-SSA algorithm and the SSA algorithm to the same values. In this test, the population size is set to 30 and the number of iterations is set to 20 to compare and analyse the performance of the SSA algorithm before and after the improvement of the SSA algorithm using the Logistic algorithm.

The functional expressions for the six selected benchmark functions are given in Equations 22–27 below:

 

 

 

 

 

 

Figure 7 below shows the iteration curves of the SSA algorithm and the Logistic-SSA (LCSSA) algorithm tested with the six benchmark functions presented above. It can be intuitively seen that the introduction of the optimization algorithm significantly improves the initial solution, improves the problem of SSA falling into local optimization, and at the same time reduces the minimum fitness value. Overall, the improved algorithm is closer to the ideal optimal solution, can better jump out of the local optimization, and effectively improves the performance of the optimization search.




Figure 7 | The iterative curves of SSA vs. LCSSA with 6 benchmark functions. Figure (A) shows the SSA and LCSSA iteration curves for the F1 function. Figure (B) shows the SSA and LCSSA iteration curves for the F2 function. Figure (C) shows the SSA and LCSSA iteration curves for the F3 function. Figure (D) shows the SSA and LCSSA iteration curves for the F4 function. Figure (E) shows the SSA and LCSSA iteration curves for the F5 function. Figure (F) shows the SSA and LCSSA iteration curves for the F6 function.



In order to select the best detection model, the logistic-SSA algorithm and the SSA algorithm were used to optimize the BP and ELM algorithms, separately, for predicting the moisture content of the foxtail millets. The training set samples, and prediction set samples were randomly grouped in the ratio of 3:1. Using the empirical formula, as shown in Equation 28, to determine the number of nodes h in the hidden layer, the optimal prediction is searched for. In this case, the number of nodes in the input layer is set to 3 and the number of nodes in the output layer is set to 1.

 

Where, m is the number of nodes in the input layer, n is the number of nodes in the output layer and a is a constant between 1 and 10.

The temperature, volumetric duty cycle, and detection capacitance values were selected as independent variables for modelling and analysis, and the moisture content of the foxtail millet was chosen as the dependent variable to structure the model. The R, RMSE, RPD of the training set and prediction set for the foxtail millet moisture content estimation using Logistic-SSA-BP algorithm were 0.6404, 4.0130, 1.3020, and 0.5908, 4.8262, 1.2394, respectively. The R, RMSE, RPD of the training set and prediction set for the foxtail millet moisture content estimation using Logistic-SSA-ELM algorithm were 0.8022, 3.2887, 1.6751 and 0.7016, 3.7150, 1.4035, respectively. The prediction accuracy is significantly improved compared to both SSA-BP algorithm, BP algorithm and SSA-ELM algorithm, ELM algorithm. The use of differential capacitance sensors combined with deep learning algorithms can realize real-time and accurate detection of the foxtail millet moisture content, providing data support for precision agriculture, which is conducive to improving the quality and yield of foxtail millets. The results of the prediction accuracy of the established models are illustrated in Table 2, where it can be seen that both the Logistic-SSA-ELM algorithm and Logistic-SSA-BP algorithm have remarkably improved the prediction accuracy of the foxtail millet moisture content. The Logistic SSA-ELM algorithm has a good prediction effect on the moisture content of foxtail millet, which can be predicted to a certain extent.


Table 2 | Modeling results based on different algorithms.



From the prediction results of different models in Table 2, the accuracy of the foxtail millet moisture content prediction model that was established using the Logistic-SSA-ELM algorithm was optimal. The predicted results of RP were 0.0007 and 0.0190 higher than that of SSA-ELM and ELM respectively, reaching 0.8022. In comparison to SSA-ELM and ELM, RMSEP were reduced by 0.0923 and 0.184 respectively, reaching 3.2887. As compared to SSA-ELM and ELM, RPDC improved by 0.0458 and 0.0888 respectively, reaching 1.6751. Overall, the Rc and RPDc values of the optimised model are improved over the original model and the RMSEc value is reduced over the original model. The accuracy of the constructed model was high, and it could be used for rapid detection of moisture content in field foxtail millets. Using differentially structured capacitive sensors for moisture content measurement in foxtail millets is feasible and enables rapid on-line detection that can be extended to a wider range of applications.

The Figure 8 exhibits the comparison diagram between the true values and the predicted values which are obtained by using different algorithms. Wherein, Figure (A) shows a graph on the comparison of the true values and the predicted values output using the BP algorithm. Figure (B) shows a graph on the comparison of the true values and the predicted values output using the SSA-BP algorithm. Figure (C) shows a graph on the comparison of the true values and the predicted values output using the Logistic-SSA-BP algorithm. Figure (D) shows a graph on the comparison of the true values and the predicted values output using the ELM algorithm. Figure (E) shows a graph on the comparison of the true values and the predicted values output using SSA-ELM algorithm. Figure (F) shows a graph on the comparison of the true values and the predicted values output using Logistic-SSA-ELM algorithm.




Figure 8 | Plot of true vs. predicted values. Figure (A) shows a graph on the comparison of the true values and the predicted values output using the BP algorithm. Figure (B) shows a graph on the comparison of the true values and the predicted values output using the SSA-BP algorithm. Figure (C) shows a graph on the comparison of the true values and the predicted values output using the Logistic-SSA-BP algorithm. Figure (D) shows a graph on the comparison of the true values and the predicted values output using the ELM algorithm. Figure (E) shows a graph on the comparison of the true values and the predicted values output using SSA-ELM algorithm. Figure (F) shows a graph on the comparison of the true values and the predicted values output using Logistic-SSA-ELM algorithm.



The above data processing and predictive modelling were done using Matlab software (USA, MathWorks) and plotted using Origin 2018 software.





4 Conclusion

In this paper, a differential capacitance sensor was designed in order to analyse foxtail millet under the influence of moisture content, ambient temperature, and volumetric duty cycle factors with the relationship to the measured capacitance value. Combining Logistic-SSA-BP and Logistic-SSA-ELM algorithms for model prediction of foxtail millet water content. The results indicate that the model predicted using the Logistic-SSA-ELM algorithm is more accurate. Meanwhile, it can also be seen that using differential capacitance sensors to detect the moisture content of grains is effective and has potential.

The pattern of change in the capacitance of foxtail millets at different moisture contents, ambient temperatures, and volume duty cycles was explored. In the moisture content range of 5.64% to 23.52%, the capacitance values increased with the increase in moisture content of the foxtail millets. In the temperature range of 15°C to 33°C, the foxtail millet capacitance increased with the increase of ambient temperature. In the volume duty cycle range of 0 to 1/2, the foxtail millet capacitance increased with the increase of volume duty cycle. The findings revealed that moisture content, ambient temperature and volumetric duty cycle have a notable effect on the capacitance values.

Logistic algorithm is introduced to optimize the Sparrow Search Algorithm (SSA), and then Back Propagation (BP) algorithm and Extreme Learning Machine (ELM) algorithm were optimized again respectively. The experimental results suggest that the ELM model optimized based on the Logistic-SSA algorithm is selected as the detection model of foxtail millet moisture content, and the predictive performance is satisfactory. The predicted results for RC, RMSEC, RPDC and RP, RMSEP, RPDP are 0.8022, 3.2887, 1.6751 and 0.7016, 3.7150, 1.4035 respectively. As seen, the predictive model has a high degree of accuracy. The method proposed in this paper can further improve the detection accuracy of the foxtail millet moisture content detection model, furthermore, this method provides thoughts and theoretical references for the prediction of moisture content of other crops. However, if the foxtail millet contains other conductive substances, such as metal particles, these substances may cause distortion of the capacitance measurement results. Therefore, care needs to be taken to avoid interference from conductive substances during the measurement. At the same time, capacitance measurement requires good electrode contact to ensure accurate measurement results. If the electrodes have poor contact or are loose, the measurement results may show large deviations.




5 Discussion

This paper presents a method for modelling differential capacitive sensors using Logistic-SSA-ELM algorithm. The method effectively reduces the influence of environmental disturbances on the measurement results and improves the measurement accuracy and reliability. Compared with other methods, capacitance sensors are highly sensitive, real-time, inexpensive, and capable of capturing small capacitance changes, providing a reliable means of accurately measuring foxtail millet moisture content, and providing strong support for improving agricultural production efficiency and resource utilisation. In addition, the study combines knowledge of electrical engineering and food science to provide a comprehensive study on the measurement and modelling of foxtail millet moisture content. An international audience may be interested in the novel algorithms and interdisciplinary applications of this study, as it has potential applications in food science and electrical engineering. However, this research has not yet been integrated with some mechanical devices such as combine harvesters for overall practical applications. Moreover, if the foxtail millet contains more impurities, dust, etc., it will interfere with the capacitance measurement results and may cause errors in the experimental results. These aspects need to be explored further to ultimately move towards modern agriculture. This research provides a viable approach to agricultural production that can help improve the efficiency and quality of foxtail millet production. Using the capacitance method, in combination with the designed capacitance sensor, provides an advanced and reliable solution for the measurement of moisture content in foxtail millet. This technology has great potential to promote modernisation of agriculture, increase the efficiency of agricultural production and enable smart agriculture. Through enabling precision measurements, it provides a new way to manage the quality and optimise the yield of foxtail millets, laying the foundation for sustainable agriculture and precision farming.
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Introduction

Precise semantic segmentation of microbial alterations is paramount for their evaluation and treatment. This study focuses on harnessing the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, aiming to improve disease detection accuracy under natural acquisition conditions.





Methods

Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-B5 - were thoroughly analyzed to enhance disease detection, targeting diseases such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot, Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted of 2,450 raw images, expanded to 4,574 augmented images. The Segment Anything Model integrated into the Roboflow annotation tool facilitated efficient annotation and dataset preparation.





Results

The results reveal that MiT-B0 demonstrates balanced but slightly overfitting behavior, MiT-B3 adapts rapidly with consistent training and validation performance, and MiT-B5 offers efficient learning with occasional fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently outperformed MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general.





Discussion

The findings provide key insights for researchers to select the most suitable encoder for disease detection applications, propelling the field forward for further investigation. The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.





Keywords: computer vision, mix transformer encoders, disease detection, smart agriculture, food safety




1 Introduction

As artificial intelligence continues to find applications in diverse domains, the field of agricultural science is no exception. Computer vision methodologies have been introduced to various tasks related to plant image analysis. These tasks encompass plant classification, as demonstrated in the works of Barre et al. (2017) and Wäldchen and Mäder (2018), as well as the detection of plant diseases and pests, as evidenced by Shruthi et al. (2019) and Chouhan et al. (2020).

The detection of plant diseases and pests has garnered substantial interest, mainly centering around deep-learning-driven computer vision techniques. Distinct from traditional computer vision models that rely on human-crafted image features, these modern approaches display enhanced robustness to environmental disparities, attributable to extensive training on expansive datasets. The Egyptian agricultural economy has witnessed a surge in prominence pertaining to strawberry farming, attributed largely to the nation’s auspicious climate and fertile lands located in regions like Wadi El Natroun, El Beheira, and Fayoum. Ideal for strawberry cultivation, these territories accommodate bountiful harvests annually from November to April. Spearheading strawberry production in the Middle East and North African region, Egypt recorded a yield of approximately 597.03 thousand tons in 2020. Export trends indicate a steady flow of strawberry shipments, predominantly directed towards European markets, culminating in a figure of 24.72 thousand tons in 2022 (TRIDGE, 2023).

While the strawberry industry in Egypt has experienced growth, it faces certain challenges, such as the need for improved pest and disease management practices. Detecting plant diseases at their initial stages can significantly reduce the need for potentially harmful chemicals and minimize labor expenses associated with managing afflicted plants. Even experienced farmers can face challenges in identifying diseases in large greenhouse settings before they propagate. Hence, an automated disease detection system will serve as a valuable complement to farmers’ expertise and effort. Timely detection and accurate identification of pests are crucial not only for preventing crop damage, but also for avoiding the incorrect and excessive application of pesticide sprays (Dong et al., 2021). From the analysis of various datasets related to strawberry diseases, we have identified the presence of seven distinct diseases: Leaf spot (Mycosphaerella fragariae), Angular leaf spot (Xanthomonas fragariae), Anthracnose rot (Colletotrichum acutatum), Blossom blight (Monilinia fructicola), Gray mold (Botrytis cinerea), Powdery mildew on fruit (Podosphaera aphanis), and Powdery mildew on leaves (Podosphaera macularis). Efficient and accurate segmentation of leaf disease represents a significant area of research. To tackle this challenge, a wide range of computer vision segmentation methods have been employed, leveraging image attributes like hue, texture, form, and spatial information (Pugoy and Mariano, 2011; Revathi and Hemalatha, 2012; Wang et al., 2018; Deenan et al., 2020; Zhao et al., 2020). However, these conventional techniques come with inherent limitations and typically require a significant amount of time. The emergence of deep learning models marks a transformative era for segmenting images. Li et al. (2023) introduced a network grounded in copy-paste techniques and SegFormer, showcasing its prowess in precise segmentation of disease regions and evaluation of their severity, marked by mean intersection over union of 85.38%. Wu et al. (2023) further refined the landscape by enhancing DETR, leading to the efficient segmentation of tomato leaf disease spots and achieving an impressive accuracy of 96.40%. Zhao et al. (2022) proposed a multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R-CNN.

In a comprehensive investigation conducted by (Minaee et al., 2020) an extensive evaluation of segmentation approaches based on deep learning presented in 2019 was carried out. Notably, Convolutional Neural Networks (CNNs) have been extensively utilized in tasks related to the segmentation of agricultural diseases. They have proven instrumental in enhancing the precision of disease spot identification and significantly expanding the range of potential applications (Jiang et al., 2020; Craze et al., 2022; Yao et al., 2022; Yong et al., 2023).

Transformers have shown superior performance compared to convolutional neural networks, achieving state-of-the-art results with fewer parameters and higher computational efficiency (Fan and Liu, 2023). Transformers, particularly self-attention modules, provide efficient object detection models and improve detection accuracy in deep foggy conditions (Shit et al., 2023). They also offer consistent, albeit modest, performance improvements when added to state-of-the-art segmentation models for overhead imagery (Luzi et al., 2023). However, transformers have some limitations. They are difficult to train and have lower performance on small datasets compared to convolutional neural networks (Chen and Feng, 2023). Fully transformer-based models may achieve relatively poor performance, while hybrid models that combine convolutional and transformer-based structures show better results.

Transformer-based architectures can be adapted to handle other visual tasks, such as object detection and segmentation, by leveraging their self-attention mechanism and hierarchical feature representation capabilities. These architectures have shown remarkable advancements in visual segmentation tasks, surpassing previous convolutional or recurrent approaches (Gao et al., 2023).

In the realm of semantic segmentation for agricultural diseases, a series of transformative visual networks based on Transformers has unfolded, showcasing notable advancements. The journey begins with the inception of models like Detection Transformer (DETR) (Carion et al., 2020), Vision Transformer (ViT) (Dosovitskiy et al., 2020), Swin Transformer (SwinT) (Liu et al., 2021), Semantic Transformation model (SETR) (Zheng et al., 2021), and SegFormer (Xie et al., 2021). Building on this foundation (Wang et al., 2022), elevated the SwinT network, employing it for identifying real plant leaf diseases, (Wu et al., 2022) further refined the landscape by enhancing DETR, leading to the efficient segmentation of tomato leaf disease spots and achieving an impressive accuracy of 96.40%. (Reedha et al., 2022) took a visionary leap by applying vision transformer (ViT) for categorizing weeds and crop images obtained from agricultural drones, outperforming traditional CNNs with an outstanding F1 score of 99.28%. In a pursuit of lightweight yet effective solutions, (Li et al., 2022) introduced a network grounded in copy–paste techniques and SegFormer, showcasing its prowess in precise segmentation of disease regions and evaluation of their severity, marked by mean intersection over union of 85.38%. The narrative unfolds further with (Zhang et al., 2023), who suggested a specialized segmentation framework known as the Cross-Resolution Transformer, tailored for identifying the leaf disease of the grape in natural environments. Through these transformative steps, SegFormer emerges as a straightforward, effective, and resilient framework for semantic segmentation unifying Transformers with nimble multi-layer perceptron decoders, thereby contributing significantly to the evolving landscape of agricultural disease segmentation.



1.1 Problem statement

Precise detection and segmentation of strawberry diseases are crucial for effective management and treatment. Traditional computer vision methods often fall short in accurately identifying diseases, particularly under natural acquisition conditions. Deep learning models, especially transformer-based architectures like SegFormer, offer promising solutions. However, selecting an appropriate mix transformer encoder for optimal performance remains a challenge. Moreover, the existing studies often lack in-depth analysis and comparison of different encoder variants in the context of disease detection accuracy. Therefore, this study aims to address these gaps by evaluating and enhancing the SegFormer segmentation model using three distinct Mix Transformer encoders (MiT-B0, MiT-B3, and MiT-B5) for precise identification and localization of various strawberry diseases.




1.2 Contributions

This study explores the potential of SegFormer, a powerful segmentation model, for accurately detecting and distinguishing seven strawberry diseases. Three Mix Transformer encoders within SegFormer were investigated and their performance, adaptability, and impact on disease detection were analyzed. The main contributions can be summarized as follows:

	Hybrid model design: A novel hybrid model leverages the strengths of both Mix Transformer encoders and SegFormer architecture for effective disease segmentation while mitigating overfitting and generalization issues.

	Extensive dataset: Experiments are conducted on a diverse dataset of 4,574 augmented images, ensuring balanced class representation and enabling robust performance assessment under various disease scenarios.

	Quantitative and qualitative results: Using metrics like mIoU and MPA, superior performance compared to the existing methods is demonstrated. Visual examples further confirm the model’s robustness and practical value.

	State-of-the-art performance: This approach achieves outstanding accuracy, efficiency, and reduced model complexity compared to the established models, making SegFormer a strong contender for real-world applications in strawberry disease detection.

	Insights and future directions: Valuable insights into the relationship between encoders and SegFormer performance are provided, guiding researchers in model fine-tuning and tailored strategies for diverse agricultural challenges.

	Wider applicability: The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.



The remainder of the paper is structured as follows: Section 2 reviews previous research to provide context and familiarize readers with the current state of knowledge in the field. Section 3 delves into the materials, methods, and specifics of the proposed model, laying the groundwork for understanding the subsequent experiments. In Section 4, experimental results are presented to demonstrate the proposed model’s performance under various conditions. Section 5 discusses limitations encountered during the research process, promoting transparency and encouraging critical examination. Finally, Section 6 consolidates conclusions drawn from the experimental results and suggests potential avenues for future research.




1.3 Related work

The research evaluating the severity of plant diseases using Convolutional Neural Networks (CNNs) primarily focused on two main approaches. The first category involves techniques centered around image segmentation, while the second focuses on enhancing CNNs, predominantly by incorporating the Attention Mechanism (Naga Srinivasu et al., 2020).

Segmentation-based methods typically utilize popular segmentation networks like DeepLabV3+, U-Net, PSPNet, and Mask R-CNN. For instance, Wang et al. (2022) refined the SwinT network for data augmentation and identifying actual cucumber leaf diseases. Meanwhile, Wu et al. (2022) obtained a remarkable disease classification accuracy of 96.40% for tomat eaf diseases by implementing various improvements to DETR. Additionally, Reedha et al. (2022) leveraged ViT to classify weed and crop images acquired via Unmanned Aerial Vehicles, resulting in an outstanding F1 score of 99.28%. Lastly, Li et al. (2022) put forth a lightweight network grounded in copy–paste and SegFormer for precise disease-region segmentation and severity assessment, yielding a MIoU of 85.38%.

Aside from segmentation-focused methods, researchers explored alternative ways to improve CNNs, mainly concentrating on introducing the Attention Mechanism. Zhang et al. (2023) utilized a three-stage methodology to classify “Huangguan” pears. Initially, Mask R-CNN facilitated the segmentation of “Huangguan” pears from intricate backdrops; subsequently, DeepLabV3+, U-Net, and PSPNet served to segment “Huangguan” pear spots, calculating the proportion of spot area relative to the total number of pixels. This ratio was classified into three distinct grades. During the final phase, ResNet-50, VGG-16, and MobileNetV3 contributed to determining the pear’s condition level.

Liu et al. (2021) applied a staged segmentation concept. First, they separated apple leaves from complicated environments using a deep learning algorithm before detecting the affected regions on the isolated leaves. Subsequently, they gauged the severity of illnesses by computing the ratio of damaged tissue to the entire leaf area.

Moreover, the Attention Mechanism gained prominence in recent studies. Yin et al. (2022) modified the DCNN through integration of multi-scale and Attention Mechanisms, ultimately realizing maize small leaf spot classification. Separately, Liu et al. (2021) combined multi-scale convolution kernels and Coordinate Attention Mechanism in SqueezeNext to estimate illness severity, leading to a 3.02% improvement over the initial SqueezeNext model.





2 Materials and methods



2.1 Experimental environment

In this study, publicly accessible datasets were utilized, specifically the Kaggle Dataset (Afzaal et al., 2021), to create a customized dataset tailored to the training and evaluation requirements of this study. The input image size was standardized to 128x128 pixels. However, it is important to note that the original images in the dataset had varying resolutions. Initially, the Kaggle Dataset comprised 1972 images encompassing seven distinct strawberry diseases. By employing an augmentation process, the overall dataset size was substantially expanded, resulting in a total of 4574 images available in two resolutions: 512 X 512 pixels and 640 X 640 pixels. Table 1 demonstrates a detailed breakdown of how these images were distributed across various disease categories, which provides a comprehensive overview of the dataset’s composition.


Table 1 | Statistics of the Raw and Augmented Datasets.






2.2 Dataset annotation and preparation

In this study, the innovative Segment Anything Model (SAM) integrated into the Roboflow annotation tool (Roboflow, 2023) was utilized to expedite the annotation and preparation of a strawberry disease dataset. This integration allowed for swift annotation of complex strawberry disease instances using a smart polygon tool in the Roboflow editor. SAM demonstrated proficiency in handling intricate object boundaries found in various disease manifestations, enabling the efficient creation of accurate segmentation masks. This approach not only saved considerable time, but also ensured the precision and quality of the annotations. The integration of SAM into the Roboflow annotation tool proved to be a valuable asset, simplifying data preparation and enhancing the accuracy of the semantic segmentation task in this research.




2.3 Dataset Augmentation and preprocessing

A comprehensive set of augmentation techniques was employed to enhance the quality and diversity of the strawberry diseases’ dataset. Data augmentation was performed in all sets of training, validation and test. The augmentation processes included horizontal flips, which help the model adapt to different orientations. Additionally, hue adjustments within the range of -21 to +21°, saturation variations from -5% to +5%, and brightness changes spanning from -25% to +25% were applied. These modifications contribute to the dataset robustness by simulating different lighting conditions and color variations. To introduce realistic imperfections, a blur with a maximum radius of 2.5 pixels and introduced noise, affecting up to 8% of the pixels, was incorporated. Figure 1 illustrates a representative example of applying various augmentation scenarios to powdery mildew leaf images. These augmentation strategies are presented in Table 2 and play a crucial role in improving the dataset variability and aiding the proposed SegFormer-based semantic segmentation model in effectively recognizing and classifying strawberry diseases.




Figure 1 | Representative example of data augmentation scenarios on powdery mildew on leaves. The top row shows the original images, while the bottom row illustrates the images after resizing and data enrichment procedures. The first column displays images after adjustments, including a decrease in hue by -8°, saturation by -1%, brightness by -12%, along with a 1px blur and 8% noise. The second column presents images after horizontal flipping, a 2° hue increase, 5% saturation increase, 23% brightness increase, a 1.75px blur, and 3.25% noise. In the third column, images are shown following an increase in hue by 19°, a 2% saturation boost, 23% brightness enhancement, along with 0.5px blur and 0.75% noise. The fourth column depicts images after a 19° hue increase, and the fifth column shows images with a -18° reduction in hue.




Table 2 | Augmentation methods and their respective settings.



The process of dividing a dataset into training, validation, and test subsets is a fundamental step in deep learning model development, ensuring the model’s generalizability and performance evaluation. In this study, a diverse dataset containing various plant diseases was analyzed. To achieve a balanced and representative split, the size of each class was considered. With 569 images of Angular Leaf Spot, 354 images of Anthracnose Fruit Rot, 819 images of Blossom Blight, 606 images of Gray Mold, 919 images of Leaf Spot, 555 images of Powdery Mildew Fruit, and 752 images of Powdery Mildew Leaf, the data were appropriately distributed. Typically, a common practice is to allocate a significant portion of the dataset to training, around 80–90%, to allow the model to learn from a substantial amount of data. The validation set, which is usually 5–10% of the data, is employed during model development to fine-tune hyperparameters and monitor training progress. The remaining portion, the test set, serves as an unseen dataset to evaluate the model performance objectively, as illustrated in Table 3.


Table 3 | Dataset distribution.






2.4 Efficient Segmentation model training with PyTorch Lightning Framework

In this study, PyTorch Lightning was employed as a powerful deep learning framework to train a semantic segmentation model on a strawberry diseases dataset. PyTorch Lightning provided a streamlined and highly efficient platform for the training process. It abstracted the underlying complexities of training, concentrating on model architecture and experimentation. The use of Lightning structured training loops and integrated callbacks, such as early stopping and model checkpointing, enhanced productivity, while its built-in support for distributed training and reproducibility contributed to the robustness of this research. The resulting model, based on the Segformer architecture, demonstrated impressive performance in semantic segmentation, making PyTorch Lightning an invaluable component of the methodology of the study.




2.5 Early Stopping and model checkpointing

Two crucial techniques were employed in this study for enhancing the training of deep learning models: Early Stopping and Model Checkpointing. The Early Stopping callback is an invaluable addition to the training regimen. It continuously monitors the validation loss as the model learns, and its role is to identify when the progress plateaus. This is defined by such parameters as ‘min_delta,’ which specifies the minimum change in validation loss to be considered as a meaningful improvement. If no substantial improvement is observed for a predefined number of consecutive epochs, set at 10 in the present study, Early Stopping steps in and terminates the training process, preventing unnecessary overfitting and saving valuable computational resources.

On the other hand, ModelCheckpoint plays a pivotal role in preserving the best version of the proposed model. By specifying ‘save_top_k=1’ and monitoring the ‘val_loss,’ it ensures that only the finest Model Checkpoint, the one with the lowest validation loss, is stored. This is crucial because it safeguards the model superior performance and provides a safety net in case of unforeseen interruptions during training. The harmonious interplay of Early Stopping and Model Checkpointing allows to train the proposed deep learning model efficiently, striking a balance between performance optimization and resource management.




2.6 The proposed model architecture

In this study, the SegFormer architecture was harnessed (Figure 2) and fine-tuned for precise semantic segmentation and object detection. NVIDIA advanced SegFormer model, rooted in this architecture, was designed for specialized computer vision tasks. SegFormer core strength lies in its Transformer-based backbone, which excels at capturing contextual information in images. Its encoder-decoder structure and innovative Mix Feed-Forward Network (Mix-FFN) approach address positional encoding and model efficiency challenges, contributing to high-performance yet resource-efficient models.




Figure 2 | SegFormer Architecture Overview: The FFN indicates a Feed-Forward Network. H, W define the input image height and width. C defines the channel dimension in the MLP decoder and N_cls is the number of semantic classes.



Self-attention mechanisms, a hallmark of Transformer models, dynamically focus on relevant image regions. Fine-tuning, using a pre-trained model on the extensive ADE20K dataset, refines the model knowledge for the specific purpose of this study. The dataset diversity enhances the model proficiency in semantic segmentation and scene understanding.

For strawberry disease segmentation, MiT-B0 and MiT-B3 were tailored to handle 512x512 pixel images, while MiT-B5 was configured for 640x640 pixel images. These customizations suit the models to the unique demands of this task.

Figure 2 presents an overview of SegFormer architectural components, which includes both encoding and decoding modules. Within the encoder, the Transformer block utilizes Overlap Patch Embeddings (OPEs) to extract feature representations and down-sample the input image. These extracted features are then fed into two critical components: the Efficient Self-Attention (ESA) and the Mix Feed-Forward Network (Mix-FFN). Here are their components and functionalities: the FFN indicates a Feed-Forward Network; H and W represent the height and width of the original image, respectively; the Transformer Block is the basic structure of the SegFormer backbone network.

To calculate the OPE, standard convolutional layers are employed. Following this, the 2D features are spatially reshaped into 1D representations and subsequently input into the ESA layer. The ESA layer plays a pivotal role in enhancing features through self-attentive computations. To address positional encoding, a 3 × 3 convolution is thoughtfully introduced between the two linear layers of the FFN. This convolutional operation effectively fuses positional information into the network.

In the encoder, Linear Normalization (LN) sequentially follows linear layers, guaranteeing normalized representation of input features. Adopting Gaussian Error Linear Units imparts non-linear properties to the model as an activation function. Crucially, the encoder deploys numerous instances of Encoding Scale-Adaptive Modules (ESAs) and Mix Feature-wise FiLM Functional Units (MixFFNs), collectively increasing the depth of the network and enabling the discovery of subtle distinctions and semantic traits. Notably, individual self-attention calculations occur at each scale inside the ESA, differing from earlier network designs executing cross-scale self-attention computations following merger via CNNs. This independent computation style improves the quality and particularity self-attention mechanisms at respective scales, enhancing pattern recognition and relationship formation.

The present research implements the assorted Mix Transformer encoders (MiT) in the model’s encoder, namely MiT-B0, MiT-B3, and MiT-B5. Classified as real-time SegFormer candidates, MiT-B0 and MiT-B3 excel in speed, while MiT-B5 adheres to the non-real-time standard favoring heightened accuracy. Outlined in Table 4, the principal hyperparameters of these models facilitate comparison. Experimentation entails trialing the three dissimilar SegFormer configurations to identify optimal solutions for detecting various strawberry disorders. Serving as an economical option, MiT-B0 possesses a diminished parameter count of approximately 3.4 million in the encoder and 0.4 million in the decoder. Superior performing MiT-B3 accumulates nearly 47.3 million parameters in total, representing a potent candidate amongst real-time alternatives. Further expanding upon its predecessors, MiT-B5 sports a grander configuration featuring 84.7 million parameters. The detailed comparison of the MiT encoders is shown in Table 4.


Table 4 | Hyperparameters of MiT-B0, Mit-B3, and MiT-B5 architectures.



✓ The values in the list correspond to the predefined settings for stages from stage-1 to stage-4.

✓ Input tensor: typically, the SegFormer model expects input tensors with a shape of (batch_size, 3, height, width).

✓ Kernel size: convolutions within the stem layer use 3 × 3 kernels.

✓ Strides: the value is set to 1 for the majority of the layers in SegFormer.

✓ Activation function: the SegFormer model frequently employs GELU (Gaussian Error Linear Unit).

✓ The learning rate used is 0.00002.

MiT-B0 is the most compact model optimized for real-time applications, MiT-B3 is the larger model suitable for real-time tasks, and MiT-B5 is the largest model specifically designed for high-performance applications.




2.7 Architectural and mechanical variations between mix transformer encoders-decoders

The steps for Understanding SegFormer Variants and their operations can be summarized as follows:

1. Examine three mix transformer encoder options—MiT-B0, MiT-B3, and MiT-B5—each having different sizes, depths, and complexities impacting their capabilities (details are present in Table 4):

	MiT-B0: Smallest encoder with 32–256 channel counts, 4–2 patch resolution, 2 layers per stage, 1 head per layer, and fixed 8x MLP expansion ratios. Trades off feature learning and global context modeling for efficiency.

	MiT-B3: Greater capacity with 64–512 channel counts, 4–2 patch resolution, 3–18 layers per stage, 1–2 heads per layer, and flexible 8x-4x MLP expansion ratios. Balances efficiency and performance.

	MiT-B5: Prioritizes representational power over efficiency, having 3–40 layers per stage, 1–8 heads per layer, and larger width and depth for maximized global context modeling and rich feature learning.



2. Follow SegFormer decoder’s four main steps:

	Obtain feature maps from the four encoder stages and pass them through an MLP layer to modify channel dimensions (256, 768, and 768 for MiT-B0, MiT-B3, and MiT-B5).

	Up-sample or rescale features to a quarter of their original size and concatenate to build a feature map with 256 or 768 channels.

	Combine consecutive features using an MLP layer.

	Generate semantic segmentation predictions using another MLP layer and the merged feature.



Notable is that different encoder architectures lead to varying balances between model size, feature learning, and inference latency, causing distinctions in segmentation proficiency and efficiency.




2.8 Evaluation metrics

There are several common evaluation metrics used to assess the performance of segmentation models. These metrics help measure the accuracy and quality of the segmentation results.



2.8.1 Pixel accuracy (accuracy): calculation of pixel-wise category counts

• Let G represent the ground truth image with correct category labels, and P represent the predicted image with category labels. Additionally, let H and W denote the height and width of the labelled image, respectively. Pij signifies the count of pixels where the true label is category i, and they were predicted as category j. The calculation for Pij is as follows, Equation 1:



• where:

•   represents the count of pixels, where the actual category label is i in the ground truth image, and they are predicted as category j in the predicted image.

•    double summation. It iterates over the height (ℎ) of the label images.

•    another double summation, iterating over the width (w) of the label images. The width of the image is denoted by W.

*   : this is the Kronecker delta function, which checks whether the pixel at coordinates (h,w) in the ground truth image (G) has the category label i. If the condition is true,   equals 1; otherwise, it equals 0.

*   : similarly, this Kronecker delta function checks whether the pixel at coordinates (h,w) in the predicted image (P) has the category label j. It equals 1 if the condition is true and 0 if it is false.

Pixels Accuracy calculates the fraction of correctly classified pixels in the entire image. It provides a measure of overall pixel-level accuracy. MPA and PA are expressed mathematically as follows, Equation 2:



where:

  represents the Pixel Accuracy for category  .

  is the count of pixels where both the actual category label and the predicted label are  . In other words, it is the count of true positives for category  . These are the pixels that were correctly predicted as category  .

  is a summation over j from 0 to k, where k represents the total category numbers (including background categories). It calculates the total count of pixels that are supposed to be category i in the ground truth image, regardless of whether they were predicted correctly or not.




2.8.2 Mean pixel accuracy

Mean Pixel Accuracy, sometimes called Mean Accuracy, calculates the average accuracy of each class. It takes into account the class-wise accuracy and computes the mean, Equation 3.



where:

  denotes the pixel accuracy of the i-th class, k refers to the total number of classes, and the “+1” accounts for the background class. Essentially, MPA averages the individual class accuracies, providing a holistic measure of segmentation performance considering all classes present in the dataset.




2.8.3 Mean Intersection over Union (Jaccard Index):

Mean IoU, or Mean Intersection over Union, quantifies the extent of overlap between the predicted segmentation masks and the corresponding ground truth masks. In other words, it represents the ratio of the intersection for class i to the union for class i, Equations 4–6. Mean IoU is a valuable metric for evaluating the accuracy and precision of semantic image segmentation models (Equation 7), where the intersection for class i is, Equation 4:



Union for class i is given by, Equation 5:



  and   are the predicted and ground truth masks for class i, respectively.

The mathematical expressions for IoU is Equation 6



where  : This part sums up all the pixels that should be category i in the ground truth image, whether they were predicted correctly or not. It includes true positives and false negatives for category i.  : Similarly, this part represents the sum of the count of pixels that were predicted as category j and are supposed to be category i in the ground truth image. It includes true positives and false positives for category i.

By subtracting   from   removes the overlap between the true positives (common pixels between predicted and ground truth). This adjustment ensures that the IoU measures the proportion of the correctly predicted pixels relative to the total area that should be category i in the ground truth, excluding the overlap.



In the context of the segmentation task, k denotes the highest valid class label, while k+1 correspond to the overall sum of classes.




2.8.4 FLOPs

Floating-Point Operations per Second (FLOPS) involves determining the number of floating-point operations a computer or a processor can perform in one second. FLOPS is a commonly used metric to measure the computational performance of hardware, such as CPUs, GPUs, or accelerators. GFLOPs (Giga-Floating-Point Operations per Second) represent one billion floating-point operations per second.






3 Results and discussion

The training and testing setup in this study involved specific hardware and software configurations. The computer used for this research is equipped with 10th generation Intel (R) Core (TM) i7–10870H processor, featuring 16 threads, 8 cores, a base clock speed of 2.21GHz, and a turbo speed of 5GHz. It is equipped with 16MB cache memory and supports a maximum memory size of 128GB (DDR4–2933). The graphics processing unit employed is the NVIDIA GeForce RTX3060, boasting 3840 CUDA cores and 6 GB of video memory. The operating system utilized is Windows 10, and the software stack includes PyTorch Lightning version 1.9.5, Python version 3.8, and CUDA version 11. PyTorch Lightning serves as a lightweight wrapper for PyTorch, streamlining the process of training and evaluating PyTorch models.



3.1 Segmentation visualization for various scenarios

To assess the efficacy of SegFormer, a comprehensive evaluation of the model’s performance was conducted on the testing set. The testing set was systematically divided into distinct subsets, each catering to different disease perspectives. These divisions were primarily based on the nature of the disease, the clarity of disease manifestations, and the density of disease regions.

To evaluate the model’s ability to handle various disease types, three different disease perspectives for each disease were selected as research objects. The results of semantic segmentation of these diverse disease types are pictured at Figure 3. Moreover, for assessing the model’s performance in distinguishing between clear and blurry disease manifestations, samples representing both scenarios were selected, and their segmentation results were visually represented. Additionally, the study investigated the model’s competence in handling the sparseness and density of disease manifestations. Two samples were chosen to represent each scenario, and the segmentation results are visually presented in Figure 3. The visualized results demonstrate SegFormer’s remarkable ability to accurately identify and segment various disease types, consistent with manually labeled and segmented data, validating its effectiveness in semantic segmentation. Table 5 presents a comparative analysis of various Mix Transformer encoder models in diagnosing six prevalent strawberry diseases. The tested models include MiT-B0, MiT-B3, and MiT-B5, evaluated on angular leaf spot, anthracnose fruit rot, blossom blight, gray mold, leaf spot, powdery mildew on fruit, and powdery mildew on leaves. Each entry contains the corresponding test loss, test mean pixel accuracy (MPA), test mean Intersection over Union (mIoU), computation complexity (GFLOPs), and the total estimated model parameter size in megabytes (MB). This detailed comparison helps assess each model’s performance, computational efficiency, and model size to guide developers and researchers towards an informed decision when selecting an appropriate model for specific strawberry disease detection tasks.




Figure 3 | Visual representation of segmentation across various instances of strawberry diseases.




Table 5 | Comparative performance analysis of various mix transformer encoder models.



Based on the visual results for segmentation of various strawberry diseases Figure 4 represents an explanation of the key observations:

	For Angular Leaf Spot disease, MiT-B3 and MiT-B5 perform well in identifying multiple spots on the leaves. MiT-B0 struggles with smaller spots. MiT-B5 delineates boundaries most cleanly.

	On Anthracnose Fruit Rot, all three encoders (MiT-B0, MiT-B3, MiT-B5) achieve accurate localization and segmentation of the disease regions. MiT-B5 produces the most precise segmentation boundaries.

	For Gray Mold, MiT-B3 and MiT-B5 accurately capture the diffuse disease regions, while MiT-B0 misses some portions. MiT-B3 provides finer segmentation.

	On Leaf Spot disease, MiT-B3 and MiT-B5 precisely identify and segment the multiple disease spots. MiT-B0 can detect some smaller spots. MiT-B5 offers the highest precision.

	For Powdery Mildew on Leaves, MiT-B5 clearly outperforms MiT-B0 and MiT-B3 in detecting the scattered powdery patterns. Its segmentation aligns closely with ground truth.

	On Powdery Mildew on Fruits, all encoders of MiT-B0, MiT-B3 and MiT-B5 achieve good localization. MiT-B5 provides the most accurate delineation.

	Finally, for Blossom Blight, all encoders effectively identify the affected flower regions.






Figure 4 | Visual representation of strawberry diseases segmentation process.



As shown in Figure 4, MiT-B3 and MiT-B5 consistently outperform MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general. The results highlight the importance of selecting appropriate encoders matched to disease characteristics and use cases.




3.2 Boosting model training performance through augmentation techniques

The comparative results validate that data augmentation provided notable benefits for model training using the MiT-B3 encoder on the powdery mildew leaf disease dataset. Specifically, training with augmented data led to faster convergence evidenced by lower losses, reduced overfitting indicated by smaller gaps between training and validation metrics, more stable validation performance, and higher accuracy. For instance, by epoch 39 the training mean IoU reached 0.9 with augmentation versus 0.86 without. Meanwhile, the validation mean IoU improved gradually to 0.69 with augmentation compared to more fluctuation and ending at 0.68 without. Similarly, validation mean accuracy climbed to 0.76 with augmented data versus plateauing at 0.74 without. The consistent improvements in key metrics like loss, IoU, and accuracy demonstrate that introducing expanded diversity through augmentation techniques helped the model generalize better and boosted its capabilities, as shown in Figure 5.




Figure 5 | Optimizing Model Training Performance with Augmentation Methods.



The comparisons clearly validate that augmentation enabled superior training and segmentation performance, allowing the MiT-B3 encoder learn faster and achieve higher metrics on the powdery mildew leaf disease dataset.




3.3 Unleashing model potential: early stopping and checkpointing for precise strawberry disease detection

This section demonstrates the transformative power of early stopping and model checkpointing in optimizing a deep learning model for strawberry disease detection, as shown in Figure 6. By strategically employing these techniques, impressive results were achieved:

	Training and validation mIoU reaching 0.96 and 0.93, respectively, after 175 epochs.

	Remarkably low training and validation losses of 0.042 and 0.015 - a testament to the combined effectiveness of these methodologies.






Figure 6 | Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on angular leaf spot and anthracnose fruit rot diseases using MiT-B0 Mix Transformer Encoders.



Early stopping, a vigilant guardian, constantly monitored validation loss during training. When progress plateaued, it intervened, preventing overfitting and saving the model from memorizing training data instead of learning generalizable features.

Model checkpointing acted as a reliable safety net, preserving the best performing model versions throughout training. This invaluable technique ensured the progress due to potential training hiccups.

Together, these techniques fostered a harmonious balance between model complexity and generalization. The model effectively generalized to the unseen data, accurately identifying various strawberry diseases (Angular leaf spot, Anthracnose fruit rot, Blossom blight) under natural conditions.

The consistent performance across different diseases underscores the approach robustness. In synergy with innovative deep learning techniques, meticulous data preparation, and effective monitoring, early stopping and model checkpointing pave the way for real-world applications demanding high precision, like disease detection in agriculture.




3.4 Dissecting blossom blight detection: MiT-B3 outshines MiT-B0 in SegFormer models

Understanding blossom blight in strawberries through deep learning is crucial for effective disease management. This section compares two prominent architectures, MiT-B0 and MiT-B3, within SegFormer models to see which encoder excels in detection, as shown in Figure 7. The results clarify key factors for choosing the right model for tackling specific diseases.




Figure 7 | Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on blossom blight disease using MiT-B0 and MiT-B3 Mix Transformer Encoders.



MiT-B0: While showing potential, consistency remains a hurdle. During training, its mean IoU (a measure of segmentation accuracy) fluctuates significantly. This suggests difficulty adapting to the disease’s diverse manifestations. However, the gradual rise in validation mean IoU indicates promising generalization to unseen data. Further investigation is needed to unlock MiT-B0’s full potential for consistent accuracy.

MiT-B3: This architecture outperforms in both rapid adaptation and stability. Training mean IoU experiences a remarkable jump from 0.34 to 0.7 within a single epoch, demonstrating efficient learning of disease features. Even after initial fluctuations, validation mean IoU stabilizes and steadily climbs, reaching 0.85. This signifies successful adaptation and consistent accuracy on unseen data, making MiT-B3 ideal for real-world scenarios. The choice of Mix Transformer encoder significantly impacts performance. While MiT-B0 shows potential, MiT-B3 dominates when it comes to swift adaptation and reliable detection. Its rapid learning and strong validation performance make it the clear winner for applications demanding fast adaptation and real-world disease detection.




3.5 Unveiling the gray mold buster: MiT-B3 reigns supreme in SegFormer models

Combating gray mold in strawberries requires effective detection tools. This section investigates three Mix Transformer encoders within SegFormer models - MiT-B0, MiT-B3, and MiT-B5 - to find the champion disease detective, as shown in Figure 8. The results hold valuable insights for both disease detection and model selection.




Figure 8 | Training, Validation Sets, and Performance Metrics for SegFormer-Based Model Evaluation on Gray Mold Strawberry Disease using MiT-B0, MiT-B3, and MiT-B5 Mix Transformer Encoders.





3.5.1 MiT-B0

A solid contender, but with room for improvement. While converging well with similar training and validation losses (0.12 and 0.18), a lower validation mIoU (0.79) compared to training (0.87) implies possible overfitting. However, consistent accuracy across training and validation (0.91 vs. 0.87) shows promise.




3.5.2 MiT-B3

Exceptional generalization and fitting are evident in its low training (0.045) and validation losses (0.19). High mIoU values for both training and validation (indicating ability to capture disease details) solidify its lead. Even on unseen test data, it scores a strong mIoU of 0.8567. Impressively high accuracy, especially on the test set, confirms its reliable gray mold identification under diverse conditions.




3.5.3 MiT-B5

Training loss exhibits some instability, potentially impacting performance. While training mIoU is high (0.909), validation and test mIoU are slightly lower (0.82 and 0.835, respectively). This encoder demonstrates respectable scores, although lacks the consistency of MiT-B3. Its high training accuracy (0.95) is mirrored in validation and test sets (0.89 and 0.895), indicating potential but requiring further optimization.




3.5.4 Key takeaways

• Encoder choice matters: MiT-B3 consistently outperforms the others in mIoU, accuracy, and convergence.

• MiT-B0 is well-balanced but susceptible to overfitting.

• MiT-B3 is the champion with exceptional performance and generalization.

• MiT-B5 shows potential, but requires refinement for stability.

The findings: For tackling gray mold, MiT-B3 proves to be the most effective encoder. Its exceptional performance and impressive generalization power make it an invaluable tool for accurate disease detection in real-world scenarios. This study underscores the importance of matching the encoder to the specific disease for optimal results, paving the way for improved strawberry protection and enhanced agricultural practices.





3.6 Detecting leaf spot and powdery mildew with SegFormer models

This section explores the ability of MiT-B0, a Mix Transformer encoder, within SegFormer models to detect two distinct strawberry diseases: leaf spot and powdery mildew fruit disease (Figure 9).




Figure 9 | Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on leaf spots and powdery mildew fruit diseases using MiT-B0 and MiT-B3 Mix Transformer Encoders.





3.6.1 Leaf spot

• Training loss: Experienced two peaks, suggesting temporary difficulty due to disease complexity. However, it eventually reached a low value of 0.05.

• Validation loss: Steadily decreased and plateaued at 0.05, indicating consistent performance on unseen data.

• Mean IoU: Training mIoU reached a high of 0.98, while validation mIoU stabilized at 0.88, demonstrating effective learning and reliable detection.

• Accuracy: Both training and validation accuracy were high (0.98 and 0.93 respectively), confirming accurate disease identification.

Powdery Mildew Fruit Disease:

• Training loss: Fluctuated within 0.12 but peaked significantly at epoch 56. Ultimately, it decreased to 0.1.

• Validation loss: Showed a steadier decrease, plateauing at 0.22 and achieving a test loss of 0.319.

• Mean IoU: Training mIoU was high at 0.92, while validation mIoU was slightly lower at 0.81, indicating efficient learning but less accurate validation performance.

• Accuracy: Training and validation accuracy remained strong (0.98 and 0.88 respectively), with a test accuracy of 0.9296.




3.6.2 Key takeaways

• Adaptability: The model successfully tackled both diseases, highlighting its potential for diverse applications.

• Learning Power: Consistent validation performance signifies effective learning despite training loss fluctuations.

• Trade-offs: Higher complexity (leaf spot) might cause temporary training challenges, but the model adapts and stabilizes.

MiT-B0 proves adaptable in detecting different strawberry diseases. While training loss may fluctuate with disease complexity, the model demonstrates its ability to learn, generalize, and achieve reliable detection, making it a promising tool for precision agriculture.





3.7 Decoding powdery mildew: finding the best AI detector with SegFormer models

This section delves into the performance of SegFormer models equipped with three Mix Transformer encoders (MiT-B0, MiT-B3, and MiT-B5) for detecting powdery mildew on leaves, as shown in Figure 10. Each model reveals unique behaviors and outcomes, offering valuable insights for choosing the right tool for the job.




Figure 10 | Training, Validation Sets, and Performance Metrics for SegFormer-Based Model Evaluation on powdery mildew leaf diseases using MiT-B0, MiT-B3 and MiT-B5 Mix Transformer Encoders.





3.7.1 MiT-B0: efficient learner, room for growth

• Initial training demonstrates difficulties with loss fluctuations, revealing adaptation challenges.

• Validation loss stays stable, providing good generalization for unseen data.

• The encoder achieves a respectable mean IoU of 0.89 and accuracy of 0.92.

• Its low computational cost (1.269 GFLOPs) makes it a budget-friendly option.




3.7.2 MiT-B3: speedy adapter, ideal for new disease variants

• It quickly adapts during training, boosting mean IoU to 0.9 and accuracy to 0.94.

• Validation performance also thrives, due to early stopping for efficient training in 60 epochs.

• It is ideal for scenarios demanding swift adaptation to novel disease variants.




3.7.3 MiT-B5: fast learner, high accuracy (but pricey)

It converges rapidly with early stopping, reaching a high mean IoU of 0.9 and accuracy of 0.93 on both training and validation.

• It takes fewer epochs but demands more computational power (18.70 GFLOPs).

• It is perfect for situations where accuracy is paramount and resources are plentiful.




3.7.4 Matching tool to task: a balancing act

• Encoder choice significantly impacts performance and adaptation speed.

• Complex diseases like powdery mildew benefit from MiT-B3’s quick adaptation.

• For efficiency-driven applications, MiT-B0 might be the best option.

Selecting the optimal Mix Transformer encoder specific disease, dataset, and resource constraints should be considered. Understanding the trade-off between computation, training time, and accuracy is crucial for real-world success. This detailed analysis empowers informed decision-making for disease detection tasks, ensuring the best AI tools application.





3.8 Comparative analysis with other segmentation models

To assess the effectiveness of the mix transformer encoders under study, several major segmentation models were trained and fine-tuned using the training and validation sets. Table 6 below provides a comparative analysis of popular segmentation models and the proposed SegFormer variants. The comparison covers essential metrics like Total Parameters (M), mean Intersection over Union (mIoU), Mean Pixel Accuracy (MPA), and Flops (G). This comprehensive evaluation assists researchers and practitioners in determining the optimal model for their specific computer vision tasks, considering the trade-offs between model complexity, computational cost, and segmentation performance. Presented here are widely used models such as U-Net, DeepLabV3+, SegNet, and SETR, together with the newly proposed SegFormer configurations equipped with MiT-B0, MiT-B3, and MiT-B5 encoders.


Table 6 | Comparative analysis with other segmentation models.



As shown in Table 6, starting with model complexity - SegFormer demonstrates highly competitive performance with significantly lower model parameters compared to such state-of-the-art models like SETR and DeepLabV3+. For instance, even the largest MiT-B5 variant of SegFormer has 85% lesser parameters than SETR. This indicates SegFormer can match or exceed the capabilities of much larger models with far fewer parameters.

In terms of accuracy, measured by mean IoU and mean pixel accuracy, SegFormer consistently achieves outstanding results, outperforming classic models like U-Net, SegNet, and PSPNet. The MiT-B5 variant in particular exceeds DeepLabV3+ and comes close to SETR, which is remarkable given SETR’s massive size. This shows the representation power and generalization ability of SegFormer.

Finally, regarding efficiency, SegFormer requires significantly lower Floating Point Operations (FLOPs) compared to prior models like SETR and PSPNet. The smallest MiT-B0 SegFormer operates at less than 2 GFLOPs, enabling real-time inference on edge devices. Even MiT-B5 operates at nearly 4x lower FLOPs than SETR.

SegFormer establishes a new state-of-the-art in semantic segmentation across all key aspects - lower model complexity, greater accuracy, and higher efficiency. For strawberry disease segmentation, SegFormer provides the right balance of performance, accuracy, and efficiency as evidenced by the comparative analysis. This makes it the ideal choice to deploy in real-world agriculture applications.





4 Limitations and challenges

Despite the promising results and contributions of this research, there are certain limitations that require consideration. Addressing these constraints could give prospects for future exploration and improvements in the field of strawberry disease detection.

• Limited scope of dataset: Although the current study uses an adequately sized and diversified dataset, incorporating additional sources and increasing the volume of data could lead to more robust and generalizable models. Exploring multisource data fusion, combining images taken under different lighting conditions, geographical locations, and camera angles could further strengthen the model’s performance.

• Impact of weather conditions: Environmental factors, such as temperature, humidity, and sunlight exposure play a significant role in the appearance of strawberry diseases. Investigating the influence of these variables on model performance and accounting for dynamic weather conditions could result in more accurate and adaptable models.

• Integration with Internet of Things (IoT) platforms: Connecting the strawberry disease detection system with IoT devices, such as sensors and cameras installed in greenhouses, would facilitate real-time monitoring and decision-making. Further research could explore integrating the proposed model with IoT infrastructure for seamless implementation in agricultural settings.

• Human-computer interaction for user feedback: Developing intuitive user interfaces that allow users to provide feedback on model outputs could create opportunities for continuous learning and model improvement. Iteratively updating the model based on expert user inputs could result in more accurate and trustworthy systems.




5 Conclusion

This study has demonstrated the successful application of the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, striving to enhance disease detection accuracy under natural acquisition conditions. The analysis of three distinct Mix Transformer encoders—MiT-B0, MiT-B3, and MiT-B5—has revealed their unique behaviors and benefits, catering to varying needs in disease detection applications. Adopting the novel SAM integrated into the Roboflow annotation tool enabled efficient annotation and preparation of a strawberry disease dataset, while rigorous augmentation techniques ensures the dataset’s quality and diversity. Balanced partitioning of the dataset into training, validation, and test subsets guarantees fair evaluation and optimized model performance. Implementing PyTorch Lightning, a potent deep learning framework, resulted in a finely tuned semantic segmentation model displaying impressive training and validation mIoU scores of 0.96 and 0.93, respectively. Moreover, SegFormer emerged victorious in comparative tests against other renowned segmentation models, outshining classical competitors such as U-Net, SegNet, and PSPNet in mean IoU and mean pixel accuracy. Crucially, SegFormer demonstrated its prowess operating with significantly fewer parameters and lower FLOPs than cutting-edge alternatives like SETR and DeepLabV3+, cementing its status as a compelling solution for practical agriculture applications. These findings hold great promise for the future of disease detection systems, suggesting that carefully chosen encoders paired with advanced models can deliver substantial improvements in accuracy, efficiency, and adaptability. As a consequence, researchers now have access to actionable insights for selecting the most suitable encoder in disease detection applications, propelling the field forward for further investigation. Future work in this domain includes multi-modal input integration, transfer learning across crops, online learning systems, scalable solutions, custom hardware development, benchmarking and standardization initiatives, open research platforms, and codebase creations. Ultimately, the goal is to establish robust, accessible, and adaptable AI technologies that empower stakeholders in the agricultural sector to make informed decisions and implement timely actions for sustainable food production.
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Counting nematodes is a labor-intensive and time-consuming task, yet it is a pivotal step in various quantitative nematological studies; preparation of initial population densities and final population densities in pot, micro-plot and field trials for different objectives related to management including sampling and location of nematode infestation foci. Nematologists have long battled with the complexities of nematode counting, leading to several research initiatives aimed at automating this process. However, these research endeavors have primarily focused on identifying single-class objects within individual images. To enhance the practicality of this technology, there’s a pressing need for an algorithm that cannot only detect but also classify multiple classes of objects concurrently. This study endeavors to tackle this challenge by developing a user-friendly Graphical User Interface (GUI) that comprises multiple deep learning algorithms, allowing simultaneous recognition and categorization of nematode eggs and second stage juveniles of Meloidogyne spp. In total of 650 images for eggs and 1339 images for juveniles were generated using two distinct imaging systems, resulting in 8655 eggs and 4742 Meloidogyne juveniles annotated using bounding box and segmentation, respectively. The deep-learning models were developed by leveraging the Convolutional Neural Networks (CNNs) machine learning architecture known as YOLOv8x. Our results showed that the models correctly identified eggs as eggs and Meloidogyne juveniles as Meloidogyne juveniles in 94% and 93% of instances, respectively. The model demonstrated higher than 0.70 coefficient correlation between model predictions and observations on unseen images. Our study has showcased the potential utility of these models in practical applications for the future. The GUI is made freely available to the public through the author’s GitHub repository (https://github.com/bresilla/nematode_counting). While this study currently focuses on one genus, there are plans to expand the GUI’s capabilities to include other economically significant genera of plant parasitic nematodes. Achieving these objectives, including enhancing the models’ accuracy on different imaging systems, may necessitate collaboration among multiple nematology teams and laboratories, rather than being the work of a single entity. With the increasing interest among nematologists in harnessing machine learning, the authors are confident in the potential development of a universal automated nematode counting system accessible to all. This paper aims to serve as a framework and catalyst for initiating global collaboration toward this important goal.
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1 Introduction

The process of nematode counting is both labor-intensive and time-consuming, yet it serves as a crucial step in numerous quantitative nematological studies, including the preparation of initial population and final population densities related to nematode management in pot, micro-plot and field trials (Barker and Campbell, 1981). Accurate results heavily depend on the expertise of taxonomy of nematodes of the individuals conducting this task. This study aims to streamline the nematode counting process for Meloidogyne spp. juveniles and eggs by implementing a deep learning algorithm for automation.

Traditionally, nematode counting has been a manual process (Hussey and Barker, 1973; Seinhorst, 1988). Following the extraction of nematodes from plant materials or soil, they are collected in a water suspension and subjected to counting. Prolonged storage in water suspension makes the task of counting and identifying nematodes progressively challenging, even for experienced nematologists, as nematode might die due to depletion of stored food. In some cases, all nematodes in the entire sample are counted, but this can be impractical, especially when dealing with a large number of samples or a high nematode density per sample, due to the considerable time required. Consequently, many laboratories opt to count nematodes by analyzing subsamples from the mother suspension, although this approach can introduce errors and diminish statistical accuracy when few nematodes are counted (Schomaker and Been, 1998). Furthermore, the manual nematode counting process is susceptible to inconsistency when carried out by different individuals or prone to errors that may arise when an individual spends an extended period behind a microscope.

Nematologists have long recognized the challenges associated with nematode counting, prompting a few research initiatives to automate the process. Been et al. (1996) introduced ANECS (Automatic NEmatode Counting System), a software program designed to count juveniles of Globodera spp in water suspension. While this method achieved high detection accuracy, its widespread adoption among nematologists was hindered by the need for specialized and expensive hardware and image analysis systems. In more recent years, Holladay et al. (2016) adapted ImageJ, an open-source image analysis software, to create a standard curve for automated nematode counting based on the black and white pixel sizes in individual images. However, this method is limited to samples containing a single species of similarly sized nematodes and excludes samples with soil and root debris. Given the recent advancements in artificial intelligence, these challenges encountered during automated nematode counting can now be effectively tackled.

Deep learning, a broader realm within machine learning encompassing various architectures like Convolutional Neural Networks (CNNs), has garnered significant research attention among nematologists, as indicated by recent studies (Akintayo et al., 2018; Chen et al., 2020, 2022; Kalwa et al., 2019; Uhlemann et al., 2020). The utilization of neural networks for computer-assisted nematode identification dates as early as 2000 when it was proposed by Diederich et al. (2000). CNNs, the focus of this study, are computer programs designed to replicate how our brains process visual information, proving highly effective in the analysis of biological images, such as microscope pictures. Notably, there are compelling examples of AI-driven approaches for automating nematode counting. In their work, Akintayo et al. (2018) applied a deep learning architecture originally designed for detecting rare objects in cluttered images to the task of identifying eggs of Heterodera glycines. They designed the Convolutional Selective Autoencoder (CSAE) architecture, which facilitated rapid detection, consistency, and accuracy in identifying nematode eggs amidst debris. Likewise, Kalwa et al. (2019) developed a modified version of the U-Net convolutional autoencoder model learning algorithm, specifically customized for detecting H. glycines eggs in purified samples. In contrast to typical approaches using microscopic images, their imaging systems employed a high-resolution scanner and a light-emitting diode (LED) to illuminate the processed sample flowing through a microfluidic flow chip, along with a CMOS image sensor. Both studies necessitated prior staining. In 2020, Chen et al. adapted the standard U-Net architecture to automate the counting of worm-shaped objects. Instead of employing the standard bounding box detection method used in other studies, they utilized the skeleton to address overlapping and curled nematodes. Their initial model was primarily assessed on C. elegans. Subsequently, in 2022, Chen et al. extended their work by developing a segmentation model for cyst detection in soil debris. This was accomplished by leveraging the standard U-Net architecture and ResNet architecture. While not focused on counting, Uhlemann et al. (2020) effectively employed CNNs to differentiate between three entomopathogenic nematode species within the same family. To select the most appropriate architecture for their study, the researchers initially screened 13 CNN architectures available in 2020. They ultimately decided to employ Xception due to its highest accuracy among the options. Additionally, Shabrina et al. (2023) devised a deep-learning model aimed at automatically identifying 11 different genera of plant-parasitic nematodes commonly found in Indonesia. Although their primary focus was classification rather than quantification like Uhlemann et al. (2020), they investigated four distinct architectures, ResNet101V2, CoAtNet-0, EfficientNetV2Bo, and EfficientNetV2M, across various augmentation processes. Their research culminated in the creation of a website capable of analyzing nematode images and providing genus-level identification.

While the aforementioned studies have demonstrated the effectiveness of deep learning for automating nematode counting, they have primarily been limited to single-class object identification within individual images. To make this technology more practical, there is a need for an algorithm capable of simultaneously detecting and classifying multiple objects, even when they cohabit with other objects that are confusing shapes and sizes, such as root and soil debris or non-target nematodes within individual samples. This study aims to address this challenge by developing a deep learning algorithm that can simultaneously identify and classify nematode eggs and juveniles of Meloidogyne spp. while distinguishing them from free-living nematodes and other clutter in the sample. The resulting algorithm will be shared as open-source software on GitHub for public use.




2 Materials and methods



2.1 Sample preparation

Eggs and second stage juveniles (J2) of Meloidogyne spp (RKN). were acquired from cultures maintained on tomato plants by the Plant Science Group at Wageningen University & Research. Eggs were extracted from tomato roots using the bleach method (Hussey and Barker, 1973) and J2s were obtained by incubating 5-cm pieces of infected tomato roots in a mist chamber (Seinhorst, 1988). To create varying densities of nematodes in water suspension containing either eggs or J2s, we diluted the original suspensions. This allowed us to replicate scenarios with specimens in low abundance (non-overlapping specimens) to high density (commonly overlapping specimens) (Figure 1). The J2 suspensions occasionally contained free-living nematodes as contaminations. Before imaging, the J2 suspensions in a petri dish were subjected to a temperature of 40°C for a period ranging from 30 seconds to 1 minute. This heat treatment was employed to minimize their movement and facilitate the imaging process. For further imaging, each well of the CELLSTAR 24 Well Cell Culture Plate (Greiner Bio-One B.V., Alphen aan den Rijn, The Netherlands), was filled with 2ml of either the egg or J2 suspensions.




Figure 1 | Illustrative samples of nematode egg and juvenile annotated images captured with LEITZ DM IRB. Images show eggs with low abundance (A) and high abundance (B), annotated using bounding box annotations, as well as juveniles with low abundance (C) and high abundance (D), annotated using segmentation.






2.2 Image acquisition and annotation

The primary imaging tool for both eggs and J2s was the Leica Stellaris 5 Confocal LSM on a DMi8 microscope (Leica Microsystems, Wetzlar, Germany). Image acquisition was facilitated using LAS-X software V4.40 (Leica Microsystems) with LAS-X Navigator with Assay Editor to automatically visit any assigned location in Multiwell plates, resulting in a total of 600 images for eggs and 1289 images for J2s, which were automatically stitched (at 10% overlap) to display overviews of 24 well plates at a chosen resolution. To ensure image diversity for the algorithm development, two different magnifications and resolutions were employed at standard speed of 600 µm/s, using 400 Hz scan speed at 512 x 512 pixels. Eggs and juveniles were imaged with 5x (NA 0.15) or 10x (NA 0.40) objective. The bright field images used in this study were captured as full transmission images and do not display a confocal z-slice. To further enhance the variety of images for computer learning during the algorithm development process, another LEITZ DM IRB inverted microscope (Leica Microsystems, Wetzlar, Germany) was utilized. Image acquisition was facilitated using ZEISS ZEN lite software (Carl Zeiss NTS Ltd, Oberkochen, Germany) equipped with a Zeiss Axiocam-712 color camera. With a 10x objective (NA 0.22), this camera captured 50 images each for both eggs and juveniles for annotation. A confocal image can be adjusted to any pixel density compatible with the resolution provided by the objective’s numerical aperture (NA), while images captured using the LEITZ DM IRB system with the Axiocam 712 are set at a fixed, high pixel density. The acquisition methods differ significantly: the confocal acquires data pixel by pixel using the XY scanner, whereas the CMOS chip in the Axiocam 712 captures entire frames simultaneously.

Annotation for egg images involved two distinct object classes: dead egg (including eggshells) and nematode egg. These annotations were created using bounding box annotations (Figures 1A, B). Nematode eggs possess an oval morphology, which renders them amenable to straightforward detection techniques, such as bounding box annotations. Specifically, we employed LabelImg, an open-source graphical image annotation tool. Users can access this tool through its GitHub repository at [https://github.com/tzutalin/labelImg]. In the case of nematode juvenile images, we annotated two distinct object classes: root-knot nematode (RKN) and free-living nematode (FLN). This was achieved through segmentation annotation, utilizing Darwin V7 developed by V7 Labs (Figures 1C, D). The vermiform body structure of nematodes is well-suited for the use of segmentation-based methodologies. The segmentation algorithms are particularly effective in properly delineating objects with distinct shapes due to the well-adapted bounds of their thin forms. Further details about Darwin V7 can be found on the V7 Labs website: [https://www.v7labs.com]. A total of 8655 eggs and 5379 dead eggs were annotated from the egg images, along with 4742 RKNs and 1153 FLNs from the juvenile images.




2.3 Model development



2.3.1 Environment setup

The training approach employed a resilient hardware setup. To facilitate expedited computations for deep learning, a specialized NVIDIA GTX 4080Ti Graphics Processing Unit (GPU) with a memory capacity of 12 GB GDDR6X was employed. The necessary computational assistance was facilitated by an Intel Core i9–10900K processor, which possesses a default clock speed of 3.7 GHz and is equipped with 10 cores. The efficiency of data administration and model optimization was enhanced by the system’s utilization of 64 GB of high-speed DDR4 RAM. Additionally, the inclusion of a 1 terabyte Solid-State Drive (SSD) facilitates expedited data retrieval and efficient storing of model checkpoints.

The training environment utilized Ubuntu 20.04 LTS, a widely-adopted and reliable Linux system renowned for its robustness in supporting deep learning activities. The utilization of GPU acceleration was achieved by the utilization of CUDA Toolkit 11.2, which was specifically designed for the NVIDIA GTX 4080ti GPU. The assurance of GPU compatibility was achieved with the installation of NVIDIA Driver version 465.19.01. Python 3.8.10 was utilized as the principal programming language to facilitate smooth connection with deep learning frameworks. Additionally, the OpenCV library version 4.5.3 was incorporated to enable sophisticated image processing operations.

The Mamba package manager, which serves as a viable alternative to Conda, was employed to handle the training environment. The rationale for this choice was rooted in the enhanced effectiveness of Mamba in handling package dependencies and resolving conflicts within the environment. The ‘yolo_env’ Conda environment was constructed using Python 3.8. The integration of Mamba into the installation process facilitated the design of the environment and the installation of packages, ensuring a configuration that was free from errors and efficient. Afterwards, the necessary software packages, such as OpenCV and other relevant components, were installed via Mamba in order to achieve a smooth integration of libraries inside the system. This approach not only facilitated expedited environment configuration, but also enhanced the reliability and replicability of the training pipeline.




2.3.2 YOLOv8 model

YOLOv8, the most recent iteration of YOLO (You Only Look Once) object detection architecture as of January 10 in 2023, was chosen to build a deep learning model for the classification and detection of nematode eggs and juveniles. YOLOv8 is a highly adaptable solution that excels in many tasks related to object recognition and picture segmentation. It effectively combines attributes such as speed, accuracy, and user-friendliness, resulting in a successful and efficient approach. The versatility of the system is demonstrated by its capacity to handle big datasets, and its effectiveness across a range of hardware platforms, including both CPUs and GPUs, is noteworthy. YOLOv8 stands out for its superior performance in terms of both accuracy and execution speed compared to other models. To set up the latest version of the YOLOv8 library in a Python environment, the “ultralytics” package was imported, as detailed in https://yolov8.com/. The Ultralytic repository provides a comprehensive description of the YOLOv8 model architecture.

In a nutshell, it’s important to note that YOLOv8’s anchor-free detection method improves its ability to handle a wide range of object sizes and shapes, all while simplifying the training process. The anchor-free detection in YOLOv8, predicting object centers directly, bypassing the need for predefined anchor boxes. This improves flexibility and efficiency, eliminating manual selection challenges and potential suboptimal results. Additional change in the YOLOv8 architecture which is relevant to our models is the replacement of C3 with C2f in the backbone, which altered the structure. Both C3 and C2f refer to distinct layers within the neural network architecture utilized for object detection. C3 represents a convolutional layer in the YOLO network, which comprises several layers followed by fully connected layers. In contrast, C2f serves as the fully connected layer succeeding the convolutional layers in YOLO’s architecture. The C2f layer is responsible for processing the high-level features extracted by the convolutional layers to generate the final predictions. This alternation in the structure includes switching a 3x3 for the initial 6x6 convolution in the stem. In C2f, outputs from the Bottleneck are integrated, unlike in C3 where only the final output is used. YOLOv8 still maintains YOLOv5’s Bottleneck structure, with the first convolution shifting from 1x1 to 3x3, aligning with the REsNEt block defined in 2015.

We employed the YOLOv8 Extra Large (YOLOv8x) model, which is the most precise but also the slowest among the five YOLOv8 models currently accessible. We used the default settings for both the convolutional layers and hyperparameters. The annotation data was divided into training and validation sets, with 6800 eggs and 4140 dead eggs in the training set, and 1855 eggs and 1239 dead eggs in the validation set, and 3840 RKN and 897 FLN in the training set and 902 RKN and 256 FLN in the validation set. The model’s iterations were halted when the mean Average Precision at a 50% Intersection over Union (IoU) threshold for bounding boxes (metrics/mAP50(B)) reached a plateau, while the loss function indicated that the model was learning. IoU quantifies the overlap between predicted and ground truth bounding boxes, with values ranging from 0 to 1; 0 indicating no overlap and 1 indicating perfect overlap. The loss function evaluates the disparity between a model’s predicted output and the actual target output, providing a measure of its performance on a given task. Minimizing this loss function during training aims to enhance accuracy in object detection. This step was taken to prevent overfitting. The source code for developing our models is available to readers on the author’s GitHub repository (https://github.com/bresilla/nematode_counting).




2.3.3 GUI development

A graphical user interface (GUI) was created to seamlessly integrate segmentation and detection models for nematode eggs and juveniles. This GUI was built using Python and leveraged the “Tkinter” packages. The specific capabilities and features of the GUI are elaborated in the results section. The source code for the development of our GUI can be accessed by readers on the author’s GitHub repository (https://github.com/bresilla/nematode_counting).

Figure 2 demonstrates the operational workflow of SEGNEMA. Following the user’s selection of either a singular image or a batch of images, the application proceeds to partition the designated image into multiple smaller segments. The user retains the autonomy to specify the level of segmentation or opt for an undivided representation. Subsequent to this, the segmented images undergo simultaneous processing by two distinct models: the nematode detection model, responsible for segmentation, and the egg detection model, tasked with generating bounding boxes. Both models result in outputs detailing the quantity of detected and segmented objects. The segmented images are subsequently consolidated, and comprehensive labels, encompassing both detections and segmentations, are embedded. Furthermore, an independent module examines the results, probing for potential overlaps between segmentations and detections. To mitigate potential anomalies, such as duplicate edge detections, a post-consolidation step is employed to rectify redundant counts. This de-duplication process utilizes Intersection over Union (IoU) metrics. IoU measures the overlap between two bounding boxes drawn around detected objects, calculated as the area of overlap divided by the area of union between the two bounding boxes. By setting a threshold for IoU, redundant or overlapping detections can be effectively removed, thereby enhancing the accuracy and efficiency of object detection systems. Additionally, instances wherein an egg is erroneously identified as a nematode are addressed, with any overlaps exceeding the threshold of 60% leading to the elimination of the misidentified egg.




Figure 2 | The operational workflow of SEGNEMA.







2.4 Inference on unseen images

The performance of GUI SEGNEMA was evaluated using a dataset of previously unseen images that included both eggs and juveniles. In total, 100 images were captured, with 50 from the Stellaris 5 Confocal LSM and 50 from the LEITZ DM IRB microscope, each taken at a magnification of 10x. Before being processed by the trained model, an expert conducted object counting for each class within individual images. To evaluate the model’s accuracy, the object count results obtained through the trained model were compared with those determined by the expert. In this evaluation, we examined the relationship between the two counting approaches by calculating the correlation coefficient and analyzing the discrepancies (residuals) between them. Furthermore, linear regression was conducted to assess a linear relationship between the observation and the model prediction for the classes of eggs and J2s. Given the premise that no objects should be detected in the absence of class objects within the images, we set the intercept to zero. This decision was made after conducting additional test runs of linear regression with an intercept and verifying that it was not significantly different from zero. The analyses mentioned earlier were carried out using R version 4.2.2, along with the default library.

Additionally, 10 well overviews from a 24-multiwell plate were made by stitching images with the Stellaris 5 Confocal LSM at a speed of 600 µm/s at a magnification of 10x. Each well contained 2ml of a water with both nematode eggs and juveniles. All images being auto-captured with 10% overlap and stitched by the LAS-X software V4.40, were processed with SEGNEMA to assess the model’s performance. The adjacent images used in the stitching process overlap by 10% of their width and height. This overlap helps in ensuring smooth transitions between the images when they are stitched together, reducing the chances of visible seams or discontinuities in the final stitched image. After being processed by the GUI, an expert performed object counting on the same 2ml of the test suspension using the conventional method of taking aliquot subsamples. In this method, the nematode eggs and juveniles were individually counted in one milliliter of the suspension in four repetitions after diluting to in total of 10ml with water, and the average count was used to determine the total number of test objects in the entire suspension volume. Similarly, to the aforementioned inference images, the relationship between the two counting approaches was analyzed by calculating the correlation coefficient and the residuals to estimate the discrepancy between the two approaches.





3 Results



3.1 Model trained for eggs

By the time it reached the 500th iteration, the model achieved its highest level of accuracy. This was evident through the mean Average Precision at a 50% Intersection over Union (IoU) threshold for bounding boxes (metrics/mAP50(B)) reaching to 0.86, which serves as a measure of the overall quality of object detection (Supplementary Figure 1A). Furthermore, the box loss score suggested that the trained model was still in the midst of learning, confirming that overfitting had not occurred yet. (Supplementary Figure 1B). Examining the confusion matrix (Figure 3), it was found that 94% of instances correctly identified eggs as eggs, and 78% accurately classified dead eggs as dead eggs. Conversely, there was a 2% error rate where instances mistakenly categorized eggs as dead eggs, and a 9% error rate where they erroneously labeled dead eggs as eggs. The model exhibited a failure to detect eggs in 4% of instances and had a similar failure rate of 13% for dead eggs. In specific cases, the model also mistakenly labeled background as one of the two classes, with an 54% occurrence for egg and a 46% occurrence for dead egg, respectively.




Figure 3 | Confusion matrix for the detection of nematode eggs using the YOLOv8x deep-learning model.






3.2 Model trained for second stage juveniles of Meloidogyne spp.

In a manner akin to the trained model for eggs, mAP50(M), which is similar to mAP50(B) but for segmentation, reached its zenith at 0.87 around the 200th iteration (Supplementary Figure 2A). Both the mAP50(M) and box loss score affirmed that the model attained the utmost level of accuracy without the risk of overfitting problem (Supplementary Figure 2B). Analysis of the confusion matrix (Figure 4) revealed that J2s of RKN were correctly identified as RKN in 93% of cases, and FLN were accurately classified as FLN in 79% of instances. Conversely, there was a 4% misclassification rate instances where J2s of RKN were mistakenly categorized as FLN, and 18% misclassification rate where FLN instances were erroneously labeled as J2s of RKN. Furthermore, the model encountered a failure to detect 3% of instances for J2s of RKN and 3% for FLN. In certain scenarios, the model also made the mistake of mislabeling the background as one of the two classes. When it occurs, 70% of such instances were for J2s of RKN and the remaining 30% were for FLN.




Figure 4 | Confusion matrix for the detection of nematode juveniles using the YOLOv8x deep-learning model.






3.3 Instructions for GUI SEGNEMA

The GUI, named SEGNEMA, was developed with individual models trained for egg and juvenile detection and classification (Figure 5). To use this GUI, the user system must meet certain environment requirements; The GUI itself doesn’t need any special requirements apart from a Python environment. However, to run the models, the computer needs to be set up to run neural networks. Specifically, it needs Pytorch installed. All the requirements and setup guide are within the shared link for the code (https://github.com/bresilla/nematode_counting). Users are prompted to make a choice between selecting a folder or an image for analysis through the user interface, specifying the file path accordingly. The interface offers additional options, such as “Threshold” to establish a detection accuracy threshold for each juvenile (“Threshold JUV”) and egg model (“Threshold EGG”), which are set at 50% as default. Users are responsible for adjusting the thresholds through trial and error to achieve optimal detection performance. This can be visually assessed by examining the location of each class object with its bounding box and the associated detection probability values when the models are executed using images captured with a new imaging system. The “Set Grids” option to partition an image into selected grid sizes. Furthermore, users need to define the output file path for a CSV file, which contains the numbers of computer-detected objects for each class, and for output images that display bounding boxes indicating the object locations within the image, as exemplified in Figure 6.




Figure 5 | The interface of the GUI, SEGNEMA, which comprising the both nematode egg and juvenile detection models using YOLOv8x deep-learning models.






Figure 6 | Illustrative samples of the output images of SEGNEMA, displaying the location of each class object with bounding box and their corresponding detection probability values, on the input images captured by Stellaris 5 Confocal LSM (A) and LEITZ DM IRB (B).






3.4 Inference for unseen images

The SEGNEMA GUI was used to perform inference on previously unseen images containing both nematode eggs and juveniles. The predefined thresholds were configured at 0.5 and 0.75 for juveniles, and 0.5 and 0.45 for eggs, specifically for the Stellaris 5 Confocal LSM and LEITZ DM IRB images, respectively. It normally took approximately 4 to 5 seconds to process a single image with the environment facilitated in this study. The model’s performance resulted in correlation coefficient values of 0.81 and 0.98 for J2s of RKNs, and 0.72 and 0.96 for eggs in the Stellaris 5 Confocal LSM and LEITZ DM IRB images, respectively (Table 1). The model performed well for eggs and J2s, as evidenced by the results in Table 1, even in scenarios where the samples were densely populated with objects (Figure 7). The model demonstrated the capability to differentiate between overlapped nematodes when their heads were oriented in different directions, effectively treating them as distinct entities. Moreover, the models exhibited successful object detection, even when the objects were only partially visible within the image. However, the model exhibits a tendency to encounter difficulties when processing irregularly shaped objects, such as nematodes forming spiral patterns or when two objects overlap, giving the impression of a single entity. On occasion, the model may mistakenly identify fibers present in the samples or plate scratches as nematodes, particularly categorizing them as free-living nematodes. Additionally, when nematodes adopt a curled configuration, resembling a round shape, the model tends to struggle in distinguishing whether it is a nematode or an egg. The linear regression models showed that the predicted number of eggs could be obtained by multiplying the manual counting (observation) by 0.98 for Stellaris 5 Confocal LSM and 0.94 for LEITZ DM IRB (P-value < 0.01). Similarly, the predicted number of J2s could be obtained by multiplying the manual counting by 0.75 and 0.89 for Stellaris Confocal LSM and LEITZ DM IRB, respectively (P-value < 0.01).


Table 1 | Correlation coefficients, mean, and median of residuals (the number of observed instances in an image - the number of model-predicted instances in an image) for each class taken by two different imaging systems.






Figure 7 | Linear regression analysis between model predictions and observation for nematode eggs (A) and Meloidogyne J2s (B) for two imaging systems.



Furthermore, the performance of SEGNEMA was assessed on 10 stitched images of an entire well that contained 1 ml of nematode suspension captured using Stellaris 5 Confocal LSM (Figure 8). The alteration made from the aforementioned configuration for the stitched images involved setting the grid size to 10x10 (Grid Size: 10x10). This adjustment allowed for the segmentation of a large-scale image, such as a 69.7MB stitched image, into a 10x10 grid. Consequently, this segmentation enabled processing by SEGNEMA. As per the conventional counting method, the counts of 10 stitched images for juveniles varied between 547 and 1553, while the counts for eggs ranged from 168 to 455. In contrast, using SEGNEMA, the counts of 10 stitched images for juveniles ranged from 492 to 1520, and for eggs, they ranged between 182 and 432. The correlation coefficients between the traditional nematode counting using subsampled aliquots and the counts produced by SEGNEMA were 0.99 for RKNs and 0.98 for eggs. The average and median values of the residuals for the J2s of RKN were 42.5 and 38.5, respectively. Similarly, for eggs, the average and middle values were -2.6 and -2.25, respectively. SEGNEMA processed 10 stitched images in about 3.5 minutes, while performing the same task manually took around 2.5 hours.




Figure 8 | Illustrative sample of the output image of SEGNEMA, displaying the location of each class object with bounding box on the stitched input images captured by Stellaris 5 Confocal LSM.







4 Discussion

Our research showcased the effectiveness of the trained models, which attained a detection accuracy of over 90% for both life stages of Meloidogyne spp. eggs and juveniles, a genus known for its economic importance in various crops (Jones et al., 2013). To make these models easily accessible, we have created an open-source application called SEGNEMA, which can be found on the author’s GitHub account (https://github.com/bresilla/nematode_counting). SEGNEMA enables the simultaneous detection and classification of nematodes and eggs. In the future, additional models can be independently created for different genera, including cyst nematodes like Globodera spp. and Heterodera spp., as well as Pratylenchus spp. These models can then be seamlessly incorporated into the same GUI through the use of transfer learning techniques.

While our models have exhibited high accuracy in detecting and classifying objects, they have encountered challenges that are commonly reported in similar studies, as noted by Akintayo et al. (2018), Been et al. (1996), and Chen et al. (2022). Like the models developed by Akintayo et al. (2018) and Been et al. (1996), our models faced difficulties in distinguishing overlapped objects as distinct entities and in discerning nematodes from organic debris within samples. Furthermore, our models exhibited reduced detection accuracy when it came to FLN compared to the other class objects in this study. This can be attributed to both the limited number of instances for this particular class and the diverse range of lengths and shapes that FLN can assume. Nevertheless, these challenges can be mitigated by incorporating additional images that specifically address these conditions. This study has introduced a framework that can serve as a universal automation solution for nematode detection amidst multiple objects. However, it’s crucial to recognize that no model is flawless, and ongoing improvements in object detection and classification are essential. Therefore, developers and users alike should remain vigilant in identifying scenarios where models may fall short.

In addressing some of the challenges encountered during the development of our model for this study, we experimented with various techniques. Initially, we employed bounding boxes for annotating nematodes, a method commonly used in object detection (Huang et al., 2016), as seen in the work by Akintayo et al. (2018). However, we found that this approach did not yield the desired level of detection accuracy, especially when dealing with objects like nematodes that exhibit diverse shapes, overlap with each other, or are surrounded by debris in the sample. Subsequently, after the unsuccessful attempt with bounding boxes, we explored alternative annotation methods and ultimately concluded that segmentation offered the highest level of detection accuracy. We also investigated the utilization of the skeleton, referred to as key-point detection, as suggested in the study by Chen et al. (2020), which demonstrated successful detection of intertwined and overlapping worm-shaped objects. However, for the small preliminary dataset we used, segmentation proved to be more effective in distinguishing RKN J2s from FLN. Additionally, it’s worth mentioning that even with 10 key-points required to annotate an object, the process was quite labor-intensive and frequently necessitated additional key-points, particularly when annotating curled nematodes. With Darwin V7, the annotation system we employed, which allows for auto-segmentation of objects, facilitated the generation of the large annotated dataset in our study. The utilization of segmentation has also been applied successfully in other studies, such as the detection and phenotyping of cysts in samples with debris, as demonstrated by Chen et al. (2022). Segmentation proved to be a valuable technique for annotating nematodes with diverse shapes, leading to noticeable enhancements in the model’s ability to correctly identify curled nematodes as nematodes, rather than misclassifying them as eggs. However, it’s important to note that further improvement in this regard would benefit from an increased dataset comprising more images depicting such cases.

Moreover, we observed a notable enhancement in our models’ object detection performance across different images and a notable increase in the mAP50 after integrating annotated images obtained from an additional microscope system. Specifically, the mAP50 for the egg model improved from 0.79 to 0.86, while for the juvenile model, it increased from 0.82 to 0.87. Prior to the inclusion of annotated images from the LEITZ DM IRB microscope, our models exhibited high accuracy in object detection primarily on images taken by the Stellaris 5 Confocal LSM system only. However, this performance improved considerably, as illustrated in Table 1 for the final model. Despite the fact that we utilized only two imaging systems in this study, this expansion in the variety of images has a profound impact on the models’ ability to achieve accurate detection. As machine learning models benefit from exposure to a wider array of images, this development translates to enhanced detection accuracy across different imaging systems, beyond those used in this particular study.

An issue previously raised in the context of automated counting systems was their reliance on specialized and costly hardware and image analysis systems, as highlighted by Been et al. (1996). In our study, we addressed this concern by creating a user-friendly GUI called SEGNEMA, which is open source and freely accessible (https://github.com/bresilla/nematode_counting). Once the optimal detection threshold is determined for eggs and juveniles, users should be able to maintain it consistently for the same imaging system, streamlining the usability of SEGNEMA for their specific needs. While SEGNEMA does necessitate a computer environment equipped with substantial graphics processing units (GPUs), this requirement remains reasonably accessible to a wide range of users. The processing time per image using SEGNEMA was typically around 4 to 5 seconds for our images, though this duration may vary depending on the image size. This provides a significantly faster alternative to manual labor for nematode counting, contributing to increased efficiency and productivity in the analysis process. For example, at a magnification of x10 and a speed of 600 µm/s with the Stellaris 5 Confocal LSM, capturing 10 stitched images required 58 minutes. Adjusting the speed can enhance image resolution, but this comes at the cost of a longer image capture time. It’s essential for readers to recognize the trade-off between efficiency (speed) and reliability (resolution). Even when considering the processing time using SEGNEMA, the total time is still less than half of what is typically needed for the conventional nematode counting method involving aliquot subsampling. Moreover, because the imaging system’s stitching process is automated, the waiting period during image acquisition can be utilized for other tasks. Crucially, SEGNEMA ensures consistency in nematode counting, uninfluenced by variations in conditions, unlike manual counting methods.

Our research has effectively demonstrated the promising practical applications of these models, particularly through the user-friendly GUI that enables simultaneous detection and classification of nematodes. Presently, this GUI is tailored for nematode juveniles and eggs, but it possesses significant potential for broader applications across various nematode genera and in different media beyond aqueous solutions. The potential of acquiring fluorescent images simultaneous with the bright field images obtained from the confocal microscope is large and opens doors to automated multiplex (high content) acquisition with no time loss. Without any incubation or staining the autofluorescent images or spectra of nematodes can e.g. provide information on their viability (Forge and MacGuidwin, 1989), and probes can be used to add further specificity to the nematode discrimination.

It’s also crucial to address the challenges identified in our study and similar research endeavors. However, tackling these challenges cannot be the sole responsibility of a single laboratory or research institution. Instead, it requires a collaborative effort, bringing together expertise from both nematologists and AI researchers across multiple organizations and research groups. For our GUI to be thorough in nematode detection and diagnostics, it’s imperative to acquire a wider array of images captured through diverse imaging systems and develop models for different genera. Achieving this goal necessitates enhanced collaboration with fellow nematologists to access their image collections and tap into their expertise in nematode diagnostics. Given the growing interest among nematologists in harnessing the potential of machine learning, we are confident that the development of a universal automated nematode counting system accessible to everyone is within reach. The authors of this paper hope that it serves as a framework and catalyst for initiating global collaboration toward this important goal.
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The rise of artificial intelligence (AI) and in particular modern machine learning (ML) algorithms during the last decade has been met with great interest in the agricultural industry. While undisputedly powerful, their main drawback remains the need for sufficient and diverse training data. The collection of real datasets and their annotation are the main cost drivers of ML developments, and while promising results on synthetically generated training data have been shown, their generation is not without difficulties on their own. In this paper, we present a development model for the iterative, cost-efficient generation of synthetic training data. Its application is demonstrated by developing a low-cost early disease detector for tomato plants (Solanum lycopersicum) using synthetic training data. A neural classifier is trained by exclusively using synthetic images, whose generation process is iteratively refined to obtain optimal performance. In contrast to other approaches that rely on a human assessment of similarity between real and synthetic data, we instead introduce a structured, quantitative approach. Our evaluation shows superior generalization results when compared to using non-task-specific real training data and a higher cost efficiency of development compared to traditional synthetic training data. We believe that our approach will help to reduce the cost of synthetic data generation in future applications.
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1 Introduction

Agriculture globally is more challenged now than ever before, needing to produce more food for a growing human population in the context of accelerating climate change, resource scarcity, and loss of biodiversity. These challenges will require smart, adaptable, and cost-effective technologies, which can maximize yields with minimal resource inputs. To this end, farmers are replacing traditional management practices with highly automated systems. High-tech greenhouses are gaining popularity across the globe, enabling growers to have precise control of crop growing conditions [Ruijs and Benninga (2020); Chow (2021)]; likewise computerized combine harvesters are becoming standard for large-scale open-field farming, removing most of the manual effort required in the open field, significantly increasing yields per labor input [Hassena et al. (2000); Hasan et al. (2019)].

These advanced systems have made farmers increasingly reliant on information and communication technology for management, including wireless environmental monitoring and control systems, remote sensing via unmanned aerial vehicles, and cloud-based farm management software [Mocanu et al. (2015); Messina and Modica (2020)]. The usage of these digital tools has produced large amounts of data that must be efficiently processed, analyzed, and interpreted by the farmer. To address this need, machine learning (ML) has emerged as an essential but still underutilized tool in modern agriculture. Indeed, the practical integration of smart systems powered by ML will be essential to enable agriculture to be maximally resource-use efficient [FAO (2022)].



1.1 Main challenges in machine learning

Successfully training a ML model requires three components: (1) the right architecture (i.e., the right type of network for the task and the right way to train it); (2) huge computational resources (depending on the task, whole computer clusters running for several days); and (3) an extensive amount of training data.

Thanks to the continuous research efforts and an active user community, many problems (such as image classification or segmentation) have established architectures that can be readily used [Meta AI (2024)]. Although computational costs can be high for certain projects, service providers exist that provide those with a high flexibility. In practice the biggest remaining factor determining the final performance is the availability of sufficient training data [Mosqueira-Rey et al. (2023)].

Collecting training data from the real world is very costly [Mahmood et al. (2022)]. Not only are many images required, they also need to be diverse and should cover all the variance that the network should learn. For example, if a network is trained on photos taken outside in the summer, it may later perform very poorly on pictures taken in the winter. If an additional use case is added in a later stage, such as also operating during the night time, a large set of new images have to be captured, making these adjustments very costly.

After collecting the training data, it has to be labeled with ground truth information. For some tasks this may be cheap (e.g., assigning the correct class out of a selection of limited choices to each image), but it can still require the work of an expensive expert that can correctly determine the class. For other tasks, such as when pixel-precise segmentation masks should be inferred, the labeling may get very expensive. For the popular Cityscapes dataset widely used in autonomous driving, the labeling time required for a single image by an expert ranges from 4 minutes up to 1.5 hours, depending on the density of annotations [Cordts et al. (2016)]. In some cases, data labeling can be outsourced to regions with less expensive labor costs and service providers like Zuru, Cogito Tech, or iMerit, which offer a smooth integration of the process. However, for more complicated labeling tasks such as distinguishing between different kinds of diseases on plants, domain experts may be required for reliable results and then outsourcing becomes infeasible. To some degree, labeling can be sped up through specialized tools (e.g. LabelBox). However, such tools can only mitigate the cost; even if costs can be halved, this does not change their order of magnitude.

The most promising candidate for overcoming the excessive cost of obtaining training data is the usage of synthetic training data, which is actually expected to surpass real training data in relevance by 2030 [Gartner (2022)]. Instead of taking photos and labeling them manually, a virtual scene is automatically generated by a computer program and then rendered into a photo-realistic image. The correct label is known from the generation process and requires no additional work while being completely correct. In contrast, manually labeled data almost always includes mistakes caused by human error and generating the labels in the least amount of time using automated strategies sacrifices accuracy [Cabrera et al. (2014)].

Here, the field of computer graphics (CG) comes into play, which researched over the last decades the generation of synthetic renderings including realistic interaction between light and objects [Hughes et al. (2013)]. Using these algorithms, it is possible to generate images that cannot be distinguished from real photographs by humans [Kolivand et al. (2018)]. Using parameterized models, an infinite amount of different images can be created by sampling random parameters, all without additional human work [Kokai et al. (1999)].

Plant modeling has a long history in the CG community. The recursive structure of plants often maps well to recursive algorithm such as L(indenmayer)-systems [Prusinkiewicz et al. (2018)] and the elegance of their implementation makes them a very common topic in many introductory computer science lectures [Prusinkiewicz and Lindenmayer (1990)]. Individual plants have been simulated with biological precision to study different phenomena, such as the influence of the canopy to light levels [Chen et al. (2014)]. On a larger scale, the interaction between a large collection of plants and the environment in which they grow has been addressed as well [Marshall-Colon et al. (2017); Makowski et al. (2019)].

Creating powerful parametric models is an expensive task in itself [MacDonald (2018)], but their true power is shown when a scene is adjusted for different scenarios. For example, modeling four different crops at day and night and in summer and winter requires 8 different models but allows for the generation of 16 different combinations. Thus, the cost for increasing the diversity in the training set grows only linearly rather than exponentially.

One way to increase the realism of synthetic renderings is to compute full global light transport using ray tracing [Pharr et al. (2016)]. However, this can immensely increase the computational power required, which directly translates to added costs in hardware and power. In practice, rendering farms can be rented which support parallel rendering on thousands of computers.1

The distinction between real and synthetic training data is not a sharp one. Real datasets usually contain some form synthetic augmentation (e.g. [Abbas et al. (2021)]), and synthetic renderings are often generated using real images. For example, real photographs can be used as background textures as part of the rendering process [Shorten and Khoshgoftaar (2019)].




1.2 Specific contribution

While using real data is hard and costly, using synthetic data also comes with significant challenges. In order to get the most out of synthetic data, the cost delta compared to using real data must be maximized. This type of cost analysis for synthetic data is lacking in the current research. Instead, models are developed without specifying precise targets in performance or cost [Kałużny et al. (2024)], which hinders the practical application and scale-up of this powerful tool.

To address this gap, this study presents a new development model in which synthetic data is generated through an iterative process where each step is guided by a human expert. The task is to estimate in each step what aspects of the renderings have to be improved in order to meet a given target quality without wasting resources on expensive but ineffective improvements. In other words, the goal is to find synthetic datasets that meet the minimal requirements to train successful deep neural network models, as this is the most cost-effective solution.

Using this development model, the potential of synthetic data can be leveraged and significant cost savings reached. After a formal definition of our development model for the general case that includes almost any AI related task, we demonstrate its application and effectiveness addressing a practical use-case of training a neural classifier to distinguish between healthy and diseased tomato plants (Solanum lycopersicum) grown in a greenhouse as an example.





2 Related work

ML has demonstrated a wide range of applications in the agricultural domain, including the management of crops, livestock, soil, and water. A comprehensive literature review of ML applications in agriculture shows that research has primarily focused on crop management [Benos et al. (2021)]. Within this domain, ML techniques have been applied extensively to yield prediction [van Klompenburg et al. (2020)], crop recognition [Horng et al. (2020)] and harvesting [Wouter Bac et al. (2017)], as well as weed detection [Wang et al. (2019)].

A large body of ML research in crop management focuses on disease detection in plants [Benos et al. (2021)]. This focus on disease detection is well-justified, as pests and diseases are a major challenge for agriculture and food security globally, causing an up to 40% loss in yields each year [Savary et al. (2019)]. Early disease detection in agricultural crops enables earlier interventions that can prevent spread, saving substantial amounts of time and resources. Mitigation measures are generally more effective if applied at the early stages of disease, which also results in less pesticide used for management of the pathogen. Commercial agriculture currently relies on skilled human scouts for disease detection. Ideally scouts do daily walk-throughs, but due to costs and limited personnel, walk-throughs are typically much less frequent in practice. Manual detection methods are neither quick nor failsafe – detecting symptoms in crops requires careful attention, especially in the early stages, and costly errors are sometimes made.

Considering these challenges in manual disease detection, much attention in the past two decades has been directed to automated methods of detection, which utilize optical sensors to survey the crop and support in detection and diagnosis of plant diseases [Mahlein (2016); Chin et al. (2023)]. Tools such as RGB, multi- and hyper-spectral, thermographic, chlorophyll fluorescence, and 3D imaging sensors are able to measure changes in plant physiology as the plant experiences biotic stress from disease. Common symptoms of disease in plants include leaf malformation, discoloration, and wilt. These can be detected via changes in plant or leaf temperature, reflectance, and fluorescence.

Despite advances in sensing technologies in recent decades, there are numerous challenges which limit the scope of automated disease detection applications. A main challenge is the selection of the appropriate image features (i.e. texture, color, and/or shape) which have to account for the complexity of various symptoms as well as the capturing modality that can be performed throughout the growing area [Barbedo et al. (2016)]. Another challenge is the development of accurate and efficient learning algorithms. Accurate classification of diseased and healthy plants in real conditions with varying light levels, shading, and complex surroundings can be extremely difficult [Reddy et al. (2022)]. In addition, large image datasets in a diversity of conditions are needed to train the algorithm. PlantVillage is the largest and most widely studied repository of real images of diseased and healthy leaves [Hughes and Salathe (2015)], but its usefulness is limited by the fact that all of the images are segmented leaves with a homogeneous dark background.

Gathering real images of diseased plants at different stages of infection, but particularly at early stages of infection, is an often a challenge because of lack of available data. This challenge was demonstrated in in [Wspanialy and Moussa (2016)], where a system for early detection of powdery mildew disease in greenhouse tomato in a natural setting using a camera setup with varying light settings is developed using Hough forests as the detection algorithm. According to the authors, the study was limited by the size of the dataset (60 images in total) that could be used for training and testing the classifier model.

Synthetic data is a promising solution for the lack of sufficient and high-quality, real training data for ML tools, and in recent years has been explored for agricultural applications [Barth et al. (2018); Cieslak et al. (2024)]. Augmentation (i.e. applying various geometry and color transformation) of real images can be understood as a ‘proto-synthetic’ approach. For example, [Pearlstein et al. (2017)] use an image dataset of grass with and without weed incidence to train a neural network on weed detection. The authors apply a custom software to augment real images of a lawn, which were captured with a smartphone mounted on a robotic vehicle.

Generative adversarial networks (GANs) can be used as an even stronger form of augmentation. [Chen and Wu (2023)] developed an 3-stage deep-learning pipeline for detection of grape leaf disease by applying a deep-convolutional GAN to generate partial images of lesions on leaves for training. In total the GAN generated a dataset of 3390 augmented lesions based on 850 real and manually augmented lesions, that could then be identified by a residual neural network, achieving 88% accuracy on a random dataset of 100 real labeled images from the Internet. [Arsenovic et al. (2019)] use a GAN to supplement traditional augmentation techniques to create an image dataset called PlantDisease for leaf diseases in more real-life conditions, as an alternative to the PlantVillage dataset. [Abbas et al. (2021)] utilize a conditional GAN (C-GAN) for image augmentation of diseased and healthy singular tomato leaves (also called “leaflets”) from the PlantVillage dataset. Their model achieved high accuracy (> 97% mean average precision), but improving it further is made difficult by the limited amount of available input data for the GAN.

Today’s generative AI has however severe limitations: While neural style transfer can be used to give renderings a more photorealistic look, they can only change colors and shading of objects, not their shape. Image generation network on the other hand can generate novel scene perspectives, but only if they are part of their training data. For these reasons, [Kałużny et al. (2024)] use a two-step approach: A procedural model creates the scenes including objects, their shape, and camera perspective, after which a rendering of this scene is improved through style transfer. The current limitations of generative AI are thus overcome through procedural modeling.

Synthetic data often suffers from the so called domain gap, as they are systematically different from real data (e.g. renderings looking artificial rather than photo-realistic). Overcoming this domain gap is an important step to enhance training results and has been extensively studied in the past [Sankaranarayanan et al. (2018); Tremblay et al. (2018)].

[Wouter Bac et al. (2017); Barth et al. (2018)] demonstrated for the first time the use of fully synthetic training data in a computer vision task in the agricultural domain when they created a synthetic image dataset of sweet peppers in a greenhouse. The authors used a few real images captured by a harvesting robot as a template to build a model based on PlantFactory that generates randomized instances of the plants, fruits, and backgrounds. These scenes are then rendered using Blender, requiring about 10 minutes of rendering time per scene on state-of-the-art hardware. With these images, it was for the first time possible to train a neural network for the segmentation of anatomical plant components without relying on excessive real data. However, considering the high amount of computational time necessary to generate the synthetic dataset, the authors point out the need for a more optimized process.

Synthetic training data does not need to be limited to static images. Physic simulations can generate video clips or time resolved 3D position data of moving plants, e.g. a harvest robot pulling off a fruit. This data can then be used for training purposes, avoiding the need to repeat countless real measurements [Deng et al. (2024)].




3 The synthetic data pipeline

Our method is described in Figure 1: We first define procedural models that generate the geometry of plants and accompanying textures required for rendering. We then use procedural models to generate scenes of tomato plants in a greenhouse setting and render photorealistic images. Each image is associated with a label, that defines whether or not a plant is diseased. A set of rendered images along with their labels is then used as a dataset for training the classification neural network. During training, data augmentation via various image-based operators (e.g. brightness, contrast, etc.) is applied to the input images to increase the variance of images in the training dataset. After the classification network has been trained, we validate its performance based on a dataset of real images. The resulting performance is analyzed qualitatively and quantitatively by a human expert to determine how to improve the procedural models for the next training cycle. Overall, the generation process of synthetic datasets is complex and goes along with the repeated training of the network.




Figure 1 | Illustration of our synthetic data pipeline. Left: Geometry and textures are generated, and used to render synthetic scenes. For each of them a procedural model is developed that can create an arbitrary amount of instances sharing the same general appearance. The rendering is then performed with any 3D rendering software. Right: A dataset of synthetic renderings is used to train a network. The standard loop of augmentation, weight training and validation is performed, resulting in a trained neural network that classifies images. Based on the evaluation of this classifier, the data generation is improved and the dataset regenerated for the next iteration.





3.1 Network training

Since networks are mathematical objects, the input image has to be encoded into a vector of real numbers first. This high-dimensional vector is then processed by the network and transformed into a low-dimensional output vector which can be decoded into the classification. We call the vector space of encoded input images I, and an individual input image  .   is the subspace of real input images, while   is the subset of synthetically generated input images. L is the space of all possible labels, e.g., L = {healthy, infected} in case of a binary classifier distinguishing between healthy and infected plants. Such a classifier is illustrated in Figure 2.




Figure 2 | Illustration of ML driven classification. The input image is encoded in an input vector (which can have a very large number of components and represents the pixel color values) that is then can be processed by the different neural network layers, where the result of each layer is the input for the next one. The last output vector is then decoded (e.g. from a negative log-likelihood encoding), resulting in a probability per class.



In a dataset  , each image   is assigned a ground truth label   via  . While G maps any image (whether real or synthetic) to its correct label, D consists only of a limited amount of images and their labels. The number   of images in J is typically in the range between a few thousands and a multiple of ten thousand. A network  , which is parameterized by its weights w, similarly maps images to predictions  . If  , the prediction is correct.

The training is influenced by several parameters as well, called the hyper parameters  . Note, that h denotes a vector containing all hyper parameters and accordingly H is the set of all possible hyper parameter combinations. The hyper parameters include the learning rate and batch size of the stochastic gradient descent optimizer, and also data augmentation parameters (see below) which have a significant impact on the learning success.

The training function   then maps a combination of dataset and hyper parameters to a trained network   with weights  . The mapping   is a measure of similarity between two labels. We can express T as:



Overfitting is often the result of a lack of diversity in the training data. This can either mean too few input images, or images that are too similar to each other (e.g. showing different objects always from the exact same angle). A common strategy to mitigate overfitting is data augmentation. During data augmentation, random alterations are performed on the image, such as geometric transformations (e.g., mirroring, rotating, zooming), color adjustments (brightness, contrast, hue), or adding noise. More advanced augmentation methods use neural networks to transform an input image into an entirely new, but similar one [Abbas et al. (2021)]. A thorough overview of augmentation strategies is found in the literature [Shorten and Khoshgoftaar (2019)]. Since augmentation increases the diversity, it can actually reduce the network performance on the training dataset. This is however acceptable, since at the same time the performance on new images is increased. In summary, two key factors are important for a successful training: A training dataset with a large variety and the correct hyperparameters for the training. The framework presented in this paper optimizes both of them.




3.2 Data generation

Synthetic dataset are created by means of CG methods. CG is an extensive research field with a rich history [Hughes et al. (2013)] dealing with the modeling and rendering of virtual scenes. The three main components that need to be modeled are geometry, materials, and scene composition (object positions, lighting, camera). Examples are shown in Figure 3.




Figure 3 | Illustration of the main components of a synthetic scene. Left: Object geometry, represented as a triangle mesh. Middle: Materials, represented as a set of textures (ambient, normal, reflectivity, etc.) Right: Scene composition, where geometry and materials are combined and lighting and camera information are added.



All these components can either be created by an artist by hand or automatically generated through a procedural model. Instead of defining properties (such as the outline of a leaf or the branching structure of a plant) by hand, procedural modeling defines rules that depend on various parameters, and can be instantiated to create geometry. An example of such a procedural model in the agricultural context are L-systems for plant geometry and node-based texture synthesis of materials [Pai (2019)]. By varying the input parameter vector, and endless amount of images can be created. However, this does not mean that the diversity is sufficiently high. The instantiation of procedural parameters essentially resembles an interpolation. If a larger portion of the total image space I should be covered, additional parameters must be added.





4 Using synthetic data at scale

The main bottleneck of the procedure described in the previous section is the generation of a suitable training dataset S and the finding of the correct hyperparameters h at minimal development cost. The cost factor deserves special attention here since the main argument for the use of synthetic training data is their cost effectiveness. In order to use synthetic data at scale, i.e., being able to apply the previously described procedure for a large number of automation tasks in agriculture, we introduce a development model that addresses this problem by taking a holistic approach. Like the network training itself, finding S and h is formulated as an iterative optimization scheme where in each step S and h are gradually improved.

The first step is to determine a suitable target quality  . We measure the performance   of a network N on a real dataset   using a measure   which is, e.g., defined as the F score or the P4 metric in case of binary classification [Manning et al. (2009)]. Without loss of generality, we assume that larger values of q are better. Note, that the network is trained on annotated synthetic data   but evaluated on real data R. Our goal is then to find a pair   such that

	

Without consideration of any cost, h could be found by a brute-force parameter sweep, while for S renderings with the highest degree of photorealism and variability could be used. But if we assume that the quality is proportional to the invested cost, the goal becomes finding the worst pair   which still satisfies  . We address this iteratively. An iteration step

	

refines the hyperparameters and the dataset (though it is not required that both change in each iteration). Each iteration   is associated with a certain cost measured by the cost function  . The overall optimization problem is then to find the sequence   of iterations with minimal cost that yields the desired quality:



Here we see why a reasonable choice of   is important: According to the Pareto principle, if   is too large, this results in an excessive amount of iterations with exponentially growing costs. Knowing what quality is acceptable is crucial to minimizing cost. Solving Equation 2 cannot be performed automatically through naive numerical optimization. Rather, every iteration step k requires the guidance of a human expert. The solution is typically obtained by maximize the quality gradually at every step.

Taking a closer look at  , shows that it consist of several components:

	

where   is the cost of evaluating the previous iteration required for deciding on the next changes,   is the modeling cost to improve the generator for the synthetic images (performed by an artist),   is the required rendering costs for the new dataset (often outsourced to a rendering farm and paid per core minute) and   is the cost of training a new network with the improved hyperparameters and dataset. The cost for changing the hyperparameters is entirely contained in  , since they are a simple vector that requires no modeling time. For a brute force search of the best hyperparameters the total cost is dominated by   since the dataset remains the same   and   is minimal (as it only consist of a sampling strategy for h). Often the most expensive step is to improve the dataset since   and   are typically large. It can be beneficial to split such an iteration into multiple sub-iterations, which introduces additional  , but gives an overall better understanding of the required changes.




5 Case study: early disease detection for tomato plants

The previously described development model is now applied in order to develop a neural classifier for early disease detection of tomato plants (Solanum lycopersicum). This use-case is not only suitable to demonstrate our development model but also addresses an important practical problem. Especially in monocultures found in greenhouses, diseases can spread rapidly and can quickly become uncontrollable [Savary et al. (2019)]. Detecting them as early as possible greatly decreases the chance of such a catastrophic crop failure but requires constant and expensive monitoring. Any step toward automatizing this process is therefore a great benefit.

We use a UAV patrolling through rows of the greenhouse complex in order to capture images of the tomato plants as illustrated in Figure 4. Since the tomato plants may grow to lengths of 40 m over the course of a season, we prefer to use UAVs instead of self-driving vehicles patrolling through rows. This also comes with low hardware costs as the price of our DJI Mini 3 Pro is below USD 1000. This UAV is also sufficiently small in size to fly through the rows of the greenhouse. For larger greenhouse complexes, multiple UAVs can be used, e.g., a single drone per row. Note, that this is an illustration to motivate our research topic. The case study is focused on visual disease detection and not on drone control, and the pictures shown throughout this paper were taken manually. An overview of drone control techniques is given in [Merkert and Bushell (2020)].




Figure 4 | Illustration of the image collection process in the greenhouse complex hosting tomato plants (Solanum lycopersicum). Left: An autonomously flying UAV patrols through each line, taking photos. Middle: Example of a healthy leaf. Right: Example of an infected leaf.



In this section, we focus on the binary classifier which groups pictures of the leaves into two classes containing healthy and infected leaves  . Potential infections can then be reported to a human overseer who can confirm or reject them. Reducing the need for manually checking the entire greenhouse complex to checking only a few candidates greatly reduces cost even if the detection rate is not perfect. Overall we aim for an accuracy of  .

We implement our neural classifier in Keras using a state-of-the-art image classification architecture [Géron (2019)]. On overview of the network architecture is shown in Figure 5; the exact definition is given in the Appendix 1.3. To measure the training loss   we use the categorical cross-entropy loss function as implemented in Keras. As a performance measure  , we divide the number of falsely labeled images by the total number of images. We start with an initial choice of h1 and a simple initial dataset   and refine it over the course of a total of   iterations generating   and hyperparameter   to reach our target accuracy. After each iteration, an extensive evaluation is required to make an informed decision about the next changes in h and D (which is the reason why this evaluation is included as the cost  ). We monitor the achieved performance on the synthetic training and validation datasets as well as on a real dataset R. Moreover, we take a closer look at the performance on individual images which helps us to understand what additional features have to be modeled in the synthetic images.




Figure 5 | Simplified illustration of the layered architecture of our classification network. Each layers width corresponds to the cubic root of its dimensionality. The input image (top row) is expanded into multiple parallel filters and throughout the network their size consecutively shrinks until a single value denoting the classification remains. The total number of weight in this network is |w| = 2960514. The exact network definition is given in Appendix 1.3.





5.1 Iteration 

The initial dataset is shown in Figure 6. To generate synthetic plant geometry, we have implemented a node-based procedural modeling system as commonly used L-systems for tomato plants [Chen et al. (2014)] do not aim for the level of realism required for our task. The model has a large number of parameters including the number, size, and orientation of leaves, as well as bending and length of the branch. The leaf textures are generated using Adobe Substance 3D Designer, see also Appendix 1.1. We generate the typical set of physically-based rendering (PBR) textures which include layers such as a diffuse albedo map, a normal map, an ambient occlusion map, and a height map [Hughes et al. (2013)]. With these layers, we do not only model the color of the leaves but also the physical interaction of light with the leaf material, which greatly enhances realism. The scene consists of a single branch with leaves and a random high dynamic range (HDR) panorama photo captured in the greenhouse as background, see also Appendix 1.2. This panorama also illuminates the scene, meaning that it is illuminated by the same lighting conditions as the plants in the greenhouse. Although the generated renderings look plausible and detailed, they do not look completely photorealistic. A human may initially be fooled to think they are real images, but in comparison with actual photographs the differences become visible.




Figure 6 | Illustration of geometry and textures of the first iteration of synthetic data. Left: The geometry of the branches is procedurally generated and two examples are shown. Middle: Textures for healthy and infected leaves are generated. The infected textures are generated from the healthy ones by adding typical patterns of dead leaf cells. Right: A final rendering of a textured branch in the scene.



For the hyperparameter h1 we chose values typical for a binary classification task: The input resolution is 256 × 256, the batch size is 16 and the learning rate is 10−4. For the augmentation, we chose a simple combination of zooming, brightness adjustment, flipping, and rotation. Examples of augmented images are shown in Figure 7.




Figure 7 | Comparison of augmentation modes. First row: Five different synthetic renderings. Second to fourth row: The first image of the first row augmented 5 times for each of the 3 augmentation modes (weak, medium, and strong). Fifth row: A random selection of real and synthetic images augmented with strong augmentation. Through the augmentation process, it becomes difficult to distinguish between real and synthetic images, thus the domain gap between both sets is reduced.



The initial dataset consists of   images, where half of them show healthy and half of them show infected leaves. Around 10% of the images are used for the validation dataset. Monitoring the performance on both synthetic datasets shows that the network does not overfit as shown in Figure 8, bottom right. This means, that the dataset is sufficiently large and by adding more images we likely would not see an increase in quality. This information helps to cap the cost  .




Figure 8 | Development cost and performance of each iteration. Top row: Relative cost of the different cost types for each iteration. Middle row: Absolute values of the cost in hours.   includes the initial development of the classifier framework.   include the statistical analysis described in Section 5.7. Bottom left: The accuracy   of the classifier plotted over its development time. The dots mark the individual iterations. Bottom right: The training process of iteration 5 shows, that the accuracy on the validation dataset closely follows the accuracy on the training dataset indicating that the network generalizes well. The lines show the average of the healthy and infected classes. Note, that the lowest accuracy for a binary classification is 50% which corresponds to random guessing of the class.



We also evaluate the performance on real data as shown in Figure 8. We find that almost all images are classified as healthy regardless of their actual class which means that we learn almost nothing about the true class.




5.2 Iteration 

After reviewing the results we conclude that the size of the dataset, the network architecture, and training hyperparameters are fine (since the accuracy on the validation dataset is high), but that the domain gap between real and synthetic images is too large and the network cannot generalize to the real data. Since enhancing the realism of the procedural model is a very time-consuming task, we first try faster changes to shrink to domain gap. We add a second, slightly defocused branch to the background of each image without changing the branch generation itself. This is done to mimic the cluttered environment of the greenhouse and to make the network invariant to camera focus. In total, we render   new images. We also increase the augmentation in h2: Referring to Figure 7, we add Gaussian blur, contrast adjustment, hue shifting, and additive Gaussian noise, and retrain the network. This indeed improves the detected of infected leaves, but not by an sufficient amount as shown in Figure 8.




5.3 Iteration 

Since increasing the augmentation is cheap and gave good results in the previous iteration, we now increase it even further for h3. We continue to use the same operations but with a larger variety of parameters. As seen in Figure 7, the look of the images is quite drastically altered now. The dataset remains the same as in the previous iteration, thus  . After retraining the network, we find that the accuracy improves only marginally (Figure 8), indicating that we have to proceed in a different direction.




5.4 Iteration 

It is now clear, that our synthetic images are too different from the real photos. However, many things could be improved about the renderings: We could have more variety in the branch geometry, increase texture details, or model more complex scenes (e.g. creating geometry for the whole greenhouse and a large amount of plants instead of a single branch in front of background panoramas). Implementing all of these improvements would be prohibitively costly, so instead, we perform a detailed analysis on which images are classified well. Since healthy plants are usually classified as healthy, we focus on images of infected plants.

Figure 9 shows the accuracy for 19 different input images across the iterations. We find that the distribution is extremely uneven: Some images are repeatedly classified correctly while others are almost never. Comparing the real input images with our renderings (see Figure 10), we find that infection can alter the leaf textures in many different ways. Infections resembling the type that we initially modeled are then classified correctly, while other types of patterns are not detected. We therefore improve our texture creation pipeline by adding additional disease types. The new synthetic disease textures are also shown in Figure 10. Since we have significantly increased the variety of the dataset, we increase to total number of images to  . The hyperparameters stay the same, thus  .




Figure 9 | Network accuracy on real images of infected plants for each iteration. The letters on the horizontal axis denote the individual images. The dotted line shows the average accuracy across all images.






Figure 10 | Different types of diseases affecting the leaf texture of these tomato plants (Solanum lycopersicum). Top row: Synthetic images. Bottom row: Photographs.



While training the network we find that the accuracy even on synthetic data is very low. The increased diversity in the dataset makes the training significantly harder.




5.5 Iteration 

To make the training easier without reducing the diversity of the dataset, we reduce the image augmentation in h5 again to the previous level as in h2. The dataset stays the same as in the previous iteration, thus  . The training works and we get an overall accuracy similar to iteration 3 (Figure 8). However, when looking at the performance of individual images (Figure 9), we find that the distribution is more even than for iteration 3. This means, that the modeling of additional diseases has paid off.




5.6 Iteration 

We attribute the remaining inaccuracies in the classification to the different global look of the renderings and photos. This could be addressed by stronger augmentation, however in iteration 4 we saw that a too difficult dataset makes the training harder. We therefore change the training strategy in h6 and employ a mixed training model, without changing the dataset  . During the first half of the training, medium augmentation as in h2 is used. Once the network works sufficiently well, we switch over the stronger augmentation of h3. This results in an initial drop of the accuracy (since the problem became harder), but eventually the half trained network can adjust to the stronger augmentation and reach a high accuracy on them.




5.7 Improving the classification results

After the network training, we now perform a deeper statistical analysis of the results. During the training with synthetic renderings, we used augmentation to increase the diversity and to mimic artifacts found in real images but not the renderings (blurring, noise, etc.). As seen in Figure 7, the augmentation can be quite strong. Therefore, when using the trained network for classification, the same augmentation as during the training should be applied before passing the images to the network. However, since the photos already contain artifacts mimicked by the augmentation, this would in some sense result in a double augmentation. To decide, which augmentation mode should be applied for real images, we perform an analysis, where each image is classified multiple times (since the augmentation parameters are chosen at random, every time). The results are shown in Figure 11.




Figure 11 | Network prediction performance by input image for different augmentation modes. For each mode, the input image was augmented 32 times with random parameters according to the given augmentation mode. The number of correct classifications are added up. The vertical scale shows normalized accuracy. Note, that since the none augmentation mode does not alter the image, either all or no instances of the image are correctly classified since the network is deterministic.



We find, that there is no clear best performing augmentation mode for real input images but that the results rather depend on the input image. We further find, that healthy input images are classified as healthy in over 80% of the cases, independent from the augmentation mode. Furthermore, for 16 out of the 19 infected images, at least one augmentation mode lies above the equivalent threshold (20%). We conclude, that the network is biased towards the healthy case. But by taking the estimated accuracy into account, this bias can be corrected. If we consider for any input image a value of below 80% healthy score (equivalent to an above 20% infected score) as infected, then 26 out of 29 images are correctly classified. We therefore reach an overall accuracy of 89.6%, which is roughly equal to the initial  , ending our optimization. Without this analysis, the naive threshold would be at 50%, leading to an accuracy of only 75%. In some sense, we apply a post-processing to the network’s output to increase the accuracy – similar to the pre-processing of the inputs in the augmentation step.




5.8 Further comments

A summary of the cost and performance of each iterations is shown in Figure 8. It is important to note, that the cost types are separated into two distinct categories.   and   directly relate to working hours of an expert and are thus typically very expensive. In contrast,   and   relate to computational time of computers. For scenarios like our use-case, they can often run over night and thus do not stall the general development if scheduled carefully. However, for larger datasets and more complicated training   and   can also become very expensive, for instance, the training cost of the recently released Stable Diffusion network [Rombach et al. (2022)] was about USD 600000.2

In this use-case we trained a network to the desired accuracy in only n = 6 iterations. Out of those, only one included a redesign of the dataset. We can see several key points here: Firstly, the dataset is not optimized for photorealism but rather for the distinction between healthy and infected leaves. Secondly, this crucial information became available through thorough evaluation. In other words, increasing   can over proportionally decrease  ,  , and  , leading to an overall lower cost C. And thirdly, a good understanding of the behavior of the trained network can be used to increase its performance.

Using the presented development model, total costs of about C = 125.5 h have been invested to develop our classifier comprising approximately   of human work and 61.5 h of computation. For comparison, we estimate the total costs of human work without applying the presented development model. Based on our extensive previous work comprising plant modeling, simulation, and rendering, we estimate the development time of a fully photo-realistic plant generator to be at least three months for a single expert. In this unguided approach, no continuous, quantitative feedback based on the intermediate network performance would be provided during the development and thus all visual features would be addressed with equal importance. This lack of prioritization then severely impacts the efficiency, driving up overall development cost.




5.9 Comparison to real training data

The baseline alternative for the creation of a synthetic dataset is the use of the best available real dataset. Contrary to the specifically designed synthetic data, these real image are photorealistic by definition but may not fit the task domain as closely as a custom dataset. The popular Plant Village dataset ([Hughes and Salathe (2015)]) contains around 5500 pictures of healthy and infected tomato leaves, albeit detached from the plant and lying on a gray background. We therefore use a community extension of it that also contains leaves in their natural environment3. Example images of this dataset are shown in Figure 12.




Figure 12 | Training results for a real dataset. Left: Example images from the dataset. Right: Classification results during the training for images from the dataset (orange) and our own images from the greenhouse (blue).



We use this dataset to train the same network that was used for the synthetic training data. We find that classification results on the validation dataset are very accurate, indicating that the network was properly trained (see Figure 12 for the training curves). However, even after extensive training, classification results on our greenhouse photos are barely better than random guessing, indicating poor generalization.

The most promising steps for improving the performance are directed towards overcoming the domain gap between training and evaluation images - which in turn means collecting and labeling a significant amount of additional photographs.





6 Conclusion

In this paper, we have presented a development model for the development of synthetic training data in order to efficiently automatize agricultural tasks with ML, using tomato leaf disease detection in a greenhouse as a case study. We demonstrated, that hand-designed synthetic training data outperforms real training data collected for a different task, justifying future development in this direction. While it is to some extend straightforward to create “good” training data, it is much more difficult to do so in a cost efficient way. We have demonstrated that by using our development model the desired goal can be achieved by a small amount of only six iterations in our use-case. Importantly, we find that photorealism (which is expensive to achieve) is not the main quality driver of the trained network. Rather, most iteration steps consist only of small changes that optimize the data for the distinction between the different classes, rather than overall realism. Naturally, our development model is driven by a human expert. It is therefore less of a plug-and-play solution but rather a development philosophy enabling the efficient and effective use of synthetic data. In future work, we aim to further automatize different steps within the development process to boost efficiency and reduce the time spent by the human in the loop.

Based on our development model, a neural classifier could be efficiently developed for the early detection of infections in our greenhouse complex growing tomato plants (Solanum lycopersicum). Total costs of about 125.5 h have been sufficient to develop the classifier within our development model which only includes approximately 64 h of human work (evaluation plus modeling costs) and 61.5 h of computation (rendering plus training costs). Note, that these costs are only a very small fraction of the effort of the research project presented here as – next to the formalization of the development model which emerged from the experience with different use cases – we developed the corresponding technical routines to allow for an efficient workflow. Also not included is the training time of the developer who has to become familiar with these routines and working within the presented development model. Our classifier performs with an accuracy of about 90% significantly reducing the need for manual checking of the entire greenhouse complex. Using UAVs, our final early disease detection method for tomato plants can be implemented in greenhouse complexes at low costs. However, our classifier comes with limitations as infected leaf textures have been generated from healthy ones by adding typical patterns of dead leaf cells. If, e.g., a disease is mainly visible at an early stage by looking at the branches instead of the leaves, it is not sufficient to only focus on leaf textures, but instead more investments have to be made to model the implications on the branches. This could require the modeling of wilting effects influencing the whole plant geometry and not only the leaves’ textures. This is why, among others, we aim for an efficient simulator of plant wilting in future work addressing geometrical features of plant diseases in addition to those which could already be modeled by modifying leaf textures.
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Footnotes

1For comparison, the 2013 movie Gravity would have required 7 000 years of rendering time on a single personal computer available at that time; see https://creativechair.org/chris-parks/.

2See https://x.com/emostaque/status/1563870674111832066.

3https://www.kaggle.com/datasets/cookiefinder/tomato-disease-multiple-sources.
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1 Appendix



1.1 Texture generation

All textures are generated using Adobe Substance 3D Designer, a node-based procedural modeling tool. Our node graph, shown in Figure A1 consists of a total of 155 nodes that first model the biological structure (bumps, veins, infected parts, etc.) and then derive the various textures (basecolor map, normal map, occlusion map height map, and alpha map) from it.




Figure A1 | A screenshot from Adobe Substance 3D Designer, showing a highlevel overview of the structure and complexity of our node setup for texture generation.



Many node types rely on input noise. To generate different textures, we use a Python script that randomly changes the initial seed of the noise generation as well as randomly enabling/disabling various disease types.

The file is available on our project website or upon contacting the authors.




1.2 Geometry generation and rendering

Our 3D scenes are modeled inside Blender, using the generated textures from the previous step. Leaves are modeled as rectangular spline surfaces that is overlayed with the alpha texture to create the accurate leaf outline. A spline with randomly altered control points models the branch to which the leaves are then attached. Depending on the generated class, either healthy or infected textures are used for the leaf materials. In some scenes, additional branches with random classes are put into the background to increase scene depth. Using appropriate depth of field parameters, these appear blurred and the network learns to ignore them. For the background images, we use random panorama photographs collected inside a greenhouse. The node setup inside Blender is shown in Figure A2.




Figure A2 | A screenshot from Blender, showing a highlevel overview of the structure and complexity of our node setup for tomato branch generation.



Scene generation takes around 1 second, while rendering takes around 3 seconds. Although both numbers could likely be optimized, we found the overall generation time sufficiently fast and did not feel that time spend optimizing this would pay off in the long run.

The project file is available on our project website or upon contacting the authors.




1.3 Network architecture

Our classifier is implemented in Python using the tensorflow and keras frameworks as well as imgaug for augmentation. The network architecture is defined in the framework through the following commands:



A graphical representation of this is shown in Figure 5.
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This study proposed a hydroponic system with the capacity to acquire high-resolution in situ mass data for non-destructive evaluation of water circulation in lettuce. The system customizes the watering profile, enables high-frequency in situ weight measurement, and monitors multidimensional environment changes. Key air, water, and light parameters were collected to evaluate the plant response, susceptibility, and adaptability to environmental conditions. Multiple physiological indices were defined to characterize the properties of two lettuce varieties in response to different environmental factors.
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1 Introduction

Water circulation plays a crucial role in major plant physiological processes, such as respiration and photosynthesis. In respiration, water movement affects oxygen availability, root growth and health, and nutrient uptake. Mittler et al. (2022) reviewed important oxygen-induced signaling in the plant respiration process, where most of the oxygen in hydroponic plant access is from circulated water. Bharti et al. (2019) discovered that changed water conditions increase root mass weight by 27%–40% and also improve nitrogen (N) absorption rate. In photosynthesis, water plays a more important role in nutrient transportation, chemical reactions, carbon dioxide (CO2) capture, oxygen production, and adenosine triphosphate (ATP) production (Papanatsiou et al., 2019; Sun et al., 2017; Woodward, 2004). As one of the key carbon sources in photosynthesis, along with water, chlorophyll combines them to produce ATP and oxygen (Sun et al., 2017).

The objective of this study is to design an Internet of Things (IoT) integrated system in a hydroponic environment for collecting data of water circulation throughout the plant growth process, which could be used to estimate the physiological properties of plants. IoT can be a very useful technology for collecting data in controlled environments such as hydroponic systems. Typical IoT hydroponic system integration includes sensor technology, data collection and communication, automation and control, decision support systems, energy optimization, remote monitoring and troubleshooting, scalability and integration, and data-driven insights and optimization. Mishra et al. (2020) used sensor arrays to improve the accuracy of nutrient concentration measurement in hydroponic systems to optimize environmental conditions for plants. Ibayashi et al. (2016) improved the stability and reliability of data communication for tomato hydroponics on a locally deployed wireless control system. Saraswathi et al. (2018) designed an IoT system to monitor and control the nutrients, pH, electrical conductivity, air temperature, and humidity via internet data communication and mobile applications. Optimal operation prescriptions can be recommended by crop modeling (CM) and executed by the controlling system, which closes the loop of measurement, calibration, and justifications (Gallardo et al., 2020). Integration of IoT’s control capability and crop models’ physiological insights also supports research in plant genotype identification and isolation (Elsallam et al., 2021) and regulation of energy consumption (Elsallam et al., 2021).

A major challenge in understanding the role of water circulation in the crop growth process is to observe and interpret water movement under different environmental conditions. Water uptake and loss change plant weight significantly. It is necessary to continuously track water movement at different environmental conditions to correlate the water intake and loss to environmental conditions, providing direct experimental evidence of how the environment alters plant respiration and photosynthesis. Therefore, in order to study water circulation in the plant growth process in a hydroponic environment, three categories of data must be collected: air, water, and light.

	First, air data include air temperature, humidity, and concentration of carbon dioxide. Air temperature impacts both the photosynthesis and respiration processes that fundamentally regulate plant growth activities, including water transpiration, stomata open percentage, carbon dioxide absorption rate, cellulose synthesis rate, and cell replication rate (Zhang et al., 2022). Humidity controls the stomata open percentage water transpiration potential between leaf and root (Chia and Lim, 2022). Carbon dioxide (CO2), as the major carbon source in the photosynthesis process, determines the growth rate of plants (Gamage et al., 2018).

	Second, water data include water temperature, electric conductivity, and pH. Watering temperature, also reported as root zone temperature, has been shown to affect lettuce yield. Thakulla et al. (2021) discovered that lettuce gained the highest fresh and dry shoot weight at 21.1°C and generated most sugar at 18.3°C. Electric conductivity indicates the nutrient concentration in the circulating media. Neocleous and Savvas (2022) attempted to optimize electric conductivity for smart nutrient solutions that feed hydroponic crops. Controlling water pH mainly aims for more balanced nutrient ions’ availability. Most alkaline earth metal ions, such as calcium (Ca) and magnesium (Mg), do not precipitate at acidic levels when plants can utilize them in the water circulation (Sambo et al., 2019).

	Third, light data include light intensity and photoperiod. When exposed to different spectrums of light, plants take nutrition differently. Ohashi-Kaneko et al. (2006) reported that nitrogen utilization was different when plants were or were not exposed to blue light as a supplement for red light radiation. Changing photoperiods also modifies plant growth. Samuolienė et al. (2021) discovered that 16-h-per-day photoperiods are optimal for lettuce (Lactuca sativa L, “Lobjoits Green Cos”), synthesizing the highest xanthophylls with red and blue light exposure.



In this study, we designed and constructed a non-destructive IoT-integrated hydroponic cultivation system with the capability to monitor and control air, water, and light parameters. Correlation maps were calculated for plant growth analysis based on 10 environmental parameters and 14 evaluation indices describing physiological and operational efficiencies extracted from weight data signals. Insights from our analysis could be used by hydroponic growers and researchers to estimate parameters in crop models, interpret observations of the respiration and photosynthesis processes in the hydroponic cultivation system, predict crop yields, improve quality (such as taste, nutritional value, and shelf life), increase crop yield, and reduce energy consumption.

The goal of the proposed hydroponic system was not to produce good lettuce; rather, it was to produce good data (especially weight data) to help understand the physiological properties of two lettuce varieties. As a result, this study will not only help identify better environmental conditions for lettuce cultivation but also inspire the design of similar systems to benefit the research and development in other crops.




2 System construction and management

We designed a hydroponic system for growing Romaine and Oak Leaf lettuce (Lactuca sativa), which features real-time, high-frequency (1 Hz), and high-resolution (0.01 g) mass data acquisition and environmental control for air, water, and light. The system consists of seven subsystems, namely, S1: Mechanical structure and plumbing, S2: Air, S3: Water, S4: Light, S5: Weight measurement, S6: Data communication interface, and S7: On-site and remote data management. The system structure is shown in Figure 1 and details are explained in subsequent sections.




Figure 1 | System architect and data flow. All rectangle boxes are physical components, all round-corner boxes are subsystems, all solid boarded boxes are physical hardware, and all dashed boxes are functional components. Arrows indicate the data flow directions.





2.1 S1: Mechanical structures and plumbing

Four independent and identical systems residing in four Percival (Perry, IA) growth chambers were used to facilitate the air temperature and relative humidity monitoring and control.

To manage water delivery in detail, a complex water management system is designed and optimized to fit chamber and shelf setup, as illustrated in Figure 2A. Each incubation chamber contains two units, presented in Figure 2A. The unit contains a three-layer shelf, a 120-L plastic container for water storage, a water upstream pipeline, six incubating pots, and a water downstream pipeline. Water upstream and downstream pipelines and incubating pots are mainly constructed with PVC parts.




Figure 2 | Base level system hardware: growth chamber, mechanical structure, and plumbing system. (A) Shelving and plumbing overlook; (B) incubating pot assembly ensures no water residue after water exits; (C) air temperature and relative humidity control access point.



The incubating pot was designed and optimized for hydroponically growing Romaine and Oak Leaf lettuce with flowing aqueous nutrient solution, considering easy assembly, water flowability, compatibility with weight balance measurement system, reliability, and flexibility, as illustrated in Figure 2B.

For accessibility of the incubating pots, all PVC was purchased directly from local plumbing vendors. Three-quarter-inch pipes were cut down to the designed length for assembly, whereas other parts were used directly as purchased. The three supporting legs can be rotated to fit different sizes of weighing scale trays. A water exit was designed at the bottom of the 6-inch cap to eliminate dead water. Leg tops were adhered to and fastened onto the cap with PVC cement, stainless bolts, and nuts. Such a design took thermal geometry variation, high humidity, and high salty conditions into consideration.




2.2 S2: Air conditioning and evaluation subsystem

System air conditions were primarily regulated by a Percival growth chamber mentioned previously via prior defined programs and an on-board interface, as shown in Figure 2C. Programs could define desired temperature and relative humidity with customized time within a 24-h cycle. The chamber operation conditions were logged and could be downloaded from an on-chip micro-SD card. A separate air condition data logger, GZAIR CO2 Data Logger Monitor (Engerwitzdorf, Austria), was used to log air temperature, humidity, and CO2 concentration with an acquisition frequency of once per 5 min. This data logger was connected to an on-site PC via a USB cable.




2.3 S3: Water conditioning subsystem

Water conditioning included two parts: scheduling and nutrient conditions. Kasa WiFi-controlled switches (Shenzhen, China) were used to control the Smartpond 80-gallon-per-hour submersible fountain pump purchased from Lowes.com to customize water scheduling. The Flora Nova Grow 7-4-10 one-part nutrient solution, manufactured by General Hydroponics (Berkeley, CA), was diluted 1,600 and 800 times with tap water as two nutrient solutions during the seedling and early growing stages. Complete composition of this formula can be found at https://generalhydroponics.com/resources/floranova-grow-product-label/.

Watering events alter the measured weight significantly. By analyzing measured weight data, watering events were clearly logged and carefully evaluated. Water conditions, including water temperature, pH, and electric conductivity, were monitored by Bluelab (New Zealand) Wi-Fi-enabled guardian monitor.




2.4 S4: Light conditioning subsystem

Lighting was provided by WiFi-enabled K5 series XL750 KindLED (Santa Rosa, CA) grow light. This lighting system only enabled individual control of white, red, and blue lights, although other spectrums of light could also affect plant growth. Photosynthetic photon flux density (PPFD), also known as light intensity, could be modified as variations of power percentage, ranging from 0% to 100%. Lighting conditions could be tuned with minute resolution in the time domain.

Since PPFD was controlled digitally (not analog signals), the delivered PPFD measurement was carried out as photosynthetic active radiation (PAR) meter calibration at the incubating pot level. Each light channel was calibrated individually. Light data were based on calibrated PPFD readings and populated with a frequency of minutes on the time domain.




2.5 S5: Weight measurement subsystem

The weight of each growing lettuce was continuously recorded using a weight measurement system, which consisted of Ruishan (Shanghai, China) weighing balances and Serial RS232-to-Ethernet converters. The capacity and accuracy of the weighing balance were 2,000 g and 0.01 g, respectively. Since the data port of the weight balance was the RS232 serial port, model number USR-TCP232-302 converters, manufactured by PUSR (Jinan, China), were used to convert serial signals to transmission control protocol/internet protocol (TCP/IP) signals.




2.6 S6: Data communication Interface

Four different interfaces were used to communicate sensing and controlling hardware and computation hardware to ensure the stability and reliability of the data communications. With Wi-Fi connections, managerial commands and system status, such as feedback from Kind LED lights and Kasa switches, could communicate back and forth over the Wi-Fi interface. In most cases, chambers were maintained at high humidity levels. A wireless communication approach improved system safety and data communication reliability. All Bluelab monitors were required to upload data via a proprietary Bluelab data link, and a Bluelab connect stick was used to receive wireless data from Bluelab monitors and send it to the on-site PC for data logging via the USB interface.

Besides water condition data, air condition data were also transmitted via the USB interface. Water data were logged with a frequency of 1 min, and air condition data were logged every 5 min. TCP/IP protocol was utilized to transmit high-frequency data such as weight measurement data communication and remote data exchange. T-568B terminated category 6 cables were used to ensure hardware reliability and transmitting speed.




2.7 S7: On-site and remote data management

One on-site computer (PC) was set up per growth chamber to serve as a secure Wi-Fi broadcaster, commanding system, and data acquisition system. Beyond three environmental condition subsystems and a weight measurement system, 16 web cameras are implemented for operational status checks, condition visual verification, visual inspections, and remote system failure diagnoses. With the large numbers of devices connected via Wi-Fi, a secure and independent broadcast is required to ensure command executing security and reliability. Since the Kind LED light on-board chip uses a web page-based control interface, this on-site PC is perfect for providing remote access to the lighting system via internet connection. The water condition system, air conditioning system, and weight management system all use this PC as a temporary data storage and hub for remote communication.

Beyond this on-site PC, remote computational interventions were needed to provide cloud computing and human intervention access portals. Crop modeling could be hosted on this remote computation equipment, providing model training and updating with in situ data input, operational command suggesting and advising, bolting predictions, and breeding simulations. It also provided remote human intervention access portals, where operation managers could access data and modify operation parameters.





3 Design of experiments and evaluation approach

The designs of the experiments emphasized creating variability over the growth cycle to reduce the numbers of plant samples needed for data analysis. In total, 24 days of 11 plants’ environmental data and weight measurement data were collected and processed. No crop was harvested during the experiment, since the purpose of the hydroponic system was to produce good data rather than lettuce. All environmental parameters are listed in Table 1. In the following subsections, we introduce air, water, and light conditions during the experiments as well as our new definitions for weight data analysis.


Table 1 | Environmental parameters.





3.1 Air conditions

Three daily programs were executed through the seedling and cloning stages to differentiate the conditions, as shown in Table 2, where programs #1 and #2 had a 24-h cycle and program #3 had a 12-h cycle. Since air circulation in the growth chamber was regulated via a fan with inconstant working schedules, no CO2 generation source was introduced in the system. System air condition data, including air temperature, humidity, and CO2 concentration, were logged every 5 min per sensor limitation.


Table 2 | Incubator program parameters.






3.2 Water conditions

For every six plants, 100 L of diluted nutrient solutions were formulated and stored in the 120-L plastic container for hydroponic circulation. To compensate for evaporation, additional tap water was added to maintain the 100-L total volume. In the seedling stage, the flora nutrient was diluted 1,600 times.

In the cloning stage, the flora nutrient was diluted 800 times. At the start, the water’s reading was 450 ppm (in the ppm 500 scale) for electric conductivity, 19°C for water temperature, and 6.8 for pH. Water conditions were logged with 1 min resolution on time domain.




3.3 Light conditions

The LED light was positioned 1 m above the incubating pot, which is shown in Figure 2B. The lighting conditions were programmed with power percentage and changing time. In the 24-day project duration, the light programs are prescribed in Table 3.


Table 3 | Light conditions prescription.



For PPFD calibration, all three spectrum lights were calibrated individually. The PAR sensor remained at the same location during calibration and only lighting conditions were changed. The calibration results showed a highly linear correlation with power percentages, as shown in Figure 3.




Figure 3 | PPFD calibration of white, blue, and red spectrum lights with different light power settings.



Based on this calibrated PPFD reading, the light condition profiles were populated with minute time resolution, noted as PPFDs(t), where s denotes the standard profile. When determining the PPFD for each plant, secondary calibrations were conducted. The PAR sensor was located at each plant’s incubating pot height level. During the calibration, the Kind LED light was set as 60% in red, white, and blue light. The calibrated PPFD for this setting was 494 µmol/m2/s. For each plant, a new PPFD reading was logged as   with XX denoting the plant number. Therefore, the light condition profiles for each plant,  , can be calculated as

 




3.4 Weight data and physiological indices

Weight data included weight reading and the corresponding time stamp, as shown in Figure 4A. The periodic mass fluctuations were due to the watering event, water evapotranspiration, and root water uptake. To understand the complex effects of multiple processes that could affect the weight data, we make several definitions based on the observed data.




Figure 4 | Raw mass data overlook and signal processing. (A) Mass data; (B) mass data of one watering cycle.



Consider Plant 38 as an example. The mass data of this plant in November 2022 are plotted in Figure 4A. Figure 4B shows the mass data over a typical watering cycle, where we define eight critical time points:

	  Five minutes before start of watering

	  Start of watering event, when the mass starts to increase rapidly

	  Start of water saturation, when the increase of mass slows down

	  Five minutes after start of water saturation

	  Five minutes before end of watering

	  End of watering event, when the watering stops and mass starts to decrease

	  End of water dripping, when the water loss due to dripping slows down

	  Five minutes after end of water dripping



We define the following physiological indices to characterize plants’ physiological properties and operational effectiveness during the watering cycle:

	 , rinsing period

	 , unrinsing period

	 , saturation period

	 , mass of plant at time point t

	 , dynamic water holding, which is the mass gain during the rinsing period

	 , static water holding, which is the mass gain between the beginning and end of the watering event

	 , dynamic water loss, which is the mass loss during the unrinsing period

	 , dynamic root holding, which is the mass gain during the saturation period during root holding of the water

	 , which is the rate of mass change before the watering event.

	 , which is the rate of mass change during the water rinsing period.

	 , which is the rate of mass change after water saturation.

	 , which is the rate of mass change before watering ends.

	 , which is the rate of mass change during the water unrinsing period.

	 , which is the rate of mass change after water dripping ends.







4 Results and discussion

In this section, we present the physiological indices defined in Section 3.4 for plant 38. Data for other plants are available upon request.



4.1 Rate evaluation indices

Plant 38’s transpiration rates before and after watering events are shown in Figure 5A. The negative data indicate mass loss. Minor positive data points may be caused by balance kickback. Before November 15 and after November 22, pre-watering transpirations were slower (less negative). After the water outage on November 14, the pre-water transpiration was faster (more negative) until November 22. Both pre- and post-transpiration were changing periodically with a cycle of 24 h. Most of the data points ranged from 0 to –2 mg/s.




Figure 5 | Plant 38: Rate evaluation indices. (A) Transpiration rates; (B) saturation rates; (C) water absorption and exiting rates.



Watering saturation speeds   and   are shown in Figure 5B. In general,   is greater than  . The   had a range from 0.01 to 0.04 g/s, the   ranged from 0 to 0.05 g/s. The periodic (daily) fluctuations reduced as time progressed for both   and  .

The water absorption rate   and   are shown in Figure 5C. Before the November 15 water suspension,   decreased, and   increased (less negative) over time. After November 18, both   and   stabilized. They also fluctuated periodically with a 24-h cycle throughout the entire process. The watering absorption speed   reflects the plant’s water uptake capability. This capability is determined by xylem osmotic potential as Earles discovered (Earles et al., 2015). Therefore, the   can be used as a xylem index to evaluate plant physiology. Water exiting speed,  , on the other hand indicates the water exit rate. During the growth, plants’ roots were blocking the water exit. The slight increase (less negative, 0.008 g/s/day with R2 = 0.75) can be used as an index evaluating root growth conditions.

Environmental factors, such as lighting and air conditions, significantly impact plants’ mass change rate, including  ,  ,  ,  , and  . As shown in Figure 5, most of the mass changing speed fluctuates daily. We suspect that the mass change speeds are correlated with air or lighting conditions since air conditions and light conditions are changed with a 24-h cycle as mentioned in Sections 3.1 and 3.3. On the other hand, the   and   behaved differently before the water outage and during the recovery period (November 18 to 21). With uninterrupted watering, plants may utilize sufficient water for respiration to synthesize cellulose and for photosynthesis to accumulate carbon from air. When water availability is limited, plants may modify their photosynthesis and respiration activities to adapt to the water stress physiologically and biochemically (Osakabe et al., 2014).

The watering saturation mass change speed reflects the system watering efficiency. The daily fluctuations indicate that the   is plant physiology related. It signifies the approaching of efficient watering of the plant. Such evaluation indices can be used as an operational trigger to regulate watering time span to optimize the watering event efficiency. The   had less daily fluctuations, compared to  . With universal watering length, the approaching zero of   signifies that watering reached the plant’s dynamic maximum water holding capacity. Since a considerable amount of water will exit the plant after the watering event ends, modifying the watering length to increase   will improve the watering utilization.




4.2 Duration evaluation indices

The duration of rinsing and un-rinsing of Plant 38 is shown in Figure 6A. Abnormal data off the chart were due to watering activity suspension. Regardless of the abnormal data points, the average   was 104 s, and the average   was 72 s. Both   and   fluctuated daily.




Figure 6 | Plant 38: Duration evaluation indices. (A) Rinsing and un-rinsing; (B) saturation.



The duration of watering saturation is shown in Figure 6B. Abnormal data were removed due to watering suspension. Before November 15, the daily fluctuation was larger than after November 18. After November 24, the moving average of the saturation duration decreased significantly.

The duration of rinsing,  , in Figure 6A signifies the time period of no water was wasted after the entire watering event. Since the power of the watering pump was constant, the rising duration indicates the amount of water stress the plant was under at the start point of the watering event. Reduced fluctuations along the growing process indicate that the plant adapted to this watering fashion (amount and frequency). The duration of unrinsing,  , in Figure 6A, indicates the period of water exiting after the watering event ends. During this period, part of the dynamically held water exited from the incubating pot. Suppose the hydroponic production was carried out because the plant may need to leave the water tank after watering. In that case, the   indicates the time needed to water until all the unused nutrient liquid exited the plants.

The duration of saturation,  , in Figure 6B, signifies the period when the plant did not absorb a portion of the pumped water during the watering event. The larger fluctuations before November 15 indicate that daily changed environmental factors significantly impacted the water uptake. The reduced fluctuation after the water outage suggested that the water had already adapted to the current watering fashion, as   indicates. It may also suggest that the plant was less susceptible to daily cycled environmental parameters. The moving average decrease after November 27 suggests that plants need more time to begin saturation, which indicates the improvement in watering efficiency.




4.3 Mass evaluation indices

Mass data at the beginning of the watering event are plotted in Figure 7A. This is the lowest mass reading within the watering cycle, which includes the mass of the plant, incubation pot, and other accessories. Figure 7A shows that the watering suspension lasts 24 h (four watering events). The plant used three watering events to recover. The abnormal data point was on November 18 due to a minor watering suspension. The abnormal data point on November 22 was due to noises in the raw data. Regardless of the abnormal data, the linear regression yields 5.49 g/day growth with R2 = 0.95.




Figure 7 | Plant 38: Mass evaluation indices. (A) Mass calibration; (B) dynamic and static water holding capacity; (C) dynamic water loss and root holding capacity.



A plant’s water-holding capacity is one of the important plant indices to evaluate plant growth. Plant 38’s dynamic and static water holding capacity are shown in Figure 7B. Both the dynamic and static water holding capacity fluctuate daily.

Root water-holding capacity reflects the amount of roots and morphology. Plant 38’s root dynamic water holding capacity data are shown in Figure 7C. The daily fluctuations before November 15 were significantly greater than those after November 18. The dynamic water loss (negative mass change) represents the amount of water that exits after the watering event stops. The dynamic water loss slightly decreases (less negative) at 0.24 g/day with R2 = 0.78 with abnormal data exclusion.

One of the most important functions of this hydroponic system was to monitor plant growth by evaluating plant weight. As shown in Figure 7A, Plant 38’s mass increased linearly as time progressed. Water outages on November 15 and 18 reduced the growth speed. The water outage and recovery also demonstrated the plant’s tolerance, resistance, and response to water stress. The reduced daily fluctuation after the water outage and recovery indicated that the plant was growing conservatively in response to the environmental condition change. Such insights may be useful for commercial hydroponic growers to evaluate emergency water outages and calculate production loss.

As one of the important physiology indices, water holding capacity, shown in Figure 7B, signifies the water availability for plants between watering events. The static water holding capacity,  , evaluates the net water retention after water exits. It is the true water amount that plants can use. The dynamic water holding capacity,  , evaluates the water holding capacity with water running. Beyond static water holding, dynamic water holding also includes the water retention from surface rinsing due to surface tension. There were many factors that can change the surface tension and water retention capacity between the xylem cell wall and watering nutrition liquid, such as temperature, salt concentration (here as electric conductivity), water running speed, xylem cell wall surface roughness, and, most importantly, xylem surface area (Kumar et al., 2022). The daily fluctuations for both   and   indicate that the water holding capacities are highly correlated with environmental parameters that are cycled every 24 h.

As side evaluation indices, dynamic water loss,  , and dynamic root holding capacity,  , shown in Figure 7C, provide useful insights. Dynamic water loss is the direct evaluation of the amount wasted after the watering event ends. Reducing this evaluation index would reduce energy usage and improve system efficiency. In this experiment, reduced water loss fluctuations signify that the plant is less susceptible to environmental changes. The dynamic root holding capacity fluctuated less than other evaluation indices from the beginning of the growth progress.   signifies the power of root growth to prevent water loss. Similar to  , root surface area significantly impacts  . Therefore,   can be treated as the root evaluation index.




4.4 Correlation matrices

Plant physiology status is susceptible to environmental condition changes. In this subsection, we use the physiological indices to provide insights into the physiological properties of Plant 38 by computing and plotting the correlation coefficient matrix between the physiological indices and environmental factors and the secondary correlation coefficients matrix between the physiological indices and their temporal variability, which is measured as the moving standard deviation with a step size of four watering events. The full name of the environmental factors and evaluation indices can be found in Table 1 and Section 3.4

The correlation matrix heat map of Plant 38 between physiological indices and environmental factors is shown in Figure 8A. Several correlation coefficients are worth noting, such as the correlation between pH and  ,  ,  ,  , and  . As an important water condition descriptor, pH affects plants’ physiology and water uptake from many perspectives. With lower pH, the higher availability of Ca and Mg ions in the liquid requires plants to uptake higher amounts of water to balance the osmotic pressure between cell membranes. Therefore, the negative correlations between pH and   and   signify a higher water retention at lower pH. The correlation between   and  ,  ,  ,  , and  .




Figure 8 | (A) Correlation between the physiological indices of Plant 38. No data exclusion. (B) Correlation between physiological indices fluctuation Plant 38. No data exclusion.



The correlation matrix between the temporal variability of the physiological index and environmental factors is shown in Figure 8B. The correlations between the temporal variability of   and RH (0.57) and   are also worth noting, meaning that the temporal variability of plant transpiration before watering responds positively to relative humidity and negatively to the number of watering events,  . Similar observations have been made in Negrão et al. (2016).

Figures 9A, B are the counterparts of Figure 8A for Romaine and Oak Leaf varieties, respectively. The correlation coefficients for   with EC and   for Romaine lettuce in Figure 9A are considerably higher than the values in Figure 9B for Oak Leaf. The higher correlation coefficient averages in Figure 9B, especially for RH, EC, pH, and   suggested that Oak Leaf lettuce is more susceptible to changes of these environmental factors.




Figure 9 | (A) Correlation between environmental parameters and evaluation indices of Romaine lettuce. (B) Correlation between environmental parameters and evaluation indices of Oak Leaf lettuce.







5 Conclusions

In this study, we developed a non-destructive approach to continuously monitoring hydroponic lettuce’s weight in situ with a high-frequency data acquisition system assisted by IoT integration. Such weight data enabled us to define a number of insightful physiological indices to characterize plants’ physiology status, water circulation conditions, and system operation efficiency and to compute the correlation between environmental factors and between these indices and their temporal variability. The physiological properties of different lettuce varieties can also be quantitatively characterized and compared using these correlation matrices.

Our proposed approach is not without its limitations. For example, all the data in the time domain were only analyzed as sample variance. There was no stage segmentation for all evaluation indices. Additional future experiments will be necessary to validate the initial findings of the analyses reported in this paper, such as the different correlation coefficients for the two different lettuce varieties. From the perspective of system hardware, there was hardware to monitor CO2, water temperature, pH, and electric conductivity, but not control them precisely. The watering operation parameter was not changed during the entire experiment. Adding such variation may improve the data quality. From the perspective of signal processing and analyzing approaches, the robustness of the signal process code shall be improved to handle irregular weight change profiles. Chlorophyll and fluorescence are also great indicators to evaluate the plants’ physiology. However, they are expensive to measure. As a proof-of-concept study, it is important to develop a cost-effective approach to overcoming the budget constraints.

By providing continuous weight data to other environmental and plant physiological data sets, our study opens doors to numerous future research opportunities. It will be greatly beneficial to define and include new physiological indicators in future research. Another potentially fruitful topic is to use the continuous weight data to propose and validate new hypotheses about the role of water circulation in physiological processes. Numerous models and algorithms could be used for such analysis. For example, Random Forest Variable Importance Analysis could be used to analyze the impact of key environmental factors on plant physiological indicators.

Beyond the current development, the system can be further developed in terms of hardware, software, and implementation. From the hardware perspective, active control of water tank refill, pH control, nutrient ion control, and monitoring can further improve system controllability. More sensors with spatial distribution could improve the system sensing ability of environmental condition changes and, therefore, explore the impact of microenvironmental variation due to crop physiology. From the software perspective, CM could be utilized to further correlate physiology to measurable physics. This system is the foundation of hybrid process-based data-driven CM. It allows training and validating a more accurate and scientifically explainable CM. From the implementation perspective, this system can measure and evaluate other crops, not limited to lettuce.
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