
EDITED BY : Daniele Pucci, Vadim Tikhanoff, Ugo Pattacini,

Maxime Petit and Lorenzo Jamone

PUBLISHED IN : Frontiers in Robotics and AI

BUILDING THE ICUB MINDWARE: OPEN-SOURCE
SOFTWARE FOR ROBOT INTELLIGENCE AND
AUTONOMY

https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/journals/robotics-and-ai

Frontiers in Robotics and AI 1 February 2020 | Building the iCub Mindware

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88963-541-2

DOI 10.3389/978-2-88963-541-2

https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/journals/robotics-and-ai
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org

Frontiers in Robotics and AI 2 February 2020 | Building the iCub Mindware

Topic Editors:
Daniele Pucci, Italian Institute of Technology, Italy
Vadim Tikhanoff, Italian Institute of Technology, Italy
Ugo Pattacini, Italian Institute of Technology, Italy
Maxime Petit, Ecole Centrale de Lyon, France
Lorenzo Jamone, Queen Mary University of London, United Kingdom

Intelligence and autonomy are among the most extraordinary capacities blossomed by
human evolution. Yet, endowing humanoid robots with these two crucial capabilities
is still one of the biggest problems for the robotics community, despite decades of
research. On the software side, algorithms for artificial intelligence are still at an
embryonic stage. On the hardware side, robotic actuators are a far cry from the
muscular human system in terms of flexibility and adaptability, which in turn reduces
autonomy and robustness. Underneath the nature of algorithms for intelligence and
technology for autonomy, the importance of efficient, scalable implementations of
robust software goes without saying.

Among the large variety of humanoid robots, the iCub has emerged as one of the
most diffused research platforms. It has been developed as part of the RobotCub
EU project and subsequently adopted by more than 35 laboratories worldwide.
Collaborations across laboratories are encouraged by writing code and libraries
openly available. As a consequence, iCub is considered to be the ideal platform for
experimenting and advancing open-source software for research in several domains,
ranging from motor control to cognitive systems.

Citation: Pucci, D., Tikhanoff, V., Pattacini, U., Petit, M., Jamone, L., eds. (2020).
Building the iCub Mindware: Open-source Software for Robot Intelligence and
Autonomy. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-541-2

BUILDING THE ICUB MINDWARE: OPEN-SOURCE
SOFTWARE FOR ROBOT INTELLIGENCE AND
AUTONOMY

https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/journals/robotics-and-ai
http://doi.org/10.3389/978-2-88963-541-2

Frontiers in Robotics and AI 3 February 2020 | Building the iCub Mindware

04 Prediction of Intention During Interaction With iCub With Probabilistic
Movement Primitives

Oriane Dermy, Alexandros Paraschos, Marco Ewerton, Jan Peters,
François Charpillet and Serena Ivaldi

31 Real-time Pipeline for Object Modeling and Grasping Pose Selection via
Superquadric Functions

Giulia Vezzani and Lorenzo Natale

38 Connecting YARP to the Web With Yarp.js

Carlo Ciliberto

45 The Event-Driven Software Library for YARP—With Algorithms and iCub
Applications

Arren Glover, Valentina Vasco, Massimiliano Iacono and Chiara Bartolozzi

52 Speech Recognition for the iCub Platform

Bertrand Higy, Alessio Mereta, Giorgio Metta and Leonardo Badino

58 YARP-ROS Inter-Operation in a 2D Navigation Task

Marco Randazzo, Andrea Ruzzenenti and Lorenzo Natale

65 iCub-HRI: A Software Framework for Complex Human–Robot Interaction
Scenarios on the iCub Humanoid Robot

Tobias Fischer, Jordi-Ysard Puigbò, Daniel Camilleri, Phuong D. H. Nguyen,
Clément Moulin-Frier, Stéphane Lallée, Giorgio Metta, Tony J. Prescott,
Yiannis Demiris and Paul F. M. J. Verschure

74 Optimization-Based Controllers for Robotics Applications (OCRA): The
Case of iCub’s Whole-Body Control

G. Jorhabib Eljaik, Ryan Lober, Antoine Hoarau and Vincent Padois

84 Design and Implementation of a YARP Device Driver Interface: The
Depth-Sensor Case

Alberto Cardellino, A. Ruzzenenti and L. Natale

90 Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot

Pedro Vicente, Lorenzo Jamone and Alexandre Bernardino

100 A Framework for Fast, Autonomous, and Reliable Tool Incorporation on
iCub

Tanis Mar, Vadim Tikhanoff and Lorenzo Natale

Table of Contents

https://www.frontiersin.org/research-topics/5435/building-the-icub-mindware-open-source-software-for-robot-intelligence-and-autonomy
https://www.frontiersin.org/journals/robotics-and-ai

ORIGINAL RESEARCH
published: 05 October 2017

doi: 10.3389/frobt.2017.00045

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Rodolphe Gelin,

Aldebaran Robotics, France
Francesco Rea,

Fondazione Istituto Italiano di
Tecnologia, Italy
Mirko Wächter,

Karlsruhe Institute of Technology,
Germany

*Correspondence:
Oriane Dermy

oriane.dermy@inria.fr

Specialty section:
This article was submitted to

Humanoid Robotics, a section of the
journal Frontiers in Robotics and AI

Received: 31 May 2017
Accepted: 21 August 2017

Published: 05 October 2017

Citation:
Dermy O, Paraschos A, Ewerton M,

Peters J, Charpillet F and Ivaldi S
(2017) Prediction of Intention during

Interaction with iCub with Probabilistic
Movement Primitives.
Front. Robot. AI 4:45.

doi: 10.3389/frobt.2017.00045

Prediction of Intention during
Interaction with iCub with
Probabilistic Movement Primitives
Oriane Dermy 1,2,3*, Alexandros Paraschos4,5, Marco Ewerton4, Jan Peters4,6,
François Charpillet1,2,3 and Serena Ivaldi1,2,3

1 Inria, Villers-lés-Nancy, France, 2Université de Lorraine, Loria, UMR7503, Vandoeuvre, France, 3CNRS, Loria, UMR7503,
Vandoeuvre, France, 4TU Darmstadt, Darmstadt, Germany, 5Data Lab, Volkswagen Group, Munich, Germany, 6Max Planck
Institute for Intelligent Systems, Tubingen, Germany

This article describes our open-source software for predicting the intention of a user
physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer
the intention of the human partner during collaboration, by predicting the future intended
trajectory: this capability is critical to design anticipatory behaviors that are crucial in
human–robot collaborative scenarios, such as in co-manipulation, cooperative assembly,
or transportation. We propose an approach to endow the iCub with basic capabilities of
intention recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile
method for representing, generalizing, and reproducing complex motor skills. The robot
learns a set of motion primitives from several demonstrations, provided by the human via
physical interaction. During training, we model the collaborative scenario using human
demonstrations. During the reproduction of the collaborative task, we use the acquired
knowledge to recognize the intention of the human partner. Using a few early observations
of the state of the robot, we can not only infer the intention of the partner but also complete
the movement, even if the user breaks the physical interaction with the robot. We evaluate
our approach in simulation and on the real iCub. In simulation, the iCub is driven by the
user using the Geomagic Touch haptic device. In the real robot experiment, we directly
interact with the iCub by grabbing and manually guiding the robot’s arm. We realize two
experiments on the real robot: one with simple reaching trajectories, and one inspired by
collaborative object sorting. The software implementing our approach is open source and
available on the GitHub platform. In addition, we provide tutorials and videos.

Keywords: robot, prediction, intention, interaction, probabilistic models

1. INTRODUCTION

A critical ability for robots to collaborate with humans is to predict the intention of the partner.
For example, a robot could help a human fold sheets, move furniture in a room, lift heavy objects,
or place wind shields on a car frame. In all these cases, the human could begin the collaborative
movement by guiding the robot, or by leading the movement in the case that both human and robot
hold the object. It would be beneficial for the performance of the task if the robot could infer the
intention of the human as soon as possible and collaborate to complete the task without requiring
any further assistance. This scenario is particularly relevant formanufacturing (Dumora et al., 2013),
where robots could help human partners in carrying a heavy or unwieldy object, while humans could

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4514

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00045
https://creativecommons.org/licenses/by/4.0/
mailto:oriane.dermy@inria.fr
https://doi.org/10.3389/frobt.2017.00045
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00045&domain=pdf&date_stamp=2017-10-05
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00045/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00045/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00045/abstract
http://loop.frontiersin.org/people/419777
http://loop.frontiersin.org/people/164681
http://loop.frontiersin.org/people/119685
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

guide the robot without effort in executing the correct trajectory
for positioning the object at the right location.1 For example, the
human could start moving the robot’s end effector toward the goal
location and release the grasp on the robot when the robot shows
that it is capable of reaching the desired goal location without
human intervention. Service and manufacturing scenarios offer
a wide set of examples where collaborative actions can be initi-
ated by the human and finished by the robot: assembling objects
parts, sorting items in the correct bins or trays, welding, moving
objects together, etc. In all these cases, the robot should be able to
predict the goal of each action and the trajectory that the human
partner wants to do for each action. To make this prediction, the
robot should use all available information coming from sensor
readings, past experiences (prior), human imitation and previous
teaching sessions, or collaborations. Understanding andmodeling
the human behavior, exploiting all the available information, is the
key to tackle this problem (Sato et al., 1994).

To predict the human intention, the robot must identify the
current task, predict the user’s goal, and predict the trajectory
to achieve this goal. In the human–robot interaction litera-
ture, many keywords are associated with this prediction ability:
inference, goal estimation, legibility, intention recognition, and
anticipation.

Anticipation is the ability of the robot to choose the right thing
to do in a current situation (Hoffman, 2010). To achieve this goal,
the robot must predict the effect of their action, as studied with
the concept of affordances (Sahin et al., 2007; Ivaldi et al., 2014b;
Jamone et al., 2017). It also must predict the human intention,
which means estimating the partner’s goal (Wang et al., 2013;
Thill and Ziemke, 2017). Finally, it must be able to predict the
future events or states, e.g., being able to simulate the evolution
of the coupled human–robot system, as it is frequently done in
model predictive control (Ivaldi et al., 2010; Zube et al., 2016) or
in human-aware planning (Alami et al., 2006; Shah et al., 2011).

It has been posited that having legible motions (Dragan and
Srinivasa, 2013; Busch et al., 2017) helps the interacting partners
in increasing the mutual estimation of the partner’s intention,
increasing the efficiency of the collaboration.

Anticipation requires thus the ability to visualize or predict
the future desired state, e.g., where the human intends to go to.
Predicting the user intention is often formulated as predicting the
target of the human action, meaning that the robot must be able
to predict at least the goal of the human when the two partners
engage in a joint reaching action. To make such prediction, a
common approach is to consider each movement as an instance
of a particular skill or goal-directed movement primitive.

In the past decade, several frameworks have been proposed
to represent movements primitives, frequently called skills, the
most notable being Gaussian Mixture Models (GMM) (Khansari-
Zadeh and Billard, 2011; Calinon et al., 2014), Dynamic Move-
ment Primitives (DMP) (Ijspeert et al., 2013), Probabilistic
DynamicMovement Primitive (PDMP) (Meier and Schaal, 2016),

1Currently, this scenario is frequently addressed in manufacturing by robots and
lifters; in the future, we imagine that humanoid robots could also be used for such
task, for assisting workers in environments where robots cannot be installed on a
fixed base, such as in some aircraft manufacturing operations (Caron and Kheddar,
2016).

and ProbabilisticMovement Primitives (ProMP) (Paraschos et al.,
2013a). For a thorough review of the literature, we refer the inter-
ested reader to Peters et al. (2016). Skill learning techniques have
been applied to several learning scenarios, such as playing table
tennis, writing digits, and avoiding obstacles during pick and place
motions. In all these scenarios, the humans are classically provid-
ing the demonstrations (i.e., realizations of the task trajectories)
by either manually driving the robot or through teleoperation,
following the classical paradigm of imitation learning. Some of
them have been also applied to the iCub humanoid robot: for
example, Stulp et al. (2013) usedDMPs to adapt a reachingmotion
online to the variable obstacles encountered by the robot arm,
while Paraschos et al. (2015) used ProMPs to learn how to tilt a
grate including torque information.

Among the aforementioned techniques, ProMPs stand out as
one of the most promising techniques for realizing intention
recognition and anticipatory movements for human–robot col-
laboration. They have the advantage, with respect to the other
methods, of capturing by design the variability of the human
demonstrations. They also have useful structural properties, as
described by Paraschos et al. (2013a), such as co-activation, cou-
pling, and temporal scaling. ProMPs have already been used in
human–robot coordination for generating appropriate robot tra-
jectories in response to initiated human trajectories (Maeda et al.,
2016). Differently from DMPs, ProMPs do not need the infor-
mation about the final goal of the trajectory, which is something
that DMPs use to set an attractor that guarantees convergence
to the final goal.2 Also, they perform better in presence of noisy
measurements or sparse measurements, as discussed in Maeda
et al. (2014).3 In a recent paper, Meier and Schaal (2016) proposed
a method called PDMP (Probabilistic Dynamic Movement Prim-
itive). This method improves DMP with probabilistic properties
to measure the likelihood that the movement primitive is exe-
cuted correctly and to perform inference on sensor measurement.
However, The PDMPs do not have a data-driven generalization
and can deviate arbitrarily from the demonstrations. These last
differences can be critical for our humanoid robot (for example,
if it collides with something during the movement, or if during
the movement it holds something that can fall down due to a bad
trajectory, etc.). Thus, the ProMPsmethod ismore suitable for our
applications.

In this article, we present our approach to the problem of
predicting the intention during human–robot physical interaction
and collaboration, based on Probabilistic Movement Primitives
(ProMPs) (Paraschos et al., 2013a), and we present the associated
open-source software code that implements the method for the
iCub.

To illustrate the technique, the exemplifying problem we tackle
in this article is to allow the robot to finish a movement initiated
by the user that physically guides the robot arm. From the first
observations of the joint movement, supposedly belonging to a

2There may be applications where converging to a unique and precise goal could
be a desirable property of the robot’s movement. However, it is an assumption that
prevents us to generalize themethod for different actions, and this is another reason
why we prefer ProMPs.
3We refer the interested reader to Maeda et al. (2014) for a thorough comparison
between DMPs and ProMPs to be used for interaction primitives and prediction.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4525

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

movement primitive of some task, the robotmust recognize which
kind of task the human is doing, predict the “future” trajectory,
and complete the movement autonomously when the human
releases the grasp on the robot.4

To achieve this goal, the robot first learns the movement prim-
itives associated with the different actions/tasks. We choose to
describe these primitives with ProMPs, as they are able to capture
the distribution of demonstrations in a probabilistic model, rather
than with a unique “average” trajectory. During interaction, the
human starts physically driving the robot to perform the desired
task. At the same time, the robot collects observations of the task.
It then uses the prior information from the ProMP to compute a
prediction of the desired goal together with the “future” trajectory
that allows it to reach the goal.

A conceptual representation of the problem is shown in
Figure 1. In the upper part of this figure, we represent the
training step for one movement primitive: the robot is guided
by the human partner to perform a certain task, and several
entire demonstrations of the movement that realizes the task are
collected. Both kinematics (e.g., Cartesian positions) and dynam-
ics (e.g., wrenches) information are collected. The N trajectories
constitute the base for learning the primitive, that is learning
the parameters ω of the trajectory distribution. We call this
learned distribution the prior distribution. If multiple tasks are to
be considered, then the process is replicated such that we have
one ProMP for every task. The bottom of the figure represents
the inference step. From the early observations5 of a movement
initiated by the human partner, the robot first recognizes which
ProMP best matches the early observations (i.e., it recognizes the

4To avoid disambiguation, in our method, tasks are encoded by primitives that are
made of trajectories: this is a very classical approach for robot learning techniques
and in general techniques based on primitives. Of course this is a simplification,
but it allows representing a number of different tasks: pointing, reaching, grasping,
gazing, etc.
5 In this article, we denote by early observations the first portion of a movement
observed by the robot, i.e., from t = 0 to acurrent t.

primitives that the human is executing, among the set of known
primitives). Then, it estimates the future trajectory, given the
early observations (e.g., first portion of a movement) and the
prior distribution, computing the parameters ω* of the posterior
distribution. The corresponding trajectory can be used by the
robot to autonomously finish the movement, without relying on
the human.

In this article, we describe both the theoretical framework and
the software that is used to perform this prediction. The software
is currently implemented in Matlab and C++; it is open source,
available on github:

https://github.com/inria-larsen/icubLearningTrajectories
and it has been tested both with a simulated iCub in Gazebo and
the real iCub. In simulation, physical guidance is provided by the
Geomagic Touch6; on the real robot, the human operator simply
grabs the robot’s forearm.

We also provide a practical example of the software that realizes
the exemplifying problems. In the example, the recorded trajec-
tory is composed of both the Cartesian position and the forces
at the end effector. Notably, in previous studies (Paraschos et al.,
2015), ProMPs were used to learn movement primitives using
joint positions. Here, we use Cartesian positions instead of joints
positions to exploit the redundancy of the robotic arm in perform-
ing the desired task in the 3D space. At the control level of the
iCub, this choice requires the iCub to control its lower-level (joint
torque) movement with the Cartesian controller (Pattacini et al.,
2010) instead of using the direct control at joint level. As for the
forces, we rely on amodel-based dynamics estimation that exploits
the 6 axis force/torque sensors (Ivaldi et al., 2011; Fumagalli et al.,
2012). All details for the experiments are presented in the article
and the software tutorial.

6The Geomagic Touch is a haptic device, capable of providing force feedback from
the simulation to the operator. In our experiments with the simulated iCub, we did
not use this feature. We used the Geomagic Touch to steer the arm of the simulated
robot. In that sense, we used it more as a joystick for moving the left arm.

FIGURE 1 | Conceptual use of the ProMP for predicting the desired trajectory to be performed by the robot in a collaborative task. Top: training phase, where
ProMPs are learned from several human demonstrations. Bottom: inference phase (online), where from early observations, the robot recognizes the current (among
the known) ProMP and predicts the human intention, i.e., the future evolution of the initiated trajectory.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4536

https://github.com/inria-larsen/icubLearningTrajectories
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

To summarize, the contributions of this article are as follows:

• the description of a theoretical framework based on ProMPs for
predicting the human desired trajectory and goal during physi-
cal human–robot interaction, providing the following features:
recognition of the current task, estimation of the task duration,
and prediction of the future trajectory;

• an experimental study about how multimodal information can
be used to improve the estimation of the duration/speed of an
initiated trajectory;

• the open-source software to realize an intention recognition
application with the iCub robot, both in simulation and on the
real robot.

The article is organized as follows. In Section 2, we review the
literature about intentions in Human–Robot Interaction (HRI),
probabilistic models for motion primitives, and their related soft-
ware. In Section 3, we describe the theoretical tools that we
use to formalize the problem of predicting the intention of the
human during interaction. Particularly, we describe the ProMPs
and their use for predicting the evolution of a trajectory given
early observations. In Section 4, we overview the software orga-
nization and the interconnection between our software and the
iCub’s main software, both for the real and simulated robot.
The following sections are devoted to presenting our software
and its use for predicting intention. We choose to present three
examples of increasing complexity, with the simulated and real
robot. We provide and explain in detail a software example for
a 1-DOF trajectory in Section 5. In Sections 6 and 7, we present
the intention recognition application with the simulated and real
iCub, respectively. In the first examples with the robot, the “tasks”
are exemplified by simple reaching movements, to provide simple
and clear trajectories that help the reader understand the method,
whereas the last experiment with the robot is a collaborative object
sorting task. Section 8 provides the links to the videos showing
how to use the software in simulation and on the iCub. Finally, in
Section 10, we discuss our approach and its limitations and outline
our future developments.

2. RELATED WORK

In this article, we propose a method to recognize the intention
of the human partner collaborating with the robot, formalized
as the target and the “future” trajectory associated with a skill,
modeled by a goal-directed Probabilistic Movement Primitive. In
this section, we briefly overview the literature about intention
recognition in human–robot interaction and motion primitives
for learning of goal-directed robotic skills.

2.1. Intention during Human–Robot
Interaction
When humans and robots collaborate, mutual understanding is
paramount for the success of any shared task. Mutual under-
standing means that the human is aware of the robot’s current
task, status, goal, available information, that he/she can reasonably
predict or expect what it will do next, and vice versa. Recognizing
the intention is only one piece of the problem but still plays a
crucial part for providing anticipatory capabilities.

Formalizing intention can be a daunting task, as one may find
it difficult to provide a unique representation that explains the
intention for very low-level goal-directed tasks (e.g., reaching a
target object and grasping it) and for very high-level, complex,
abstract or cognitive tasks (e.g., change a light bulb on the ceil-
ing—by building a stair composed of many parts, climbing it
and reaching the light bulb on the ceiling, etc.). Demiris (2007)
reviews different approaches of action recognition and intention
prediction.

From the human’s point of view, understanding the robot’s
intention means that the human should find intuitive and non-
ambiguous every goal-directed robot movement or actions, and
it should be clear what the robot is doing or going to do (Kim
et al., 2017). Dragan and Srinivasa (2014) formalized the dif-
ference between predictability and legibility: a motion is legible
if an observer can quickly infer its goal, while a motion is pre-
dictable when it matches the expectations of the observer given
its goal.

The problem of generating legible motions for robots has been
addressed in many recent works. For example, Dragan and Srini-
vasa (2014) use optimization techniques to generate movements
that are predictable and legible. Huang et al. (2017) apply an
Inverse Reinforcement Learning method on autonomous cars to
select the robot movements that are maximally informative for
the humans and that will facilitate their inference of the robot’s
objectives.

From the robot’s point of view, understanding the human’s
intention means that the robot should be able to decipher the
ensemble of verbal and non-verbal cues that the human naturally
generates with his/her behavior, to identify, for a current task and
context, what is the human intention. The more information (e.g.,
measurable signals from the human and the environment) is used,
the better and more complex the estimation can be.

The simplest form of intention recognition is to estimate the
goal of the current action, under the implicit assumption that each
action is a goal-directed movement.

Sciutti et al. (2013) showed that humans implicitly attribute
intentions in form of goals to robot motions, proving that humans
exhibit anticipatory gaze toward the intended goal. Gaze was also
used by Ivaldi et al. (2014a) in a human–robot interaction game
with iCub, where the robot (human) was tracking the human
(robot) gaze to identify the target object. Ferrer and Sanfeliu
(2014) proposed the Bayesian Human Motion Intentionality Pre-
diction algorithm, to geometrically compute the most likely target
of the human motion, using Expectation–Maximization and a
simple Bayesian classifier. In Wang et al. (2012), a method called
Intention-Driven Dynamics model, based on Gaussian Process
Dynamical Models (GPDM) (Wang et al., 2005), is used to infer
the intention of the robot’s partner during a ping-pong match,
represented by the target of the ball, by analyzing the entire human
movement before the human hits the ball. More generally, mod-
eling and descriptive approaches can be used to match predefined
labels with measured data (Csibra and Gergely, 2007).

Amore complex formof intention recognition is to estimate the
future trajectory from the past observations. In a sense, to estimate
[xt+1, . . . , xt+Tfuture] = f(xt, xt−1, . . . , xt−Tpast). This problem, very
similar to the estimate of the forward dynamicsmodel of a system,

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4547

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

is frequently addressed by researchers inmodel predictive control,
where being able to “play” the system evolving in time is the
basis for computing appropriate robot controls.When a trajectory
can be predicted by an observer from early observations of it,
we can say that the trajectory is not only legible, but predictable.
A systematic approach for predicting a trajectory is to reason in
terms of movement primitives, in such a way that the sequence of
points of the trajectory can be generated by a parametrized time
model or a parametrized dynamical system. For example, Palinko
et al. (2014) plan reaching trajectories for object carrying that are
able to convey information about the weight of the transported
object. More generally, in generative approaches (Buxton, 2003),
latent variables are used to learn models for the primitives, both
to generate and infer actions. The next subsection will provide
more detail about the state-of-the-art techniques for generating
movement primitives.

In Amor et al. (2014), the robot first learns Interaction Prim-
itives by watching two humans performing an interactive task,
using motion capture. The Interaction Primitive encapsulates the
dependencies between the two human movements. Then, the
robot uses the Interaction Primitive to adapt its behavior to its
partner’s movement. Their method is based on Dynamics Motor
Primitives (Ijspeert et al., 2013), where a distribution over the
DMP’s parameters is learned. Notably, in this article, we did not
follow the same approach to learn Interaction Primitives, since
there is a physical interaction that makes the user’s and the robot’s
movements as one joint movements. Moreover, there is no latency
between the partner’s early movement and the robot’s, because
the robot’s arm is physically driven by the human until the latter
breaks the contact.

Indeed, most examples in the literature focus on kinematic
trajectories, corresponding to gestures that are typically used in
dyadic interactions characterized by a coordination of actions
and reactions. Whenever the human and robot are also inter-
acting physically, collaborating on a task with some exchange of
forces, then the problem of intention recognition becomes more
complex. Indeed, the kinematics information provided by the
“trajectories” cannot be analyzed without taking into account the
haptic exchange and the estimation of the “roles” of the partners
in leading/following each other.

Estimating the current role of the human (master/slave or
leader/follower) is crucial, as the role information is necessary
to coherently adapt the robot’s compliance and impedance at the
level of the exchanged contact forces. Most importantly, adapting
the haptic interaction can be used by the robot to communicate
when it has understood the human intent and is able to finish
the task autonomously, mimicking the same type of implicit non-
verbal communication that is typical of humans.

For example, in Gribovskaya et al. (2011), the robot infers
the human intention utilizing the measure of the human’s forces
and by using Gaussian Mixture Models. In Rozo Castañeda et al.
(2013), the arm impedance is adapted by a Gaussian Mixture
Model based on measured forces and visual information. Many
studies focused on the robot’s ability to act only when and how its
user wants (Carlson and Demiris, 2008; Soh and Demiris, 2015)
and to not interfere with the partner’s forces (Jarrassé et al., 2008)
or actions (Baraglia et al., 2016).

In this article, we describe our approach to the problem of rec-
ognizing the human intention during collaboration by providing
an estimate of the future intended trajectory to be performed by
the robot. In our experiments, the robot does not adapt its role
during the physical interaction but simply switches from follower
to leader when the human breaks contact with it.

2.2. Movement Primitives
Movement Primitives (MPs) are a well established paradigm for
representing complex motor skills. The most known method
for representing movement primitives is probably the Dynamic
Movement Primitives (DMPs) (Schaal, 2006; Ijspeert et al., 2013;
Meier and Schaal, 2016). DMPs use a stable non-linear attractor in
combination with a forcing term to represent the movement. The
forcing term enables to follow specificmovement, while the attrac-
tor asserts asymptotic stability. In a recent paper,Meier and Schaal
(2016) proposed an extension to DMPs, called PDMP (Proba-
bilistic Dynamic Movement Primitive). This method improves
DMP with probabilistic properties to measure the likelihood that
the movement primitive is executed correctly and to perform
inference on sensor measurement. However, the PDMPs do not
have a data-driven generalization and can deviate arbitrarily from
the demonstrations. This last difference can be critical for our
applications with the humanoid robot iCub, since uncertainties
are unavoidable and disturbances may happen frequently and
destabilize the robot movement (for example, an unexpected col-
lision during the movement). Thus, the ProMPs method is more
accurate for our software.

Ewerton et al. (2015), Paraschos et al. (2013b), and Maeda et al.
(2014) compared ProMPs and DMPs for learning primitives and
specifically interaction primitives. With the DMP model, at the
end of the movement, only a dynamic attractor is activated. Thus,
it always reaches a stable goal. The properties allowed by both
methods are temporal scaling of the movement, learning from a
single demonstration, and generalizing to new final position.With
ProMPs, we have in addition the ability to do inference (thanks to
the distribution), to force the robot to pass by several initial via
points (the early observations), to know the correlation between
the input of the model, and to co-activate some ProMPs. In our
study, we need these features, because the robot must determine a
trajectory that passes by the early observations (beginning of the
movement where the user guides physically the robot).

A Recurrent Neural Networks (RNN) approach (Billard and
Mataric, 2001) used a hierarchy of neural networks to simulate
the activation of areas in human brain. The network can be
trained to infer the state of the robot at the next point in time,
given the current state. The authors propose to train the RNN by
minimizing the error between the inferred position of the next
time step and the ground truth obtained from demonstrations.

Hidden Markov Models (HMMs) for movement skills were
introduced by Fine et al. (1998). This method is often used to
categorize movements, where a category represents a movement
primitive. This method also allows to represent the temporal
sequence of a movement. In Nguyen et al. (2005), they use
learned Hierarchical Hidden Markov Model (HHMMs) to rec-
ognize human behaviors efficiently. In Ren and Xu (2002), they
present the Primitive-based Coupled-HMM (CHMM) approach,

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4558

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

for human natural complex action recognition. In this approach,
each primitive is represented by a Gaussian Mixture Model.

Adapting Gaussian Mixture Models is another method used to
learn physical interaction with learning. In Evrard et al. (2009),
they use GMMs and Gaussian Mixture Regression to learn, in
addition to the position (joint information), force information.
Using this method, a humanoid robot is able to collaborate in one
dimension with its partner for a lifting task. In this article, we will
also use (Cartesian) position and force information to allow our
robot to interact physically with its partner.

A subproblem of movement recognition is that robots need to
estimate the duration of the trajectory to align a current trajectory
with learned movements. In our case, at the beginning of the
physical Human–Robot Interaction (pHRI), the robot observes a
partial movement guided by its user. Given this partial movement,
the robot must first estimate what the current state of the move-
ment is to understand what its partner intent is. Thus, it needs to
estimate the partial movement’s speed.

Fitts’ law models the movement duration for goal-directed
movements. This model is based on the assumption that the
movement duration is a linear function of the difficulty to achieve
a target (Fitts, 1992). In Langolf et al. (1976), they show that by
modifying the target’s width, the shape of the movement changes.
Thus, it is difficult to apply Fitt’s law when the size of the target
can change. In Langolf et al. (1976) and Soechting (1984), they
confirm this idea by showing that the shape of the movement
changes with the accuracy required by the goal position of the
movement.

Dynamics Time Warping (DTW) is a method to find the cor-
relation between two trajectories that have different durations,
in a more robust way than the Euclidean distance. In Amor
et al. (2014), they modify the DTW algorithm to match a par-
tial movement with a reference movement. Many improvements
over this method exist. In Keogh (2002), they propose a robust
method to improve the indexation. The calculation speed of DTW
is improved using different methods, such as FastDTW, Lucky
Time Warping, or FTW. An explanation and comparison of these
methods are presented in Silva and Batista (2016), where they add
their own computation speed improvement by using a method

called Pruned Warping Paths. This method allows the deletion
of unlikely data. However, a drawback of this well-known DTW
method is they do not preserve the global trajectory’s shape.

In Maeda et al. (2014), where they use a probabilistic learning
of movement primitives, they improve the duration estimation
of movements by using a different time warping method. This
method is based on a Gaussian basis model to represent a time
warping function and, instead of DTW, it forces a local align-
ment between the twomovements without “jumping” some index.
Thus, the resulting trajectories are more realistic, smoother, and
this method preserves the global trajectories’ shapes.

For inferring the intention of the robot’s partner, we use Prob-
abilistic Movement Primitives (ProMPs) (Paraschos et al., 2013a).
Specifically, we use the ProMP’s conditioning operator to adapt
the learned skills according to observations. The ProMPs can
encode the correlations between forces and positions and allow
better prediction of the partner’s intention. Further, the phase of
the partner’s movement can be inferred, and therefore the robot
can adapt to the partner’s velocity changes. ProMPs are more
efficient for collaborative tasks, as shown in Maeda et al. (2014),
where in comparison to DMPs, the root-mean square error of the
predictions is lower.

2.3. Related Open-Source Software
One of the goals of this article is to introduce an open-source
software for the iCub (but potentially for any other robot), where
the ProMP method is used to recognize human intention dur-
ing collaboration, so that the robot can execute initiated actions
autonomously. This is not the first open-source implementation
for representing movement primitives: however, it has a novel
application and a rationale that makes it easy to use with the iCub
robot.

In Table 1, we report on the main software libraries that one
can use to learn movement primitives. Some have been also used
to realize learning applications with iCub, e.g., Lober et al. (2014)
and Stulp et al. (2013) or to recognize human intention. However,
the software we propose here is different: it provides an imple-
mentation of ProMPs used explicitly for intention recognition and
prediction of intended trajectories. It is interfaced with iCub, both

TABLE 1 | Open-source software libraries implementing movement primitives and their application to different known robots.

Software/library Method Code link Language Robot Reference

Dynamical System Modulation for
Robot Adaptive Learning via Kinesthetic
Demonstrations

GMR Hersch et al. (2008) Matlab Hoap3 Micha and Aude (2008)

pbdlib-matlab HMM, GMM, and others Calinon (2015) Matlab Baxter Calinon (2016)
DMP learning with GMR DMP and GMR Calinon et al. (2012a) Matlab or C Coman Calinon et al. (2012b)
Stochastic Machine Learning Toolbox Kernel Functions, Gaussian

Processes, Bayesian Optimization
Lober (2014) C++ or Python –

pydmps DMP DeWolf (2013) Python Sarcos Ijspeert et al. (2013)
Dynamical Systems approach to Learn
Robot Motions

GMM and SEDS Khansari (2011) Matlab iCub Khansari-Zadeh and Billard
(2011, 2012)

Function Approximation, DMP, and
Black-Box Optimization (dmpbbo)

DMP Stulp (2014) Python or C++ iCub Stulp et al. (2013), Lober et al.
(2014)

Learning Motor Skills from Partially
Observed Movements Executed at
Different Speeds

ProMP Ewerton (2016) Matlab or Python – Ewerton et al. (2015)

icubLearningTrajectories ProMP Dermy (2017) Matlab and C++ iCub –

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4569

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

real and simulated, and addresses in the specific case of physical
interaction between the human and the robot. In short, it is a first
step toward adding intention recognition ability to the iCub robot.

3. THEORETICAL FRAMEWORK

In this section, we present the theoretical framework that we
use to tackle the problem of intent recognition: we describe the
ProMPs and how they can be used to predict trajectories from
early observations.

In Section 2, we formulate the problem of learning a primitive
for a simple case, where the robot learns the distribution from
several demonstrated trajectories. In Section 3.3, we formulate
and provide the solution to the problem of predicting the “future”
trajectory from early observations (i.e., the initial data points). In
Section 3.4, we discuss the problemof predicting the timemodula-
tion, i.e., predicting the global duration of the predicted trajectory.
This problem is non-trivial, as by construction the demonstrated
trajectories are “normalized” in duration when the ProMP is
learned.7 In Section 3.5, we explain how to recognize, from the
early observations, to which of many known skills (modeled by
ProMPs) the current trajectory belongs. In all these sections, we
tried to present the theoretical aspects related to the use of ProMPs
for the intention recognition application.

Practical examples of these theoretical problems are presented
and explained later in sections 5–7. Section 5 explains how to use
our software, introduced in Section 4, for learning one ProMP for
a simple set of 1-DOF trajectories. Section 6 presents an example
with the simulated iCub in Gazebo, while Section 7 presents an
example with the real iCub.

3.1. Notation
To facilitate understanding of the theoretical framework, we first
introduce the notations we use in this section and throughout the
remainder of the article.

3.1.1. Trajectories
• X(t) ∈ R3, X(t)= [x(t), y(t), z(t)]T: the x/y/z-axis Cartesian

coordinate of the robot’s end effector.
• F(t) ∈ R6, F(t)= [fx, fy, fz, mx, my, mz]T: the wrench contact

forces, i.e., the external forces and moments measured by the
robot at the contact level (end effector).

• ξ(t) ∈ RD: the generic vector containing the current value or
state of the trajectories at time t. It can be monodimensional
(e.g., ξ(t)= [z(t)]), or multidimensional (e.g., ξ(t)= [X(t),
F(t)]T), depending on the type of trajectories that we want to
represent with the ProMP.

• Ξ = Ξ[1:tf] = [ξ(1), . . . , ξ(tf)]T ∈ RD·tf is an entire trajectory,
consisting of tf samples or data points.

• Ξi[1:tfi] is the i-th demonstration (trajectory) of a task, consisting
of tfi samples or data points.

3.1.2. Movement Primitives
• k∈ [1 : K]: the k-th ProMP, among a set of K ProMPs that

represent different tasks/actions.

7 In some tasks, e.g., reaching, it is reasonable to assume that the difference of
duration of the demonstrated trajectories is negligible; however, in other tasks, the
duration of the demonstrated trajectories may vary significantly.

• nk: number of recorded trajectories for each ProMP.
• Sk = {Ξ{k,1}, . . . ,Ξ{k,nk}}: set of nk trajectories for the k-th

ProMP.
• ξ(t) = Φtω + ϵξ is the model of the trajectory with:

• ϵξ ∼ N (0, β): expected trajectory noise.
• Φt ∈ RD×D·M: radial basis functions (RBFs) used to model

trajectories. It is a block diagonal matrix.

– M: number of RBFs.

– ψji(t)= e
−(t−ci)2

2h∑M
m=1 e

−(t−cm)2

2h

: i-th RBF for all inputs j∈ [1 :D].

It must be noted that the upper term comes from a Gaussian
1√
2πh

e
−(t−ci)2

2h , where ci and h are, respectively, the center
and variance of the i-th Gaussian. In our RBF formulation,
we normalize all the Gaussians.

• ω ∈ RD·M: time-independent parameter vector weighting
the RBFs, i.e., the parameters to be learned.

• p(ω) ∼ N (µω,Σω): normal distribution computed from a
set {ω1, . . . ,ωn}. It represents the distribution of the modeled
trajectories, also called prior distribution.

3.1.3. Time Modulation
• s̄: number of samples used as reference to rescale all the trajec-

tories to the same duration.
• Φαit ∈ RD×D·M: the RBFs rescaled to match the Ξi trajectory

duration.
• αi = s̄

tfi : temporal modulation parameter of the i-th trajectory.
• α = Ψδno ωα + ϵα is the model of the function mapping δno

into the temporal modulation parameter α, with:

– Ψ: a set of RBFs used to model the mapping between δno and
α;

– δno is the variation of the trajectory during the first no
observations (data points); it can be δno = ξ(no) − ξ(1) if
the entire trajectory variables (e.g., Cartesian position and
forces) are considered, or more simply δno = X(no) −
X(1) if only the variation in terms of Cartesian position is
considered;

– ωα: the parameter vector weighting the RBFs of the Ψ
matrix.

3.1.4. Inference
• Ξo = [Xo, Fo]T = [ξo(1), . . . , ξo(no)]T: early-trajectory

observations, composed of no data points.
• Σo

ξ : noise of the initiated trajectory observation.
• α̂: estimated timemodulation parameter of a trajectory to infer.
• t̂f = s̄

α̂ : estimated duration of a trajectory to infer.
• Ξ∗ = [ξo(1), . . . , ξo(no), ξ∗(no+1), . . . , ξ∗(tf)]: ground truth

of the trajectory for the robot to infer.
• Ξ̂ = [X̂, F̂]T = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(̂tf)]

T: the
estimated trajectory.

• p(ω̂) ∼ N (µ̂ω, σ̂ω): posterior distribution of the parameter
vector of a ProMP using the observation Ξo.

• k̂: index of the recognized ProMP from the set of K known
(previously learned) ProMPs.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 45710

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

3.2. Learning a Probabilistic Movement
Primitive (ProMP) from Demonstrations
Our toolbox to learn, replay and infer the continuation of trajec-
tories is written in Matlab and available at:

https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram

Let us assume the robot has recorded a set of n1 trajectories:
{Ξ1, . . . ,Ξn1}, where the i-th trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}.
ξ(t) is the generic vector containing all the variables to be learned
at time t, with the ProMP method. It can be monodimensional
(e.g., ξ(t)= [z(t)] for the z-axis Cartesian coordinate), or multi-
dimensional (e.g., ξ(t)= [X(t), F(t)]T). Note that the duration of
each recorded trajectory (i.e., tfi) may be variable. To find a com-
mon representation in terms of primitives, a time modulation is
applied to all trajectories, such that they have the same number of
samples s̄ (see details in Section 3.4). Such modulated trajectories
are then used to learn a ProMP.

A ProMP is a Bayesian parametric model of the demonstrated
trajectories in the following form:

ξ(t) = Φtω + ϵξ, (1)

where ω ∈RM is the time-independent parameter vector weight-
ing the RBFs, ϵξ ∼ N (0, β) is the trajectory noise, and Φt is a
vector of M radial basis functions evaluated at time t:

Φt = [ψ1(t), ψ2(t),, ψM(t)]

with
ψi(t) = 1∑M

j=1 ψj(t)
exp

{
−(t−c(i))2

2h

}
c(i) = i/M
h = 1/M2.

(2)

Note that all the ψ functions are scattered across time.
For each Ξi trajectory, we compute the ωi parameter vector to

have ξi(t) = Φtωi + ϵξ . This vector is computed to minimize
the error between the observed ξi(t) trajectory and its model
Φtωi+ϵξ . This is done using the LeastMean Square algorithm, i.e.:

ωi = (Φ⊤
t Φt)−1Φ⊤

t ξi(t). (3)

To avoid the common issue of the matrix ΦT
t Φt in equation (3)

not being invertible, we add a diagonal term and perform Ridge
Regression:

ωi = (Φ⊤
t Φt + λ)−1Φ⊤

t ξi(t), (4)

where λ = 10−11 · 1D·M×D·M is a parameter that can be tuned by
looking at the smallest singular value of the matrix ΦT

t Φt.
Thus, we obtain a set of these parameters: {ω1, . . . ,ωn},

upon which a distribution is computed. Since we assume Normal
distributions, we have:

p(ω) ∼ N (µω,Σω) (5)

with µω =
1
n

n∑
i=1

ωiii (6)

and Σω =
1

n − 1

n∑
i=1

(ωiii − µω)⊤(ωiii − µω). (7)

The ProMP captures the distribution over the observed trajec-
tories. To represent this movement primitive, we usually use the
movement that passes by the mean of the distribution. Figure 2
shows the ProMP for a 1-DOF lifting motion, with a number of
reference samples s̄ = 100 and number of basis functions M= 5.

This example is included in our Matlab toolbox as
demo_plot1DOF.m. The explanation of this Matlab script is
presented in Section 5. More complex examples are also included
in the scripts demo_plot*.m.

3.3. Predicting the Future Movement from
Initial Observations
Once the ProMP p(ω) ∼ N (µω,Σω) of a certain task has been
learned,8 we can use it to predict the evolution of an initiated
movement. An underlying hypothesis is that the observed move-
ment follows to this learned distribution.

8That is, we computed the p(ω) distribution from the dataset {ω1, . . . , ωn},
where each ωi is an estimated parameter computed from the trajectory demon-
strations.

FIGURE 2 | The observed trajectories are represented in magenta. The corresponding ProMP is represented in blue. The following parameters are used: s̄ = 100 for
the reference number of samples, M= 5 for the number of RBFs spread over time, and h= 0.04

(
= 1

M2

)
the variance of the RBFs.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 45811

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

Suppose that the robot measures the first no observations of the
trajectory to predict (e.g., lifting the arm). We call these observa-
tionsΞo = [ξo(1),…, ξo(no)]. The goal is then to predict the evolu-
tion of the trajectory after these no observations, i.e., find {ξ̂(no +
1), . . . , ξ̂(̂tf)}, where t̂f is the estimation of the trajectory duration
(see Section 3.4). This is equivalent to predicting the entire Ξ̂
trajectory where the first no samples are known and equal to the
observations: Ξ̂ = {ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)}.
Therefore, our prediction problem consists of predicting Ξ̂ given
the Ξo observations.

To do this prediction, we start from the learned prior distribu-
tion p(ω), and we find the ω̂ parameter within this distribution
that generates Ξ̂. To find this ω̂ parameter, we update the learned
distribution p(ω̂) ∼ N (µ̂ω, Σ̂ω) using the following formulae:

{
µ̂ω = µω + K

(
Ξo − Φ[1:no] µω

)
Σ̂ω = Σω − K

(
Φ[1:no] Σω

)
,

(8)

where K is a gain computed by the following equation:

K = ΣωΦ⊤
[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (9)

Equations (8) and (9) can be computed through the marginal
and conditional distributions (Bishop, 2006; Paraschos et al.,
2013a), as detailed in Appendix A.

Figure 3 shows the predicted trajectory for the liftingmotion of
the left arm of iCub. The different graphs show inferred trajecto-
ries when the robot observed no = 10, 30, 50, and 80% of the total
trajectory duration. This example is also available in the toolbox as
demo_plot1DOF.m. The nbData variable changes the percentage
of known data. Thus, it will be visible how the inference improves
according to this variable. An example of predicted trajectories of
the arm lifting in Gazebo can be found in a provided video (see
Section 8).

FIGURE 3 | The prediction of the future trajectory given early observations,
exploiting the information of the learned ProMP (Figure 2). The plots show
the predicted trajectories after 10, 30, 50, and 80% of observed data points.

3.4. Predicting the Trajectory Time
Modulation
In the previous section, we presented the general formulation
of ProMPs, which makes the implicit assumption that all the
observed trajectories have the same duration and thus the same
sampling.9 That is why the duration of the trajectories generated
by the RBF is fixed and equal to s̄. Of course, this is valid only for
synthetic data and not for real data.

To be able to address real experimental conditions, we now
consider the variation of the duration of the demonstrated tra-
jectories. To this end, we introduce a time modulation parameter
α that maps the actual trajectory duration tf to s̄: α = s̄/tf. The
normalized duration s̄ can be chosen arbitrarily; for example it
can be set to the average of the duration of the trajectories, e.g.,
s̄ = mean(tf1, . . . , tfK). Notably, in the literature sometimes α is
called phase (Paraschos et al., 2013a,b). The effect ofα is to change
the phase of the RBFs, which are scaled in time.

The time modulation of the i-th trajectory Ξi is computed by
αi = s̄

tfi . Thus, we have α · t ∈ [1 : s̄]. Thus, the improved ProMP
model is as follows:

ξt = Φαtω + ϵt, (10)

where Φαt is the RBFs matrix evaluated at time αt. All the M
Gaussian functions of the RBFs are spread over the same number
of samples s̄. Thus, we have the following:

Φαt = [ψ1(αt), ψ2(αt),, ψM(αt)].

During the learning step, we record a set of α parameters:
Sα= {α1,…,αn}. Then, using this set, we can replay the learned
ProMP with different speeds. By default (e.g., when α= 1), the
speed allows to finish the movement in s̄ samples.

During the inference, the time modulation α of the partially
observed trajectory is not known. Unless fixed a priori, the robot
must estimate it. This estimation is critical to ensure a good
recognition, as shown in Figure 4: the inferred trajectory (repre-
sented by the mean of the posterior distribution in red) does not
have the same duration as the “real” intended trajectory (which
is the ground truth). This difference is due to the estimation
error of the time modulation parameter. This estimation α̂ by
default is computed as the mean of all the αk observed during the
learning:

α̂ =
∑
αk

nk
. (11)

However, using the mean value for the time modulation is
an appropriate choice only when the primitive represents goal-
directed motions that are very regular, or for which we can rea-
sonably assume that differences in the duration can be neglected
(which is not a general case). Inmany applications, this estimation
may be too rough.

Thus, we have to find a way to estimate the duration of the
observed trajectory, which corresponds to accurately estimating
the timemodulation parameter α̂. To estimate α̂, we implemented

9Actually, we call here duration what is in fact the total number of samples for the
trajectory.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 45912

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 4 | This plot shows the predicted trajectory given early observations
(data points, in black), compared to the ground truth (e.g., the trajectory that
the human intends to execute with the robot). We show the prior distribution
(in light blue) and the posterior distribution (in red), which is computed by
conditioning the distribution to match the observations. Here, the posterior
simply uses the average α computed over the α1,…,αK of the K
demonstrations. Without predicting the time modulation from the
observations and using the average α, the predicted trajectory has a duration
that is visibly different from the ground truth.

four different methods. The first is the mean of all the αk, as in
equation (11). The second is the maximum likelihood, with

α̂ = argmaxα∈Sαk
{loglikelihood(Ξo, µωk , σωk , αk)}. (12)

The third is the minimum distance criterion, where we seek
the best α̂ that minimizes the difference between the observed
trajectory Ξo

t and the predicted trajectory for the first no data
points:

α̂ = argminα∈Sαk

{ no∑
t=1

|Ξo
t − Φαtµωk |

}
. (13)

The fourth method is based on a model: we assume that there
is a correlation between α and the variation of the trajectory δno
from the beginning until the time no. This “variation” δno can be
computed as the variation of the position, e.g., δno = X(no)−X(1),
or the variation in the entire trajectory, δno = Ξ(no) − Ξ(1), or
any other measure of progress, if this hypothesis is appropriate
for the type of task trajectories of the application.10 Indeed, the α
can be linked also to the movement speed, which can be roughly
approximated by Ẋ = δX

tf

(
Ξ̇ = δΞ

tf

)
. We model the mapping

between δno and α by the following equation:

α = Ψ(δno)
⊤ωα + ϵα, (14)

where Ψ are RBFs, and ϵα is a zero-mean Gaussian noise. During
learning, we compute the ωα parameter, using the same method
as in equation (3). During the inference, we compute α̂ =
Ψ(δno)

Tωα.

10 In our case, this assumption can be appropriate, because the reaching trajectories
in our application are generally monotonic increasing/decreasing.

A comparison of the four methods for estimating α on a test
study with iCub in simulation is presented in Section 6.6.

There exist othermethods in the literature for computingα. For
example, Ewerton et al. (2015) propose amethod thatmodels local
variability in the speed of execution. In Maeda et al. (2016), they
use a method that improves Dynamic Time Warping by imposing
a smooth function on the time alignment mapping using local
optimization. These methods will be implemented in the future
works.

3.5. Recognizing One among Many
Movement Primitives
Robots should not learn only one skills but many: different skills
for different tasks. In our framework, tasks are represented by
movement primitives, precisely ProMP. So it is important for the
robot to be able to learn K different ProMPs and then be able to
recognize from the early observations of a trajectory which of the
K ProMPs the observations belong to.

During the learning step of a movement primitive k∈ [1 :
K], the robot observes different trajectories Sk = {Ξ1,…,Ξn}. For
each ProMP, it learns the distribution over the parameters vec-
tor p(ω) ∼ N (µωk ,Σωk), using equation (3). Moreover, the
robot records the different phases of all the observed trajectories:
Sαk = {α1k,…,αnk}.

After having learned these K ProMPs, the robot can use this
information to autonomously execute a task trajectory. Since we
are targeting collaborative movements, performed together with a
partner at least at the beginning, we want the robot to be able to
recognize from the first observations of a collaborative trajectory
which is the current task that the partner is doing and what is the
intention of the partner. Finally, we want the robot to be able to
complete the task on its own, once it has recognized the task and
predicted the future trajectory.

Let Ξo = [Ξ1 . . .Ξno]
T be the early observations of an initiated

trajectory.
From these partial observations, the robot can recognize the

“correct” (i.e., most likely) ProMP k̂ ∈ [1 : K]. First, for each
ProMP k∈ [1 : K], it computes the most likely phase (time
modulation factor) α̂k (as explained in Section 3.4), to obtain
the set of ProMPs with the most likely duration: S[µωk ,α̂k] =
{(µω1 , α̂1), . . . , (µωK , α̂K)}.

Then we compute the most likely ProMP k̂ in S[µωk ,α̂k] accord-
ing to some criterion.One possibleway is tominimize the distance
between the early observations and themean of the ProMP for the
first portion of the trajectory:

k̂ = arg min
k∈[1:K]

[
1
no

no∑
t=1

|Ξt − Φα̂kt µωk |

]
. (15)

In equation (15), for each ProMP k∈ [1 : K], we compute
the average distance between the observed early-trajectory Ξt
and the mean trajectory of the ProMP Φα̂ktµωk , with t= [1 : no].
The most likely ProMP k̂ is selected by computing the mini-
mum distance (arg min). Other possible methods for estimating
the most likely ProMPs could be inspired by those presented
in the previous section for estimating the time modulation, i.e.,
maximum likelihood or learned models.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451013

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

Once identified the k̂-th most likely ProMP, we update its
posterior distribution to take into account the initial portion of
the observed trajectory, using equation (8):

µ̂ωk̂
= µωk̂

+ K
(
Ξo − Φα̂k̂[1:no]µωk̂

)
Σ̂ωk̂

= Σωk̂
− K

(
Φα̂k̂[1:no]Σωk̂

)
K = Σωk̂

Φ⊤
α̂k̂[1:no]

(
Σξo + Φα̂k̂[1:no]Σωk̂

Φ⊤
α̂k̂[1:no]

)−1

(16)
with α̂k̂[1 : no] = α̂k̂ t (in matrix form), with t∈ [1 : no].

Finally, the inferred trajectory is given by the following equa-
tion:

∀t ∈ [1 : t̂f], ξ̂(t) = Φt µ̂ωk̂

with the expected duration of the trajectory t̂f = α̂k s̄. The robot is
now able to finish themovement executing themost likely “future”
trajectory Ξ̂ = [ξ̂no+1 . . . ξ̂tf]

T.

4. SOFTWARE OVERVIEW

In this section, we introduce our open-source software with an
overview of its architecture. This software is composed of two
main modules, represented in Figure 5.

While the robot is learning the Probabilistic Movement Prim-
itives (ProMPs) associated with the different tasks, the robot is
controlled by its user. The user’s guidance can be eithermanual for
the real iCub, or through a haptic device for the simulated robot.

A Matlab module allows replaying movement primitives or
finishing a movement that has been initiated by its user. By using
this module, the robot can learn distributions over trajectories,
replay movement primitives (using the mean of the distribution),

recognize the ProMP that best matches a current trajectory, and
infer the future evolution (until the end target) of this trajectory.

A C++ module forwards to the robot the control that comes
either from the user or from the Matlab module. Then, the robot
is able to finish a movement initiated by its user (directly or
through a haptic device) in an autonomous way, as shown in
Figure 1.

We present the C++ module in Section 6.2 and the theoretical
explanation of theMatlabmodule algorithms in Section 3. A guide
to run this last module is first presented in Section 5 for a simple
example, and in Section 6 for our application, where a simu-
lated robot learns many measured information of the movements.
Finally, we present results on the real iCub application in Section 7.

Our software is available through the GPL license, and publicly
available at:

https://github.com/inria-larsen/icubLearningTrajectories.

Tutorial, readme, and videos can be found in that repository.
First, the readme file describes how to launch simple demon-
strations of the software. Videos present these demonstrations to
simplify the understanding. In the next sections, we detail the
operation of the demo program for a first case of 1-DOF primitive,
followed by the presentation of the specific applications on the
iCub (first simulated and then real).

5. SOFTWARE EXAMPLE: LEARNING A
1-DOF PRIMITIVE

In this section, we present the use of the software to learn ProMPs
in a simple case of 1-DOF primitive. This example only uses the
MatlabProgram folder, composed of:

FIGURE 5 | Software architecture and data flows. The robot’s control is done either by the user’s guidance (manually or through a haptic device) represented in blue,
or by the Matlab module, in purple. The C++ module handles the control source to command the robot, as represented in black. Moreover, this module forwards
information that comes from the iCub.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451114

https://github.com/inria-larsen/icubLearningTrajectories
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

• A sub-folder called “Data,” where there are trajectory sets used
to learn movement primitives. These trajectories are stored in
text files with the following information:

– input parameters: # input1 # input2 [. . .]
– input parameters with time step: # timeStep # input1 #

input2 [. . .]
– recordTrajectories.cpp program recording: See Section 6.3 for

more information.

• A sub-folder called “used_functions.” It contains all the func-
tions used to retrieve trajectories, compute ProMPs, infer tra-
jectories, and plot results. Normally, using this toolbox does not
require understanding these functions. The first lines of these
functions give an explanation of their functioning and precise
what are the input(s) and output(s) parameters.

• Matlab scripts called “demo_*.m.” They are simple examples of
how to use this toolbox.

The script demo_plot1DOF.m, can be used to compute a
ProMP and to continue an initiated movement. The ProMP
is computed from a dataset stored in a “.mat” file, called
traj1_1DOF.mat. In this script, variables are first defined to make
the script specific to the current dataset:

Variable assignation Commentary

DataPath=
‘Datatraj1_1DOF.mat’;

Can be either “.mat” or “.txt”. In the current
demo, you can also write DataPath= ‘Data/traj1’
if you want to use the text files of this dataset.

typeRecover= ‘.mat’ Or .txt, it depends on your choice of data file.

inputName= {‘z[m]’}; Label of your input(s). Here z represents the
z-axis Cartesian coordinate.

s_ref= 100; Number of samples used as reference to rescale
all the trajectories to the same duration.

nbInput= 1; Dimension of the generic vector containing the
state of the trajectory.

M= 5; Number of radial basis functions per input.

expNoise= 0.00001; Expected trajectory noise.

percentData=20; Percent of observed data during the inference.

The variables include the following:

• DataPath is the path to the recorded data. If the data are
stored in text files, this variable contains the folder name where
text files are stored. These text files are called “recordX.txt,”
with X∈ [0: n− 1] if there are n trajectories. One folder is
used to learn one ProMP. If the data are already loaded from
a “.mat” file, write the whole path with the extension. The
data in “.mat” match with the output of the Matlab function
loadTrajectory.

• nbInput=D is the dimension of the input vector ξt.
• expNoise= Σo

ξ is the expected noise of the initiated trajec-
tory. The smaller this variable is, the stronger the modification
of the ProMP distribution will be, given new observations.

We will now explain more in detail the script. To recover data
recorded in a “.txt” file, we call the function:

t{1}= loadTrajectory(PATH, nameT, varargin)

Its input parameters specify the path of the recorded data,
the label of the trajectory. Other information can be added by
using the varargin variable (for more detail, check the header
of the function with the help comments). The output is an object
that contains all the information about the demonstrated tra-
jectories. It is composed of nbTraj, the number of trajectory;
realTime, the simulation time; and y (and yMat), the vector
(and matrix) trajectory set. Thus, t{1}.y{i} contains the i-th
trajectory.

The Matlab function drawRecoverData(t{1},
inputName,'namFig', nFig, varargin) plots in a Matlab
figure (numbered nFig) the dataset of loaded trajectories. An
example is shown in Figure 2, on the left. Incidentally, the
different duration of the trajectories is visible: on average, it is
1.17± 0.42 s.

To split the entire dataset of demonstrated trajectories t{1}
into a training dataset (used for learning the ProMPs) and a test
dataset (used for the inference), call the function

[train, test]= partitionTrajectory(t{1},
partitionType, percentData, s_ref)

where if partitionType= 1, only one trajectory is in the
test set and the others are placed in the training set, and if
partitionType> 1 it corresponds to the percentage of trajec-
tories that will be included in the training set.

The ProMP can be computed from the training set by using the
function:

promp= computeDistribution(train, M, s_ref, c, h)

The output variable promp is an object that contains all the
ProMP information. The first three input parameters have been
presented before: train is the training set, M is the number of
RBFs, and s_ref is the number of samples used to rescale all the
trajectories. The last two input parameters c and h shape the RBFs
of the ProMP model: c∈ RM is the center of the Gaussians and
h∈ R their variance.

To visualize this ProMP, as shown in Figure 2, call the function:

drawDistribution(promp, inputName, s_ref)

For debugging purposes and to understand how to tune the
ProMPs’ parameters, it is interesting to plot the overlay of the basis
functions in time. Choosing an appropriate number of basis func-
tions is important, as too few may be insufficient to approximate
the trajectories under consideration, and too many could result in
overfitting problems. To plot the basis functions, simply call:

drawBasisFunction(promp.PHI, M)

where promp.PHI is a set of RBFs evaluated in the normalized
time range t ∈ [1 : s̄].

Figure S1 in Supplementary Material shows at the top the basis
functions before normalization, and at the bottom the ProMP
modeled from these basis functions. From left to right, we change
the number of basis functions. When there are not enough basis
functions (left), the model is not able to correctly represent the
shape of the trajectories. In the middle, the trajectories are well
represented by the five basis functions. With more basis func-
tions (right), the variance of the distribution decreases because

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451215

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

the model is more accurate. However, arbitrarily increasing the
number of basis functions is not a good idea, as itmay not improve
the accuracy of the model and worse it may cause overfitting.

Once the ProMP is learned, the robot can reproduce the move-
ment primitive using the mean of the distribution. Moreover, it
can now recognize a movement that has been initiated in this
distribution and predict how to finish it. To do so, given the
early no observations of a movement, the robot updates the prior
distribution to match the early observed data points: through
conditioning, it finds the posterior distribution, which can be used
by the robot to execute the movement on its own.

The first step in predicting the evolution of the trajectory is
to infer the duration of this trajectory, which is encoded by the
time modulation parameter α̂. The computation of this inference,
which was detailed in Section 3.4, can be done by using the
function:

[expAlpha, type, x]= inferenceAlpha(promp,
test{1}, M, s_ref, c, h, test{1}.nbData,. . .
expNoise, typeReco)

where typeReco is the type of criteria used to find the expected
time modulation (“MO,” “DI,” or “ML” for model, distance or
maximum likelihood methods); expAlpha = α̂ is the expected
time modulation; type is the index of the ProMP from which
expAlpha has been computed, which we note in this article as
k. To predict the evolution of the trajectory, we use equation (8)
from Section 3.3. In Matlab, this is done by the function:

infTraj= inference(promp, test{1}, M, s_ref, c,
h,. . . test{1}.nbData, expNoise, expAlpha).

where test{1}.nbData has been computed during the
partitionTrajectory step. This variable is the number of
observations no, representing the percentage of observed data
(percentData) of the test trajectory (i.e., to be inferred) that
the robot observes. infTraj= Ξ̂ is the inferred trajectory.
Finally, to draw the inferred trajectory, we can call the function
drawInference(promp, inputName, infTraj, test1,
s_ref).

It can be interesting to plot the quality of the predicted tra-
jectories as a function of the number of observations, as done in
Figure 3.

Note that when we have observed a larger portion of the trajec-
tory, the prediction of the remaining portion is more accurate.

Nowwewant tomeasure the quality of the prediction. LetΞ∗ =
[ξo(1), . . . , ξo(no), ξ∗(no + 1), . . . , ξ∗(t∗f)] be the real trajectory
expected by the user. To measure the quality of the prediction, we
can use:

• The likelihood of having the Ξ* trajectory given the updated
distribution p(ω̂).

• The distance between the Ξ* trajectory and the Ξ̂ inferred
trajectory.

However, according to the type of recognition typeReco used
to estimate the time modulation parameter α from the early
observations, a visible mismatch between the predicted trajectory
and the real one can be visible even when a lot of observations
are used. This is due to the error of the expectation of this time

FIGURE 6 | The prediction of the future trajectory given no = 40% of early
observations from the learned ProMP computed for the test dataset
(Figure 2). The plots show the predicted trajectory, using different criteria to
estimate the best phases of the trajectory: using the average time modulation
(equation (11)); using the distance criteria (equation (13)); using the maximum
log-likelihood (equation (12)); or using a model of time modulation according
to the time variation (equation (14)).

TABLE 2 | Information about trajectories’ duration.

Traj. samples α = s̄
Iterations , s̄ = 100 Duration [s]

Min 83 1.2048 0.83
Max 115 0.8696 1.15
Mean 100 1 0.99
SD 9 11.1111 0.09

modulation parameter. In Section 3.4, we present the different
methods used to predict the trajectory duration. These methods
select the most likely α̂ according to different criteria: distance;
maximum likelihood; model of the α variable11; and average of
the observed α during learning.

Figure 6 shows the different trajectories predicted after
no = 40% of the length of the desired trajectory is observed,
according to the method used to estimate the time modulation
parameter.

On this simple test, where the variation time is little as shown
in Table 2, the best result is accomplished by the average of time
modulation parameter of the trajectories used during the learning
step. Inmore complicated cases, when the timemodulation varies,
the other methods will be preferable as seen in Section 3.5.

6. APPLICATION ON THE SIMULATED
iCub: LEARNING THREE PRIMITIVES

In this application, the robot learnsmultiple ProMPs and is able to
predict the future trajectory of a movement initiated by the user,
assuming the movement belongs to one of the learned primitives.

11 In this model, we assume that we can find the time modulation parameter
according to the global variation of the position during the no first observed data.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451316

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 7 | Left: the three colored targets that the robot must reach from the starting point; the corresponding trajectories are used to learn three primitives
representing three skills. Right: the Cartesian position information of the demonstrated trajectories for the three reaching tasks.

Based on this prediction, it can also complete the movement once
it has recognized the appropriate ProMP.

We simplify the three actions/tasks by reaching three differ-
ent targets, represented by three colored balls in the reachable
workspace of the iCub. The example is performed with the simu-
lated iCub in Gazebo. Figure 7 shows the three targets, placed at
different heights in front of the robot.

In Section 6.1, we formulate the intention recognition problem
for the iCub: the problem is to learn the ProMP from trajectories
consisting of Cartesian positions in 3D12 and the 6Dwrench infor-
mation measured by the robot during the movement. In Section
6.2, we describe the simulated setup of iCub in Gazebo, then in
Section 6.3, we explain how trajectories are recorded, including
force information, when we use the simulated robot.

6.1. Predicting Intended Trajectories by
Using ProMPs
The model is based on Section 3, but here we want to learn more
information during movements. We record this information in a
multivariate parameter vector:

∀t, ξt =
[
Xt
Ft

]
∈ R9,

where Xt ∈ R3 is the Cartesian position of the robot’s end effector
and Ft ∈ R6 the external forces and moments. In particular,
Ft contains the user’s contact forces and moments. Let us call
dim(ξt)=D, the dimension of this parameter vector.

The corresponding ProMP model is as follows:

ξt =
[
Xt
Ft

]
= Φαtω + ϵt,

where ω ∈ RD·M is the time-independent parameter vector,

ϵt =
[
ϵXt

ϵFt

]
∈ RD is the zero-mean Gaussian i.i.d. observation

12Note that in that particular example we do not use the orientation because we
want the robot’s hand to keep the same orientation during the movement. But
in principle, it is possible to learn trajectories consisting of the 6D/7D Cartesian
position and orientation of the hand, to make the robot change also the orientation
of the hand during the task.

noise, and Φαt ∈ RD×D·M a matrix of Radial Basis Functions
(RBFs) evaluated at time αt.

Since we are in the multidimensional case, this Φαt block
diagonal matrix is defined as follows:

Φαt = BlockdiagonalMatrix(ϕ1, . . . , ϕD) ∈ RD×D·M.

It is a diagonal matrix of D Radial Basis Functions (RBFs),
where each RBF represents one dimension of the ξt vector and it is
composed ofM Gaussians, spread over same number of samples s̄.

6.1.1. Learning Motion Primitives
During the learning step of each movement primitive k∈ [1 :
3], the robot observes different trajectories Sk = {Ξ1,…,Ξn}k, as
presented in Section 6.3.

For each trajectory Ξi[1:tfi] = [ξi(1), . . . , ξi(tfi)]
T, it computes

the optimal ωki parameter vector that best approximates the
trajectory.

We saw in Section 3.5 how these computations are done. In our
software, we use matrix computation instead of tfi iterative ones
done for each observation t (as in equation (3)). Thus, we have
the following:

ωki =
(
Φ⊤
α[1:tfi]Φα[1:tfi]

)−1
Φ⊤
α[1:tfi] ∗ Ξi[1:tfi] (17)

with Φα[1:tfi] = [Φα1,Φα2 . . . ,Φαtfi]
T.

6.1.2. Prediction of the Trajectory Evolution from
Initial Observations
After having learned the three ProMPs, the robot is able to fin-
ish an initiated movement on its own. In Sections 3.3–3.5, we
explained how to compute the future intended trajectory given the
early observations.

In this example, we add specificities about the parameters to
learn.

Let Ξo =
[
Xo

Fo
]

= [Ξ1 . . .Ξno]
T be the early observations of the

trajectory.
First, we only consider the partial observations: Xo =

[X1 . . .Xno]
T. Indeed, we assume the recognition of a trajectory

is done with Cartesian position information only, because the

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451417

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

same movement can be done and recognized with different force
profiles than the learned ones.

From this partial observation Xo, the robot recognizes the
current ProMP k̂ ∈ [1 : 3], as seen in Section 3.5. It also computes
an expectation of the time modulation t̂f, as seen in Section 3.4.
Using the expected value of the time modulation, it approximates
the trajectory speed and its total time duration.

Second, we use the total observation Ξo to update the ProMP,
as seen in Section 3.3. This computation is based on equation (18),
but here again, we use the following matrix computation:

µ̂ωk = µωk + K
(
Ξo − Φα[1:no]µωk

)
Σ̂ωk = Σωk − K

(
Φα[1:no]Σωk

)
K = ΣωkΦ

T
α[1:no]

(
Σξo + Φα[1:no]ΣωkΦ

T
α[1:no]

)−1
.

From this posterior distribution, we retrieve the inferred Ξ̂ =
{ξ̂1, ..., ξ̂̂tf} trajectory, with:

∀t ∈ [1 : t̂f], ξ̂t =
[
X̂t
F̂t

]
= Φαtµ̂ωk .

Note that the inferred wrenches F̂t, here, correspond to the
simulated wrenches in Gazebo. In this example, there is little use
for them in simulation; the interest for predicting also wrenches
will be clearer in Section 7, with the example on the real robot.

6.2. Setup for Simulated iCub
For this application, we created a prototype in Gazebo, where the
robot must reach three different targets with the help of a human.
To interact physically with the robot simulated in Gazebo, we used
the Geomagic touch, a haptic device.

The setup consists of the following:

• the iCub simulation in Gazebo, complete with the
dynamic information provided by wholeBodyDynamicsTree
(https://github.com/robotology/codyco-modules/tree/master/
src/modules/wholeBodyDynamicsTree) and the Cartesian
information provided by iKinCartesianController;

• the Geomagic Touch, installed following the instructions
in https://github.com/inria-larsen/icub-manual/wiki/
Installation-with-the-Geomagic-Touch, which not only
install the SDK and the drivers of the GeoMagic but also point
to how to create the yarp drivers for the Geomagic;

• a C++ module (https://github.com/inria-larsen/icubLearning
Trajectories/tree/master/CppProgram) that connects the out-
put command from the Geomagic to the iCub in Gazebo and
eventually enables recording the trajectories on a file. A tutorial
is included in this software.

The interconnection among the different modules is repre-
sented inFigure 5, where theMatlabmodule is not used. The tip of
the Geomagic is virtually attached to the end effector of the robot:

xgeo → xicub_hand.

When the operator moves the Geomagic, the position of the
Geomagic tip xgeo is scaled (1:1 by default) in the iCub workspace
as xicub_hand, and the Cartesian controller is used to move the iCub

hand around a “home” position, or default starting position:

xicub_hand = hapticDriverMapping(x0 + xgeo),

where hapticDriverMapping is the transformation applied by the
haptic device driver, which essentially maps the axis from the
Geomagic reference frame to the iCub reference frame. By default,
no force feedback is sent back to the operator in this application,
as we want to emulate the zero-torque control mode of the real
iCub, where the robot is ideally transparent and not opposing any
resistance to the human guidance. A default orientation of the
hand (“katana” orientation) is set.

6.3. Data Acquisition
The dark button of the Geomagic is used to start and stop
the recording of the trajectories. The operator must click and
hold the button during the whole movement and release the but-
ton at the end. The trajectory is saved on a file called recordX.txt
for the X-th trajectory. The structure of this file is:

1 #time #xgeo #ygeo #zgeo #fx #fy #fz #mx #my #mz #x_icub_hand
#y_icub_hand #z_icub_hand

2 5.96046e−06 −0.0510954 −0.0127809 −0.0522504 0.284382
−0.0659538 −0.0239582 −0.0162418 −0.0290078 −0.0607215
−0.248905 −0.0872191 0.0477496$

A video showing the iCub’s arm moved by a user through the
haptic device in Gazebo is available in Section 8 (tutorial video).
The graph in Figure 7 represents some trajectories recorded with
the Geomagic, corresponding to lifting the left arm of the iCub.

Demonstrated trajectories and their corresponding forces can
be recorded directly from the robot, by accessing the Cartesian
interface and the wholeBodyDynamicsTree module.13

In our project on Github, we provide the acquired dataset
with the trajectories for the interested reader who wishes to test
the code with these trajectories. Two datasets are available at
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram/Data/: the first dataset called “heights” is
composed of three goal-directed reaching tasks, where the targets
vary in height; the second dataset called “FLT” is composed of
trajectories recorded on the real robot, whose armsmove forward,
to the left and to the top.

A Matlab script that learns ProMPs with such kinds of datasets
is available in the toolbox, called demo_plotProMPs.m. It con-
tains all the following steps.

To load the first “heights” dataset with the three trajectories,
write:

1 t{1}= loadTrajectory('Data/heights/bottom', 'bottom', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

2 t{2}= loadTrajectory('Data/heights/top', 'top', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

3 t{3}= loadTrajectory('Data/heights/middle', 'forward',
'refNb', s_bar, 'nbInput', nbInput, . . . 'Specific',
'FromGeom');

13 In our example, we do not use the simulated wrench information as it is very noisy.
However, we provide the code and show how to retrieve it and use it, in case the
readers should not have access to the real iCub.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451518

https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/CppProgram
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/CppProgram
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram/Data/
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram/Data/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

Figure 7 shows the three sets of demonstrated trajectories. In
the used dataset called “heights,” we have recorded 40 trajectories
per movement primitive.

6.4. Learning the ProMPs
We need to first learn the ProMPs associated with the three
observed movements. First, we partition the collected dataset into
a training set and test dataset for the inference. One random
trajectory for the inference is used:

1 [train{i}, test{i}]= partitionTrajectory(t{i}, 1, percentData,
s_bar);

The second input parameter specifies that we select only one
trajectory, randomly selected, to test the ProMP.

Now, we compute the three ProMPs with:

1 promp{1}= computeDistribution(train{1}, M, s_bar, c, h);
2 promp{2}= computeDistribution(train{2}, M, s_bar, c, h);
3 promp{3}= computeDistribution(train{3}, M, s_bar, c, h)

We set the following parameters:

• s_bar= 100: reference number of samples, which we note in
this article as s̄.

• nbInput(1)= 3; nbInput(2)= 6: dimension of the generic
vector containing the state of the trajectories. It is com-
posed of 3D Cartesian position and 6D forces and wrench
information.14

• M(1)= 5; M(2)= 5: number of basis functions for each
nbInput dimension.

• c= 1/M;h= 1/(M*M): RBF parameters (see equation (2)).
• expNoise= 0.00001: the expected data noise.We assume this

noise to be very low, since this is a simulation.
• percentData= 40: this variable specifies the percentage of the

trajectory that the robot will be observed, before inferring the
end.

These parameters can be changed at the beginning of the
Matlab script.

Figure 8 shows the three ProMPs of the reaching movements
toward the three targets. To highlight the most useful dimen-
sion, we only plot the z-axis Cartesian position. However, each
dimension is plotted by the Matlab script with:

1 drawRecoverData(t{1}, inputName, 'Specolor', 'b', 'namFig', 1);
2 drawRecoverData(t{1}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'b', 'namFig', 2);
3 drawRecoverData(t{2}, inputName, 'Specolor', 'r', 'namFig', 1);
4 drawRecoverData(t{2}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'r', 'namFig', 2);
5 drawRecoverData(t{3}, inputName, 'Specolor', 'g', 'namFig', 1);
6 drawRecoverData(t{3}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'g', 'namFig', 2);

14Note that in our example wrenches are separated from the Cartesian position,
because they are not used to recognize the index of the current ProMP during the
inference.

FIGURE 8 | The Cartesian position in the z-axis of the three ProMPs
corresponding to reaching three targets. There are 39 trajectory
demonstrations per each ProMPs with M= 5 basis functions,
c = 1

M , h = 1
M2 and s̄ = 100.

6.5. Predicting the Desired Movement
Now that we have learned the different ProMPs, we can predict
the end of a trajectory according to the early observation no. This
number is computed from the variable percentData written at
the beginning of the trajectory by: no = | percentData100 ∗ tfi|, where i is
the index of the test trajectory.

To prepare the prediction, the model the time modulation of
each trajectory is computed with:

1 w= computeAlpha(test.nbData, t, nbInput);
2 promp1.w_alpha= w1;
3 promp2.w_alpha= w2;
4 promp3.w_alpha= w3;

This model relies on the global variation of Cartesian position
during the first no observations. The model’s computations are
explained in Section 3.4.

Now, to estimate the time modulation of the trajectory, call the
function:

1 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,
c, h, test{1}.nbData, expNoise, 'MO');

where alphaTraj contains the estimated time modulation α̂ and
type gives the index of the recognized ProMP. The last parameter
x is used for debugging purposes.

Using this estimation of the time modulation, the end of the
trajectory is inferred with:

1 infTraj= inference(promp, test{1}, M, s_bar, c, h,
test{1}.nbData, expNoise, alphaTraj);

As shown in the previous example, the quality of the prediction
of the future trajectory depends on the accuracy of the time

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451619

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

modulation estimation. This estimation is computed by calling the
function:

1 %Using the model:
2 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'MO');
3 %Using the distance criteria:
4 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'DI');
5 %Using the Maximum likelihood criteria:
6 [alphaTraj, type, x]= inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'ML');
7 %Using the mean of observed temporal modulation during learning:
8 alphaTraj= (promp{1}.mu_alpha+ promp{2}.mu_alpha+ promp{3}.

mu_alpha)/3.0;

6.6. Predicting the Time Modulation
In Section 3.4, we presented four main methods for estimating
the time modulation parameter, discussing why this is crucial
for a better estimation of the trajectory. Here, we compare the
methods on the three goals experiment. We recorded 40 trajec-
tories for each movement primitive, for a total of 120 trajectories.
After having computed the corresponding ProMPs, we tested the
inference by providing early observations of a trajectory that the
robot must finish. For that purpose, it recognizes the correct
ProMP among the three precedently learned (see Section 3.5)
and then it estimates the time modulation parameter α̂. Figure 9
represents the average error of the α̂ during inference for 10 trials
according to the number of observations (from 30 to 90% of
observed data) and according to the usedmethod. These methods
are the ones we have just presented before that we called mean
(equation (11)), maximum likelihood (equation (12)), minimum
distance (equation (13)) or model (equation (14)). Each time,
the tested trajectory is chosen randomly from the data set of
observed trajectories (of course, the test trajectory does not belong
to the training set, so it was not used in the learning step). The
method that takes the average of α observed during learning is
taken as comparison (in black). We can see that other methods
are more accurate. The maximum likelihood is increasingly more
accurate, as expected. The fourth method (model) that models the
α according to the global variation of the trajectory’s positions
during the early observations is the best performing when the
portion of observed trajectory is small (e.g., 30–50%). Since it is
our interest to predict the future trajectory as early as possible, we
adopted the model method for our experiments.

7. APPLICATION ON THE REAL iCub

In this section, we present and discuss two experiments with the
real robot iCub.

In the first, we take inspiration from the experiment of the
previous Section 6, where the “tasks” are exemplified by simple
point-to-point trajectories demonstrated by a human tutor. In this
experiment, we explore how to use wrench information and use
known demonstrations as ground truth, to evaluate the quality of
our prediction.

In the second experiment, we set up a more realistic col-
laborative scenario, inspired by collaborative object sorting. In

such applications, the robot is used to lift an object (heavy, or
dangerous, or that the human cannot manipulate, as for some
chemicals or food), the human inspects the object and then
decides if it is accepted or rejected.Depending on this decision, the
object goes on a tray or bin in front of the robot, or on a bin located
on the robot side. Dropping the objects in two cases must be done
in a different way. Realizing this application with iCub is not easy,
as iCub cannot lift heavy objects and has a limited workspace.
Therefore, we simplify the experiment with small objects and two
bins. The human simply starts the robots movement with physical
guidance, and then the robot finishes themovement on its own. In
this experiment the predicted trajectories are validated on-the-fly
by the human operator.

In a more complex collaborative scenario, tasks could be ele-
mentary tasks such as pointing, grasping, reaching, and manipu-
lating tools (the type of task here is not important, as long as it can
be represented by a trajectory).

7.1. Three Simple Actions with Wrench
Information
Task trajectories, in this example, have both position and wrench
information. In general, it is a good idea to represent collaborative
motion primitives in terms of both position and wrenches, as
this representation enables using them in the context of phys-
ical interaction. Contrarily to the simulated experiment, here
the inferred wrenches F̂t correspond to the wrenches the robot
should perceive if the partner was manually guiding the robot
to perform the entire movement: indeed, these wrenches are
computed from the demonstrations used to learn the primitive.
The predicted wrenches can be used in different ways, depend-
ing on the application. For example, if the partner breaks the
contact with the robot, the perceived wrenches will be differ-
ent. If the robot is not equipped with tactile or contact sen-
sors, this information can be used by the robot to “perceive”
the contact breaking and interpret it, for example, as the sign
that the human wants the robot to continue the task on its
own. Another use for the demonstrated wrenches is for detecting
abnormal forces while the robot is moving: this use can have
different applications, from adapting the motion to new environ-
ment to automatically detecting new demonstrations. Here, they
are simply used to detect when the partner breaks the contact
with the robot, and the latter must continue the movement on
its own.

In the following, we present how to realize the experiment
for predicting the user intention with the real iCub, using our
software. The robot must learn three task trajectories represented
in Figure 10. In red, the first trajectory goes from an initial
position in front of the robot to its left (task A). In green, the
second trajectory goes from the same initial position to the top
(task C). In blue, the last trajectory goes from the top position to
the position on the left (task B).

To provide the demonstrations for the tasks, the human tutor
used three visual targets shown on the iCub_GUI, a basic module
of the iCub code that provides a real-time synthetic and aug-
mented view of the robot status, with arrows for the external
forces and colored objects for the targets. One difficulty for novice

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451720

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 9 | (Top left) Error of α estimation; (top right and bottom) error of trajectory prediction according to the number of known data and the method used. We
executed 10 different trials for each case.

users of iCub is to be able to drive the robot’s arm making it
perform desired complex 3D trajectories (Ivaldi et al., 2017),
but after some practice in moving the robot’s arm the operator
recorded all the demonstrations. We want to highlight that having
variations in the starting or ending points of the trajectories is
not at all a problem, since the ProMPs are able to deal with this
variability.

We will see that by using the ProMPs method and by learning
the end-effector Cartesian position, the robot will be able to
learn distributions over trajectories, recognize when a movement
belongs to one of these distributions, and infer the end of the
movement.

In this experiment, the robot received 10 demonstrated tra-
jectories per movement primitive, all provided by the same
user. We recorded the Cartesian end-effector position and the
wrenches of the robot’s left arm. Data are retrieved using
the function used_functions/retrieveRealDataWithout
Orientation.m. The output parameters of this function are three
objects (one per ProMP) that contain all the required information
to learn the ProMPs.

In this function, the wrench information are filtered using a
Matlab function called envelope.m15: for each trajectory traj
and its subMatrix M= F([1: t]):

1 [envHigh, envLow]= envelope(traj.M);
2 traj.M= (envHigh+ envLow)/2;

These three objects are saved in 'Data/realIcub.mat'. A
Matlab script called demo_plotProMPsIcub.m recovers these
data, using the function load('Data/realIcub.mat'). This
script follows the same organization as the ones we previously
explained in Sections 5 and 6. By launching this script, the recov-
ered data are plotted first.

Then, the ProMPs are computed and plotted, as presented in
Figure 11. In this figure, the distributions are visibly overlaid:

• during the whole trajectories duration for the wrench informa-
tion;

15 Information about this function can be found here: https://fr.mathworks.com/
help/signal/ref/envelope.html?requestedDomain=www.mathworks.com.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451821

https://fr.mathworks.com/help/signal/ref/envelope.html?requestedDomain=www.mathworks.com
https://fr.mathworks.com/help/signal/ref/envelope.html?requestedDomain=www.mathworks.com
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 10 | Top left: the iCub and the visualization of the three targets in its workspace, defining the three tasks A–B–C. Top right: Cartesian position information of
the demonstrated trajectories for the three tasks. Bottom left and right: wrench (force and moment) information of the demonstrated trajectories.

• during the 40% first samples of the trajectories for the Cartesian
position information.
After this learning step, the user chooses which ProMP to test.

Using a variable that represents the percentage of observed data
to be used for the inference, the script computes the number of
early observations no16 that will be measured by the robot. Using
this number, the robot models the time modulation parameter
α17 of each ProMP, as explained in Section 3.4. Using this model,
the time modulation of the test trajectory is estimated, and the
corresponding ProMP is identified.

Then, the inference of the trajectory’s target is performed.
Figure 12 represents the inference of the three tested trajectories
when wrench information is not used by the robot to infer the
trajectory. To realize this figure, with the comparison between
the predicted trajectory and the ground truth, we applied our
algorithm offline. In fact, it is not possible at time t to have the

16 no is not the same for each trajectory test, because it depends on the total duration
of the trajectory to be inferred.

17 Since the model uses the no parameter, its computation cannot be performed
before this step.

ground truth of the trajectory intended by the human from t+ 1
to tf: even if we would tell to the human in advance the goal that
he/she must reach for, the trajectory to reach that goal could vary.
So, for the purpose of these figures and comparisons with the
ground truth, we show here the offline evaluation: we select one
demonstrated task trajectory from the test set (not the training
set used to learn the ProMP) as ground truth, and imagine that
this is the intended trajectory. In Figure 12, the ground truth is
shown in black, whereas the portion of this trajectory that is fed to
the inference, and that corresponds to the “early observations,” is
representedwith bigger black circles.We can see that the inference
of the Cartesian position is correct, althoughwe can see an error of
about 1 s of the estimated duration time for the last trial. Also, the
wrench inference is not accurate.We can assume that it is: because
the robot infers the trajectory using only position information
without wrench information, or because the wrenches’ variation
is not correlated to the position variation. To improve this result,
we can make the inference using wrench in addition to Cartesian
position information, as shown in Figure 13. We can see in this
figure that the estimation of the trajectory’s duration is accurate.
The disadvantage is that the inference of the Cartesian position

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 451922

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 11 | The ProMPs learned by the robot from the demonstrations of Figure 10.

is less accurate because the posterior distribution computation
makes a trade-off between fitting Cartesian position and wrench
early observations. Moreover, to allow a correct inference using
wrench information, the noise expectation must be increased to
consider forces.18

To confirm these results, we analyzed the trajectory infer-
ence and α estimation considering different percentages of each
trajectory as observed data (30–90%). For each percentage, we
performed 20 tests, with and without force information.

InFigure 14, each box-plot represents errors for 20 tests. On the
top, the error criterion is the average distance between the inferred
trajectory and the real one. We can see that the inference of
Cartesian end-effector trajectory ismore accurate without wrench
information. On the bottom, the error criterion is the distance
between the estimated α and the real one. We can see that using
wrench information, the estimation of the α is more accurate.
Thus, these two graphs confirmwhat we assumed fromFigures 12
and 13.

Median, mean, and variance of the prediction errors, com-
puted with the normalized root-mean-square error (NRMSE), are
reported in Table S1 in Supplementary Material. The prediction
error for the time modulation is a scalar: |αprediction −αreal|. The
prediction error for the trajectory is computed by the NRMSE of
|Ξprediction −Ξreal|.

In future upgrades for this application, we will probably use
the wrench information only to estimate the time modulation
parameter α, to have both the best inference of the intended

18 In future versions, we will include the possibility to have different noise models

for the observations, e.g., we will have Σo
Ξ =

[
ΣX 0
0 ΣF

]
. We will therefore set a

bigger covariance for the wrench information than for the position information.

trajectory and the best estimation of the time modulation param-
eter to combine the benefits of inference with and without wrench
information.

Table S1 in Supplementary Material also reports the average
time for computing the prediction of both time modulation and
posterior distribution. The computation was performed in Mat-
lab, on a single core laptop (no parallelization). While the com-
putation time for the case “without wrenches” is fine for real-time
application, using the wrench information delays the prediction
and represents a limit for real-time applications if fast decisions
have to taken by the robot. Computation time will be improved in
the future works, with the implementation of the prediction in an
iterative way.

7.2. Collaborative Object Sorting
We realized another experiment with iCub, where the robot has to
sort some objects in different bins (see Figure S2 in Supplementary
Material). We have two main primitives: one for a bin located on
the left of the robot, and one for the bin to the front. Dropping the
object is done at different heights, with a different gesture that also
has a different orientation of the hand. For this reason, the ProMP
model consists of the Cartesian position of the hand Xt = [xt, yt,
zt]∈R3 and its orientation At ∈R4, expressed as a quaternion:

ξt =
[
Xt
At

]
= Φαt ω + ϵt.

As in the previous experiment, we first teach the robot the prim-
itives by kinesthetic teaching, with a dozen of demonstrations.
Thenwe start the robotmovement: the human operator physically
grabs the robot’s arm and start the movement toward one of the
bins. The robot’s skin is used twice. First, to detect the contact

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452023

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

A

B

C

FIGURE 12 | The prediction of the future trajectory from the learned ProMPs computed from the position information for the 3-targets dataset on the real iCub
(Figure 11) after 40% of observations.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452124

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 13 | The prediction of the future trajectory from the learned ProMPs computed from the position and wrench information for the 3-targets dataset on the real
iCub (Figure 11) after 40% of observations.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452225

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

FIGURE 14 | Trajectory prediction error (top) and time modulation estimation error (bottom) of the future trajectory with and without wrench information, for the
3-targets dataset on the real iCub (Figure 11) with respect to the number of observed data points.

when the human grabs the arm, which marks the beginning of
the observations. Second, when the human breaks the contact
with the arm, which marks the end of the observations. Using the
first portion of the observed movement, the robot recognizes the
current task that is being executed, predicts the future movement
that is intended by the human, and then executes it on its own.
In the video (see link in Section 8), we artificially introduced a
pause to let the operator “validate” the predicted trajectory, using
a visual feedback on the iCubGui. Figure S3 in Supplementary
Material shows one of the predictions made by the robot after the
human releases the arm. Of course in this case, we do not have
a “ground truth” for the predicted trajectory, only a validation of
the predicted trajectory by the operator.

8. VIDEOS

We recorded several videos that complement the tutorials. The
videos are presented in the github repository of our software:
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/Videos.

9. DISCUSSION

While we believe that our proposed method is principled and
has several advantages for predicting intention in human–robot
interaction, there are numerous improvements that can be done.
Some will be object of our future works.

9.1. Improving the Estimation of the Time
Modulation
Our experiments showed that estimating the time modulation
parameter α, determining the duration of the trajectory, greatly
improves the prediction of the trajectory in terms of difference
with the human intended trajectory (i.e., our ground truth). We
proposed four simple methods in Section 3.4, and in the iCub
experiment, we showed that the method that maps the time
modulation and the variation of the trajectory in the first no
observations provides a good estimate of the time modulation α
for our specific application. However, it is an ad hoc model that
cannot be generalized to all possible cases. Overall, the estimation
of the time modulation (or phase) can be improved. For example,

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452326

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/Videos
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/Videos
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

Maeda et al. (2016) used Dynamic Time Warping, while Ewerton
et al. (2015) proposed to improve the estimation by having local
estimations of the speed in the execution of the trajectory, to
comply with cases where the velocity of task trajectory may not
be constant throughout the task execution. In the future, we plan
to explore more solutions and integrate them into our software.

9.2. Improving Prediction
Another point that needs further investigation and improvement
is how to improve the prediction of the trajectories exploit-
ing different information. In our experiment with iCub, we
improved the estimation of the time modulation using position
and wrench information; however, we observed that the noisy
wrench information does not help in improving the prediction of
the position trajectory. One improvement is to certainly exploit
more information from the demonstrated trajectories, such as
estimating the different noise of every trajectory component and
exploiting this information to improve the prediction. Another
possible improvement would consist in using contextual infor-
mation about the task trajectories. Finally, it would be interesting
to try to identify automatically the characteristic such as velocity
profiles or accelerations, which are renown to play a key role
in attributing intentions to human movements. For example, in
goal-directed tasks such as reaching, the arm velocity profile, and
the hand configuration are cues that helps us detect intentions.
Extracting these cues automatically, leveraging the estimation of
the time modulation, would probably improve the prediction of
the future trajectory. This is a research topic on its own, outside
the scope of this article, with strong links to humanmotor control.

9.3. Continuous Prediction
In Section 3.5, we described how to compute the prediction of the
future trajectory after recognizing the current task. However, we
did not explore what happens if the task recognition is wrong: this
may happen, if there are two or more task with a similar trajectory
at the beginning (e.g., moving the object from the same initial
point toward one of four possible targets), or simply because there
were not enough observed points. So what happens if our task
recognition is wrong? How to re-decide on a previously identified
task? And how should the robot decide if its current prediction
is finally correct (in statistical terms)? While implementing a
continuous recognition and prediction is easywith our framework
(one has simply to do the estimation at each time step), providing
a generic answer to these question may not be straightforward.
Re-deciding about the current task implies also changing the
prediction of the future trajectory. If the decision does not come
with a confidence level greater than a desired value, then the robot
could face a stall: if asked to continue the movement but unsure
about the future trajectory, should it continue or stop? The choice
may be application dependent. We will address these issues and
the continuous prediction in future works.

9.4. Improving Computational Time
Finally, we plan to improve the computational time for the infer-
ence and the portability of our software by porting the entire
framework in C++.

9.5. Learning Tasks with Objects
In many collaborative scenarios, such as object carrying and
cooperative assembly, the physical interaction between the human
and the robot is mediated by objects. In these cases, if specific
manipulations must be done on the objects, our method still
applies, but not only on the robot. It must be adapted to the new
“augmented system” consisting of robot and object. Typically, we
could image a trajectory for some frame or variable or point of
interest for the object and learn the corresponding task. Since
ProMPs support multiplication and sequencing of primitives, we
could exploit the properties of the ProMPs to learn the joint
distribution of the robot task trajectories and the object task
trajectories.

10. CONCLUSION

In this article, we propose a method for predicting the intention
of a user physically interacting with the iCub in a collaborative
task.We formalize the intention prediction as predicting the target
and “future” intended trajectory from early observations of the
task trajectory, modeled by Probabilistic Movement Primitives
(ProMPs). We use ProMPs because they capture the variability
of the task, in the form of a distribution of trajectories coming
from several demonstrations of the task. From the information
provided by the ProMP, we are able to compute the future tra-
jectory by conditioning the ProMP to match the early observed
data points. Additional features of our method are the estimation
of the duration of the intended movement, the recognition of the
current task among the many known in advance, and multimodal
prediction.

Section 3 described the theoretical framework, whereas
Sections 4–7 presented the open-source software that provides the
implementation of the proposedmethod. The software is available
on github, and tutorials and videos are provided.

We used three examples of increasing complexity to show how
to use our method for predicting the intention of the human
in collaborative tasks, exploiting the different features. We pre-
sented experiments with both the real and the simulated iCub.
In our experiments, the robot learns a set of motion primi-
tives corresponding to different tasks, from several demonstra-
tions provided by a user. The resulting ProMPs are the prior
information that is later used to make inferences about human
intention. When the human starts a new collaborative task, the
robot uses the early observations to infer which task the human
is executing and predicts the trajectory that the human intends
to execute. When the human releases the robot, the predicted
trajectory is used by the robot to continue executing the task on
its own.

In Section 9, we discussed some current issues and challenges
for improving the proposed method and make it applicable to a
wider repertoire of collaborative human–robot scenarios. In our
future works, our priority would be in accelerating the time for
computing the inference and finding a principled way to do con-
tinuous estimation, by letting the robot re-decide continuously
about the current task and future trajectory.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452427

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

AUTHOR CONTRIBUTIONS

Designed study: OD, AP, FC, and SI. Wrote software: OD, ME,
AP, and SI. Wrote paper: OD, AP, ME, FC, JP, and SI.

ACKNOWLEDGMENTS

The authors wish to thank the IIT researchers of the CoDyCo
project for their support with iCub, Ugo Pattacini and Olivier
Rochel for their helpwith the software for theGeomagic, and Iñaki
Fernández Pérez for all his relevant feedback.

FUNDING

This studywas partially funded by the European projects CoDyCo
(no. 600716 ICT211.2.1) and AnDy (no. 731540 H2020-ICT-
2016-1) and the French CPER project SCIARAT.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at
http://journal.frontiersin.org/article/10.3389/frobt.2017.00045/
full#supplementary-material.

REFERENCES
Alami, R., Clodic, A., Montreuil, V., Sisbot, E. A., and Chatila, R. (2006). “Toward

human-aware robot task planning,” in AAAI Spring Symposium: To Boldly Go
Where No Human-Robot Team Has Gone Before, Beijing, 39–46.

Amor, H. B., Neumann, G., Kamthe, S., Kroemer, O., and Peters, J. (2014). “Interac-
tion primitives for human-robot cooperation tasks,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on (Hong Kong: IEEE), 2831–2837.

Baraglia, J., Cakmak, M., Nagai, Y., Rao, R., and Asada, M. (2016). “Initiative in
robot assistance during collaborative task execution,” in Human-Robot Interac-
tion (HRI), 2016 11th ACM/IEEE International Conference on (Christchurch:
IEEE), 67–74.

Billard, A., andMataric,M. J. (2001). Learning human armmovements by imitation:
evaluation of a biologically inspired connectionist architecture. Rob. Auton. Syst.
37, 145–160. doi:10.1016/S0921-8890(01)00155-5

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ: Springer-Verlag New York, Inc.

Busch, B., Grizou, J., Lopes, M., and Stulp, F. (2017). Learning legible motion from
human–robot interactions. Int. J. Soc. Robot. 1–15. doi:10.1007/s12369-017-
0400-4

Buxton, H. (2003). Learning and understanding dynamic scene activity: a review.
Image Vision Comput. 21, 125–136. doi:10.1016/S0262-8856(02)00127-0

Calinon, S. (2015). pbdlib-matlab. Available at: https://gitlab.idiap.ch/rli/
pbdlib-matlab/

Calinon, S. (2016). A tutorial on task-parameterized movement learning and
retrieval. Intell. Serv. Robot. 9, 1–29. doi:10.1007/s11370-015-0187-9

Calinon, S., Bruno, D., and Caldwell, D. G. (2014). “A task-parameterized proba-
bilistic model with minimal intervention control,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), Hong Kong, 3339–3344.

Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G., and Caldwell, D. G. (2012a).
Statistical Dynamical Systems for Skills Acquisition in Humanoids. Available at:
http://www.calinon.ch/showPubli.php?publi=3031

Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G., and Caldwell, D. G. (2012b).
“Statistical dynamical systems for skills acquisition in humanoids,” in Proc. IEEE
Intl Conf. on Humanoid Robots (Humanoids), Osaka, Japan, 323–329.

Carlson, T., andDemiris, Y. (2008). “Human-wheelchair collaboration through pre-
diction of intention and adaptive assistance,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on (Pasadena: IEEE), 3926–3931.

Caron, S., and Kheddar, A. (2016). “Multi-contact walking pattern generation based
on model preview control of 3d com accelerations,” in Humanoid Robots, 2016
IEEE-RAS International Conference on, Cancun.

Csibra, G., andGergely, G. (2007). ‘Obsessed with goals’: functions andmechanisms
of teleological interpretation of actions in humans. Acta Psychol. 124, 60–78.
doi:10.1016/j.actpsy.2006.09.007

Demiris, Y. (2007). Prediction of intent in robotics and multi-agent systems. Cogn.
Process. 8, 151–158. doi:10.1007/s10339-007-0168-9

Dermy, O. (2017). icubLearningTrajectories. Available at: https://github.com/
inria-larsen/icubLearningTrajectories

DeWolf, T. (2013). pydmps. Available at: https://github.com/studywolf/pydmps
Dragan, A., and Srinivasa, S. (2013). “Generating legible motion,” in Proceedings of

Robotics: Science and Systems, Berlin, Germany.
Dragan, A., and Srinivasa, S. (2014). Integrating human observer inferences into

robot motion planning. Auton. Robots 37, 351–368. doi:10.1007/s10514-014-
9408-x

Dumora, J., Geffard, F., Bidard, C., Aspragathos, N. A., and Fraisse, P. (2013).
“Robot assistance selection for large object manipulation with a human,” in
IEEE International Conference on Systems, Man, and Cybernetics, Manchester,
1828–1833.

Evrard, P., Gribovskaya, E., Calinon, S., Billard, A., and Kheddar, A. (2009). “Teach-
ing physical collaborative tasks: object-lifting case study with a humanoid,” in
Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Confer-
ence on (Paris: IEEE), 399–404.

Ewerton, M. (2016). Learning Motor Skills from Partially Observed Movements
Executed at Different Speeds. Available at: https://github.com/studywolf/pydmps

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., and Maeda,
G. (2015). “Learning multiple collaborative tasks with a mixture of interaction
primitives,” in Robotics and Automation (ICRA), 2015 IEEE International Con-
ference on (Seattle: IEEE), 1535–1542.

Ferrer, G., and Sanfeliu, A. (2014). Bayesian humanmotion intentionality prediction
in urban environments. Pattern Recognit. Lett. 44, 134–140. doi:10.1016/j.patrec.
2013.08.013

Fine, S., Singer, Y., and Tishby, N. (1998). The hierarchical hidden Markov
model: analysis and applications. Mach. Learn. 32, 41–62. doi:10.1023/A:
1007469218079

Fitts, P. M. (1992). The information capacity of the human motor system
in controlling the amplitude of movement. J. Exp. Psychol. Gen. 121, 262.
doi:10.1037/0096-3445.121.3.262

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., et al.
(2012). Force feedback exploiting tactile and proximal force/torque sensing.
Auton. Robots 33, 381–398. doi:10.1007/s10514-012-9291-2

Gribovskaya, E., Kheddar, A., and Billard, A. (2011). “Motion learning and adap-
tive impedance for robot control during physical interaction with humans,”
in Robotics and Automation (ICRA), 2011 IEEE International Conference on
(Shanghai: IEEE), 4326–4332.

Hersch, M., Guenter, F., Calinon, S., and Billard. (2008). Dynamical System Modu-
lation for Robot Adaptive Learning via Kinesthetic Demonstrations. Available at:
http://lasa.epfl.ch/sourcecode/counter.php?ID=11&index=1

Hoffman, G. (2010). “Anticipation in human-robot interaction,” in AAAI Spring
Symposium: It’s All in the Timing, Palo Alto, CA.

Huang, S. H., Held, D., Abbeel, P., and Dragan, A. D. (2017). Enabling robots to
communicate their objectives. CoRR. abs/1702.03465. Available at: http://arxiv.
org/abs/1702.03465

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dynam-
ical movement primitives: learning attractormodels formotor behaviors.Neural
Comput. 25, 328–373. doi:10.1162/NECO_a_00393

Ivaldi, S., Anzalone, S., Rousseau, W., Sigaud, O., and Chetouani, M. (2014a).
Robot initiative in a team learning task increases the rhythm of interaction
but not the perceived engagement. Front. Neurorobot. 8:5. doi:10.3389/fnbot.
2014.00005

Ivaldi, S., Nguyen, S. M., Lyubova, N., Droniou, A., Padois, V., Filliat, D., et al.
(2014b). Object learning through active exploration. IEEE Trans. Auton. Ment.
Dev. 6, 56–72. doi:10.1109/TAMD.2013.2280614

Ivaldi, S., Fumagalli, M., Nori, F., Baglietto, M., Metta, G., and Sandini, G.
(2010). “Approximate optimal control for reaching and trajectory planning in
a humanoid robot,” in Proc. of the 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems – IROS, Taipei, Taiwan, 1290–1296.

Ivaldi, S., Fumagalli, M., Randazzo, M., Nori, F., Metta, G., and Sandini, G. (2011).
“Computing robot internal/external wrenches by means of inertial, tactile and

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452528

http://journal.frontiersin.org/article/10.3389/frobt.2017.00045/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/frobt.2017.00045/full#supplementary-material
https://doi.org/10.1016/S0921-8890(01)00155-5
https://doi.org/10.1007/s12369-017-0400-4
https://doi.org/10.1007/s12369-017-0400-4
https://doi.org/10.1016/S0262-8856(02)00127-0
https://gitlab.idiap.ch/rli/pbdlib-matlab/
https://gitlab.idiap.ch/rli/pbdlib-matlab/
https://doi.org/10.1007/s11370-015-0187-9
http://www.calinon.ch/showPubli.php?publi=3031
https://doi.org/10.1016/j.actpsy.2006.09.007
https://doi.org/10.1007/s10339-007-0168-9
https://github.com/inria-larsen/icubLearningTrajectories
https://github.com/inria-larsen/icubLearningTrajectories
https://github.com/studywolf/pydmps
https://doi.org/10.1007/s10514-014-9408-x
https://doi.org/10.1007/s10514-014-9408-x
https://github.com/studywolf/pydmps
https://doi.org/10.1016/j.patrec.2013.08.013
https://doi.org/10.1016/j.patrec.2013.08.013
https://doi.org/10.1023/A:1007469218079
https://doi.org/10.1023/A:1007469218079
https://doi.org/10.1037/0096-3445.121.3.262
https://doi.org/10.1007/s10514-012-9291-2
http://lasa.epfl.ch/sourcecode/counter.php?ID=11&index=1
http://arxiv.org/abs/1702.03465
http://arxiv.org/abs/1702.03465
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.3389/fnbot.2014.00005
https://doi.org/10.3389/fnbot.2014.00005
https://doi.org/10.1109/TAMD.2013.2280614
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

f/t sensors: theory and implementation on the icub,” in Humanoid Robots
(Humanoids), 2011 11th IEEE-RAS International Conference on (Bled: IEEE),
521–528.

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., and Zibetti, E. (2017).
Towards engagement models that consider individual factors in HRI: on the
relation of extroversion and negative attitude towards robots to gaze and speech
during a human-robot assembly task. Int. J. Soc. Robot. 9, 63–86. doi:10.1007/
s12369-016-0357-8

Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., et al. (2017).
Affordances in psychology, neuroscience and robotics: a survey. IEEE Trans.
Cognit. Dev. Syst. 99, 1. doi:10.1109/TCDS.2016.2594134

Jarrassé, N., Paik, J., Pasqui, V., and Morel, G. (2008). “How can human motion
prediction increase transparency?,” in Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on (Pasadena, CA: IEEE), 2134–2139.

Keogh, E. (2002). “Exact indexing of dynamic time warping,” in Proceedings of the
28th International Conference on Very Large Data Bases (Hong Kong: VLDB
Endowment), 406–417.

Khansari, M. (2011). Dynamical Systems Approach to Learn Robot Motions. Avail-
able at: https://bitbucket.org/khansari/seds

Khansari-Zadeh, S. M., and Billard, A. (2011). Learning stable nonlinear dynam-
ical systems with gaussian mixture models. IEEE Trans. Robot. 27, 943–957.
doi:10.1109/TRO.2011.2159412

Khansari-Zadeh, S. M., and Billard, A. (2012). A dynamical system approach to
realtime obstacle avoidance. Auton. Robots 32, 433–454. doi:10.1007/s10514-
012-9287-y

Kim, J., Banks, C. J., and Shah, J. A. (2017). “Collaborative planning with encoding
of users’ high-level strategies,” in AAAI Conference on Artificial Intelligence
(AAAI-17), San Francisco, CA.

Langolf, G. D., Chaffin, D. B., and Foulke, J. A. (1976). An investigation of fitts?
Law using a wide range of movement amplitudes. J. Mot. Behav. 8, 113–128.
doi:10.1080/00222895.1976.10735061

Lober, R. (2014). Stochastic Machine Learning Toolbox. Available at: https://github.
com/rlober/smlt

Lober, R., Padois, V., and Sigaud, O. (2014). “Multiple task optimization using
dynamical movement primitives for whole-body reactive control,” inHumanoid
Robots (Humanoids), 2014 14th IEEE-RAS International Conference on (Madrid:
IEEE), 193–198.

Maeda, G., Ewerton, M., Lioutikov, R., Ben Amor, H., Peters, J., and Neumann,
G. (2014). “Learning interaction for collaborative tasks with probabilistic move-
ment primitives,” inHumanoid Robots (Humanoids), 2014 14th IEEE-RAS Inter-
national Conference on (Madrid: IEEE), 527–534.

Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., and Peters,
J. (2016). “Probabilistic movement primitives for coordination of multiple
human–robot collaborative tasks,” in Autonomous Robots, 1–20.

Meier, F., and Schaal, S. (2016). A probabilistic representation for dynamic move-
ment primitives. CoRR. abs/1612.05932. Available at: http://arxiv.org/abs/1612.
05932

Micha, H., and Aude, B. (2008). Dynamical system modulation for robot learning
via kinesthetic demonstrations. IEEE Trans. Robot. 24, 1463–1467. doi:10.1109/
TRO.2008.2006703

Nguyen, N. T., Phung, D. Q., Venkatesh, S., and Bui, H. (2005). “Learning and
detecting activities from movement trajectories using the hierarchical hidden
Markov model,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, Vol. 2 (San Diego, CA: IEEE),
955–960.

Palinko, O., Sciutti, A., Patané, L., Rea, F., Nori, F., and Sandini, G. (2014). “Commu-
nicative lifting actions in human-humanoid interaction,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on (Madrid: IEEE),
1116–1121.

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013a). “Probabilistic
movement primitives,” in Advances in Neural Information Processing Systems,
Stateline, NV, 2616–2624.

Paraschos, A., Neumann, G., and Peters, J. (2013b). “A probabilistic approach to
robot trajectory generation,” inHumanoid Robots (Humanoids), 2013 13th IEEE-
RAS International Conference on (Atlanta, GA: IEEE), 477–483.

Paraschos, A., Rueckert, E., Peters, J., and Neumann, G. (2015). “Model-free prob-
abilistic movement primitives for physical interaction,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on (Hamburg: IEEE),
2860–2866.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An experi-
mental evaluation of a novel minimum-jerk cartesian controller for humanoid
robots,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on (Taipei: IEEE), 1668–1674.

Peters, J., Lee, D. D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., and Schaal, S.
(2016). “Robot learning,” in Springer Handbook of Robotics, 357–398.

Ren, H., and Xu, G. (2002). “Human action recognition with primitive-based
coupled-HMM,” in Pattern Recognition, 2002. Proceedings. 16th International
Conference on, Vol. 2 (Quebec: IEEE), 494–498.

Rozo Castañeda, L., Calinon, S., Caldwell, D., Jimenez Schlegl, P., and Torras, C.
(2013). “Learning collaborative impedance-based robot behaviors,” in Proceed-
ings of the Twenty-Seventh AAAI Conference onArtificial Intelligence, 1422–1428.

Sahin, E., Çakmak, M., Dogar, M. R., Ugur, E., and Üçoluk, G. (2007). To afford or
not to afford: a new formalization of affordances toward affordance-based robot
control. Adapt. Behav. 15, 447–472. doi:10.1177/1059712307084689

Sato, T., Nishida, Y., Ichikawa, J., Hatamura, Y., and Mizoguchi, H. (1994). “Active
understanding of human intention by a robot through monitoring of human
behavior,” in Proceedings of the IEEE/RSJ/GI International Conference on Intelli-
gent Robots and Systems, Vol. 1, Munich, 405–414.

Schaal, S. (2006). “Dynamic movement primitives: a framework for motor control
in humans and humanoid robotics,” inAdaptiveMotion of Animals andMachines
Springer, 261–280.

Sciutti, A., Bisio, A., Nori, F., Metta, G., Fadiga, L., and Sandini, G. (2013). Robots
can be perceived as goal-oriented agents. Interact. Stud. 14, 329–350. doi:10.
1075/is.14.3.02sci

Shah, J., Wiken, J., Williams, B., and Breazeal, C. (2011). “Improved human-robot
team performance using chaski, a human-inspired plan execution system,” in
Proceedings of the 6th International Conference on Human-Robot Interaction
(Lausanne: ACM), 29–36.

Silva, D. F., and Batista, G. E. (2016). “Speeding up all-pairwise dynamic time
warping matrix calculation,” in Proceedings of the 2016 SIAM International
Conference on Data Mining (Miami, FL: SIAM), 837–845.

Soechting, J. (1984). Effect of target size on spatial and temporal characteristics
of a pointing movement in man. Exp. Brain Res. 54, 121–132. doi:10.1007/
BF00235824

Soh, H., and Demiris, Y. (2015). Learning assistance by demonstration: smart
mobility with shared control and paired haptic controllers. J. Hum. Robot
Interact. 4, 76–100. doi:10.5898/JHRI.4.3.Soh

Stulp, F. (2014). DmpBbo – a c++ Library for Black-Box Optimization of Dynamical
Movement Primitives. Available at: https://github.com/stulp/dmpbbo

Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O. (2013). “Learning compact
parameterized skills with a single regression,” in Proc. IEEE-RAS International
Conference on Humanoid RObots – HUMANOIDS, Atlanta, GA, 1–7.

Thill, S., and Ziemke, T. (2017). “The role of intention in human-robot interaction,”
in Proceedings of the Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’17 (New York, NY, USA: ACM), 427–428.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2005). “Gaussian process dynamical
models,” in NIPS, Vol. 18, Vancouver, 3.

Wang, Z., Deisenroth, M. P., Amor, H. B., Vogt, D., Schölkopf, B., and Peters, J.
(2012). “Probabilistic modeling of human movements for intention inference,”
in Robotics: Science and Systems (Sydney, NSW: Citeseer).

Wang, Z., Mülling, K., Deisenroth, M. P., Amor, H. B., Vogt, D., Schölkopf, B., et al.
(2013). Probabilistic movement modeling for intention inference in human-
robot interaction. Int. J. Robot. Res. 32, 841–858. doi:10.1177/0278364913478447

Zube, A., Hofmann, J., and Frese, C. (2016). “Model predictive contact control
for human-robot interaction,” in Proceedings of ISR 2016: 47st International
Symposium on Robotics, Munich, 1–7.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Dermy, Paraschos, Ewerton, Peters, Charpillet and Ivaldi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452629

https://doi.org/10.1007/s12369-016-0357-8
https://doi.org/10.1007/s12369-016-0357-8
https://doi.org/10.1109/TCDS.2016.2594134
https://bitbucket.org/khansari/seds
https://doi.org/10.1109/TRO.2011.2159412
https://doi.org/10.1007/s10514-012-9287-y
https://doi.org/10.1007/s10514-012-9287-y
https://doi.org/10.1080/00222895.1976.10735061
https://github.com/rlober/smlt
https://github.com/rlober/smlt
http://arxiv.org/abs/1612.05932
http://arxiv.org/abs/1612.05932
https://doi.org/10.1109/TRO.2008.2006703
https://doi.org/10.1109/TRO.2008.2006703
https://doi.org/10.1177/1059712307084689
https://doi.org/10.1075/is.14.3.02sci
https://doi.org/10.1075/is.14.3.02sci
https://doi.org/10.1007/BF00235824
https://doi.org/10.1007/BF00235824
https://doi.org/10.5898/JHRI.4.3.Soh
https://github.com/stulp/dmpbbo
https://doi.org/10.1177/0278364913478447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Dermy et al. Prediction of Intention during Interaction with iCub

APPENDIX

A. Detail of the Inference Formula
In this Appendix, we explain how to obtain the inference formulae
used in our software. First, let us recall the Marginal and Condi-
tional Gaussians laws.19 Given a marginal Gaussian distribution
for x and a Gaussian distribution for y given x in the following
form:

p(x) = N
(
x|µ,∆−1

)
p(y|x) = N

(
Ax + b, L−1

)
, (A1)

the marginal distribution of y and the conditional distribution of
x given y are given by the following equations:

p(y) = N
(
y|Aµ+ b, L−1 + A∆−1A⊤

)
, (A2)

p(x|y) = N
(
x|ΣA⊤L(y − b) + ∆µ,Σ

)
, (A3)

where
Σ = (∆ + ATLA)

−1
.

We computed the parameter’s marginal Gaussian distribution
from the set of observed movements:

p(ω) ∼ N (µω,Σω), (A4)

19 From the book (Bishop, 2006).

From the model Ξt = Φ[1:tf]ω + ϵΞ, we have the conditional
Gaussian distribution for Ξ given ω:

p(Ξ|ω) = N
(
Ξ|Φ[1:tf]ω,ΣΞ

)
. (A5)

Then, using equation (A2) we have the following:

p(Ξ) = N
(
Ξ|Φ[1:tf]µω,ΣΞ + Φ[1:tf]ΣωΦ⊤

[1:tf]

)
. (A6)

that is the prior distribution of the ProMP.
Let Ξo = [ξo(1), . . . , ξo(no)] be the first no observations of the

trajectory to predict with the first no elements corresponding to
the early observations.

Let Ξ̂ = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)] be the whole
trajectory we have to predict. We can then compute the posterior
distribution of the ProMP by using the conditional Gaussians
equation (A3):

p(ω|Ξo) = N
(
ω|µω + K(Ξo − Φ[1:no]µω),Σω

−KΦ[1:no]Σω

)
(A7)

with K = ΣωΦ⊤
[1:no]

(
ΣΞ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (A8)

Thus, we have the posterior distribution of the ProMP
p(ω|Ξo) = N (ω|µ̂ω, Σ̂ω) with:

µ̂ω = µω + K
(
Ξo − Φ[1:no]µω

)
Σ̂ω = Σω − K

(
Φ[1:no]Σω

)
K = ΣωΦ⊤

[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
.

(A9)

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 452730

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

November 2017 | Volume 4 | Article 591

Code
published: 15 November 2017
doi: 10.3389/frobt.2017.00059

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Maxime Petit,

Imperial College London,
United Kingdom

Reviewed by:
Tobias Fischer,

Imperial College London,
United Kingdom

Uriel Martinez-Hernandez,
University of Leeds,

United Kingdom
Ingo Keller,

Heriot-Watt University,
United Kingdom

*Correspondence:
Giulia Vezzani

giulia.vezzani@iit.it

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 28 July 2017
Accepted: 30 October 2017

Published: 15 November 2017

Citation:
Vezzani G and Natale L (2017)

Real-time Pipeline for Object
Modeling and Grasping Pose

Selection via Superquadric Functions.
Front. Robot. AI 4:59.

doi: 10.3389/frobt.2017.00059

Real-time Pipeline for object
Modeling and Grasping Pose
Selection via Superquadric Functions
Giulia Vezzani1,2* and Lorenzo Natale1

1 iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy, 2 University of Genova, Genova, Italy

This work provides a novel real-time pipeline for modeling and grasping of unknown
objects with a humanoid robot. Such a problem is of great interest for the robotic
community, since conventional approaches fail when the shape, dimension, or pose of
the objects are missing. Our approach reconstructs in real-time a model for the object
under consideration and represents the robot hand both with proper and mathematically
usable models, i.e., superquadric functions. The volume graspable by the hand is repre-
sented by an ellipsoid and is defined a priori, because the shape of the hand is known in
advance. The superquadric representing the object is obtained in real-time from partial
vision information instead, e.g., one stereo view of the object under consideration, and
provides an approximated 3D full model. The optimization problem we formulate for the
grasping pose computation is solved online by using the Ipopt software package and,
thus, does not require off-line computation or learning. Even though our approach is for
a generic humanoid robot, we developed a complete software architecture for executing
this approach on the iCub humanoid robot. Together with that, we also provide a tutorial
on how to use this framework. We believe that our work, together with the available
code, is of a strong utility for the iCub community for three main reasons: object mod-
eling and grasping are relevant problems for the robotic community, our code can be
easily applied on every iCub, and the modular structure of our framework easily allows
extensions and communications with external code.

Keywords: grasping, object modeling, real-time optimization, C++, superquadric functions

1. INTRodUCTIoN

Industrial robotics shows how high performance in manipulation can be achieved if a very accurate
knowledge of the environment and the objects is provided. On the contrary, grasping of unknown
objects or whose pose is uncertain is still an open problem. In this work, we present a novel frame-
work for modeling and grasping unknown objects with the iCub humanoid robot.

The iCub humanoid robot is provided with two 7DOF arms, 5 fingers human-like hands, whose
fingertips are covered by tactile sensors and two cameras, as described in Metta et al. (2010).
Therefore, it turns out to be a suitable platform for investigating objects perception and grasping
problem: the stereo vision system and the tactile sensors can be exploited together to get proper
information for modeling and grasping unknown objects. The method and the code, we propose in
this work, consist of reconstructing an object model through the stereo vision system of the robot
and using this information to compute a suitable grasping pose. Once the robot reaches the desired
grasping pose on the object surface, the tactile response of the fingertips is used to achieve a stable
grasp for lifting the object.

31

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00059&domain=pdf&date_stamp=2017-11-15
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00059
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:giulia.vezzani@iit.it
https://doi.org/10.3389/frobt.2017.00059
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://loop.frontiersin.org/people/386790
http://loop.frontiersin.org/people/36032

2

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

The iCub community put a great effort into the development
of a sharable and reusable code. With this work, we want to
contribute in this direction, detailing the code we designed for
implementing our grasping approach for a possible user inter-
ested in executing our technique on the robot.

2. ModeLING ANd GRASPING VIA
SUPeRQUAdRIC ModeLS

The superquadric modeling and grasping framework we make
use of is based on the idea that low-dimensional, compact, math-
ematical representation of objects can provide computational and
theoretical advantages in hard problems tackled in robotics, such
as trajectory planning for exploration, grasping and approaching
toward objects. This takes inspiration from theories conceived
during the 90s and 2000s (Jaklic et al., 2013) where superquadric
functions were proposed as a mathematical and low-dimensional
model for representing objects.

In Vezzani et al. (2017), we proposed a novel approach that
solves the grasping problem by modeling the object and the
volume graspable by the hand with superquadric functions. The
latter is represented by an ellipsoid and is defined a priori, because
the shape of the hand is known in advance. The superquadric rep-
resenting the object is obtained in real-time from partial vision
information instead, e.g., one stereo view of the object under
consideration, and provides an approximated 3D full model. Both
the modeling and the grasping problem are cast into an optimiza-
tion framework and solved in real-time with the software package
Ipopt (Wächter and Biegler, 2006).

In this article, we do not go into the mathematical details
(extensively reported in Vezzani et al. (2017)) whereas we focus
on the description of the code designed for using the approach
on the iCub, since we believe it to be useful for any user interested
in object modeling and grasping tasks. A brief mathematical
description of the methodologies is reported in the README.
md files of the Github repositories.1

3. Code STRUCTURe

We designed two modules, namely, superquadric-model and
superquadric-grasp, which implement, respectively, the modeling
and the grasping approached described in Vezzani et al. (2017).

Our leading idea is to develop a self-contained code that pro-
vides query services to the user. In this respect, our code handles
only the information strictly necessary for the superquadric
modeling and grasping approach and minimizes the dependen-
cies from external modules. The user is asked to write a wrapper
code that communicates with the two modules and makes them
properly interact. In this respect, we provide a tutorial code,2
implementing a possible use case of our modules, that can be
adapted by the user to fit in his own pipeline (see Section 3.3).

In the next paragraphs, we first describe the implementation of
the superquadric-model and superquadric-grasp modules, which

1 https://github.com/robotology/superquadric-model, https://github.com/robotology/
superquadric-grasp.
2 https://github.com/robotology/superquadric-grasp-example.

is based on the Yarp middleware (Metta et al., 2006). Then, we
outline a possible use case implementing a complete pipeline for
object modeling and grasping.

3.1. Superquadric-Model
The superquadric-model module computes the superquadric
function best representing the object of interest given a partial
3D point cloud of the object.

The module, whose structure is outlined in Figure 1, consists
of the SuperqModule class, derived from the YARP RFModule
class. The SuperqModule launches following two separate YARP
Rate Threads:

•	 the SuperqComputation class, which manages the superquadric
computation;

•	 the SuperqVisualization class, which can be enabled to show
the estimated superquadric or the object 3D points overlapped
on the camera image.

The SuperqModule also provides some Thrift IDL services3
suitable for getting information on the internal state of the
module and setting the thread parameters on the fly. Thrift is a
software framework for scalable cross-language development,
which allows to build services working efficiently with different
programming languages.

While there are two threads to decouple the functionalities of
computation and visualization, the threads share some variables
(in particular the computed superquadric) to increase their speed.

3.1.1. SuperqComputation
The SuperqComputation thread includes the following steps:

•	 Once the object point cloud is provided (see Section 3.3 for
a detailed description of how extract the object point cloud),
the superquadric is estimated by using Ipopt (Wächter and
Biegler, 2006), a C++ software package for large-scale nonlin-
ear optimization. The user can formulate its own optimization
problem with the Ipopt C++ interface4 and, then, solve it
through the Ipopt solver.

•	 A median filter with an adaptive window of width m can be
enabled to stabilize the estimated superquadric over the time.
Even if the object is not supposed to move during a grasping
task, it may happen that the user, or anyone interacting with the
robot, moves the object in a different location. In this case, the
superquadric modeler should be able to track the object and the
estimated superquadric should not be affected by previous esti-
mations in different poses. For this reason, the window width of
the median filter changes according to the object velocity. If the
object location changes (i.e., its velocity increases), the window
width becomes smaller. On the contrary, if the object is not
moved, the window width can be increased. In this way, when
the object pose is constant, its superquadric estimation is more
stable and accurate, while it is not affected by past estimations
if the object pose changes. The median filter and the object
velocity estimation are achieved by using, respectively, the iCub
MedianFilter Class and the iCub AWLinEstimator Class.

3 https://thrift.apache.org/docs/idl.
4 https://www.coin-or.org/Ipopt/documentation/node23.html.

32

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md
http://README.md
https://github.com/robotology/superquadric-model
https://github.com/robotology/
https://github.com/robotology/superquadric-grasp-example
https://thrift.apache.org/docs/idl
https://www.coin-or.org/Ipopt/documentation/node23.html

FIGURe 1 | Superquadric-model code structure. The class SuperqModule, derived from the YARP RFModule class, launches two threads, respectively for
superquadric computation and visualization. The class provides some thrift services to the user for interacting with the module. More detail on the user box is
provided in Section 3.3 and in Figure 2.

3

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

•	 If prior information is available on the object shape (e.g., given
by a classifier or a vision recognition system), the module can
use it to speed up the superquadric estimation. Particularly,
if the object is labeled as cylinder, box or sphere, specific con-
straints can be used for improving the accuracy and reducing
the execution time of the optimization problem.

The user can communicate with the SuperqComputation
thread, through the SuperqModule, in the two different modes:

•	 In streaming mode—the 3D point cloud of the object should
be sent to the module through a YARP Buffered port as a YARP
Property. The user can access the current estimated super-
quadric through a dedicated YARP Buffered port as a YARP
Property, where the main components of the superquadric are
grouped as: dimensions, exponents, center, and orientation.

•	 In one-shot mode—the user can ask the module to compute
the object superquadric by sending a single point cloud through
a YARP RpcClient Port and getting a YARP Property including
the estimated superquadric parameters as reply. In case the user
asks for the superquadric filtered by the median filter, he should
send a set of point clouds of the object in the same pose.

The superquadric computation, together with the super-
quadric filtering process, takes 0.1 s in average on Intel®Core™
i7-4710MQ Processor @2.50 GHz. This values is compatible with
our real-time requirements.

3.1.2. SuperqVisualization
The visualization thread overlaps the estimated superquadric or
the 3D points used by the optimizer on the camera image, for

real-time visual inspection by the user (see Figure 3 (4)). The
average visualization time is equal to 0.01 s and can be enable or
disabled by the user while the SuperqModule is running.

3.2. Superquadric-Grasping
The superquadric-grasp module implements the approach pro-
posed in Vezzani et al. (2017) for the computation of grasping
poses by using a superquadric modeling the object.

The superquadric-grasp module consists of the GraspModule
class, derived from the YARP RFModule class. The GraspModule
splits pose computation and visualization and grasp execution in
three different classes:

•	 GraspComputation class, computing the pose for grasping the
object;

•	 GraspVisualization class, showing the object model and the
main information about the computed poses;

•	 GraspExecution class, which allows executing the grasping task
once the pose is computed and one of the robot hand is selected.

As for the superquadric-model module, the superquadric-grasp
implementation provides several Thrfit IDL services to the user
to interact with the module and for getting information on the
state of the module. The superquadric-grasp module structure is
similar to the superquadric-model one, shown in Figure 1.

3.2.1. GraspComputation
This class handles the pose candidates’ computation:

•	 Given the superquadric modeling the object, received as a
YARP Property (see 3.1.1), the grasping poses for one or both

33

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

the hands (according to the user query) are computed together
with a suitable trajectory by using the method proposed in
Vezzani et al. (2017). The optimization problem is formulated
and solved through the Ipopt C++ interface.

•	 The user can exploit some prior information for adapting
the grasp computation to the desired scenario. In particular,
the user can provide the module the height of the support on
which the object is located (i.e., a table) to prevent the robot
hand from hitting it. In addition, the constraints about the
final hand pose can be modified according to the experimental
scenario. For instance, the user can define the robot workspace
by simply varying the variable upper and lower bounds of the
optimization problem from the configuration files.

The pose computation process takes 2.0 s in average,
which is consistent with the time requirements of a grasp task
execution.

3.2.2. GraspExecution
The GraspExecution class controls the arm movements to accom-
plish the grasping task. In particular:

•	 The approaching step, i.e., the pose reaching through the
trajectory waypoints, is executed through the YARP Cartesian
Interface (Pattacini et al., 2010);

•	 Once the final pose is reached, the grasp is executed by using
a precision grasp method described in Regoli et al. (2016) and
available in the Tactile Control library.5 The hand fingers close
until the tactile sensors on the fingertips detect contact. Then,
each finger is controlled to find a stable grasp for the object.
Alternatively, the grasp can be performed by simply closing the
fingers until a minimum pressure of the fingertips is measured.
However, such an approach does not guarantee stability while
lifting the object.

3.2.3. GraspVisualization
The visualization thread overlaps the computed poses and the
received object superquadric on the camera image, for real-time
visual inspection by the user (see Figure 3 (5)). Some additional
information, such as the volume graspable by the hand and the
trajectory waypoints can be shown at the same time.

3.2.4. Communication with the Module
Unlike the superquadric-model framework, the user can com-
municate with the GraspModule only in one-shot mode. In
particular, the user can query the module to:

•	 Compute the grasping poses and approaching trajectory, pro-
viding to the module the estimated superquadric of the object
as a Yarp Property (as described in 3.1.1) and selecting one or
both the hands. The solutions are given back to the user as a
Yarp Property.

•	 Ask the robot to reach the final pose and grasp the object by
selecting one robot hand. In the current code implementation,

5 https://github.com/robotology/tactile-control.

the robot performs a simple lifting test to check the stability of
the grasp.

The additional thrift services allows setting on the fly param-
eters for grasp computation, visualization, and execution.

3.3. How to Use the Superquadric
Framework
To use our grasping approach, the user is supposed to design
a wrapper code to combine together the outcomes of the
superquadric-model and superquadric-grasp modules. In addi-
tion, the implementation of a complete modeling and grasping
pipeline requires the use of external modules for point cloud
computation. We provide a tutorial code, which takes advantage
of modules developed by the iCub community to achieve the
modeling and grasping task. Hereafter, we report the main steps
of the complete pipeline. The entire commented code is available
on Github,6 together with a detail description on how to run the
code in the README.md file.

 1. The object is labeled with a name through a recognition
system.7 The object label, together with information on its
2D bounding box, are stored by the Object Property Collector8
(Moulin-Frier et al., 2017). The wrapper code is given the
object name by the user (through a RpcPort) and uses it for
asking the object property collector for the relative 2D bound-
ing box.

 2. The 2D blob of the object is computed by the lbpExtract
module, once it is provided with the bounding box informa-
tion. This uses Local Binary Pattern (LBP) (Ojala et al., 1996)
to analyze the texture of what is in the robot view (a table in
our experimental scenario). This texture is used for getting a
general blob information both as an image, containing general
white blobs of where the objects are, and as a Yarp Bottle con-
taining lists of bounding box points. Then, the general blob
information allow using grabCut algorithm (Rother et al.,
2004) to properly segment all the objects on the table.

 3. Given the 2D blob, the wrapper code reconstructs the 3D
point cloud by querying the Structure from Motion module
(Fanello et al., 2014). This module uses a complete Structure
From Motion (SFM) pipeline for the computation of the
extrinsics parameters between two different views. These
parameters are then used to rectify the images and to compute
a depth map.

 4. Then, the wrapper code asks the superquadric-model to
estimate the superquadric modeling the object by sending the
acquired point cloud to the module.

Bottle cmd, superq_bottle;
//Fill the Bottle for querying
superquadric-model.

6 https://github.com/robotology/superquadric-grasp-example.
7 https://github.com/robotology/iol/tree/master/src/himrepClassifier.
8 https://github.com/robotology/icub-main/tree/master/src/modules/
objectsPropertiesCollector.

34

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/tactile-control
http://README.md
https://github.com/robotology/superquadric-grasp-example
https://github.com/robotology/iol/tree/master/src/himrepClassifier
https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector
https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector

FIGURe 2 | Modules communication for the implementation of the modeling and grasping pipeline. The wrapper code manages the interaction between external
modules and the superquadric-model and superquadric-grasp frameworks. Pipeline steps enumerated as in Section 3: (1) The wrapper code asks the object
property collector for the bounding box information of the object. (2) Given that, lbpExtract module provides the 2D blob of the object. (3) The wrapper code sends
the 2D blob of the object to the Structure From Motion module for getting the relative 3D point cloud. (4) The 3D point cloud is then sent to the superquadric-model
for computing the superquadric modeling the object. (5) The wrapper code sends the estimated superquadric to the superquadric-grasp module, which computes
suitable poses. (6) Finally, the superquadric-grasp is asked to perform the grasping task.

5

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

cmd.addString(“get_superq”);
Bottle &bottle_point = cmd.addList();
for (size_t i = 0; i < points.size(); i++)
{
Bottle &in = bottle_point.addList();
in.addDouble(points[i][0]);
in.addDouble(points[i][1]);
in.addDouble(points[i][2]);

}
superqRpc.write(cmd, superq_bottle);
//Then, extract the estimated superqua-
dric from the Bottle superq_bottle.

 5. Once the superquadric is estimated, the user code asks the
superquadric-grasp module to compute pose candidates for
grasping the object.

Bottle cmd, reply;
//Fill the Bottle for querying
superquadric-grasp.
cmd.addString(“get_grasping_pose”);
//hand_for_computation can be “right“,

“left” or “both”
cmd.addString(hand_for_computation);
graspRpc.write(cmd, reply);

//Then, extract the grasping pose
candidate from the Bottle reply.

 6. Finally, the user can ask the superquadric-grasp to perform the
grasping task.

Bottle cmd, reply;
//Fill the Bottle for moving the arm.
cmd.addString(“move”);
cmd.addString(hand_for_moving);
graspRpc.write(cmd, reply);
//The grasp is executed.

Figure 2 outlines the structure of the entire pipeline, fol-
lowing the steps described in this section. In Figure 3, we
show some typical outcomes of all the steps described above.
In addition, in the README.md files of the superquadric-
model and superquadric-grasp repository, we provide two
videos of the execution of the modeling and the grasping
pipeline.9

9 superquadric-model demo: https://www.youtube.com/watch?v=MViX4Ppo4WQ&
feature=youtube. superquadric-grasp demo: https://www.youtube.com/
watch?v=eGZO8peAVao.

35

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md
https://www.youtube.com/watch?v = MViX4Ppo4WQ&feature = youtube
https://www.youtube.com/watch?v = MViX4Ppo4WQ&feature = youtube
https://www.youtube.com/watch?v = eGZO8peAVao
https://www.youtube.com/watch?v = eGZO8peAVao

6

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

4. KNoWN ISSUeS

In this section, we report the limitations of our approach, together
with possible solutions for facing them.

•	 Our approach is currently an open-loop approach. Once the
object model and the grasping pose are computed, the robot
reaches for the final pose without checking if the object pose
changes. However, we could monitor the object pose, by
estimating only the pose of the reconstructed superquadric -
leaving its shape unchanged - with new point clouds while the
robot is moving and until the object is in the robot field of view.
This is a viable solution since our modeling approach is com-
patible with real-time requirements (as shown in Section 3.1).

•	 A further limitation caused by the open-loop nature of our
approach is the missing compensation of errors between the
robot stereo vision and system. To properly run the grasping
pipeline, the user is required to properly calibrate the vision
and the robot kinematics. In case errors between the two are
still a problem for grasping the object, empirical offsets can
be added for compensating for the errors. More information
are provided in the README.md of the superquadric-grasp
repository.

•	 A quite strong limitation of our approach is that it cannot
automatically distinguish between good and wrong poses. For
this reason, the user need to supervise the entire process and
ask for a new model and pose in case the current outcome is
not suitable for grasping the objects. In particular, this prob-
lem arises when the object cannot be represented with a single
superquadric for its geometric shape. As future work, we aim

at extend our approach for modeling more complex objects
with multiple superquadrics.

5. CoNCLUSIoN

In this work, we detail the implementation of the modeling and
grasping approach pipeline described in Vezzani et al. (2017).
We developed two modules, namely superquadric-model and
superquadric-grasp, that respectively model objects through super-
quadric functions and computes suitable grasping poses for the
iCub robot. Our leading idea was to develop a self-contained code
that provides query services to the user. Our software handles only
the information strictly necessary for the modeling and grasping
approach and minimizes the dependencies from external modules.
The user is supposed to design a wrapper code to combine together
the outcomes of the two modules. We provide also an example of
a external code in the superquadric-grasp-example repository for
the implementation of a complete modeling and grasping pipeline.

In the next future, we would like to improve the approach
we use for reaching the final grasping pose, which is a current
limitation of our approach, as described in Section 4. The iCub
proprioception is in fact affected by a number of impairments,
mainly caused by elastic elements, which introduce errors in the
computation of direct kinematics. Also, the iCub is provided with
moving cameras for simulating the human oculomotor system.
This makes the knowledge of extrinsic parameters and, thus, the
object information estimation quite noisy. These sources of error
might be crucial for grasping tasks, when a final pose is required to
be reached with errors in order of 1 cm. We can solve this problem

FIGURe 3 | Outcomes of the modeling and grasping pipeline. (1) The object is stored by the object property collector with the label object. (2) LbpExtract provides
the 2D blob of the object. (3) The 3D point cloud is extracted from the disparity map, by querying the Structure From Motion module. (4) The superquadric modeling
the object is reconstructed. (5) The grasping pose and approaching trajectory for the right hand are computed. (6) The robot grasps the object. (Steps (1), (2), (4),
and (5) are represented by screenshots from the visualizers.).

36

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md

7

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

ReFeReNCeS

Fanello, S. R., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., Roncone, A., et al.
(2014). “3D stereo estimation and fully automated learning of eye-hand coor-
dination in humanoid robots,” in 2014 14th IEEE-RAS International Conference
on Humanoid Robots (Humanoids) (Madrid, Spain: IEEE), 1028–1035.

Fantacci, C., Pattacini, U., Tikhanoff, V., and Natale, L. (2017). “Visual end-effector
tracking using a 3D model-aided particle filter for humanoid robot platforms,”
in IEEE Conference on Intelligent Robots and Systems (IROS) (Vancouver,
Canada: IEEE).

Jaklic, A., Leonardis, A., and Solina, F. (2013). Segmentation and Recovery of
Superquadrics, Vol. 20. Springer Science & Business Media.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 8. doi:10.5772/5761

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in
cognitive development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.
2010.08.010

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U.,
et al. (2017). Dac-h3: a proactive robot cognitive architecture to acquire and
express knowledge about the world and the self. IEEE Trans. Cogn. Dev. Syst.
doi:10.1109/TCDS.2017.2754143

Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture
measures with classification based on featured distributions. Pattern Recognit.
29, 51–59. doi:10.1016/0031-3203(95)00067-4

Pasquale, G., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Object identification
from few examples by improving the invariance of a deep convolutional neural
network,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Deajeon, South Korea: IEEE), 4904–4911.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An experi-
mental evaluation of a novel minimum-jerk Cartesian controller for humanoid
robots,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Taipei, Taiwan: IEEE), 1668–1674.

Regoli, M., Pattacini, U., Metta, G., and Natale, L. (2016). “Hierarchical grasp
controller using tactile feedback,” in IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids) (Cancun, Mexico: IEEE), 387–394.

Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314.
doi:10.1145/1015706.1015720

Vezzani, G., Pattacini, U., and Natale, L. (2017). “A grasping approach based on
superquadric models,” in IEEE International Conference on Robotics and
Automation (ICRA) (Singapore), 1579–1586.

Wächter, A., and Biegler, L. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math.
Program. 106, 25–57. doi:10.1007/s10107-004-0559-y

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, TF, and handling editor declared their shared affiliation.

Copyright © 2017 Vezzani and Natale. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

by using the approach described in Fantacci et al. (2017), which
provides a precise estimate of the robot end-effector pose over time
and a visual servoing approach without the use of markers. Another
extension of the modeling pipeline consists in using the recognition
system10 described in Pasquale et al. (2016) to classify the objects
of interest according to their geometric property for using some

10 https://github.com/robotology/onthefly-recognition.

prior information on their shape for improving and speeding up
the superquadric estimation process, as mentioned in 3.1.1.

AUTHoR CoNTRIBUTIoNS

GV developed the method and the code and described them in
the manuscript. LN supervised the code and method develop-
ment and the manuscript writing.

37

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.5772/5761
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1109/TCDS.2017.2754143
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1145/1015706.1015720
https://doi.org/10.1007/s10107-004-0559-y
http://creativecommons.org/licenses/by/4.0/
https://github.com/robotology/onthefly-recognition

December 2017 | Volume 4 | Article 671

Code
published: 18 December 2017
doi: 10.3389/frobt.2017.00067

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Ugo Pattacini,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Tobias Fischer,

Imperial College London,
United Kingdom

Alessandro Roncone,
Yale University, United States

Lars Schillingmann,
Bielefeld University, Germany

*Correspondence:
Carlo Ciliberto

c.ciliberto@ucl.ac.uk

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 19 August 2017
Accepted: 22 November 2017
Published: 18 December 2017

Citation:
Ciliberto C (2017) Connecting YARP

to the Web with Yarp.js.
Front. Robot. AI 4:67.

doi: 10.3389/frobt.2017.00067

Connecting YARP to the Web
with Yarp.js
Carlo Ciliberto*

University College London, London, United Kingdom

We present yarp.js, a JavaScript framework enabling robotics networks to interface and
interact with external devices by exploiting modern Web communication protocols. By
connecting a YARP server module with a browser client on any external device, yarp.js
allows to access on board sensors using standard Web APIs and stream the acquired
data through the yarp.js network without the need for any installation. Communication
between YARP modules and yarp.js clients is bi-directional, opening also the possibil-
ity for robotics applications to exploit the capabilities of modern browsers to process
external data, such as speech synthesis, 3D data visualization, or video streaming to
name a few. Yarp.js requires only a browser installed on the client device, allowing for
fast and easy deployment of novel applications. The code and sample applications to
get started with the proposed framework are available for the community at the yarp.js
GitHub repository.

Keywords: yarp, robotics, iCub, web, websocket, Internet of things

1. INTRodUCTIoN

Smartphones, tablets, and wearable devices have drastically changed human communication and
are nowadays a key component of everyday life, enabling humans to connect with each other and
other devices in real time, forming a dense network of complex and frequent interactions. In this
revolution, the Internet and Web technologies in general are playing the key role of a “lingua franca,”
establishing novel standards for modern communication protocols adopted by most platforms and
operating systems. Indeed, as information technologies advance, we are steadily moving toward an
“Internet of Things (IoT)” (Xia et al., 2012), where everyday object will be able to offer an interface
for digital communication with humans and other devices.

In this scenario, robotic agents designed to operate in human environments will undoubtedly
need to be well-versed in these new practices to seamlessly integrate within the IoT network.
Towards this goal, in this paper we present yarp.js, a novel framework developed with the goal of
connecting the YARP network with external devices using modern Internet protocols. YARP (Metta
et al., 2006) is to date one of the most efficient and flexible robotics middlewares, adopted by many
robotics laboratories worldwide and used as main communication tool for robotic platforms, such
as the humanoid iCub (Metta et al., 2008) and R1 (Parmiggiani et al., 2017). In this sense, yarp.js
provides a platform-independent approach to establish a two-way communication between YARP
modules (e.g., the robot itself or other machines on the YARP network) and external systems whose
only requirement is the ability to run an Internet browser.

Yarp.js decouples a server side, which must run on the YARP network, from a client side, which
simply needs to be capable of tcp/ip communication with the server. The server side is built over a
Node.js (Tilkov and Vinoski, 2010) abstraction layer wrapping the main YARP functionalities (e.g.,
opening/connecting ports, creating bottles or images, and writing/reading them via ports). Two

38

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00067&domain=pdf&date_stamp=2017-12-18
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00067
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:c.ciliberto@ucl.ac.uk
https://doi.org/10.3389/frobt.2017.00067
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00067/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00067/full
http://loop.frontiersin.org/people/337026

FIgURe 1 | Example of YARP network connected with non-YARP-capable
devices on the Web via yarp.js.

2

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

main benefits arise from this choice of server-side language: 1)
the possibility to write YARP modules in Node.js and therefore,
leverage the wide range of packages made available by the related
community via the well-established Node Package Manager
(NPM),1 and 2) the event-based philosophy of Node.js offers a
different perspective for programming the robot cognitive skills,
possibly allowing for novel and more reactive behaviors. Yarp.js
server is supported on OSX 10.11.6+ and Ubuntu 16.04+.

The client side of yarp.js consists of a pure JavaScript library
and runs on both Google Chrome2 and Firefox3 browsers.
Communication is performed across WebSockets, which allow
for real-time exchange of data between the device on which the
client is running and the server. Yarp.js endows both client and
server with same functionalities, allowing also clients on external
device to open and write/read on a YARP port. This is particu-
larly useful to connect an external sensor, such as a smartphone
microphone, inertial sensors, camera, etc., to the YARP network
and allowing other modules to access its measurements. In this
sense, yarp.js allows to effortlessly extend YARP functionalities
to non-YARP devices by simply serving the required JavaScript
library so that there is no need for custom installation, essentially
making yarp.js automatically platform-independent on any
browser-enabled device.

Yarp.js v1.0.04 is available for the community as a GitHub
repository.5 We have provided a number of examples for new
users to get started with the proposed framework.

2. BACKgRoUNd ANd MoTIVATIoNS

We introduce the necessary background and motivations to
understand the main contributions of yarp.js.

2.1. YARP
Yet Another Robot Platform (YARP) (Metta et al., 2006) is a
framework developed to handle the low-level communication
processes between different sensors, processors, and actuators
in robotics applications. The main goal of YARP is to provide
researchers and developers with a unifying cross-platform layer
of communication in order to foster the diffusion and reproduc-
ibility of novel results in robotics. Figure 1 (left half) reports a
pictorial representation of a YARP network, where a number of
computational nodes (gray circles) communicate with each other
by leveraging on the abstraction layer offered by YARP (blue lines).
In a spirit similar to YARP, several robotics frameworks have been
proposed in the recent literature, such as Player (Gerkey et al.,
2003), ROS (Quigley et al., 2009), OROCOS (Bruyninckx, 2001),
MIRO (Utz et al., 2002), and LCM (Huang et al., 2010) to name
a few. We refer to Fitzpatrick et al. (2014) for a discussion on the
topic.

Unarguably, the most successful example of YARP application
is the iCub (Metta et al., 2008), a humanoid robot adopted by

1 https://www.npmjs.com.
2 https://www.google.com/chrome.
3 https://www.mozilla.org.
4 Yarp.js DOI: https://doi.org/10.5281/zenodo.1007786.
5 https://github.com/robotology/yarp.js.

more than 30 laboratories worldwide: Exploiting the flexibility
of YARP functionalities, computational models developed by
a number of different research groups to perform diverse tasks
ranging from torque control (Fumagalli et al., 2010, 2012; Del
Prete et al., 2012) to grasping (Gori et al., 2014), balancing (Pucci
et al., 2016), visual attention (Ruesch et al., 2008), visual or haptic
object recognition (Ciliberto et al., 2013; Higy et al., 2016), super-
vised learning (Gijsberts and Metta, 2011), can be combined on
the same platform, enabling the robot with advanced cognitive
capabilities such as in Ivaldi et al. (2013); Fischer and Demiris
(2016); Morse and Cangelosi (2017).

2.2. Robots, Modern Web APIs,
and Node.js
With the diffusion of lightweight portable devices, such as
smartphones and tables, in recent years it has become a necessity
for web applications to efficiently access and process information
acquired from diverse sensors, such as microphones, embedded
cameras, or inertial sensors. To this end, most modern browser
has designed a wide range of APIs that allow accessing such
resources across most devices, platforms, and operating systems.
This has significantly fostered the deployment and diffusion
of many novel applications capable of running natively in the
browser, such as image object recognition,6 GPS mapping and
route planning,7 speech-based assistants,8 videoconferencing,9
navigation in virtual reality environments10 to name a few.

Making these capabilities available to a robot is clearly
appealing and indeed the potential benefits of such interaction
have been thoroughly investigated in the literature (Taylor and
Wright, 1995; Hu et al., 2012; Kamei et al., 2012; Kehoe et al.,
2015). However, robotics application typically requires real-
time performance and deploying the necessary communication
infrastructure to satisfy such requirements can be difficult or not
possible due to compatibility issues. On the contrary, Web APIs
are already designed to take care of the low-level communication
with embedded sensors as well as the transmission of data across

6 https://www.clarifai.com/.
7 maps.google.com.
8 https://sdkcarlos.github.io/sites/artyom.html.
9 https://appr.tc/.
10 https://playcanv.as/p/sAsiDvtC/.

39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://www.npmjs.com
https://www.google.com/chrome
https://www.mozilla.org
https://doi.org/10.5281/zenodo.1007786
https://github.com/robotology/yarp.js
https://www.clarifai.com/
http://maps.google.com
https://sdkcarlos.github.io/sites/artyom.html
https://appr.tc/
https://playcanv.as/p/sAsiDvtC/

3

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

a network (i.e., the Internet). In this sense, the yarp.js framework
proposed in this work acts as an intermediate layer allowing
YARP and a browser to communicate, essentially “assimilating”
non-YARP capable devices within the robot’s network.

The above motivations are shared with recent work (Osentoski
et al., 2011; Toris et al., 2015), where a JavaScript framework
was developed to allow portable devices to communicate with
the Robot Operating System (ROS) using Websockets and
JavaScript. In this sense, the client side of yarp.js can be inter-
preted as the equivalent of the ros.js framework for the YARP
environment, and one interesting byproduct of this work is the
possibility to create applications that naturally bridge YARP
and ROS frameworks by leveraging the two corresponding
JavaScript libraries.

A second relevant byproduct of our work is the extension
of standard YARP C++ routines to Node.js. This could be
beneficial in developing robotics applications. Indeed, Node.
js (and more generally JavaScript) is based on a system of
callbacks that are activated when the corresponding registered
event occurs (Tilkov and Vinoski, 2010). While this approach
can be equivalently implemented in more traditional languages
used in robotics (indeed its core is based on a C++ engine),
Node.js encourages a programming style that is asynchronous
by design and in this sense could be helpful in speeding-up
the development of high-level applications in robotics without
the need for ad-hoc careful synchronization between multiple
modules and threads. As a practical example, consider the
ActionsRenderingEngine (ARE)11: this iCub module manages
a number of possible behaviors for the robot, combining both
visual cues and motor actions and requires several threads (e.g.,
a vision thread, a motor thread, a visuo-motor thread, etc.) to be
carefully synchronized in order to avoid low-level errors (e.g.,
concurrent memory access). This module would be significantly
easier to develop (and read/debug), if written in an event-based
language where the low-level details related to asynchrony are
taken care of by design.

In the rest of this paper, we describe yarp.js and present a
number of sample applications highlighting the potential benefits
of the proposed framework in robotics.

3. SYSTeM oVeRVIeW

Yarp.js is conceptually organized in two separate components:
a server side, equipped with YARP communication capabilities
and a client side, which is able to transmit and receive data from
other nodes on the YARP network by exploiting the server side
as a proxy. Figure 1 reports a pictorial representation of a yarp.
js network, where messages from non-YARP equipped devices
(e.g., smartphones, tablets, etc.) are first sent via WebSockets
(green lines) to the yarp.js server and then propagated through
the YARP network (blue lines). The communication with YARP
and WebSockets is bi-directional, allowing to transmit data from
the network to the client.

The two-level structure of yarp.js is imposed by the nature
of web technologies. Indeed, while on one hand browsers offer

11 http://wiki.icub.org/brain/group__actionsRenderingEngine.html.

flexible cross-platform solutions to the deployment of novel
applications, they also need to cope with extremely critical
security issues (e.g., handling of passwords or sensitive data over
the Internet). As a consequence, code running in the browser
is allowed very limited interaction with the rest of the machine
hosting it, let alone other machines on the same local network.
In this sense, the server side of yarp.js can be interpreted as a
standard YARP module that is also able to communicate with the
browser, effectively acting as the missing link between the client
and the YARP network.

As a final note, we care to point out that YARP is already
equipped with basic HTTP communication functionalities12 via
Representation State Transfer (REST) (Fielding, 2000). However,
RESTful interoperability is not suited for real-time two-way com-
munication between server and client; one of the main motiva-
tions that led to the design of the WebSocket standard (Lubbers
and Greco, 2010).

3.1. Server Side: YARP in Node.js
The server side of yarp.js is written in Node.js (Tilkov and Vinoski,
2010) and comprises two layers: first, a low-level library of C++
addons for Node.js 13 that allows to access and use YARP objects
and functionalities from the Node.js environment. Second, a set
of Node.js APIs offering easier management of the YARP addons
(e.g., opening and connections of ports) as well as communica-
tion with client browsers. Below, we discuss these two layers in
detail.

3.1.1. First Layer: Node.js Addons for YARP
(Language C++ → Node.js)
This layer exposes the APIs to create the following YARP objects
as Node.js objects: Bottle, Image, Sound, BufferedPort, RPCPort,
and Network. It is written in C++ using the Native Abstraction for
Node.js (NAN)14 library and provides a set of Node.js wrappers
for the corresponding YARP objects. As an example, below we
report the minimal Node.js code to open a YARP port and write
a Bottle on it using yarp.js.

var yarp = require(’<yarp.js-folder>/build/Release/
Yarp JS’);

//get yarp.js
var yarp_net = new yarp.Network();

//get the YARP network

var port = new yarp.BufferedPortBottle();
//create a port

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write

bottle.fromString(’hello yarp.js!’);
//fill the Bottle

port.write();
//write it over the network

12 http://www.yarp.it/yarp_http.html.
13 https://nodejs.org/api/addons.html.
14 https://github.com/nodejs/nan.

40

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://wiki.icub.org/brain/group__actionsRenderingEngine.html
http://www.yarp.it/yarp_http.html
https://nodejs.org/api/addons.html
https://github.com/nodejs/nan

4

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

Note that these addons can be used as a standalone package
to develop YARP modules in Node.js. This is extremely advanta-
geous that it allows to effortlessly import Node.js packages from
NPM to YARP applications. As a matter of fact, the second layer
of yarp.js leverages a number of NPM packages to manage the
communication between YARP and the browsers.

Callbacks. Callbacks can be provided dynamically to YARP
objects. Below, we report the minimal code for reading from a port
and printing the content of the received message on the terminal.

port.onRead(function(yarp_object){
console.log(’Message received: ’+yarp_object.
toString());

});

Extending yarp.js. By leveraging on the NAN abstraction
layer, it is possible to easily extend yarp.js addons with new
functionalities or create new ones wrapping other YARP objects.
However, one aspect of this process deserves particular care,
namely the conceptual separation between the threaded nature of
YARP applications and the event-based philosophy of Node.js. To
this end, we provide the C++ class YarpJS_Callback, which
stems a separate Node.js worker thread from the main one and
runs the prescribed callback function when the required event
occurs. This allows to dynamically provide callback functions to
YARP objects as discussed above.

3.1.2. Second Layer: Yarp.js Server Manager
(Language Node.js)
The second layer is a JavaScript module wrapping the yarp.js
addons provided and offering (opinionated) management func-
tionalities: 1) a Port Manager handling operations on the YARP
network, such as opening/closing/connection of ports and 2) a
Browser Communicator in charge of the communication with
the client via WebSocket. In particular, this latter component
interprets messages from the browser as either messages to be
propagated to the network or as YARP commands that cannot be
executed directly from the browser (e.g., opening a port).

Port Manager. This component exposes a set of functions
meant to simplify the management of the YARP network from
the Node.js module. Specifically, it allows to recover ports by
name, connect two ports, and offer fallbacks in case of name
conflicts (e.g., more clients trying to open the same port). It also
manages to close all hanging objects when the Node.js module
ends, cleaning memory and the YARP network. The code snippet
below shows the difference in using the manager rather than the
rawNode.js addons.

var yarp = require(’<yarp.js-folder>/yarp.js’);
//get yarp.js

//no need to call YARP network

var port = new yarp.Port(’bottle’);
//create a port

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write

bottle.fromString(’hello yarp.js!’);
//fill the Bottle

port.write();
//write it over the network

//alternatively, port.write(’hello yarp.js!’); would do
the same

Browser Communicator. The browser communication
component is based on the Socket.io package, which is designed
to create webservers with robust WebSockets functionalities. To
initialize the yarp.js manager it is sufficient to provide a Socket.
io object to the Browsercommunicator method. All the
communication with client browsers is then automatically
handled. The following code makes use of the standard HTTP15
and Express16 packages to provide a minimal example on how to
create a webserver offering yarp.js functionalities and listening on
a port for incoming connections.

var http = require(’http’).Server(require
(’express’)());

//create the web server
var io = require(’socket.io’)(http);

//create the Socket.io object
http.listen(3000);

//Run the server on locahlhost:3000

var yarp = require(’<path to yarp.js>’);
//get the yarp.js addons layer

yarp.browserCommunicator(io);
//Initialize the yarp.js manager

Once the yarp.js manager is initialized with Socket.io, all
messages coming from the client side of yarp.js are automatically
captured and processed by it. In Section 3.2, we list the main
functionalities offered by using this intermediate layer.

This component is in charge of communicating to the Port
Manager in which YARP ports are to be opened instead of the
browser clients. In particular, whenever such a port reads a mes-
sage in input, the Browser Communicator recovers it and pushes
to the corresponding clients via WebSockets. This piping of the
message is meant to create the “illusion” of having the brows-
ers directly reading from the port. This is extremely helpful to
develop code for the client side of yarp.js, however, it is important
to keep in mind that for computationally intensive applications
the Browser Communicator could become a bottleneck through
which all messages from YARP to the clients need to flow. Clearly,
this issue could be mitigated by having more than one yarp.js
server module running on the network.

3.2. Client Side: YARP in the Browser
(Language JavaScript)
The client side of yarp.js is a lightweight JavaScript library that
leverages the browser implementation of Socket.io to commu-
nicate with the server side described in Section 3.1. The only
requirement in this sense is for the browser to have WebSocket
functionalities. Yarp.js can be initialized using the following code,

15 https://nodejs.org/api/all.html.
16 https://expressjs.com.

41

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://nodejs.org/api/all.html
https://expressjs.com

5

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

which here is assumed to be placed in the HTML page served to
the browser:

<script src = "/socket.io/socket.io.js"></script>
<script src = "/yarp.js"></script>
<script>

yarp.init(io());
yarp.onInit(function(){
//yarp.jscode

});
</script>

The yarp.js manager on the client side offers the same APIs
of the Port Manager on the server side. Specifically, it exposes
a Network object that can be used to create new connections
among ports on the YARP network and also a Port object that
can be used to create new buffered ports and open them. As
explained before, these operations cannot be performed directly
by the client but are rather executed on the server side of yarp.js
after receiving the corresponding message via WebSocket. Below,
we report a code sample showing how to open a port and write/
read messages which are automatically sent to the YARP network.
All JavaScript code is to be assumed to be run within the onInit.

let port = new Port(port_type);
//port_type default: ’bottle’

port.open(port_name);
//if the port does not exist the server open

ones.

port.write([1,2,3]);
//write a bottle containing 3 integers

port.onRead(function(yarp_object){
console.log(yarp_object.toString());

});

The functionalities of yarp.js in the browser allow to easily
develop and deploy YARP applications on the hosting device as
we describe in the following.

4. APPLICATIoNS

On the yarp.js repository we provide a number of sample applica-
tions to get new users started with the proposed framework. They are
organized in a single bundle17 that can be run by executing the code

$>node examples/examples.js

on the machine, where the server side of yarp.js is installed. Then,
from any other device on the same local network, the example
bundle can be accessed by navigating with Firefox on Google
Chrome browser on http://<ip.of.yarpjs.machineer:3000.

Figure 2 shows how examples are rendered to the user.

4.1. Reading and Transmitting Inertial data
This application shows how sensors on external devices (e.g.,
where YARP is not installed) can be accessed from the YARP

17 https://github.com/robotology/yarp.js/tree/master/examples.

network. We make use of the Web API18 to read from the inertial
sensor of a smartphone and stream it through a port.

window.addEventListener("deviceorientation",
function(event){

port_orientation_out.write([event.alpha,event.
beta,event.gamma]);

}, true);

Another client can read the inertial data streamed through
the network and visualize the corresponding 3D orientation of
the device using WebGL functionalities (a topic addressed in
more detail in Section 4.4). Figure 2B shows a snapshot of this
application.

4.2. Speech Recognition and Synthesis
This application uses the Web Speech API19 for speech recogni-
tion and synthesis. To simplify the access to the Web Speech API
yarp.js provide a synthetizer

yarpSpeakPort.onRead(function(msg){
yarp.Synthetizer.speak(msg);

});

which allows to speak aloud text, read from a YARP port and
Recognizer module

yarp.Recognizer.enableAutorestart();
\\starts the speech recognition module

yarp.Recognizer.addEventListener(’yarp speech finished’,
function (e) {

yarpSpeechRecPort.write(e.detail[0].transcript);
}, false);

which recognizes human speech from the embedded micro-
phone and emits the event “yarp speech finished” as
soon as the Web Speech API consider the audio signal to have
terminated.

4.3. Stream Video (a “yarpview” in the
Browser)
YARP images can be read from a port on the yarp.js client and
visualized in the browser. Ideally, the WebRTC protocol (Johnston
and Burnett, 2012) should be adopted for the transmission of
large amounts of data over UDP. Unfortunately, to this date a
standard solution for server-to-browser WebRTC communica-
tion does not exist. To reduce the burden on the server/client
communication, we compress the images in either PNG or JPEG
before sending them over WebSockets.

Images can be then visualized in a <canvas> HTML ele-
ment using the following code.

let canvas = document.getElementByTag(’canvas’);
let img = new Image();

18 https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation.
19 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html.

42

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://<ip.of.yarpjs.machineer:3000
https://github.com/robotology/yarp.js/tree/master/examples
https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

FIgURe 2 | The bundle of yarp.js application examples available on the project repository. (A) Landing page of the examples bundle. (B) Reading and transmitting
inertial data (Section 4.1). (C) Speech Recognition and Synthesis (Section 4.2). (d) Visualizing Yarp Images in the Browser (Section 4.3). (e) 3D Visualization of YARP
data (Section 4.4). (F) Face tracking for robot teleoperation 4.5. All depicted individuals provided their consent for the publication of this image.

6

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

port_video_in.onRead(function(yarp_img){
img.src = yarp.getImageSrc(yarp_img.compres-
sion_type,yarp_img.buffer);
canvas.getContext(’2d’).drawImage(img,0,0);

});

Figure 2D shows the yarp.js acting as a yarpviewer20 in
the browser.

4.4. 3d Visualization of YARP data
WebGL21 is a standard Web API providing 3D graphics function-
alities on the browser. Exploiting the three.js-WebGL library22,
we built a simple application to visualize point clouds read from
YARP ports received as Bottles of one or more 3D array which are
interpreted as 3D cordinates and rendered in a navigable virtual
scene (Figure 2E).

Note that allowing the browser to directly interact with the
graphic card of the hosting machine opens a wide range of
possibilities. Indeed, recently there has been interest in develop-
ing applications to run Deep Learning models directly in the
browser.23

4.5. Teleoperation with Face Tracking
We conclude by proposing a teleoperation application, where a
face tracker running in the browser is used to actively control
the head of the iCub robot. We used the Tracker.js24 library
to capture images from the device camera, detect the face

20 http://www.yarp.it/yarpview.html.
21 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API.
22 https://threejs.org.
23 http://cs.stanford.edu/people/karpathy/convnetjs, https://github.com/transcra-
nial/keras-js, https://pair-code.github.io/deeplearnjs/, https://tenso.rs.
24 https://trackingjs.com.

of a user, and obtain the (u,v) position of the corresponding
rectangle in the image. Then, the position was translated to a
3D point

 () ()x y z u w v h, , = − , / − . , / − .1 0 5 0 3

which is sent to the /xd:i port of the iKinGazeCtrl25
(Roncone et al., 2016) to control the gaze of the robot to point
toward it. See the following code.

let tracker = new tracking.Object Tracker
(’face’);
tracker.on(’track’, function(event){

let rect = event.data[0];
let u = rect.x + rect.width/2;
let v = rect.y + rect.height/2;

gazePort.write([-1, (u/w - 0.5), (v/h - 0.3)]);
});

where w and h, respectively denote the height and width of the
device camera. Figure 2F shows an example of this application,
where images streamed from the robot camera are send back to
the browser are described in Section 4.3.

5. CoNCLUSIoN

We have presented yarp.js, a JavaScript framework to enable
YARP-based robotics systems with modern Web APIs function-
alities. Yarp.js allows modules running on the YARP network
to access sensors information on devices that are not equipped
with the YARP communication layer by exploiting WebSocket
communication. By leveraging on Web technologies, applications

25 http://wiki.icub.org/brain/group__iKinGazeCtrl.html.

43

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.yarp.it/yarpview.html
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://threejs.org
http://cs.stanford.edu/people/karpathy/convnetjs
https://github.com/transcranial/keras-js
https://github.com/transcranial/keras-js
https://pair-code.github.io/deeplearnjs/
https://tenso.rs
https://trackingjs.com
http://wiki.icub.org/brain/group__iKinGazeCtrl.html

7

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

ReFeReNCeS

Bruyninckx, H. (2001). “Open robot control software: the Orocos project,” in
Proceedings 2001 IEEE International Conference on Robotics and Automation,
ICRA 2001, Vol. 3 (Seoul: IEEE), 2523–2528.

Ciliberto, C., Fanello, S. R., Santoro, M., Natale, L., Metta, G., and Rosasco, L. (2013).
“On the impact of learning hierarchical representations for visual recognition in
robotics,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Tokyo: IEEE), 3759–3764.

Del Prete, A., Nori, F., Metta, G., and Natale, L. (2012). “Control of contact
forces: the role of tactile feedback for contact localization,” in 2012 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (San
Francisco: IEEE), 4048–4053.

Fielding, R. (2000). “Representational state transfer,” in Architectural Styles and the
Design of Netowork-Based Software Architecture, 76–85.

Fischer, T., and Demiris, Y. (2016). “Markerless perspective taking for humanoid
robots in unconstrained environments,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA) (Stockholm: IEEE), 3309–3316.

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D., Paikan, A., Metta, G., and Natale, L.
(2014). A middle way for robotics middleware. J. Software Eng. Robot. 5, 42–49.

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., et al.
(2012). Force feedback exploiting tactile and proximal force/torque sensing.
Auton. Robots 33, 381–398. doi:10.1007/s10514-012-9291-2

Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010).
“Exploiting proximal f/t measurements for the icub active compliance,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Taipei: IEEE), 1870–1876.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). “The player/stage project:
tools for multi-robot and distributed sensor systems,” in Proceedings of the 11th
International Conference on Advanced Robotics, Coimbra, Vol. 1, 317–323.

Gijsberts, A., and Metta, G. (2011). “Incremental learning of robot dynamics
using random features,” in 2011 IEEE International Conference on Robotics and
Automation (ICRA) (Shanghai: IEEE), 951–956.

Gori, I., Pattacini, U., Tikhanoff, V., and Metta, G. (2014). “Three-finger precision
grasp on incomplete 3d point clouds,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA) (Hong Kong: IEEE), 5366–5373.

Higy, B., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Combining sensory
modalities and exploratory procedures to improve haptic object recognition in
robotics,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids) (Cancun: IEEE), 117–124.

Hu, G., Tay, W. P., and Wen, Y. (2012). Cloud robotics: architecture, challenges and
applications. IEEE Netw. 26. doi:10.1109/MNET.2012.6201212

Huang, A. S., Olson, E., and Moore, D. C. (2010). “LCM: lightweight communica-
tions and marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (Taipei: IEEE), 4057–4062.

Ivaldi, S., Lyubova, N., Droniou, A., Gerardeaux-Viret, D., Filliat, D., Padois, V.,
et al. (2013). “Learning to recognize objects through curiosity-driven manip-
ulation with the icub humanoid robot,” in 2013 IEEE Third Joint International
Conference on Development and Learning and Epigenetic Robotics (ICDL)
(Osaka: IEEE), 1–8.

Johnston, A. B., and Burnett, D. C. (2012). WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web. Digital Codex LLC.

Kamei, K., Nishio, S., Hagita, N., and Sato, M. (2012). Cloud networked robotics.
IEEE Netw. 26. doi:10.1109/MNET.2012.6201213

Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. (2015). A survey of research on
cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12, 398–409.
doi:10.1109/TASE.2014.2376492

Lubbers, P., and Greco, F. (2010). HTML5 web sockets: a quantum leap in scalability
for the web. SOA World Mag. 1.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 8. doi:10.5772/5761

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). “The ICUB
humanoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems
(Gaithersburg: ACM), 50–56.

Morse, A. F., and Cangelosi, A. (2017). Why are there developmental stages in
language learning? a developmental robotics model of language development.
Cogn. Sci. 41, 32–51. doi:10.1111/cogs.12390

Osentoski, S., Jay, G., Crick, C., Pitzer, B., DuHadway, C., and Jenkins, O. C.
(2011). “Robots as web services: reproducible experimentation and application
development using ROSJS,” in 2011 IEEE International Conference on Robotics
and Automation (ICRA) (Shanghai: IEEE), 6078–6083.

Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M., Maggiali, M.,
et al. (2017). “The design and validation of the r1 personal humanoid,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Vancouver: IEEE), 2591–2598.

Pucci, D., Romano, F., Traversaro, S., and Nori, F. (2016). “Highly dynamic bal-
ancing via force control,” in 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids) (Cancun: IEEE), 141–141.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software, Vol. 3 (Kobe), 5.

Roncone, A., Pattacini, U., Metta, G., and Natale, L. (2016). “A cartesian 6-dof gaze
controller for humanoid robots,” in Proceedings of Robotics: Science and Systems,
AnnArbor, MI. doi:10.15607/RSS.2016.XII.022

Ruesch, J., Lopes, M., Bernardino, A., Hornstein, J., Santos-Victor, J., and Pfeifer, R.
(2008). “Multimodal saliency-based bottom-up attention a framework for the
humanoid robot icub,” in 2008 IEEE International Conference on Robotics and
Automation, ICRA 2008 (Pasadena: IEEE), 962–967.

Taylor, A. L., and Wright, J. T. (1995). “A telerobot on the world wide web,” in In
National Conference of the Australian Robot Association (Melbourne: Citeseer).

Tilkov, S., and Vinoski, S. (2010). Node. js: using javascript to build high-per-
formance network programs. IEEE Internet Comput. 14, 80–83. doi:10.1109/
MIC.2010.145

Toris, R., Kammerl, J., Lu, D. V., Lee, J., Jenkins, O. C., Osentoski, S., et al. (2015).
“Robot web tools: efficient messaging for cloud robotics,” in 2015 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (Chicago:
IEEE), 4530–4537.

Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G. (2002). Miro-middleware
for mobile robot applications. IEEE Trans. Robot. Autom. 18, 493–497.
doi:10.1109/TRA.2002.802930

Xia, F., Yang, L. T., Wang, L., and Vinel, A. (2012). Internet of things. Int. J. Commun.
Syst. 25, 1101. doi:10.1002/dac.2417

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Ciliberto. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

based on yarp.js are easy to deploy and develop. We have presented
a number of applications showing the benefit of the proposed
approach.

Yarp.js is easy to extend and a main challenge in the future
will be to enrich its capabilities with WebRTC functionalities,
which would be the natural solution to the issues related to the
transmission of large amounts of data between server and client.
We will investigate this direction in future work.

AUTHoR CoNTRIBUTIoNS

The author confirms being the sole contributor of this work and
approved it for publication.

FUNdINg

This work was supported by EPSRC grant EP/P009069/1.

44

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1007/s10514-012-9291-2
https://doi.org/10.1109/MNET.2012.6201212
https://doi.org/10.1109/MNET.2012.6201213
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.5772/5761
https://doi.org/10.1111/cogs.12390
https://doi.org/10.15607/RSS.2016.XII.022
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/TRA.2002.802930
https://doi.org/10.1002/dac.2417
http://creativecommons.org/licenses/by/4.0/

January 2018 | Volume 4 | Article 731

Code
published: 16 January 2018

doi: 10.3389/frobt.2017.00073

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Garrick Orchard,

National University of Singapore,
Singapore

Hanme Kim,
Imperial College London,

United Kingdom

*Correspondence:
Arren Glover

arren.glover@iit.it;
Chiara Bartolozzi

chiara.bartolozzi@iit.it

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 26 July 2017
Accepted: 12 December 2017

Published: 16 January 2018

Citation:
Glover A, Vasco V, Iacono M and

Bartolozzi C (2018) The Event-Driven
Software Library for YARP—With

Algorithms and iCub Applications.
Front. Robot. AI 4:73.

doi: 10.3389/frobt.2017.00073

The event-driven Software Library
for YARP—With Algorithms and
iCub Applications
Arren Glover*, Valentina Vasco, Massimiliano Iacono and Chiara Bartolozzi*

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

Event-driven (ED) cameras are an emerging technology that sample the visual signal
based on changes in the signal magnitude, rather than at a fixed-rate over time. The
change in paradigm results in a camera with a lower latency, that uses less power, has
reduced bandwidth, and higher dynamic range. Such cameras offer many potential
advantages for on-line, autonomous, robots; however, the sensor data do not directly
integrate with current “image-based” frameworks and software libraries. The iCub
robot uses Yet Another Robot Platform (YARP) as middleware to provide modular
processing and connectivity to sensors and actuators. This paper introduces a library
that incorporates an event-based framework into the YARP architecture, allowing event
cameras to be used with the iCub (and other YARP-based) robots. We describe the
philosophy and methods for structuring events to facilitate processing, while maintain-
ing low-latency and real-time operation. We also describe several processing modules
made available open-source, and three example demonstrations that can be run on
the neuromorphic iCub.

Keywords: iCub, neuromorphic engineering, event-driven vision, software, humanoid robotics

1. INTRodUCTIoN

Conventional vision sensors used in robotics rely on the acquisition of sequences of static images at
fixed temporal intervals. Such a sensor provides the most information when the temporal dynamics
of the scene match the sample-rate. If the dynamics are slower (e.g., a mostly static scene), only a
small percentage of pixels change between two consecutive frames, leading to redundant acquisi-
tion and processing. Alternatively, if the scene dynamics are much faster (e.g., a falling object),
information between images can be distorted by motion blur, or missed entirely.

A newly emerging technology, “event-driven” (ED) cameras, are vision sensors that produce
digital “events” only when the amount of light falling on a pixel changes. The result is that the
cameras detect only contrast changes (Lichtsteiner et al., 2008) that occur due to the relative motion
between the environment and the sensor. There is no fixed sampling rate over time, instead, the sen-
sor adapts to the scene dynamics. Redundant data are simply not produced in slow dynamic scenes,
and the sensor output still manages to finely trace the movement of any fast stimuli. Specifically,
the camera hardware latency is only 15 μs (Lichtsteiner et al., 2008) and the temporal resolution
at which an event can be timestamped is under 1 μs. Events are also produced asynchronously for
each pixel, such that processing operations can start without the need to read the entire sensor
array, and a low-latency processing pipeline can be realized.

ED cameras provide many potential advantages for robotics applications. The removal of redun-
dant processing can give mobile robots longer operating times and frees computational resources for
other tasks. Fast-moving stimuli can always be detected, and visual dynamics estimated with more
accuracy than with conventionally available cameras. This low-latency can enable extremely fast

45

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00073&domain=pdf&date_stamp=2018-01-16
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00073
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:arren.glover@iit.it
mailto:chiara.bartolozzi@iit.it
https://doi.org/10.3389/frobt.2017.00073
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00073/full
http://loop.frontiersin.org/people/269413
http://loop.frontiersin.org/people/270549
https://loop.frontiersin.org/people/509776
http://loop.frontiersin.org/people/21102

FIGURe 1 | The (A) iCub robot performing ball tracking and gazing toward
the ball position and (B) the corresponding stream of events over time
superimposed with approximate frame-captures for a hypothetical 10 Hz
frame-based camera.

2

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

reaction times between environmental change and the response
of the robot. In addition, each pixel has a high dynamic range
(143 dB (Posch et al., 2011)) which allows robots to operate
in both bright and dark environments, and in conditions with
widely varying intra-scene lighting. The sensor is low-power,
promoting longer operation times for untethered mobile robots.

The neuromorphic iCub (Bartolozzi et al., 2011) is a humanoid
robot that has a vision system comprised of two event cameras.
The iCub robot is supported, in software, by the Yet Another
Robot Platform (YARP) middleware (Metta et al., 2006), upon
which the iCub low-level and application-level modules have
matured using standard cameras, and also utilized other freely
available algorithms (e.g., using OpenCV). However, due to the
asynchronous nature of the event-stream, and its fundamental
differences from 2D frame sequences (see Figure 1), traditional
computer vision algorithms and image processing frameworks
cannot be directly applied.

This paper introduces the event-driven software libraries and
infrastructure that is built upon YARP and integrates with the
iCub robot. The library takes advantage of the YARP framework,
which enables the distributed processing of events within multi-
ple interchangeable modules spread across multiple networked
machines. Modules include pre-processing utilities, visualization,
low-level event-driven vision processing algorithms (e.g., corner
detection), and robot behavior applications. These modules can
be run and used by anyone for purely vision-based tasks, without
the need for an iCub robot by using: pre-recorded datasets, a
“stand-alone” camera with a compatible FPGA, a “stand-alone”
camera with the compatible USB connection, or by contributing
a custom camera interface to the open-source library. As the
processing is modular, the exact method of event acquisition
is transparent to the remainder of the library. This paper also
describes several iCub applications that have been built upon the
ED cameras and library and highlights some recent experimental
results. We begin with a brief description of the current state-of-
the-art in ED vision for robotics.

2. eVeNT-dRIVeN VISIoN FoR RoBoTS

Recent work using event cameras show promising results for fast,
low-latency robotic vision. The latency of an event-based visual
attention was two order less than frame-based one (Rea et al.,

2013). Recognition of playing-card suit was achieved as a deck
was flicked through (30 ms exposure) (Serrano-Gotarredona and
Linares-Barranco, 2015). Detection of a moving ball by a moving
robot was achieved at rates of over 500 Hz (Glover and Bartolozzi,
2016). Visual tracking of features was shown at a rate higher than
standard cameras (Vasco et al., 2016a) and also features position
could be updated “between frames” of a standard camera (Kueng
et al., 2016).

The extreme low-latency of event cameras enabled fast close-
loop control (e.g., inverse pendulum balancing (Conradt et al.,
2009) and goal keeping with 3 ms reaction time and only 4%
CPU utilization (Delbruck and Lang, 2013)). High-frequency
visual feedback (>1 kHz) enabled stable manipulator control at
micrometer scale (Ni et al., 2012). On-board pose estimation dur-
ing flips and rolls of a quadrotor has been shown to be plausible
using event-driven vision (Mueggler et al., 2015). Finally, robotic
navigation and mapping systems include a real-time 2-DOF
SLAM system for a mobile robot (Hoffmann et al., 2013), and
6-DOF parallel tracking and mapping algorithms (Kim et al.,
2016; Rebecq et al., 2016).

Some of the above experiments used the Java-based jAER
(Delbruck, 2008); however, Java is typically less suited to on-line
robotics due to computational overheads. jAER is also designed
to process events from a camera directly connected to a single
machine; however, robotics platforms have come to rely on a
middleware that distributes processing over a computer network.
A middleware allows the modular connection of sensors,
algorithms and controls, which are shared within the robotics
community to more quickly advance the state-of-the-art. Perhaps
the most well known is the Robot Operating System (ROS), in
which some support for event cameras has been made available.1
In this paper, we present the open-source libraries for event camera
integration with the YARP middleware that is used on iCub.

3. THe eVeNT-dRIVeN LIBRARY

ED cameras encode information as a stream of asynchronous
events with sub-μs resolution. When a pixel detects an illumi-
nation change beyond a threshold, it emits a digital pulse that
can be assigned a timestamp and pixel address (using Address
Event Representation (AER) (Mortara, 1998)) by a clock-based
digital interface (e.g., FPGA or microcontroller). The entire visual
information is, therefore, encoded within the relative timing and
pixel position between events. An example event-stream is shown
in Figure 1.

This event-driven library is designed to read events from the
cameras, interface to communications for distributed processing,
and provide event-based visual processing algorithms toward
low-latency robotic vision. The library is written in C++, uses
the ev namespace, and is integrated with the YARP middleware.

3.1. Representing an event
The basic element representing an event is a ev::vEvent,
which only stores the timestamp, i.e., when an event occurred. The

1 github.com/uzh-rpg/rpg_dvs_ros.

46

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/uzh-rpg/rpg_dvs_ros

FIGURe 2 | Event-types and inheritance, purple/dashed boxes show possible additions to the library to support the integration of other sensory modalities and
information from additional computing modules.

LISTING 1 | Instantiating events using shared pointer wrappers and dynamic casting. The outcome of the code-snippet will be the allocation of v1 as an
ev::AddressEvent and (an identical) v2 as a ev::labelledAE, while v3 and v4 will be pointers to v2, but interpreted as ev::AddressEvents.

3

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

information about what occurred is instead stored in the member
variables of classes that are inherited from a ev::vEvent,
see Figure 2. Events produced by the event cameras are called
ev::AddressEvent, which consist of pixel location (x,y) and
pixel polarity (p: darker/lighter) in addition to the camera chan-
nel (c: left/right). Algorithmic processing of events can be used
to append additional information to an event, such as adding the
velocity from an optical-flow algorithm. Currently used additional
event-types include optical-flow events (ev::FlowEvent),
class-labeled events (ev::LabelledAE), and events with a
spatial distribution (ev::GaussianAE).

An instantiated ev::vEvent is wrapped in a C++11
shared_ptr such that memory is automatically managed,
and events can be referenced in multiple threaded environments
without duplicated memory allocation. The event-driven library
provides a set of wrapper functions to ensure the shared_ptrs
are correctly handled (see Listing 1).

These event-types can be easily extended through inherit-
ance, and by defining the required additional member variables.
Packet encoding and decoding methods are also required for
transmission (described below). The framework is designed to
be fully future compatible with the integration of different event-
driven sensors (e.g., tactile and audio) by extending the base
ev::vEvent class.

3.2. event-Packets in YARP
On the iCub robot, a Linux driver reads the events from the camera
FPGA interface and the zynqGrabber module exposes the data
on a YARP port. A packet of events is sent in a ev::vBottle
(a specialized type of yarp::os::Bottle) such that the bit-
coding of the AER is preserved: to retain data-compression and
compatibility with other AER-based hardware. A module that
receives a ev::vBottle can decode the AER and instantiate
a ev::vEvent easily, as event decoding is provided by each

47

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

LISTING 2 | An example class for reading, decoding, and structuring events. This code will produce a small “surface” of events decoded from the AER
representation automatically using the ev::vBottle::get() command, and the ev::vBottle is read asynchronously as the packets arrive.

4

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

event class. Encoding/decoding typically involves bit-shifts and
a typecast to interpret a specific range of bits as the correct data
type. The decoded events are stored in a ev::vQueue which
wraps a std::deque<event<vEvent>>. The procedure to
obtain the event-stream is, therefore, transparent to the process-
ing module. Reading ev::vBottle from a port is typically
done using callback functionality (i.e., only where data is present)
as the event-stream is asynchronous. An example code-snippet is
provided in Listing 2.

Events can be saved and loaded from a file using the stand-
ard tools in YARP as an event-packet is fully interpretable as a
standard yarp::os::Bottle. Therefore, it is easy to save a
dataset using the yarpdatadumper and replay it using the
yarpdataplayer. This is done externally to the event-driven
library, simply by connecting the event-stream to/from the afore-
mentioned modules using YARP connections.

3.3. Structuring the event-Stream
The desired approach to ED processing is to perform a small,
lightweight computation as each event is received; however, a
single event (a single pixel) does not provide sufficient infor-
mation on its own for many complex visual algorithms. Often
it is necessary to store a sequence of events in order to extract
useful information from their spatiotemporal structure. The
type of structure used depends on the conditions, limitations

and assumptions of the task or algorithm. For example, the
length (in time) of a ev::Temporal Window can be tuned to
respond to a target object moving at a certain velocity, but
may fail if the target’s velocity cannot be constrained. A
ev::Fixed Surface of N events will be invariant to the speed of
an object, but can fail if the target size and shape are unknown,
a ev::Surface can access a spatial region-of-interest faster than
a ev::Temporal Window, as long as the temporal order of events
is not important. The event-driven library includes a range of
methods to organize and structure the event-stream; an exam-
ple code-snippet that combines port-callback functionality,
event-packet decoding and event data structuring is shown
in Listing 2.

In a distributed processing network, network latency, packet
loss, and module synchronization become relevant issues,
especially when it is desirable to take advantage of the intrinsic
low-latency of the sensor. Processing needs to be performed in
real-time to ensure robot behavior is decided from an up-to-date
estimation of the world. The ATIS cameras will produce ≈10 kV/s
when a small object is moving in the field of view but will produce
>1,000 kV/s if the camera itself is rotated quickly (e.g., when the
iCub performs a saccade). These numbers double for a stereo
camera set-up. Real-time constraints can be broken if processing
algorithms are dependent on processing every single event and
the processing power is not sufficient.

48

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

A B

FIGURe 3 | The (A) tracking/detection accuracy of ev::vCircle (blue) and ev::vParticleFiler (green) compared to ground truth (black). Both algorithms
can be used to control the iCub in gaze and grasping demonstrations. The (B) computation performance comparison between ev::vCorner and hypothetical
frame-based Harris corner detection (red dashed line). A lower computational requirement is beneficial to resource contained on-line robotics. These figures can be
generated using the scripts found in the datasets section.

5

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

In the YARP event-driven library, a multi-threaded event
structure is provided to de-couple the process of reading events
into a data structure from that of running the algorithm. Modules
are constructed such that the entire history of events is accounted
for, but the processing algorithm runs only at the rate at which
it maintains real-time operation. The result is that chunks of
events are not randomly lost within the communication pipeline;
instead the rate at which the algorithm can output a result is
reduced under high event-load. Our algorithms still typically
run at rates of 100 to 1,000 s of Hertz; higher than the frame-rate
of a standard camera. Importantly, the algorithm update-rate is
not bottlenecked by the sensor update-rate (e.g., a frame-based
camera), and the update-rate can be increased by adding compu-
tational power. The library classes ev::queueAllocator,
ev::tWinThread and ev::hSurfThread manage real-
time operation, and examples can be found in the documentation.

“Event-by-event” processing is also always possible in the YARP
event-driven library and can be used to enforce a deterministic
result to evaluate algorithm performance off-line, without the
need to consider real-time constraints.

3.4. Low-Level Processing
Processing modules take the raw AER data and extract useful,
higher-level information. The output of the modules will be a
stream of events augmented with the additional information, as
in Figure 2. The modules currently available in the event-driven
repository are:

• Optical Flow—an estimate of visual flow velocity is given
by the rate at which the position of events change over time.
Local velocity can be extracted by fitting planes to the resulting
spatiotemporal manifolds (Benosman et al., 2014). The vFlow
module converts the ED camera output ev::AddressEv-
ent to ev::FlowEvent.

• Cluster Tracking—The movement of an object across the visual
field of an ED camera produces a detailed, unbroken trace of
events. This module tracks clusters of events that belong to
the same trace (Valeiras et al., 2015). The cluster center and

distribution statistics is output from the vCluster module
as a ev::GaussianAE event.

• Corner Detection—using an event-driven Harris algorithm,
the event-stream is filtered to leave only the events on the
corners of objects (Vasco et al., 2016a). Corner events provide
unique features that can be tracked over time. Compared to a
traditional camera, the ED corner algorithm requires less pro-
cessing, as shown in Figure 3B. Corner events are represented
by ev::LabelledAEs.

• Circle Detection—detection of circular shapes in the event-
stream can be performed using an ED Hough transform. As the
camera moves on a robot, many background events clutter the
detection algorithm. The vCircle module reduces the
false positive detections by incorporating optical-flow
information (Glover and Bartolozzi, 2016). The detection
results are shown in Figure 3A. Circle events are described by
ev::GaussianAEs.

• Particle filtering—the particle filter achieves tracking that is
robust to variations in the speed of the target, by also sampling
within the temporal dimension (Glover and Bartolozzi, 2017).
Ball tracking is implemented and the results are shown in
Figure 3A.

The library also includes additional tools for:

• Camera Calibration—the intrinsic parameters of the camera
can be estimated using a static fiducial and standard visual
geometry techniques.

• Pre-processing—this module can apply a salt-and-pepper
filter, flipping horizontal/vertical axes, applying camera dis-
tortion removal, and splitting a combined stereo event-stream
into a left stream and a right stream.

• Visualization—the event-stream is asynchronous and does not
inherently form “images” that can be viewed in the same way
as a traditional camera. The vFramer uses a ev::Tempo-
ralWindow to accumulate events over time and produce a
visualization of the event-stream. Different drawing methods
exist for different event-types, which can be overlaid onto a
single image (as shown in Figure 1).

49

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

6

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

4. deMoNSTRATIoNS, Code,
ANd dATASeTS

The neuromorphic iCub and event-driven library have been
used for several studies and robot demonstrations that can be
run using yarpmanager. The modules are designed such that
the robot begins performing the task once all required modules
are running and the port connections have been made. Detailed
instructions on how to run the demonstrations are provided in
the online documentation2 available with the code3 on GitHub.
An xml file is provided for each application to correctly launch
and connect modules in yarpmanager. Known issues with the
applications can also be found online. An overview of some of the
applications is given below:

• Ball Gazing and Grasping—The module vCircle (desribed
more in Glover and Bartolozzi (2016)) or vParticleFil-
ter (described more in Glover and Bartolozzi (2017)) can be
used to produce events describing the visual position of a ball,
e.g., see Figure 3A. The vGazeDemo uses the iKinGazeC-
trl (Roncone et al., 2016) to calculate the 3D position of the
ball and the focus of the iCub’s gaze can be directed to the loca-
tion using the head and eye motors. Alternatively, the output
of the ball position can be sent to the classic DemoRedBall4
application to have the robot also move the arm to grasp the
ball.

• Stereo Vergence—Automatic control of stereo vergence of
the iCub to focus on an object within the field of view was
implemented using biologically inspired methods (Vasco et al.,
2016b). The vVergence application accepts stereo ev::Ad-
dressEvents and moves the vergence to minimize the response
of stereo Gabor filters.

• Attention and Micro-saccade—A simple, yet effective, atten-
tion module is demonstrated that only requires the presence
of events to perform a saccade to gaze at an external stimulus.
If the event-rate is instead below a threshold, the autosac-
cade application generates small eye movements to visualize
the static scene.

The documentation includes a project overview, instructions
to run demonstration applications, descriptions and parameters
of processing modules, and class and function descriptions. The
code is only dependent on YARP and uses the iCubContrib to
install the project in a manner compatible with YARP and iCub
environment.

2 http://robotology.github.io/event-driven/doxygen/doc/html/index.html.
3 https://github.com/robotology/event-driven.
4 https://github.com/robotology/icub-basic-demos.

Datasets of event-driven data can be found in the tutorials
section of the online documentation. The datasets consist of the
event-streams used in several of the experiments presented in
this paper. The datasets enable the processing of event-driven
algorithms if a physical camera is not available.

5. CoNCLUSIoN

This paper presents the YARP-integrated event-driven library,
specifically toward enabling ED robotics using a robot middle-
ware. The data structures, multi-threaded approach and algorithm
design are aimed toward real-time operation under a wide range
of conditions and in uncontrolled environment, toward robust
robotic behavior. The paper has presented the YARP interface,
the low-level vision algorithms, and the applications on the iCub
robot.

Event cameras are now available as an add-on plug-in and
new iCub robots can potentially come equipped with neuromor-
phic hardware; alongside traditional cameras, or as the sole form
of vision. Alternatively, the software package can be used through
a USB interface to the ATIS camera, or through off-line datasets.
The contribution of alternative camera interfaces is possible (and
welcome) as the processing modules are transparent to the source
of the events, and the package is provided as an open-source
project.

AUTHoR CoNTRIBUTIoNS

All authors contributed to the writing and proofing of the
article, as well as documentation of the code. CB was the major
contributor to the hardware interfaces and AG was the major con-
tributor to the libraries and applications. VV and MI contributed
to modules and applications.

ACKNoWLedGMeNTS

The authors would like to thank Ugo Pattacini, Charles Clerq,
and Francesco Rea for early contributions to the event-driven
libraries, and Francesco Diotalevi, Marco Maggiali, and Andrea
Mura for hardware and FPGA development, and for the integra-
tion of event cameras on the iCub.

FUNdING

This research has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 231467 (eMorph) and no. 284553 (SICODE).

ReFeReNCeS

Bartolozzi, C., Rea, F., Clercq, C., Hofstätter, M., Fasnacht, D., Indiveri, G.,
et al. (2011). “Embedded neuromorphic vision for humanoid robots,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (Colorado Springs, CO: IEEE),
129–135.

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2014).
Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417.
doi:10.1109/TNNLS.2013.2273537

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., and Delbruck, T.
(2009). “A pencil balancing robot using a pair of AER dynamic vision sensors,”
in IEEE International Symposium on Circuits and Systems (Taipei, Taiwan),
781–784.

Delbruck, T. (2008). “Frame-free dynamic digital vision,” in Proceedings of
International Symposium on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society (Tokyo, Japan), 21–26.

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4%
CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223.
doi:10.3389/fnins.2013.00223

50

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://robotology.github.io/event-driven/doxygen/doc/html/index.html
https://github.com/robotology/event-driven
https://github.com/robotology/icub-basic-demos
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.3389/fnins.2013.00223

7

Glover et al. The Event-Driven YARP Library

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 73

Glover, A., and Bartolozzi, C. (2016). “Event-driven ball detection and gaze fixa-
tion in clutter,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Daejeon, South Korea), 2203–2208.

Glover, A., and Bartolozzi, C. (2017). “Robust visual tracking with a freely-moving
event camera,” in IEEE International Conference on Intelligent Robots and
Systems (Vancouver, Canada: IEEE).

Hoffmann, R., Weikersdorfer, D., and Conradt, J. (2013). “Autonomous indoor
exploration with an event-based visual SLAM system,” in European Conference
on Mobile Robots, ECMR 2013 – Conference Proceedings (Barcelona, Spain),
38–43.

Kim, H., Leutenegger, S., and Davison, A. J. (2016). “Real-time 3D reconstruc-
tion and 6-DoF tracking with and event camera,” in European Conference on
Computer Vision, Amsterdam, 349–364.

Kueng, B., Mueggler, E., Gallego, G., and Scaramuzza, D. (2016). “Low-latency
visual odometry using event-based feature tracks,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Daejeon, South Korea).

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). An 128x128 120dB
15μs-latency temporal contrast vision sensor. IEEE J. Solid State Circuits 43,
566–576. doi:10.1109/JSSC.2007.914337

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 043–048. doi:10.5772/5761

Mortara, A. (1998). “A pulsed communication/computation framework for analog
VLSI perceptive systems,” in Neuromorphic Systems Engineering, ed. T. Lande
(Norwell, MA: Kluwer Academic), 217–228.

Mueggler, E., Gallego, G., and Scaramuzza, D. (2015). “Continuous-time trajectory
estimation for event-based vision sensors,” in Proceedings of Robotics: Science
and Systems, Rome. doi:10.15607/RSS.2015.XI.036

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Régnier, S. (2012). Asynchronous
event-based visual shape tracking for stable haptic feedback in microrobotics.
IEEE Trans. Robot. 28, 1081–1089. doi:10.1109/TRO.2012.2198930

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.
doi:10.1109/JSSC.2010.2085952

Rea, F., Metta, G., and Bartolozzi, C. (2013). Event-driven visual attention for the
humanoid robot iCub. Front. Neurosci. 7:234. doi:10.3389/fnins.2013.00234

Rebecq, H., Horstschaefer, T., Gallego, G., and Scaramuzza, D. (2016). EVO: a
geometric approach to event-based 6-DoF parallel tracking and mapping in
real-time. IEEE Robot. Autom. Lett. 2, 593–600. doi:10.1109/LRA.2016.2645143

Roncone, A., Pattacini, U., Metta, G., and Natale, L. (2016). “A cartesian 6-DoF gaze
controller for humanoid robots,” in Proceedings of Robotics: Science and Systems,
AnnArbor. doi:10.15607/RSS.2016.XII.022

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and
MNIST-DVS. Their history, how they were made, and other details. Front.
Neurosci. 9:481. doi:10.3389/fnins.2015.00481

Valeiras, D. R., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S.-H., and Benosman, R.
(2015). “An asynchronous neuromorphic event-driven visual part-based
shape tracking,” in IEEE Transactions on Neural Networks and Learning
Systems, 1–15. Available at: http://ieeexplore.ieee.org/document/7063246/

Vasco, V., Glover, A., and Bartolozzi, C. (2016a). “Fast event-based Harris cor-
ner detection exploiting the advantages of event-driven cameras,” in IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (Daejeon,
South Korea), 4144–4149.

Vasco, V., Glover, A., Tirupachuri, Y., Solari, F., Chessa, M., and Bartolozzi, C.
(2016b). “Vergence control with a neuromorphic iCub,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids) (Cancun, Mexico:
IEEE), 732–738.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Glover, Vasco, Iacono and Bartolozzi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

51

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.5772/5761
https://doi.org/10.15607/RSS.2015.XI.036
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.3389/fnins.2013.00234
https://doi.org/10.1109/LRA.2016.
2645143
https://doi.org/10.15607/RSS.2016.XII.022
https://doi.org/10.3389/fnins.2015.00481
http://ieeexplore.ieee.org/document/7063246/
http://creativecommons.org/licenses/by/4.0/

February 2018 | Volume 5 | Article 101

Code
published: 12 February 2018

doi: 10.3389/frobt.2018.00010

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Tadahiro Taniguchi,

Ritsumeikan University, Japan
Anna Pribilova,

Slovak University of Technology in
Bratislava, Slovakia

*Correspondence:
Leonardo Badino

leonardo.badino@iit.it

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 09 August 2017
Accepted: 23 January 2018

Published: 12 February 2018

Citation:
Higy B, Mereta A, Metta G and

Badino L (2018) Speech Recognition
for the iCub Platform.
Front. Robot. AI 5:10.

doi: 10.3389/frobt.2018.00010

Speech Recognition for the iCub
Platform
Bertrand Higy1,2, Alessio Mereta3, Giorgio Metta1 and Leonardo Badino4*

1 iCub Facility, Istituto Italiano di Tecnologia, Genoa, Italy, 2 Università di Genova, Genoa, Italy, 3 Advanced Concepts Team,
European Space Agency, Noordwijk, Netherlands, 4 Center for Translational Neurophysiology of Speech and Communication,
Istituto Italiano di Tecnologia, Ferrara, Italy

This paper describes open source software (available at https://github.com/robotology/
natural-speech) to build automatic speech recognition (ASR) systems and run them
within the YARP platform. The toolkit is designed (i) to allow non-ASR experts to easily
create their own ASR system and run it on iCub and (ii) to build deep learning-based
models specifically addressing the main challenges an ASR system faces in the context
of verbal human–iCub interactions. The toolkit mostly consists of Python, C++ code
and shell scripts integrated in YARP. As additional contribution, a second codebase
(written in Matlab) is provided for more expert ASR users who want to experiment with
bio-inspired and developmental learning-inspired ASR systems. Specifically, we provide
code for two distinct kinds of speech recognition: “articulatory” and “unsupervised”
speech recognition. The first is largely inspired by influential neurobiological theories of
speech perception which assume speech perception to be mediated by brain motor
cortex activities. Our articulatory systems have been shown to outperform strong deep
learning-based baselines. The second type of recognition systems, the “unsupervised”
systems, do not use any supervised information (contrary to most ASR systems, includ-
ing our articulatory systems). To some extent, they mimic an infant who has to discover
the basic speech units of a language by herself. In addition, we provide resources
consisting of pre-trained deep learning models for ASR, and a 2.5-h speech dataset of
spoken commands, the VoCub dataset, which can be used to adapt an ASR system to
the typical acoustic environments in which iCub operates.

Keywords: automatic speech recognition, yarp, tensorflow, code:python, code:matlab, code:C++

1. INTRodUCTIoN

Several applications use speech to give instructions to iCub, often relying on proprietary software.
However, the robot operates in specific conditions where those systems may perform poorly. An
open and easy-to-use system that would reliably recognize commands in this context would thus be
a very desirable tool. We present here a first codebase, henceforth iCubRec, which has been built to
provide such services to the community of iCub users. It allows to train and run state-of-the-art deep
neural network (DNN)-based automatic speech recognition (ASR).

As an additional contribution, a second codebase, henceforth bioRec, allows to experiment with
novel DNN-based recognition systems that share the same bio-inspired and developmental learning
view that gave birth to iCub (Lungarella et al., 2003). bioRec is self-contained and independent of
iCubRec, however its DNN-based acoustic models can effortlessly be used within iCubRec.

52

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00010&domain=pdf&date_stamp=2018-02-12
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00010
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:leonardo.badino@iit.it
https://doi.org/10.3389/frobt.2018.00010
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00010/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00010/full
http://loop.frontiersin.org/people/464963
http://loop.frontiersin.org/people/79905
http://loop.frontiersin.org/people/75776
https://github.com/robotology/natural-speech
https://github.com/robotology/natural-speech

2

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

Finally, in addition to the code, we are also providing resources
to facilitate the implementation of a command recognizer: (i) the
VoCub dataset, a dataset of registered vocal commands and (ii)
pre-trained Gaussian Mixture Model (GMM)- and DNN-based
acoustic models to perform recognition.

Our code, as well as the resources, is released under GPLv3
license. The code is available at https://github.com/robotology/
natural-speech (doi: 10.5281/zenodo.1064043).

2. iCubRec

2.1. Application and Utility
An ASR system for iCub typically operates in challenging condi-
tions. We have identified three specific factors which we want the
system to be robust to:

•	 noise; the robot often operates in noisy environments
(e.g., noisy servers and computers running, concurrent speak-
ers, the robot itself generating noise).

•	 accents; the teams working with iCub are international and
the robot needs to recognize spoken commands uttered with a
wide variety of foreign accents.

•	 distance and movement; distant speech recognition is an
important research topic in ASR and has been the focus of
many recent challenges (e.g., the Chime4 challenge1). When
the speaker–microphone distance increases, the speech
signal-to-noise ratio decreases and signal distortions due to
reverberation (in indoor environments) increases. A non-fixed
distance, due to a moving speaker and/or microphone, adds
further complexity to the task.

Although deep learning has recently produced excellent results
in ASR, it still suffers the training-testing mismatched conditions
problem. Proprietary ASR systems may perform poorly in the
aforementioned acoustic/speech conditions mainly because
such conditions are not well covered by their training datasets.
We have addressed this problem by building a dataset (VoCub
dataset) that covers such conditions and by providing tools to
easily adapt a DNN to it.

Other than robust, an ASR system for iCub should be easy-to-
use, open, and modular. Usability is necessary to allow all iCub
mindware developers, who mostly have no ASR background,
to train and run ASR on iCub. For this reason, we provide pre-
trained GMM- and DNN-based acoustic models that can be used
out of the box with the existing code. At the same time, we want
more advanced users to easily modify and adapt the code to their
own needs. This can only be done if everything is open and well
modularized.

2.2. Methods
To facilitate the understanding of the iCubRec module for non-ASR
experts we provide here the definition of few basic ASR terms.
A standard ASR system consists of 4 main parts: an acoustic fea-
ture extraction step which extracts spectral features from the input
acoustic waveform; an acoustic model which relates the extracted

1 http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/.

features to sub-words (e.g., phonemes, such as consonants and
vowels) and then words (i.e., computes the likelihood that vectors
of features are generated by a candidate word); a language model,
which is independent of the acoustic signals and incorporates
prior knowledge about a specific language (e.g., the probability
that the word “barks” follows the word “dog”); and a speech
decoder which performs word recognition by computing the most
probable sequence of words of the utterance, given: (a) the acoustic
model; (b) the language model; (c) the dictionary, which consists
of all words the system has to recognize along with their phoneme
transcriptions. Acoustic modeling is usually done using a Hidden
Markov Model (HMM) which is well suited for sequential data
like speech. HMMs combine transition probabilities (i.e., p(st | st–1)
where st is a phone label at time t) with observation probabilities
(i.e., p(ot | st), where ot is the input vector of acoustic feature at
time t). The core difference between classical GMM-HMM vs.
hybrid DNN-HMM acoustic models simply resides on whether
GMMs or DNNs are used to compute the observation probabilities.

2.3. Code description
iCubRec code is based on the Hidden Markov Model Toolkit (HTK)
(Young et al., 2015). However, as the training capabilities for DNNs
are still quite limited in HTK, we also consider the alternative pos-
sibility to train a network with Tensorflow (Abadi et al., 2015) and
convert it to HTK format for use in decoding. Although in the later
case the DNN is still restricted to the architectures recognized by
HTK (for now, only feedforward networks with a limited set of
activation functions), this gives more flexibility and control over
the training process. Additionally, the use of Tensorflow allows to
easily adapt a pre-trained DNN to new adaptation data.

The code consists of scripts for:

•	 acoustic model training with GMMs
•	 acoustic model training with DNNs
•	 speech decoding
•	 integration within YARP for online speech decoding.

iCubRec is a combination of Python 3, Perl and shell scripts,
and was written for HTK 3.5 and Tensorflow 1.0.

2.3.1. GMM-Based Acoustic Modeling
Before the advent of DNNs, GMM-HMM systems were state-of-
the-art for acoustic modeling in speech recognition. Although
they are significantly outperformed by neural networks (Dahl
et al., 2012; Seltzer et al., 2013), GMMs are still widely used if only
to compute the phone labels/speech segments alignments needed
to train a DNN (Dahl et al., 2012). The folder gmm_training
provides a set of scripts to train GMM-HMMs using HTK. These
scripts are based on Keith Vertanen’s code (Vertanen, 2006) and
allow to build models similar to the ones described by Woodland
et al. (1994). The recipe is originally intended for TIMIT (Garofolo
et al., 1993a) and Wall Street Journal (WSJ) (Garofolo et al.,
1993b) datasets and has been adapted for the Chime4 challenge
(Vincent et al., 2016) and VoCub datasets.

2.3.2. DNN-Based Acoustic Modeling
Once the speech signal has been aligned (presumably using
GMM-HMMs), a DNN-based model can be trained. Two

53

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/natural-speech
https://github.com/robotology/natural-speech
https://doi.org/10.5281/zenodo.1064043
http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/

TABLe 1 | Examples of the commands used in the VoCub dataset.

I will teach you a new object.
This is an octopus.
What is this?
Let me show you how to reach the car with your left arm.
Let me show you how to reach the turtle with your right arm.
There you go.
Grasp the ladybug.
Where is the car?
No, here it is.
See you soon.

3

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

alternatives are available: (i) using the scripts in dnn_train-
ing/htk to train a model with HTK or (ii) using the code under
dnn_training/tf to train the net with Tensorflow. The
scripts proposed here are currently restricted to TIMIT and WSJ,
but support for additional datasets will be added soon.

2.3.3. Speech Decoding
With a model trained with HTK (GMM-based or DNN-based),
it is then straightforward to perform recognition on a new utter-
ance. The folder offline_decoding provides an example of
decoding on pre-recorded data with HTK. Additionally, export
for_htk.py shows how to easily extract the parameters of a
net trained with Tensorflow and convert them into HTK format.

2.3.4. Integration with YARP
All the code presented so far is meant to train and test a system
offline. yarp_decoding folder provides the modules neces-
sary to use an existing model within YARP and perform online
recognition. A streaming service based on yarp.js2 allows to
record sound from any device equipped with a microphone and
a web browser. Two other modules are provided: rctrld_yar-
phear_asr which saves the recorded data in a file, and the
decoder (based on HVite tool from HTK) for feature extraction
and command decoding. The application speechrec.xml is
available to easily run and connect all the modules.

2.4. Resources
2.4.1. The VoCub Dataset
Recording a dataset has two main advantages: (i) it allows to
easily test the recognition system and to reliably estimate its
performance in real conditions and (ii) can be used to adapt the
system in order to reduce the training/testing mismatch problem.
For this reasons, we have recorded examples of the commands
we want to recognize within real-usage scenarios. That resulted
in the VoCub dataset.3

The recordings consist of spoken English commands addressed
to iCub. There are 103 unique commands (see Table 1 for some
examples), composed of 62 different words. We recorded 29
speakers, 16 males and 13 females, 28 of them are non-native
English speakers. We finally obtained 118 recordings from each
speaker: of the 103 unique commands, 88 were recorded once,

2 https://github.com/robotology/yarp.js.
3 Freely available at https://robotology.github.io/natural-speech/vocub/.

and 15 twice (corresponding to sentences containing rare words).
This results in about 2 h and 30 min of recording in total.

A split of the speakers into training, validation, and test sets is
proposed with 21, 4, and 4 speakers per set, respectively. The files
are organized with the following convention setid/spkrid/
spkrid_cond_recid.wav, where:

•	 setid identifies the set: tr for training, dt for validation and
et for testing.

•	 spkrid identifies the speaker: from 001 to 021 for training,
101 to 104 for validation and 201 to 204 for testing.

•	 cond identifies the condition (see below).
•	 recid identifies the record within the condition (starting

from 0 and increasing).

The commands were recorded in two different conditions, a
non-static (cond = 1) and a static condition (cond = 2), with an
equal number of recorded utterances per condition.

In the static condition, the speaker sat in front of two screens
where the sentences to read were displayed. In the non-static
condition, the commands were provided to the subject verbally
through a speech synthesis system, and the subject had to repeat
them while performing a secondary manual task. This secondary
task was designed to be simple enough to not impede the utter-
ance repetition task, while requiring people to move around the
robot. The distance between the speaker and the microphone in
this last condition ranges from 50 cm to 3 m.

We also registered a set of additional sentences for the test-
ing group (same structure but different vocabulary) to test the
recognition system for new commands not seen during training.
The sentences consist of 20 new commands, pronounced by
each speaker of the test set twice: once in non-static condition
(cond = 3) and once in static condition (cond = 4).

2.4.2. Trained Models
As not all the datasets used in our scripts are freely available, and
in order to ease the use of our system, we provide pre-trained
acoustic models that can be used out of the box. The models/
README.md file contains links to download GMM-based mod-
els trained on WSJ, Chime4 and VoCub datasets, and DNN-based
models trained on TIMIT and WSJ. Additional DNN-based
models will be added in the future. Further details about the
different models and the precise training procedure can be found
in the same file.

2.5. example of Use
A good demonstration of the capabilities of the code presented so
far is given in the file icubrec/DEMO.md. In a few simple steps,
the user is shown how to perform offline decoding on the VoCub
dataset with a pre-trained model. This example is accessible to
novice ASR users and does not require any proprietary dataset.

A more in-depth example is given in icubrec/TUTORIAL.
md, which provides detailed instruction on how to train a full
ASR system on the WSJ dataset. This tutorial goes through all
the main steps: training of a GMM-based acoustic model, com-
putation of the alignments, training of a DNN-based acoustic
model using those alignments, and finally decoding of the test
sentences.

54

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/yarp.js
https://robotology.github.io/natural-speech/vocub/

FIGURe 1 | An example of articulatory phone recognition. Here, the simplest strategy available in phonerec is shown. ot is a vector of acoustic features, while st is
a phone state.

4

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

3. bioRec

3.1. Application and Utility
Our module for bio- and cognitive science-inspired ASR is com-
posed of two distinct parts serving different purposes: Articulatory
Phone Recognition and Unsupervised/Developmental ASR.

3.1.1. Articulatory Phone Recognition
This part includes modules phonerec and pce_phonerec,
which build articulatory phone recognition systems. A phone
recognition system recognizes the sequence of phones of
an utterance. It can roughly be identified as an ASR system
without language model and dictionary. Articulatory phone
recognition uses prior information about how the vocal tract
moves when producing speech sounds. This articulatory view
is strongly motivated by influential neurobiological theories
of speech perception that assume a contribution of the brain
motor cortex to speech perception (Pulvermüller and Fadiga,
2010) and have been shown to outperform strong DNN-based
baselines where no prior articulatory information is used (see,
e.g., Badino et al. (2016)).

3.1.2. Unsupervised/Developmental ASR
The second part of bioRec, zerorchallenge, builds “unsu-
pervised” ASR systems. Most recognition systems, including
the articulatory systems, are trained on supervised data, where
training utterances are associated to phonetic transcriptions, and
the inventory of phones is given. This learning setting is far easier
than the learning setting of an infant who has to acquire her native
language and has to discover the basic units of the language on her
own. In order to better understand how an infant can acquire the
phone inventory during development from raw “unsupervised”

utterances, we have created “unsupervised” ASR systems that
were submitted and evaluated at the 1st Zero Resource Speech
Challenge (ZRS challenge) (Versteegh et al., 2015).

3.2. Methods
3.2.1. Articulatory Phone Recognition
The articulatory phone recognition module consists of 2 parts
depending on how speech production information is represented:

•	 phonerec; speech production is represented in the form
of actual measurements of vocal tract movements, collected
through instruments such as the electromagnetic articulo-
graph (Richmond et al., 2011);

•	 pce_phonerec; vocal tract movements are initially
described by discrete linguistic features and actual measure-
ments are not used.

phonerec: in this module, prior information of speech
production is built by learning, during training, an acoustic-to-
articulatory mapping that allows to recover vocal tract move-
ments, i.e., reconstructed articulatory features (AFs), from the
acoustic signal (Badino et al., 2012, 2016). The reconstructed
AFs are then appended to the usual input acoustic vector of the
DNN that computes phone state posterior probabilities, i.e., the
acoustic model DNN (see Figure 1, which shows the simplest
strategy). Additionally, our code allows to apply autoencoder
(AE)-based transformations to the original AFs in order to
improve performance. AEs are a special kind of DNN that attempts
to reconstruct its input after encoding it, typically through a lossy
encoding. More details and evaluation results can be found in
Badino et al. (2016).

pce_phonerec: in this module, AFs are derived (through
a DNN) from linguistic discrete features (referred to as phonetic

55

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIGURe 2 | Overview of the AE-based approach to sub-word learning.

5

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

context embedding). They are used as secondary target for the
acoustic model DNN within a multi-task learning (MTL) strategy
(Caruana, 1997). This strategy forces the DNN to learn a motor
representation without the need for time-consuming collection
of actual articulatory data. Our approach outperforms strong
alternative MTL-based approaches (Badino, 2016).

3.2.2. Unsupervised/Developmental ASR
zerorchallenge is the module building the unsupervised/
developmental ASR systems we submitted to Task1 of the ZRS
challenge at Interspeech 2015 (Versteegh et al., 2015). The goal
of the challenge was to compare systems that create new acoustic
representations that can discriminate examples of minimal pairs,
i.e., words differing only in one phoneme (e.g., “hat” vs. “had”),
while identifying as a single entity different examples of a same
word. Specifically, we focused on extracting discrete/symbolic
representations, which equals to automatically discovering the
inventory of (phone-like) sub-words of a language. Our core
strategy is based on AEs (Badino et al., 2014), as shown in
Figure 2. The provided scripts build 2 novel systems, one based
on binarized AEs and one on Hidden Markov Model Encoders
(HMM-Encoders) (Badino et al., 2015).

A binarized AE is an AE whose encoding layer nodes are
binary. At each time step, it transforms a vector of real-valued
acoustic features into a vector of binary units which in turn is
associated to a positive integer corresponding to a discovered
specific sub-word.

The HMM-Encoder combines an AE with a HMM.4 An
approach solely based on AEs ignores the sequential nature of
speech and inter-sub-word dependencies. The HMM-Encoder
was proposed to specifically address these potential weaknesses.

3.3. Code description and example of Use
All code is written in Matlab and uses the Parallel Processing
Toolbox to allow fast DNN training with GPUs. All modules were
tested in Matlab 2013a and 2015a.

4 Our HMM training code is a modified version of code from K. Murphy’s
BayesianNet toolbox, available at https://github.com/bayesnet/bnt.

3.3.1. Articulatory Phone Recognition
phonerec: the file ploclassify.m allows to train and
test articulatory phone recognition systems. It requires the
inivar.m configuration file where it is possible to define,
e.g., the type of AFs through cmotortype (e.g., AE-transformed
AFs or “plain” AFs), the hyperparameters of the acoustic model
DNN (parnet_classifier), and of the acoustic-to-articula-
tory mapping DNN (parnet_regress).

The folder demo contains 2 examples to build and evaluate a
baseline (audio1_motor0_rec0) and an articulatory phone
recognition system (audio1_motor3_rec1) on the mngu0
dataset (Richmond et al., 2011). The dataset used here (available
at https://zenodo.org/record/836692/files/bioRec_Resources.tar.
gz, under /bioRec_Resources/phonerec_mngu0/) is a
preprocessed version of the mngu0 dataset.

pce_phonerec: this articulatory phone recognition sys-
tem is trained and evaluated by running mtkpr_pce.m. It can
be compared with an alternative MTL-based strategy proposed
by Microsoft researchers (Seltzer and Droppo, 2013), by running
the script mtkpr_baseline.m. All systems are trained and
tested on the TIMIT dataset, which unfortunately is not freely
available. Training on different datasets would require some small
dataset-dependent modifications to the look-up table used to
extract discrete linguistic features from phone names.

We have created a Python + Tensorflow implementation the
DNN training proposed in this module which will be soon available.

3.3.2. Unsupervised/Developmental ASR
We provide scripts that receive as input one of the datasets provided
by the ZRS challenge, train one of the unsupervised ASR systems
(on the training utterances), and return the testing utterances in
a new discrete representation with a positive integer at each time
step. We additionally provide the 3 datasets from the ZRS chal-
lenge already transformed to be processed by our scripts (avail-
able at https://zenodo.org/record/836692/files/bioRec_Resources.
tar.gz, under /bioRec_Resources/zerochallenge/). The
output format allows to evaluate the output file with the tools
provided for the challenge (Versteegh et al., 2015).

3.3.3. Utilities
All utilities used by the phonerec, pce_phonerec, and
zerorchallenge are in:

•	 netutils: contains functions to train and run DNNs,
e.g., standard DNN training, Deep Belief Network-based DNN
pretraining (Hinton et al., 2006), MTL training, DNN forward
pass (i.e., to evaluate a DNN), deep autoencoder training,
including training of some AEs we have recently proposed
specifically for speech.

•	 utils: this folder contains all utilities that do not pertain to
DNNs. These include: data loading and normalization, phone
language models computation, Viterbi-based phone decoding,
phone error rate computation, and analysis of error.

4. CoNCLUSIoN

In this paper, we have described the codebase that allows to
easily train deep neural network-based automatic speech

56

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/bayesnet/bnt
https://zenodo.org/record/836692/files/bioRec_Resources.tar.gz
https://zenodo.org/record/836692/files/bioRec_Resources.tar.gz
https://zenodo.org/record/836692/files/bioRec_Resources.tar.gz
https://zenodo.org/record/836692/files/bioRec_Resources.tar.gz

6

Higy et al. Speech Recognition for the iCub Platform

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 10

recognition systems and run them within YARP. As an addi-
tional contribution, we provide tools to experiment with rec-
ognition systems that are inspired by recent influential theories
of speech perception and with systems that partly mimic the
learning setting of an infant who has to learn the basic speech
units of a language.

eTHICS STATeMeNT

This study was carried out in accordance with the recommenda-
tions of the “Comitato Etico per la Sperimentazione con l’Essere
Umano della ASL 3 di Genova” with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the “Comitato Etico per la Sperimentazione con
l’Essere Umano della ASL 3 di Genova.”

AUTHoR CoNTRIBUTIoNS

Conceived and designed the ASR systems: LB, GM, BH, and AM.
Wrote the code: LB, BH, and AM. Wrote the paper: BH and LB.

FUNdING

The authors acknowledge the support of the European Com-
mission project POETICON++ (grant agreement No. 288382)
and ECOMODE (grant agreement No. 644096).

SUPPLeMeNTARY MATeRIAL

The Supplementary Material for this article can be found online
at http://www.frontiersin.org/articles/10.3389/frobt.2018.00010/
full#supplementary-material.

ReFeReNCeS

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv
preprint arXiv:1603.04467.

Badino, L. (2016). “Phonetic context embeddings for DNN-HMM phone recogni-
tion,” in Proc. of Interspeech (San Francisco, CA).

Badino, L., Canevari, C., Fadiga, L., and Metta, G. (2012). “Deep-level acoustic-
to-articulatory mapping for DBN-HMM based phone recognition,” in Proc. of
IEEE SLT (Miami, FL).

Badino, L., Canevari, C., Fadiga, L., and Metta, G. (2014). “An auto-encoder based
approach to unsupervised learning of subword units,” in Proc. of IEEE ICASSP
(Florence, Italy).

Badino, L., Canevari, C., Fadiga, L., and Metta, G. (2016). Integrating articulatory
data in deep neural network-based acoustic modeling. Comput. Speech Lang.
36, 173–195. doi:10.1016/j.csl.2015.05.005

Badino, L., Mereta, A., and Rosasco, L. (2015). “Discovering discrete subword units
with binarized autoencoders and hidden-Markov-model encoders,” in Proc. of
Interspeech (Dresden, Germany).

Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41–75. doi:10.1023/
A:1007379606734

Dahl, G., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Trans.
Audio Speech Lang. Processing 20, 30–42. doi:10.1109/TASL.2011.2134090

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., Dahlgren, N. L.,
et al. (1993a). TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93s1.
Web Download. Philadelphia: Linguistic Data Consortium.

Garofolo, J., Graff, D., Paul, D., and Pallett, D. (1993b). CSR-I (WSJ0) Complete
LDC93s6a. Web Download. Philadelphia: Linguistic Data Consortium.

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural Comput. 18, 1527–1554. doi:10.1162/neco.2006.18.7.1527

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental robot-
ics: a survey. Connect. Sci. 15, 151–190. doi:10.1080/09540090310001655110

Pulvermüller, F., and Fadiga, L. (2010). Active perception: sensorimotor circuits as a
cortical basis for language. Nat. Rev. Neurosci. 11, 351–360. doi:10.1038/nrn2811

Richmond, K., Hoole, P., and King, S. (2011). “Announcing the electromagnetic
articulography (day 1) subset of the mngu0 articulatory corpus,” in Proc. of
Interpseech (Florence, Italy).

Seltzer, M., and Droppo, J. (2013). “Multi-task learning in deep neural networks for
improved phoneme recognition,” in Proc. of ICASSP (Vancouver, BC).

Seltzer, M., Yu, D., and Wan, Y. (2013). “An investigation of deep neural networks
for noise robust speech recognition,” in Proc. of ICASSP (Vancouver, BC).

Versteegh, M., Thiolliere, R., Schatz, T., Cao, X. N., Anguera, X., Jansen, A., et al.
(2015). “The zero resource speech challenge 2015,” in Proc. of Interspeech
(Dresden, Germany).

Vertanen, K. (2006). Baseline WSJ Acoustic Models for HTK and Sphinx: Training
Recipes and Recognition Experiments. Technical Report. Cambridge, UK:
Cavendish Laboratory.

Vincent, E., Watanabe, S., Nugraha, A. A., Barker, J., and Marxer, R. (2016). An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition. Comput. Speech Lang. 46, 535–557. doi:10.1016/j.
csl.2016.11.005

Woodland, P., Odell, J., Valtchev, V., and Young, S. (1994). “Large vocabulary
continuous speech recognition using HTK,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1994. ICASSP-94, Vol. ii (Adelaide,
SA), II/125–II/128.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., et al. (2015). The
HTK Book (for HTK Version 3.5). Cambridge University Engineering Department.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors, GM.

Copyright © 2018 Higy, Mereta, Metta and Badino. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

57

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/articles/10.3389/frobt.2018.00010/full#supplementary-material
http://www.frontiersin.org/articles/10.3389/frobt.2018.00010/full#supplementary-material
arXiv preprint arXiv:1603.04467
arXiv preprint arXiv:1603.04467
https://doi.org/10.1016/j.csl.2015.05.005
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1080/09540090310001655110
https://doi.org/10.1038/nrn2811
https://doi.org/10.1016/j.csl.2016.11.005
https://doi.org/10.1016/j.csl.2016.11.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

February 2018 | Volume 5 | Article 51

Code
published: 16 February 2018

doi: 10.3389/frobt.2018.00005

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Maxime Petit,

Imperial College London,
United Kingdom

Reviewed by:
Daniel Camilleri,

University of Sheffield,
United Kingdom

Ayse Kucukyilmaz,
University of Lincoln,

United Kingdom

*Correspondence:
Marco Randazzo

marco.randazzo@iit.it

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 20 August 2017
Accepted: 16 January 2018

Published: 16 February 2018

Citation:
Randazzo M, Ruzzenenti A and

Natale L (2018) YARP-ROS
Inter-Operation in a 2D Navigation

Task.
Front. Robot. AI 5:5.

doi: 10.3389/frobt.2018.00005

YARP-RoS Inter-operation
in a 2d Navigation Task
Marco Randazzo*, Andrea Ruzzenenti and Lorenzo Natale

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

This paper presents some recent developments in YARP middleware, aimed to improve
its integration with ROS. They include a new mechanism to read/write ROS transform
frames and a new set of standard interfaces to intercommunicate with the ROS navi-
gation stack. A novel set of YARP companion modules, which provide basic navigation
functionalities for robots unable to run ROS, is also presented. These modules are
optional, independent from each other, and they provide compatible functionalities to
well-known packages available inside ROS framework. This paper also discusses how
developers can customize their own hybrid YARP-ROS environment in the way it best
suits their needs (e.g., the system can be configured to have a YARP application sending
navigation commands to a ROS path planner, or vice versa). A number of available
possibilities is presented through a set of chosen test cases applied to both real and
simulated robots. Finally, example applications discussed in this paper are also made
available to the community by providing snippets of code and links to source files hosted
on github repository https://github.com/robotology.1

Keywords: YARP, autonomous navigation, SLAM, mobile robots, iCub, R1, RoS, C++ interfaces

1. INTRodUCTIoN

YARP is an open-source robotics middleware, specifically designed to be modular, non-invasive,
and flexible. It promotes software re-usability by means of abstract interfaces and modular software
paradigms, and it allows to distribute computational tasks across a system by offering multi-platform
network communication primitives (Fitzpatrick et al., 2014).

YARP development is historically correlated to the iCub robot (Metta et al., 2010; Natale
et al., 2016), a child-sized humanoid platform for the study of cognitive robotics. In these
years, the iCub community focused its attention on topics such as human–robot interaction,
visual attention, machine learning, object manipulation, and grasping. Balancing a bipedal walk-
ing robot like iCub is a problem that has been addressed only recently by some research groups
(Hu et al., 2016; Nava et al., 2016). This is the reason why a standard navigation interface was missing
in YARP so far.

On the other side, ROS, an Ubuntu-based middleware developed around the PR2 wheeled robot,
addressed the problem of making a mobile platform to navigate into a 2D environment from the
very beginning (Quigley et al., 2009; Cousins, 2010). Over the past years, the ROS navigation stack
has grown in comprehensiveness, wrapping or including bindings to basically all state-of-the-art
algorithms and third-party libraries (Marder-Eppstein et al., 2010).

This paper has two goals. First, to provide the YARP community a way to re-use the massive
amount of code that has been developed within the ROS community. Second, Yarp is a multi-
platform framework which can run on Windows, Linux and MacOs, while ROS is currently limited

1 http://doi.org/10.5281/zenodo.1116278.

58

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00005&domain=pdf&date_stamp=2018-02-16
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00005
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:marco.randazzo@iit.it
https://doi.org/10.3389/frobt.2018.00005
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00005/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00005/full
http://loop.frontiersin.org/people/134406
http://loop.frontiersin.org/people/470002
http://loop.frontiersin.org/people/36032
https://github.com/robotology
http://doi.org/10.5281/zenodo.1116278

FIgURe 1 | Typical scenario in which multiple YARP modules, each of them instantiating its own yarp::dev::transfomClient, communicate with a single
yarp::dev::transformServer. The latter is responsible for synchronizing YARP transforms with ROS data, publishing and subscribing to /tf and /tf_static
topics.

2

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

to Ubuntu-based systems. Thus, Yarp can be used to interface
applications belonging to the two different frameworks and run-
ning on different operating systems. This goal is accomplished
through a set of dedicated YARP classes and interfaces, as shown
in the following sections.

2. YARP/RoS INTeRFACe

2.1. YARP Ports and RoS Topics
YARP inter-module communication is traditionally imple-
mented through network objects called ports. In a typical usage
scenario, a sender module opens an output port (identified by a
symbolic name, registered onto a nameserver) and writes data
to it. Analogously, a receiver module, which wants to perform
a read operation, opens an input port with a different symbolic
name. Sender and receiver are thus decoupled, and the user is
responsible for making connections/disconnections between the
two ports.

In ROS, inter-module communication is obtained through a
publisher/subscriber paradigm, based on the concept of topic. The
subscriber manifests its intention of receiving a specific stream of
data by registering to a topic, without caring about the identity
of the node (or nodes) that is actually publishing it. Connections
are not managed by the user but by a central authority, called ROS
Master, which also checks if publishers and receivers comply on
the same data format. Indeed, ROS communication is strongly
typed and it employs a set of standard formats defined in message
(.msg) files.

The possibility to communicate natively with ROS has
been recently integrated into YARP. Special classes such as
yarp::os::Node, yarp::os::Publisher, and

yarp::os::Subscriber have been introduced to allow a
user to handle ROS topics. Additionally, a specialized converter,
namely yarpidl_rosmsg, was developed to automatically generate
C++ header files from ROS.msg files and to allow the usage of
ROS data types inside YARP.

An example of a YARP module directly publishing data onto
a ROS topic, without linking any external ROS library, is shown
in Section I in Supplementary Material.

2.2. TransformServer and TransformClient
Tf is a ROS package which allows a distributed system to keep
track of multiple coordinate frames over time. For example, a
module may be able to compute and publish the transformation
from reference frame /a to reference frame /b while a different
module may be able to publish the transformation from frame
/b to frame /c. By subscribing to the /tf topic, a third module can
retrieve the broadcasted transforms and compute the resulting
transformation from /a to /c.

This mechanism is pervasive in all ROS. Remarkable applica-
tion examples are move-it (a motion planning framework for
mobile manipulation), Rviz (a 3D visualization tool), and the
ROS navigation stack. In this latter case, tf is typically used to
keep track of the estimated robot position with respect to an
odometry reference frame or to a map origin. Thus, it is clear
that it is not possible to obtain a complete YARP-ROS integration
without implementing a mechanism that is able to handle ROS
frame transforms in YARP.

To overcome this limitation, we developed a YARP device
called transformServer. TransformServer collects and stores frame
transforms by subscribing to /tf and /tf_static topics and makes
these information available to a YARP transformClient instance

59

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

3

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

inside a user module (Figure 1). TransformClient is an entity
which implements the yarp::dev::IFrameTransform
interface (see Sections II and III in Supplementary Material).
Available methods allow the user to query the server about the
registered YARP and ROS transforms, to perform kinematic
computations, and to register on the server new transforms
computed by YARP modules.

3. YARP CLASSeS ANd INTeRFACeS
FoR NAVIgATIoN

This section presents the new YARP classes and interfaces
specifically designed for managing maps and controlling a robot
during a navigation task. Detailed description of available meth-
ods and usage examples are shown in Supplementary Material.

3.1. Mapgrid2d
The class yarp::dev::MapGrid2D is the main YARP class
used to store map data. Similar to ROS occupancy grid message
(nav_msgs/OccupancyGrid.msg), data are organized in square
cells of fixed size (e.g., 0.05 m × 0.05 m), each of them storing the
probability of being occupied by a fixed obstacle (e.g., a wall). This
information is typically used to localize the robot in an environ-
ment previously mapped by a SLAM algorithm. In addition to
this property, map cells are also provided with an additional flag
(Section IV in Supplementary Material), which can be used to
control the robot behavior. For example, a user can choose to set
keep-out areas, which should be avoided by the robot when it
computes its path, or critical areas in which the robot should stop
when an obstacle is encountered (instead of finding an alternate
path). Finally, MapGrid2D is equipped with methods to save/load
maps both in YARP and in a ROS compatible format.

3.2. Map2dLocation
A yarp::dev::Map2DLocation is a support class used to
store user location information. A location is composed of the
location name, the map name to which the location refers to, and
the (x,y,θ) coordinates w.r.t. the map origin. Locations are typically
stored together with maps in a map2DServer (see Section 4.1)
so that a user can invoke the navigation APIs using the loca-
tion name instead of the corresponding coordinates. Locations
are also used by map2DServer to define interconnection points
between multiple YARP maps.

3.3. IMap2d
yarp::dev::IMap2D is a pure virtual interface dedicated to
the management of MapGrid2D and Map2DLocation enti-
ties. A Map2DServer (Section 4.1) implements methods of this
interface to satisfy the requests from a Map2DClient. The complete
listing of the methods belonging to yarp::dev::IMap2D as
well as an application example is shown in Sections V and VI in
Supplementary Material.

3.4. INavigation2d
yarp::dev::INavigation2D is a pure virtual interface
shared between all client/server modules, which performs

navigation tasks. The most classical usage in a user applica-
tion requires the instantiation of a yarp::dev::INaviga
tion2DClient to send navigation commands to the robot
(e.g., “go to the entrance room”). On the other side, the server
counterpart, which can be any module implementing the same
yarp::dev::INavigation2D interface (e.g., robot-
PathPlanner, see Section 4.6), receives the goal command and
computes the path required by the robot to reach the goal.

INavigation2D contains methods to start, pause, and resume
navigation tasks, both in absolute (with respect to the map
reference frame) or in relative coordinates (with respect to the
robot reference frame) (Section VII Supplementary Material).
Additionally, it allows the user to assign names to the current
robot position and to important locations on the map. These
names might be used instead of absolute coordinates when com-
manding a goal to the robot. Finally, the user can query the current
status of the navigation task. The enum returned by the method
INavigation2D::getNavigationStatus() can be
used by the client application to know when the goal has been
reached or if a problem occurred (Section VIII in Supplementary
Material).

4. YARP ModULeS ANd TooLS
FoR NAVIgATIoN

This section describes the YARP modules and tools which con-
stitute the core of the YARP navigation suite. They are provided
inside robotology/yarp and robotology/naviga
tion github repositories. A comparison between these YARP
tools and similar ones provided by ROS is reported in Table 1.

4.1. Map2dServer
Map2DServer implements the methods of the YARP interface
yarp::dev::IMap2D, and it allows a client application
(such as the navigation module) to store and retrieve maps
(yarp::dev::MapGrid2D) from memory. It can be initialized
at startup by a map collection file which contains an index of all map
files to be used in the session. It must be noticed that this module
only behaves as a storage, and it contains neither information about
the current robot position nor the name of the map in which the
robot finds itself. These tasks are performed by other modules (e.g.,
localizationServer, Section 4.4) which interact with the map2Dser-
ver when they need to obtain map data. Finally, this module imple-
ments some methods of the yarp::dev::INavigation2D
interface, allowing to store/retrieve user notable locations
(yarp::dev::Map2DLocation) on a map.

4.2. BaseControl
BaseControl is the core YARP module used to control a mobile
robot. It receives cartesian velocity commands (x, y, θ) either
from a navigation module or from a joystick device, and it
computes the corresponding actuators actions required to
achieve them. BaseControl is also responsible for computing
robot odometry, i.e., estimating the robot position in the world
using measured motions of robot actuators. Computed data
are published on a YARP port both as a vector (x,y,θ) and, via

60

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TABLe 1 | Similarities and correspondences between YARP and ROS modules with similar functionalities.

YARP RoS Notes

Map2DServer map_server map_server offers a single map via ROS latched topic/map. Map2DServer acts a storage for multiple maps and
user-defined locations

BaseControl – In ROS, there is no equivalent module. Each kind of robot exposes its own specific control interface

Mapper2D gmapping gmapping performs loop closure detection and simultaneous localization and mapping. Mapper2D allows to set
not only the occupancy value of the cell but also the YARP map flag

LocalizationServer – LocalizationServer does not have a direct correspondence in ROS. It acts as a bridge for a ROS localization
module like Adaptive Montecarlo Localization (AMCL) adding the support for YARP map collections (not directly
supported in ROS)

– AMCL YARP navigation suite currently does not provide any localization system for mobile robots. A YARP user may
use a ROS module such as AMCL to estimate the robot position against a known map or use its own localization
system

RobotGoto move_base-base_local_planner The two modules have similar functionalities although ROS base_local_planner supports multiple algorithms (e.g.,
Trajectory Rollout and Dynamic Window Approach) while RobotGoto artificial potential fields approach is more
tailored to work together with YARP RobotPathPlanner

RobotPathPlanner move_base-global_planner The two modules have similar functionalities and use comparable algorithms

4

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

transformClient, as a transform between the origin of the odom-
etry system (/odom) and the robot (/mobile_base). This allows
a ROS module to interface with the robot by subscribing to the
/tf topic.

4.3. Mapper2d
Mapper2D is a simple YARP module which registers laser scans
to build an occupancy-based map. The module is not equipped
with a loop closure detector, nor with an internal localization
algorithm; thus, it is not suitable to perform stand-alone SLAM
tasks. Instead, it is designed to receive accurate localization data
from an external source (e.g., a Google Tango device) either via
YARP port or via transformClient.

4.4. LocalizationServer
LocalizationServer is an auxiliary tool which acts as the server
side of a Navigation2DClient for the INavigation2D::
getCurrentPosition() and INavigation2D::set
InitialPose()methods. Robotology/navigation repository
does not provide a default localization system for a mobile
robot. A YARP user may thus choose to employ a YARP-based
localization system (such as Robust-View-Graph-SLAM),
or a ROS-based one (e.g., AMCL, RTAB-Map, Tango-ROS-
Streamer). In this latter case, LocalizationServer acts as a bridge
between the ROS world (which is single map) and the YARP
world (which is multi-map). When the user sets an initial
position to initialize the localization algorithm, it specifies
a yarp::dev::Map2DLocation which is translated
to a string (the map name, handled by the Map2DServer)
and a (x,y,θ) vector. This latter is sent with a geometry_msgs/
PoseWithCovarianceStamped message to the ROS localization
module as the estimated robot pose with respect to the origin
frame of the current map.

4.5. Robotgoto
This module computes the cartesian velocities (x, y, θ) of the
mobile base required to reach the commanded goal, given the

current robot position (provided through a transformClient) and
a set of parameters that controls the trajectory generation (e.g.,
differential drive or holonomic robot kinematics, heading and
goal tolerance, etc.).

RobotGoto does not use any map information, except for the
local occupancy grid which is continuously updated according
to sensor data. An artificial potential field algorithm is employed
to allow the robot to avoid obstacles obstructing the path to the
goal. Depending on the configuration parameters, if a deadlock is
detected, navigation may be paused (waiting a human to remove
the obstacle) or aborted. In this latter case, the high-level path
planner is notified by a specific yarp::dev::INavigation
2D::NavigationStatusEnum, as shown in Section VIII
and Figure S1 in Supplementary Material.

4.6. RobotPathPlanner
This module is responsible for generating the navigation way-
points to be pursued by a local navigation module (e.g., robotGoto).
By implementing the INavigation2D interface, robotPath-
Planner acts as the server counterpart of a Navigation2DClient
instantiated by a user module. For example, when the user
calls the INavigation2D::gotoAbsolutePosition()
method to command the robot to reach a new goal, robotPath-
Planner becomes in charge of performing the navigation task,
notifying the user about its current status (e.g., in progress, goal
reached, etc.).

The algorithm acts as follows. RobotPathPlanner retrieves
from a Map2DServer instance the current map of the area. A
valid path from the current robot location to the goal is computed
using A* algorithm. If the path does not exists, navigation is
aborted. Otherwise the path, initially defined as a vector of map
cells, is transformed into a sequence of navigation waypoints.
To be accepted, these waypoints must satisfy some user-defined
parameters (e.g., minimum distance between the cells etc.).
Waypoints are then put in a queue and sent one by one to a local
navigation algorithms (such as robotGoto) which will pursue
them.

61

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

FIgURe 2 | Two realistic application scenarios, in which different combinations of YARP (green) and ROS (blue) modules are employed. Solid lines represent YARP
port connections. Dashed lines represent ROS topic connections (Rviz connections are omitted for diagram clearness). Colored markers indicate the YARP
interfaces employed to interconnect the various client/server modules. Gazebo simulator is represented as a hybrid YARP/ROS module because its modular design
allows to execute plugins belonging to both frameworks (Mingo Hoffman et al., 2014).

62

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

6

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

RobotPathPlanner is also responsible for processing the
YARP flags assigned to particular areas of the map. These flags
may belong to two different categories. Those which alter the
navigation trajectory (such as keep-out areas) are directly pro-
cessed by the module during the trajectory generation phase.
Instead, flags which alter the robot behavior (e.g., areas in which
the robot must proceed at a different speed or interrupt the
navigation if an obstacle is detected on the path) are not directly
processed. Indeed, since they affect the behavior of the local
navigation task, a proper set of commands is generated and
sent to RobotGoto to modify the default navigation parameters.

Finally, RobotPathPlanner is able to show the computed robot
trajectory by means of the standard YARP graphical visualization
tool yarpview and, additionally, to receive navigation commands
from it (dragging an arrow on the map will be interpreted as goal
command).

5. NAVIgATIoN INTegRATIoN
ANd eXAMPLeS

YARP and ROS may inter-operate in several ways to attain a
navigation task. Different possibilities range from using a full
YARP-based framework to using the complete ROS navigation
stack. In between there exist a number of possible combinations:
as shown in previous sections, most of the YARP components can
be replaced by a ROS equivalent or vice versa, depending on the
user needs and preferences.

Figure 2 shows two illustrative scenarios. The first example
refers to a simulated wheeled robot in Gazebo, a generic, multi-
robot, physics simulator. The navigation task is carried out by
robotGoto/robotPathPlanner modules. Since ROS map_server
is used, robotPathPlanner employs only the occupancy grid
information and no YARP map flags are available.

The second example refers to a real wheeled robot (i.e. R1
(Parmiggiani et al., 2017)) controlled by yarpRobotInterface, the
core YARP application which manages the low-level hardware
control. In this case, navigation task is carried out by ROS naviga-
tion stack encapsulated inside move_base node.

It must be noticed that, in both scenarios, the final end-user
is a YARP application which instantiate a yarp::dev::INa
vigation2DClient. Section IX in Supplementary Material
shows a simple application which controls the robot to reach
a location stored into the map server, unaware of which
framework and control modules are employed underneath.
The included sequence diagram (Figure S2 in Section X in

Supplementary Material) shows the timing and the messages
exchanged between the clients opened by the example and the
connected external modules (i.e., LocalizationServer, Map2D-
Server, robotPathPlanner).

Finally, a set of examples of increasing complexity is included
in the github repository (Figure S3 in Section X in Supplementary
Material), as well as some skeleton applications which the user
can exploit to develop its own navigation modules.

6. CoNCLUSIoN ANd FUTURe WoRK

In this paper, we showed latest developments to improve
YARP interoperability with ROS. These improve-
ments allow a robotics developer to use YARP mid-
dleware without giving up popular and convenient ROS
features, such as the /tf package. By introducing a brand new
set of standard interfaces, such as yarp::dev::IMap2D and
yarp::dev::INavigation2D, YARP is now capable of
performing a 2D navigation task, natively or interacting with ROS.

Future work will be aimed to further improve YARP-ROS inte-
gration. YARP transformServer is currently unable to interpolate/
extrapolate frames over time, an advanced feature that is instead
available in the ROS /tf package, which allows users to ask for
the pose of a frame at a specific time instant, in the past or even
in the future. Additionally, YARP is currently unable to manage
octomaps or other 3D data types. Their introduction is thus a
required step to allow foot planning of a bipedal robot on a highly
structured terrain.

AUTHoR CoNTRIBUTIoNS

MR: development of YARP interfaces and classes for navigation;
development of the navigation modules belonging to https://
github.com/robotology/navigation repository; and experiments
with real and simulated robots. AR: development of transform-
Server/transformClient, development of automatic tests for
frameTransform and navigation interfaces; and experiments with
real and simulated robots. LN: development of YARP framework
and scientific supervision.

SUPPLeMeNTARY MATeRIAL

The Supplementary Material for this article can be found online
at http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/
full#supplementary-material.

ReFeReNCeS

Cousins, S. (2010). Ros on the pr2. IEEE Robot. Autom. Mag. 17, 23–25. doi:10.1109/
MRA.2010.938502

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D., Paikan, A., Metta, G., and
Natale, L. (2014). A middle way for robotics middleware. J. Software Eng. Robot.
5, 42–49. Available at: https://joser.unibg.it/index.php?journal=joser&page=
article&op=view&path%5B%5D=69

Hu, Y., Eljaik, J., Stein, K., Nori, F., and Mombaur, K. (2016). “Walking of the
iCub humanoid robot in different scenarios: implementation and performance
analysis,” in IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids) (Cancun, Mexico), 690–696.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K.
(2010). “The office marathon: robust navigation in an indoor office
environment,” in International Conference on Robotics and Automation,
Anchorage, AK.

63

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/navigation
https://github.com/robotology/navigation
http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/full#supplementary-material
http://www.frontiersin.org/articles/10.3389/frobt.2018.00005/full#supplementary-material
https://doi.org/10.1109/MRA.2010.938502
https://doi.org/10.1109/MRA.2010.938502
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=69
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=69

7

Randazzo et al. YARP-ROS Inter-Operation in a 2D Navigation Task

Frontiers in Robotics and AI | www.frontiersin.org February 2018 | Volume 5 | Article 5

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in cogni-
tive development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.2010.
08.010

Mingo Hoffman, E., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A.,
Romano, F., et al. (2014). Yarp Based Plugins for Gazebo Simulator. Springer
International Publishing, 333–346. Available at: https://link.springer.com/
chapter/10.1007/978-3-319-13823-7_29

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). The iCub
software architecture: evolution and lessons learned. Front. Robot. AI 3:24.
doi:10.3389/frobt.2016.00024

Nava, G., Romano, F., Nori, F., and Pucci, D. (2016). “Stability analysis and design of
momentum-based controllers for humanoid robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (Daejeon, South Korea),
680–687.

Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M.,
Maggiali, M., et al. (2017). “The design and validation of the R1

personal humanoid,” in International Conference on Intelligent Robots (IROS),
Vancouver, BC.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros: an
open-source robot operating system,” in ICRA Workshop on Open Source Software,
Kobe, Japan.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Randazzo, Ruzzenenti and Natale. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.

64

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1016/j.neunet.2010.
08.010
https://doi.org/10.1016/j.neunet.2010.
08.010
https://link.springer.com/chapter/10.1007/978-3-319-13823-7_29
https://link.springer.com/chapter/10.1007/978-3-319-13823-7_29
https://doi.org/10.3389/frobt.2016.00024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

March 2018 | Volume 5 | Article 221

Code
published: 12 March 2018

doi: 10.3389/frobt.2018.00022

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Jamone,

Queen Mary University of London,
United Kingdom

Reviewed by:
Amit Kumar Pandey,

SoftBank Robotics, France
Torbjorn Semb Dahl,
Plymouth University,

United Kingdom

*Correspondence:
Tobias Fischer

t.fischer@imperial.ac.uk

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 31 May 2017
Accepted: 21 February 2018

Published: 12 March 2018

Citation:
Fischer T, Puigbò J-Y, Camilleri D,

Nguyen PDH, Moulin-Frier C,
Lallée S, Metta G, Prescott TJ,
Demiris Y and Verschure PFMJ

(2018) iCub-HRI: A Software
Framework for Complex

Human–Robot Interaction Scenarios
on the iCub Humanoid Robot.

Front. Robot. AI 5:22.
doi: 10.3389/frobt.2018.00022

iCub-HRI: A Software Framework
for Complex Human–Robot
Interaction Scenarios on the
iCub Humanoid Robot
Tobias Fischer1*, Jordi-Ysard Puigbò2,3, Daniel Camilleri 4, Phuong D. H. Nguyen5,
Clément Moulin-Frier2, Stéphane Lallée2, Giorgio Metta5, Tony J. Prescott4,
Yiannis Demiris1 and Paul F. M. J. Verschure2,3,6

1 Personal Robotics Laboratory, Electrical and Electronic Engineering Department, Imperial College, London,
United Kingdom, 2 Synthetic Perceptive Emotive and Cognitive Systems Group (SPECS), Universitat Pompeu Fabra,
Barcelona, Spain, 3 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology,
Barcelona, Spain, 4Department of Computer Science, University of Sheffield, Sheffield, United Kingdom, 5 iCub Facility,
Istituto Italiano di Tecnologia, Genova, Italy, 6 ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Generating complex, human-like behavior in a humanoid robot like the iCub requires
the integration of a wide range of open source components and a scalable cognitive
architecture. Hence, we present the iCub-HRI library which provides convenience wrap-
pers for components related to perception (object recognition, agent tracking, speech
recognition, and touch detection), object manipulation (basic and complex motor
actions), and social interaction (speech synthesis and joint attention) exposed as a C++
library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In
addition to previously integrated components, the library allows for simple extension to
new components and rapid prototyping by adapting to changes in interfaces between
components. We also provide a set of modules which make use of the library, such
as a high-level knowledge acquisition module and an action recognition module. The
proposed architecture has been successfully employed for a complex human–robot
interaction scenario involving the acquisition of language capabilities, execution of
goal-oriented behavior and expression of a verbal narrative of the robot’s experience in
the world. Accompanying this paper is a tutorial which allows a subset of this interaction
to be reproduced. The architecture is aimed at researchers familiarizing themselves with
the iCub ecosystem, as well as expert users, and we expect the library to be widely used
in the iCub community.

Keywords: robotics, iCub humanoid, human–robot interaction, YARP, software architecture, code:C++,
code:Python, code:Java

1. INTRodUCTIoN ANd BACKGRoUNd

The iCub is an advanced humanoid robot, which is equipped with multiple sensors: encoders in all its
53 joints, force/torque sensors, tactile sensors integrated in the artificial skin, and eye cameras (Metta
et al., 2010). They allow for a coherent understanding of body configuration, motor capabilities, and
the environment as well as an ability to show facial expressions, which makes it an ideal platform for
studies of human–robot interaction and cognition.

65

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00022&domain=pdf&date_stamp=2018-03-12
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00022
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:t.fischer@imperial.ac.uk
https://doi.org/10.3389/frobt.2018.00022
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00022/full
http://loop.frontiersin.org/people/413847
http://loop.frontiersin.org/people/481944
http://loop.frontiersin.org/people/474367
http://loop.frontiersin.org/people/481933
http://loop.frontiersin.org/people/74698
http://loop.frontiersin.org/people/232953
http://loop.frontiersin.org/people/79905
http://loop.frontiersin.org/people/2373
http://loop.frontiersin.org/people/25952
http://loop.frontiersin.org/people/5803

2

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

The research community around the iCub humanoid robot is
very active, with a large number of papers published every year.
The source code leading to these publications is often made avail-
able to the public, which allows for the replication of the results
and use of the code as a starting platform to tackle new research
questions. However, despite YARP (Fitzpatrick et al., 2006) being
typically used as the underlying middleware in these works, it
remains challenging to combine these efforts in a coherent
manner.

Here, we present iCub-HRI, which integrates several com-
ponents for perception, object manipulation, and social interac-
tion using two parts: (1) The iCub-HRI library, which facilitates
the use of the aforementioned components by providing easy to
use classes with suitable default parameters (called Subsystems)
and a shared knowledge database as means to represent knowl-
edge which is employed across all components. (2) Modules
which supply the shared knowledge database with input, as
well as some modules tailored for human–robot interaction
scenarios.

1.1. Background and Related Works
iCub-HRI has its origins in the Experimental Functional
Android Assistant (EFAA) project,1 where most of the library
was developed and employed in several works (e.g., Lallée et al.
(2013, 2015), Petit et al. (2013), and Lallée and Verschure (2015)).
EFAA targeted the development of a cognitive architecture to
realize effective and psychologically plausible human–robot
dyadic interaction. The code was then extended and matured
further in the What You Say Is What You Did (WYSIWYD)
project,2 and more papers based on iCub-HRI were published
(e.g., Fischer and Demiris (2016), Martinez-Hernandez et al.
(2016), Petit et al. (2016), Puigbò et al. (2016), and Moulin-Frier
et al. (2017)). WYSIWYD aimed at realizing robot human level
language capabilities by augmenting this cognitive architecture
with mechanisms for language acquisition, composition, and
expression. The cognitive architecture in both projects is based
on and elaborates the Distributed Adaptive Control theory of
mind and brain (DAC, see for reviews Verschure (2012, 2016)
and Section 4.3).

While reviewing robotics middlewares is out of the scope for
this paper (we refer to Elkady and Sobh (2012) for an overview),
we briefly introduce several other proposals detailing software
frameworks for various robotics platforms. Natale et al. (2016)
summarize recent developments of the iCub’s software archi-
tecture, including the compatibility with the Robot Operating
System (ROS) and the introduction of a new testing framework.
They find that ROS is being adopted rapidly by more and more
robot developers, and indeed, there are several papers introduc-
ing human–robot interaction-related frameworks based on ROS.
For example, Jang et al. (2015) propose a ROS-based framework
where modules concerned with low-level control and service
logic are separated from modules concerned with social behav-
iors. Lane et al. (2012) present a bundle of ROS modules which

1 http://efaa.upf.edu/.
2 http://wysiwyd.upf.edu/.

allows the extension of existing projects for speech recognition,
natural language understanding, and basic gesture recognition
as well as gaze tracking. A toolkit which allows the evaluation
of human–robot interactions in virtual reality environments and
subsequent deployment on a real robot was presented by Krupke
et al. (2017). The robot behavior toolkit (Huang and Mutlu, 2012)
includes a ROS module which is based on the findings within
the social sciences. While the authors conducted a large-scale
study with humans, the evaluation was based on simulated sensor
data. Finally, Sarabia et al. (2011) present a framework allowing
to perceive the actions and intentions of humans, and show its
application in a social context where a robot imitates the dance
movements of a human.

1.2. design Principles
Here, we devise a set of guidelines and design principles which
were adopted when coding the framework.

•	 Adaptability and ease of use: the framework should be easy to
adapt by the community. Individual parts of the framework
should only depend on other parts if necessary, and substitut-
ing components should be easy. Furthermore, all libraries and
modules should be properly documented.

•	 Provision of overall framework: related to the previous goal, our
aim is to provide an overall framework which can work “out of
the box.” Hence, our framework contains modules related to
perception, action execution, and social interaction.

•	 Extendibility: it should be easy to extend the framework with
new modules. Rather than tailoring existing modules to work
with the iCub-HRI framework, it should be possible to write
wrapper code for the integration.

•	 Shared, centralized knowledge representation: each module
should have access to the same knowledge database, and the
contained knowledge should follow a standardized format.
Within iCub-HRI, we call this knowledge database the working
memory, and the contents are Entities or derivatives thereof.
The working memory is the default means of communicating
among modules.

•	 Open software: the code is released open source and made
publicly available. All dependencies must be available as open
source software too.

2. THe iCub-HRI LIBRARY

Due to the support of distributed computation within the YARP
middleware, there are typically many modules running simul-
taneously when conducting research on the iCub. Typically,
data are exchanged using YARP’s Bottle container, which can
encapsulate data of arbitrary length and varying type. While
this allows a high degree of flexibility, these containers are error
prone due to the requirement of parsing the messages dynami-
cally. This makes verification of compatibility and versioning
when used across a large number of modules hard (Natale
et al., 2016). Thus, within the iCub-HRI library, we introduce
fixed data representations for knowledge (fully compatible with
the Bottle container), similar to those used in ROS messages
(Quigley et al., 2009) and the Interface Description Language

66

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://efaa.upf.edu/
http://wysiwyd.upf.edu/

3

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

(IDL) in YARP (Fitzpatrick et al., 2014). Contrary to ROS mes-
sages and IDLs, the same representations are used across all
components of the iCub-HRI library. The representations and
their exchange which is orchestrated by a working memory are
detailed in Section 2.1.

The communication protocol with external modules is
described within Subsystems. Each subsystem connects to a host
(i.e., external module) and abstracts away the communication
internals, as described in Section 2.2. Finally, the icubClient class
is designed with additional convenience for end users in mind
such that all subsystems and other higher level methods are avail-
able from within a single class.

2.1. Knowledge Representation and
exchange
The basic representation type is an Entity, which is specified by
an ID and an associated name. The ID is used when storing and
retrieving the entity from the working memory. Several entities
can be linked together by the means of a Relation, for example, the
human “Paul” (subject) “holds” (verb) “duck” (object). For further
details on relations, we refer to Lallée and Verschure (2015).

Other knowledge representations inherit the basic properties
and methods of Entity and extend them further. The Object class
has additional properties representing the pose, size, presence,
and saliency of an object (see Section 3.1 for details how these
properties are acquired). The Agent class represents a human
partner, which additionally to all properties of an Object also
stores the positions of all body parts and a list of beliefs. Another
commonly used representation is that of a Bodypart, which
represents a part of the robot’s body. A Bodypart also inherits all
attributes of an Object, and additionally contains the related joint
number, tactile patch identifier, and corresponding body part of
the human. Zambelli et al. (2016) have used these representa-
tions to anchor self-learned representations to those of a human
interacting with the robot.

These representations must be shared across different modules
(for example, between perceptual modules and the more abstract
reactive layer as described later in this section), and we designed
the OPCClient class to automate the exchange of representa-
tions with the working memory of the iCub ecosystem (Objects
Properties Collector; OPC) (Lallée and Verschure, 2015). The
OPC is an ontology-based knowledge representation system
which is grounded on the need of humans and other social ani-
mals to interact in a physical, multi-agent world (see Lallée and
Verschure (2015)). In this direction, the role of such knowledge
representation should be to structure and distribute informa-
tion to different modules in an asynchronous (on-demand) and
centralized way. The design is inspired by the repository pattern
known from software engineering (Evans, 2004), and its usage is
very similar to the centralised version control software Apache
Subversion (known as SVN).3 For storage and retrieval, the
OPCClient provides methods such as “checkout” to poll repre-
sentations from the shared memory, “update” to update existing
representations, and “commit” to overwrite representations in the

3 https://subversion.apache.org/.

memory with the local version of the module. Altogether, this
implementation provides a shared, centralized knowledge repre-
sentation (following our design principle outlined in Section 1.2),
enabling asynchronous access to the information in a way similar
to how brains work.

2.2. Subsystems
A Subsystem provides a wrapper between the representations
used by external components and the ones used within iCub-
HRI, which compares to the façade software engineering pattern
(Gamma et al., 1994). This has several advantages, including that
the complexity of remote procedure calls is hidden from the user
and that formerly “incompatible” components can now be used
within the same project. Within this paper, we provide a brief list
of the most commonly used interfaces of these subsystems, and
we provide a complete list in the documentation on GitHub.4

This is especially evident in the subsystems for the Actions
Rendering Engine (ARE; follow up work on Pattacini et al.
(2010))5 and KARMA (Tikhanoff et al., 2015)6 object manipula-
tion libraries, which are typically used by the iCub community to
issue high-level motor commands. If directly called, they require
the provision of complex parameters. Contrary, using iCub-HRI,
one simply specifies the desired action and the name of the object
to be manipulated, as further demonstrated in Section 4.1.

Other important subsystems are those for speech recognition
and synthesis. Both are convenience wrappers for the function-
ality offered in the “speech” repository of the iCub ecosystem.
The speech synthesizer allows for speech production from text
using a single command “say(),” with the only parameter being
the sentence to be spoken, while being agnostic to the underly-
ing synthesizer (Acapela,7 eSpeak,8 Festival,9 and SVOX Pico10
are supported). The speech recognizer relies on the Microsoft
Speech API,11 which allows recognition and extraction of words
from spoken utterance given a grammar file (using the command
“recogFromGrammarLoop()”).

The functionality of the different subsystems is aggregated in
the icubClient class, which allows using the different subsystems
from within a single class instance. A configuration file is used
to specify which subsystems a module requires, such that no
unnecessary resources are bound. Adding new subsystems is
straightforward and we provide a tutorial to do so.12

4 https://robotology.github.io/icub-hri/ → iCub-HRI libraries → Subsystems.
5 The following interfaces are provided by the ARE subsystem: (1) “home()” to put
the robot or a specified part in the home position, (2) “take()” to reach and grasp
an object, (3) “push()” to laterally push an object, (4) “point()” to an object, (5)
“expect()” to extend the hand and wait for an object, (6) “drop()” an object which
is currently held, (7) “wave()” the robot’s hands, (8) “look()” at an object, and (9)
“track()” a moving object.
6 The following interfaces are provided by the KARMA subsystem: (1) “pushKar-
maLeft()” and “pushKarmaRight()” to push an object to the left/right side with a
specified target position, (2) “pushKarmaFront()” to push an object forwards, and
(3) “pullKarmaBack()” to bring an object closer to the robot.
7 http://www.acapela-group.com.
8 http://espeak.sourceforge.net/.
9 http://www.cstr.ed.ac.uk/projects/festival/.
10 https://github.com/robotology/speech/tree/master/svox-speech.
11 https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx.
12 https://robotology.github.io/icub-hri/ → Tutorials → Create a new Subsystem.

67

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://subversion.apache.org/
https://robotology.github.io/icub-hri/
http://www.acapela-group.com
http://espeak.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival/
https://github.com/robotology/speech/tree/master/svox-speech
https://msdn.microsoft.com/en-us/library/ee125663
https://robotology.github.io/icub-hri/

4

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

3. iCub-HRI ModULeS

The modules accompanying the iCub-HRI library can be grouped
into four main areas: 1. perception, 2. action, 3. social interac-
tion, and 4. miscellaneous tools. All modules have access to the
knowledge introduced in the previous section (as they use the
iCub-HRI library) and none of them is required to run; i.e., one
can choose which subset of modules to run for each experiment,
if any.

3.1. Perception Modules
3.1.1. Agent Detector
The agentDetector module is responsible for detecting and
tracking a human partner using a RGB-D camera mounted
behind the robot. It converts the joint positions detected by the
RGB-D camera in the reference frame of the iCub and continu-
ously updates the joint positions of the human partner in the
working memory.

3.1.2. Default Speech Recognition
The Ears module allows for recognition of speech utterances from
the human when no other module is trying to recognize speech.
It takes the role of a central component to redirect the com-
mand extracted from the recognized sentence to the appropriate
module, while still allowing other modules to access the speech
recognition subsystem directly if needed.

3.1.3. Object Recognition
The object recognition module within iCub-HRI is based on the
interactive object learning (IOL) pipeline (Pasquale et al., 2015).
Given the two input images of the iCub’s eyes, the scene is first
segmented into the background and the different objects. Each
object is then classified and stereo vision (Fanello et al., 2014) is
used to localize the objects. We rely on superquadric models to
estimate the size and pose of objects (Vezzani et al., 2017), and we
use the OpenCV object tracker (Kalal et al., 2012) to track them
even if they are manipulated by the human.

3.1.4. Saliency
The module PASAR (Mathews et al., 2012) detects the appear-
ance and disappearance of objects, and the saliency of an object
is increased proportionally to its acceleration. This also allows
simple detection of pointing actions by measuring the proximity
of the human’s hand with each of the objects and increasing the
saliency with inverse proportion to the distance.

3.1.5. Face and Action Recognition
To recognize faces and actions performed on objects, we use
the Synthetic Sensory Memory module (Martinez-Hernandez
et al., 2016). It uses Gaussian Process Latent Variable Models
(Damianou et al., 2011) to train classifiers for faces and actions,
which can then be loaded during interaction to perform real-time
classification.

3.2. Action Modules
3.2.1. Face Tracking
The face tracking module detects the face of a human based on
Haar cascades implemented in OpenCV (Viola and Jones, 2001)

and uses the velocity control of the iCub to follow the face. This
module can be used in human–robot interaction scenarios for
increased vividness of the robot.

3.2.2. Babbling
The babbling module allows the issue of pseudo random
(sinusoids) commands to the iCub (either individual or several
joints). It has been used to learn forward and inverse models
for the iCub (Zambelli and Demiris, 2017), as well as to learn
correspondences between the robot’s body parts and that of
the human (Zambelli et al., 2016). Within the scope of this
paper, it is mainly used for body part learning, as described in
Section 4.2.

3.3. Social Interaction Modules
3.3.1. Proactive Tagging
The proactive tagging module can be used to acquire the names of
objects (robot), body parts, and human partners. As this module
plays a central role in the knowledge acquisition tutorial, it is
further detailed in the corresponding Section 4.2.

3.3.2. Reactive Layer
The reactive layer implements drive reduction mechanisms
for self-regulating the robot’s behavior. A drive is defined as a
control loop that triggers appropriate behaviors whenever an
associated internal state variable goes out of its homeostatic
range. These drives present a way to self-regulate value in a
dynamic and autonomous way (Sanchez-Fibla et al., 2010).
This has been shown to positively influence the acceptance of
the human-robot interaction by naive users (Vouloutsi et al.,
2014; Lallée and Verschure, 2015).

In the social robotic context, we provide two examples of
drives that allow the robot to balance knowledge acquisition
and expression in an autonomous way. The drive for knowledge
acquisition maintains a curiosity-driven exploration of the
environment by proactively requesting information from a
human about the present entities (e.g., their name). The drive
for knowledge expression regulates how the iCub expresses the
acquired knowledge through synchronized speech, pointing
actions and gaze. It informs the human about the robot’s current
state of knowledge and thus maintains the interaction.

3.4. Tools
Several tools provide preprocessing functionalities for the other
modules or interact with other modules of the iCub ecosys tem
so they can be easily used within iCub-HRI. The guiUpdater
trans lates the representations of iCub-HRI to those used within
the iCubGui. More specifically, it allows the display of location
for objects and agents stored within the working memory along
with certain properties, such as their color and name. The opc-
Populator can be used to spawn new entities in simulation and
control their parameters. This allows testing new functionalities
in a controlled environment, without the noise encountered
when using the real robot. We further provide a touchDetector
that connects to the iCub’s artificial skin, and clusters taxels
belonging to the same body part. Finally, the referenceFrame-
Handler provides functionalities similar to that of the transform

68

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

library (TF; Foote, 2013), i.e., transforming a pose from one
frame (e.g., that of the RGB-D camera) to another (e.g., that of
the iCub root).

4. USING iCub-HRI

There is a variety of use cases for iCub-HRI. We first show the
ease of use of iCub-HRI in a representative example related to
the object manipulation subsystem. We then introduce a tutorial
which demonstrates the interplay of various components in the
context of human–robot interaction. Subsequently, we briefly
describe how an extended version of this tutorial has been used to
tackle the symbol grounding problem in the DAC-h3 framework
(Moulin-Frier et al., 2017). This is followed by a description of
the implications of this library for technical and non-technical
users alike. Finally, we discuss the platform independence and
dependencies of iCub-HRI and provide links to the documenta-
tion and repository.

4.1. example Usage of the object
Manipulation Subsystems
The GitHub repository contains a range of examples, including
examples of using the KARMA and ARE subsystems to manipulate
objects, i.e., grasping, pushing, or pulling them, in C++, Python,
and Matlab. Some examples use yarp::sig::Vector instances to
specify the target location (important for users looking to employ
iCub-HRI as a lightweight library), while others rely on the Object
class introduced earlier (providing a seamless integration with
the contained object recognition module). Listing 1 shows an
example which uses the iCub-HRI library to pull an object using
the KARMA Subsystem, while Listing 2 contains code directly
communicating with KARMA, which is much less intuitive
and likely distracts from the actually desired code related to the
human–robot interaction.

LISTING 1 | Pushing an object using iCub-HRI is straightforward and requires
the provision of just two parameters: the object to be pushed and the desired
target position.

#include <yarp/os/all.h>
#include <icubhri/clients/icubClient.h>

int main() {
yarp::os::Network yarp;

icubhri::ICubClient iCub("KARMA_Simple");
if(!iCub.connect()) {return -1;}//connect to
subsystems

std::string objectName = "octopus";//as recognized by
object recognition
double targetPositionX = -0.45;

bool ok = iCub.pushKarmaFront(objectName,
targetPositionX);
yInfo() << (ok ? "Success": "Failed");

return 0;
}

LISTING 2 | Pushing an object communicating directly with KARMA. Besides
being less readable, this code is also more error prone as the Bottle’s
components need to be provided with the right type and in the right order.
Furthermore, many more parameters are involved.

#include <yarp/os/all.h>
#include <yarp/sig/all.h>

yarp::sig::Vector getPos(std::string name) {
//communicate with object recognition module to obtain
object position
//this is not shown for brevity

}

int main() {
yarp::os::Network yarp;

yarp::os::RpcClient toKarma; toKarma.open("/example/
toKarma");
yarp::os::Network::connect(toKarma.getName(), "/
karmaMotor/rpc");

yarp::sig::Vector pos = getPos("octopus");
double targetPositionX = -0.45;
double radius = fabs(pos[0] - targetPositionX);

yarp::os::Bottle cmd, reply;
cmd.addString("push");
cmd.addDouble(pos[0]); cmd.addDouble(pos[1]); cmd.
addDouble(pos[2]);
cmd.addDouble(-90);//angle theta
cmd.addDouble(radius);//distance to be pushed
toKarma.write(cmd, reply);
bool ok = (reply.get(0).
asVocab() == yarp:os:Vocab:encode("ack"));
yInfo() << (ok ? "Success": "Failed");

return 0;
}

4.2. Knowledge Acquisition Tutorial
The robot can acquire knowledge in two different ways: pro-
actively, where a decaying drive to acquire knowledge triggers
the behavior to obtain the name of an object or body part, or
reactively, where the knowledge acquisition follows a human
command. The demo for this paper is centered around the
proactive tagging module, which makes use of several sub-
systems and connects directly to several other modules. For
example, it uses the speech recognition subsystem to acquire
the names of entities (objects in the vicinity, partners, and body
parts), the speech synthesis subsystem to enable the robot to
verbally express itself (in order to ask for object names), and
the ARE subsystem to point at objects and make them salient.
Furthermore, it makes use of the functionalities provided by
a number of other modules presented within the previous
section, including PASAR to detect which object the partner
is pointing to, the face recognition module to recognize the
partner, and the touchDetector to identify which skin patch was
being touched by the human. An overview of the interaction
between the modules is shown in Figure 1. All further details,
including the necessary set-up, configuration files, modules to
run, and supported interactions, are described in the dedicated
tutorial. We provide a set of videos of this experiment which

69

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FIGURe 1 | Temporal UML diagram for an interaction where a human gives a speech command to the iCub to push an object which is currently unknown to the
robot. The diagram depicts the involved modules and subsystems, and shows the information flow. After converting the speech command in an action plan, the
robot first asks the human to indicate the desired object, and subsequently pushes that object. The knowledge database is continuously being updated by the
agent detector and object recognition system throughout the interaction, and the object name is updated after the human indicated the object by pointing to it.
In our GitHub repository, we provide another diagram for the case that a drive threshold is hit, which triggers the behavior to tag an unknown object autonomously.

6

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

demonstrates the robustness of the framework in various
environments.13

4.3. Usage within dAC-h3 Framework
An extended version of the knowledge acquisition tutorial has
been used to solve the symbol grounding problem, acquire lan-
guage capabilities, execute goal-oriented behavior, and express
a verbal narrative of the robot’s experience in the world, using
the DAC-h3 framework (Moulin-Frier et al., 2017). The work of
Moulin-Frier et al. (2017) also demonstrates that the software
framework presented in this paper can be readily used to study
human–robot interaction experiments with naive subjects.

From the engineering perspective, the library and modules
of iCub-HRI have been embedded in the Distributed Adaptive
Control architecture (DAC, mentioned in the Introduction).
The DAC architecture proposes that the brain can be seen as
a multi-layered control structure consisting of (1) the body
(with its sensors, needs and effectors), (2) the reactive layer
for reflexive predefined control, (3) the adaptive layer for state
acquisition and model-free reinforcement learning, and (4) the
contextual layer which acquires model-based goal-oriented poli-
cies. Across these layers, we can distinguish columns of systems
that processes states of the environment, the self and action as
depicted in Figure 2.

13 https://github.com/robotology/wysiwyd—“Demonstration 4,” up to the fourth
minute of the video.

The implementation of iCub-HRI with its subsystems and
working memory make it particularly suitable in any scenario
where module integration is driven by a complex multi-layered
control architecture, with heterogeneous modules communicat-
ing within and between the different control layers.

4.4. More Applications and Use Cases
The central advantage of iCub-HRI is that the library bypasses
the requirement for obtaining a working knowledge of the opera-
tion of a large range of modules during the normal operation of
the iCub and their interaction before starting to develop one’s
specific application on top of these modules. Furthermore, iCub-
HRI’s modular subsystem architecture means that one can easily
integrate applications developed on top of iCub-HRI to further
abstract and accelerate the development of robotics applications.

The underlying design principles of iCub-HRI (see Section
1.2) and the high-level abstractions of the robot’s basic input and
output systems like speech, vision, and motor control allow a
wide, varied range of use cases. For users with a non-technical
background, it significantly reduces the learning curve to exploit
the iCub robotic platform, with potential applications such as
robotic art, research into the societal effects of robotics, investiga-
tions into human–robot collaboration and human–robot inter-
action studies investigating the psychological effects of such an
interaction. For users more familiar with the iCub, the flexibility
of the library allows them to focus on the core of their applica-
tions, where iCub-HRI provides a bridge to quickly integrate

70

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/wysiwyd

FIGURe 2 | iCub-HRI serves as underlying software framework for the
depicted DAC-h3 cognitive architecture (see text for more detail). The usage
within DAC-h3 has shown that several design principles were successfully
implemented: iCub-HRI was easy to adapt and was extended with several
other modules. Furthermore, the user study presented by Moulin-Frier et al.
(2017) was directly based on the knowledge acquisition tutorial presented in
Section 4.2.

7

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

these applications with the sensory, motor, and affective systems
of the robot. This reduces the implementation effort which leads
to faster developments, and allows for accelerated prototyping of
embodied artificial intelligence applications.

4.5. Platform Independence
This paper specifically aims to provide a software framework to be
used on the iCub humanoid robot. However, due to the modular
design of the framework, certain components could be used on
other robotic platforms as well, as they do not directly interface
with the iCub’s sensors and/or actuators and are hence robot
agnostic. The following components are platform independent
and can directly be used on other robots14:

•	 Working memory (Section 2.1).
•	 Perception modules: agent detector (Section 3.1.1), speech

recognition (Section 3.1.2), saliency (Section 3.1.4), as well as
face and action recognition (Section 3.1.5).

•	 Reactive layer (Section 3.3.2); the actions executed by the
drives can be easily adjusted in a configuration file.

14 Provided they run on YARP, or can be interfaced with YARP through, e.g., the
YARP-ROS interoperation.

•	 Tools (Section 3.4): the opcPopulator as well as the
referenceFrameHandler.

All other components are tailored for the iCub and would need
to be re-implemented or substituted with alternatives on another
platform.

4.6. dependencies
The only hard dependencies of iCub-HRI are a C++ 11 compat-
ible compiler and YARP. Due to the aspiration to combine various
components within a single architecture, there are a number of
soft dependencies: OpenCV, IOL, and superquadric-model for
object tracking, kinect-wrapper to track the human partner, the
speech repository for speech synthesis and recognition, as well
as (a modified version of) KARMA for object manipulation. All
dependencies are released under free software licenses, specifi-
cally LGPLv2.1 for YARP, BSD-3-Clause in case of OpenCV and
GPLv2 for all other dependencies.

The installation of these components is further detailed in the
iCub-HRI repository and we provide a Python script to easily
keep all dependencies up-to-date. It is also possible to download
or compile a Docker image which contains all required and
optional libraries pre-installed and configured.

4.7. download, Licensing, and
Compatibility
The code is available for download on the designated GitHub
repository15 alongside the documentation (including class
diagrams) and tutorials. It is released under the free software
license GPLv2. The build status is continuously monitored on
Windows, Linux, and macOS. The code itself can be considered
stable and has been in adapted from the code which was used in
the EFAA and WYSIWYD projects for several years.

5. CoNCLUSIoN ANd FUTURe WoRK

We presented iCub-HRI, a software framework which integrates
various components available within the iCub ecosystem and
makes them easily accessible by the means of method calls.
iCub-HRI can be used in various ways, from a very lightweight
library up toan integrated platform for studies on human–robot
interaction. While it is tailored for the iCub humanoid robot,
many parts are platform independent and can be used on other
robotic platforms as well. We provide a full documentation and
various tutorials, allowing researchers to easily adapt iCub-HRI
for their purposes.

One limitation of the presented framework is that while it
facilitates communication between different modules, it does
not have any means of manipulating the execution of indi-
vidual modules. This is a disadvantage in case of, e.g., monitor-
ing real-time constraints, which cannot be guaranteed on the
framework level but only within individual components (this
is the case for the low-level Cartesian controller employed by
ARE and KARMA (Pattacini et al., 2010)). Furthermore, as a

15 https://github.com/robotology/icub-hri.

71

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/icub-hri

8

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

central memory is being employed, there is a delay of the infor-
mation flow from one module to another. Another limitation
of this work is that no test data are being provided. Providing
a proper test-suite is beyond the scope of this research, as
it would need to write test cases for several tens of modules
(many of them being external), and their communication
handled by over 100 YARP ports. Writing suitable test cases
using the testing framework presented by Natale et al. (2016)
is an interesting research idea which we would like to tackle
in future works.

A key point for the future adaptation of iCub-HRI will be the
integration of new components from within the iCub ecosys-
tem as well as state of the art software from related disciplines.
For example, we intend to replace the current object tracking
functionality with a state of the art object tracker (Choi et al.,
2017); and to embed the reaching-with-avoidance framework
(Nguyen et al., 2016; Roncone et al., 2016) for safer robot
actions.

eTHICS STATeMeNT

The research protocol was approved by the Parc de Salut MAR—
Clinical Research Ethics Committee.

AUTHoR CoNTRIBUTIoNS

TF, CM-F, DC, and J-YP drafted the initial version of
the paper. TF, SL, and PN designed and implemented the

iCub-HRI library. TF, J-YP, DC, PN, CM-F, and SL designed
and implemented the iCub-HRI modules. TF, PN, J-YP, and SL
documented the code and wrote tutorials. TF, J-YP, DC, PN,
and CM-F conceived and performed the knowledge acquisi-
tion demonstration. CM-F, J-YP, and PV designed the DAC-h3
cognitive architecture. PV conceived and coordinated the
EFAA and WYSIWYD projects including the proactive tag-
ging benchmark. GM, TP, PV, and YD created the idea, were
significantly involved in reviewing manuscript drafts, and
supervised the project.

ACKNoWLedGMeNTS

The authors would like to thank all participants of the WYSIWYD
project who contributed to the code which made writing this
paper feasible.

FUNdING

The research leading to these results has received funding under
the European Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement n. FP7-ICT-612139 (WYSIWYD—
What You Say Is What You Did) and FP7-ICT-270490 (EFAA—The
Experimental Functional Android Assistant). PN was supported
by a Marie Curie Early Stage Researcher Fellowship (H2020-
MSCA-ITA, SECURE 642667). PV was supported by the ERC
advanced grant 341196 (cDAC—Role of Consciousness in
Adaptive Behavior).

ReFeReNCeS

Choi, J., Chang, H. J., Yun, S., Fischer, T., Demiris, Y., and Choi, J. Y. (2017). “Attentional
correlation filter network for adaptive visual tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition (Honolulu, HI), 4807–4816.

Damianou, A., Titsias, M. K., and Lawrence, N. D. (2011). “Variational Gaussian
process dynamical systems,” in Advances in Neural Information Processing
Systems (Granada, Spain), 2510–2518.

Elkady, A., and Sobh, T. (2012). Robotics middleware: a comprehensive literature
survey and attribute-based bibliography. J. Robot. 2012, 1–15. doi:10.1155/
2012/959013

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Boston, MA: Addison-Wesley Professional.

Fanello, S., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., Roncone, A.,
et al. (2014). “3D stereo estimation and fully automated learning of eye-hand
coordination in humanoid robots,” in IEEE-RAS International Conference on
Humanoid Robots (Madrid, Spain), 1028–1035.

Fischer, T., and Demiris, Y. (2016). “Markerless perspective taking for humanoid
robots in unconstrained environments,” in IEEE International Conference on
Robotics and Automation (Stockholm, Sweden), 3309–3316.

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D. E., Paikan, A., Metta, G., and
Natale, L. (2014). A middle way for robotics middleware. J. Softw. Eng. Robot.
5, 42–49. doi:10.6092/JOSER_2014_05_02_p42

Fitzpatrick, P., Metta, G., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Foote, T. (2013). “tf: the transform library,” in IEEE Conference on Technologies for
Practical Robot Applications (Woburn, MA, USA).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Boston, MA: Addison-Wesley.

Huang, C. M., and Mutlu, B. (2012). “Robot behavior toolkit: generating effective
social behaviors for robots,” in ACM/IEEE International Conference on Human-
Robot Interaction (Boston, MA), 25–32.

Jang, M., Kim, J., and Ahn, B. K. (2015). “A software framework design for social
human-robot interaction,” in International Conference on Ubiquitous Robots
and Ambient Intelligence (Goyang, South Korea), 411–412.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-learning-detection.
IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422. doi:10.1109/TPAMI.
2011.239

Krupke, D., Starke, S., Einig, L., Steinicke, F., and Zhang, J. (2017). “Prototyping of
immersive HRI scenarios,” in International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines (Porto, Portugal),
537–544.

Lallée, S., Hamann, K., Steinwender, J., Warneken, F., Martienz, U., Barron-
Gonzales, H., et al. (2013). “Cooperative human robot interaction systems: IV.
Communication of shared plans with Naïve humans using gaze and speech,” in
IEEE International Conference on Intelligent Robots and Systems (Tokyo, Japan),
129–136.

Lallée, S., and Verschure, P. (2015). How? Why? What? Where? When? Who?
Grounding ontology in the actions of a situated social agent. Robotics 4,
169–193. doi:10.3390/robotics4020169

Lallée, S., Vouloutsi, V., Blancas, M., Grechuta, K., Puigbo, J.-Y., Sarda, M., et al.
(2015). Towards the synthetic self: making others perceive me as an other.
Paladyn J. Behav. Robot. 6, 136–164. doi:10.1515/pjbr-2015-0010

Lane, I., Prasad, V., Sinha, G., Umuhoza, A., Luo, S., Chandrashekaran, A., et al.
(2012). “HRItk: the human-robot interaction ToolKit rapid development
of speech-centric interactive systems in ROS,” in NAACL-HLT Workshop on
Future Directions and Needs in the Spoken Dialog Community: Tools and Data
(Montreal, Canada), 41–44.

Martinez-Hernandez, U., Damianou, A., Camilleri, D., Boorman, L. W.,
Lawrence, N., and Prescott, T. J. (2016). “An integrated probabilistic framework
for robot perception, learning and memory,” in IEEE International Conference
on Robotics and Biomimetics (Qingdao, China), 1796–1801.

Mathews, Z., i Badia, S. B., and Verschure, P. F. M. J. (2012). PASAR: an inte-
grated model of prediction, anticipation, sensation, attention and response

72

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1155/
2012/959013
https://doi.org/10.1155/
2012/959013
https://doi.org/10.6092/JOSER_2014_05_02_p42
https://doi.org/10.5772/5761
https://doi.org/10.1109/TPAMI.
2011.239
https://doi.org/10.1109/TPAMI.
2011.239
https://doi.org/10.3390/robotics4020169
https://doi.org/10.1515/pjbr-2015-0010

9

Fischer et al. The iCub-HRI Software Framework

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 22

for artificial sensorimotor systems. Inf. Sci. 186, 1–19. doi:10.1016/j.ins.2011.
09.042

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in cognitive
development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.2010.08.010

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J.-Y., Pattacini, U.,
et al. (2017). DAC-h3: a proactive robot cognitive architecture to acquire and
express knowledge about the world and the self. IEEE Trans. Cogn. Dev. Syst.
doi:10.1109/TCDS.2017.2754143

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). The iCub
software architecture: evolution and lessons learned. Front. Robot. AI 3:24.
doi:10.3389/frobt.2016.00024

Nguyen, P. D., Hoffmann, M., Pattacini, U., and Metta, G. (2016). “A fast heuristic
Cartesian space motion planning algorithm for many-DoF robotic manipu-
lators in dynamic environments,” in IEEE-RAS International Conference on
Humanoid Robots (Cancun, Mexico), 884–891.

Pasquale, G., Ciliberto, C., Odone, F., Rosasco, L., and Natale, L. (2015). “Teaching
iCub to recognize objects using deep convolutional neural networks,” in
Workshop on Machine Learning for Interactive Systems (Lille, France), 21–25.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An
experimental evaluation of a novel minimum-jerk Cartesian controller for
humanoid robots,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (Taipei, Taiwan), 1668–1674.

Petit, M., Fischer, T., and Demiris, Y. (2016). Lifelong augmentation of multi-modal
streaming autobiographical memories. IEEE Trans. Cogn. Dev. Syst. 8, 201–213.
doi:10.1109/TAMD.2015.2507439

Petit, M., Lallee, S., Boucher, J.-D., Pointeau, G., Cheminade, P., Ognibene, D., et al.
(2013). The coordinating role of language in real-time multimodal learning
of cooperative tasks. IEEE Trans. Auton. Ment. Dev. 5, 3–17. doi:10.1109/
TAMD.2012.2209880

Puigbò, J.-Y., Moulin-Frier, C., and Verschure, P. F. (2016). “Towards self-controlled
robots through distributed adaptive control,” in Conference on Biomimetic and
Biohybrid Systems (Edinburgh, Scotland), 490–497.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).
“ROS: an open-source robot operating system,” in ICRA Workshop on Open
Source Software, (Kobe, Japan).

Roncone, A., Hoffmann, M., Pattacini, U., Fadiga, L., and Metta, G. (2016).
Peripersonal space and margin of safety around the body: learning visuo-tactile
associations in a humanoid robot with artificial skin. PLoS ONE 11:e0163713.
doi:10.1371/journal.pone.0163713

Sanchez-Fibla, M., Bernardet, U., Wasserman, E., Pelc, T., Mintz, M., Jackson, J. C.,
et al. (2010). Allostatic control for robot behavior regulation: a compar-
ative rodent-robot study. Adv. Complex Syst. 13, 377–403. doi:10.1142/
S0219525910002621

Sarabia, M., Ros, R., and Demiris, Y. (2011). “Towards an open-source social
middleware for humanoid robots,” in IEEE-RAS International Conference on
Humanoid Robots (Bled, Slovenia), 670–675.

Tikhanoff, V., Pattacini, U., Natale, L., and Metta, G. (2015). “Exploring affordances
and tool use on the iCub,” in IEEE-RAS International Conference on Humanoid
Robots (Atlanta, GA, USA), 130–137.

Verschure, P. F. M. J. (2012). Distributed adaptive control: a theory of the mind,
brain, body nexus. Biol. Inspired Cogn. Arch. 1, 55–72. doi:10.1016/j.bica.
2012.04.005

Verschure, P. F. M. J. (2016). Synthetic consciousness: the distributed adaptive con-
trol perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 263–275. doi:10.1098/
rstb.2015.0448

Vezzani, G., Pattacini, U., and Natale, L. (2017). “A grasping approach based on
superquadric models,” in IEEE International Conference on Robotics and
Automation (Singapore, Singapore), 1579–1586.

Viola, P., and Jones, M. (2001). “Rapid object detection using a boosted cascade
of simple features,” in IEEE Conference on Computer Vision and Pattern
Recognition (Kauai, HI), I-511–I-518.

Vouloutsi, V., Grechuta, K., Lallée, S., and Verschure, P. F. (2014). “The influence of
behavioral complexity on robot perception,” in Conference on Biomimetic and
Biohybrid Systems (Milan, Italy), 332–343.

Zambelli, M., and Demiris, Y. (2017). Online multimodal ensemble learning
using self-learnt sensorimotor representations. IEEE Trans. Cogn. Dev. Syst. 9,
113–126. doi:10.1109/TCDS.2016.2624705

Zambelli, M., Fischer, T., Petit, M., Chang, H. J., Cully, A., and Demiris, Y. (2016).
“Towards anchoring self-learned representations to those of other agents,” in
Workshop on Bio-Inspired Social Robot Learning in Home Scenarios at IEEE/
RSJ International Conference on Intelligent Robots and Systems, (Daejeon,
Korea).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, TD, declared a shared affiliation, though no other collaboration, with
one of the authors, GM, to the handling editor.

Copyright © 2018 Fischer, Puigbò, Camilleri, Nguyen, Moulin-Frier, Lallée, Metta,
Prescott, Demiris and Verschure. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

73

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1016/j.ins.2011.
09.042
https://doi.org/10.1016/j.ins.2011.
09.042
https://doi.org/10.1016/j.neunet.2010.
08.010
https://doi.org/10.1109/TCDS.2017.2754143
https://doi.org/10.3389/frobt.2016.00024
https://doi.org/10.1109/TAMD.2015.2507439
https://doi.org/10.1109/TAMD.2012.2209880
https://doi.org/10.1109/TAMD.2012.2209880
https://doi.org/10.1371/journal.pone.0163713
https://doi.org/10.1142/S0219525910002621
https://doi.org/10.1142/S0219525910002621
https://doi.org/10.1016/j.bica.
2012.04.005
https://doi.org/10.1016/j.bica.
2012.04.005
https://doi.org/10.1098/
rstb.2015.0448
https://doi.org/10.1098/
rstb.2015.0448
https://doi.org/10.1109/TCDS.2016.2624705
http://creativecommons.org/licenses/by/4.0/

CODE
published: 29 March 2018

doi: 10.3389/frobt.2018.00024

Edited by:
Ugo Pattacini,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Carlo Ciliberto,

University College London,
United Kingdom
Matej Hoffmann,

Czech Technical University in Prague,
Czechia

*Correspondence:
Vincent Padois

vincent.padois@sorbonne-
universite.fr

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 04 August 2017
Accepted: 28 February 2018
Published: 29 March 2018

Citation:
Eljaik GJ, Lober R, Hoarau A and

Padois V (2018) Optimization-Based
Controllers for Robotics Applications

(OCRA): The Case of iCub’s
Whole-Body Control.
Front. Robot. AI 5:24.

doi: 10.3389/frobt.2018.00024

Optimization-Based Controllers for
Robotics Applications (OCRA): The
Case of iCub’s Whole-Body Control
G. Jorhabib Eljaik, Ryan Lober, Antoine Hoarau and Vincent Padois*

Sorbonne Université, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique, ISIR, Paris, France

OCRA stands for Optimization-based Control for Robotics Applications. It consists of a
set of platform-independent libraries which facilitates the development of optimization-
based controllers for articulated robots. Hierarchical, weighted, and hybrid control
strategies can easily be implemented using these tools. The generic interfaces provided
by OCRA allow different robots to use the exact same controllers. OCRA also allows
users to specify high-level objectives via tasks. These tasks provide an intuitive way of
generating complex behaviors and can be specified in XML format. To illustrate the use of
OCRA, an implementation of interest to this research topic for the humanoid robot iCub
is presented. OCRA stands for Optimization-based Control for Robotics Applications. It
consists of a set of platform-independent libraries which facilitates the development of
optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid
control strategies can easily be implemented using these tools. The generic interfaces
provided by OCRA allow different robots to use the exact same controllers. OCRA also
allows users to specify high-level objectives via tasks. These tasks provide an intuitive
way of generating complex behaviors and can be specified in XML format. To illustrate
the use of OCRA, an implementation of interest to this research topic for the humanoid
robot iCub is presented.

Keywords: whole-body controller, iCub, optimization, tasks, hierarchical, code:c++

1. INTRODUCTION

Whole-body control (WBC) is a research direction in robotics, where humanoids are faced with the
problem of executing multiple tasks simultaneously. As stated by the IEEE Technical Committee on
Whole-Body Control:

A control system that is specifically designed to guarantee the execution of a single
task, even if it uses all the joints of a robot, cannot be considered WBC.

This is indeed the core of the software introduced in this work, but it goes further by drawing addi-
tional requirements from the identification of typical concerns in the control of articulated robots,
such as (1) standardization of the problem formulation, which is done in the form of an optimization
problem; (2) flexibility in the solver choice; (3) independence of tasks from the problem formulation
with user-friendlyways to introduce them; (4) addition of constraints, contactmodeling and support
for both fixed and floating-base robots. OCRA draws its origins from these design requirements.
It stands for Optimization-based Control for Robotics Applications and consists of a set of

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24174

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00024
https://creativecommons.org/licenses/by/4.0/
mailto:vincent.padois@sorbonne-universite.fr
mailto:vincent.padois@sorbonne-universite.fr
https://doi.org/10.3389/frobt.2018.00024
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00024&domain=pdf&date_stamp=2018-03-29
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://loop.frontiersin.org/people/189645
https://loop.frontiersin.org/people/309219
https://loop.frontiersin.org/people/539245
https://loop.frontiersin.org/people/165250
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

platform-independent libraries which facilitates the development
of optimization-based controllers. It builds on top of ORC which
was originally a framework developed by CEA-List,1 later used at
the Institute of Intelligent Systems and Robotics (ISIR) to develop
whole-body controllers with simulations on XDE (Salini et al.,
2013).

Examples of software addressing similar problems include the
Stack of Tasks (SOT) (Mansard et al., 2009), OpenSOT (Rocchi
et al., 2015), and CoDyCo2 controllers (Nori et al., 2015). Nev-
ertheless, they either lack the level of desired flexibility or do not
meet the proposed design requirements. SOT and OpenSOT use
strictly hiearchical methods, and while OpenSOT is intended for
torque-controlled robots similar to OCRA, SOT originally targets
velocity-controlled robots. When it comes to solvers, OpenSOT
relies solely on QPOases while SOT’s controller and solver are
tight together.

Another software that has been used in the formulation of
this type of controllers is Roboptim (2016). It is, however, an
optimization framework for robotics and it is up to the user to
formulate the control problem, workout the prioritization strategy
and address the different components to achieve a whole-body
controller.

CoDyCo’s controllers on the other hand, although aimed at
WBC, are tailored to be task-specific and do not constitute aWBC
library.

OCRA has been designed to exploit a client–server paradigm,
where the server is responsible for running the whole-body con-
troller, send control inputs to the robot and host user-defined
tasks, while the client is built by the user according to their needs
on task servoing, planning, or higher-level control.

OCRA contributes to the building of the iCub mindware
through the implementation of an iCub server along with com-
munication utilities for the construction of clients. It facilitates
the creation of a vast type of whole-body behaviors, with special
attention to interaction. It also addresses the needs of different
types of users, from the advanced one who desires to implement
particular low-level control laws, to the more practical one who
prefers to state at the metatask-level.

In Section 2, a generic overview of the main design require-
ments and features of OCRA, along with a list of software depen-
dencies is presented. Section 3 introduces the main concepts
involved in optimization-based control which allow the reader
to have a deeper insight in the inner workings of the software.
Concepts such as tasks, constraints, quadratic programming based
control (and motivations for its use), prioritization strategies,
and optimization solver are covered. Section 4 spans OCRA’s
structure, shedding light on its libraries and the main classes
they are composed of as well as how these were used for iCub
implementations. The same section continues with a more in-
depth description of the iCub server and a generic client through
sequence diagrams, as well as a brief explanation on how to
automatically build a template client. Finally, Section 5 draws final
conclusions.

1http://www-list.cea.fr/en/.
2European Project Whole-body Compliant Dynamical Contacts in Cognitive
Humanoids.

2. OCRA

OCRA is a set of libraries and tools for the implementation
of QP-based whole-body controllers for torque/force-controlled
articulated robots. Robots like the humanoid iCub or the KUKA
LightWeight Robot (LWR)manipulators (floating/fixed base) can
be controlled using this open source software. In particular, for the
iCub, the set of necessary libraries is implemented and distributed.

One main design requirement from OCRA’s inception is that
(1) it should be heavily task-oriented. This means, that a user can
specify a set of tasks to be performed by the robot, e.g., follow
a CoM trajectory, while maintaining balance and make one hand
follow another trajectory and (2) the specifications of these tasks
have to be easy to provide. This is achieved through an XML file
that we call the tasks set.

Features that make OCRA flexible include: the possibility to
choose between different types of tasks and their prioritization
strategies; two different optimization solvers; various types of con-
straints and the tools to create a client–server architecture, where
the server runs a reactive controller with the tasks and constraints,
and one or more clients perform the computation of the right
instantaneous tasks values through local trajectory controllers
(e.g., PIDs), motion planning, model predictive control, or any
higher-level control schemes.

The required dependencies of this software are given inTable 1.

3. OPTIMIZATION-BASED CONTROL

Traditionally, redundancy resolutions for robotic control prob-
lems find analytical solutions by ensuring that lower-priority tasks
are executed in the null-space of higher-priority tasks. In prior-
itized inverse kinematics, acceleration or torque based control,
the jacobian of low-priority tasks is projected onto the null-space
of higher-priority ones (Khatib, 1987; Sentis and Khatib, 2006;
Peters et al., 2008). Inequality constraints are, however, difficult to
deal with in these approaches. They are usually transformed into
avoidance tasks, which try to prevent the robot from hitting the
original constraint (Khatib, 1986; Padois et al., 2007). This type of
active avoidance (passive or active) method is doomed to fail as
the number of constraints is necessarily higher than the number
of DOF (2n joints limits for an n DOF robot) and it thus requires
tomake decision reactively about which avoidance tasks should be
used in order to guarantee the respect of all constraints while still

TABLE 1 | Required dependencies table for ocra and ocra-icub.

Dependency Minimum version ocra ocra-icub

YARP 2.3 X X
Eigen 3.2 X X
orocos_kdl 1.2 X X
iDynTree 0.4.0 X
yarpWholeBodyInterface 0.35 X
Boost 1.64 X X
CMake 2.8.11 X X
TinyXML 2.6.2 X
YCM 0.4.0 X

For the sake of clarity, it is not shown that ocra is naturally a dependency of ocra-icub.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24275

http://www-list.cea.fr/en/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

achieving the operational tasks in the most efficient way possible
(Padois, 2016).

OCRA resorts to convex optimization for the formulation of
the whole-body controller, as it has been stated multiple times
before this point. The controller is written as a linearly constrained
quadratic multi-objective optimization problem where strict or
soft hierarchies are used to express the priorities between the
tasks. Linearly constrained due to the constraints being strictly
linear (or linearized if not), quadratic because each objective is
the quadratic error of a task and multi-objective because multiple
tasks are combined. The result of this optimization are the optimal
actuation inputs to the system (i.e., joint torques) given the set
of prioritized tasks to be performed and the constraints that
have to be respected. Among these constraint, this optimization
problem includes inequality constraints, coming from control
input saturations or any other variable which should never cross
certain limits. Under these conditions, the solution space can be
proved convex and finding the optimal solution to the whole-
body control problem is equivalent to finding the set of active
constraints. In fact, methods in which optimization is avoided end
up using algorithms that pretty much search for this active set,
not explicitly and in a suboptimal way. It is then indisputable that
the strong background in convex optimization outruns analytical
methods used to heuristically activate constraints.

The primary concern of this section is to present the necessary
equations and relationships to understand the critical aspects of
the types of controllers which can be developed with OCRA.
Generally speaking, an optimization-based controller formulates
the control problem as one of minimizing control objective func-
tions while respecting the control constraints. Specifically, the
problem is formulated as a convex linearly constrained QP using
the second-order rigid body dynamics of the robot. Therefore,
the control objectives (Tasks) are expressed as either accelerations,
torques, or wrenches, allowing for complex dynamic interactions
with the environment, and the control constraints are expressed
directly in the QP as linear equalities and inequalities.

3.1. Tasks
Tasks allow users to decompose complex whole-body behaviors
into atomic control objectives, which can be planned by a user
or automatically with planners. Here, a task represents a control
objective for the robot, and more specifically, an error between
some desired task value and the current value of the task in terms
of the control variable. These tasks are expressed as the squared
norm of these errors in either accelerations, torques, or wrenches
and can be expressed in both joint and operational-space. In
Section 3.4, the expression of these tasks in terms of the control
variables is provided, but Table 2, below, shows their standard
formulations.

In Table 2, ν and ν̇ are the generalized velocities and accel-
erations of the robot. They can be more or less directly related
to the derivatives of the generalized coordinates q. Indeed, for
robots whose root link can float freely in Cartesian space, e.g.,
humanoids, it is necessary to consider the pose of the root link
w.r.t. the world reference frame. The primary method for doing
so is to account for the root link pose directly in the generalized
coordinates, q, of the robot (Sentis and Khatib, 2005; Mistry et al.,

TABLE 2 | Different types of tasks.

Task Definition

Operational-space acceleration T
(

ξ̈des
)

=
∥∥∥J(q)ν̇ + J̇(q, ν)ν − ξ̈des

∥∥∥
Joint-space acceleration T

(
ν̇des

)
=

∥∥∥ν̇ − ν̇des
∥∥∥

Operational-space wrench T
(
eωdes

)
=

∥∥∥eω − eωdes
∥∥∥

Joint torque T
(

τ des
)

=
∥∥∥τ − τ des

∥∥∥
Superscript “des” stands for desired.

2010). The terms J and J̇ are link Jacobians and their deriva-
tives. The variable eω represents an external wrench, and τ , the
system torques, while ξ̈ is operational-space acceleration. The
corresponding desired values of each term inTable 2 should not be
confused with the raw trajectory given by the user (subscript ref).
These set-points are used as inputs to a task-level PD controller
in the case of operational-space acceleration tasks and a PI in the
case of wrench (eω) tasks, such that:

ξ̈des(t + ∆t) = ξ̈ref(t + ∆t) + Kpϵ(t) + Kdϵ̇(t), (1)
eωdes(t + ∆t) = eωref(t + ∆t) + Kpϵ(t) + Ki

∫
ϵ(t)dt, (2)

where ξ̈ref and eωref are feedforward terms, while ϵ and ϵ̇ are pose
error and its derivative (these being representation dependant).
Kp, Kd, and Ki are proportional, derivative, and integral gains and
by default, Kd = 2

√
Kp. Task servoing is necessary to compensate

for drift and tracking errors associated with using second-order
control techniques. Additionally, it is often the case that only
position values are specified by the user, and these must be con-
verted to accelerations—task servoing provides this service. For
joint-space accelerations the servoing is done in similar fashion as
for ξ̈des.

3.2. Constraints
As with all real world control problems, there are limits to what
the system being controlled can do. For example, the control input
is typically bounded, which for robots with revolute joints means
that the torque which can be generated by the actuators is limited
to plus or minus some value. Likewise, the joints themselves
generally have limited operating ranges for various mechanical
reasons. In addition to these common limiting factors, it may be
reasonable to maintain the robot in some region of its state space
that will ease control, e.g., avoid slipage of the contact points or
avoid contact with the environment.

In Table 3, the •min and •max values represent the lower and
upper limits of a variable. The term Ccj

eωj ≤ 0 represents
the linearized friction cone constraint for a point contact, and
eJ(q)ν̇+e J̇(q,ν)ν = 0, its coupled “nomotion” constraint, which
ensures that the contact does not move. For details on these
constraint expressions and the way to express them through lin-
earization as functions of joint torques or generalized acceleration,
the reader is directed to Salini et al. (2011). In addition to these
nearly universal robotic constraints, particular care must be taken
to ensure that the motions generated by the controller respect the
system dynamics, i.e., the equations of motion.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24376

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

TABLE 3 | Possible constraints in OCRA.

General constraint Equation

Actuator limits τmin ≤ τ ≤ τmax

Joint position limits qmin ≤q≤qmax

Joint velocity limits ν̇min ≤ ν̇ ≤ ν̇max

Contact constraints Ccj
eωj ≤ 0

eJ(q)ν̇+e J̇(q, ν)ν = 0

3.3. Dynamics
The principle constraint of the controllers in OCRA is that of the
system dynamics. This means that any solution found must be
dynamically feasible, and consequently, respect the equations of
motion,

M(q)ν̇ + C(q,ν)ν + g(q)︸ ︷︷ ︸
n(q,ν)

= S⊤τ+eJ⊤(q)eω (3)

M(q)ν̇ + n(q,ν) = S⊤τ+eJ⊤(q)eω. (4)

In (3), M(q) is the generalized mass matrix, C(q, ν)ν and
g(q) are the Coriolis-centrifugal and gravitational terms, S is a
selection matrix indicating the actuated degrees of freedom, eω is
the concatenation of the external contact wrenches, and eJ their
concatenated Jacobians. Grouping C(q, ν)ν and g(q) together
into n(q, ν), we can simplify the equations to (4). Additionally,
the variables ν̇ , τ , and eω, can be grouped into the same vector,

x =

 ν̇
τ

eω,

 (5)

forming the control variable, and allowing (4) to be rewritten as,[
−M(q) S⊤ eJ⊤(q)

]︸ ︷︷ ︸
A

x = n(q,ν)︸ ︷︷ ︸
b

. (6)

Equation 6 provides an affine equality constraint, Ax= b,
which can be used to ensure that the minimization of the control
objectives respects the system dynamics.

3.4. Quadratic Programming Based Control
Given the control objectives defined by the task errors from
Section 3.1, the control constraints from Section 3.2, and the
optimization variable defined by (5), we can now form a generic,
single task, optimization-based whole-body control problem as,

min
x

Ti(x)

s.t. Gx ≤ h (7)
Ax = b,

where the objective function, Ti(x), is the task error, representing
for example, the squared error between a desired acceleration or
wrench and the system’s (see Section 3.1). The inequality con-
straints, generically represented by, Gx≤ h, contain the concate-
nation of all of the affine inequalities defined in Table 3, while the

affine equality constraints, shown by Ax= b, obligatorily contain
the equation of motion constraints from (6), and possibly the
coupled “no motion” constraints of any contacts which might be
active.

The form of this problem will be referred to throughout this
work as the full problem, which is also the default formulation
used in OCRA. The user can choose to work with the reduced
problem, in which the dynamics are not explicit in the constraints,
but projected onto the different control objectives, and with the
optimization variable, x, in this case, consisting of the control
inputs, τ , and external wrenches eω, i.e., x = [τ⊤ eω⊤]

⊤.
The reduced problem has the advantage of having less optimiza-
tion variables, which can improve the solution time as shown in
Section 3.5 of Salini (2012), at the expense of complicating the
writing of the tasks and constraints in terms of the optimization
variable. The inclusion of the generalized joint accelerations, ν̇ , in
the full problem, yields clarity and simplicitywhenwriting the cost
functions and the constraints on the joint velocities, acceleration
and joint limits.

3.5. Prioritization Strategies
Up to this point, only one task objective function is considered in
the whole-body controller in Section 3.4. If multiple task objective
functions are combined (using operations that preserve convex-
ity) in the resolution of the control problem, then they can be
performed simultaneously. In these cases, it is important to select
a strategy for the resolution of the optimization problem. The
strategy will in turn, determine how tasks interact/interfere with
one another. The two prevailingmethods for dealingwithmultiple
tasks are hierarchical (Saab et al., 2013; Escande et al., 2014) imple-
mented as WOCRA and weighted prioritization (Bouyarmane
and Kheddar, 2011; Salini et al., 2011) implemented as HOCRA.
A hybrid scheme can also be used providing the best of the former
two methods (Liu et al., 2016).

4. SOFTWARE

4.1. Structure
4.1.1. OCRA Libraries
The main concepts introduced in previous sections are
materialized in the different interfaces, abstract, and concrete
classes OCRA is composed of. These are encapsulated in four
essential components or libraries. These are: ocra-optim,
ocra-control, ocra-coms, and ocra-utils.

The first of these libraries, ocra-optim, defines the lowest-
level data structures required to build an optimization problem
such as variables, functions, and constraints, as well as the basic
concept of a solver and prioritization strategies. Table 4 shows the
main classes in this library, their type, and a brief description.

The ocra-control library goes up one level of abstraction,
containing all the classes necessary to build the model of a robot,
implement a control law, account for the floating-base dynamics
and build the different types of tasks, constraints and trajectories.
The two main prioritization techniques described in Section 3.5
are, respectively, implemented through HOCRA and WOCRA. Again,
the main classes in this library along with their brief description
are collected in Table 5.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24477

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

TABLE 4 | Main classes composing the ocra-optim library.

ocra-optim

Main classes Features

Variable Represents the mathematical concept of
variable

Function Base for any type of function
Constraint Templated base class to build

equality/inequalities constraints
LinearizedCoulombFunction Builds a discretized cone representing a

Coulomb Friction cone
Solver Base class for optimization solvers
CascadeQPSolver Implements a hierarchical solver

OneLevelSolver Used for building solvers with one level of
importannce to all tasks. It also contains
specific implementations with QuadProg++
and QPOases. This is the solver used in wocra

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances, while green labels
stand for implemented classes.

TABLE 5 | Main classes composing the ocra-control library.

ocra-control

Main classes Features

Controller Used to implement control laws
Model Provides dynamic and static terms from

the equations of motion
FullDynamicEquationFunction Creates the dynamics equation as a

linear function of the optimization
variable

ModelContacts Concatenates the contact variables and
Jacobians for a model

ControlFrame Generic representation of a frame
Feature Used by tasks to compute errors and

Jacobians
Task –
TaskBuilder Builds task-specific features
*TaskBuilder Task-specific implementations of

TaskBuilder. “*” is replaced by Com,
FullPosture, Orientation, etc.

TaskConstructionManager –

*LimitConstraint (torque and joint limits)
Trajectory Helper class to build trajectories. These

can be minimum jerk, linearly
interpolated, gaussian processes or
time-optimal

WocraController QP-based controller using a weighted
prioritization strategy

HocraController QP-based controller using a hierarchical
prioritization strategy

Blue labels indicate abstract classes that can be later implemented. Orange labels
are assigned instead to concrete classes without particular inheritances. Red labels to
interfaces and green labels to implementations.

The last two libraries are agnostic to the paradigm suggested
by OCRA. That is, a client–server model. In order to implement
it, the ocra-coms library is provided and comes with the generic
classes to create a server and a client and tomanage the communi-
cation between them. Table 6 lists the main classes in this library
along with their description.

TABLE 6 | Main classes composing the ocra-coms library.

ocra-coms

Main classes Features

ControllerServer Must be inherited to implement the server
side

ServerCommunications Helps the server establish YARP-based
communication with the client

ClientCommunications Helps the client establish YARP-based
communication with the server

ClientManager Implements the functionalities of YARP
RFModule on the client side. Holds the main
client thread

ControllerClient Implements the functionalities of YARP
RateThread on the client side. Main thread
hosted by ClientManager

TaskConnection Used on the client side to connect and
communicate with the tasks started by the
server

TrajectoryThread Used to create trajectories on the client side

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances.

TABLE 7 | Main classes composing the ocra-icub library.

ocra-icub

Main classes Features

ModelInitializer Retrieves model configuration information
from the server to create a local copy of the
robot model

OcraWbiModel Implements the abstract Model class from
ocra-control for the iCub robot

IcubControllerServer Implements ControllerServer for the
iCub robot

Module Module that launches the controller thread,
parses controller options and the tasks set
XML. Basically a yarp:os:RFModule

Thread Main controller thread started. Created by
Module, contains the controller, tasks
manager, and solves the whole-body
control problem

Orange labels mean concrete class without any particular inheritance. Green labels are
for classes that implement some base class from the main OCRA libraries. Yellow labels
stand indicate classes that are used to build a client, while gray labels are for those used
to build a server.

Finally, the ocra-utils library as its name states, is a set of
utilities to aid the other libraries: helpers to perform file opera-
tions, xml parsing, data structure conversions, errors descriptors,
among others.

4.1.2. OCRA for iCub
The classes needed to implement a server for the iCub robot
and a generic client are present in the ocra-icub library. As
can be seen from the green implementation labels in Table 7,
most of the main classes are implementations of base classes from
ocra-control and ocra-coms. In the following section, two
main detailed explanations are provided: how to use these classes
to obtain a client–server architecture for iCub, and how objects of
the different classes interact.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24578

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 1 | A server (ocra-icub-server) and a client (icub-client) are here
represented in dark green as YARP modules. In light green, we see the
underlying OCRA libraries associated to their construction, as well as for the
communication between them and the parsing of the tasks set.

Given the classes involved in the construction of this task-
oriented, client-server paradigm for whole-body control, as well
as the particular implementations for iCub, we present for the
sake of clarity in Figure 1 an illustration of a typical server–client
architecture with the underlying OCRA libraries used to build
each component. This section proceeds with a time-based illus-
tration of the interaction logic between the different objects of our
system in the form of sequence diagrams (IEEE, 2009) as shown in
Figures 2 and 3. Given the amount of classes in the package, it
might be difficult to see the global interaction among them along
with the intended architecture. The next two sections attempt to
clear this out by showing the inner interactions of both client and
server, independently and between them.

4.1.3. iCub Server
Figure 2 depicts the sequence diagram for the ocra-icub-
server. The user starts by executing the server from terminal
issuing the command ocra-icub-server [options] (1).

The default options are specified in its initialization file
ocra-icub-server.ini or hardcoded in the source code. After
the execution of the server, an object of type ResourceFinder
is created, which is responsible for the parsing of the former
options. Right after, a yarp RFModule is created (3) and started
(4), whose first task will be to configure the server (6), ask
the ResourceFinder to find the desired type of controller (7),
i.e., WOCRA or HOCRA, the solver to be used, i.e., QUAD-
PROG or QPOASES, the XML file with the description of
the tasks that the client will manipulate, etc. At this point, a
yarpWholeBodyInterface object is created (8) and initialized.
This class serves as an interface to the robot, and as such will allow
us to set the control references obtained, as well as to obtain the
state of the robot. Now the module is ready to create (12) and start
(13) the main thread of the client.

Before entering the main loop of the thread, however, a cou-
ple of objects of interest are created. First, an object of type
IcubControllerServer (14), which during initialization (16)
will create the desired controller with its internal solver. At this
phase, also communication ports are opened with standardized
names that will be used by the cient for future connections.
IcubControllerServer is then asked by the thread to update
its internal model of the robot (17) and add the tasks specified
by the user via XML (18). This process involves the creation

(19) of an object of type TaskConstructionManager which
will create one or multiple instances (20) of TaskBuilder,
one per type of task found in the XML. These task objects
will then get added to iCubControllerServer (21). Notice
how the tasks are living in the server. The server will then ask
the yarpWholeBodyInterface object to set the torque con-
trol mode on the robot (22) for it to accept torque references.
The latter are computed every cycle of the Thread (24–27) by
iCubControllerServer.

The server will be constantly controlling the robot to achieve
default initial states of the specified tasks. As an example, if
one task is of COM type, it controls the robot to keep it at its
initial position, until a client connects to the server and tells it
to do otherwise. Finally, if the user decides to stop the server
(28), the sequence of object “destructions” is illustrated from (29)
to (37).

4.1.4. Generic Client
A client’s main goal is to connect to the server to provide reference
trajectories to the tasks it hosts. Let us show through Figure 3 the
main interactions within a client and the type of communication
it establishes with the server.

As done previously on the server side, we are going to follow the
sequence diagram in an orderly fashion. First, notice how before
the user can start a client, they need to start the server. This is
evident by the sequence number (2) next to example-client.
Thus, having a server properly started, the client is launched
and the first thing it does is to get model information of the
robot through the class ModelInitializer. This is the first
interaction between the client and the server (4-5), after which a
local model of the robot is built (6). Once the client has access
to the robot model, the main client thread is created (7). This is
of type ControllerClient which is a Yarp RateThread. The
creation of the thread is followed by a ClientCommunications
object (8), which creates and connects local ports to the server for
inter-process communications. Its role will become clearer later
on. The client thread is passed to a ClientManager object (10)
which will handle the life-cycle of the thread and its configu-
ration (11–12). The module subsequently starts (18) the client
thread, which afters initialization will spawn a couple of objects of
interest.

Given the tasks contained in the XML file (taskSet) and fed to
the server, the client will create one or more TaskConnection
objects (18) for each of those tasks that are to be manipulated.
Although not depicted in the diagram, for the sake of clarity, these
objects will open control ports that are then connected to their
corresponding tasks on the server side (19). It is through these
objects that the client will be able to send task-specific messages
to get or set their state.

As it is often the case, the user might want to create reference
trajectories (of even different types) for all or some of the tasks.
To this end one or more objects of type TrajectoryThread
are created (20). These, at the same time, will internally create
TaskConnection objects again to set the references to the tasks
on the server (21). The client thread can then start the trajectory
threads (23) and run in the background until it receives new
references (25–29).

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24679

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 2 | UML sequence diagram displaying the typical interactions within the ocra-icub-server. The time evolution of interactions is followed from top to bottom,
while messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicates that these are threads.

Now that the client has created task connections and trajectory
threads, the client logic starts in the main thread (30–40). In this
main loop, the client can:

• Get or set task-specific states through the TaskConnection
objects (31–34).

• Add, remove or get tasks through the
ClientCommunications object (35–38).

• Set references to tasks trajectories through the
TrajectoryThread objects (39–40).

In order to stop the client, the user can send a SIGINT signal
(ctrl+ c) to kill the process and the sequence of “destructions”
will be as in (43–53).

In Section 5.2, a link to a short tutorial can be found where it is
explained how to launch a server and client.

4.1.5. Client Generator
Because each new iCub controller client requires the same basic
setup, a helper tool has been developed to automatically scaf-
fold out the minimum required code for a new client. Invoking
icub-client-generator [name-of-client] from the com-
mand line will produce a directory called name-of-client/, with
all of the minimum client requirements and a complete CMake
build. One then needs only to edit the name-of-client.cpp file
and add control logic. Therefore, anyone can write an iCub client
in just a few minutes.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24780

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 3 | UML sequence diagram displaying the typical interactions within a generic client. The time evolution of interactions is followed from top to bottom, while
messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicate that these are threads.

5. CONCLUSION

The development of intelligent and autonomous robots entails
many challenges, one of which is robust and flexible controllers.
The overall goal of any control software should be to abstract the
control of redundant robots, such as the iCub, to higher and higher

levels of logic in order to facilitate the generation of complex
overall behaviors—behaviors, which should ultimately render the
robot useful. Whole-body control was born from these require-
ments and lays forth the design criteria for OCRA presented
in Section 1. Through its various abstract and concrete classes,
and server–client structure, OCRA attempts to provide a solution

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24881

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

which meets these needs but also balances ease of use with flex-
ibility. The design of OCRA allows users to interact with and
customize the control problem at virtually any level from the real-
time computation of joint torques to high-level controller clients.
This wide array of usability means that OCRA is suitable for any
user from control experts to control novices.We believe that this is
an important step toward improving the usability of such software
because the learning curve should be simple for those who only
want a functioning controller, but the software should also be
flexible enough to allow users to experiments with fundamental
concepts.

At the low-level, this is accomplished by abstracting the various
aspects of the control problem and providing concrete implemen-
tations for the most commonly reused concepts. Users interested
in low-level control concepts can, therefore, experiment with
customizing the abstract interface classes to their own needs, or
simply construct novel controllers using the concrete class imple-
mentations. Higher-level usage on the other hand, is easy to get
started with, thanks to the server–client architecture. If the robot
has been properly interfaced with the OCRA controller server,
then clients can be developed with little effort and most of all,
no deep understanding of the internals of the server side. Various
examples of the different manners in which one can interact with
OCRA are presented in the Supplemental Data Section and vali-
date the variety of ways OCRA can be used to study and develop
autonomy.

Ultimately, OCRA should serve as the basis for increasingly
complex logic, by robustly resolving progressively more complex
layers of the control problem. The server–client architecture is just
the beginning of this process and should be built upon by even
high-levels of problem reasoning, to create greater and greater
levels of robot autonomy.

AUTHOR CONTRIBUTIONS

GE, RL, and AH contributed to the development and inte-
gration of the proposed software framework. VP laid out the

conceptual foundations of the main algorithms in this soft-
ware. GE, RL, AH, and VP contributed to the writing of
the associated paper, JE being the main contributor to the
writing.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contribution of CEA-
List for providing access to the ORC framework as well as to
the engineers/researchers whose work has led to OCRA: Dar-
win Lau, Mingxin Liu, Joseph Salini, Hak Sovannara, and Silvio
Traversaro.

FUNDING

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements No. 600716 (CoDyCo).
This work has also been partially sponsored by the French gov-
ernment research program Investissements d’Avenir through the
Robotex Equipment of Excellence (ANR-10-EQPX-44).

ONLINE MATERIAL

Website: https://ocra-recipes.github.io/web/.
OCRA Documentation: https://ocra-recipes.github.io/web/doxy-

ocra-recipes/html/index.html.
OCRA iCub Documentation: https://ocra-recipes.github.io/web/

doxy-ocra-wbi-plugins/html/index.html.
OCRA Source Code: https://github.com/ocra-recipes/ocra-

recipes.
OCRA iCub Source Code: https://github.com/ocra-recipes/ocra-

wbi-plugins.
Related publications: https://ocra-recipes.github.io/web/

authors/.
Tutorials: https://ocra-recipes.github.io/web/icub/2016/11/26/

using-ocra-with-icub.html.

REFERENCES
Bouyarmane, K., and Kheddar, A. (2011). “Using a multi-objective controller to

synthesize simulated humanoid robot motion with changing contact configu-
rations,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011 (San Francisco, CA: IEEE), 4414–4419. doi:10.1109/IROS.2011.
6094483

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic pro-
gramming: fast online humanoid-robot motion generation. Int. J. Rob. Res. 33,
1006–1028. doi:10.1177/0278364914521306

IEEE. (2009). 1016-2009 – IEEE Standard for Information Technology–Systems
Design–Software Design Descriptions (IEEE). doi:10.1109/IEEESTD.2009.
5167255

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res. 5, 90–98. doi:10.1177/027836498600500106

Khatib, O. (1987). A unified approach for motion and force control of robot
manipulators: the operational space formulation. IEEE J. Rob. Autom. 3, 43–53.
doi:10.1109/JRA.1987.1087068

Liu, M., Tan, Y., and Padois, V. (2016). Generalized hierarchical control. Auton.
Robots 40, 17–31. doi:10.1007/s10514-015-9436-1

Mansard, N., Stasse, O., Evrard, P., and Kheddar, A. (2009). “A versatile general-
ized inverted kinematics implementation for collaborative working humanoid

robots: the stack of tasks,” in International Conference on Advanced Robotics,
2009. ICAR 2009 (Munich: IEEE), 1–6.

Mistry, M., Buchli, J., and Schaal, S. (2010). “Inverse dynamics control of floating
base systems using orthogonal decomposition,” in IEEE International Conference
on Robotics and Automation (Anchorage, AK: IEEE), 3406–3412. doi:10.1109/
ROBOT.2010.5509646

Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., and Pucci, D. (2015).
iCub whole-body control through force regulation on rigid non-coplanar con-
tacts. Front. Rob. AI. 2:6. doi:10.3389/frobt.2015.00006

Padois, V. (2016). Control and Design of Robots With Tasks and Constraints in Mind.
Paris, France: Hdr, Université Pierre et Marie Curie (Paris 6).

Padois, V., Fourquet, J.-Y., and Chiron, P. (2007). Kinematic and dynamic
model-based control of wheeled mobile manipulators: a unified
framework for reactive approaches. Robotica 25, 157–173. doi:10.1017/
S0263574707003360

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., and Schaal, S. (2008). A unifying
framework for robot control with redundant dofs. Auton. Robots 24, 1–12.
doi:10.1007/s10514-007-9051-x

Roboptim. (2016). C++ Library for Numerical Optimization for Robotics. Available
at: http://roboptim.net/

Rocchi, A., Hoffman, E. M., Caldwell, D. G., and Tsagarakis, N. G. (2015).
“Opensot: a whole-body control library for the compliant humanoid robot

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 24982

https://ocra-recipes.github.io/web/
https://ocra-recipes.github.io/web/doxy-ocra-recipes/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-recipes/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-wbi-plugins/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-wbi-plugins/html/index.html
https://github.com/ocra-recipes/ocra-recipes
https://github.com/ocra-recipes/ocra-recipes
https://github.com/ocra-recipes/ocra-wbi-plugins
https://github.com/ocra-recipes/ocra-wbi-plugins
https://ocra-recipes.github.io/web/authors/
https://ocra-recipes.github.io/web/authors/
https://ocra-recipes.github.io/web/icub/2016/11/26/using-ocra-with-icub.html
https://ocra-recipes.github.io/web/icub/2016/11/26/using-ocra-with-icub.html
https://doi.org/10.1109/IROS.2011.6094483
https://doi.org/10.1109/IROS.2011.6094483
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1109/IEEESTD.2009.5167255
https://doi.org/10.1109/IEEESTD.2009.5167255
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.1007/s10514-015-9436-1
https://doi.org/10.1109/ROBOT.2010.5509646
https://doi.org/10.1109/ROBOT.2010.5509646
https://doi.org/10.3389/frobt.2015.00006
https://doi.org/10.1017/S0263574707003360
https://doi.org/10.1017/S0263574707003360
https://doi.org/10.1007/s10514-007-9051-x
http://roboptim.net/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

coman,” in IEEE International Conference on Robotics and Automation (ICRA),
2015 (Seattle, WA: IEEE), 1093–1099. doi:10.1109/ICRA.2015.7140076

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., and Fourquet, J.-Y.
(2013). Dynamic whole-body motion generation under rigid contacts and other
unilateral constraints. IEEE Trans. Robot. 29, 346–362. doi:10.1109/TRO.2012.
2234351

Salini, J. (2012). Dynamic Control for the Task/Posture Coordination of Humanoids:
Toward Synthesis of Complex Activities. Theses, Paris: Université Pierre et Marie
Curie – Paris VI.

Salini, J., Ivaldi, S., Hak, S., and Padois, V. (2013). ISIR Controller in the XDE Frame-
work for the Control of Robots Based on LQP Solvers. Available at: http://chronos.
isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html

Salini, J., Padois, V., and Bidaud, P. (2011). “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011 (Shanghai:
IEEE), 1283–1290. doi:10.1109/ICRA.2011.5980202

Sentis, L., and Khatib, O. (2005). “Control of free-floating humanoid robots through
task prioritization,” in Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, 2005. ICRA 2005 (Barcelona: IEEE), 1718–1723.
doi:10.1109/ROBOT.2005.1570361

Sentis, L., and Khatib, O. (2006). “A whole-body control framework for humanoids
operating in human environments,” in Proceedings 2006 IEEE International
Conference on, Robotics and Automation, 2006. ICRA 2006 (Orlando, FL: IEEE),
2641–2648. doi:10.1109/ROBOT.2006.1642100

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Eljaik, Lober, Hoarau and Padois. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 241083

https://doi.org/10.1109/ICRA.2015.7140076
https://doi.org/10.1109/TRO.2012.2234351
https://doi.org/10.1109/TRO.2012.2234351
http://chronos.isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html
http://chronos.isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html
https://doi.org/10.1109/ICRA.2011.5980202
https://doi.org/10.1109/ROBOT.2005.1570361
https://doi.org/10.1109/ROBOT.2006.1642100
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

CODE
published: 09 April 2018

doi: 10.3389/frobt.2018.00040

Frontiers in Robotics and AI | www.frontiersin.org 1 April 2018 | Volume 5 | Article 40

Edited by:

Maxime Petit,

Imperial College London,

United Kingdom

Reviewed by:

Hyung Jin Chang,

Imperial College London,

United Kingdom

Nuno Ferreira Duarte,

Instituto Superior Técnico,

Universidade de Lisboa, Portugal

*Correspondence:

Alberto Cardellino

alberto.cardellino@iit.it

Specialty section:

This article was submitted to

Humanoid Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2017

Accepted: 22 March 2018

Published: 09 April 2018

Citation:

Cardellino A, Ruzzenenti A and

Natale L (2018) Design and

Implementation of a YARP Device

Driver Interface: The Depth-Sensor

Case. Front. Robot. AI 5:40.

doi: 10.3389/frobt.2018.00040

Design and Implementation of a
YARP Device Driver Interface: The
Depth-Sensor Case
Alberto Cardellino*, A. Ruzzenenti and L. Natale

iCub Facility, Istituto Italiano di Tecnologia, Genoa, Italy

This work illustrates the design phases leading to the development of a new YARP

device interface along with its client/server implementation. In order to obtain a smoother

integration and a more reliable software usability, while avoiding common errors during

the design phases, a new interface is created in the YARP network when a new family of

devices is introduced.

Keywords: hardware abstraction, client server architecture, software design, depth sensor, YARP

1. INTRODUCTION

Depth sensors, such as the kinect (Zhang, 2012; Han et al., 2013), are very popular in the field of
navigation for mobile robots. OpenNI2 framework (Aksoy et al., 2011; RehemNeto et al., 2013), an
open source SDK used for the development of 3D sensing middleware libraries and applications, is
arising as a tentative standard for this type of devices, yet producers do not always comply with the
specifications. In a typical application, data are acquired by a robot but processed and visualized
on a remote machine. The device driver is in charge of acquiring data from the sensor while client
and server handles the transfer, optimizing both portability and performance. In general terms, we
believe that an effective solution to standardize data flow in a software framework is to provide the
device interface together with its client/server implementation.

1.1. YARP Device Interface
YARP (Metta et al., 2006) is a middleware specifically designed for robotics with a strong focus
on modularity, code re-usage, flexibility, and hw/sw abstraction. In order to achieve those goals,
the use of interfaces is fundamental because they allow to abstract from a specific producer. YARP
device driver interfaces are the ones devoted to generalize the capabilities and configurations of a
specific set of similar devices.

An interface is a class composed only by pure virtual function, data type definitions, and it is
the place where relevant measurement unit must be declared. The implementation of a new YARP
device interface is realized in the development of three C++ objects: (i) the device driver which
handles the real hardware, (ii) the network server which publish the data, and (iii) the network
client used by the application to remotely access the device. The objects are shown in the Figure 1A.

Note that by mean of an interface, the user application can connect directly to the device driver
bypassing the client/server architecture, as illustrated in Figure 1B. This is useful when higher
efficiency and low latency are required.

1.2. RGBD Device Family
An RGBD sensor is a device equipped with a standard RGB color camera and a depth image source.
The latter is producing a special image in which each pixel is providing the distance of closest object
in view.

84

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00040&domain=pdf&date_stamp=2018-04-09
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alberto.cardellino@iit.it
https://doi.org/10.3389/frobt.2018.00040
https://www.frontiersin.org/articles/10.3389/frobt.2018.00040/full
http://loop.frontiersin.org/people/413427/overview

Cardellino et al. Design of a YARP Interface

FIGURE 1 | How the application connects to an hardware device. (A) Via client/server. (B) Directly.

RGBD is the source data required to build a point cloud,
but they have distinct characteristics. The depth sensor produces
two separated image frames where the first one contains color
component and the second one distance information. A point
cloud instead is a specific data type where the point contains color
and depth components altogether and optionally other related
informationlikesurfacenormals,curvatures,histogram,andsoon.

While both RGB and depth frames shared the rectangular
width per height structure, a point cloud is an unordered list of
points of any size and shape. When dealing with this type of
sensors, a number of information is required in order to correctly
extract valuable data. Besides the image dimensions in terms of
pixels and the frames themselves, other useful parameters are,
the lens distortion model of RGB cameras and the measurement
range and its accuracy for the depth sensor. The designing of
the interface should thus include and provide all the previously
mentioned data.

In this work, the concept of RGBD device is extended to
include more cases than the physical sensor. All cases are shown
in the Figure 2.

1.3. Common Design Patterns
The quickest approach for designing an Hardware Abstraction
Layer (HAL) is proceeding bottom-up, starting from the
hardware capabilities and generalizing them. This approach tends
to fail when the device generates non-standard data or when the
underlying hardware varies significantly from sample to sample.

On one hand, bottom-up generated interfaces are
comprehensive of all device features whilst, on the other
hand those interfaces tends to be too tailored on the first
device they were built upon and difficult to be reused when the
underlying assumptions change.

The other most followed lead is the top-down approach
which is capable of providing a better abstraction, but usually
it fails being comprehensive. In this case, low level details or
configurations may be missing and users do not have access to
all the required data.

2. DESIGN PROCESS

An example of well-structured software design is illustrated in the
NEPOMUK project paper (Groza et al., 2007), described as an
iterative process starting from the user’s need, to design new code
in order to seamlessly fit into an existing software environment.
In order to overcome the before mentioned limitations, the
design process has been widened to a bigger-picture, real use
cases have been analyzed and generalized to extract relevant
functionalities. The latter information has been employed to
analyze the data flow and to design the resulting interface.

2.1. Identifying Data Flow and Device
Capabilities
Typically, an RGBD device is capable of producing a color image
and a depth image along with their respective parameters. The
interfaces are thus required to describe and provide equivalent
streams and parameters. YARP is often referred to as the robot
information piping system, because one of its main functions is
exchanging data between applications. Identifying the data to be
shared and their properties helps designing better interfaces and
client/server objects.

There are two main ways to exchange data in YARP, called
streaming and RPC. All the information the device streams are
sent to the client, whereas all the get/set requests originated by the
client are RPCs. Data are sent trough the network via an object
called port. A port is an abstraction of the operative system socket
and it is able to send any type of data, different protocols can be
used andmultiple consumer can read from a single producer. We
can identify the following desired data:

• Streaming

⇒ The RGB image
⇒ The depth image

• RPCs

⇔ Info about streaming: e.g., how big is the image being
published

Frontiers in Robotics and AI | www.frontiersin.org 2 April 2018 | Volume 5 | Article 4085

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

⇔ Controls: e.g., increase the saturation/brightness and other
camera parameters.

⇔ Info Visual: e.g., get the field of view of RGB/depth camera
⇔ Info about HW: e.g., this is a USB device

Each piece of information is required for both RGB and depth
separately because they may differ in availability and values. Note
that interfaces and data flow do not need to match. For example,
a single interface may include both streaming and RPC data
while a single RPC connection can handle requests frommultiple
interfaces.

2.2. Identifying Use Case Scenarios
The analysis result in four scenarios being comprehensive for all
foreseen real world uses of a RGBD sensor, shown in Figure 2.

Note: Each sensor can be a real or simulated one, they will be
handled in the same way.

Among existing applications, yarpview and camCalib are the
most important ones the new device has to be compatible with.
The first one is a GUI used to display images while the latter is
used to compensate lens distortion.

2.3. Additional Constraints and
Requirements
It is useful to explicit a few other characteristics the new
interface and its implementation shall have in order to cope

with the needs of an highly dynamic and innovative field like
robotics.

2.3.1. Need of a Standard
Different devices may provide the same data using incompatible
formats, for example the distance measure can be measured
in meters, millimeter, or other units while the binary
implementation can be an integer or a floating point number.
Furthermore, a lens distortion model can be described using
different set of parameters. In order for an high level application
to run on different robots, it must be able to get all information
at runtime and use them properly.

Relevant settings that are not available fromOpenNI API have
to be acquired from another source, for example distortionmodel
can rarely be retrieved from the OpenNI API.

2.3.2. Unique Traits of RGBD Device
This work has to deal with the intrinsic complexity of a device
composed by two different sensors with similar characteristics
whichmay be unclear. A large amount of parameters are required
to correctly identify the device properties.

2.3.3. Compliance With the YARP Ecosystem
This software is part of the YARP middleware, hence the new
interface has to fit into existing code and to be as much intuitive
as possible for both experienced and novice users. The RGB

FIGURE 2 | Use case scenarios. (A) Proper RGBD sensor: MicroSoft Kinect, Asus XTION, or similar. (B) Two local yet separated sensors. (C) Stereo vision: two RGB

sensor and a computed depth image. (D) Two separated sensors physically connected to two different machines.

Frontiers in Robotics and AI | www.frontiersin.org 3 April 2018 | Volume 5 | Article 4086

http://www.yarp.it/yarpview.html
http://wiki.icub.org/brain/group__icub__camCalib.html#details
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

sensor is by all means a standard camera and, as such, it provides
options to configure color properties like saturation, brightness,
exposure etc... The ability to change the camera parameters at
runtime is widely used, so it must be accessible via the interface.
The optimal solution is to allow any software currently working
with standard camera to work also with RGB part of this device
without any changes.

2.3.4. Modularity
YARP heavily leverages on modularity and code re-use, therefore
the implementation of the depth sensor interface has tomaximize
these best practices. Furthermore, the client can read data
from multiple sources while the server can broadcast them
independently, as in use cases (Figures 2B,D).

2.3.5. Re-usability
Re-usability check has to be performed in two ways: first looking
for compatible code to re-use into this project and second
creating code that may be useful outside the scope of RGBD
device for future use.

3. ADOPTED SOLUTIONS

The design process resulted in a series of design considerations
and technical solutions adopted to best attain all the
requirements. Those solutions can be divided into “abstract”
design criteria and their relative “concrete” implementation.

All the requirements and solutions are summarized in the
Table 1.

The resulting structure is general enough to cover all the use
cases and flexible to allow both incremental implementation and
update of existing software. The current state is already able
to handle use case scenarios (Figures 2A,C) and can be easily
extended to handle also cases (Figures 2B,D).

3.1. Design Criteria
3.1.1. Definition of a YARP Standard
YARP uses international measurement system for all units
(except for angular degrees), therefore this convention has been
enforced also in this interface where the unit for the depth
measurement is set to be meters. The binary representations is
the float to allow fraction of meters.

TABLE 1 | Requirements and proposed solutions for new YARP interface.

Requirement Design criteria Implementation solutions

Need of a standard Definition of a YARP

standard

API compensation

Compatibility with the

YARP ecosystem

Re-use, not inherit Separated data flow

Modularity Isolation of capabilities Separated data flows

Re-usability Isolation of capabilities Three levels decoupling

Unique traits of this

device type

Isolation of capabilities Capabilities composition

3.1.2. Re-use, Not Inherit
The interface IFrameGrabberControls2 is an already
existing YARP interface describing how to set RGB color
sensor properties as saturation, brightness, exposure etc...
A possible way to include these functionalities in the new
interface would be to inherit from it, but this has some
implications. The new interface will be tightly coupled to
previous code and the maintenance will be more difficult.
Any change to IFrameGrabberControls2 will be
propagated to the new interface and all devices using
it. On the other hand, adding the same methods also
in the new interface will generate duplicated code and
confusion.

The best approach is to keep separated the two functionalities
and have the device implementation to use them where
required.

3.1.3. Isolation of Capabilities
Instead of defining an single interface covering all the device
functionalities or data types, the best solution is to define an
interface for each capability and then combine them into a bigger
one where appropriate. This way each interface is smaller and
cleaner, but most importantly each single interface can be re-
used more easily in different contexts. New interfaces created for
this device are the ones required to fill the gap between what’s
existing and what is required. They have been created separately
for RGB and depth part of the device. A snippet of code is shown
below.

class yarp::dev::IRgbVisualParams

{

int getRgbHeight();

int getRgbWidth();

bool getRgbConfigurations(Vector<Config> &c);

bool getRgbResolution(int &width, int &height);

bool setRgbResolution(int width, int height);

bool getRgbFOV(double &hFov, double &vFov);

bool setRgbFOV(double hFov, double vFov);

bool getRgbIntrinsicParam(Property ¶m);

bool getRgbMirroring(bool &mirror);

bool setRgbMirroring(bool mirror);

}

class yarp::dev::IDepthVisualParams

{

int getDepthHeight();

int getDepthWidth();

bool setDepthResolution(int width,int height);

bool getDepthFOV(double& hFov, double& vFov);

bool setDepthFOV(double hFov, double vFov);

bool getDepthIntrinsicParam(Property& param);

double getDepthAccuracy();

bool setDepthAccuracy(double accuracy);

bool getDepthClipPlanes(double &near, &far);

bool setDepthClipPlanes(double near, far);

bool getDepthMirroring(bool& mirror);

bool setDepthMirroring(bool mirror);

}

Interface snapshot 1. Example of interface methods.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_1IRgbVisualParams.html
http://www.yarp.it/classyarp_1_1dev_1_1IDepthVisualParams.html
Git repository: https://github.com/robotology/yarp/tree/master/src/libYARP_dev/include/yarp/dev

Frontiers in Robotics and AI | www.frontiersin.org 4 April 2018 | Volume 5 | Article 4087

http://www.yarp.it/classyarp_1_1dev_1_1IRgbVisualParams.html
http://www.yarp.it/classyarp_1_1dev_1_1IDepthVisualParams.html
https://github.com/robotology/yarp/tree/master/src/libYARP_dev/include/yarp/dev
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

The two interfaces created are similar because the sensors have
similar features, but each method has the RGB/Depth prefix to
clearly state which sensor it is working with. This helps novice
users to understand what the function is supposed to do and
name clash between two sensors is avoided. There are some
differences however due to the sensors nature, for example in the
depth interface there are getter and setter methods for Accuracy
and clip planes which has no meaning for a standard RGB
camera.

3.2. Implementation Solutions
3.2.1. API Compensation
The information requested to be available are more then what’s
usually covered by the OpenNI2 API, hence another source of
information is needed. This has been achieved by mean of a
configuration file, subdivided in three main sections:

• General parameters: describe which device the YARP factory
shall create and how to manage it.

• Settings: these parameters describe the user’s desired initial
configuration of the device. These values will be set at startup
and if anyone fails, the device must be closed providing an
error. All the settings are also available for remote control
with getter/setter methods, therefore the configuration can be
verified and changed remotely by the user’s application at any
time.

• Hardware description: the listed parameters are read only .
Everything not available through device API can be listed here.
These values will be available to remote applications via getter
methods, but they cannot be set. This is also useful in case the
device returns wrong values; the data from configuration file
will be returned to the user instead.

3.2.2. Separated Data Flow
Defining how many sockets to create, the protocol to use etc...
is a trade-off between optimization of resources and granularity
of information. The more complex/custom the data is, the less
application will be compatible with. On the other hand, creating
many sockets to send small pieces of information is a waste of
resources.

The choice implemented is to create two separated streams
for RGB and depth images, to be back compatible with existing
application using color images only. All the RPC requests instead
can be handled by a single YARP port. There is no need in fact
for the client to know all the server’s capabilities. A client can
implement only the subset of RPC it requires, therefore a existing
client can freely work with a newer server using an extended set
of messages.

Only the 4th use case scenario will require the client to have
two separated RPC ports, as it requires to connect to two different
servers to collect all the required informations.

3.2.3. Three Levels Decoupling
Network messages, client/server implementation and hardware
device are separated between each-others. Usually when building
a client/server pair in YARP there are two levels of decoupling:
the first one is the YARP message which decouples the server
from the remote client. The second one is the interface itself

which decouples the server from the device driver and the user
application from the network client.

The implementation of an interface in the server/client
requires to write code devote to generate the YARP message
and parse it in order to provide the service and generate proper
response. Historically this job was always been implemented
by the client/server classes themselves, but this may lead to
duplicated code when more servers or clients uses the same
interface. Therefore a new decoupling level has been introduced
by implementing all the YARP message parsing into a specific
class for each interface, the client/server will then use these classes
to handle network communication.

This way, should a new server implement this interface,
adding the message parsing will require only three lines of code:

1) Add interface inheritance

Server : public NewInterface

2) Instantiate a parser class

yarp::dev::Implement_Interface_Parser rgbParser;

3) Configure the parser by giving access to the class

rgbParser.configure(NewInterfacePointer);

Interface snapshot 2. Example of usage, server side.

3.2.4. Capabilities Composition
Leveraging on the previously shown ideas “Isolation of
Capabilities” and “Three Levels Decoupling,” it follows that a
device can incrementally add capabilities by inheriting from
required interfaces and parsers. The whole RGBD interface will
be the sum of RgbVisualParams andDepthVisualParams, plus the
specific information which havemeaning only when both sensors
are available together.

class yarp::dev::IRGBDSensor : public

IRgbVisualParams

public IDepthVisualParams

{

bool getExtrinsicParam(Matrix &extrinsic) ;

string getLastErrorMsg(Stamp *timeStamp);

bool getRgbImage(FlexImage &rgbImage, Stamp

*timeStamp);

bool getDepthImage(ImageOf<PixelFloat>

&depthImage, Stamp *timeStamp);

bool getImages(FlexImage &colorFrame, ImageOf

<PixelFloat> &depthFrame, Stamp *colorStamp,

Stamp *depthStamp);

RGBDSensor_status getSensorStatus();

}

Interface snapshot 3. Extending capabilities by merging two
interfaces into a bigger one.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_
1IRGBDSensor.html
Git repository: https://github.com/robotology/yarp/blob/
master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h

Each interface contains methods to get the sensor intrinsic
parameters, and since the RGBD interface includes the two
sensors together, amethod to get extrinsic parameters is included.
The client/server for this device will create its own message

Frontiers in Robotics and AI | www.frontiersin.org 5 April 2018 | Volume 5 | Article 4088

http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

sender/parser by extending the ones implemented for each single
interface as explained in “Three Levels Decoupling” section.
Furthermore, previous RGB-only image server has been easily
extended to implement also the RgbVisualParams interface by
adding the parser.

4. CONCLUSION AND FUTURE WORK

The design process successfully generated a set of interfaces both
flexible and comprehensive to handle all use cases identified
and satisfy all additional requirements. The interface and C++
objects shown in this work have been used with three models
of depth sensors from two different producers and with the
simulated device available within Gazebo. The new server is well-
integrated in the YARP framework, compatibility with existing
applications has been achieved and former device drivers specific
for RGB-only cameras have been extended to implement new
functionality, hence user application can benefit from additional
information.

The dataset acquisition pipeline shown in Pasquale et al.
(2016) and used in Maiettini et al. (2017) was developed for the
iCub robot using images acquired from stereo vision system and
then, using the interfaces resulting from the work presented, the
pipeline was easily integrated on the R1 robot, that mounts a
RGBD sensor.

The implementation will be extended to cover also use
scenarios (Figures 2B,D), also a synchronization mechanism for
the two image streaming will be integrated in the client. The
code can be verified using YARP test utilities or using simple
example code. Instruction how to run tests are in the in the
following github repository https://github.com/robotology/yarp/
tree/master/example/dev/RGBD/README.md.

AUTHOR CONTRIBUTIONS

AC: main contributor, designed the interfaces, and client/server
implementation; AR: contributed refining the interfaces, device
driver implementation, testing; LN: supervisor.

REFERENCES

Aksoy, E. E., Abramov, A., Dörr, J., Ning, K., Dellen, B., and Würgötter, F. (2011).

Learning the semantics of object-action relations by observation. Int. J. Robot.

Res. 30, 1229–1249. doi: 10.1177/0278364911410459

Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L., Minack, E.,

et al. (2007). “The nepomuk project–on the way to the social semantic desktop,”

in Proceedings of I-Semantics’ 07, eds T. Pellegrini and S. Schaffert (Graz),

201–211.

Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision

with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43, 1318–1334.

doi: 10.1109/TCYB.2013.2265378

Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2017). “Interactive data

collection for deep learning object detectors on humanoid robots,” in 17th

IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017

(Birmingham), 862–868.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.

Int. J. Adv. Robot. Syst. 3:8. doi: 10.5772/5761

Pasquale, G., Mar, T., Ciliberto, C., Rosasco, L., and Natale, L. (2016). Enabling

depth-driven visual attention on the iCub humanoid robot: instructions for use

and new perspectives. Front. Robot. AI 3:35. doi: 10.3389/frobt.2016.00035

Rehem Neto, A. N., Saibel Santos, C. A., and de Carvalho, L.

A. A. (2013). “Touch the air: an event-driven framework for

interactive environments,” in Proceedings of the 19th Brazilian

Symposium on Multimedia and the Web (New York, NY: ACM),

73–80.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEEMultiMedia 19, 4–10.

doi: 10.1109/MMUL.2012.24

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer HC, and handling Editor declared their shared affiliation.

Copyright © 2018 Cardellino, Ruzzenenti and Natale. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 6 April 2018 | Volume 5 | Article 4089

https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1109/TCYB.2013.2265378
https://doi.org/10.5772/5761
https://doi.org/10.3389/frobt.2016.00035
https://doi.org/10.1109/MMUL.2012.24
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

1 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Code
published: 12 June 2018

doi: 10.3389/frobt.2018.00046

Markerless eye-Hand Kinematic
Calibration on the iCub
Humanoid Robot
Pedro Vicente 1*, Lorenzo Jamone 1,2 and Alexandre Bernardino 1

1 Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2 ARQ (Advanced
Robotics at Queen Mary), School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, United Kingdom

Humanoid robots are resourceful platforms and can be used in diverse application
scenarios. However, their high number of degrees of freedom (i.e., moving arms, head and
eyes) deteriorates the precision of eye-hand coordination. A good kinematic calibration
is often difficult to achieve, due to several factors, e.g., unmodeled deformations of the
structure or backlash in the actuators. This is particularly challenging for very complex
robots such as the iCub humanoid robot, which has 12 degrees of freedom and cable-
driven actuation in the serial chain from the eyes to the hand. The exploitation of real-time
robot sensing is of paramount importance to increase the accuracy of the coordination,
for example, to realize precise grasping and manipulation tasks. In this code paper,
we propose an online and markerless solution to the eye-hand kinematic calibration of
the iCub humanoid robot. We have implemented a sequential Monte Carlo algorithm
estimating kinematic calibration parameters (joint offsets) which improve the eye-hand
coordination based on the proprioception and vision sensing of the robot. We have shown
the usefulness of the developed code and its accuracy on simulation and real-world
scenarios. The code is written in C++ and CUDA, where we exploit the GPU to increase
the speed of the method. The code is made available online along with a Dataset for
testing purposes.

Keywords: code:C++, humanoid robot, markerless, hand pose estimation, sequential monte carlo parameter
estimation, kinematic calibration

1. IntRoduCtIon and Related WoRK

An intelligent and autonomous robot must be robust to errors on its perceptual and motor systems to
reach and grasp an object with great accuracy. The classical solution adopted by industrial robots rely
on a precise calibration of the mechanics and sensing systems in controlled environments, where sub-
millimeter accuracy can be achieved. However, a new emerging market is targeting consumer robots
for collaboration with humans in more general scenarios. These robots cannot achieve high degrees of
mechanical accuracy, due to (1) the use of lighter and flexible materials, compliant controllers for safe
human-robot interaction, and (2) lower sensing precision due to varying environmental conditions.
Indeed, humanoid robots, with complex kinematic chains, are among the most difficult platforms to
calibrate and model properly with the precision required to reach and/or grasp objects. A small error in
the beginning of the kinematic chain can generate a huge mismatch between the target location (usually
coming from vision sensing) and the actual 6D end-effector pose.

Edited by:
Giorgio Metta,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Claudio Fantacci,

Fondazione Istituto Italiano di
Technologia, Italy

 Hyung Jin Chang,
Imperial College London,

United Kingdom

*Correspondence:
Pedro Vicente

 pvicente@ isr. tecnico. ulisboa. pt

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2017
Accepted: 06 April 2018

Published: 12 June 2018

Citation:
Vicente P, Jamone L and

Bernardino A
 (2018) Markerless Eye-Hand

Kinematic Calibration on the iCub
Humanoid Robot.

Front. Robot. AI 5:46.
doi: 10.3389/frobt.2018.00046

90

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00046&domain=pdf&date_stamp=2018-06-12
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00046
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00046/full
http://loop.frontiersin.org/people/245917/overview
https://loop.frontiersin.org/people/31029/overview
http://loop.frontiersin.org/people/158486/overview
https://creativecommons.org/licenses/by/4.0
mailto:pvicente@isr.tecnico.ulisboa.pt
https://doi.org/10.3389/frobt.2018.00046

2 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

Eye-hand calibration is a common problem in robotic systems that
several authors tried to solve exploiting vision sensing [e.g., Gratal
et al. (2011); Fanello et al. (2014); Garcia Cifuentes et al. (2017);
Fantacci et al. (2017)]1.

2. PRoPosed solutIon

In this code paper, we propose a markerless hand pose estimation
software for the iCub humanoid robot [Metta et al. (2010)] along
with an eye-hand kinematic calibration. We exploit the 3D CAD
model of the robot embedded in a game engine, which works as
the robot’s internal model. This tool is used to generate multiple
hypotheses of the hand pose and compare them with the real
visual perception. By using the information extracted from the
robot motor encoders, we generate hypotheses of the hand pose
and its appearance in the cameras, that are combined with the
actual appearance of the hand in the real images, using particle
filtering, a sequential Monte Carlo method. The best hypothesis
of the 6D hand pose is used to estimate the corrective terms
(joint offsets) to update the robot kinematic model. The visual
based estimation of the hand pose is used as an input, together
with the proprioception, to continuously calibrate (i.e., update)
the robot internal model. At the same time, the internal model
is used to provide better hypotheses for the hand position in
the camera images, therefore enhancing the robot perception.
The two processes help each other, and the final outcome is that
we can keep the internal model calibrated and obtain a good
estimation of the hand pose, without using specialized visual
markers on the hand.

The original research work [Vicente et al. (2016a) and Vicente
et al. (2016b)] contains: (1) a complete motivation from the
developmental psychology point of view and theoretical
details of the estimation process, and (2) technical details
on the interoperability between the several libraries and the
GPGPU approach for an increased boost on the method speed,
respectively.

The present manuscript is a companion and complementary
code paper of the method presented in Vicente et al. (2016a). We
will not describe with full details the theoretical perspective of
our work, instead we will focus on the resulting software system
connecting the code with the solution proposed in Vicente et al.,
2016b. Moreover, the objective of this publication is to give a
hands-on perspective on the implemented software which could
be used and extended by the research community.

The source code is available at the official GitHub code repository:

https:// github. com/ vicentepedro/
Online- Body- Schema- Adaptation

and the documentation on the Online Documentation page:

1 For a more detailed review of the state of the art, please check the article Vicente
et al. (2016a)

http:// vicentepedro. github. com/
Online- Body- Schema- Adaptation

We use a Sequential Monte Carlo parameter estimation method
to estimate the calibration error β in the 7D robot’s joint space
corresponding to the kinematic chain going from each eye to the
end-effector. Let us consider:

 θ = θr + β (1)

where θr are the real angles; θ are the measured angles; β are joint
offsets representing calibration errors. Given an estimate of the
joint offsets (̂β), a better end-effector’s pose can be retrieved using
the forward kinematics.

One of the proposed solutions for using Sequential Monte Carlo
methods for parameter estimation2 (i.e., the parameters β in our
problem), is to introduce an artificial dynamics, changing from a
static transition model

(
βt = βt−1

)
 to a slowly time-varying one:

 βt = βt−1 + wt (2)

where wt is an artificial dynamic noise that decreases when t
increases.

3. softWaRe desIgn and
aRCHIteCtuRe PRInCIPles

The software design and architecture for implementing the eye-hand
kinematic calibration solution has the following requirements: (1)
the software should be able to run in real-time since the objective
is to calibrate the robot during a normal operating behaviour, and
(2) it should be possible to run the algorithm in a distributed way,
i.e., run parts of the algorithm in several computers in order to
increase computation power.

The authors decided to implement the code in C++ in order
to cope with the real-time constraint, and to exploit the YARP
middleware [Metta et al. (2006)] to distribute the components of
the algorithm in more than one machine.

The source code for these modules are available at the official
GitHub code repository (check section 2).

The code is divided into three logical components: (1) the
hand pose estimation (section 4.1), (2) the Robot’s Internal
Model generator (section 4.2), and (3) the likelihood assessment
(section 4.3), which are implemented, respectively, at the following
repository locations:

•  modules/handPoseEstimation
•  include/handPoseEstimationModule.h
•  src/ hand Pose Esti mati onMain. cpp
•  src/ hand Pose Esti mati onModule. cpp

•  modules/internalmodel

2 See Kantas et al. (2009) for other solutions

91

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
https://github.com/vicentepedro/Online-Body-Schema-Adaptation
https://github.com/vicentepedro/Online-Body-Schema-Adaptation
http://vicentepedro.github.com/Online-Body-Schema-Adaptation
http://vicentepedro.github.com/Online-Body-Schema-Adaptation

Vicente et al.

3 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

•  icub- internalmodel- rightA- cam- Lisbon. exe
•  icub- internalmodel- leftA- cam- Lisbon. exe

•  modules/likelihodAssessment
•  src/ Cuda_ Gl. cu
•  src/ likelihood. cpp

The software architecture implementing the proposed eye-hand
calibration solution can be seen in Figure 1. The first component
- Hand Pose Estimation - is responsible for proposing multiple
hypotheses according to the posterior distribution. We use a
Sequential Monte Carlo parameter estimation method in our work
[check Vicente et al. (2016a) Section 3.3 for further theoretical
details]. The definitions of the functions presented in the architecture
(Figure 1) can be found in the .cpp and .h files and will be
explained in detail in Section 4.1. The Hand Pose Estimation is OS
independent and can run in any computer with the YARP library
installed.

The second component - Robot’s Internal Model - generates
hypotheses of the hand pose based on the 3D CAD model of the
robot and was build using the game engine Unity®. There are two
versions of the internal model on the repository. One for the right-
hand (rightA) and another one for the left-hand (leftA). Our
approach was to divide the two internal models since we have separated
calibration parameters for the head-left-arm and for the head-right-
hand kinematic chains. The Unity platform was chosen to develop the
internal model of the robot since it is able to generate a high number
of frames per second on the GPU even for complex graphics models.
The scripting component of the Unity game engine was programmed
in C#. The bindings of YARP for C# were used in order to facilitate the
internal model generator to communicate with the other components
of the system. This component is OS-dependent and only runs on
Windows and the build version available on the repository does not
require a paid license of Unity Pro.

Finally, the likelihood assessment is called inside the Robot’s
Internal Model as a Dynamic Link Library and exploits GPGPU
programming to compare the real perception with the multiple
generated hypotheses. The GPGPU programming, using the CUDA
library [Nickolls et al. (2008)], allows the algorithm to run in quasi-
real-time. The .cpp file contains the likelihood computation method,
and the .cu the GPGPU program.

Our eye-hand calibration solution exploits vision sensing
to reduce the error between the perception and the simulated
hypotheses, the OpenCV library [Bradski (2000)] with CUDA
enabled capabilities [Nickolls et al. (2008)] was chosen to exploit
computer vision algorithms and run them in real-time.

The interoperability between the OpenCV, CUDA and OpenGL
libraries was studied in Vicente et al. (2016b). In the particular
case of the iCub humanoid robot [Metta et al. (2010)], and to suit
within the YARP and iCub architectures, we encapsulated part of
the code in an RFModule3 class structure and use YARP buffered
ports4 and RPC services5 for communications and user interface

3 http://www.yarp.it/classyarp_1_1os_1_1RFModule.html
4 http://www.yarp.it/classyarp_1_1os_1_1BufferedPort.html
5 http://www.yarp.it/classyarp_1_1os_1_1RpcServer.html

(Check section 5.2.3). The hand pose estimation module allows
the user to send requests to the algorithm which follows an event-
driven architecture: where for each new incoming information
from the robot (cameras and encoders) a new iteration of the
Sequential Monte Carlo parameter estimation is performed.

4. Code desCRIPtIon

4.1. Hand Pose estimation Module
4.1.1. Initializing the Sequential Monte Carlo parameter
estimation - initSMC Function
In the function initSMC we initialize the variables of the
Sequential Monte Carlo parameter estimation, i.e., the initial
distribution p(β0) [Eq. (10) in Vicente et al. (2016a)], and the
initial artificial dynamic noise. The Listings 1 contains the
initSMC function where some of the variables (in red) are
parametrized at initialization time (check sub-section 5.2.1 for
more details on the initialization parameters). We use a random
seed generated according with the current time and initialize
each angular offset with a Gaussian distribution: N(initialMean;
initialStdDev).

4.1.2 Read Image, Read Encoders, ProcessImages
and SendData
The left and right images along with the head and arm encoders
are read at the same time to ensure consistency between the several
sensors.

The reading and processing procedure of the images are defined
inside the function:

handPoseEstimationModule::updateModule()

that can be found on the file:

src/ hand Pose Esti mati onModule. cpp.

The function process Images (see Listings 2) applies a Canny
edge detector and a distance transform to both images separately.
Moreover, the left and the right processed images are merged, i.e.,
concatenated horizontally, in order to be compared to the generated
hypotheses inside the Robot’s internal model.

The Hand pose estimation module sends: (1) the pre-processed
images, (2) the head encoders and (3) the arm encoders (θ) along
with the offsets (β) to the Robot’s internal model6. This procedure
is defined inside the function:

handPoseEstimationModule::runSMCIteration()

4.1.3. Update Likelihood
The Hand Pose Estimation module receives the likelihood vector
from the Robot’s internal model and updates the likelihood value
for each particle on the for-loop at line:

 hand Pose Esti mati onModule. cpp# L225

6 See Eq. 1 and handPoseEstimationModule.cpp#L214

92

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

4 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

fIguRe 1 | Architecture of the software. The hand pose estimation component (handPoseEstimation) initiates the Sequential Monte Carlo parameter estimation
method (initSMC) and waits for a start command from the user. The perception and proprioception (cameras and encoders) of the robot are received and the
parameter estimation starts. The real image and the particles are sent (sendData) to the Robot’s internal Model (icub-internalmodel-rightA-cam-Lisbon.exe or
icub-internalmodel-leftA-cam-Lisbon.exe) in order to generate the hypotheses. The likelihood assessment of each hypothesis is calculated using a Dynamic Link
Library (DLL) file inside the Robot’s internal model. The likelihood of each particle is saved and a Kernel Density estimation is performed to calculate the best
calibration parameters. The Resampling step is performed and a new set of particles are saved for the next iteration of the Sequential Monte Carlo parameters
estimation.

93

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Vicente et al.

5 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

4.1.4. Kernel Density Estimation
Although the state is represented at each time step as a
distribution approximated by the weighted particles, our best
guess for the angular offsets can be computed using a Kernel
Density Estimation (KDE) to smooth the weight of the particles
according to the information of neighbor particles, and choose
the particle with the highest smoothed weight (ωʹ[i]) as our state
estimate [Section 3.5 of Vicente et al. (2016a)].

The implementation of the KDE with a Gaussian kernel can
be seen in Listings 3. The double for-loop implements the KDE
accessing each particle (iParticle) and computing the influence
of each neighbor (mParticle) according to the relative distance
in the 7D-space between the two particles and the likelihood of
the neighbor [cvmGet (particles, 7,mParticle)]. The parameters
that can be fine-tuned are highlighted in red.

4.1.5. Best Hypothesis
The best hypothesis, computed using the KDE, is sent through
a YARP buffered port from the module after N iterations. The
port has the following name:

/hpe/bestOffsets:o

The parameter N (the number of elapsed iterations before
sending the estimated angular offsets) can be changed by the user
at initialization using the minIteration parameter (check
Section 5.2.1 for more details) and the objective is to ensure the
filter convergence before using the estimate (e.g., to control the

robot). This is an important parameter since in the initial stages
the estimation can jump a lot from an iteration to the next one
(before converging to a more stable solution).

4.1.6. Update Artificial Noise, Resampling and New
Particles
The artificial noise is updated according to the maximum likelihood
criteria. See the pseudo-code on Listings 4, which corresponds to
line 230 to 254 in the file:

src/ hand Pose Esti mati onModule. cpp

We update the artificial noise according to the maximum
likelihood, i.e., if the maximum likelihood is below a certain
threshold (minimumLikelihood), we do not perform the resampling
step and we increase the artificial noise. On the other hand, if the
maximum likelihood is greater than the threshold we apply the
resampling and decrease the artificial noise. The objective is to
prevent the particles to become trapped in a “local maximum”
since the current best solution is not worthy of resampling the
particles. Indeed, this approach will force them to explore the
state space.

The trade-off between exploration and exploitation is
measured according to the maximum likelihood in each
time step of the algorithm. The idea is to exploit the low
number of particles in a clever way. Moreover, the upper and
lower bound ensure, respectively, that: (1) the noise will not

listing 3 | Kernel density estimation with Multivariate normal distribu-
tion Kernel: modules/handPoseestimation/src/handPoseestimationMo-
dule.cpp

1. void handPoseEstimationModule :: kernelDensityEstimation ()
2.{
3. // Particle i
4. double maxWeight = 0.0;
5. for (int iParticle = 0; iParticle <n Particles; iParticle ++)
6. {
7. double sum1 = 0.0;
8. // Particle m
9. for (int mParticle = 0; mParticle <nParticles; mParticle++)
10. {
11. double sum2 = 0.0;
12. if ((float) cvmGet (particles, 7, mParticle) > 0)
13. {
14. // Beta 0.. to..6
15. for (int joint = 0; joint <7; joint ++)
16. {
17. // || pi–pj ||^2 / KDEStdDev ^2
18. sum2 += pow(((float) cvmGet (particles, joint, mParticle)–
(float) cvmGet (particles, joint, iParticle)) , 2) / pow(KDEStdDev, 2);
// Multivariate normal distribution
19. }
20. sum1 += s t d :: exp(–sum2/(2)) *cvmGet (particles, 7 , mParticle);
21. }
22. }
23. sum1 = sum1 / (nParticles*sqrt (pow(2*M_PI, 1) *pow(KDEStdDev, 7)));
24. double weight = alphaKDE*sum1 + cvmGet (particles, 7 , iParticle);
25. if (weight>maxWeight)
26. {
27. maxWeightIndex= iParticle; // save the best particle index
28. }
29. }
30.}

listing 1 | HandPoseestimationModule::initsMC function. defined in
handPoseestimationModule.cpp

1. bool handPoseEstimationModule :: initSMC ()
2. {
4. // Generate random particles
5. srand((unsigned int)time(0)); // make sure random numbers are really
random.
6. rngState = cvRNG(rand());
7. // initialize Beta1
8. cvRandArr(&rngState, particles 1, CV_RAND_NORMAL,
cvScalar(initialMean), cvScalar(initialStdDev));
9. … … // similar for particles2 to particles6
10. cvRandArr (&rngState, particles7, CV_RAND_NORMAL,
cvScalar(initialMean) , cvScalar(initialStdDev));
11. // Artificial Noise Initialization
12. artifNoiseStdDev = initialArtificialNoiseStdDev;
13. }

listing 2 | HandPoseestimationModule::processImages. defined in
handPoseestimationModule.cpp

1. Mat handPoseEstimationModule :: processImages (Mat inputImage)
2. {
3. Mat edges , dt Image;
4. cvtColor(inputImage, edges, CV_RGB2GRAY);
5. // Blur Image
6. blur(edges, edges, Size (3, 3));
7. Canny(edges, edges, 65, 3*65,3);
8. threshold(edges, edges, 100,255,THRESH_BINARY_INV); // binary Image
9. distanceTransform(edges, dt Image, CV_DIST_L2, CV_DIST_MASK_5);
10. return dtImage;
11. }

94

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

6 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

increase asymptotically and the samples will be spread over
the 7D state-space and (2) the particles will not end-up all
at the same value, which can happen when the random noise
is Zero.

On the resampling stage, we use the systematic resampling
strategy [check Hol et al. (2006)], which ensures that a particle
with a weight greater than 1/M is always resampled, where M is
the number of particles.

4.2. Robot’s Internal Model generator
The Listings 5 shows the general architecture of the Robot’s Internal
Model Generator using pseudo-code.

4.2.1. Initialization of the Render Textures
The render textures, which will be used to render the two camera
images, are initialized for each particle for both left and right views
of the scene.

4.2.2. Generate Hypotheses
The hypotheses are generated on a frame-based approach, i.e., we
generate one hypothesis for each frame of the “game”. After we receive
the vector with the 200 hypotheses to generate, we virtually move
the robot to each of the configurations to be tested and record both
images (left and right) in a renderTexture.

After the 200 generations, we call the likelihood assessment DLL
function to perform the comparison between the real images and
the generated hypotheses.

The available version of the Robot’s internal model generator is an
executable compiled and self-contained which works on Windows-
based computers with the installed dependencies7. Moreover, this

7 The list of dependencies can be seen on Section 5.1.2

does not require neither the Unity® Editor to be installed in the
computer nor the Unity Pro license.

More details on the creation of the Unity® iCub Simulator for this
project can be found in Vicente et al. (2016b) Sec. 5.2 - “The Unity®
iCub Simulator”.

4.3. likelihood assessment Module
The likelihood assessment is based on the observation model
defined in Vicente et al. (2016a) Section 3.4.2.

We exploit an edge-based extraction approach along with
a distance transform algorithm computing the likelihood
using the Chamfer matching distance [Borgefors and Bradski
(1986)].

In our code, these quantities are computed in the GPU using the
OpenCV and CUDA libraries, and the interoperability between
these libraries and the OpenGL library. The solution adopted
was to add the likelihood assessment as a cpp plugin called
inside the internal model generator module. The likelihood. cpp
file, particularly the function CudaEdgeLikelihood, is where the
likelihood of each sample is computed. Part of the code of the
likelihood function is shown and analysed in Listings 6. Up
to the line 21 of the Listings 6, we exploit the interoperability
between the libraries used (OpenGL, CUDA, OpenCV) and after
line 21 we apply our likelihood metric using the functionality of
the OpenCV library, where GgpuMat is the generated Image of
the ith sample and GgpuMat_R is the real Distance Transform
image. In line 35, the lambdaEdge is a parameter to tune the
distance metric sensitivity, which is initialized at the value 25
in line 1 (corresponding to line 148 of the C++ file)8. When
the generated image does not have edges (i.e., the hand is not
visible by the cameras), we force the likelihood of this particle
to be almost zero (line 37 and 39, respectively). The maximum
likelihood (i.e., the value 1.0) is achieved when each entry of

8 Check Vicente et al. (2016a) Eq (21) for more details on the lambdaEdge
parameter

listing 4 | Pseudo Code updating artificial noise corresponding to part
of the function runsMCIteration() within file: src/handPoseestimationMo-
dule.cpp

1. IN handPoseEstimationModule :: runSMCIteration ()
2.{
3. …
4. // Resampling or not Resampling. That’s the Question
5. if (maxLikelihood >minimumLikelihood) {
6. systematic_resampling (); // Check Section Resampling and New Particles
7. reduceArtificialNoise ();
8. }
9. else { // do not apply resampling stage
10. increaseArtificialNoise ();
11. }
12. if (artifNoiseStdDev > upperBoundNoise) { // upperbound of artificial noise
13. artifNoiseStdDev = upperBoundNoise;
14. }
15. if (artifNoiseStdDev < lowerBoundNoise) { // lowerbound of artificial noise
16. artifNoiseStdDev = lowerBoundNoise;
17. }
18. addNoiseToEachSample ()
19.}

listing 5 | Pseudo-Code Robot's internal model.

1. InitRenderTextures () // Initialization of the strutures to receive
2.
3.for (each iteration) // for each iteration of the SMC
4.{
5. waitForInput (); // wait for input vector with particles to be generated
6.
7. for (each particle) {
8. moveTheInternalModel () // Change the robot’s configuration
9. RenderAllucinatedImages (); // render left and right image on a render
texture
10. nextFrame ();
11. }
12. // After 200 frames call DLL function
13. ComputeLikelihood (AllucinatedImages (200), RealImage) // Call the DLL
function (CudaEdgeLikelihood) to compare the hypotheses with the real image.
14.}

95

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Vicente et al.

7 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

the result image is zero. This happen when every edge on the
generated image match a zero distance on the distance transform
image. The multiplication by 1,000 and the int cast in line 42 is
used to send the likelihood as a int value (the inverse process
is made in the internal model when it receives the likelihood
vector) and it is one of the limitations of the current approach

due to software limitations the authors could not send directly
a double value between 0 and 1.

5. aPPlICatIon and utIlIty

The Markerless kinematic calibration can run during normal
operations of the iCub robot. It will update the joint offsets
according to the new incoming observations. Moreover, one
can also stop the calibration and use the estimated offsets so
far, however, to achieve a better accuracy in different poses
of the end-effector the method should be kept running
in an online fashion to perform a better adaptation of
the parameters.

The details of the dependencies, installation and how to run
the modules can be found at Online Documentation page (check
Section 2).

5.1. Installation and dependencies
The dependencies of the proposed solution can be divided
in two sets of libraries: (1) the libraries needed to run the
handPoseEstimation module, and (2) the libraries needed
to run the Robot’s internal model and the likelihood
Assessment.

5.1.1. Hand Pose Estimation Module
The handPoseEstimation depends on YARP library, which
can be installed following the installation procedure of the
official repository9. Moreover, it depends on the OpenCV
library10.

We tested this module with the last release of YARP (i.e.,
June 15, 2017), version 2.3.70, with the OpenCV library V2.4.10
and V3.3 and the code works with both versions. The authors
recommend the reader to follow the official installation guides
for these libraries.

To install theses modules, one can just run CMake using the
CMakeLists. txt on the folder:

/modules/handPoseEstimation/

5.1.2 Robot’s Internal Model Generator and Likelihood
Assessment
The Robot’s internal model and the likelihood assessment
depend on YARP library for communication and on the OpenCV
library with CUDA enabled computation (i.e., installing the
CUDA toolkit) for image processing and GPGPU accelerated
algorithms. A Windows machine should be used to install this
module.

The tested version of the OpenCV library was V.2.4.10 with
the CUDA toolkit 6.5. The C# bindings for the YARP middleware
on a windows machine should be compiled. The details regarding
the installations procedures can be found at the following URL:

9 https://github.com/robotology/yarp
10 It is not mandatory the CUDA-enabled capabilities

listing 6 | likelihood assessment: modules/likelihoodassessment/src/
likelihood.cpp

 1. int lambdaEdge = 25;
 2. // For each particle i – line 149 modules / likelihoodAssessment / src /
likelihood.cpp
 3. // Interopelability between the several libraries (OpenGL , CUDA, OpenCV)
 4. gltex =(GLuint) (size_t) (ID[i]); // ID is a vector with pointers to the render
textures
 5. glBindTexture(GL_TEXTURE_2D, gltex);
 6. GLint width, height, internalFormat;
 7. glGetTexLevelParameteriv(GLTEXTURE_2D, 0, GL_TEXTURE_
COMPONENTS, &internalFormat); // get internal format type of GL texture
 8. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH,
&width); // get width of GL texture
 9. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT,
&height); // get height of GL texture
 10.
 11. checkCudaErrors(cudaGraphicsGLRegisterImage (&cuda_tex_screen_
resource , gltex , GL_TEXTURE_2D, cudaGraphicsMapFlagsReadOnly));
 12. // Copy color buffer
 13. checkCudaErrors(cudaGraphicsMapResources (1, &cuda_tex_screen_
resource , 0));
 14. checkCudaErrors(cudaGraphicsSubResourceGe tMappedArray (&cuArr ,
cuda_tex_screen_resource, 0, 0));
 15. BindToTexture(cuArr); // BindToTexture Functions defined in Cuda_Gl.cu
 16.
 17. DeviceArrayCopyFromTexture((float3*) gpuMat.data, gpuMat.step,
gpuMat.cols, gpuMat.rows);//DeviceArrayCopyFromTexture function defined on
Cuda_Gl.cu
 18.
 19. checkCudaErrors(cudaGraphicsUnmapResources (1, &cuda_tex_screen_
resource, 0));
 20. checkCudaErrors(cudaGraphicsUnregisterResource (cuda_tex_screen_
resource));
 21. cv::gpu::cvtColor(gpuMat, GgpuMat,CV_RGB2GRAY);
 22.
 23. // Apply the likelihood Assessment
 24. // GgpuMat – generated Image
 25. // GgpuMat_R – Real Distance Transform image
 26. cv :: gpu :: multiply (GgpuMat, GgpuMat_R, GpuMatMul);
 27. cv :: Scalar sumS = cv :: gpu :: sum(GpuMatMul);
 28.
 29. /*
 30. Check the article:
 31. Online Body Schema Adaptation Based on Internal Mental Simulation and
Multisensory Feedback, Vicente et al.
 32. In particular, Equation (21)
 34. */
 35. sum = sumS [0]*lambdaEdge; // lambdaEdge is a tuning parameter for
distance sensitivity
 36. nonZero = (float) cv::gpu::countNonZero (GgpuMat); // generated image
 37. if (nonZero ==0) {
 38. likelihood [i] = 0.000000001; // Almost Zero
 39. }
 40. else {
 41. result = sum/nonZero;
 42. likelihood[i] = (int) ((cv::exp(– result)) *1000);
43. }
44.}

96

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

8 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

http://www. yarp. it/ yarp_ swig. html# yarp_
swig_ windows.

The C# bindings will allow the internal model generator to
communicate with the other modules.

The C# bindings will generate a DLL file that, along with
the DLL generated from the likelihood assessment module,
should be copied to the Plugins folder of the internal model
generator. In the official compiled version of the repository
this folder has the following path: internalmodel/icub-
internalmodel-rightA-cam-Lisbon_Data/
Plugins/

The complete and step-by-step installation procedure can
be seen in the Online Documentation page on the Installation
section.

5.2. Running the Modules
The proposed method can run on a cluster of computers connected
with the YARP middleware. The internal model generator should
run on a computer with Windows Operating System and with
CUDA capabilities. The step-by-step running procedure guide
can be found on the Online Documentation page. The rest of the
section is organized with a high level perspective of running the
algorithm. The YARP connections required between the several
components can be connected through the XML file under the
app/scripts folder.

5.2.1. Running the Hand Pose Estimation and its
parameters
The Hand Pose Estimation can be initialized using the
yarpmanager or in a terminal running the command:

handPoseEstimation [--<parameter_name>
<value > …]

where, <value> is the value for one of the parameters
(<parameter_name>) defined in the itemize list below:

•  name: name of the module (default =“hpe”)
•  arm: arm which the module should connect to. (default = right’)
•  initialMean: mean for the initial distribution of the particles

[in degrees]. (default = 0.0°)
•  initialStdDev: StdDev of the initial distribution of the

particles degrees
•  artificialNoiseStdDev: initial Artificial Noise (StdDev) to

spread the particles after each iteration (default = 3.0°)
•  lowerBound: artificial noise lower bound (StdDev). Should be

greater than Zero to prevent the particles to collapse in one single
value (default = 0.04°)

•  upperBound: artificial noise upper bound (StdDev). The artificial
noise should have a upper bound to prevent the particles to diverge
after each resampling stage (default = 3.5°)

•  minimumLikelihood: minimumLikelihood [0,1] in order to
resample the particles (default = 0.55)

•  increaseMultiplier: increase the artificial noise of a certain value
(currentValue*increaseMultiplier) if the maximum likelihood is
lower than the minimumLikelihood (default = 1.15)

•  decreaseMultiplier: decrease the artificial noise of a certain
value (currentValue*decreaseMultiplier) if the maximum
likelihood is greater than the minimumLikelihood (default =
0.85)

•  KDEStdDev: StdDev of each kernel in the Kernel Density
Estimation algorithm (default = 1.0°)

•  minIteration: minimum number of iterations before sending
the estimated offsets. The objective is to give time to the algorithm
to converge, without this feature one can receive completely
different offsets from iteration t to t + 1 during the filter
convergence (default = 35)

fIguRe 2 | Projection of the fingertips on the left camera on simulated robot experiments. The blue dot represents the end-effector projection (i.e., base of the
middle finger), the red represents the index fingertip, the green the thumb fingertip, the dark yellow the middle fingertip and the soft yellow the ring and little
fingertips. On the left image (a) is the canonical projection (i.e., with ̂β = 0) and on the right image (B) the estimated offsets (̂β).

97

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://www.yarp.it/yarp_swig.html#yarp_swig_windows.
http://www.yarp.it/yarp_swig.html#yarp_swig_windows.

Vicente et al.

9 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Markerless Kinematic Calibration

5.2.2. Running the Robot’s Internal Model
The internal model generator should run on a terminal using
the following command:

 icub- internalmodel- rightA- cam- Lisbon. exe
-force-opengl

The -force-opengl argument will force the robot’s
internal model to use the OpenGL library for rendering purposes,
which is fundamental for the libraries interoperability.

5.2.3. User interface
The user can send commands to the Hand Pose estimation
algorithm through the RPC port hpe/rpc:i. The RPC port acts
like a service to the user where the algorithm can be started,
stoped or paused/resumed. It is also possible to request the last
joint offsets estimated by the algorithm. The thrift file (modules/
handPoseEstimation/ handPoseEstimation. thrift) contains the
input and output of each RPC service function (i.e., start, stop,
pause, resume, lastOffsets and quit). More details about these
commands can be seen in the use procedure on the documentation.
Moreover, after connecting to the RPC port (yarp rpc hpe/rpc:i),
the user can type help to get the available commands. The
module also replies the input and output parameters of a given
command if the user type help FunctionName (e.g., help start).

6. exPeRIMents and exaMPles of
use

The experiments performed with the proposed method on the
iCub simulator, with ground truth data, have shown a good
accuracy on the hand pose estimation, where artificial offsets
were introduced in the seven joints of the arm. The results on the
real robot have shown a significant reduction of the calibration
error [Check Vicente et al. (2016a) Section 5 for more results in
simulation (Section 5.1) and with the real iCub (Section 5.2)].

For the reader to be able to test the algorithm, the authors
collected a simulated dataset (encoders of the head and arms, and
the left and right images) which can be used to test the algorithm.

The simulation results of the present article were obtained
running the above-stated code with the default parameters on
the collected dataset.

The dataset11 was collected using a visual simulator based on
the CAD model of the iCub humanoid robot adding artificial
offsets in the arm joints. The artificial angular offsets β were the
following:

β = { – 10.0, – 10.0, 6.0, – 7.0, – 1.0, – 20.0, 7.0}°.

The robot performed a babbling movement which consists in a
random walk in each joint. The minimum and maximum values of
the uniform distribution used to generate the babbling movement
starts at [–5, 5]°, and is reduced during the movement to [– 0.5,
0.5]°, respectively. Despite a great amount of errors in the robot’s
kinematic chain, the algorithm was able to converge to the
solution in Figure 2. Moreover, the cluttered environment on the
background did not influence the filter convergence. The reader
can see the projection of the fingertips on the left camera image:
(1) according to the canonical representation on Figure 2A (where
it is assumed an error-free kinematic structure, i.e., with ̂β = 0
and (2) the corrected kinematic structure using the algorithm
implemented and documented in this code paper on Figure 2B.

The convergence of the algorithm along with a side-by-side
comparison with the canonical solution can be seen in the
following video: https:// youtu. be/ 0tzLFqZLbxc

On the real robot, we already performed several experiments
in previous works, with different initial and final poses using
the 320 × 240 cameras. In Figure 3 one can see one example of
the hand estimation. While the image on the left (Figure 3A)
shows the canonical estimation of the hand projected on the
left camera image according to the non-calibrated kinematic
chain, the image on the right (Figure 3B) shows the corrected
kinematic chain which originates a better estimation of the
hand pose. The rendering of the estimated hand pose was done
taking into account the joint offsets on the kinematic chain before
computing the hand pose in the image reference frame.

11 https://github.com/vicentepedro/eyeHandCalibrationDataset-Sim

fIguRe 3 | Projection of the fingertips on left camera in real robot experiments. On the left image (a) the canonical projection (i.e., with β̂ = 0) is shown, and on
the right (B) the projection according with the corrected kinematic chain using the estimated offsets (̂β).

98

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
https://youtu.be/0tzLFqZLbxc

10 June 2018 | Volume 5 | Article 46Frontiers in Robotics and AI | www. frontiersin. org

Vicente et al. Markerless Kinematic Calibration

RefeRenCes

Borgefors, G., and Bradski, G. (1986). Distance transformations in digital images.
Computer Vision Graphics and Image Processing 34 (3), 344–371. doi: 10.1016/
S0734-189X(86)80047-0

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Fanello, S.R., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., and Roncone,

A. (2014). “3D stereo estimation and fully automated learning of eye-hand
coordination in humanoid robot” IEEE-RAS International Conference on
Humanoid Robots 1028–1035.

Fantacci, C., Pattacini, U., Tikhanoff, V., and Natale, L. (2017). Visual end-effector
tracking using a 3D model-aided particle filter for humanoid robot platforms.
arXiv preprint arXiv 1703, 04771.

Garcia Cifuentes, C., Issac, J., Wuthrich, M., Schaal, S., and Bohg, J. (2017).
Probabilistic articulated real-time tracking for robot manipulation. IEEE
Robot. Autom. Lett. 2 (2), 577–584. doi: 10.1109/LRA.2016.2645124

Gratal, X., Romero, J., and Kragic, D. (2011). “Virtual Visual Servoing for Real-
Time Robot Pose Estimation” Proc. of the 18th IFAC World Congress 9017–
9022.

Hol, JD., Schon, TB., and Gustafsson, F. (2006). “On resampling algorithms for
particle filters” IEEE Nonlinear Statistical Signal Processing Workshop 79–82.

Kantas, N., Doucet, A., Singh, S. S., and Maciejowski, J. M. (2009). “An overview
of Sequential Monte Carlo methods for parameter estimation on general state
space models,” in IFAC Symposium on System Identification (SYSID), Vol. 42,
774–785. doi: 10.3182/20090706-3-FR-2004.00129

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
International Journal of Advanced Robotic Systems 3 (1), 8. doi: 10.5772/5761

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in
cognitive development. Neural Netw. 23 (8-9), 1125–1134. doi: 10.1016/j.
neunet.2010.08.010

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6 (2), 40–53. doi: 10.1145/1365490.1365500

Vicente, P., Jamone, L., and Bernardino, A. (2016a). Online body schema adaptation
based on internal mental simulation and multisensory feedback. Front. Robot.
AI 3:7. doi: 10.3389/frobt.2016.00007

Vicente, P., Jamone, L., and Bernardino, A. (2016b). Robotic hand pose estimation
based on stereo vision and GPU-enabled internal graphical simulation. J. Intell.
Robot. Syst. 83 (3-4), 339–358. doi: 10.1007/s10846-016-0376-6

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, CF, and handling Editor declared their shared affiliation.

Copyright © 2018 Vicente, Jamone and Bernardino. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

7. KnoWn Issues

There are some known issues or limitations in this algorithm and
its software. The Windows dependency of the internal model
generator module can be a problem for non-windows users.
Moreover, the number of particles in the Sequential Monte Carlo
is fixed (200 particles), which we found to be a good trade-off
between accuracy and speed [check Vicente et al. (2016a) for more
details on this matter].

The camera size is also fixed to the 320 × 240 resolution,
which is sufficient to most of the experiments performed on the
iCub. Indeed, to the authors’ knowledge, this is the most popular
resolution in the iCub community. The camera resolution can
be modified by changing the input resolution on the hand pose
estimation module and on the internal structures of the internal
model and the likelihood assessment. However, this demands for
a recompilation of the internal model generator which could not
be done without a Pro license of Unity®.

The limitation on the integration of the likelihood assessment
and the int cast discussed in Section 4.3 should be investigated
since we are truncating the likelihood and in the end we have, at
most, three significant figures of the likelihood value.

Hand occlusions can also be problematic at this stage of the
work since we are not dealing explicitly with them. If the hand is
occluded for a long period, the filter can start to diverge since it
does not find a good match of the hand model in its perception.

8. ConClusIon and futuRe WoRK

In this paper, we have shown how to calibrate the eye-hand
kinematic chain of a humanoid robot – the iCub robot. We

have provided a tutorial on how to execute the module and how
it works, its inputs and outputs. Our proposed work could be
beneficial for research works with the iCub humanoid robot,
from manipulation related fields to human-robot interaction, for
instance. The results have shown a good accuracy in simulation
and in a real-world environment. For future work, we are planning
to extend the architecture. A useful feature is to be able to predict
if the hand is present or not in the image or if it is occluded in
order to perform a better match between the perception and
the generated hypotheses. We will investigate the possibility of
running the internal model simulator on different platforms (i.e.,
Linux, macOS), which seems to be a new feature of the Unity game
engine editor environment.

autHoR ContRIButIons

In this work, all the authors contributed to the conception of the
markerless eye-hand kinematic calibration solution and to the
analysis and interpretation of the data acquired.

fundIng

This work was partially supported by Fundação para a Ciência
e a Tecnologia [UID/EEA/50009/2013] and PhD grant [PD/
BD/135115/2017] and by EPSRC UK (project NCNR, National
Centre for Nuclear Robotics, EP/R02572X/1). We acknowledge the
support of NVIDIA Corporation with the donation of the GPU
used for this research.

99

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1109/LRA.2016.2645124
http://dx.doi.org/10.3182/20090706-3-FR-2004.00129
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.3389/frobt.2016.00007
http://dx.doi.org/10.1007/s10846-016-0376-6
http://creativecommons.org/licenses/by/4.0/

CODE
published: 22 August 2018

doi: 10.3389/frobt.2018.00098

Frontiers in Robotics and AI | www.frontiersin.org 1 August 2018 | Volume 5 | Article 98

Edited by:

Alexandre Bernardino,

Instituto Superior Técnico,

Universidade de Lisboa, Portugal

Reviewed by:

Vishwanathan Mohan,

University of Essex, United Kingdom

Jose Antonio Gaspar,

Universidade de Lisboa, Portugal

Pedro Vicente,

Universidade de Lisboa, Portugal, in

collaboration with reviewer JAG

*Correspondence:

Lorenzo Natale

lorenzo.natale@iit.it

Specialty section:

This article was submitted to

Humanoid Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 10 August 2017

Accepted: 30 July 2018

Published: 22 August 2018

Citation:

Mar T, Tikhanoff V and Natale L (2018)

A Framework for Fast, Autonomous,

and Reliable Tool Incorporation on

iCub. Front. Robot. AI 5:98.

doi: 10.3389/frobt.2018.00098

A Framework for Fast, Autonomous,
and Reliable Tool Incorporation on
iCub
Tanis Mar, Vadim Tikhanoff and Lorenzo Natale*

iCub Facility, Istituto Italiano di Tecnologia, Genoa, Italy

One of the main advantages of building robots with size and motor capabilities close to

those of humans, such as iCub, lies in the fact that they can potentially take advantage

of a world populated with tools and devices designed by and for humans. However,

in order to be able to do proper use of the tools around them, robots need to be

able to incorporate these tools, that is, to build a representation of the tool’s geometry,

reach and pose with respect to the robot. The present paper tackles this argument by

presenting a repository which implements a series of interconnectedmethods that enable

autonomous, fast, and reliable tool incorporation on the iCub platform.

Keywords: tool use, code:cplusplus, tool incorporation, affordances, iCub, 3D reconstruction, humanoid, tool pose

1. OVERVIEW

A critical problem in most studies of tool use in developmental robotics is that actions are
performed without considering the geometry or pose of tools that the robot uses. Instead, most
experiments apply standard grasps and assume pre-defined kinematic end-effector extensions that
do not take into account the particular pose of the tool in the robot’s hand (Gonçalves et al.,
2014; Dehban et al., 2017). In order to overcome this limitation, this paper presents a repository
which implements a series of interconnected methods that enable autonomous, fast, and reliable
estimation of a tool’s geometry, reach and pose with respect to the iCub’s hand, in order to attach it
to the robot’s kinematic chain, thereby enabling dexterous tool use. Indeed, this methods have been
successfully applied in the study presented in Mar et al. (2017).

The repository can be found at:
https://github.com/robotology/tool-incorporation
We name this process tool incorporation because of its meaning referring to embodiment

(literally, in-corpore), as it enables iCub to build a representation of the tool with respect to,
and included in, its own body representation. The iCub is a full body humanoid robot with
53 Degrees of Freedom (DoF) (Metta et al., 2010), including head, arms, and torso. The iCub
software is structured as modules that communicate with each other using YARP middleware,
which enables multi-machine and multi-platform integration (Metta, 2006). Modules provide
specific functionalities, and work together in form of applications to achieve desired behaviors
on the iCub. Vision is provided by the cameras mounted in the robot’s eyes, from which stereo
matching can be applied to estimate depth (Fanello et al., 2014). Image processing is achieved with
the help of OpenCV and PCL libraries, for 2D and 3D processing respectively (Rusu and Cousins,
2011; Itseez, 2015). All the methods described in this paper are implemented as functions in the
toolIncorporationmodule.

100

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00098
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00098&domain=pdf&date_stamp=2018-08-22
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lorenzo.natale@iit.it
https://doi.org/10.3389/frobt.2018.00098
https://www.frontiersin.org/articles/10.3389/frobt.2018.00098/full
http://loop.frontiersin.org/people/336865/overview
http://loop.frontiersin.org/people/9159/overview
http://loop.frontiersin.org/people/36032/overview
https://github.com/robotology/tool-incorporation

Mar et al. A Framework for Tool Incorporation on iCub

The remainder of this paper is structured according to the
main methods required to incorporate tools. Section 2 describes
the methods for tool recognition, or visual appearance learning
if the tool has not been seen before. Section 3 presents a method
that enables iCub to reconstruct a 3D representation of the tool in
its hand using its stereo-vision capabilities. Section 4 explains the
meaning and estimation of the tool’s intrinsic frame and of the
tooltip. Finally, section 5 details a method for faster estimation of
a tool’s pose when its model is available.

2. TOOL RECOGNITION

The first step for tool incorporation is to recognize the tool in
the robot’s hand, so that its model can be loaded if the tool is
known, or its visual appearance learned otherwise. To that end,
the method applied in this work builds upon the techniques
described in Pasquale et al. (2016). In that paper, a pre-trained
CNN (AlexNet trained on imageNet, Krizhevsky et al., 2012)
learned to associate a cropped image of an object presented by
the experimenter with a provided label. In this work, we extended
this approach in order to reduce the need of an external teacher,
so that it is only required to hand over the tool to the robot and
provide its label.

Once the iCub robot is grasping the tool in its hand,
exploration is performed by moving it to different poses, so that
it can be observed from different perspectives (implemented in
function exploreTool). These poses are predefined to utilize
the range of iCub’s wrist joints to achieve distinct perspectives.

On each of the considered poses iCub focuses on the tool’s
effector, understood as the part of the tool that interacts with
the environment. However, at this point the robot has no
information about the tool’s geometry or pose in order to estimate
where the effector might be (these are discussed in section 4.3).
Therefore, in order to locate the effector, iCub initially looks
just slightly over its hand (10 cm along the X axis and –10 cm
along the Y axis of the hand reference frame). Then, it locates
the tooltip on the image by iteratively extracting the tool outline
from the disparity map, and looking at the point in the blob
further away from the hand reference frame. This process, which
is implemented in function lookAtTool, is repeated until the
position of the estimated tooltip is stable, or a given number of
iterations has been surpassed.

Once iCub is correctly gazing at the tool effector, a series of
images of the tool are obtained by cropping a region around the
tool, which is determined by the bounding box of the closest blob
obtained with dispBlobber1, plus a margin of 10 pixels on
each side. Finally the cropped images are fed to a CNN whose
output feeds in turn a linear classifier which associates them to
the user provided tool label. This process is performed by the
onTheFlyRecognition application, which is called from by
the learn function provided with the tool label.

This sequence –tool effector location and subsequent cropping
of the tool region to feed the CNN– is repeated for all
the exploration poses considered, which provides enough

1https://github.com/robotology/segmentation/tree/master/dispBlobber

perspectives to recognize the tool in any future pose in which it
might be grasped in the future.

After the visual appearance of the set of available tools has
been learned, the process of classification is simple. After iCub is
given any tool, it observes it in any of the exploratory poses and
uses the same method to crop it from the rest of the image. The
cropped image is in turn sent to the trained classifier (in this case,
using the recognize function), which returns the estimated
label of the tool. It should be noted that tools can be learned in
either terms of instances or categories. In the first case, the user
should provide a distinct label for each individual tool given to
iCub, and an associated pointcloud model. In the second case,
tools of the same category (e.g., rakes, sticks, shovels), should be
given the generic label of that category, and a generic model of
the tool category provided.

3. TOOL 3D RECONSTRUCTION

In cases where a 3D model of the tool is not available, the robot
should be able to reconstruct it through exploration. In this
section we describe an approach that allows iCub to achieve this,
without the need of external intervention by the experimenter.
Essentially, it consists of iterative segmentation, reconstruction,
and merge of the tool’s partial views from different
perspectives.

Similar techniques have been presented in many different
papers in the recent years (Ren et al., 2013; Zhang et al., 2015).
However, most of these studies assume either a fixed camera
and an object being moved externally (by the user or on a
turning table), which could not be considered autonomous;
or a fix scene and a moving camera/robot navigating around
it, which is unfeasible on the current iCub setup. Therefore,
in the present work we implemented a method by means
of which iCub can reconstruct a tool’s complete pointcloud
representation by obtaining partial view reconstructions
from different perspectives and incrementally merging them
together.

The method applied to observe the tool effector is analogous
to the one described in the previous section for learning the
tool’s visual appearance, and in fact, both processes can be run
simultaneously (by calling the exploreTool function with the
2D and 3D flags active). For reconstruction, the steps performed
at each exploration pose are the following:

• Segmentation:
After the gaze is properly oriented toward the tool effector,

as described in section 2, instead of just cropping the bounding
box around the tool, the tool blob is segmented with the
dispBlobbermodule, which returns the pixels in the image
that correspond to the tool.

• Reconstruction:
This list of pixels is sent to the seg2cloud module,

which computes the 3D coordinates of each point in the
robot reference frame and returns them as a pointcloud.
This pointcloud is transformed from the robot frame to
the hand’s reference frame using the robot’s kinematics,
which greatly facilitates subsequent merging, as the hand

Frontiers in Robotics and AI | www.frontiersin.org 2 August 2018 | Volume 5 | Article 98101

https://github.com/robotology/segmentation/tree/master/dispBlobber
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mar et al. A Framework for Tool Incorporation on iCub

FIGURE 1 | Planes and axes that determine the tool’s intrinsic reference frame. (A) Tool model divided by its three characteristic L planes. (B) Handle plane Lhan. (C)

Symmetry plane Lsym. (D) Effector plane Leff . The reference frame in all figures shows feff in red, fhan in green, and fsym in blue.

provides a coherent reference frame for all the partial
reconstructions.

Moreover, we can safely assume that the tool is connected
with the hand, and it does not extend beyond certain
boundaries. Therefore, in order to remove any points on
the reconstructed pointcloud that might belong to the
background, the pointcloud is truncated in all three axes of
the hand reference frame, removing all the points outside the
(0.0, 35)cm range in the X axis, (−30, 0.0)cm range in the Y
axis, and (−15, 15)cm range in the Z axis. Additionally, as
in many cases part of the hand might also be present in the
reconstructed pointcloud, it is removed by filtering out all
the points in the which are inside a radius of 8 cm from the
origin of the hand reference frame. Finally, the pointcloud is
smoothed by applying a statistical filter for outlier removal.
The described pointcloud reconstruction, transformation
and filtering are performed by the getPointCloud

function.
• Merging:

Although all the partial reconstructed pointclouds are
represented in a coherent reference frame, they are not
perfectly aligned due to errors in depth estimation and robot
kinematics. Therefore, a further refinement step is performed
using the Iterative Closest Point algorithm (ICP) (Besl and
McKay, 1992). We assume that the required refinement is
small and thus discard as unsuccessful those cases in which
the resulting roto-translation is larger than a given threshold.
Finally, in order to merge overlapping surfaces and reduce
noise, the resulting pointcloud is downsampled uniformly
using a voxelized grid.

As a result of this process, a complete pointcloud representation
of the explored tool is obtained, which also reflects the pose
with which the tool is being grasped by iCub. We refer to this
representation as an oriented pointcloud model, that is, the
available pointcloud model of the tool being held by the robot,
whose coordinates match the position of the actual tool with
respect to the robot’s hand reference frame.

4. TOOL REFERENCE FRAME AND
TOOLTIP ESTIMATION

Although the pose of the oriented pointcloud model corresponds
to that of the tool in the robot’s hand, its orientation is not readily
available for the robot, as it is only implicit in the pointcloud
representation. In the present section we present a method to
make this information explicit, based on the definition and
estimation of a reference frame intrinsic to each tool, applicable
to the vast majority of man-made tools that could be present in
a robotic tool use scenario. This frame of reference, referred to
as tool intrinsic reference frame, and denoted as f, identifies
the effector and handle of the tool, provides its orientation
with respect to the hand reference frame, and facilitates the
computation of the tooltip’s location.

4.1. Tool Reference Frame Definition
Given any radial tool2, generally we can define three orthogonal
characteristic tool planes as can be observed in Figure 1, denoted
together as a tool’s L planes:

• Handle plane (Lhan): It is perpendicular to the handle axis, and
divides the tool into the effector and the handle sides.

• Symmetry plane (Lsym): It is the plane with respect to which
the tool has the maximum symmetry. It runs along the handle
and divides the tool into two equal (or almost) longitudinal
halves.

• Effector plane (Leff): Orthogonal to the two previous planes,
usually divides the “forward” and “back” sides of the tool,
forward being the side where the effector is.

The planes’ normal vectors can be chosen so that they define a
right-hand reference frame, whichwe refer to as the tool intrinsic
reference frame,(f). To this end, the origin and orientation of the

2We refer as radial tools to tools consisting of clearly distinct handle and effector,

which are grasped from the handle with the thumb toward the effector of the tool

(called radial grip).

Frontiers in Robotics and AI | www.frontiersin.org 3 August 2018 | Volume 5 | Article 98102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mar et al. A Framework for Tool Incorporation on iCub

corresponding axes is chosen so that they preserve the following
characteristics:

• Effector axis (X) (feff): It is positive in the direction of the
effector, i.e., toward the “forward” side of the tool.

• Handle axis (Y) (fhan): Is positive in the direction toward the
handle, and negative in the direction toward the effector side
of the tool.

• Symmetry axis (Z) (fsym): The symmetry basis vector is
obtained as the outer product of the other two to ensure
orthogonality, so it is positive on the “left” side of the tool, if
the effector is looking “forward”.

4.2. Tool Reference Frame Estimation
Based on the previous definitions, here we propose a method
to automatically estimate the tool intrinsic reference frame f

of a tool’s pointcloud representation W, relying solely on the
assumption thatW represents an oriented pointcloudmodel, that
is, it is expressed with respect to the hand reference frame of the
robot. The proposed procedure consists on the following steps,
which can be observed in function findSyms:

1. Find the pointcloud’s main axes: The estimation of f’s origin
and direction can be achieved by computing the covariance
matrix of the pointcloud W. The origin is determined at
the center of mass o, and the 3 eigenvectors v with larger
eigenvalues λ correspond to the pointcloud’s main axes:

C = cov(W), (1)

Cv = λv, (2)

L[i] ⊥ v[i], i ∈ {0, 1, 2}. (3)

Therefore, this set of orthogonal vectors v defines a set of
orthogonal planes that approximate the tool planes L, but
their correspondence with the specific planes defined above,
as well as their orientation, need to be determined to fully
characterize f.

2. Identify the planes:

a. Handle plane Lhan: The handle is situated along the
longest tool dimension. Thus, the eigenvector with largest
eigenvalue indicates the direction of the handle axis,
normal to the Handle plane. That is,

vhan = v[n], where n = arg max
i∈{0,1,2}

(λ[i]), (4)

accordingly, Lhan = L[n] (5)

b. Symmetry plane Lsym: The symmetry plane corresponds by
definition to the plane with respect to which the tool has
the maximum symmetry. Thus:

Lsym = L[m], wherem = arg max
j∈{0,1,2}6=n

(sym(L[j]). (6)

c. Effector plane Leff : The effector plane is computed in
relation to previous two planes, as the plane orthogonal to

both the Handle and the Symmetry plane:

Leff = L[k], where k ∈ 0, 1, 2 6= n,m (7)

Leff ⊥ Lsym ⊥ Lhan (8)

3. Find the axes orientations:

a. Handle axis fhan: Determines the side where the handle
of the tool is (opposite of the effector). Following the
assumption thatW is represented with respect to the hand
reference frame, it follows that the handle is on the side of
Lhan that contains the origin of the pointcloud reference
frame (i.e., the hand). Thus, the orientation of fhan is set so
that the positive values correspond to the side of Lhan that
contains the origin.

b. Effector axis feff : In order to determine the direction that
corresponds with “forward” in a tool, we consider the
saliency of the features on each side of the effector plane.
Specifically, the “forward” side of the pointcloud W is
defined as the side where the effector half of the tool
(determined in the previous step) contains points further
away from the tool’s intrinsic reference frame origin o.
Thus, the orientation of the effector axis feff (perpendicular
to the effector plane) is set such that the positive values are
located on the salient side of the effector plane.

c. Symmetry axis fsym: The orientation of fsym is chosen so
that the set of axes defined by v corresponds to a right-
handed coordinate system. Thus, it is computed as the cross
product between the handle and effector axes basis vectors:

fsym = fhan × feff (9)

The tool intrinsic reference frame f is actually expressed on the
same frame of reference that the pointcloud reconstruction from
which it is estimated, that is, the hand reference frame. Thus, the
equations of the frame’s axes represent explicitly the orientation
of the tool in any of its three axis.

One of the strengths of this approach to estimate the tool’s
frame of reference f is that it relies on very few and general
assumptions to be met in order to work successfully, namely, that
the tool’s handle axis is longer that any other axis, and that the
tool has a certain degree of symmetry along a plane that contains
that axis. Moreover, the method is also very robust to noise in the
3D representation of the tool, since all the computations required
throughout the process of determining f have a high tolerance
to noise. Indeed, as most of the decisions are made in terms
of comparison (symmetry between two sides of a plane, longest
axis, furthest away point), if noise affects the whole pointcloud
similarly, it would not modify their outcome.

4.3. Tooltip Estimation
As stated above, one of themain advantages of estimating the tool
reference frame f is that it enables to precisely locate the tooltip,
required to perform the extension of the robot’s kinematic chain
to the new end-effector provided by the tool. Thus, the tool tip is
defined in terms of the concepts defined and estimated above:

Tooltip: Location on the tool represented by the point on
the Symmetry plane of the tool, above the Handle plane (i.e., on

Frontiers in Robotics and AI | www.frontiersin.org 4 August 2018 | Volume 5 | Article 98103

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mar et al. A Framework for Tool Incorporation on iCub

FIGURE 2 | Results of the tooltip estimation process described in the text shown for a few example tools (top row), whose pointcloud has been achieved from from

CAD models (middle row), or autonomously reconstructed (bottom row).

the effector side), furthest away from the Effector plane, on the
positive side of the effector axis.

The estimated tool reference frame f and tooltip for a small
sample of tools can be observed in Figure 2, where it can be
observed that the estimated tooltip coincides to what most people
would consider to be the tooltip of those tools.

In our code, this definition is implemented by the function
findTooltipSym, which computes the tooltip location based
on the information from the tool planes provided by the previous
steps.

5. TOOL POSE ESTIMATION

The methods described in sections 3 and 4 allow the robot
to reconstruct a tool’s geometry and estimate its pose even in
the case of previously unseen tools. However, this is a time
consuming approach that is not necessary if a 3D pointcloud
model of the tool or tool category is already available, either from

a CADmodel or from a previous reconstruction. For these cases,
in this section we introduce a fast and reliable method for pose
estimation, based on the alignment of the available model with a
single partial view reconstruction to the tool in the robot’s hand,
implemented in the function findPoseAlign.

Qualitatively, the tool pose represents the way in which the
tool is being grasped with respect to the hand’s reference frame.
Numerically, we can express the tool pose in terms of the 4 × 4
roto-translation Pose Matrix P required to transform the hand
reference frame < H > frame to any reference frame intrinsic to
the tool < T >, that is,

< T > = P < H > (10)

The hand reference frame < H > is defined by the robot
kinematics. The tool reference frame < T > applied can be
arbitrarily chosen, as long as it is coherent among all the tools
that can be considered, as the Pose is expressed in relative terms.

Frontiers in Robotics and AI | www.frontiersin.org 5 August 2018 | Volume 5 | Article 98104

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mar et al. A Framework for Tool Incorporation on iCub

FIGURE 3 | Example of the tool pose estimation through alignment process. (A) Load 3D pointcloud model on canonical pose. (B) Extract partial reconstruction using

seg2cloud model (segmentation + depth estimation). (C) Find Pose Matrix P by aligning 3D model to partial reconstruction. (D) Obtain oriented pointcloud model

by applying P to the 3D model.

This means that P can also be understood as the required
transformation to align a tool 3D model from its canonical pose
to the pose in which is the tool is being held by the robot, given by
the oriented pointcloud model. In this work, this transformation
is estimated by aligning the available model of the tool with a
partial reconstruction obtained through iCub’s disparity.

To that end, iCub first applies the method described in
section 2 to identify the tool instance or category and load the
corresponding model. Then, it fixates the gaze on the tool’s
effector and extracts a partial pointcloud reconstruction, using
the same methods applied on each of the exploration poses
considered for tool reconstruction, as detailed in section 3. Then,
the ICP algorithm is applied in order to align the pointcloud
model loaded from memory to the partial reconstruction just
obtained. Finally, the alignment matrix returned by the ICP is
checked to assess whether it corresponds to a feasible grasp pose
in terms of translation from the origin and rotation in Z and X
axes. If the alignment estimated by ICP corresponds to a feasible
grasp, then the returned alignment matrix is assigned to P, and
applied to transform the canonical pointcloud model available in
memory in order to obtain the oriented pointcloud model. This
process can be observed in Figure 3.

Thereby, after the pose estimation process iCub has explicit
information about the precise geometry and pose of the tool in
its hand. Therefore, it can apply the method described in section
4.3 to determine the position of the tooltip with respect to the
robot’s hand reference frame, and hence extend the kinematics of
the robot to incorporate the tip of the tool as the new end-effector
for further action execution.

6. CONCLUSION

In the present paper we have introduced the concept of tool
incorporation, that is, the process whereby the iCub robot is able
to recognize a tool, estimate its geometry, pose and tooltip, and

use this information to use the tool as its new end-effector. In
particular, we have introduced a repository which implements a
set of interconnected methods to perform such tasks in a fast and
reliable way on iCub platform. By applying these methods, the
robustness of the desired tool use behaviors as well as the ease
of implementation can be substantially increased, by reducing
the necessity of applying predefined parameters to represent the
tools.

Despite its clear advantages, this approach does however suffer
from a few limitations. On the one hand, it only works properly
with radial tools where handle and effector are clearly distinct and
are grasped radially (in the direction of the iCub’s thumb). On
the other, the 3D reconstruction quality, while generally enough
to estimate the tool frame and the tooltip, does yield relatively
noisy models. These issues clearly demand further work on
tool incorporation mechanisms in order to facilitate robotic tool
use.

AUTHOR CONTRIBUTIONS

TM is the main author of the code and paper. VT provided
technical guidance and assistance, and reviewed both the code
and the paper. LN provided high-level supervision, and reviewed
the paper before submission.

REFERENCES

Besl, P., and McKay, N. (1992). A method for registration of 3-D shapes.

IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256. doi: 10.1109/34.

121791

Dehban, A., Jamone, L., and Kampff, A. R. (2017). “A deep probabilistic framework

for heterogeneous self-supervised learning of affordances,” inHumanoids 2017

(Birmingham).

Fanello, S. R., Pattacini, U., Gori, I., and Tikhanoff, V. (2014).

“3D Stereo estimation and fully automated learning of eye-hand

Frontiers in Robotics and AI | www.frontiersin.org 6 August 2018 | Volume 5 | Article 98105

https://doi.org/10.1109/34.121791
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Mar et al. A Framework for Tool Incorporation on iCub

coordination in humanoid robots,” in Humanoids 2014 (Madrid),

1028–1035.

Gonçalves, A., Abrantes, J., Saponaro, G., Jamone, L., and Bernardino, A. (2014).

“Learning intermediate object affordances: toward the development of a tool

concept,” in IEEE International Conference on Development and Learning and

on Epigenetic Robotics (ICDL-EpiRob 2014) (Genoa), 1–8.

Itseez (2015). Open Source Computer Vision Library.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional Neural Networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe, NV), 1–9.

Mar, T., Tikhanoff, V., and Natale, L. (2017). What can I do with this tool? Self-

supervised learning of tool affordances from their 3D geometry. IEEE Trans.

Cogn. Dev. Sys. 1. doi: 10.1109/TCDS.2017.2717041

Metta, G. (2006). Software Implementation of the Phylogenetic Abilities Specifically

for the iCub & Integration in the iCub Cognitive Architecture. Technical Report

004370.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).

The iCub humanoid robot: an open-systems platform for research in cognitive

development. Neural Netw. 23, 1125–1134. doi: 10.1016/j.neunet.2010.

08.010

Pasquale, G., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Object identification

from few examples by improving the invariance of a deep convolutional neural

network,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Daejeon: IEEE). doi: 10.1109/IROS.2016.7759720

Ren, C. Y., Prisacariu, V., Murray, D., and Reid, I. (2013). “STAR3D: Simultaneous

tracking and reconstruction of 3D objects using RGB-D data,” in Proceedings

of the IEEE International Conference on Computer Vision (Sydney, NSW),

1561–1568.

Rusu, R. B., and Cousins, S. (2011). “3D is here: Point Cloud Library

(PCL),” in Proceedings - IEEE International Conference on Robotics and

Automation (Shanghai).

Zhang, Y., Gibson, G. M., Hay, R., Bowman, R. W., Padgett, M. J., and Edgar, M. P.

(2015). A fast 3D reconstruction system with a low-cost camera accessory. Sci.

Rep. 5, 1–7. doi: 10.1038/srep10909

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer JAG and handling Editor declared their shared affiliation.

Copyright © 2018 Mar, Tikhanoff and Natale. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 7 August 2018 | Volume 5 | Article 98106

https://doi.org/10.1109/TCDS.2017.2717041
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1109/IROS.2016.7759720
https://doi.org/10.1038/srep10909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org | +41 21 510 17 00

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Building the iCub Mindware: Open-source Software for Robot Intelligence andAutonomy
	Table of Contents
	Prediction of Intention during Interaction with iCub with Probabilistic Movement Primitives
	1. Introduction
	2. Related Work
	2.1. Intention during Human–Robot Interaction
	2.2. Movement Primitives
	2.3. Related Open-Source Software

	3. Theoretical Framework
	3.1. Notation
	3.1.1. Trajectories
	3.1.2. Movement Primitives
	3.1.3. Time Modulation
	3.1.4. Inference

	3.2. Learning a Probabilistic Movement Primitive (ProMP) from Demonstrations
	3.3. Predicting the Future Movement from Initial Observations
	3.4. Predicting the Trajectory Time Modulation
	3.5. Recognizing One among Many Movement Primitives

	4. Software Overview
	5. Software Example: Learning a 1-DOF Primitive
	6. Application on the Simulated iCub: Learning Three Primitives
	6.1. Predicting Intended Trajectories by Using ProMPs
	6.1.1. Learning Motion Primitives
	6.1.2. Prediction of the Trajectory Evolution from Initial Observations

	6.2. Setup for Simulated iCub
	6.3. Data Acquisition
	6.4. Learning the ProMPs
	6.5. Predicting the Desired Movement
	6.6. Predicting the Time Modulation

	7. Application on the Real iCub
	7.1. Three Simple Actions with Wrench Information
	7.2. Collaborative Object Sorting

	8. Videos
	9. Discussion
	9.1. Improving the Estimation of the Time Modulation
	9.2. Improving Prediction
	9.3. Continuous Prediction
	9.4. Improving Computational Time
	9.5. Learning Tasks with Objects

	10. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References
	Appendix
	A. Detail of the Inference Formula

	Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions
	1. Introduction
	2. Modeling and Grasping Via Superquadric Models
	3. Code Structure
	3.1. Superquadric-Model
	3.1.1. SuperqComputation
	3.1.2. SuperqVisualization

	3.2. Superquadric-Grasping
	3.2.1. GraspComputation
	3.2.2. GraspExecution
	3.2.3. GraspVisualization
	3.2.4. Communication with the Module

	3.3. How to Use the Superquadric Framework

	4. Known Issues
	5. Conclusion
	Author Contributions
	References

	Connecting YARP to the Web
with Yarp.js
	1. Introduction
	2. Background and Motivations
	2.1. YARP
	2.2. Robots, Modern Web APIs,
and Node.js

	3. System Overview
	3.1. Server Side: YARP in Node.js
	3.1.1. First Layer: Node.js Addons for YARP (Language C++ → Node.js)
	3.1.2. Second Layer: Yarp.js Server Manager (Language Node.js)

	3.2. Client Side: YARP in the Browser (Language JavaScript)

	4. Applications
	4.1. Reading and Transmitting Inertial Data
	4.2. Speech Recognition and Synthesis
	4.3. Stream Video (a “yarpview” in the Browser)
	4.4. 3D Visualization of YARP Data
	4.5. Teleoperation with Face Tracking

	5. Conclusion
	Author Contributions
	Funding
	References

	The Event-Driven Software Library for YARP—With Algorithms and
iCub Applications
	1. Introduction
	2. Event-Driven Vision for Robots
	3. The Event-Driven Library
	3.1. Representing an Event
	3.2. Event-Packets in YARP
	3.3. Structuring the Event-Stream
	3.4. Low-Level Processing

	4. Demonstrations, Code, and Datasets
	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References

	Speech Recognition for the iCub Platform
	1. Introduction
	2. iCubRec
	2.1. Application and Utility
	2.2. Methods
	2.3. Code Description
	2.3.1. GMM-Based Acoustic Modeling
	2.3.2. DNN-Based Acoustic Modeling
	2.3.3. Speech Decoding
	2.3.4. Integration with YARP

	2.4. Resources
	2.4.1. The VoCub Dataset
	2.4.2. Trained Models

	2.5. Example of Use

	3. bioRec
	3.1. Application and Utility
	3.1.1. Articulatory Phone Recognition
	3.1.2. Unsupervised/Developmental ASR

	3.2. Methods
	3.2.1. Articulatory Phone Recognition
	3.2.2. Unsupervised/Developmental ASR

	3.3. Code Description and Example of Use
	3.3.1. Articulatory Phone Recognition
	3.3.2. Unsupervised/Developmental ASR
	3.3.3. Utilities

	4. Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	YARP-ROS Inter-Operation in a 2D Navigation Task
	1. Introduction
	2. YARP/ROS Interface
	2.1. YARP Ports and ROS Topics
	2.2. TransformServer and TransformClient

	3. YARP Classes and Interfaces for Navigation
	3.1. MapGrid2D
	3.2. Map2DLocation
	3.3. IMap2D
	3.4. INavigation2D

	4. YARP Modules and Tools for Navigation
	4.1. Map2DServer
	4.2. BaseControl
	4.3. Mapper2D
	4.4. LocalizationServer
	4.5. RobotGoto
	4.6. RobotPathPlanner

	5. Navigation Integration and Examples
	6. Conclusion and Future Work
	Author Contributions
	Supplementary Material
	References

	iCub-HRI: A Software Framework for Complex Human–Robot Interaction Scenarios on the iCub Humanoid Robot
	1. Introduction and Background
	1.1. Background and Related Works
	1.2. Design Principles

	2. The iCub-HRI Library
	2.1. Knowledge Representation and Exchange
	2.2. Subsystems

	3. iCub-HRI Modules
	3.1. Perception Modules
	3.1.1. Agent Detector
	3.1.2. Default Speech Recognition
	3.1.3. Object Recognition
	3.1.4. Saliency
	3.1.5. Face and Action Recognition

	3.2. Action Modules
	3.2.1. Face Tracking
	3.2.2. Babbling

	3.3. Social Interaction Modules
	3.3.1. Proactive Tagging
	3.3.2. Reactive Layer

	3.4. Tools

	4. Using iCub-HRI
	4.1. Example Usage of the Object Manipulation Subsystems
	4.2. Knowledge Acquisition Tutorial
	4.3. Usage within DAC-h3 Framework
	4.4. More Applications and Use Cases
	4.5. Platform Independence
	4.6. Dependencies
	4.7. Download, Licensing, and Compatibility

	5. Conclusion and Future Work
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	References

	Optimization-Based Controllers for Robotics Applications (OCRA): The Case of iCub's Whole-Body Control
	1. Introduction
	2. OCRA
	3. Optimization-Based Control
	3.1. Tasks
	3.2. Constraints
	3.3. Dynamics
	3.4. Quadratic Programming Based Control
	3.5. Prioritization Strategies

	4. Software
	4.1. Structure
	4.1.1. OCRA Libraries
	4.1.2. OCRA for iCub
	4.1.3. iCub Server
	4.1.4. Generic Client
	4.1.5. Client Generator

	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	Online Material
	References

	Design and Implementation of a YARP Device Driver Interface: The Depth-Sensor Case
	1. Introduction
	1.1. YARP Device Interface
	1.2. RGBD Device Family
	1.3. Common Design Patterns

	2. Design Process
	2.1. Identifying Data Flow and Device Capabilities
	2.2. Identifying Use Case Scenarios
	2.3. Additional Constraints and Requirements
	2.3.1. Need of a Standard
	2.3.2. Unique Traits of RGBD Device
	2.3.3. Compliance With the YARP Ecosystem
	2.3.4. Modularity
	2.3.5. Re-usability

	3. Adopted Solutions
	3.1. Design Criteria
	3.1.1. Definition of a YARP Standard
	3.1.2. Re-use, Not Inherit
	3.1.3. Isolation of Capabilities

	3.2. Implementation Solutions
	3.2.1. API Compensation
	3.2.2. Separated Data Flow
	3.2.3. Three Levels Decoupling
	3.2.4. Capabilities Composition

	4. Conclusion and Future Work
	Author Contributions
	References

	Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot
	1. Introduction and Related Work
	2. Proposed Solution
	3. Software Design and Architecture Principles
	4. Code Description
	4.1. Hand Pose Estimation Module
	4.1.1. Initializing the Sequential Monte Carlo parameter estimation - initSMC Function
	4.1.2 Read Image, Read Encoders, ProcessImages and SendData
	4.1.3. Update Likelihood
	4.1.4. Kernel Density Estimation
	4.1.5. Best Hypothesis
	4.1.6. Update Artificial Noise, Resampling and New Particles

	4.2. Robot’s Internal Model Generator
	4.2.1. Initialization of the Render Textures
	4.2.2. Generate Hypotheses

	4.3. Likelihood Assessment Module

	5. Application and Utility
	5.1. Installation and Dependencies
	5.1.1. Hand Pose Estimation Module
	5.1.2 Robot’s Internal Model Generator and Likelihood Assessment

	5.2. Running the Modules
	5.2.1. Running the Hand Pose Estimation and its parameters
	5.2.2. Running the Robot’s Internal Model
	5.2.3. User interface

	6. Experiments and Examples of Use
	7. Known Issues
	8. Conclusion and Future Work
	Author Contributions
	Funding
	References

	A Framework for Fast, Autonomous, and Reliable Tool Incorporation on iCub
	1. Overview
	2. Tool recognition
	3. Tool 3D reconstruction
	4. Tool reference frame and tooltip estimation
	4.1. Tool Reference Frame Definition
	4.2. Tool Reference Frame Estimation
	4.3. Tooltip Estimation

	5. Tool pose estimation
	6. Conclusion
	Author Contributions
	References

	Back Cover

