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The growing interest in data-driven medicine, in conjunction with the formation

of initiatives such as the European Health Data Space (EHDS) has demonstrated

the need for methodologies that are capable of facilitating privacy-preserving

data analysis. Distributed Analytics (DA) as an enabler for privacy-preserving

analysis across multiple data sources has shown its potential to support data-

intensive research. However, the application of DA creates new challenges

stemming from its distributed nature, such as identifying single points of failure

(SPOFs) in DA tasks before their actual execution. Failing to detect such SPOFs

can, for example, result in improper termination of the DA code, necessitating

additional e�orts from multiple stakeholders to resolve the malfunctions.

Moreover, these malfunctions disrupt the seamless conduct of DA and entail

several crucial consequences, including technical obstacles to resolve the issues,

potential delays in research outcomes, and increased costs. In this study, we

address this challenge by introducing a concept based on a method called

Smoke Testing, an initial and foundational test run to ensure the operability of

the analysis code. We review existing DA platforms and systematically extract

six specific Smoke Testing criteria for DA applications. With these criteria in

mind, we create an interactive environment called Development Environment

for AuTomated and Holistic Smoke Testing of Analysis-Runs (DEATHSTAR), which

allows researchers to perform Smoke Tests on their DA experiments. We conduct

a user-study with 29 participants to assess our environment and additionally

apply it to three real use cases. The results of our evaluation validate its

e�ectiveness, revealing that 96.6% of the analyses created and (Smoke) tested

by participants using our approach successfully terminated without any errors.

Thus, by incorporating Smoke Testing as a fundamental method, our approach

helps identify potential malfunctions early in the development process, ensuring

smoother data-driven research within the scope of DA. Through its flexibility

and adaptability to diverse real use cases, our solution enables more robust and

e�cient development of DA experiments, which contributes to their reliability.

KEYWORDS

decentralized applications, federated learning, machine learning, software testing,

simulation, web services
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1 Introduction

Data-driven analyses, such as basic statistics or Machine

Learning (ML)-based approaches, have been extensively used

for analyzing data in a variety of applications such as medical

diagnosis and treatment or financial business intelligence (1–

3). Traditionally, data is collected from several sources, stored

in a central location, and analyzed by scientists. However, data

centralization poses several challenges (4). For example, due to

the exponential growth of data, the gathered data volume might

not allow central storage, or in some cases, it would be too

expensive (5). Besides these technical challenges, regulations such

as the General Data Protection Regulation (GDPR) in the European

Union1 prohibit or limit the centralization of personal data due to

privacy concerns and its level of sensitivity. This issue is particularly

present in domains such as healthcare, where personal data is

protected (5). In the context of the European Health Data Space

(EHDS)2, the issue of accessing fragmented and silo-ed data is

intended to be resolved through the implementation of Federated

Health Data Networks (FHDNs) that consist of decentralized and

interconnected nodes, allowing data to be analyzed by participants

of the FHDNs (6). In order to enable data analysis across multiple

nodes, key technologies for DA [such as Federated Learning (FL)]

have been considered as indispensable and proposed as a solution

by omitting the need for data centralization (7, 8). Here, the

analysis code is executed at the data source(s), and only the

(intermediate) analysis results, such as aggregated statistics or, in

ML-terms, model parameters, are transmitted between the data

providers rather than sharing actual data instances. DA provides

solutions for several legal considerations such as patient data

ownership or data control (9). This includes compliance with

measures such as the GDPR. Furthermore, ensuring transparent

and accountable access to this data is crucial to uphold privacy

and security standards (9). Since it addresses challenges, such

as data privacy, high storage costs, or long transfer times,

Distributed Analytics (DA) has recently gained attention and has

found applications in various use cases, including skin cancer

classification, predictive modeling using radiomics for lung cancer,

brain tumor segmentation, and breast cancer detection (5, 10–

14).

Before analyses can deliver their full potential, several steps

must be taken to build an error-free and robust analysis

code. Among other steps, we recognize three essential phases:

Development, testing, and execution phase (Figure 1) (15). The

development phase involves implementing the code, covering a

data pre-processing routine and the analysis script. During the

testing phase, there may be two types of testing scenarios: one

is testing from a software perspective that ensures the code is

executable. The other is analysis validation using test data to assess

performance. The execution phase covers the application of the

analyses on real data to obtain actual analysis outcomes. At this

point, it becomes evident that these standard workflows assign an

1 GDPR: www.gdpr-info.eu.

2 https://www.europarl.europa.eu/RegData/etudes/STUD/2022/740054/

IPOL_STU(2022)740054_EN.pdf

essential role to the availability of data: Without sufficient data, fast

prototyping through, e.g., trial-and-error and software tests, can be

only conducted on a limited basis. Moreover, up to now and to the

best of our knowledge, how DA code is tested has been left to the

developer’s responsibility and intuition, showcasing a lack of clearly

defined testing criteria and capabilities in the domain of DA. This

circumstance entails a specific degree of uncertainty regarding the

analysis code during its execution: Will it run? The consequence

is that insufficiently tested analysis code is susceptible to single

points of failure (SPOFs) during the execution phase, such that

another development round is needed to fix the code (Figure 1).

Due to the decentralized nature of DA, any kind of errors during

the execution require the analysis code to be re-built, re-distributed

to the data holders, and re-executed (Figure 1). This re-distribution

is time-consuming and potentially involves multiple parties, e.g., in

the medical domain, where the analysis has to be verified before

interacting with data. Thus, there is a need for adequate testing

criteria and capabilities that identify potential malfunctions in the

code before its execution.

1.1 Objectives

To establish an initial foundation for testing in DA,

we derive requirements for DA code, which should be

fulfilled to ensure that the analysis code is operational.

We aim to define criteria for a testing approach called

Smoke Testing to support developers in their development

process (16, 17). These criteria constitute the minimum

requirements for DA code that must be guaranteed

before its execution. We hypothesize that without these

requirements the DA code will definitely fail or cause

undesired behavior. In summary, we evaluate the following

research question:

RQ1 What are suitable Smoke Testing criteria for DA

executions?

Secondly, we intend to develop a Smoke Testing suite as a Proof

of Concept (PoC), specifically designed to evaluate analysis code

according to our defined criteria. Since data is essential to test

data-driven analysis code properly, we aim for a Smoke Testing

suite capable of generating data instances that can be used for

Smoke Testing, making our approach less reliant on prior data-

sharing. Regarding this, we hypothesize that a simulation-based

Smoke Testing suite reduces the dependence on data providers.

One of our core assumptions is that data schema details are shared,

while actual sensitive data instances can be kept under seal by the

data providers. To reach this goal, we will evaluate the following

research questions:

RQ2What is necessary to enable Smoke Testing on DA code?

RQ2.1How can privacy-preserving testing of DA algorithms

be enabled?

RQ2.2 How can the execution of DA algorithms be (Smoke)

tested without a real DA environment?
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FIGURE 1

Proposed concept for local smoke tests. Up to now, the (smoke) testing phase of the analysis code has been postponed to the actual execution,

making it di�cult to di�erentiate between the testing and execution phases (left). As a result, any code errors can only be identified by running the

code at each data provider. This dependence on distributed data providers can make creating DA code time-consuming and cumbersome. Instead

of smoke testing during the execution phase itself, we propose DEATHSTAR to iteratively trial-and-error the analysis script locally (right).

1.2 Contributions and findings

Aligned with our objectives from the previous section, this

work presents the following contributions:

• We propose six criteria for Smoke Testing that we derive from

a literature review of DA infrastructure implementations.

Those criteria must be met by DA analyses in order to ensure

their operability.

• We developed and implemented a Smoke Testing suite,

called Development Environment for AuTomated and

Holistic Smoke Testing of Analysis-Runs (DEATHSTAR)3.

DEATHSTAR employs a testing-through-simulation approach

to identify potential malfunctions in the analysis code by

systematically validating our six criteria. This PoC, inspired

by Integrated Development Environments (IDEs), allows the

prototyping and simulation of DA experiments on synthetic

or (real) sample data.

• We conduct a User-Study with 29 participants to evaluate the

effectiveness of our criteria and the usability of DEATHSTAR.

• We lastly present a technical evaluation demonstrating the

flexibility and adaptability of our approach by successfully

repeating and reproducing three real-world use cases.

Overall, we find that almost all DA algorithms (96.6%),

developed and (Smoke) tested by participants of our User-Study

using our approach, terminated with no errors in a real DA

execution. These results suggest that the six criteria we proposed

are sufficient for ensuring the operability of the analysis code.

Additionally, we achieved a System Usability Scale (SUS) score of

88.3 in our User-Study, which is considered to be “excellent” (18).

The outcomes of the second part of our evaluation show that our

3 The code of the PoC is available as Open Source, including screenshots,

a screencast, examples, the developed data schema, and explanations

at: https://github.com/PADME-PHT/playground.

concept can support DA-driven research under real circumstances

and is flexible enough to serve various data types and sources.

2 Method

In the previous section, it became apparent that the essential

element of DA approaches is the analysis code. As these analyses

are executable software fragments, they can consequently be

vulnerable to unexpected failure during the execution, like any

software product (19). For example, the algorithm might not

be compatible with a specific data source version or contain a

logical error that needs to be resolved before the execution (see

Figure 1). As the most widespread method to verify software

quality, testing can prevent such failures (19). Moreover, the

importance of testing is also evident when reviewing so-called

Software Development Life Cycles (SDLCs) (20). These SDLC

models describe systematic processes on how software should be

developed and what steps should be taken in the SDLC (21).

Consequently, an SDLC model can control costs, reliability,

performance, and functionality of the developed software (21).

As a result, various SDLC models have been developed and

play a significant role in software engineering (15). It is worth

noting that each SDLC model embraces a testing phase, which

emphasizes that testing is indispensable in professional software

development (15). Specifically for DA, the necessity of testing

capabilities has already been formulated in work by Bonawitz

et al. who state that an environment for testing and simulation

of analysis algorithms is a requirement for DA platforms (22).

One specific testing method playing a major role in this work

is called Smoke Testing (16, 23, 24). This term stems from the

industry and includes an initial and fundamental test run to

ensure that a program—here: the analysis—is operational, executes

successfully, and does not end up in smoke. For example, Herbold

and Haar successfully applied Smoke Testing to find problems in

analytics software libraries and algorithms (16). Specifically, they
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designed a total of 37 Smoke Tests for classification- and clustering

algorithms (16).

The methodology of this paper is inspired by the work of

Cannavacciuolo and Mariani (17), who applied Smoke Testing to

cloud systems, intending to validate whether a system is operational

post-deployment, which helped to determine if more sophisticated

tests can be conducted. As part of their work, they propose several

Smoke Testing criteria that can be used as a foundation for

creating Smoke Testing suites in the scope of cloud systems (17).

Since the relevant DA platforms discussed in Section 2.2 are

typically not deployed in cloud systems, and our primary emphasis

is on (Smoke) testing analysis code rather than an entire

infrastructure, these criteria are not applicable to our specific

scenario. Nevertheless, they have specified three key characteristics

of Smoke Tests, that serve as an inspiration for our work. Those

characteristics define the way how Smoke Testing criteria should

be validated:

• Shallow: Smoke Tests should be kept at a higher abstraction

level and not overly detailed. This means that only a system’s

or software’s basic functionality and operability should be

validated. It is just serving as a prerequisite for more

sophisticated testing methods.

• Fast: Smoke Tests must be fast in their execution since they

are performed before other test runs or, in our scenario, the

analysis execution.

• Automatic: As an extension to the fast characteristic,

Smoke Tests should be fully automated to reduce

manual intervention.

To realize Smoke Testing suites, so-called playgrounds or

prototyping environments may provide a possible solution (22).

Here, the term playground refers to services that allow users to

interact and play with software without prior complex setup or

configuration (25). Moreover, these playgrounds enable users to

iteratively (i.e., trial-and-error) develop and priorly test their entire

implementation or specific modules (25, 26). Because playgrounds

have successfully enabled testing approaches in other settings, our

work pursues a similar approach (25–28).

We begin the conceptualization of such a Smoke Testing

suite by abstracting and formalizing the scenario, focusing on the

relevant steps in which the analysis execution might fail based

on related works in the DA domain (Section 2.2). Moreover, our

approach aims for a user-centric design, so we initially describe

the problem statement from a user perspective (Section 2.1). The

outcome of this abstraction is a formal model that describes

the analysis process of the code, which is distributed within a

DA infrastructure. Based on the steps in the process model, we

derive our set of Smoke Test criteria that aim to ensure that

each step can be executed (Section 2.3). We aim to keep the set

of criteria as “shallow” as possible to comply with the defined

characteristics of Smoke Testing (see above). Subsequently, we

present a PoC implementation that can apply Smoke Tests to

analysis code based on our defined criteria (Section 2.4). We aim

for a “fast” and “automated” solution consistent with the Smoke

Testing characteristics. Lastly, we evaluate the effectiveness of our

solution, its usability, and we apply it to three distinct use cases as

part of our technical evaluation (Section 3). For the implementation

and evaluation, we use the DA platform PADME as infrastructure

to execute the analyses (7).

2.1 User-centered problem description

Initially, developers or scientists who intend to conduct a DA

experiment need to develop the code for the analysis, which is

designed to analyze data provided by decentralized data holders

(see Figure 1). The development process usually occurs locally or

on a machine the developer can access. It is vital to test the analysis

code to ensure its proper operation after the development (or

even during it, through a trial-and-error approach). While certain

parts and components of the code can be tested on a module-by-

module basis, the presented setting has a shortcoming: To conduct

a complete test of the code, the developer requires (sample) data

to execute the developed algorithms on. However, the availability

of sufficient and potentially sensitive data for testing purposes is

not guaranteed due to the mentioned data protection and privacy

regulations. As a result, researchers are left with two options. In

case sample data is available, following an ad hoc testing approach

might not cover all criteria that are needed to ensure the operability

of the code. Secondly, in the worst case, the developer is obliged

to submit the analysis script to each data provider and wait for

its execution on their data in order to identify potential issues in

the code. These circumstances result in an inefficient development

process since the developer is reliant on the data providers, and

even minor malfunctions (such as Index-out-of-Bounds,

Nullpointer, TypeCast exceptions) can cause a new

development round. From an abstract perspective on this scenario,

the testing phase is closely coupled with the actual execution phase,

which causes the mentioned inefficiency (see Figure 1). Usually, the

testing phase is designed to support the development phase to allow

for fast code updates and trial-and-error development. Therefore,

in this work, we aim to separate the testing and execution phases

and provide a solution that facilitates Smoke Testing during or after

the development phase (see Figure 1, right).

2.2 Abstract workflow

Our initial step involves examining how the analysis code

operates on a conceptual and abstract level. In general, two

execution policies exist that enable DA: A parallel and a

sequential approach (sometimes referred to as FL and Institutional

Incremental Learning (IIL), respectively) (13, 29). In IIL, the

data holders are arranged in a sequence, and the analysis code

is sent from institution to institution until the last institution

sends the final (and aggregated) results back. The procedure for

FL repeats the following steps: First, the analysis algorithm is

simultaneously distributed to all participating data holders. Then,

each data holder executes the analysis algorithm on the local data

and sends the result of this analysis back to the central component.

The central component aggregates all partial results, combining

the results of all participants. This aggregated result is either the

final or intermediate result for the next so-called communication

or federated round. The conduct of a DA experiment generally
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TABLE 1 Applicability of the six steps identified in this paper to di�erent

DA infrastructures.

References S1 S2 S3 S4 S5 S6

PHT (IIL) (7, 32, 33) X X X X X

DS (FL) (31) X X X X X X

Swarm Learning (P2P) (35) X X X X X X

SMPC (P2P) (36) X X X X X (X)

Steps required by an infrastructure (row) are shown as checkmarks in the respective column.

All infrastructures require connecting to a data source (S1), querying data (S2), loading

previous results (S3), executing the analysis (S4), and storing results (S5). Some infrastructures

require result aggregation (S6).

requires an infrastructure that orchestrates the analysis and

transmits the code to the data holder according to one of the

foundational execution policies mentioned above. In recent years,

several implementations of DA have been proposed. DataSHIELD

(DS) is an open-source solution that follows the FL approach and

uses the programming language R, often used in statistics4 (30, 31).

Another emerging concept is the Personal Health Train (PHT),

which follows the sequential paradigm. The PHT uses software

containers5 to distribute the analysis code to each data provider.

Some implementations following the PHT concept are Vantage6,

PHT-meDIC, and PADME by Welten et al. (7, 32, 33). Besides

FL and IIL, additional (hybrid) approaches for DA exist: Swarm

Learning (SL) and Secure Multiparty Computation (SMPC), which

use Peer-To-Peer (P2P) communication instead of relying on a

central component (34, 35). These infrastructures, founded on the

dispatching paradigms, such as IIL and FL, serve as the source for

our abstraction.

After systematically reviewing these infrastructures, studies

conducted with them, and our personal experiences from DA

experiments, we have identified six abstract steps (S1–S6) that the

analysis code performs during its execution, as shown in Table 1.

We transformed our findings into a process diagram for a better

overview of the abstract workflow (Figure 2). Despite how the

(intermediate) results are finally combined, the infrastructures do

not differ in their workflow on the conceptual level. First, the

developed code must establish a database connection (S1). Then,

the analysis queries the data (S2) and loads the intermediate

results (S3) from previous execution rounds. The queried data

from Step 2 and the previous results from Step 3 serve as the

input for a generic analysis code. During the data analysis (S4), the

queried data is used to compute updated analysis results. Once the

analysis terminates, the updated results are stored (S5). In the IIL-

setting, the results are stored in the analysis payload, which is then

transmitted to the next data provider. In contrast, for FL, the results

are directly transmitted to a central aggregation component, where

the intermediate results of all analysis replicas are aggregated into a

single global result (S6). As each approach we examined is round-

based, these six steps are repeated in each subsequent round. In the

IIL scenario, a new round starts after the analysis has been sent to

the next data holder. On the other hand, in the FL scenario, a round

begins after the aggregator has combined all results. Hence, the

4 Further DS studies are available at: www.datashield.org/about/

publications.

5 Open Container Initiative: https://opencontainers.org.

approaches following the paradigm of parallel analysis executions

undergo an additional step.

2.3 Criteria definition

Now that we have our abstract workflow model, we define

six criteria that must be fulfilled to ensure that the analysis code

is operational in every of our derived execution steps. For each

requirement, we linked the corresponding step in our workflow.

Requirement A: Proper connection interface. The analysis

code should be able to establish a connection to the data

source without any issues. This necessitates that the algorithm’s

configuration is compatible with the data source’s connection

interface(s). Proper configuration implies that all connection

parameters (e.g., file path, hostname, port number, or database

type) are correct and available (S1).

Requirement B: Matching schema. The analysis code should

be able to send syntactically correct queries to the data store and

receive corresponding results in response. Hence, the expected data

schema of the analysis code must match the actual data schema of

the data source. Note that Requirement A focuses on the technical

aspect of connecting to the data source. Requirement B refers

to successfully establishing a connection based on data (schema)

compatibility (S2).

Requirement C: Load previous (intermediate) results.

Loading the (intermediate) results from previous executions into

the analysis code is necessary to enable result updates, representing

the core functionality of DA. In the first round, we require a

successful initialization if necessary (S3).

Requirement D: Analysis execution without errors. If the

Requirements A, B, and C hold, the actual DA algorithm should

run without encountering any errors. An error-free execution is

indicated by, e.g., the exit code 0 (S4).

Requirement E: Successful result storage. The analysis code

should save the analysis results in the appropriate location and

format. The term “correct location” refers to emitting the results

as either a file or a processable bit string for transmission. This

guarantees extractable analysis results, which the researcher can

inspect after the execution (S5).

Requirement F: Successful result aggregation. In aggregation-

based approaches (e.g., FL), we additionally require that the central

aggregation of the intermediate results computed and stored in

steps 4&5 terminates without an error (S6).

It is worth noting that we interpret these six requirements

as the root causes of SPOFs and as the fundamental factors that

must be met for an analysis to terminate properly. As such, these

requirements only represent a subset (see “shallow” criterion) of

potential additional criteria. To illustrate, it may be necessary to

ensure a reliable and low-latency connection between the entities

involved in DA to guarantee the proper transmission of the analysis

code. However, we argue that such criteria are mainly subject to

the responsibility of the DA infrastructure providers rather than

the developers of the analysis code. Consequently, we have only

considered requirements that developers and the analysis codes can

directly influence. Additionally, we do not check for the plausibility

of the results. Since DA can cover a wide spectrum of analysis types,

we argue that validating the result’s plausibility might contradict

the “shallow” and the “fast” criteria since possible tests might be
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FIGURE 2

Process diagram inspired by the business process model and notation, displaying the identified six steps performed in DA experiments. First, the

analysis code needs to connect to a data source and query analysis data (Steps 1 & 2). Simultaneously, the code can load results from previous

executions or initial models and weights (Step 3). Afterward, the analysis is executed, and the results are stored (Steps 4 & 5). The results must be

aggregated depending on the DA architecture (Step 6). Finally, either a new execution round is triggered, or the execution finishes.

too detailed in our DA setting. For example, Smoke Tests for

classification and clustering algorithms have already been proposed

by Herbold and Haar (16).

2.4 Implementation of DEATHSTAR

With the foundations established in the previous section,

we proceed to our PoC implementation that we refer to as

DEATHSTAR. This prototype evaluates the analysis code as per our

six criteria. According to the key characteristics of Smoke Testing,

DEATHSTAR should offer capabilities for “fast” and “automated”

Smoke Testing. To accomplish this, we adopt a testing-through-

simulation approach, which simulates an entire DA execution

with multiple rounds and data sources to detect possible non-

compliances with our six criteria. Beyond this aspect of fast test

automation, we also focus on a user-centric design that is inspired

by IDEs and playgrounds as common tools in software engineering.

To provide an overview, we have provided a top-level architectural

diagram in Figure 3.

We developed a containerized web application in Node.js,

using the client-server paradigm (see Figure 3), which enables the

integration into other ecosystems via the provided API (component

1 ). Through the use of containerization this application can be

run platform independent. Moreover, the provided API can also

be used in CI/CD pipelines and other IDEs, enabling developers

to integrate the functionalities of DEATHSTAR into broader

development processes. The User Interface (UI) includes elements

that support developers in writing code and monitoring the

simulations via log outputs. Our implementation is accessible

under theMIT license via the repository associated with this paper.

This repository offers technical descriptions, screenshots, and a

video demonstrating the described features. The following sections

provide a more detailed description of the architectural design.

2.4.1 Data schema model 2
We assume that the developer has access to the data schema

information and the technical details of the data sources. In

this work, we intend to replicate the real data sources of a DA

infrastructure for our simulation and fill each replicated data source

with synthetic data following the same schema and format. As

no real data is involved, we claim that this approach is privacy-

preserving and satisfies our aforementioned objectives. It should

be noted that we consider the term real to be associated with

sensitive and non-shareable data. In some instances, such as data

donations, the developermay have access to real sample data, which

can be used for our Smoke Testing scenario. In the latter case,

we also demonstrate that our targeted approach can handle real

sample data beyond the synthetic data we generate. Describing

the structure of data sources used for data analysis is challenging

because of the sheer amount of data storage technologies, data

types, and their combinations. For these reasons, our goal is to

find a solution that can enable the initialization of the database, the

management and creation of the data structure, and the insertion

of synthetic data while allowing extensions to support different data

sources and data structures in the future.

A common way of specifying data structures and data formats

are Data Schema Models (37, 38). We have decided to use the

widely used and well-established Resource Description Framework

(RDF) and its serialization Turtle6 (39). RDF is very flexible

regarding extendability, adaptability, and granularity level. By

utilizing RDF, we can model the hierarchical fashion of data

sources (see Figure 3), starting from the database technology, via

the inlying tables to the atomic data types of attributes. Moreover,

RDF’s graph-based nature enables us to model more complex

data structures with interconnections between data entities by

additional arcs and nodes added to the graph. Further, we used

RDF in conjunction with the Web Ontology Language (OWL) to

model and represent data structures, making it a versatile tool

that facilitates interoperability and reusability on data-level7. An

integral part of RDF are IRIs, which uniquely identify the entities

described in the RDF model. In our case, this means that data

sources or atomic data types are represented by an IRI. Two

example IRIs are depicted in the Data Schema Model in Figure 3.

IRI A represents the identifier for a specific data source technology,

whereas IRI B refers to the atomic data type double. For the sake

of simplicity, Figure 3 only shows the model for one specific data

source, i.e., a data provider. To represent multiple data providers,

whichmight participate in a DA execution, additional Data Schema

Models in the same format can be added. The Data Schema

6 Terse RDF Triple Language: www.w3.org/TR/turtle/.

7 Schema and examples: https://github.com/PADME-PHT/playground.

Frontiers inMedicine 06 frontiersin.org10

https://doi.org/10.3389/fmed.2023.1305415
www.w3.org/TR/turtle/
https://github.com/PADME-PHT/playground
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Welten et al. 10.3389/fmed.2023.1305415

FIGURE 3

Overview of the DEATHSTAR architecture, containing a web application following the client-server paradigm. The server is a monolithic application

that implements each sub-component as a library. Moreover, the overview depicts the process of generating simulated data sources. This process

leverages Internationalized Resource Identifier (IRI) to find and query plugins that generate synthetic data and the data source instances. After the

simulated data sources have been setup, the Simulation Engine 4 simulates a distributed execution of the provided code.

Model is usually specific for one DA use case involving multiple

data sources. Therefore, it is mandatory to initially model each

data provider manually or with semi-automated means. While our

schema as mentioned above only models the structure of the data

source, we further need a mechanism to instantiate actual data

sources and generate data.

2.4.2 Plugin system 3
We decided to leverage a module-based plugin system with

standardized interfaces to handle the instantiation and generation

of multiple data sources and synthetic data (see Figure 3). There

are two general types of plugins: The first type, called Database

Plugins (DB Plugins), manages the data sources (e.g., PostgreSQL)

and their underlying structures (e.g., tables and columns). The

second type, the Data Plugins, produces new data instances of a

specific data type. Both types of plugins are available and provided

as Node.js modules within the DEATHSTAR server and loaded

when the application starts. Therefore, the benefits of using IRIs

have become apparent at this point: Each modeled data source and

type is linked to exactly one instantiation function of a plugin via

an IRI.

Consequently, we can explicitly define how to instantiate a data

source or generate a data instance. Developers can leverage the

flexible plugin system to establish databases according to the “mix-

and-match” principle, allowing them to combine complementary

data plugins to populate the database. Our collection of 30 plugins

for the most common atomic data types are available open-source8

8 Plugins: https://github.com/PADME-PHT/playground/tree/main/src/

backend/src/lib/data-generator/plugins.

for reuse or can be used as templates for the development of

new plugins.

To manage the various types of storage technology, we rely on

software containers, more specifically Docker containers9, to create

a new instance of a data source through our DB plugins mentioned

above. This approach allows us, for example, to instantiate a

separate container for each required data source using a single

Docker API call. Moreover, most data sources like PostgreSQL,

MongoDB, MinIO, or Opal already provide images of various

versions for the Docker environment that can be used as a

starting point. Further, containers provide standardized connection

interfaces, which facilitate the insertion of data instances into the

database.We argue that this approach is versatile enough to support

highly-customized storage technologies since containers can also be

pulled from private repositories. Additionally, developers are also

able to use real data samples with DEATHSTAR by using a custom

plugin that either provides a proxy for the connection to an already

existing data source or creates a data source that uses the real data

samples instead of the generated ones.

2.4.3 Simulation engine 4
The task of the Simulation Engine is to take analysis code and

simulate a DA execution on the data sources, which have been

introduced in the previous sections. At this point, we face another

challenge regarding the analysis code that could range from basic

statistics to even complex code for ML model training, including

a data-preprocessing pipeline, and can be written in different

programming languages. Hence, our solution must be independent

of the analysis complexity and the technology stack used. In

9 Docker: www.docker.com.
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order to achieve this goal, we make use of the containerization

technology again and containerize the analysis code before the

actual simulation. This means that the developer has all the

necessary degrees of freedom to develop the analysis code with

DEATHSTAR. For example, our concept is compatible with all

widely used ML frameworks such as PyTorch10 or Scikit-Learn11.

Apart from the analysis code, we only need the image building

file (e.g., Dockerfile), which gives the instructions for building

the container. To simplify this process, we offer Dockerfile

templates for the most popular programming languages used in

data science, such as Python12 and R13.

We chose to implement the IIL and FL paradigm in our

Simulation Engine, giving us one representative of DA approaches

with and without aggregation. Moreover, we argue that the

implementation can be extended, if needed. For the simulation

of the IIL paradigm, the developer has to provide the mentioned

Dockerfile and the analysis code. In the FL scenario, we

additionally require code for the aggregation component. The

Simulation Engine manages the simulation process, which builds

the analysis container(s). The simulation proceeds as follows: Upon

building the analysis container, the engine injects DB-plugin-

provided connection credentials through environment variables

into the container. It then launches the analysis container, which

executes the analysis code. It should be noted that in FL, these

preliminary steps may occur simultaneously for each replica of

an analysis container. The analysis itself adheres to the abstract

workflow presented in Figure 2. It takes the received credentials

and establishes a connection to the simulated data source (S1).

The analysis code queries the data (S2), loads previous results

if available from the filesystem of the analysis container (S3),

processes, and analyzes the queried data (S4). The computed

analysis results are saved in the container, which is then stopped

by the Simulation Engine. A new container is instantiated from

the stopped container, which carries out steps S1–S5 using the

previous results and the next data source. This represents

the transfer from one data source to the next, enabling us to

simulate the IIL paradigm. On the other hand, in the FL case,

the engine initiates a container containing the aggregator code,

which has to be provided by the developer. This container

gets the intermediate results produced by each replicated analysis

container from the Simulation Engine, which extracts them from

a pre-defined path. The aggregation container then combines the

provided intermediate results into a single global result (S6) before

a new analysis round begins. It is important to mention that

each data source is simulated within its own virtual network.

This approach prevents any side effects, like duplicated hostnames

between institutions, and ensures the simulation accurately reflects

the real execution environment. Moreover, using virtual networks,

the Simulation Engine can be adjusted for the FL case to exchange

intermediate results trough the network.

10 PyTorch: https://pytorch.org/.

11 Scikit-Learn: https://scikit-learn.org.

12 Python: https://www.python.org/.

13 R: https://www.r-project.org/.

3 Results

In order to evaluate our Smoke Testing approach, we divided

our evaluation into two parts to assess different aspects of

our concept. First, we invited potential users and conducted a

User-Study with an accompanying survey (Section 3.1). Through

this User-Study, we investigate the effectiveness of our criteria.

Secondly, as part of a technical evaluation, we replicate several real-

world use cases to evaluate the fitness of our realization in operando

(Section 3.2)14.

3.1 Evaluation of the e�ectiveness

This part of our evaluation has two goals. Firstly, we want

to determine the effectiveness of our defined criteria through

DEATHSTAR by conducting an exemplary DA use case (called

User-Study, see Figure 4). Besides this, we want to assess the

contribution of our concept to the development phase of DA

experiments from a user perspective and surveyed the users after

their development. It should be noted that the scope of this User-

Study is limited to the development of a basic statistical query rather

than a complexMLmodel. This is due to the potential difficulty and

complexity of conducting a User-Study for the latter. However, we

argue that the six criteria established in this study remain relevant

and applicable, regardless of the level of complexity involved in the

analysis, or more specifically, in S4 (Figure 2). In either scenario,

data must be queried and processed, and the results must be stored.

3.1.1 Setup
We designed an exemplary use case that might occur in a

real clinical study15. The use case aims to determine the number

of patients in two hospitals that are at least (≥) 50 years old.

Since we assume that these two hospitals, i.e., data providers,

exist in our real ecosystem, we consequently need to re-model

these, called Hospital A and Hospital B, with DEATHSTAR.

Both offer a relational PostgreSQL database that provides patient

information. The database at Hospital A contains data on patients

and their treatment history, while Hospital B provides data on

patients and their insurance information. At this point, it is worth

mentioning that we explicitly introduce data heterogeneity and

schema mismatches as potential sources of error in DA. The

idea behind introducing those differences has been to investigate

DEATHSTAR’s capabilities to aid users in detecting potential

malfunctions in the code. In our case, both relations about the

relevant patient information have different names (patients on

Hospital A, patient_info onHospital B) and offer varying additional

attributes. Participants are expected to identify these differences

and adjust their code accordingly to pass the evaluation.

14 Detailed results and resources for replicating the evaluations to

are provided at: https://github.com/PADME-PHT/playground/tree/main/

evaluation.

15 For a video demonstration of the use case task see https://github.com/

PADME-PHT/playground.
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FIGURE 4

Our evaluation involved RDF data structures in the user-study and three application scenarios: ISIC-GEN, ISIC-SAMPLE, and the BC use case. The

user-study used two distributed data sources with synthetic data, while ISIC-GEN used three data sources with synthetic data, and ISIC-SAMPLE used

one data source with real sample data (13). Lastly, the BC use case leveraged six data sources with real sample data (14).

3.1.2 User task description and survey
All participants were provided with a task description

document to implement the DA code for this use case with

the programming language Python and the query language

SQL16. The programming and query language has been selected

arbitrarily as our concept leverages programming language-

agnostic containers. After a short oral tutorial explaining the

interaction with DEATHSTAR, participants were asked to develop

the analysis code for the scenario mentioned above. Alongside this

main task, users were encouraged to explore the DEATHSTAR’s

features and functionalities. However, no further guidance or

hints have been provided regarding possible issues during the

development and the participants are unrestricted in how they

fulfill the task. Especially, the intentionally introduced mismatch

problem needs to be identified by the participants only with the

help of DEATHSTAR. After the development was completed, we

asked each participant to submit the code. The submitted code was

then distributed and executed within the actual infrastructure. We

also aimed to assess the quality of our solution from the users’

perspective. Therefore, we conducted a survey upon completion of

the use case implementation. The survey consisted of three parts

and was conducted via an anonymous online questionnaire. The

questionnaire is based on the SUS as a metric to measure the

usability of a system (18, 40). The SUS consists of ten questions that

are answered on a scale ranging from 1 (Strongly Disagree) to 5

(Strongly Agree) (40). From the answers to these questions, a score

is calculated that ranges from 0 to 100 and indicates the system’s

usability, with 100 being the best reachable score (40). The final

part of the evaluation consisted of six custom questions regarding

the comprehensiveness and usefulness of DEATHSTAR, using the

same scale as the SUS.

In total, the evaluation involved 29 participants17 from diverse

backgrounds, such as researchers, developers, and those with

experience in DA algorithm development. The evaluation sessions

16 PostgreSQL Syntax: https://www.postgresql.org.

17 Raw data and details about the evaluation: https://github.com/PADME-

PHT/playground/tree/main/evaluation/user_study.

lasted 30–60 min on average, and the study was completed

within one month. Of the participants, 11 (37.9%) reported

prior experience with DA, while 18 (62.1%) stated having no

prior experience. Of the 29 code submissions, 28 were executed

successfully (96.6%) in the real ecosystem. All participants found

the intentionally introduced schema mismatch at the two data

providers and adjusted their code accordingly. However, one

submission failed to establish a connection to the database since

a connection parameter had been misconfigured (non-compliance

with Requirement A). We have received 28 survey submissions—

one submission was invalid. Based on these, we calculated the

SUS according to Brooke (40). Overall, we reached a SUS

score of 88.3, indicating a high level of usability. Moreover, the

question, stating “The playground solves the problem of [Smoke]

testing distributed analysis algorithms”, has an average of 4.11.

Tables 2, 3 provide an overview of the user ratings. Additionally,

the supplemental material18 provide the raw data and scripts to

calculate the ratings.

3.2 Real-world use cases

In order to showcase the adaptability and flexibility of our

approach, we intend to technically evaluate it further by replicating

three real-world application scenarios with more complex data

structures, schemas, and data types (see Figure 4).We aim to collect

performance benchmarks of DEATHSTAR, assessing its suitability

for a range of scenarios with varying complexity levels of the

analyses involved, usage of data instances, and (simulated) data

sources. We further demonstrate the compatibility of our PoC to

various underlying hardware options and perform the Smoke Tests

using the CPU or the GPU. The selected use cases were previously

conducted byMou et al. andWelten et al. (13, 14).We refer to these

cited references for further details about the DA experiments.

ISIC-GEN (Summary: 10 synthetic data instances per source,

three data sources, GPU only). The open-source dataset used for

18 Supplemental material can be found here: https://github.com/PADME-

PHT/playground.
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TABLE 2 Average (Avg) and standard deviation (SD) per statement of the

System Usability Scale (SUS) (n = 28).

Question Avg SD

I think that I would like to use the Playground frequently 4.21 ±0.79

I found the Playground unnecessarily complex 1.43 ±0.50

I thought the Playground was easy to use 4.57 ±0.69

I think that I would need the support of a technical person

to be able to use the Playground

1.57 ±0.84

I found that the various functions in the Playground were

well integrated

4.64 ±0.56

I thought that there was too much inconsistency in the

Playground

1.14 ±0.36

I would imagine that most people would learn to use the

Playground very quickly

4.46 ±0.74

I found the Playground very awkward to use 1.79 ±1.10

I felt very confident using the Playground 4.54 ±0.58

I needed to learn a lot of things before I could get going

with the Playground

1.18 ±0.48

Each question could be answered on a scale from 1 (strongly disagree) to 5 (strongly agree).

TABLE 3 Average (Avg) and standard deviation (SD) per question

regarding the Playground’s comprehensiveness and usefulness (n = 28).

Question Avg SD

The Playground offers the relevant tools needed to test

distributed analysis algorithms

4.50 ±0.75

The schema information provided in the Playground offers

all the needed information to develop an analysis task on

the described data before its actual execution/deployment

4.54 ±0.69

The Playground facilitates access to the schema

information, which is usually sealed within the institution

4.82 ±0.39

Using the Playground improves the development

process—compared to deploying the analysis algorithms

without the Playground

4.50 ±0.75

The Playground helps with discovering possible problems

in the execution, like differences in data schemas between

Stations, before the execution

4.64 ±0.73

The Playground solves the problem of testing distributed

analysis algorithms

4.11 ±0.79

Each question could be answered on a scale from 1 (strongly disagree) to 5 (strongly agree).

the skin lesion analysis is sourced from the ISIC19 and comprises

image and patient metadata. Mou et al. distributed this data

across three institutions in a real DA setting and conducted

an experiment. In our scenario, we aim to re-model the data

provision. However, this use case presents a challenge as we need

to model two interlinked data sources for each data holder: A Fast

Healthcare Interoperability Resource (FHIR)20 server for patient

data and an object storage system for the skin images (as shown

in Figure 4). We first developed the plugin for the FHIR server

instance, and, secondly, we modeled a basic file dump to store

image data. Finally, we need plugins for each modeled data type.

We have decided to create plugins that generate random data,

19 ISIC Challenge: www.isic-archive.com.

20 FHIR standard: https://hl7.org/fhir.

including random strings or integers, datatypes according

to the FHIR standard, and even images with no semantics. Our

plugins support the FHIR resource types Patient, Media, and

ImagingStudy required in this use case, which are randomly

filled. The chosen data type for dermoscopic images is jpeg, as

it matches the format of the original images. For the jpeg-plugin,

we obtained 70 placeholder images from an external service used

for websites21. After the plugin is instantiated, these images are

stored in the file dump mentioned earlier. Revisiting our main

objective, we strive to offer a concept that enables Smoke Testing of

algorithms. Therefore, we consider the synthetic data instances as

placeholders that can be queried and processed to test the analysis,

but it is not intended for producing plausible analysis results.

ISIC-SAMPLE (Summary: 8,444 sample data instances, one

data source, GPU only). To demonstrate that DEATHSTAR is

capable of managing real) sample data and custom data sources, we

replicated the ISIC-GEN use case using actual plausible sample data

obtained from the ISIC repository mentioned earlier. To achieve

this, we set up an external data source similar to the real setting

by Mou et al. in a network accessible from DEATHSTAR’s host

machine instead of using our provided mechanism for data source

replication.

BC (Summary: 539 sample data instances, six data sources,

CPU only).We conducted another use case with real data samples

about BC characteristics, following a similar approach as in the

previous use case. In their work, Welten et al. distributed CSV data

across six institutions in a real DA setting and conducted a DA

experiment on this BC dataset. We set up external storage for the

CSV data, which is accessible to DEATHSTAR.

After re-modeling the required data sources, we need to

develop the analysis code with DEATHSTAR. For the ISIC use

cases, we developed the same image classification model, which

classifies the images into benign andmalign. In contrast, for BC, we

implement code that trains a logistic regression model to predict

BC. We implemented the analyses according to both executions

paradigms, i.e., one IIL and two FL versions. Note that, regarding

the FL paradigm, we implemented one fully parallelized version

(original version) and one version, called FL-INC, which executes

at most one analysis simultaneously. In other words, FL-INC

performs IIL but updates the analysis results at the end of the

round. At this point, we have provided all necessities to perform

Smoke Tests on each use case. We choose three, one, and six

instances for each respective scenario (as shown in Figure 4) and

start the simulation. Once we successfully executed the code in

the simulated environment, indicating a successful Smoke Test, we

ran the DA algorithms in the PADME platform to evaluate their

operability in a real-world setting. We state that all executions were

as expected and successful.

4 Discussion

The outcomes of our first evaluation (see Section 3.1) show the

effectiveness of our criteria. We observed that almost all executions

of the participant’s algorithms were successful. Overall, the high

number of successful executions shows that our solution can

21 LoremFlickr CC): www.loremflickr.com.
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indeed provide Smoke Testing capabilities for DA. The outcomes

of our survey further reinforce this claim: The participants rated

DEATHSTAR positively and acknowledged that it effectively “solves

the problem of [Smoke] Testing DA algorithms” and “offers the

relevant tools needed to [Smoke] Test” (Table 3). Beyond the

results about the effectiveness, the accompanying user survey

demonstrates that our realization was well-received by our study

group. This result is also reflected in the SUS score of 88.3

(Table 2), placing our realization clearly above the mean score

of 68 (41). Moreover, according to Bangor et al. this score can

be described with an adjective rating of “excellent”, placing it in

the highest out of four quartiles (18). When we investigate the

cohorts, including participants with and without prior experience,

only a small difference in the SUS score is visible: Participants

with a background in DA rated our concept with a score of

86.6 compared to a rating of 89.8 by the unfamiliar users. All

participants have been able to “discover possible problems in the

execution, like differences in data schemas, before the execution” with

DEATHSTAR. Additionally, the participants appreciated the ability

to employ a trial-and-error approach during development.

In the second and more technical evaluation, we assessed

the flexibility of our approach by applying it to real-world use

cases. We have been able to use DEATHSTAR for generating data

and creating complex, interlinked data sources, indicating that its

concept is capable of working with very distinct settings such as

structured data, images or textual data. We would like to emphasize

that the same code used for ISIC-GEN also worked for ISIC-

SAMPLE, indicating that our approach involving synthetic data

was able to successfully replicate data sources used in the real-

world use case (ISIC-SAMPLE). During our technical evaluation,

we additionally measured the duration of each Smoke Test (i.e.,

simulation). Note that each analysis code has to be containerized

before the simulation. As this factor might also count as part

of the Smoke Test, we also measured the image-building time

(see Table 4). All builds have been executed without pulling the

overarching Python image for the analysis container, and the

needed dependencies have been downloaded with a connection

speed of 900 MBits. In the scope of this technical evaluation,

DEATHSTAR has been deployed on a server with 4×3.60 GHz

CPU, 128 GB RAM, and a TITAN XP GPU.

Based on these measured times, we can derive three factors that

influence the Smoke Tests:

1. Analysis complexity: While the Smoke Test of the User-Study

case terminates almost immediately, the more complex data

analyses ISIC-GEN, ISIC-SAMPLE, and BC need more time

since these involveMLmodel training, whose duration is usually

influenced by the number of epochs or the complexity of the

to be trained model itself. Additionally, we can identify another

effect, which is the number of required dependencies used for

the analyses. Due to our design based on containerization,

DEATHSTAR builds an image for each analysis. Hence, each

dependency has to be included. This results in the BC analysis

image needing more time to be built than the ISIC images since

the BC image covers more packages. However, note that many

packages can be cached once an image has been built. This

caching reduces the build times to >2 s.

2. Dataset size: Similar to the analysis complexity, the number of

used data instances for the Smoke Tests influence its duration.

While the analysis code for User-Study and ISIC-GEN only

processes 10 instances per provider (fastest), BC processes 539

instances, and the ISIC-SAMPLE analysis queried 8,444 images

(slowest).

3. Number of simulated data sources: The more providers are

involved in the Smoke Test, the longer the duration. This can

be explicitly seen in ISIC-GEN and BC, where we involved three

and six providers, respectively. Thus, the simulation duration is

directly influenced by a factor proportional to the number of

data sources.

Regarding the three characteristics of Smoke Testing, we

can derive the following connections and conclusions from our

evaluation results. By simulating the analyses, DEATHSTAR

can identify potential issues and problems in the algorithm’s

functionality without having to perform an exhaustive and

extensive test. This contributes to the “shallow” characteristic, and

the high number of error-free executions underpin the effectiveness

of our criteria. Regarding the “fast” characteristic, we face a trade-

off between the duration of the Smoke Tests and three factors

that influence the simulation, as discussed above. At this point, we

argue that the Smoke Test can be optimized, for example, by using

fewer data sources (e.g., in the case of homogeneous data sources)

or fewer data instances. For example, the ISIC-SAMPLE use case

also works using a fraction of the 8,444 images, which might

reduce the Smoke Test duration significantly (see ISIC-GEN).

Furthermore, there is potential for improvement in implementing

the FL paradigm. While executing the fully parallelized version

(FL) in the BC use case, we encountered a slowdown of the

Smoke Test due to the increased loads produced by the parallel

execution. An alternative that circumvents the concurrency issues

and therefore offers faster Smoke Testing could be FL-INC,

which exhibits similar performance to IIL. Finally, regarding the

“automated” characteristic, we found that through our simulation-

based approach, we enable a fully automated Smoke Test with

minimal manual intervention. Each Smoke Testing criterion

mentioned above is automatically validated by our Simulation

Engine, contributing to a seamless use of DEATHSTAR, partially

shown by our survey results.

4.1 Threats to validity

Some limitations have become apparent that can be attributed

to our design decisions. While DEATHSTAR fully automates

the Smoke Tests, some prior efforts still have to be devoted to

collecting the schema information from each data source, which

could pose a bottleneck. This especially holds for the creation

of plugins and the data re-modeling in case sample data is

unavailable for Smoke Testing. Although we included the aspect

of reusability in our design decisions (“mix-and-match”) and our

already developed assets can be used as foundations, the aspect

of re-modeling data sources might still be a time-consuming and

error-prone factor. Since our main objective has been the definition

of Smoke Testing criteria for DA analyses, wemainly focused on the

effectiveness of our criteria. Hence, our evaluation does not cover

the aspect of data re-modeling, and this question remains open.

The second threat is our implementation as such. Our simulation

might produce an overhead in the Smoke Testing strategy that

Frontiers inMedicine 11 frontiersin.org15

https://doi.org/10.3389/fmed.2023.1305415
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Welten et al. 10.3389/fmed.2023.1305415

TABLE 4 Each row represents the measured duration for the building times of the images, the time for one single provider, and the time for a complete

Smoke Test.

Use case Build
One Data
Source

Smoke Test
IIL

Smoke Test
FL

Smoke Test
FL-INC

User-study 23 s 6 s 12 s 15 s 17 s

ISIC-GEN 1 m 39 s 24 s 1 m 6 s 56 s 1 m 15 s

ISIC-SAMPLE 1 m 39 s 4 m 31 s – – –

BC 6 m 6 s 48 s 4 m 33 s 11 m 53 s 4 m 51 s

Note that the ISIC-SAMPLE use case has only been conducted on one data source.

might validate additional requirements implicitly, which influences

the effectiveness of our approach. The defined criteria can be

tested through another approach beyond simulation that tests

each criterion individually. This threat has also been analogously

stated in work by Cannavacciuolo and Mariani (17). We have

chosen a testing-through-simulation approach to comply with the

“automated” characteristic and the iterativemanner of DA analyses.

Hence, we argue that our approach provides the flexibility tomaster

the sheer amount of data source technologies, schemas, or analysis

types. Validating each criterion separately for each DA scenario

might impede this flexibility. However, the benchmarking of our

concept against other similar approaches remains open.

In summary, in this work, we addressed the issue of lacking

Smoke Testing criteria for the validation of DA code. We have

pointed out that insufficiently tested analysis code is susceptible

to SPOFs, which causes a complicated and time-consuming

development process due to the inherently decentralized nature

of DA infrastructures and the dependence on the data providers

during development. In order to tackle this issue, we propose

six criteria that must be guaranteed to ensure the operability of

the analysis code, representing a successful Smoke Test (RQ1).

Based on these criteria, we developed a PoC, called DEATHSTAR,

that locally performs Smoke Testing on DA code following a

testing-through-simulation approach by simulating an entire DA

experiment (RQ2). Since the application of Smoke Testing to data

analyses is dependent on the availability of sufficient sample data,

we leveraged a flexible and adaptable plugin system, which allows

the semi-automated creation of synthetic test data, which can be

used for Smoke Testing (RQ2.1 & RQ2.2). Hence, we developed

a solution that allows users to develop iteratively (i.e., trial-and-

error) and (Smoke) test their analysis code by simulating its

execution on re-modeled data sources. We evaluated DEATHSTAR

in a two-folded evaluation. First, we conducted a User-Study

with 29 participants to evaluate the effectiveness of our criteria.

We found that 96.6% of all developed DA analyses that were

initially Smoke Tested could be successfully executed in a real DA

environment. Furthermore, our accompanying survey resulted in

a SUS score of 88.3, giving DEATHSTAR an “excellent” usability

rating. Secondly, we applied DEATHSTAR to three real-world

use cases in the scope of a technical evaluation. The technical

results of our evaluation show that our concept is flexible enough

to serve for different use cases and complies with the three

characteristics of Smoke Testing: Shallow, Fast, and Automatic.

In conclusion, within the scope of our work, the contribution

of our PoC fuels research by reducing obstacles in conducting

DA studies.
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Big data and artificial intelligence are key elements in the medical field as they 
are expected to improve accuracy and efficiency in diagnosis and treatment, 
particularly in identifying biomedically relevant patterns, facilitating progress 
towards individually tailored preventative and therapeutic interventions. These 
applications belong to current research practice that is data-intensive. While the 
combination of imaging, pathological, genomic, and clinical data is needed to 
train algorithms to realize the full potential of these technologies, biobanks often 
serve as crucial infrastructures for data-sharing and data flows. In this paper, 
we argue that the ‘data turn’ in the life sciences has increasingly re-structured 
major infrastructures, which often were created for biological samples and 
associated data, as predominantly data infrastructures. These have evolved and 
diversified over time in terms of tackling relevant issues such as harmonization 
and standardization, but also consent practices and risk assessment. In line 
with the datafication, an increased use of AI-based technologies marks the 
current developments at the forefront of the big data research in life science 
and medicine that engender new issues and concerns along with opportunities. 
At a time when secure health data environments, such as European Health Data 
Space, are in the making, we argue that such meta-infrastructures can benefit 
both from the experience and evolution of biobanking, but also the current state 
of affairs in AI in medicine, regarding good governance, the social aspects and 
practices, as well as critical thinking about data practices, which can contribute 
to trustworthiness of such meta-infrastructures.
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1 Introduction

Life sciences knowledge production is increasingly structured by big data approaches, 
internationalization of research and closer coupling between research and applications, where 
biobanks comprise a major form of infrastructure in the current research ecosystems. For 
decades, biobanks have efficiently ensured access to biological samples and associated health 
data, which is being produced, collected and used in various ways, such as for medical research 
and public health databases as the two broad categories of population-based and clinical 
biobanks reflect (1). The historical development of the biobanks and their diversification over 
time contrast starkly with the current efforts for standardization, harmonization, integration, 
globalization and most significantly datafication. They have evolved from mere repositories to 
trusted infrastructures in sharing biomaterials and data (2), highlighting their crucial role in 
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data-intensive research. These efforts for facilitating the movement of 
data materialized into platforms, infrastructures and guiding 
principles to enable the exchange of data that is compliant with ethical, 
legal and societal considerations.

With artificial intelligence (AI), renewed discussions are taking 
place due to the idiosyncrasies of AI, the speed and consequences of the 
implementation of such technologies in biobanking and other domains 
(3, 4). Over the last decade, the development of national and 
transnational biobank networks or infrastructures have made such 
infrastructures instrumental to international research consortia (5–7). 
In addition, meta data infrastructures called health data spaces are 
developed that have the potential to significantly transform the life 
sciences, medicine and healthcare. Back in December 2020, the 
European Commission published the roadmap for the European 
Health Data Space (EHDS) initiative inviting public responses and 
presenting a first draft in May 2022. Currently discussed in the 
European Council and the European Parliament, the ambitious goal 
remains to complete the legislative process by the end of 2023 but no 
later than within the current Commission’s mandate to ensure the 
implementation by 2025 (8). The EHDS will undoubtably transform the 
health sector in Europe. It remains to be seen in which form it will 
be  realized, especially as expectations are high across various 
stakeholder groups, such as patient advocacy groups, researchers from 
academia and industry as well as policy makers (9). At the same time, 
infrastructures such as biobanks have a wealth of experience regarding 
the collection and use of health data for research purposes in an 
ethically and legally compliant way (10). The perspective we present 
here builds on the observation that many biobanks are already going 
through a transformation in becoming bio(data)banks and are 
entangled in trials of various data practices that can inform both the 
debates around AI’s use in life sciences and health research and 
emerging meta infrastructures considering developments, such as EU’s 
upcoming Artificial Intelligence Act. Although there has been a 
provisional agreement as of December 9th, 2023, among negotiators 
from EU’s Parliament and Council, the legal text will be implemented 
when the two institutions provide their approval and, if so, with its risk-
based categorization and the accompanying requirements, the AI Act 
may have an impact on many aspects of AI’s use in health research and 
applications, such as on data governance, explainability, requirements, 
practicing human-in-the-loop among others with potential effect also 
on the EHDS (11). In light of these recent developments, we argue that 
it is timely to look back at the practice of biobanking, especially the 
so-called data turn, and the current momentum in biobanking and 
medicine regarding AI and its implementation into research and 
technology, for insights on health data spaces and their development.

2 Data turn in life sciences: biobanks 
as data infrastructures

Biomedical research has become increasingly data-intensive and 
undergone a process of datafication (12). Central to this datafication 
are biobanks. As infrastructures, they can be characterized as vital 
entities in organizing practices, as embedded in other structures, 
social arrangements and technologies (13). In this capacity, biobanks 
support medical innovation, such as personalized medicine and 
genomic research, with scholars noting the molecularization and 
computerization sustaining both (14, 15).

The molecularization and data turn in the focus of biobank 
research in the last two decades deserves more attention. For instance, 
infrastructures have been created that gather genetic data from 
commercial and clinical sources, enabling population-based genetics 
research to be conducted (16). The outcome of such research, especially 
in genomics, raises hopes with a better understanding of the genetic 
bases of health conditions such as coronary artery disease, ideally 
based on diverse populations (17). However, the genomic data and 
infrastructures raise also concerns, especially regarding phenomena, 
such as sexual orientation, which received renewed attention in the 
search for a genetic basis (18) and also harbor emerging risks that are 
radically different than the previous ones due to intensive datafication, 
for instance, risks of genomic identifiability (19).

The existence of efforts towards standardization and 
interoperability in biobanking as reflected in the acronyms SPREC 
(20), BRISQ (21), MIABIS (22, 23) and others show the centrality of 
these notions for the data turn, but also harmonization regarding 
samples, technical infrastructures and practices. The relevant research 
contributes to developments such as specific algorithms for post-
analytical use, which may bridge the differences between distinct types 
of blood samples originally stored for different uses (24, 25). Such 
developments are especially salient considering that biobanks are not 
independent of the broader infrastructures of medicine and 
healthcare. From disease categorization to defining and standardizing 
biomarkers at a time wearable devices, sensors and emerging forms of 
data are increasingly being embedded into entire ecosystems often in 
the digital (26), the existing samples and data with different conditions 
of collection, annotation, consent status and storage, as well as 
variations across institutions are still part of the picture. Biobanks are 
expanding with both typical samples and data (e.g., blood, BMI) and 
further kinds (e.g., epigenetic, microbiome, etc.) being integrated and 
standardized, expanding the data in both dimensions of volume 
and diversity.

In attempts towards datafication, practices around samples such 
as in pathology are also being transformed, exemplified by “digital 
pathology” where whole slide images that are once created may 
decrease the need to store samples or increase the findability by 
turning images into data collected (27). Scholars observe along a trend 
of consolidation emergence of virtual biobanks brings together 
resources from multiple biobanks (28, 29), though such cataloging 
examples also include efforts of broader research infrastructures, such 
as BBMRI-ERIC (30). Similarly, in the genomics world, efforts to 
standardize and make genomic data accessible such as summary 
statistics of genome-wide association studies is picking up pace (31, 
32) as well as the development of trusted research environments 
despite critique (33) with specific tools, such as DataSHIELD (34).

3 AI in medicine and new beginnings 
for biobanking

Large amounts of data are needed to advance biomedical 
knowledge generation as well as big data analytics and new data-
driven technologies in AI. While the history of AI in medicine goes 
back half a century with the initiation of computational tools and 
technical infrastructures as well as events devoted to the topic (35), it 
has gained pronounced attention and applicability in recent years in 
line with its intensive use in other domains. Medical AI is seen as a 
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promising innovation for uses such as screening, diagnosis, risk 
assessment, clinical decision-making, management planning, and 
precision medicine, with available tools ranging from chatbots to 
clinical decision support (36). The hope is that AI systems will reduce 
human bias and improve performance, as has been demonstrated in 
certain areas such as radiology (37), by improving accuracy in medical 
image analysis and easing the workload in screening (38), or for 
AI-driven polygenic risk scores (PRS) which may enable greater 
accuracy, performance and prediction (39). AI can also bring 
improvements when it comes to clinical measurements (40), 
interpretation of tests (41), decision making for intensive care unit 
admission (42), or embryo implantation (43), among others. However, 
it is important to note that AI is not a one-size-fits-all solution, and its 
benefits may not be realized in every application.

The development and implementation of medical AI involves 
numerous key challenges. First, AI is data hungry. Large amounts of 
data are needed to train AI and access to these data is challenging for 
technical, legal, and practical reasons, along with emerging issues 
regarding computational power and infrastructures and alternatives 
such as federated learning, which bring their own challenges and 
opportunities (44). One salient challenge in this respect relates to the 
tradeoff between data access and data privacy, the resolution of which 
necessitates bottom-up, democratic and engaging processes (3) in 
consideration of commitment for findable, accessible, interoperable 
and reusable data as often referred to with the acronym FAIR (45) and 
further FAIR principles (e.g., https://www.go-fair.org/fair-principles/). 
Second, despite the immense potential benefits, the risks revolve 
around perpetuation or even amplification of societal inequality and 
injustices due to potentially biased datasets as well as certain data 
practices (46). Third, practitioners require practical recommendations 
for applying AI (47). Furthermore, patients’ preference for human 
agents or human supervision, possible strain between patients and 
treating physicians, especially in relation to privacy, data security and 
potential vulnerabilities related to AI tools need attention as do the 
implementation of guidelines and frameworks to ensure bioethical 
principles [e.g., (48)] are upheld and monitored (49). These call for 
engagement of multiple stakeholders in the resolution of ethical and 
legal issues, sharing similarities with biobanking, though at a 
different scale.

Biobanks, as key entities for providing access to large amounts of 
high-quality data, are central to the development of new data-based 
technologies such as AI. Similar to AI in medicine, the early 
developments in the use of AI in biobanking often focus on biobank 
participants’ health conditions as reviewed elsewhere (50). These 
include developments such as, identifying and categorizing 
Alzheimer’s disease patients (51), calculating risks scores for 
conditions such as age-related macular degeneration (52) or 
cardiovascular diseases (53), aiding in classification of disease 
subtypes (54) as well as providing predictions at individual level for 
COVID-19 (55, 56) or potential conditions due to therapeutic agents 
such as aromatase inhibitor-related arthralgia (57). However, biobanks 
are not merely support structures for healthcare or repositories for 
medical data. Biobanks have the potential to handle the data turn as 
they pursue data-driven practices in a standardized, industrialized 
manner (58). As research infrastructures, biobanks, may benefit from 
AI in the collection of biological samples and data, such as analysis of 
the scholarly literature for development of criteria for sampling, 
analysis, interpretation, data extraction, even engagements with 

biobank participants, from consent process to research process; 
however, AI can also contribute to purely managerial tasks including 
storage space optimization or upstream research processes, such as 
suggesting samples and data for research proposals based on content 
and methods, as well as downstream research evaluation, assessing the 
“value” of samples and data based on the scholarly literature (59). AI’s 
potential impact on biobanking may also include possible increases in 
the use of biobank samples and data, thus contributing to sustainability 
and speed of research as well as aiding biobanks in identification and 
recruitment of participants, training, annotation of samples and data, 
increasing interoperability, visibility, and access (60).

AI is central to the idea of “biobanks for the future” (61) though 
challenges in implementation of AI in biobanking range from 
difficulties aligning standards not only across data in the long run, but 
also samples, workflows, ethics management, legal and governance-
related aspects, from transparency to informed consent (28) as well as 
justice, both epistemically and ethically (14). There are efforts such as 
workshops or collections of best practices to increase the “readiness” 
of these infrastructures for AI (60) with calls, checklists, tools and 
frameworks for ethical use of AI in medicine/biobanking (47, 62). 
New and alternative forms of governance are needed for a new form 
of biobanking that revolves around big data considering the increasing 
widening of the scope of data from social media to devices capturing 
bodily function, resulting in streams of data over time and analytical 
capacity over space (63). Biobanks’ positioning at the in practice often 
gray intersection of healthcare and research can inform the discussions 
on health data spaces, in light of the recent developments.

4 Discussion

The ways in which risks are approached in biobanking and the 
normative arguments regarding how they should, such as future-
proofing the governance of biobanks (64) and adaptive risk 
governance (65), suggest biobanking may be helpful in identifying key 
questions medical AI and health data spaces are facing from informed 
consent, representation in datasets, to risks associated with data 
protection and responsibility. While acknowledging the digital divide 
and its consequences, the increased ability of participants to follow 
and engage with biobanking and healthcare infrastructures are leading 
to reconfigurations of “traditional boundaries between the public 
domain (healthcare systems, medical research, and clinical practice) 
and the private one (patients and citizens)” which necessitate new 
approaches to fostering trust (63). Health data spaces bring such 
observations to a new level.

Trust and trustworthiness have become keywords that are often 
attached to how AI should be, with limited discussion of what this 
entails. Despite the burgeoning literature on ethics of AI in medicine, 
three areas relevant for trust are problematic (46): limited analytical 
accuracy and conceptual slippages, inadequate analysis of the contexts 
in which medical AI tools are embedded, and scarcity of 
interdisciplinary approaches. Considering trust central to societal 
functioning as “a fundamental principle for interpersonal interactions” 
(66), it cannot be  considered unidirectional. Rather, it needs to 
be understood as a complex, situated, context-dependent, and relational 
concept that involves several trustor/trustee relationships, such as trust 
in persons (e.g., scientists who trust each other, patients who trust 
scientists and clinicians), technology, and institutions (67, 68). Trust or 
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more precisely trusting relationships are fragile and require continuous 
work, which means that they need to be  actively established and 
sustained. In this sense, we  see three main considerations from 
biobanking – a domain that should be  built on trust – that can 
contribute to better medical AI and health data spaces.

Regulations may provide guidance, but good governance is an active 
process that comprises more than following regulations. Efforts towards 
regulating and guiding AI have been abundant with ‘AI Ethics’ 
becoming a buzzword (69, 70) along with the legal frameworks such 
as the proposed Artificial Intelligence Act of the EU (11). Considering 
international standards, overseeing organizations, national legislations, 
as well as practices, from engaging participants to consents, biobanks 
have accumulated over decades experiences related to intensified 
transnational data sharing, international collaborations, including 
public-private partnerships, access to and reuse of data, and efforts to 
harmonize data, ethical/legal standards and societal aspects. Hence, 
biobanking incorporates knowledge of the “ethics work” that is an 
integral part of data flows (71) and necessitates thinking critically 
about potential issues that go beyond individual institutions, such as 
identifiability risks in a datafied world both in regards to genomic (19) 
and medical imaging data (72). Thus, necessary good governance 
involves more than procedure-following.

Infrastructures are not merely technical, i.e., buildings, data 
repositories, but also social – involving practices. A recent study (73) 
with biobank professionals and experts indicates that expectations 
towards biobanks in view of data processing are going beyond their 
status as repositories. They see biobanks in a more active role when 
it comes to providing information and communicating and engaging 
with biobanks participants and point to the need to improve consent 
procedures and the role of biobanks in sharing samples and data 
with industry partners and different countries. Considering that 
participants are the origin of the data, as key stakeholders they 
should be involved in the development and governance, just as staff 
in biobanks should be included (74). Decades of biobanking show 
that the concerns of citizens cannot be ignored. In the case of AI in 
health, these not only relate to the general concerns regarding 
AI. On the contrary, as suggested by the PRS and AI, ethical, legal 
and societal issues necessitate a layered understanding due to 
increasing complexity bringing new relevance to concepts such as 
explainability and interpretability, both for the users and the broader 
society (39). Considering the drivers of AI in medicine, such as 
identification and management of potential patients that can 
be “high-risk” but also “high-cost” (75), the developments may not 
benefit individuals who may otherwise develop conditions that are 
harder to treat or identify and manage emerging outbreaks in real-
time, and such AI tools may cause further burdens on the 
individuals. These necessitate societal debates and empowering 
citizens, including involving potential non-users, as part of bringing 
infrastructures to life (76).

Not only are data not always perfect due to inherent finite 
categorization of potentially infinite diversity, but their capacity to 
represent should always be continuously problematized. Against the 
biobanking professionals’ concerns, the tendency to see biobanks as 
data repositories and medicine as increasingly digital (27, 63) can 
result in a false sense of security in the imaginary of increasing data 
interoperability and connectedness at the peril of ignoring what 
D’Ignazio and Klein (77) rightly note the existence of “problems that 
cannot be represented—or addressed—by data alone” (p. 10). Risks 
accompany the opportunities in a datafied world. The existence of data 

should not automatically lead to testing of any potential association 
and scholars have been trying to identify ways of coping with such 
issues of reproducibility, e.g., for PRS (78, 79). In this regard, the “curse 
of dimensionality” in biobanking due to multitude of secondary data 
even in cases of low sample sizes, can also be seen as an opportunity 
to think outside of the box to overcome issues even in smaller sample 
size situations (80). Furthermore, AI may also exacerbate the existing 
big data issues that are yet to be resolved. While the uses may relate to 
privacy with unintended access to data from patient implants, sensors 
and other devices that collect and transfer multiple forms of data, they 
may also lead to spurious correlations and false positives, tacit 
assumptions regarding individual behavior based on limited data, 
sampling issues due to replacement of traditional ways of data 
collection as well as resulting in injustices due to resource 
mismanagement and allocation, especially in case of public health 
issues (81). With health data spaces, these issues will likely need 
more attention.

Projectified ways of health infrastructuring often restrict the 
outcome in many ways, through visions and expectations for whom 
and which purposes the infrastructure is to be developed even in cases 
where the aim is to involve stakeholders in co-creation processes (76). 
In this paper we  have shown the wealth of knowledge generated 
through the use of AI in medicine and the evolution of biobanking. 
We argue, when taken into account, these can positively impact the 
future European Health Data Space, but also similar establishments, 
giving power to the citizen, strengthening governance, breaking down 
potential silos and contributing to trustworthiness of such 
meta-infrastructures.
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Introduction: The potential for secondary use of health data to improve 
healthcare is currently not fully exploited. Health data is largely kept in isolated 
data silos and key infrastructure to aggregate these silos into standardized 
bodies of knowledge is underdeveloped. We  describe the development, 
implementation, and evaluation of a federated infrastructure to facilitate versatile 
secondary use of health data based on Health Data Space nodes.

Materials and methods: Our proposed nodes are self-contained units that 
digest data through an extract-transform-load framework that pseudonymizes 
and links data with privacy-preserving record linkage and harmonizes into 
a common data model (OMOP CDM). To support collaborative analyses a 
multi-level feature store is also implemented. A feasibility experiment was 
conducted to test the infrastructures potential for machine learning operations 
and deployment of other apps (e.g., visualization). Nodes can be operated in a 
network at different levels of sharing according to the level of trust within the 
network.

Results: In a proof-of-concept study, a privacy-preserving registry for heart 
failure patients has been implemented as a real-world showcase for Health 
Data Space nodes at the highest trust level, linking multiple data sources 
including (a) electronical medical records from hospitals, (b) patient data from 
a telemonitoring system, and (c) data from Austria’s national register of deaths. 
The registry is deployed at the tirol kliniken, a hospital carrier in the Austrian 
state of Tyrol, and currently includes 5,004 patients, with over 2.9 million 
measurements, over 574,000 observations, more than 63,000 clinical free text 
notes, and in total over 5.2 million data points. Data curation and harmonization 
processes are executed semi-automatically at each individual node according 
to data sharing policies to ensure data sovereignty, scalability, and privacy. As a 
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feasibility test, a natural language processing model for classification of clinical 
notes was deployed and tested.

Discussion: The presented Health Data Space node infrastructure has proven to 
be practicable in a real-world implementation in a live and productive registry for 
heart failure. The present work was inspired by the European Health Data Space 
initiative and its spirit to interconnect health data silos for versatile secondary 
use of health data.

KEYWORDS

data-driven healthcare, privacy-preservation, record linkage, advanced analytics, 
interoperability, machine learning, artificial intelligence, European Health Data Space

1 Introduction

Real-world data (RWD) is typically gathered over a patient’s 
lifetime for the purpose of patient care (primary use). However, 
beyond its original use, RWD can be  used for other analyses 
(secondary use) to generate additional real-world evidence (1). 
Among other aspects, secondary use proved to be valuable for cost-
effectiveness analysis (2), data exploration (3), clinical outcomes 
research (4, 5), data validation (6) and data aggregation (7). However, 
medical data is sensitive by nature. Strict legal frameworks around 
highly sensitive data impose challenging demands on data holders 
(e.g., healthcare organizations). On top of that, as opposed to RWD, 
collecting data in clinical trials is eminently expensive and the 
resulting data is therefore highly valuable to those who hold it. Both 
privacy and security considerations as well as the associated costs of 
health data make data holders exceedingly reluctant to share any data 
with a health ecosystem. Sharing data also has implications regarding 
data sovereignty (i.e., who owns and controls data). This is further 
complicated by the fact, that many countries have not yet fully 
defined ownership of medical data in their legal frameworks (8). 
Consequently, health data of different sources is often kept in isolated 
data silos, and its value for further secondary analyses remains 
underutilized (9, 10). Connecting silos can accomplish both vertical 
linkage (i.e., more data for one patient) as well as horizontal linkage 
(i.e., more patients for specific data) and thus provide more holistic 
views on patients and diseases increasing the data’s value for research 
even further.

An example of secondary use of health data was an analysis of 
data from HerzMobil Tyrol (HMT), which is a telehealth-supported 
disease management program for heart failure patients in Tyrol, 
Austria for which patients are recruited after an episode of acute 
heart failure and receive optimized disease management care by a 
network of health professionals (11). In HMT, patients are given 
measurement equipment (e.g., a bodyweight scale, blood pressure 
cuff), which is connected to an app, through which patients can 
record daily physiological (e.g., bodyweight), fitness (e.g., steps per 
day) and self-reported (e.g., wellbeing) data. In Tyrol, over 1,000 
patients have been monitored by this telehealth system and the data 
is highly valuable for secondary analyses. To investigate the clinical 
effectiveness of the program, electronic medical records (EMR), and 
clinical outcome data from HMT patients and a control group were 
compiled for a secondary use analysis (5). For this analysis, data 
from three different sources were required: (1) telehealth data from 

the HMT system itself, (2) EMRs from the patients’ hospitals’ 
information system and (3) information about time and cause of 
death from Austria’s national register of deaths. This resulted in an 
aggregated dataset containing more than 80 variables and while 
reduced mortality for patients in the telehealth program compared 
to conventional care has been found (5), several challenges 
were encountered:

 • Data linkage—The analysis required linkage of data from three 
different data sources including hospital information systems 
(HIS), the HerzMobil telehealth system, and the Austrian register 
of deaths. Data linkage had to be done manually, as the data 
sources did not share a unique alpha-numeric identifier. 
Additionally, although the laboratory information systems were 
part of the same hospitals, they also used their specific identifiers.

 • Privacy preservation—To achieve privacy preservation, 
personally identifiable information (PII) had to be  manually 
removed from the datasets.

 • Unstructured data—RWD data used in the analysis contained 
both structured and unstructured data. The latter imposed 
additional challenges for the de-identification of text for 
secondary use.

 • Interoperability—While data sources provided coded data (e.g., 
ICD-10 codes) for various data elements, they did not adhere to 
one harmonized coding vocabulary or a common data model for 
the resulting dataset making the individual data sources 
not interoperable.

 • Collaboration—Different data sources and different data types 
(e.g., unstructured data) required a team of researchers compiling 
the aggregated datasets using various analysis pipelines, which 
made intensive communication and exchange of intermediate 
results necessary.

 • Traceability—With more than 80 variables involved in the 
analysis, tracing all involved algorithms and processing steps 
used to derive a specific variable proved to be difficult.

 • Extensibility—Necessity for both vertical linkage of more data 
sources from out-patient domains as well as horizontal linkage of 
data for comparison with identical HerzMobil systems in the 
states of Styria and Carinthia to improve the data analysis was 
identified for future studies.

 • Automation—To increase repeatability, having the possibility to 
easily rerun analyses on a regular basis is required. This was not 
possible with the aforementioned manual labor required.
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Comparing the experience from this retrospective view on the 
challenges encountered during the HMT effectiveness analysis with 
published literature, a general trend of similar, regularly occurring 
problems can be observed. Privacy, interoperability, data governance, 
organizational coordination, data quality and funding considerations 
are frequently being mentioned as the most pressing issues (12–15). 
A more detailed view on these challenges is given in the following list.

1.1 Privacy, security and data linkage

Health information is highly sensitive data and therefore access is 
regulated through data protection and security frameworks. To 
mitigate the data’s sensitivity and to keep with the spirit of the EU’s 
General Data Protection Regulation’s (GDPR) (16) principle of data 
minimization, any identifying elements not required for analysis (e.g., 
names, specific date of birth) should be removed from the dataset in 
advance. However, removing this information complicates record 
linkage, which is necessary to associate data with the correct 
individuals across different contexts and to avoid duplication of 
subjects. Furthermore, medical free texts (e.g., clinical messages, 
nursing documentation) typically include references to personal 
information (e.g., names, addresses) that also infringe on patient 
privacy and increase the risk of re-identification.

1.2 Standardization and interoperability

While interoperability might not be of utmost importance when 
working with isolated data silos, it becomes a core necessity when 
connecting data from multiple silos. Source systems store data in 
different data formats (i.e., data models) and use different vocabularies 
and thus datasets are frequently not interoperable originally. This 
requires time-consuming, manual effort to map different elements 
from the sources into a common dataset (i.e., a feature matrix) and to 
translate values into a mutual standard vocabulary.

1.3 Data quality and availability

As health data is often entered or administered manually, source 
data needs to be verified to avoid erroneous data. Furthermore, related 
to the aforementioned interoperability aspects, some elements of data 
are ambiguously encoded or worded. Also, in some instances, not all 
source data is available in digital form or complete at all times. These 
factors require regular contact with data holders for clarification. 
Lastly, sometimes additional context is necessary for analysis (e.g., 
labels for supervised machine learning), which is also time-consuming 
and is known to be associated with it its own unique challenges (17).

1.4 Stakeholder management and data 
sovereignty

Data linkage requires collaboration of multidisciplinary teams of 
clinicians, nurses, administrators, and engineers. These groups have 
different interests (e.g., data sovereignty, workload management) that 
need to be aligned. Dedicating medical and engineering staff to set up, 

provide and maintain infrastructure to link and harmonize data is 
generally associated with costs (18). Since health infrastructure 
projects are often non-profit oriented and executed with public funds, 
a certain political and institutional will is often required, Also, as data 
can originate from different sources, datasets can be  subject to 
different data sovereignty spheres and legislation.

1.5 Collaboration during data analysis

In complex real-world scenarios, multiple data engineers, data 
analysts and machine learning engineers are working on the same 
data. This requires extensive communication and coordination to 
avoid redundant work on data processing, feature engineering and 
model development processes. Many experiments require the same 
standard data and feature engineering algorithms, which are at risk of 
being duplicated by multiple team members, which ultimately results 
in less efficient collaborative analysis. To improve collaboration, the 
concept of feature stores has gained popularity recently (19). The idea 
is to collect feature extraction algorithms over multiple experiments 
to nurture a growing repository of re-usable features, which can 
be made accessible for all team members to speed up machine learning 
analyses. Additionally, machine learning operations (MLOps) to aid 
in model deployment requires suitable infrastructure. Kim discussed 
the software engineering difficulties concerning MLOps, such as 
complex software stacks and distributed data (20). Due to the 
intricacies of MLOps for health data, Khattak et al. introduced the 
term “Machine Learning Healthcare Operations” (MLHOps) (21).

Tayefi et al. (14) concluded that key infrastructure technology to 
facilitate secondary use of health data addressing these challenges is 
required but still underdeveloped. A typical approach to implementing 
such infrastructure is the introduction of an enterprise data warehouse 
or integrated data repository (IDR). Gagalova et  al. (22) have 
described architectural principles of IDRs in the clinical domain 
distinguishing centralized approaches (General architecture), 
biobank-driven architectures and federated approaches. They also 
identified the need for a common data model (CDM) to represent 
data. Solutions following these approaches are described in literature. 
For example, DataSHIELD is a federated platform by an international 
consortium of researchers that facilitates distributed analysis to avoid 
data exchange entirely with a client–server infrastructure for data 
analysis (23). The Personal Health Train (PHT) is another federated 
infrastructure solution to reuse medical data for secondary use (24). 
The PHT aims to establish FAIR data stations that can be governed by 
data holders and accessed by analysts whereas trains travel from 
station to station carrying algorithms that are executed in the FAIR 
data stations. Secure multiparty computation (25–27) and more 
recently, blockchain-based concepts (28–32) have also gained 
popularity to increase data security in privacy-preserving trustless 
systems. Although keeping data distributed across multiple sources is 
privacy-minded, performance of machine learning models still suffers 
in federated learning settings compared to conventional centralized 
learning (33–35). Therefore, another architectural approach is to 
accumulate data in a centralized point (i.e., a clinical data warehouse) 
with secure and privacy-oriented infrastructure. Wirth et al. (36) and 
Jin et al. (37) both provide a comprehensive overview and analysis of 
a selection of privacy-minded data sharing networks in their works. 
CDMs are important for data warehouses to serve as a common 
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denominator when multiple heterogenous data sources are to 
be linked and standard vocabularies ensure interpretability of data 
values. A specific successful example of medical data sharing is the 
open-source software platform informatics for integrating biology and 
the bedside (i2b2) developed by Harvard Medical School (38) to drive 
clinical research. The partnership between i2b2 and tranSMART (39), 
an open-source data warehouse developed by a consortium of private 
pharmacological companies resulted in the i2b2 tranSMART 
foundation (40). Further literature examples include GIFT-Cloud 
(sharing medical image data) (41), the Shariant platform (sharing 
clinical genetic data-testing data) (42) and IMPROVE-PD (sharing 
peritoneal dialysis data) (43). However, it has been outlined clearly 
that many currently existing solutions are limited to one specific use 
case (44). Gruendner et al. made use of best-practice principles and 
established the KETOS platform, which is a containerized (Docker) 
solution with standard vocabularies (SNOMED & LOINC) and the 
Observational Medical Outcomes Partnership common data model 
(OMOP CDM) for a more general development environment (44).

While these solutions work well for their intended purposes, they 
do not completely fulfill our requirements. Blockchain-based 
distributed systems are proven effective in multiple studies (28–32), 
however suffer from the slow pace at which this technology is adopted 
in the health sector, which ultimately makes them impractical 
currently. While DataSHIELD is an excellent example of a framework 
that enables federated analyses, it is not intended to also support 
machine learning (e.g., federated learning). The PHT is based on data 
trains containerized with Docker to be sent to data stations where 
code is executed. In our experience, system administrators of 
healthcare organizations are hesitant about this form of code execution 
on their environments even though there are containerized, mostly 
because they lack control over the code and thus data sovereignty 
becomes a concern. Furthermore, although the PHT could support a 
form of federated learning, studies have shown, that performance of 
ML models trained by federated learning can trail behind centrally 
trained models (33–35). Therefore, for optimal AI applications, data 
is required to be aggregated in a central point to train models to their 
full potential, for which key infrastructure is required. While the 
KETOS platform aims to fulfill exactly that, in KETOS, privacy and 
security by limiting data storage to remain within a hospital 
information system. Therefore, linkage to other data sources is 
restricted, which is a key requirement for our system.

In this study we  propose a federated node-based system 
architecture called Health Data Space (HDS) nodes. These nodes aim 
at facilitating linkage (horizontal and vertical) between multiple, 
decentralized data sources. The architecture supports privacy-
preserving record linkage (PPRL) and additional de-identification 
algorithms. For interoperability, we  outline how we  harmonized 
heterogenous data into the OMOP CDM, which is suitable since our 
data is mostly observational health data. We further propose how a 
multi-level feature store can be realized to support collaborative data 
analytics. We  also present preliminary experiments to assess the 
nodes’ feasibility of supporting MLOps in future developments. 
We hope to utilize this solution to facilitate time-efficient analyses to 
answer clinical research questions (e.g., efficiency, health economics) 
quicker and allow data linkage to scale with related systems (e.g., 
HerzMobil Styria and HerzMobil Carinthia).

As a proof-of-concept, we describe a real-world application of a 
heart failure registry established in Austria with HDS nodes with three 

different data sources. We  further discuss the organizational 
considerations of developing such multidisciplinary infrastructure. In 
particular, the following contributions are to be highlighted.

1.5.1 Pseudonymization concept and free text 
de-identification

To adhere to strict legal frameworks like GDPR, respect patient 
privacy and minimize risk of exposure, the HDS nodes use a PPRL 
system to avoid storing quasi-identifiers. In this spirit, an additional 
de-identification algorithm is in place to remove identifying references 
from free text data, while aiming to retain context by applying basic 
entity recognition logic.

1.5.2 Multi-level feature store based on the 
OMOP CDM

A feature store based on the OMOP CDM is used to avoid 
repeated feature engineering and improve experiment repeatability. 
The feature store allows features on multiple levels (e.g., on patient 
level like age and sex, but also on daily observational level like blood 
pressure). These features can then be linked into a feature matrix and 
accessed for later ML experiments.

1.5.3 Case study of sharing secondary data in a 
heart failure registry

The HDS nodes are used in a real-world case study for a registry 
for chronic heart failure patients, in which health data from three 
different sites are linked.

2 Materials and methods

We introduce the concept of HDS nodes as fundamental building 
blocks of health data spaces. The HDS node components are illustrated 
in Figure  1. Python and the Django Web framework for server 
components (45) were chosen due to the large popularity of Python 
in data analysis. During development, only modules and libraries were 
selected that allowed HDS nodes to be  infrastructure-agnostic, 
meaning they are compatible with deployment on different cloud 
environments (e.g., Microsoft Azure or Amazon AWS), but can also 
be deployed on-premises. They also support a variety of relational 
databases (e.g., MySQL, PostgreSQL). For evaluation, PostgreSQL was 
used as primary database technology.

Data can be submitted from a source to an HDS node by data 
holders via a public application programming interface (API) which 
forwards the data to the HDS node’s Extract-Transform-Load (ETL) 
framework. The ETL framework consists of a collection of individual 
ETL classes, that act as converters and first pseudonymize and then 
transform incoming data into the OMOP CDM. ETL classes are 
implemented as plain Python classes. No visual editors are used, but 
instead all steps in the workflow are expressed as code, that digests 
new data submitted to a node. Data submission can either 
be automated in regular intervals (e.g., via cron jobs) or manually 
executed on demand. The data engineering pipeline as seen in Figure 1 
starts with pseudonymization (1), which is followed by harmonization 
(2) after which data is saved in a data store based on the OMOP 
CDM. We  chose the OMOP CDM because (a) it is increasingly 
adopted in clinical research for observational health data, (b) it 
provides a large variety of standard terminologies, and (c) it is based 
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on a comparatively flat data model. Data curation services (3) allow 
for (a) manual data entry through an HL7 FHIR-based electronic data 
capture system (EDC) and (b) manual annotation and labeling of data. 
To facilitate ML, a feature store (19) and a model store are implemented 
for collaborative analysis (4). Finally, data services (5) support the 
creation of data and visualization apps as well as providing predictions 
as web services to other applications (e.g., used for primary use of 
health data). The last part (data services and model deployment) is 
mainly focus of future work and largely out of scope of this study as 
further work to mature this aspect is still needed. A data node may use 
all these components or only a subset of the functionalities. The 
individual parts of the data engineering pipeline are described in 
detail in the subsequent chapters.

2.1 Pseudonymization

For the pseudonymization component, we expanded the work of 
the European Patient Identity Services (EUPID) (45), introducing a 
hash-based pseudonymized person index for patients and healthcare 
professionals. We further identified clinical sites as additional entities 
that require pseudonymization. All entity types that are 
pseudonymized in the HDS nodes are listed in Table 1.

Every record (e.g., patient, clinician) has specific identity traits 
that uniquely identify them. For pseudonymization, they are 
transformed into record-level hashes by concatenating the string 
values of all traits to one large string and applying a hash function to 
the result. A variety of record-level hash algorithms are already 
provided by EUPID (including HMAC512, Argon2, Bloom filters) 
and could be used in the HDS nodes. However, to enable similarity 
matching, we  use locality-sensitive cryptographic long-term key 
(CLK) Bloom filter (BF) hashes (46). To ensure scaling performance 
in large networks, we applied MinHash (47) in combination with the 
Bloom filters. With this blocking strategy, hashes are only compared 
to the most similar ones instead of all available hashes. This drastically 
reduces the amount of redundant Bloom filter comparisons, which 
can get computationally expensive once large quantities of records are 
available. Identity traits are hashed into a 459-bit BF vector and then 
associated with a randomly generated alpha-numeric pseudonym. As 
an additional layer of security, HDS nodes operate two independent 
databases: One to store the actual health data from the data sources 
without personal data (i.e., the data store) and a separate one to store 
pseudonymized identity traits (i.e., the pseudonymized person index). 
The link between data and identity traits is achieved via the alpha-
numeric pseudonym, which is available in both databases. As an 
additional layer of privacy, all records (e.g., patients) are given context-
specific pseudonyms (i.e., one pseudonym per node). For example, a 
patient will have pseudonym P1 in one node, pseudonym P2 in 
another and if both data sources for this patient are linked in a central 
node, will be  assigned pseudonym P3. While this connection is 
traceable in the person index, it will not be visible for data scientists 
only working with the health-related data. To increase security, BFs 
are encrypted at rest in the database using AES256 encryption. The 
encryption key and the HMAC keys required for BF generation are 
stored outside the databases. For record linkage, the Jaccard distance 
is applied to all possible pairs of BFs in the person index to identify 
potential duplicates. Depending on a threshold decision, full matches 

FIGURE 1

Each health data space (HDS) node consists of the same capabilities for pseudonymization, harmonization, data curation, machine learning support 
and data services.

TABLE 1 Entity types of the D4Health Heart Failure Registry that are 
pseudonymized into master records.

Master entity record Identity traits

Patients
First name, last name, date of birth, 

social security number (if available)

Healthcare professionals First name, last name, date of birth

Clinical sites
Clinical site’s name (e.g., a center, 

department)
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and partial matches (e.g., typographic errors) are identified and 
logged. While full matches are automatically consolidated, partial 
matches are flagged to be  resolved at the data source by human 
administrators to ensure correctness.

Pseudonymization is also applied on free text data (e.g., clinical 
notes) with an advancement of a previously developed algorithm (48), 
which relies on name dictionaries (public and internal), common 
precursors for names and regular expressions to remove personal 
references such as names, phone numbers, locations, addresses, email 
addresses and websites. Public name dictionaries were scraped from 
Wikipedia articles of category Person and the publicly available search 
tool for physicians in Tyrol. The internal dictionary is comprised of all 
names within the available data sources. A basic rule-based entity 
recognition is applied to retain context after removing potentially 
valuable information by de-identification. The entities of healthcare 
professional, patient, person, location, phone number, e-mail address, 
address, ZIP code and website are recognized, and corresponding 
pseudonyms are assigned, which are consistent throughout the entire 
text corpus.

2.2 Harmonization

For each data type or dataset that is to be digested into the data 
store, individual harmonizing ETL classes must be  developed 
manually in advance. In essence, these harmonizer classes read the 
data they are designed for and map data points to suitable OMOP 
CDM fields. For further interoperability, the ETL classes also map 
values of data to standardized vocabularies of the ICD-10, 
SNOMED-CT, LOINC and ATC terminologies. Any data that is 
processed like this by an ETL class is tracked to enable version control 
for the data store. These ETL classes can either be integrated into the 
HDS node to populate data automatically into the data store if the 
corresponding data is regularly updated, or resort to outside ETL 
processes if data is simply imported once without expected regular 
updates. Mapping all incoming data into the OMOP CDM with 
standard vocabularies created a scalable data store that can 
be  extended should any new data sources be  connected to the 
HDS node.

2.3 Data curation

The ETL process framework is mainly intended for importing and 
harmonizing of RWD from primary data sources (i.e., the data’s 
origin). On many occasions, additional data is collected that does not 
originate from the primary care system, such as quality-of-life data 
[e.g., MacNew questionnaires (49)]. For this reason, we implemented 
a basic electronic data capture (EDC) system. As each HDS node 
provides a FHIR repository, we used FHIR Questionnaires to define 
EDC forms and FHIR CarePlans to express typical workflows. Entered 
forms and their completion statuses are stored as FHIR Questionnaire 
responses. The EDC component is tied to the pseudonymization 
component, so that patients can be registered manually and linked to 
existing patients from primary care data sources with the record 
linkage algorithm. For enhanced privacy, subjects in the EDC system 
receive their own pseudonym which is automatically linked to the 
pseudonym used in the OMOP database. Both the FHIR 

Questionnaires as well as the FHIR Questionnaire responses are 
transformed via ETL classes into the OMOP CDM. We  defined 
functions that transform them into the OMOP entities VisitOccurrence 
(the action of completing a form), SurveyConduct (details on the 
questionnaire itself) and Observation (the actual questions) and store 
them in the OMOP database.

Our experience with HMT has shown that some critically valuable 
data is only available in unstructured form. For instance, in the 
telemonitoring setting of HMT, physicians and nurses make extensive 
use of free text notes to capture additional insights into patients’ 
condition and treatment. Similarly, in the patients’ EMR, discharge 
letters contain free text diagnoses and discharge medication 
prescriptions. Based on previous work (50), we integrated (a) a tool to 
create annotation corpora from OMOP data, and (b) a multi-
annotator tool for manually annotating text data on both the sentence 
and the full-text levels. Annotated corpora can be accessed through 
APIs like data from the data store for further analyses (e.g., training 
classification algorithms).

2.4 Collaborative analyses

Typically, data analysis and ML tasks are complex, iterative 
processes with multiple steps involving an interdisciplinary group of 
experts (20). Depending on their specific role, experience, and 
training, team members might prefer different tools (e.g., Python, 
MATLAB). To support the usage of said tools, the HDS nodes provide 
a dedicated API to extract pseudonymized data via SQL queries from 
the nodes’ data store. We  developed functions for Python, R and 
MATLAB to (a) access an HDS node’s data store via the API, and (b) 
transform the received data into native data formats, including Pandas 
DataFrames (Python), data.frames (R), and tables (MATLAB). This 
platform-agnostic way of accessing data allows data scientists to rely 
on their preferred tool chain they are familiar with to develop 
algorithms and models. When given access to an HDS node through 
the permission management system, data scientists can browse the 
data available (see Figure 2 for an example) and simple descriptive 
statistics (e.g., distribution of sex and age) are provided via a 
dashboard. An SQL editor allows data scientists to understand the 
database scheme and test SQL queries before executing them in their 
processes. SQL queries are tracked for audits and can be saved for 
repeated executions. Data scientists are also given access to a collection 
of already developed feature extraction algorithms, called feature 
store. Figure 3 illustrates how a typical workflow involving feature 
generation, model development and model deployment involving a 
data engineer and a data scientist could be executed.

2.4.1 Feature store
Once the required data is extracted via API queries, data analysis 

often requires the calculation or engineering of features (i.e., derived 
values from raw data). These represent information-dense data points 
to be used for machine learning modeling. Since medical datasets are 
relatively sparse, typically multiple people work on the same data. 
However, on occasion, different analyses by different data scientists 
can require the same features. For example, with the available blood 
pressure data of systolic and diastolic values, it will often be required 
to calculate the pulse pressure. The nodes’ feature store allows data 
scientists to upload the algorithms’ code they have developed into a 
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so-called feature store. The feature store’s main purposes are first, to 
reduce the risk of repeated developed of the same feature engineering 
algorithms and second, to provide future analysts with a large number 
of useful features already developed by other team members, that 
grows over time. This should facilitate collaborative and efficient data 
analysis. At the time of writing, the feature store supports feature 
development in Python. Feature engineering algorithms are 
documented (e.g., author, date, description), versioned and deployed 
within HDS nodes. Any feature generators uploaded into a node are 
quarantined initially and only deployed after an audit by an 
administrator for any malicious code.

Features can be calculated on different levels (e.g., daily level like 
blood pressure, patient level like height). The OMOP CDM already 
supports features related to the patient-level including source code for 
feature generation based on the CohortDefinition entity and its 

associated attributes (AttributeDefintion). For the feature store, 
we extended this functionality to support features on other levels and 
to support further meta data (e.g., author, timestamp, source code, 
technology, description). Each entity in the OMOP data model (e.g., 
Person, Observation or Measurement) has a counterpart in the feature 
store so that features can be calculated on Person-level (e.g., number 
of re-hospitalizations in the last 3 years), on Observation-level (e.g., 
daily medication adherence) or on Measurement-level (e.g., blood 
pressure). The feature store communicates with the data store, and is 
notified of all data updates, so that features are re-calculated whenever 
new data arrives, or existing data is updated. Features are stored in a 
compact JSON data structure to accommodate use cases with high 
numbers of variables.

Data scientists can explore available features through a web-based 
interface. The interface gives a superficial description and overview of 

FIGURE 2

Screenshot of the default dashboard of the D4Health Heart Failure Registry.
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each feature (e.g., availability and distribution of values) to give 
analysts quick insight whether a feature might be  useful for their 
analyses. Features can be accessed through a dedicated API similar to 
that of the data store. When features of a given level (e.g., Person-level) 
are accessed, all features on this level are aggregated into one 
feature matrix.

2.4.2 Model store
Analogous to the feature store, HDS nodes also support a model 

store, which is a collection of models developed outside of the HDS 
node’s infrastructure. At the time of writing, the model store can digest 
any model developed with Python’s scikit-learn (51) module via 
manual upload to the model store by the use of model serialization 
through the built-in pickle module. These model and their required 
artifacts are accessible via API. In future, this model store should serve 
as the basic framework for supporting MLOPs. Models and other data 
apps (e.g., visualization apps, dashboards) are planned to be deployed 
in this store to provide specific functionalities as services (e.g., 
prediction as a service).

2.5 HDS nodes in a network

HDS nodes are self-contained units that are linked to one data 
source (e.g., an EMR or a subsystem) and are pseudonymizing, 
harmonizing and providing data in an analysis-friendly way. 
Aggregating health data in one place, thus populating a node with data 
from multiple sources is particularly difficult if data sources are in 
different institutions or even countries. We have therefore designed 
the nodes in a way that collaborators can share artifacts and data 
according to defined data policies and trust in the system, thus 

forming a health data space enabling versatile data governance 
schemes. Healthcare organizations are thus enabled to meet the 
requirements of local data sovereignty legislation by controlling 
exactly what data is shared with whom. We have defined 4 layers of 
sharing elements depending on the level of trust between the nodes 
(see Table 2). Sharing of elements is done through a dedicated REST 
API with the HDS nodes’ ETL process framework. For instance, on 
level 4, an HDS node might share specific raw patient data points with 
another HDS node. In this case, the corresponding ETL process can 
be activated to allow sharing as long as valid endpoint and credentials 
for the other HDS node are provided. While the ETL process itself is 
still executed locally at the source’s node (transformation into an 
OMOP observation), its results are relayed to the other HDS node 
where they are stored. For levels 2, 3 and 4, it is essential that patients 
existing in both HDS nodes are correctly associated and linked. 
Therefore, both HDS nodes must agree on (a) a common set of 
identity traits and (b) a certain hashing strategy, including related 
secrets (e.g., a secret key in case of Bloom filters).

2.6 Evaluation in a real-world application

The HDS nodes and various configurations can be  helpful in 
different use cases. We  explored the feasibility of the HDS node 
solution in a real-world scenario in the Austrian federal state of Tyrol, 
connecting data sourced from three origins (one healthcare 
organization, one telehealth system and Austria’s national register of 
deaths) into a registry for heart failure patients. To evaluate the 
architecture’s readiness to deploy ML models in the future, a simple 
use case of a natural language processing (NLP) experiment was 
tested. For this, free text messages exchanged between healthcare 

FIGURE 3

Typical workflow of different data scientists (data engineers, data analysts and machine learning engineers) collaborating within the components of a 
Health Data Space node to process raw data, extract features and develop models. The final step model deployment is subject to future work.

31

https://doi.org/10.3389/fmed.2024.1301660
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Baumgartner et al. 10.3389/fmed.2024.1301660

Frontiers in Medicine 09 frontiersin.org

professionals and patients from HMT were de-identified. This 
de-identification was based on an improved algorithm of a previously 
developed pseudonymization algorithm (48), which removes meta 
data (i.e., author, corresponding patient) and identifying references 
from the corpus (e.g., names, addresses) from the texts. This algorithm 
was evaluated on a stratified subsample of 200 messages. Subsequently, 
messages were annotated by human experts and an ML classification 
model based on Latent Dirichlet Allocation (52) was trained. The 
model was deployed on the network and the result was presented via 
a web service based on the open-source visualization library 
Dash (53).

3 Results

Three main results are presented in the following chapters: (1) the 
four levels at which data can be shared depending on the level of trust 
of the participating partners in an HDS node network, (2) a real-world 
case study of an implemented network at the highest trust level and 
(3) preliminary results from a MLOps feasibility study with an NLP 
use case.

3.1 Levels of trust in an HDS node network

To comply with different expectations and agreements of trust 
between participating partners, we designed HDS nodes in a way that 
they enable four levels of possible data sharing (summarized in Table 2):

 1. Trust level 4: All data and artifacts (e.g., feature engineering 
algorithms, models) of a node is shared with all other nodes, 
including raw data from the data store and all available features. 
In this setting, data is typically aggregated in a central HDS 
data node. This use case would be helpful for scenarios, where 
data from the same patient population is to be aggregated in a 
single place for centralized machine learning.

 2. Trust level 3: While trust level 4 is feasible in a setup where all 
nodes belong to the same data holder, in a cross-institutional 

network data holders might hesitate to share their transformed 
OMOP database. As a result, nodes can form a trust level 3 
network. At this level, each node performs pseudonymization 
on the pre-defined elements of the patient record but keeps the 
data in the OMOP database locally. In contrast to a trust level 
4 network, each node computes its own feature matrix (e.g., 
on patient-level, on daily-level) and then only shares the 
results along with the code used to compute the features with 
the heart failure registry node. This prevents sharing of any 
raw data from the data store. For example, any features 
generated from clinical messages can be  exchanged for 
analysis without actually sharing the texts themselves.

 3. Trust level 2: If the calculated features from the feature store 
should also not be shared, a trust level 2 network can be used. At 
this level, the connected HDS node only provides other nodes 
with the information, which features it has for a given patient, 
similar to the FAIR principles. To achieve this, trust level 2 
connected nodes participate in PPRL, meaning consistent patient 
identifiers exist throughout the network. A trust level 2 network 
can be used to make data more findable for participating partners 
of the network. If specific data is found, which is required for 
analysis, partners can contact the corresponding data holders and 
patients to inquire about consent to access the data.

 4. Trust level 1: At the lowest level of trust, no data is exchanged. 
The connected nodes only inform others that it exists and 
provides meta data about the contents (i.e., what kind of data 
is available). For this, also no PPRL across nodes is required. 
The only shared contents are any produced artifacts. A trust 
level 1 network could be used as infrastructure for federated 
analyses by sharing feature engineering algorithms.

3.2 HDS nodes in a data-sharing network 
for a heart failure registry (trust level 4)

The HDS node solution was evaluated in close partnership with 
tirol kliniken (Tirol Kliniken GmbH). Data from three different sites 

TABLE 2 Information sharing options depending on level of trust.

Trust level Requirements Sharing Possible use cases

1: Artifacts -

A data node can share artifacts (e.g., feature 

extraction algorithms or trained models) with other 

data nodes.

Sharing algorithms for a federated analysis 

task. Data itself stays in the HDS.

2: Feature information PPRL strategy needs to be aligned

A data node may share information (e.g., which 

features are available) and extraction algorithms of 

generated features

Increasing findability of data of interest for 

participating network partners, which then can 

specifically requested or consent can 

be requested.

2: Features only PPRL strategy needs to be aligned
A data node may share generated features with 

other data nodes

Aggregating selected data from the same 

patient population in a single place without 

revealing the raw data (e.g., a node might 

extract data from clinical notes and only 

provide extracted data without revealing the 

clinical notes themselves)

4: All data PPRL strategy needs to be aligned OMOP CDM data can be shared
Aggregating data from the same patient 

population in a single place.
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TABLE 4 Performance of individual ETL converter classes with at least 
1,000 data points transformed.

ETL class Data points per second

Visitation 2092.24

Device exposure 1444.89

Drug exposure 1276.43

Observation 1268.78

Measurement 1172.98

Note 1151.05

Condition occurrence 420.14

Observation period 229.87

Person 57.96

was extracted to an HDS node, respectively (see Table 3): EMR data 
from the tirol kliniken’s hospital information system, HMT telehealth 
data, and an export of Austria’s national register of deaths. Data 
transfer specifications were defined with cardiologists to select which 
EMR data elements are required.

For these three sites individual HDS nodes were installed, which 
were linked to a “D4Health Heart Failure Registry,” represented by a 
fourth HDS node, forming a trust level 4 network (see Figure 4). 
While the three HDS nodes related to the sources could contain 
unstructured, identifying data (e.g., discharge letters), only selected, 
de-identified data was shared with the D4Health Heart Failure 
Registry HDS node according to the data transfer specifications. In 
this specific application, the central data node was deployed within the 
institutional borders of tirol kliniken.

Each node performs pseudonymization of its own identifiers (first 
name, last name and date of birth of patient, optional social security 
number where available) by computing a Bloom filter of the 
corresponding identifier and sharing it with the central D4Health 
Heart failure registry node. Here, feature ETL classes have been 
deployed to calculate features.

The HDS node network constituting a trust level 4 network 
was deployed, operating in a routine care environment and at the 
time of writing, is continuously linking the data from the three 

data sources to the registry in a privacy-preserving manner. 
Record linkage also consolidated duplicated patients. The PPRL 
found in the HerzMobil telehealth node 9 full matches and 19 
partial matches, resulting in a duplication rate of 0.70%. The 
partial matches were subsequently assessed by human experts and 
found to be all false positives. The hospital information system as 
well as the Austrian register of deaths nodes had no 
duplicates since they already used a unique identifier in their 
respective systems.

At the time of writing, the D4Health Heart Failure Registry 
HDS node contains data from 5,004 patients, over 2.9 million 
measurements, over 570,000 observations and more than 63,000 
clinical free text notes. In total, over 5.2 million clinical events 
(i.e., individual data points) are accessible. Figure  2 shows a 
screenshot of the default dashboard of the D4Health Heart Failure 
Registry HDS node, which displays basic descriptive statistics to 
provide an overview of the included data, which can be adapted, 
according to specific use cases and preferences. To assess 
performance and scalability, the execution time of individual ETL 
converters has been recorded. The ETL classes that have 
transformed most frequent data types were measurement (1,173 
data points/s), observation (1,269 data points/s), device exposure 
(1,445 data points/s), observation period (230 data points/s) and 
note (1,151 data points/s). A full list of performance of ETL classes 
with at least 1,000 data points is presented in Table  4. With 
increasing amounts of patients, registration slows down 
significantly as the PPRL framework requires increasingly more 
comparisons since new patients have to be  compared to all 
registered patients. In our experiments, the application of 
MinHash (47), increased the speed of registration from 2 per 
second to 40 per second.

As some of the patients also had coronary heart disease (CHD), 
another node was established to collect quality of life information 
from them via FHIR Questionnaires. 60 CHD patients were included 
in a preliminary node, which is not connected to the registry at the 
time of writing. Patients completed the MacNew quality of life 
questionnaire at the start of the telemonitoring phase and once again 
at the end of the phase to track improvements in the quality of life 
during the program. These FHIR Questionnaire responses are mapped 

TABLE 3 Data sources connected within the D4Health Heart Failure Registry.

Data site Description Type of data No. of ETL processes

tirol kliniken hospital information 

system
Electronic medical record (EMR) data

Demographic data (age, gender), 

height, date of admission, discharge 

and possible readmission, laboratory 

values from the laboratory information 

system, diagnoses (ICD-10 coded), 

NYHA class

8

HerzMobil telehealth data

Daily physiological values measured by 

patients themselves using medical devices, 

transmitted to smartphone via Bluetooth and 

symptoms

Blood pressure, heart rate, bodyweight, 

medication information (prescription 

and self-reported intake adherence) 

and self-reported wellbeing score 

(“good,” “medium,” and “bad”), clinical 

notes by physicians and nurses

18

National Austrian Register of 

Deaths
Export of register of deaths records Date of death 1
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into the OMOP CDM and are planned to be linked into the D4Health 
Heart Failure Registry in the future.

3.3 Feasibility experiment of deployment of 
a natural language processing model

To evaluate the capability of our approach to deploy ML models, a 
basic NLP use case was successfully executed. The pseudonymization 
algorithm achieved high performance (accuracy: 93.99%, sensitivity: 
0.94, specificity: 0.93). Subsequently, the messages were labeled by 9 
expert observers using the HDS node’s annotation tool (50). Finally, the 
labeled data was extracted via API to a Python development 
environment, in which the LDA model was trained. The artifacts 
produced by the model were successfully deployed within the 
infrastructure and were reachable via API queries from outside with 
corresponding permissions. A specific visualization tool could 

successfully be deployed for exploring and quality-controlling the model 
(see Figure 5).

4 Discussion

We presented the Health Data Space nodes as flexible system 
architecture units, which we evaluated in a real-world application 
called the D4Health Heart Failure Registry. The results obtained 
from this case study confirm the infrastructure’s utility. The 
processes of linking, harmonizing and analyzing data have proven 
to be  functional. Feature engineering and modeling have been 
explored experimentally and have shown promising, preliminary 
results in a proof-of-concept natural language processing use case. 
Extending the functionality of MLHOps (especially model 
deployment) to industry-level readiness is subject of future 
research and development.

FIGURE 4

Three Health Data Space nodes (tirol kliniken, HerzMobil Tirol, Register of Deaths) are linked to a fourth, central node, in which the registry is located. 
Identity management and record linkage is done via the pseudonymized person index.
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Although other approaches that address parts of our 
requirements exist, we hope to contribute new approaches to the 
complex challenges of sharing and linking medical data with a 
strong focus on privacy-preservation. DataSHIELD enables 
federated analyses but is not intended to aggregate data into a 
common feature matrix for centralized machine learning. The PHT 
does that but concerns of containerized code execution with Docker 
containers make it ultimately nonviable for our application. While 
other privacy-preserving frameworks were applied to medical data 
(e.g., KETOS platform) and have used Bloom filters [e.g., (54)], 
linkage assisted with Bloom filters across multiple sources of 
medical data has not been demonstrated yet. As an additional layer 
of privacy, we proposed node-specific pseudonyms to avoid using 
the same pseudonym in multiple contexts, which risk exposing 
patients by linkage attacks. Privacy-preservation was further 
focused on by including automated free text de-identification as 
part of the framework. This is noteworthy, as the rise of large 
language models (e.g., ChatGPT) has renewed interest in medical 
free text recently. The application of MinHash (47) with the Bloom 
filters ensured scalability of the PPRL strategy. To assist in 
organizational coordination of privacy-oriented data sharing, 
we introduced four levels of trust within a data sharing network (see 
Table 2) to provide guidelines for real-world applications. Another 
novel contribution of our presented architecture is the 
implementation of a multi-level feature store with the increasingly 
popular OMOP CDM, which also has not been described in 

literature. Although, the OMOP CDM supported features on a 
patient-level with the tables AttributeDefintion and CohortDefinition, 
we extended this capability to also represent features that change on 
a daily basis (e.g., blood pressure).

To summarize our efforts, we combined established techniques 
(e.g., PPRL, ETL frameworks) with novel ideas (e.g., multi-level 
OMOP feature store, trust levels, context-specific pseudonyms) to 
create a starting point for the development of a “full suite” for 
collaborative analyses of medical data that assists in the entire data 
science process from start to finish. The HDS nodes have tools for data 
collection (e.g., FHIR Questionnaires), data cleaning (e.g., 
de-identification, data annotation), data exploration (e.g., dashboards) 
and feature engineering (e.g., feature store) and we  are aiming to 
complete the process by implementing sufficient model deployment 
(e.g., model store) in the future.

To demonstrate the real-world feasibility of this architecture, an 
ensemble of HDS nodes was applied in a data sharing network for a 
real-world heart failure registry. Establishing such an infrastructure 
requires close collaboration between multiple partners, whose 
interests must be balanced. This concerns not only data governance 
considerations, but also varying requirements of (a) functionality, (b) 
processing tools and (c) jurisdiction.

 a. To address different functionality requirements, HDS nodes are 
designed in a modular, flexible and scalable way. This not only 
refers to including data sources currently, but also to apps and 

FIGURE 5

Screenshot of the results of the Latent Dirichlet Allocation model developed from all free-text clinical notes of the telehealth service and deployed to 
the infrastructure’s central. Circles on the left illustrate the 7 identified topics in an inter-topic distance map via multidimensional scaling. Bars on the 
right show the top-30 most relevant terms (in German) for the selected topic 1 “council/training” and their frequency within the related topic (red) and 
overall, within the corpus (blue).
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services like predictive models and visualization in the future. 
Linkage to other, similar infrastructures and data sharing with 
other HDS nodes is supported to different degrees depending 
on the level of cooperation and trust within a network.

 b. To enable data scientists to work within their own familiar 
environments, development of analyses tools is decoupled from 
the infrastructure. Relying on overly generalized tools can 
be problematic and enabling data scientists to work with their 
domain-specific tools is preferable.

 c. Individual identity holders are able to fully create and control 
their credentials. Each jurisdiction operating an HDS node is 
able control the inputs, processing steps and outputs of the 
node. Data sovereignty is also part the EU’s European Strategy 
for data (55).

Apart from organizational challenges to coordinate stakeholder 
interests, we  also addressed interoperability on four levels: (1) 
Syntactic interoperability: ETL processes automatically import and 
transform source data into the registry. Export functions for JSON, 
CSV and Microsoft Excel are provided for external use. (2) Semantic 
interoperability: Data is harmonized using the OMOP CDM. Standard 
vocabularies are used for further interoperability (SNOMED, LOINC, 
ICD-10, ATC). (3) Pragmatic interoperability: Linking data also 
means linking institutions, partners, and pre-existing networks. Data 
sharing was realized with specifically designed data sharing policies 
for transparent collaboration process, over which the source data’s 
managers still have control. (4) Legal interoperability: To comply with 
legal frameworks like GDPR and ethical considerations, the 
architecture is based on a pseudonymization and privacy-preserving 
record linkage infrastructure. HDS nodes can be  connected on 
different trust levels (see Table 2).

Mapping different data structures and models into the OMOP 
CDM and encoding into the SNOMED vocabulary proved to be a 
major challenge. For example, the telehealth system included 
information about prescribed medication usually in brand names as 
available in Austria. However, SNOMED as an international 
vocabulary did not necessarily provide these exact names and thus 
a correct mapping was not always possible. As a workaround, 
medication was encoded according to their active ingredients (i.e., 
the chemical compounds). Furthermore, for physiological values 
from the telehealth system (e.g., blood pressure) multiple SNOMED 
concepts were available. For example, SNOMED provides multiple 
blood pressure concepts depending on the body position during 
measurement (e.g., lying, sitting, standing). However, in the 
telehealth setting, patients measure data without supervision and 
thus this information is not available. As a compromise, generic 
concepts were selected at the cost of minor imprecision. Also, 
telehealth visitations (e.g., by nurses) were simply not available in 
the OMOP CDM and thus were difficult to represented within this 
specific CDM.

Limitations

The infrastructure is subject to limitations that need to 
be discussed. Firstly, at the time of writing, the infrastructure’s focus 
is on observational health data. Other data modalities like time-series, 
images or genomic data are currently out of scope. Meta data about 

the D4Health Heart Failure Registry are not made publicly available 
so far, e.g., via a FAIR Data Point (FDP) as suggested by the FAIR 
principles (56). Provision of the metadata in an FDP would further 
improve the visibility and re-usability of the data in the future and 
enable collaboration with other frameworks (e.g., PHT).

In the presented case study, only one of the sites was a healthcare 
organization, limiting the scope of the currently demonstrated 
capabilities. Further, both the EMR data, which is directly from tirol 
kliniken’s HIS, and the data from the HMT telehealth system, which 
is operated by a subsidiary of tirol kliniken (the Tyrolean Federal 
Institute for Integrated Care) are domain of tirol kliniken. The central 
node was operated in tirol kliniken’s institutional infrastructure to 
avoid raising concerns over data sovereignty. Linking multiple 
healthcare organizations complicates the task considerably and 
increases the necessary technical, organizational and legal effort since 
data is leaving institutional borders. While the presented HDS nodes 
are designed to also realize such complex settings from a technical 
point of view, a real-world implementation remains to be demonstrated 
and is subject of future studies.

To address the issue of data governance and sovereignty, 
we have segmented access into four levels according to the trust 
between sharing partners. As requests by data holders can 
be extremely specific and legislative framework highly intricate, this 
simplification might not be appropriate for all use cases. A more 
granular permission and sharing framework would be required to 
address this fully.

Further, although access to the HDS nodes is possible via APIs 
from various data science tools, such as Python, R or MATLAB, 
feature and model deployment is currently only supported for Python. 
In specific settings, we have already explored model deployment via 
the Predictive Modeling Markup Language (PMML) between Python 
and MATLAB, however, this is not yet deployed in the productive 
HDS node infrastructure. Furthermore, at the time of writing, the 
model store only supports models developed with scikit-learn (51).

Lastly, although the free-text de-identification performed 
satisfactorily well (see chapter 3.3) for clinical messages to protect 
privacy, it is fine-tuned for this application with specific name 
dictionaries and regular expressions following local rules (e.g., 
Austrian phone numbers, Austrian postal codes) and therefore will 
not translate well into other applications.

4.1 Outlook

The NLP proof-of-concept use case served as first steps of 
implementing satisfactory MLHOps support in the HDS nodes. 
Implementing support for additional commonly used ML and 
industry-leading frameworks (e.g., TensorFlow/Keras, PyTorch) is 
subject of future development. Once reliable functions for model 
deployed are implemented, various other use cases present themselves. 
Two major groups of data services could be  useful, which could 
be  developed outside an HDS node (e.g., a local computer) and 
uploaded to a node:

 1 Model interfaces to provide predictions as a service to 
healthcare professionals and data scientists. Examples include 
predicting of major cardiac events, risk stratification of the 
patient population and outcome prognoses. Another 
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interesting, yet highly specific use case for HMT, would 
be predicting, which patient would benefit from extending the 
standard 3 months telehealth disease management program to 
allocate resources more efficiently. However, further research 
is necessary to explore the potential of data-driven applications 
used in the treatment of heart failure patients.

 2 Interactive data exploration apps like visualizing dashboards. 
We provided a basic example with the LDA model implemented 
with the open-source library Dash (53). Other examples 
include visual representation of medication adherence or 
measurement deviations.

Additionally, updates of the HDS nodes based on recent health 
data can currently either be triggered manually or based on routines 
in regular intervals. Therefore, any predictions for individual patients 
would currently face a certain time delay, until all data needed is 
present in the respective HDS node. Functionalities that trigger data 
transfers upon updates in the source’s database could be explored 
further in future development, which would enable real-
time predictions.

In the future, we will be investigating the expansion of HDS 
nodes to support privacy-preserving AI with multiple nodes, 
focusing on federated analysis, secure multiparty computation, 
exchange of synthetic data and other promising approaches in 
addition to PPRL. Federated learning is very appealing in medicine 
and HDS nodes are especially well-suited for it since they provide 
uniform distributable nodes with standardized data. Developing 
models locally, without even centralizing data, has the potential to 
further increase privacy, security, and trust in the system. An 
additional advantage might be  that it serves as incentive for 
potential partners to join the network and gain access to well-
performing models. Furthermore, partners that only contribute 
small amounts of data could benefit from the knowledge extractable 
from larger datasets.

We identify considerable potential for the D4Health Heart Failure 
Registry specifically in adding additional data sources. Further we aim 
to test the HDS nodes in an actual cross-institutional data sharing 
setting in future research. This includes first and foremost other 
HerzMobil systems (e.g., in Styria and Carinthia) for horizontal 
linkage. Furthermore, vertical linkage by including cardiac 
implantable electronic devices is especially attractive since they are 
highly relevant for heart failure patients. Besides medical data, health 
economics information could provide insight into patients’ history of 
procedures and thus to help assessing cost-effectiveness of 
interventions. To align with the paradigm of patient empowerment 
and self-governance of medical data, enabling patients to voluntarily 
include their own data certainly holds potential. Large quantities of 
health-relevant data are collected with wearable sensors and consumer 
devices routinely now by many people including physical activity, 
number of steps, sleep quality and even physiological data like oxygen 
saturation or single-lead electrocardiograms that can be recorded by 
smart watches.

Secondary use of health data might be regulated differently in 
individual countries or governance regions further complicating the 
issue of data sovereignty. Especially the transatlantic relationship has 
been strained by the overturning of both the International Safe Harbor 
Privacy Principles in 2015 (57) and the EU-US Privacy Shield in 2020 

(58) agreements due to concerns of the Court of Justice of the 
European Union. However, the European Commission has recognized 
the potential of secondary use and aims to facilitate a common data 
space inside the European Union. The Commission has published 
several documents as part of its Data Strategy to work toward a 
European Health Data Space (EHDS). These concerted efforts are 
aiming for better utilization of data in both primary and secondary 
use and more convenience for patients in accessing health services 
abroad (59). The present work was inspired by this initiative and is 
intended to contribute to the evolution of the EHDS. Currently, data 
exchange and linkage policies can already be  adapted to support 
various levels of record linkage across different jurisdictions. With this 
flexibility, HDS nodes could be  linked to the EHDS and service 
interfaces to existing data space connector solutions such as the 
Eclipse Dataspace Connector (60) or the International Data Spaces 
Connector (61), as illustrated in Figure 6. Future work should also 
consider further development of the HDS node to adhere to 
specifications coming from initiatives like the EHDS and Gaia-X (62) 
and also keep different legislative frameworks in mind. Collaboration 
with similar frameworks like the Personal Health Train (24) could also 
prove fruitful for increasing data availability in the future. 
Furthermore, the capabilities of Blockchain technology to ensure data 
immutability could also be topic of future search as it would further 
increase trust in the system.

Architecture sustainability is always a concern in research 
projects like this because wide adoption of digital health solutions 
into regular healthcare settings is notoriously slow. Furthermore, 
the project-based funding and non-commercial setting of such 
systems make them inherently at risk of being not fully supported 
long-term. Many definitions for sustainability in the context of 
software exist (63). According to Venters et al. (64), sustainability 
describes a system’s extensibility, interoperability, maintainability, 
portability, reusability, scalability, and usability. We outlined that 
our infrastructure is portable and reusable by relying on common 

FIGURE 6

An HDS node can act as a national node in the context of a 
European data market and research infrastructure, such as currently 
being developed within the European Health Data Space.
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and platform-agnostic frameworks (e.g., Python). Further, we also 
described how we ensured interoperability by utilizing standard 
vocabulary (e.g., ICD-10, SNOMED, LOINC) and a suitable and 
commonly used common data model (OMOP CDM). With our 
PPRL methods, we also focused on the scalability and extensibility 
of the system by enabling vertical and horizontal linkage across 
different data sources. The greatest limitation toward scalability and 
extensibility remaining is the organizational coordination and data 
sovereignty concerns. To address this, future work could also focus 
on education and informing stakeholders about the benefits of such 
technology. Reference projects like the hereby described platform 
could aid this process. We addressed maintainability by aiming to 
minimize dependencies on third-party modules and relying on 
well-maintained open-source modules whenever possible. Since 
maintainability of our own core components is still a concern, 
we are also exploring options to potentially open-source parts of 
our code as well. This would open our developments to interested 
communities and improve maintainability by possibly increasing 
the amount of people interested in and working on the software. 
Usability is currently the least addressed aspect of sustainability in 
the HDS nodes. Although basic feedback from users (e.g., 
healthcare professionals, data scientists) has been implemented on 
occasion, systematic usability tests with stakeholders remain subject 
of future research. We recognize usability as a core requirement to 
aid the transition of stakeholders toward digital health solutions 
and have therefore included thorough usability testing in our 
development roadmap.

6 Conclusion

We have developed Health Data Space nodes to facilitate the 
secondary use of health data, which also support privacy-preserving 
record linkage across data sources to increase data availability. The 
HDS nodes provide sufficient flexibility to set up application 
specific infrastructures. With this concept, we  realized and 
presented a pilot case study, including not only development but 
also deployment of a smart health ecosystem in a real-world 
infrastructure to establish the D4Health Heart Failure Registry for 
a routine care setting in Tyrol. With this infrastructure, data can 
be  linked in a privacy-preserving way and be  harmonized for 
interoperability. Preliminary functionality for collaborative feature 
engineering and model deployment have been tested in simple use 
cases. In conclusion, we consider these results as the foundation for 
future developments. Due to the modular architecture, the 
application of HDS nodes is not restricted to heart failure, but can 
be applied in various other scenarios.

We believe that such smart health ecosystems which support 
data management and MLOps and connect data from different 
health data spaces are the key to successful, efficient and 
sustainable secondary use of health data. Adhering to privacy 
standards is not only necessary from a with legal compliance 
perspective but also helps to improve overall acceptance and is, 
therefore, considered a must. With the presented case study, 
we  hope to prove the feasibility of such systems and hope to 
inspire similar pioneering solutions for the upcoming work of 
building the European Health Data Space.
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This paper examines cybersecurity policy framework requirements for

establishing highly interoperable and interconnected health data spaces,

with a focus on the European Health Data Space (EHDS) and its corresponding

joint action Toward European Health Data Space (TEHDAS). It explores

the challenges of ensuring data security within an increasingly digital and

collaborative healthcare environment, emphasizing the need for robust policy

management to protect sensitive health information across diverse healthcare

systems and supply chains. Through an analysis of use cases and held expert

workshops, the study identifies key requirements for enhancing cybersecurity

measures, fostering cross-border data exchange, and ensuring compliance with

regulatory standards. It illustrates the practical implications of cybersecurity

policies in a real-world scenario, demonstrating how they can be applied to

enhance data security and policy e�ectiveness.

KEYWORDS

cybersecurity in healthcare, health data interoperability, risk management in health

organizations, health data privacy, digital health ecosystems

1 Introduction

In this paper, we analyze cybersecurity policy framework requirements for highly

interoperable and interconnected health data spaces, with a focus on the European Health

Data Space (EHDS) (EDHS)1 project “Toward European Health Data Space” (TEHDAS).2

We explore the significant challenges of securing data within an increasingly digital

and collaborative healthcare environment. Our research leverages expert workshops

and multiple use cases in a healthcare setting from the SPHINX project (1) to identify

key requirements for enhancing cybersecurity measures, supporting cross-border data

exchange, and ensuring compliance with regulatory standards. Each contribution is

designed to offer actionable insights for policymakers and stakeholders in the healthcare

sector.

1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52022PC0197

2 https://tehdas.eu/
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1.1 Cybersecurity policy management at
di�erent levels

Effective policy management at all levels includes the

development, implementation, monitoring, and enforcement of

policies and best practices. This is extended by periodic assessments

in order to ensure their relevance and validity supported by

collaboration and communication between affected stakeholders.

Below we briefly describe cybersecurity policy management at an

organizational, interorganizational, and ecosystem level.

Organizational level: The main focus regarding policy

management at an organizational level lies in the development

and implementation of policies as guidelines pertaining to the

organization’s cybersecurity processes and practices in order to

ensure compliance. Subjects included involve but are not limited

to access control and incident response encompassing constant

monitoring and enforcement of those policies.

Ecosystem level: Regarding policymanagement at an ecosystem

level, the goal lies in the process of coordination of policies and

practices between interconnected organizations in order to address

shared risks. Main subjects include but are not limited to risks

pertaining to the supply chain and third-party risk management,

and involve a given degree of collaboration concerning the

development and implementation of policies and practices.

Global level: Policy management at the global level focuses

on the process of coordination of policies and practices between

interdependent organizations within a broader scale encompassing

entire sectors, e.g., critical infrastructures. Main subjects include

but are not limited to information sharing and CTI in order to

address cybersecurity risks. On the global level the collaboration

involves parties from industry and government regarding the

development and implementation of cybersecurity policies.

1.2 Aim and context of the research

The goal of our research work was to develop a data driven

and risk-aware cybersecurity policy management framework for

public organizations with an emphasis on health. The framework

takes a systemic-holistic view on policy management, and is

driven by organizational and user requirements, building on the

integration of proven decision and organizational learning models

with artificial intelligence concepts. Previous experience (especially

during piloting and evaluation of the CS-AWARE project3) has

shown that current approaches to policy management are not

adequately addressing the dynamic nature of the cybersecurity

environment (2) and requires further research in enhancing

cybersecurity awareness, as well as in increasing the potential of

interoperability of organizations beyond mere data exchange (3).

The dynamic nature of cybersecurity is already challenging

on an operational level. It becomes increasingly unmanageable

at the policy level, especially for public sector organizations

and institutions that handle personal and sensitive data as it is

the case of health service providers, hospitals, clinical research

and care centers, etc. The need to quickly and dynamically

3 https://cordis.europa.eu/project/id/740723

adapt cybersecurity management policies (e.g., relating to risk

management and business continuity, incident management) to

keep upwith the continuously changing threat and attack landscape

requires a new and more dynamic approach to policy definition

and constant re-evaluation against the requirements defined by the

cybersecurity realities, as is reported by threat intelligence provided

by, e.g., NIS competent authorities/CSIRTs or threat intelligence

communities.

The proposed policy management framework will cover:

1. Support for policy requirement assessment and definition, based

on the individual socio-technical requirements of organizations.

This will be based on the socio-technical soft systems analysis

conducted during the CS-AWARE-NEXT project.4

2. A dynamic and data driven continuous re-assessment of policy

requirements using AI to dynamically reassess cybersecurity

policies through continuous data-driven analysis. By integrating

Argyris’ double loop learning model (4), it allows for adaptive

policy execution and adjustments based on evolving threats,

with the inner loop focusing on execution and the outer loop

on policy modification itself.

3. A decision support and management model that aids

organizations in efficiently implementing and dynamically

adjusting policies during cybersecurity incidents. It integrates

the OODA Loop–Observe, Orient, Decide, Act–a model (5)

suited for rapid and informed decision-making in dynamic

environments. It informs adjustments and decision-making by

monitoring threat intelligence and internal systems, analyzing

risks, and ensuring the explainability of actions through

contextualization.

The goal is to evaluate the potential for tighter integration of the

dynamic operational cybersecurity management capabilities that

CS-AWARE already provides with the organizational component

that is defined by the policies. The piloting evaluation of the

CS-AWARE project has shown that there is great potential in

streamlining those two aspects, which requires a more dynamic

approach to policy management.

This paper focuses on the requirements analysis regarding the

development of risk-aware cybersecurity policy management. It

builds upon the results of the conducted end-user workshops with

pilot partners from Larissa in Greece. This section continues with

themotivation and relevance pertaining to risk-aware cybersecurity

policy management and a brief description of the classification

of its usage at different levels. Section 2 we present a state-of-

the-art analysis focusing on current trends and advances from a

legal standpoint comprising of current standards and guidelines,

followed by initiatives from affecting effective policy management.

Additionally, key scientific work pertaining to planned design

decisions is presented in more detail. Section 3 examines current

challenges of implementing effective policy management from the

points of transparency, information sharing, and responsibility

and accountability. Section 4 presents the main key requirement

specification from the results of the end-user workshops, followed

by the conclusions in Section 5.

4 https://cordis.europa.eu/project/id/101069543
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2 Current trends and advances in
risk-aware cybersecurity policy
management

Current trends regarding cybersecurity policy management

are heavily influenced by the effects of legal frameworks

including regulations, standards, directives, and laws. Given a

shift toward increasingly placing responsibilities on the individual

organizations, particularly the senior management, an increased

presence of cybersecurity measures can be noted. A general trend

is the usage of machine learning and artificial intelligence to

implement and support new and existing cybersecurity measures.

Following is a non-exhaustive description of current trends and

advances:

• Proactive risk management is aimed at preventing cyber

attacks before they occur instead of merely responding to

them and their fallout as they arise. The main approach

lies in implementing effective policies and risk management

strategies.

• The focus on risk assessment forms a crucial component

for effective cybersecurity policy management by supporting

organizations to identify potential vulnerabilities and

facilitating decision making concerning the prioritization of

asset security.

• The automation of policy management streamlines the

process of creating, implementing, and enforcing policies.

By adding processes to include monitoring and maintenance

during execution, freed resources can effectively be used to

focus on more complex challenges.

• The integration of threat intelligence alleviates the efforts

of organizations to stay ahead of emerging threats and

facilitates timely responses to security incidents. Threat

intelligence comprise collections of data and results of

corresponding analyses about security incidents and

vulnerabilities from various sources shared on various

levels by entities including government agencies, CSIRTs,

organizations, and communities.

• Collaboration and information sharing constitutes a

driving factor regarding enhanced cybersecurity resilience

and timely response to security incidents. It includes

various organizations, governmental bodies, CSIRTs and

communities working together involving sharing best

practices, collaborating on issues, and coordinating actions

pertained to security incidents.

Incorporating the above trends and advances into cybersecurity

policy management can help to enhance the resilience of

organizations by supporting the protection of assets and increase

the preparedness against emerging cybersecurity threats.

2.1 Standards and guidelines

The requirements for CS-AWARE-NEXT are in part heavily

influenced by current standards and guidelines with the most

prominent being the GDPR, NIS2, ISO27001, and the NIST CSF.

The following describes the fundamental aspects of each instance

relevant to this project:

Starting with the GDPR (titled “General Data Protection

Regulation”),5 the focus in the context of this document lies in the

handling and processing of data by controllers and the associated

rights of data subjects.

• Right to data portability (Art. 20 GDPR) states that the

data subject shall have the right to receive data concerning

themselves provided to a controller and transmit the data to

another controller in a machine-readable way. The processing

has to be carried out in an automated way.

• Representatives of controllers or processors not established

in the Union (Art. 27 GDPR) states that the controllers or

processors need to designate in writing a representative in the

European Union, more precisely in a member state, where

the data subjects, whose personal data are processed. The

obligation of having a designated representative does not apply

to public authorities or bodies.

• Processing under the authority of the controller or

processor (Art. 29 GDPR) states that the processor and any

person acting under the authority of the controller or of the

processor having access to personal data shall not process

those data except on instructions from the controller, unless

required to do so by Union or Member State law.

• Security of processing (Art 32 GDPR), specifically Art 32(2)

states that in assessing the appropriate level of security

account shall be taken in particular of the risks that are

presented by processing, in particular from accidental or

unlawful destruction, loss, alteration, unauthorized disclosure

of, or access to personal data transmitted, stored or otherwise

processed.

The NIS2 Directive6 (titled “Directive on measures for a high

common level of cybersecurity across the Union”) is an EU-wide

legislation on cybersecurity focusing on active risk management.

It expands the scope of the original NIS Directive from 8 to 16

sectors and removes the threshold for applicability of the directive

regarding the size of an organization of its corresponding sector.

Furthermore, it requires improved risk management approaches,

more stringent reporting obligations, harmonized sanctions, and

enhanced cooperation with authorities and CSIRTs.

The ISO/IEC 27001:2022 (titled “Information security,

cybersecurity and privacy protection - Information security

management systems - Requirements”) is a European standard

pertaining to IT security and management systems. It specifies

the requirements for establishing, implementing, maintaining

and continually improving an information security management

system within an organizational context. These requirements

are generic and intended to be applicable to all organizations,

regardless of type, size, or nature. The corresponding ISO/IEC

27002:2022 (titled “Information security, cybersecurity and

privacy protection - Information security controls”) standard7

5 https://eur-lex.europa.eu/eli/reg/2016/679

6 http://data.europa.eu/eli/dir/2022/2555/oj/eng

7 https://www.iso.org/standard/82875.html
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provides a reference set of generic IT security controls including

implementation guidance, which can be used for the development

of organization-specific information security management

guidelines, as well as implementing information security controls

according to best practices. These standards are relevant to risk-

aware cybersecurity management as they provide a comprehensive

framework for managing cybersecurity risks.

The Cybersecurity Framework by the National Institute

of Standards and Technology (NIST CSF)8 provides initial

guidelines for improving cybersecurity risk management in

critical infrastructures, pointing out its relevance to risk-aware

cybersecurity management. It includes five framework functions

as its core structure: Identify, Protect, Detect, Respond, and

Recover. With the update to CSF2.0,9 scheduled for Winter

2024, the framework is set to provide a more extensive guidance

regarding implementation, including more specific information

about definitions, applications, and interoperability. Additionally,

a new theme to be included is the consideration of cybersecurity

risks in supply chains in the CSF.

2.2 Initiatives from industry, government,
and professional organizations

Current initiatives regarding risk-aware cybersecurity policy

management can be found from industry, government, and

professional organizations. Their goal lies in increasing the

resilience against cyberattacks and raising awareness concerning

the presently changing threat landscape, as well as best practices,

standards and regulations. Initiatives focus on various aspects

of risk-aware cybersecurity policy management, including risk

assessment, policy development and enforcement, collaboration,

information sharing, and decision-making processes.

Prominent examples of initiatives from industry include the

NIST Cybersecurity Framework for helping organizations to better

understand and improve their management of cybersecurity risks.

While it was originally developed for critical infrastructures,

many countries across the globe have adopted and adapted

the Cybersecurity Framework with some considering its use as

mandatory for both private and public sector.

Regarding initiatives from governments, the European

Union’s GDPR and NIS2 (the latter specifically targeting critical

infrastructures) have caused a significant impact on managing

cybersecurity risks. They include provisions for data protection

and cybersecurity, as well as requiring organizations to implement

technical and organizational measures to ensure an appropriate

standard concerning cybersecurity.

Initiatives from professional organizations commonly include

education material and certification programs in the domain

of cybersecurity. Organizations like the Cloud Security Alliance

(CSA)10 additionally provide publications and documents on latest

8 https://www.nist.gov/cyberframework

9 https://www.nist.gov/cyberframework/updating-nist-cybersecurity-

framework-journey-csf-20

10 https://cloudsecurityalliance.org/

research conducted in the field of cloud security, as well as

providing networking opportunities for members.

The latest pivotal initiative in the context of this paper is

the EHDS by the EU. The proposition aims for granting natural

persons a higher degree of control over their electronic health

data. By ensuring a common legal framework across the EU

it would enhance the quality of healthcare-related services, as

well as creating a single market with agglomerated healthcare

data made available in a preprocessed format for researchers,

innovators, and policy-makers. This shall be achieved through

establishing strong cybersecurity measures focused on the aspect

of data exchange within a highly interoperable environment.

In conjunction with TEHDAS the new proposition also focuses

on an increased stakeholder engagement encompassing different

roles and expertise, as well as to support the process of

collaboratively developing and implementing effective policies

including cybersecurity policies.

2.3 Scientific works

Main considerations pertaining to design decisions and their

implementation of a risk-aware cybersecurity policy management

framework within this WP are taken from established methods.

Taking the standards and guidelines, as well as the current

initiatives from the previous subsections into account, the key

scientific works is composed of the following research:

The core concept of effective policy management including

the performance monitoring of individual policies is defined by

the double-loop learning model developed by C. Argyris, which

can be applied to a variety of contexts, including education,

personal growth and development, and organizational change. It

describes a learning process in which individuals and organizations

critically examine and question the underlying assumptions and

values regarding their actions and decisions. The results of an

effective implementation can lead to more efficient and lasting

learning and growth effects. In the context of this research

two main types of learning were identified: single-loop learning

and double-loop learning. Single-loop learning occurs when an

individual or organization works to correct or improve actions

or outcomes without questioning the underlying assumptions and

values regarding their behavior. It is focused on solving problems

instead of exploring the causes of those problems. Double-loop

learning involves a deeper level of analysis and questioning by

requiring individuals and organizations to critically examine their

assumptions and values pertaining to their actions and decisions

and questioning their validity and appropriateness. Beyond just

involving actions regarding correction or improvement, its view

also involves questioning and potentially changing the fundamental

values (4).

Research conducted by J. Boyd explores mental patterns or

concepts of meaning pertaining to individuals to shape and be

shaped by a changing environment. The identified basic goal of

everyone lies in improving the capacity for independent action.

Any level of cooperation or competition exists to satisfy this

aim. If a desired level of independence cannot be achieved,

compromises are taken, and constraints are developed in order to
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collectively pool skills and talents to overcome or remove obstacles.

If overcoming or removing still proves to be impossible the group

might alienate and lose members for whom these hindrances are

deemed important. In order to strengthen alliances pursuing their

goals, effective decisions have to be taken and resulting actions are

to be monitored. This creates a need for decision models developed

for constantly changing environments. Before new models can be

implemented, existing models or concepts, which might inhibit the

new one need to be separated from the rest of its associated domain

and unstructured by a mental concept coined as “destructive

deduction”. The subsequent restructuring and creation of new

models or concepts by piecing together individual bits to conform

to given needs was coined “creative induction”. The relation and

application of these mental concepts are employed to formulate

decision models for individuals and groups to determine and

monitor actions to address incidents in changing environments and

therefore improve their capacity for independent actions (6).

The OODA (Observation-Orientation-Decision-Action) loop

introduced by Boyd resulted from the effort to describe the nature

of adversarial engagements. OODA time cycle or loop suggests that

success in war depends on the ability to out-pace and out-think

the opponent, or put differently, on the ability to go through the

OODA cycle more rapidly than the opponent. In cybersecurity the

process allows stakeholders to learn from previous experiences,

feeding lessons learned into the loop activities to achieve better

performance contains four steps. Each group of stakeholders must

make observations and process those observations through the

orientation process, then use orientation in the decision process,

then turn the decisions into actions, which in turn change the world

being observed. The focus of the OODA loop is not about making

faster decisions, but rather about manipulating the environment to

"inhibit an adversaries capacity to adapt to such an environment

(suppress or distort observations)". The environment is seen as a

means of disorientation to disrupt the adversary’s decision-making.

Rather than operating in isolation, decision and execution cycles

take place simultaneously, but not in synchronization, for both

sides. The conflict in the minds of the adversaries compromises

the cognitive dimension of the information environment. Adding

the cognitive dimension to cyberspace changes the analysis

of cyberspace operations from a search for vulnerabilities in

hardware and software into an engagement including information

operations. “Situational awareness” is a term from psychology

which describes both a field of study and the coupling of actors

to their operating environment. Situational awareness is knowing

what’s going on around you (7).

3 Special challenges of risk-aware
cybersecurity policy management in
interdependent health organizations

An important aspect of the EHDS is risk management, as

the proposal was specifically designed to take the NIS Directive

into account to include measures to mitigate identified risks. Risk

management typically focuses on credit risk, market risk, and

operations risk. Technology risk constitutes a subset of operations

risk, and cybersecurity risk subsequently is a part of technology risk.

Given the fact that cybersecurity risk would generally be found on

the lower end of the risk hierarchy it is often absent from centralized

riskmanagement processes. Despite focusing on technological risks

stemming from software, the predominant driving factor for risks

in operation is human error. Software engineers more commonly

tend to exercise their authority to bypass software restrictions and

therefore inhibit developed security measures.

Cybersecurity constitutes a crucial challenge for the health

sector since it influences the security, privacy, and quality of

the provision of healthcare services, especially in interconnected

systems and services, as aimed by the EHDS. Nonetheless,

handling cybersecurity risks in interdependent healthcare

organizations presents several challenges, which arise from

the intricacy, heterogeneity, interconnectivity, dynamics, and

resource limitations of the sector. Therefore, a comprehensive

and collaborative approach is essential for developing a risk-

aware policy management framework, enabling healthcare

organizations the identification, assessment, prioritization, and

mitigation of cybersecurity risks while considering security and

usability requirements. It is crucial to involve all stakeholders

and align the framework with industry standards and best

practices. Furthermore, the cybersecurity framework ought to

possess adaptability and flexibility to effectively manage the

dynamic and evolving cyber threats faced by the healthcare

industry, while catering to the sector’s increasing needs

and expectations.

3.1 Key challenges in health organizations

Information security risk assessment focuses on the potential

damage to data subjects regarding the confidentiality, integrity,

and availability of data. The integration of new security measures

is generally decided upon calculating the expected loss through

the sustained damage taken and comparing it to the cost of

implementation. Problems arise by nature of not knowing the

actual performance of those security measures, making the

quantification of costs an issue.

Risk assessment as a management tool should be distinguished

between risk management and security management. Risk

management encompasses strategies involved in decision-making

and the subsequent monitoring of the outcomes. Security

management encompasses programs, processes, etc. used according

to the decisionsmade from the riskmanagement. Riskmanagement

therefore constitutes the integral part for cybersecurity policies and

cybersecurity policy management (8).

The most prominent issues pertaining risk management focus

on the organizational responsibility to assess risks, individual

responsibilities or segregation of duties and the role of the

government regarding the assurance of effective risk management

practices. Specifically, the shift regarding the placement of

responsibility on senior management governed the last years,

predominantly through the GDPR, as well as NIS and the

upcoming NIS2. This shift was taken into account in defining the

proposition of the EDHS in the context of including a broader

spectrum of stakeholders, especially regarding policy development

and project management.
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Managing cybersecurity policies in interdependent health

organizations can present unique challenges due to the

complex relationships and dependencies that exist between

these organizations. Listed below is an overview of special

challenges determined during the end-user workshops which can

arise in this context:

Varying levels of cybersecurity maturity: Interdependent

health organizations may have different levels of cybersecurity

maturity and understanding, which can make it difficult to

coordinate policies and practices effectively. The difference between

small local companies and large organizations might be very large,

which can make it challenging to establish a common set of policies

and standards.

Limited resources: Small local health organizations may have

limited resources to allocate to cybersecurity policy management,

which can make it challenging to implement and enforce policies

effectively. This can be particularly challenging for smaller

healthcare institutions that may not have dedicated cybersecurity

staff or budgets.

Complex interdependencies: Different regional organizations

may have complex interdependencies that can make it challenging

to coordinate policies and practices. For example, a regional

healthcare system may rely on multiple local clinics and hospitals

to provide patient care, which can make it challenging to establish

common cybersecurity policies and practices across the entire

system.

Regulatory and compliance requirements: Health

organizations may be subject to different regulatory and

compliance requirements, which can make it challenging to

establish a common set of cybersecurity policies and practices.

For example, hospitals are subject to different data protection

regulations than organizations in the food industry, which can

make it challenging to establish common policies related to data

protection.

Communication and coordination challenges:

Interdependent health organizations may face communication

and coordination challenges when trying to establish common

cybersecurity policies and practices. This can be particularly

challenging when organizations have different priorities or when

there is limited communication and collaboration between

stakeholders.

Overall, managing cybersecurity policies in interdependent

local and regional organizations requires a collaborative and

coordinated approach that takes into account the unique challenges

and dependencies that exist between these organizations. This

may involve establishing common policies and standards, sharing

information and resources, and investing in cybersecurity training

and education for staff.

3.2 A comprehensive scenario for secure
digital healthcare

The European Health Data Space (EHDS) initiative,

implemented by the European Commission, aims to facilitate

secure and ethical utilization of health data throughout the EU.

The EHDS is designed to improve the quality and efficiency of

healthcare services, while promoting research and innovation

in the health sector. However, the implementation of the EHDS

poses challenges for interdependent healthcare organizations in

terms of risk-conscious cybersecurity policy management. In order

to demonstrate the importance of cybersecurity management

a comprehensive scenario in a healthcare setting was created

combining 4 use cases from the Horizon 2020 project SPHINX (1).

The scenario combines the following use cases:

1. UC13: Exploiting Remote Patient Monitoring Services,

2. UC24: Theft of Patient Data using the Telemedicine System,

3. UC17: Accessing Health Data from a Fitness Tracker, and

4. UC20: Compromised Workstation Allows the Scanning of

Hospital Network.

The complex scenario depicts a combination of exploitation

of remote patient monitoring services and vulnerabilities in

telemedicine systems leading to unauthorized access of health

data, including data from fitness trackers. In conjunction with

compromised workstations the scenario evolves into a multi-

faceted cyber threat illustrating the dynamics of cybersecurity in

healthcare, with a particular focus on emerging technologies and

remote healthcare delivery. The unified scenario balances patient

monitoring and data management together with cybersecurity

measures to represent a necessary standard for integrating

technology and security to enhance patient care and privacy.

The following subsections give an overview of the individual

use cases followed by an analysis of included issues and proposed

relevant cybersecurity policies.

3.2.1 UC13: exploiting remote patient monitoring
services

Using a remote patient monitoring service, a patient uses a

mobile App to read vital signs captured by medical devices and

upload the unencrypted data via a home Wi-Fi router. By cracking

the weak password and forcing communications to non-transport

layer security (TLS) mode a hacker was able to modify health-

related information sent to the server. This resulted in the attacker

compromising the trust and data integrity of the provided medical

services, creating false alarms and causing emergency actions from

the personnel monitoring the patient. An analysis of the relevant

policies is depicted in Table 1.

3.2.2 UC24: theft of patient data using the
telemedicine system

By exploiting a Web Real Time Communication (WebRTC)

bug in a hospitals telemedicine service, an attacker was able to

stealthily connect to an active media session between a patient

and their doctor using a Man-in-the-Middle (MitM) attack. With

this the hacker was not only able to access the audio and video

stream of the session but could also access and compromise the

patient’s Electronic Medical Record (EMR) data. The attacker

also introduced a crypto-ransomware into the hospital’s network,

threatening to destroy patient data. This resulted in the loss of

availability of healthcare databases, impacting or preventing IT-

based healthcare services for up to 2 months and compromising the

trust of patients into the healthcare organization due to violating
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TABLE 1 Analysis of policies in UC13.

Policy area Current state Recommended
policy

Policy management
action

Expected outcome

Encryption standards Patient vital signs data not

sent encrypted

Mandatory use of encryption

for all data transmissions

Regular security audits to

ensure encryption

implementation

Enhanced security of patient

data transmission

Network access control HomeWiFi router protected

by a weak password

Strong password policy for

home WiFi router

Implement password strength

and complexity checks

Prevention of unauthorized

network access

Device authentication Mobile app connects to the

Internet via home WiFi router

Mobile app must authenticate

the remote patient

monitoring platform before

uploading data

Firmware update to enforce

platform authentication

Reduction in the risk of

man-in-the-middle attacks

Data integrity Lack of verification of data

received by the remote patient

monitoring platform

Implementation of data

integrity checks

Continuous monitoring for

data anomalies

Assurance of accurate patient

vital signs data

the confidentiality, integrity, and availability of the patient’s data.

An analysis of the relevant policies is depicted in Table 2.

3.2.3 UC17: accessing health data from a fitness
tracker

An orthopedic center recommends the usage of GNSS-enabled

fitness trackers for improving the quality of patient diagnosis by

connecting to the centre’s WiFi and server. A hacktivist replicates

the centre’s WiFi SSID and subsequently launches a man-in-

the-middle attack, intercepting and manipulating patient data

transmitted to the server, as the used encryption was based on a

known symmetric algorithm utilizing plain HTTP without TLS.

The tampered data registering on the centre’s real network server

raises alarms among the medical staff, therefore binding additional

resources. This attack resulted in the violation of confidentiality and

integrity of patient data impacting the centre’s quality of services

and subsequently the patient’s private life, which consequently

eroded the centre’s credibility. An analysis of the relevant policies

is depicted in Table 3.

3.2.4 UC20: compomised workstation allows the
scanning of hospital network

By opening an attachment of an email containing a trojan, an

employee causes the compromise of a hospital workstation by a

hacker, who establishes a backdoor to launch a network scanner.

This allows the hacker to gather detailed information about the

hospital’s IT assets, as well as information about operating systems,

browsers, and network protocols in order to exploit vulnerabilities

and strengthen the attacker’s presence. This access can subsequently

be used to impact IT-dependent healthcare services or compromise

the confidentiality, integrity, and availability of patient data. An

analysis of the relevant policies is depicted in Table 4.

3.3 Cybersecurity policy management and
transparency

One of the key challenges in cybersecurity policy management

is balancing the need for transparency with the need to

protect sensitive information. Reluctance to disclose details

about cybersecurity policies and practices for fear of revealing

exploitable vulnerabilities is common, which caused a lack of

standardized reporting for cybersecurity policy management until

legal frameworks took effect. Despite these recent changes, a

significant number of organizations struggle to understand and

implement guidelines for reporting. As the threat landscape

is constantly changing, keeping cybersecurity policies and best

practices up-to-date can be challenging.

Many organizations are also subject to regulatory requirements

related to cybersecurity, which can create challenges in managing

policies and practices. A lack of awareness among stakeholders

about the importance of cybersecurity policy management

and the risks associated with cyber-attacks can further create

barriers to enhance organizational resilience. Addressing these

challenges through awareness trainings, dedicated resources, and

enforced policies has a significant impact on an organization’s

cybersecurity resilience and facilitates compliance with legal

regulations (8, 9).

3.4 Sharing cybersecurity policy
management approaches in
interdependent organizations

Sharing cybersecurity policy management approaches as a form

of collaboration between interdependent organizations facilitates

understanding of risks and risk management, including the

identification of areas of concern, aiming at establishing a common

baseline regarding policies and practices. One of the key challenges

to achieve this objective lies in the heterogeneity of organizations.

Differences in organizational structures mean differences in risk

strategies and tolerances, which inhibit the development of shared

policies and practices.

Another aspect is defined through used infrastructure and

technology. Organizations relying on cloud services will have

corresponding policies which differ from those organizations

utilizing on-premise infrastructure. Paired with different priorities

pertaining to individual sectors (e.g., water supply vs. healthcare)

establishing a common focus can be difficult.
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TABLE 2 Analysis of policies in UC24.

Policy area Current state Recommended
policy

Policy management
action

Expected outcome

Encryption standards WebRTC bug leaking the

customer’s IP address

Mandatory use of WebRTC

security features

Regular security audits to

ensure WebRTC security

Enhanced privacy of patient

communication

Network access control Compromised signaling

server

Restricted access to signaling

server

Implement network

monitoring and access logs

Prevention of unauthorized

network access

Device aAuthentication Lack of verification of peer

connection

Implementation of peer

identity verification

Firmware update to enforce

peer identity verification

Reduction in the risk of

man-in-the-middle attacks

Data integrity Lack of verification of data

sent to EMR

Implementation of data

integrity checks

Continuous monitoring for

data anomalies

Assurance of accurate patient

EMR data

TABLE 3 Analysis of policies in UC17.

Policy area Current state Recommended
policy

Policy management
action

Expected outcome

Encryption standards Use of known symmetric

encryption without TLS

Mandatory use of TLS for all

communications

Regular security audits to

ensure TLS implementation

Enhanced security of patient

data transmission

Network access control Unrestricted WiFi access Restricted WiFi access with

authentication

Implement network

monitoring and access logs

Prevention of unauthorized

network access

Device authentication Fitness trackers connecting to

any network SSID

Devices must authenticate the

network before connecting

Firmware update to enforce

network authentication

Reduction in the risk of

man-in-the-middle attacks

Data integrity Lack of verification of data

sent to server

Implementation of data

integrity checks

Continuous monitoring for

data anomalies

Assurance of accurate patient

health data

Patient privacy Potential for patient data and

location access

Strict access controls for

sensitive data

Training staff on privacy

policies and procedures

Protection of patient’s private

information

An additional challenge lies in regulations and legal

constraints. A lack of trust constitutes the inhibiting

factor with regard to sharing cybersecurity policy

management approaches, predominantly when it comes

to sharing sensitive information. Organizations competing

in the same industry might further exhibit reluctance

in sharing approaches presenting additional barriers

for collaboration.

Addressing these challenges through established guidelines

for sharing information and dedicated communication

channels facilitates the alignment of policies and practices.

Furthermore, trust can be built through regular communication

and collaboration activities supporting decision making

and enhancing cybersecurity resilience of participating

organizations (9, 10)

3.5 Responsibility and accountability for
cybersecurity policy management

Cybersecurity policy management encompasses a significant

amount regarding challenges related to responsibility and

accountability as it constitutes a shared responsibility involving

multiple stakeholders across an organization. One of the challenges

is the lack of clear ownership for cybersecurity policies, which

complicates holding individuals or groups accountable for breaches

or failures. Another challenge is the existence of blame culture

involving individuals or groups being blamed for cybersecurity

incidents rather than focusing on addressing the root causes of

the incident resulting in the creation of a hostile environment

discouraging collaboration and information sharing, further

inhibiting efforts to enhance cybersecurity resilience. Furthermore,

effective cybersecurity policy management can be resource-

intensive, requiring significant investments in technology,

training, and personnel. Limited resources combined with issues

pertaining to ownership impede the allocation of responsibility

and accountability.

Due to the evolving cybersecurity threat landscape effective

cybersecurity policy management requires monitoring and

maintenance of policies and practices including aspects regarding

responsibility and accountability. This is often triggered by

changes in compliance and regulatory requirements (e.g., NIS2)

affecting cybersecurity policies and practices, possibly creating

additional responsibilities and accountabilities pertaining to

policy management. Addressing these challenges through

establishing clear ownership including a culture of collaboration

and information sharing, as well as allocating resources to

cybersecurity and actively maintaining cybersecurity policies

creates an important baseline for strengthening an organizations

cybersecurity posture. Legal compliances and regulations provide

goals for implementing clear processes for reporting and

investigating cybersecurity incidents further inhibiting the effects

of blame culture and facilitating the establishment of a resilient

cybersecurity culture (9, 11).
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TABLE 4 Analysis of policies in UC20.

Policy area Current state Recommended
policy

Policy management
action

Expected outcome

Email security Employee opening an email

containing a Trojan

Implementation of email

filtering and scanning

Regular security training and

awareness for employees

Prevention of malware

infection via email

Asset management Lack of information about the

hospital’s IT assets

Implementation of asset

inventory and classification

Continuous monitoring and

updating of asset information

Improved visibility and

control of IT assets

Data protection Potential for patient data

access, modification, or

disclosure by the hacker

Implementation of data

encryption, backup, and

recovery

Continuous monitoring and

reporting of data breaches

Assurance of patient data

confidentiality, integrity, and

availability

4 Use case

A Use Case based from the CS-AWARE-NEXT project is used

to prove the applicability in a real life scenario. The Case handles

the response to a stolen Laptop with VPN Access as shown in

Figure 1. This use case illustrates the practical implementation and

challenges of the cybersecurity strategies and frameworks discussed

in Section 3.2. By exploring a real-world scenario, we highlight the

need for adaptable and robust cybersecurity measures to effectively

address emerging threats, and demonstrate the direct application

of risk-conscious cybersecurity policy management in a dynamic

healthcare environment.

Scenario In the wake of increased remote work due to the

COVID-19 pandemic, a laptop belonging to an employee has

been reported stolen. This device has established VPN credentials,

providing potential unauthorized access to the organization’s

secure network.

Actors User (employee from whom the laptop was stolen), IT

Security Team, Data Protection Officer (DPO), Network Services

Team, Police, Vendor (laptop provider)

Preconditions The employee has been working remotely due

to pandemic restrictions and has been using a VPN to access the

company’s network. The laptop is equipped with the company’s

standard security features, including VPN access.

Trigger The theft of the laptop is reported by the user to the IT

Security Team.

Narrative

• Upon receiving the report of the stolen laptop, the IT

Security Team initiates an interview with the user to gather

comprehensive information about the incident and the

potential data at risk. The team works swiftly to clear the VPN

credentials associated with the stolen device to prevent any

unauthorized access to the network.

• Simultaneously, the Data Protection Officer is informed of

the breach, and instructions are taken to comply with data

protection laws and regulations. The DPO initiates the process

of legal and notification obligations, including communication

with law enforcement.

• Simultaneously, before it is known which data could be

accessed through the device, the local authorities, banks,

the CSIRTs and internal affairs need to be informed.

The DPO is contacted regarding legal guidelines,

as well as the manager and the national application/

internet provider.

• The Network Services Team jumps into action, conducting

an immediate audit of all associated network, email, web,

and local services credentials linked to the user’s account, as

well as personal data stored on the device. They lock down

access and initiate a change of all passwords and security

protocols as a precautionary measure. The device in question

gets completely disabled.

• While the technical teams address the network and system

vulnerabilities, the user is advised to change their credentials

for personal services that may have been saved or accessed

through the stolen laptop, to prevent further personal risks.

• With security measures in place, monitoring is heightened

to track any suspicious activity across the system services

associated with the user’s account. The period of activity from

the last known legitimate login to the current time is reviewed

to assess any unauthorized actions taken.

• In conjunction with the internal monitoring, the vendor from

whom the laptop was sourced is notified, and assistance is

requested in tracking the device, if possible, through any built-

in location services or tracking technologies that may have

been part of the laptop’s security features.

Outcome The immediate and coordinated response effectively

mitigates the risks associated with the stolen laptop. The company’s

actions prevent unauthorized access, protecting sensitive data and

maintaining compliance with cybersecurity policies. The user is

made aware of the steps taken and is educated on the importance of

securing personal and professional data. All parties remain vigilant,

ready to respond to any subsequent activities related to the incident.

Postconditions The IT Security Team, along with the DPO,

reviews the incident to update and refine the organization’s security

protocols and training, with the aim of preventing similar breaches

in the future. Additionally, a follow-up with law enforcement and

the vendor is maintained to track the progress on the recovery of

the stolen property.

5 Key requirements specification for
cybersecurity policy management

A successful cybersecurity policy management framework

includes a range of vital components, including risk assessment,

policy development and enforcement, collaboration and

information sharing, and effective decision-making processes.

Furthermore, it requires the involvement of internal and external
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FIGURE 1

Original scenario from the workshop: stolen IT property.

stakeholders, with the latter encompassing government agencies,

as well as other organizations.

Adding to the general components, individual requirements

from organizations need to be taken into account to ensure

a limited degree of restrictions and facilitate the adoption

of a cybersecurity policy management framework. The main

requirement categories obtained from the end-user workshops

were examined and subsets of requirements were defined.

5.1 Basic knowledge and understanding of
formalized policies

“Facilitate the understanding of documented formal policies

and their advantages.” This meta-requirement focuses on raising

awareness of stakeholders through training. The involved approach

(12) is based on the Erasmus+ project COLTRANE. The sub-

requirements derived from this meta-requirement are listed below:

• Raise awareness of current policies: Improve dissemination

of policies from pure publishing to awareness, understanding

and enforcement.

• Promotion of collaboration and awareness raising: Build on

the COLTRANE approach for promoting collaborative policy

management and awareness raising.

• Simulation and training: Use a virtual platform to simulate

the handling of attack situations. Provide hands-on experience

of collaboration- and awareness-driven policy management.

• Organizational prerequisites for acting on the

ecosystem level: in order to handle policies at

the ecosystem level organizations need to provide

the necessary basis. The steps toward it have to

be identified.

5.2 Formalization of best practices

“The ability to create documentation of best practices &

guidelines in the organization to retain expertise and prevent loss

of knowledge.” This meta-requirement focuses on the collaborative

approach involving employees, organizations, communities, and

government agencies in order to enhance an organization’s

resilience. In order to implement effective formalization of best
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practices, the cybersecurity policy management component works

in concert with the collaboration component in WP2. An overview

is listed below:

• Definition of state of the art practices: Facilitate the creation

andmaintenance of practices depending on current situations.

• Effective applicability and adaptability: Ensure practices are

case-type based to provide a best fit for specific environments.

5.3 Shared policy repository

“Enable information sharing through a shared repository.”

This meta-requirement regarding the provision and usage of

a shared knowledge base regarding CTI, reports, as well as

information pertaining to legal compliance. In order to realize

the requirements of a shared policy repository and its subsequent

usage a cybersecurity policy management component demands the

support of AI-based quality data assessment and correlation. An

overview is listed below:

• Harmonization with governing bodies: Ensure effective

collaboration with governing bodies through establishing a

common standard for information sharing.

• Provision of information: Make related documents from

communities and governing bodies available for improving

legal and technical readiness.

• Filter information according to needs: Enable means of

distinction between policies according to metadata.

• Highlight current threats and vulnerabilities: Point out

trending topics within the organization, community, and

governing bodies. Analyze shared enriched CTI.

5.4 Implementation of best practices into
workflows

“Enable the adaption of policies and best practices to the

needs of the organization and their subsequent adoption into the

organizational context.” This meta-requirement focuses on the

adoption of policies into automatic workflows regarding disaster

recovery and business continuity plans, therefore enhancing

resilience and supporting legal compliance. In order to effectively

implement best practices into organizational workflows the

cybersecurity policy management component needs to encompass

functionality pertaining to business continuity and disaster

recovery. An overview is listed below:

• Provision of core essentials: Ensure the basic needs of an

organization are met for legal compliance with governing

bodies.

• Policy management life cycle: Provide an environment for

creating, managing, enforcing and maintaining policies.

• Adaption of disaster recovery and business continuity plans:

Facilitate the integration of policies and best practices into

disaster recovery and business continuity procedures. Enable

continuous monitoring and adaption of related workflows.

• Provide a basis for decision making: Building on decision

making and reflective learning models in support of policy

enforcement and maintenance.

5.5 Ensure e�ective visualization

“Create a visualization supporting the implemented

functionalities in an intuitive way.” In order to stimulate an

active engagement with the cybersecurity policy management

component, the user interface and user experience need to appeal

to the end user’s preferences.

6 Conclusion

The need to adapt cybersecurity management policies quickly

and dynamically (e.g., relating to risk management and business

continuity, incidentmanagement) to keep up with the continuously

changing threat and attack landscape requires a new and more

dynamic approach to policy definition and constant re-evaluation

against the requirements defined by the cybersecurity realities, as

is reported by threat intelligence provided by, e.g., NIS competent

authorities/CSIRTs or threat intelligence communities.

One of the aspects of collaboration within a shared ecosystem

lies in the development of common policies and standards in

order to diminish the complexity regarding the management of

cybersecurity risks and ensuring actions taken are streamlined

according to the same security protocols. Additionally, the

implementation of common policies and standards helps to

build trust between interdependent organizations and their

customers, further increasing the relevance of effective risk-aware

cybersecurity policy management.

The main focus regarding policy management at an

organizational level lies in the development and implementation of

policies as guidelines pertaining to the organization’s cybersecurity

processes and practices in order to ensure compliance. Main

subjects include but are not limited to risks regarding the

supply chain and third-party risk management, and involve a

given degree of collaboration concerning the development and

implementation of policies and practices. Managing cybersecurity

policies in interdependent local and regional organizations can

present unique challenges due to the complex relationships and

dependencies that exist between these organizations. Local and

regional organizations may be subject to different regulatory

and compliance requirements, which can make it challenging to

establish a common set of cybersecurity policies and practices.

Sharing cybersecurity policy management approaches in

interdependent organizations has to keep in mind the differences

in organizational structure, which can make it challenging

to align cybersecurity policies and practices across different

organizations. Sharing these sensitive cybersecurity policy

management approaches requires a high degree of trust between

organizations, which can be difficult to establish and maintain.

Ultimately, a shared approach to cybersecurity policy management

can help to improve the overall security posture of interdependent

organizations and reduce the risk of cyber attacks.
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Ongoing research focuses on support for compliance with

regulatory bodies and authorities, as well as autonomous adaption

to organizational events based on log data. This approach focuses

on the use of the double-loop learning model to change minor

policy details automatically, or provide decisionmaking support for

more substantial changes. Additional focus lies in addressing the

development of security and privacy related policies for IoT devices

in healthcare. Frameworks targeting compliance with security

standards before deployment serve an increased demand in light of

legislative plans for fostering data exchange, collaboration, as well

as supply chain security.
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The emerging European Health Data Space (EHDS) Regulation opens new 
prospects for large-scale sharing and re-use of health data. Yet, the proposed 
regulation suffers from two important limitations: it is designed to benefit the 
whole population with limited consideration for individuals, and the generation 
of secondary datasets from heterogeneous, unlinked patient data will remain 
burdensome. AIDAVA, a Horizon Europe project that started in September 2022, 
proposes to address both shortcomings by providing patients with an AI-based 
virtual assistant that maximises automation in the integration and transformation 
of their health data into an interoperable, longitudinal health record. This 
personal record can then be  used to inform patient-related decisions at the 
point of care, whether this is the usual point of care or a possible cross-border 
point of care. The personal record can also be  used to generate population 
datasets for research and policymaking. The proposed solution will enable a 
much-needed paradigm shift in health data management, implementing a 
‘curate once at patient level, use many times’ approach, primarily for the benefit 
of patients and their care providers, but also for more efficient generation of 
high-quality secondary datasets. After 15  months, the project shows promising 
preliminary results in achieving automation in the integration and transformation 
of heterogeneous data of each individual patient, once the content of the data 
sources managed by the data holders has been formally described. Additionally, 
the conceptualization phase of the project identified a set of recommendations 
for the development of a patient-centric EHDS, significantly facilitating the 
generation of data for secondary use.
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1 Introduction

The European Health Data Space (EHDS) draft Regulation 
published in May 2022 (1) is a ground-breaking initiative which aims 
to unlock the full potential of health data by facilitating their secure 
exchange and reuse across the European Union. While the EHDS 
opens unprecedented opportunities for the management and 
exploitation of health data, the proposed implementation suffers from 
two important limitations.

Firstly, the EHDS is designed to benefit the whole population with 
limited consideration for individuals: it regulates how to manage data 
for analysis and decision-making across the population, while its 
usefulness for individual patients in day-to-day care is limited. The 
main benefit for individual patients, will be  the availability of six 
categories of personal health data—including patient summary, 
laboratory results, prescribing and dispensing information, imaging 
reports and discharge summaries—in an interoperable and 
standardised digital format; this will enable smooth exchange of 
critical personal health information between healthcare providers 
across Europe and beyond, primarily for unplanned care needs. 
Patients will also be able to access their data through National Contact 
Points for Digital Health (NCPDH); these public health organisations 
have no direct contact with patients and therefore have little 
opportunity to establish a relationship of trust at an individual level. 
While the EHDS will bring benefits to patients, there is a missed 
opportunity for individuals to actively participate in managing, 
completing, and improving the quality of their own medical records, 
which are made of disparate data sources with inconsistencies, gaps 
and limited interoperability and reuse.

Secondly, the generation of secondary datasets in EHDS will 
continue to require recurrent curation of potentially identical patient 
data and provide sub-optimal datasets. Health Data Access Bodies 
(HDABs), which are also public health organisations, will be granted 
permission—with opt out possibility for the patients—to process 
patient data for secondary use by authorities and researchers. As 
source patient data will remain heterogeneous, there is a risk that the 
HDABs will process the same data several times for different 
purposes. Furthermore, as patient data cannot be linked1 without 
subjects’ consent or in crisis situations, the resulting population 
datasets can only provide partial views of patients, with sub-optimal 
data quality.

AIDAVA (2)—a 4-year Horizon Europe project launched in 
September 2022 with 14 partners, under grant agreement  
101057062—proposes a new paradigm in health data management by 
giving patients greater control and agency (3) over their personal 
health data through an intelligent virtual assistant (VA). The AIDAVA 
solution will first help patients to integrate their data collected by 
hospitals, general practitioners, patient-reported outcome 
management systems (4), and medical devices. It will then use 
multiple curation technologies to semi-automatically transform this 
data into a formal, interoperable representation based on knowledge 
graph technology (5), called the Personal Health Knowledge Graph 

1 Privacy Preserving Record Linkage obfuscating or encrypting Personal 

Identification Information supports record linkage; however, by its nature, it 

masks personal identifiable information.

(PHKG) (6). Each PHKG is constrained by the AIDAVA reference 
ontology to ensure interoperability and maximise reuse; the reference 
ontology (7) will built on ontology frameworks from standards in use 
in the European Electronic Health Record Exchange Format 
(EEHRxF) (8)—including HL7 FHIR, SNOMED, LOINC standards—
and in clinical research, such as CDISC and OMOP.

During the curation and publishing processes, the VA will request 
feedback from the individual when full automation cannot 
be  achieved; for complex questions, the VA will request the 
contribution of an expert data curator. To increase the understanding 
of the question and the quality of the response, the VA will provide 
contextual information using metadata regarding the data sources and 
their transformations and considering the level of health and digital 
literacy of the patient.

AIDAVA has the potential to implement the ‘curate once at patient 
level, use many times’ principle for the benefit of the patients and their 
care providers. From the interoperable personal longitudinal health 
record derived from multiple heterogeneous data sources, AIDAVA 
will be able to generate, on request, the six priority personal health 
data in EEHRxF format, as well as data extracts complying with 
national specifications and future versions of EEHRxF. In addition, the 
availability of multiple, interoperable PHKGs accelerates—with 
permit or dynamic patient consent—the smooth generation of 
secondary use datasets, with superior quality because data are linked 
at the individual level within each PHKG.

This paper first presents the perceived limitations of the EHDS 
regulation and introduces the potential of data intermediation services 
described in the Data Governance Act (9) to manage personal health 
data. It then describes the ongoing research topics developed within 
the AIDAVA project. Finally, it proposes preliminary 
recommendations for an innovative digital health infrastructure that 
promotes seamless data integration, interoperability, and data quality 
for individual health data, thereby improving patient care, research 
capabilities and the efficiency of the healthcare system. The authors 
suggest integrating these preliminary recommendations into the 
implementing acts currently being drawn up for the deployment of 
the EHDS.

2 Materials and methods

2.1 Review of EHDS

2.1.1 EHDS is authority and population centric 
rather than patient-centric

At the heart of health data management are the data holders who 
collect personal data, including clinical data, social determinants of 
health and clinical research data2. The GDPR data portability right 
(10) enables individuals to move, copy, or transfer their personal data 
across data holders; the emerging Data Act (11) will further regulate 
the portability of data from Internet of Things and medical devices 
data holders in particular.

2 Inclusion of clinical research data has been requested by the European 

Parliament in their comments from November 2023.
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The EHDS proposes the creation of four different types of 
organisations within Member States and two at European level, across 
health care delivery and research (Figure 1).

Organisations on the health care delivery side include: (i) National 
Contact Points for Digital Health (NCPDH) which act as gateway for 
European citizens to access their data, pooled from data holders, (ii) 
a Member State Digital Health Authority which is responsible for 
enforcing the lawful use of data in health care delivery, certifying and 
supervising NCDPHs and cooperating with other Digital Health 
Authorities and the Commission, and (iii) MyHealth@EU which 
supports the infrastructure for cross-border management of health 
care delivery data.

Patients have the right to request data holders to transfer their 
data to a NCDPH, and to access their data from this NCDPH; patients 
can also request a free copy of their data, in the state they are at the 
NCDPH. Finally, patients will benefit from six priority categories of 
identifiable data in a standardised digital format they can share with 
healthcare providers throughout Europe to ensure safer unplanned 
care when travelling.

Organisations on the research and policymaking side include: (i) 
Health Data Access Bodies (HDAB) which are responsible for 
processing health data for secondary use on the basis of the conditions 
specified in the regulation, (ii) a Coordinating Health Data Access Body 
which enables the cross-border secondary use of electronic health data 
under the responsibility of each Member State, in cooperation with 
other coordinating bodies and the Commission and (iii) HealthData@
EU which supports the infrastructure for cross-border use of research 
and policymaking data.

Data users, defined as any natural or legal person who have lawful 
access to personal or non-personal electronic health data for 

secondary use, may submit a data access application to a HDAB for 
any purpose identified in the regulation. Patients who wish to 
understand how their personal health data are used, can access a 
public website where the HDABs register the permits they have 
been granted.

Except for data holders and data users, all organisations 
mentioned above are public organisations or research infrastructure 
established as a European Research Infrastructure Consortium, 
funded per Member State and/or the European Commission. Private 
organisations are not mentioned, while they can bring a wealth of 
expertise and know-how in processing health data and can stimulate 
a true data economy benefiting the patients. This is particularly the 
case for emerging data intermediaries, regulated by the Data 
Governance Act; they could provide data intermediation services to 
patients enabling them to exercise their GDPR right to correct errors, 
and to curate and improve the quality of their health data before it is 
sent to the NCDPH. Article 13.2. mentions that Clinical Patient 
Management System may become authorised participants to 
MyHealth@EU; there is however no further details.

In addition, the EHDS tends to create a barrier between health 
care delivery, and health research and policymaking. More specifically, 
Section 2 seems to consider that primary use of data is synonymous 
with health care delivery (including home care, primary care, 
secondary care, and tertiary care), while Section 4 considers that 
secondary use is synonymous with health research & policymaking, 
where population datasets are generated from data extracted from 
individuals’ clinical data and other, personal and non-personal, data.

This is confusing against the concept of primary use of data, i.e., 
data collected for a specific purpose, and secondary use of data, i.e., 
reuse of existing data for a different purpose. As displayed in Figure 2, 

FIGURE 1

Organisations and main information flows within proposed EHDS regulation.
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data collection is most often taking place in health care delivery, but it 
is also happening in research (e.g., interventional clinical trials, 
adverse events, and clinical registries), and policymaking (e.g., public 
health surveys). For a true patient-centric EHDS, all personal data 
related to a patient should be  first integrated into their personal 
longitudinal health record, from which different types of data can 
be derived for health care delivery as well as research and policymaking.

2.1.2 EHDS does not solve the burden of 
recurrent curation

Health data are heterogeneous because many legacy systems are 
still up and running—and may remain so for a long time—with large 
portions of unstructured variables and narrative text. Additionally, 
multimodal data (medical imaging, genomic data, EHRs, wearable…) 
require different types of representation and technologies. Lastly, data 
standards for clinical care and clinical research have different 
requirements: for instance, HL7 FHIR is structured vertically, 
gathering all data for a single patient encounter, while CDISC SDTM 
and ADaM in clinical research organise the same parameter 
horizontally, for multiple patients.

For the foreseeable future, health data curation will continue to 
be necessary. As displayed in Figure 3, the current ‘population-based’ 

model relies on expert data stewards extracting pseudonymised data 
from data sources for a specific purpose and transforming this data 
into the format required for the analysis. As the GDPR regulation does 
not permit linkage of personal data without a legal basis or personal 
consent, and as consent of each relevant individual is difficult to 
obtain with the existing infrastructure, health data are most often not 
linked, and the curated data provides only a partial view of the 
patients. In addition, the number of subjects is often different from 
one data source to another. Finally, as each secondary use may require 
slightly different datasets, one individual’s data may be curated several 
times, resulting in massive and unnecessary duplication of effort.

Secondary use in the EHDS follows this model; indeed, the raw 
data available within the data holders is neither standardised nor 
linked. Furthermore, while the EHDS regulation introduces basic 
requirements for quality of the source data, there is no provision for 
data quality labelling in secondary datasets.

Another concern is that EHDS may become a contributor to 
additional Greenhouse Gas Emissions (GHGE). After painstakingly 
generating secondary datasets, HDABs will not be inclined to delete 
them even though the likelihood of reuse is low; in addition, they 
might be forced to keep these datasets for liability purposes. Data 
centres accounted for more than 2.5% of GHGE in 2022, and are 

FIGURE 2

The continuum of health data across delivery and research. Orange indicates suggested data and data flows. Missing in the regulation.

FIGURE 3

Population focused data curation, vs. individual centric data curation.
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targeted to rise to 14% by 2040; 30% of the world’s data volume is 
generated in the health sector (12) and is expected to rise to 36% by 
2025. More than 90% of the data stored in data centres are not used 
more than once (13).

In a patient-centric EHDS, it is possible to shift the paradigm 
towards ‘individual centric curation’. The patient, their delegate and/
or an agreed expert data curator, curates all their health data, linked 
across data sources, with the help of an intelligent virtual assistant 
(VA); the VA orchestrates multiple tools to maximise automation in 
data curation and quality checks, and involves the patient only when 
clarifications are required. The result is a personal longitudinal health 
record, which could be used by attending physicians in the interest of 
the patient, and by the patient for shared decision-making, second 
opinion seeking or cross-border care. In addition, if these longitudinal 
patient records are interoperable, they can be used to generate just-in-
time secondary datasets with a quality label derived from the patient 
records they are extracted from. These datasets could also include 
metadata—including the programme used to generate them—
supporting re-generation of the dataset if needed.

The automated generation of an interoperable, reusable, high-
quality, personal longitudinal health record, with and by the patient, 
is the main objective of the AIDAVA project presented in this paper.

2.2 Data intermediaries and data 
governance act

The Data Governance Act introduced in November 2019 is in 
force from September 2023, with a transition period of 2 years. It 
establishes the foundation for data intermediation services, through 
public and private data intermediary organisations, for public and 
business data. It also regulates data altruism, i.e., data voluntarily 
made available to data altruism organisations for the common good, 
to reduce the cost of collecting consent and facilitate data portability 
throughout Europe. The Data Governance Act applies to all sectors, 
including health.

Although data intermediation services were not initially intended 
to regulate the sharing of personal data, they can naturally be extended 
to personal data intermediaries, with a set of structured services as 
described in the MyData Operators Framework (14), following 
different business models (15). The draft EHDS regulation only 
mentions data altruism, which benefits authorities but brings limited 
value to citizens and patients. As advocated by the AIDAVA project, 
to be  patient-centric, EHDS should include personal health data 
intermediation services, through dedicated and certified organisations 
called Health Data Intermediaries. These organisations can serve as 
trusted partners for patients to control the integration, curation and 
quality of their data, and to manage their preferences for sharing their 
data before it is reused in care delivery, research and policymaking.

This approach is the cornerstone of a patient-centric EHDS. If it 
is easy—hopefully seamless—for patients to manage and curate their 
data while benefiting from an integrated harmonised health record, 
they will be more likely to engage in managing their health data and 
in sharing them for the benefit of the population, and ultimately in 
managing their personal health.

2.3 Introduction to the AIDAVA project

The main objective of the AIDAVA Horizon Europe project is to 
deliver and test a prototype intelligent virtual assistant (VA) that will 
assist patients in curating their heterogeneous, multimodal, personal 
health data into an interoperable Personal Health Knowledge Graph 
(PHKG). Individuals’ PHKGs can then be transformed into multiple 
formats for reuse and sharing (16) (Figure 4).

The VA is intended to be used by the patient, or their delegate, and 
a specialised data curator assisting the patient. The solution aims to 
maximise automation of the curation process by orchestrating the 
execution of complementary AI-based curation tools according to the 
data interoperability issue found in a data source. When automated 
curation is not achievable, the VA initiates a dialogue with the patient, 
based on their preferences and skill levels, and provides explanations 

FIGURE 4

Overview of the AIDAVA Virtual Assistant.
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of the question at hand. Questions which cannot be answered by the 
patient are addressed to the supporting data curator.

To demonstrate the ‘curate once, use many times’ principle, the 
AIDAVA VA will generate two types of results from the patient’s 
PHKG: (i) fully identifiable data extracted from a single patient’s 
PHKG, in the form of the patient’s cardiovascular risk score and 
International Patient Summary (IPS) in HL7 FHIR format3, and (ii) 
anonymized population datasets extracted from multiple PHKGs to 
form an interoperable, site-specific breast cancer clinical registry that 
can be federated with other sites.

The project builds on four pillars described in the next section: (i) 
a structured and repeatable curation process enabling automation by 
orchestrating the execution of multiple data curation and quality 
enhancement tools, (ii) a reference ontology as a universal data 
sharing standard (17), supporting European standards and ensuring 
interoperability of the resulting PHKGs, (iii) a machine-human 
interaction module generating personalised explanations of the 
problem to be solved, and (iv) patient engagement through a trusted 
health data intermediary.

There will be  two generations of the AIDAVA VA prototype. 
Generation I will include the prototype framework consisting of a 
Chatbot-like platform as the front-end, and orchestration of a library 
of data curation & publishing tools at the backend. These tools will 
preferably be off-the-shelf and open source. Generation II will build 
on the previous generation: the front end will be extended with an 
explainability module to increase usability for users less experienced 
in curating data and in medical content; several curation and 
publishing tools will be updated with tools developed in the project, 
including multi-lingual AI based Natural Language Processing (NLP) 
solutions. Each generation of the prototype will be tested in three 
clinical sites (Universiteit Maastricht in the Netherlands, Sihtasutus 
Pohja-Eesti Regionaalhaigla in Estonia, Medizinische Universität Graz 
in Austria) with the support of two data intermediary organisations 
(MIDATA Genossenschaft for Estonia and Austria, Digi.me Limited 
for The Netherlands). As AIDAVA is a prototype, it is not subject to 
the Medical Device Regulation (18). However, as the prototype will 
be tested with site patients, the evaluation will follow a strictly defined 
process, documented in a research protocol which must be approved 
by the local ethical committees.

To ensure a true patient-centred approach, the project is supported 
by eight patient ‘consultants’ from the European Patient Centre 
Coalition for Breast Cancer and the European Heart Network for 
Cardiovascular Diseases. These patient consultants are actively 
involved at regular, well-defined times for a total of 42 person days per 
patient throughout the project. They ensure the project stays focused 
on what is important for patients.

3 Results (interim)

The AIDAVA project has been active for 15 months during which 
the consortium detailed the use cases, the requirements, and the 
solution architecture, and initiated the development. In parallel, the 
consortium developed the study research protocol needed for 

3 It is expected that this will be included in the EEHRxF format.

evaluation, as well as the data sharing agreement with data transfer 
technical specifications for each contributing site. This section 
describes the interim results.

3.1 Automated curation

The first objective of AIDAVA is to automate as far as possible the 
curation process, transforming heterogeneous health data into a 
single, harmonised Personal Health Knowledge Graph (PHKG). The 
curation process involves resolving interoperability issues across these 
heterogeneous data. Although interoperability has been widely 
described in different frameworks (19, 20) and publications (21), 
automation requires a holistic solution based on a precise classification.

We analysed in more detail the issues that hinder data 
interoperability, differentiating between issues within individual data 
sources (single-source data interoperability) and issues when 
integrating data from multiple sources (cross-sources data 
interoperability). We identified 11 data interoperability issues based 
on the analysis of the data sources selected in the project, and literature 
reviews. The single-source issues comprise digitalisation of paper 
documents, extraction of structured data from free text, format 
alignment, transformation of semi-structured and structured data, 
reference data management, terminology alignment, medical coding, 
and imaging readability. The cross-sources issues include entity 
deduplication, semantic inconsistencies, and semantic incompleteness.

For each data interoperability issue, we  defined a workflow 
maximising automation in the transformation of the data into a 
semantically sound knowledge graph. Each workflow uses one or more 
curation tools supporting resolution of the issues; candidate tools that 
could be reused or improved were identified. As new, improved tools 
[e.g., NLP tools based on Large Language Models (22), data wrangling 
(23) and AI medical coding (24…)] are emerging, they will be replacing 
older tools. We also specified within the workflows the need for human 
intervention to resolve issues; approaches to obtain answers from 
patients, or their supporting curator, are further described in Section 
3.3. Finally, we defined a high-level orchestration workflow to deal with 
multiple data interoperability issues within one data source.

For semantic inconsistencies and semantic incompleteness, the 
workflow includes data quality rules with triggers for human 
intervention in case of errors. Data quality rules represent common 
sense knowledge (e.g., the discharge time in an hospital must happen 
after the admission time), physio-pathological knowledge (e.g., a 
breast tumour must include a laterality) and clinical care pathway 
information (e.g., diabetes type 1 requires an insulin related 
treatment). Data quality rules also provide a labelling mechanism to 
assess the reliability of the curated PHKG. For example, curation 
through a validated and deterministic tool would score higher than 
curation through an emerging AI tool. Similarly, human input from 
staff with high health literacy would have a higher score than input 
provided by a patient with a limited health literacy. A data quality 
checker is being implemented, together with a governance process to 
include new rules or remove existing ones. Governance is particularly 
important, as knowledge encompassed in data quality rules applies to 
the whole medicine and requires knowledge elicitation, out of scope 
of the project.

To maximise automation, we needed a preliminary step called 
‘data source onboarding’, in which metadata on each data source is 
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defined and stored in a dedicated catalogue. This catalogue of data 
sources includes FAIR metadata enriched with (i) information on the 
structure and content of the data, such as data type, value restriction 
and value set, (ii) provenance information related to creation, 
modification and validation of the source information (25, 26), and 
(iii) semantic mapping with concepts defined in the reference 
ontology. Metadata on data sources is collected once, in each data 
holder organisation; it is used each time the system ingests and curates 
the data of a specific patient. The AIDAVA catalogue of data sources 
is being developed on top of DCAT-3 (27); it will be extended with the 
Data Source Description Vocabulary (28) supporting semantic 
annotation and the RDF Mapping Language (29) for mapping.

3.2 Personal health knowledge graph: 
interoperability and reuse through 
reference ontology

A Personal Health Knowledge Graph (PHKG) is a dynamic, 
semantic representation, which can harmonise and link multimodal, 
heterogeneous data during the data curation process. Such a PHKG is 
ideally positioned to capture the semantics of a data source, 
independently of its structure; it can also support data integration, 
data quality enrichment and correction, based on the context. 
Although a PHKG is personal and contextual, it will be interoperable 
due to being an instance of the reference ontology. As such, the PHKG 
constitutes a high-quality, FAIR, longitudinal health record, growing 
continuously as new data is being ingested. During the data publishing 
process, the data contained in the PHKG can be made available for 
multiple purposes in the appropriate format.

Achievement of interoperability is constrained by the availability 
of a commonly agreed and used reference ontology. AIDAVA 
identified strategic and content requirements for such an ontology. 
The strategic requirements include (i) support the European Electronic 
Health Record Exchange Format (EEHRxF), (ii) maximise potential 
for reuse of the PHKGs across a large range of use cases, beyond the 
ones identified in the project, (iii) ensure alignment with standards in 
place to minimise the need of mapping from and to these different 
standards, while maximising reusability of the PHKG during and after 
the project, (iv) support maintainability and extensibility during the 
project as well as beyond the project, and (v) enable implementation 
and update of constraints supporting data quality.

In terms of content, the ontology will include (i) standards such 
as SNOMED CT, LOINC, HL7 FHIR General-Purpose Data Types, 
and HL7 FHIR resource related to the International Patient Summary 
(30), (ii) concepts that support mapping and transformation with 
entities and relationships included in the data sources4, (iii) predefined 
mapping supporting transformation to HL7 FHIR IPS and other data 
exchange messages required by EHDS, and (iv) data quality checks 
implemented through SHACL rules (31).

We are currently assessing how to use the Swiss Personal Health 
Network framework (SPHN (32)) as the basic schema of the AIDAVA 

4 If concepts are not available, when onboarding data sources into the system, 

they are added to the reference ontology following the defined governance 

process.

reference ontology; preliminary results demonstrate that an 
ontological foundational layer will be needed to support extension of 
the SPHN schema.

3.3 Human-in-the-loop and the value of 
explainability

AIDAVA emphasises the importance of making the use of AI 
solutions transparent, and inherently human-inclusive, with interface 
components adapted to different types of users. Following user-
centred design, the project identified eight user personas across 
different user groups. Personas are fictional characters who represent 
the similarities of target user groups and play a pivotal role in 
ensuring that human-AI interaction is tailored to individual needs, 
promoting more meaningful engagement. To turn the fictional 
persona into a tangible, realistic character, and to make it easier for 
system designers to empathise with the user represented by a persona, 
the latter is visualised in a one-page layout, called a ‘persona canvas’, 
which includes narrative text about the persona’s interests, 
preferences, behaviour patterns and attitudes. Within AIDAVA, 
personas also serve as the foundation of the explainability and 
feedback with patients, based on their level of digital and health 
literacy assessed when setting up the user account and stored in their 
user profile (33).

Most people are not prepared for unmediated interactions with 
a digital solution that aims to curate their personal health data. To 
increase acceptance and democratise personal data curation, 
AIDAVA aims to maximise automation to minimise user 
intervention. When automation is not possible, and humans must 
be brought in the loop, AIDAVA will first decide if the question must 
be raised to the patient or to the supporting data curator, based on 
the health and digital literacy levels of the patient. In a second step, 
the system will raise the questions and generate context-based 
explanations using the type of issue identified in the workflow, the 
expected human intervention to solve the issue, the level of digital 
and health literacy of the target user, and the context of the issue to 
be  solved. Context encompasses all aspects of the data’s origin, 
including information on its creation in the data sources—stored as 
FAIR metadata available in the catalogue of data sources referred 
above—and the transformation steps that took place during the 
curation process. Generation of narrative explanations will be based 
on canned text translated in each user language for Generation I of 
the AIDAVA prototype. For Generation II, we are exploring the use 
of multi-lingual Large Language Models.

3.4 Health data intermediaries

AIDAVA is proposing to provide data intermediation services to 
patients through organisations called Health Data Intermediaries 
(HDI), introduced in Section 2.2. These emerging organisations, 
regulated by the Data Governance Act, are expected to provide three 
services. First, they should operate as a ‘personal health data hub’ 
integrating multimodal data, sourced directly from the patient 
(wearables, lifestyle data, etc.) or from healthcare providers who 
treated the patient (34). Second, HDIs should enable dynamic 
management of consent for data sharing, via a digital app. For 
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Recommendation 1. EHDS, as a patient-centric solution seeking to bring 

benefits to European citizens, should first consider the benefits to each individual 

patient; and more specifically seek digital solutions that enable every European 

citizen to maintain an interoperable, high-quality personal longitudinal health 

record, usable at the point of care and allowing the smooth generation of 

secondary datasets for lawful public health purposes.

example, the patient could specify for which purpose their data (i) can 
always be shared, without their consent (e.g., public health purpose), 
(ii) can be shared with their consent when the purpose is clarified 
(e.g., clinical trials) and (iii) should never be shared (e.g., marketing 
and commercial research). Finally, HDIs should support the 
improvement and labelling of the quality of the patients’ health data; 
this would increase the value of reuse of this data, firstly for the patient 
and their treating physician and secondly for research 
and policymaking.

NCDPHs described above could become health data 
intermediaries powered by AIDAVA-like virtual assistants. 
Alternatively, HDIs could serve as smaller data intermediation 
organisations that assist patients in integrating and curating their data, 
before it is transferred at NCDPH level.

Within AIDAVA, we  are working with two emerging data 
intermediaries—MIDATA, and DIGI.me—already active in health 
with the first two functions (personal health data hub and consent 
management). We are assessing the opportunity of adding the quality 
enhancement and labelling tools.

4 Discussion

Although we are still in the conceptualisation phase and have yet 
to evaluate the prototype in real-life situations with patients, some 
preliminary conclusions can already be  drawn and lead to 
recommendations for a patient-centred implementation of the EHDS; 
these recommendations will have to be  confirmed as the 
project develops.

4.1 AIDAVA-like solutions are needed for 
the benefit of the patients and their 
treating physicians

In the EHDS, as in many research projects, the focus is on 
improving the production and quality of targeted secondary datasets 
for research and policymaking, following the ‘population curation’ 
approach described in Figure 3. We argue that a paradigm shift is 
needed towards ‘individual curation’, improving the management of 
patient data at the point of care, and supporting smoother extraction 
of secondary datasets from these high-quality, interoperable patient 
records. This is particularly relevant for patients with complex 
conditions, as their data accumulates across multiple stakeholders and 
episodes of care over time.

A patient-centric approach makes it possible to prioritise patients’ 
interests and needs for day-to-day care by providing a complete 
medical record that is easily accessible by attending physicians, 
thereby reducing their daily workload, which in turn decreases the 
risk of burnout (35). Regarding the use of secondary data, it has been 
shown that patients are generally in favour of sharing their health data 
for the common good (36) provided there is transparency, 
accountability and no data privacy risk. Therefore, the secondary use 
of patient data for public health purposes could be the default, with 
the possibility for patients to opt out.

Today, it is extremely difficult for patients to manage and integrate 
data across different systems, and thus provide a holistic view of their 
health status. It is equally difficult for them to share information with 

their treating healthcare providers. Additionally, there is currently no 
easy way to opt out of sharing their data whenever used for lawfully 
agreed public health purposes.

AIDAVA-like solutions, in which all data sources have been 
onboarded as described previously, would enable the patients to 
control all their health data, to download them from various data 
sources, curate them into their PHKG and provide consent for 
sharing. Through AIDAVA-like solutions, patients, or their delegate, 
would ensure that their data is integrated and of the highest quality, 
facilitating medical decision-making. In addition, the availability of 
interoperable PHKG would facilitate the creation of high-quality 
datasets for research and policy development.

4.2 The major problem in data 
interoperability and reuse of health data is 
the lack of documentation on data source

The classical concern about accessing personal identifiable 
data is local data privacy and protection constraints as well as 
Ethical Committees’ approvals. This is a time-consuming process, 
though generally well described, clear and manageable. 
We  realised, however, that access to detailed descriptions of 
health data available within an organisation was unexpectedly 
difficult; this includes data schema—technical description of 
each data element collected within the different subsystems of the 
organisation—data lineage and data quality labels. Without such 
documentation, automation as proposed in AIDAVA is not 
possible and the ‘curate many times, use once’ model will remain 
the standard, burdensome practise.

Other European projects were faced with the same issue; see 
for instance ‘Deliverable 2.1. Overview of data sources and plan to 
access available data sources’ in Precise4Q (37). Documentation of 
an extract of the patient data in standardised format—related to 
the six priority categories of personal data to be exchanged per 
EHDS—starts to be available in several European countries [e.g., 
in (38, 39)]. This is not enough; all data sources must 
be  documented. To our knowledge, the only country where 
detailed description of all collected health data is available is 
Finland (40) as this is mandated by law since 2013.

Secondary datasets also suffer from the same lack of 
documentation of data elements, which hampers their reuse. 
Article 37 (i) of EHDS requires each member state to maintain a 
catalogue of national datasets with details of the source, scope, 
main characteristics of the population included in the dataset and 
conditions of access and use. There are no requirements however 
to provide a detailed description of the data elements included in 
the catalogue. The EHDS2 pilot project highlighted the 
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importance5 of including such information in national catalogues 
to facilitate interoperability and reuse (I and R in the FAIR 
principles) of the datasets generated across Member States.

In AIDAVA, we  worked for several months with the clinical 
evaluation sites, to identify and collect the schema of data elements 
collected at the point of care, supporting automation and explainability in 
case of human intervention. This information will be  stored in the 
AIDAVA catalogue of data sources, based on existing standards as 
described in Section 3.1.

4.3 Automation potential in data curation 
should be further explored

The data interoperability issues described in Section 3.1. are well 
known. The innovation in AIDAVA lies in automating a holistic 
treatment of all these interoperability issues by means of 
complementary workflows. One data source may present several data 
interoperability issues, requiring several workflows. Each workflow 
may include one or more curation tools as well as requests for human 
intervention when an issue cannot be  solved by the machine. 
Automation in AIDAVA consists of orchestrating the appropriate 
workflow for each data source and across data sources, to generate a 
harmonised PHKG from heterogeneous, multimodal data.

With the emergence of powerful new AI tools, such a Large 
Language Models (LLM) (22), Neuro-Symbolic AI (41), Generalist 

5 Presentation during the HealthData@EU Pilot—Forum on October 19th.

Medical AI (42) and Medical Imaging, we can expect more and better 
tools to be available to support the curation of multimodal data.

4.4 Data exchange standards are needed 
but not sufficient: we need a data sharing 
standard

Source data in health will remain heterogeneous for the 
foreseeable future. Different formats are in use and/or will soon 
be  mandated: (i) WHO international classification such as ICD 
required for billing and epidemiological reporting; (ii) the European 
electronic health record exchange format (EEHRxF) to be mandated 
by EHDS to support exchange of personal health data based on HL7 
FHIR, SNOMED and LOINC already in place in several European 
countries; (iii) CDISC supporting data collection in the context of 
drug related regulatory approval; (iv) OMOP typically used as a 
target format for secondary datasets in clinical research; and (v) 
many other—often proprietary—formats exist in research and 
policymaking databases.

Currently, data sources are mapped directly to the required target 
output, representing n m∗  mappings, where n  is the number of 
source formats and m is the number of target formats. This represents 
a major burden across health and hampers patient care and research. 
We  therefore argue that data exchange standards are needed but 
not sufficient.

Another possibility is to agree on a data sharing standard, enabling 
information to be transformed to and from any standard and supporting 
multiple, but yet unknown, data exchanges; this approach would decrease 
the number of mappings to n m+ . This is the objective of the patient 
Personal Health Knowledge Graph (PHKG) constrained by the concepts 
defined in the AIDAVA reference ontology, described in Section 3.2. 
Although the maintenance of such an ontology is beyond the scope of this 
project, our aim is to demonstrate the value of an interoperable PHKG for 
multiple types of exchanges and secondary data use, and to identify 
guidelines to support the development and maintenance of a global 
reference ontology encompassing all data exchange standards.

4.5 Data sharing requires an assessment of 
the quality of data

Reusing poor quality data has limited value. When developing 
the requirements for the AIDAVA curation virtual assistant, data 

Recommendation 2. In alignment with Article 23.3 (a) and (b) of the EHDS 

regulation, implement catalogues of data sources with detailed description of 

each data element collected by relevant data holders.

• Develop a standard describing the content of a catalogue of data sources; 

this standard should build on existing standards such as DCAT and Data Source 

Description Vocabulary.

• Provide an appropriate infrastructure to support the implementation and 

maintenance of these catalogues in each relevant data holder and make them 

accessible—in a controlled way—to produce secondary datasets.

Recommendation 3. Formally describe all potential health data interoperability 

issues that can occur in health data and define a related data curation workflow 

with description of needed curation tools and human intervention.

Recommendation 4. Maintain a library of data curation tools that can solve the 

different health data interoperability issues. The library should include an 

assessment of the tools as well as a formal description of the API, supporting 

integration.

Recommendation 5. Develop and maintain an EU-wide (or broader) ontology 

as the basis for interoperable PHKGs, which supports transformation to main 

data exchange standards in use (at least EEHRxF and those in use in clinical 

research such as CDISC, OMOP…)

• Confirm the requirements.

• Review existing/past initiatives (e.g., SNOMED ontological framework, 

SALUS…) and emerging initiatives (e.g., Precise4Q, EUCAIM Hyper ontology, 

SPHN…) and develop the European wide foundation layer of the ontology.

• Define and implement a governance process.
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users repeatedly asked the same question: how reliable the data 
are. The answer differs depending on the state of the data: (i) for 
data sources, a quality label can be  established based on the 
quality level provided by the data holder—if available—including 
the credentials of the persons who created and validated the data; 
(ii) for the curated data (i.e., the PHKG), the quality label will 
be linked to the quality from the source, the level of quality and 
certification of the curation tools used during transformation, the 
level of health and literacy of the humans who provided answers 
when there were semantic gaps, and the number of data quality 
checks that could not be resolved; (iii) for published data, the 
quality label will be linked to the level of the curated data, the 
compliance with the target format, the completeness of the 
content, the absence of bias as well as the quality, reliability and 
certification of the imputation algorithm, if applicable.

Article 23.3 (c) of the EHDS mandates to include a data 
quality statement, such as the completeness and accuracy of 
electronic health data. Section 5 on health data quality describes 
the requirements for the quality and utility label for secondary 
datasets; these requirements map with the question raised by the 
AIDAVA data users for curated and published data with two major 
differences: (i) the EHDS requirements include access constraints 
not addressed in AIDAVA; (ii) the EHDS merges the concept of 
curated and published data as it only addresses population 
datasets. In a patient-centric EHDS, one must distinguish the 
curated PHKG at patient level, and the published output which 
can be  at patient level (e.g., IPS) or at population level (e.g., 
clinical registry).

4.6 Health data intermediaries, supported 
by community curators, are needed

The Data Governance Act regulates the setup and functioning 
of data intermediation services organisations, or what AIDAVA 
calls ‘health data intermediaries’ (HDI) when they manage health 
data on behalf of the patient. To our knowledge the most 
advanced business model of HDI has been developed in the 
Netherlands through ‘Persoonlijke gezondheidsomgeving’ or 
Personal Health Environment (44). Such models and 
organisations, close to the patients, must be further defined and 
deployed, in alignment with the EHDS regulation, to develop and 
maintain trust with patients.

To support the patient and their treating physicians, HDIs must 
equip their customer patients with the appropriate tools to exercise 
control, agency, and guardianship. This includes a Digital Wallet (45) 
supporting identity management and linking, dynamic consent 
management, and data transfer. An AIDAVA-like tool, supported by 
a catalogue of data sources, will increase the value of data 

intermediation services by improving the quality of the source data 
and its value for secondary use, making it a key player in the growing 
telehealth market, and fostering a genuine health data culture 
throughout society.

The assumption in AIDAVA is that the automation process will 
be seamless with maximum automation and minimum of human 
intervention. When human input is required, it is expected that the 
patient will be the first person requested to support. The percentage 
of citizens that will be willing and able to contribute is directly 
linked to the complexity of the task and will be assessed as part of 
the prototype evaluation. If we assume that between 5 and 15% of 
the population will be able to contribute, this means that we need 
additional support from ‘community curators’, i.e., persons in the 
community with a minimum or health and digital literacy that 
would be specifically trained as expert curators and would offer 
their services to patients through an HDI. Community curators 
could be a member of the family that would curate the data of the 
whole family—parents, siblings and children—for free, or could 
be a third party who should be rewarded for the work done.

It could be argued that this could increase the gap between 
patients of high and low socio-economic status. While this risk is 
always present, different approaches should be explored to fund the 
community curator and data intermediaries (46). There could be a 
lump sum per patient and per type of diagnosis from national 
health funding programmes, as high-quality data should reduce the 
total cost of illness and the cost of research and policy development. 
There could also be  funding from pharmaceutical companies 
directly to the patient and their community curator, as the 
availability of interoperable PHKGs could dramatically decrease the 
cost of trials — as data would be more readily available, just on time 
— and reduce the decline in the return on investment for research 
and development (47).

5 Conclusion

We argue that a patient-centric EHDS will serve foremost 
each individual patient, but also the population as a whole and 
other health stakeholders such as healthcare providers and health 
researchers and policymakers. This mandates the development 

Recommendation 7. Define and support deployment development of different 

models of Health Data Intermediaries to ensure patients can be in control of their 

data, exercise agency and secure guardianship through an actor close to the 

patient and chosen by him/her. This includes new organisation models or 

integration of supporting digital solutions, including digital wallet for the patient 

as well as maintenance of a catalogue of data sources and data curation services 

to maintain each individual PHKG within the patient digital wallet.

Recommendation 6. Expanding on Article 23.3 (c) and Article 56, and existing 

data quality frameworks (43) develop and deploy a quality label framework for 

each state of data: (i) data sources, (ii) curated data and (iii) published data, with 

appropriate parameters related to the transformation.

Recommendation 8. Define and pilot the role of community curators, aligned 

with the Skills data space (48).

62

https://doi.org/10.3389/fmed.2024.1365501
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


de Zegher et al. 10.3389/fmed.2024.1365501

Frontiers in Medicine 11 frontiersin.org

and maintenance of a high-quality, personal longitudinal health 
record for each patient, resulting from the curation of their data 
scattered across multiple systems and organisations. This 
longitudinal record should be formalised in a Personal Health 
Knowledge Graph (PHKG) which should be  interoperable 
because it is constrained by a reference ontology; the PHKG 
should also include a data quality label, derived from the quality 
of the sources data and the transformations that took place 
during the curation process.

The AIDAVA project implements a combination of AI-based 
automation and a ‘human-in-the-loop’ approach, harnessing 
advanced technologies, human expertise, skill sets, and contextual 
knowledge to help patients—or their delegates—manage their own 
data and develop their interoperable, high-quality PHKG. In doing 
so, patients benefit personally and contribute to the just-in-time 
production of disposable secondary datasets that promotes research 
and policymaking. AIDAVA therefore proposes a model that places 
the patient at the centre of a greener interconnected ecosystem of 
primary and secondary data use, increasing value for all and for 
the planet.

Several obstacles need to be overcome to achieve the AIDAVA 
vision. The first is access to personal health data, not because of 
data privacy issues, but because of the lack of detailed 
documentation—including format, data typing, and value 
restriction—on source data. The definition and enforcement of a 
catalogue of primary data source should be introduced in EHDS 
and implemented as a priority. Another important component for 
the sustainability of AIDAVA-like solutions is the availability of a 
governed reference ontology, laying the foundations for a global 
data sharing standard. Additionally, sustainable models for health 
data intermediaries and supporting community curators need to 
be defined.

The preliminary results of the AIDAVA project demonstrate that 
the implementation of a patient-centred EHDS is achievable and 
beneficial. It requires that the recommendations outlined in this paper 
are included in the implementing acts being drawn up as part of the 
EHDS deployment.
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OHDSI-compliance: a set of 
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Introduction: The open-source software offered by the Observational Health 
Data Science and Informatics (OHDSI) collective, including the OMOP-CDM, 
serves as a major backbone for many real-world evidence networks and 
distributed health data analytics platforms. While container technology has 
significantly simplified deployments from a technical perspective, regulatory 
compliance can remain a major hurdle for the setup and operation of such 
platforms. In this paper, we  present OHDSI-Compliance, a comprehensive 
set of document templates designed to streamline the data protection and 
information security-related documentation and coordination efforts required 
to establish OHDSI installations.

Methods: To decide on a set of relevant document templates, we  first 
analyzed the legal requirements and associated guidelines with a focus on 
the General Data Protection Regulation (GDPR). Moreover, we  analyzed the 
software architecture of a typical OHDSI stack and related its components to 
the different general types of concepts and documentation identified. Then, 
we created those documents for a prototypical OHDSI installation, based on 
the so-called Broadsea package, following relevant guidelines from Germany. 
Finally, we generalized the documents by introducing placeholders and options 
at places where individual institution-specific content will be needed.

Results: We present four documents: (1) a record of processing activities, (2) 
an information security concept, (3) an authorization concept, as well as (4) an 
operational concept covering the technical details of maintaining the stack. The 
documents are publicly available under a permissive license.

Discussion: To the best of our knowledge, there are no other publicly available 
sets of documents designed to simplify the compliance process for OHDSI 
deployments. While our documents provide a comprehensive starting point, 
local specifics need to be  added, and, due to the heterogeneity of legal 
requirements in different countries, further adoptions might be necessary.
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1 Introduction

1.1 Background

Collecting and analyzing data from real-world healthcare settings 
at a broad scale can provide new insights into patient outcomes, 
treatment efficacy, and healthcare practices (1). This usually necessitates 
bringing together data from several healthcare institutions, which 
requires the implementation of or mapping to data standards, as well 
as approaches for ethical and data protection compliant access (2). One 
common solution for the latter challenge is federation, where the 
analysis is brought to the data instead of bringing the data to the 
analysis (3). This is, for example, implemented by SHRINE (4), 
DataSHIELD (5) and the Observational Health Data Sciences and 
Informatics (OHDSI) (6) initiative. OHDSI is an international, 
multidisciplinary community of researchers and healthcare 
professionals to enable data standardization, analysis, and insight 
discovery from large-scale health datasets, launched in 2013. The 
community distributes a set of open-source software tools to represent 
and analyze data in the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM), which makes extensive use of 
terminologies and ontologies, such as Logical Observation Identifiers 
Names and Codes (LOINC) or Systematized Nomenclature of Medicine 
(SNOMED) Clinical Terms (CT) (7). While the term OMOP describes 
the now discontinued collaboration that originally developed the CDM, 
the term OMOP-CDM refers to the further developed version that 
forms the current technical cornerstone of OHDSI. The EHDEN 
project has funded the deployment of the OMOP-CDM and the 
OHDSI software stack across Europe (8). Moreover, the OMOP-CDM 
will also play an important role in the upcoming European Health Data 
Space (EHDS; see Section “Discussion”). The EHDS is planned as a 
large-scale ecosystem facilitating better exchange and access to different 
types of health data throughout the European Union (EU). EHDS pillar 
I focuses on primary healthcare data use, i.e., data sharing for healthcare 
delivery. EHDS pillar II focuses on secondary use of health data, e.g., 
analysis for research, policy-making or drug safety (9).

Setting up an OHDSI node can involve significant efforts, in 
particular for the required mapping to standards. However, technical and 
data integration challenges are not the only obstacles faced when 
connecting to data sharing networks [for one example for the various 
technical challenges see (10)]. Legal and regulatory compliance is 
another important issue (11, 12). National and international data 
protection laws as well as ethical guidelines must be  considered. 
Important examples include the US Health Insurance Portability and 
Accountability Act (HIPAA) (13) and the European Union (EU) General 
Data Protection Regulation (GDPR) (14). To fulfill central requirements, 
concepts need to be  developed and documented for ensuring the 
confidentiality of the processed healthcare data. An important example 
is the so-called Record of Processing Activities (ROPA), which needs to 
be created according to the GDPR, but also according to laws in the 
United Kingdom (15, 16), Australia (17) or Thailand (18). Amongst 
other aspects, a ROPA typically describes the processed categories of data 
and details information flows as well as the technical and organizational 
security measures implemented, although slight variations might exist 
between the requirements in different countries. Moreover, information 
security plays an important role, with relevant standards also requiring 
documentation of the measures taken (19). Important examples include 
the International Standards Organization (ISO) Standard 27001 (20), (2) 

the US National Institute of Standards and Technology (NIST) 
Cybersecurity Framework (21) or (3) the Health Information Trust 
Alliance Common Security Framework (HITRUST CSF) (22).

1.2 Objective

It is well known that conceptualizing and documenting the secure 
operation of data processing platforms can be challenging (23, 24). 
Research has shown that even reading and comprehending such 
documents can be difficult (25–27). As a result, different guidelines 
and templates have been developed (see Section Comparison with 
prior work). However, those are usually generic in nature and not 
directly applicable to the establishment of an OHDSI node. The 
objective of the work described in this paper, was to conceptualize an 
approach specifically for common OHDSI deployments. Moreover, 
we developed document templates that can be customized to local 
requirements. We focus on documents for a general OHDSI setup. 
Depending on the nature of projects that use this infrastructure as well 
as local requirements, additional documents might be needed for the 
individual studies performed.

2 Methods

2.1 Overview of the OHDSI tools

The main tools provided by OHDSI are focused on (1) establishing 
a common data model with clearly defined structure and semantics, as 
well as (2) assisting medical researchers and data scientists in extracting 
knowledge from this data. The OMOP-CDM is the central pillar of 
OHDSI, providing a standardized database schema and a set of 
terminologies with which heterogeneous data from different sources 
can be  integrated to provide comparability across studies and 
institutions (28). As a result, OHDSI forms a global network allowing 
for large-scale distributed studies to be performed. A common database 
management system for instances of the OMOP-CDM is PostgreSQL 
(29). In addition, the following tools are provided for data mapping:

 • WhiteRabbit is a tool to scan and describe source data.
 • Rabbit in a Hat supports structural mapping between source data 

and the OMOP-CDM.
 • USAGI has been designed to support semantic standardization 

and terminology mapping.
 • Athena is as a publicly available web service providing access to 

the vocabulary used by the OMOP-CDM.

We note that OHDSI does not provide a standard tool for 
extracting, transforming and loading (ETL) data, but focuses on tools 
for specifying the transformations and mappings needed. A common 
way of deploying a standard OHDSI stack is the container-based 
Broadsea distribution (30). An overview of a typical set of components 
in Broadsea is provided in Figure 1.

As can be seen, a common installation contains the following 
additional infrastructure components:

 • A PostgreSQL database for storing configuration options and 
study designs.
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 • Apache SOLR for searching through the vocabulary.
 • OpenLDAP for authentication and authorization.

Based on this basic infrastructure and the CDM, the Broadsea 
distribution offers further applications for accessing and analyzing 
the data:

 • WebAPI is a RESTful service layer for accessing and analyzing 
data stored in the OMOP-CDM.

 • ATLAS is a web-based tool for conducting scientific analyses.
 • ARES is a system facilitating data exploration, characterization, 

and quality assessments.
 • RStudio for analyzing data using the statistical programming 

language R. Broadsea comes with a range of R-packages, such as 
Shiny for developing interactive web applications and HADES for 
analyzing data from the OMOP-CDM.

In summary, researchers can work with data stored in the 
OMOP-CDM through ATLAS and specific R packages. ATLAS 
provides graphical access to a variety of OHDSI tools and functions, 
trading usability off against the flexibility of the analyses that can 
be performed. In addition, analyses can be performed in R using a set 

of provided packages and APIs, providing more flexibility in working 
with the data but requiring programming and data science skills.

2.2 Development process

We first identified a set of documents usually required to deploy and 
operate research systems at German university hospitals. As a basis, these 
include (1) a description of the processing activities and the technical 
and organizational measures taken in regards to data protection, (2) an 
analysis of information security risks and security-related measures 
taken, (3) a description of processes and responsibilities for maintaining 
and operating the system. We  note that these documents need to 
be updated regularly following a continuous improvement process.

Next, we related those documents to the systems and processes 
covered by the common architecture described in the previous 
section. Data protection aspects were described with a specific focus 
on systems holding or processing individual-level health data, 
reflecting requirements by Article 30 GDPR on the content of the 
description of processing activities. Information security as well as 
operation of the stack was covered for the complete installation, 
oriented towards the information security basic protection 
methodology provided by the German government. Moreover, 
another document was developed to describe and implement 
governance processes for use of the data available in the CDM. Finally, 
we  transformed the documents into customizable templates and 
uploaded them into a version-controlled repository.

3 Results

3.1 Overview

Table 1 provides an overview of the different document templates 
developed and provided through a GitHub repository (31).

3.2 Record of processing activities

A general description of the software architecture, data flows and 
processing activities as well as protection measures taken forms the 
basis of most compliance framework for medical research systems. 
Thus, as a first component, we developed a template for a Record of 
Processing Activities (ROPA) for OHDSI installations. As outlined 
above, ROPAs or related documents are required in most jurisdictions. 
In this work, we base the content on the requirements outlined in 
Article 30 of the GDPR and provide information about the personal 
data processed, the purposes of the processing, retention periods and 
further relevant details. In the event of legal or data protection audits, 
the document can be used as a basis to demonstrate compliance and 
it can also serve as a communication measure for coordinating 
OHDSI-related activities with an institution’s Data Protection Officer.

3.3 Information security concept

While data protection and the ROPA template emphasizes the 
handling of personal data in a way that respects the rights and 

FIGURE 1

Common architecture of an OHDSI implementation.

TABLE 1 Overview of the document templates.

Document title Short description

Record of processing activities Description of the data processing 

activities and protection measures.

Information security concept Description of information security 

measures.

Concept of operations Description of processes and 

responsibilities when operating the 

installation.

Authorization concept Description of groups of user roles and 

their permissions as well as a 

description of the process for 

requesting access to the database.
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expectations of the data subjects, information security focuses on 
protecting data from unauthorized access and further threats more 
relevant to the organization itself than to the data subjects. The well-
known ISO/IEC 27000 standard emphasizes confidentiality, integrity, 
and availability, but also adds further aspects, such as authenticity, 
accountability, non-repudiation, and reliability (32).

To cover these aspects, we  provide a template for describing 
information security-related properties of OHDSI installations. The 
template is pragmatic and designed to complement existing 
information security guidelines at the institution operating the 
installation. It contains a risk analysis of basic processes carried out 
with OHDSI installations, such as data transformation, loading, and 
usage, and systematically describes relevant information security 
measures. As an example, we use modules from the “Basic Protection” 
methodology of the Federal Office for Information Security in 
Germany. While there are some differences to the ISO 27000 set of 
standards, the “Basic Protection” methodology provides a solid 
foundation of security controls for achieving ISO 27001 compliance. 
An organization that already applies ISO 27000 can, for example, 
benefit from our documents through the included risk assessments 
and lists of relevant security controls that can inform local information 
security management processes. The document can also support 
coordination with an institutions Chief Information Security 
Officer (CISO).

3.4 Concept of operations

In addition to a sound and secure setup of an OHDSI node, also 
the operation of the platform needs to be  conceptualized and 
described. Relevant processes also include the continuous 
improvement process for data protection and information security-
related aspects already described above. In addition, the installed 
components and their configurations need to be kept up to date, user 
accounts need to be managed and backups need to be performed. The 
template for an operational concept includes suggestions for those 
processes, tailored towards the OHDSI components.

3.5 Authorization concept

How access requests by researchers to the OHDSI tools are 
handled and what governance rules are implemented is an important 
aspect of compliance. Consequently, we also developed a template for 
a guideline on how this is implemented. The template describing the 
access request process describes the duties of administrative personnel 
responsible for overseeing user access and processes for regular review 
and removal of outdated permissions. Additionally, it describes the 
steps researchers must follow to obtain access for conducting studies, 
including obtaining necessary approvals. In addition to researchers 
accessing the OHDSI tools, there are further types of personnel 
involved that need to access the installation for operational purposes. 
As this is a critical aspect, the proposed template describes all relevant 
roles, their responsibilities, and access permissions. The template 
outlines processes for nominating administrators, setting up user 
access and revoking them upon project completion or staff changes. 
Moreover, password guidelines and rules for timeouts of sessions 
are included.

Figure 2 illustrates how the developed document templates cover 
different components and aspects of a common OHDSI installation. 
As can be seen, the ROPA focuses on the general setup that processes 
personal data, while the information security concept and related 
templates cover all components. Access management focuses 
specifically on humans involved in the maintenance and use of 
an installation.

3.6 Customization and document 
management

We have developed the templates as Markdown files and provide 
them in the form of a Git repository. Markdown is a lightweight 
markup language, designed to be easy to write and read, with the 
ability to present the document content in many different forms. For 
example, the documents provided can be compiled into PDF files 
using open-source tools, such as Pandoc. If visual editing is needed, 
tools like Pandoc can also be used to convert the markdown files into 
formats suited for word processors, such as the Open Document 
Format. We  recommend to use the templates in their Markdown 
version, however, as this naturally enables keeping track of changes in 
versioned repositories, such as Git.

4 Discussion

4.1 Principal results

We presented a set of templates for setting up and maintaining 
OHDSI installations in compliance with data protection and 
information security requirements, also covering data governance 
aspects. The document templates are public available under a 
permissive license. The templates are meant to provide a starting point 
and need to be filled out accordingly and potentially extended or 
modified to comply with local policies or legal requirements. We have 
successfully executed this process at Charité – 
Universitätsmedizin Berlin.

4.2 Comparison with related work

Several institutions or research groups have suggested compliance-
oriented document templates for data processing in general or for 
medical research contexts. Examples include data protection 
guidelines, see (33) for an example, and templates for institutional 
review board protocols, see (34) for an example, and information 
security aspects, see (35) as an example. Quite a lot of the documents 
are tailored towards specific jurisdictions and published in languages 
other than English [e.g., (33, 36)]. Our work is different in that it 
focuses on a typical deployment of a common medical research 
platform and that its content has been, in large parts, abstracted away 
from country-specific requirements. Previous work has also focused 
on compliance for deployments of specific research systems (see the 
work by Wallace et al. (37) and by Budin-Ljøsne et al. (38) for an 
example on the DataSHIELD software). To the best of our knowledge, 
our work is the first to target OHDSI deployments. Governance models 
have also been studied in the literature. For example, Holmes et al. have 
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presented an overview on governance models for federated research 
(39). The authors propose a framework with which governance models 
can be assessed and compared considering different aspects. Pavlenko 
et al. have focused on data governance for health data warehouses (40).

On a more general level, ethical and legal challenges in data-
driven biomedical research have also been studied extensively. For 
instance, Wang et al. discussed several privacy-enhancing technologies 
and argue that accountability and informed consent are among the 
most relevant ethical challenges (41). Arellano et al. conduct a review 
on privacy regulations, patient perspectives as well as consent practices 
and their interaction with technology (42). They cover questions, such 
as under which circumstances consent can be  considered ethical. 
Lamas et al. have argued that ethical and legal frameworks are often 
not fitting well to common scenarios in the secondary use of health 
data and the development of health data warehouses (43).

Kalkman et al. have studied the sharing practices for compliance-
related documentation (44). The authors found that documents like 
the ones presented in this work is not common.

The OHDSI software stack addressed in the work described in this 
paper, is expected to play an important role in the upcoming EHDS 
and is promoted by a range of institutions. For example, the DARWIN 
initiative - an infrastructure built by the European Medicines Agency 
(EMA) to enable the secondary use of real-world data - is based on the 
OMOP-CDM and can be considered one of the first functional parts 
of the EHDS (45). The Joint Action Towards the European Health 
Data Space (TEHDAS) is another project with significant 
contributions to the shaping of the EHDS. Recently, also Health Level 
Seven (HL7) International and OHDSI have started a collaboration to 
work on a joint common data model for sharing information for 
healthcare and research (46).

4.3 Limitations and future work

One limitation of our work is that it has been designed with 
European and German requirements in mind, although we aimed at 

generalizing and abstracting away specifics. We note, however, that 
there are many similarities between relevant laws and regulations in 
different parts of the world (cf. similarities between the California 
Consumer Privacy Act or the EU-US Data Privacy Framework and 
the GDPR). We stress again that our templates must hence be regarded 
as a starting point and might need adaptions. In future work, we hope 
to be able to extend and adjust our templates based on feedback from 
their application in different contexts and jurisdictions.

Another limitation of our work is that we  currently did not 
explicitly include a document template for a Data Protection Impact 
Assessment (DPIA). Under the GDPR a DPIA is necessary for 
processing activities resulting in a high risk for the privacy of the data 
subjects. If an institution decides that this is needed for an OHDSI 
installation, tools, such as the one presented in (47), can be used and 
information from the documents provided through our work can 
be reused.

One interested area for future work is to more thoroughly study 
the compliance of data sharing processes within the OHDSI network. 
For example, it is not trivial to decide when aggregated statistics can 
be considered to be anonymous data. The OHDSI collective could 
be supported by a guideline providing legal and technical assessments 
of commonly used methods.

5 Summary and conclusion

In this paper, we  introduced a set of document templates 
designed to facilitate the implementation and operation of an 
OHDSI software stack for generating real-world evidence in 
compliance with data protection and information security 
requirements. These templates, tailored for typical OHDSI 
deployments, include crucial documents, such as a Record of 
Processing Activities, an Information Security Concept, and an 
Operational Concept. Our work addresses a significant gap by 
providing a framework adaptable to different institutional and legal 
requirements, thereby simplifying compliance processes for OHDSI 

FIGURE 2

Role of the different documents in a common OHDSI deployment.
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deployments. Despite being primarily oriented towards European 
and German regulations, our templates can serve as an adaptable 
starting point for organizations worldwide. Future efforts will focus 
on refining these templates based on feedback received and 
extending their scope to further compliance aspects.
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Introduction: The CAREPATH Project aims to develop a patient-centered 
integrated care platform tailored to older adults with multimorbidity, including 
mild cognitive impairment (MCI) or mild dementia. Our goal is to empower 
multidisciplinary care teams to craft personalized holistic care plans while 
adhering to evidence-based guidelines. This necessitates the creation of 
clear specifications for clinical decision support (CDS) services, consolidating 
guidance from multiple evidence-based clinical guidelines. Thus, a co-creation 
approach involving both clinical and technical experts is essential.

Methods: This paper outlines a robust methodology for generating implementable 
specifications for CDS services to automate clinical guidelines. We  have 
established a co-creation framework to facilitate collaborative exploration of 
clinical guidelines between clinical experts and software engineers. We  have 
proposed an open, repeatable, and traceable method for translating evidence-
based guideline narratives into implementable specifications of CDS services. 
Our approach, based on international standards such as CDS-Hooks and HL7 
FHIR, enhances interoperability and potential adoption of CDS services across 
diverse healthcare systems.

Results: This methodology has been followed to create implementable 
specifications for 65 CDS services, automating CAREPATH consensus guideline 
consolidating guidance from 25 selected evidence-based guidelines. A total 
of 296 CDS rules have been formally defined, with input parameters defined 
as clinical concepts bound to FHIR resources and international code systems. 
Outputs include 346 well-defined CDS Cards, offering clear guidance for 
care plan activities and goal suggestions. These specifications have led to the 
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implementation of 65 CDS services integrated into the CAREPATH Adaptive 
Integrated Care Platform.

Discussion: Our methodology offers a systematic, replicable process for 
generating CDS specifications, ensuring consistency and reliability across 
implementation. By fostering collaboration between clinical expertise and 
technical proficiency, we  enhance the quality and relevance of generated 
specifications. Clear traceability enables stakeholders to track the development 
process and ensure adherence to guideline recommendations.

KEYWORDS

clinical decision support, clinical guideline, automation, integrated care, 
multimorbidity, dementia, HL7 FHIR

1 Introduction

In the ever-evolving landscape of healthcare, the rising prevalence 
of multimorbidity combined with the complexity of medical 
knowledge poses significant challenges to clinical decision-making 
(1). Clinical guidelines, grounded in evidence-based practice, serve as 
essential tools for healthcare professionals in delivering optimal 
patient care (2). Nevertheless, the manual execution of these guidelines 
frequently leads to variations in practice, inefficiencies, and 
suboptimal outcomes, seemingly making the achievement of 
integrated care an overwhelming challenge (3, 4).

Integrated care is an organization-focused intervention that 
encompasses case-management, continuity of care, disease 
management, service integration, and multidisciplinary teamwork (5). 
It is designed to address the health and social needs of individuals 
living with multimorbidity, with the goal of reducing adverse 
healthcare outcomes, including potentially preventable 
hospitalizations (6). Older adults with multimorbidity can receive 
assistance in their own homes through Information and 
Communication Technologies (ICT) solutions. These solutions 
support them in their activities of daily living, help manage medical 
conditions and medications, and involve them in the healthcare 
process. Additionally, ICT solutions also improve physical activity and 
nutrition, reduce frailty, and facilitate health monitoring (7). While 
certain challenges remain to be  addressed with these solutions, 
including concerns regarding data privacy and security threats, they 
hold significant potential for facilitating the transition from 
conventional medical practices to remote medicine (8, 9).

Computer-interoperable clinical guidelines play a crucial role in 
advancing such ICT solutions and digitizing healthcare (10). They 
enable the implementation of personalized clinical decision support 
(CDS) systems, aiding healthcare professionals in adhering to complex 
clinical protocols and facilitating guideline integration into daily 
practice. CDS systems integrate patient-specific data with evidence-
based guidelines, providing real-time, personalized recommendations 
to healthcare providers. This integration holds great promise in 
streamlining clinical workflows, reducing errors, and ultimately 
enhancing patient outcomes (11, 12). Although CDS systems have 
undergone swift advancement since their initial implementation in the 
1980s, their full adaptation in routine clinical practice has not yet been 
fully achieved for many reasons, such as ethical and legal issues, the 
intellectual challenge of creating knowledge, and technical dimensions 

of delivering CDS (13–15). Software engineers face challenges in 
understanding clinical guidelines due to a lack of medical expertise, 
which hampers their ability to automate CDS services, while clinicians 
without technical proficiency struggle to validate CDS 
implementations to ensure they align with guideline 
recommendations. The situation becomes more difficult when patients 
have multimorbidity conditions, because clinical guidelines are 
typically designed for individual conditions, and while they may 
address decision-making regarding other morbidities, they lack a 
systematic approach to identifying relationships between guidelines 
for different conditions (16).

The CAREPATH Project1 aims to deliver a patient-centered 
integrated care platform to meet the needs of older patients with 
multimorbidity, including mild cognitive impairment (MCI) or mild 
dementia (MD) (17). Dementia and MCI are two of the most 
debilitating chronic conditions in older adults, affecting approximately 
7.3 and 20% of this population (18), respectively, and leading to high-
impact healthcare needs. Integrated solutions are necessary to manage 
this condition, especially when other chronic conditions coexist. 
Notably, pharmacological and non-pharmacological treatments for 
diseases such as heart failure or diabetes may differ in older patients 
with dementia compared to the general population. Developing a 
patient-centered integrated care platform is challenging, as the vast 
majority of clinical guidelines that would inform these tools typically 
focus on a single condition (19).

To address this challenge, Robbins et al. (20) presented clinical 
requirements addressing the needs of this patient group in the form 
of a reference, consensus clinical guideline to be  used for the 
CAREPATH project. The development of the guideline was 
undertaken by a Clinical Reference Group (CRG) formed by 
CAREPATH project clinical partners based in Germany, Spain, 
Romania, and the UK. After a review of the literature to identify 
suitable clinical guidelines, 52 guidelines covering a range of chronic 
conditions, multimorbidity, and co-morbidity were assessed for 
quality using the AGREE II methodology (21). Based on this, 25 final 
guidelines were selected for examination, approval, or disapproval, 
grouping, and consolidation by the project CRG through a modified 
Delphi process (22). The final agreed guidance and actions were 

1 CAREPATH Project Website, https://www.carepath.care/.
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collated into the master narrative consensus guideline. The 
CAREPATH consensus clinical guideline provides advice, 
information, and actions in the following areas: overarching principles 
of management, MCI and dementia, physical exercise, nutrition and 
hydration, common use of drugs, coronary artery disease, heart 
failure, hypertension, diabetes, chronic kidney disease, chronic 
obstructive pulmonary disease (COPD), stroke, sarcopenia, frailty, 
and caregiver support.

CAREPATH aims to deliver integrated care solutions to multi-
disciplinary care teams, including health and social care providers, 
patients and their informal caregivers, enabling them to follow 
consensus guidelines in a personalized manner to create holistic care 
plans for older adults. The Adaptive Integrated Care Platform (AICP) 
is a clinician-facing application that allows healthcare professionals to 
review and update patient data retrieved from underlying Electronic 
Health Record (EHR) systems. It also enables them to assess 
personalized suggestions for editing the patient’s care plan, such as 
setting clinical goals, adding or updating interventions (e.g., 
medications, lab orders, referrals, and patient interventions like self-
monitoring activities, diet, and exercise). AICP is supported by two 
important components: the Technical and Semantic Interoperability 
Suite (TIS/SIS), which facilitates integration with EHR systems (23), 
and CDS services that process consensus-based guideline rules to 
deliver personalized care plan suggestions. Once the care plan is 
created, the Patient Empowerment Platform (PEP), which was 
developed with the involvement of patients, informal caregivers, and 
healthcare professionals, provides personalized assistance and 
guidance to patients (24). It sends reminders about care plan goals and 
activities, presents educational materials to reinforce treatment 
adherence, and collects feedback from patients via Patient Reported 
Outcome Measures (PROMs) to conduct geriatric assessments. 
Finally, the Home and Health Monitoring Platform (H/HMP) 
provides environment-aware services to continuously collect real-time 
data for early detection of onset and changes in functioning, 
autonomy, and underlying cognitive and physiological functions 
of patients.

This paper introduces a robust methodology for generating 
implementable specifications of CDS services, aimed at automating 
clinical guidelines. Through a collaborative co-creation landscape, 
we enable clinical experts and software engineers to jointly examine 
guidelines and develop human-readable CDS specifications. Our 
approach addresses the challenge of translating guideline suggestions 
into actionable guidance, bridging the gap between clinical expertise 

and technical implementation. Key strengths include a repeatable 
process, traceability, and emphasis on human-readable specifications, 
ensuring accessibility and alignment with evidence-based practices. 
By fostering interdisciplinary collaboration, our methodology 
empowers teams to create CDS services that effectively automate 
clinical guidelines while tailoring care plans to individual patient 
needs. Our approach is based on international standards, namely 
CDS-Hooks and HL7 FHIR, targeting to enhance the interoperability 
and potential adoption of CDS services across diverse 
healthcare systems.

2 Method

The methodology devised to implement clinical decision support 
services automating evidence-based clinical guidelines consists of four 
steps along with the two preliminary steps as depicted in Figure 1. The 
selection of best practice guidelines and the creation of consensus 
clinical guidelines are pre-requisites of this approach. They have 
already been presented in (20), hence their detailed description is out 
of the scope of this paper. The list of the selected best practice 
guidelines in CAREPATH is provided in (25–49). However, it should 
be noted that the methodology explained in this paper can be applied 
to any type and number of clinical guidelines, so the selection of 
guidelines is not crucial for the subsequent downstream process.

In the following subsections, we  explain the details of the 
definition of flowchart-based rules, the definition of CDS rules in 
human-readable format, the definition of clinical concepts, and the 
preparation of CDS Hooks card templates.

2.1 Definition of flowchart-based rules

In the first step, the consensus guideline has been converted 
into flowchart-based rules, allowing integration into the digital 
platform for delivering care to dementia patients with 
multimorbidity. We attempted to formulate the sentences in the 
consensus guideline as flowchart rules, endeavoring to identify all 
clinical concepts. Close cooperation between technical personnel 
and CRG members was carried out to clearly assess the technical 
feasibility and clinical effectiveness of conversion of the narrative 
guideline into a flowchart. We  have discussed and agreed on 
which parts of the consensus guideline can aid the clinicians if 

FIGURE 1

Overview of the methodology for transforming evidence-based clinical guidelines into implementable clinical decision support services.
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automated as a clinical decision support service integrated into 
daily care practices. As a first step to create flowcharts with 
decision points to assess patient data, we have identified all the 
clinical concepts involved in textual guideline definitions. For 
each clinical concept, it was discussed with the CRG group 
whether it constitutes a diagnosis, an assessment to be conducted 
by the physician, a laboratory result, a medication, a clinical 
procedure, or a scored assessment to be performed. It was also 
determined whether the information would be retrieved from the 
EHRs of the patient, or whether it cannot be obtained from the 
EHR and needs assessment through physician facing CAREPATH 
tools, such as the AICP. Consequently, jointly agreed-upon parts 
of the consensus guideline have been converted into flowchart 
rules that pave the way for the implementation of clinical decision 
support services.

In our methodology, we utilized the Unified Modeling Language 
(UML) Activity Diagrams to draw the flowcharts. While activity 
diagrams are primarily used in the design phase of software 
engineering to describe system behavior as a workflow, researchers 
have also begun utilizing them for modeling clinical workflows 
(50–52). Activity diagrams enable us to graphically describe what 
clinical action needs to take place in which condition in an easy way. 
It also allows describing sequential and parallel processes. Activity 
diagrams consist of several concepts, such as activity, action, 
transition (control flow and object flow), decision node, swimlane 
and partition, each of which has a different graphical notation. In 
our approach, we  only utilized the following concepts with the 
provided purpose of usage:

 • Initial node: A circle representing the beginning of a workflow 
consisting of a set of actions or activities.

 • Control flow: An arrow showing the sequence of workflow.
 • Decision node: A diamond representing a test condition, such as 

“Has the patient met his/her blood pressure goal?.” The control 
flow can only continue with one of the decision paths.

 • Action/activity: A (rounded) rectangle representing an action 
from the consensus clinical guideline such as “Consider starting 
monotherapy with ACE inhibitors or Angiotensin II Receptor 
Blockers (ARBs) or Calcium channel blockers or Thiazide 
diuretics by also checking possible contraindications.”

 • Final node: An encircled circle representing the end of 
a workflow.

Figure 2 illustrates an example of a flowchart generated for the 
hypertension diagnosis procedure. If a patient has not been diagnosed 
hypertensive, they have not been sent home for diagnosis 
confirmation, and their systolic blood pressure (SBP) value is above 
140 mmHg or diastolic blood pressure (DBP) value is above 90 mmHg, 
the guideline recommends short-term self-monitoring of blood 
pressure levels. It also recommends setting a follow-up appointment 
to confirm diagnosis after 2–4 weeks. If the SBP is between 130 and 
139 mmHg or DBP is between 85 and 89 mmHg, it recommends 
categorizing patient’s blood pressure as high-normal. If they are below 
130 mmHg or 85 mmHg, respectively, it recommends normal 
categorization. On the other hand, if the patient has already been sent 
home, then based on the SBP and DBP values, patient’s blood pressure 
can also be categorized as Grade 1, Grade 2, or Grade 3. In either case, 
the guideline recommends diagnosing the patient as hypertensive.

2.2 Definition of CDS rules in human 
readable format

In the second step, we  developed directly implementable 
specifications for clinical decision support services to automate the 
consensus clinical guideline. For this purpose, we opted for the CDS 
Hooks formalism, which is a standard specification for clinical 
decision support services published by HL7.2 It provides an API 
specification enabling synchronous, workflow-triggered CDS calls 
that return information and suggestions. The CDS Hooks specification 
describes a “hook”-based pattern for invoking decision support from 
within a clinician’s workflow. User activity within the clinician’s 
workflow triggers CDS hooks in real-time. When a triggering activity 
occurs, the CDS Client notifies each registered CDS service for the 
activity. These services must then provide near-real-time feedback 
about the triggering event. Each service receives basic details about 
the clinical workflow context (via the context parameter of the hook) 
along with any service-specific input data required (via the pre-fetch-
template parameter).

In the CAREPATH context, this mechanism is utilized as follows 
(see Figure  3). CDSs in CAREPATH are employed to suggest 
personalized goals and interventions that can be put in a care plan 
based on the recommendations of clinical guidelines. AICP is 
responsible for calling the CDS services with important patient 
context data, crucial for personalizing suggestions. After presenting 
the suggestions to clinicians via user interfaces, the care plan of the 
patient can be created in a guided manner.

In CAREPATH, an HL7 FHIR-based interoperability approach 
is followed. All components utilize HL7 FHIR as a standard-based 
approach to represent patient data: the patient’s EHRs retrieved from 
local systems by TIS/SIS are mapped to FHIR and stored in an open-
source HL7 FHIR Repository, namely onFHIR.io (53), serving as a 
shared patient data repository. Data collected from the patient’s 
home via home/health monitoring devices, such as vital signs, are 
stored as FHIR resources by H/HMP, and patient-collected data such 
as symptoms are represented as FHIR resources via PEP. AICP 
retrieves the relevant CDS input parameters from the FHIR 
repository as important patient context data and passes them to CDS 
services. In the CDS Hooks API, the patient data collected as FHIR 
data is passed as input to CDS services with the ‘pre-fetch’ parameter. 
The CAREPATH core data model conforms to HL7 FHIR Release 4, 
but the implemented architecture is not bound to this specific 
version. It can be  easily adapted to accommodate later versions 
or modifications.

The response of CDS services can consist of textual 
recommendations communicated as information cards (which can 
be read and assessed by the clinician to create a care plan manually, 
such as adding medications based on the detailed guides about 
possible adverse reactions) or as directly reusable care plan 
components communicated as suggestion cards in conformance with 
the CDS Hooks API. In suggestion cards, the recommended goals and 
activities are represented as FHIR resources (such as 
MedicationRequest, Goal, Appointment resources) which can be used 
to constitute the care plan of the patient.

2 CDS Hooks Specifications, https://cds-hooks.hl7.org/.
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Based on the CDS Hooks standard, each CDS service can 
return any number of cards in response to the hook. Clinicians, as 
users, see these cards via AICP interfaces - one or more of each 
type – embedded in the workflow, and can interact with them 
as follows:

 • Information cards provide text for the user to read. In our 
methodology, guidance from clinical guidelines, which may not 
be  feasible or practical to automate but still provide crucial 
information to assist clinicians in creating individualized care 
plans, is represented as information cards. For example, in the 
Hypertension guideline, the guideline recommends discussing 
whether the patient is taking their medication as prescribed 
before considering changes to drug therapy, following the 
National Institute for Health and Care Excellence (NICE)’s 
guideline on medicines adherence (54). This guidance is 
presented as an information card and can be viewed by clinicians 
in a graphical user interface (UI) for reading and acting upon it. 

Example representations of information cards in CAREPATH 
AICP are illustrated in the Results section.

 • Suggestion cards provide a specific recommendation for which 
the CDS Client renders a button that the user can click to accept. 
Clicking automatically populates the suggested change into the 
clinician’s UI. In CAREPATH, CDS services can recommend 
adding certain care plan activities such as Referral Requests, 
Appointment Requests, and Lab Test Orders. These are 
represented as FHIR resources (as detailed in Section 2.4) and 
presented to the user with checkboxes via AICP. Clinicians can 
add them directly to the patient’s care plan by clicking on the 
checkboxes next to these suggestions.

The flowcharts have been reviewed together with CRG members 
to determine the parts of the consensus guideline that should 
be presented as information cards or suggestion cards, in order to 
create a practical tool that can be easily utilized by clinicians as a part 
of their daily clinical workflow.

FIGURE 2

An example of a flowchart based on Hypertension guideline. The yellow circle represents the start node, while the green circles represent the end 
node. Diamonds are used to represent decision nodes, and rounded rectangles represent actions.
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We created a formal template to document CDS Hooks 
specifications for delivering the advice, information, and actions 
suggested for each area addressed by the consensus clinical guideline 
as depicted in Figure 4.

In this table, each flowchart rule identified in the first step is 
represented as a row. The columns of this template can be summarized 
as follows:

 • Each rule is identified with a unique identifier. We begin with 
the section title of the consensus guideline and assign a unique 
number for each rule, such as ‘Hypertension 1,’ ‘Hypertension 2,’ 
‘Diabetes 1,’ ‘COPD 1’ and so on.

 • Each rule has a context attribute, which is mostly informative 
and describes the current state of the patient for which the rule 
will be applied.

 • Each rule has a purpose. The purpose field is critical for CDS 
specifications. We have examined and categorized the purpose of 
the advice, information, and actions suggested by the consensus 
guideline into the following categories:

 o Information
 o Goal management
 o Diagnosis
 o Lifestyle advice (Nutritional intervention and Physical exercise)
 o Drug treatment

FIGURE 3

Use of CDS Hooks based services in CAREPATH architecture.

FIGURE 4

A partial view of a CDS Hooks specification table, illustrating several CDS rules from Hypertension guideline.
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 o Adverse events and medication contraindications
 o Symptom assessment
 o Complication management
 o Planning next visit

These purpose categories are utilized to group the suggestions, and 
separate CDS service implementations are done based on these 
categories. This facilitates presenting guidance from consensus guideline 
in a modular way in the user interfaces provided to clinicians. Different 
panels of the AICP pages are configured to be linked with different CDS 
service instances based on the purpose category, allowing clinicians to 
easily review the guidance provided by the consensus guideline.

 • Each CDS rule has a triggering condition. Most of the time, for 
CDS rules automating clinical guideline suggestions, the triggering 
component is AICP. AICP calls the CDS services with the required 
input. Whenever the input parameters are updated from the user 
interface of AICP, the CDS services are triggered again.

 • Rule descriptions are mainly retrieved from the consensus 
guideline and formalized to be easily converted into computer-
interpretable rules. Each patient parameter represented as a 
clinical concept is enclosed within brackets (e.g., [SBP] 
designated for systolic blood pressure).

 • Parameters represented as clinical concepts used in Rule 
descriptions within brackets are listed input parameters in the 
“Input as prefetch” column. These parameters need to 
be pre-fetched by the CDS client as FHIR resources from the 
FHIR repository and passed to the CDS services as an input. For 
this purpose, these parameters are first mapped to FHIR 
Resources, such as Condition, Observation, and Medication, and 
then represented as clinical concepts as explained in Section 2.3.

 • Finally, the output of CDS rules is briefly described as CDS 
Hooks cards. Here in this table, only the titles, card numbers, and 
summaries are presented. As part of the CDS Hooks specification 
of CDS Services, there is a separate sheet where all the identified 
cards are clearly described, as presented in Section 2.4.

2.3 Definition of clinical concepts

Clear consensus on clinical concepts is a crucial step in CDS 
implementation for processing patient data to provide personalized 
suggestions. It is a step forward to create a common dictionary 
between clinical experts in CRG and technical experts who will 
implement CDS services. It is also essential to establish semantic 
interoperability with existing EHR systems to collect patient 
parameters in a machine-processable manner.

In this step, the parameters identified in rule descriptions and the 
“Input as prefetch” column are represented as clinical concept 
definitions (see Figure  5 for examples). Firstly, as CDS Hooks 
specifications require CDS parameters as HL7 FHIR resources, 
we have categorized clinical concepts as Condition, Observation, and 
Medication resources.

The second important step is to bind each clinical concept to a 
code from international code systems. Based on discussions with CRG 
members, conditions have been coded either with ICD-10 or 

SNOMED CT codes, with categorization as diagnoses or symptoms. 
Medications are uniformly coded with ATC codes, while lab tests 
represented as FHIR Observations are coded with LOINC codes. 
Additionally, the agreed-upon unit of the lab test result observation is 
specified in reference to UCUM.

Assessments to be carried out by clinicians via AICP interfaces are 
also represented as FHIR Observation resources. These are coded with 
LOINC or SNOMED CT whenever possible. In instances where a 
direct mapping to a code in international code systems such as LOINC 
and SNOMED CT is not feasible, local codes have been created to 
designate these observations. The data types of these assessments, 
represented as FHIR Observation resources, are usually specified 
either as boolean Yes/No values, or as a value-set. Value-sets define a 
set of codes drawn from one or more code systems as possible values 
of these assessment observations. For example, such a value-set for 
representing smoking status observation is presented in Figure  5, 
where a set of LOINC codes is selected to represent possible values of 
a smoking status observation.

Additionally, the possible sources of these parameters have been 
identified. Some can be directly extracted from the patient’s EHR, 
while others require assessments during the visit, recorded via 
AICP. Some parameters can be retrieved from PEP, and others from 
H/HMP. This approach ensures that rule implementers can have a 
clear understanding of the clinical concepts to be processed by the 
CDS service implementation as parameters.

2.4 Preparation of CDS hooks card 
templates

After CDS rules are defined in a human-readable format, where 
the relevant clinical concepts are identified, the fourth step involves 
further detailing the specifications of CDS outputs identified in rule 
definitions. For this purpose, we  have prepared CDS Hooks card 
templates. In successful responses, CDS Services respond with a 200 
HTTP response containing an object that includes an array of cards.

Each of the cards identified in the Rules template is specified with 
all the details required in the CDS Hooks standard specification, as 
explained below. An example illustration of these in a user interface, 
such as AICP, is displayed in Figure 6.

 • Summary: A short (usually one sentence) explanation of the 
suggestion, displayed in user interfaces as the title of the card.

 • Detail: A detailed description sourced from the consensus 
clinical guideline. This description is displayed when the user 
clicks the arrow on the right side of the card title. It can 
be represented as plain text or in GitHub Flavored Markdown 
language.3 This field is optional.

 • Source: The primary source of guidance for the decision support 
represented by the card. In CAREPATH, we provide the exact 
section number and page number of the referenced clinical 
guideline (e.g., “Holistic patient centered CAREPATH best 
practice guideline, Chapter 12.2 [pp. 40]”).

3 GitHub Flavored Markdown Spec, https://github.github.com/gfm/.
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 • Suggestions: An array of suggestions that allows a service to 
recommend a set of changes in the context of the current activity 
(e.g., adjusting the dose of a currently prescribed medication for 
the medication-prescribe activity). Each suggestion can contain 
an array of Actions, each defining a suggested action. Within a 
suggestion, all actions are logically ANDed together, meaning 
that selecting a suggestion selects all the actions within it. If there 
are alternative suggestions, separate suggestions should 
be created as part of the suggestions array. Each suggestion must 
have a label summarizing the suggested actions.

 o  Each Action needs to have a type, which can be  “create,” 
“delete,” or “update.” In the CAREPATH context, “create” 
means that the suggested actions (such as referral, 
appointment, lab test request) will be  added as care plan 

activities to the care plan; “delete” means removing an existing 
care plan activity from the care plan, and “update” means 
updating an existing care plan activity in the care plan.

 o  A human-readable description of the suggested action may 
be presented to the end-user, along with a description of the 
FHIR Resource that is suggested to be created, updated, or 
deleted. Therefore, each Action needs to have short title 
summarizing the suggested action. The presentation of 
suggestions and their corresponding actions within AICP is 
depicted in Figure 6.

If an Information card is suggested by the consensus guideline, 
then only the first three attributes (i.e., summary, detail, and source) 
are necessary. In other words, Information cards do not contain any 

FIGURE 5

An excerpt from Hypertension clinical concepts table showcasing examples across different types.
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suggestions, as their purpose is only to provide some information. An 
example of an information card definition as a part CAREPATH CDS 
specifications is presented in Card 4 in Table 1.

Suggestion cards, on the other hand, always contain at least one 
Suggestion, which includes at least one Action. In CAREPATH, we have 
defined 7 types of actions, which are lab order, referral, appointment, 
patient activity, education material, goal, or medication. Within each 
Action, the exact FHIR Resource suggested to be added to the patient’s 
care plan should be present. In CAREPATH, we use the following FHIR 
resources to represent consensus guideline suggestions as care plan 
components: ServiceRequest, Appointment, CommunicationRequest, 
Goal, and MedicationRequest. The details of different types of Actions 
alongside the FHIR resources used in them are explained below.

 • Lab Order Suggestions: Consensus guidelines may suggest lab 
orders to be  requested as part of the care plan. These are 
represented as the ServiceRequest resource in HL7 FHIR. An 
example of a lab order suggestion action within a suggestion card 
is presented in Action 2 of the card in Table 1. With the ‘category’ 
attribute of the ServiceRequest resource, we identify it as a lab 
request, referencing our local ‘care-plan-activity-category’ value 
set. The specific lab test requested is specified via the ‘code’ 
attribute of the ServiceRequest resource. In the example in 
Table  1, Action 2 of Card 21 suggests a lab test order for 
‘Creatinine [Mass/volume] in Serum or Plasma’, indicated by the 
‘2160–0’ code from LOINC. Lab order categories are always 
indicated via a code from LOINC in CAREPATH. If there is 
guidance in the consensus guideline about when this lab test 
needs to be  conducted, this is represented via the 
‘occuranceDateTime’ attribute.

 • Referral Suggestions: Consensus guidelines may suggest 
referrals to specialists as part of the care plan when a second 
opinion is needed. These are represented as ServiceRequest in 
HL7 FHIR.4 The ‘category’ attribute of the ServiceRequest 

4 HL7 FHIR, Release 4, ServiceRequest Resource, http://hl7.org/fhir/r4/

servicerequest.html.

resource identifies it as a referral request, referencing our local 
‘care-plan-activity-category’ value set. When guidance is available 
in the consensus guideline, the specialty of the practitioner to 
whom the referral is targeted is specified via the ‘performerType’ 
attribute of the ServiceRequest resource. For example, Action 3 in 
Table 2 indicates a referral to a cardiologist via the ‘175651000’ 
code from SNOMED CT. Here, we always provide a code from 
the ‘performer-role’ value set defined by HL7.5 If there is guidance 
in the consensus guideline about when this referral needs to 
be conducted, this is represented via the ‘occuranceDateTime’ 
attribute.

 • Appointment Suggestions: Consensus guidelines may suggest 
appointments to be scheduled as part of the care plan. These 
appointments can be for regular care plan review visits, to check 
the effects of treatments, or to discuss the results of referrals. 
They are represented as Appointment resource in HL7 FHIR.6 An 
example appointment action within a suggestion card is 
presented in Action 2 of the card in Table 2. The critical attributes 
are the appointment description and the proposed date, which is 
represented via the ‘start’ attribute.

 • Patient Activity Suggestions: Consensus guidelines may suggest 
certain type of activities to be carried out by the patients as part 
of their care plans, such as physical exercises and self-
measurement of vital signs. These are represented as 
ServiceRequest resources in HL7 FHIR. An example patient 
activity suggestion action within a suggestion card is presented 
in Action 1 of the card in Table 2. With the ‘category’ attribute of 
the ServiceRequest resource, we identify that it is a patient order, 
referencing our local ‘care-plan-activity-category’ value set. The 
specific activity type to be carried out is specified via the ‘code’ 
attribute of the ServiceRequest resource. In the example in 
Table 2, Action 1 suggests the patient to measure their blood 

5 HL7 FHIR, Release 4, Performer Role Value Set, https://build.fhir.org/

valueset-performer-role.html.

6 HL7 FHIR, Release 4, Appointment Resource, http://hl7.org/fhir/r4/

appointment.html.

FIGURE 6

Presenting CDS Hooks cards in a user interface, such as AICP.
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pressure, indicated by the ‘85354–9’ code from LOINC in the 
‘code’ attribute. If there is guidance in the consensus guideline 
about when this activity needs to be conducted, this is represented 
via the ‘occuranceDateTime’ attribute. In this example, the 
patient is asked to measure their blood pressure twice a day.

 • Education Material Suggestions: Consensus guidelines may 
suggest educational materials to be assigned to the patient as a part 
of the care plan. These are represented as CommunicationRequest 

resources in HL7 FHIR.7 The payload attribute is utilized to refer to 
an online educational material that can be offered to the patient via 
the ‘payload.contentAttachment.url’ attribute. An example is 

7 HL7 FHIR, Release 4, Communication Request Resource, http://hl7.org/

fhir/r4/communicationrequest.html.

TABLE 1 An example of an Information Card (Card 4) and a CDS card for arranging a follow-up visit to assess treatment effectiveness, containing 
Appointment and Lab Order actions (Card 21).

CARD 4

Summary Consider hypertension diagnosis with category Grade 1.

Detailed description
BP should be categorized as normal (if measured below 130/85 mmHg), high-normal (130–139/85–89 mmHg), grade 1 (140–159/90–

99 mmHg), grade 2 (160–179/100–109 mmHg) or grade 3 (≥ 180/110 mmHg) to prevent and treat high BP.

Source
Holistic patient-centered CAREPATH best practice guideline, Chapter 12.2 [pp. 40]

Link to CAREPATH best practice guideline

CARD 21

Summary Arrange a follow-up visit in 1 month.

Detailed description

* Adults initiating a new or adjusted drug regimen for hypertension should have a follow-up evaluation of adherence and response to 

treatment at monthly intervals until control is achieved.

* Renal function should be frequently assessed to detect possible increases in serum creatinine and reductions in eGFR as a result of 

BP-related reductions in renal perfusion.

Source
Holistic patient centered CAREPATH best practice guideline, Chapter 12.3.1 [pp. 41 and 42]

Link to CAREPATH best practice guideline

Suggestion 1

label Consider checking lab tests for eGFR and serum creatinine and setting a follow-up appointment within a month.

ACTION 1

type create

description Consider setting a follow appointment after 1 month for follow-up evaluation of adherence and response to treatment.

resource Appointment

extension
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Follow appointment after 

1 month for follow-up evaluation of adherence and response to treatment

description
Follow appointment after 1 month for follow-up evaluation of adherence and 

response to treatment.

status proposed

start {{Today + 1 month}}

specialty –

ACTION 2

type create

description Consider ordering a serum creatinine test to assess renal function.

resource Service Request

status draft

extension http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Serum creatinine test

intent proposal

occuranceDateTime {{Today + 1 month}}

category
http://www.kroniq.srdc.com.tr/fhir/care-plan-activity-category | lab-request | Lab 

Request

code LOINC | 2,160–0 | Creatinine [Mass/volume] in Serum or Plasma

performerType –

performer Patient

text.status generated

text.div Have serum creatinine before the control visit
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TABLE 2 An example of a CDS card for the management of resistant hypertension, containing Referral, Appointment and Patient Activity actions.

CARD 18

Summary Management of resistant hypertension.

Detailed description

The recommended treatment strategy for resistant hypertension should include appropriate lifestyle measures and treatment with optimal or 

best-tolerated doses of three or more drugs, which should include a diuretic, typically an ACE inhibitor or an ARB, and a CCB.

Secondary causes have to be ruled out when BP recommended treatment strategy fails to lower office systolic and diastolic BP values to 

<140 mmHg and/or < 90 mmHg, respectively, and the inadequate control of BP is confirmed by Ambulatory BP Monitoring or home BP 

monitoring in patients whose adherence to therapy has been confirmed.

Source
Holistic patient-centered CAREPATH best practice guideline, Chapter 12.3.2 [pp. 42] and Chapter 12.2 [pp. 40]

Link to CAREPATH best practice guideline

Suggestion 1

label Consider short-term self-monitoring of blood pressure levels to confirm inadequate control of BP.

ACTION 1

type create

description Consider short-term self-monitoring of blood pressure levels to confirm inadequate control of BP.

resource Service Request

status draft

extension http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Self-monitoring of BP

intent proposal

occuranceTiming

“start”: {{Today}},

“end”: {{Today + 2 weeks}},

“frequency”: 2,

“period”: 1,

“periodUnit”: “d”

category
http://www.kroniq.srdc.com.tr/fhir/care-plan-activity-category | patient-order | 

Patient Order

authoredOn Automatically set to the date the CDS call is made

code LOINC | 85,354–9 | Blood pressure panel

performer Patient

ACTION 2

type create

description Consider setting a follow appointment to confirm resistant hypertension after 2–4 weeks.

resource Appointment

extension
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Follow appointment to 

confirm resistant hypertension after 2–4 weeks

description Follow appointment to confirm resistant hypertension after 2–4 weeks.

status proposed

start {{Today + 2 weeks}}

specialty –

ACTION 3

type create

description Consider a Referral to Cardiologist for ruling out secondary causes.

resource Service Request

status draft

extension http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Referral to Cardiologist

intent proposal

occuranceDateTime {{Today}}

category
http://www.kroniq.srdc.com.tr/fhir/care-plan-activity-category | referral | Patient 

referral to specialist

authoredOn Automatically set to the date the CDS call is made

performerType SNOMED | 175,651,000 | Cardiologist

performer –

text.status generated

text.div Referral to Cardiologist for ruling out secondary causes of resistant hypertension

82

https://doi.org/10.3389/fmed.2024.1386689
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title
http://www.kroniq.srdc.com.tr/fhir/care-plan-activity-category
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title
http://www.kroniq.srdc.com.tr/fhir/care-plan-activity-category


Gencturk et al. 10.3389/fmed.2024.1386689

Frontiers in Medicine 12 frontiersin.org

presented in Action 1 and 2 of the Lifestyle Interventions card 
shown in Table 3.

 • Goal Suggestions: Consensus guidelines may suggest 
personalized goals to be assigned to the patient as part of the 
care plan. For example, in the diabetes section of the consensus 
guideline, personalized HbA1C, blood pressure, and lipid 
targets are suggested based on the patient’s various parameters, 
such as glucose level, age, comorbidities, and recent lab test 
results. These goals are represented as Goal resources in HL7 
FHIR.8 The objective of the goal is indicated via the 
‘description.code’ attribute, referencing international code 
systems. In the example presented in Table  4, the code 
‘135840009’ from SNOMED CT is used to specify that this is 
a ‘Blood Pressure monitoring’ goal. The specifics of the goal 
target are specified via the ‘target’ attribute, where the ‘target.
measure’ attribute indicates that this is a goal for systolic 
blood pressure, referencing LOINC code ‘8480–6’, with the 

8 HL7 FHIR, Release 4, Goal Resource, http://hl7.org/fhir/r4/goal.html.

target values indicated via the ‘target.detailRange’ attributes 
between 130 and 140 mmHg.

 • Medication Suggestions: Consensus guidelines may suggest 
adding, updating the dose, or discontinuing a medication as part 
of the personalized care plan for the patient. For example, in the 
hypertension section of the consensus guideline, if the patient 
cannot achieve their blood pressure goals while already on dual 
medication, the consensus guideline suggests considering a 
triple combination of ACEi/ARB, CCB, and diuretic, while also 
checking for possible contraindications. These medication 
recommendations can be  represented as MedicationRequest 
resources in HL7 FHIR.9 In the example presented in Table 5, 
the first suggestion card recommends adding a beta-blocking 
agent. Other possible options can be  added as additional 
alternative suggestion cards. The code “C07” from ATC is used 
to specify that the recommended drug is a beta-blocking agent. 

9 HL7 FHIR, Release 4, Medication Request Resource, https://hl7.org/fhir/

R4/medicationrequest.html.

TABLE 3 An example of a CDS card for offering lifestyle interventions for hypertensive patients, containing Communication Request actions.

CARD 7

Summary Offer Lifestyle interventions for hypertensive patients.

Detailed description
Lifestyle advice should be offered to every patient with high-normal BP or Grade 1, 2, or 3 hypertension. Please check Diet 

Management and Exercise Planning pages for detailed diet and exercise plans to be added to the care plan of the patient.

Source
Holistic patient centered CAREPATH best practice guideline, Chapter 12.3.1 [pp. 41]

Link to CAREPATH best practice guideline

Suggestion 1

label Offer lifestyle advice and educational materials to hypertensive patients for healthy diet and physical activity.

ACTION 1

type create

description Give education material on healthy diet.

resource
Communication 

Request

status draft

extension
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | 

Education material on healthy diet

subject Patient

authoredOn Automatically set to the date the CDS call is made

payload.contentAttachment.language en

payload.contentAttachment.url https://www.nhsinform.scot/healthy-living/food-and-nutrition

payload.contentAttachment.title Diet and nutrition - benefits of a balanced diet

ACTION 2

type create

description Give education material on physical activity for healthy living.

resource
Communication 

Request

status draft

extension
http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | 

Education material on physical activity for healthy living

subject Patient

authoredOn Automatically set to the date the CDS call is made

payload.contentAttachment.language en

payload.contentAttachment.url https://www.nhsinform.scot/healthy-living/keeping-active

payload.contentAttachment.title Physical activity – health benefits of exercise
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Possible side effects are presented as information cards, as 
depicted in Table 5. Considering that there could be too many 
options for the clinician to decide on, especially when 
considering possible side effects, it is also possible to represent 
medication recommendations as Information cards only. This 
enables the clinician to manually edit the medication plan via 
AICP after reviewing all the guidance provided. In CAREPATH, 
we  have chosen to follow this approach to make the CDS 
specifications more concise.

3 Results

3.1 Output CDS rules and CDS hooks cards

Following the presented methodology, we analyzed the CAREPATH 
consensus clinical guideline, which provides advice, information, and 
actions in the following areas: overarching principles of management, 
mild cognitive impairment and dementia, physical exercise, nutrition 
and hydration, common use of drugs, coronary artery disease, heart 

TABLE 4 An example of a Goal suggestion CDS card.

CARD 11

Summary Systolic BP should be targeted to between 130 and 140 mmHg, and diastolic BP to <80 mmHg.

Detailed description

The evidence supports the recommendation that multi-morbid older patients with cognitive impairment (>65 years, including patients over 

80 years) should be offered BP-lowering treatment if their systolic BP is ≥160 mmHg. There is also justification to now recommend BP-lowering 

treatment for old patients (aged >65 but not >80 years) at a lower BP (i.e., grade 1 hypertension where systolic BP is between 140 and 

159 mmHg). Systolic BP should be targeted to between 130 and 140 mmHg, and diastolic BP to <80 mmHg.

Source
Holistic patient centered CAREPATH best practice guideline, Chapter 12.1 [pp. 40]

Link to CAREPATH best practice guideline

Suggestion 1

label Keep blood pressure under control.

ACTION 1

type create

description Keep systolic blood pressure under control (between 130 and 140 mm/Hg)

resource Goal

lifecycleStatus proposed

meta.tag http://kroniq.srdc.com.tr/fhir/CodeSystem/concept-id | GoalSystolicBP

extension http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Keep systolic blood pressure under control

category http://terminology.hl7.org/CodeSystem/goal-category | safety

startDate Automatically set to the date the CDS call is made

description.text Keep systolic blood pressure under control (between 130–140 mm/Hg)

description.

code
SNOMED | 135,840,009 | Blood Pressure monitoring (regime/therapy)

target.dueDate {{Today + 3 months}}

target.measure LOINC | 8,480–6 | Systolic blood pressure

target.

detailRange
low:130, high:140

ACTION 2

type create

description Keep diastolic blood pressure under control (below 80 mm/Hg)

resource Goal

lifecycleStatus proposed

meta.tag http://kroniq.srdc.com.tr/fhir/CodeSystem/concept-id | GoalDiastolicBP

extension http://kroniq.srdc.com.tr/fhir/StructureDefinition/title | Keep diastolic blood pressure under control

category http://terminology.hl7.org/CodeSystem/goal-category | safety

startDate Automatically set to the date the CDS call is made

description.text Keep diastolic blood pressure under control (below 80 mm/Hg)

description.

code
SNOMED | 135,840,009 | Blood Pressure monitoring (regime/therapy)

target.dueDate {{Today + 3 months}}

target.measure LOINC | 8,482–4 | Diastolic blood pressure

target.

detailRange
low:-, high:80
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failure, hypertension, diabetes, chronic kidney disease, COPD, stroke, 
sarcopenia, frailty, and caregiver support. We drew flowcharts, defined 
CDS rules and clinical concepts, and finally produced detailed 
implementable CDS-Hooks specifications for CDS services automating 
the following sections:

 • Recommendations for the management of Mild dementia and 
mild cognitive impairment

 • Recommendations for the management of Physical exercise
 • Recommendations for the management of Nutrition 

and hydration
 • Recommendations for the management of Commonly used drugs
 • Recommendations for the management of Coronary 

artery disease
 • Recommendations for the management of Heart failure

 • Recommendations for the management of Hypertension
 • Recommendations for the management of Diabetes
 • Recommendations for the management of Chronic kidney disease
 • Recommendations for the management of Chronic obstructive 

pulmonary disease
 • Recommendations for the management of Stroke
 • Recommendations for the management of Sarcopenia and frailty
 • Recommendations for the management of Caregiver support

The full specifications are provided in the Supplementary material. 
In Tables 6, 7, we summarize the results of this process. The rules have 
been categorized under the following nine categories based on the 
purpose of recommendations:

 1. Diagnosis: Guideline recommendations for diagnosing a 
patient’s condition based on their current health parameters 
and status. For instance, hypertension guidelines recommend 
diagnosing hypertension if the patient has already undergone 
home diagnosis confirmation and their blood pressure remains 
higher than 139/89 mmHg.

 2. Lifestyle advice: Guideline recommendations related to 
nutritional intervention, physical exercise, and smoking cessation.

 3. Goal management: Guideline recommendations for assigning 
patients targets to achieve, such as maintaining systolic blood 
pressure between 130 and 140 mmHg or providing weight loss 
advice to adults with elevated blood pressure or hypertension 
who are overweight or obese.

 4. Drug treatment: Guideline recommendations for initiating 
new medication therapy for newly diagnosed patients or 
adjusting existing medication therapy if disease progression is 
not controlled.

 5. Adverse events and medication contraindications: Guideline 
recommendations for informing clinicians about possible 
adverse events and contraindications before starting a new 
medication therapy. For instance, the CAREPATH consensus 
clinical guideline recommends closely monitoring the impact 
of BP-lowering drugs on the well-being of the patient due to 
increased risk of adverse events (e.g., injurious falls) in older 
adults. When combination therapy is used, it suggests starting 
at the lowest available doses.

 6. Information and guidance about disease management: 
Includes guidance for clinicians on important aspects of disease 
treatment associated with cognitive impairment and dementia, 
reminders about assessments needed before treatment 
planning and presenting useful information for sharing/
discussion with patients and their caregivers. For example, 
“Before initiating pharmacological treatment for diabetes, the 
person’s cardiovascular status and risk should be assessed to 
determine whether they have chronic heart failure” or “Keeping 
the environment at home safe to reduce the risk of falling 
and injury.”

 7. Symptom recording: For reminding clinicians to assess 
patient’s specific symptoms at certain times or under certain 
conditions. For example, diabetes guidelines recommend 
assessing symptoms such as distress, disabilities, depression, 
anxiety, disordered eating, visual and hearing impairments, 
cognitive capacities, and other geriatric syndromes using a 

TABLE 5 An example of a Medication suggestion CDS Card (Card 31) and 
a possible side effect CDS card (Card 38).

CARD 31

Summary

Consider triple combination of ACEi/ARB, beta-

blocker, CCB and diuretic by also checking possible 

contraindications.

Detailed description

For CAD patients who do not meet their BP goals 

on dual therapy, consider triple combination of 

ACEi/ARB, beta-blocker, CCB and diuretic by also 

checking possible contraindications.

Source

Holistic patient-centered CAREPATH best practice 

guideline, Chapter 12.3.2 [pp. 42]

Link to CAREPATH best practice guideline

Suggestion 1

label Consider adding Beta Blockers as a third therapy.

ACTION 1

type create

description Consider prescribing Beta Blockers.

resource MedicationRequest

lifecycleStatus proposed

description.

text

Prescribe 

Beta 

Blocker as 

a part of 

triple 

therapy

Medication.

code

ATC | C07 

| Beta 

Blocking 

Agents

CARD 38

Summary Compelling side effects for Beta-Blockers.

Detailed description

Beta-blockers has compelling side effects for the 

patients with one of the following conditions: 

asthma or any high-grade sinoatrial or A-V block 

or bradycardia (heart rate < 60 beats per min).

Source

Holistic patient centered CAREPATH best practice 

guideline, Chapter 12.3.2, Table 2

Link to CAREPATH best practice guideline
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Comprehensive Geriatric Assessment at the initial visit, at 
periodic intervals, and when there is a change in disease, 
treatment, or life circumstance, including caregivers and family 
members in this assessment.

 8. Complication management and referrals: Recommendations 
for referring patients to other departments or specialists in case 
of suspected complications, emergencies, or when consultancy/
expertise from another specialty is required. For example, in 
hypertension treatment, referral to a cardiologist is 
recommended to rule out secondary causes if recommended 
treatment strategies fail to lower blood pressure values. 
Additionally, referral to a respiratory disease specialist is 
recommended for diagnosing obstructive sleep apnea if the 
patient exhibits symptoms such as snoring, apnea, nocturia, 
nocturnal dyspnea, nighttime cardiovascular events, or 
resistant hypertension, along with daytime sleepiness. 
Moreover, a referral to emergency services is advised if the 
patient’s clinic blood pressure exceeds 180/110 mmHg.

 9. Planning next visit: For scheduling follow-up appointments to 
evaluate patient’s adherence to care plan activities and their 
response to treatment.

Table 6 presents the number of rules defined for each section of 
the holistic guideline based on these categories. In total, 296 CDS rules 
have been defined. Among them, 117 (40%) are related to drug 
treatment, 46 (16%) to information and guidance about management, 
40 (13%) to diagnosis, 29 (10%) to lifestyle advice, and 64 (21%) to 
other categories. No rules have been defined for drug treatment in the 
Sarcopenia & frailty, Nutrition & hydration, Physical exercise, and 
Caregiver support sections, because these guidelines do not directly 
address the treatment of specific diseases. Similarly, no rules related 
to diagnosis, complication management, and referral exist in the 

Commonly used drugs, Nutrition & hydration, Physical exercise, and 
Caregiver support sections. In goal management, guidelines for 
Hypertension, Diabetes, Stroke and Chronic kidney disease 
recommend setting targets for systolic blood pressure, diastolic blood 
pressure, weight, HbA1c, fasting glucose, LDL cholesterol, HDL 
cholesterol, Total cholesterol, and Hemoglobin. Since the CAREPATH 
study mainly focuses on multimorbidity management in the elderly 
with dementia, the largest number of rules for information and 
guidance about management has been defined in the Mild dementia 
& mild cognitive impairment section.

In each CDS rule, there exists one or more CDS Hooks card to 
achieve the specific objective of that rule. Table 7 shows the number 
of CDS Hooks cards defined for each section and the number of 
actions in those cards per action type. In the CAREPATH study, 
we  defined 326 CDS Hooks cards to implement 296 CDS rules. 
Among them, the majority of the cards (191 out of 326, 59%) appeared 
in the Hypertension, Diabetes, COPD, and Chronic kidney disease 
sections, followed by 38 (12%) in MD & MCI and 31 (10%) in the 
Heart failure sections.

As explained in the Methodology section, a CDS Hooks card can 
be an information card, meaning that there is no action in it, or it can 
contain suggestions in which there exists at least one action. In Table 7, 
the number of information cards in each section is presented in the 
“Information & Medication contraindication” row. In hypertension, 
there exist 17 medication contraindication rules, which are modeled 
as information cards in CAREPATH. The rest of the rows in the table 
show the number of actions per type in the other CDS Hooks cards. 
Here, there is an additional type, autofill, which has not been explained 
in the methodology. In CAREPATH, autofill CDS Hooks cards are 
intended to present guideline recommendations suggesting diagnosis 
or assessment of a patient based on a recent measurement. For 
instance, hypertension guidelines recommend diagnosing Bradycardia 

TABLE 6 The number of rules defined for different categories in each section.

HT DM COPD MD& 
MCI

STR S&F CAD HF CKD CUD N&H PE CS

Diagnosis 12 3 9 3 1 1 3 4 4 – – – –

Lifestyle advice 3 3 – 1 – 2 2 – 1 – 11 5 1

Goal management 2 5 – – 1 – – – 1 – – – –

Drug treatment 17 22 12 8 7 – 9 13 20 9 – – –

Adverse events and 

medication 

contraindications

17 – – 4 – – – – – – – – –

Information and 

guidance about 

management

– 9 2 19 2 2 3 1 8 – – – –

Symptom 

recording
– 1 1 – – – – – – – – – –

Complication 

management and 

referrals

1 10 6 1 2 2 1 1 3 – – – –

Planning next visit – 2 – 2 – – – – 1 – – – –

TOTAL 52 55 30 38 13 7 18 19 38 9 11 5 1

The abbreviations used in the header refer to the following: HT, Hypertension; DM, Diabetes; COPD, Chronic Obstructive Pulmonary Disease; MD&MCI, Mild Dementia & Mild Cognitive 
Impairment; STR, Stroke; S&F, Sarcopenia & Frailty; CAD, Coronary Artery Disease; HF, Heart Failure; CKD, Chronic Kidney Disease; CUD, Commonly Used Drugs; N&H, Nutrition & 
Hydration; PE, Physical Exercise; CS, Caregiver Support.
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TABLE 7 The number of CDS Hooks cards defined for each section and the number of actions per type in the cards.

HT DM COPD MD& 
MCI

STR S&F CAD HF CKD CUD N&H PE CS

Cards 55 55 40 38 13 7 18 31 41 9 11 6 2

Information & 

Medication 

contraindication

33 21 12 27 3 4 3 6 11 1 9 5 2

Patient activity 2 1 – – – – 1 – – – – 1 –

Appointment 2 2 1 2 – – – 3 4 – – – –

Referral 4 7 7 1 3 2 5 5 3 – 2 – –

Education 

material
3 1 2 1 – – 1 1 1 – – – –

Goal 6 17 – – 1 – 1 – 1 – – – –

Lab request 4 6 3 3 – – 10 17 – – – –

Medication 

request
17 20 11 6 7 1 9 10 14 8 – – –

Autofill 4 – 8 – – – – 6 3 – – – –

if the patient’s heart rate is less than 60 bpm, diagnosing Hyperkaliemia 
if the patient’s potassium level is more than 5.5 mmol/L or considering 
severe left ventricular dysfunction if the patient’s left ventricular 
ejection fraction is less than 40%.

3.2 Implementation of CDS engine

In CAREPATH, based on the CDS Service specifications 
presented in Section 2, software engineers have implemented the CDS 
services via a CDS Engine implementation in the Scala programming 
language. For each category in each section presented in Table 6, a 
CDS-Hooks-complaint REST endpoint has been implemented. For 
some categories that contain a considerable number of rules, such as 
drug treatment or information and guidance about management, 
multiple endpoints have been created. Consequently, a total of 65 
CDS-Hooks-compliant REST endpoints have been implemented.

In CAREPATH, the patient data retrieved from EHRs, created via 
AICP, and collected from patients via H/HMP and PEP, are all represented 
in HL7 FHIR and maintained in a FHIR repository. Within the 
implementation of CDS-Hooks endpoints in Scala, the prefetch 
parameters have been expressed as FHIR queries, to retrieve the indicated 
patient input from a FHIR server, acting as the patient data store.

The CDS Hooks cards, represented as separate tables in the CDS 
specifications, have been defined as parametrized JSON files, using a 
template language, namely Mustache. These are instantiated for each 
patient by filling in the placeholders with patient-specific parameters 
by our CDS Engine. The CDS Logic, defined as rules in the CDS 
specifications, is implemented as rules defined via FHIR Path 
expressions, mapping retrieved input parameters to pre-defined CDS 
Hooks Template cards. The defined CDS Hooks cards and service 
definitions are available as open-source on GitHub10.

10 CAREPATH CDS Specifications, https://github.com/srdc/

carepath-cds-specifications.

In CAREPATH, we have preferred a Scala-based implementation. 
However, given the open specifications presented in Section 2, 
Supplementary material, and CDS-Hooks standard specifications, any 
other programming language could have been used to realize the 
implementation of these RESTful CDS services. Clear, open 
specifications mapping the clinical concepts to FHIR resources and 
international code systems, and rules defined based on these clinical 
concepts, enabled engineers who do not have clinical expertise to 
easily realize CDS implementations.

3.3 Usage of CDSs in a real-word 
environment

The Adaptive Integrated Care Platform (AICP) is one of the 
core components of the CAREPATH system, facilitating 
collaborative management of the care of multimorbid patients with 
mild dementia. It serves as the direct interface to care team 
members, allowing for the definition, updating, reconciling, and 
sharing of care plans, as well as the utilization of clinical decision 
support modules supporting these operations. It provides 
healthcare professionals with relevant information to guide 
decisions in an effective way, both during follow-up visits and in 
initial diagnosis processes. AICP has been implemented as a Web 
application providing an easy-to-navigate dashboard for care team 
members to view the basic medical history of the patient along 
with the care plan lifecycle history. The AICP care plan 
management graphical user interfaces have been designed to 
integrate the CDS services and to present the suggestions coming 
from CDS services in the best possible manner to facilitate care 
plan editing in the guidance of evidence-based clinical guidelines. 
The design was made with the involvement of healthcare 
professionals. First, the user requirements were collected through 
interviews conducted with them. Then, based on the user 
requirements, several mockups were drawn. These mockups were 
presented to healthcare professionals and their feedback was 
received. At the end of a few rounds, the final design emerged.
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The input parameters of CDS services may be retrieved from 
the EHRs of the patient, including the patient’s existing diagnosis, 
medications, and lab test results, from PEP for symptoms 
recorded, and from H/HMP for measurements retrieved from 
health devices. During the analysis of CDS services, we realized 
that some input parameters are clinical assessments which need 
to be carried out by the clinician during the visit with the patient. 
An example could be assessing “whether the patient’s condition is 
stable or not.”

AICP has been designed to provide a specific page for the 
management of each section, described in Section 3.1; e.g., 
Hypertension diagnosis/treatment, Diabetes diagnosis/treatment, 
CAD management etc., along with additional pages to support some 
common functionalities such as reviewing the current status of the 
patient (such as physical examination, review of lab results), providing 
overarching lifestyle and physical exercise recommendations, and 
reviewing the questionnaires assigned to the patient.

The care plan management pages have been divided into two 
main parts, as illustrated in Figures 7, 8. In Part A, the clinician is 
reminded about the important parameters that will affect 
personalized decisions about care plan goals and activity 
suggestions. These parameters have been identified in the third 
step of our methodology, which is the definition of clinical 
concepts. The values of these concepts are mostly retrieved from 
EHRs, and clinicians can amend them if necessary (e.g., manually 
adding new lab results). Clinicians can make new assessments, 
mostly for assessments that need to be  carried out during that 
encounter. Figure  7 shows the first part of the Hypertension 
treatment page consisting of six different panels. In the first panel, 
the clinician examines the patient’s latest systolic and diastolic 
blood pressure measurements as well as the number of falls since 
the last visit. The clinician can also record new values for those 
fields. Based on the latest systolic and diastolic blood pressure 
values, the guideline recommends categorizing the patient as 
Grade 1. In the second panel, the lab results of the patient are 
presented. It should be noted that these panels do not present the 
full medical summary of the patient. For each section, such as 
hypertension management, only the lab results, conditions, 
symptoms, assessments, etc. that are necessary for clinical 
assessment in the context of this section (that are listed in the 
clinical concepts table of the respective CDS services) are 
presented. In the third panel, comorbidities are shown. In the 
example, the CDS services automating hypertension guideline 
recommended CKD diagnosis, because the patient’s eGFR value is 
less than 60 mL/min. In the fourth and fifth panels, assessments 
and symptoms are presented, respectively.

Based on the reviewed patient data and the provided clinical 
assessments in Part A, CDS services run in the background and 
provide personalized suggestions about what needs to be put in the 
care plan of the patient in Part B, such as goals (e.g., personalized 
systolic blood pressure, LDL cholesterol, HbA1c target), control 
appointments, lab test requests, referrals, medication requests, 
education materials, and patient orders (e.g., measuring blood 
pressure at home).

Figure 8 displays the implementation of Part B in the Hypertension 
treatment page, consisting of three panels. As explained in Section 2.4, 
in CAREPATH, we  have chosen to represent medication 
recommendations as Information cards and enable the clinician to 

manually edit the medication plan. Therefore, in the Medication 
treatment panel, the medication-related guideline recommendations 
are presented under the medication list, and the clinician is provided 
with add, edit, and delete buttons to update the patient’s medication 
treatment plan.

In the Goal Overview panel, the clinician can see the most recent 
systolic and diastolic blood pressure measurements of the patient in a 
chart view, observe the patient’s adherence to the previous goals, and 
update the goals based on the guideline recommendations.

The guideline recommendations, selected by the CDS Engine 
based on the patient parameters provided in Part A, are presented at 
the end of the page. Clinicians can decide whether to add a suggested 
item to the care plan or not by clicking on the checkbox near it. If 
needed, they can edit their details (e.g., the date of a control 
appointment). In the example shown in Figure  8, the guideline 
recommended targeting systolic BP between 120 and 140 mmHg and 
diastolic BP below 80 mmHg for the patient who is under treatment. 
It also recommended arranging a follow-up visit in 1 month and 
ordering lab tests for eGFR and serum creatinine. Since the patient has 
resistant hypertension (because the patient did not meet his BP targets 
on triple therapy), the guideline also recommended short-term self-
monitoring of blood pressure levels to confirm inadequate control of 
BP, setting a follow-up appointment to confirm resistant hypertension 
after 2–4 weeks, and a referral to cardiologist for ruling out 
secondary causes.

4 Discussion

This paper presents a methodology for generating implementable 
specifications for clinical decision support (CDS) services aimed at 
automating clinical guidelines. We  have established a co-creation 
framework facilitating collaborative exploration of clinical guidelines 
by both clinical experts and software engineers. Through a systematic, 
traceable approach, our methodology enables the generation of open, 
human-readable CDS specifications. This open and traceable 
co-creation approach has especially helped us to address the challenges 
of automating multimorbidity guidelines. We have demonstrated that 
it is technically possible to consolidate suggestions from multiple 
conflicting guidelines and transform them into implementable 
specifications. We believe this methodology contributes to making 
healthcare more manageable for healthcare providers dealing with 
multiple chronic conditions and provides a practical example for 
future studies.

Understanding clinical guidelines poses a significant challenge for 
software engineers lacking medical expertise, hindering their ability to 
develop CDS services for automation (55). Conversely, clinicians 
without technical proficiency encounter difficulties in validating CDS 
implementations to ensure alignment with guideline recommendations. 
Our approach addresses these challenges by fostering interdisciplinary 
collaboration, allowing both groups to collectively translate clinical 
guideline suggestions into actionable directives for personalized care 
plan development.

Key strengths of our methodology include:

 • Repeatable Process: Our methodology offers a systematic, 
replicable process for generating CDS specifications, ensuring 
consistency and reliability across implementations.
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 • Co-Creation Landscape: By establishing a collaborative 
environment, we facilitate synergy between clinical expertise and 
technical proficiency, enhancing the quality and relevance of 
generated specifications.

 • Traceability: Our approach provides clear traceability, enabling 
stakeholders to track the development process and ensure 
adherence to guideline recommendations.

 • Human-Readable Specifications: We emphasize the creation of 
human-readable specifications, enhancing accessibility and 
facilitating comprehension for stakeholders across disciplines.

 • Actionable Guidance: Our methodology translates clinical 
guideline suggestions into actionable guidance, enabling the 
creation of personalized care plans tailored to individual 
patient needs.

FIGURE 7

An example representation of clinical concepts identified during the definition of CDS rules in AICP pages.
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FIGURE 8

An example representation of CDS Hooks Cards in AICP interfaces.
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By bridging the gap between clinical expertise and technical 
implementation, our methodology empowers interdisciplinary teams 
to develop CDS services that effectively automate clinical guidelines 
while ensuring alignment with evidence-based practices.

We have adopted a standardized approach guided by CDS Hooks 
Specifications, leveraging HL7 FHIR to define clinical concepts. Our 
methodology ensures clarity by precisely delineating the input/output 
parameters of CDS services in alignment with HL7 FHIR Resources, 
grounding clinical semantics within international code systems. This 
establishes a universal, shared lexicon—facilitating seamless 
communication between clinical and technical experts. Moreover, our 
clear specifications streamline the implementation of CDS services, as 
input parameters can be readily accessed from a FHIR repository via 
FHIR queries. By adhering to standards and facilitating easy mapping to 
FHIR-based implementations, our research enhances the interoperability 
and potential adoption of CDS services across diverse healthcare systems. 
This robust framework not only accelerates integration with external 
health IT systems but also paves the way for widespread implementation, 
thereby maximizing the impact of our research in clinical practice. In 
doing so, it complements prior studies facing challenges in disseminating 
and sharing knowledge artifacts for clinical decision support across 
different electronic health record platforms (56, 57).

CDS services for multimorbid older adults with MCI/MD need to 
address “whole-of-person” interventions to improve their quality of 
life (19), considering not only social issues but also physical and 
psychological difficulties (58). The CDS services implemented, 
following the methodology outlined in this paper, take a holistic 
approach to these patients, including specific healthcare conditions 
not typically found in guidelines, such as nutrition, exercise, frailty, 
and sarcopenia. Furthermore, they enable the entire healthcare team 
to participate in the care process using the same platform, considering 
not only patients’ diseases but also environmental factors, caregiver 
support, quality of life, and psychosocial conditions.

The importance of patient privacy and data security in healthcare 
delivery necessitates careful planning and robust protection measures, 
particularly in highly automated workflows (59). Although the 
methodology outlined in this paper allows for the automation of 
clinical guidelines by producing implementable specifications for CDS 
services, it is limited to semi-automation, hence it does not provide a 
methodology for full automation. Healthcare professionals are still 
required to review CDS recommendations, make decisions, and 
exercise judgment at critical decision points in the workflow.

In future work, the usability, safety and technology acceptance of 
the CAREPATH ICT platform, including the developed tools and 
implemented CDS services, will be evaluated in a Technical Validation 
and Usability (TVU) study. This study will involve 16 patients with 
their informal caregivers and 16 healthcare professionals. Additionally, 
a Clinical Investigation (CI) involving over 200 patients will 
be conducted. These evaluations will take place in four European 
countries (Spain, Romania, Germany and the United Kingdom) over 
a period of 2 years.
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 • CKD_CDSHooksSpecifications.xlsx
 • CommonlyUsedDrugs_CDSHooksSpecifications.xlsx
 • COPD_CDSHooksSpecifications.xlsx
 • Diabetes_CDSHooksSpecifications.xlsx
 • HF_CDSHooksSpecifications.xlsx
 • Hypertension_CDSHooksSpecifications.xlsx
 • MCI_CDSHooksSpecifications.xlsx
 • NH_CDSHooksSpecifications.xlsx

 • PhysicalExercise_CDSHooksSpecifications.xlsx
 • SarcopeniaFrailty_CDSHooksSpecifications.xlsx
 • Stroke_CDSHooksSpecifications.xlsx

Additionally, the custom Value Set for listing care plan activity 
categories is provided in the following document.

 • ValueSet_CarePlanActivityCategories.xlsx
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Introduction: Obtaining real-world data from routine clinical care is of

growing interest for scientific research and personalized medicine. Despite

the abundance of medical data across various facilities — including hospitals,

outpatient clinics, and physician practices — the intersectoral exchange of

information remains largely hindered due to differences in data structure,

content, and adherence to data protection regulations. In response to this

challenge, the Medical Informatics Initiative (MII) was launched in Germany,

focusing initially on university hospitals to foster the exchange and utilization

of real-world data through the development of standardized methods and tools,

including the creation of a common core dataset. Our aim, as part of the Medical

Informatics Research Hub in Saxony (MiHUBx), is to extend the MII concepts to

non-university healthcare providers in a more seamless manner to enable the

exchange of real-world data among intersectoral medical sites.

Methods: We investigated what services are needed to facilitate the provision of

harmonized real-world data for cross-site research. On this basis, we designed

a Service Platform Prototype that hosts services for data harmonization,

adhering to the globally recognized Health Level 7 (HL7) Fast Healthcare

Interoperability Resources (FHIR) international standard communication format

and the Observational Medical Outcomes Partnership (OMOP) common data

model (CDM). Leveraging these standards, we implemented additional services

facilitating data utilization, exchange and analysis. Throughout the development

phase, we collaborated with an interdisciplinary team of experts from the fields

of system administration, software engineering and technology acceptance to

ensure that the solution is sustainable and reusable in the long term.

Results: We have developed the pre-built packages “ResearchData-to-

FHIR,” “FHIR-to-OMOP,” and “Addons,” which provide the services for data
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harmonization and provision of project-related real-world data in both the FHIR

MII Core dataset format (CDS) and the OMOP CDM format as well as utilization

and a Service Platform Prototype to streamline data management and use.

Conclusion: Our development shows a possible approach to extend the MII

concepts to non-university healthcare providers to enable cross-site research

on real-world data. Our Service Platform Prototype can thus pave the way for

intersectoral data sharing, federated analysis, and provision of SMART-on-FHIR

applications to support clinical decision making.

KEYWORDS

service platform, intersectoral data sharing, health data space, real-world data,
interoperability, data harmonization, research data infrastructure, secondary use of
clinical data

1 Introduction

For scientific research, there is a high interest in using data
from routine clinical care, so-called real-world data (RWD) (1–
4). Although large amounts of RWD are available in various
institutions, such as hospitals, outpatient clinics, and physician
practices, the intersectoral data exchange between sites is hindered
by their heterogeneity in terms of structure, content, and
compliance with data protection regulations (2, 5). To address this
challenge, the German Medical Informatics Initiative (MII) was
launched in 2018, initially focusing on university hospitals to foster
the exchange and utilization of RWD (6, 7). At that time, Data
Integration Centers (DIC) were established at the medical sites of
the university hospitals, and standardized solutions were developed
for effective data use and exchange in both healthcare and research,
with a focus on interoperability and data harmonization. For
example, all university hospitals in the MII defined a dataset
description, the MII Core dataset (CDS) (8) using the Health
Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR)
international standard communication format (9). The FHIR MII
CDS consists of basic modules (e.g., Person, Case, Diagnosis,
Procedure, Laboratory Test Results, Medication), and extension
modules (e.g., Oncology, Pathology Results, Molecular Genetics,
Intensive Care) (8). This forms the foundation for cross-site
data exchange and the integration of third-party applications via
SMART-on-FHIR technology (10).

To facilitate the data exchange of RWD for scientific purposes,
the HL7 International (11) and the Observational Health Data
Sciences and Informatics (OHDSI) (12, 13) community have
announced collaboration in 2021 (14). The OHDSI community
develops the Observational Medical Outcomes Partnership
(OMOP) common data model (CDM) (15), as well as tools for data
quality assessment and analysis (16). Common to all standardized
data formats is the need to develop individual processes for the
extraction, transformation and loading (ETL) of data from different
data sources, which remains a major challenge (5). Nevertheless,
hospitals have succeeded in overcoming these initial hurdles
and making their own RWD available in a harmonized form for
research (17, 18) and possibly also for patient care.

Since certain diseases, such as cardiovascular diseases, diabetes,
allergies, and mental illnesses, are often not treated at university
hospitals and there is insufficient data available, especially for rare
diseases, it is essential to obtain RWD as well from non-university
healthcare providers to ensure a comprehensive and diverse dataset
for research studies. In order to make RWD available for research
by non-university healthcare providers, the Medical Informatics
Hub in Saxony (MiHUBx) was founded in 2021 (19). Among the
project goals is to investigate whether the concepts of the MII can be
transferred to non-university healthcare providers. As a first result
within this project, Bathelt et al. (1) demonstrated the possibility
to utilize an existing portable and standardized infrastructure from
a university hospital setting and transferred it to non-university
sites to support feasibility requests for participation in multicentre
studies (1). However, the work of Bathelt et al. (1) was limited
in terms of data availability, terminologies used, and harmonized
data formats, so that RWD from non-university sites are still
insufficiently available for research. Yet, due to limited human and
economic resources and expertise in HL7 FHIR and OMOP CDM,
it is hardly possible for non-university healthcare providers to
develop the required services for data harmonization and provision
in standardized data formats themselves. It is therefore necessary to
provide the services in such a way that they can be conveniently
deployed and easily used by data providers for different studies.
In this paper, all tools for data harmonization, provision and
management, such as databases, programs for ETL processes,
analysis tools and other applications, are referred to as services.

The aim of this work is the development of pre-built packages
that contain services and support the harmonization and provision
of RWD in FHIR MII CDS and OMOP CDM format and thereby
provide reuse potential for various projects. Another goal of
this work is the development of a versatile and modular Service
Platform Prototype that facilitates project administration, service
management, data management and analysis. In this context, we
focus on the following two research questions:

1. What services are needed to facilitate the provision of
harmonized RWD for cross-site research?

2. How can the necessary services (from 1) be technically
compiled so that they can be used by hospitals with few
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resources and limited expertise in HL7 FHIR and OMOP
CDM to make harmonized RWD accessible for research
studies?

2 Materials and methods

2.1 Materials for data harmonization and
provision

2.1.1 Compilation and integrated implementation
of existing software resources

For the harmonization of RWD from source systems into the
basic modules of the FHIR MII CDS version 1.0 (20), and into the
OMOP CDM format (15), we have selected the following materials,
as these are successfully used at the University Hospital Dresden.
In addition, we investigated the applicability of other established
tools. For this purpose, we used the following developed concepts
of the MII and the software tools published by the MII consortium
Medical Informatics in Research and Care in University Medicine
(MIRACUM) (21) as MIRACOLIX Tools (22):

Clinical Data Repository: A Clinical Data Repository (CDR) is
a database in which patient-centered healthcare data from various
IT systems [e.g., electronic health record (EHR), laboratory system,
biobank] are stored in a site-specific data model.

FHIR server BLAZE: A FHIR Server is a software solution
that stores and manages FHIR resources. It acts as a bridge
connecting healthcare applications and systems, allowing them
to exchange patient information in a consistent and structured
format or to answer population-wide aggregate queries quickly.
The FHIR server BLAZE (23) was initially developed within the
German Biobank Alliance project (24), aimed at high-throughput
performance (25). BLAZE comes with a built-in feature to
authenticate requests against an OpenID Connect provider.

MIRACUM FHIR Gateway: The MIRACUM FHIR Gateway
(26) is a PostgreSQL database with a table for storing FHIR
Resources, which are represented in JSON format. It serves as a
temporary storage.

ETL process DWH-TO-FHIR: The ETL process DWH-TO-
FHIR extracts research data, which is provided as database views,
from the data warehouse (DWH) of the site, constructs FHIR
resources according to the FHIR MII CDS structure definition v1.0
and loads them into a MIRACUM FHIR Gateway. The application
DWH-TO-FHIR implemented Basic Authentication to enforce
access controls to the FHIR server’s resources. This involved
sending a username and password in plain text over the network.

ETL process ROTATOR: The ROTATOR (fROm gaTewAy
TO seRver) is an application that reads FHIR resources from
the MIRACUM FHIR Gateway and loads them onto a FHIR
Server, such as BLAZE.

OHDSI tools: The OHDSI tools are provided as Docker
containers by Gruhl et al. (27). The basis of the OHDSI tools is
the OMOP CDM PostgreSQL database, which is divided into the
standardized OMOP CDM data tables v5.3 and the OMOP CDM
standardized vocabularies (state February 2023), such as SNOMED
CT (Systematized Nomenclature of Medicine–Clinical Terms),
ICD-10-GM (International Classification of Diseases, German

Modification) and OPS (“Operationen- und Prozedurenschlüssel,”
surgery and procedure key). Furthermore, the OHDSI tools by
Gruhl et al. (27) includes additional dockerized tools for analyzing
research data in OMOP CDM: (1) the R-based application
ACHILLES that can be used for data characterization and
visualization, (2) the web-based application ATLAS that can be
used for cohort definition and scientific analysis, and (3) the
R-based application Data Quality Dashboard (DQD) that can be
used for data quality analysis.

ETL process FHIR-TO-OMOP: The ETL process FHIR-TO-
OMOP extracts FHIR resources from a FHIR Server (e.g., the FHIR
server BLAZE) or from the MIRACUM FHIR Gateway, transforms
them into the standardized format of OMOP CDM and loads them
into an OMOP CDM database (28, 29). The application provides
HTTP Basic Authentication to enforce access controls to the FHIR
resources of the FHIR server.

TRANSITION Database: The TRANSITION Database is a
relational database that was originally developed for the semantic
mapping of system-specific documented diagnoses to Orpha codes
for rare diseases (30). It is deployed as a PostgreSQL database
v14 (31), and offers tables with required terminology bindings
(e.g., FHIR value sets), which can essentially support the semantic
mapping of the RWD to required code systems. For example, the
semantic mapping of the gender (e.g., value “1” for female) to a
FHIR ValueSet (e.g., code “female” (32)) can be achieved via the
TRANSITION Database. As an example of the database structure,
the table for the semantic mapping of the vital parameters can be
found as a csv file in the (Supplementary File 2).

Keycloak: Since medical data needs to be protected in
an enhanced manner, the Keycloak server offers significant
advantages (e.g., centralized Identity Management, Customizable
Authentication Flows) for the medical domain, particularly in
terms of securing sensitive patient data, ensuring compliance
with healthcare regulations, and facilitating interoperability among
diverse healthcare IT systems. The Authentication Server Keycloak
(33) can be used as an OpenID (34), OAuth 2.0, or SAML Connect
provider to validate requests to the FHIR endpoints.

2.1.2 Original contributions–expanding with
custom software additions

We analyzed the already established data provision pipeline at
University Hospital Dresden by consulting experts in the fields of
data integration, provision, protection and security. From this, we
derived a generic process for data harmonization and provision.
Subsequently, we identified missing materials, which we have
developed and adapted. These are technically described below and
further explained in the “3 Results” section.

Research Data Repository: In order to be able to provide
the ETL process DWH-TO-FHIR to other sites, a database
structure is required which represents medical data and follows
the logic of the basic modules of the FHIR MII CDS specification
v1.0 (20). For this reason, we developed the Research Data
Repository (RDR), deployed as a PostgreSQL database v14 (31).
This repository encompasses tables for various FHIR resource
types, like Patient, Encounter, Condition, Observation, Procedure,
Medication, and MedicationAdministration, and is used for the
cross-project and project-related storage of research data from
routine clinical care (RWD).
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Structural Mapping Guideline MII CDS: To reduce
implementation time and to facilitate the specific data mapping,
which must be done at each site, the Structural Mapping Guideline
MII CDS is developed (Supplementary File 1).

The ETL process RDR-to-FHIR: To streamline the ETL
process to provide RWD in FHIR MII CDS format, the sub-
processes DWH-to-FHIR and ROTATOR were merged into the
ETL process RDR-to-FHIR. RDR-to-FHIR loads project-related
RWD from the RDR, constructs FHIR resources according to
the FHIR MII CDS specification v1.0 and loads directly into
the FHIR Server without buffering via the MIRACUM FHIR
Gateway. To facilitate process execution, a RESTful API client was
implemented to send data to the FHIR API. In addition, to enhance
security beyond Basic Authentication in the ETL process DWH-
TO-FHIR, we have implemented the authentication framework
OAuth 2.0 for accessing resources of the FHIR server BLAZE.
This approach uses bearer tokens created by the authentication
server Keycloak.

ETL process FHIR-TO-OMOP: To enable OAuth 2.0
authentication against the FHIR server BLAZE, we added
this authentication method to this application.

2.2 Pre-built packages for data
harmonization and provision

We have developed pre-built packages, e.g., for the
transformation of RWD to FHIR, to facilitate creating, running
and connecting the multiple services (see section “2.1 Materials for
data harmonization and provision”). In close collaboration with an
interdisciplinary team of software developers, database engineers
as well as infrastructure, security, and usability experts, we defined
specific applications and composed the services to easy-to-install,
pre-configurable installation packages based on Docker v24 (35)
and Docker Compose v2 (36). We made our decisions based on
previous experience and preliminary works. For testing purposes,
we provided a test dataset.

To facilitate data and system administration, we have included
the following additional materials in our packages, which can be
used optionally.

pgAdmin: The open-source administration and
management tool pgAdmin4 (37) provides a user-
friendly web interface for the efficient administration of
PostgreSQL databases used for RDR, TRANSITION database,
Keycloak, and OMOP CDM.

Portainer: The open source container administration tool
Portainer community edition (38) simplifies the management
of containerized applications that are used to provide all
the services described in the section “2.1 Materials for data
harmonization and provision.” Portainer provides a web interface
for interacting with Docker containers (35) to create, manage, and
deploy containers without the need for extensive knowledge of
Docker commands.

2.3 Service Platform Prototype

To support research projects and system administration, we
have developed a web-based Service Platform Prototype that

facilitates project-related data provision for research projects.
Based on experience with the design of user interfaces for
interactive systems, an initial Low-Fidelity Prototype of the
service platform was created to serve as a basis for discussion
for a joint, interdisciplinary Graphical User Interface (GUI)
design. By incorporating feedback from usability experts, this
Low-Fidelity Prototype was iteratively transformed into a High-
Fidelity Prototype. To this end, regular joint meetings were held
with software developers and usability experts to ensure that the
interaction principles for design solutions in accordance with
ISO 9241-110 (39) were taken into account and implemented
in the service platform interface (task appropriateness, self-
descriptiveness, conformity to expectations, learnability,
controllability, robustness against errors, user retention).

Our Service Platform Prototype was developed using Quarkus
v3.4.3 (40). The frontend provides a form-based interface for
users to specify the services and configurations needed for
their project. The backend, managing the service deployment, is
responsible for the instantiation of Docker containers, network
setup, configuration management, and error handling. Angular
v16.2.8 (41) was used for the frontend, complemented by Angular
Bootstrap v16.0.0 (42). Communication between the microservices
(e.g., to manage projects and Docker containers) is orchestrated
by the Java Docker API v3.3.3 (43). Communication between the
services is facilitated by RabbitMQ (44), a message broker that
ensures reliable and real-time messaging.

3 Results

3.1 A generic data harmonization and
provision process to foster data
availability

We developed a generic process for the project-related
provision of research data, which is shown in Figure 1 and
described below.

The data provision process begins with a project-independent
and site-specific ETL pre-process CDR-TO-RDR [cf. Figure 1 (Step
1)] that extracts RWD from the CDR, transforms it with the help of
the Structural Mapping Guideline and the TRANSITION Database
to the data structure of the Research Data Repository (RDR) and
loads it into a project-independent instance of the RDR.

According to the MII concepts, the organizational starting
point for the provision of data for a research project is a request
from the data user. After the technical and legal feasibility check,
the required data for the study is requested from the project-
independent RDR instance and pseudonymized or anonymized in
the subsequent process step to ensure that the research data does
not allow any conclusions to be drawn about the identity of a
patient [Figure 1 (Step 2)].

To provide the project-related data in FHIR MII CDS format,
instances of RDR-TO-FHIR and the FHIR server BLAZE are created
and the ETL process is executed [Figure 1 (Step 3)]. To provide the
project-related data in the OMOP CDM format, instances of FHIR-
TO-OMOP and the OHDSI tools (cf. OHDSI tools) are created and
the ETL process is executed [Figure 1 (Step 4)].
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FIGURE 1

Project-related provision of research data for providers and users. Fast Healthcare Interoperability Resources (FHIR); Observational Medical
Outcomes Partnership (OMOP); common data model (CDM); extract transform load (ETL); Clinical Data Repository (CDR); Research Data Repository
(RDR): Medical Informatics Initiative (MII); Core dataset (CDS).

3.2 Pre-built packages to facilitate
interoperability on the fly

We developed the following three pre-build packages: (1)
ResearchData-TO-FHIR package for converting RWD to FHIR
resources (cf. red bordered box in Figure 2), (2) FHIR-TO-OMOP
package for converting the FHIR resources to the OMOP CDM
format (cf. blue bordered box in Figure 2), and (3) the Addons
package for deployment of optional services to simplify database,
container, and security management (cf. gray bordered box in
Figure 2). Figure 2 illustrates the composition of our implemented
services and the data flows.

ResearchData-TO-FHIR package: The ResearchData-TO-
FHIR package v2.2.0 provides a Docker compose specification
that allows to automatically retrieve the images of the RDR,
the FHIR server BLAZE, and the RDR-to-FHIR (cf. section “2.1
Materials for data harmonization and provision” and red bordered
box in Figure 3), creates Docker containers as instances of the
images that can be used to provide project-related research data
in FHIR MII CDS format. For testing purposes, the package
provides a test dataset. The package also includes the Structural
Mapping Guideline (cf. Research Data Repository). By adjusting
environment variables, the installation is customizable.

FHIR-TO-OMOP package: The FHIR-TO-OMOP package
v1.1.0 (35) provides a Docker compose specification that allows
to automatically retrieve the images of the OHDSI tools and the
FHIR-TO-OMOP (cf. section “2.1 Materials for data harmonization
and provision” and blue bordered box in Figure 3), creates Docker
containers as instances of the images that can be used to provide
project-related research data in OMOP CDM format. Through
environment variables, the installation is customizable and the

synthetic dataset from the ResearchData-TO-FHIR package can be
used for testing purposes.

Addons package: The Addons package v1.0.0 (36) provides
Docker compose specifications that allow to optionally deploy the
PostgreSQL administration platform pgAdmin, the TRANSITION
database, the container administration tool Portainer and the
Authentication server Keycloak with a demo configuration
for protecting the FHIR server Blaze (cf. ResearchData-TO-
FHIR package).

The source code of the ResearchData-TO-FHIR package v2.2.1
(45), the FHIR-TO-OMOP package v1.1.0 (46) and the Addons
package v1.0.0 (47) includes instructions for installation and usage
as well as for further developments.

3.3 Service Platform Prototype to enable
an easy to use and modular
infrastructure

While the pre-built packages and their services, which are
integrated into the Service Platform Prototype, were described
in 3.2, the Service Platform Prototype v1.0.0 (48) itself is
described below.

We implemented two key services: (1) the Project Management
Service and (2) the Container Management Service. The Project
Management Service allows researchers to create and manage their
research projects. The Container Management Service automates
the installation, operation and administration of services for each
research project, such as the launch of ETL-processes and the
display of technical details, such as unique identifiers, Docker
names, assigned communication ports or operational status, to
inform users about the current activity and availability of services.
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FIGURE 2

Services and data flows. Fast Healthcare Interoperability Resources (FHIR); Observational Medical Outcomes Partnership (OMOP); common data
model (CDM); extract transform load (ETL); Clinical Data Repository (CDR); Research Data Repository (RDR): Medical Informatics Initiative (MII); Core
dataset (CDS).

The frontend layout contains a navigation bar (Figure 3A), a
sidebar (Figure 3B) and a main content area (Figures 3C, D). The
navigation bar offers links to subpages that provide services and
further information on database administration (i.e., via pgAdmin),
authentication (i.e., Keycloak) and container administration (i.e.,
Portainer). The research projects are listed in the sidebar and
new projects can be created via clicking on the respective button.
The main content area is divided horizontally. The upper area
displays the project-related services and offers functions for use
and management, such as starting and stopping the Docker
containers, starting the ETL processes, accessing the web frontend
of the services and receiving further information (Figure 3C).
The project-related containers are listed in the lower area, where
further technical details are displayed, e.g., information on Docker
containers, images, communication ports and operating status
(Figure 3D).

The demo server, as an instance of the Service Platform
Prototype, is available at https://tu-dresden.de/med/demoserver.
This repository (48) also contains the developer documentation,
including initial installation instructions.

4 Discussion

Our aim was to determine which services and processes are
required to enable the provision of RWD for cross-site research and
patient care, and how the services can be made available and usable
to non-university healthcare providers with limited resources in
a low-threshold manner. In particular, we determined which

services are required for the harmonization of healthcare data
into HL7 FHIR standard-based MII CDS format for intersectoral
exchange, and to the OMOP CDM format for national or even
international cross-site research. From this, we derived a process
for the project-related provision of RWD based on the already
established data provision pipelines of the university sites (21)
in Germany. On this basis, we developed the pre-built packages
ResearchData-TO-FHIR, FHIR-TO-OMOP, and Addons for data
harmonization and provision to facilitate interoperability on the
fly. To streamline the use of the particular services, especially
for non-university healthcare providers, we developed a versatile
and modular Service Platform Prototype that demonstrates the
administration of research projects based on RWD.

To the best of our knowledge, our work is the first that shows
how services for data harmonization, provision, and analytics
can be provided to non-university healthcare providers in a
low-threshold manner. The proposed pre-built Packages and
Service Platform Prototype streamline the process of setting up
research project environments and reduce the time and technical
expertise required to provide RWD for research studies and
feasibility inquiries, such as those conducted by the German
Portal for Medical Research (Deutsches Forschungsdatenportal für
Gesundheit, FDPG) (18, 49). Even though admission to the FDPG
is currently only possible for sites that participate in the MII
(mainly universities), our work is also highly relevant for non-
university service providers, as feasibility studies can also be carried
out using the OHDSI tools. We also consider it likely that our work
may be of use to the European Health Data Space (EHDS) (50)
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FIGURE 3

Schematic representation of the Service Platform Prototype. Navigation Bar (A), Sidebar (B), Main Content Area divided in Service Overview (C) and
Service List (D), Fast Healthcare Interoperability Resources (FHIR); Observational Medical Outcomes Partnership (OMOP); Research Data Repository
(RDR); Identifier (ID); Medical Informatics Hub in Saxony (MiHUBx).

in the future, as our platform can be extended with appropriate
services for data harmonization.

Although our work is a big step toward intersectoral provision
of RWD, it has some limitations due to the following factors:

(1) Healthcare providers use site-specific clinical information
systems to store RWD, which have limited standardized interfaces
for the data exchange. Therefore, the RWD from possibly
multiple data sources must be harmonized into the data
format of our provided Research Data Repository in a pre-
processing step by the sites themselves, which can be a
challenge depending on the type and scope of data storage, the
available human and economic resources and the knowledge of
medical informatics. The legally binding interface specifications
currently developed and established in Germany, such as the
HL7 FHIR standard-based Information technology systems in
hospitals (Informationstechnische Systeme in Krankenhäusern,
ISIK) (51) and Medical Information Objects (Medizinische
Informationsobjekte, MIO) (52), could provide a remedy here, as
services based on these standards could be developed and made
available via our platform to automatically convert the RWD into
the FHIR MII CDS format for research purposes.

(2) The FHIR MII CDS v1.0, established as the standard for data
exchange within the MII, presents certain limitations, particularly
in its dataset specifications for specific medical fields like oncology
and ophthalmology. Although plans are in place to refine profiles
for oncology in the upcoming FHIR MII CDS v2, there remains a
need to develop more appropriate dataset specifications for specific

medical domains. These improvements are crucial for effectively
incorporating such specifications into similar service platforms,
especially in key areas like Observations, Imaging Studies, Diagnostic
Reports, Procedures, and Medication Administrations.

(3) In addition, the services/applications cannot yet be installed
“out of the box” via the frontend. In order to further minimize the
technical hurdle, this is an important goal for the future.

Despite the limitations, our pre-built packages together with
the Service Platform Prototype can already be used to provide
data for specific research projects in a time-saving manner. We
believe that our research represents a significant contribution
in research data management, offering an efficient, user-friendly,
and reproducible way to establish project-specific data provision
pipelines. This may make our work interesting not only for
non-university service providers, but also for university sites. In
addition, our Service Platform Prototype can serve as a foundation
for third-party applications, e.g., based on SMART-on-FHIR, which
can be used not only for research but also for patient care.

Next, we will implement the Service System Platform at two
non-university hospitals in Germany as part of a pilot study. In
order to achieve a high level of acceptance among end users, we
will test its functionality and usability. As part of the roll-out, an
accompanying acceptance analysis in the form of an observation
protocol and in-depth face-to-face interviews will be conducted
to ensure the solution is usable and sustainable. For this purpose,
we collaborate closely with experts from the fields of technology
acceptance and usability. Thanks to our heterogeneous teams, the
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interdisciplinary perspective can have a supportive effect in order to
strengthen user-friendliness and thereby actual usage of the Service
System Platform.

5 Conclusion

In conclusion, the developed Service Platform Prototype
together with the pre-built packages represent an essential step
forward in managing and facilitating medical research studies, with
a focus on data harmonization, and collaborative effectiveness.
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Introduction: Referrals are an integral part of any healthcare system. In the 
Kingdom of Saudi Arabia (KSA) an electronic referral (e-referral) system known as 
the Saudi Medical Appointments and Referrals Centre (SMARC) began formally 
functioning in 2019. This study aims to showcase the Saudi experience of the 
e-referral system and explore the epidemiology of referrals nationally.

Methods: This retrospective descriptive study utilised secondary collected 
data between 2020 and 2021 from the SMARC system. Cross tabulations with 
significance testing and colour-coded maps were used to highlight the patterns 
across all regions.

Results: The study analysed over 600,000 referral requests. The mean age of 
patients was 40.70  ±  24.66  years. Males had a higher number of referrals (55.43%). 
Referrals in 2021 were higher than those in 2020 (56.21%). Both the Autumn 
and Winter seasons had the highest number of referrals (27.09% and 27.43%, 
respectively). The Surgical specialty followed by Medicine had the highest 
referrals (26.07% and 22.27%, respectively). Life-saving referrals in the Central 
region were more than double those in other regions (14.56%). Emergency 
referrals were also highest in the Southern regions (44.06%). The Central and 
Eastern regions had higher referrals due to unavailable sub-speciality (68.86% 
and 67.93%, respectively). The Southern regions had higher referrals due to both 
unavailable machine and unavailable beds (18.44% and 6.24%, respectively).

Conclusion: This study shows a unique system in which referrals are between 
secondary, tertiary, and specialised care. It also highlights areas of improvement 
for equitable resource allocation and specialised care in slightly problematic 
areas as well as the use of population density in future planning.
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Introduction

Digital health is transforming healthcare into real-time, 
individualised care, enhancing diagnosis, treatment, and patient 
empowerment (1). It provides opportunities beyond conventional 
healthcare for prevention, early illness detection, and chronic disease 
management (2). However, literature shows mixed results of this 
digital transformation across different countries (3). In new medicine, 
digital technologies can reinforce best practices like electronic 
referrals (4).

E-referrals are critical for providing quality healthcare. Efficient 
referral systems promote collaboration across all levels of care (5). 
Referral system success depends on many factors including patient 
barriers, resources, technology, and patient behaviour (6).

Saudi Arabia has recently undergone significant healthcare 
reforms and system changes as part of the National Transformation 
Programme launched in 2015 under Saudi Vision 2030. This aims to 
provide equitable, high-quality healthcare for all through innovations 
such as a robust digital health infrastructure (7–9). One key 
component of the digital health transformation is the establishment 
of a national electronic referral system known as the Saudi Medical 
Appointments and Referrals Centre (SMARC). SMARC facilitates 
referrals between healthcare facilities across all levels of care in the 
Kingdom. It utilises a Unified System of Medical Referrals (USMR) to 
receive and coordinate referral requests nationally through a 
centralised platform (10).

Whilst Saudi  Arabia has made significant progress in 
implementing digital health, few studies have evaluated the impacts 
and effectiveness of these efforts. One study found preparedness 
amongst Saudi facilities for adapting to Vision 2030 changes was 
varied (11). Understanding patterns and utilisation of the new 
e-referral system across regions can provide insights into its 
performance and areas needing improvement.

The e-referral system within the Kingdom of Saudi Arabia (KSA), 
previously known as Ehalati, faced challenges when initially launched 
in 2012 including fragmented systems across hospitals, lack of 
integration between public and private facilities, and inadequate 
expertise in digital health solutions. The information technology 
platform at that time lacked features like artificial intelligence, robust 
data analytics, and interoperability, making centralised data 
management difficult. With many hospitals relying on their own 
individual platforms, doctors often depended on informal referral 
networks to coordinate care. However, aligned with Vision 2030, the 
centralised electronic referral system was revamped and fully 
reimplemented in 2019 as the SMARC (12).

Since 2019, substantial improvements have been made with 
Ministry of Health (MoH) support to transition to a unified, national 
e-referral platform. Targeted training programmes were implemented 
to build digital health capabilities across facilities. The SMARC system 
leverages advanced health information technologies like artificial 
intelligence and predictive analytics for improved care coordination. 
By standardising the e-referral platform and workflows across all 
public and private hospitals, SMARC addressed fragmentation and 
seamlessly integrates referrals digitally. With all governmental and 
majority of private healthcare facilities now connected to the 
centralised system, SMARC facilitates efficient nation-wide referral 
management and represents a major milestone in the digital 
transformation of Saudi Arabia’s health sector.

Other countries have also implemented effective digital health 
systems, such as Catalonia’s electronic health information exchange 
which has been a European leader since 2009. This system enabled 
critical health data sharing during the COVID-19 pandemic (13). 
Additionally, the European Health Data Space (EHDS) promotes 
individuals’ electronic health data access and use for research and 
public benefit (14). Global digital health initiatives like Catalonia’s and 
the EHDS exemplify how digital systems can improve health outcomes 
and research. Lessons from these efforts can inform Saudi Arabia’s 
digital health advancements under Vision 2030.

Saudi Arabia currently serves a population of almost 34 million 
through a combination of public and private facilities across 13 
administrative regions. As part of Vision 2030 reforms, the healthcare 
system is being upgraded to boost quality, efficiency and value through 
integrating public and private sectors. This includes establishing five 
new business units to manage the 13 healthcare regions alongside 
national insurance companies, overseen by the MoH and new 
insurance centres (15–17).

This study is the first to showcase the KSA’s nationwide referral 
patterns using routine data from the new SMARC e-referral system. 
Examining referral epidemiology and trends will provide insights into 
the system’s effectiveness and inform future optimisations to enhance 
its impact as a key digital health initiative under Vision 2030.

Materials and methods

Setting and data source

Under the new healthcare transformation adopted by the MoH, 
the 13 administrative areas will be pooled into five BUs as follows; 
Asir, Jazan, and Najran in the Southern BU; Aljouf, Hail, Northern 
Border and Tabuk in the Northern BU; Riyadh and Alqassim in the 
Central BU; Makkah, Medina, and Albaha in the Western BU, and the 
Eastern administrative area in the Eastern BU (15).

All hospitals have a designated coordination department usually 
known as the Office of Coordination and Eligibility for Treatment 
(OCET), which has access to the USMR. The OCET receives a referral 
request from the treating physician which is then uploaded to the 
USMR. Depending on a patient’s medical condition, the referral 
request is uploaded as either lifesaving, emergency, or routine. These 
three types of referrals are categorised by SMARC to facilitate the 
referral process, and to timely secure acceptance to patients who are 
in most need.

For emergency and routine referrals, the OCET has the privilege 
to choose up to three hospitals that can potentially offer the needed 
service at the same region, or alternatively the USMR will 
automatically choose three appropriate hospitals. The SMARC system 
has built-in timeframes for referral requests to be accepted, depending 
on the urgency. For emergency referrals, hospitals have 72 h to accept 
the request, whilst routine referrals have a 14-day timeframe. If the 
initially chosen hospitals reject the request within the allotted 
timeframe, the request is sent to additional hospitals for consideration. 
If no hospital has accepted the referral request once the timeframe 
elapses, the case is escalated to the SMARC medical referral 
management team. They will find an appropriate alternative from the 
pool of public and private hospitals, searching both within the same 
region and in other regions if needed. Importantly, whilst awaiting 
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referral acceptance, patients continue receiving necessary healthcare 
management at the sending hospital to ensure stability until the 
transfer is arranged.

To expedite the referral request for life-threatening cases, SMARC 
offers a 24-h lifesaving hotline (1937) in which any treating physician 
can call directly. The call is answered by a SMARC lifesaving agent and 
directed to an on-call medical consultant for review and acceptance. 
If the request is accepted as a lifesaving by the on-call consultant, the 
treating physician through the OCET, will upload the request to the 
USMR along with the acceptance code and the name of the receiving 
hospital. Treating physicians who requested emergency referrals can 
also call and use this service when patients’ health conditions 
deteriorate whilst waiting the emergency referral acceptance.

Additionally, SMARC oversees referrals for Saudi patients seeking 
to return to the KSA for treatment. For these cases, Saudi Embassies 
abroad have access to the USMR and may initiate a referral request. 
Figure 1 describes the process of the referral requests acceptance.

This study utilised routinely collected secondary data extracted 
from the SMARC e-referral system database between 2020 and 

2021. Permission was obtained to access and analyse this 
de-identified dataset for research purposes, which was provided by 
the SMARC team after obtaining necessary approvals. The informed 
consent was waived given the retrospective nature of this study 
which relied solely on anonymized secondary data. The dataset was 
checked for completeness and consistency, and any incomplete or 
inconsistent records were removed prior to analysis. No personally 
identifiable information was included to maintain patient 
confidentiality. The variables included in the dataset are described 
in the Measurements section.

Study design

This retrospective study utilised secondary routinely collected 
data provided by the SMARC e-referral system. The dataset includes 
all referral requests submitted through the SMARC system nationally 
in 2020 and 2021, with no exclusion criteria applied.

FIGURE 1

The process of referral acceptance across Saudi regions.
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Ethical considerations

Both the MoH and Imam Abdulrahman Bin Faisal University 
institutional review boards have approved this study (23-77-E) and 
(IRB-2023-01-305). Standard precautions were taken to protect the 
confidentiality and privacy of patients’ data involved.

Measurements

The dataset includes variables on sex, age, date of referral (month 
and year), type of referral (e.g., lifesaving, routine), bed type (e.g., 
ward bed or burn bed), reason for referral (e.g., unavailable speciality 
or unavailability of a specialised physician), medical speciality 
requesting the referral (e.g., medicine or surgery), region of referral 
request according to the five business units of the New Model of Care 
as well as according to the entire 13 administrative regions of 
the country.

Statistical analysis

To answer the objectives of the study, cross tabulations of 
explanatory variables according to the five BUs were performed, 
and tests of significance through Chi-squared tests and ANOVA 
tests were computed where appropriate. All analyses were run 
using the Stata statistical software version 16 (18). To further study 
the distribution of referral requests across the 13 administrative 
areas, colour-coded maps were drawn in ArcGIS (GIS software) 
version 10.0 (19), according to the percentage of referrals of 
each area.

Results

Sociodemographic characteristics of 
patients

Table  1 presents the sociodemographic characteristics of all 
patients. The total number of patients was 671,672 with an average age 
of 40.70 ± 24.66 years. Over 55% of referrals were for males. 
Non-Saudi’s made up  15.11% of the total referrals. Most referral 
requests originated from the Western BU (34.99%), and the least 
originated from the Eastern BU (11.02%). Referrals were higher in 
2021 compared to 2020 (56.21% and 43.79%, respectively).

Pattern of referrals across months

Upon examining the overall monthly pattern of referrals in 
Figure 2, both years of 2020 and 2021 have commenced with a high 
percentage of referrals, dipping to their lowest levels in April 2020 
and May 2021. In 2020, the chart displays an initial decline in 
medical case referrals between February and March. From the 
beginning of April onwards, there is a significant graduate increase 
in referrals through to the year end. In contrast, 2021 displays a less 
consistent trend with more fluctuations and a significant increase 
in referrals in March, June, August, and December. Comparatively, 

referral rates from both years meet by the end of the year, 
indicating an expected new standard for medical referrals 
has developed.

Patterns across medical specialties

Figure  3 shows the pattern of medical specialties requesting 
referrals. Patients with referrals pertaining to internal medicine were 
the most common, reaching over a quarter of all requests (27.74%). 
Followed by general surgery and cardiac surgery (25.23% and 9.63%). 
The least common referral requests were for anaesthesia (0.03%).

Sociodemographic variables and region of 
referral request

Associations between sociodemographic variables and the region 
of referral request are presented in Table 2. Referrals originating from 
the Western and Southern regions were for patients who were relatively 
older than those from other regions (average age 42.38 and 41.63 years). 
Males dominated referrals from the Southern regions (59.18%), 
whereas for females, referrals were similarly high for both the Central 
and the Eastern regions. Requests for non-Saudis was highest in the 
Western region and lowest in the Eastern region (19.46% and 9.06%, 
respectively). All associations were significant at the 0.05 level.

Referral characteristics and region of 
referral request

The Central region had the highest number of referrals due to life 
saving events (14.56%), whereas the Northern region had the lowest 

TABLE 1 Sociodemographic characteristics of patients with referral 
requests.

Characteristics Total (%) 671,672 (100.00)

Age (μ, SD) 36.88 (23.40)

Gender

  Males 372,308 (55.43)

  Females 299,364 (44.57)

Nationality

  Non-Saudi 101,474 (15.11)

  Saudi 570,198 (84.89)

Region (BUs)

  Central 101,793 (15.16)

  Eastern 74,018 (11.02)

  Western 235,020 (34.99)

  Northern 118,212 (17.60)

  Southern 142,629 (21.23)

Year

  2020 294,114 (43.79)

  2021 377,558 (56.21)
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at only 2.32%. For routine outpatient referrals, those originating from 
the Northern region were the highest reaching 57.39%. Emergency 
related referrals were most common in the Southern region and least 
common in the Eastern region (44.06% and 25.94%, respectively). As 
for dialysis, no referrals were registered from the Eastern region, 
whereas the Western region had 93 requests.

Also, 44.85% of referrals for ward beds were found to be in the 
Southern region. The Western region had the highest requests for 
isolation beds (5.63%). Requests for ICU beds was highest in the 
Central region (9.36%), whereas for CCU beds it was highest in the 
Western region (3.26%). As for PICU and NICU beds, they were 
highest in the Northern and Western regions, respectively.

As for reasons for referral, unavailable subspeciality was the most 
common reason and was highest in the Central region followed by 
the Eastern region (68.86% and 67.93%, respectively). The 
unavailability of a specialised physician was mostly reported in the 

Northern region (24.03%). The Southern region mostly reported the 
unavailability of a machine and the unavailability of a bed compared 
to all other regions (18.44% and 6.24%, respectively). Referrals due 
to social reasons were most commonly reported in the Western 
region, whilst there were 213 referrals due to a royal order from the 
Eastern region. Referrals due to injuries were only reported in the 
Southern region, whereas referrals due to health crises were highly 
reported in the Western region. All associations were significant at 
the 0.05 level (Table 3).

Total referral requests and referrals 
received by administrative areas

Both the Eastern and Makkah administrative areas were in the 
highest quintile with requests beyond 10.49% for both. However, Hail, 

FIGURE 2

Pattern of monthly e-referrals for the years 2020 and 2021 across the Kingdom of Saudi Arabia.

FIGURE 3

The e-referral requests by medical speciality for 2020 and 2021 across the Kingdom of Saudi Arabia.
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Tabuk, and Najran administrative areas were within the lowest 
quintiles (Figure 4).

As for receiver areas, both Riyadh and Makkah were within the 
highest quintile both reaching above 12.80% of the total requests 
received. Whereas, Hail, Najran and the Northern areas were amongst 
the lowest (Figure 5).

Discussion

This study is the first to present the current status of the Saudi 
e-referral system. It also explored the patterns of e-referrals across 
the country utilising routinely collected data stored by the SMARC 
system. Patterns of referrals have been enormously studied 
worldwide (20–23). However, making clear comparisons are likely 
to be difficult due to differences between countries in, for example, 
local contexts and health care systems (24). Also, patterns of 
referrals in the current literature were mostly limited to primary 
healthcare referrals (20–23). This contrasts with the SMARC system 
in the KSA, which is concerned with secondary, tertiary, and 
specialised levels of care only. Also, this analysis of the Saudi 
e-referral system provides the first empirical evidence of inequalities 
across the different BUs. Previous studies in the KSA have shown 
that there are discrepancies in the quality of treatment provided to 
COVID-19 patients amongst the five different BUs at the outbreak’s 
onset (15). Other several noteworthy observations can be drawn 
from the findings of this study.

Sex variations in e-referrals suggest the presence of disparities in 
healthcare-seeking patterns. Higher referrals amongst males are 
reflected in the higher proportion of males compared to females as 
shown in the 2022 census (25). However, sex variations were observed 
in referrals in other countries including America and Canada (23, 
26, 27).

The observed discrepancy in the ratio of Saudi/non-Saudi patients 
may be  ascribed to the inherent characteristics of the healthcare 
system and expatriates’ situation in the KSA. Expatriates are primarily 
in the country for work purposes and are obligated to be medically fit 
in order to have a work visa. Also, since employers are required to 
provide health insurances for their foreign employees, most of them 
attain health services from private hospitals. This is despite the fact 

that free healthcare is provided to all citizens regardless of nationality 
in MoH facilities especially during the COVID-19 pandemic (28).

Regional variations in referral patterns likely stem from differences 
in healthcare resources and infrastructure. The uneven distribution of 
healthcare services across and within regions is well-established (29–
33). Disparities between the five new business units in Saudi Arabia 
have been noted in prior studies on quality indicators for COVID-19 
patients (15, 34, 35). Our analysis provides further evidence of 
disproportionality amongst the BUs regarding referral initiation 
and receipt.

The Eastern region and Makkah initiated the highest total number 
of referral requests. Contributing factors could include their greater 
population density (25) and regional health system capacities.

However, when examining referral request rates per 10,000 
population, the Northern and Albaha regions were actually highest 
(Supplementary Table 1). This suggests medical resource limitations, 
also reflected when grouped into their respective Northern and 
Western BUs. Conversely, the Eastern region had the second lowest 
rate per capita despite having the most total referrals, highlighting the 
need to consider population density in resource allocation.

Riyadh and Makkah had the most referral requests. As the 
country’s major healthcare hubs with advanced facilities and 
specialties (36), these regions likely attract more referrals due to 
advanced medical capabilities. Similar regional differences have been 
observed elsewhere globally (26). Further research into the 
distribution of health system resources, such as workforce and 
facilities, is needed to fully explain the variations in medical referrals 
across Saudi Arabia’s regions.

Internal medicine emerged as the most commonly referring 
speciality highlighting the prevalence of chronic diseases and 
cardiovascular conditions in the population (37). Surgical related 
specialities followed which may be due to shortage of surgical staff, 
particularly in surgical sub-specialities. Patients and referring 
physicians often prefer and trust specialised centres, further driving 
the demand for surgical services (38). Comparatively, in Canada, 
dermatology was one of the top referred specialties, whereas in the 
KSA, dermatology related referrals were low (39).

One notable finding is the high number of referrals due to 
unavailable subspecialties, which is particularly high in the Central 
and Eastern regions. This may be an indication of a shortage of certain 

TABLE 2 Associations between sociodemographic variables and region of referral request.

Characteristics Central 
101,793 (15.16)

Eastern 74,018 
(11.02)

Western 235,020 
(34.99)

Northern 
118,212 (17.60)

Southern 
142,629 (21.23)

Age (μ, SD) 36.38 (22.46) 36.58 (23.06) 38.79 (23.48) 34.75 (23.55) 36.00 (23.77)

P-value <0.001

Gender

Males 52,851 (51.92) 38,423 (51.91) 134,196(57.10) 62,546 (52.91) 84,408 (59.18)

Females 48,942 (48.08) 35,595 (48.09) 100,824 (42.90) 55,666(47.09) 58,221(40.82)

P-value <0.001

Nationality

Non-Saudi 12,734 (12.51) 6,707(9.06) 45,737(19.46) 12,182 (10.31) 24,114 (16.91)

Saudi 89,059 (87.49) 67,311(90.94) 189,283 (80.54) 106,030 (89.69) 118,515(83.09)

P-value <0.001
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sub-specialities, where despite the fact that these areas are home to 
two of the main cities of the country namely Riyadh and Dammam, 
which both include excellent healthcare services and high quality of 
care, these cities are surrounded by smaller towns with hospitals 
equipped with lesser specialised staff referring to those main cities. It 
may also indicate that healthcare staff within those areas pursue a 
high-quality of care (40). Also, the Northern region stands out with a 
significant proportion of referrals attributed to the unavailability of a 
specialised physician, indicating a potential need for improved access 
to specialised care in that region. In contrast, the Southern region 
reports a higher frequency of referrals due to the unavailability of a 
machine and bed, indicating infrastructure-related challenges. 
Additionally, it is worth noting that referrals due to injuries were 
exclusively reported in the Southern region. This suggests that the 
Southern region may have a higher prevalence of injury-related 
incidents or a greater need for specialised care for injuries compared 
to other regions. The Western region shows a higher occurrence of 
referrals due to social reasons, potentially reflecting the influence of 
social and cultural factors on healthcare-seeking behaviour.

Discrepancies in bed types across regions indicates potential 
differences in healthcare needs and allocation of resources. The 
Southern region exhibits a relatively higher number of referrals for ward 
beds, this may be attributed to the concentration of general hospitals or 
specialised facilities within that particular geographic location. The 
assignment of distinct bed categorisations, such as burn beds and 
isolation beds, may be a result of various factors, such as the prevalence 
of illnesses in a specific geographical region, the demand for specialised 
medical treatments, and the demographic attributes of the populace.

Lastly, referral rates are influenced by national and international 
incidents. In 2020, COVID-19 pandemic and its consequences 
including the lockdown could explain the low referral rate in 2020 
compared to 2021. The drop in referrals during the pandemic has also 
been seen in different settings such as emergency departments, and 
heart diseases in countries including Italy and the United Kingdom 
(41, 42). However, this is the first study to observe the influence on a 
national level. With the implementation of the new regional healthcare 
transformations under the 2030 Vision and the merging of the existing 
13 regions into five BUs; this research promises to encourage greater 

FIGURE 4

Total e-referral requests sent according to the 13 administrative areas of the Kingdom of Saudi Arabia.
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dedication to increasing the outstanding quality and equitable 
distribution of healthcare services.

Current findings show a momentary view of national referral 
patterns during a two-year time frame. These results provide an 
opportunity for improvement in terms of equity in resource allocation 
as well as enhancement of specialised care especially in problematic 
areas highlighted here. Furthermore, the use of this nationwide 
secondary data enabled us to explore the patterns of e-referrals across 
the country. However, certain limitations should be addressed. The 
reliance on secondary data obtained from the e-referral system limits 
the scope of variables examined. Also, the absence of similar studies 
in the wider literature makes direct comparisons challenging. 
Additionally, the study’s focus on referral patterns may overlook 
other important aspects of healthcare, such as primary care utilisation 
or patient outcomes. Future research should address these limitations 
to provide a more comprehensive understanding of healthcare 
utilisation and effectiveness.

Additionally, several key insights for healthcare systems 
worldwide can be drawn from the evolution of SMARC. First, a 

unified e-health platform not only enhances service quality and 
efficiency but also improves access, conserves resources and 
eliminates service redundancies. Second, centralised tracking 
allows effective monitoring of health outcomes and resource 
utilisation, which aids in the identification of strengths and 
weaknesses within the system. Finally, this integrated approach 
increases strategic resource distribution, informs health policy and 
advances academic research, leading to greater optimization of 
healthcare delivery (43, 44). Investments in e-health and digital 
health provide economic benefits as well through streamlining 
operations and reducing administrative burdens, both of which are 
achieved by automating processes and minimising the need for 
in-person consultations. Digital health technologies improve 
diagnostic and treatment accuracy, improving patient outcomes and 
reducing medical errors; and extend service reach, particularly in 
underserved areas, maximising resource utilisation. These benefits 
contribute to an overall improvement in the efficiency of the 
healthcare system, ultimately leading to lower costs over the long-
term (43, 44).

FIGURE 5

Total e-referral requests received according to the 13 administrative areas of the Kingdom of Saudi Arabia.
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Conclusion

This study examined the underlying mechanism of an important 
telehealth tool, namely, e-referrals. Certain patterns were observed 
which included higher referrals for males, as well as in internal 
medicine and surgical related specialities, and unavailable 
subspeciality being the most commonly reported reason for referrals. 
We recommend the use of population density in the future planning 
of resource allocation and specialised care.
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TABLE 3 The e-referral characteristics and region of referral requests in 2020 and 2021 across the Kingdom of Saudi Arabia.

Characteristic Total 671,672 
(100.00)

Central 
101,793 
(15.16)

Eastern 
74,018 
(11.02)

Western 
235,020 
(34.99)

Northern 
118,212 (17.60)

Southern 
142,629 
(21.23)

Referral types

  Life saving 47,315 (7.04) 14,820 (14.56) 3,793 (5.12) 16,516 (7.03) 2,748 (2.32) 9,438 (6.62)

  Routine OPD 317,484 (47.27) 51,944)51.03( 42,333 (57.19) 100,378 (42.71) 67,846 (57.39) 54,983 (38.55)

  Routine inpatient 85,955 (12.80) 7,997 (7.86) 8,693 (11.74) 38,150 (16.23) 15,760 (13.33) 15,355 (10.77)

  ER 220,802 (32.87) 27,030 (26.55) 19,199 (25.94) 79,883 (33.99) 31,854 (26.95) 62,836 (44.06)

  Dialysis 116 (0.02) 2 (0.00) 0 (0.00) 93 (0.04) 4 (0.00) 17 (0.01)

P-value <0.001

Bed type

  OPD no bed 316,152 (47.07) 51,691 (50.78) 42,209 (57.03) 99,938 (42.52) 67,654 (57.23) 54,660 (38.32)

  Ward 242,731 (36.14) 33,239 (32.65) 22,552 (30.47) 87,203 (37.10) 35,762 (30.25) 63,975 (44.85)

  Burning bed 630 (0.09) 97 (0.10) 65 (0.09) 254 (0.11) 71 (0.06) 143 (0.10)

  Isolation bed 27,067 (04.03) 1,742 (1.71) 2,557 (3.45) 13,225 (5.63) 3,024 (2.56) 6,519 (4.57)

  ICU 47,217 (07.03) 9,528 (9.36) 4,247 (5.74) 19,505 (8.30) 4,825 (4.08) 9,112 (6.39)

  CCU 18,603 (02.77) 2,360 (2.32) 1,094 (1.48) 7,653 (3.26) 3,067 (2.59) 4,429 (3.11)

  PICU 8,102 (01.21) 1,392 (1.37) 659 (0.89) 2,702 (1.15) 1,664 (1.41) 1,685 (1.18)

  NICU 11,170 (01.66) 1,744 (1.71) 635 (0.86) 4,540 (1.93) 2,145 (1.81) 2,106 (1.48)

P-value <0.001

Reason of referral

  Unavailable subspecialty 413,619 (61.38) 70,300 (68.86) 50,429 (67.93) 144,614 (61.33) 68,582(57.82) 79,694 (55.68)

  Unavailable physician 114,882 (17.05) 17,736 (17.35) 13,233 (17.78) 35,724 (15.17) 28,482 (24.03) 19,706 (13.76)

  Unavailable machine 89,790 (13.33) 10,932 (10.74) 5,938 (7.95) 29,420 (12.49) 17,080 (14.40) 26,361 (18.44)

  Unavailable bed 24,305 (03.61) 1,817 (01.77) 1,956 (02.62) 10,057 (04.27) 1,537 (01.29) 8,921 (06.24)

  Social reason 1,662 (0.25) 95 (0.09) 328 (0.44) 1,111 (0.47) 100 (0.08) 28 (0.02)

  Health crisis 27,414 (04.06) 1,209 (01.17) 2,233 (02.99) 14,678 (06.24) 2,785 (02.34) 6,509 (04.55)

P-value <0.001
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Introduction: This paper addresses the dilemmas of accessibility,

comprehensiveness, and ownership related to health data. To resolve

these dilemmas, we propose and justify a novel, globally scalable reference

architecture for a Personal Health Data Space (PHDS). This architecture leverages

decentralized content-addressable storage (DCAS) networks, ensuring that the

data subject retains complete control and ownership of their personal health

data. In today’s globalized world, where people are increasingly mobile for work

and leisure, healthcare is transitioning from episodic symptom-based treatment

toward continuity of care. The main aims of this are patient engagement, illness

prevention, and active and healthy longevity. This shift, along with the secondary

use of health data for societal benefit, has intensified the challenges associated

with health data accessibility, comprehensiveness, and ownership.

Method: The study is structured around four health data use case scenarios from

the Estonian National Health Information System (EHIS): primary medical use,

medical emergency use, secondary use, and personal use. We analyze these use

cases from the perspectives of accessibility, comprehensiveness, and ownership.

Additionally, we examine the security, privacy, and interoperability aspects of

health data.

Results: The proposed architectural solution allows individuals to consolidate

all their health data into a unified Personal Health Record (PHR). This data can

come from various healthcare institutions, mobile applications, medical devices

for home use, and personal health notes.

Discussions: The comprehensive PHR can then be shared with healthcare

providers in a semantically interoperable manner, regardless of their location

or the information systems they use. Furthermore, individuals maintain the

autonomy to share, sell, or donate their anonymous or pseudonymous health

data for secondary use with di�erent systems worldwide. The proposed

reference architecture aligns with the principles of the European Health Data

Space (EHDS) initiative, enhancing health data management by providing a

secure, cost-e�ective, and sustainable solution.
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health data accessibility, comprehensiveness, and ownership dilemmas, primary and

secondary use, a reference architecture for global health data space, decentralized
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1 Introduction

Health data encompasses information about an individual’s or

a population’s health conditions, health outcomes, and quality of

life (1). They include clinical, environmental, socioeconomic, and

behavioral data relevant to health and wellness (2). Healthcare

digitalization, when combined with accurate and high-quality

health data, presents opportunities for delivering enhanced health

and wellness-related services at reduced costs (3). However, health

data introduces significant risks, as alone or combined with

other data, it can reveal personal health status (4). The risk of

revealing health status may reduce the willingness of individuals

to participate in certain care processes, e.g., in mental health (5, 6)

or drug abuse treatment. Health data leakage can also lead to

discrimination against individuals by employers, insurers, or banks

(7, 8).

The primary use of health data for diagnosis, treatment, and

rehabilitation expects that pertinent information about a person’s

health is shared accurately and promptly with relevant parties,

facilitating coordinated decision-making across all care settings

(9). Beyond primary use, health data is utilized for secondary

purposes (10) by various stakeholders, including policymakers,

public health officials, researchers, physicians, the public, and

industry (11). Routine clinical data is considered highly valuable

(12) for advancing healthcare objectives and improving overall

health outcomes.

Despite the value of routine clinical data collected during

healthcare provision, significant portions of health data remain

underutilized (13) due to the unstructured nature of the data and

privacy and interoperability concerns. Moreover, the integration of

medical data from various health data sources—Electronic Health

Records (EHRs), medical devices for home use, innovative health

and welfare applications, and health notes by patients—is beneficial

in both primary and secondary use (14). However, the challenges

related to data security, privacy, accessibility, comprehensiveness,

and interoperability (15) result in the underutilization of data

integration. We formulate these challenges as the following

three dilemmas.

The dilemma of accessibility: The conflict between the desire for

the accessibility of health data and the need to safeguard sensitive

personal information.

This dilemma encapsulates the contradiction between ensuring

data FAIR accessibility (16) and protecting sensitive personal

information (17). A vast dataset with valuable routine health data is

available worldwide, and broad and open access to this information

is essential to maximize its benefits for society and citizens (18).

However, given the delicate nature of personal data, there’s an

increasingly pressing need to fortify access controls. This presents

a notable contradiction, as the pursuit of widespread health data

FAIR accessibility clashes with the imperative to protect personal

information (19).

The dilemma of comprehensiveness: The challenge to reconcile

the need for the comprehensiveness of health data with their

current fragmented nature (20).

Currently, a person’s health data are preserved in different

service providers’ data repositories in provider-specific formats,

preventing the gathering of a holistic representation of the

individual’s health record (21). Using the complete personal health

records of a person, modern machine learning and AI methods

can be used to gain a comprehensive picture of their health status

(22). This would enable a transition from episodic, symptom-based

treatment to continuous health monitoring and personal integrated

care pathways, aiming to prevent diseases or diagnose them as

early as possible. However, various factors prevent consolidating an

individual’s health data into a single, unified repository, including

challenges related to semantic interoperability, diverse legal and

ethical hurdles, and elevated risks of data leakage. As stated

in research from 2018 (23), we still do not have a unified

interoperability approach to cope with the semantic heterogeneity

of health data. A review from 2019 concludes that no big-data

analytics will happen without optimized data sharing and reuse,

which we still lack despite different interoperability standards in

the medical domain (24). Similar semantic interoperability-related

challenges will be highlighted in the papers published in 2024

(25, 26).

The dilemma of ownership: The discrepancy between the data

owner’s rights to ownership and the practical inability to exercise

those rights.

The presented statement highlights a dual dilemma. First,

whether data and information can be considered property remains

unresolved (27, 28). Second, the significant challenges associated

with data ownership need to be addressed.While this paper refrains

from definitively answering the first question, the authors generally

favor an affirmative stance. Regardless of the stance on data

ownership, prevailing legislation (29) ensures specific rights for

the data subject concerning the information collected about them.

Generally, in the EU, the processing of health data is prohibited

unless there is a lawful basis under Article 6 of the GDPR and one of

the exceptionsmentioned in Article 9 is met (e.g., consent, contract,

legal obligation, vital interests, public tasks, and legitimate interest).

This legal framework ensures that individuals maintain control

over their health data, emphasizing the importance of informed

consent and transparency in processing such data (30). In reality,

however, the practical exercise of these rights faces challenges, as

data is preserved in third-party servers beyond the physical control

of the data subject. In most countries, laws governing medical

records place responsibility for storing health data on healthcare

providers. These regulations are based on the healthcare provision

legislation and do not need to be discussed in the context of

this article.

Even the contemporary regional or national digital health

platforms (DHPs) like the Estonian National Health Information

System (EHIS) cannot resolve these dilemmas. First, as such

systems are data processors according to the GDPR, they must

process, protect, and secure data accordingly. Therefore, accessing

data for secondary purposes is difficult due to complex content

management and the need for de-identification (anonymization

and pseudonymization) (31). Second, in such systems, the dilemma

of data comprehensiveness has not been solved because of the

international mobility of citizens. To solve this, the DHP must

be pan-European or worldwide, or there is a need for an

interoperability solution for the federation of national health

systems. This is likely impossible and impractical as such systems

are too complex to develop and operate. The third challenge
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involves the data ownership dilemma. Within the intricate

infrastructure of national or regional DHPs where data may be

stored either in the cloud or on local servers, individuals do not

know the whereabouts of their data. More critically, they might be

unaware of who has access to their data and for what purposes it is

being used. This situation further complicates individuals’ ability to

exercise their legal rights, leaving them powerless and disconnected

from their health data.

In addition, the solution used in Estonia, which has 1.3 million

citizens, may not be scalable in larger countries or, for instance,

on a pan-European scale due to development and operation costs

and data security and privacy challenges. One of the issues in such

extensive DHP systems is health data concentration (32), which

may be tempting for attackers because, in the event of a successful

attack, it is possible to obtain the health data of many people.

Between 2009 and 2022, there were 5,150 healthcare data breaches,

resulting in the impermissible disclosure of 382,262,109 healthcare

records in total (33). In 2021 alone, there were 686 HIPAA rule

breaches affecting 500 or more health records, and the Accellion

FTA Hack alone exposed the health information of at least 3.51

million individuals, making it the worst year for healthcare data

breaches (34).

The more concentrated the data, the higher the costs

for security; any breach could have severe consequences for

individuals’ privacy and well-being. Moreover, the dominance of

a few entities in controlling health data raises questions about

data ownership and control and the risks for data monopoly.

Additionally, there are worries about the impact on healthcare

innovation. A concentrated health data environment may hinder

the development of diverse and competitive solutions, limiting

the ability of small players to enter the market. Striking a

balance between centralized and decentralized approaches, and

prioritizing privacy and competition, is crucial in addressing

the health data concentration issue. Policymakers, healthcare

providers, and technology companies must collaborate on patient

privacy, promote fair competition, and foster innovation in the

health data ecosystem.

We propose and evaluate a reference architecture for a Personal

Health Data Space based on DCAS networks (Figure 1). The

focus of this paper is twofold. The first objective is to outline

the typical use cases of health data for primary and secondary

use based on existing health information systems (AS-IS) and

to explain these systems’ inability to resolve the three dilemmas.

The second objective is to envisage an innovative DCAS network-

based reference architecture for health data management (TO-BE),

analyze its properties from the accessibility, comprehensiveness,

and ownership dilemma perspectives, and evaluate security, data

protection, scalability, and other aspects of the proposed solution

under the typical primary and secondary use case scenarios.

The EHIS covers all Estonian residents and is one of the best

digital health platforms (35). The Estonianmodel, operational since

2008 (36), provides valuable experiences that can be extrapolated

for broader application. Our research utilizes four common health

data use cases from the EHIS. Through this exploration, we shed

light on issues and challenges associated with preserving health

data within analogous unified national health data repositories.

Our analysis underscores the need for cohesive solutions at the

EU level, facilitating the seamless exchange of health data across

institutional and national borders. Our discussion operates within

the framework outlined by the GDPR (29) and the EHDS (37).

This involves managing citizens’ health data responsibly, ensuring

data privacy, and enabling the reusability of health data for societal

benefit. We posit that such a system establishes the groundwork

for a fair data economy (38), wherein enterprises, especially small

and medium-sized enterprises (SMEs), can engage in an innovative

business landscape for intelligent health solutions. Simultaneously,

citizens gain control over the utilization of their health data and

actively participate in a just compensation mechanism, ensuring

the equitable distribution of profits generated from innovative

solutions based on their data.

The suggested reference architecture is in harmony with

the fundamental principles of the European Health Data Space

(EHDS) regulation proposal (Figure 2), significantly improving

health data management by ensuring security, cost-efficiency, and

sustainability. This architecture guarantees individuals’ ownership

and complete control over their health information while enabling

semantic interoperability with existing hospital, regional, and

national systems and respecting privacy and data protection laws.

Through this solution, people have the opportunity to amalgamate

their health information from diverse sources—various healthcare

institutions, mobile applications, medical devices for home use, and

personal health notes—into a single, integrated Personal Health

Record [PHR; (39)]. This all-encompassing PHR can be shared with

healthcare professionals, independent of the healthcare provider’s

location or the type of information system in use. Moreover,

this solution empowers individuals to share their de-identified

(anonymous or pseudonymous) health data for secondary use for

the benefit of society according to explicit legal consent.

The rest of the paper is organized as follows: Section 2 delves

into four health data use case scenarios based on the EHIS—

primary medical use, medical emergency use, secondary use, and

personal use. These EHIS scenarios are then examined through

accessibility, comprehensiveness, and ownership to advocate the

need for health data management based on DCAS network

technology. Section 3 proposes the reference architecture to resolve

health data accessibility, comprehensiveness, and ownership

dilemmas through preserving semantically interoperable PHRs

in DCAS networks. Section 4 evaluates and assesses the critical

attributes of the proposed architecture. Section 5 compares the

solutions with similar existing ones and examines their integration

with existing health information systems and alignment with the

EHDS initiative (37).

2 Methods

We adhere to the Design Science (DS) methodology (40),

Figure 3, encompassing three steps: (1) investigating a problem,

(2) designing a solution (treatment design), and (3) evaluating

the solution’s effectiveness in addressing the problem (treatment

validation). While treatment implementation is not part of DS

but is part of the engineering cycle, the figure shows treatment

implementation to demonstrate the place and role of the prototype

solution in our study.
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FIGURE 1

Overview of the reference architecture for storing personal health records in a decentralized content-addressable storage network and sharing

health data for primary and secondary purposes.

FIGURE 2

The personal data space in the decentralized content-addressable storage network is valuable for existing hospital, regional, and national health

information systems for secure and sustainable retention of personal health data and to support semantic interoperability in data exchange.
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FIGURE 3

The design science methodology used in the development of the proposed reference architecture.

We articulate the problem through three dilemmas: data

accessibility, data comprehensiveness, and data ownership (Section

1). Our analysis is based on a literature review and experiences

in EHIS operation and handling. We first describe four use cases

(this section, Section 2) based on EHIS operation and explain,

based on these use cases, why even national systems like the EHIS

fail to address the three dilemmas. As a solution (Section 3), we

propose keeping the master copy of the PHR of each person’s health

record on the DCAS network under the complete control and

ownership of the data subject. We will then show (Section 4) how

the proposed solution will effectively address the three formulated

dilemmas when utilizing the same four use case scenarios and

explain how the proposed system supports seamless and coherent

interoperability with the existing hospital, regional, and national

information systems and data registers.

The Estonian Health Information System (EHIS, Figure 4) is a

central national DHP through which health service providers, such

as doctors, nurses, midwives, physiotherapists, and other healthcare

professionals, can exchange data and see health data entered by

other healthcare professionals about a patient. The EHIS consists

of (1) central national databases, e.g., EHR, Prescription Centre,

and Picture Archiving and Communication System (PACS);

(2) digital health services built on the existing e-government

infrastructure, e.g., digital prescription, e-referral, e-consultation,

and e-ambulance; and (3) digital decision support systems and

cross-sectoral services exploiting nationwide databases, e.g., drug-

drug interaction database, clinical decision support system (DSS)

for primary care, patient summary. The EHIS provides secure,

robust, and reliable internet-based data exchange services for

healthcare providers and natural persons. Healthcare service

providers must, according to law, transfer specific, defined,

structured, and standardized data to the EHIS. Data exchange

between healthcare providers and the EHIS is ensured by

implementing international standards, such as HL7 CDA and

LOINC. Persons can access the EHIS through theHealth Portal (41)

(available in Estonian, English, and Russian).

In the case of the EHIS and the Health Portal, it is important to

note their inseparable connection to other e-government services

and tools in Estonia. The EHIS relies on a comprehensive

information technology base infrastructure developed at the

national level and is a central electronic database where residents’

health history is recorded from birth to death. Technically, the

health information system has been implemented on top of the state

infrastructure solutions [ID card and mobile ID, (42), X-tee, (43),

etc.] that most Estonians use extensively. The system is successfully

connected to other information technology solutions offered to

Estonian citizens, making it convenient for all users. According

to the United Nation’s E-Government survey, Estonia ranks very

high in the E-Government Development Index (44), which might

explain peoples’ positive attitude toward the Health Portal.

2.1 Medical primary use case

A healthcare institution’s internal and external information

systems and databases are used in the daily work of doctors, nurses,

and other healthcare professionals. Electronic Medical Records

(EMR) and other Clinical Information Systems are the central

in-house clinical information systems. For patient management,

healthcare professionals primarily use the EMR. In Estonia, most

clinical processes in healthcare institutions have been digitized.
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FIGURE 4

The Estonian National Health Information System architecture. The coloring schema is as follows: orange—central government infrastructure

services; blue—national registers; yellow—integrated health service providers; gray—services that either use or provide services to EHIS; green—the

central services of EHIS. The year shown in brackets indicates the year of deployment.

Still, paper-based documents have not disappeared entirely, e.g.,

intensive care spreadsheets, hospital internal orders, nurses’ notes.

The integrated EMR seamlessly communicates with external

information systems if the person has been treated in another

healthcare institution in Estonia, a healthcare worker wants to see

previous data, or a doctor needs some central services, such as

clinical DSS or e-consultation. If the person has been imaged or

lab tests have been performed in other institutions, the EMR can

query and retrieve relevant images from the nationwide PACS or

receive lab test results from another EMR or EHR system. One

very convenient service is a digital prescription: the doctor issues

a prescription in the EMR, which uploads the digital prescription

to the central prescription center after making several queries

from national databases, e.g., to find out the reimbursement rate

given to the specific patient. Since all digital documents used in

healthcare in Estonia are linked to a person’s unique personal

code, the patient can go to any pharmacy and show their ID

code. The pharmacist will immediately see all prescriptions issued

for the patient and dispense the appropriate medicine to the

patient. E-referral, e-consultation, and other digital health services

follow similar principles. Documents completed in the healthcare

institution, examination reports, or test results are converted by the

EMR into a standard data exchange form and sent to the EHIS,

where they are parsed and kept in different repositories. This allows

clinical systems to compose either a time series based on data

collected in the EHIS from various healthcare institutions, e.g.,

the dynamics of lab test results over time, or a standard Patient

Summary (45). The benefits of a centrally developed, integrated,

secure, internet-based, standard-following DHP such as the EHIS

are related to data availability, sharing, and security. The medical

professional gets a complete overview of the patient’s contacts in

the healthcare system and their content.

2.2 Medical emergency use case

The work of ambulance and emergency medicine departments

has been digitalized in Estonia. Paramedics use tablet devices

with specially designed e-ambulance software to enter data. E-

ambulance and emergency medicine software are integrated with

the EHIS (Figure 4). This way, the paramedic can see the patient’s

previous health data at the scene. The data available to paramedics

is not limited to the text or diagnoses; previous medical imaging

reports and electrocardiograms (ECG) can also be viewed. The

ambulance can use the software to transmit critical information

about the patient to the hospital before the patient arrives.

2.3 Secondary use case

Unfortunately, health data secondary use for public

health, clinical research, medical claims management, or the

pharmaceutical industry does not yet benefit significantly from the
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EHIS. In the EHIS, secure data exchange between various clinical

parties is resolved well, but ensuring data quality still has issues

and challenges. Although various international classifications and

terminologies are in use, their use is insufficient, and medical

records still contain a lot of free text. This forces the National

Institute for Health Development (NIHD), responsible for

public health in Estonia, to collect data separately through the

information systems they developed. This causes data duplication

and discrepancies.

Firstly, the NIHD collects most of its data through its internet

portal, a legally mandated data entry system for healthcare

providers to report to the NIHD. This portal, in combination with

other government data collection systems, e.g., the EHIS, can be

seen as a redundant system and duplicate data entry. The data

NIHD collects is often available in other systems, but due to the

gaps in data quality and interoperability, it cannot be automatically

transferred to the NIHD databases. Secondly, data entered directly

into NIHD systems and cleansed for better quality is not shared

back in an interoperable way to clinical/administrative healthcare

systems. This limits the value of the NIHD’s data and analytics, as

it cannot contribute to the general quality enhancement of clinical

and administrative decision-making processes in hospitals.

The same trend of data being collected in separate information

systems can be observed in the case of randomized clinical trials

conducted by pharmaceutical companies. However, new registries,

such as the Breast Cancer Screening Registry, have been started,

which query data directly from the EHIS. Still, systemic weaknesses

in cross-sectoral and cross-institutional regulation, coordination,

and clinical data standardization limit the secondary use of health

data. This creates a need formanual data processing and culminates

in inefficient information handling and systems development.

Hospitals often use several software applications for

administrative data when automated integration with medical

systems is not in place. Frequently, manual data entry is needed for

reporting and statistics. In most hospitals, the raw data is electronic

but manually transferred for reporting and statistics. Additionally,

regulations on the health information system, prescription system,

reimbursement system, public health reporting system, or vertical

registries (cancer, HIV, tuberculosis, myocardial infarction, etc.)

are not always harmonized, or the clinical information classes

are defined too generally to be usable practically. Therefore, each

responsible agency, specialty, or sector develops its terminologies

and data structures independently. This leads to point-to-point

solutions, lessens system interoperability, and ultimately increases

manual data processing and complicates software development.

2.4 Personal primary use case

In the Health Portal (Figure 5) of the EHIS, a person can see

their health and medical data and may perform several activities.

This data has been collected according to how the person’s treating

physician or healthcare institution sent them to the EHIS in a

standardized way. A person can submit declarations of intent,

appoint a representative, perform actions on their behalf and on

behalf of the person represented, and view the medical invoices

submitted by healthcare institutions to the Estonian Health

Insurance Fund about their medical treatment. All prescriptions

in Estonia are in digital form, and a person can see the issued

prescriptions and their status in the portal.

All residents can access their data to determine their consent

for specific health data sections. This means the patient can restrict

access to certain documents, medical records, and all personal data

in health information systems. Access restrictions can be imposed

on one individual document or all information contained in the

EHIS. From the point of view of data security and privacy, it is

essential to note that a person can monitor all activity logs in the

Health Portal, i.e., see which medical professional has requested

their data and when and what document was viewed.

2.5 EHIS from the perspectives of the three
dilemmas

The Estonian National Health Information System (EHIS) is

a pioneer in digitizing healthcare on the national level. However,

the system faces significant challenges related to the dilemmas of

accessibility, comprehensiveness, and ownership.

1. Accessibility: The EHIS fails to resolve the accessibility dilemma

as it lacks features for secondary data usage, as previously

mentioned. Consequently, the initial aspect of the dilemma,

necessitating data access, remains unresolved. Moreover, the

EHIS falls short in ensuring comprehensive protection of

personal data, as its measures aimed at limiting access are

reactive rather than preventive. While data owners can detect

unauthorized access, they cannot preemptively exclude it.

2. Comprehensiveness: The EHIS fails to resolve the dilemma of

comprehensiveness primarily because, at the global level, it

operates as an isolated data silo. Moreover, even at the local

scale, the EHIS does not provide a holistic perspective of an

individual’s health profile. Research suggests that patient data

stored within healthcare facilities tends to be more accurate and

thorough than EHIS data (46). Additionally, the exclusion of

patient-generated data, such as lifestyle information and data

collected from wearable devices, further restricts the system’s

capacity to offer the complete picture. Consequently, the EHIS

merely presents a simplified and partial representation of the

data, contradicting its initial aspirations for comprehensiveness.

3. Ownership: The EHIS fails to resolve the ownership dilemma,

as the institution managing the data retains physical control.

While the data subject possesses certain rights, such as the

ability to restrict access to specific data and monitor the audit

trail of data usage, the managing institution remains the de

facto owner of the data. This scenario resembles feudal land

ownership relations, where the land belongs to the landlord, and

the peasant has limited rights to utilize part of it for personal use.

To surmount these challenges, a different approach is needed—

one that embraces decentralized technology to enhance system

agility, incorporates patient-generated and -entered health data

to ensure data comprehensiveness, and empowers patients with

preemptive and complete control over their health information.

Such a system would facilitate seamless cross-border health

data exchange, support the integration of innovative health
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FIGURE 5

A screenshot from the Health Portal of the Estonian National Health Information System.

technologies, and streamline consent management for secondary

data use.

3 A reference architecture for
personal health records

3.1 An overview of the architecture and
fundamentals

The proposed architectural solution to solve the three dilemmas

is based on the novel decentralized content-addressable storage

(DCAS) network technology (Figure 1). We first analyze data

management risks to grasp the principles by which DCAS

networks operate.

By aggregating all health data in one place and keeping it in

a hospital, regional, or national health information system, the

risk of data management increases due to a single point of failure,

attractiveness to attackers, the complexity of security management,

difficulties in access management, and the complexity of regulatory

requirements. The opposite also applies—splitting a large dataset

into smaller components reduces the risk of managing each

component and the whole. Continuing this iterative data volume-

reducing process leads to a scenario where the risk linked

to an individual tiny data fragment approaches zero, and

the implementation of intricate and costly security measures

becomes superfluous.

DCAS networks operate on a similar principle. They are

peer-to-peer networks wherein nodes run open-source software

designed to store an enormous quantity of tiny data fragments.

When some data, such as a file or a document, is to be stored

in such a network, the data is first split into data fragments of

a few kilobytes each. These fragments are then distributed across

various nodes according to the network protocol. Each fragment

represents an insignificant fraction of the complete dataset, making

it feasible to distribute them between nodes without jeopardizing

the privacy of the entire dataset. As the anonymity of DCAS

network nodes is part of the DCAS protocols, the trustworthiness of

the node operators is not imperative for secure data storage within

the network, as individual data fragments are not informative. In

addition, no node knows to which dataset the fragment belongs, the

location of nodes, or the nodes where the remaining data fractions

are stored.

Conceptually, a DCAS network resembles a paper shredder

(Figure 6), cutting a classified document into tiny strips, none of

which divulge the document’s contents. Unlike a physical shredder,

a software-based implementation can reconstruct the original

document from its shredded components. This reversal process
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FIGURE 6

The decentralized content-addressable storage as an electronic paper shredder.

merely necessitates knowledge of the root hash of the original

document, which a data owner must only keep to themselves. Here

and in the future, a data ownermeans a person who keeps their data

on a DCAS network and, if necessary, shares that data for primary

or secondary use.

In the following, we provide concise overviews of the

fundamental characteristics of a DCAS network. While

Ethereum Swarm (47) has inspired these descriptions, they

are formulated broadly enough to apply to any implementation of

a DCAS network.

Content addressing. In contemporary internet architecture,

location-based addressing is widely employed. The typical structure

of a web URL consists of several components: the server name,

which is substituted by the IP address during the name resolution

process, the name of the sought-after resource, and the path to

the directory where the desired resource is situated. This method

of addressing is called location-based addressing, as the resource’s

address signifies its physical location.

In contrast, content-based addressing is not based on the

location of a resource but highlights its content (48). Content-based

addressing, in many respects, is more intuitive than location-based

addressing. When searching for a specific resource, its content is of

primary importance rather than its physical location. This can be

observed in everyday activities like shopping. In a store, individuals

are not concerned with the product’s precise shelf but are interested

in milk or bread, irrespective of their spatial arrangement.

DCAS networks use content-based addressing. Each network

node has an overlay address, a randomly generated integer. To

avoid duplication of overlay addresses, large, 256-bit integers are

used. The Kademlia distance (49) between two network nodes is

an integer obtained by the exclusive logical addition (XOR) of

overlay addresses of nodes. For instance, the Kademlia distance

between overlay addresses 5 (0101) and 6 (0110) is 3 (0011).

The Kademlia distance has all the fundamental characteristics of

distance, including non-negativity, symmetry, the zero value of a

node’s distance from itself, and triangle inequality. In the DCAS

network, each shard of information is stored on the node whose

Kademlia distance is closest to the shard’s hash value. The hashes

of the shards are arranged into a Merkle tree (50), which is stored

in the DCAS network following the same information-splitting

protocol. The hash value of the Merkle tree’s root serves as the

address of stored data.

When retrieving data from the DCAS network, the process is

reversed. Specifically, the network protocol implemented in the

node software locates the node closest to the given hash value

and finds its underlying address (IP address in the context of

the internet). Subsequently, a request is sent to this identified

node to access the desired data. Content addressability serves as a

supplementary measure to ensure data integrity. This is achieved

by enabling the consumer to verify the content of the downloaded

data by calculating its hash value and comparing it to its address,

thus confirming that the data has not been altered.

Decentralization. Firstly, let’s delve into some terminological

considerations. The term “decentralized” is frequently employed

to convey the idea of a system comprising numerous smaller,

independent entities. To illustrate, a “decentralized data network” is

commonly understood as a federation of diverse data sources, each

independently comprehensive within localized boundaries (51).

This implies that information about a specific subject is internally

cohesive within these local confines. While these data sources

may lack global completeness by not encompassing all available

information about a particular topic, they wield control over the

data within their purview.

However, this paper adopts a more stringent definition

for “decentralized”, signifying a system where data lacks

completeness even locally, information stored on individual

nodes is indecipherable, and no governing body exists locally

or globally. The absence of a governing body within the DCAS
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network means that independent node operators individually

determine all decisions, including joining or leaving the network.

At the same time, the network protocol incentivizes each node to

make decisions that contribute to the network’s objectives.

Redundancy. Network decentralization refers to the absence of

a governing authority body within the network (52). Consequently,

network nodes can disconnect from the network at any given

moment. Upon leaving, these nodes take with them the data shards

they have been storing. This presents a significant challenge, as

restoring the data that these shards were part of is impossible.

Naturally, such a situation is unacceptable, necessitating the

implementation of redundancy to prevent data loss.

One potential approach to address redundancy involves storing

each piece of data not only on the node closest to it based on

Kademlia distance, but also on a set of nodes that belong to a

specific neighborhood of responsibility surrounding the closest

node (53). Since overlay addresses are randomly assigned to

the network nodes, and the Kademlia distance has nothing to

do with geographical dimensions, network nodes belonging to

this neighborhood are typically dispersed worldwide under the

management of different operators. Based on network size and its

rate of churn, a sufficiently large radius of the neighborhood can

be chosen, ensuring that the loss of a single piece of data resulting

from the departure of the node storing it is close to zero (54).

The outlined redundancy method represents just one approach

to guarantee data redundancy. Alternatively, more efficient

techniques like Erasure Coding (55) may be used. Despite distinct

algorithms, the objective remains to ensure data preservation

within the network when nodes exit the network.

Immutability and de-duplication. Content addressability leads

directly to the immutability of the data (56). This is due to using

hash values as addresses, where any change in the content of

the data results in a change in its address. Consequently, the

altered data becomes a new addressable entity for the network,

while the previous version remains accessible at the earlier address.

Therefore, the DCAS networks inherently retain the version history

of any data modifications.

As described, the data is typically fragmented into tiny pieces

stored independently as individual entities within the DCAS

network. Likely, only a particular portion of these pieces will be

modified when changes occur in the data. Those pieces that remain

unaltered continue to exist online at their former addresses. Thus,

DCAS networks efficiently maintain the version history of the

dataset, ensuring that only one copy of the data exists within the

network, excluding the copies required for redundancy.

Mutable address space. Content addressability has numerous

advantages (57). As previously mentioned, content addressability

results in data immutability, as any modification to the data

corresponds to a change in its address. However, there are cases

where it becomes essential to store mutable data at a designated

address. To accommodate this need, each user in a DCAS network

is allocated a personal mutable address space. This dedicated space

allows users to manage and modify data within specific addresses

without conflicting with the immutability constraints associated

with content addressability.

Incentives. Decentralized networks’ successful emergence

and sustainability rely on establishing a precise and robust

incentivization mechanism (58). This mechanism must adequately

motivate network operators to bear the costs associated with

providing services and is typically facilitated through compensation

from the users of the network services. However, the absence of a

central governing authority poses a challenge in orchestrating this

compensation process.

Adopting a compensation mechanism built on blockchain

and smart contracts is imperative to achieve incentives in

complete network decentralization (59). Within such systems,

it is feasible to use crypto tokens for payment. Ethereum

Swarm, which operates on the BZZ crypto tokens (60), is

an example of a decentralized compensation mechanism

implementation. Alternative compensation mechanisms have also

been implemented. However, any method reliant on traditional fiat

currency necessitates the involvement of an intermediary body,

compromising the network’s decentralization.

3.2 Core application

The core application (Figure 7) is open-source software that

operates on the user’s device, serving as a personal portal to

health data. This application primarily aims to present a person’s

health data stored online in a DCAS network in a user-friendly

manner. Additionally, it enables persons to perform various

tasks such as annotating, searching, filtering, and sorting health

information. Furthermore, it establishes data communication with

the DCAS network using an abstraction layer, which ensures

independence from the implementation of a specific DCAS

network. Moreover, the core application employs software layers to

incorporate protocols and standards commonly used in healthcare

to facilitate interoperability. The core application’s functionality

can be expanded by integrating separate downloadable modules.

The following subsections present a detailed description for

each component of the core application.

3.2.1 Root hash management
The root hash granting access to the data should be known

to the data owner exclusively. This hash value plays a crucial

role in granting access to the data; therefore, the data owner

must thoroughly protect it. In the unfortunate event of losing

the hash value, retrieving access to the data becomes impossible.

Consequently, the method employed for storing the hash value

must incorporate safeguards to prevent both unauthorized access

and accidental loss; therefore, safeguarding and securing this hash

value is a primary responsibility of the core application.

Whenever a modification is made to the data, the hash value is

updated to reflect the changes. The new hash value permits access

to the modified data, while the previous hash value represents the

prior version of the data. Preserving the entire version history of the

data within the core application may not be feasible due to practical

limitations. A possible approach is to include the address to the

previous data version within the data itself. This enables the core

application to retain the whole history of data amendments.

In addition, it is essential to consider the possibility of the stored

hash value being unavailable due to, e.g., the data owner’s device
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FIGURE 7

Core application architecture of the proposed reference architecture for personal health record.

being lost. In this case, storage of a constantly changing hash value

in a recoverable manner poses a significant challenge. A plausible

alternative involves storing the changing root hash within the

DCAS network. This is where the personal mutable address space

of the DCAS network proves valuable. By storing the encrypted

hash value within the user’s private mutable address space, the

core application simplifies its task to retaining the constant address

where the current root hash resides.

This constant value facilitates the implementation of secret

sharing algorithms, like Shamir’s Secret Sharing (61), to effectively

mitigate the risk of data loss. This secret-sharing framework

mathematically divides the constant address where the current

root hash resides into multiple shares (Figure 8). Each share is

then stored separately in the main applications of the data owner’s

closest relatives so that only one share is retained by one relative.

This secret-sharing mechanism ensures that the address can be

recovered by gathering a sufficient number of shares that meet or

exceed the predetermined threshold. Conversely, it is impossible

to reveal the secret address if the number of shares is below

that threshold.

The solution above also provides a means to safeguard data

against unauthorized modification. In this approach, recording the

hash value of the modified data is exclusively permitted in the

owner’s mutable address space. Consequently, any alteration to the
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FIGURE 8

A root hash management in the proposed reference architecture for personal health record.

data necessitates the owner’s approval by storing the revised hash

of modified data. This confirmation process can be likened to the

commit operation commonly employed in databases.Without such

confirmation, any changes to the data are lost.

3.2.2 Storage abstraction layer
The Storage Abstraction Layer (SAL) is an intermediary

component, facilitating communication between the core

application and the DCAS network. This intermediary layer

ensures the core application’s independence from the specific

implementation details of the storage network. It aligns with

the principle of dependency inversion commonly employed in

software development. Incorporating an intermediate layer such as

SAL, the core application can remain unaffected if replacement of

the layer becomes necessary. The core application solely requires

functionality related to the reading and writing of data, while SAL

effectively manages all other intricacies.

3.2.3 Content handlers
Numerous standards exist to represent health data, including

various HL7 standards and versions, OpenEHR (62), ISO 13606

(63), and ContSys (64). It is desirable for the core application to

not be restricted solely to clinical data but to offer the capability

of managing diverse information about an individual’s health and

general lifestyle. As this data can be generated by various devices

from different manufacturers, they might exhibit disparate formats

and employ distinct data models. Content handlers in the core

application are to handle this multitude of data models effectively.

These autonomous software modules adhere to the dependency

inversion principle, akin to the Storage Abstraction Layer.
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FIGURE 9

The infrastructure of the practical experiments for storing personal health records in a decentralized content-addressable storage network.

Incorporating these content handlers into the core application does

not necessitate any modifications to the core application itself.

The data should be presented online in a self-descriptive manner,

enabling the bootloader to select the appropriate content handler

for processing.

3.2.4 Interoperability layers
The purpose of the interoperability layers is to facilitate the

integration of the core application with external information

systems. A key objective of these layers is to enable healthcare

providers to access patient data in the context of primary

and secondary use. As previously mentioned, one data-sharing

approach involves disclosing the data address (its root hash).

Nevertheless, a preferable alternative is to grant data access via

an application programming interface (API), such as FHIR, which

preserves the confidentiality of the root hash. It is reasonable to

use federated [on-the-fly adaptation according to the third-party

data exchange protocol; (65–67)] rather than integrated (based

on a standard data format) or unified (based on a common

standard) interoperability (68) to achieve flexible and adaptable

interoperability across hospital, regional, and national health

information systems.

3.2.5 Extension modules
Extension modules are plugins that serve the purpose of

augmenting the existing capabilities of the core application.

These supplementary features encompass various enhancements,

such as integrating diverse wearable devices into the core

application and incorporating various algorithms enabling

individuals to supervise and assess their health-related behaviors.

It is vital to note that these extension modules obtain access

to individuals’ PHR through the core application, while

concurrently enabling other system components to harness the data

they generate.
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4 Evaluation of the proposed
architecture

4.1 Practical experiments

Practical experiments were conducted to validate the viability

of the proposed reference architecture. Due to the sensitivity

surrounding medical data and the constraints imposed by legal

regulations, obtaining medical data for testing poses significant

challenges. Instead, we used the Synthea package (69) to generate

synthetic health data. Synthea is an open-source data generator

renowned for producing realistic medical history data for synthetic

patients, encompassing various healthcare scenarios. It allows

for the creation of datasets of any desired magnitude. For

our experiment, a dataset comprising 1,000 synthetic persons

was generated.

As Synthea generates data in the format of FHIR bundle

resources, we selected this data format for our experiment.

However, it’s important to note that our choice of FHIR format does

not necessarily imply its superiority in DCAS networks. Ultimately,

Resource Description Framework (RDF) and personal knowledge

graphs offer more flexible solutions. Since FHIR is also concerned

with developing RDF (70) and other concentrated and thin data

formats [e.g., FHIR Shorthand (71)], we are likely not far from

the desired and practical results to support federated semantic

interoperability with a third-party hospital, regional and national

healthcare systems, and innovative welfare applications.

We opted for Ethereum Swarm (47) as our DCAS network for

several compelling reasons:

1. Full decentralization: Ethereum Swarm operates without a

central authority, ensuring a decentralized ecosystem.

2. Robust incentivization: The network boasts a robust mechanism

encouraging participation and contribution.

3. Ideal for small data storage: Ethereum Swarm is well-suited for

efficiently storing small data fragments, such as FHIR resources.

4. Open-source nature: Ethereum Swarm is open-source and

fosters transparency and collaborative development.

The Swarm network comprises independent nodes running

the Bee software (72), compatible with both Linux and Windows

systems. For our setup, we have chosen Ubuntu Linux as our

operating environment. Despite its modest resource requirements,

Bee performs optimally with an SSD hard drive and a fast network

connection, handling network traffic efficiently.

The software development environment for this project was

Microsoft Visual Studio 2022. The FHIR bundles generated were

dissected into individual resources and stored in an SQL Server

database to facilitate ease of manipulation. Subsequently, each

resource was uploaded to the Swarm network as a distinct

entity, uniquely addressed with a hash key. A patient’s resource

index was stored separately as an FHIR bundle resource,

incorporating multiple FHIR Reference resources. The .NET task-

based asynchronous pattern (TAP) enhanced query efficiency. A

dedicated program in C# was designed to upload the generated

FHIR resources. This involved strategically alternating queries

between five Bee Docker container nodes and executing 40

simultaneous POST requests in parallel for each, optimizing

the uploading process (Figure 9). Parallel queries were similarly

employed for data downloads. Due to Swarm’s massively parallel

protocol, which sends simultaneous requests to numerous network

nodes for data chunks, the overall user experience was comparable

to, if not better than, traditional web browsing. A screenshot of the

experimental app showing a list of the generated FHIR resources

stored on the Ethereum Swarm live network is shown in Figure 10.

4.2 Medical primary use case

Relying on utilizing DCAS networks to preserve Personal

Health Records, the proposed reference architecture (Figure 1)

integrates with existing hospital, regional, and national health

information systems seamlessly and in a semantically interoperable

manner (Figure 2). This architecture features a person-owned

application (Figure 7) that operates on the person’s device. This

application is responsible for securely storing the root hash of the

person’s health data and facilitating the reading and writing of data

within the DCAS network.

In the primary use scenario, a person (data owner) can share

data with a healthcare provider by disclosing the root hash of their

data (Figure 1). Once the healthcare service provider completes the

necessary edits and saves the additions to PHR, a new data version

and the corresponding new hash value are generated. The service

provider relays the updated value to the data owner, who securely

stores it via their application. The healthcare service provider

should not retain the original or the revised root hash.

Alternatively, data sharing can occur without disclosing the

root hash. One possible method is utilizing a standardized API,

such as HL7 FHIR (73), integrated within the data owner’s

application. However, in such cases, additional measures must be

developed to uphold the integrity and reliability of the shared data

(74–76).

In medical data, the integrity of information holds paramount

importance. A key strategy to ensure data reliability involves the

digital signing of entries by the respective contributors. In this

context, the data’s trustworthiness hinges on the trustworthiness of

data entry. Beyond signing the added or modified part of the data,

an additional layer of security can be established if the healthcare

provider signs the data they enter and the root hash of the entire

dataset as it was presented to the healthcare provider during the

medical treatment or service provided.

The data subject can conceal specific portions of their data

by restricting access for particular healthcare providers. This

concealment involves generating a new version of the data,

accompanied by a corresponding alteration in the root hash, as

elucidated earlier. Significantly, the de-duplication feature outlined

earlier clarifies that creating a partially concealed data set does not

involve duplicating the entire dataset. Instead, it only stores the

modified data fragments in the DCAS network.

When a service provider adds an entry and signs it, they

essentially endorse the data they contributed and the entire dataset

as it was presented to them. This ensures a comprehensive and

signed record of the data collection, offering a transparent snapshot

of the information available to the service provider at the time of

data entry.
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FIGURE 10

A screenshot of the proof-of-concept app shows a list of FHIR observation resources, with one open in the browser.

4.3 Medical emergency use case

The proposed architecture offers a simple solution for

emergency access to an individual’s health data. For this, a

distinct data subset must be created encompassing vitally important

information, such as data about chronic conditions and ailments,

medications, allergies, and other related details. These particular

data entities form a specialized subset within the comprehensive

health data and are endowed with a unique address within a

DCAS network, enabling global accessibility. Individuals should

consistently carry the reference to this subset, either in digital

format stored on a microchip or physically embodied as a QR code

on a wearable tag or implemented through alternative means. In a

medical emergency, medical personnel can retrieve themost critical

health data of the individual by scanning the aforementioned QR

code or reading it from the microchip. This method allows access

only to the depersonalized subset of health data encompassing vital

information during emergencies, while protecting the identity and

other PHR data.

4.4 Secondary use case

For secondary use (Figure 1), the Personal Health Record must

be de-identified (31) to make anonymized or pseudonymized data

versions. This process involves the removal of any information that

could lead to the identification of the subject, while preserving the

reliability of the data. To achieve this, a third party trusted by all

stakeholders plays a crucial role. Whether a national institution or

a purpose-built organization, this entity verifies the data subject’s

identity. Subsequently, it validates and removes all signatures

associated with the data and appends its own signature to the

dataset. This signature proves the reliability of the de-identified

data, now derived from the trustworthiness of the third party that

signed the data. Through this multifaceted approach, data de-

identification not only preserves data subjects’ privacy but also

ensures the integrity and credibility of the de-identified dataset.

This de-identified dataset is stored within the DCAS network

as a separate entity, assigning a new address (hash) to the data.

The person may share (possibly for compensation) this hash

with third parties interested in utilizing the data for secondary

purposes. In real life, the transfer of data from the person to the

end user would probably not take place directly but through a

data intermediary who aggregates the data of multiple persons

and prepares them as a comprehensive data registry for the end-

consumers for data analysis.

4.5 Personal primary use case

In the context of the DCAS network architecture, the

personal primary use case focuses on empowering individuals

with complete control over their health data. By leveraging DCAS

technology, individuals can manage, share, and protect their health

data more effectively, fostering a more personalized and secure

healthcare experience.

The cornerstone of the personal primary use case is the

individual’s ability to consolidate and control their health data

through a unified Personal Health Record (PHR). This PHR

aggregates information from various healthcare providers, mobile

applications, home medical devices, and personal health notes.

As the data owner, the individual retains exclusive access to the
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root hash, ensuring that they control who can access their data

and under what circumstances. This control extends to updating,

annotating, and managing their health data directly through a

user-friendly core application.

One of the critical features of the proposed architecture

is its emphasis on semantic interoperability. The PHR can be

shared with healthcare providers across regions and systems,

ensuring that the data is meaningful and useful regardless of the

recipient’s technology. This particularly benefits individuals who

travel frequently or receive care from multiple providers. Sharing

the root hash or utilizing standardized APIs, individuals can grant

healthcare professionals access to their up-to-date health records,

facilitating informed and timely medical decisions.

The architecture empowers individuals by enhancing

transparency and ownership of their health data. Users can

monitor all access to their health records. This transparency builds

trust in the system and encourages individuals to engage more

actively in their healthcare management. The ownership aspect is

particularly transformative as it shifts the control of health data

from institutions to individuals, enabling them to decide how their

data is used and shared.

In addition to primary use, the architecture supports the

secondary use of health data while maintaining privacy. Individuals

can anonymize or pseudonymize their data and share it for research

or commercial purposes. This contributes to societal health benefits

and opens up opportunities for individuals to receive compensation

for their data. The trusted third-party intermediary ensures that de-

identified data remains credible and secure, facilitating its use in

various secondary applications.

Integrating Artificial Intelligence (AI) and Machine Learning

(ML) algorithms into the DCAS-based reference architecture adds

a significant layer of personalization and precision to healthcare

management. These technologies can analyze the comprehensive

health data stored in the PHR to generate tailored lifestyle and

healthcare recommendations. For instance, AI andML can propose

dietary adjustments, exercise plans, or preventive measures based

on the individual’s health history, genetic information, and real-

time data from wearable devices. However, it is crucial to maintain

a clear distinction between the recommendations provided to

individuals and those given to healthcare professionals. Suggestions

for personal use should focus on lifestyle and preventive care,

empowering individuals to make informed decisions about their

health. In contrast, recommendations for doctors should assist in

clinical decision-making, ensuring they have accurate and relevant

information to provide the best possible care. This separation is

vital to prevent confusion and ensure that clinical advice remains

in the domain of qualified healthcare providers.

4.6 Resolving the three dilemmas

The dilemma of accessibility is resolved by partitioning the

entire personal health data space (Figure 2) in a DCAS network

under the complete control and ownership of a data-owning person

into distinct non-intersecting sub-spaces of identifiable and de-

identified (anonymized or pseudonymized) health data. Identifiable

personal health data stored within the former is exclusively

controlled by their data owners (data subjects). As long as the root

hash of the data remains secret and known solely to the owner, no

other party, except those that the owner has explicitly shared the

root hash with, has even a theoretical chance of accessing this data.

Conversely, the data owner can generate numerous de-identified

health data copies with minimal risk of re-identifying the data

owner. These copies can be freely shared for secondary use.

The dilemma of comprehensiveness is resolved by

consolidating a person’s health data from multiple healthcare

institutions, portable health devices, health-related applications,

and other sources into a complete Personal Health Record (PHR).

Since this comprehensive PHR remains under the exclusive

physical control of the owner (data subject), the concentration of

data does not increase the data leakage risks, as in the event of a

successful attack, only one person’s data can leak. A master copy of

PHR data is used only in cases of initial use of data by sharing this

data only with healthcare professionals from desired healthcare

facilities regardless of region or national affiliation.

In addition, the ownership dilemma is resolved by storing

personal health data within DCAS networks, where access requires

the owner’s root hash. The network’s decentralization ensures that

access is exclusively granted to the owner without intermediaries,

e.g., without system administrators of hospital, regional, or national

information systems. Consequently, the owner can manage their

data much like any other private property, though they must

acknowledge specific distinctive characteristics inherent to data

compared to physical assets.

5 Analysis and discussions

5.1 Related works

The proposed DCAS-based architecture for personal health

data presents an innovative approach to data management,

emphasizing user control and data sharing. It resolves three

critical health data challenges: accessibility, comprehensiveness,

and ownership. In light of these challenges, we outline several

initiatives that tackle similar issues.

MyData global (77) is a community advocating for human-

centric data management, emphasizing data portability,

interoperability, and user empowerment. They declare that

they “help people and organizations to benefit from personal data

in a human-centric way.” MyData aims to transform the data

economy by ensuring individuals have more control over their

data and can share it between services.

The International Data Space (IDS) (78) promotes data

ownership through its data sovereignty principles, ensuring

providers retain control over their data. This framework supports

ownership rights across various industries, including healthcare.

However, implementing ownership principles within IDS depends

on the specific use cases and sectors involved.

Mediceus (79) ensures data ownership by providing a user-

centric platform where individuals control their health data. Users

can manage and share their data securely, maintaining ownership

and control. While similar to DCAS in focusing on health data,

Mediceus uses a more centralized approach to data management.
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MIDATA’s cooperative (80) model ensures that users are co-

owners of their health data. This model prioritizes user interests

and provides ownership rights through consent-based data sharing.

Users have significant control over their data, although the

cooperative model requires active participation and trust in

its management.

Solid project (81) empowers users with ownership of their

data by storing it in Pods (personal data spaces) managed by

pod providers. Users can decide who accesses their data and

revoke access anytime, ensuring solid data ownership. However, the

ownership model is broader and not exclusive.

While these projects address issues related to accessibility,

comprehensiveness, and ownership, they fall short of providing a

holistic solution to all three.

5.2 Interoperability and privacy aspects

As illustrated in Figure 2, according to the proposed reference

architecture, every citizen has a personal data space on the DCAS

network, where health data as a PHR is preserved under the

person’s ownership and complete control. A detailed explanation

of how health data is represented as PHRs on the DCAS

network is beyond the scope of this document. However, we are

working toward a unified clinical data model, formalized as RDF-

based Knowledge Graphs, which supports ContSys ontology and

federated semantic interoperability (66, 67, 82–94).

RDF is the standard data interchange model on the Web

(95). An FHIR observation resource represented as RDF triplets is

illustrated in Figure 11.

Traditionally, the RDF specification employs URIs to represent

resources. However, within the realm of DCAS networks, an

intriguing prospect arises: substituting URIs with hash values. Such

an approach could alleviate numerous issues inherent in URIs,

including collisions (distinct resources have the same URL) and

aliases (multiple URLs refer to the same resource). By comparing

URIs symbol by symbol, a match would unequivocally denote the

same resource, eliminating ambiguity. Thanks to the deduplication

feature of DCAS networks, it is ensured that a resource cannot

possess disparate URIs.

Moreover, the immutable nature of addresses in DCAS

guarantees that the meaning associated with any DCAS address-

based URI remains constant over time. Unlike URLs on the

internet, changes in ownership, and potential unavailability, the

hash values (content addresses) of resources on a DCAS network

remain unchangeable. This could pave the way for a new version of

the internet, aligning closely with Tim Berners-Lee’s vision of the

Giant Global Graph (96).

We wish to underscore some considerations concerning data

de-identification. Firstly, standard FHIR resources conventionally

reference the treating physician and the data owner, typically

the patient. While usually needed in API requests, this reference

becomes redundant when storing data as Personal Health Records

in the Personal Knowledge Graph. A more efficient approach

involves preserving all demographic data in a distinct data

subgraph. An affiliation to the owner is implicitly established by

graph connectivity, obviating the explicit need for references to

the subject within the resources. This omission of direct references

to the data subject streamlines the pseudonymization process,

requiring only the sharing of the address of the subgraph housing

clinical data. Other identifiable data, such as the treating physician’s

name and their working institution, can also be separated by

preserving them in a separate sub-graph, thus further strengthening

the mechanisms for protecting personal data.

Under ordinary circumstances, the root hash of personal

data is known exclusively to the data owner. While the owner

may share it for primary use by medical service providers, it is

conceivable to design protocols facilitating data sharing without

divulging the hash. However, for secondary use, a prerequisite

is the pseudonymization of the data. This involves creating a

pseudonymized copy by expunging all references to individuals,

institutions, locations, etc., retaining only essential clinical data.

Additionally, all dates within the dataset could be rendered relative

to the owner’s birthdate. To fortify re-identification control, the

hash of the pseudonymized dataset may be integrated into the

original dataset, ensuring that only the original owner can reverse

the pseudonymization process.

5.3 Compatibility with the European Health
Data Space

The proposed reference architecture seamlessly aligns with and

fully embraces the core principles of the European Health Data

Space (EHDS) initiative, offering several valuable enhancements.

The following outlines and provides commentary on enhancements

resulting directly from the DCAS network characteristics or the

proposed reference architecture.

Data security. The EHDS advocates for the availability of PHR

data via access points established by member states. However,

such access points entail heightened data leakage risks. In contrast,

the proposed reference architecture employs a DCAS network

for storing personal data, significantly mitigating such risks. By

decentralizing data access, any potential breach would, at worst,

result in the leakage of only one person’s data without any

impact on the security of others. This minimizes the vulnerability

associated with centralized databases, where a breach could

compromise millions of individuals’ data.

The protocol design achieves data security in a DCAS network.

Each network node stores the data locally as a key-value pair. The

value corresponds to a distinct data fragment, while the key signifies

its address (hash value). Individual fragments are encrypted

utilizing distinct keys, rendering the data incomprehensible to the

node. Consequently, the network nodes lack access to meaningful

information regarding the content of the stored data. Moreover,

the network routing protocol ensures that the transmission source

of a particular data fragment holds no implications regarding its

ownership. In other words, the recipient node remains unaware

of whether the sender serves as the original data source or

simply functions as an intermediary forwarder. Collectively, these

measures signify that network nodes possess no discernible

knowledge regarding the content or the rightful owner of the stored

data. Consequently, the risk of data leakage becomes virtually

negligible within such a system.

Frontiers inMedicine 17 frontiersin.org130

https://doi.org/10.3389/fmed.2024.1411013
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Klementi et al. 10.3389/fmed.2024.1411013

FIGURE 11

Visualization of the HL7 FHIR (Fast Healthcare Interoperability Resources) observation resource example using the JSON Crack features.

The inherently distributed nature of the DCAS network renders

it challenging to launch cyber-attacks against it successfully. The

absence of a single point of failure confers a substantial advantage,

as the network remains unaffected even if specific nodes are

compromised due to such attacks. Thus, in theory, the proposed

architecture exhibits exceptional resilience against cyber threats.

Cost efficiency. Retaining personal data within DCAS networks

external to the EHDS infrastructure generates substantial cost

reductions for the entire system. This cost-effectiveness stems

from two key factors: First, the absence of concentrated personal

data in the system eliminates the need for extensive security

measures associated with centralized storage and data-sharing

protocols. Consequently, the security mechanisms implemented

are notably more economical. Second, the utilization of DCAS

networks predominantly leverages existing IT infrastructure.

This strategic approach significantly diminishes the initial

investments required to implement the entire solution and

the ongoing expenses essential for its maintenance. The

result is a streamlined, cost-effective system that aligns with

contemporary economic considerations while ensuring enhanced

data security.

Eliminating single points of failure. Another vulnerability of

storing personal health data in a centralized repository lies in a

single point of failure. In centralized repositories, the imperative

becomes ensuring regular backups, consequently escalating the

overall system cost. In contrast, in DCAS networks, each data

point is dispersed across multiple nodes according to the built-

in redundancy measures, eliminating the data loss risks associated

with a centralized repository. This inherent resilience safeguards

against potential data loss and obviates the need for recurrent and

resource-intensive backup procedures. Opting for DCAS networks

enhances data security and presents a cost-efficient alternative by

eradicating the expenses of mitigating the risks of a single point

of failure.

Simplicity. Eliminating the need to store personal data within

central repositories simplifies the system considerably. Typically,

an escalation in the complexity of information systems correlates

with an augmented security risk, as a more intricate structure

expands the potential attack surface (97). A simplified system

streamlines operational aspects and inherently mitigates security

risks. The logic is straightforward: the less intricate the system, the

more manageable and controllable potential security risks become.

Simplicity, in this context, acts as a strategic ally, making the

system more dependable (98) and security management simpler.

Simplicity enhances the system’s efficiency and bolsters its security.

Reducing ecological impact. Managing health data for

hundreds of millions of individuals in centralized systems demands

substantial resources, encompassing hardware, energy, and labor,

resulting in a notable ecological footprint. A centralized system’s

infrastructure, by its very nature, has enormous environmental

impact. In contrast, DCAS networks utilize resources more

efficiently. Operating predominantly on existing infrastructure,

they demand relatively few additional resources. Consequently, the

ecological footprint of such a decentralized solution is markedly

smaller. Utilizing DCAS networks, we enhance the operational

efficiency of health data management along with environmental

sustainability by making informed choices to minimize the overall

ecological impact of health data management systems.

Empowering data ownership. The core strategic objective of the

EHDS is that of data ownersmaintaining absolute control over their

data. When personal data resides on third-party servers, achieving

data owner control becomes challenging. However, adopting DCAS

networks establishes a paradigm where data owners have complete

and exclusive control over their data. Furthermore, the authority

to decide on data sharing rests solely with the owner, reinforcing

the realization of the stipulated strategic goal. By embracing

DCAS networks, we align with the EU’s vision of robust data

ownership and establish a framework that empowers individuals

with unequivocal access control, ensuring the integrity and privacy

of their data per EU strategic objectives.

Data integrity and version control. In DCAS networks,

utilizing hash values as data addresses guarantees data integrity.

Users can compute and compare the hash value with the

original data address. A congruence between the two assures
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the downloader that the downloaded data has not been altered.

Furthermore, content addressability introduces an automatic

versioning mechanisms’ any alteration to the data results in

assigning a new address reflective of the modified content.

Simultaneously, the prior version of the data persists at its

original address. This inherent version control facilitates the

preservation of the data modification history. Notably, this

characteristic empowers the creation of diverse sub-branches

within the data, a useful feature for scenarios requiring selective

information disclosure. Subsequently, these branches can be

seamlessly amalgamated into a cohesive whole when needed.

Data preservation. Given the absence of a central control

mechanism, the primary concern within a DCAS network is

the preservation of stored data. Volunteers, the main operators

of DCAS network nodes, may depart from the network

independently. To mitigate the risk of data loss, the network

must incorporate effective preservation mechanisms. One such

mechanism involves providing rewards to network node operators,

which incentivizes them to keep their network nodes online.

Additionally, data preservation is facilitated by redundancy,

wherein data is distributed across multiple network nodes.

Consequently, the departure of a single node does not result in data

loss. Ensuring an expansive network size, minimizing the likelihood

of node departure, and maintaining sufficient data redundancy

make it possible to minimize the probability of data loss to nearly

negligible levels.

Re-centralization poses a significant risk to decentralized

data networks, referring to accumulating a significant proportion

of the network nodes under the control of a single operator.

This consolidation empowers the operator to disrupt or halt

the network’s functionality. To avert this potential threat,

the network must attain a substantial scale to render the

concentration of a majority of network nodes under the oversight

of a single operator unfeasible, both from a technical and

financial standpoint. Ensuring a sizable network diminishes the

likelihood of re-centralization, safeguarding the network’s integrity

and resilience.

Data quality enhancement. The reference architecture we

propose substantially improves data quality. By storing PHR

in a single logical location in a unified and coherent manner,

issues arising from incomplete or conflicting information can be

mitigated by the data owner’s validation. Furthermore, the inherent

characteristics of DCAS networks automatically guarantee data

integrity and facilitate the preservation of a full version history.

Comprehensiveness. Storing a PHR in a unified location

under the data owner’s complete control resolves the prevalent

issue of fragmented and incomplete data. Such data completeness

effectively tackles the drawbacks associated with the secondary

use of health data, which often necessitates gathering data from

disparate service providers and increases the data privacy risks

associated with secondary use.

Global scalability. DCAS networks operate using the Kademlia

metric, eliminating the geographical dimension. For redundancy

purposes, each data chunk is stored on all nodes belonging to a

Kademlia neighborhood. It is important to recognize that within

the Kademlia metric, nodes belonging to the same neighborhood

may be widely dispersed geographically. In light of this, since

each node only stores a small portion of the data, the question

of where the data is stored in a geographical sense becomes

meaningless. Ultimately, the data is stored simultaneously nowhere

and everywhere.

Data de-duplication. Within the network, only one logical copy

of identical data exists at any given time. This becomes particularly

evident when dealing with large, immutable data entities (e.g.,

images, videos). Even if these entities are included in multiple data

sets, such as in the pseudonymization process, only a single logical

copy is present within the network. Thus, there is no need for

redundant copies of these large data entities; a mere reference to

them is sufficient.

5.4 Future work

This paper concludes the first part of our research by

proposing the reference architecture for resolving health data

accessibility, comprehensiveness, and ownership dilemmas by

preserving semantically interoperable PHRs in DCAS networks.

We have sketched the ideas (99) and submitted the technical

solution as an EU patent application (100). Still, we have only

proposed a technical solution. The proposed architecture’s social,

organizational, and legal aspects and applicability in real-life

primary and secondary cases are for future study. The same is

related to formal and real-life-based evaluation of the properties

of DCAS networks in medical, medical emergency, secondary,

and private use cases. Therefore, most of the research topics we

proposed in Klementi et al. (99) are still to be studied and analyzed.

Those topics are as follows:

• Data model—currently, we have only preliminary ideas of how

the data in PHR in a DCAS network should be preserved;

therefore, a data model that supports federated semantic

interoperability with the existing and future developed

hospital, regional, and national systems and also supports

various data communication protocols (e.g., HL7 v.2.7, CDA

or FHIR), reference models (e.g., HL7 RIM or openEHR RM),

classifiers (SNOMED, ICD, LOINC or their different versions),

languages (e.g., English, Estonian) as well as structured and

unstructured data must be designed and implemented.

• Data quality—the mechanisms must be implemented for how

the data is validated technically and clinically before being

preserved in PHR in a DCAS network.

• Data interoperability—our research group is related to the

development of TermX,1 a platform for developing healthcare

terminology and interoperability and other federated semantic

interoperability-related development activities (66, 67, 90, 91,

101).

• Primary use—together with physicians, we are designing

primary use-case studies to combine real-world clinical and

patient-entered data in the treatment of selected diseases, e.g.,

cardiovascular and prostate diseases.

1 https://termx.org/
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• Secondary use—we are designing different real-world

secondary use cases related to clinical trials, public health,

medical statistics, care efficiency, quality, etc.

• Data security and privacy—one of the directions here is to

design a technical and organizational solution for health data

de-identification so that the de-identified data is reliable for

secondary use; another direction is to design and conduct

proper real-world evidence-based experiments to justify these

properties in primary and secondary use-cases.

• Data integrity and transparency—although data integrity

and transparency arise from DCAS properties, we have to

justify these in real-world evidence-based experiments during

primary and secondary use.

• Linked data—the potential role of a DCAS network as the

foundation for the Giant Global Graph (by Tim Berners-Lee)

is an interesting related research topic.

6 Conclusion

The reuse of health data presents a significant challenge

that currently lacks an effective solution. This article delves into

the issue through the lenses of accessibility, completeness, and

ownership. To address these challenges, we propose a novel,

globally scalable architecture for a personal health data space

based on decentralized content-addressable networks. It ensures

that data subjects retain complete and exclusive control over their

data, while enabling them to share it with third parties as they

see fit.

To illustrate the problems, we present four use cases from

the Estonian e-health system, demonstrating how the current

methods fail to effectively address the three dilemmas. Following

this, we analyze how the proposed new strategy resolves

these issues.

The proposed architecture presents a notable departure from

previous approaches to health data management and introduces a

paradigm shift in the manner in which data storage is conceived.

Therefore, it is expected that society will require a significant

period of adjustment. Consequently, the feasibility of implementing

the described solution in the immediate future appears remote.

Nonetheless, it remains imperative for societal discourse to

acclimate to emerging technological possibilities and navigate

alongside them.

By providing enhanced control, interoperability, security,

and transparency, the proposed solution has the potential to

fundamentally transform how individuals interact with their health

data. It empowers individuals to take an active role in their

healthcare journey, fostering a more patient-centric and secure

healthcare environment.
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Introduction: Transparency and traceability are essential for establishing

trustworthy artificial intelligence (AI). The lack of transparency in the data

preparation process is a significant obstacle in developing reliable AI systems

which can lead to issues related to reproducibility, debugging AI models, bias

and fairness, and compliance and regulation. We introduce a formal data

preparation pipeline specification to improve upon the manual and error-prone

data extraction processes used in AI and data analytics applications, with a focus

on traceability.

Methods: We propose a declarative language to define the extraction of AI-ready

datasets from health data adhering to a common data model, particularly those

conforming to HL7 Fast Healthcare Interoperability Resources (FHIR). We utilize

the FHIR profiling to develop a common data model tailored to an AI use case

to enable the explicit declaration of the needed information such as phenotype

and AI feature definitions. In our pipeline model, we convert complex, high-

dimensional electronic health records data represented with irregular time series

sampling to a flat structure by defining a target population, feature groups and

final datasets. Our design considers the requirements of various AI use cases

from different projects which lead to implementation of many feature types

exhibiting intricate temporal relations.

Results: We implement a scalable and high-performant feature repository to

execute the data preparation pipeline definitions. This software not only ensures

reliable, fault-tolerant distributed processing to produce AI-ready datasets and

their metadata including many statistics alongside, but also serve as a pluggable

component of a decision support application based on a trained AI model during

online prediction to automatically prepare feature values of individual entities.

We deployed and tested the proposed methodology and the implementation

in three different research projects. We present the developed FHIR profiles

as a common data model, feature group definitions and feature definitions

within a data preparation pipeline while training an AI model for “predicting

complications after cardiac surgeries”.
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Discussion: Through the implementation across various pilot use cases, it has

been demonstrated that our framework possesses the necessary breadth and

flexibility to define a diverse array of features, each tailored to specific temporal

and contextual criteria.

KEYWORDS

artificial intelligence, dataset, harmonization, transparency, FHIR, interoperability,
health data spaces

1 Introduction

1.1 Background and objectives

Transparency, and traceability are considered among the key
requirements for trustworthy artificial intelligence (AI) by the AI-
Act which will be governing the use of AI solutions in the EU
(1). Lack of transparency in the data preparation process, i.e.,
the difficulty in tracking and understanding the transformations
and manipulations that the data undergoes before being used for
training is a major issue for building trustworthy AI solutions (2).

Today’s AI models depend on a complex, iterative process
involving extensive communication among medical professionals,
data scientists, and database administrators. Medical experts
outline the specific data needed for the AI project to data
scientists and AI developers, who then pass these requirements
to database administrators. These administrators are responsible
for retrieving the relevant data from existing sources, such as
Electronic Health Records (EHR), based on the defined variables.
Typically, this procedure is manually carried out by database
administrators, resulting in time-consuming, labor-intensive tasks
that lack transparency and traceability. Data scientists check the
accuracy and relevance of the data, while medical professionals
evaluate the performance of the AI model trained using this data.
This prone-to-error and laborious back-and-forth continues until
there is a mutual understanding and satisfaction with the data
prepared for the AI application. This lack of transparency can lead
to several issues:

• Reproducibility: Without knowing the exact steps taken
during data preparation, it becomes difficult to reproduce
the same dataset or validate the results obtained from the
AI model. This also hampers the ability to effectively train
AI models across several sites via a federated learning
architecture. For example, researchers may decide to exclude
data from certain patients with specific phenotypes (e.g.,
having a condition like epilepsy). Even if they document this
exclusion by indicating the name of the disease, the lack of
clear coding for exclusion criteria can still pose a problem due
to insufficient transparency. Medical terminologies (e.g., ICD-
10 codes for diagnosis) are used to indicate phenotypes, and
the usage of these medical concepts can vary among different
healthcare settings. Even if the same terminology is used, the
practical definition of the phenotype can differ between two
healthcare settings. Therefore, when an AI model is deployed
in a different setting, it is crucial that the phenotype definitions
are clear and transparent. This allows for proper configuration

and customization of data mapping or preprocessing steps
according to how medical terminologies are used in that
specific setting.
• Debugging: When unexpected results occur during model

training or inference, it can be challenging to identify the root
cause without knowing how the training data was prepared.
• Bias and Fairness: Data transformations and preprocessing

steps can inadvertently introduce biases into the dataset,
leading to biased AI models. During training data extraction
and data cleaning step, decisions on how to handle missing
values can introduce biases. For example, if data for certain
racial groups is more likely to have missing values, imputing
these with overall mean values might not accurately reflect
the health status of these groups. Then suppose that an AI
model trained and deployed to predict health risks for a
diverse patient population where this data cleaning step not
documented transparently. Because the model was trained
on a biased dataset, it may not perform well for these
underrepresented groups. Due to this unidentified bias, the
model may perform well on the majority population but
poorly on minorities which may exacerbate existing health
disparities. Without traceability, it’s challenging to detect and
mitigate these biases.
• Compliance and Regulation: In regulated domains such as

healthcare, there are regulatory requirements for documenting
data processing steps for transparency and auditability
purposes.

In this paper, we propose a formal data preparation pipeline
specification to overcome the limitations of the manual and
error-prone data extraction processes for AI and data analytics
applications, while also addressing the issue of traceability.
We introduce a declarative JSON-based language designed for
specifying how to extract data from datasets that adhere to
Common Data Models, specifically those compatible with HL7
Fast Healthcare Interoperability Resources (FHIR) standards (3),
as part of a pipeline process to prepare data for AI. Our goal is
to enhance the scalability, transparency, and reproducibility of AI
applications by streamlining the data extraction phase and clearly
separating medical knowledge from data engineering knowledge.
Our approach also endeavors to offer a practical methodology
for realizing the objectives outlined in the European Health Data
Space (EHDS) legislation (4) which aims to facilitate health data
portability and foster the development of a unified market for
health data for secondary use purposes. The transparent and
declarative model used to define the data preparation pipeline
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supports the aggregation of health data from diverse sources,
thereby making them accessible for clinical research.

Our objective is to establish a data preparation pipeline
originating from Electronic Health Record (EHR) sources to
generate AI-ready training datasets. This task presents several
challenges due to the inherent complexity of EHRs, rendering them
unsuitable for direct use as feature vectors in training AI models
(5–7). EHR data is structured in intricate, nested, high-dimensional
models with diverse data types often linked to external domain-
specific terminologies and code systems, enhancing the semantic
understanding of data entities. However, this structure doesn’t
align directly with the flat feature vectors expected by AI methods,
typically represented as normalized, domain-agnostic value sets.
Moreover, EHR data records unevenly distributed clinical events,
resulting in irregularly sampled sparse time series data, further
complicated by the presence of missing values.

Converting EHR data into feature vectors suitable for AI
methods necessitates multiple steps, involving various decisions.
These decisions encompass selecting domain-specific codes from
international code systems to determine which data entities
from EHR to include, identifying necessary temporal joins and
aggregations, determining the resampling strategy for longitudinal
EHR data, specifying transformations for normalization, unit
conversion, and harmonization, and devising approaches to handle
missing data. The design of our declarative data preparation
pipeline definition has been guided by these challenges. It is crafted
to transparently define each step of the transformation pipeline
as a sequence of data processing and transformation actions in a
standardized manner.

Our data preparation pipeline model is technology agnostic;
it provides a machine processable definition of the pipeline steps.
In this paper, to demonstrate the effectiveness of the proposed
methodology, we also briefly describe our implementation of
an engine, called “onfhir-feast”, that processes this machine
processable pipeline definition to extract AI-ready datasets from
EHR sources. Implemented as a high-performance distributed
engine, we showcase its ability to efficiently extract datasets
for various use cases. This domain-specific, technology-agnostic
language establishes a standardized approach for a variety of
stakeholders, including data scientists, health data owners, and
AI or clinical decision support service vendors, to collaborate
and develop AI-based solutions or conduct research studies. This
framework enables scalability and reproducibility, ensuring that
solutions and studies can be effectively implemented and replicated
across different healthcare settings.

1.2 Related research

One of the pioneering initiatives to enable observational
research on top of EHRs is OHDSI (8). OHDSI offers the
OMOP Common Data Model (CDM) (9), which standardizes
the structure and content of observational data with the support
of a standardized vocabulary. Additionally, OHDSI provides a
suite of open-source tools, including ATLAS for designing and
executing observational research studies, and ACHILLES for
characterizing and visualizing source data. While OMOP CDM
serves as a solid foundation, it requires extension and specialization

to cater to the needs of domain specific research studies, such
as cancer research (10) and medical imaging (11). In OMOP
CDM approach, it is not possible to document these extensions
and customizations in a machine processable and traceable
manner. Our approach addresses this gap by introducing a FHIR-
based CDM, which meticulously documents all customizations
in a machine-processable manner via the profiling methodology.
Although OHDSI’s open-source tools facilitate population queries
and dataset extraction, this process is not documented in a
machine processable manner which diminishes the end-to-end
transparency, and traceability of the dataset preparation process.
This deficiency hampers reproducibility and auditability, key
requirements of AI-Act.

There have been a number of efforts in the literature to flatten
the hierarchical EHR data to create AI-ready tabular datasets.
Fiddle (6) provides an open-source generic preprocessing pipeline
implementation for extracting structured data from the EHR data
with three distinct steps, namely for pre-filtering, transforming
and post-filtering. As HL7 FHIR is widely supported by numerous
health care institutions and vendors of clinical information systems,
several efforts focused on flattening EHR data represented as
FHIR resources for extracting AI friendly data sets. Liu et al. (12)
utilized the FHIR Bulk Data API to create population-level exports
from clinical systems, into a file format often referred to as "Flat-
FHIR’ represented in NDJSON-based data format. FHIR-DHP (5)
proposes a generic data harmonization pipeline (DHP) that is
composed of data exchange, mapping, and export operations to
transform EHR data to FHIR standard first, then to a relational
database format, and exporting the data to a custom flattened
JSON format as an AI-friendly format. FhirExtinguisher (13) has
extended the FHIR Search API with an additional projection layer
using FHIRPath, to build a tool for transforming FHIR resources
into tabular data. Pathling (14) proposes an extended FHIR
Analytics API, as a specialization of the FHIR API that focuses on
providing functionality useful for health data analytics applications,
namely: importing bulk FHIR data, execution of aggregation-
based queries across a data set, searching via FHIRPath queries
for cohort selection and extracting datasets to create custom data
extracts for input into other tools and workflow. Although these
efforts provided a generic methodology (5, 12) and/or extended
API specification and implementation (13, 14) to flatten EHR
data as tabular data sets, they do not provide a declarative model
to formally define the data preparation pipeline. Our technology
agnostic approach complements these, by providing an additional
level of abstraction for enabling transparency, traceability, and
reproducibility of AI methods. It should be noted that these efforts
such as (13, 14) can be utilized to implement a transformation
engine implementing the declarative data preparation pipeline
definition proposed in this paper.

2 Materials and methods

2.1 Common data modeling for AI use
case

A pivotal component of our methodology involves the
construction of Common Data Models (CDMs) tailored for AI
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applications. In our methodology, the CDMs are meticulously
built utilizing the HL7 Fast Healthcare Interoperability Resources
(FHIR) standard, leveraging the FHIR profiling technique. FHIR
profiling is the process of defining or constraining FHIR resources
to address specific requirements. This involves customizing FHIR’s
generic, standardized resources to create more precise models that
cater to particular use cases, workflows, or data exchange scenarios
within healthcare applications. These profiles dictate how FHIR
resources are used, including the elements they must contain, the
cardinality of these elements (e.g., optional, mandatory, repeating),
and value sets or data types for each element.

In healthcare, AI applications are generally built for specific
use cases, and the data requirements, so called variables needed
for executing the AI model or visualizing the results, are declared
within those use cases. One of the primary benefits of utilizing a
CDM with HL7 FHIR profiling is the creation of a customized
standard data model that is specifically tailored to the unique
requirements of each AI use case. By defining a machine
processable CDM that precisely aligns with the specific data
elements, structures, and terminologies relevant to the use case,
we ensure that the AI system is built upon a solid foundation of
accurate and relevant data.

Utilizing a CDM defined by the HL7 FHIR standard is
the establishment of a standardized interface for querying
and accessing health records. This standardization not only
simplifies the integration of disparate health information systems
but also ensures that AI algorithms can access the necessary
data in a consistent and reliable manner. By facilitating a
uniform method to search and retrieve health records, we
significantly reduce the complexity and variability often
encountered in health data, thus enabling more efficient data
processing and analysis.

The use of HL7 FHIR in defining our CDM enables the
explicit declaration of information critical to the AI use case,
such as phenotype and AI feature definitions. This is achieved by
referring to inherent FHIR structures and standardized medical
terminologies through the value set references. With this approach,
an AI use case transparently declares its information of interest.
As a result, our methodology not only enhances the semantic
interoperability of health data but also ensures that the AI systems
have access to a rich and semantically coherent dataset. This level
of specificity and clarity in data representation is essential for the
development of AI algorithms that are both effective and reliable in
clinical settings.

As a common data model for a specific analytic or AI use case,
we propose to provide a FHIR Implementation Guide including the
following machine processable FHIR based definitions.

• A FHIR CapabilityStatement defining the list of related FHIR
resource types needed for this use case as well as references
to search parameters to be used to search related data for
each resource type.
• A list of StructureDefinition resources defining syntactic

and semantic customizations and restrictions representing a
category of health events or facts needed for the use case.
• A list of ValueSet and/or CodeSystem resources defining the

relevant concepts from terminology systems for restricting
certain elements value sets or define information of interest.

• The adoption of a Common Data Model based on the HL7
FHIR standard, tailored through the FHIR profiling approach,
offers significant advantages for the development of AI in
healthcare. It provides a standardized, customizable, and
semantically rich framework for accessing and processing
health records, thereby laying the groundwork for scalable and
transparent AI solutions in healthcare.

2.2 Declarative model to define the data
preparation pipeline

We propose an end-to-end data preparation pipeline that
begins with clinical data sources, such as Electronic Health Records
(EHRs) and supplies AI systems with training datasets. This
pipeline can also be utilized to run intelligent clinical applications
and decision support services built based on AI models readily on
EHRs by seamlessly retrieving the input parameters.

By utilizing the Common Data Model built upon HL7 FHIR,
we establish a standardized interface for accessing source data
effortlessly. Our goal is to create a transparent pipeline utilizing
this FHIR interface to generate a dataset optimized for AI
applications. However, this presents a challenge: converting the
nested, hierarchical data model of FHIR into a tabular or time
series format compatible with mainstream AI frameworks such as
TensorFlow (15), Pythorch (16) or Scikit-learn (17).

EHR data is intricate, featuring high dimensionality, irregular
time series sampling, and a variety of data types with diverse
representations of clinical events. Converting this complex EHR
data into flat feature vectors that align with Machine Learning (ML)
techniques poses several challenges.

• First and foremost, performing temporal joins and
aggregations over EHR data is necessary to derive features
or outcome variables in a dataset. These derived features
will become columns in the tabular format expected by
AI frameworks. This process also requires tailoring to the
specific requirements of each use case. For instance, consider
a scenario involving EHR data where a particular lab result,
such as creatinine, is represented as a FHIR Observation type
resource according to the FHIR standard. In a specific use
case, like predicting complications after cardiac surgeries,
various creatinine results may be relevant. These could
include the creatinine level before surgery, the first creatinine
result within 24 h after surgery, the latest creatinine result,
the average of all results, and the difference between the
first and last creatinine results. Each of these aspects needs
to be defined as separate features specific to the given use
case scenario. Thus, it’s essential to establish a method for
defining how these use case-specific tabular feature sets can be
extracted from the hierarchical, relational FHIR-based model
for each unique use case scenario.
• Frequently, transformations are required to adjust the scale

or discretize the numeric values found in EHR data, such
as laboratory values. This is necessary to create normalized
features that align with the expectations of ML models.
Additionally, numeric values expressed in various units may
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need to be converted to a specified unit for the sake
of harmonization.
• In EHR data, clinical events are logged as they occur within

the clinical workflow, leading to irregular sampling of time
series events, which differs from the regular sampling expected
by ML methods. Consequently, it’s essential to establish
strategies for resampling longitudinal EHR data to meet the
requirements of specific use cases.

Each of these steps requires numerous decisions from data
scientists in the data preparation process. Transparency within
these decisions is vital for data transparency, as they heavily
impact the characteristics, and quality of the resulting dataset. To
ensure clarity in defining these steps or decisions, we introduce
a declarative model aimed at precisely defining each step of
the transformation in the pipeline from EHR data to AI-
ready feature sets.

The HL7 FHIR API offers a standardized query language,
included within the FHIR API’s search interaction, enabling the
querying of health data. Additionally, there’s another language
known as FHIRPath (18), designed for processing and navigating
FHIR content. Our declarative model leverages these FHIR
Query and FHIRPath statements to transparently define health
datasets as a series of data processing and transformation steps
in a standardized manner. Through this declarative model,
transformation steps can be precisely defined and executed to
prepare training, validation, or test datasets for AI. Moreover, it
can also facilitate the preparation of features for executing decision
support models during online prediction.

In the process of designing our declarative model, we aimed to
recognize the steps typically taken by data scientists or research
groups when creating a dataset through conventional methods,
which often involve coding in Python and/or SQL. We endeavored
to devise a practical approach to achieve the same using FHIR
constructs. The following steps have been identified and form the
primary sections of our declarative model:

• Definition of target population: This step entails identifying
the target cohort by declaratively specifying the characteristics
of the data entities that will comprise the target population for
a specific use case, utilizing inclusion and exclusion criteria. In
certain scenarios, entities eligible for inclusion in the dataset
may be limited to specific time periods. This step also allows
for defining these eligible time periods tailored to the specific
use case requirements.
• Definition of feature groups: In this step, we define an

intermediate result set, as a group of base features, that can
be retrieved from EHR and can be utilized in the next step to
calculate the final set of features required by the use case. At
this step it is also possible to define transformations such as
unit conversions to create harmonized data sets.
• Definition of final datasets: This step includes defining the

individual features based on the base features identified
in feature groups. At this step, we first define the rules
for resampling of longitudinal health data, and also define
anchor time points that are important for the use case.
Following this, we declaratively specify how final features in
the dataset can be calculated based on the base features, and

TABLE 1 An example definition of target population for a simple use
case; “Patients diagnosed with Parkinson.”

{

"url": "https://aiccelerate.eu/cohorts/pilot2/

parkinson_cohort",

"name": "parkinson_cohort",

"title": "Patients diagnosed with Parkinson",

"description": "Patients diagnosed with Parkinson

(ICD-10 G20 code)",

"version": "0.1",

"date": "2022-04-21T00:00:00",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC Corp.)",

"entityType": ["Patient"],

"eligibilityCriteria": [

{

"fhirSearch": "?",

"description": "All patients with a parkinson

diagnosis (ICD-10 G20)",

"filter": [

{

"resourceType": "Condition",

"fhirSearch": "?code = http://hl7.org/fhir/

sid/icd-10{\T1\textbar} G20&patient = {{Patient}}",

"entities": ["Condition.subject"],

"eventTime": "Condition.onsetDateTime"

}

]

}

]

anchor timepoints, through a set of temporal and contextual
constraints, aggregations, and transformations.

In the subsequent sections, we explore the intricacies of the
methodologies and processes involved, elucidating the benefits and
functionalities of the suggested approach and solution. Through
the application of the proposed language, we offer exemplary
definitions to demonstrate the adaptability of our method across
a diverse range of use cases.

2.2.1 Definition of target population
The initial phase in preparing the dataset involves defining

the target cohort, which entails specifying the characteristics or
phenotype of the entities (for instance, patients) designated as the
target population for the current use case, and whose information
will be incorporated into the dataset. In this context, we adhere
to the definition provided by OHDSI, which describes a cohort as
"a set of persons who satisfy one or more inclusion criteria for a
duration of time” (19).

In our approach, a single population definition is engineered
for versatility across various use cases, thereby allowing it to be a
distinct, reusable component within different dataset definitions.
For illustration, Table 1 presents a population definition tailored for
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datasets focusing on Parkinson’s disease patients. Each construct,
starting with the population definition, is initiated with metadata
elements such as title, description, version, and a canonical
URL, to provide a comprehensive overview of the definition. To
establish a population definition effectively, it is essential first to
identify the specific entities comprising the population. Within
the FHIR framework, there are distinct resource types—such as
Patient, Practitioner, and Organization—designed to represent
individuals (e.g., patients or healthcare practitioners) or entities
(e.g., organizations), along with their foundational information. All
ancillary resources link back to these primary resources to delineate
their interrelations. For instance, a lab result, denoted by a FHIR
Observation resource, specifies its associated patient through a
reference type element that points to the pertinent FHIR Patient
resource.

As depicted in Figure 1, our methodology employs the names
of FHIR resource types, such as “Patient,” to denote that our target
population primarily consists of patients, reflecting the common
practice in health data analytics. Unlike OHDSI, our approach
expands the definition of the target population to include not
only individual entities like patients or practitioners but also
conceptually broader categories such as encounters or episodes
of care. These categories encompass both the individual involved
and specific events, such as a hospital visit or a surgical care
episode. This broader categorization allows us to leverage the
relationships established in FHIR between resources like FHIR
Encounter or EpisodeOfCare and other FHIR resources (for
example, medications administered during a hospital stay). By
doing so, we facilitate precise grouping of data based on distinct
criteria, thereby enhancing the clarity and utility of the data for
health analytics.

The subsequent step involves defining the eligibility criteria,
which detail the characteristics or phenotypes of the entities
in question. Our framework supports the definition of multiple
eligibility criteria, recognizing that a single entity may exhibit
different characteristics based on varying representations of
underlying facts. For instance, patients with diminished kidney
function might be identified through FHIR Condition resources
that implicitly diagnose with specific ICD-10 codes, or through
eGFR measurements depicted by FHIR Observation resources
where the value falls within a certain range. This flexibility also
accommodates the inclusion of various sub-cohorts within the
dataset. The process of defining eligibility criteria begins with a
FHIR query statement targeting the base entity type, which in
our scenario is the FHIR Patient resource. At this example, we
impose no limitations on demographic information such as age,
gender, or ethnicity, which are typically included in the FHIR
Patient resource type. The criteria are further refined through
additional filter definitions applied to other FHIR resource types.
For example, to isolate patients diagnosed with Parkinson’s disease,
we employ a FHIR query on FHIR Condition resources. FHIR
facilitates a universal search mechanism via RESTful API, providing
a comprehensive list of search parameters for each resource
type. These parameters enable queries on FHIR resources using
filters based on coded, numeric, Boolean, textual, temporal, or
relational information, including references among resources. In
our methodology, we utilize these FHIR search statements to
delineate a specific result set. In population definitions, these
queries serve to filter entities that satisfy at least one condition

specified by the query. Specifically, we target patients who have
at least one FHIR Condition resource coded with the ICD-10
code “G20” for Parkinson’s diagnosis. Each filter explicitly states
the search parameter linking the population to that resource type
(e.g., patient = {{Patient}} indicates the ’patient’ parameter linked
to our population’s Patient entities) and includes a FHIRPath
expression that specifies the path for entity identifiers (e.g.,
“Condition.subject”). For more intricate scenarios, additional
filters on other resource types can be defined to specify further
characteristics required for an entity to be considered eligible
for the cohort. Moreover, FHIRPath expressions allow for the
imposition of additional conditions on the result set for each filter,
addressing constraints that the standard FHIR query mechanism
may not accommodate.

In certain cases, entities qualify for inclusion in a cohort only
during specific time frames or across multiple intervals. This means
that the relevance of an entity to a use case hinges on its state
within these designated periods. For instance, in the context of
constructing a dataset for analyzing or predicting the progression of
Parkinson’s disease, our interest is confined to the period following
a patient’s Parkinson diagnosis. By utilizing a FHIRPath expression
to mark the event time, we can determine the precise moment each
entity enters the cohort, which for our example is the onset time
of Parkinson, as recorded in the FHIR Condition resource. While
it’s also possible to define an exit time when an entity no longer
meets the cohort criteria, this aspect is not utilized in our example
scenario. Consider a use case aimed at examining patient outcomes
in relation to a specific medication regimen over time. Here, the
start and end times of medication administration, as documented in
FHIR MedicationRequest resources, could serve as the markers for
entering and exiting the cohort, respectively. Given that medication
prescriptions are often renewed, multiple resources may document
medication use for distinct periods. In such instances, it becomes
necessary to identify multiple eligibility periods for patients. Our
methodology allows for the specification of a minimum time gap
between consecutive eligibility periods. For example, setting a
15-day minimum gap implies that if the interval between two
prescriptions is less than 15 days, they are considered part of the
same usage period. This approach enables the precise delineation of
eligibility periods in alignment with clinical guidelines or practices.
As we will detail in forthcoming sections, these eligibility periods—
particularly the defined entry and exit times—are critical for the
sampling of data used in creating training or validation datasets.
They also play a pivotal role in the development of other features
that hinge on these specific temporal markers.

The defined entry and exit times within population criteria
are instrumental when establishing criteria based on the temporal
relationship between two health events. An illustrative scenario,
as discussed in the Book of OHDSI, involves identifying “patients
who initiate ACE inhibitors monotherapy as first-line treatments
for hypertension.” In such a case, one might set up a filter on
the Condition resource to search for a hypertension diagnosis,
utilizing the diagnosis or onset date as the event time. Subsequently,
an additional filter could be applied to MedicationRequest or
MedicationStatement resources. This filter would search for a
specific set of ATC codes corresponding to ACE inhibitors,
incorporating an extra condition. This condition, defined using
a FHIRPath expression, would stipulate that the temporal gap
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FIGURE 1

Population definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

FIGURE 2

FeatureGroup definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.
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TABLE 2 A sample Feature Group definition to retrieve blood pressure
measurements for the specific population.

{

"url": "https://aiccelerate.eu/feature-groups/

pilot1/bloodpressure",

"name": "bloodpressure",

"title": "Blood Pressure Measurement",

"description": "Represent a blood pressure

measurement including systolic and diastolic",

"version": "0.1",

"date": "2022-09-07",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC

Corp.)",

"targetResourceType": "Observation",

"targetProfile":

"http://hl7.org/fhir/StructureDefinition/bp",

"fhirSearch":

"?patient = {{Patient}}&category = http:

//terminology.hl7.org/CodeSystem/observation-

category{\T1\textbar}

vital-signs&code = http://loinc.org{\T1\textbar}

85354-9",

"entities": {

"pid": "Patient"

},

"timestamp": "time",

"feature": [

{

"name": "pid",

"title": "Patient identifier",

"description": "Patient identifier",

"dataType": "id",

"fhirPath": "Observation.subject"

}, {

"name": "time",

"title": "Observation time",

"description": "Time of measurement",

"dataType": "dateTime",

"fhirPath": "Observation.effectiveDateTime"

},

{

"name": "systolic",

"title": "Systolic BP",

"description": "Systolic BP value",

"dataType": "decimal",

"fhirPath":

"Observation.component.where(code.coding.exists

(system = ’http://loinc.org’ and

code = ’8480-6’)).first().valueQuantity.value"

},

(Continued)

TABLE 2 (Continued)

{

"name": "diastolic",

"title": "Diastolic BP",

"description": "Diastolic BP value",

"dataType": "decimal",

"fhirPath":

"Observation.component.where(code.coding.exists

(system = ’http://loinc.org’ and

code = ’8462-4’)).first().valueQuantity.value"

}

]

}

between the hypertension diagnosis and the initiation of ACE
inhibitor therapy must be at least 365 days. This method enables
the precise definition of eligibility criteria that hinge on the
chronological sequencing of health-related events.

In addition to inclusion criteria, certain use cases necessitate
the establishment of exclusion criteria. Continuing with the
aforementioned example, the criterion "with no history of prior
hypertension treatment" mandates verifying the absence of any
hypertension treatment prior to the identified ACE inhibitors
monotherapy, subsequently excluding those patients from the
population. This is achieved through the same mechanism of filter
definitions, which, when designated as exclusions, allow for the
identification and removal of such cases. Entities for which at least
one resource meets the FHIR query and the specified condition are
thus excluded from the population. This method enables the precise
tailoring of the population by omitting entities that do not meet the
defined criteria.

2.2.2 Definition of feature groups
With an understanding of the necessary features and outcome

variables, the following step involves identifying the specific FHIR
resources required to compute these variables, ensuring access via
the FHIR API while adhering to the agreed-upon common data
model. To facilitate the reuse of these definitions across varying
scenarios and dataset constructs, we introduce a concept known
as a “feature group.” Figure 2 briefly summarizes the definition
schema. This construct allows for the delineation of result sets
tailored to specific needs. For instance, as depicted in Table 2, one
can establish a feature group aimed at gathering blood pressure
readings for the targeted population, subsequently isolating systolic
and diastolic values as base features for subsequent analyses while
calculating other features. Essentially, feature group definitions
articulate a FHIR result set—stemming from a particular FHIR
query—alongside the specific data points to be extracted from this
set.

Similar to defining a population, we employ FHIR search
statements to outline the desired result set, specifying both the type
of FHIR resource and the expected target FHIR profile to ensure the
resulting resources conform accordingly. In the given example, we
opt for the FHIR Blood Pressure profile, which mandates the use of
the LOINC code 85354-9 to identify blood pressure measurement
records specifically. This code is utilized as a filter within the
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search statement. Additionally, the relevant FHIR reference or ID
type search parameter is paired with an entity placeholder (e.g.,
patient = {{Patient}}). This approach signifies that our request is
exclusively for records pertaining to patients within the defined
population, ensuring that the data collected is directly relevant to
our study’s subjects.

We proceed to identify the base variables to be extracted
from the result set determined by the FHIR search statements.
This compilation should encompass potential identifiers for
the entities involved, and, where applicable, associated time
information that elucidates the timing of the clinical event or
fact in question. FHIR resources, akin to other clinical record
models, are capable of representing health-related facts or events
in three distinct categories: (i) time-independent information, such
as demographics provided by the FHIR Patient resource or family
health conditions outlined in the FHIR FamilyMemberHistory
resource; (ii) events/facts associated with a specific time point,
like the onset date of a chronic condition detailed in the FHIR
Condition resource or a particular laboratory result specified in
the FHIR Observation resource; and (iii) events/facts pertinent to
a defined time period, for instance, the duration of medication
use indicated by the FHIR MedicationStatement resource. In
the construction of these definitions, it is crucial to map entity
identifiers to their corresponding entity types. For instance, in
our scenario, we designate “pid” as the identifier for patients.
Additionally, temporal variables—such as the timestamp of the
clinical event/fact or the start and end times for events/facts
spanning a period—must be articulated for the feature groups,
except those involving time-independent information. In our case,
we specify that the variable “time,” representing the moment of
blood pressure observation, will serve as the timestamp for the
data in question.

Illustrated by our example, each variable is accompanied by
metadata including its name, description, and data type (aligned
with FHIR data types), along with a FHIR Path expression that
specifies the method for extracting information from the result
set. Beyond mere extraction, FHIR Path can be employed for data
transformations or calculations. For instance, in situations where
your common data model does not limit the units for a particular
laboratory result or if there are several unit options, FHIR Path
expressions can be used to convert numeric values from various
units into a standardized unit, facilitating data harmonization.
Similarly, these expressions can be applied to rescale or discretize
numeric values, aiding in data normalization. Our approach allows
for the inclusion of such contextual data within the definition itself,
providing formulas for unit conversion, thresholds for clinical
measurements, etc. This enables the use of FHIR Path expressions
for performing the requisite calculations. By integrating contextual
data and its metadata within the dataset definition and keeping
it separate from the scripts, we adhere to our principles of
transparency and readability. Additionally, this method enhances
the configurability and reusability of the definitions.

2.2.3 Definition of dataset
We introduce the concept of “feature set”; similar to other

constructs within our framework, its definition begins with
essential metadata that provides a verbal description of the dataset
to be prepared with respect to the feature set definition. The
definition model is illustrated in Figures 3, 4. We outline a strategy

for resampling the longitudinal health data, which often displays
characteristics of sparsity and irregular sampling intervals, with
various variables being recorded at disparate frequencies. The
pivotal decision here involves determining the sampling time
points for each entity, essentially deciding what each row in the
dataset represents. This decision is intricately linked to the specific
analytics or AI use case envisioned for the dataset. Current practices
in the literature, employed by data scientists and researchers, offer
several approaches for this:

• Selecting the start or end times of specific health events as
sampling points. For example, utilizing the discharge time
from a hospital as the sampling point for a dataset aimed at
predicting hospital readmission.
• Segmenting a period to establish sampling points based on the

frequency of the most regularly recorded data. An instance of
this would be dividing the time from the end of surgery until
discharge into 8-h intervals for a dataset intended to predict
the length of stay following cardiac surgeries.
• Dividing a period while also incorporating outcome events

into consideration. For example, segmenting the duration of
an Intensive Care Unit (ICU) stay into 5-min intervals, but
also using the occurrence time of sepsis as an additional
sampling point and adjusting the time windows accordingly.
This approach aims to predict sepsis during ICU stays
by analyzing vital signs and other frequent measurements,
ensuring snapshots of each patient are taken at 5, 10, 15 min,
etc., prior to the observation of sepsis.

These strategies enable the creation of datasets that reflect the
dynamics of patient health status over time, tailored to the specific
analytical or predictive needs of the use case.

Within our framework, we’ve integrated a mechanism to
streamline the definition of sampling strategies, as illustrated in
Table 3 under the “referenceTimePoints” section. This mechanism
allows users to specify the methodology for determining sampling
time points in a structured manner:

• Method: The "method" element specifies the chosen
methodology for sampling. For methods that require dividing
a period into sub-periods, we leverage the eligibility period
calculated for each entity based on the population definition.
For instance, in a scenario where a patient’s eligibility period is
delineated by the time span from the end of their first surgery
to their discharge from the hospital, specifying a period (e.g.,
1 h) means this duration will be segmented into 1-h intervals.
• Outcome Events: If the determination of time points also

takes into account certain outcome events, these are specified
by referencing one or more FeatureGroup definitions. In
the given example, a FeatureGroup that provides data on
complications is utilized for this purpose.
• Configuration: Users can further refine the strategy by setting

a time offset to define the exact sampling point relative to
an event, as well as a minimum gap between two outcome
events for them to be considered distinct outcomes. In
the context of predicting post-operative complications, the
example specifies that two complications must occur at least
8 h apart. Additionally, it stipulates that the initial sampling
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FIGURE 3

FeatureSet definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

FIGURE 4

Remaining of FeatureSet schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

point should be set 1 h before the occurrence of the earliest
complication.

This flexible mechanism enables precise configuration of
sampling strategies, tailoring the dataset to capture clinically
relevant events and periods. By incorporating both fixed intervals
and event-driven sampling points, researchers can create datasets

that more accurately reflect the complexities of patient care
trajectories, enhancing the potential for insightful analysis and
predictive modeling.

In addition to primary sampling points, certain scenarios
benefit from the delineation of secondary time points, which
correspond to significant health events within the patient’s care
continuum. These secondary time points are defined in relation
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TABLE 3 A sample FeatureSet definition−Defining sampling time points
and other time points.

{

"url": "https://aiccelerate.eu/feature-sets/

pilot1_hsjd_complications",

"name": "pilot1_hsjd_complications",

"title": "Feature set for AICCELERATE Pilot 1 for

predicting complications after the surgery",

"description": "Feature set for AICCELERATE

Pilot 1 for predicting complications after the

surgery",

"version": "0.1",

"date": "2022-04-21",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC

Corp.)",

"referenceTimePoints": {

"method": "temporal-windows",

"description": "The time period between the end

of first surgical operation and the discharge time is

divided into 1h periods. However if patient has

complications then these event times are considered

as anchor points and reference time points are

calculated accordingly. Two complications with less

than 8 h are assumed same complication so no

reference time point is picked within this period.

Enumeration for reference time points start from 1 h

before the complications",

"useEndTime": true,

"period": "1h",

"minGap": "8h",

"offset": "1h",

"featureGroup": [{

"reference":"https:

//aiccelerate.eu/feature-groups/pilot1/complication"

}],

"secondaryTimePoint": [

{

"name": "lastSurgeryTime",

"description": "Time of the latest main

surgery performed in the episode",

"join": { "type": "past" },

"featureGroup": [

{

"reference":"https://aiccelerate.eu/

feature-groups/pilot1/surgeryEncounter",

"useEndTime": true,

"filter": {

"name": "isMainSurgery",

"description": "If procedure is main

cardiac surgery",

"fhirPath": "category = ’394603008’"

}

}

]}

]},

. . .. . .

TABLE 4 A part of sample FeatureSet definition – Defining features from
medication data for predicting progression to Advanced
Parkinson Disease.

{

"reference":"https:

//aiccelerate.eu/feature-groups/pilot2/medication",

"join": {

"type": "past",

"duration": "3mo"

},

"feature": [

{

"name": "hasBenzodiazepinesRecently",

"description": "Whether patient has

benzodiazepines or not within this period. ATC Code:

under N05CD",

"valueExpr": {

"fhirPath": "atcCode.startsWith(’N05CD’)",

"dataType": "boolean"

},

"temporalAgg": [{

"aggOp": ["any"]

}]

},

. . .

to the primary sampling points, offering a nuanced timeline that
captures critical clinical milestones. In the provided example of
Table 3, the secondary time point "lastSurgeryTime" is identified as
the time marking the end of the patient’s last surgery, as indicated
by the relevant feature group that records surgery encounters. This
point is determined to be the closest, yet prior, instance to the
established primary sampling time point. To ensure the significance
of each identified event, users have the flexibility to specify a
minimum interval that should exist between two consecutive
events. Furthermore, the framework allows users to select specific
events (e.g., first, last, second to last) to serve as these secondary
time points. Secondary time points, along with primary sampling
points, play a crucial role in defining the temporal context for
data analysis and feature extraction. For instance, in the example,
the "lastSurgeryTime" serves as a pivotal reference for calculating
features such as the number of hours elapsed since the most
recent surgery at each sampling point. This approach allows for
the inclusion of dynamic, temporally relevant information in the
dataset, enhancing the precision of subsequent analyses and the
development of predictive models that accurately reflect patient
trajectories and outcomes.

The process of transforming raw health data into meaningful
dataset features involves defining a set of temporal and contextual
constraints, aggregations, and transformations based on the
information provided by related feature groups. Each feature group
encapsulates a category of health events (e.g., lab results, diagnoses,
surgeries) along with the base facts of these events, the entity they
are related to, and the time or period of the event. To convert
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TABLE 5 A part of sample FeatureSet definition−Enumerating features
from frequent SPO2 measurements in hospital after cardiac surgeries for
predicting complications.

{

"reference": "https:

//aiccelerate.eu/feature-groups/pilot1/vitalsign",

"filter": {

"name": "spo2",

"fhirPath": "code = ’2708-6’"

},

"feature": [

{

"name": "value",

"description": "Aggregation of last (2,4 and

8)-h time windows for SPO2 measurements",

"temporalAgg": [

{

"lastN": 3,

"windowPeriod": "h",

"windowSize": 2,

"extending": "multiplicative",

"aggOp": ["stddev", "avg", "max", "min",

"median", "kurtosis", "skewness"]

}

],

"windowFunc": ["delta"]

},

{

"name": "value",

"description": "Aggregations of last 3 1-h

time windows for body SPO2 measurements",

"temporalAgg": [

{

"lastN": 3,

"windowPeriod": "h",

"windowSize": 1,

"aggOp": ["stddev", "avg", "max", "min",

"median", "kurtosis", "skewness"]

}

],

"windowFunc": ["delta"]

}

]

},

. . .

these facts into actionable variables, it’s essential to establish clear
temporal relationships between the facts represented by the selected
feature groups and the predefined anchor time points. For instance,
as illustrated in Table 4, when defining features, one may only
want to consider medication usage data from the most recent three

months. This decision impacts the definitions of features within the
dataset, such as a Boolean feature indicating recent benzodiazepine
use by a patient. This "recency" is calculated in relation to the
main sampling time point for each record, ensuring that the feature
reflects current or recent medication use. The language designed
for this purpose allows users to define temporal constraints with
ease, specifying periods in relation to defined time points either
by indicating a duration that looks forward (future) or backward
(past) in time. This flexibility can include optional offsets or can be
bounded between two specific time points. For example, to focus on
diagnoses made after a patient’s Parkinson’s diagnosis, one could
define a temporal period that spans from the time of the patient’s
eligibility to the sampling time point. This approach facilitates the
generation of features that are not only relevant to the patient’s
current health state but also temporally aligned with the objectives
of the study or analysis. It allows for the creation of datasets that
can more accurately model health outcomes by incorporating the
timing and sequence of health events in relation to significant
clinical milestones.

In the process of defining features for a dataset, it’s not only
possible to apply temporal constraints to health event data, but
you can also impose contextual constraints to further refine the
data included in your analysis. This is accomplished by specifying
filters on the data represented by a feature group. These filters
are expressed using FHIRPath expressions, which allow for precise
selection of data based on specific criteria. Table 5 shows an
example of such a contextual constraint filtering complication data,
where the result set is based on FHIR AdverseEvent resources.
By applying a filter using the corresponding SNOMED-CT code,
one can specifically target unexpected ICU admission events. This
method ensures that the dataset only includes relevant adverse
events, thereby enhancing the specificity and relevance of the
analysis.

The language introduces a "pivoting mechanism" for efficiently
handling scenarios where it’s necessary to generate a standardized
set of features across multiple concepts within the same category,
such as laboratory test results. This mechanism is particularly
useful for cases where analysts wish to extract a common suite
of statistical measures (e.g., the latest, average, minimum, and
maximum values) for a variety of tests or measurements that are
relevant to their specific use case. The first step involves selecting
a base variable from the FeatureGroup definition that will serve
as the pivot. This could be, for example, the LOINC code for a
laboratory test, which uniquely identifies the type of lab test being
conducted. Users can then specify a list of values and corresponding
labels for this pivot variable. These values could be specific LOINC
codes for lab tests that are of particular interest in the use case. If
the exact tests of interest are known ahead of time, they can be
explicitly listed in the model. If the specific items of interest are
not predetermined, the model allows users to define criteria for
automatically selecting these pivot variables based on the data. For
instance, one might specify that features should be enumerated for
the 20 most frequently occurring lab tests in the dataset, provided
that each of these tests appears in the records of at least 100 patients.
This pivoting mechanism simplifies the process of generating a
consistent set of features across multiple data points or concepts,
which is particularly valuable when dealing with large and complex
datasets. It ensures that analysts can focus on analyzing the most
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relevant and frequently occurring data points without manually
defining features for each possible variable.

In the process of defining features for a dataset, there are two
primary methods to derive feature values from the underlying data
represented by feature groups: direct use of base variable values and
calculation through FHIR Path expressions.

• Direct Use of Base Variables: A feature can be directly based
on the value of a base variable that has been defined within
the related feature group. This approach is straightforward and
involves using the raw value of a data point as a feature in the
dataset. Table 5 shows an example using the "value" variable
from a feature group that represents vital sign information.
• Calculation Through FHIRPath Expressions: Alternatively,

features can be derived by applying FHIRPath expressions
to calculate values from the data records within each feature
group. This method allows for more complex transformations
of the data. As shown in Table 4, an example illustrates
how medication usage data, identified by ATC codes in the
medication usage feature group, can be transformed into a
feature indicating whether the patient is using a medication
from the benzodiazepine group. This involves interpreting the
ATC codes using FHIRPath expressions to identify specific
medication classes and then summarizing this information
into a binary feature (e.g., benzodiazepine usage: yes/no).

For addressing the challenges of data harmonization, especially
when dealing with disparate measurement units, scales, or
categorization needs stemming from different calibration standards
of medical devices or varied clinical practices, the model
introduces a mechanism for specifying and applying contextual
information. The model facilitates this through a dedicated section
within FeatureGroup or FeatureSet definitions, designed for the
transparent declaration of contextual parameters. These parameters
can encompass a wide array of transformational instructions, such
as:

• Conversion formulas for standardizing units of measurement
(e.g., converting temperature from Fahrenheit to Celsius or
blood pressure readings from mmHg to kPa).
• Rescaling instructions for numerical values to align with a

common scale or range, enhancing comparability.
• Categorization criteria based on clinical thresholds or norms,

enabling the transformation of continuous data into discrete
categories that reflect clinical significance (e.g., defining
hypertension stages based on blood pressure readings).
• Terminology mappings, which are crucial for harmonizing

data coded in different clinical terminologies or classification
systems, such as mapping between different coding systems for
diagnoses or medications (e.g., ICD to SNOMED-CT).

The proposed language provides a convenient method for
generating multiple features from a single value by leveraging a
combination of aggregation operators and temporal windowing
strategies. This approach allows for the extraction of rich, time-
sensitive insights from health data, particularly useful for variables
that are measured repeatedly over time, such as vital signs or lab
results. The key aspects of this feature include:

• Aggregation Operators: Users can apply a variety of standard
aggregation functions, such as standard deviation, average,
and maximum, to a set of data points. These functions are
akin to those found in SQL and data processing frameworks
like Apache Spark (20), ensuring familiarity and ease of use for
those with a background in data science.
• Temporal Windowing: The language supports several types

of temporal windows, including tumbling, extending, session,
and sliding windows. This flexibility allows users to analyze
data over specified periods in a manner that best suits their
analytical or predictive needs. For example, users can look
at the last 3 1-h windows or extend their analysis over
longer periods, such as 2, 4, and 8 h, to observe trends or
changes over time.
• Configuration Flexibility: Parameters such as the number

of windows, window size, extension factor, or sliding step
duration can be easily adjusted. This configurability enables
users to tailor their analysis to specific requirements or
hypotheses about the data.
• Extension Capability: While the language comes with a set

of predefined aggregation operators, it is designed to be
extensible. Implementors can introduce additional operators
as needed, enhancing the language’s applicability to a wide
range of scenarios and datasets.
• Delta and Rate of Change: Beyond simple aggregations, the

language supports operators for calculating changes between
consecutive temporal windows, such as the delta or rate of
change. This feature can be particularly insightful for tracking
the progression or improvement of a patient’s condition over
time, offering a dynamic view of health status that static
measurements cannot provide.

As exemplified in Table 5 and Figure 5, by applying these
techniques to SpO2 (oxygen saturation) measurements, users can
generate a comprehensive set of features that describe not just the
current state but also the variability and trends of a patient’s oxygen
levels over time. Such detailed feature sets can significantly enhance
the predictive power of analytical models, enabling more nuanced
and accurate assessments of patient health and outcomes.

We introduce a systematic naming convention within the
language to ensure that each feature generated through its advanced
aggregation and temporal windowing capabilities receives a
unique and descriptive name. This naming scheme is crucial for
maintaining clarity and ease of reference when dealing with a
potentially large number of features. The components of this
naming scheme include:

• FeatureGroup Names: The base name derived from the
FeatureGroup, which categorizes the health event or data type,
e.g., "vitalsign".
• Filters: The specific aspect or measurement within the

FeatureGroup, such as "spo2" for oxygen saturation levels.
• Join Expression and Temporal Aggregation Window:

Indicators such as "l2" and "w1h" specify the temporal context
of the feature, with "l2" denoting the second last window and
"w1h" specifying a window period of 1 h.
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FIGURE 5

Population definition schema.

• Aggregation and Window Function Operators: The operation
applied to the data, such as "avg" for average, clearly indicates
the type of statistical measure calculated for the feature.

As illustrated in Figure 5, "vitalsign_spo2_l2_w1h_avg",
illustrates how these elements combine to form a feature name
that is both informative and concise. This feature name indicates
that it represents the average oxygen saturation ("spo2") values
from the "vitalsign" feature group, calculated over the second
last 1-h window ("l2_w1h"). This structured approach to naming
ensures that each feature’s purpose and derivation are immediately
apparent, facilitating easier analysis and interpretation of the data.
It also aids in the automated processing of features, as the naming
convention provides clear and consistent cues about the nature
and temporal dynamics of the data encapsulated by each feature.

3 Results

3.1 Implementation: a feature repository
for health data

We have developed a software, onfhir-feast, capable of
processing declarative data preparation pipeline definitions in a
high-performance distributed manner. This software enables two
key functionalities: (1) Batch extraction of training or validation
datasets from an integrated FHIR compliant data source and (2)
Calculation of features for entities (e.g., patients) to support online
prediction services integrated into the production environment as
part of an AI-based decision support solution.

onfhir-feast is aligned with the emerging concept of a feature
store, which is integral to AI pipelines. In the realm of machine
learning, a feature store serves as a platform dedicated to managing
and providing access to both historical and real-time feature data
(21). It facilitates the creation of precise datasets at particular time
points using historical feature data. Consistent with this definition,
onfhir-feast manages Population, FeatureGroup, and FeatureSet
definitions to provide a REST API for configuring or triggering a
dataset extraction pipeline, enabling access to the dataset or real-
time features for online predictions by leveraging these definitions.

A service built on an EHR system that provides data access via
HL7 FHIR is typically optimized for patient-centric applications
with user interfaces. However, when it comes to population-centric
queries, especially in the context of AI pipelines, performance issues
may arise due to the large volume of data involved. To address
this challenge and prevent excessive workload on FHIR endpoints,
onfhir-feast is designed akin to a health data warehouse. In this
setup, only relevant data is synchronized periodically, typically at
intervals such as every hour or every day, based on the Population
and FeatureGroup definitions in the platform. Consequently, only
FHIR resources updated since the last synchronization will be
queried, resulting in a reduced workload on the system ensuring
optimal performance and efficient utilization of resources.

In this synchronization process, the Population definitions take
precedence. Entity identifiers of the resulting entities identified in
each batch, based on these Population definitions, are stored in
a specific population table within the configured time-series data
repository. Subsequently, each FeatureGroup definition referenced
in the activated dataset definitions is executed for the related
population identified up to that point in time. This approach
ensures that the platform only synchronizes the necessary data for
the identified population.

The result sets of FeatureGroup executions are likewise stored
in FeatureGroup-specific tables in the time-series data repository.
Importantly, Population and FeatureGroup definitions can be
reused across different dataset definitions. The platform manages
this seamlessly to ensure that it never queries and processes the
same FHIR resource more than once, thereby optimizing efficiency
and resource utilization.

With this synchronization mechanism, onfhir-feast acts as a
data warehouse similar to having an OMOP database populated
with data pipelines mapping EHR system data. But in our case,
users are more flexible to design their own tables, in other words
Feature Groups, tailored to their use cases when needed.

Additionally, onfhir-feast offers an API to asynchronously
trigger dataset extraction for preparing training or validation
datasets. Users can choose to utilize all available data or specify
a particular period, such as extracting a training dataset from
data recorded in the previous year. Similarly, periodic dataset
preparations can be scheduled and configured to support AI
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model retraining scenarios. When such an extraction is triggered,
the platform initiates the synchronization phase, which updates
with the new data on the integrated system until the last
synchronization point and populates the related tables in the
time-series data repository. Subsequently, the relevant FeatureSet
definition is executed on the loaded data from those tables for the
identified entities within the population to prepare the dataset. The
resulting datasets are then stored in the integrated "Offline Feature
Repository.”

Throughout the execution of this process, the client has the
option to inquire about the status of the process via the REST API.
Upon completion, automatically generated metadata of the dataset
is stored and made accessible to the client. This metadata includes a
list of features and outcome variables, along with their descriptions,
basic statistics (such as the number of missing values, maximum,
minimum, and average for numeric values, cardinalities, and value
sets for nominal features, etc.).

The platform leverages Apache Spark (20), Akka (22) and
Apache Software Foundation (23) frameworks to ensure reliable,
fault-tolerant distributed processing for handling parallel FHIR
queries during population identification and synchronization
phases, as well as processing the result set for dataset preparation.
It also provides extension mechanism to support the usage of
different type of databases or persistency mechanisms as integrated
repositories (such as time series data repository, Offline and
Online Repository). Currently, PostgreSQL based repositories and
file system-based repositories for storing data in Apache Parquet
format are supported.

The platform can also serve as a component of a decision
support application integrated with a trained AI model, tasked
with preparing features for individual entities for online prediction.
To facilitate this, a corresponding synchronous operation is
provided as part of the REST API. During this process, the
same dataset definitions, comprising the bundle of FeatureSet,
Population, and FeatureGroup definitions, are executed. However,
this time, they are applied to a single entity (e.g., a patient)
to calculate the same feature list in a consistent manner. The
process triggers the synchronization phase solely for that entity,
considering data updated after the last synchronization time for
the target population if the patient is included in the population.
Subsequently, the FeatureSet definition is executed on the obtained
data to prepare the features for online prediction.

3.2 Case studies

The proposed methodology and the implemented platform
have been deployed and tested in 3 research projects supported
within the EU Horizon 2020 and Horizon Europe frameworks
namely, AICCELERATE (24), DataTools4Heart (25) and AI4HF
(26) projects as part of several pilot studies.

Table 6 presents the list of pilot studies and use cases
where the described methodology is followed and a range of
dataset definitions are provided. In all these projects, the onfhir-
feast platform is deployed locally on the data provider’s data
center to extract training and/or test datasets. For instance, in
AICCELERATE, Pilot 2 involves utilizing datasets extracted from
various data providers for cross-validation of AI models developed
locally. Additionally, onfhir-feast serves as an integral component

TABLE 6 Case studies where the methodology and the platform are used
for preparing training/validation datasets.

Case study # of data
provider

# of
variables

AICCELERATE

Pilot 1−Patient Flow Management and
Surgical Units

2

1.1 Dataset for predicting complications
after cardiac surgeries

1 916

1.2 Dataset for predicting length of stay
(LoS) for patients after cardiac surgeries

1 583

1.3 Dataset for predicting duration of
surgery, ICU stay and LoS before surgery

2 88

Pilot 2−Parkinson’s Disease Digital Care
Pathway

2

2.1 Dataset for predicting progression to
advanced Parkinson stage and predicting
Mild Cognitive Impairment in Parkinson
patients

2 402

Pilot 3−Palliative and chronic pediatric
service delivery & patient workflow

3

3.1 Dataset for clustering pediatric
palliative patients into risk groups

1 117

3.2 Dataset for predicting tumor relapse
after cancer treatment in pediatric patients

1 549

3.3. Dataset for predicting time needed for
preparation (time to surgery) to a surgery

1 48

DataTools4Heart and AI4HF*

Pilot 1−Medication prescription in
patients with acute heart failure and
chronic kidney disease or hyperkalaemia

9

1.1 Dataset for analysing prescription
patterns and clinical outcomes in terms of
HF and CKD

9 604

Pilot 2−Risk score for acute HF in the
emergency department

9

2.1 Dataset for predicting on
(HF/CV)-rehospitalization, cardiovascular
event or mortality within 7-, 30-, 90-,
180-days, 1-, 3- and 5-year follow-up.

9 162

Pilot 3−Referral pathways for patients with
HF

9

3.1 Dataset for predicting the right
specialty at the first time right to refer the
patients for an in-hospital and general
practitioners referral support model.

9 268

*DataTools4Heart and AI4HF projects are under development at the time of writing this
manuscript. The numbers might change as the projects may evolve.

of the resulting solution for online prediction. In DataTools4Heart
and AI4HF projects, onfhir-feast is incorporated into federated
learning platforms to extract harmonized datasets from diverse data
providers.

3.2.1 Example case study−predicting
complications after cardiac surgeries

To illustrate the methodology and results achieved using the
solution, we will now provide the details of the data preparation
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TABLE 7 Feature group definitions and relation to CDM for the use case.

FHIR resource
type

AICCELERATE CDM
FHIR profile

Feature group definitions

Patient AIC-Patient: Patient demographics
- gender, birthdate→ Set as mandatory

Patient_demographics
(pid, gender, birthDate)

EpisodeOf
Care

AIC-OperationEpisode: Surgical episode of care indicating the
period from admission to discharge
- type→ Bind to a valueset for episode types to distinguish surgical
episodes
- diagnosis→ Set as mandatory to identify pre-operative diagnosis
for surgery

Episodes
(pid, episodeId, time, endTime, preOpDiagnoses,
comorbidtyDiagnoses)

Encounter AIC-OperationEpisodeEncounter: Encounters related to surgical
workflow.
- type→ Bind to a ValueSet with SNOMED-CT codes to distinguish
ICU stays, ward stays, operation encounters

Icuorwardstay
(pid, episodeId, encounterId, startTime, endTime, type, location,
duration)

surgeryEncounter
(pid, episodeId, encounterId, startTime, endTime, category,
priority, location, duration)

Condition AIC-Condition: Diagnosis records for patients
- code→ Bind to ICD-10-CM value set

Condition
(pid, encounterId, onsetDate, icd10Code)

Procedure AIC-SurgeryPhaseDetails: Record to provide details of the main
procedure performed in surgery.
- category→ Identify a fixed SNOMED-CT code to distinguish such
records
- code→ Bind to ICD-10-PCS value set for surgery codes

Surgeries: Details of the surgery
(pid, episodeId, encounterId, startTime, endTime, isMainSurgery,
ccsCategory, mainProcedureCode, bodySite,duration,
aristotleScore, stsScore, rachs1Score, extubationStatus,
defibrillationStatus, minTemparature, cecTime, clampTime,
arrestTime)

AIC-ProcedureRelatedWithSurgicalWorkflow: Other related
procedures performed in surgery−code→ Bind to a ValueSet for
interested procedure codes in SNOMED-CT for cardiac surgeries e.g.
extracorporeal circulation procedure (cec), vascular clamp,
extubating, defibrillation, etc.

Medication
Administration

AIC-MedicationAdministration: Record indicating an administered
medication within surgical workflow in the hospital.
- medication→ Bind to ATC codes

Medications
(pid, episodeId, time, atcCode, atcCategory, dose, doseUnit)

Observation AIC-LabResultWithinSurgicalWorkflow: Record providing a related
lab result
- code→ Bind to LOINC codes for lab results and provide a ValueSet
to declare the interested lab tests for the use case

Lab
(pid, episodeId, encounterId, time, code, value, unit, interpretation)

Vitalsigns: A set FHIR standard profiles representing vital sign
measurements e.g. body weight, temperature, SPO2, blood pressure,
etc.
- Fixed LOINC codes and units for each vital sign

Vitalsign
(pid, time, code, value)

bloodpressure
(pid, time, systolic, diastolic)

AdverseEvent AIC-ComplicationAfterOperation: Record indicating an adverse
event after surgical operation.
- event→ Bind to a ValueSet including SNOMED-CT codes listing
interested complications occur after cardiac surgeries including
unexpected ICU admission

Complication
(pid, episodeId, encounterId, time, code)

pipeline for one of the use cases within the AICCELERATE project’s
pilot 1 study. This particular use case revolves around predicting
complications, specifically unexpected ICU admissions following
cardiac surgeries and specific diagnostic procedures.

For this study, the target cohort is defined as the surgical
episodes of patients who have undergone at least one
cardiothoracic surgery or diagnostic procedure, such as cardiac
catheterization or cardiac electrophysiology. These eligibility
criteria are defined using a Population definition, which filters

the FHIR EpisodeOfCare and Encounter resources based on
the service type of encounter, utilizing the corresponding
SNOMED-CT codes.

Within these episodes of care, which encompass the period
from hospital admission to discharge, various types of encounters
occur, including surgical encounters, ward stays, intensive care unit
(ICU) stays, and pre-surgery visits. The study utilizes diagnostic
data and basic patient demographic information from the pre-
surgery phase. Additionally, it incorporates details of surgical or
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diagnostic procedures performed, including specific interventions
such as intubation, defibrillation, and hypothermic circulatory
arrest, which may influence post-operative complications.
Furthermore, intraoperative observations and assessments, such
as minimum temperature and related surgery risk scores, are
included in the study. For the post-operative phase, a specific set of
lab results and frequent vital sign measurements obtained during
ICU or ward stays are primarily utilized for prediction purposes.
For instance, the data provider’s dataset includes vital signs
recorded at 5-min intervals for most of the time until discharge.
To calculate outcome variables, a list of explicit complication data,
including a range of post-operative complications and unexpected
ICU admission events, is employed.

Table 7 illustrates the HL7 FHIR-based common data model
and feature group definitions provided for the use case, along
with their relationships. For instance, the FeatureGroup definitions
"icuOrWardStay" and "surgeryEncounter" are dependent on
the model described by AIC-OperationEpisodeEncounter, which
customizes the FHIR Encounter resource model. On the other
hand, the definition named "surgeries" relies on two profiles: one
customizing the record representing the main surgical procedure
and the other representing additional procedures performed in
relation to cardiac surgeries. The table also details the primary
customizations or restrictions applied to the standard resource
model for each defined profile, as well as the parameters extracted
from those records within the FeatureGroup definitions.

List of features and outcome variables that are designed for
this use case in collaboration with clinicians and data scientists
are provided in supplementary material as Supplementary
Table 1. Related definitions are available open source at
https://github.com/aiccelerate/data-extraction-suite/blob/main/
definitions/pilot1-hsjd/.

Within this pilot study, the data is provided by the project
partner Sant Joan de Deu hospital by getting data exports from
corresponding EHR database tables in CSV format. For the
transformation of data in CSV files into HL7 FHIR resources, the
open source toFHIR platform (27, 28) is used as data integration
platform, and onFHIR.io (29) is utilized as the secure health
data repository.

The onfhir-feast tool, along with the data integration platform,
is deployed on a server for demonstration and piloting purposes.
Utilizing the toFHIR tool and corresponding mapping definitions,
retrospective data provided in CSV format are transformed into
FHIR resources compatible with the CDM for the specified use
case. These FHIR resources are then stored in the onFHIR.io
repository. Table 8 provides an overview of the data size, indicating
the number of FHIR resources created as a result of the mappings.
Following this, a batch dataset extraction job is initiated on onfhir-
feast using the designed dataset preparation pipeline definition to
create the dataset for training and testing of AI models. Moreover,
the setup serves as an integral part of the prediction service
served to healthcare professionals wrapping the trained AI model.
The prediction service and UI component utilize onfhir-feast
APIs to retrieve features for a patient within a surgical episode.
Subsequently, this information is utilized for online prediction of
complications for that patient.

We conducted a basic performance test using the same setup
on a single personal computer (Lenovo ThinkPad) equipped
with an 11th Gen Intel(R) Core (TM) i7-11800H processor

TABLE 8 Number of FHIR resources created by mapping raw data and
used in dataset creation.

FHIR resource # of relevant
resources

Details

Patient 906

Episode of Care 1,022

Encounter 4,581 Surgical encounters: 1,197
ICU stays: 783

Ward stays: 1294

Condition 2,310

Medication
administration

121,188

Procedure 2,210 1,197 surgery
1,013 other procedures

records

Observation 6,972,703 6,853,917 vital sign records
76,191 lab result records

1,108 others
41,487 blood pressure

records

Adverse event 565

running at 2.30GHz. The test was carried out within a controlled
Docker environment featuring 8 CPU cores and 16GB of RAM.
Initially, we executed the synchronization job independently,
as the synchronization phase relies on the performance of the
FHIR server to respond to queries. Subsequently, the dataset
preparation job was performed, taking approximately 164 min
to complete. The resulting dataset comprises 916 variables and
141,805 entries, covering 1,022 surgical episodes belonging to 906
patients. Furthermore, the metadata generation for this dataset,
including basic statistics, required approximately 2 min. The API
for retrieving features for a patient within a surgical episode at any
chosen time demonstrated an average response time of 37 s.

4 Discussion

4.1 Principal findings

In this paper, we have introduced a declarative data preparation
pipeline definition language designed to transparently outline
each stage of the transformation process from EHR data to
AI-ready feature sets. This framework ensures traceability by
providing a clear depiction of the transformation and pre-
processing operations applied to the data, from its retrieval from
EHRs to its delivery to AI models for training.

Through our implementation in our pilot studies, we have
demonstrated that, the framework is extensive enough for defining
diverse set of features with different temporal and contextual
criteria. In the realm of applying machine learning to electronic
health record (EHR) data, researchers frequently resort to readily
extracted, manually chosen obvious features due to the time-
intensive nature of more thorough preprocessing methods (6).
The proposed dataset definition language enables researchers
to easily enumerate features with different representations and

Frontiers in Medicine 17 frontiersin.org152

https://doi.org/10.3389/fmed.2024.1393123
https://github.com/aiccelerate/data-extraction-suite/blob/main/definitions/pilot1-hsjd/
https://github.com/aiccelerate/data-extraction-suite/blob/main/definitions/pilot1-hsjd/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 18

Namli et al. 10.3389/fmed.2024.1393123

temporal context using FHIR Path expressions, temporal windows,
aggregation operators and window functions. Furthermore, as the
important part of the definitions are parametrized, users have the
chance to generate different versions of the datasets with different
configurations which helps them to search for optimal or suitable
solution with the underlying data. This capability is invaluable
for researchers seeking the most effective or appropriate analytical
models based on the available data, enabling a more dynamic and
exploratory approach to data analysis.

Reproducibility poses a common challenge in AI research,
with healthcare presenting a particularly pronounced instance of
this issue. The limited availability of publicly accessible medical
datasets serves as one indication of this challenge (30). While
promoting increased data sharing is crucial, establishing reusable
and standardized definitions for key concepts such as target
cohorts, phenotypes, and datasets, as advocated in this article, can
significantly enhance reproducibility in AI research. Encouraging
researchers to share such definitions for their methodologies
enables others to apply the same processes to different datasets,
facilitating result comparison and broader applicability.

Our approach facilitates reproducibility across diverse data
sources, which is essential for federated analysis of fragmented
datasets. Achieving interoperability among datasets is a crucial
requirement for federated machine learning applications, and our
solution offers a transparent and traceable pipeline to accomplish
this goal (31). Additionally, it enables validation for robustness,
bias, and fairness across different sites, thereby enhancing the
reliability and integrity of AI models deployed in healthcare
settings. The framework and its implementation serve as an
implementation guideline for EHDS vision, tackling how data sets
across different sites in Europe can be harmonized and aggregated
for secondary use purposes while also ensuring traceability and
end-to-end transparency fulfilling the requirements of AI-Act.

4.2 Limitations and future work

Currently, the definition of Target Population, Feature Group,
and Feature Set necessitates technical proficiency in crafting FHIR
query and FHIRPath expressions. To enhance user accessibility and
usability, we intend to augment the onfhir-feast implementation
with a graphical user interface. This interface will empower users
to define FHIR query and FHIRPath expressions through visual
expression builders, streamlining the process and reducing the
reliance on technical skills.

The scope of the pipeline and implementation is limited to
tabular datasets production. As foundational models are trained on
raw data for generic purposes, researchers may prefer to provide
directly the FHIR formatted data rather than a dataset tailored
for a specific AI use case. However, still there is an important use
case for generative AI where this pipeline can be useful. Recently,
synthetic data generation for privacy preserving data sharing is one
of the hot topics in healthcare AI. Our pipeline can be part of such
setups where a common dataset definition can be used in different
healthcare settings to extract harmonized datasets locally and then
apply generative AI to create synthetic datasets that maintains
the statistical properties of original datasets. Then these synthetic
datasets can be shared, combined and used in model training, and
development without exposing sensitive patient information.

Furthermore, we aim to expand the capabilities of onfhir-feast
by providing visual tools to data scientists. These tools will facilitate
querying and exploration of source data during target population
selection and feature set preparation. By offering visualizations,
data scientists can better assess the adequacy of the datasets
provided by data sources in addressing the research question
at hand, enhancing overall data exploration and analysis. The
existing implementation already includes basic statistics, such as
the number of missing values, maximum, minimum, and average
for numeric values, as well as cardinalities, within the feature set
documentation. Our objective is to expand the underlying language
and enhance the onfhir-feast implementation to enable querying
additional statistics about datasets.

We plan to leverage this extension for two primary purposes.
Firstly, we aim to utilize it for constructing a metadata catalog,
which will serve as a comprehensive repository of dataset
statistics and characteristics. Secondly, we intend to employ it
for developing data set exploration user interfaces tailored for
data analysts. These interfaces will facilitate the assessment of
data quality across various dimensions, including conformance,
completeness, and plausibility, enabling users to evaluate the
quality of datasets effectively.

5 Conclusion

In summary, the proposed methodology and models offer
significant contributions to the ML research community in
healthcare by establishing standardized, transparent, and
technology-agnostic dataset definitions. These definitions not
only characterize the datasets themselves but also delineate the
procedures for compiling them from Electronic Health Record
(EHR) systems via standard FHIR interfaces. This innovative
approach represents a crucial step towards establishing best
practices for data harmonization. By creating reusable, transparent,
and shareable dataset definitions, it addresses a critical need in
setting up federated data sharing environments for the secondary
use of EHR data, such as the European Health Data Spaces
initiative. By promoting interoperability and standardization, these
methodologies pave the way for more efficient and effective ML
research in healthcare, ultimately leading to improved patient
outcomes and advancements in medical knowledge.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: https:
//github.com/aiccelerate/common-data-model, https:
//github.com/aiccelerate/data-extraction-suite.

Author contributions

TN: Writing−original draft, Software, Methodology, Formal
analysis, Conceptualization. AS: Writing−original draft, Software,
Methodology, Conceptualization. SG: Writing−review and editing,

Frontiers in Medicine 18 frontiersin.org153

https://doi.org/10.3389/fmed.2024.1393123
https://github.com/aiccelerate/common-data-model
https://github.com/aiccelerate/common-data-model
https://github.com/aiccelerate/data-extraction-suite
https://github.com/aiccelerate/data-extraction-suite
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 19

Namli et al. 10.3389/fmed.2024.1393123

Software, Methodology, Conceptualization. CH: Writing−review
and editing, Resources, Investigation. PG-C: Writing−review
and editing, Resources, Investigation. AM: Writing−review
and editing, Resources, Investigation. AE: Writing−review and
editing, Resources, Investigation. GE: Writing−original draft,
Methodology, Conceptualization.

Funding

The author(s) declare financial support was received
for the research, authorship, and/or publication of the
article. The work presented in this manuscript was funded
by the European Union’s Horizon 2020 Research and
Innovation Program under grant agreement no. 101016902
and the European Union’s Horizon Europe Research
and Innovation Program under grant agreements nos.
101057849 and 101080430.

Acknowledgments

We would like to acknowledge the support of the
AICCELERATE, DataTools4Heart, and AI4HF consortiums.

Conflict of interest

TN, AS, SG, and GE were employed by the company Software
Research and Development Consulting. The study presented in this
manuscript is conducted in the scope of a research study.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.2024.
1393123/full#supplementary-material

References

1. European Commission. Proposal for a regulation of the European Parliament
and of the council laying down harmonised rules on artificial intelligence (Artificial
intelligence act) SND smending certain union legislative acts COM/2021/206 final.
Brussels: European Commission (2024).

2. Mora-Cantallops M, Sánchez-Alonso S, García-Barriocanal E, Sicilia M.
Traceability for trustworthy AI: A review of models and tools. Big Data Cogn Comput.
(2021) 5:20. doi: 10.3390/bdcc5020020

3. Health Level 7 [HL7]. Fat healthcare interoperability resources (FHIR). (2024).
Available online at: https://www.hl7.org/fhir/ (accessed February 21, 2024).

4. Directorate-General for Health and Food Safety. Proposal for a regulation -
The European health data space COM(2022) 197/2. Brussels: Directorate-General for
Health and Food Safety (2022).

5. Williams E, Kienast M, Medawar E, Reinelt J, Merola A, Klopfenstein S, et al.
A standardized clinical data harmonization pipeline for scalable AI application
deployment (FHIR-DHP): Validation and usability study. JMIR Med Inform. (2023)
11:847. doi: 10.2196/43847

6. Tang S, Davarmanesh P, Song Y, Koutra D, Sjoding M, Wiens J. Democratizing
EHR analyses with FIDDLE: A flexible data-driven preprocessing pipeline for
structured clinical data. J Am Med Inform Assoc. (2020) 27:1921–34. doi: 10.1093/
JAMIA/OCAA139

7. Xie F, Yuan H, Ning Y, Ong M, Feng M, Hsu W, et al. Deep learning for temporal
data representation in electronic health records: A systematic review of challenges
and methodologies. J Biomed Inform. (2022) 126:103980. doi: 10.1016/J.JBI.2021.10
3980

8. The Observational Health Data Sciences and Informatics [OHDSI]. Program.
(2024). Available online at: https://www.ohdsi.org/ (accessed February 28, 2024).

9. Observational Health Data Sciences and Informatics [OHDSI]. OMOP common
data model. (2024). Available online at: https://ohdsi.github.io/CommonDataModel/
(accessed February 22, 2024).

10. Belenkaya R, Gurley M, Golozar A, Dymshyts D, Miller R, Williams A, et al.
Extending the OMOP common data model and standardized vocabularies to support
observational cancer research. JCO Clin Cancer Inform. (2021) 5:12–20. doi: 10.1200/
CCI.20.00079

11. Park W, Jeon K, Schmidt T, Kondylakis H, Alkasab T, Dewey B, et al.
Development of medical imaging data standardization for imaging-based

observational research: OMOP common data model extension. J Imaging Inform
Med. (2024) 37:899–908. doi: 10.1007/s10278-024-00982-6

12. Liu D, Sahu R, Ignatov V, Gottlieb D, Mandl K. High performance computing
on flat FHIR Files created with the new SMART/HL7 bulk data access standard. AMIA
Annu Symp Proc. (2019) 2019:592–6.

13. Oehm J, Storck M, Fechner M, Brix T, Yildirim K, Dugas M. FhirExtinguisher: A
FHIR resource flattening tool using FHIRPath. Public Health Inform Proc MIE. (2021)
2021:1112–3. doi: 10.3233/SHTI210369

14. Grimes J, Szul P, Metke-Jimenez A, Lawley M, Loi K. Pathling: Analytics on
FHIR. J Biomed Semant. (2022) 13:1–19. doi: 10.1186/S13326-022-00277-1/FIGURES/
7

15. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems. arXiv [Preprint] (2015).
arXiv:1603.04467.

16. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An
imperative style, high-performance deep learning library. Adv Neural Inform Process
Syst. (2019) 32:259.

17. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in python. J Machine Learn Res. (2011) 12:2825–30.

18. Health Level 7 [HL7]. FHIRPath. (2024). Available online at: https://hl7.org/
fhirpath/ (accessed February 21, 2024).

19. Observational Health Data Sciences and Informatics [OHDSI]. Chapter 10
defining cohorts - The book of OHDSI. (2024). Available online at: https://ohdsi.github.
io/TheBookOfOhdsi/Cohorts.html (accessed February 26, 2024).

20. Apache Software Foundation. Apache SparkTM - unified engine for large-scale
data analytics. (2024). Available online at: https://spark.apache.org/ (accessed February
27, 2024).

21. Feature Store For Ml. PRIYA. (2024). Available online at: https://www.
featurestore.org/ (accessed February 27, 2024)

22. Akka. Self managed frameworks and runtimes for event-driven micro-services and
APIs. (2024). Available online at: https://akka.io/ (accessed February 28, 2024).

23. Apache Software Foundation. Apache KafkaTM, open-source distributed event
streaming platform. (2024). Available online at: https://kafka.apache.org/ (accessed
February 28, 2024).

Frontiers in Medicine 19 frontiersin.org154

https://doi.org/10.3389/fmed.2024.1393123
https://www.frontiersin.org/articles/10.3389/fmed.2024.1393123/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1393123/full#supplementary-material
https://doi.org/10.3390/bdcc5020020
https://www.hl7.org/fhir/
https://doi.org/10.2196/43847
https://doi.org/10.1093/JAMIA/OCAA139
https://doi.org/10.1093/JAMIA/OCAA139
https://doi.org/10.1016/J.JBI.2021.103980
https://doi.org/10.1016/J.JBI.2021.103980
https://www.ohdsi.org/
https://ohdsi.github.io/CommonDataModel/
https://doi.org/10.1200/CCI.20.00079
https://doi.org/10.1200/CCI.20.00079
https://doi.org/10.1007/s10278-024-00982-6
https://doi.org/10.3233/SHTI210369
https://doi.org/10.1186/S13326-022-00277-1/FIGURES/7
https://doi.org/10.1186/S13326-022-00277-1/FIGURES/7
https://hl7.org/fhirpath/
https://hl7.org/fhirpath/
https://ohdsi.github.io/TheBookOfOhdsi/Cohorts.html
https://ohdsi.github.io/TheBookOfOhdsi/Cohorts.html
https://spark.apache.org/
https://www.featurestore.org/
https://www.featurestore.org/
https://akka.io/
https://kafka.apache.org/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 20

Namli et al. 10.3389/fmed.2024.1393123

24. Aiccelerate Project. AI accelerator – a smart hospital care pathway engine
(funded by the European Union’s horizon 2020 framework under grant agreement no.
101016902). (2024). Available online at: https://aiccelerate.eu/ (accessed February 28,
2024).

25. DataTools4Heart. A European health data toolbox for enhancing cardiology data
interoperability, reusability and privacy (funded by the European union’s horizon europe
framework under grant agreement no. 101057849). (2024). Available online at: https:
//www.datatools4heart.eu/ (accessed February 28, 2024).

26. AI4HF. Trustworthy artificial intelligence for personalised risk assessment in
chronic heart failure (funded by the European Union’s horizon europe framework under
grant agreement no. 101080430). (2024). Available online at: https://www.ai4hf.com/
(accessed February 28, 2024).

27. toFHIR. A high-performant and easy-to-use ETL (Extract, transform, load) tool
to transform existing health datasets from various types of sources to HL7 FHIR. (2024).
Available online at: https://onfhir.io/tofhir/ (accessed February 28, 2024).

28. Sinaci A, Gencturk M, Teoman H, Erturkmen G, Alvarez-Romero
C, Martinez-Garcia A, et al. A data transformation methodology to create
findable, accessible, interoperable, and reusable health data: Software design,
development, and evaluation study. J Med Internet Res. (2023) 25:822. doi: 10.2196/
42822

29. onFHIR.io. HL7 FHIR R© based secure data repository. (2024).
Available online at: https://onfhir.io/ (accessed February 28,
2024).

30. Sohn E. The reproducibility issues that haunt health-
care AI. Nature. (2023) 613:402–3. doi: 10.1038/D41586-023-
00023-2

31. Sinaci A, Gencturk M, Alvarez-Romero C, Banu G, Erturkmen L, Martinez-
Garcia A, et al. Privacy-preserving federated machine learning on FAIR health data:
A real-world application. Comput Struct Biotechnol J. (2024) 24:136–45. doi: 10.1016/
J.CSBJ.2024.02.014

Frontiers in Medicine 20 frontiersin.org155

https://doi.org/10.3389/fmed.2024.1393123
https://aiccelerate.eu/
https://www.datatools4heart.eu/
https://www.datatools4heart.eu/
https://www.ai4hf.com/
https://onfhir.io/tofhir/
https://doi.org/10.2196/42822
https://doi.org/10.2196/42822
https://onfhir.io/
https://doi.org/10.1038/D41586-023-00023-2
https://doi.org/10.1038/D41586-023-00023-2
https://doi.org/10.1016/J.CSBJ.2024.02.014
https://doi.org/10.1016/J.CSBJ.2024.02.014
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


Frontiers in Medicine 01 frontiersin.org

Seeing the primary tumor 
because of all the trees: Cancer 
type prediction on 
low-dimensional data
Julia Gehrmann 1*, Devina Johanna Soenarto 1, Kevin Hidayat 1, 
Maria Beyer 1, Lars Quakulinski 1, Samer Alkarkoukly 1,2, 
Scarlett Berressem 3,4, Anna Gundert 3,4, Michael Butler 3,4, 
Ana Grönke 2, Simon Lennartz 5, Thorsten Persigehl 5, 
Thomas Zander 3,4 and Oya Beyan 1,2,6

1 Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University 
of Cologne, Cologne, Germany, 2 Medical Data Integration Center (MeDIC), Faculty of Medicine and 
University Hospital Cologne, University of Cologne, Cologne, Germany, 3 Department of Internal 
Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 
Germany, 4 Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, 
Germany, 5 Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University 
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The Cancer of Unknown Primary (CUP) syndrome is characterized by identifiable 
metastases while the primary tumor remains hidden. In recent years, various data-
driven approaches have been suggested to predict the location of the primary 
tumor (LOP) in CUP patients promising improved diagnosis and outcome. These 
LOP prediction approaches use high-dimensional input data like images or 
genetic data. However, leveraging such data is challenging, resource-intensive 
and therefore a potential translational barrier. Instead of using high-dimensional 
data, we analyzed the LOP prediction performance of low-dimensional data from 
routine medical care. With our findings, we  show that such low-dimensional 
routine clinical information suffices as input data for tree-based LOP prediction 
models. The best model reached a mean Accuracy of 94% and a mean Matthews 
correlation coefficient (MCC) score of 0.92  in 10-fold nested cross-validation 
(NCV) when distinguishing four types of cancer. When considering eight types of 
cancer, this model achieved a mean Accuracy of 85% and a mean MCC score of 
0.81. This is comparable to the performance achieved by approaches using high-
dimensional input data. Additionally, the distribution pattern of metastases appears 
to be important information in predicting the LOP.

KEYWORDS

oncology, Cancer of Unknown Primary, prediction, real-world data, classification

1 Introduction

The “Cancer of Unknown Primary” syndrome (CUP) is diagnosed if only metastases but 
no primary tumor can be found (1). Extensive examination and molecular analyzes without 
the support of AI currently enable predicting the location of the primary tumor (LOP) for 
10–20% of CUP patients with an accuracy of 85–90% (2, 3). For these patients, an LOP-specific 
treatment can be chosen which significantly improves their prognosis.
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Historically, about 3–5% of all cancer cases were diagnosed as 
CUP (4). Due to advances in diagnostics, this rate could be reduced 
to 1–2% in general, but it is still higher for patients living in areas with 
rudimentary clinical care (1, 5, 6). Additionally, the CUP syndrome is 
still among the 10 most common reasons for cancer-related deaths 
globally (1). Thus, further advances in LOP prediction are needed to 
improve the prognosis for CUP patients.

AI-driven data analysis can be a key component in achieving this 
and some promising approaches have already been developed (1, 
7–14). They are described in Supplementary material. A major 
drawback of these related approaches is their dependency on high-
dimensional input data measuring the transcriptome, the mutation 
pattern, or epigenetic features of the metastases. This data is not 
generated for cancer patients by default. Hence, the approaches 
introduce additional costs representing a potential translational 
barrier for clinical practice. In 2021, Lu et al. (15) have shown that the 
additional costs to generate transcriptomic, genetic, or epigenetic data 
might not be needed for most CUP cases. Although only using the sex 
of the patient and whole slide images (WSI) from pathological 
examinations as input data, they achieve comparably high 
classification performance in LOP prediction with a convolutional 
neural network (CNN) approach (15).

Motivated by the success of Lu et al. (15), we examined whether 
LOP prediction also works for even lower-dimensional data, i.e., to 
dispense with image files and instead only use a small number of 
structured clinical features as input data. Since such data is far less 
dimensional than genome data or images, the complexity of the task 
is reduced and the decision-making process becomes 
more comprehensible.

In 10-fold nested cross-validation (NCV) we examined the LOP 
prediction performance of a random forest (RF) classifier and a 
gradient boosted trees (GBT) classifier on three different input feature 
sets compiled from oncological real-world data (RWD) of non-CUP 
patients at University Hospital Cologne (UHC). An extensive extract 
transform load (ETL) process accompanied by interdisciplinary 
decisions ensured highest possible data quality. Comparing our results 
to the LOP prediction performance achieved by high-dimensional 
approaches, shows that our tree-based approach on input features 
such as the age, sex, histological specifications, lab results, and the 
distribution pattern of metastases can achieve classification 
performances as high as the complex approaches while being more 
transparent, accessible, affordable, and explainable. Especially, the 
distribution pattern of metastases proved to be a valuable source of 
information for well-performing classification.

2 Materials and methods

2.1 Data curation

In total, we compiled six datasets from clinical systems of UHC as 
shown in Figure  1. We  included cancer cases of adult patients 
diagnosed with Lung, Pancreas, Kidney, Liver, Breast, Colorectal, 
Ears-Nose-Throat, or Upper GI cancer between 01.01.2000 and 
30.06.2021. Patients having several cancer diagnoses within 5 years 
were excluded from the dataset. For each included cancer case, 
we compiled the age at diagnosis, the sex, histological specification, 
lab results, and the metastatic burden according to RECIST v1.1 (16). 

The histological specifications comprised the tumor grading as well as 
indicators for infestation of lymph nodes (N-value), lymph vessels 
(L-value) and veins (V-value). The lab results comprised the amount 
of leukocytes, C-reactive protein (CRP), Hemoglobin (HB), 
Carbohydrate Antigen 19–9 (CA 19–9), and Carcinoembryonic 
Antigen (CEA) in the blood. CA 19–9 and CEA are tumor markers 
(TM), i.e., proteins whose abundance can indicate certain types of 
tumors. The RECIST evaluations were translated to organ-specific 
Tumor Burden Scores (TBS) spanning from 0 (no infestation) to 4 
(significant infestation). All TBS taken together represent the 
metastatic distribution pattern by indicating the tumor burden in 
individual organs. Based on the frequency of missing values for the 
individual features we created three feature sets:

 1 “Core features” containing the age, the sex, histological 
specifications, leukocytes, CRP, and HB (frequency of missing 
values below 35%)

 2 “Core features and TM” containing the core features and the 
TM CA 19–9 and CEA (frequency of missing values 77 and 
69%, respectively).

 3 “All features” containing the core features, the TM, and the 
organ-specific TBS, which indicate the distribution pattern of 
metastases (frequency of missing values 98%).

Due to the low availability of the TBS, we only included those 
cases in the “all features” dataset for which the TBS were available. As 
a result, four of the eight LOP classes were underrepresented, so 
we  decided to create a four-class version of each dataset only 
containing the classes that were still well represented: Lung, Upper GI, 
Pancreas, and Liver. This resulted in a total of six datasets. Missing 
values were imputed in all six datasets using the R package “mice” in 
version 3.15.0 for Multiple Imputation by Chained Equations (MICE) 
(17–20). Eventually, the datasets were anonymized using the software 
tool ARX, which can anonymize structured data according to a variety 
of data privacy models (21). In particular, we  deleted identifying 
features and established 5-anonymity with respect to the quasi-
identifying features age and sex. This means that we generalized the 
age to age groups such that at least five patients share the same 
combination of age and sex. Additionally, ARX suppressed too specific 
cancer cases that would require huge age groups to achieve 
5-anonymity. The sizes of the resulting datasets are depicted in Table 1. 
More details on the data curation process can be  found in 
Supplementary material.

2.2 LOP prediction

We implemented LOP prediction by classifying the patients 
according to their type of cancer using a supervised ML approach. In 
particular, we applied a RF classifier and a GBT classifier on each of 
the six compiled datasets resulting in 12 classification runs in total. RF 
and GBT are tree-based ML methods, which have shown good 
performance in LOP prediction in related work (7–12). An additional 
advantage of these methods is their inherent explainability, which is a 
key requirement for AI-based decision support in medical contexts 
(22, 23). As supervised ML methods, both RF and GBT need class 
labels throughout model training. In our case, these class labels is the 
LOP. Therefore, we  trained and evaluated the models on medical 
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RWD of cancer patients with known cancer types, i.e., on data of 
non-CUP patients.

We comprehensively evaluated the performance of the classifiers 
considering several performance metrics: accuracy, Precision, 
Recall, F1-score, and MCC score. This performance estimation was 
combined with 10-fold NCV to decrease the influence of 
randomness and to determine optimal hyperparameter values for 
the classifiers from a pre-defined parameter grid. For the RF, the 
parameter grid contained the values 5, 10, 20, 35, and 50 for the 
number of decision trees (DTs), the values 3, 5, 7, and 10 for the 
maximal depth of the DTs, the two entropy measures Gini-Index 
and Cross-Entropy, as well as training with and without 
bootstrapping. The parameter grid of the GBT contained the values 

0.1, 0.2, and 0.5 for the learning rates and the values 3, 5, 7, and 10 
for the maximal depth of the DTs in the GBT sequence. The optimal 
set of hyperparameter values was chosen by a grid search approach 
maximizing the MCC score of the classification. We have opted for 
an optimization according to MCC score due to the high class-
imbalance in our datasets and the low sensitivity of the MCC score 
for such class-imbalances (24). The 10-fold NCV was stratified in 
order to maintain the class distribution in the test and training 
dataset. Eventually, we determined the importance of each input 
feature for LOP prediction based on the average decrease in class 
entropy over all splits in which the respective feature was the 
separating feature (25, 26). To enable a systematic comparison of 
individual features, we determined four groups of features according 

FIGURE 1

Dataset compilation process. Six datasets (nested boxes) were created which differ in the number of features (width of the boxes) and the number of 
cases (height of the boxes). The features always contain the core features listed above and optionally tumor markers (TM) as well as organ-specific 
Tumor Burden Scores (TBS). The number of cases is partly restricted by requiring the case to have an entry in the radiological study system (RSS) or the 
location of the primary tumor (LOP) to either be Lung, Upper GI, Pancreas, or Liver.

TABLE 1 Number of cancer cases in the three datasets “core features,” “core features and TM,” and “all features” before (blue) and after (green) 
anonymization when including all eight classes vs. only including four classes Lung, Upper GI, Pancreas, and Liver.

Number 
of classes

Cases in “core features” dataset 
(nine features)

Cases in “core features and TM” 
dataset (11 features)

Cases in “all features” dataset 
(30 features)

Before 
anonymization

After 
anonymization

Before 
anonymization

After 
anonymization

Before 
anonymization

After 
anonymization

8 13,861 13,764 13,861 13,712 336 328

4 4,295 4,271 4,295 4,271 299 297
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to their feature importance (FI) for each classification setting, 
individually: low, medium low, medium high and high FI. The 
groups were defined based on the quartiles of the FI. More details 
on the methods and their implementation can be  found in 
Supplementary material.

3 Results

3.1 LOP prediction performance

We applied 10-fold NCV to evaluate the classification 
performance of the tree-based ML algorithms on the six datasets. 
Figure 2 shows the mean performance values across the 10 NCV 
iterations for all examined classification settings, i.e., combinations 
of algorithm and dataset. In terms of average Accuracy, the 
performance spanned from 55.8 to 84.5% in the eight-class 
classification task and from 57.2 to 93.6% in the four-class 
classification task. The average MCC scores ranged from 0.42 to 
0.81 when distinguishing eight LOP classes and from 0.34 to 0.92 
when assigning the cancer cases to one of four LOP classes. The 
achieved performance values were stable across the 10 NCV 
iterations, which can be seen from the small standard deviations.

For both classification tasks (four and eight LOP classes), 
we observed that the values of all performance metrics increased with 
increasing numbers of features. The provision of the TBS (“all 
features”) led to a particular increase in performance for both ML 
methods. Moreover, the GBT algorithm exhibited slightly higher 
performance scores than the RF in almost all combinations of metric 
and dataset. The only exceptions were the MCC score of the RF on the 
eight-class “all features” dataset and the Precision of the RF on the 
“core features” and “core features and TM” datasets. In these settings, 
the scores were slightly higher for the RF than for the GBT. Another 
striking observation was that Precision is usually higher than Recall 
in all classification runs. The only exceptions were the two classifiers 
trained to discriminate eight LOP classes based on “all features.” These 
classifiers exhibited a slightly higher Recall than Precision. In general, 
including the TBS in the input dataset increased both Precision and 
Recall while decreasing their difference. Thus, including the TBS 
resulted in a more balanced decision making.

Considering individual combinations of datasets and ML 
algorithms, we observed that the Accuracy, Precision, Recall, and 
F1-score are higher in four-class classification than in the eight-class 
setting. The difference is particularly high on “all features,” i.e., when 
the TBS are provided. In contrast to the simpler metrics, the MCC 
score is usually higher in the eight-class classification setting. Only the 
classification runs on “all features” achieve a higher MCC score when 
distinguishing between four instead of eight classes.

3.2 Feature importance

For each classification run, i.e., combination of feature set and ML 
algorithm, we determined the FI of individual features in every NCV 
iteration. The means of the FI values across NCV iterations are 
visualized in Figure 3 per feature and classification run.

Particularly striking is the overall decreased importance of the 
feature sex when not considering the LOP classes Breast, 

Colorectal, ENT, and Kidney. In this four-class setting, the FI is 
transferred from sex to all other features having a decent to high 
importance in the eight-class setting. The gain in FI is particularly 
high for the features CRP, leukocytes and the N-value. A medium 
gain can be observed for the other features contained in the feature 
set “core and TM.” The highest increase in FI among the TBS, 
which indicate the distribution pattern of metastases, can be seen 
for the TBS of Pancreas, Lung, Esophagus, and Liver. These TBS 
features already had a rather high FI in the eight-class setting. The 
TBS for Brain, Stomach, Bones, and the group of Other Organs 
were subject to a medium increase in FI.

To enable a more systematic comparison of the FI in the different 
classification runs, we assigned the features to one of four groups: low, 
medium low, medium high and high FI. This grouping is based on the 
first, second, and third quartile of the mean FI value for each 
classification run and depicted in Table 2.

CRP, leukocytes, HB, the N-value and the age exhibited a high 
or medium high importance in the majority of classification runs. 
The feature sex was categorized diversely. When the TBS were not 
provided, the eight-class classification runs assigned a high 
importance to the sex while it was of low or medium low importance 
for almost all four-class classification runs. All approaches on the 
“all features” dataset categorized the sex to have a medium low 
importance. The grading had a medium high FI in the RF-based 
classification runs on the “all features” datasets. All other 
classification runs assigned a lower importance to it (medium low 
or low). The L- and the V-value both are categorized to have rather 
low FI. The TM CA 19–9 and CEA were assigned a rather high 
importance. Out of eight classification runs using the TM as input 
features, six categorized CEA to have a medium high and CA 19–9 
to have high or medium high FI. The two eight-class runs on the 
“core and TM” dataset considered CA 19–9 to have a medium low 
importance and CEA to have a medium low or low importance. In 
general, CA 19–9 received higher FI scores than CEA.

The TBS were only provided as input features in four out of 10 
classifications. In these four classifications, the group of highly 
important features mainly consists of TBS features. In particular, 
the TBS for Lymphnodes, Esophagus, Pancreas, Lung and Liver 
were assigned a high importance for LOP prediction. Only four 
non-TBS features were categorized as high importance features in 
a classification run on “all features”: the N-value, CA 19–9, CRP, 
and the age.

A rather high importance was assigned to the TBS for Brain 
and Stomach while the TBS for Bladder received diverse 
categorizations. In the four-class classification runs, the TBS 
Bladder exhibited low importance for the LOP prediction while it 
had a medium high FI in the eight-class setting. The TBS for 
Kidney, Adrenal Gland, and Other Organs were assigned low or 
medium low FI in all four runs on “all features.” The TBS for 
Intestine exhibited a medium low importance once. In all other 
classification runs, it had low importance. In two classifications it 
even achieved a mean FI of not more than 0. The TBS for Heart, 
Omentum, Skin, Spleen, Mamma, and Thyroid Gland belong to 
the features with low importance in all classification runs on “all 
features.” It is noticeable that, with the exception of TBS Spleen, 
all these TBS have an average FI value of 0 in all four classifications. 
This means that the values of these TBS were not considered in 
any classification.
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4 Discussion

4.1 LOP prediction performance on 
low-dimensional data

We observed a generally higher LOP prediction performance 
when considering four instead of eight LOP classes. This was 

particularly true for the rather simple performance metrics 
Accuracy, Precision, Recall, and F1-Score. For these metrics, the 
baseline performance value of a predictor assigning classes randomly 
is higher with fewer classes. So, we explain the lower values of these 
metrics in the eight-class setting by the larger number of classes. The 
MCC score of the LOP prediction is slightly higher in the eight-class 
setting if the prediction model is provided with the “core features” 

FIGURE 2

Performance of the two applied machine learning methods random forest (RF) and gradient boosted trees (GBT) on the three feature sets “core 
features,” “core features and TM” and “all features” in predicting the location of the primary tumor (LOP). (A) Average classification performance of the 
six classifiers across the 10 iterations of the nested cross validation (NCV), measured by Accuracy, macro-averaged Precision, macro-averaged Recall, 
and macro-averaged F1-score all spanning from 0 to 1 (B) Legend displaying assignment of colors to classification settings. (C) Average classification 
performance across the 10 iterations of the NCV measured in terms of the Matthews correlation coefficient (MCC) spanning from −1 to 1. Sections (A1) 
and (C1) depict the performance in the eight-class classification task (Breast, Colorectal, ENT, Kidney, Liver, Lung, Pancreas, Upper GI). Sections (A2) 
and (C2) depict the performance in the four-class classification task (Lung, Upper GI, Pancreas, Liver).
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or the “core features and TM.” Since the difference in MCC scores in 
the two settings is very small, we  consider this to be  a random 
phenomenon. It is made possible by the restricted information 
content of the “core features” and the “core features and TM” feature 
sets. On the feature set “all features,” the MCC score follows the same 
pattern as the other metrics, i.e., exhibits higher values in the four-
class setting. Strikingly, the performance boost achieved by reducing 
to four classes was especially high on “all features.” This can 
be  explained by the fact that the eight-class version of the “all 
features” dataset contains four underrepresented classes that 
significantly degrade performance. This hypothesis is strengthened 
by the clinical observation, that the four cancer entities that are not 
included in the four-class setting (Kidney, Breast, Colorectal, ENT) 
do substantially differ from each other and the other four entities. 
This would mean that LOP prediction is clinically easier in our 
eight-class setting. Breast cancer is nearly exclusively seen in women 
and kidney cancer has a very different behavior. Therefore, the 
reduced performance in the eight-class setting will be mainly due to 
the mentioned class imbalance.

Regarding the ML methods used, we  observed that the GBT 
method outperforms the RF. On one of the six datasets all measured 
performance values are higher for the GBT method (four-class “all 
features”). On the other five datasets, the majority of measured 
performance metrics is higher for the GBT method. This observation 
coincides with findings in ML research. These findings attribute a 
higher performance to the GBT method, in general, while the 
performance of the RF can be similarly high or even higher (27, 28).

Overall, we  see that the LOP prediction performance on 
low-dimensional data is at the same level as the performance of related 
approaches using high-dimensional data (7–15). In our setting, this 
high performance (Accuracy: 93.6%, MCC: 0.917) was achieved with 
a GBT classifier on “all features,” i.e., on the dataset containing the 
TBS. Including the TBS significantly increased the prediction 
performance although it has not reached the top performance of high-
dimensional approaches (9, 11–14). Their LOP predictors achieved 
Accuracy values of 95–97%. We assume that the performance of our 
low-dimensional approach can be  optimized further. This 
optimization could be  achieved by including other or additional 

FIGURE 3

Mean feature importance (FI) for individual input features in 10-fold nested Cross-Validation (NCV). The FI values were determined in every NCV 
iteration for each combination of machine learning method [random forest (RF) or gradient boosted trees (GBT)] and feature set [“core features” (only 
first 9 features), “core features and TM” (only first 11 features), or “all features”]. This barplot visualizes the mean FI value of the individual features across 
10 NCV iterations. (A) Importance of individual features in the eight-class classification task of assigning cancer cases to one of eight LOP classes 
(Breast, Colorectal, ENT, Kidney, Liver, Lung, Pancreas, Upper GI). (B) Importance of individual features in the four-class classification task of assigning 
cancer cases to one of four LOP classes (Lung, Upper GI, Pancreas, Liver).
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TABLE 2 Features grouped by their importance for the LOP prediction.

Classification 
run

Low 
importance

1st 
quartile 

of FI

Medium low 
importance

2nd 
quartile 

of FI

Medium high 
importance

3rd 
quartile 

of FI

High 
importance

RF on core features 

(eight LOPs)

Grading (0.043),

V (0.022),

L (0.019)

0.043 N (0.096) 0.098 Leukocytes (0.107),

Age (0.100)

0.110 Sex (0.371),

HB (0.130),

CRP (0.112)

GBT on core features 

(eight LOPs)

Grading (0.039),

V (0.018),

L (0.011)

0.039 Age (0.061) 0.070 CRP (0.091),

Leukocytes (0.078)

0.096 Sex (0.477),

HB (0.123),

N (0.102)

RF on core features 

and TM (eight LOPs)

Grading (0.034),

V (0.022),

L (0.016)

0.040 CA 19–9 (0.049),

CEA (0.046)

0.066 N (0.087),

Leukocytes (0.085),

Age (0.083)

0.087 Sex (0.377),

HB (0.113),

CRP (0.088)

GBT on core features 

and TM (eight LOPs)

CEA (0.024),

V (0.019),

L (0.009)

0.028 Grading (0.037),

CA 19–9 (0.032)

0.046 CRP (0.081),

Leukocytes (0.069),

Age (0.055)

0.081 Sex (0.462),

HB (0.119),

N (0.094)

RF on all features 

(eight LOPs)

TBS Kidney (0.003),

TBS Intestine (0.001),

TBS Thyroid Gland 

(0.000),

TBS Mamma (0.000),

TBS Spleen (0.000),

TBS Skin (0.000),

TBS Omentum 

(0.000),

TBS Heart (0.000)

0.004 TBS Brain (0.022),

Sex (0.018),

TBS Other Organs 

(0.016),

L (0.012),

TBS Stomach 

(0.010),

V (0.006),

TBS Adrenal Gland 

(0.005)

0.022 CEA (0.038),

Leukocytes (0.036),

HB (0.034),

Age (0.032),

TBS Bladder 

(0.028),

TBS Bones (0.025),

Grading (0.024)

0.040 TBS Pancreas 

(0.153),

TBS Lung (0.115),

TBS Liver (0.102),

TBS Esophagus 

(0.101),

TBS Lymphnodes 

(0.064),

N (0.057),

CA 19–9 (0.052),

CRP (0.045)

GBT on all features 

(eight LOPs)

V (0.002),

TBS Thyroid Gland 

(0.000),

TBS Mamma (0.000),

TBS Spleen (0.000),

TBS Skin (0.000),

TBS Omentum 

(0.000),

TBS Heart (0.000),

TBS Adrenal Gland 

(0.000)

0.002 TBS Bones (0.013),

L (0.007),

TBS Other Organs 

(0.006),

Sex (0.006),

TBS Kidney (0.005),

Grading (0.005),

TBS Intestine 

(0.003)

0.013 TBS Bladder 

(0.030),

CRP (0.027),

CA 19–9 (0.021),

Leukocytes (0.019),

CEA (0.018),

HB (0.016),

N (0.016)

0.030 TBS Pancreas 

(0.223),

TBS Esophagus 

(0.158),

TBS Lung (0.149),

TBS Liver (0.092),

TBS Lymphnodes 

(0.081),

TBS Stomach 

(0.038),

TBS Brain (0.034),

Age (0.031)

RF on core features 

(four LOPs)

Sex (0.043),

L (0.030),

V (0.028)

0.043 Grading (0.050) 0.080 N (0.134),

Age (0.110)

0.146 CRP (0.247),

Leukocyte (0.199),

HB (0.158)

GBT on core features 

(four LOPs)

Grading (0.043),

V (0.027),

L (0.027)

0.043 Age (0.048) 0.054 HB (0.122),

Sex (0.060)

0.152 CRP (0.291),

N (0.198),

Leukocyte (0.183)

RF on core features 

and TM (four LOPs)

Sex (0.035),

L (0.02),

V (0.018)

0.038 Age (0.071),

Grading (0.04)

0.083 N (0.114),

HB (0.110),

CEA (0.095)

0.114 CRP (0.193),

CA 19–9 (0.158),

Leukocytes (0.145)

GBT on core features 

and TM (four LOPs)

Age (0.033),

V (0.018),

L (0.016)

0.039 Sex (0.05),

Grading (0.045)

0.055 Leukocytes (0.138),

HB (0.093),

CEA (0.06)

0.138 CRP (0.237),

N (0.16),

CA 19–9 (0.15)

(Continued)
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routine clinical data. Moreover, other ML methods could be tested for 
their LOP prediction performance.

4.2 The predictive power of our feature 
sets

The LOP prediction performance on the feature sets “core 
features” and “core features and TM” was solid, but not remarkable. 
This is consistent with the conclusion from the previous paragraph 
that these feature sets are limited in their information content. This 
limitation reduces their predictive power in LOP prediction. By 
adding the TBS, i.e., the distribution pattern of metastases, to the 
dataset (“all features”), the LOP prediction performance increased 
significantly. Moreover, the TM and TBS received a large share of the 
overall FI when they were introduced to the dataset. As a consequence, 
the quartiles of the FI values decreased with increasing number of 
considered features. From these observations, we conclude that the 
TM and, in particular, the TBS add valuable information for LOP 
prediction to the dataset. This is a striking result considering that their 
limited availability makes the classification itself more difficult. 
Including the TM made the missing value imputation less stable due 
to the low availability of CEA and CA 19–9. Including the TBS 
reduced the dataset size significantly, because their extremely low 
availability required us to dispense with most cancer cases. 
Nevertheless, the TBS contributed to a remarkable increase in 

prediction performance. Furthermore, they led to a more balanced 
decision making which can be concluded from the reduced difference 
between Precision and Recall on “all features” compared to the other 
two feature sets. Reasoning on the predictive performance of 
individual features can be  found in Supplementary material. A 
particularly striking observation was the decreased importance of the 
feature sex when not considering the LOP classes Breast, Colorectal, 
ENT, and Kidney anymore. This drop in FI for the sex could be due to 
the high number of female patients in the breast cancer group, while 
the ratio between men and women in the other entities is much 
more balanced.

4.3 The benefits of low-dimensional data 
for LOP prediction

When providing “all features” to the ML methods we achieved 
very high LOP prediction performance on low-dimensional data 
almost reaching the performance of high-dimensional approaches. 
Due to their slightly better performance, the high-dimensional 
approaches might appear more suitable for clinical LOP prediction. 
However, performance alone is not suitable for determining the 
quality of an LOP prediction system for clinical practice. This is 
because the performance only indicates how often the class predicted 
to be most probable was correct. Instead, it must be considered that 
the ML algorithm supports the oncologist in his decision; it does not 

TABLE 2 (Continued)

Classification 
run

Low 
importance

1st 
quartile 

of FI

Medium low 
importance

2nd 
quartile 

of FI

Medium high 
importance

3rd 
quartile 

of FI

High 
importance

RF on all features (four 

LOPs)

TBS Spleen (0.001),

TBS Thyroid Gland 

(0.0),

TBS Intestine (0.0),

TBS Mamma (0.0),

TBS Skin (0.0),

TBS Omentum (0.0),

TBS Heart (0.0),

TBS Bladder (0.0)

0.001 TBS Other Organs 

(0.013),

TBS Stomach 

(0.011),

Sex (0.011),

L (0.009),

TBS Adrenal Gland 

(0.005),

V (0.005),

TBS Kidney (0.002)

0.013 Leukocytes (0.032),

HB (0.031),

CEA (0.029),

TBS Bones (0.025),

TBS Brain (0.023),

Grading (0.018),

Age (0.016)

0.034 TBS Pancreas 

(0.201),

TBS Lung (0.136),

TBS Liver (0.115),

TBS Esophagus 

(0.1),

TBS Lymphnodes 

(0.072),

N (0.057),

CA 19–9 (0.047),

CRP (0.041)

GBT on all features 

(four LOPs)

TBS Thyroid Gland 

(0.0),

TBS Intestine (0.0),

TBS Mamma (0.0),

TBS Spleen (0.0),

TBS Skin (0.0),

TBS Omentum (0.0),

TBS Heart (0.0),

TBS Bladder (0.0),

TBS Adrenal Gland 

(0.0)

0.000 TBS Other Organs 

(0.005),

TBS Kidney (0.005),

TBS Bones (0.004),

L (0.004),

Grading (0.004),

V (0.002),

Sex (0.002)

0.005 CA 19–9 (0.018),

HB (0.014),

CEA (0.013),

CRP (0.013),

Leukocytes (0.011),

Age (0.011)

0.019 TBS Pancreas 

(0.257),

TBS Lung (0.18),

TBS Esophagus 

(0.171),

TBS Lymphnodes 

(0.096),

TBS Liver (0.086),

TBS Stomach 

(0.043),

TBS Brain (0.038),

N (0.022)

For each classification run, i.e., combination of dataset and ML algorithm, we created four groups of features according to their individual mean feature importance (FI) for the respective 
classification in 10-fold NCV. The groups were determined based on the first, second and third quartile of the FI among all features in the respective dataset for the respective classification 
setting: features with a FI at most 1st quartile (low importance), features with a FI above 1st quartile and at most 2nd quartile (medium low importance), features with a FI above 2nd quartile 
and at most 3rd quartile (medium high importance) and features with a FI above 3rd quartile (high importance). All values shown in this table are rounded to three decimal places.
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make the decision for him. It could therefore also output LOP 
probabilities instead of the most probable class alone. Based on such 
a probabilistic overview, the oncologist could make their decision 
including their own prior knowledge. Thus, eventually the output of 
the LOP prediction system would enhance the oncologist’s knowledge 
in a data-driven manner instead of replacing it. The performance of 
the LOP prediction system alone cannot measure the quality of such 
a decision. We  therefore believe that the small reduction in 
performance is justifiable; especially when one considers the clear 
advantages our low dimensional approach has in a practical setting. 
Our approach only needs routine clinical data, i.e., features readily 
available from a diverse patient population without specialized 
examinations. This restriction enables a cost-effective, user-friendly, 
and explainable LOP prediction for CUP patients which could 
be  implemented by a clinical decision support system. The 
explainability is introduced by the chosen ML methods. While high-
dimensional input data requires the application of artificial neural 
networks, which lack explainability, our low-dimensional approach 
allows the use of explainable tree-based methods like RF and 
GBT. Further decision support could be achieved by using probabilistic 
models such as Gaussian Process Models additionally to or instead of 
tree-based methods. Using such models would require some 
preprocessing of categorical variables but, on the other hand, add a 
statistically sound basis to the explainability of the LOP prediction. 
Moreover, as a future vision, our low-dimensional approach could 
enable a continuously learning LOP prediction system. Automated 
ETL processes could be used to update such a system with new patient 
data on an ongoing basis. These regular updates could improve the 
LOP prediction performance continuously. However, the data 
preparation process is currently still too complex and time-consuming 
for an automated ETL process (29). Overall, we consider the benefits 
of low-dimensional data for LOP prediction to outweigh the minor 
reductions in performance.

4.4 Limitations of our work

Our results show that low-dimensional data are well suited for 
LOP prediction, but our work has a few limitations beyond that. 
Firstly, our results do not reveal whether the performance 
improvements through adding the TM and TBS to the input data 
result specifically from these features. An alternative hypothesis is that 
the improved performance results merely from the ML method 
receiving more clinical information. Moreover, the significant 
performance gain through adding the TBS could be  a result of a 
documentation bias. The radiologists knew the LOP when creating the 
RECIST evaluations of the cancer cases, based on which we created 
the TBS. The choice of documented target and non-target lesions 
might have been influenced by prior knowledge on the LOP. On the 
other hand, the RECIST guideline ensured the best possible objectivity. 
To improve the objectivity further, researchers could use different 
representations of the distribution of metastases. At UHC the 
documentation according to RECIST criteria was the only structured 
documentation representing the distribution of metastases.

Another limitation of our work is the restriction to eight rather 
broad LOP classes. Related works have considered more classes and 
sometimes even subclasses, which made their classification setting 
more difficult. Thus, for them, it was more difficult to achieve a high 

classification performance. We restricted to LOP classes that CUP 
patients have been assigned to post-mortem. So, we  argue that 
many of the LOP classes considered by related work will not 
be relevant for deciding the treatment for CUP patients in practice. 
Additionally, some related works exceeded the capabilities of our 
approach by predicting the cancer subtype. Such an advanced 
prediction can further support treatment decisions. Moreover, some 
subtypes differ significantly in characteristics such as the 
distribution pattern of metastases. These significant differences may 
make differentiation of sybtypes easier than differentiation of 
higher-level cancer types. However, our results show that our RF- 
and GBT-based models can classify the different patterns that 
emerge in the subtypes into common cancer classes very well. 
Regarding the potential clinical disadvantage of not predicting the 
subtype, we argue that the subtype can be determined by entity-
specific examinations once the LOP has been detected. What 
remains as a limitation is that we could not sufficiently test the 
feature set “all features” in the eight-class setting. When only 
considering four instead of eight classes, the FI of the feature sex 
dropped significantly. This clear reduction in FI shows that the 
eight-class classification task differs significantly from the four-class 
task. Due to the underrepresentation of the classes “Breast,” 
“Colorectal,” “ENT,” and “Kidney” in the eight-class version of the 
“all features” dataset, we  did not obtain a reliable performance 
measurement of the LOP prediction based on the TBS in the eight-
class setting. This limitation could be mitigated by repeating the 
experiments on a more balanced dataset. The class balance could 
be  increased by including data from further cancer centers also 
documenting their study progress according to RECIST v1.1. 
Another step remaining as future work is the clinical or external 
validation of our results. Such a validation should include 
examining the effects of our data compilation decisions on the 
LOP prediction.

4.5 Conclusion and future work

All in all, the robust classification performance on all datasets 
serves as a proof-of-concept that LOP prediction on low-dimensional 
clinical information works well. We achieved remarkable classification 
performance in particular when the prediction models were given the 
distribution pattern of metastases. The low dimensionality of our 
prediction approach increases its practical applicability in data-driven 
LOP prediction significantly. Future work could now aim for 
optimizing the classification results by using more or different clinical 
routine data as input values. Additional optimization is possible by 
increasing the number of cancer cases in the datasets through 
collaboration with further clinics. This would address the issues of the 
small dataset sizes and the biases possibly introduced by including the 
TBS. Moreover, other ML methods such as probabilistic models as 
well as ensembles of ML algorithms could be tested for their LOP 
prediction performance on low-dimensional clinical information. 
Above all, however, it is key to investigate whether our approach 
delivers reliable LOP predictions for CUP patients. Externally or 
clinically validating the reliability of our low-dimensional LOP 
prediction approach is crucial before deploying it in clinical practice. 
With its focus on practical applicability, our approach could optimize 
the prognosis of CUP patients effectively.
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The number of clinical studies and associated research has increased significantly 
in the last few years. Particularly in rare diseases, an increased effort has been made 
to integrate, analyse, and develop new knowledge to improve patient stratification 
and wellbeing. Clinical databases, including digital medical records, hold significant 
amount of information that can help understand the impact and progression of 
diseases. Combining and integrating this data however, has provided a challenge 
for data scientists due to the complex structures of digital medical records and 
the lack of site wide standardization of data entry. To address these challenges 
we present a python backed tool, Meda, which aims to collect data from different 
sources and combines these in a unified database structure for near real-time 
monitoring of clinical data. Together with an R shiny interface we can provide a 
near complete platform for real-time analysis and visualization.

KEYWORDS

visualisation, shiny, database, healthcare, cohort

Introduction

The medical world has seen a paradigm shift in recent years, acknowledging that data 
collection and analysis is key to understand the most pressing challenges in human health. 
Particularly with rare diseases, where the low number of patients impact the statistical analysis 
of these, must ensure that high quality and systematic collection of data is optimized (1). Often 
retrospectively collected data is available within the hospitals medical record systems but are 
plagued by numerous free-text fields, simple collection of laboratory values where the 
measurement units are not standardized across the fields, and the sheer amount of variables 
that that have been accumulated into these databases over years of use (2, 3). Transitioning 
such database entities to more standardized and usable structures for clinical research or even 
simple oversight of departments within a healthcare organization can prove to be challenging 
and associated with a very high cost of implementation and transition.

Furthermore, quality control of such data is often performed only when data is extracted for 
clinical research and entry failures only noticed when compared to other individuals. This proves 
one of the major headaches for data scientists who aim to integrate and analyse such data in various 
contexts (4). Within the medical field, and especially for laboratory values, thresholds are known 
that describe compatibility with life, giving a first indication whether the values entered are 
reasonable. Given the broad spectrum of diseases and health states in humans it is not reasonable 
to assume that each medical professional knows and applies these thresholds, particularly when 
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they are early in their career. Written laboratory reports often include the 
range and thresholds to consider, but once provided within the database 
these are lost or stored in such a way that they are not directly accessible 
by the user (5). A more direct, and disease tailored, approach on the level 
of medical record oversight and data entry could lead to improved data 
quality and medical understanding.

In the last decade in Germany, there has been significant progress in 
the development of standardized interfaces to allow interoperability of 
data between health care institutions. The FHIR interface aims to provide 
a solution to transport data from one location to another and allow the 
sharing of patient data. While these developments are of great importance 
in the medical field, they do not fully address the internal and integrative 
use in clinical research. To this end, we have developed a small highly 
flexible and dynamic tool to collate, aggregate, integrate, and visualize 
clinical data. We opted to develop a centralized database structure, that 
pulls in data from multiple sources, formats, aligns, and tests them to 
ensure highest possible data quality. This database can then be connected 
to a visualization framework such as R shiny, Grafana, or Tableau to 
present the data in an aggregated fashion to healthcare professionals.

Implementation

Development of a universal translation 
service for medical data (MEDA)

Clinical registries are often based on data registration, management 
and storage designs which lack up-to-date database standards. These 
range from mere spreadsheets to specialized but non-standardized 
databases from various providers to collect and represent data (6). While 
these web-based tools often contain the ability to validate data entry, or 
limit the entry to specific datatypes, these features are often not used due 
to their complex configuration or lack of knowledge and experience by 
the initiating user. In addition, database structures are often inefficiently 
designed and variable names lack the descriptive nomenclature which 
allows other users to understand their values and implement these 
variables in their analyses. This then often requires the development of 
additional variable-dictionaries which provide extended definitions of 
the values. Particularly for the key aim of such datasets, i.e., downstream 
biostatistical analyses or real-time visualization, the initial data structure 
and simplicity of the database is an important aspect for implementation 
and use. Live data visualization for both data sharing and in-house 
observation of cohort development is hardly possible in this setting. This 
is especially important when the developer of the database has left the 
organization and the approaches and thoughts during the development 
process have not been documented accordingly. In most cases, the initial 
design allows questions posed by the developer and researchers 
associated with the project to be answered, however they can hinder the 
further use and analyses of these important data.

To address the challenges around clinical datasets described above, 
and to enable the utilization of existing resources, we have developed a 
Python and PostgreSQL application that is able to translate the existing 
information into a standardized database with a very well-defined data 
structure.1 Specifically, we  inherit the individual centric view 
fundamental to medical science and attach additional information as 

1 https://github.com/bonacci-johannes/meda

separated tables that can be  brought together to analyse various 
questions. These tables separate cross-sectional and longitudinal data 
and are grouped based on their clinical relevance. The typical database 
structure we have utilized is provided in Figure 1 and highlights the 
components that are required to be configured within our tool.

To test this simple structure, we used a large patient cohort with 
chronic kidney disease available at the University Hospital Cologne and 
translated the currently utilized ClinicalSurveys.net (7) database using 
our tool. ClinicalSurveys is a web-based tool to design and collect 
patient relevant data through a simple survey based tool. It allows 
collaboration across multiple sites in a secure manner and enables a 
systematic data collection. This cohort data contains numerous, 
meticulously collected patient information ranging from different levels 
of laboratory values, questionnaires, family history, tomography, or 
historic clinical information. All in all, over 2000 variables were 
represented within this ClinicalSurveys database structure. The design 
of this database followed a fully patient centric approach where 
longitudinal data was encoded as repeated variables within its single 
database. While this can be a reasonable approach to collect prospective 
data on individuals over a longer period of time, it can be quite error 
prone as, particularly, longitudinal data may be entered in the wrong 
section of the database skewing downstream analysis. In addition, the 
long list of variables can lead to an increase in human errors during 
entry where misplaced punctuation marks or swapping of variables may 
occur. Downstream analyses and visualization may then be skewed by 
these data structures. Furthermore, quality assurance is more difficult to 
achieve since the large number of variables within a single database is 
challenging to evaluate for human individuals. Meda addresses some of 
these challenges in a semi-automated fashion. Most importantly, the tool 
automatically generates the database structure based on the configured 
data slots required. In essence, Meda follows a simple 5 steps approach:

Step 1: Reading Source Data:

The pipeline begins by reading raw source data in a flat structure, 
where each value occupies its own column.

Step 2: Data Class Organization:

The flat data is organized into nested data classes, which correspond 
to SQL-tables. When defining the data classes. At this point 
transformations or other computed variables can be  generated 
through the provision of additional python functions.

Step 3: Data Class Factory:

The data class factory populates the nested data classes from the 
flat data structure.

Step 4: DTO (Data-Transfer-Object) Factory:

The DTO factory translates the nested data classes into DTOs that 
mirror the SQL structure.

Step 5: DTO Registry:

The DTO registry manages the DTO factory and database 
connection. It generates a DTO from a data class and writes it to 
the database.
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In addition, Meda aims to generate subsets of manageable 
chunks of data, following clinically relevant chunks of information. 
Import classes are defined that ensure errors can be caught and that 
data is imported in the right format. In prospective studies, where 
data is continuously collected over long periods of time, we are 
therefore able to import data on a regular basis. Next, based on the 
result of the class import an additional error table is generated that 
allows users to visualize these import errors and address them 
accordingly. We  found that the visual representation had a 
significant influence on the motivation of our staff to fix and remedy 
the shown errors. Lastly, we implemented a threshold-based value 
verification system which aims to identify values that we deem to 
be “not compatible with life” and which are sent back to the users 
for verification.

Application

Setting up Meda for semi-automated data 
entry

As in our example, ClinicalSurveys was used to house and 
collect the data from various collaborators, we  used Dockers 
surrounding our database and Meda tool to simplify the setting up 
and destruction of the database. Simply put, the PostgreSQL 
database is fully refreshed upon each update that is being made. 
This ensured that only one true data source was available and 
reduced the need for verification of data entries within our 
database. To manage the automated setting up and destruction of 
the database Jenkins was used. The Jenkins Butler (8) monitors 

changes in the source code, scripts, and classes that are required 
and updates the database as soon as changes are observed. The total 
workflow using this approach takes less than 3 min and can 
therefore be performed as often as daily if new data are expected 
on a regular basis. The aforementioned classes need to 
be implemented to ensure that the right data is entered into the 
database. A simple Patient centric import of individual 
characteristics is shown in Code Section 1. The utilized Feature 
keyword here is an included separate class which provides the 
information on how to construct a dataclass from a data dictionary 
and how to import it into the SQL table. It enables the use of 
transformers, specifications of the input key, specifications of target 
table type (error, crossectional, or longitudinal), and the potential 
defaults to consider.

Code Section 1: Example Code for extracting data into the 
proposed database schema.

FIGURE 1

Schematic overview of Meda. The developed pipeline and containers used to transform clinical data to a real-time visualisation platform as well as their 
specific functions within the pipeline. Python and PostgreSQL are encased within a docker to ensure robust responses and compatibility as well as a 
Jenkins Butler to update, maintain and reset the database when necessary.
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Automated evaluation and identification of 
missing and non-reliable data

During the data import, several additional steps are performed 
before adding the data to the database. First values are converted to a 
common reference unit. The unit conversion is a simple step but requires 
extensive configuration that covers all possible units. So far we have 
focused on the possible units within our CKD use case example and 
provide our conversion tables within the code. Code section 2 shows an 
example of such a configuration. This ensures that we do not need to 
store the unit information and that all data are converted to the relevant 
reference unit. Next, data are reviewed for known thresholds that are not 
compatible with life. Here a simple table (Table 1), which can be adjusted 
by user dynamically through a web-based interface, is evaluated and any 
values exceeding these thresholds collected within their own separate 
table. The results are presented to the user who can then adjust, if 
necessary, the value within the original table used as input. This also 
applies to any missing data encountered during the data import.

This workflow can easily be integrated into daily clinical routines and 
allows for direct evaluation and visualization of the data. In addition, the 
near instant visual response to the fixing of missing or non-reliable data 
results in a significantly increased data quality. Furthermore, enabling 
auditing within PostgreSQL can provide a continuous log of changes that 
have been performed and ensure that data consistency is preserved.

Code Section 2: Automated conversion of units during import 
and plausibility check.

Visualization and continuous evaluation of 
data provides new insights into patient 
health

The last step in our pipeline is the development of a visual 
representation of the data imported by Meda. Here we decided to 
develop an R (9) shiny application. While other types of frameworks 
exist to provide real-time views of such data, they are limited in their 

statistical analyses that can provide useful information in a clinical 
setting (Figure 2).

Integration and functionality of shiny 
application in R

The development of the Shiny application (10) represents a 
significant progression in the implementation of the 
ClinicalSurveys database. The Shiny framework in R facilitates the 
creation of dynamic web applications that offer the ability to 
visualize and analyze data in real time. Through the utilization of 
this technology, the application converts unprocessed clinical data 
into user-friendly, interactive dashboards and reports. As a result, 
in the future healthcare providers are provided with instantaneous 
access to patient information and trends. The Shiny application has 
been carefully designed to accommodate the particular 
requirements of healthcare professionals. The platform provides a 
collection of interactive tools that enable users to analyze 
demographic patient data along multiple axes, including time, 
disease advancement, and treatment results. At this degree of 
engagement, a more profound comprehension of patient health 
patterns is fostered, which empowers the development of 
individualized patient care plans and the discovery of effective 
treatment protocols.

Continuous evaluation for proactive 
healthcare

One of the most significant features of the Shiny application is its 
capability for continuous data evaluation. As the PostGreSQL database 
is refreshed with each update (once daily), the application 
automatically incorporates the latest data, ensuring that healthcare 
providers have access to the most current patient information. The 
insights garnered from the continuous evaluation of patient data have 
profound implications for both patient care and clinical research. For 
patient care, it enables a shift toward more proactive and personalized 

TABLE 1 Example threshold table used during data import.

Column
Review_

high
Invalid_low

Invalid_
high

Natrium 160 115 160

Kalium 7 2 7

Lipase 1000 0 3000

Osmolarity 330 240 350

Hematocrit 50 20 70

Mcv 105 50 120

Calcium 3 1 4

Phosphat 2.5 0.2 6

Creatinine 3 0.2 20

Urea 200 10 500

Uric_acid 12 0.2 25

Albumin 60 5 100
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healthcare strategies, significantly improving patient outcomes. In the 
realm of research, the application provides a rich dataset for analyzing 
treatment efficacy, patient responses, and disease patterns, thereby 
contributing to the advancement of medical knowledge and the 
development of new treatment modalities.

Discussion

The Meda pipeline was developed to bridge health registry data 
and real-time analysis of the available data. Our key approach was to 
develop a system where any type of clinical information could 
be imported, through the provision of simple configuration files, and 
where data could be displayed in near real-time to the user. Meda 
restructures and standardizes such information and provides 
programmable access to this data. While we developed this in the 
context of clinical registries, its approach can be  used for whole 
clinical databases that over the years have increased in complexity.

The choice of webfront was driven by the requirements within our 
statistical analyses. While there are a number of real-time visualization 
frameworks available, such as Grafana (11), Metabase, or Tableau (12), 
they are not designed to handle clinical information and the 
underlying statistics within the biomedical domain. The shiny front, 
in combination with the many R packages available, allows us to 
generate and display any type of statistical analysis based on the data. 
These have been widely used in clinical data visualization and several 
packages have been generated to fulfil the requirements by the relevant 

health professionals (13–15). Shiny, and therefore R, bring additional 
obstacles into this development as R is generally slow in utilizing 
database queries, has a complex memory management, and can 
be  inefficient in the use of data structures. To address these 
shortcomings we have opted to preprocess the database data every 
morning, and on demand, which generates the objects required for 
visualization and statistical analysis and are loaded through serialized 
R object storage. This results in a much faster visualization but limits 
the real-time application of our approach. Given that our registry data 
does not change on a daily basis and that data entry can be delayed 
based on clinical workload we struck a balance between functionality 
and overall speed in our approach. Further development of existing, 
faster, frameworks for visualization would remedy this.

While our tool is not the first visualization platform available 
(16, 17), our tool expands on the purely visual aspects of healthcare 
data. As databases across the healthcare sector are growing and are 
often based on grandfathered implementations developed in the last 
decades, access to this data is often complex and convoluted. In 
addition, the interpretation of this huge amount of data is 
challenging and requires a more computational and visual approach 
(18). Particularly, the growing number of complex cohorts, with 
both retrospective and prospective data collection, has proved to 
be challenging due to the heterogeneity in collection systems, the 
lack of standardization across healthcare institutions, and differences 
in ethical considerations. Our tool aims to address a number of these 
issues by enabling the integration and near real-time representation 
of data. By interfacing directly with a hospitals clinical data 

FIGURE 2

Interactive dashboard of the ADPKD registry in a shiny application—This image displays part of the interactive dashboard from the shiny application 
used to visualize data from the large patient cohort with chronic kidney disease. Several pages and filter options are available. The dashboard itself is 
segmented into tabs including ‘Patient Characteristics’, ‘Disease Stage’, ‘Medication’, and others, allowing for a comprehensive overview of the data 
categories. The ‘Baseline characteristics’ section provides histograms detailing demographic information.
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repository our tool could show important statistics and analyses in 
near real-time to clinical staff, ensuring an efficient and effective 
oversight of data entry in various settings as well as allow for AI 
based decision support systems to be made available (19). While raw 
data is the preferred data-type, the tool would also be able to collect 
already computed statistics and integrate data from multiple 
institutions to visualize the state of healthcare institutions over a 
larger geographical area while not exceeding the ethical 
considerations of each institution.

New approaches to sharing data between institutions using the 
FHIR (Fast Healthcare Interoperability Resource), provides means of 
interfacing and exchanging data in a save and standardized 
environment. While our tool does not currently contain a plugin for 
including FHIR resources, these are often best placed at the database 
to database interface (20) where our tool performs best. FHIR has 
been used extensively for data capture, standardization, recruitment, 
and consent management (20). Our tool can utilize such information 
directly from the associated database and provide a suitable 
visualization and update for healthcare professionals. However, direct 
implementation of such plugins is possible within the framework of 
MEDA. Our open approach via data class factories and classes can 
enable any type of direct interoperability with the standards utilized 
at any given institution.

Overall, we have established a tool that addresses the current 
scientific and clinical challenges in working with larger cohorts and 
provides a standardized structure for use within data science groups. 
We hope to enable a faster and simpler pipeline for clinical questions 
from data to results and drive the knowledge generation 
within medicine.
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