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Editorial on the Research Topic

Interaction between the gut flora and immunity in intestinal diseases
It is widely recognized that the gut microbiota influences the host’s health, especially

concerning immune homeostasis. The microbiome plays critical roles in the training and

development of major components of innate and adaptive immune systems, with immunity

regulating the equilibrium of the host-microbe relationship. Comprehending the symbiotic

relationship between the gut microbiota and our immune system is crucial for both the

discipline of immunology and for gaining insights into the pathogenesis of intestinal

diseases. Gut microbiota disruptions are associated with a range of intestinal diseases,

including immunological diseases inflammatory bowel disease (IBD) consists of two major

subtypes, Crohn’s disease (CD) and ulcerative colitis (UC) (1); irritable bowel syndrome

(IBS)and colorectal cancer (CRC) (2, 3).

Recently, researchers have explored microbiome-immune interactions in the

development and advancement of intestinal diseases, including disease-specific bacterial

lineage strains and the core microbiota in the onset and progression of intestinal diseases

(1, 4, 5). The evaluation of clinical models and microbiome-immune biomarkers is

predictive of the prognosis of intestinal disorders. An integrated analysis of the

microbiome and metabolome uncovers distinct profiles associated with intestinal

diseases (6). Metabolic characteristics are considered to act as mediators originating

from the gut microbiota and are crucial in influencing the differentiation of immune

cells. This is due to the capacity of bacteria to generate distinct molecules that are not

produced by humans, with numerous immune cells in the intestinal tract expressing

receptors for these molecules (7). The interaction between the microbiome and the immune

system presents a crucial and challenging area of study, particularly in understanding the

causal relationship between gut flora and the immune system in intestinal diseases.

Mendelian Randomization offers a viable approach to investigating the causal

relationships between microbial factors and intestinal disease (8). The management of

intestinal disorders through microbiota approaches and immunotherapy strategies
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encompasses various interventions such as dietary modification,

probiotics, synbiotics, fecal microbiota transplantation, antibiotics,

prebiotics, postbiotics, modified phage therapy, and genetically

engineered bacteria. Correlation studies suggest that identifying

intestinal microecological regulators in clinical practice is

increasingly feasible (9).

In this context, the Research Topic has proven to be relevant

and has attracted considerable interest. Specifically, our research

focuses on the causal link between the microbiome and immunity.

Our aim is to identify the key microbiota that play a role in the

development and advancement of intestinal diseases, elucidate the

molecular mechanisms underlying interactions between the host

immune system and the microbiome, and propose innovative

pharmacological interventions targeted at intestinal diseases. The

articles included in this Research Topic present original research

that aligns with these objectives.

Mendelian randomization is a useful tool for exploring the

causal relationships between gut microbiota and various diseases.

Zhang et al. reveal that certain gut microbiota, such as phylum

Lentisphaerae, class Lentisphaeria, and order Victivallales are

associated with a lower risk of sepsis, while other microbiota,

including phylum Tenericutes and class Mollicutes, are related to

an increased risk of sepsis. Additionally, C-reactive protein (CRP)

has been confirmed as a potential intermediate factor for the

influence of the gut microbiome on sepsis. Moreover, Gao et al.

identified 21 bacterial features that have a causal relationship with

sepsis and its related outcomes, such as sepsis requiring intensive

care and 28-day mortality. The findings of these studies contribute

to the development of microbiome-based therapeutic strategies for

sepsis, aimed at reducing the incidence and mortality rates of

the condition.

Gut leakage and bacterial translocation are closely

associated with sepsis, as well as with chronic complex disorders.

Martin et al. investigate the relationship between gut barrier

function and inflammation in fibromyalgia (FM) and myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS) by

analyzing circulating biomarkers and self-reported symptoms. FM

and ME/CFS patients had significantly higher levels of biomarkers

associated with increased gut permeability (anti-beta-lactoglobulin

antibodies, ZO-1) and bacterial translocation (LPS, sCD14)

compared to healthy controls. Zhao et al. identify 14 specific

bacterial genera associated with various peptic ulcer diseases

(PUDs) types. Certain bacteria, such as Eubacterium hallii and

Flavonifractor, are causally linked to esophageal ulcers, while others

like Lachnospiraceae UCG004 are associated with gastric ulcers,

providing insights into the role of gut flora in PUD development. In

another common gastrointestinal disorder, Wang et al. identified

genetic associations between variations in gut microbiota

abundance and the risk of gastroesophageal reflux disease

(GERD). Specifically, the Clostridiales Vadin BB60 group, the

genus Lachnospiraceae UCG004, the Methanobrevibacterium, and

the phylum Actinobacteria were found to potentially have a

protective effect against GERD, while the class Mollicutes, the

genus Anaerostipes, and the phylum Tenericutes may increase the
Frontiers in Immunology 026
risk of GERD. Additionally, GERD was found to cause the

dysregulation of 13 different gut microbiota taxa. There has been

a steady growth in the number of publications in the field of gut

microbiota and IBD, with a particularly significant increase in

recent years, Zhang et al. conduct a bibliometric analysis of the

literature in the field of gut microbiota and IBD over the past two

decades. Analyzing 10,479 relevant documents from the Scopus

database reveals the importance of gut microbiota in IBD research

and highlights the research hotspots and frontiers in this field.

The interaction between the gut microbiota and the immune

system also plays a significant role in the occurrence and

development of vascular diseases. Jiang et al. demonstrate that the

presence of specific gut bacteria in the host is causally associated

with atherosclerosis. Different types of atherosclerosis (cerebral,

coronary, and peripheral) are linked to specific gut microbiota. For

example, Ruminiclostridium was found to have a protective effect on

cerebral atherosclerosis, while Rikenellaceae, Streptococcaceae,

Paraprevotella, and Streptococcus were associated with increased

risk. Chen et al. investigate the causal relationship between gut

microbiota and granulomatosis with polyangiitis (GPA). The study

identified that one phylum, one family, and nine genera of

microbiota were significantly associated with GPA, and it

established that various immune cell characteristics mediated the

impact of gut microbiota on GPA. For example, the family

Defluviitaleaceae and the genus Defluviitaleaceae UCG011 affected

GPA by influencing the expression of CD11c in granulocytes.

Recently, the immunomodulatory mechanisms of some

probiotics or bacterial metabolic synthesis have also attracted

widespread attention. Lee et al. investigate the immunomodulatory

effects of paraprobiotics derived from heat-killed Bacillus velezensis

GV1. The study demonstrates that GV1 effectively enhances

immune responses in vitro and in vivo, particularly in

immunosuppressed mice treated with cyclophosphamide.

Gubernatorova et al. explore the complex and controversial role

of Akkermansia muciniphila, a mucin-degrading bacterium, in

colorectal cancer. Experimental variations, such as antibiotic use,

the form, or the dosage, significantly impact outcomes. The key

seems to be moderation, as lower doses of A. muciniphila or its

derivatives, administered without disrupting the gut microbiota,

may protect against colorectal cancer. Sun et al. highlight the

multifaceted role of bacterial extracellular vesicles (BEVs) in gut

health and disease. BEVs, which are released by both gram-negative

and gram-positive bacteria, have been traditionally viewed as waste

products. However, emerging research demonstrates their

significant impact on various aspects of gut homeostasis

and pathogenesis.

In summary, existing evidence suggests a significant

bidirectional relationship between perturbations in the

microbiome and dysregulation of the immune system. The

intricate communication between gut microbiota and host

immunity has not been fully elucidated in the contexts of

maintaining homeostasis and the progression of diseases.

Therefore, comprehensive mechanistic investigations are

warranted to delve deeper into the impact of microbial
frontiersin.org
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manipulation on host immunity and the immune response to

dysbiosis of the microbiome in intestinal disorders.
Author contributions

YL: Writing – original draft, Writing – review & editing. ST:

Writing – review & editing. LG: Writing – review & editing. DS:

Writing – review & editing, Writing – original draft.
Acknowledgments

We express our gratitude to all of the authors who contributed

to the Research Topic.
Frontiers in Immunology 037
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Kumbhari A, Cheng TNH, Ananthakrishnan AN, Kochar B, Burke KE, Shannon
K, et al. Discovery of disease-adapted bacterial lineages in inflammatory bowel diseases.
Cell Host Microbe. (2024) 32(7):1147–62.e12. doi: 10.1016/j.chom.2024.05.022

2. Ju X, Jiang Z, Ma J, Yang D. Changes in fecal short-chain fatty acids in IBS
patients and effects of different interventions: A systematic review and meta-analysis.
Nutrients. (2024) 16(11):1727. doi: 10.3390/nu16111727

3. Eng C, Yoshino T, Ruiz-Garcia E, Mostafa N, Cann CG, O’Brian B, et al.
Colorectal cancer. Lancet (London England). (2024) 394(10207):1467–80.
doi: 10.1016/S0140-6736(24)00360-X

4. Gleasman-DeSimone S. The microbiome and irritable bowel syndrome: an
emerging hope for treatment. Gastroenterol Nurs. (2024) 47:177–84. doi: 10.1097/
SGA.0000000000000813

5. Chawrylak K, Lesniewska M, Mielniczek K, Sedlak K, Pelc Z, Pawlik TM, et al. Gut
microbiota-adversary or ally? Its role and significance in colorectal cancer pathogenesis,
progression, and treatment. Cancers (Basel). (2024) 16(12):2236. doi: 10.3390/
cancers16122236

6. Park Y, Ahn JB, Kim DH, Park IS, Son M, Kim JH, et al. Integrated analysis of
microbiome and metabolome reveals disease-specific profiles in inflammatory bowel
diseases and intestinal Behcet’s disease. Int J Mol Sci. (2024) 25(12):6697. doi: 10.3390/
ijms25126697

7. Takeuchi T, Nakanishi Y, Ohno H. Microbial metabolites and gut immunology.
Annu Rev Immunol. (2024) 42:153–78. doi: 10.1146/annurev-immunol-090222-102035

8. Lin Z, Luo W, Zhang K, Dai S. Environmental and microbial factors in
inflammatory bowel disease model establishment: A review partly through
mendelian randomization. Gut Liver. (2024) 18:370–90. doi: 10.5009/gnl230179

9. El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, et al. The role
of the gut microbiome in inflammatory bowel disease: the middle east perspective.
J Pers Med. (2024) 14(6):652. doi: 10.3390/jpm14060652
frontiersin.org

https://doi.org/10.1016/j.chom.2024.05.022
https://doi.org/10.3390/nu16111727
https://doi.org/10.1016/S0140-6736(24)00360-X
https://doi.org/10.1097/SGA.0000000000000813
https://doi.org/10.1097/SGA.0000000000000813
https://doi.org/10.3390/cancers16122236
https://doi.org/10.3390/cancers16122236
https://doi.org/10.3390/ijms25126697
https://doi.org/10.3390/ijms25126697
https://doi.org/10.1146/annurev-immunol-090222-102035
https://doi.org/10.5009/gnl230179
https://doi.org/10.3390/jpm14060652
https://doi.org/10.3389/fimmu.2024.1458526
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Silvia Turroni,
University of Bologna, Italy

REVIEWED BY

Georgia Damoraki,
National and Kapodistrian University of
Athens, Greece
Gabriele Conti,
University of Bologna, Italy

*CORRESPONDENCE

Dong Ning

N.dong1@nuigalway.ie

†These authors share first authorship

RECEIVED 05 June 2023
ACCEPTED 01 August 2023

PUBLISHED 17 August 2023

CITATION

Zhang Z, Cheng L and Ning D (2023) Gut
microbiota and sepsis: bidirectional
Mendelian study and mediation analysis.
Front. Immunol. 14:1234924.
doi: 10.3389/fimmu.2023.1234924

COPYRIGHT

© 2023 Zhang, Cheng and Ning. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 17 August 2023

DOI 10.3389/fimmu.2023.1234924
Gut microbiota and sepsis:
bidirectional Mendelian study
and mediation analysis

Zhi Zhang1†, Lin Cheng2† and Dong Ning3*

1Department of Health Management, The First Affiliated Hospital of Hunan University of Traditional
Chinese Medicine, Changsha, Hunan, China, 2Regenerative Medicine Institute, School of Medicine,
National University of Ireland (NUI), Galway, Ireland, 3Discipline of Physiology, Human Biology
Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland
Background: There is a growing body of evidence that suggests a connection

between the composition of gut microbiota and sepsis. However, more research

is needed to better understand the causal relationship between the two. To gain

a deeper insight into the association between gut microbiota, C-reactive protein

(CRP), and sepsis, we conducted several Mendelian randomization (MR) analyses.

Methods: In this study, publicly available genome-wide association study (GWAS)

summary statistics were examined to determine the correlation between gut

microbiota and sepsis, including various sepsis subgroups (such as under 75, 28-

day death, Critical Care Units (ICU), 28-day death in ICU). Initially, two-sample

and reverse Mendelian randomization (MR) analyses were conducted to identify

causality between gut microbiota and sepsis. Subsequently, multivariable and

two-step MR analyses revealed that the relationship between microbiota and

sepsis was mediated by CRP. The robustness of the findings was confirmed

through several sensitivity analyses.

Findings: In our study, we revealed positive correlations between 24 taxa and

different sepsis outcomes, while 30 taxa demonstrated negative correlations with

sepsis outcomes. Following the correction for multiple testing, we found that the

Phylum Lentisphaerae (OR: 0.932, p = 2.64E-03), class Lentisphaeria, and order

Victivallales (OR: 0.927, p = 1.42E-03) displayed a negative relationship with

sepsis risk. In contrast, Phylum Tenericutes and class Mollicutes (OR: 1.274, p =

2.89E-03) were positively related to sepsis risk and death within 28 days. It is

notable that Phylum Tenericutes and class Mollicutes (OR: 1.108, p = 1.72E-03)

also indicated a positive relationship with sepsis risk in individuals under 75. From

our analysis, it was shown that C-reactive protein (CRP) mediated 32.16% of the

causal pathway from Phylum Tenericutes and class Mollicutes to sepsis for

individuals under 75. Additionally, CRP was found to mediate 31.53% of the

effect of the genus Gordonibacter on sepsis. Despite these findings, our reverse

analysis did not indicate any influence of sepsis on the gut microbiota and CRP

levels.

Conclusion: The study showcased the connection between gut microbiota,

CRP, and sepsis, which sheds new light on the potential role of CRP as a mediator

in facilitating the impact of gut microbiota on sepsis.
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1 Background

Sepsis is a complex syndrome characterized by an unbalanced

immune response to various infections (1), which can lead to

malfunctioning of multiple organ systems such as the

cardiopulmonary, renal, and digestive systems (2). According to

epidemiological studies, sepsis rates of prevalence and mortality

range from 25% to 30% in hospitals (3). Despite our growing

understanding of the biological mechanisms behind sepsis,

current treatments have proven ineffective in correcting the

dysregulated immunity in patients (4), making it essential to

develop targeted prevention and treatment strategies.

The gut microbiome has been found to contribute to the

severity of sepsis and prognosis of treatment (5). Preclinical

studies have shown that gut microbiota plays a pivotal role in the

immune response to systemic inflammation and that disruption of

this symbiosis increases susceptibility to sepsis (6). Additionally, the

use of omic technologies to analyze the gut microbiota has

confirmed the alteration of composition related to septic

dysfunction across organs (7).

Although probiotic supplementation has reported some positive

effects (8–10), their efficacy and safety remain a subject of

controversy (11, 12). Therefore, more research is necessary to

identify the specificity and safety of probiotic supplements.

In addition to being a biomarker of acute-phase inflammation,

CRP has a role in defending against infections as it can bind to cells

and some bacteria, triggering the complement system and helping

to remove dead cells (13, 14). However, prospective studies have

also revealed that elevated CRP levels correlate with a higher risk of

infections in adults (15).

Mendelian randomization (MR) involves using genetic variants

to construct instrumental variables of exposure and estimate the

causal association between exposure and outcome (16). As the

random distribution of alleles is not affected by common

confounding factors, a causal relationship is generally considered

to be reliable (17). However, in previous studies, we were unable to

find any MR studies examining the relationship between gut

microbiota, sepsis, and their association with CRP. Therefore, we

conducted multiple MR analyses based on genome-wide association

study (GWAS) summary statistics to evaluate the causal association

among gut microbiota, CRP, and sepsis.
2 Method

2.1 Study design

In this study, we conducted a two-sample and bidirectional

Mendelian randomization (MR) to examine the causal relationship

between gut microbiota and sepsis. We then used a two-step and

multivariable MR approach to identify the mediation effect of CRP

on the relationship between gut microbiota and sepsis. A summary

of the study design is illustrated in Figure 1. Study used publicly

available summary statistics for gut microbiota, C-reactive protein

(CRP), and sepsis from previously published studies or

consortiums. All of these studies were approved by their
Frontiers in Immunology 029
respective institutional review boards (IRBs), and hence, there

was no need to re-apply for approval by the IRB.
2.2 Data sources

The gut microbiota data used in this study were sourced from

the MiBioGen consortium (18). This consortium has curated and

analyzed genome-wide genotypes and 16S fecal microbiome data

from 18,340 individuals across 24 cohorts, which includes 14,306

European individuals from 18 cohorts. The consortium performed

adjustments for age, sex, genetic principal components, technical

covariates such as stool DNA isolation methods, 16S domain to

reduce heterogeneity among the cohorts. However, the study did

not account for other potential confounders like diet, medication

use, and lifestyle factors, as this information was not consistently

available for all cohorts (Supplementary Table 1).

C-reactive protein was derived from 1,000 individuals in the

population-based KORA (Cooperative Health Research in the Region

of Augsburg) study (19). The study used a highly multiplexed,

aptamer-based, affinity proteomics platform (SOMAscan) to

quantify levels of 1,124 proteins in blood plasma samples.

The sepsis data and sepsis subgroups (under 75, 28-day death,

Critical Care Units (ICU), 28-day death in ICU) was collected from

the IEU Open GWAS with summary-level data obtained from the

UK Biobank which included 11643,11568,1896,1380, and 347 sepsis

cases and 474841,451301,484588, 429985, 431018 controls

respectively. The study use Regenie v2.2.4 to analyze GWAS data,

and adjusted for age, sex, chip, and the first 10 Principal

Component Analysis (https://gwas.mrcieu.ac.uk/datasets/ieu-b-

4980/).
2.3 SNP selection

We utilized MR analysis to investigate potential causal

relationships between gut microbiota and sepsis, using genetic

variants as instrumental variables (IVs). The validity of an MR

analysis is contingent upon three key assumptions: (1) IVs are not

associated with any confounding variables; (2) IVs are strongly

associated with the exposure; and (3) IVs influence the outcome

solely through the exposure (20).

Initially, we selected single nucleotide polymorphisms (SNPs)

from the genome-wide association study (GWAS) summary data

for exposures that exhibited a genome-wide significant association

(p < 5×10−8) with the traits as IVs. In instances where the number of

IVs was limited, we relaxed the significance threshold to 5×10−5 to

prevent inaccurate results due to insufficient SNPs. The selection of

other SNPs followed the same threshold. Subsequently, we

employed linkage disequilibrium clumping to exclude certain

undesirable SNPs (r2 < 0.01, window size > 10,000 kb) (21).

Finally, we harmonized the exposure and outcome datasets and

eliminated palindromic SNPs with allele frequencies close to 0.5. All

the selected SNPS are placed in the Supplementary Table 2.

We ensured the strength of genetic instruments for exposures

by calculating the F statistic using the formula:F = (n - k − 1)/k×(R2/
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1− R2) (22), where R2 represents the cumulative explained variance

in the selected SNPs, N is the sample size, and k is the number of

SNPs in the analysis. An F statistic greater than 10 indicates

sufficient strength to avoid the issue of weak instrument bias in

the two-sample model (23).
2.4 Statistical analysis

We conducted bidirectional two-sample MR analyses to assess

the relationship between gut microbiota and sepsis. Our primary

analysis employed an inverse variance-weighted (IVW) meta-

analysis approach, which is a robust method for MR analysis

(17). We also performed secondary analyses using the weighted

median (24), and MR-Egger regression approaches. We evaluated
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the potential impact of directional pleiotropy by testing the

intercept value of the MR-Egger regression (25). We used

Cochran’s Q test to assess heterogeneity (26). In cases of

heterogeneity, we opted for a random-effects IVW for the

primary analysis. At each feature level (phylum=9, class=15,

order=19, family=30, and genus=117), according to previous

reports (27), we used a multiple-testing significance threshold of

p < 0.05/n (where n represents the effective number of independent

bacterial taxa at the corresponding taxonomic level).

In mediation terms, the total effect of an exposure on the

outcome is estimated by univariable MR. Multivariable MR

(MVMR) and two-step MR is used to decompose direct and

indirect effects. The first step is to evaluate the effect of exposure

on the mediator with univariable MR. The second step estimating

the effect of the mediator on each outcome was carried out with
B

A

FIGURE 1

(A), Principles of Mendelian Randomization: I) Independence: The genetic variants utilized in the analysis are not associated with any confounders
that could potentially influence the relationship between the exposure and the outcome. II) Relevance: The genetic variants selected as instrumental
variables have a strong association with the exposure. III) Exclusion Restriction: The genetic variants influence the outcome solely through their
effect on the exposure, and not through any alternative pathways; (B), Flowchart of Bidirectional Two-Sample Mendelian Randomization and
mediation Analysis.
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MVMR. For this second step, MVMR has not been used in previous

literature (28, 29), and a univariable MR has been proposed for

calculating the mediator’s effect. However, in the case of MVMR,

the mechanism of the mediator’s effect on the outcome can be

ensured to be independent of the effect of the exposure (30).

Furthermore, it exerts a direct effect on exposure. The indirect

effect is estimated by multiplying the two-step (MR) estimates.

Stepwise regression was used to select exposures and mediators with

true effects (31).
3 Result

3.1 Two-Sample and bidirectional MR
analysis of gut microbiota and sepsis,
sepsis subgroups risk

Four MR approaches were utilized to investigate the association

between gut microbiota and sepsis (Figure 2 and Supplementary

Table 3). Positive associations were observed for the genera

Actinomyces, Enterorhabdus, Gordonibacter, and Ruminococcaceae

UCG014, and the families Coriobacteriaceae and Prevotellaceae, with

various outcomes. For example, the genus Actinomyces was associated

with an increased likelihood of critical care units (OR = 1.21, p = 2.58E-

02) and 28-day death in critical care units (OR = 1.46, p = 2.58E-02).

The genus Fusicatenibacter demonstrated a strong positive association

with 28-day death in critical care units(OR = 1.49, p = 3.90E-02). In

contrast, several taxa showed negative associations with sepsis

outcomes. For instance, the genera Anaerotruncus, Coprococcus1,

Coprococcus2, Dialister, Dorea, Eubacterium ventriosum group,
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Eubacterium xylanophilum group, Faecalibacterium, Intestinimonas,

Lachnospiraceae UCG001, Lachnospiraceae UCG004, and

Peptococcus, and the family Enterobacteriaceae, all demonstrated

negative associations with various outcomes.

Notably, the genus Erysipelotrichaceae UCG003 displayed a

particularly strong positive association with 28-day death in ICU

(OR = 4.97, p = 2.43E-02), suggesting a potential role in severe

sepsis outcomes. The genus Eubacterium xylanophilum group

showed negative associations with both 28-day death (OR = 0.78,

p = 3.26E-03) and sepsis (OR = 0.92, p = 1.68E-02), suggesting a

protective role.

Multiple-testing correction was taken into account by setting

significance thresholds as follows: phylum p = 5.56×10-3 (0.05/9),

class p = 3.13×10-3 (0.05/16), order p = 2.63 × 10-3 (0.05/19), family

p = 1.67 × 10-3 (0.05/30), genus p = 4.27 × 10-4 (0.05/117). As

the SNPs within a class might overlap with those in a related

phylum and other subcategories, the MR results would remain

similar if a class was considered a subcategory of a phylum or

another subcategory.

Based on the results of IVW fixed-effects analyses Table 1,

phylum Lentisphaerae (OR = 0.932, 95% CI = 0.89-0.98, p = 2.64E-

03), class Lentisphaeria and order Victivallales (OR = 0.927, 95%

CI = 0.88-0.97, p = 1.42E-03) were negatively associated with the

risk of Sepsis. Conversely, phylum Tenericutes and class

Mollicutes (OR = 1.274, 95% CI = 1.09-1.49, p = 2.89E-03) were

positively correlated with the risk of Sepsis (28 day death).

Interestingly, Phylum Tenericutes and class Mollicutes (OR =

1.108, 95% CI = 1.04-1.18, p = 1.72E-03) were positively

correlated with the risk of Sepsis (under 75 years) as well. No

effect of sepsis on gut microbiota was found in the reverse analysis

(Supplementary Table 4).

For additional confirmation of the robustness of the results,

several sensitivity tests were conducted (Supplementary Table 4).

Most of the results were consistent in sensitivity analyses, though

with wider confidence intervals. In addition, all results of Cochran’s

Q test were above 0.05, signifying that there was no significant

heterogeneity. The MR-PRESSO analysis also corroborated this,

demonstrating no outlier of SNPs. Moreover, the MR-Egger

intercept test and the global test p-values both revealed no

statistically significant results, suggesting no presence of

horizontal pleiotropy.
3.2 Gut microbiota and C-reactive
protein level

Similarly, we conducted two-sample analyses to examine the

relationship between gut microbiota and C-reactive protein (CRP).

The IVW fixed-effects analyses Table 2 showed that family

Coriobacteriaceae, order Coriobacteriales, class Coriobacteriia had

a negative correlation with CRP levels (Beta = -0.502 p = 0.046),

However, Phylum Tenericutes, class Mollicutes, genus Dialister,

genus Gordonibacter had a positive correlation with CRP levels, and

WM analysis also obtained similar causal estimates.

A series of sensitivity analyses, includingWM, Cochran’s Q test,

MR-Egger regression, intercept test were conducted Table 2. These
FIGURE 2

Each cell in the heatmap corresponds to a specific micrbiota taxa-
sepsis pair. The color of the cell indicates the OR value associated
with that pair, with a color scale used to differentiate between
positive, negative, and zero beta values.
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results were consistent in sensitivity analyses, though some with

wider confidence intervals. Additionally, all p values from both the

Cochran’s Q test and the MR-Egger intercept test were greater than

0.05, indicating the absence of heterogeneity and horizontal

pleiotropy. The reverse analysis did not find any effect of CRP on

gut microbiota (Supplementary Table 5).
3.3 C-reactive protein level and sepsis,
sepsis subgroups

Initially, we conducted two-sample MR analyses (Table 3) to

examine the effect of C-reactive protein levels on sepsis and its

subgroups. The table presents the results, and the IVW fixed-effects

analyses showed a positive correlation between CRP levels and

Sepsis and Sepsis (under 75). No effect of sepsis on CRP was found

in the reverse analysis (Supplementary Table 6). Furthermore, a

series of sensitivity analyses validated the robustness of the findings.

Secondly, we utilized MVMR (as shown in Table 4) to assess the

independent impact of CRP on sepsis, which was independence of

gut microbiota. The results indicate a significant positive association

between CRP levels and a higher risk of sepsis as well as sepsis under

75 years old.
Frontiers in Immunology 0512
As shown in Table 5, the mediation analysis revealed that CRP

plays a significant role (32.02% mediation effect) in the causal

pathway from Phylum Tenericutes and class Mollicutes to sepsis (in

individuals under 75 years old). And CRP mediate 31.53% effect of

genus Gordonibacter on sepsis.
4 Discussion

Over the past decade, numerous studies have confirmed the

diverse biological functions of gut microbes, including aiding in

food digestion, hormone production, and enhancing the immune

system, among others (32–34). In this study, we collected data from

the largest GWAS to date on gut microbiota and sepsis, and

evaluated the causal relationship between all gut microbiota taxa

and sepsis. We found that 24 taxa were positively associated with

various sepsis outcomes, 30 taxa were negatively associated with

sepsis outcomes. In total, we identified 37 unique taxa, including 23

at the genus level, 5 at the family level, 3 at the order level, 4 at the

class level, and 2 at the phylum level. After multiple-testing

correction, phylum Lentisphaerae, class Lentisphaeria, and order

Victivallales were still associated with a reduced risk of sepsis, while

Phylum Tenericutes and class Mollicutes were linked to an
TABLE 1 MR result of gut microbiota on sepsis.

Exposure Methods Number of SNPs OR 95%CI p val Cochran’s
Q statistic (p val)

Egger
intercept(p val) F

Sepsis(Outcome)

phylum
Lentisphaerae

IVW-FE

41

0.932 0.89-0.98 2.64E-03

0.31 0.979 19.67
IVW-RE 0.932 0.89-0.98 4.11E-03

MR Egger 0.93 0.78-1.11 0.429

WM 0.969 0.91-1.04 0.347

class Lentisphaeria
order Victivallales

IVW-FE

40

0.927 0.88-0.97 1.42E-03

0.663 0.982 19.56
IVW-RE 0.927 0.88-0.97 1.42E-03

MR Egger 0.929 0.78-1.1 0.406

WM 0.958 0.89-1.03 0.234

Sepsis (28 day death)(Outcome)

phylum Tenericutes
class Mollicutes

IVW-FE

46

1.274 1.09-1.49 2.89E-03

0.691 0.489 19.45
IVW-RE 1.274 1.09-1.49 2.89E-03

MR Egger 1.099 0.7-1.71 0.68

WM 1.288 1.02-1.63 0.034

Sepsis(under 75)(Outcome)

phylum Tenericutes
class Mollicutes

IVW-FE

46

1.108 1.04-1.18 1.72E-03

0.204 0.27 19.5
IVW-RE 1.108 1.03-1.19 3.73E-03

MR Egger 1 0.83-1.21 0.999

WM 1.105 1-1.22 0.047
frontier
IVW-FE, Inverse variance weighted-Fixed model; IVW-RE, Inverse variance weighted-Random model; WM, weight median; F is the value of F statistics to examine the weak instrument bias;
Significant p-values were bold after multiple-testing correction [phylum p = 5.56×10-3 (0.05/9), class p = 3.13×10-3 (0.05/16), order p = 2.63×10-3 (0.05/19), family p = 1.67×10-3 (0.05/30), genus
p = 4.27×10-4 (0.05/117)].
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increased risk of sepsis (particularly in individuals under 75 years

old) and 28-day mortality. Notably, we did not observe any

significant association between sepsis and these gut microbiota.

Taken together, our findings provide valuable insights into the role

of gut microbiota in sepsis treatment, including reducing the risk of

sepsis, minimizing mortality, and improving sepsis prognosis.

Tenericutes and Mollicutes are primarily associated with

infections in pregnant women and newborns. Several studies have

shown that mycoplasma infections can cause puerperal sepsis (35),

and in newborns, these infections are linked to an increased risk of

bronchopulmonary dysplasia, early-onset neonatal sepsis, and

meningitis (36, 37). In contrast, Lentisphaerae (phylum),

Lentisphaeria (class), and Victivallales (order) are relatively

under-studied bacterial groups. However, recent research suggests

that these microbial communities are closely associated with

immune regulation. Lentisphaerae, for instance, has been found

to be more abundant in cases of inflammatory bowel diseases (38),

while its abundance is reduced in patients with rosacea (39).

Furthermore, in patients diagnosed with post-traumatic stress

disorder, Lentisphaerae has been associated with a decrease in

symptom severity scores (40). genus Gordonibacter is primarily

found to be excessively increased in patients with Crohn’s disease

and Rheumatoid Arthritis (RA), which indicates its close
Frontiers in Immunology 0613
relationship with immunity and inflammation (41). This also

indirectly confirms its association with the increase in CRP.

Previous MR analyses have suggested that gut microbiota and

their metabolites can impact Systemic Lupus Erythematosus,

inflammatory bowel diseases, and blood metabolites (42–44).

These findings emphasize the significance of these bacterial

groups in regulating inflammation in the human body. Their

presence and abundance in various disease conditions imply a

potential role in modulating immune responses and contributing

to the development or resolution of inflammation-related disorders.

Recently, a study employed regression analysis to investigate the

potential impact of the interaction between gut microbiota and CRP

using individual level genotype data from UK Biobank (45).

Nonetheless, due to the insufficient research on the relationship

between gut microbiota and serum inflammation, we examined the

effect of CRP, an inflammation protein linked to a higher risk of

infections in adults (15), in the association between gut microbiota

and sepsis. Our findings indicate that Phylum Tenericutes and class

Mollicutes are strongly associated with increasing levels of C-

reactive protein. Previous studies have shown elevated levels of

CRP in patients with mycoplasma infection. Taken together with

our results, this implies that CRP might not only work as a

biomarker for mycoplasma infection but also play a role in
TABLE 2 MR result of gut microbiota on CRP.

Exposure Methods Number of
SNPs Beta Se Pval Cochran’s Q statistic (P-

value)
Egger intercept(P-

value) F

CRP(Outcome)

family
Coriobacteriaceae

IVW-FE 12 -0.502 0.252 4.59E-02 0.642 0.582 19.388

class Coriobacteriia IVW-RE 12 -0.502 0.252 4.59E-02 0.642 0.582 19.388

order
Coriobacteriales

MR Egger 12 -1.304 1.430 3.83E-01 0.642 0.582 19.388

WM 12 -0.492 0.335 1.42E-01 0.642 0.582 19.388

class Mollicutes IVW-FE 6 0.736 0.292 1.17E-02 0.878 0.760 18.688

phylum Tenericutes IVW-RE 6 0.736 0.292 1.17E-02 0.878 0.760 18.688

MR Egger 6 0.408 1.043 7.16E-01 0.878 0.760 18.688

WM 6 0.819 0.370 2.68E-02 0.878 0.760 18.688

genus Dialister IVW-FE 9 0.585 0.238 1.41E-02 0.267 0.463 18.297

IVW-RE 9 0.585 0.266 2.80E-02 0.267 0.463 18.297

MR Egger 9 1.523 1.238 2.58E-01 0.267 0.463 18.297

WM 9 0.410 0.335 2.22E-01 0.267 0.463 18.297

genus
Gordonibacter

IVW-FE 9 0.293 0.136 3.10E-02 0.927 0.822 18.667

IVW-RE 9 0.293 0.136 3.10E-02 0.927 0.822 18.667

MR Egger 9 0.162 0.574 7.86E-01 0.927 0.822 18.667

WM 9 0.188 0.178 2.89E-01 0.927 0.822 18.667
frontie
IVW-FE, Inverse variance weighted-fixed model; IVW-RE, Inverse variance weighted-random model; WM, weight median; CRP, C reactive protein; F is the value of F statistics to examine the
weak instrument bias.
Bold means that the p-value is less than 0.05.
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mediating the pathogenic mechanisms of mycoplasma. These

results establish the role of certain gut microbiota in systemic

inflammation and immune response.

Current research on the effects of serum substances on sepsis

has primarily focused on lipid and iron metabolism (46, 47). Several

cross-sectional studies have demonstrated that elevated CRP levels

are linked to increased morbidity and mortality in sepsis (48–50). In

our examination of the relationship between CRP and sepsis, we
Frontiers in Immunology 0714
found that CRP is associated with a higher incidence of sepsis and

sepsis-related deaths among those under 75 years of age. Reverse

analysis revealed no effect on CRP. Meanwhile, mediation analysis

found that CRP mediates 32% of the effects of Phylum Tenericutes

and class Mollicutes on sepsis (under 75 years). Based we used

multivariate MR, the effect of CRP on sepsis were independent of

the effect of the exposure (17). Our Mendelian randomization study

on the relationship between our microbiota and the risk of
TABLE 4 MVMR result of gut microbiota and CRP on sepsis.

Exposure Number of SNPs OR 95%CI pval

Sepsis (under 75)(Outcome)

phylum Tenericutes/ class Mollicutes 23 1.1 0.93-1.3 0.26

CRP 23 1.05 1.01-1.08 0.011

Sepsis(Outcome)

genus Gordonibacter 25 0.98 0.9-1.07 0.692

CRP 25 1.05 1.01-1.08 0.011
frontier
MVMR, Multivariable Mendelian randomization; IVW-FE, Inverse Variance Weighted-Fixed model; IVW-RE, Inverse Variance Weighted-Random model; CRP, C reactive protein; WM,
Weight Median; Significant P-values were bold.
TABLE 3 MR result of CRP on sepsis.

Exposure Methods Number of SNPs OR 95%CI Pval Cochran's Q statistic
(P-value)

Egger intercept
(P-value) F

Sepsis(Outcome)

CRP

IVW-FE 21 1.046 1.01-1.08 0.006

0.608 0.497 29.45
IVW-RE 21 1.046 1.01-1.08 0.006

MR Egger 21 1.077 0.99-1.18 0.114

WM 21 1.036 0.99-1.09 0.135

Sepsis (28 day death)(Outcome)

CRP

IVW-FE 21 1.042 0.96-1.13 0.305

0.448 0.108 29.45
IVW-RE 21 1.042 0.96-1.13 0.307

MR Egger 21 1.238 1-1.53 0.067

WM 21 1.073 0.96-1.2 0.215

Sepsis (28 day death in Critical Care Units)(Outcome)

CRP

IVW-FE 21 1.0823696 0.9 1.302

0.414 0.027 29.45
IVW-RE 21 1.0823696 0.9 1.307

MR Egger 21 1.9199409 1.2 3.176

WM 21 1.137025 0.9 1.485

Sepsis (under 75)(Outcome)

CRP

IVW-FE 21 1.046 1.01-1.08 0.005

0.729 0.597 29.45
IVW-RE 21 1.046 1.01-1.08 0.005

MR Egger 21 1.069 0.98-1.17 0.142

WM 21 1.054 1.01-1.1 0.02
IVW-FE, Inverse variance weighted-fixed model; IVW-RE, Inverse variance weighted-random model; WM, weight median; CRP, C reactive protein; F is the value of F statistics to examine the
weak instrument bias.
Bold means that the p-value is less than 0.05.
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developing and dying from sepsis will help us understand how

changes in the gut microbiome lead to immune dysregulation in

sepsis, which in turn can aid in improving sepsis management.

Firstly, our study used multiple sensitive analysis, thereby

bolstering the reliability of our findings. The consistency between

the most of the WM and MR-Egger methods with those from

the IVWmethod attests to the robustness of our results. Despite the

presence of wide confidence intervals in some results, the

overarching pattern of associations remained consistent. Secondly,

we implemented the MR-PRESSO technique to identify and exclude

potential outliers that could introduce bias into our findings,

enhancing the reliability of our results. Thirdly, our study was

instrumental in spotlighting certain genera that showed a more

significant association with sepsis compared to other microbial

classes. Even though these associations didn’t retain their

statistical significance after multiple testing adjustment, they still

constitute crucial preliminary observations and may be indicative of

underlying biological phenomena. Fourthly, through the use of

PhenomeScan, we found that no SNPs from the microbiota, CRP

and sepsis were associated with infections, malignant diseases, or

antibiotic use. This suggests that the observed links among the

microbiota, CRP, and sepsis were unlikely to be confounded by the

genetic predispositions that are typically represented by SNPs.

Lastly, given that both the exposure and outcome populations

were of European descent, the potential for bias resulting from

population stratification was minimized.

However, there are several limitations to our study. Firstly, a

limited amount of non-European population data on gut

microbiota was obtained, which may have biased our findings.

Secondly, we were unable to discern any non-linear correlations

among mcirbiota, CRP and sepsis, such as U-shaped, J shaped

patterns. Thirdly, the number of loci related to CRP is relatively

small compared to those associated with sepsis and gut

microbiota. Fourthly, our Mendelian randomization study was

unable to access individual-level data, which posed a constraint on

the depth of our analysis. For instance, we were unable to perform

a hierarchical analysis, specifically in the case of sepsis. Ideally, we

would have liked to divide the sepsis data into two groups

according to the Sepsis-2 and Sepsis-3 guidelines, which could

provide insights into the differences between these two

classifications. However, due to the unavailability of the

required individual-level data, we were unable to conduct such

an analysis.
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In conclusion, our bi-directional Mendelian randomization

analysis has clearly indicated a causal relationship between the 37

unique gut microbiota taxa and increased risk of sepsis, whereas the

reverse causality hypothesis did not hold. Importantly, our findings

suggest that C-reactive protein (CRP) acts as a mediator of the

impact of the gut microbiota on sepsis. For a more nuanced

understanding of the observed association between the gut

microbiota and sepsis, future research should focus on potential

mechanistic pathways, while also attempting to adjust for potential

confounders such as diet, lifestyle, and medication, provided these

data are available. Furthermore, an analysis of sepsis as a

heterogeneous condition, acknowledging its multi-stages and

variations as defined by the sepsis-3 criteria, would be beneficial,

throught acquire individual-level data in future. Our work

constitutes a significant stride in deciphering the relationship

between gut microbiota and sepsis, however, more experimental

and clinical studies are warranted to verify and extend our findings.

It is our hope that our study acts as a catalyst for further exploration

in this field, and thereby contribute to the ceaseless enhancement of

patient care in intensive care units.
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Increased gut permeability and
bacterial translocation are
associated with fibromyalgia and
myalgic encephalomyelitis/
chronic fatigue syndrome:
implications for disease-related
biomarker discovery

Franz Martı́n1,2*, Manuel Blanco-Suárez3, Paola Zambrano3,
Oscar Cáceres3, Miriam Almirall4,5, José Alegre-Martı́n4,5,
Beatriz Lobo6,7, Ana Maria González-Castro6,7,
Javier Santos6,7, Joan Carles Domingo8, Joanna Jurek5†

and Jesús Castro-Marrero5*†

1Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo
Olavide, University of Seville, Seville, Spain, 2Biomedical Research Network on Diabetes and Related
Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain, 3Central Sensitivity Unit
(SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain, 4Division of Rheumatology,
Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain,
5Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona,
Barcelona, Spain, 6Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit,
Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de
Barcelona, Barcelona, Spain, 7Centro de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain, 8Department of Biochemistry and
Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
Background: There is growing evidence of the significance of gastrointestinal

complaints in the impairment of the intestinal mucosal barrier function and

inflammation in fibromyalgia (FM) and in myalgic encephalomyelitis/chronic

fatigue syndrome (ME/CFS). However, data on intestinal permeability and gut

barrier dysfunction in FM andME/CFS are still limited with conflicting results. This

study aimed to assess circulating biomarkers potentially related to intestinal

barrier dysfunction and bacterial translocation and their association with self-

reported symptoms in these conditions.

Methods: A pilot multicenter, cross-sectional cohort study with consecutive

enrolment of 22 patients with FM, 30 with ME/CFS and 26 matched healthy

controls. Plasma levels of anti-beta-lactoglobulin antibodies (IgG anti-b-LGB),
zonulin-1 (ZO-1), lipopolysaccharides (LPS), soluble CD14 (sCD14) and

interleukin-1-beta (IL-1b) were assayed using ELISA. Demographic and clinical

characteristics of the participants were recorded using validated self-reported

outcome measures. The diagnostic accuracy of each biomarker was assessed

using the receiver operating characteristic (ROC) curve analysis.
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Results: FM patients had significantly higher levels of anti-b-LGB, ZO-1, LPS, and

sCD14 than healthy controls (all P < 0.0001). In ME/CFS patients, levels of anti-b-
LGB, ZO-1, LPS, and sCD14 were significantly higher than controls, but lower

than in FM (all P < 0.01), while there was no significant difference in IL-1b level. In

the FM and ME/CFS cohorts, both anti-b-LGB and ZO-1 correlated significantly

with LPS and sCD14 (P < 0.001 for both). In the FM group, both anti-b-LGB and

ZO-1 were correlated significantly with physical and mental health components

on the SF-36 scale (P < 0.05); whereas IL-1b negatively correlated with the

COMPASS-31 score (P < 0.05). In the ME/CFS cohort, ZO-1 was positively

correlated with the COMPASS-31 score (P < 0.05). The ROC curve analysis

indicated a strong ability of anti-b-LGB, ZO-1, LPS and sCD14 to predictively

distinguish between FM and ME/CFS from healthy controls (P < 0.0001).

Conclusion: Biomarkers of intestinal barrier function and inflammation were

associated with autonomic dysfunction assessed by COMPASS-31 scores in FM

and ME/CFS respectively. Anti-b-LGB antibodies, ZO-1, LPS, and sCD14 may be

putative predictors of intestinal barrier dysfunction in these cohorts. Further

studies are needed to assess whether these findings are causal and can therefore

be applied in clinical practice.
KEYWORDS

anti-beta-lactoglobulin, chronic fatigue syndrome, fibromyalgia, intestinal
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Introduction

Fibromyalgia (FM) and myalgic encephalomyelitis/chronic

fatigue syndrome (ME/CFS) constitute a major public health issue

worldwide, imposing a serious burden on patients, caregivers, and

society, and exerting a substantial economic impact (1–4). Both are

complex disabling multisystem disorders without an established

aetiology characterized by a wide range of overlapping symptoms

such as widespread pain, post-exertional fatigue, cognitive

dysfunction, dysautonomia, and gastrointestinal complaints (5, 6).

No simple diagnostic tests are available, nor any curative treatment

(7, 8).

While FM and ME/CFS share common symptoms and

biological abnormalities of unknown cause, a growing body of

evidence suggests the existence of multiple pathophysiology

mechanisms underlying the association between impaired gut

barrier function and local and systemic inflammation in these

conditions. Assessing gut barrier function in these conditions is

challenging and has been a matter of debate for many years (9–11).

Recently, it was proposed that increased intestinal permeability and

gut dysbiosis allows the entry of bacterial endotoxins (reflected by

high levels of specific anti-LPS antibodies) into the bloodstream and

may trigger systemic inflammation and sustained immune

hyperactivation (in the form of imbalances of inflammatory

factors such as IL-1b, IL-6, TNF-a, IFN-g, IL-10, IL-13, IL-16, IL-
17A and C-reactive protein), contributing to the development and

perpetuation of chronic widespread pain and post-exertional

malaise in these illnesses (12–14).
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Previous studies conducted in FM and ME/CFS have speculated

about a possible association between intestinal function biomarkers

(zonulin, LPS and sCD14) and compromised intestinal barrier

integrity; however, more research is needed to understand the

exact role and the connections between them (10, 15).

Consequently, the growing evidence of a potential role of gut-

brain axis in triggering neuroinflammation in FM and ME/CFS has

identified several intestinal barrier function biomarkers which may

contribute to the onset and illness severity. For instance, these

studies have linked significant high levels of zonulin, LPS and its

receptor sCD14 with increased intestinal permeability and

microbial translocation in FM and ME/CFS (10, 15–22).

Although the ability of these biomarkers to suggest the presence

of compromised intestinal barrier in these conditions is well

established, their use in clinical practice and research

remains limited.

Although the potential involvement of an antibody-mediated

autoimmune signature and illness severity has been proposed in the

pathophysiology of these conditions (23), to date the circulating

anti-beta-lactoglobulin antibody profile (anti-b-LGB) in FM and

ME/CFS has not explored. Increased antibody production against

LGB, a major allergen in whey (cow’s milk protein) has been

observed in individuals with allergy and/or food intolerances and

gastrointestinal complaints, which have also been reported in FM

and ME/CFS (24, 25).

In addition, a growing number of studies linked the increased

immune activation with the alteration of the gut microbiome

composition in FM and ME/CFS (15, 23, 26–29), thereby suggesting
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that perturbed microbiome homeostasis may induce an imbalance in

tolerance induction. An intestinal barrier dysfunction characterized by

increased gut permeability and microbial translocation may lead to

irritable bowel syndrome (IBS), which could impair tolerance the

development of tolerance and instead contribute to exacerbation of

symptoms in these conditions (11, 30, 31). Furthermore, the

damaged intestinal barrier-induced immunity may contribute to

neuroimmune dysfunction followed by the gradual activation of

innate responses in the brain via the vagus nerve (neuroglial

activation) and a reduction of energy-consuming activities in FM

and ME/CFS (8, 32, 33).

Further investigations on the gut microbial composition and

metabolomics profiling have shown noticeable reductions in the

relative microbial abundance/diversity and the production of

microbiota-derived metabolites in ME/CFS (i.e., probiotic

Bifidobacterium species and butyrate-producing Faecalibacterium),

possibly leading to the perturbed gut barrier function and increased

bacteria translocation implicated in low-grade systemic inflammation

(10, 14, 27, 34, 35). Similar alterations in gut microbiota composition

have been reported in FM patients, who presented significant

reductions in the relative abundance of certain short-chain fatty

acid-producing bacteria, while higher relative abundance was

reported for other organic acids (36–39).

Therefore, this study aimed (1) to explore whether patients with

FM and ME/CFS have altered intestinal barrier function and

inflammation by measuring circulating gut biomarkers and (2) to

examine the relationships among these intestinal function

biomarkers and self-reported outcome measures provided by the

study participants.
Methods

Study design and participants

A proof-of-concept multicenter, cross-sectional, prospective

case-control cohort study was conducted in 22 FM patients who

met the 2010 ACR diagnostic criteria for FM (40) and 30 ME/CFS

who fulfilled the 2011 ICC definition for ME/CFS (41). Subjects

were recruited by clinicians from two outpatient referral centres

(Hospital VIAMED Santa Angela de la Cruz, Seville, Spain and Vall

d’Hebron Hospital, Barcelona, Spain) from February 2018 to March

2019. The sample comprised 26 age- and sex-matched sedentary

healthy volunteers, who were recruited from each local community

by word of mouth. Ten FM patients, 12 with ME/CFS and 13

sedentary healthy volunteers were recruited from the hospital in

Sevilla and the rest from the local hospital in Barcelona so as to

avoid sampling bias in the selection of the target population. The

participants were Caucasian, from the same geographical area, and

had a sedentary lifestyle with a similar Mediterranean dietary

pattern at the time of inclusion.

The exclusion criteria for participation in the study included

current or past diagnosis of autoimmune conditions (such as coeliac

disease), food allergies and/or intolerances, haematological
Frontiers in Immunology 0320
conditions, cardiovascular diseases, metabolic and endocrine

disturbances (thyroid-related conditions), infectious diseases,

neuropsychiatric disorders (psychosis/major depression). Individuals

were also excluded if they had morbid obesity, were smokers, were

pregnant and/or breast-feeding, or had history of substance misuse or

any underlying symptoms that might influence the clinicians’ ability

to distinguish between FM and ME/CFS diagnoses.

All study participants were informed of the research procedures

and signed a written informed consent form prior to enrolment, in

accordance with the 2013 Declaration of Helsinki. This study was

approved by the local Research Ethics Committees (reference

number: GutME-0634; on January 17, 2018). After providing

consent, all participants underwent a clinical examination. Finally,

data were analysed in an irreversibly anonymized fashion. A

detailed summary of the participants’ demographic and clinical

characteristics is shown in Table 1.
Data collection and clinical
outcomes measures

Participants were asked to complete validated self-reported

questionnaires under the supervision of two trained investigators,

who ensured compliance. These questionnaires included the

Fatigue Impact Scale (FIS-40), the Composite Autonomic

Symptom Score (COMPASS-31), the Pittsburgh Sleep Quality

Index (PSQI), and the Short Form 36-item (SF-36) health survey,

which were used to compile data on participants’ demographic

characteristics and current health status.
Fatigue impact scale

Fatigue was assessed by the Fatigue Impact Scale (FIS-40), a

self-administered 40-item questionnaire which includes three

subscales (scored from 0 to 4) reflecting the perceived feeling of

fatigue in physical (10 items), cognitive (10 items), and psychosocial

functions (20 items). The sum of the three scales yields a global

score ranging from 0 to 160. Higher scores indicate more functional

limitations resulting from fatigue; scores above 120 points are taken

to indicate severe fatigue, while scores of 120 points or less are taken

to reflect mild/moderate fatigue (42).
Composite autonomic symptom score

The frequency and severity of autonomic symptoms

were evaluated by using the validated self-administered 31-item

Composite Autonomic Symptom Score (COMPASS-31),

comprising six main domains: orthostatic intolerance (4 items),

vasomotor (3 items), secretomotor (4 items), gastrointestinal (12

items), bladder (3 items), and pupillomotor systems (5 items). The

overall COMPASS-31 score ranges from 0 to 100, with higher scores

indicating worse autonomic symptoms (43).
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TABLE 1 Demographic and clinical characteristics of the study population.

Variable
FM

(n = 22)
ME/CFS
(n = 30)

HC
(n = 26)

P-value a,b

Age, years 57 ± 16 53 ± 10 51 ± 8 0.957/0.982

Gender, female (%) 16 (73) 24 (80) 20 (77) 0.954/0.971

BMI, kg/m2 23 ± 3.5 24 ± 5.1 24 ± 3.7 0.875/1.00

SBP, mmHg 120 ± 11 109 ± 14 118 ± 8 0.951/0.919

DBP, mmHg 80 ± 6 75 ± 10 68 ± 6 0.754/0.874

HR, bpm 70 ± 7 78 ± 9 72 ± 11 0.925/0.832

Marital status, n (%)

Single 6 (27) 7 (23) 6 (23) n.s.

Separated/divorced 4 (18) 5 (17) 5 (19) n.s.

Married 12 (55) 18 (60) 15 (58) n.s.

Illness duration, months

48 2 2 n/a n.s.

72 8 3 n/a n.s.

≥ 120 12 25 n/a n.s.

Family members affected, n (%)

Yes 12 (55) 9 (30) 9 (34) n.s.

No 10 (45) 21 (70) 17 (66) n.s.

Medication use, n (%)

Antidepressants

Tricyclics

Yes 4 (14) 6 (20) 0 (0) n.s.

No 18 (86) 24 (80) 26 (100) n.s.

Dual

Yes 5 (23) 14 (47) 0 (0) n.s.

No 17 (77) 16 (53) 26 (100) n.s.

SSRI

Yes 2 (10) 6 (20) 0 (0) n.s.

No 20 (90) 24 (80) 26 (100) n.s.

Anticonvulsants

Yes 3 (14) 21 (70) 0 (0) n.s.

No 19 (86) 9 (30) 26 (100) n.s.

Tramadol

Yes 9 (41) 10 (33) 0 (0) n.s.

No 13 (59) 20 (67) 26 (100) n.s.

Major opioids

Yes 2 (10) 3 (10) 0 (0) n.s.

No 20 (90) 27 (90) 26 (100) n.s.

(Continued)
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TABLE 1 Continued

Variable
FM

(n = 22)
ME/CFS
(n = 30)

HC
(n = 26)

P-value a,b

Anxiolytics/sedatives

Yes 1 (4) 6 (20) 0 (0) n.s.

No 21 (96) 24 (80) 26 (100) n.s.

NSAIDs

Yes 7 (32) 14 (47) 0 (0) n.s.

No 15 (68) 16 (53) 26 (100) n.s.

Other analgesics

Yes 10 (45) 19 (63) 0 (0) n.s.

No 12 (55) 11 (37) 26 (100) n.s.

Measures

FIS-40

Global score (0-160) 113 ± 19.6 140.7 ± 19.4 15.6 ± 5.4 < 0.0001

Physical 32 ± 6 36.7 ± 3.4 4.4 ± 0.3 < 0.0001

Cognitive 30 ± 5 37 ± 5.9 4.1 ± 0.7 < 0.0001

Psychosocial 51 ± 9 67 ± 12 7.1 ± 1.9 < 0.0001

COMPASS-31

Global score (0-100) 64.5 ± 2.8 65.3 ± 1.4 6.8 ± 1.1 < 0.0001

Orthostatic intolerance 31 ± 2.8 30.6 ± 6.4 4 ± 1.1 < 0.0001

Vasomotor 2.4 ± 1.2 2.5 ± 0.4 0.0 ± 0.0 < 0.0001

Secretomotor 10.5 ± 1.7 10.7 ± 2.3 1.3 ± 0.4 < 0.0001

Gastrointestinal 12.9 ± 3.1 13.4 ± 3.8 0.7 ± 0.2 < 0.0001

Bladder 4.2 ± 3.2 4.4 ± 3.2 0.0 ± 0.0 < 0.0001

Pupillomotor 3.5 ± 0.9 3.7 ± 0.9 0.8 ± 0.2 < 0.0001

PSQI

Global score (0-21) 5.0 ± 2.0 18.0 ± 3.1 4.0 ± 2.0 < 0.0001

Subjective sleep quality 1.0 ± 0.6 3.0 ± 0.6 1.0 ± 0.6 < 0.0001

Sleep latency 1.0 ± 0.6 3.0 ± 0.8 1.0 ± 0.8 < 0.0001

Sleep duration 0.5 ± 0.4 2.0 ± 0.4 1.0 ± 0.4 < 0.0001

Habitual sleep efficiency 0.5 ± 0.4 3.0 ± 0.3 0.0 ± 0.0 < 0.0001

Sleep disturbances 1.0 ± 0.5 2. 0 ± 0.3 1.0 ± 0.3 < 0.0001

Sleeping medication 1.0 ± 0.5 3.0 ± 0.3 0.0 ± 0.0 < 0.0001

Daytime dysfunction 0.0 ± 0.0 3.0 ± 0.5 0.0 ± 0.0 < 0.0001

SF-36

Physical functioning 14 ± 0.8 18.3 ± 5.5 100 ± 0.0 < 0.0001

Physical role functioning 0.0 ± 0.0 0.0 ± 0.0 98 ± 7.9 < 0.0001

Bodily pain 9 ± 0.8 11 ± 9.6 100 ± 0.0 < 0.0001

General health perception 12 ± 1.9 17 ± 11.8 80 ± 15.7 < 0.0001

Vitality 10 ± 0.9 5 ± 0.9 90 ± 12.4 < 0.0001

(Continued)
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Pittsburgh sleep quality index

Sleep disturbances were assessed by the standardized, self-

administered 19-item Pittsburgh Sleep Quality Index (PSQI)

questionnaire, which comprises seven components of sleep

quality assessed over a one-month interval (scored from 0 to 3):

subjective sleep quality, latency, sleep duration, habitual sleep

efficiency, sleep perturbations, use of sleeping medication, and

daytime dysfunction. The global PSQI score can range from 0 to

21 points, with score above 5 representing poorer subjective sleep

quality (44).
Short form 36-item health survey

Participants’ general physical and mental health was assessed

using the short form 36-item (SF-36) questionnaire, a 36-item self-

report health survey conducted over a 4-week period. The SF-36

comprises eight health domains, focusing on limitations in physical

activities due to health issues, limitations in social activities due to

physical or/and emotional problems, limitations in everyday

activities due to health and/or psychological problems, bodily

pain, general mental health (including psychological distress and

well-being), vitality and overall health perceptions. The eight

domains were weighted and summarized in physical component

summary (PCS) scores and mental component summary (MCS)

scores ranging from 0 to 100. Higher scores indicate better health-

related physical and mental quality of life (45).
Collection of blood samples
and processing

Fasting blood samples were collected from each participant

directly in K2EDTA tubes (Vacutainer, BD Biosciences, Madrid,

Spain) by venipuncture upon confirmation of the diagnosis. Plasma

samples were obtained by centrifugation at 2,000 x g for 15 minutes

at 4°C within 1 hour of the blood collection; then they were

collected immediately and frozen in aliquots at –80°C until

further analysis.
Frontiers in Immunology 0623
Quantification of intestinal barrier
function biomarkers

Plasma ZO-1 (Catalog #: MBS706368, MyBioSource, San Diego,

CA), LPS (Catalog #: MBS266722, MyBioSource, San Diego, CA),

sCD14 (Catalog #: RK01060, Abyntek Biopharma, Vizcaya, Spain),

and IL-1b (Catalog #: MBS2510385, MyBioSource, San Diego, CA)

were measured using commercially available ELISA kits according

to the manufacturers’ instructions. Circulating human anti-b-
lactoglobulin antibody levels (IgG isotypes) were assayed using a

validated home-made ELISA protocol as detailed below. All the

plasma samples were measured in blind duplicates for each

biomarker. For all protocols, absorbance at 450 nm with 570 nm

correction was measured in a microplate reader, and corrected

absorbance was interpolated in each standard curve to determine

the concentrations (Sigma Plot).
Detection of human anti-b-lactoglobulin
antibody levels

Circulating anti-b-lactoglobulin antibody levels (IgG isotypes)

were tested using a standard direct ELISA protocol (46). Briefly,

microtitre 96-well polystyrene plates (Nunc, Roskilde, Denmark)

were coated with 1 mg/mL b-lactoglobulin from cow’s milk as target

protein (Cat # L7880; Sigma Aldrich, Madrid, Spain) diluted in 50

mM Na2CO3/NaHCO3 buffer (pH 9.6) at 4°C overnight. After

blocking with 1X phosphate-buffered saline containing 0.05%

Tween-20 (PBS-T) and 3% BSA for 90 minutes at room

temperature, the pre-coated plates were incubated with the

human plasma samples diluted in blocking buffer (dilution from

1:200 to 1:2000) for two hours at room temperature. Plates were

washed out three times with PBS-T for five minutes and then each

well was incubated with an HRP-conjugated mouse anti-human

IgG1 Fc secondary antibody at dilution 1:5000 (Cat # A-10648;

Thermo Fisher Scientific, MA, USA) for three hours at room

temperature. Between incubations, plates were washed three times

with PBS-T. Plates were revealed using TMB substrate (Thermo

Fisher Scientific, MA, USA) for 30 minutes at room temperature in

the dark and then 50 ml of stop solution (2M sulphuric acid) was
TABLE 1 Continued

Variable
FM

(n = 22)
ME/CFS
(n = 30)

HC
(n = 26)

P-value a,b

Social role functioning 14 ± 0.7 20 ± 3.9 100 ± 0.0 < 0.0001

Emotional role functioning 25 ± 3.7 26 ± 4.8 100 ± 0.0 < 0.0001

Mental health 17 ± 0.6 44 ± 12.3 92 ± 8.1 < 0.0001

PCS 24.2 ± 0.1 20.9 ± 1.0 57.0 ± 0.4 < 0.0001

MCS 7.6 ± 0.2 18.3 ± 2.5 54.3 ± 0.6 < 0.0001
Data are given as means ± standard error of the mean (SEM) for continuous variables, and as number of cases (percentages) for categorical variables, as appropriate (unless otherwise specified).
P-values from Mann-Whitney U-test for continuous variables and from Fisher’s exact test for categorical variables (gender, marital status, family background, medications). Bold values denote
statistical significance at P < 0.05 between each cohort (aFM and bME/CFS) with healthy controls. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart
rate; SSRI, selective serotonin reuptake inhibitors; NSAIDs, non-steroidal anti-inflammatory drugs; FIS-40, 40-item fatigue impact scale; COMPASS-31, composite autonomic symptom score;
PSQI, Pittsburgh sleep quality index; SF-36, 36-item short-form health survey; PCS, physical health component summary scores; MCS, mental health component summary scores; n.s., not
significant.
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added to each well. The absorbance (O.D.) was read immediately at

450 nm with 570 nm correction using a microplate reader

(Varioskan Flash, Thermo Electron Corporation, NH, USA). The

results were given as antibody levels per ng/ml on a standard curve

with anti-human beta-LGB chimera monoclonal antibody (clone

25I2; CABT-L2429; Creative Diagnostics, NY, USA) considering

the dilution of each sample. The standard curve was prepared using

serial dilutions from 8000 ng/ml to 31.25 ng/ml and included five

standard concentrations within the indicated range. Based on the

signal-to-noise ratio of assay, the limit of detection was 1.96 ng/ml.

In each ELISA assay, endogenous negative and positive controls of

human plasma samples were included. Negative controls were

tested from healthy donors who had not ingested dairy products

for at least one year. Positive controls were assayed from patients

recently diagnosed with celiac disease, before the start of treatment,

and who habitually ingested dairy products.
Statistical analysis

All the data obtained were checked for normality with the

Kolmogorov-Smirnov and Shapiro-Wilk tests. Normally

distributed data were presented as means ± standard error of the

mean (SEM). Statistical analysis of non-parametric data in the three

study groups was performed using an analysis of non-parametric

data evaluated by the Kruskal-Wallis test and compared by Dunn’s

multiple comparison test. Scale and subscale scores were examined

using the non-parametric Mann-Whitney U test (two-group

comparisons). Fisher’s exact test was used to compare the

frequency of the reported categorical variables between the

groups. Box plots and ROC curves were generated using

GraphPad Prism software. The area under the curve (AUC) was

calculated so as to compare the overall diagnostic accuracy of gut

biomarkers for predicting FM and ME/CFS. Cut-off values with the

highest accuracy were selected as the diagnostic cut-off points.

Correlations were analysed using Spearman’s test with the R

package. Statistical significance was set at P < 0.05 (two-tailed).

Only adjusted P-values presenting significant differences are shown.

Statistical analyses were performed using R software version 4.0.2

(R Foundation for Statistical Computing, Vienna, Austria) and

GraphPad Prism version 9.5.1 for Windows (GraphPad software,

Boston, MA, USA).
Results

Baseline demographics and clinical
characteristics of the study participants

Seventy-eight participants, comprising 22 FM patients, 30 ME/

CFS patients and 26 healthy-matched controls were included in the

study. Table 1 shows the demographics and clinical characteristics

of the study population. No significant differences were observed for

age, gender, BMI, hemodynamic variables, marital status, illness

duration, family background, and concomitant medication between

the study cohorts from each site. In this group, most patients with
Frontiers in Immunology 0724
FM (n = 12) and ME/CFS (n = 25) had an illness duration of more

than 120 months (10 years), which was self-reported as long-lasting

fatigue and chronic pain (data not shown). More than half of the

patients reported frequent medication use, including analgesics,

non-steroidal anti-inflammatories, anticonvulsants, anxiolytics and

antidepressants, but none of the controls were taking medication.

The clinical assessment based on self-reported outcome

measures showed that patients with FM and ME/CFS had

significantly higher scores on the FIS-40, COMPASS-31 and PSQI

questionnaires than controls (all P < 0.0001), whereas healthy

controls had significantly higher SF-36 scores than the patients’

groups (all P < 0.0001).
Profile of biomarkers of intestinal barrier
function and inflammation

The measurement of intestinal biomarkers proposed in this

study revealed that FM patients had higher presence of increased

gut permeability and microbial translocation than ME/CFS patients

and matched controls. As shown in Figure 1, plasma levels of

intestinal barrier function biomarkers and inflammation were as

follows: IgG anti-b-LGB antibodies (A), ZO-1 (B), LPS (C), sCD14

(D), and IL-1b (E) in individuals with FM, ME/CFS, and healthy

controls. FM patients had significantly higher levels of IgG anti-b-
LGB antibodies, ZO-1, LPS and sCD14 than ME/CFS and controls

(P < 0.001 for all). In ME/CFS patients, plasma levels of anti-b-LGB,
ZO-1, LPS, and sCD14 were significantly higher than in controls (P

< 0.01), but lower than in FM cases (P < 0.001). There were no

significant differences in IL-1b levels in patients with FM and ME/

CFS and healthy controls.
Correlation analysis between intestinal
function biomarkers and self-reported
outcome measures

Correlations between the proposed biomarkers of intestinal

barrier function and inflammation and self-reported outcome

measure scores in the study cohorts are displayed in Figure 2.

Briefly, in the FM cohort, ZO-1 was significantly correlated with

anti-b-LGB antibodies (r = 0.91; P < 0.001), LPS (r = 0.83; P < 0.001)

and sCD14 (r = 0.65; P < 0.01), and with physical and mental health

component scores on the SF-36 questionnaire (r = 0.51 and r =

-0.51; both P < 0.05) respectively. In this cohort, anti-b-LGB was

strongly correlated with ZO-1 (r = 0.91; P < 0.001), LPS (r = 0.91; P

< 0.001), and sCD14 (r = 0.86; P < 0.001) and also with physical

health component scores on the SF-36 questionnaire (r = 0.43; P <

0.05). In contrast, IL-1b negatively correlated with overall

COMPASS-31 scores (r = -0.45; P < 0.05) (Figure 2A).

Analysis of the ME/CFS cohort showed significant positive

correlations between ZO-1 and anti-b-LGB (r = 0.82; P < 0.001),

LPS (r = 0.91; P < 0.001) and sCD14 (r = 0.61; P < 0.001), and

COMPASS-31 scores (r = 0.45; P < 0.05), whereas anti-b-LGB was

positively correlated with ZO-1 (r = 0.82; P < 0.001), LPS (r = 0.89; P

< 0.001) and sCD14 (r = 0.65; P < 0.001) (Figure 2B).
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In healthy controls, ZO-1 was positively and significantly

correlated with sCD14 (r = 0.42; P < 0.05) and opposed with

physical healthy component scores on the SF-36 questionnaire (r =

-0.46; P < 0.05); while anti-b-LGB was negatively correlated with

physical and mental health component scores on the SF-36

questionnaires (r = -0.46 and r = -0.48; both P < 0.05),

respectively (Figure 2C). Multipanel scatter dot plots for

statistically significant correlations between intestinal barrier

function biomarkers and self-reported outcome measures in FM,
Frontiers in Immunology 0825
ME/CFS and healthy controls are depicted (Supplementary Figs

S1-S3).
ROC analysis for each intestinal barrier
function biomarker in FM and ME/CFS

Analyses of the diagnostic power of each circulating gut

function biomarker with regard to predictively distinguishing FM
B C

D E

A

FIGURE 1

Circulating biomarkers of intestinal permeability, bacterial translocation and inflammation in the study participants. Plasma levels of anti-b-LGB (A),
ZO-1 (B), LPS (C), sCD14 (D), and IL-1b (E) in patients with FM (n = 22), ME/CFS (n = 30) and healthy controls (n = 26). Each dot denotes a single
participant. Values are shown as mean ± SEM of duplicates and are representative of two independent experiments. The box extends from the 25th

to 75th percentiles, the line represents the mean, and the whiskers indicate the range of minimum and maximum values. Significance at **P < 0.01,
***P < 0.001, and ****P < 0.0001 was calculated using the Kruskal-Wallis signed-rank test on normalized data. Anti-b-LGB, anti-beta-lactoglobulin
antibodies; ZO-1, zonulin-1; LPS, lipopolysaccharides; sCD14, soluble CD14; IL-1b, interleukin-1 beta. n.s., not significant
B CA

FIGURE 2

Heatmap depicting color-coded Spearman’s correlation coefficients of circulating intestinal barrier function biomarkers and clinical outcome
measures in the study participants. Correlation analysis of patients with FM (A), ME/CFS (B) and healthy controls (C) were evaluated using Spearman’s
rank correlation test and FDR-adjusted P < 0.05. Pairwise Spearman’s rank correlation coefficients (rho) are depicted for each correlation and is
presented by color intensity scale (at the top left of each panel). Heat color show standardized Z-scores (adjusted rho) across biomarkers and
outcome measures. The color intensity is proportional to the strength of the association (rho value) ranging from red (positive correlations) to blue
(negative correlations). Statistical significance was assessed using the Kruskal-Wallis test. FDR was calculated using Benjamini-Hochberg method.
Statistical significance was set at *P < 0.05, **P < 0.01, and ***P < 0.001. Anti-b-LGB, anti-beta-lactoglobulin antibodies; ZO-1, zonulin-1; LPS,
lipopolysaccharides; sCD14, soluble CD14; IL-1b, interleukin-1-beta.
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and ME/CFS from healthy controls are displayed in Figures 3 and 4

respectively. As shown in the ROC curve analysis for FM, compared

to the reference, anti-b-LGB (AUC = 1.00; 95% CI: 1.00-1.00; P <

0.0001), ZO-1 (AUC = 0.980; 95% CI: 0.94-1.00; P < 0.0001), LPS

(AUC = 0.996; 95% CI: 0.98-1.00; P < 0.0001), and sCD14 (AUC =

0.949; 95% CI: 0.88-1.00; P < 0.0001) were able to distinguish

between FM patients and healthy controls as demonstrated by the

AUC values using a univariate model (Figures 3A-E).

ROC curve analysis for ME/CFS showed that compared to the

reference, anti-b-LGB (AUC = 0.943; 95% CI: 0.86-1.00; P <

0.0001), ZO-1 (AUC = 0.934; 95% CI: 0.86-1.00; P < 0.0001), LPS

(AUC = 0.806; 95% CI: 0.68-0.93; P < 0.0001), and sCD14 (AUC =

0.794; 95% CI: 0.68-0.92; P < 0.0001) were able to distinguish

between ME/CFS patients and healthy controls as demonstrated by

the AUC values using a univariate model (Figures 4A-E).

Also, an ROC curve analysis to predictively distinguish patients

with FM and ME/CFS is shown in Figure 5. It showed that compared

to the reference, anti-beta-LGB (AUC = 0.991; 95% CI: 0.97 to 1.00; P

< 0.0001), ZO-1 (AUC = 0.882; 95% CI: 0.78 to 0.97; P < 0.0001), LPS

(AUC = 0.953; 95% CI: 0.89 to 1.00; P < 0.0001), and sCD14 (AUC =

0.800; 95% CI: 0.67 to 0.92; P = 0.0002) were able to distinguish

between patients with FM and ME/CFS as demonstrated by the AUC

values using a univariate model (Figures 5A-E).
Discussion

This is a proof-of-concept study to investigate the relationship

between circulating intestinal function biomarkers and inflammation
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and self-reported clinical symptoms in Spanish patients with FM and

ME/CFS, and also to evaluate the suitability of these gut barrier

function biomarkers as potential suggestive predictors of diagnosis in

these cohorts which replicate prior studies (14–16, 19, 47–51). Our

findings corroborate those of previous studies (9, 12, 14, 19, 47, 48,

52) reporting the presence of significantly increased levels of

suggestive biomarkers of intestinal permeability (IgG anti-b-LGB
antibodies and ZO-1), and microbial translocation (LPS and sCD14)

in FM andME/CFS compared to healthy controls. Interestingly, these

biomarkers were markedly higher in individuals with FM than in

those with ME/CFS.

Further analysis indicated that the proposed novel intestinal

permeability biomarkers (anti-b-LGB antibodies and ZO-1)

significantly correlated with indices of microbial translocation (LPS

and sCD14) in FM and ME/CFS. In addition, these measures were

correlated with scores of self-reported outcome measures determined

by COMPASS-31 and SF-36 questionnaires in FM and ME/CFS.

Specifically, in FM the IL-1b levels were associated with measures of

physical and mental health components on the SF-36 questionnaire;

whereas the frequency and severity of autonomic symptoms evaluated

by COMPASS-31 scores was positively correlated with the ZO-1 in the

ME/CFS cohort. Further analysis of covariates indicated a significant

correlation between age and anti-b-LGB and ZO-1, as well as LPS and

sCD14 in ME/CFS patients. Finally, the ROC curve analysis of the

diagnostic accuracy of the biomarkers measured demonstrated a high

predictive capacity of anti-b-LGB, ZO-1, LPS and sCD14 for

distinguishing FM and ME/CFS cases from healthy controls.

Recently, a growing number of studies have reported gut

dysbiosis and increased intestinal permeability in ME/CFS
B C

D E

A

FIGURE 3

ROC curve analysis of each intestinal barrier function biomarker to discriminate FM patients from healthy controls. IgG anti-b-LGB antibodies (A),
ZO-1 (B), LPS (C), sCD14 (D), and IL-1b (E). ROC curves were used to explore the accuracy of each biomarker to discriminate between FM subjects
and healthy controls. Cut-off values are shown for each biomarker with their respective sensitivity, specificity and optimal value. AUC values close to
1 indicate that a high true positive rate was achieved with false positive rate (ideal performance), while AUC values close to 0.5 indicate random
performance. Anti-b-LGB, anti-beta-lactoglobulin antibodies; ZO-1, zonulin-1; LPS, lipopolysaccharides; sCD14, soluble CD14; IL-1b, interleukin-1-
beta.
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(9,10, 53), while in FM this phenomenon is still to be confirmed.

The study by Goebel et al. of FM patients with complex regional

pain syndromes who reported alterations of gut barrier integrity in

the form of increased gastroduodenal and small intestinal
Frontiers in Immunology 1027
permeability found that these conditions coincided with typical

IBS symptoms which were recorded in up to 18% of FM patients

(16, 54). Although few overlapping mechanisms explaining the high

prevalence of GI symptoms in FM patients have been proposed,
B C

D E

A

FIGURE 4

ROC curve analysis of each intestinal barrier function biomarker to discriminate ME/CFS patients from healthy controls. IgG anti-b-LGB antibodies
(A), ZO-1 (B), LPS (C), sCD14 (D), and IL-1b (E) are displayed. ROC curves were used to analyze the accuracy of each biomarker to discriminate
between ME/CFS subjects and healthy controls. Cut-off values are shown for each biomarker with their respective sensitivity, specificity and optimal
value. AUC values close to 1 indicate that a high true positive rate was achieved with false positive rate (ideal performance), while AUC values close
to 0.5 indicate random performance. Anti-b-LGB, anti-beta-lactoglobulin antibodies; ZO-1, zonulin-1; LPS, lipopolysaccharides; sCD14, soluble
CD14; IL-1b, interleukin-1-beta.
B C

D E

A

FIGURE 5

ROC curve analysis of each intestinal barrier function biomarker to discriminate individuals with FM from ME/CFS. IgG anti-b-LGB antibodies (A), ZO-
1 (B), LPS (C), sCD14 (D), and IL-1b (E) are displayed. ROC curves were used to analyze the accuracy of each biomarker to discriminate between ME/
CFS subjects and healthy controls. Cut-off values are shown for each biomarker with their respective sensitivity, specificity and optimal value. AUC
values close to 1 indicate that a high true positive rate was achieved with false positive rate (ideal performance), while AUC values close to 0.5
indicate random performance. Anti-b-LGB, anti-beta-lactoglobulin antibodies; ZO-1, zonulin-1; LPS, lipopolysaccharides; sCD14, soluble CD14; IL-
1b, interleukin-1-beta.
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immune activation and neurotransmitter disruption have recently

attracted attention (54).

Additionally, in ME/CFS it has been shown that elevated levels

of bacterial wall components such as LPS, followed by an increased

presence in the intestine of Gram-negative bacteria and also

plasmacytoid dendritic cells as uniquely immunoreactive to

antibodies against HERV proteins that damage the gut epithelial

barrier and infiltrate in the bloodstream can provoke an immune

response, ultimately leading to the establishment of low-grade

chronic systemic inflammation (10, 55). Separately, the significant

increases in Gram-positive facultative anaerobic bacteria reported

in ME/CFS, including D-lactic acid-producing Enterococcus and

Streptococcus spp., suggest that these bacteria are a more significant

source of lactate than Gram-negative Escherichia coli. Gram-

positive bacteria may thus contribute to the cognitive symptoms

and also the mitochondrial dysfunction resulting from the lactic

acidosis in this cohort (53).

Although intestinal damage may arise due to various

pathomechanisms and may involve several factors, the evidence

to date highlights its involvement in the context of FM and ME/

CFS. For instance, disturbances in the gut wall may increase

intestinal permeability, which can induce inflammatory changes

that lead to comorbid chronic diseases. Loss of gut barrier integrity

may contribute to bacterial translocation into the systemic

circulation, followed by increased levels of autoantibodies IgA and

IgM against LPS and more severe ME/CFS symptoms (22). In

addition, changes in the gut microbiome in ME/CFS, with

noticeable decreased bacterial diversity (in particular, a reduction

in the relative abundance of members belonging to the Firmicutes

phylum) may increase the predisposition to gut inflammation (14).

In the present study, both FM and ME/CFS patients had

significantly higher levels of intestinal function biomarkers that

indicate increased gut permeability and bacterial translocation than

healthy controls. These observations are consistent with those of an

earlier study that reported the presence of gut dysbiosis as

demonstrated by increased levels of LPS, sCD14, endotoxins and

lipid binding proteins (LBPs), which was positively correlated with

illness severity in patients with chronic fatigue (48). A recent study,

however, despite showing the presence of the antibody-induced

responses to both microbial and dietary antigens along with greater

epithelial cell damage and turnover rate confirmed by higher FABP-2

levels, failed to report any significant differences in LBPs or sCD14

levels due to a suppressed anti-microbial response in ME/CFS

compared with controls (50). Interestingly another study, which

reported increased levels of LPS and sCD14 along with some other

biomarkers not included in this analysis (such as LBP, I-FABP, MCP-

1 and C-reactive protein) was able to correctly discriminate between

ME/CFS and controls with a cross-validation accuracy of 82.9% (14).

The findings reported here are of particular interest, because

they confirm an association between the changes in indicators of

increased intestinal permeability and bacterial translocation and

their association with clinical outcomes measures in FM and ME/

CFS. Besides, the present data add to the evidence that a gut barrier

integrity injury may be involved in the pathophysiology of these

illnesses, even if it is not always detectable.
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To our knowledge, this is the first confirmatory study to explore

the use of intestinal barrier function biomarkers related to increased

gut permeability, such as anti-b-LGB antibodies in a Spanish FM

and ME/CFS cohort. The main strength of the study is that data on

the participants were obtained from a well-phenotyped cohort of

Spanish FM and ME/CFS patients from two Spain outpatient

referral centres, applying updated diagnostic case criteria and

validated self-reported symptom questionnaires in these

conditions. However, this study has several limitations, including

its small sample size, its cross-sectional nature, and limited

measures of inflammatory cytokine/chemokine and growth factor

markers which are unable to establish causation between disrupted

gut mucosal barrier and inflammation severity status.

In addition, self-reporting outcome measures do not use “in

vivo” differential urinary multi-sugar excretion test for small bowel

and colonic permeability assessment. It should be also noted that

the bacterial DNA load assessed by culturing bacteria directly from

blood and stool was not measured in these populations, and so the

presence of potential infection cannot be conclusively ruled out, or

its potential influence on the bacterial translocation biomarkers LPS

and sCD14 (21). Finally, no information was available on other

confounding factors related to lifestyle habits, previous infections,

use of high-dose antibiotics, concomitant drugs, psychological

stress, air pollutants, and others comorbid health conditions such

as IBS, and/or anxiety/depression.

Further multisite longitudinal studies with larger numbers of

participants who are representative of the general population

should be conducted to confirm the observations reported here.

Future studies should also expand the use of other validated

inflammatory biomarkers in stool and blood in order to fully

define the specific role of disturbed intestinal barrier function and

inflammation in FM and ME/CFS. These studies should also

include lactulose breath testing (SIBO) by collecting longitudinal

faecal samples to explore gender-dependent microbiota

composition in these conditions (29, 56).

In conclusion, by demonstrating the associations between the

putative biomarkers of gut barrier dysfunction and bacterial

translocation, and self-reported clinical outcomes assessed by the

COMPASS-31 score, our findings add to the existing evidence of the

potential role of increased intestinal permeability in FM and ME/

CFS. Future research should aim to confirm the applicability of

these findings in clinical practice by targeting gastrointestinal

complaints in FM and ME/CFS and assessing the usefulness of

interventions focused on the restoring gut microbiota homeostasis

and enhancing intestinal barrier function. If future studies show this

strategy to be valid, it may offer new therapeutic benefit and provide

an opportunity to reduce gastrointestinal symptoms and restore the

quality of life of these patients.
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SUPPLEMENTARY FIGURE 1

Multipanel scatter dot plots depicting the statistically significant between

intestinal barrier function biomarkers and self-reported outcomemeasures in
fibromyalgia patients. Each dot corresponds to an individual. Spearman’s

correlation scatter plots with linear regression (black line) and the 95%

confidence interval (brown band) was used to calculate the association.
Square Spearman’s rank correlation coefficient (rho2) and statistically

significant p-values are shown in each panel.

SUPPLEMENTARY FIGURE 2

Multipanel scatter dot plots depicting the statistically significant between

intestinal barrier function biomarkers and self-reported outcomemeasures in

ME/CFS patients. Each dot corresponds to an individual. Spearman’s
correlation scatter plots with linear regression (black line) and the 95%

confidence interval (brown band) was used to calculate the association.
Square Spearman’s rank correlation coefficient (rho2) and statistically

significant p-values are shown in each panel.

SUPPLEMENTARY FIGURE 3

Multipanel scatter dot plots depicting the statistically significant between
intestinal barrier function biomarkers and self-reported outcomemeasures in

healthy controls. Each dot corresponds to an individual. Spearman’s
correlation scatter plots with linear regression (black line) and the 95%

confidence interval (brown band) was used to calculate the association.
Square Spearman’s rank correlation coefficient (rho2) and statistically

significant p-values are shown in each panel.
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Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in

gut health regulation, transcending their traditional roles as byproducts of

bacterial metabolism. These vesicles function as cargo carriers and contribute

to various aspects of intestinal homeostasis, including microbial balance,

antimicrobial peptide secretion, physical barrier integrity, and immune system

activation. Therefore, any imbalance in BEV production can cause several gut-

related issues including intestinal infection, inflammatory bowel disease,

metabolic dysregulation, and even cancer. BEVs derived from beneficial or

commensal bacteria can act as potent immune regulators and have been

implicated in maintaining gut health. They also show promise for future clinical

applications in vaccine development and tumor immunotherapy. This review

examines the multifaceted role of BEVs in gut health and disease, and also delves

into future research directions and potential applications.

KEYWORDS

bacterial extracellular vesicles, outer membranes vesicles, gut health, intestinal barriers,
immune barrier, inflammatory bowel disease, cancer, gut disease treatments
Introduction

The gut is an intricate and dynamic ecosystem that plays a pivotal role in human health

and disease (1–3). Housing approximately 100 trillion organisms, the influence of the gut

microbiota extends beyond simple digestion (1, 4). They can shape metabolic functions,

influence epithelial barrier integrity, regulate immune responses (5–7). These

microorganisms interact with host cells in numerous ways, from direct cellular adhesion

or invasion to the release of cell wall components and the secretion of metabolically

functional products (8–10). Emerging research recognizes that bacteria can modulate gut

health via producing bacterial extracellular vesicles (BEVs) (11).

BEVs represent a class of cellular products secreted by both gram-negative and positive

bacteria (12–14). These vesicles are usually 20 – 400 nm in diameter and have a bilayer lipid

membrane structure with a similar composition to that of the parent membrane (15). Protected

by the membrane, BEVs encapsulate various substances including virulence factors, proteins,

nucleic acids, and lipids (13). The primary function of BEVs are considered as an excretion
frontiersin.org0132

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1274295/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1274295/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1274295/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1274295&domain=pdf&date_stamp=2023-09-29
mailto:sundesen@nbu.edu.cn
mailto:jhsheng@zju.edu.cn
https://doi.org/10.3389/fimmu.2023.1274295
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1274295
https://www.frontiersin.org/journals/immunology


Sun et al. 10.3389/fimmu.2023.1274295
system for the disposal of unwanted metabolites and misfolded

proteins (16). Moreover, BEVs are found to function as signal and

material transmission tools that mediate bacteria-bacteria and bacteria-

host interactions (13, 15). BEVs can aid bacteria in nutrient acquisition,

resistance to antibiotics or antimicrobial peptides (AMPs), and

elimination of specific microbes (17). Meanwhile, BEVs can deliver

virulence factors and toxins to host cells, thereby disrupt barrier

integrity, induce inflammation, and even promote carcinogenesis

(18). Nevertheless, the BEVs from certain beneficial or commensal

bacteria are contribute to host health maintenance by triggering a host

defence response or immune activation (11).

In this review, we consolidate the published evidence

demonstrating the impact of BEVs on gut health, particularly

their role in regulating the integrity and function of the intestinal

barrier. We also highlight the significant roles of BEVs in various

gut diseases, including infection, inflammatory bowel disease (IBD),

gut-related metabolic diseases, and gastrointestinal tumors. We

discuss the limitations of current research on BEVs in the gut,

while concurrently exploring their potential therapeutic

applications in gut disease treatment.
Biogenesis and types of BEVs in
the gut

The gastrointestinal tract harbors a dynamic and symbiotic

microbial ecosystem (19). These microorganisms exhibit
Frontiers in Immunology 0233
remarkable metabolic abilities and continuously secrete BEVs into

the lumen. Recent studies have reported a significant concentration

of 8 × 1012 BEVs per milliliter in a solution containing 20 g of stool

resuspended in 100 ml phosphate-buffered saline (20). Typically,

these BEVs are classified into outer membrane vesicles (OMVs) and

cytoplasmic membrane vesicles (CMVs), based on their constituent

parts and unique biogenesis pathways (13).

The ability of gram-negative bacteria to secrete membrane

vesicles originating from their outer membranes, termed as OMVs,

was discovered over fifty years ago (14, 21). Subsequent research has

revealed that gram-negative bacteria generate several types of BEVs

under various conditions, including OMVs, outer inner membrane

vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs)

(14, 22). Traditional OMVs are formed through a process known as

“blebbing” (or the non-lytic route), resulting in a vesicle

encapsulated in a single membrane bilayer (Figure 1A) (22). OMV

generation is attributed to several mechanisms, including reduced

outer membrane-peptidoglycan connection linkages, increased

membrane curvature, increased periplasmic pressure, and flagellar

rotation (22–24). Additionally, during genotoxic stress, gram-

negative bacteria may utilize explosive cell lysis (or the lytic route)

to produce OIMVs and EOMVs (13, 22). The prominent feature of

these vesicles is both OIMVs and EOMVs contain many cytoplasmic

components; moreover, OIMVs have two membrane bilayers,

derived from the outer and inner membranes. (Figure 1A) (25).

Although enveloped in a dense peptidoglycan layer, gram-

positive bacteria have evolved to generate their own types of

vesicles, termed as CMVs (14). Similar to OMVs, these vesicles are
B

A

FIGURE 1

Types and generation models of BEVs. (A) Gram-negative bacteria can release OMVs by blebbing of the outer membrane (left panel). Vesicles
produced by explosive cell lysis are named explosive outer membrane vesicles (EOMVs) and outer-inner membrane vesicles (OIMVs), which are
triggered by phage-derived endolysin that degrades the peptidoglycan layer (right panel). EOMVs and OIMVs randomly contain cytoplasmic
components, while OMVs don’t directly package cytoplasmic components. (B) Gram-positive bacteria can secret cytoplasmic membrane vesicles
(CMVs) (left panel). Stress induced Gram-positive bacteria lysis, named “bubbling cell death”, can lead to the release of ECMV (right panel).
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encased in a lipid bilayer derived from the cytoplasmic membrane of

the parent bacteria and exhibit a comparable size range (Figure 1B).

The precise process underlying CMVs biogenesis remains elusive;

however, a series of pivotal steps have been identified (26–28). First is

cytoplasmic membrane budding, prompted by the accumulation of

specific phospholipids in the outer leaflet of the membrane (26).

Next is the formation and release of CMVs from the plasma; this is

influenced by lipoprotein content reduction, which increases

membrane fluidity, and accumulation of phenol-soluble modulins,

which disrupt membranes due to their surfactant-like properties and

amphipathic helical structure (26, 29). The final step is the passage of

CMV through the cell wall. This process is facilitated by

peptidoglycan-degrading enzymes (27, 29). In addition, explosive

CMVs (ECMVs) can be formed in gram-positive bacteria via

“bubbling cell death”, which is similar to EOMV biogenesis (13).

In this process, the release of CMVs under SOS response-inducing

conditions is facilitated via prophage-derived endolysins (Figure 1B)

(13, 30). However, the comprehensive elucidation of CMVs

biogenesis in gram-positive bacteria remains unclear.

In addition, evidence suggests that BEV generation is accurately

regulated. Recent studies on Salmonella enterica have indicated that

the production of OMVs is upregulated by its PhoPQ system when

attacked by host innate immunity (31). Antibiotic-induced

oxidative stress in S. aureus triggers CMV production via

increasing permeability of the peptidoglycan layer. Genetic

regulation of vesiculation has also been investigated, with

disruptions in gene encoding factor s B (sigB) in Listeria

monocytogenes (L. monocytogenes) (32) or the two-component

system CovRS in Streptococcus pyogenes (33) resulting in altered

CMVs production, which indicates a regulatory role in vesicle

biogenesis. Furthermore, the cargos contained in OMVs are

rigorously controlled (34, 35). The lipoprotein composition

between the outer membrane of Bacteroides thetaiotaomicron and

its OMVs were found to be significantly different (36). Moreover, a

study showed that the exposure of Pseudomonas aeruginosa (P.

aeruginosa) to the epoxide epibromohydrin resulted in the

significant upregulation of the epoxide hydrolase (Cif) and outer

membrane protein OprF in its OMVs (37).
Role of BEVs in gut homeostasis

Gut homeostasis is fundamentally reliant on an intact barrier

function composed of microbial, chemical, physical, and immune

barriers that work together to form a defense line from the lumen to

the basal layer (38–41). BEVs, which are products of gut commensal

bacteria (42), serve as key messengers and regulators in this

environment. They facilitate a range of interactions with the gut

barrier that contribute to the maintenance of gut health (Figure 2).
Microbial barrier

The healthy gut microbiota is referred to as the microbial

barrier, and comprises various species of commensal intestinal

bacteria (43). These species either compete or cooperate to
Frontiers in Immunology 0334
establish a balanced microbial community (43), which is critical

for resisting the colonization, growth, and invasion of pathogenic

microorganisms (44). BEVs can modulate the equilibrium of the gut

microbiota in several ways (Figure 2B). First, BEVs promote the

survival of their parent bacterium or other bacteria. For instance, P.

aeruginosa OMVs carry many Pseudomonas quinolone signals,

which can bind iron, an essential element for bacterial viability,

and bring it to the outer membrane of the parent bacterium via

fusion (18). Similarly, OMVs from Akkermansia muciniphila (A.

muciniphila) can restore the disturbed balance of gut microbiota via

selectively promoting the proliferation of beneficial bacteria

through membrane fusion (45). Second, bacteria release BEVs as

a defense mechanism against phage infections. For example,

Manning et al. reported that the co-incubation of OMVs collected

from Escherichia coli (E. coli) and T4 bacteriophages resulted in a

significant reduction in the active phage number (46). Similarly,

Reyes-Robles et al. found that Vibrio cholerae (V. cholerae) secreted

OMVs carrying phage receptors as a defense mechanism that

conferred protection against phage predation (47). Finally,

BEVs function as tools to eliminate other bacteria. Li et al.

reported that OMVs from 15 strains of gram-negative bacteria,

including many commensal or pathogenic gut bacteria, such as

Enterobacter, Escherichia, Morganella, Salmonella, and Shigella

strains, could lyse many gram-positive and gram-negative

cultures. Peptidoglycan hydrolases associated with BEVs are

thought to account for bacterial lysis (48). Growing evidence

has supported the antimicrobial functions of BEVs. For instance,

OMVs from P. aeruginosa can kill competitor species such as

S. aureus via peptidoglycan hydrolases, antimicrobial 4-hydroxy-

3-methyl-2-(2-non-enyl)-quinoline, and rhamnolipid (49). OMVs

from Lysobacter and Myxococcus contain a toxic mixture of

bioactive compounds and lytic enzymes capable of killing the

surrounding microbes (50).
Chemical barrier

The intestinal chemical barrier is composed of AMPs and other

antibacterial substances, such as bile acids (41), and inhibits growth

of certain bacteria and segregates intestinal bacteria from intestinal

epithelial cells. Several studies have suggested that BEVs can disrupt

the function of the chemical barrier (Figure 2C). Nakayama-

Imaohji et al. reported that a Bacteroides fragilis (B. fragilis) strain

with hypervesiculating mutants (which release more OMVs)

showed higher resistance to treatment with AMPs, such as LL-37

and defensin-2 (51). Similarly, Urashima et al. found that the outer

membrane protein T, which was specifically enriched in the OMVs

of enterohemorrhagic E. coli (EHEC), broke down LL-37 and

inhibited its antimicrobial activity, thereby enhancing EHEC

survival and adaptation to the host gut environment (52).

Moreover, the exposure of P. aeruginosa to lysozyme significantly

enhanced OMVs release (by approximately 100-fold) (53).

Analogously, in vitro studies have shown that E. coli upregulates

OMVs secretion upon encountering AMPs, and the addition of E.

coli OMVs has been demonstrated to increase bacterial survival in

vitro when challenged with antibiotics, such as Polymyxin B and
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colistin (54). All in all, BEVs can digest or neutralize AMPs,

potentially weakening the chemical barrier function.

Contrarily, some evidences indicated that BEVs act as

stimulators, inducing the intestine to increase AMP expression,

thereby enhancing the chemical barrier (Figure 2C). For instance,

Kaparakis et al. discovered that OMVs from P. aeruginosa and

Helicobacter pylori (H. pylori), which contained peptidoglycans,

could induce epithelial cells to express human b-defensins (HBD),

such as HBD2 and HBD3 (55). Lactobacillus derived CMVs have

also been reported to stimulate the expression of the AMP REG3G,

a c-type lectin, thus promoting the chemical barrier of the

gastrointestinal tract and providing protection against pathogens

(56). OMVs released from A. muciniphila were recently reported to

stimulate goblet cells to produce mucus (45), which resisted the

adhesion and stimulation of pathogenic bacteria to gut epithelial

cells. These findings suggest that some BEVs can stimulate intestinal

cells, leading to increased AMP and mucus production, thereby

enhancing the chemical barrier.
Physical barrier

The intestinal epithelial barrier, a physical partition separating

the body’s internal environment from the lumen, is composed of a
Frontiers in Immunology 0435
single layer of epithelial cells interconnected via tight junction

proteins, such as occludin, claudins, and zonula occludens (39,

57). Although this physical barrier effectively limits the intrusion of

most harmful substances, BEVs have been shown to internalize or

permeate it (58). BEVs penetrate non-phagocytic host cells via five

primary mechanisms: clathrin-mediated endocytosis, caveolin-

mediated endocytosis, l ipid raft-mediated endocytosis,

macropinocytosis, and membrane fusion (17, 59). BEVs can

concurrently utilize one or more pathways to infiltrate host cells,

depending on their size and components. For example, OMVs

derived from H. pylori were found to enter epithelial cells via four

different mechanisms (55, 60, 61).

Once internalized, BEVs traverse the endolysosomal pathway

and are subsequently degraded in lysosomes or autophagosomes

(62); however, recent studies suggest that some BEVs can escape

degradation and deliver their cargos into cells. Bielaszewska et al.

demonstrated that after the OMVs of EHEC O157 were internalized

in early endosomes through a process reliant on dynamin-

dependent endocytosis, virulence factors, including Shiga toxin 2a

(Stx2a), cytolethal distending toxin V (CdtV), and EHEC

hemolysin, were separately transported from the vesicles via

intracellular trafficking (63). Although the precise mechanisms of

BEVs internalization and cargo transport remain unclear, BEVs are

surmised act as a significant cargo delivery system to intestinal
FIGURE 2

The functions of BEVs in gut homeostasis. (A) BEVs regulate gut health by interacting with microbial, chemical, physical, and immune barriers. (B) In
microbial barrier, BEVs can promote the survival of their parent bacterium or other bacteria, protect against phage infection, and kill competitor
species. (C) In chemical barrier, BEVs can neutralize the function of AMPs. Nevertheless, some BEVs also act as stimulators that induce the intestine
to express more AMPs thus enhance the chemical barrier. (D) In physical barrier, BEVs can damage the integrality of epithelial barrier via reducing
the tight junction protein and E-cadherin, or causing epithelial cell death. On the contrary, the BEVs from some beneficial bacteria could enhance
the physical barrier function. (E) In immune barrier, BEVs could stimulate epithelial cell to secret cytokines through both cell surface receptors (such
as TLR4) and inter intracellular receptors (such as NOD1). Macrophage can directly recognize and uptake BEVs and then activate inflammasome and
secret cytokines. DCs can detect the polysaccharide (PSA) from OMV then result to promote the differentiation Tregs and the anti-inflammatory
cytokine IL-10.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1274295
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1274295
epithelial cells, influencing the function and integrity of the physical

barrier of the gut.

Evidence suggests that some gut pathogenic bacteria can

damage the intestinal barrier via BEVs (Figure 2D). Upon

internalization in human intestinal epithelial cells, gram-negative

bacterial OMVs release lipopolysaccharides (LPS) into the cytosol

(64), facilitated by sorting nexin 10 (SNX10), which activates

caspase-5. This leads to Lyn phosphorylation, subsequently down-

regulating E-cadherin expression and impairing the intestinal

barrier (64). EHEC O157 OMVs can disrupt the barrier through

two pathways: the release of hemolysin, which increases

mitochondrial permeability and triggers apoptosis (65), and the

discharge of CdtV-B, which causes DNA damage and induces

apoptosis (66). Moreover, OMVs of the pathogen Fusobacterium

nucleatum (F. nucleatum) can activate the FADD-RIPK1-cCASP-3

signaling pathway, decreasing ZO-1 protein and increasing

apoptosis, thereby damaging the epithelial barrier (67). Similarly,

Campylobacter jejuni releases OMVs containing toxins that harm

cellular DNA and impair the intestinal barrier (68–70). V. cholerae

OMVs carry active proteases that induce apoptosis or necrosis,

causing epithelial barrier loss during infection (71). Finally,

Enterotoxigenic B. fragilis releases OMVs along with B. fragilis

toxin, which disrupt the intestinal barrier via cleaving E-cadherin

and affecting the zonula adherens and tight junctions in the

intestinal epithelium (72).

Despite their disruptive potential, BEVs do not always impair

the intestinal epithelial barrier (Figure 2D). The probiotic E. coli

Nissle 1917 and commensal ECOR63 enhance barrier function via

increasing tight junction protein expression (73, 74). Furthermore,

OMVs produced by E. coli C25, a commensal bacterium, trigger a

moderate release of the proinflammatory interleukin 8 (IL-8) and

stimulate the transcriptional upregulation of Toll-like receptors

(TLRs) in intestinal epithelial cell lines, subsequently enhancing

the barrier function of epithelial cells and inhibiting bacterial

internalization (75). Similarly, OMVs released from A.

muciniphila help maintain the integrity of the intestinal barrier

via penetrating the intestinal epithelial cells and boosting the

expression of tight junction proteins and mucus (45, 76).
Immune barrier

The gut immune barrier, primarily comprising immune cells

including macrophages, dendritic cells (DCs), lymphocytes, mast

cells, and natural killer cells, resides in the lamina propria or Peyer’s

patch, situated beneath the physical barrier (77). They can gather

information from the intestinal epithelial cells which produce a

range of immunoregulatory signals (78). Furthermore, they directly

recognize and accept certain bacterial components that permeate

this barrier (79).

BEVs can stimulate intestinal epithelial cells to secrete various

cytokines and chemokines that play pivotal roles in modulating

intestinal immune functions (Figure 2E). For instance, F. nucleatum

releases OMVs that stimulate epithelial cells, thereby increasing the

activation of p-ERK, p-CREB, and NF-kB signaling pathways. This

activation subsequently upregulates proinflammatory cytokines,
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including tumor necrosis factor, keratinocyte chemoattractant, IL-

6, interferon (IFN)-g, and monocyte chemoattractant protein

(MCP)-1 (55). Thapa et al. analyzed the effect of BEVs derived

from 32 different gut bacteria (26 gram-negative and six gram-

positive bacteria) on intestinal epithelial cells. Their findings

revealed that BEVs could induce species-specific immune

responses in these cells. OMVs from gram-negative bacteria were

found to trigger a stronger proinflammatory response than CMVs

from gram-positive bacteria. A large proportion of the BEVs

induced a significant increase in CCL20, IL-8, and CXCL1 levels

in epithelial cell lines. Their research also identified LPS as the

dominant proinflammatory bacterial effector that activated the

caspase- and RIPK2-dependent pathways (80). OMVs can

stimulate immune responses via cell surface and intracellular

receptors in epithelial cells. For example, EHEC O157 OMVs

induce IL-8 production in human intestinal epithelial cells via

stimulating TLR4 and TLR5 (cell surface receptors), thus

activating the nuclear factor NF-kB (81). In addition, these

OMVs can deliver peptidoglycan into the host cell cytosol,

thereby inducing innate immune responses through a NOD1

(intracellular receptor)/NF-kB dependent, but TLR-independent,

mechanism (55, 59).

BEVs can also directly engage with intestinal immune cells (59),

particularly macrophages, which play vital roles in the immune

barrier (Figure 2E). Research shows that macrophages can uptake

gram-negative OMVs via clathrin-mediated endocytosis. LPS from

these OMVs can escape from early endosomes into the cytosol,

triggering the caspase-11-dependent release of IL-1b and cell death

in a dose-dependent manner (82). Previous studies found that

guanylate-binding proteins recognized LPS, bound to the OMV

surface, and mediated activation of the caspase-11 non-canonical

inflammasome (83). Similarly, Bitto et al. reported that OMVs from

P. aeruginosa directly activated the inflammasome in macrophages

(84), which were dependent on caspase-5, a human homolog of

murine caspase-11, highlighting another pathway of activation of

immune responses in mice and humans via OMVs (83). Moreover,

gram-positive bacteria can also initiate an immune response in

macrophages via signaling pathways that differ significantly from

those used by OMVs. Wang et al. discovered that S. aureus released

CMVs that interacted with TLR2, thereby activating the NLRP3

inflammasome via potassium efflux. This led to the recruitment of

apoptosis-associated speck-like protein containing a caspase

recruitment domain and caspase-1 activation, resulting in the

cellular release of mature cytokines IL-1b and IL-18 and the

induction of pyroptosis (85). Conversely, CMVs from Pediococcus

pentosaceus demonstrated potent anti-inflammatory properties.

These CMVs facilitate the differentiation of bone marrow

precursors into myeloid-derived suppressor-like cells and

promote M2 macrophage polarization in vitro and in vivo (85, 86).

DCs are phagocytes and antigen-presenting cells that regulate

the activation of adaptive immune responses, particularly T-helper

and regulatory T (Tregs) cells (Figure 2E) (87). Shen et al. and Chu

et al. demonstrated that DCs could detect polysaccharide found in

B. fragilis OMVs via TLR2, which then activated growth arrest and

DNA damage-inducible protein (Gadd45a) signaling, resulting in

increased proliferation of Tregs and secretion of the anti-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1274295
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1274295
inflammatory cytokine IL-10 (88). This immune response process

protected mice from severe experimental colitis (89). However,

deficiencies in ATG16L1 or NOD2, two genes associated with IBD,

disrupt DC-Treg cell interactions, thereby obstructing the

protective function of B. fragilis OMVs (89). Additionally, E. coli

OMVs induce DCs to generate T-helper cell responses in a strain-

specific manner. Non-pathogenic E. coli strains, E. coli Nissle 1917

(probiotic) and ECOR63 (commensal), trigger increased secretion

of Th1 polarizing cytokines (IFN-g and IL-12) from DCs.

Conversely, OMVs from ECOR12 (commensal) or ECOR53

(pathogenic) stimulate the production of higher levels of Treg-

related cytokines (IL-10 and TGF-b). Despite the differences

between strains, all OMVs enhance the secretion of Th17/Th22

priming cytokines (IL-6, IL-23, tumor necrosis factor-a, and IL-

1b) (58).
What’s more, BEVs can access Peyer’s patches and then directly

interact and activate the immune cells. Wang et al. found A.

muciniphila OMVs are able to enter Peyer’s patches after direct

delivery into the intestinal lumen, and induce higher production of

immune active DCs with CD80 expression (45). Consequently, with

the help of activated DCs, the productions of CD69+ B cells and

IgA+ plasma cells along with total B cells are significantly

augmented, thereby increasing intestinal IgA concentration (45,

90). This process is believed to reduce the relative abundance of

harmful pathogens in the gut microbiota.

In conclusion, the influence of BEVs on intestinal barrier

regulation is complex, with some enhancing barrier function, and

others contributing to its impairment. This highlights the intricate

interplay between the gut microbiota and their multifaceted effects

on human health and diseases.
BEVs and gut related diseases

Considering the significant roles of BEVs in maintaining gut

homeostasis, investigation of their possible involvement in the onset

and progression of gut-related diseases is appropriate. Current

research indicates a key role of BEVs in various diseases related

to the gut. These conditions include infections, IBD, metabolic

disorders, and cancer (Table 1). BEVs, with their diverse biological

functions and intricate interactions with host cells, may be pivotal

in the pathogenesis of these conditions. Details of the specific roles

of BEVs in each of these disease categories are discussed in the

following sections.
Infections

Numerous studies have highlighted the role of gut bacteria in

exploiting BEVs to infect and harm hosts. BEVs can neutralize

AMP activation, potentially undermining the effectiveness of the

host chemical barriers and enhancing their susceptibility to

pathogenic infections (53, 54). Furthermore, BEVs can foster the

formation of biofilms and complex microbial communities, which

are implicated in gastrointestinal infections and other diseases (22,

104, 105). A significant proportion of biofilm matrix-associated
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proteins originate from BEVs such as OMVs produced by P.

aeruginosa (91). Several intestinal pathogens employ BEVs as

vehicles for delivering toxins to gut cells during infection. V.

cholerae, a noninvasive gram-negative pathogen, causes cholera

via colonizing the small intestine and releasing a potent

enterotoxin called cholera toxin (CT). Chatterjee et al. discovered

that V. choleraeOMVs carried copious amounts of CT and could be

internalized by intestinal epithelial cells, subsequently increasing

cyclic adenosine monophosphate levels in a ganglioside GM1 (CT

receptor)-dependent manner (92). Similarly, L. monocytogenes, a

gram-positive intracellular pathogen, utilizes CMVs to release

toxins, including listeriolysin O and phosphatidylinositol-specific

phospholipase C, which cause mammalian cytotoxicity (93).

However, not all BEV effects on infections are harmful.

Evidence suggests that BEVs can bolster gut defense against

bacterial infections. During these infections, OMVs deliver LPS to

macrophages, inducing a caspase-11-mediated inflammatory

reaction that aids the host in pathogen clearance (82). Patten

et al. observed that pre-incubation of intestinal epithelial cells

with E. coli C25-derived OMVs impeded the internalization of

the parent bacterium. They suggested that this was due to the mild

proinflammatory response induced by OMVs in epithelial cells,

which enhanced their ability to combat infection (75).

Moreover, BEVs are critical mediators in immune training and

fortifying antiviral defenses. Bhar et al. found that co-inoculation of

BEVs with murine norovirus led to the enhanced production and

release of proinflammatory cytokines in macrophages, suggesting

the potential role of BEVs in promoting an antiviral response (94).

Erttmann et al. reported that gut microbiota depletion lowered

systemic tonic IFN-I levels and antiviral priming, rendering the

mice more susceptible to systemic viral infections. They found that

the gut microbiota released DNA-containing BEVs that could

permeate the intestinal barrier and circulate in the blood,

delivering foreign DNA to distal host cells, thereby activating the

cGAS-STING-IFN-I-dependent pathway to protect against RNA

viruses (95). Additionally, Frantz et al. identified a specific small

RNA (sRNA), rli32, partially derived from L. monocytogenes CMVs,

that could infiltrate mammalian cell lines and increase IFN-I

expression in a RIG-I-dependent manner (96).
IBD

Numerous studies have suggested that gut barrier dysfunction

can exacerbate IBD progression. Current research indicates that

BEVs contribute to IBD via damaging both physical and immune

barriers, particularly the epithelial and immune cells (Figure 3A).

The increased proportion of gram-negative bacteria observed in

patients with IBD typically release excessive OMVs laden with LPS

(64). These OMVs infiltrate epithelial cells and their LPS translocate

into the cytosol, instigating immune reactions, downregulating E-

cadherin expression, and causing intestinal barrier dysfunction

(64). Tulkens et al. clinically investigated and revealed a

significant correlation between the levels of BEV-associated LPS

in the plasma and impaired barrier integrity in patients with

intestinal mucositis, including IBD (20, 106). As a result, bacterial
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TABLE 1 The function of BEVs in gut related disease.

Disease
Beneficial
or
harmful

Parent
bacteria

Effective
component

Target
barrier
layer

Influence Reference

Gut infections

Harmful

Enterohemorrhagic
E. coli

OmpT protease
Chemical
barrier

Breaking down gut AMPs (52)

P. aeruginosa
Phospholipid
bilayer

Chemical
barrier

Absorbing and neutralizing AMPs (53)

E. coli
Phospholipid
bilayer

Chemical
barrier

Absorbing and neutralizing AMPs (54)

P. aeruginosa
Biofilm matrix-
associated
proteins

Physical
barrier

Helping bacteria cope with stressful host
environments by facilitating biofilm formation

(91)

V. cholerae Cholera toxin
Physical
barrier

Delivering cholera toxin to epithelial cell and up-
regulating cAMP

(92)

L. monocytogenes
LLO and PI-
PLC

Physical,
immune
barrier

Delivering a concentrated and varied toxin cargo to
host cells.

(93)

Beneficial

Gram-negative
bacteria

LPS
Immune
barrier

Eliciting caspase-11-mediated inflammatory
reaction and helping the host to promote pathogens
clearance

(82)

E. coli C25 Unidentified
Physical
barrier

Inhibiting the internalization of the parent
bacterium

(75)

Universal gut
bacteria

Unidentified
Immune
barrier

Stimulating immune cell to release of pro-
inflammatory cytokines and promote an antiviral
response

(94)

Universal gut
bacteria

DNA
Immune
barrier

Activating the cGAS-STING-IFN-I dependent
pathway to protect against RNA virus

(95)

L. monocytogenes sRNAs rli32
Immune
barrier

Increase type I IFN expression in RIG-I-dependent
manner

(96)

IBD

Harmful

Gram-negative
bacteria

LPS
Physical
barrier

Down-regulating E-cadherin expression (64)

F. nucleatum Unidentified

Physical
barrier

Activating RIPK1 and RIPK3 inducing epithelial
necroptosis

(67)

Immune
barrier

Activating TLR4 and promoting pro-inflammatory
cytokine production and leading to increased
immune cell infiltration

(67)

Beneficial

E. coli Nissle 1917 Unidentified
Physical
barrier

Up-regulating tight junction proteins ZO-1, ZO-2,
and claudin-14

(73)

B. fragilis Polysaccharide
Immune
barrier

Interacting with DC cells and causeing immune
tolerance

(88)

A. muciniphila Unidentified

Microbial,
physical,
and
immune
barrier

Restoring disturbed balance of the gut microbiota,
maintaining the integrity of the intestinal barrier,
activating B cells and DCs

(45)

Metabolism
disease

Harmful P. panacis Unidentified – Blocking the insulin signaling pathway (97)

Beneficial A. muciniphila Unidentified
Physical
barrier

Ameliorateing HFD-induced intestinal barrier
dysfunction

(98)

Gastrointestinal
Cancer

Harmful

E. coli MG1655 Ile-tRF-5X –
Promoting the expression of the MAK3K4 gene,
enhancing cell proliferation

(99)

F. nucleatum Unidentified
Physical and
immune
barrier

Inducing IL-8 expression and reducing E-cadherin
and cadherin-1 gene expression

(100–102)

(Continued)
F
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BEVs significantly stimulate peripheral blood mononuclear cells to

secrete proinflammatory cytokines such as IL-6, IL-8, MCP-1, and

macrophage inflammatory protein-1a. Specific OMVs released by

gut pathogens are also associated with IBD (20). Liu et al. reported

that F. nucleatum OMVs significantly exacerbated dextran sulfate

sodium (DSS)-induced colitis symptoms in mice via activating

receptor-interacting protein kinases 1 and 3 and inducing

epithelial necroptosis. This process resulted in significant

epithelial barrier loss and oxidative stress-related damage (67).

Engevik et al. supported this result and, in addition, they found

that F. nucleatum OMVs also activated TLR4 and downstream

targets signal-regulated kinase, cAMP response element binding

Protein, and NF-kB, thereby promoting proinflammatory cytokine

production and leading to increased immune cell infiltration (107).

Conversely, several studies have reported the protective role of

BEVs against IBD (Figure 3B). The probiotic E. coli Nissle 1917

enhances gut physical barrier integrity via upregulating the tight

junction proteins ZO-1, ZO-2, and claudin-14, thereby attenuating

DSS colitis in mice (73). The commensal bacterium B. fragilis

secretes OMVs that interact with DCs, triggering immune
Frontiers in Immunology 0839
tolerance and thereby protecting animals from 2,4,6-

trinitrobenzenesulfonic acid solution-induced colitis and intestinal

inflammation (88). A. muciniphila OMVs are reported to

ameliorate DSS-induced colitis using several mechanisms,

including restoring the disturbed balance of the gut microbiota,

maintaining the integrity of the intestinal barrier, and activating B

cells and DCs (45). The IBD-associated genes ATG16L1 and NOD2

are crucial for OMV-mediated activation of colitis protection.

ATG16L1 T300A transgenic mice did not exhibit protection from

2,4-dinitrobenzene sulfonic acid-induced colitis. Individuals with

Crohn’s disease, a subtype of IBD, typically carry the ATG16L1

major risk variant T300A. This finding suggests a potential target

for the early genetic diagnosis of IBD (89).
Metabolic diseases

The balance of gut microbiota significantly influences host

metabolic homeostasis, and BEVs are crucial in this process. A

significant increase in OMVs from Pseudomonas panacis was
TABLE 1 Continued

Disease
Beneficial
or
harmful

Parent
bacteria

Effective
component

Target
barrier
layer

Influence Reference

Beneficial

Gram-negative
bacteria

Unidentified –

OMVs specifically targeted and accumulated in
tumor tissues of syngeneic mouse colonic tumor
model, subsequently triggering the production of
antitumor cytokines

(103)

A. muciniphila Unidentified
Immune
barrier

Enhance PD-1–based immunotherapy of CRC in a
mouse model

(45)
BA

FIGURE 3

The dual functions of BEVs in IBD pathogenesis. (A) Some beneficial OMVs play roles in inhibiting colitis. The mechanisms include: ① enhancing gut
physical barrier integrity by up-regulating tight junction proteins; ② interacting with DCs and increasing production of Tregs and the anti-
inflammatory cytokine IL-10; ③ promoting anti-inflammation M2 macrophage polarization. ④ activating B cells to product mucosal immunoglobulin
A. (B) The BEVs from pathogens can promote IBD. The mechanisms include: ① causing intestinal barrier dysfunction by down-regulating tight
junction proteins and E-cadherin and inducing epithelial cell death; ② promoting pro-inflammatory cytokine production and leading to increased
immune cell infiltration. In addition, BEVs could enter the blood system and stimulate peripheral blood mononuclear cells to aggravate systemic
immune activation.
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observed in a high-fat diet-induced type 2 diabetes mouse model.

Subsequent studies confirmed that these OMVs could block the

insulin signaling pathway in skeletal muscles and adipose tissues

(97). Conversely, A. muciniphila-derived OMVs ameliorate high-fat

diet-induced obesity via various mechanisms, which include

improved intestinal barrier integrity, reduced inflammation,

balanced energy, and improved blood parameters (98). This

contrasting effect of different BEVs on metabolic homeostasis

emphasizes the complex and multifaceted roles of these entities in

maintaining host health. It is thought that the characteristics of the

parent bacteria determine whether their BEVs are harmful or

beneficial, and normal quantity of BEVs could maintain

immunological activity while excess amounts would be harmful.
Gastrointestinal cancer

Numerous reports have highlighted the influence of BEVs on

cancer development and metastasis in the gastrointestinal tract.

OMVs from E. coli MG1655 have been shown to deliver a tRNA

fragment termed as Ile-tRF-5X, into human colorectal carcinoma

cells (HCT116). This interaction promotes the expression of

mitogen-activated protein kinase 3, thereby enhancing cell

proliferation (99). F. nucleatum, widely recognized as a pathogen

that promotes colorectal cancer (CRC) development, utilizes

various mechanisms for this process, including OMVs. Proteomic

analysis using mass spectrometry revealed an abundance of

virulence factors and biologically active proteases present or

selectively enriched in these OMVs (100). The specific roles of

OMVs in CRC include inducing IL-8 expression (100, 101), which

fosters a pro-inflammatory microenvironment favoring tumor

growth; and reducing E-cadherin and cadherin-1 gene expression

to promote an epithelial-to-mesenchymal transition-like genotype

in tumor cells (100, 102), which ultimately promotes the migration

and invasion of cancer cells in vivo (108).

Conversely studies have explored the potential of BEVs as

therapeutic agents for cancer treatment via immunotherapy. Kim

et al. found that gram-negative bacterial OMVs specifically targeted

and accumulated in tumor tissues of a syngeneic mouse colonic tumor

model, subsequently triggering the production of antitumor cytokines

CXCL10 and IFN-g. This indicates that BEVs represent a promising

new approach for cancer immunotherapy (103). Additionally, A.

muciniphila OMVs have been found to enhance programmed cell

death protein-1-based immunotherapy of CRC in mouse models. This

suggests a potential clinical application of OMVs in improving the

efficacy of immunotherapy by targeting programmed cell death

protein-1 (45). These varied findings demonstrate the significant and

multifaceted roles of BEVs in gastrointestinal cancer progression and

potential therapeutic strategies.
Current challenges and future
perspectives

Despite substantial evidence supporting the process of BEVs

generation are positive controlled, the regulation of BEVs
Frontiers in Immunology 0940
production and cargo selection remains unclear. Further research

is required to elucidate these mechanisms, which will significantly

facilitate basic research on BEVs functions in bacteria-bacteria and

bacteria-host communication and its translational application.

Moreover, the dual role of BEVs in gut health and the

pathogenesis of intestinal-related diseases remains unclear.

Furthermore, the precise active components of BEVs, their

receptors, and the induced signaling pathways in host cells

remain unidentified. The investigation of their impact on other

intestinal cell types, such as intestinal stromal and neuronal cells is

also required.

Considering their ability to penetrate the intestinal barrier and

their correlation with various gut diseases, BEVs are potential

diagnostic biomarkers for intestinal disorders (106). Their

capacity to regulate host immune responses indicates their

potential as vaccines against intestinal infections and

inflammatory disorders. Preliminary studies have suggested that

some BEVs can induce an antitumor immune response and inhibit

tumor growth, suggesting their role in cancer immunotherapy (45,

103). Further studies are required to validate these findings and

translate them into clinical applications.

Despite the encouraging findings on BEVs, this field of research

still remains largely unexplored, and requires more comprehensive

investigations a deeper understanding of BEV biogenesis, cargo

selection, and their interaction mechanisms with host cells is

crucial. With this knowledge, the full potential of BEVs in

diagnostics, therapeutics, and vaccine development can be

harnessed, thereby opening new frontiers for microbiome-related

biomedical applications.
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Objective: The pathogenesis of peptic ulcer diseases (PUDs) involves multiple

factors, and the contribution of gut microbiota to this process remains unclear.

While previous studies have associated gut microbiota with peptic ulcers, the

precise nature of the relationship, whether causal or influenced by biases,

requires further elucidation.

Design: The largest meta-analysis of genome-wide association studies was

conducted by the MiBioGen consortium, which provided the summary

statistics of gut microbiota for implementation in the Mendelian randomization

(MR) analysis. Summary statistics for five types of PUDs were compiled using the

FinnGen Consortium R8 release data. Various statistical techniques, including

inverse variance weighting (IVW), MR-Egger, weighted median (WM), weighted

mode, and simple mode, were employed to assess the causal relationships

between gut microbiota and these five PUDs.

Result: In the intestinal microbiome of 119 known genera, we found a total of 14

causal associations with various locations of PUDs and reported the potential

pathogenic bacteria of Bilophila et al. Among them, four had causal relationships

with esophageal ulcer, one with gastric ulcer, three with gastroduodenal ulcer,

four with duodenal ulcer, and two with gastrojejunal ulcer.

Conclusion: In this study, the pathogenic bacterial genera in the gut microbiota

that promote the occurrence of PUDs were found to be causally related. There

are multiple correlations between intestinal flora and PUDs, overlapping PUDs

have overlapping associated genera. The variance in ulcer-related bacterial

genera across different locations underscores the potential influence of

anatomical locations and physiological functions.
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Mendelian randomization, gut microbiota, peptic ulcer, causal relationship, genus
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1 Introduction

Peptic ulcer diseases (PUDs) represent a prevalent clinical

condition characterized by multifactorial etiology and extremely

complex pathogenesis, primarily related to Helicobacter pylori

infection (1). The incidence of PUDs is common among individuals

between the age of 25 and 64 years and increases with age. These ulcers

are predominantly located near the stomach or duodenumbut can also

occur in the esophagus or Meckel’s diverticulum (2). In the general

population, the lifetime prevalence of PUDs is estimated to range

between 5% and 10%, while the annual incidence rate ranges from

0.1% to 0.3% (3). The continued prevalence of peptic ulcers within the

stomach and duodenum poses a significant threat to global public

health. The diagnosis and treatment of PUDs remain a major

healthcare problem with a significant disease burden (2).

The human gut harbors an intricate and diverse microbial

community that plays a crucial role in both health and diseases (4,

5), for instance, digestion and absorption of substances, synthesis of

essential vitamins such as B and K, catabolism of compounds in vivo,

coordination of innate and cell-mediated immune responses, and

maintenance of intestinal barrier function (6). The symbiotic

relationship between these microbes and the host is indispensable

for maintaining overall homeostasis; disruptions in this ecological

equilibrium can lead to adverse health outcomes (7). The correlation

between alterations in the gut microbiome and peptic ulcers has been

studied for a long time. Several studies have demonstrated the

mechanism underlying H. pylori-induced PUDs (8). At the same

time, histological techniques have been utilized to examine the

microbiome and metabolome of gastric biopsy tissues, identifying a

distinct correlation between gastrointestinal ulcers and gastrointestinal

bacteria (6). Moreover, PUDs were significantly associated with

abnormal microbiota compositions in the oropharynx, esophagus,

and gastrointestinal tract (9). Therapies to protect, adapt, shape, or

restore the balance of themicrobiome are critical aspects of the current

andprospective approaches to gastrointestinal ulcermanagement (10).

However, the causal relationship between PUDs at different

anatomical sites and the gut microbiota remains unclear and

requires further elucidation.

The genome-wide association study (GWAS) has gained

widespread acceptance as a pivotal approach for exploring potential

genetic variants linked to diverse and complex traits and diseases (11,

12). Mendelian randomization (MR) analysis introduces an innovative

paradigm to explore the potential causal association between exposure

and outcome independent of confounding factors and ethical

considerations. Through MR, genetic variants are leveraged as

instrumental variables (IVs) for exposure, enabling the estimation of

causality between the exposure and the resultant outcome (13, 14). An

MR study mimics a randomized controlled trial (RCT), as genetic

variations are randomly assigned during fertilization (15).

Furthermore, genotype formation occurs prior to disease onset and

is typically unaffected by disease progression, reducing the likelihood of

confounding influences.

Here, we employed MR analysis to investigate the correlation

between gut microbiota and PUDs. We further explored the
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potential therapeutic implications of selective support or disorder

of the gut microbiota.
2 Methods

2.1 Study design

The basic logic and analysis flow of the entire procedure were

briefly described in Figure 1. The causal effects of the gut microbiota

on five PUDs, including esophageal ulcer (OESU), gastric ulcer

(GU), gastroduodenal ulcer (GASTRODU), duodenal ulcer (DU),

and gastrojejunal ulcer (GJU), were evaluated. To comprehensively

investigate the role of the gut microbiota in PUDs, MR analysis was

performed at the classification of genera. The population

information involved in the MR was detailed in Table 1.
2.2 Data sources

A two-sample MR study was undertaken to explore the

potential relationship between genus-level gut microbiota and

PUDs, utilizing GWAS summary data. Studies received prior

approval from their respective institutional review boards (IRBs),

and informed consent was obtained from all participants and/or

their legal guardians.

To obtain GWAS summary statistics for the gut microbiota, data

from the MiBioGen consortium, the largest GWAS dataset published

to date, were utilized (16). This dataset consisted of 18,340 individuals

spanning 24 population-based cohorts of diverse ancestry, including

European,Middle Eastern, EastAsian,AmericanHispanic/Latino, and

American African. Microbial composition profiling and taxonomic

classification were performed using direct taxonomic binning,

targeting variable regions V4, V3–V4, and V1–V2 of the 16S rRNA

gene. A microbiota quantitative trait loci (mbQTL) mapping analysis

was employed to identify host genetic variants associated with the

abundance of bacterial taxa within the gut microbiota. The genus with

the least classification in the GWAS data for gut microbiota was

selected for preprocessing. Out of 131 identified genera with an average

abundance surpassing 1%, 119 genera were included for analysis, while

12 genera remain uncharacterized.

For the GWAS summary statistics of the five peptic ulcer types,

data were obtained from the FinnGen consortium R8 release

(https://www.finngen.fi/fi). The FinnGen consortium is a large

public–private partnership aiming to collect and analyze genomic

and health data from 500,000 Finnish biobank participants (12).

The dataset available for analysis was up to December 2022. The

peptic ulcer types included were OESU (NCase = 1,840, NControl =

292,256), GU (NCase = 5,277, NControl = 292,256), GASTRODU

(NCase = 8,240, NControl = 292,256), DU (NCase = 3,164,

NControl = 292,256), and GJU (NCase = 288, NControl =

292,256). The classification of OESU, GU, GASTRODU, DU, and

GJU adhered strictly to the guidelines outlined by the International

Classification of Diseases 10th Revision (ICD-10) code.
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2.3 Instrumental variable selection

The process of IV selection from the GWAS summary statistics

of the gut microbiome adhered to the following criteria: 1) Single-

nucleotide polymorphisms (SNPs) associated with each genus at the

locus-wide significance threshold (P < 1e–5) were considered as

potential IVs (17); 2) Using reference panel data from the 1000

Genomes project European samples, linkage disequilibrium (LD)

between SNPs was calculated. Among the SNPs with R2 < 0.001

(clumping window size = 10,000 kb), only those with the lowest P-

values were retained to minimize biased genetic variation arising

from residual LD; 3) The intensity of each IV and exclusion of weak

instruments were evaluated by calculating the F-statistic (F > 10); 4)

In the presence of palindromic SNPs, the alleles on the forward

strand were deduced by utilizing information on allele frequencies;

5) In cases where exposure-associated SNPs were absent in outcome

data, suitable proxy SNPs (r2 > 0.8) were identified and included in
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subsequent analyses; and 6) To address confounding, SNPs related

to H. pylori infection, bile reflux, obesity, alcoholism, smoking, and

stress factors were systematically removed during the MR analysis.
2.4 Statistical analysis

Five popular MR methods were utilized to analyze valid IVs:

inverse variance-weighted (IVW) test, MR-Egger regression,

weighted median, weighted mode, and simple mode (Figure 2).

Among these, IVW was predominantly used due to its slightly

higher power under certain conditions (18). The IVW method

utilized the inverse of the outcome variance as weights for fitting,

regardless of the presence of an intercept term in the regression.

Complementary assessments were performed using the remaining

four methods, each of which was based on different assumptions

about potential pleiotropy. If the results obtained by these
TABLE 1 The population information involved in this Mendelian randomization.

Exposure/
Outcome

Ethnic origin
Sample size (case/

control)
Gender

Registry filter
(ICD-10)

Public
release

Data
source

Gut microbiota
(genus)

European, Hispanic, Middle
Eastern,

Asian and African
18,340 Mixed sex — 2018

MiBioGen
consortium

OESU Europe 1,840/292,256 Mixed sex K22.1 2022 FinnGen R8

GU Europe 5,277/292,256 Mixed sex K25 2022 FinnGen R8

GASTRODU Europe 8,240/292,256 Mixed sex K2[5-8] 2022 FinnGen R8

DU Europe 3,164/292,256 Mixed sex K26 2022 FinnGen R8

GJU Europe 288/292,256 Mixed sex K28 2022 FinnGen R8
OESU, esophageal ulcer; GU, gastric ulcer; GASTRODU, gastroduodenal ulcer; DU, duodenal ulcer; GJU, gastrojejunal ulcer; IVW, inverse variance weighted; SNP, single nucleotide
polymorphism.
FIGURE 1

Overview of the study logic and workflow. SNP, single nucleotide polymorphism; LD, linkage disequilibrium; IVW, inverse variance weighted; WM, weighted
median; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; MR, Mendelian randomization. Created with BioRender.com.
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complementary methods are consistent with the IVW estimation

results, the robustness of the effect estimation can be reinforced.

Multiple methods of sensitivity analyses were undertaken to

ensure robustness. Initially, Cochran’s Q statistics was applied to

assess heterogeneity across diverse studies (19). Statistically

significant Cochran ’s Q-test would indicate significant

heterogeneity in the analytical outcomes. Secondly, MR-

Pleiotropy Residual Sum and Outlier (MR-PRESSO) was used to

detect instances of horizontal pleiotropy, with SNPs demonstrating

horizontal pleiotropy outliers being systematically excluded to

minimize pleiotropy-induced effects (20). In cases where

significant horizontal pleiotropy was detected in the MR-PRESSO

global test, outliers with P < 0.05 were removed, and the remaining

SNPs were reanalyzed with the IVW analysis. Thirdly, the MR-

Egger regression intercept was employed to estimate the potential

pleiotropy of SNPs, with a P-value >0.05 indicating no horizontal

pleiotropy (21). Fourthly, a leave-one-out analysis was performed to

assess the impact of each SNP on the causal signal. Finally, funnel

and forest plots were constructed to visually examine the presence

of horizontal pleiotropy in the MR analysis, with P < 0.05 indicating
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potential causal associations. The statistical analyses were carried

out using the R packages: two-sample MR (22) and MR-

PRESSO (20).
3 Results

3.1 Genetic correlations between gut
microbiota and PUDs

Initially, 1,698 SNPs were screened as possible IVs for 131

bacterial genera including 12 unidentified genera. The genetic

variants were then eliminated based on specific criteria. All F-

statistic exceeded 10, suggesting the absence of weak ins. Following

validation through the PhenoScanner database, the remaining SNPs

exhibited no discernible associations with H. pylori infection, bile

reflux, obesity, alcoholism, smoking, and stress factors, indicating

that IVs were not resolved by confounding factors. Concurrently,

the elimination of palindromic SNPs was performed. GWAS data

for patients with PUDs were derived from corresponding cohorts.
FIGURE 2

Scatter plots for the causal association between gut microbiota and peptic ulcer.
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3.2 Bidirectional causal relationship of gut
bacteria on PUD development

Our results demonstrated an association of four bacterial genera

with OESU, one with GU, three with GASTRODU, four with DU,

and two with GJU. Reverse MR analysis demonstrated that peptic

ulcers did not change the abundance of the above bacteria. The

leave-one-out sensitivity test highlighted some continuity around

the midpoint. Crossing the zero line indicated that the result may be

insignificant or unstable. The overall assessment indicated an

absence of SNPs having a dominant impact. Furthermore, the

selected SNPs exhibited no significant heterogeneity, as indicated

by Cochran’s Q statistics. Leave-one-out analysis did not identify a

single SNP driving the association (Supplementary Figure S1). The

application of MR-PRESSO yielded no outliers. The findings from

the MR-Egger regression intercept analysis further corroborated the

absence of significant directional horizontal pleiotropy (Table 2).

The three main statistical results of the MR analysis were shown in
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Supplementary Table S1. Given the absence of significant statistical

difference in reverse causality, relevant results were presented in

Supplementary Table S2.

3.2.1 Causal relationship of gut bacteria on OESU
Notably, the two-sample MR analysis unveiled a causal linkage

between Eubacterium hallii and OESU [IVW odds ratio (OR) =

0.71, 95% CI: 0.53–0.95, P = 0.024]. Furthermore, three bacterial

features exhibited potential associations with an increased OESU

risk: Flavonifractor (IVW OR = 1.69, 95% CI: 1.08–2.64, P = 0.020),

Ruminiclostridium 6 (IVW OR = 1.39, 95% CI: 1.03–1.88, P =

0.030), and Ruminococcaceae UCG013 (IVW OR = 1.82, 95% CI:

1.27–2.61, P = 0.001).

3.2.2 Causal relationship of gut bacteria on GU
Our results underscored a robust causal relationship between

Lachnospiraceae UCG004 and GU (IVW OR = 1.34, 95% CI: 1.09–

1.65, P = 0.006).
TABLE 2 MR estimates for the association between gut microbiota and PUDs.

Exposure Outcome SNP
(n)

IVW Cochran’s Q
(MR-Egger)

Pleiotropy_test F-statistic
(median)

OR
(95% CI)

P-
value

Q Q_pval Egger
intercept

Se P-
value

Eubacterium hallii OESU 14 0.71 (0.53-
0.95)

0.024 5.935 0.92 0.028 0.026 0.30 21.10

Flavonifractor OESU 5 1.69 (1.08-
2.64)

0.020 1.349 0.72 0.028 0.074 0.73 21.93

Ruminiclostridium 6 OESU 15 1.39 (1.03-
1.88)

0.030 8.677 0.80 -0.027 0.033 0.42 20.91

Ruminococcaceae
UCG013

OESU 11 1.82 (1.27-
2.61)

0.001 7.770 0.56 -0.060 0.040 0.17 21.52

Lachnospiraceae
UCG004

GU 12 1.34 (1.09-
1.65)

0.006 5.900 0.82 -0.004 0.028 0.89 21.26

Lachnospiraceae
FCS020

GASTRODU 12 0.85 (0.73-
0.99)

0.040 2.979 0.98 -0.002 0.015 0.92 21.66

Lachnospiraceae
UCG004

GASTRODU 12 1.19 (1.00-
1.40)

0.048 8.217 0.61 0.010 0.023 0.68 21.26

Ruminiclostridium 9 GASTRODU 8 0.77 (0.61-
0.96)

0.019 2.762 0.84 0.007 0.035 0.84 21.46

Catenibacterium DU 4 1.31 (1.05-
1.63)

0.018 2.395 0.30 -0.070 0.199 0.76 21.28

Clostridium sensu
stricto 1

DU 6 0.65 (0.42-
1.00)

0.048 9.815 0.04 0.031 0.062 0.65 20.32

Collinsella DU 9 0.69 (0.50-
0.95)

0.024 3.549 0.83 -0.011 0.043 0.81 20.78

Ruminiclostridium 9 DU 8 0.68 (0.48-
0.97)

0.031 3.555 0.74 0.002 0.055 0.97 21.46

Parabacteroides GJU 5 0.22 (0.06-
0.84)

0.027 1.590 0.66 0.025 0.374 0.95 21.55

Bilophila GJU 13 3.45 (1.52-
7.81)

0.003 7.230 0.78 -0.064 0.150 0.68 21.02
OESU, esophageal ulcer; GU, gastric ulcer; GASTRODU, gastroduodenal ulcer; DU, duodenal ulcer; GJU, gastrojejunal ulcer; IVW, inverse variance weighted; SNP, single nucleotide
polymorphism.
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3.2.3 Causal relationship of gut bacteria on
GASTRODU

We found that Lachnospiraceae UCG004 (IVW OR = 1.19, 95%

CI: 1.00–1.40, P = 0.048) was associated with an increased

GASTRODU risk. Moreover, Lachnospiraceae FCS020 (IVW

OR = 0.85, 95% CI: 0.73–0.99, P = 0.040) and Ruminiclostridium

9 (IVW OR = 0.77, 95% CI: 0.61–0.96, P = 0.019) were associated

with a lower GASTRODU risk.

3.2.4 Causal relationship of gut bacteria on DU
We found potential associations between one bacterial feature,

Catenibacterium (IVW OR = 1.31, 95% CI: 1.05–1.63, P = 0.018),

and increased DU risk. Meanwhile, three bacterial features,

Clostridium sensu stricto 1 (IVW OR = 0.65, 95% CI: 0.42–1.00,

P = 0.048), Collinsella (IVW OR = 0.69, 95% CI: 0.50–0.95, P =

0.024), and Ruminiclostridium 9 (IVW OR = 0.68, 95% CI: 0.48–

0.97, P = 0.031), were associated with a reduced DU risk.
3.2.5 Causal relationship of gut bacteria on GJU
Furthermore, we found an association between Parabacteroides

(IVW OR = 0.22, 95% CI: 0.06–0.84, P = 0.027) and a lower GJU

risk, while Bilophila (IVW OR = 3.45, 95% CI: 1.52–7.81, P = 0.003)

showed a correlation with an elevated risk of GJU.
4 Discussion

Prior to the recognition of H. pylori infection and the extensive

utilization of nonsteroidal anti-inflammatory drugs (NSAIDs)

during the latter time frame of the 20th century, PUDs were

primarily attributed to a hypersecretory acidic environment,

coupled with dietary factors or stress (23, 24). However, there is

growing recognition that the etiology of PUDs extends beyond H.

pylori infection in the stomach (6). Rather, the genesis and

progression of PUDs emerge as a result of the interplay of

multiple factors, encompassing the presence of different H. pylori

virulence proteins, ensuing human immune reactions, and

imbalances in the gastrointestinal microbiota (1, 25). The role of

intrinsic gut bacteria in PUD development is also noteworthy. Our

findings emphasized the causal involvement of specific bacterial

characteristics’ abundance in modulating the susceptibility to

diverse peptic ulcer types. Remarkably, this study represents the

first MR analysis to illuminate the multiple connections between gut

microbiota and PUDs. We regarded it as a longitudinal microbiome

investigation conducted before the onset of PUDs in humans. This

study effectively identified robustly gene variants through the largest

gut microbiome GWAS.

One pivotal role played by gut microbiota involves the synthesis

of short-chain fatty acids (SCFAs), which can directly regulate host

health through energy regulation, intestinal mucosal barrier,

immune regulation, and induction of tumor cell differentiation

and apoptosis (26, 27). Dysregulation in the equilibrium of

SCFAs within the body results in a cascade of disease

manifestations (28). Moreover, SCFAs can promote the

expression of tight junction proteins, such as claudin, occludin,
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and Zonula occludens (ZOs) within the intestinal tract, decrease

intestinal permeability, promote the proliferation of intestinal

mucosal cells, and improve the mechanical barrier function of the

intestine in animal models (29, 30). In this MR study, SCFA-

producing bacteria included E. hallii (31), Flavonifractor (32),

Ruminiclostridium (33), Ruminococcaceae (33), Collinsella (34),

and Parabacteroides (35).

A previous study revealed reduced levels of Collinsella in patients

with inflammatory bowel disease (IBD) and gut microbiota dysbiosis

(36). This finding was consistent with our results, implicating a

potentially beneficial role for Collinsella in gut health and

highlighting its association with a reduced DU risk. Researchers have

found that Parabacteroides could produce amolecule named rhamnose

in the mouse gut to facilitate the repair and maintenance of the

intestinal mucosal barrier in mice (37). This suggested that

Parabacteroides may benefit gut health, aligning with our findings

that it exhibited a negative association with GJU. E. hallii is a high-

yielding butyrate producer in the gut, contributing significantly to the

maintenance of intestinal metabolic equilibrium (38). In the context of

aging populations characterized by a decrease in microbiota diversity, a

reduction in the abundance of E. hallii has been noted, accompanied by

decreased production of SCFAs and increased intestinal inflammation

(39). Consistent with these studies, our results demonstrated a negative

link with OESU. The presence of Eubacterium in the gut is primarily

associated with increased dietary fiber intake. As previously reported, it

may improve the intestinal mucosal barrier and metabolic diseases,

making it a potential candidate strain for a new generation of

probiotics (40).

Previous studies have shown an increased level of Flavonifractor

in patients with early-onset colon cancer, while Lachnospiraceae

UCG004 was significantly increased in patients with

postmenopausal osteoporosis (PMO). While the adverse effects of

Flavonifractor remain relatively underexplored, several studies hint

at its role in stabilizing gut intestinal flora and immune modulation

(41). Our study uncovered a positive correlation between

Flavonifractor and OESU, hinting at its potential as a risk factor.

Ruminiclostridium, a common anaerobic intestinal bacterium, plays

a pivotal role in polysaccharide degradation and SCFA production,

thereby influencing intestinal peristalsis, intestinal health, and

immune modulation (42). In addition, Ruminiclostridium 9

inhibits the growth of other harmful bacteria, which is crucial for

preserving gut microbiota equilibrium (43). Recent studies have

shown that reduced Ruminiclostridium 9 abundance is also

associated with some intestinal diseases, such as IBD and obesity

(10). Our MR study demonstrated it with the negative causal

relationship between GASTRODU or DU, thus highlighting the

potential protective role of Ruminiclostridium 9 during the

development of PUDs. Despite the positive correlation between

Ruminiclostrium 6 and OESU, we did not observe any significant

negative effect in the gut. Ruminococcaceae and Lachnospiraceae are

typical intestinal flora that are important in maintaining intestinal

health (44). However, some studies have shown the increased

abundance of Ruminococcaceae or Lachnospiraceae in metabolic

disorders such as obesity and diabetes (45). Additionally, certain

members of these genera have been associated with the production

of inflammatory mediators, enterotoxins, and other harmful
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substances related to the occurrence and development of intestinal

diseases (46, 47). Our study found that Ruminococcaceae UCG013

was positively associated with OESU, while Lachnospiraceae

UCG004 was positively correlated with GU and GASTRODU,

suggesting their potential role as risk factors. Intriguingly,

Lachnospiraceae FCS020 exhibited a negative causal link

with OESU.

C. sensu stricto, a beneficial intestinal bacterium, has many vital

physiological and metabolic functions, such as participating in the

metabolism of glucose and lactose as well as promoting the

synthesis of biotin and vitamin K (48). C. sensu stricto can also

promote the integrity of the intestinal mucosal barrier, regulate the

intestinal immune response, and reduce intestinal inflammation

(48). Our MR analysis corroborates its protective effect, revealing a

negative correlation between C. sensu stricto 1 and DU. Conversely,

Catenibacterium shows a positive causal association with DU.

Catenibacterium is a Gram-positive bacterium (49). Although

many species of Catenibacterium are unknown, different genera

play different roles in intestinal diseases. For instance, certain

strains have been implicated in the occurrence and development

of IBD, wherein harmful substances, such as enterotoxins,

contribute to intestinal mucosal barrier disruption and aggravated

inflammatory responses (50). Our findings implicate Bilophila as a

potential risk factor for GJU, which used to be mainly associated

with metabolic diseases (51). Bilophila’s role in the gut requires

further understanding; however, studies suggest that some members

of Bilophila may be involved in the occurrence and development of

intestinal inflammation. Some of these strains can produce harmful

substances, such as hydrogen sulfide, breaking the intestinal

mucosal barrier and increasing inflammatory responses (52).

Notably, PUDs exhibited no significant association with the

aforementioned bacteria in reverse MR analysis.

The variance in ulcer-related bacterial genera across different

locations underscores the potential influence of anatomical

locations and physiological functions. Interestingly, ulcers with

overlapping sites, such as gastroduodenal ulcer, gastric ulcer, and

duodenal ulcer, exhibited similar bacterial flora and associations,

confirming the reliability of the results. Importantly, these findings

prompted an exploration into the pathological mechanism

underlying overlapping bacterial flora in ulcer development.

Furthermore, there was no evidence of reverse causality between

PUDs and gut bacterial genera. Overall, gene-based analysis from

119 gut bacterial genera revealed specific genera associated with

PUDs in different locations and explained the multiple correlations

between them. These findings supported the influence of gut

microbiota on the development of PUDs and highlighted the

putative association between specific bacterial genera and site-

specific PUDs. Ultimately, these findings extended valuable

implications for the clinical management of patients afflicted

with PUDs.
5 Article summary

This study presented a comprehensive analysis of the causal

relationships between 121 known gut bacterial genera and PUDs,
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utilizing both forward and reverse MR analyses. This approach

effectively mitigated the influence of confounding variables and

causal inference’s challenge of reverse causation. Notably, the

genetic variants associated with gut microbiota were derived from

the most extensive GWAS meta-analysis, enhancing robust IVs for

the MR analysis. Multiple statistical methods were used to test the

sensitivity, pleiotropy, and heterogeneity of this study.

However, despite our efforts to minimize confounding

influences, the complete elimination of horizontal pleiotropy

remains a challenge, largely attributed to our limited

understanding of the disease. As knowledge and awareness evolve

over time, perceptions about confounding factors may change. In

the future, extending MR investigations on the causal relationship

between gut microbiota and peptic ulcers in diverse European and

non-European populations would enhance the generalization of our

findings. Additionally, while this article only explores the problem

from the perspective of genetics, higher-level RCTs are necessary to

validate the causal relationship while also into the intricate

mechanisms underlying specific bacterial contributions.

In summation, through a systematic investigation, this study

constituted a pioneering MR analysis focused on gut microbiota

and PUDs. Our findings shed light on the multiple correlations

between gut microbiota genera and five PUD types. Moreover, it has

established definitive links between 14 specific bacterial genera and

their corresponding ulcer manifestations, the pathogenic intestinal

bacteria deserved more attention. These findings hold significant

implications for understanding the role of gut flora in PUDs,

offering valuable insights for the formulation of preventive

strategies in patients with this condition. Novel treatment avenues

targeting specific intestinal bacterial genera may represent new

treatment options for PUDs.
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Background: Inflammatory bowel disease (IBD) has caused severe health

concerns worldwide. Studies on gut microbiota have provided new targets for

preventing and treating IBD. Therefore, it is essential to have a comprehensive

understanding of the current status and evolution of gut microbiota and

IBD studies.

Methods: A bibliometric analysis was performed on documents during 2003-

2022 retrieved from the Scopus database, including bibliographical profiles,

citation patterns, and collaboration details. Software programs of VOSviewer,

CiteSpace, and the Bibliometrix R package visually displayed the mass data

presented in the scientific landscapes and networks.

Results: 10479 publications were retrieved, showing a steadily growing tendency

in interest. Xavier Ramnik J. group led the total number of publications (73

papers) and 19787 citations, whose productive work aroused widespread

concern. Among the 1977 academic journals, the most prolific ones were

Inflammatory Bowel Diseases, Frontiers in Immunology, and Nutrients.

Research outputs from the United States (US, 9196 publications), China (5587),

and Italy (2305) were highly ranked.

Conclusion: Our bibliometric study revealed that the role of gut microbiota has

become a hot topic of IBD research worldwide. These findings are expected to

improve understanding of research characteristics and to guide future directions

in this field.

KEYWORDS

intestinal microbiota, inflammatory bowel disease (IBD), bibliometric analysis, citation,
research trends
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Introduction

Inflammatory bowel disease (IBD) comprises a heterogeneous

group of inflammatory disorders that are immune-mediated and

primarily affect the gastrointestinal tract, with Crohn’s disease (CD)

and ulcerative colitis (UC) being the two main subtypes (1, 2). IBD

significantly impacts daily life and is a significant risk factor for the

development of gastrointestinal cancers (3). The rapid evolution of

social norms, lifestyles, diets, and the environment resulting from

contemporary human behavior may instigate or contribute to the

escalating prevalence of IBD, rendering it an emerging global

concern (4). Increasing evidence suggests that the gut microbiome

plays a crucial role in the development of IBD (5). IBD is associated

with alterations in the gut microbiome, characterized by a

consistent reduction in bacterial diversity (6). Meanwhile, fecal

microbiota transplantation has been shown to restore intestinal

microecological balance and treat IBD effectively (7).

Microbiota in the human digestive tract make up a complex

ecological system. To date, over 3000 species have been detected in

human feces; only 30% of this bacterial population is the typical

core microflora shared between different individuals (8, 9).

Investigations have indicated that gut microbiota is crucial in the

maintenance of intestinal physiological function (10). The dynamic

composition of the microbiota is influenced and regulated by a

combination of endogenous and exogenous factors (11). Diet,

hormones, medication, and health conditions of the host may

affect the numbers and diversity of microflora in the

gastrointestinal tract (10, 11). Dramatic perturbations like these

may result in dysbiosis characterized by an altered composition and

reduced stability (12). Moreover, microbiota dysbiosis could induce

various human diseases like IBD in the pathological processes

(13, 14).

Bibliometric analysis is an approach to evaluate the trends and

characteristics of published literature in a particular domain over

time. It provides an easy and direct way for scientists and researchers

to access the field’s developing trends and research interests. The

academic influence of leading publications and literature

distributions from different origins is clearly present (15, 16). The

conventional classification and summarization of literature heavily

rely on the subjective judgment of authors, making it challenging to

analyze a large volume of literature comprehensively and accurately.

To address this issue, scientific cartography based on bibliometric

quantitative analysis can be employed to examine the structure and

development of research fields. This method facilitates the

summarization and analysis of applied literature while uncovering

key application areas and enables topic clustering using CiteSpace or

VOSviewer software (17). Currently, bibliometric analysis has

garnered increasing attention due to its distinctive advantages that

enable investigators to delve into specific fields of study through the

visualized analysis of citations, co-citations, geographic distribution,

and term frequency, yielding highly valuable insights (18).

In this study, on the hotspot of gut microbiota and IBD, we

conducted a bibliometric analysis of publications in the Scopus

database during the past two decades to capture its research state

and trends. Using software programs VOSviewer, CiteSpace, and

Bibliometrix, we mapped the literature landscape and distribution
Frontiers in Immunology 0254
layouts of active authors, journals, institutions, and countries. We

also visualized the patterns of cooperation and citation. This study

presents an overview and summary of the evolution of gut

microbiota and IBD studies, and analyzes the current research

state and future trends, aiming to assist researchers and

policymakers gain a comprehensive understanding of the study

on this topic and better grasp future directions.
Methods

Data source

A bibliometric search of research output on the gut microbiome

and IBD, published from 2003 to 2022, was performed on July 10,

2023, using the Scopus database. Scopus by Elsevier is known to be

the most comprehensive data source for detailed bibliometric

evaluation from a quantitative and qualitative point of view (19–

21). With the comprehensive coverage of scientific journals and the

powerful performance of analytical tools, Scopus was selected as the

literature source to retrieve abstracts, citations, and other

bibliometric data at the initial stage.
Search strategy

Aiming to ensure reliable and accurate records, our primary

keywords used in the literature search focused on gut microbiota

and inflammation, along with the relevant synonyms based on

Medical Subject Headings (MeSH) in MEDLINE (22). The terms

“gastrointestinal microbiomes,” “gut microflora,” “gut microbiota,”

“gastrointestinal flora,” “gut flora,” “gastrointestinal microbiota,”

“gut microbiome,” “gastrointestinal microflora,” “intestinal

microbiome,” “intestinal microbiota,” “intestinal microflora,”

“intestinal flora” and “enteric bacteria” were used as the keywords

of gut microbiota; the primary keywords of IBD were

“inflammatory bowel disease” and “IBD” Meanwhile also includes

“ulcer colitis”, “UC”, “Crohn disease” and “CD”. The two sets of

keywords with the AND logic were searched in the field of “Article

title/Abstract/Keywords.” The search was conducted in Scopus

using the following terms: (TITLE-ABS-KEY (gastrointestinal

AND microbiomes) OR TITLE-ABS-KEY (gut AND microflora)

OR TITLE-ABS-KEY (gut AND microbiota) OR TITLE-ABS-KEY

(gastrointestinal AND flora) OR TITLE-ABS-KEY (gut AND flora)

OR TITLE-ABS-KEY (gastrointestinal AND microbiota) OR

TITLE-ABS-KEY (gut AND microbiome) OR TITLE-ABS-KEY

(gastrointestinal AND microflora) OR TITLE-ABS-KEY

(intestinal AND microbiome) OR TITLE-ABS-KEY (intestinal

AND microbiota) OR TITLE-ABS-KEY (intestinal AND

microflora) OR TITLE-ABS-KEY (intestinal AND flora) OR

TITLE-ABS-KEY (enteric AND bacteria) AND PUBYEAR > 2002

AND PUBYEAR < 2023) AND (TITLE-ABS-KEY (inflammatory

bowel disease) OR TITLE-ABS-KEY (ulcer colitis) OR TITLE-ABS-

KEY (crohn disease) OR TITLE-ABS-KEY (IBD) OR TITLE-ABS-

KEY (UC) OR TITLE-ABS-KEY (CD) AND PUBYEAR > 2002

AND PUBYEAR < 2023).
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Data analysis

The search outcomes from the Scopus database were exported

into CSV format for further analysis, including bibliographical

profiles, citation patterns, collaboration details, and other retrieved

publications. We established the inclusion criteria as follows: 1. The

literature pertains to topics of IBD and inflammation; 2. Articles

published within the past two decades (2003-2022). Exclusions

encompassed: 1. Incomplete or duplicated literature; 2. Non-

academic documents such as conference proceedings, calls for

papers, news reports, patent achievements, and newspaper abstracts.

Microsoft Excel and GraphPad Prism (Version 9.5.0, San Diego,

CA, US) were applied to conduct statistical procedures, generating

frequency distribution, sum, and average data. Further investigations

were performed to determine the top, most prolific authors, journals,

countries, institutions, and the most cited papers according to the

standard competition ranking (SCR, also known as the 1-2-2-4 rule).

We calculated the H-index to assess the number and level of

academic output of researchers. In addition, we also calculate the G

index and M-index as a supplement to the H index. The calculation

method of G-index is as follows: the papers are sorted in descending

order according to the number of citations, and the number of

citations is superimposed according to the serial number. When the

cumulative number of citations is equal to the square of the serial

number, the serial number value is the G-index (23). The M-index is

derived from the H-index of academic tenure, calculated by dividing

the H-index by the number of years since an author’s initial

publication (24).

Visualization analysis was applied for presenting a mass of data to

display scientific landscapes and networks using software programs of

VOSviewer (v.1.6.17) (25), CiteSpace (v.5.8.R2) (26), and the R package

of Bibliometrix (27). VOSviewer conducts a visual analysis of country,

institutional, author, and collaboration distribution, as well as keyword

collaboration networks. Clustering is automatically completed using

the similarity matrix and mapping techniques of VOSviewer, with

corresponding labels added by the authors based on content. CiteSpace

was utilized to analyze the distribution and collaboration among

countries, institutions, keyword timelines, and reference data.

Additionally, we employ R studio Desktop Software (v.2023.6.1.0)

linked to the R Software (v.4.3.1) and converted into an R data

frame. The Bibliometrix R package, which provides a web interface,

was used for statistical analysis of the number of publications,

references, and other data and visual analysis of national distribution

and cooperation (27). The flow diagram for the searching and sorting

process of related articles is shown in Figure 1. All raw data utilized in

this study were sourced from publicly available databases, thus

exempting the need for ethical review.
Results

Overview and trends in research
literature production

The 20-year period 2003-2022 saw the publication of 10479

articles in gut microbiota and IBD research. Global trends in the
Frontiers in Immunology 0355
number of annual and accumulated publications related to this

topic are shown in Figure 2A. During the first four years, 2003-

2006, the number of annual articles ranged from117 to 156 and was

relatively stable, implying that this crossover domain was not so

attractive to scientists at that moment. Moreover, within a span of

only two years (2007-2008), two important programs of the Human

Microbiome Project (HMP) were launched by the United States

National Institutes of Health (NIH) in 2007 (28), and

Metagenomics of the Human Intestinal Tract (MetaHIT) by

European Union in 2008 (29), and the number of annual articles

increased to 209. Since then, the number has continued to rise,

reaching 1813 publications in 2022 (or 906.5% of the articles in

2008). The active interest and intensive efforts from worldwide

research communities in the past ten years have led to the

enormous growth of this field, which is supported by a significant

increase in the number of related publications. The number of

articles published on this topic in the recent decade is more than

5.93 times in the first ten years since 2003. Furthermore, it is noted

that the percentage of annual intestinal microbiota-related

publications in the domain of inflammation research was

increasing gradually, starting from 2009, when an increase from

0.9%-0.11% was observed (Figure 2B). Therefore, the combination

of gut microbiota and inflammation as an immediate area of the

research focus has attracted significant attention from

scientists worldwide.

Among the retrieved documents, the research articles (6544,

52.36%) and reviews (4629, 37.04%) made up the majority, while

the others (10.60%) were conference papers, book chapters, short

surveys, notes, and editorials, etc. (Figure 3A). Journals were the

primary source of documents, accounting for 95.40% of all the

publications (Figure 3B). In terms of subject distribution

(Figure 3C), 8334 documents (66.69%) were related to Medicine,

2936 (23,49%) to Biochemistry, Genetics, and Molecular Biology,

2956 (23.65%) to Immunology and Microbiology, and 1204 (9.63%)

to Agricultural and Biological Sciences. Of the 26 languages

published, English was predominant (11857, 94.88%), followed by

Chinese (236, 1.89%). Other languages, like German, Russian,

French, etc., only covered less than 1% of publications (Figure 3D).

Due to the source type and language heterogeneity among the

retrieved documents, we set the inclusion criteria to limit

publications to only research articles written in English to

perform further analyses. Thus, papers of document types besides

research articles and papers written in other languages were

excluded (Figure 1). As a result, a total of 10479 English papers

were included for the following analyses.
Analysis of the most cited articles

Although many factors may influence the citation impact of

publications, it is widely regarded as a vital evaluation index for

scientific documents. Table 1 presents the 20 most commonly cited

papers between 2003 and 2022 (30–49). “Metabolic endotoxemia

initiates obesity and insulin resistance,” published in Nature by

David L.A. et al., was the most frequently cited article (5975 times)

(30). In addition, the top journals were represented among the most
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cited articles in this field. Of the 20 most cited papers, four were

published in Nature, and three were published in Proceedings of the

National Academy of Sciences of the United States of America

(PNAS), two from NEJM and two from Cell, respectively.
Contribution of author performance

A total of 36335 different authors contributed to the 10479

papers included in this study. Further analysis revealed that the 722

most prolific authors who published ten articles or more accounted

for 2.0% of all contributors. We created a historical map of the

related publications and authors in the format of a bubble chart.

This chart demonstrated the 20 most productive authors by year, as

shown in Figure 4. Since 2003, Sartor R. Balfour, Colombel Jean

Frederick, and Shanahan Ferguson have been pioneers in exploring

the field of gut microbiota and inflammation, but at that time there

were relatively few related papers on this topic. After a 5-year

significant increase from 2007 to 2012, this emerging field witnessed
Frontiers in Immunology
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explosive publication growth from 2013. More specifically, Xavier

Ramnik J. group led in the total number of publications (73 papers),

followed by Sokol Harry (67), Sartor R. Balfour (50), Colombel

Jean-Frederic (49), and Huttenhower Curtis (42).

The citation of the 234 most prolific authors with at least twenty

publications was quantified and subjected to analysis, while the top 10

authors with the most published papers and the top 10 most cited

authors on gut microbiota and IBD from 2003 to 2022 were presented

in Table 2. Xavier, Ramnik J. led in the first place (19787 cited),

followed by Sokol, Harry (13933) and Huttenhower, Curtis (11575). In

addition, Xavier, Ramnik J. had the most citations (19787) among the

top 20 most cited authors, followed by Sokol, Harry (13933) and

Knight, Rob (12811). The 234 most prolific authors were also

integrated into collaborative networks, as shown in Figure S1. The

link thickness between any two authors indicates the extent of co-

authorships (collaboration). The clusters in Figure S1 revealed a strong

correlation between the number of publications produced by an author

and co-authorship. In other words, the more muscular the total link

strength of scientific collaboration, the more authored publications.
FIGURE 1

Flow diagram of the literature selection process in this study.
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Contribution of journal production

The retrieved articles were published in 1977 different academic

journals. Table 3 presents the top 20 active journals publishing

articles on intestinal microflora and IBD, which produced 3269

articles (31.1%). Among them, Inflammatory Bowel Diseases took

the leading position with 324 papers, followed by Frontiers in

Immunology (301) and Nutrients (259). These three journals

issued 8.5% of the total publications. According to IF, Nature

Reviews Gastroenterology and Hepatology held the top position by

an overwhelming high value of 65.1, owing to its excellent

specialization in this field. In addition, Bradford’s law of

scattering was applied here to reveal the distribution of the

scientific literature in the research on gut microbiota and

inflammation. Bradford zones acted as concentric zones of

publication productivity with decreasing correlation, while each

zone involved a similar number of articles. As shown in Table 4 and

Figure S4, a total of 1977 journals were distributed in 3 Bradford’s

zones in the field of gut microbiota and IBD. The average number of

articles in each zone was 3493.

The number of citations also indicates the power and authority

of journals in the field. Citation analysis of 380 journals with

minimum productivity of 5 publications was presented in

Figure 5A. Articles on gut microbiota and IBD published in Gut
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received the highest number of citations (28430), while those

published in Nature (25407) and Inflammatory bowel disease

(23871) ranked second and third, respectively. The dot size is

proportionate to the number of citations, with yellow indicating

higher average citations and blue indicating lower average

citations (Figure 5A).

Analyzing the top 20 most cited journals by year provided

further insight into the level of journals directed to topic interest in

Figure 5B. It was apparent that the journal citations have increased

enormously, based on the great concentration in this area from

2008, which was consistent with patterns shown in Figure 1. Among

the top 20 most cited journals, the quantity of publications

regarding intestinal microflora and IBD has exhibited a consistent

upward trend from 2003 to 2022. Frontiers in Immunology,

Nutrients, and Frontiers in Microbiology experienced the most

significant surge, demonstrating the most published research

topics in intestinal microflora and IBD between 2003-2022.
Global contribution and leading
countries/regions

The geographical distribution of research productivity from 217

countries/regions on six continents was presented in Figure 6. In the
B

A

FIGURE 2

Global trends in the number of published articles related to gut microbiota and IBD over the past two decades from 2003 through 2022. (A) annual
and accumulated publications of intestinal microbiota and IBD; (B) the percentage of intestinal microbiota-related publications in the IBD research.
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map, the darker blue color represented countries/regions with the

higher productivity of gut microflora and IBD articles. The intensity

of the color is directly proportional to the quantity of publications.

Among the most productive countries, the United States (US)

contributed most to the research productivity (9196 publications),

followed by China (5587), Italy (2305), the United Kingdom (1806),

and France (1740). International collaboration of active countries/

regions was also assessed and presented in a network visualization

map (Figures 6, S2). The thickness of the link between any two

countries/regions indicated the strength of collaboration, while the

density of the threads assigned for that country/region indicated the

extent of international collaboration. The network visualization

map shows that the most vigorous collaboration was between the

US and China. With the densest line, the US implied the greatest

extent of international collaboration with 80 countries/regions due

to the wide range of its publications. From the cluster analysis in the

map, countries/regions such as the US and Canada were observed in

a close cluster, while Germany, Sweden, and Denmark were found

in another close cluster. The ranking of production and national

collaborations between the corresponding author’s countries are
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shown in Table S1. Citations analysis for countries in Table S2

showed that the US had been the most highly cited globally.
Contribution of academic institutions

Table 5 lists the top 20 prolific institutions publishing papers on

gut flora and IBD. Harvard Medical School ranked first in

productivity with 336 scientific publications, followed by the

University of California (274) and University College Cork (208).

The 20 most active institutions are primarily in North America,

with 10 in the US and 4 in Canada. The other six institutions are

widely distributed in Europe (Ireland, Belgium, Denmark), Oceania

(Australia), and Asia (China). The analysis of 277 organizations

with high citations of more than 1000 times is shown in Figure S3.

The Division of Biology, California Institute of Technology,

Pasadena, CA, United States received the highest citation number

(7833 citations), while the FAS Center for Systems Biology, Harvard

University, Cambridge, MA, in the United States (6599) and

Laboratory of Microbiology, Wageningen University Wageningen
B

C D

A

FIGURE 3

General information of retrieved 10479 publications on gut microbiota and IBD. (A) Document type distribution; (B) Source type distribution;
(C) Subject distribution; (D) Language distribution.
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in Netherlands (6272) were in the second and third

place, respectively.
Analysis of research interests in terms
of frequency

This thematic analysis was performed on the terms that

appeared in the information sources of retrieved publications

from 2003-2022. The terms were mainly from the title, abstract,
Frontiers in Immunology 0759
and keyword fields of academic literature, representing the authors’

main concepts and research interests for communication. A density

visualization map is used to display which terms occur more often

and how the terms interconnect (Figure 7). The larger the character

fonts, the more frequently the terms are applied. A total of 525

terms that occurred more than 100 times were presented and

divided into three groups with their interconnections. As a result,

terms such as inflammatory bowel disease(IBD) were by far the

most prevalent (8168 times), followed by patient (3202), gut

microbiota (2651), microbiota (2346), and inflammation (2210).
TABLE 1 Top 20 most cited articles on gut microbiota and IBD from 2003 to 2022.

SCR Authors Title Year Journals Citations

1st David et al. Diet rapidly and reproducibly alters the human gut microbiome 2014 Nature 5975

2nd Kaper et al. Pathogenic Escherichia coli 2004 Nat Rev Microbiol 3500

3rd Round et al. The gut microbiota shapes intestinal immune responses during health and disease 2009 Nat Rev Immunol 3402

4th Frank et al. Molecular-phylogenetic characterization of microbial community imbalances in human
inflammatory bowel diseases

2007 PNAS 3341

5th Lozupone
et al.

Diversity, stability and resilience of the human gut microbiota 2012 Nature 3247

6th Sokol et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut
microbiota analysis of Crohn disease patients

2008 PNAS 3034

7th Guarner
et al.

Gut flora in health and disease 2003 Lancet 2528

8th Clemente
et al.

The impact of the gut microbiota on human health: An integrative view 2012 Cell 2405

9th Cho et al. The human microbiome: At the interface of health and disease 2012 Nat Rev Genet 2185

10th Abraham
et al.

Inflammatory bowel disease 2009 NEJM 2184

11st Gevers et al. The treatment-naive microbiome in new-onset Crohn’s disease 2014 Cell Host and
Microbe

2025

12nd O’Hara
et al.

The gut flora as a forgotten organ 2006 EMBO Reports 1948

13rd Lynch et al. The human intestinal microbiome in health and disease 2016 NEJM 1861

14th Morgan
et al.

Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment 2012 Genome biology 1828

15th Khor et al. Genetics and pathogenesis of inflammatory bowel disease 2011 Nature 1765

16th Mazmanian
et al.

A microbial symbiosis factor prevents intestinal inflammatory disease 2008 Nature 1746

17th Manichanh
et al.

Reduced diversity of fecal microbiota in Crohn’s disease revealed by a metagenomic approach 2006 Gut 1683

18th Round et al. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal
microbiota

2010 PNAS 1617

19th Roberfroid
et al.

Prebiotic effects: Metabolic and health benefits 2010 British Journal of
Nutrition

1510

20th Elinav et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis 2011 Cell 1493
f

SCR, standard competition ranking; PNAS, Proceedings of the National Academy of Sciences of the United States of America; NEJM, New England Journal of Medicine; Nat Rev Microbiol,
Nature Reviews Microbiology; Nat Rev Immunol, Nature Reviews Immunology; Nat Rev Genet, Nature Reviews Genetics; IF, impact factor.
*Data extracted from Journal Citation Reports, Thomson Reuters, 2022.
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B

A

FIGURE 4

Bubble diagram depicting the influence of authors. (A) Top 10 authors with the highest citations; (B) Annual publication count and citation
frequency. Larger shapes display more publications, and darker blue displays more citations.
TABLE 2 Top 10 prolific authors and top 10 most cited authors on gut microbiota and IBD from 2003 to 2022.

Rank Author H-index G-index M-index TC NP PY start

1st Xavier Ramnik J. 48 73 2.824 19787 73 2007

2nd Sokol Harry 39 67 2.167 13933 67 2006

3rd Sartor R. Balfour 33 50 1.571 7791 50 2003

4th Colombel Jean Frederic 33 49 1.571 6200 49 2003

5th Shanahan Fergus 32 43 1.524 7425 43 2003

6th Huttenhower Curtis 35 42 2.692 11575 42 2011

7th Vermeire Séverine 26 38 1.368 5395 38 2005

8th Seksik Philippe 25 37 1.25 8427 37 2004

9th Kamm Michael A. 28 37 1.333 5703 37 2003

10th Neurath Markus F. 25 37 1.19 4972 37 2003

1st Xavier Ramnik J. 48 73 2.824 19787 73 2007

2nd Sokol Harry 39 67 2.167 13933 67 2006

3rd Knight Rob 24 33 2 12811 33 2012

4th Huttenhower Curtis 35 42 2.692 11575 42 2011

(Continued)
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Discussion

General research directions

IBD significantly impacts daily life and poses a significant risk for

the development of gastrointestinal malignancies (3). Due to its clinical
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refractory nature, treating IBD has become a prominent topic in

healthcare. However, the in-depth pathogenesis that accounts for

IBD has been largely debated. The role of commensal microbiota in

the onset and development of IBD has attracted increasing attention

(6). Aberrant microbiota community structure and dysbiosis of the

host’s microbiota may affect the gut’s immunological function and
TABLE 2 Continued

Rank Author H-index G-index M-index TC NP PY start

5th Mazmanian Sarkis K. 12 13 0.706 10381 13 2007

6th Gevers Dirk 19 20 1.462 8848 20 2011

7th Seksik Philippe 25 37 1.25 8427 37 2004

8th Marteau Philippe 19 22 0.95 7863 22 2004

9th Sartor R. Balfour 33 50 1.571 7791 50 2003

10th Round June L. 10 12 0.625 7599 12 2008
fro
TC, total cited; NP, number of publications; PY start, publication year start.
*Data extracted from Journal Citation Reports, Thomson Reuters, 2022.
TABLE 3 Top 20 prolific journals in publishing papers on intestinal microflora and IBD.

SCR Journals Documents % N=10497 IF 2022

1st Inflammatory Bowel Diseases 324 3.1% 4.9

2nd Frontiers in Immunology 301 2.9% 7.3

3rd Nutrients 259 2.5% 5.9

4th World Journal of
Gastroenterology

220 2.1% 4.3

5th Gut Microbes 196 1.9% 12.2

6th Frontiers in Microbiology 193 1.8% 5.2

7th Plos One 190 1.8% 3.7

8th International Journal of
Molecular Sciences

179 1.7% 5.6

9th Gastroenterology 139 1.3% 29.4

10th Gut 128 1.2% 24.5

11th Journal of Crohn’S and Colitis 100 1.0% 8.0

11th Scientific Reports 100 1.0% 4.6

13rd Current Opinion in
Gastroenterology

98 0.9% 2.5

14th Frontiers in Cellular and
Infection Microbiology

92 0.9% 5.7

15th Mucosal Immunology 85 0.8% 8.0

16th Digestive Diseases and Sciences 77 0.7% 3.1

17th Food and Function 76 0.7% 6.1

18th Frontiers in Pharmacology 74 0.7% 5.6

19th Nature Reviews Gastroenterology
and Hepatology

73 0.7% 65.1

20th Cells 67 0.6% 6.0
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immune homeostasis (50). As metabolites of gut microbiota, short-

chain fatty acid (SCFA) and bile acid have been shown to work on

immune homeostasis through cell signaling receptors or epigenetic

regulations (50, 51). The dysfunction of the intestinal barrier leading to

pathological bacterial translocation also contributes to IBD (1).

The perspective of intestinal microbiota may shed new light on

the investigation of IBD. Lifestyle and environmental factors could

modulate the gut microbiota composition and bacterial diversity

(52). Unhealthy dietary patterns result in microbiota dysbiosis,

which becomes the facilitator of IBD (4). Gut microbiota-related

approaches may have the potential to ameliorate IBD (7). Fecal

microbiota transplantation has been shown to have beneficial

effects, including alleviating colonic inflammation and promoting

the restoration of intestinal homeostasis through multiple immune-

mediated pathways (53). However, more in-depth investigations are

needed to reach a thorough understanding of the interplay between

intestinal microbiota and IBD.

Bibliometric analysis is a quantitative study of bibliographic

information, including authors, institutions, publication types, source

countries, funding and citation information, etc. (54). This approach

can assess the academic performance of journals, authors, or countries

and provide a comprehensive overview of a particular research domain.

This study aimed to present a complete picture of intestinal microbiota

and IBD research during the past two decades. The significance of gut

microbiota in IBD-related research was investigated using a
Frontiers in Immunology 1062
bibliometric method for the first time, and the scientific production

and global trends of this field were also evaluated.

As revealed in the results, since 2003, Sartor R. Balfour,

Colombel Jean Frederick, and Shanahan Ferguson have pioneered

the field of gut microbiota and inflammation study, which has

demonstrated sustained and exponential growth over the ensuing

two decades. Especially in the last few years, the annual number of

documents has been soaring since 2007, which coincides with the

launch of the HMP and MetaHIT projects (55, 56). In recent years,

gut microbiota research has been drawing increased attention to

provide a new perspective on many complicated issues, it also

accelerates the understanding of the origin and mechanism of IBD.

The steady growth in the percentage of intestinal microbiota-related

publications on IBD research indicates a promising future in

this domain.
Hotspots and Frontiers

Through the utilization of keyword cluster analysis and timeline

view, the current research hotspots pertaining to IBD and intestinal

flora can be primarily categorized into two aspects: the microscopic

mechanisms underlying IBD and its clinical treatment, with a

particular emphasis on exploring the inflammatory pathways

mediated by intestinal flora. The intestinal barrier and mucosal
BA

FIGURE 5

Citation analysis of journals. (A) Density map of 380 journals with a minimum productivity of 5 publications in this field. Journals with a higher
number of citations have a yellower spot. (B) Heatmap illustrated the publication volume distributions per year of the top 20 most cited journals. The
intensity of the blue hue is inversely proportional to the quantity of published papers, while the intensity of the red hue is directly proportional to the
quantity of published papers.
TABLE 4 Distribution of the journals in Bradford’s zones.

Bradford’s Zones Number of Journals % Journals Number of articles Bradford’s multiplier

1 29 1.4 3462

2 199 10.1 3492 1.80

3 1749 88.5 3525 1.68

Total number of journals = 1977
Average number of articles in each zone = 3493
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immunity play crucial roles in connecting gut microbiota with IBD.

The TNF-a, TLR4, and other signaling pathways, as well as the

metabolic mechanisms of intestinal flora such as SCFA, have

garnered increasing attention in recent years. In studies of gut

microbes associated with IBD, proteobacteria, and parabacteroides
Frontiers in Immunology 1163
were the most heavily investigated in the past two decades, which

have been reported in 287 and 154 articles, respectively, revealing

the research hotspots in this field. Human-centered clinical study is

experiencing steady growth and is poised to become a prominent

topic in this field.
TABLE 5 Top 20 prolific institutions in publishing papers on gut flora and IBD.

SCR Institution Documents Country % N=10497

1st Harvard Medical School 336 USA 3.2

2nd University of California 274 USA 2.6

3rd University College Cork 208 Ireland 2.0

4th University of Alberta 168 Canada 1.6

5th University of Toronto 163 Canada 1.5

6th University of Calgary 162 Canada 1.5

7th Baylor College of Medicine 139 USA 1.3

8th University of North Carolina at Chapel Hill 138 USA 1.3

9th Icahn School of Medicine at Mount Sinai 134 USA 1.3

10th Mcmaster University 133 Canada 1.3

10st University of Michigan 133 USA 1.3

12st University of Pennsylvania 124 USA 1.2

13rd Cornell University 121 USA 1.2

14th University of Chicago 114 USA 1.1

15th University of California San Diego 111 USA 1.1

15th University of Copenhagen 111 Danmark 1.1

17th Ghent University 109 Belgium 1.0

17th Jiangnan University 109 China 1.0

19th Zhejiang University 105 China 1.0

20th University of New South Wales 103 Australia 1.0
FIGURE 6

Trends in the publications on intestinal microbiota in IBD research involved 217 countries/regions over six continents. The interconnection among
nations signifies collaborative efforts.
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Existing limitations

This study solely focused on publications within the Scopus

database and did not encompass other databases, such as PubMed

and Web of Science, which may yield marginally distinct outcomes.

Despite being the largest peer-reviewed abstracts and citation database

globally, it is plausible that several papers on this topic may have been

published in journals not incorporated in Scopus. The other limitation

of our study, which is inherent to any bibliometric approach, is that we

did not examine individual article records beyond the random sample

used for verifying index accuracy. Instead, we relied on MEDLINE

indexes for classification purposes. Nevertheless, the manually verified

5% sample had a high level of accuracy; thus, we can confidently assert

that the results obtained through bibliometric analysis are valid.
Conclusions

This extensive bibliometric study provides researchers with a

global overview of academic trends, geographical distribution, and

collaboration patterns in the field of gut microbiota and IBD research

over the past 20 years. The comprehensive analysis and structured

data presented in this study benefit scientists in screening academic

interests and informing policymakers in developing policies related to

this topic. Furthermore, the results reveal the significant role of gut

microbiota in IBD and lay the groundwork for further explorations in

the future.
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Background: The gut microbiota plays a pivotal role in influencing various health

outcomes, including immune-mediated conditions. Granulomatosis with

Polyangiitis (GPA) is one such condition, and its potential associations with gut

microbiota remain underexplored.

Method: Using a two-sample Mendelian randomization approach, we

investigated the causal links between gut microbiota and GPA. We sourced our

data from multiple cohorts and consortiums, including the MiBioGen

consortium. Our study design incorporated both direct associations and

mediation effects of immune traits on the relationship between gut microbiota

and GPA.

Results:Our analysis revealed significant associations between 1 phylum, 1 family

9 genus microbiota taxa and GPA. Furthermore, we identified several immune

cell traits that mediated the effects of gut microbiota on GPA. For instance, the

family Defluviitaleaceae and genus Defluviitaleaceae UCG011 influenced GPA

through CD11c in granulocytes. The mediation effect proportions further

elucidated the complex dynamics between gut microbiota exposures, immune

markers, and their combined influence on GPA.

Conclusion: Our findings underscore the intricate relationship between gut

microbiota, immune markers, and GPA. The identified associations and

mediation effects provide valuable insights into the potential therapeutic

avenues targeting gut microbiota to manage GPA.

KEYWORDS

granulomatosis with polyangiitis, gut microbiota, immune cell, mediation analysis,
mendelian randomization
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Background

Granulomatosis with Polyangiitis (GPA), previously known as

Wegener’s granulomatosis, is a rare form of vasculitis primarily

impacting the respiratory tract and kidneys (1). Left untreated, GPA

can lead to organ damage and can be life-threatening (2). The

standard therapeutic approach involves immunosuppressive agents,

mainly corticosteroids coupled with drugs like cyclophosphamide

or rituximab (3). These therapy will bring side effect when have a

long term, some report showmore than 40%morbidity of side effect

(1). However, the recurrence rate remains a challenge, with many

patients experiencing disease flare-ups after achieving remission (4).

The genesis of GPA, although not fully elucidated, is believed to

be a combination of genetic and environmental triggers (5). Recent

genomic studies have identified several susceptibility loci associated

with GPA, highlighting inherited factors in its onset (6). Parallel to

the increasing understanding of genetic underpinnings of

autoimmune disorders, there has been a burgeoning interest in

the gut microbiota’s role in modulating immune responses (7). The

human gut is home to trillions of microbes that play a pivotal role in

maintaining gut homeostasis, influencing metabolic processes, and

modulating the immune system. Emerging evidence suggests that

gut microbial dysbiosis can lead to aberrant immune responses,

thereby suggesting its potential role in GPA pathogenesis.

Mendelian randomization (MR) analysis offers a unique approach

to discerning causal relationships in observational data by leveraging

genetic variants as instrumental variables (8). This method is

particularly powerful in delineating the role of gut microbiota in

disease pathogenesis, as it can minimize confounding and reverse

causation, inherent limitations in conventional observational studies.

Moreover, the immune system, with its myriad of cell types and

signaling pathways, plays a central role in the pathogenesis of GPA.

By analyzing a comprehensive set of 731 immune cell traits, there’s an

opportunity to pinpoint specific immune pathways or cells that act as

mediators between gut microbial composition and the onset or

progression of GPA.

In conclusion, this study aims to bridge the knowledge gap

between gut microbiota, immune modulation, and the pathogenesis

of GPA. By leveraging advanced genetic techniques and a

comprehensive analysis of immune cell traits, the research seeks

to shed light on potential therapeutic targets and provide a deeper

understanding of GPA’s intricate etiology, which will be useful in

prevention, morbidity, recur and low side effect by intervening gut

microbiota taxa and immune cell.
Method

Study design

In our study, we employed a two-sample Mendelian

randomization approach (9) to investigate the possible causal

links between gut microbiota and Granulomatosis with

Polyangiitis (GPA). To deepen our understanding of the

mediation by immune traits, we adopted a two-step (network)
Frontiers in Immunology 0268
MR strategy (10). The study’s design and progression are illustrated

in Figure 1.
Data sources

Our research utilized data from multiple cohorts and

consortiums to investigate the links between gut microbiota and

GPA. The pivotal gut microbiota data for our investigation was

sourced from the MiBioGen consortium (11). The MiBioGen

consortium serves as a vast database, diligently compiling and

analyzing genome-wide genotypes alongside 16S fecal

microbiome data. This rich dataset includes 18,340 participants

from 24 unique cohorts. Impressively, a major chunk of this data,

specifically 14,306 participants, comes from 18 European-descent

cohorts. The consortium has made thorough adjustments for

variables such as sex, age, and genetic principal components

(PCs). Additionally, incorporated alpha diversity indices and

technical covariates, including DNA isolation methods and

genotyping platforms. Quality control measures, such as minor

allele frequency (MAF) and the removal of outliers, were also

implemented. It’s worth noting, however, that while diet,

medication (including PPIs and antibiotics), and lifestyle are

acknowledged influencers of the microbiome, they were not

incorporated into our analysis. More detail information provided

in Supplementary Table 1.

For GPA, data was extracted from the FinnGen R9 GWAS,

comprising 413 cases and 365,533 controls, also used sex, age,

genotyping batch and ten PCs as covariates to adjust (12). To further

understand the genetic intricacies of immune functions, we integrated a

dataset from Orrù V et al. This dataset offers insights into 731 immune

cell traits, derived from an analysis of over 3,000 participants (13). To

maintain uniformity, all study participants are of European descent,

with comprehensive details provided in Supplementary Table 1.
SNP selection

The validity of an MR analysis hinges on three core premises

(Figure 2): a) Instrumental variables (IVs) should be free from

confounding; b) There should be a strong link between IVs and the

exposure; c) IVs should influence the outcome exclusively through the

exposure. Our initial step was to pick single nucleotide polymorphisms

(SNPs) from the GWAS summary data related to exposures. Only

those exposures that had a genome-wide significant association (p <

5 × 10^−8) with the traits were chosen as IVs. Given the limited

number of IVs, we relaxed the significance level to 5 × 10^−5 to avoid

potential errors from a limited SNP pool. For the mediation analysis,

we adjusted the significance levels based on the count of selected SNPs

being more than 20. We then employed linkage disequilibrium

clumping to exclude specific SNPs that weren’t desirable (r^2 > 0.01,

window size < 10,000 kb) (14). Subsequently, we synchronized the

datasets for exposure and outcome, and eliminated palindromic SNPs

with allele frequencies close to 0.5. The chosen SNPs are elaborated in

Supplementary Table 2.
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To ensure the reliability of the genetic tools for exposures, we

determined the F statistic using the given formula: F = R^2 × [(N –

1 − k)/k] × (1 − R^2). Here, R^2 denotes the total variance

explained by the chosen SNPs, N represents the sample size, and

k stands for the number of SNPs considered. An F statistic above 10

suggests adequate strength, mitigating concerns of weak instrument

bias in the two-sample approach (15).
Frontiers in Immunology 0369
Statistical analysis strategy

We conducted a bidirectional two-sample MR analysis to assess

the connection between gut microbiota and GPA. Our main

analysis employed the inverse variance-weighted (IVW) meta-

analysis method, a well-established technique for MR studies (16).

According to taxonomic classification levels, we use Bonferroni
FIGURE 2

Mendelian randomization assumption.
FIGURE 1

Mendelian randomization analysis flow chart.
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correction respectively. To enhance the reliability of our findings,

we also performed additional analyses using the weighted median

(17) and MR-Egger regression methods (18). We evaluated the

potential influence of directional pleiotropy by examining the

intercept value in the MR-Egger regression (19). The MR

PRESSO was utilized to detect pleiotropy and outliers. We gauged

heterogeneity using Cochran’s Q test (20). When faced with

heterogeneity, we chose a random-effects IVW for our primary

analysis. All statistical analyses were conducted using the R

software, version 4.3.1. For our Mendelian randomization

approach, we utilized the “TwoSampleMR” package available in

R. This package facilitated the harmonization of our datasets and

the execution of various MR methods, ensuring robust and

consistent results. For generating visual representations of our

findings, we employed Python-based plotting libraries.
Result

Two sample Mendelian randomization
analysis between microbiota and GPA

Utilizing Mendelian randomization, we delved into the

associations between specific gut microbiota taxa and

Granulomatosis with Polyangiitis (GPA). As Figure 3 show

Phylum Firmicutes emerged with a positive association to GPA

(OR = 1.68, 95% CI: 1.19-2.37, p-value = 0.003). Genus

Ruminococcus torques illustrated a protective effect (OR = 0.6,

95% CI: 0.41-0.88, p-value = 0.010). Genus Desulfovibrio and
Frontiers in Immunology 0470
Genus Lactococcus were linked positively to GPA, presenting

ORs of 1.44 and 1.31, respectively. Conversely, Genus

Eubacterium oxidoreducens, Family Defluviitaleaceae, and Genus

Defluviitaleaceae UCG011 showcased protective roles, with

respective ORs. Other significant taxa such as Ruminococcaceae

UCG0 0 4 , R um i n i c l o s t r i d i um5 , P r e v o t e l l a 9 , a n d

Phascolarctobacterium further elucidated the intricate relationship

between the gut microbiota and GPA.

After Bonferroni correction, Phylum Firmicutes(p-

value=0.029) still be significant. The variability in GPA explained

by these taxa, represented by R^2 values, spanned from 4.56% to

8.82% (Supplementary Table 3). Furthermore, the robustness of our

instruments was evident from the F-statistics, which consistently

hovered between 18.95 and 19.98. Critically, our results

demonstrated an absence of heterogeneity and pleiotropy.

Sensitivity tests, such as MR Egger and Weighted Median (WM),

most of them supported the primary outcomes, showcasing

consistent directions. MR PRESSO analysis show no outlier and

pleiotropy (Supplementary Table 3).

In our assessment through Phenoscanner, none of the included

SNPs demonstrated a significant association with infections,

autoimmune conditions, or antibiotic use. In reverse MR analysis,

There no significant result can be found (Supplementary Table 4).
Mediator screening

In our study aimed at identifying potential mediators, we

initially selected 731 immune cell traits to investigate their effects
FIGURE 3

Mendelian randomization analysis between Microbiota and Granulomatosis with Polyangiitis. This plot visualizes the association between microbial
exposures and Granulomatosis with Polyangiitis (GPA). Each point denotes the Odds Ratio (OR) for the exposure. Horizontal lines represent the 95%
confidence intervals. The vertical dashed line at OR=1 serves as a reference for no effect. Annotations provide the OR value and p-value for
statistical significance.
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on GPA. In our analysis examining the association between these

immune cell traits and GPA, we found several significant

relationships (Figure 4). The percentage of naive-mature B cells

in lymphocytes was associated with a decreased risk (OR = 0.92, p =

0.0441). Similarly, the absolute count of CD11c+ HLA DR++

monocytes, CD33- HLA DR- cells, and central memory CD4-

CD8- T cells were linked with odds ratios of 1.07 (p = 0.0242),

1.09 (p = 0.0108), and 0.85 (p = 0.0094) respectively. Notably, the

presence of HLA DR on CD14+ monocytes exhibited a more than

twofold increased risk (OR = 2.43, p = 0.0010). Other significant

associations included exposures such as CD25 on naive-mature B

cells (OR = 1.25, p = 0.0396) and CD11c on granulocytes (OR =

0.72, p = 0.0017), among others. These findings highlight the

intricate relationship between specific cellular markers and GPA,

providing a foundation for further mediation analyses. In

pleiotropy analysis (Supplementary Table 5), we find two result

show the significant pleiotropy, including HLA DR on CD14+

CD16- monocyte and HLA DR on CD14+ monocyte. So, we use

MR-Egger result as primary result. In heterogeneity analysis, there

are a result show the heterogeneity in HLA DR on CD33+ HLA

DR+ CD14-, we used random IVW as primary analysis.

Following our examination of the influence of immune cell traits

on GPA, we further explored the potential mediation effects of gut
Frontiers in Immunology 0571
microbiota exposures on these significant mediators (Figure 5). Our

analysis yielded several noteworthy findings. The family

Defluviitaleaceae and genus Defluviitaleaceae UCG011 were both

observed to influence GPA through their impact on CD11c in

granulocytes, with effect sizes of 0.13 (p = 0.0256 and p = 0.0289,

respectively). Genus Desulfovibrio showcased a notable mediation

effect on GPA via three different mediators: CD33- HLADR- Absolute

Count (b = 0.43, p = 0.0492), HLADR on CD14+ CD16-monocyte (b
= 0.11, p = 0.0358), and HLA DR on CD14+ monocyte (b = 0.11, p =

0.0402). Genus Eubacterium oxidoreducens demonstrated a negative

mediation effect through HLA DR on both CD14+ CD16- monocyte

and CD14+ monocyte, with effect sizes of -0.11 (p = 0.0264 and p =

0.0297, respectively). Several other genera, including Lactococcus,

Phascolarctobacterium, Ruminiclostridium5, Ruminococcaceae

UCG004, and Ruminococcus torques, also displayed varying

mediation effects through a range of immune cell traits. These

results underline the complex interplay between gut microbiota

exposures and specific immune markers in influencing GPA,

offering a deeper understanding of the pathways involved. There no

significant heterogeneity were shown in analysis (Supplementary

Table 6). The MR-Egger show significance while there were

significant pleiotropy in three result including genus

Desulfovibriogenus, Phascolarctobacterium, Ruminiclostridium5.
FIGURE 4

Mendelian randomization analysis between Mediator and Granulomatosis with Polyangiitis. The volcano plot visually illustrates the associations
between cellular exposures and GPA. The x-axis represents the adjusted Log OR, indicating the direction and strength of the association, while the
y-axis showcases the -Log10(p-value) for significance levels. Exposures are color-coded, with red dots signifying significant associations (p-value <
0.05) and grey dots denoting non-significant relationships. The plot also includes reference lines that mark OR thresholds of 1.2/0.83 and a p-value
of 0.05.
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Multivariable MR and mediation analysis

After pinpointing significant mediators influencing GPA and

the subsequent effects of exposure on mediation, we quantified the

mediation effect proportions. This entailed calculating the indirect

effect, derived from the total effect minus the direct effect, with the

direct effect assessed based on the immediate influence of the gut

microbiota, adjusting for the mediator in the Multivariable

Mendelian Randomization (MVMR) analysis (Supplementary

Table 7). Specifically, as the Figure 6 show the family

Defluviitaleaceae and the genus Defluviitaleaceae UCG011

mediated their effects on GPA through CD11c on granulocytes

with proportions of 14.45% and 30.83%, respectively. The genus

Desulfovibrio exhibited mediation effects via CD33- HLA DR-

Absolute Count (2.01%), HLA DR on CD14+ CD16- monocyte

(4.76%), and HLA DR on CD14+ monocyte (35.10%). Eubacterium

oxidoreducens channeled its effects through HLA DR on CD14+

CD16- monocytes (17.63%) and HLA DR on CD14+ monocytes

(40.10%). Other notable mediations include Lactococcus via CD28

on CD39+ secreting CD4 regulatory T cell (13.76%),

Phascolarctobacterium through CD38 on IgD- CD38+ B cell

(21.60%), Ruminiclostridium5 via CD33- HLA DR- Absolute

Count (15.92%), Ruminococcaceae UCG004 through Central

Memory CD4-CD8- T cell Absolute Count (6.14%), and

Ruminococcus torques via CD62L on monocyte (11.94%). These

proportions underscore the intricate dynamics between specific gut

microbiota exposures, their mediators, and their cumulative impact

on GPA.
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Discussion

The intricate relationship between the gut microbiota and

immune-mediated diseases has been a topic of burgeoning

interest in recent years. The microbiome and immune system

share a complex relationship, influencing health and disease.

Disruptions in this balance can lead to immune disorders (21,

22). Our study, which delved into the associations between specific

gut microbiota taxa and GPA using Mendelian randomization, has

provided compelling insights into this complex interplay. The

phylum Firmicutes, genus Desulfovibrio, genus Lactococcus,

genus Ruminiclostridium5, and genus Phascolarctobacterium

have been found to be positively associated with GPA. This

suggests that an increased abundance of these taxa might be

linked to a higher risk of developing GPA. The genus

Ruminococcus torques, genus Eubacterium oxidoreducens, family

Defluviitaleaceae, genus Defluviitaleaceae UCG011, genus

Ruminococcaceae UCG004, and genus Prevotella9 show a

negative association with GPA. This indicates that these taxa

might have a protective effect against the disease.

Notably , an enrichment of potent ia l pathobionts

(Enterobacteriacee and Streptococcaceae) was found in

Eosinophilic Granulomatosis with Polyangiitis (23)., particularly

in patients with active disease, while lower levels were found in

patients on immunosuppression, compared with non-

immunosuppressed ones. Significantly lower amounts of hexanoic

acid were found in patients, compared to controls. The analysis of

the immune response in the gut mucosa revealed a high frequency
FIGURE 5

Mendelian randomization analysis between Microbiota and Mediator.
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of IFN-g/IL-17-producing T lymphocytes, and a positive correlation

between EGPA disease activity and intestinal T-cell levels.

Metagenomic sequencing demonstrated that this dysbiosis in

active GPA patients is manifested by increased abundance of S.

aureus and a depletion of S. epidermidis, further demonstrating the

antagonist relationships between these species (24). SEED

functional protein subsystem analysis identified an association

between the unique bacterial nasal microbiota clusters seen

mainly in GPA patients and an elevated abundance of genes

associated with chorismate synthesis and vitamin B12 pathways.

The richness and diversity of gut microbiota were reduced in AAV

patients with kidney injury, and the alteration of gut microbiota

might be related with the severity of kidney injury of AAV patients

(25). All of these result show the significance between gut

microbiota and immune, inflammation disease.

Gut microbiota can affect disease through immune cell or

immune target. Several studies indicate that the gut microbiota

can influence antitumor immunity and the effectiveness of cancer

immunotherapies, particularly immune checkpoint inhibitors (26).

Also. the gut microbiota affects tumor immunity by interacting with

various immune cells. In the context of COVID-19, research has

found a correlation between gut microbiota composition and

disease severity (27), with harmful microbes linked to severe

outcomes and beneficial ones to milder responses. The gut

microbiota also plays a role in brain immunity, potentially

influencing neurodegenerative diseases like Alzheimer’s (28).

Imbalances in the gut can exacerbate Alzheimer’s symptoms due

to impacts on intestinal and blood-brain barriers. External factors

like diet and age can amplify these effects. Modifying the gut

microbiota through dietary changes, probiotics, or fecal
Frontiers in Immunology 0773
transplants may provide therapeutic avenues for Alzheimer’s. A

research observing significant shifts in both gut microbiota and

immune cell populations (29). Analysis revealed consistent

associations between specific gut bacteria and immune cell

dynamics in cancer patients. The findings emphasize the

considerable influence of the gut microbiota on systemic immune

cell behavior, highlighting a quantifiable link between the two with

potential therapeutic implications These relationship not only

appear in innate immune (30), but also adapted immune (31).

In current study, the activation of immune cell, especially in

granulocytes, cause the inflammation factor release, which cause

GPA (32). Our mediation analysis find some immune cell trait can

participate the effect of microbiota on GPA. As our result show that

both the family Defluviitaleaceae and its genus Defluviitaleaceae

UCG011 show mediation through CD11c on granulocytes. CD11c

is an integrin commonly expressed on dendritic cells and is involved

in various immune responses (33). The substantial mediation

proportion, especially for the genus Defluviitaleaceae UCG011,

suggests that this integrin might play a significant role in how

these microbiota taxa influence GPA. HLA-DR is a major

histocompatibility complex class II cell surface receptor, and its

expression on monocytes indicates an activated state. The genus

Desulfovibrio and Eubacterium oxidoreducens both show

mediation through HLA-DR on different monocyte subsets (34).

This suggests that these microbes might influence GPA by

modulating monocyte activation and subsequent immune

responses. The genus Lactococcus shows mediation through

CD28 on a specific subset of regulatory T cells. CD28 is crucial

for T cell activation, and its role in regulatory T cells suggests a

potential modulation of immune tolerance (35). This could imply
FIGURE 6

Mediation analysis of immune cell trait between Microbiota and Granulomatosis with Polyangiitis.
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that Lactococcus might influence GPA by affecting T cell-mediated

immune regulation. The genus Phascolarctobacterium mediates its

effect through CD38 on a specific B cell subset. CD38 is a

multifunctional enzyme involved in calcium signaling and can

influence B cell activation and differentiation (36). This suggests a

potential role of B cell-mediated immunity in the relationship

between this microbe and GPA. The genus Ruminococcaceae

UCG004 shows mediation through central memory T cells, which

play a crucial role in long-term immune protection. This could

indicate that this microbe might influence GPA by modulating

adaptive immune responses. The genus Ruminococcus torques

mediates its effect through CD62L on monocytes. CD62L is

involved in cell trafficking, and its expression on monocytes can

influence their migration to inflammation sites (37).

Gut microbiota have several way to affect the immune system,

include metabolites, Microbial components like LPS, produce

immune mediator directly, influence the intestinal barrier et al

(38). The gut microbiota synthesizes a vast array of metabolites,

including but not limited to short-chain fatty acids (SCFAs) pivotal

for immune modulation; tryptophan derivatives like indole, which

interact with aryl hydrocarbon receptors; secondary bile acids

influencing lipid metabolism; polyamines with anti-inflammatory

properties; vitamins vital for immune function; immune-

stimulating molecules like lipopolysaccharide (LPS); gases such as

hydrogen sulfide (H2S) that serve as signaling molecules; and

neuroactive compounds that bridge gut-brain communication

(39). In Our study, Desulfovibrio mainly utilize the dissimilatory

sulfate reduction pathway for energy conversion by using hydrogen

or organic compounds to reduce sulfate or oxidized sulfur

compounds resulting in the production of H2S (40, 41). H2S

exhibits both pro-inflammatory and anti-inflammatory effects,

depending on its concentration, cellular context, At low to

moderate concentrations, H2S can possess anti-inflammatory

properties (42). Conversely, in certain conditions, high

concentrations of H2S can promote inflammation. As our result

of Desulfovibrio increase the monocyte, H2S can active the

monocyte and induces the synthesis of proinflammatory

cytokines (43). Lactococcus primarily ferments sugars to produce

lactic acid (44). Study find that regulator T cell can take up lactic

acid, which will active the treg cell and increase the anti-

inflammation effect of Treg through enhance PD-1 expression

(45). Members of Ruminococcaceae are known for fermenting

dietary fibers and producing SCFAs, primarily butyrate. Butyrate

is an essential energy source for colonocytes (colon cells) and

possesses anti-inflammatory properties (46). These SCFAs can

increase proportion of double-negative T cells (CD4−CD8−,

DNTs) (47), which can as regulatory T cells that are able to

prevent immune related diseases (48). A surprisingly small

number of organisms, dominated by Eubacterium appear to be

responsible for the major fraction of butyrate production (49).

Butyrate has been shown to possess anti-inflammatory properties, it

can regulate human monocyte, decrease the IL-12 and up-

regulation of IL-10 production (50). Also it can inhibits

functional differentiation of human monocyte (51). Together,

these metabolites illustrate the profound and multifaceted
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influence of microbial metabolism on host immunity and

overall health.

Our research stands out due to its comprehensive methodology,

integrating multiple rigorous analyses to delve into the associations

between gut microbiota and GPA. The consistency of our findings

across various methods, including the weighted median, MR-Egger,

and the primary IVW, lends robustness to our conclusions. The

application of the MR-PRESSO strategy further bolsters the

credibility of our results by detecting and rectifying potential

outliers, ensuring a reduced bias. Also, none of the included SNPs

show a significant association with infections, autoimmune

conditions, or antibiotic use, all of which can potentially impact

GPA. A hallmark of our study is the detailed exploration of specific

gut microbiota genera and their associations with GPA. While

certain associations lost their statistical significance post

adjustments for multiple testing, our inclination leans towards

identifying more potential associations, even at the risk of some

false positives. They provide intriguing insights into potential

biological interactions. The uniformity in our study samples,

predominantly of European descent, ensures a minimized bias

due to population variations.

However, our study is not without its limitations. The primary

constraint is the heavy reliance on European population data, which

might introduce certain biases and restrict the broader applicability

of our findings to other ethnic groups. Additionally, the lack of

individual-level data curtailed our exploration into more intricate

relationships, potentially overlooking non-linear associations

between the gut microbiota, immune cell traits, and GPA. As a

result, specific association patterns, such as U-shaped or J-shaped

relationships, might have been overlooked.

In conclusion, our study underscores the pivotal role of gut

microbiota in modulating immune responses and their potential

implications in GPA. The identified associations and mediation

effects pave the way for future research, emphasizing the

importance of the gut-immune axis in health and disease.

Potential therapeutic interventions targeting the gut microbiota

could be explored as novel strategies for managing GPA and

other related conditions.
Future research

The recent findings highlighting the mediation effects of

immune cell traits between gut microbiota and GPA open a

plethora of avenues for future research. A deeper mechanistic

exploration into these mediators, such as the role of CD11c on

granulocytes in relation to the family Defluviitaleaceae, could refine

therapeutic strategies. Longitudinal studies would offer insights into

the evolving interplay between gut microbiota, immune cell traits,

and GPA progression, distinguishing causative from correlative

associations. Validating these associations through functional

assays in animal models and exploring dietary or probiotic

interventions could pave the way for novel therapeutic

approaches. Additionally, broadening the scope to other microbial

taxa, considering environmental and genetic interactions, and
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leveraging advanced sequencing techniques could provide a holistic

understanding of GPA pathogenesis. Stratifying GPA patients based

on clinical parameters and conducting global studies would further

ascertain the universality of these findings. In essence, the intricate

relationships unveiled between specific gut microbiota exposures,

their mediators, and GPA underscore the need for comprehensive

research to harness these insights for clinical advancements.
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Akkermansia muciniphila is a gram-negative anaerobic bacterium, which

represents a part of the commensal human microbiota. Decline in the

abundance of A. muciniphila among other microbial species in the gut

correlates with severe systemic diseases such as diabetes, obesity, intestinal

inflammation and colorectal cancer. Due to its mucin-reducing and

immunomodulatory properties, the use of probiotics containing Akkermansia

sp. appears as a promising approach to the treatment of metabolic and

inflammatory diseases. In particular, a number of studies have focused on the

role of A. muciniphila in colorectal cancer. Of note, the results of these studies in

mice are contradictory: some reported a protective role of A. muciniphila in

colorectal cancer, while others demonstrated that administration of A.

muciniphila could aggravate the course of the disease resulting in increased

tumor burden. More recent studies suggested the immunomodulatory effect of

certain unique surface antigens of A. muciniphila on the intestinal immune

system. In this Perspective, we attempt to explain how A. muciniphila

contributes to protection against colorectal cancer in some models, while

being pathogenic in others. We argue that differences in the experimental

protocols of administration of A. muciniphila, as well as viability of bacteria,

may significantly affect the results. In addition, we hypothesize that antigens

presented by pasteurized bacteria or live A. muciniphilamay exert distinct effects

on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin

barrier and exerts combined effects with other bacterial species in either

promoting or inhibiting cancer development.

KEYWORDS

intestinal inflammation, colorectal cancer, mucin-reducing bacteria, Akkermanisa
municiphila, probiotic
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Introduction

Gut microbiota plays an important role in maintaining

intestinal homeostasis. Among a huge variety of gut colonizing

bacteria, Akkermansia muciniphila (A. muciniphila) deserves

special attention. A. muciniphila is a non-motile gram-negative

mucin-degrading bacterium of the phylum Verrucomicrobiota first

isolated from human faeces by Derrien et al. (1, 2). A strict

anaerobe, A. muciniphila adapted to living in human intestine by

producing mucin-degrading enzymes (a- and b-D-galactosidase, a-
L fucosidase and other) to utilize mucins as a source of nitrogen and

carbon (3, 4). In mucin-depleted culturing conditions A.

muciniphila is capable of switching to glucose-driven glycolysis

(5), thus utilizing the excess of glucose. Also, it was demonstrated

that A. muciniphila utilizes circulating host lactate and urea (6),

reshaping host systemic metabolism.

A. muciniphila is localized mostly in the colon mucus layer of

healthy individuals with relative abundance of 3% (7).

Akkermansia-like sequences were found in other anatomical

regions of the human digestive tract and even in breast milk (7).

A. muciniphila was reported as a part of commensal microbiota in

other animal species, including mice (8–10), making mice a

convenient animal model to study the in vivo functions of this

microorganism (11, 12).

Over the past ten years, numerous studies addressed the role of

A. muciniphila in health and disease. Reduced amounts of A.

muciniphila were reported in obesity and type 2 diabetes (13) and

are associated with Western-type diet. The same correlation was

shown for a high-fat (14, 15) and high-sucrose diet in mice (16). It

was also established that the decline in A. muciniphila abundance

correlated with the development of intestinal inflammation,

colorectal cancer, and even with cognitive disorders such as

depression and anxiety (17). Thus, a promising therapeutic

potential of A. muciniphila as a probiotic or postbiotic and gut

microbiota modulator is widely recognized (18–20). However,

several studies suggest that A. muciniphila over representation

may correlate with negative prognosis of anti-cancer therapy (21).

Animal studies aimed to elucidate the specific molecular

mechanisms of A. muciniphila effects in colorectal cancer remain

contradictory. In this regard, we hypothesized that the introduction

of high doses of Akkermansia can lead to disruption of homeostasis

and increased tumor growth, while moderate and gentle

introduction of bacteria has a protective effect. In present article

we are attempting to explain how the differences in experimental

settings may affect the results in these earlier reported studies.
Regulatory of effects of A. muciniphila
on gut homeostasis

Microbiota interacts with the immune system either directly by

ac t i v a t ing the immune ce l l s o r v i a p roduc t i on o f

immunomodulatory metabolites and other molecules. Recent
Frontiers in Immunology 0278
studies suggested that A. muciniphila acquired mechanisms to

control host metabolism in the gut and, therefore, may contribute

to healthy niche maintenance. For example, protein P9 secreted by

A. muciniphila was reported to directly promote the production of

GLP-1 by the human primary intestinal epithelial cells, stimulating

insulin production and fat browning (22). The most abundant outer

membrane pili protein of A. muciniphila, Amuc_1100, was shown

to provide beneficial effects in HFD-mice (23). As TLR2 activator,

Amuc_1100 demonstrated effects on immune cells (24–26).

Another study reported that Amuc_1100 synthesis was increased

in mucin-depleted conditions (5), while Khan et al. found that

increased sugar consumption in mice may lead to overgrowth of A.

muciniphila within 1 week and its mucin-degrading activity may

result in thinning of the mucus layer (27).

Bae et al. identified a lipid from A. muciniphila’s cell membrane,

diacyl phosphatidylethanolamine with two branched chains (a15:0-

i15:0 PE), that can contribute to immunomodulatory activity of

bacteria in TLR2-TLR1 dependent manner. Interestingly, in high

doses it triggers the release of TNF and IL-6 but not IL-10 or IL-

12p70 by mouse BMDCs, while in low doses it resets activation

thresholds and responses for immune signaling, so that weak

activating signals are ignored and strong signals are moderated,

contributing to the regulation of immune response (28).

A newly described outer membrane protein, Amuc_2172, was

implicated in activation of immune cells via promotion of HSP70

production in cellular microenvironments (29). Bacterial control of

the host immune system may indirectly affect barrier integrity, as

well as suppression of autoimmunity against symbionts. It was

shown that A. muciniphila secretes tripeptide RKH (Arg-Lys-His),

which binds to TLR4 block signal transduction, rescuing mice form

lethality in a model of CLP-induced sepsis (30). RKH production

represents direct immune-suppressing activity of A. muciniphila.

Since inflammation plays a significant role in cancer development, a

proper use of the evolutionarily selected functions of A. muciniphila

in its interaction with the host may represent novel therapeutic

strategies to control inflammation and tumorigenesis.
A. muciniphila in gut
inflammation control

Both colorectal cancer and inflammation are influenced by

many factors, such as heredity, habits and nutrition, but in recent

years much attention was paid to the relationship between the

microbiota and the host immune system. The development of

inflammatory bowel disease correlates with an increase in

opportunistic microorganisms and a decrease in beneficial

Bifidobacteria and Lactobacilli (31, 32). Colonization by A.

muciniphila is thought to occur early in life during the induction

of RORgt+Foxp3+ Tregs to ensure intestinal homeostasis (33). At

the same time, a decrease in the abundance of A. muciniphila is

characteristic for inflammatory bowel diseases (34–36), as well as

for dysbiosis associated with cancer (25).
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TABLE 1 Effects of A. muciniphila in mouse models of acute and chronic intestinal inflammation and gastrointestinal cancer.

Effects of A. muciniphila in mouse models of acute and chronic intestinal inflammation

# Bacteria
introduction
protocol

Form of bacteria
or antigen

Dose
of
bacteria

Effect Colitis induction Reference

1 Oral
administration
daily for 5 days
during
colitis induction

Viable A. muciniphila or
outer membrane vesicles
from A. muciniphila

108 CFU in
100 mcl per
mouse or 20
mcg A.
muciniphila
OMVs in 100
mcl
per mouse

Reduced colonic inflammation with
increased production of mucus

7 days of 5% DSS (37)

2 Oral
administration
daily for 14 days
before colitis
induction and
after
antibiotic
treatment

Viable A. muciniphila 108 CFU in
100 mcl
per mouse

Alleviated colitis severity and depression-
like symptoms with more intensive mucus
production and Muc2 expression

7 days of 2,5% DSS after
psychological
stress (restraining)

(38)

3 Oral
administration
daily 7 days before
colitis induction
and during
colitis induction

Viable A. muciniphila 3×109 CFU in
200 mcl
per mouse

Ameliorated disease severity with enhanced
barrier function and alleviated colitis-
induced dysbiosis

7 days of 2% DSS (39)

4 Oral
administration
daily for 7 days
after antibiotic
treatment and
before
colitis induction

Viable A. muciniphila 109 CFU in
300 mcl
per mouse

Ameliorated disease severity and body
weight loss with inhibited expression of
inflammatory cytokines and higher
NRLP3 activation

8 days of 3% DSS (40)

5 Oral
administration
daily during
chronic
colitis induction

Viable A. muciniphila
ATCC BAA-835 strain
and isolated
139 substrain

2×108 CFU in
200 mcl
per mouse

Improved clinical parameters including
spleen weight, colon inflammation index,
and colon histological score with decreased
expression of inflammatory cytokines and
fecal lipocalin-2. ATCC BAA-835 strain
was more powerful in amelioration of
inflammation than murine substrain 139

Three cycles of 3 days of
3% DSS

(41)

6 Oral
administration
daily 14 days
before the colitis
induction
till sacrifice

Pasteurized A.
muciniphila or
recombinant surface
protein Amuc_1100

1.5×108 CFU
in 100 mcl per
mouse
Or 3 mcg of
protein in 100
mcl
per mouse

Reduced colonic inflammation with
decreased proportion of CTLs in colon

8 days of 2% DSS (25)

7 Oral
administration
daily 21 days
before colitis
induction and
during
colitis induction

Recombinant protein
Amuc_2109 from
A. muciniphila

100 mcg/kg
per mouse

Ameliorated disease severity and body
weight loss with inhibited expression of
inflammatory cytokines and
NRLP3 activation

7 days of 2% DSS (42)

8 Oral
administration
daily for 14 days
after
antibiotics
treatment

Viable A. muciniphila 109 CFU
per mouse

Increased the levels of M1-like monocytes
(CD45+Ly6C+MHCII+) in colon, blood, and
bone marrow

7 days of 3%
DSS after antibiotics

(43)

(Continued)
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TABLE 1 Continued

Effects of A. muciniphila in mouse models of acute and chronic intestinal inflammation

# Bacteria
introduction
protocol

Form of bacteria
or antigen

Dose
of
bacteria

Effect Colitis induction Reference

9 Oral
administration
daily after colitis
induction
till sacrifice

Viable A. muciniphila or
secreting extracellular
vesicles from
A. muciniphila

5×108 CFU in
1 ml per
mouse or 100
mg in 1 ml
per mouse of
secreting
extracellular
vesicles

More severe body weight loss with A.
muciniphila introduction and attenuated
weight loss with secreting extracellular
vesicles introduction

10 days of 3% DSS (29)

10 Oral
administration
daily during colitis
induction
till sacrifice

Viable A. muciniphila or
extracellular vesicles
from A. muciniphila

5×108 CFU or
100 mg of
extracellular
vesicles
per mouse

More severe body weight loss with A.
muciniphila introduction and attenuated
weight loss with extracellular
vesicles introduction

5 days of 2% DSS (44)

Differential effects of A. muciniphila in mouse models of gastrointestinal cancer

# Model
of cancer

Bacteria intro-
duction protocol

Form of
bacteria
or
antigen

Dose of bacteria Effect Reference

1 AOM/DSS-
induced colitis-
associated
colorectal cancer

Oral administration at
the 0, 3, 5, and 7 days of
experiment before
cancer induction

Viable
A.
muciniphila

High dose (109 CFU) in 100 mcl
per mouse

Increased number of colon
tumors, more colon
damage, increased
expression of
inflammation markers,
decreased
mucus production

(45)

2 AOM/DSS colitis-
associated
colorectal cancer

Oral administration every
day after antibiotic
treatment from 3 days
before the DSS treatment
to sacrifice but skipped
the DSS treatment period

Viable
A.
muciniphila

High dose (3×109 CFU) in 200 mcl
per mouse

Increased number of colon
tumors, impaired gut
barrier function, increased
expression of
inflammation markers,
decreased
mucus production

(46)

3 Spontaneous
tumorigenesis in
Apc15lox/+ mice

Oral administration three
times started at 4 weeks
of age after 1 week of
antibiotic treatment
till sacrifice

Viable
A.
muciniphila

High dose (109 CFU) in 100 mcl
per mouse

Increased number of
tumors, but more
intensive
mucus production

(47)

4 AOM/DSS colitis-
associated
colorectal cancer

Oral administration daily
14 days before the cancer
induction till sacrifice

Pasteurized
A.
muciniphila
or
recombinant
surface
protein
Amuc_1100

Low dose (1.5×108 CFU) in 100 mcl per
mouse
or 3 mcg of protein in 100 mcl per mouse

Decreased number of
colon tumors with
expanded CTLs in the
colon and MLN

(25)

5 AOM/DSS colitis-
associated
colorectal cancer

Oral administration daily
after cancer induction
till sacrifice

Secreting
extracellular
vesicles from
A.
muciniphila

100 mg in 1 ml per mouse Decreased number of
colon tumors with
increased CTLs activity

(29)

6 Spontaneous
tumorigenesis in
ApcMin/+ mice

Intraperitoneal injection
twice a week for 14 weeks

Recombinant
surface
protein
Amuc_2172

150 mcg/kg per mouse Decreased number of
tumors with
increased CTLs

(29)

(Continued)
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Studies of A. muciniphila in mouse models of intestinal

inflammation suggested a protective role of this bacterium or its

derivatives (Table 1). For example, the administration of viable A.

muciniphila in both low (108 CFU) and high (3×109 CFU) doses

reduced the severity of colitis, increased mucus production (37, 38,

40), reduced the intensity of inflammation (40, 41), and also

compensated for dysbiosis associated with inflammation (39).

Furthermore, administration of pasteurized bacterium, which

exemplifies the concept of “postbiotic” or a preparation of

inanimate microorganisms and their components that confers a

health benefit on the host (49), as well as recombinant Amuc_1100

or Amuc_2109, also reduced cytotoxic cell accumulation in the

intestine and NRLR3 activation, suggesting strong antigenic

properties of this bacterium (25, 42). Other data, on the contrary,

indicate that the introduction of live bacteria aggravates the

symptoms of colitis, however, the same studies showed the

protective role of extracellular vesicles of A. muciniphila (29, 44).

Since inflammation is the key factor in the development of

colorectal cancer, and A. muciniphila has been shown to be an

effective anti-inflammatory agent, the bacterium is considered a

promising probiotic that can reduce the development of cancer.
Frontiers in Immunology 0581
A. muciniphila in mouse models of
colorectal cancer

Studies on the role of A. muciniphila in mouse models of gut

cancer provided contradictory results (Table 1). Several reports

indicated that administration of A. muciniphila may aggravate the

development of intestinal cancer. For example, Wang F. et al. found

that administration of A. muciniphila prior to induction of

colorectal cancer increased the number of intestinal tumors in the

AOM/DSS model in correlation with a decrease in mucus

production (45). In a similar study by Wang K. et al, oral gavage

with A. muciniphila after a course of antibiotics led to increased

tumor formation with a decrease in mucin expression (46). Finally,

in a model of spontaneous tumor formation in Apc15lox/+ mice, oral

gavage with A. muciniphila after a course of antibiotics also

increased the number of tumors, but, in contrast to the data of

Wang F. and Wang K., it increased mucus production (47).

At the same time, other numerous studies confirm the

protective effect of the enrichment with these bacteria on

colorectal cancer. In particular, oral gavage with pasteurized A.

muciniphila, surface antigen Amuc_1100 (25) or A. muciniphila
TABLE 1 Continued

Differential effects of A. muciniphila in mouse models of gastrointestinal cancer

# Model
of cancer

Bacteria intro-
duction protocol

Form of
bacteria
or
antigen

Dose of bacteria Effect Reference

7 Spontaneous
tumorigenesis in
ApcMin/+ mice with
two cycles of 10-
day 1% DSS

Oral administration every
two days for three
months after antibiotic
treatment starting from
6-8 weeks of age
till sacrifice

Viable
A.
muciniphila

High dose (109 CFU) in 300 mcl
per mouse

Suppressed colonic
tumorigenesis, decreased
systemic inflammation
through facilitated
enrichment of M1-like
macrophages in an
NLRP3-dependent, TLR2-
dependent manner

(43)

8 Subcutaneous
injection of CT26
cells in BALB/
c mice

Oral administration
started when the tumor
reaches size 100 mm3

performed every day until
the end of the experiment
along with intraperitoneal
injection of anti–PD-1

Viable A.
muciniphila
or outer
membrane
vesicles from
A.
muciniphila

Low dose (108 CFU) in 100 mcl per mouse
or 20 mcg A. muciniphila OMVs in 100
mcl per mouse

Decreased tumor size with
enhanced aPD-1
therapy efficacy

(37)

9 Subcutaneous
injection of
HCT116 or CT26
cells in BALB/c
nude mice

Subcutaneous injection of
3×106 HCT116 or CT26
cells mixed with A.
muciniphila (MOI = 10:1)

Viable
A.
muciniphila

Low dose (3×107 CFU) per mouse Suppressed growth of
implanted HCT116 or
CT26 tumors

(43)

10 Subcutaneous
injection of CT26
cells in BALB/
c mice

Intratumor injection
twice a week after cancer
induction till sacrifice

Recombinant
surface
protein
Amuc_2172

150 mcg/kg per mouse Inhibited allografted
tumors growth by
promoting CTLs

(29)

11 Subcutaneous
injection of CT-26
cells with
FOLFOX
(oxaliplatin,
fluorouracil and
calcium
folinate) treatment

Oral administration
started when the tumor
reaches size 100 mm3

and performed every
other day after antibiotic
treatment until sacrifice

Viable
A.
muciniphila

Low dose (108 CFU) per mouse Enhanced anti-cancer
effect of FOLFOX,
presumably due to A.
muciniphila effect on
gut metabolomics

(48)
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secretory extracellular vesicles (29) protected mice in the AOM/DSS

model by increasing cytotoxic lymphocyte activity. An increase in

the activity of cytotoxic lymphocytes was also shown for another A.

muciniphila protein - Amuc_2172 in ApcMin/+ mice (29).

Interestingly, in the ApcMin/+ model therapeutic administration of

live A. muciniphila following antibiotics in the context of DSS-

induced inflammation also reduced tumor burden, apparently due

to a TLR2-mediated, NRLP3-dependent increase in the activity of

antitumor M1 macrophages (43). The protective role of A.

muciniphila was also shown in a number of studies using a

transplantable tumor model. Therapeutic administration of

bacteria or bacterial secretory vesicles per os reduced the growth

of grafted CT26 and also enhanced the effect of anti-PD-1 therapy

(37), while intratumoral administration of A. muciniphila (43) or

Amuc_2172 (29) reduced the growth of allografts due to the

activation of CD8+IFNy+ cytotoxic cells. Finally, it was established

that administration of A. muciniphila per os enhanced the effect of

the antitumor drug FOLFOX (oxaliplatin, fluorouracil and calcium

folinate), and, conversely, the use of FOLFOX led to a significant

increase in the A. muciniphila abundance in the gut (48).

Taken together, there is a major controversy over the effects of

A. muciniphila on the development of intestinal cancer.
The molecular form of A. muciniphila
shapes the outcome

One of the factors potentially explaining the different effects of

A. muciniphila in colorectal cancer may be related to different

protocols of bacterial administration - from live or pasteurized A.

muciniphila to recombinant peptides and extracellular vesicles

derived from these bacteria. Thus, in all studies in which A.

muciniphila aggravated tumor growth, live bacteria was used at

high concentration of 109 CFU (45–47), and in some studies, this

bacteria was introduced following a course of antibiotics (46, 47). It

was shown that the high dose of A. muciniphila after a course of

antibiotics in colorectal cancer model dramatically changed the

composition of the microbiota. There was no expansion of A.

muciniphila itself, but rather an increase in the opportunistic

bacteria, including Clostridia. This resulted in aggravation of

dysbiosis and disturbance in the metabolic profile as indicated by

a decrease of bile acids and short-chain fatty acids (46). Presumably,

a high dose of A. muciniphila, especially after the depletion of gut

microbiota with antibiotics, can be interpreted by the immune

system as an infection and leads to an increased inflammation due

to disrupted microbiota composition and increased opportunistic

pathogens in the gut. Moreover, it was shown that in antibiotic

treated mice, some phylogroups of A. muciniphila may outcompete

others, affecting the outcome of the A. muciniphila colonization.

Distinct phylogroup-specific phenotypes of the A. muciniphila

modulate oxygen tolerance, iron and sulfur metabolism, and

bacterial aggregation differently, therefore, the genetic variations

of A. muciniphila’s strains may influence the effect of bacterial

colonization after antibiotic treatment (50). Recently, it was

suggested that A. muciniphila phylogroups, which bear mutations
Frontiers in Immunology 0682
inmul gene-cluster, lack immunomodulatory effects, but are able to

colonize gut in germ-free conditions (4). It can be proposed that

under antibiotic treatment, “weak” variants of the microorganism

can take root and mask the immunomodulatory effects (4).

Assumption about the detrimental effect of the microbiota

composition disruption after antibiotics is further supported by

the observed decrease in mucin expression (45, 46) upon

administration of A. muciniphila following antibiotics. The

thinning of the mucin layer allows other microorganisms to

penetrate the tissue more actively and aggravate cancer-

promoting intestinal inflammation.

A. muciniphila has a direct effect on mucus production in the

intestine. In this context, it appears important to establish whether

different forms of bacteria - viable bacteria or pasteurized bacteria,

providing distinct sets of antigens, affect the production of major

mucins in the intestine. It turned out that both forms of A.

muciniphila differently increased the expression of mucins in the

gut (Figure 1). For example, in the colon, only pasteurized bacteria

caused a significant upregulation in the expression of Muc1 and

Muc4, while administration of viable A. muciniphila alone increased

the expression of Muc2. In the small intestine, viable, but not

pasteurized, bacteria caused a slight increase in Muc1 expression,

and only pasteurized A. muciniphila affected the expression of

Muc2. The expression level of Muc3 was not affected by either

form of the bacterium. Thus, the thickness of the mucus layer

following A. muciniphila administration was significantly

influenced by the form in which bacteria were administered, as

well as by the tissue specificity. In the context of colorectal cancer,

the thickness of the mucus layer in the large intestine is important,

and the significant upregulation of mucin expression observed with

the introduction of viable and pasteurized A. muciniphila may

provide protection to tissues from microbiota invasion and

inflammation (52).

In most studies administration of A. muciniphila protected mice

from colorectal cancer. Interestingly, these studies employed

experimental protocols with lower dose of A. muciniphila (107-

108 CFU) (37, 43, 45, 48) and without the course of antibiotics.

Some studies utilized recombinant bacterial proteins (25, 29) or

secreted extracellular vesicles from A. muciniphila (29, 37) while

Wang L. et al. used pasteurized bacterium (25).Only one study,

which used a high dose of A. muciniphila after antibiotics, reported

a protective effect of the bacterium (43). Thus, we propose that

administration of the lower dose of A. muciniphila either in viable

or pasteurized forms, as well as bacterial proteins or peptides, while

maintaining the native composition of gut microbiota, has a clear

protective effect on intestinal cancer, regardless of the

carcinogenesis model.
Moderation of A. muciniphila is the
key to inflammation control

Although the mechanisms by which A. muciniphila controls

intestinal inflammation and colorectal cancer are not fully

understood, much is known about the immunomodulatory effects
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FIGURE 1

Live and pasteurized A. muciniphila differentially upregulate mucins expression in the gut. C57Bl/6 mice were housed in SPF conditions at the Animal
Facility of the Center for Precision Editing and Genetic Technologies for Biomedicine, EIMB RAS (under the contract #075-15-2019-1660 from the
Ministry of Science and Higher Education of the Russian Federation). At the age of 5-6 weeks animals of both sexes were randomly distributed
between the groups and used in the experiments described below. All manipulations with animals were carried out in accordance with the protocol
approved by the Bioethics Committee of the EIMB RAS (Protocol No. 3 from 27/10/22). A. muciniphila was grown anaerobically in the medium
supplemented with porcine mucin (Sigma) and hemin (Sigma). The bacterial solution was collected at the concentration 7-8×107 CFU/mL, aliquoted
by 1 mL and frozen at -80°C. (A) Scheme of experiment. To analyze the effect of bacteria inoculation on the gene expression at steady state C57Bl/6
WT mice were randomized into three groups of 7-9 individuals and then subjected to daily per os administration with PBS, 1.5×108 CFU of
pasteurized (70°C, 30 min) A. muciniphila or 1.5×108 CFU of live A. muciniphila during 3 weeks. Fresh frozen in liquid nitrogen small intestine and
colon were mechanically homogenized and lysed in ExtractRNA reagent (Evrogen, Russia). RNA was isolated by guanidinium thiocyanate-phenol-
chloroform method following the manufacturer’s protocol. RNA was reverse-transcribed into cDNA using RevertAid First Strand cDNA Synthesis Kit
(Thermo, USA) followed by quantitative real-time PCR. qPCRmix-HS SYBR+LowROX (5X) (Evrogen, Russia). Gene expression analysis was performed
using Quant Studio 6 (Applied Biosystems. USA) and the following primer set: Actb (F: GCGCTCTTTCAGCCTTCTTT; R: TGGCATAGAGGTCCTTGCG),
Muc1 (F: TCGTCTATTTCCTTGCCCTG; R: ATTACCTGCCGAAACCTCCT), Muc2 (F: CCCAGAAGGGACTGTGTATG; R: TTGTGTTCGCTCTTGGTCAG),
Muc3 (F: TGGTCAACTGCGAGAATGGA; R: TACGCTCTCCACCAGTTCCT), Muc4 (F: GTCTCCCATCACGGTTCAGT; R: TGTCATTCCACACTCCCAGA).
Reactions were run using the following program on the Applied Biosystems 7500: 95°C for 10 min, 40 cycles of 95°C for 15 sec, 60°C for 30 sec
and 72°C for 30 sec. (B) Relative expression level of Muc1, Muc2, Muc3 and Muc4 in colon and small intestine was normalized using Actb and
calculated as 2-ddCt fold change in experimental to control group (51). Each point in a diagram represents a single mouse; mean ± SD. *P < 0,05; **P
< 0,01; ***P < 0,001; ns - not significant. One-way ANOVA test was used. (C) A. muciniphila in the gut inflammation and homeostasis.
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of the bacterium (Figure 1С). A. muciniphila is known for its

mucin-reducing activity, which determines its effect on the

structural components of the intestine - epithelial cells, as well as

Paneth cells and goblet cells. This bacterium can enhance intestinal

barrier function: A. muciniphila increases the expression of tight

junction proteins in response to disruption of epithelial integrity in

vivo (23, 39) and in vitro (24, 53). In addition, A. muciniphila

increases the proliferation of intestinal stem cells, as well as the

differentiation of Paneth and goblet cells (54) with increased

antimicrobial peptides (54) and mucus production (55). In

addition to accelerating the renewal of the mucus in the intestine,

A. muciniphila activates the differentiation of Tregs in the large

intestine (56) and mesenteric lymph nodes (41). Not unexpectedly,

induction of protective RORgt+ Tregs by A. muciniphila is

dependent on TLR4 (33, 57). A. muciniphila, its secretory vesicles

and antigens activate a cytotoxic response in the intestine (25, 29),

and, at the same time, suppress the proliferation of inflammatory

macrophages (25), activate the polarization of anti-inflammatory

macrophages (58). It was shown that the Amuc_1434 protein can

modulate the death of tumor cells through activation of tumor-

necrosis-factor-related apoptosis-inducing ligand (TRAIL) (59). A.

muciniphila upregulates genes involved in the maintanance of

intestinal barrier function via ADP-heptose-dependent activation

of the ALPK1/TIFA pathway (60). Finally, A. muciniphila may

regulate IgA production by plasma cells by affecting the number of

Tfh in Peyer ’s patches (61), and thus influencing the

microbiota composition.

Dysbiosis is a hallmark of inflammation and intestinal cancers.

A. muciniphila is an important component of the normal

microbiota, and changes in its abundance affect the course of the

disease . A. muciniphi la i s capable of inducing both

proinflammatory and anti-inflammatory mechanisms. Studies on

the role of A. muciniphila in intestinal inflammation show its

protective properties in barrier restoration and control of

inflammation, while data obtained in colorectal cancer models

remain contradictory. Some studies indicate a decrease in tumor

burden, while others report an increase in tumor growth when the

bacterium is introduced. We attempted to directly compare

different experimental protocols using A. muciniphila in various

models of intestinal cancer and concluded that the introduction of

large amounts of A. muciniphila, especially after a course of

antibiotics, provokes dysbiosis, disrupts the intestinal barrier

functions (62), and aggravates the inflammation that provokes

cancer (46). At the same time, lower doses of the bacterium or its

derivatives without prior depletion of the microbiota have a positive

effect on the course of the disease. This assumption is supported by

the clinical study on the correlation between the presence of A.

muciniphila and the effectiveness of checkpoint therapy. The results

of this study demonstrated that moderate, but not high A.

muciniphila load in the stool correlated with a good prognosis

(21). Thus, delicate modulation of the microbiota by A. muciniphila

may become a promising strategy for adjunctive therapy of

inflammatory bowel diseases and colorectal cancer.
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randomization to study the
causal association between gut
microbiota and atherosclerosis
Shijiu Jiang1,2,3,4†, Cheng Yu5†, Bingjie Lv1,2,3†, Shaolin He1,2,3†,
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and Technology, Wuhan, China, 2Hubei Key Laboratory of Biological Targeted Therapy, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
3Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for
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Technology, Wuhan, China, 4Department of Cardiology, The First Affiliated Hospital, Shihezi
University, Shihezi, China, 5Department of Neurology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
Background: According to some recent observational studies, the gut

microbiota influences atherosclerosis via the gut microbiota-artery axis.

However, the causal role of the gut microbiota in atherosclerosis remains

unclear. Therefore, we used a Mendelian randomization (MR) strategy to try to

dissect this causative link.

Methods: The biggest known genome-wide association study (GWAS) (n =

13,266) from the MiBioGen collaboration was used to provide summary data

on the gut microbiota for a two-sample MR research. Data on atherosclerosis

were obtained from publicly available GWAS data from the FinnGen consortium,

including cerebral atherosclerosis (104 cases and 218,688 controls), coronary

atherosclerosis (23,363 cases and 187,840 controls), and peripheral

atherosclerosis (6631 cases and 162,201 controls). The causal link between gut

microbiota and atherosclerosis was investigated using inverse variance

weighting, MR-Egger, weighted median, weighted mode, and simple mode

approaches, among which inverse variance weighting was the main research

method. Cochran’s Q statistic was used to quantify the heterogeneity of

instrumental variables (IVs), and the MR Egger intercept test was used to assess

the pleiotropy of IVs.

Results: Inverse-variance-weighted (IVW) estimation showed that genus

Ruminiclostridium 9 had a protective influence on cerebral atherosclerosis

(OR = 0.10, 95% CI: 0.01–0.67, P = 0.018), while family Rikenellaceae (OR =

5.39, 95% CI: 1.50–19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95%

CI: 1.60–29.49, P=0.010), genus Paraprevotella (OR= 2.88, 95%CI: 1.18–7.05, P=

0.021), and genus Streptococcus (OR = 5.26, 95% CI: 1.28–21.61, P = 0.021) had

pathogenic effects on cerebral atherosclerosis. For family Acidaminococcaceae

(OR = 0.87, 95% CI: 0.76–0.99, P = 0.039), the genus Desulfovibrio (OR = 0.89,
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95% CI: 0.80–1.00, P = 0.048), the genus RuminococcaceaeUCG010 (OR = 0.80,

95% CI: 0.69–0.94, P = 0.006), and the Firmicutes phyla (OR = 0.87, 95% CI: 0.77–

0.98, P = 0.023) were protective against coronary atherosclerosis. However, the

genus Catenibacterium (OR = 1.12, 95%CI: 1.00–1.24, P= 0.049) had a pathogenic

effect on coronary atherosclerosis. Finally, class Actinobacteria (OR = 0.83, 95% CI:

0.69–0.99, P = 0.036), family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61–

0.94, P = 0.013), genus Coprococcus2 (OR = 0.76, 95% CI: 0.60–0.96, P = 0.022),

and genus RuminococcaceaeUCG010 (OR = 0.65, 95% CI: 0.46–0.92, P = 0.013),

these four microbiota have a protective effect on peripheral atherosclerosis.

However, for the genus Lachnoclostridium (OR = 1.25, 95% CI: 1.01–1.56, P =

0.040) and the genus LachnospiraceaeUCG001 (OR = 1.22, 95% CI: 1.04–1.42, P =

0.016), there is a pathogenic role for peripheral atherosclerosis. No heterogeneity

was found for instrumental variables, and no considerable horizontal pleiotropy

was observed.

Conclusion:We discovered that the presence of probiotics and pathogens in the

host is causally associated with atherosclerosis, and atherosclerosis at different

sites is causally linked to specific gut microbiota. The specific gut microbiota

associated with atherosclerosis identified by Mendelian randomization studies

provides precise clinical targets for the treatment of atherosclerosis. In the future,

we can further examine the gut microbiota’s therapeutic potential for

atherosclerosis if we have a better grasp of the causal relationship between it

and atherosclerosis.
KEYWORDS

cerebral atherosclerosis, coronary atherosclerosis, gut microbiota, Mendelian
randomization, peripheral atherosclerosis
1 Introduction

Gut microbiota are microorganisms that colonize the host gut

and may affect host physiology in various ways. Increasing evidence

suggests that dysregulation of the gut microbiota is associated with

the pathogenesis of various cardiovascular diseases (CVD), such as

atherosclerosis, heart failure, atrial fibrillation, hypertension, obesity,

and dyslipidemia (1). Atherosclerosis (AS), which is characterized by

lipid accumulation and immune-inflammatory changes in arterial

vessels, is a major contributor to CVD andmay eventually result in its

clinical complications, including cerebrovascular accident,

myocardial infarction, and peripheral artery embolism (2). Since

the development of AS is regulated by the gut microbiota (GM) and

its metabolites, scholars regard this regulation mode as the GM

arterial regulation axis (2). Gut microbiota plays a role in

atherosclerosis mainly in the following three ways (3): First, the

infection of the gut microbiota may lead to a harmful immune

inflammatory response, thereby aggravating the formation of plaque

or triggering plaque rupture. Secondly, the regulation of lipid

metabolism by the gut microbiota affects the progression of

atherosclerotic plaques. Finally, specific components of diet and gut

microbiota metabolism can have multiple effects on atherosclerosis;
0288
for example, dietary fiber is beneficial for AS, whereas

trimethylamine-N-oxide (TMAO), a metabolite of gut microbiota,

is thought to be detrimental.

In addition, specific commensal bacteria in the host can be

protective against AS. However, pathogens or opportunistic

pathogens can promote atherosclerosis. Both types regulate host

metabolism and inflammatory responses directly or indirectly via

their metabolites (4). For example, earlier research has established

that Akkermansia muciniphila and Lactobacillus may be next-

generation probiotics or live biotherapeutic products that can

reduce the risk of AS (2). Treatment with Akkermansia

muciniphila reduces macrophage infiltration, chemokines, and

pro-inflammatory cytokines and protects the integrity of the

intestinal barrier, thereby alleviating AS lesions (5). In addition,

several studies have shown that alterations in the gut microbial

composition in obese patients are associated with the progression of

AS (6, 7), the most obvious changes were the decrease in the

proportion of Bacteroidetes phylum and the increase in the

proportion of Firmicutes phyla. In addition, pathogen and

opportunistic pathogens including Actinomycetes, Porphyromonas

gingivalis, aggregating bacilli, Streptococcus hemolytic, Streptococcus

pneumoniae, Staphylococcus aureus, Streptococcus viridans, etc.,
frontiersin.org
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which promote the transport of intestinal bacteria by destroying the

integrity of the intestinal barrier and promoting the formation of

atherosclerotic plaques, are considered to promote AS (8, 9).

In addition to the pathogenic role of their pathogens, gut

microbes can also affect the process of atherosclerosis through their

metabolites. The well-known metabolites are TMAO (10), secondary

bile acids (11), short-chain fatty acids (12), and lipopolysaccharide

(13) are also involved in the process of atherosclerosis. For instance,

Synphytes, Clostridium, Desalinobacter, Desulfurvibrio, and

members of Fusobacteriaceae have been linked to the development

of AS by significantly positive correlations with TMAO (14).

Despite the rise in research linking GM and AS, it’s crucial to

remember that a correlation does not imply a cause-and-effect

relationship. Due to possible biases including confounding and

reverse causality, as well as the fact that the majority of previous

research were case-control studies, it is uncertain whether these

correlations are causal. Additionally, in observational research,

confounding variables such as dietary patterns, age, environment,

and lifestyle are easily able to influence the relationship between gut

microbiota and AS (15).

Mendelian randomization (MR), a trustworthy technique for

examining causal relationships, employs genetic variations as

instrumental variables (IVs) to ascertain if exposure and outcome

are causally related (16). Given that genotypes are randomly

assigned from parents to children, common confounding

variables have little impact on the relationship between genetic

variation and outcome, and the causal chain is reliable (17).

However, no research has utilized MR analysis to identify

potential causal relationships between the gut microbiota and the

risk of atherosclerosis. As a result, MR analysis was employed in this

study to completely examine the potential that the gut microbiota

and AS are causally related and to uncover certain pathogenic or

therapeutic bacterial communities.
Frontiers in Immunology 0389
2 Methods

2.1 Design of the study

Throughout the study, we adhered to the principles outlined in

the STROBE-MR Statement for reporting observational studies in

Epidemiology (18).

Data from prior research’ published genome-wide association

studies (GWAS) were used in this MR analysis. The authors of the

GWAS database obtained the relevant ethics and institutional

review board authorizations and participant consents to permit

their studies. Therefore, our MR analysis from published and

anonymized data did not need further ethical approval. In this

study, a GWAS summary dataset was used to evaluate the causal

relationship between gut microbiota and AS, and a heterogeneity

test and sensitivity analysis were carried out to ensure the reliability

of the results.

An MR study needs to satisfy three core hypotheses: the

correlation hypothesis, the independence hypothesis, and the

exclusivity hypothesis, namely: 1. Exposure factors and

instrumental variables (IVs) must be closely connected; 2. IVs

cannot be correlated with any confounding variables related to

the expose-outcome relationship; 3. IVs can only impact outcome

variables through exposure factors (Figure 1).
2.2 GWAS summary data sources

The GWAS project opened by the IEU in 2021, which provides

the largest published GWAS summary statistics on atherosclerosis,

was selected for this study. GWAS data for AS were obtained from

publicly available GWAS data from the FinnGen consortium,

including cerebral atherosclerosis (104 cases and 218,688 controls),
FIGURE 1

Overview of MR hypotheses, design, and procedures. There are three key hypotheses for MR study. hypotheses 1: Instrumental variables (IVs) must
be strongly correlated with exposure factors; hypotheses 2: the used IVs should not be associated with any potential confounder; hypotheses 3: the
IVs should influence the outcome risk merely through the exposures, not via any alternative pathway.
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coronary atherosclerosis (23,363 cases and 187,840 controls), and

peripheral atherosclerosis (6631 cases and 162,201 controls).

The GWAS summary microbiota statistics were mainly

obtained from MiBioGen Consortium (www.mibiogen.org),

18,340 participants from 24 cohorts were included, 211

taxonomic units were recorded (35 families, 29 orders, 16 phyla,

131 genera) and 122, 110 associated SNPs (19–21), the detailed data

sources showed in Table 1.
2.3 Selection and verification of IVs

First, to satisfy the first MR hypothesis that single-nucleotide

polymorphisms (SNPs) need to be tightly connected to gut

microbiota, SNPs that were highly related to gut microbiota were

chosen at the genome-wide level (linkage disequilibrium [LD], r2 <

0.001, genome-wide significance threshold < 1×10−5, genetic

distance = 10,000 kb) (20). Second, to ensure that the second MR

hypothesis, that genetic variation is not associated with potential

confounding factors, we examined the phenoscanner database (22)

to determine that the included SNPs were not associated with

known confounding factors, such as smoking status, blood

pressure, sex, family history of hypertension, dyslipidemia,

diabetes, and body mass index (BMI). A heterogeneity test was

used to eliminate significantly heterogeneous SNPs, and SNPs

substantially linked with gut microbiota were discovered as IVs.

Palindromic SNPS may also contribute to bias in the estimate of

causation (21), because the alleles of the two palindromic SNPS are

not independent and may violate the MR Hypothesis. We removed

palindromic SNPS from instrumental variables to ensure the

validity of the results and to increase confidence in causal inference.

The F statistic is calculated to evaluate whether the selected IVs

are weak. F > 10 indicates that there are no weak IVs to further

verify the relevance hypothesis. The computation algorithm is

F =b2exposure/SE2
exposure, it is estimated according to beta

and standard error. The strength of the connection between the

IVs and the exposure phenotype was assessed using the F statistic;

SNPs with an F-statistic < 10 should be disregarded (23). The

traits of the genetic IVs for gut microbiota are listed below

(Supplementary Table 1).
2.4 MR analysis

To better assess the full causal connection between gut

microbiota and AS, a two-sample MR analysis was performed

using IVW as the main analysis method, four more
Frontiers in Immunology 0490
complimentary analytic techniques (MR Egger, simple mode,

weighted median, and weighted mode) were also employed. In

addition, a threshold of P <0.05 was used to represent a significant

causal relationship between gut microbiota and AS.
2.5 Pleiotropy test and heterogeneity test

First of all, the MR-PRESSO method (24) was used to detect

outliers in this study. If there were outliers, they would be removed

and re-analyzed. The “leave one out” sensitivity analysis (25) was

carried out by removing individual SNPs at a time to assess whether

the IVs drove the association between exposure and outcome.

Secondly, to make it clear whether the MR analysis has horizontal

polymorphism, the MR-Egger intercept item (26) is also detected in

this study. If the intercepted item in the MR-Egger intercept

analysis has obvious statistical significance, it indicates that the

study has obvious horizontal polymorphism. Finally, this study also

uses Cochran’s Q measurement to test heterogeneity, it may

demonstrate heterogeneity brought on by pleiotropy and other

uncertain factors. IVW and MR-Egger in Cochran’s Q (27)

statistics have been widely used to check heterogeneity. The

results of the test for pleiotropy and heterogeneity are shown in

the supplementary table. P > 0.05 indicated no significant pleiotropy

or heterogeneity.
3 Results

3.1 Selection of IVs

After a series of quality controls for cerebral atherosclerosis, we

extracted 65 independent SNPs (P < 1.0×10−5, r2<0.001) associated

with five bacterial genera as IVs. For coronary atherosclerosis, we

extracted 41 independent SNPS associated with 5 bacterial genera as

IVs, and for peripheral atherosclerosis, we extracted 62 independent

SNPs associated with 6 bacterial genera as IVs; all IVs had F

statistics greater than 10, indicating that the selected SNPs all had

sufficiently strong IVs effects without weak IVs bias. The results of

the IVs association between AS and gut microbiota were detailed in

Supplementary Tables 1, 5, 9.

MR_egger and IVW in Cochran’s Q test both showed no

significant heterogeneity in the genetic IVs associated with

cerebral atherosclerosis, coronary atherosclerosis, and peripheral

atherosclerosis (Supplementary Tables 3, 7, 11). In addition, the

MR-egger intercept test showed that there was no significant
TABLE 1 Characteristics of GWAS data for gut microbiota traits and Atherosclerosis.

Trait Sample size Consortium Link Year

Gut microbiota 18,340 MiBioGen https://mibiogen.gcc.rug.nl/ 2021

Coronary atherosclerosis 211,203 FinnGen https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_CORATHER/ 2021

Cerebral atherosclerosis 218792 FinnGen https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_CEREBATHER/ 2021

Peripheral atherosclerosis 168832 FinnGen https://gwas.mrcieu.ac.uk/datasets/finn-b-DM_PERIPHATHERO/ 2021
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pleiotropy of the genetic IVs related to cerebral atherosclerosis,

coronary atherosclerosis, and peripheral atherosclerosis (P > 0.05).

The results were detailed in Supplementary Tables 4, 8, 12.

Therefore, the genetic IVs of all selected gut microbiota should be

considered valid IVs in this MR analysis.
3.2 MR analysis

IVW estimation showed that genus Ruminiclostridium 9 had a

protective effect on cerebral atherosclerosis (OR = 0.10, 95% CI:

0.01–0.67, P = 0.018), while family Rikenellaceae (OR = 5.39, 95%

CI: 1.50–19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95%

CI: 1.60–29.49, P = 0.010), genus Paraprevotella (OR = 2.88, 95% CI:

1.18–7.05, P = 0.021), and genus Streptococcus (OR = 5.26, 95% CI:

1.28–21.61, P = 0.021) were pathogen and opportunistic pathogens

to cerebral atherosclerosis (Figures 2A, 3; Supplementary Table 2).

As a causal inference for coronary atherosclerosis, we found family

Acidaminococcaceae (OR = 0.87, 95% CI: (0.76–0.99, P = 0.039),

genus Desulfovibrio (OR = 0.89, 95% CI: 0.80–1.00, P = 0.048), genus

RuminococcaceaeUCG010 (OR = 0.80, 95% CI: 0.69–0.94, P =

0.006), and Firmicutes phyla (OR = 0.87, 95% CI: 0.77–0.98, P =

0.023) were protective against coronary atherosclerosis. However,

the genus Catenibacterium (OR = 1.12, 95% CI: 1.0–1.24, P = 0.049)

had a pathogenic and opportunistic pathogenic effect on coronary

atherosclerosis (Figures 2B, 4, Supplementary Table 6). Finally, for
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the causal inference of peripheral atherosclerosis, we found that

class. Actinobacteria (OR = 0.83, 95% CI: 0.69–0.99, P = 0.036),

family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61–0.94, P =

0.013), genus Coprococcus 2 (OR = 0.76, 95% CI: 0.60–0.96, P =

0.022), genus Ruminococcaceae UCG010 (OR = 0.65, 95% CI: 0.46–

0.92, P = 0.013) for peripheral artery atherosclerosis has a protective

effect. However, the genus Lachnoclostridium (OR = 1.25, 95% CI:

1.01–1.56, P = 0.040) and the genus LachnospiraceaeUCG001 (OR =

1.22, 95% CI: 1.04–1.42, P = 0.016) had a pathogenic and

opportunistic pathogenic effect on peripheral atherosclerosis

(Figures 2C, 5, Supplementary Table 10).
3.3 No significant bias in the effect of a
single SNP in gut microbiota on AS

“MR Leave-one-out” sensitivity analyses showed that the

remaining SNPs after the removal of specific SNPs did not

change the causal inference results (Figures 6–8), showing that no

specific IVs were responsible for any of the found causal

connections. Together, these results suggest that there is no

significant bias in the effect of individual gut microbiota SNPs on

atherosclerosis. In addition, we showed the causal effect of single

SNPs by drawing forest plots, and the results showed that the effect

of single SNPs was consistent with the results of the combined effect

of IVW (Supplementary Figures 1–3).
A

B

C

FIGURE 2

Forrest plot for summary causal effects of gut microbiota on atherosclerosis risk based on MR methods (inverse variance weighted IVW); (A) Represents
the causal effect of gut microbiota on cerebral atherosclerosis. (B) Represents the causal effect of gut microbiota on coronary atherosclerosis.
(C) Represents the causal effect of gut microbiota on peripheral atherosclerosis. MR, Mendelian randomization; nSNP, number of single-nucleotide
polymorphism; OR, odds ratio.
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A B

D E
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FIGURE 3

Scatter plots for causal effects of gut microbiota on cerebral atherosclerosis risk using five MR methods. (A–E) Represents the causal effects of
family.Rikenellaceae, family.Streptococcaceae, genus.Paraprevotella, genus.Ruminiclostridium9, and genus. Streptococcus on cerebral
atherosclerosis, respectively.
A B

D E

C

FIGURE 4

Scatter plots for causal effects of gut microbiota on coronary atherosclerosis risk using five MR methods. (A–E) Represents the causal effects of
family.Acidaminococcaceae, genus.Catenibacterium, genus.Desulfovibrio, genus.RuminococcaceaeUCG010, and phyla.Firmicutes on coronary
atherosclerosis, respectively.
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FIGURE 5

Scatter plots for causal effects of gut microbiota on peripheral atherosclerosis risk using five MR methods. (A–F) Represents the causal effects of
class.Actinobacteria, family.Acidaminococcacea, genus.Coprococcus2, genus.Lachnoclostridium, genus.LachnospiraceaeUCG001, and
genus.RuminococcaceaeUCG010 on peripheral atherosclerosis, respectively.
A B

D E

C

FIGURE 6

Plots for “leave-one-out” analysis for causal effect of gut microbiota on cerebral atherosclerosis risk. (A–E) Represents the MR leave−one−out
sensitivity analysis for family.Rikenellaceae, family.Streptococcaceae, genus.Paraprevotella, genus.Ruminiclostridium9, and genus.Streptococcus on
cerebral atherosclerosis, respectively.
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FIGURE 7

Plots for “leave-one-out” analysis for causal effect of gut microbiota on coronary atherosclerosis risk. (A–E) Represents the MR leave−one−out
sensitivity analysis for family.Acidaminococcaceae, genus.Catenibacterium, genus.Desulfovibrio, genus.RuminococcaceaeUCG010, and
phyla.Firmicutes on coronary atherosclerosis, respectively.
A B

D E F

C

FIGURE 8

Plots for “leave-one-out” analysis for causal effect of gut microbiota on peripheral atherosclerosis risk. (A–F) Represents the MR leave−one−out
sensitivity analysis for class.Actinobacteria, family.Acidaminococcacea, genus.Coprococcus2, genus.Lachnoclostridium,
genus.LachnospiraceaeUCG001, and genus.RuminococcaceaeUCG010 on peripheral atherosclerosis, respectively.
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4 Discussion

In this work, we performed two-sample MR analyses to

determine the causative connection between gut microbiota and

AS using summary statistics on gut microbiota from the biggest

GWAS meta-analysis completed by the MiBioGen consortium and

summary statistics on AS released by the FinnGen consortium. This

study provides guidance for future research based on gut microbiota

in the treatment of AS. As we all know, resident microbial

communities in the gut are key “metabolic filters” in the diet, as

these species can convert common nutrients into metabolites, and

specific microbiota-associated metabolites, such as TMAO, short-

chain fatty acids (SCFAs), and secondary bile acids, have been

shown to influence CVD progression (28–32).

We found that specific gut microbiota may be causally linked to

AS at different sites. For example, the genus Ruminiclostridium 9 is

negatively associated with the risk of cerebral atherosclerosis and has a

protective effect. However, the family Rikenellaceae, the family

Streptococcaceae, the genus Paraprevotella, and the genus

Streptococcus are significantly linked to the risk of cerebral

atherosclerosis. Therefore, These four intestinal microbes may

contribute to the pathogenesis of cerebral atherosclerosis. in the

family. Acidaminococcaceae and the genus Ruminococcaceae

(UCG010) both have protective effects on coronary atherosclerosis

and peripheral atherosclerosis. The genus Desulfovibrio and the

Firmicutes phyla were specifically negatively associated with

coronary atherosclerosis risk and had a protective effect, while the

genus Catenibacterium was positively associated with coronary

atherosclerosis risk and had an atherogenic effect. class

Actinobacteria and genus Coprococcus 2 are specifically negatively

correlated with the risk of peripheral atherosclerosis and have a

protective effect . Genus Lachnoclostridium and genus

Lachnospiraceae UCG001 specificity increased the risk of peripheral

artery atherosclerosis. Our research will contribute to the theoretical

foundation for AS precision therapy in the future. As atherosclerosis in

different sites is associated with specific microbiota, we hypothesize

that this may be because specific metabolites of the microbiota are

related to the microenvironment of different arterial locations.

In addition, we also found that Acidaminococcaceae and

Ruminococcaceae UCG010 have the same protective effect on

coronary atherosclerosis and peripheral atherosclerosis, and

Ruminiclostridium 9 has the same protective effect on cerebral

atherosclerosis. Oxana M. Drapkina (33) evaluated the impact of

fecal microbiota on atherosclerotic cardiovascular disease (ASCVD)

and heart failure with reduced ejection fraction (HFrEF) by using

bacterial culture, 16S next-generation sequencing (NGS) of the 16S

rRNA gene (V3-V4), and quantitative polymerase chain reaction

(qPCR). They found that acidaminococcaceae were significantly

lower in the ASCVD and HFrEF groups, and acidaminococcaceae

were negatively associated with ASCVD. while Streptococcaceae

were significantly increased in ASCVD and HFrEF groups. In our

study, we found that acidaminococcaceae, one of the commensal

bacteria with an atherogenic effect, was also negatively associated

with cerebral atherosclerosis and peripheral atherosclerosis.

Kesavalu L (34) found that Streptococcus mutans infection

accelerated plaque growth, macrophage invasion, and TLR4
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expression after angioplasty, and Streptococcus mutans may also

be associated with atherosclerotic plaque growth in noninjured

arteries. Koren et al (35) identified Veloxella and Streptococcus in

AS plaque samples, and several bacterial types in the gut are

common in atherosclerotic plaques and correlated with

cholesterol levels. Another metagenomic association study (36)

showed that the abundance of Streptococcus in patients with

atherosclerotic cardiovascular disease was higher than that in the

healthy control group. Therefore, Streptococcaceae is considered a

pathogenic bacterium and can increase the risk of atherosclerosis,

which is consistent with our findings.

In addition, according to this study, the abundance of

Ruminiclostridium in the heart failure with preserved ejection

fraction (HFpEF) group was lower than that in the control group,

Qiuxia Liu (37) also found that the relative abundance of

Ruminococcaceae was positively correlated with the level of HDL

through 16S ribosomal DNA sequencing. Therefore, Ruminococcaceae

can inhibit atherosclerosis, consistent with our findings.

Ruminiclostridium 9 can alleviate the formation of cerebral

atherosclerosis, and Ruminococcaceae UCG010 can inhibit the

formation of coronary and peripheral atherosclerosis. Hannelore

Daniel’s study (38) found that a high-fat diet caused shifts in the

diversity of dominant gut bacteria and altered the proportion of

Ruminococcaceae (decrease) and Rikenellaceae (increase). Our

results suggest that Rikenellaceae can increase the risk of cerebral

atherosclerosis, while Ruminococcaceae are negatively correlated with

coronary atherosclerosis and peripheral atherosclerosis. A recent study

included in the TwinsUK cohort showed that (39) Ruminococcaceae

was negatively correlated with pulse wave velocity (PWV), which

represents arterial stiffness. Ruminococcaceae is a bacterium that can

produce butyrate, and the increase in its abundance can reduce the

release of inflammatory factors and alleviate endothelial dysfunction,

thus delaying the development of atherosclerosis. Our research results

also support the idea that Ruminococcaceae belongs to the probiotic

family. Additional randomized controlled studies, nevertheless, are

necessary to verify these results.

Omry Koren (35) found that the atherosclerotic plaques

contained significantly fewer Firmicutes phyla and suggested a

negative correlation with the risk of atherosclerosis; low intestinal

levels were associated with greater risk, whereas normal or elevated

levels were protective. Some studies have shown that butyrate is

usually produced by Firmicutes phyla (40). If the Firmicutes phyla

population is reduced, the concentration of butyrate in the intestine

will decrease, leading to reduced mucin synthesis, and a lack of

sufficient mucin on the intestinal membrane will lead to increased

intestinal permeability (41), which induces a chronic inflammatory

state, leading to a higher intestinal inflammatory state. These

included increased concentrations of IL-1 and IL-4. IL-1 is a

proinflammatory cytokine (42), which is associated with

atherogenesis, plaque instability, plaque rupture, and thrombosis,

and increases cardiovascular risk. Therefore, Firmicutes phyla

belong to commensal bacteria and can inhibit arterial

atherosclerosis, and our results also support the role of Firmicutes

phyla in inhibiting atherosclerosis.

Akihiro Nakajima (43) found paraprevotella had a positive

correlation with fibrinogen in plaque and a negative correlation
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with high-density lipoprotein cholesterol; paraprevotella were also

associated with greater plaque volume. Our study also found that

paraprevotella could promote the formation of cerebral

atherosclerosis, which is consistent with our study results.

The research work of Yuan-Yuan Cai (44) provided a

comprehensive metagenomic analysis of bacteria producing TMA

(the precursor of TMAO) in the human gut and reported the genus

Lachnoclostridium producing TMA for the first time. The abundance

of this genus was higher in patients with atherosclerosis compared to

healthy controls. They found in vitro that Lachnoclostridium can

produce TMA when incubated with choline. In vivo studies further

demonstrated that Lachnoclostridium could promote TMAO levels in

the serum of ApoE−/− mice, significantly elevate aortic plaque, and

accelerate plaque formation in vivo. Therefore, targeting

Lachnoclostridium may serve as a potential therapeutic target for

the treatment of atherosclerosis. Our findings are consistent with

those of the present study, suggesting that Lachnoclostridium

promotes atherogenesis.

In addition, we also found some new probiotics whose effects on

AS have not been reported before; for example, Coprococcus 2 and

Actinobacteria have protective effects on AS, and their specific

protective mechanisms still need to be further explored. They can

be used as a new therapeutic target for anti-atherosclerosis. Of note,

Desulfovibrio suggested a negative association with coronary

atherosclerosis in our study; However, in addition, we also found

some new probiotics whose effects on AS have not been reported

before; for example, Coprococcus 2 and Actinobacteria have

protective effects on AS, and their specific protective mechanisms

still need to be further explored. They can be used as a new

therapeutic target for anti-atherosclerosis. Of note, Desulfovibrio

suggested a negative association with coronary atherosclerosis in

our study; however, Kun Zhang’s results (45) demonstrate that D.

desulfuricans can enhance the development of AS by increasing

intestinal permeability and host inflammatory response, which is

inconsistent with the results of our study, probably because we

specifically targeted coronary atherosclerosis, while Kun Zhang’s

research focused on aortic atherosclerosis, Different arterial sites

have different microenvironments. There are also differences in the

mechanisms of gut microbiota in AS. Therefore, more in-depth

research mechanisms need to be further explored.

As far as we know, bacteria are a major component of the gut

microbiome, but viruses, fungi, and archaea are also present, they

live symbiotic in our gut. Although intestinal flora plays an

important role in atherosclerosis, enteroviruses, fungi and their

metabolites are also involved in the development of atherosclerosis

(46, 47). First of all, the gut microbiota of adults is mainly composed

of five phyla: Bacteroidetes , Firmicutes , Actinobacteria ,

Proteobacteria, and Cerrucomicrobia (48), and changes in the

components of these flora can cause ecological imbalance of

intestinal flora. Several studies have confirmed the presence of

bacterial DNA in atherosclerotic plaques, thereby affecting plaque

stability, which may contribute to the development of

cardiovascular disease (49). The main pathogenic mechanism

may be the impairment of intestinal barrier function due to the

imbalance of the flora (50), which leads to the change of intestinal

permeability, and the absorption of metabolites of the flora and
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endotoxins into the blood circulation in the body. These

metabolites, including trimethylamine N-oxide (TMAO), bile

acids, lipopolysaccharides, and short-chain fatty acids, all have an

impact on the occurrence and development of atherosclerosis (51).

These changes in intestinal flora and metabolites can not only cause

coronary atherosclerosis, but even cause cerebrovascular diseases

through gut-brain axis, inflammatory response, etc. (52), and even

rupture of cerebral aneurysms in severe cases. Research has been

reported that the genus Campylobacter and Campylobacter

ureolyticus may be associated with the rupture of cerebral

aneurysms, the gut microbiome profile of patients with stable

unruptured intracranial aneurysms and ruptured aneurysms were

significantly different (53). Secondly, the imbalance of intestinal

fungi can also cause metabolic disorders. Some studies reported that

compared with healthy lean individuals, the fecal fungi in obese

participants showed more obvious diversity, and the intestinal

fungal composition changed significantly. In addition, other

studies have found that the abundance of Thermoascus and

species Malassezia restricta in the patients with coronary

atherosclerosis was significantly lower than in healthy individuals,

and the decrease of M.restricta might have a close association with

lipid metabolism disorder in atherosclerosis patients (46), there is

growing evidence that antagonistic relationships between bacteria

and fungi may reduce perturbations and enhance interactions in the

gut, thereby establishing a balanced microbial community (54).

Finally, a growing body of research also suggests that changes in

enteroviruses are associated with cardiovascular disease, after an in-

depth metatenomic analysis of the viriome of the participants’ fecal

samples, the study found that enteroviruses in patients with

cardiovascular disease were significantly different from healthy

controls, for example, the Siphoviridae was significantly enriched

in the viriome of patients with cardiovascular disease. In addition,

the abundance of Enterobacteriaceae and streptococcus increased in

patients with cardiovascular disease (36). As a result, the abundance

of these viruses and bacteria presents a consistent level, in which the

presence, absence, or abundance of viruses may regulate the

progression of the disease by affecting bacteria in the host.

Correlation analysis showed that enterococcus, streptococcus and

ruminococcus were widely associated with viral operational

taxonomic unit in patients with cardiovascular disease. This also

reflects the fact that enteroviruses affect disease by relying on gut

bacteria (47). In summary, we found that there may be a complex

network among gut microbes, with interactions among bacteria,

viruses, and fungi that jointly affect the occurrence and

development of atherosclerosis.

The study has several advantages: MR analysis was used to

establish the causal link between gut microbiota and AS, removing

confounding variables’ involvement and lessening the effect on

causal inference. Genetic variation in the gut microbiota was

obtained from the largest available GWAS summary statistics,

ensuring IVs strength in the MR analysis. The IVs selected in this

study were all strong IVs (F > 10), which had high statistical power.

By utilizing the MR-PRESSO and MR-Egger regression intercept

term tests, horizontal pleiotropy was identified and excluded.

However, there are some limitations to this study. Because

summary statistics were used in the analysis rather than raw data,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1282072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2023.1282072
we could not perform subgroup analyses, such as the analysis of

gender differences. Since the lowest taxonomic level in the exposure

dataset was genus, this limitation prevented us from further

exploring the causal relationship between gut microbiota and AS

at the species level. More genetic variants need to be included as IVs

to perform sensitivity analyses and horizontal pleiotropy tests.

Thus, the SNPs used in the analysis did not meet the traditional

GWAS threshold for significance (P < 5×10 − 8).

Due to confounding by ethnic stratification, data on gut

microbiota were obtained from subjects of European ancestry,

thus, the findings might not be entirely relevant to participants of

non-European heritage. For greater generalization in the future, MR

research on the causal link between gut microbiota and AS might be

addressed in other populations.
5 Conclusion

In conclusion, this two-sample MR study found that some

specific gut microbiotas were causally associated with the

presence of AS. Further, RCT studies are needed to elucidate the

protective or pathogenic mechanisms of probiotics or pathogenic

bacteria in AS.
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College, Stantou, China, 4The First Clinical Medical College, Lanzhou University, Lanzhou,
Gansu, China, 5Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital,
Foshan, Guangdong, China
Background: Numerous observational studies have identified a linkage between

the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear

causative association between the gut microbiota and GERD has yet to be

definitively ascertained, given the presence of confounding variables.

Methods: The genome-wide association study (GWAS) pertaining to the

microbiome, conducted by the MiBioGen consortium and comprising 18,340

samples from 24 population-based cohorts, served as the exposure dataset.

Summary-level data for GERD were obtained from a recent publicly available

genome-wide association involving 78 707 GERD cases and 288 734 controls of

European descent. The inverse variance-weighted (IVW)methodwas performed as a

primary analysis, the other four methods were used as supporting analyses.

Furthermore, sensitivity analyses encompassing Cochran’s Q statistics, MR-Egger

intercept, MR-PRESSO global test, and leave-one-out methodology were carried

out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse

MR assessment was conducted to investigate the potential for reverse causation.

Results: The IVW method’s findings suggested protective roles against GERD for

the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae

UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum

Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus

Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as

potential GERD risk factors. In assessing reverse causation with GERD as the

exposure and gut microbiota as the outcome, the findings indicate that GERD

leads to dysbiosis in 13 distinct gut microbiota classes. The MR results’ reliability

was confirmed by thorough assessments of heterogeneity and pleiotropy.
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Conclusions: For the first time, the MR analysis indicates a genetic link between

gut microbiota abundance changes and GERD risk. This not only substantiates

the potential of intestinal microecological therapy for GERD, but also establishes

a basis for advanced research into the role of intestinal microbiota in the etiology

of GERD.
KEYWORDS

causal association, gastroesophageal reflux disease, genome-wide association study,
comprehensive bidirectional mendelian randomization, gut microbiota
Introduction
Gastro-esophageal reflux disease (GERD) prevalently affects

both adult and pediatric cohorts (1, 2). The worldwide incidence

of GERD is rising substantially (3). The predominant phenotype of

this condition is non-erosive reflux disease (NERD) (4, 5). NERD is

typified by the hallmark symptoms of GERD, yet devoid of

esophageal erosion. GERD syndromes encompass typical reflux

symptoms, characterized by heartburn and regurgitation,

potentially accompanied by belching, water brash, or nausea.

Additionally, manifestations may include chest pain resembling

angina and extra-oesophageal symptoms like chronic cough and

laryngitis (6–8). Moreover, persistent gastroesophageal reflux may

result in the transformation of the distal esophagus’s stratified

squamous epithelium to columnar epithelium, precipitating the

onset of Barrett’s esophagus (BE) (9). BE, characterized by the

presence of metaplastic columnar mucosa in the distal esophagus,

heightens the risk of cancer. This condition is uniquely identified as

the antecedent to esophageal adenocarcinoma, a malignancy whose

prevalence has surged notably in the preceding decades (10–13).

Hence, numerous researchers aim to devise prevention strategies

for esophageal adenocarcinoma by investigating the pathogenesis of

GERD and Barrett’s esophagus (14, 15). The human gastrointestinal

tract is host to a complex and varied microbiota, which holds a

pivotal function in health and pathophysiology. This includes

processes such as the digestion and assimilation of nutrients,

production of vital vitamins like B and K, in vivo degradation of

molecules, orchestration of innate and adaptive immune reactions,

and preservation of the intestinal barrier’s integrity (16–18).

In recent years, numerous studies have elucidated the correlation

between the onset and progression of various intestinal diseases and

the intestinal flora (19). Consequently, scholars have redirected their

attention to the study of esophageal microbiota, aiming to elucidate

the pathogenesis, early detection, and therapeutic approaches for

esophageal disorders. It has been noted that the esophageal

microflora composition varies markedly between GERD-affected

and normal esophagus. A preliminary research conducted by Yang

in 2009 identified a potential association between modifications in the

distal esophageal microbiome and disorders related to reflux.
02100
Bacterial populations from 34 patients were analyzed using 16S

rRNA gene sequencing following biopsies of the distal esophagus.

Based on gene analysis outcomes, the authors delineated the human

esophageal microbiome into two categories. Type I esophageal

microbiome corresponded more closely with the normal

esophagus, whereas Type II was more associated with the

pathological esophagus (20). Studies indicate a heightened

colonization of Gram-negative organisms, particularly

Campylobacters, in the esophageal mucosa of GERD patients

compared to healthy cohorts (21). Dysregulation of the mycobiota

has been implicated in the onset of visceral hypersensitivity, a

condition closely associated with intractable symptoms of GERD

(22). These observations prompt consideration of potential dysbiosis

involvement in the pathogenesis of GERD ailments. In observational

research, the relationship between the gut microbiota and GERD is

susceptible to confounding variables, including dietary habits,

environmental factors, age, and lifestyle. These confounders

complicate the process of establishing a direct causal link between

gut microbiota and GERD. Utilizing the Mendelian randomization

(MR) approach allows for the inference of causative associations

between exposures and subsequent outcomes (23, 24). This

methodology employs genes as instrumental variables (IVs), which,

due to their reliance on the random assortment of genetic variation at

conception, are less prone to confounding influences (25). In the

present research, we executed a two-sample MR analysis to assess the

putative causal relationship between the gut microbiota and GERD.

Through this endeavor, we aspire to elucidate novel perspectives on

the potential involvement of the gut microbiome in the pathogenesis

of GERD and discern potential pathways for preventative and

therapeutic strategies. To our knowledge, this is the first time that

Mendelian randomization has been used to study the pathogenic

impact of the gut microbiome on the pathogenesis of GERD.
Materials and methods

Study design

In our study, we performed two-sample MR analyses with gut

microbiota as the exposure and GERD as the outcome. To
frontiersin.org
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investigate the causal relationship between intestinal microflora and

GERD, we utilized a bi-sample MR approach, drawing on data from

the MiBioGen consortium (N = 18,340) and recent GWAS (78 707

GERD cases and 288 734 controls) findings. Figure 1 depicts the MR

study flowchart detailing the relationship between GM taxa and

GERD. For reliable results, the MR study adhered to these three

assumptions (1). They are significantly associated with the exposure

(2); They don’t influence the confounders linking exposure and

outcome; and (3) They don’t impact the outcome via alternative

pathways (26). The current MR study was executed and chronicled

in accordance with the STROBE-MR guidelines, established to

enhance the reporting caliber of observational epidemiological

investigations (27–29).
Data sources

Gut microbiota and GERD data were sourced from GWAS

datasets. The intestinal microbiome information came from the

MiBioGen consortium’s GWAS analysis, which included 18,340

individuals spanning 24 whole-genome genotype cohorts and 16S

fecalmicrobiome data (30).We gathered summary-level data on SNP-

GERD associations from the recent publication’s GWAS results. This

analysis encompassed 78,707 GERD cases and 288,734 controls of

European ancestry (31). GERD is characterized by abnormal

esophageal acid exposure leading to GERD symptoms and/or

mucosal injury due to gastro-oesophageal reflux.

Selection of SNPs

We conducted quality control procedures to select appropriate

instrumental variants (IVs) (32–35). SNPs associated with each

microbiota unit, meeting the locus-wide significance threshold

(P< 1.0 × 10−5), were designated as potential IVs. The linkage

disequilibrium (LD) assessment among these SNPs is as follows

(36–38): LD denotes the non-random co-occurrence of alleles at

distinct loci. It is evaluated via two metrics, r2 and kb. An r2 value
Frontiers in Immunology 03101
spans from 0 to 1, with lower values signifying a heightened level

of complete linkage equilibrium between two SNPs, suggesting a

stochastic arrangement of these SNPs. An appropriate LD window

size and r2 threshold are selected to guarantee independence, given

the profound impact of linkage disequilibrium. SNPs were

clumped for independence using the European 1000 Genomes

Project reference panel with criteria r2 < 0.001 and clump

distance > 10,000 kb. SNPs exhibiting a Minor Allele Frequency

(MAF) of 0.01 or lower were systematically excluded from the

analysis. We excluded both redundant and palindromic SNPs from

our analysis. To ensure a robust association between instrumental

variables (IVs) and exposure measures, the F-statistic of each SNP

was employed to evaluate the strength of correlation, mitigating

potential biases from weak IVs. IVs were considered devoid of bias

if the F-statistic exceeded 10. To minimize the likelihood of SNPs

being associated with potential confounders or risk determinants

(e.g., coronary heart disease, Idiopathic pulmonary fibrosis), the

Phenoscanner tool was utilized to meticulously assess and exclude

such correlations.
MR analysis and quality assessment

We derived the primary MR estimates using the inverse-

variance weighted (IVW) method. We also assessed the

robustness of these IVW findings by contrasting them with

results from other MR techniques, such as MR-Egger, weighted

median, simple mode, and weighted mode estimation. The analyses

conducted encompassed evaluations of heterogeneity, an

assessment of horizontal pleiotropy, and a systematic leave-one-

out examination. For the assessment of heterogeneity, the

Cochrane’s Q test was employed, with a P-value of less than 0.05

being considered indicative of significant heterogeneity. The

Mendelian Randomization Pleiotropy Residual Sum and Outlier

(MR-PRESSO) approach, in conjunction with the MR-Egger

method, were utilized to scrutinize horizontal pleiotropy. A P-

value of less than 0.05 was deemed indicative of the presence of

horizontal pleiotropy. we performed a leave-one-out analysis to

evaluate the results’ sensitivity, wherein each SNP was sequentially

excluded to determine if the estimates were influenced by outliers or

bias. We determined the statistical power for MR analysis by

utilizing the mRnd web application, accessible at https://

shiny.cnsgenomics.com/mRnd/ (39). In particular, for the

purpose of refining our outcomes in the context of multiple

hypotheses, we employed both the Bonferroni correction method

and the Hochberg’s False Discovery Rate (FDR) approach. The

criterion for deeming results statistically significant was established

on the basis of a P-value less than 0.05, adjusted by dividing it by the

effective count of unique bacterial taxa present at the respective

taxonomic level, a value hereinafter referred to as ‘n’, An association

was deemed statistically significant in instances where the p-value,

after undergoing Bonferroni correction, was found to be below the

threshold of 0.05. Conversely, the presence of a p-value lesser than

0.05, which nonetheless corresponded to a Bonferroni-corrected p-

value exceeding 0.05, was interpreted as indicative of suggestive,

rather than conclusive, evidence of an association.
FIGURE 1

The study design of the present Mendelian randomization study of
the associations of the gut microbiota and GERD risk.
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Reverse MR analysis

To investigate the putative causal association between GERD

and distinct bacterial genera, a reverse MR analysis was undertaken.

In this context, GERD was posited as the exposure variable, while

the gut microbiota composition functioned as the outcome variable.

SNPs associated with GERD were utilized as instrumental variables

in this analytical framework. SNPs that exhibited a statistically

significant association with GERD were selected as instrumental

variables, adhering to a significance threshold of P < 5 × 10−8.
Ethical approval

written informed consents were meticulously secured from all

participating individuals. Concurrently, these investigations were

granted the requisite endorsements from the pertinent ethical

oversight bodies (30).
Results

In the current research, preliminary endeavors were undertaken

to procure high-quality IVs through stringent quality assurance

measures. Subsequently, these IVs were employed in a MR analysis

to evaluate the presumptive causal association between 196 gut

microbiota taxa and GERD. In each retained SNP, the F-statistic

surpassed a threshold of 10, as delineated in the Supplementary

Tables S1, S2. The statistical efficacy of MR analysis was greater than

70%.This indicates a robust statistical strength in the association
Frontiers in Immunology 04102
between the IV and its respective bacterial taxa. For all MR results,

we conducted comprehensive sensitivity analyses to assess both

heterogeneity, as denoted by Cochran’s Q statistic, and potential

pleiotropic influences, as appraised via MR-Egger regression and

the MR-PRESSO approach. The P-values were subjected to a more

stringent Bonferroni correction, and all results were greater

than 0.05.
Causal effect of gut microbiota on GERD

In the MR study on gut microbiota, employing microbiota-linked

SNPs as instrumental variables, the primary IVW analysis identified

seven taxa with a probable causal association to GERD onset.

Through the application of the IVW analytical approach, the

following associations with GERD susceptibility were discerned:

The Family Clostridiales Vadin BB60 group (OR 0.95, 95%

CI 0.91–0.99, P = 0.027), Genus Lachnospiraceae UCG004 (OR 0.91,

95% CI 0.84–0.99, P = 0.026), Genus Methanobrevibacter

(OR 0.95, 95% CI 0.91–0.99, P = 0.026), and Phylum Actinobacteria

(OR 0.93, 95% CI 0.88–0.99, P = 0.019) manifested an inverse

correlation with GERD vulnerability. In contrast, the Class

Mollicutes (OR=1.09, 95% CI:1.01–1.19, P=0.037); Genus

Anaerostipes (OR=1.09, 95% CI:1.01–1.16, P=0.017) and

Phylum Tenericutes (OR=1.11, 95% CI:1.01–1.22, P=0.024)

demonstrated association with the risk of GERD. (Figures 2, 3)

The P-values obtained from both the Cochran Q test and the MR-

Egger intercept test surpassed the 0.05 threshold. This provides

robust evidence indicating an absence of heterogeneity and

pleiotropy in the research (Table 1; Supplementary Table 2,

Figures 2; 4–6).
FIGURE 2

(A) Causal effect of gut microbiota with GERD Schematic representation of the MR analysis results (B) Forest plot of the MR analysis results.
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Causal effect of GERD on gut microbiota

In the bidirectional MR analysis, we explored the potential

causal association between GERD and gut microbiota. Employing

GERD as the exposure and gut microbiota as the outcome, we

evaluated potential reverse causation implications. Following the
Frontiers in Immunology 05103
MR analysis, GERD exhibited a causal influence on one Phylum,

two Families, and ten Genera. Utilizing the IVW approach, several

associations with the onset of GERD were identified. Specifically, a

down-regulation was observed in the Family Christensenellaceae

(OR=0.85, 95% CI:0.73–0.99, P=0.045), Family Rikenellaceae

(OR=0.88, 95% CI:0.80–0.97, P=0.012), Genus Anaerotruncus
FIGURE 3

(A) Forest plot of the MR analysis results. (B) Forest plot of the MR analysis results Causal effect of GERD with gut microbiota Schematic
representation of the Reverse MR analysis results. OR odds ratio, CI confidence interval, IVW inverse variance weighted method, Significant threshold
was set at P-value <0.05 for the Inverse Variance Weighted method (IVW).
TABLE 1 Summary results of MR (Target Gut microbiome on GERD).

Taxa Exposure Outcome Nsnp Methods Beta SE
OR
(95%
CI)

P
value

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept P

MR-
PRESSO

P

Phylum Actinobacteria GERD 11
Inverse
variance
weighted

-0.068 0.029
0.93
(0.88-
0.99)

0.019 6.835 0.740 0.579 0.78

Phylum Tenericutes GERD 3
Inverse
variance
weighted

0.108 0.048
1.11
(1.01-
1.22)

0.024 2.468 0.291 0.364 NA

Family
Clostridiales vadin

BB60 group
GERD 10

Inverse
variance
weighted

-0.049 0.022
0.95
(0.91-
0.99)

0.027 4.406 0.882 0.490 0.85

Class Mollicutes GERD 5
Inverse
variance
weighted

0.087 0.042
1.09
(1.01-
1.19)

0.037 6.032 0.196 0.745 0.27

Genus Anaerostipes GERD 7
Inverse
variance
weighted

0.083 0.035
1.09
(1.01-
1.16)

0.017 5.506 0.480 0.246 0.49

Genus
Lachnospiraceae

UCG004
GERD 8

Inverse
variance
weighted

-0.09 0.042
0.91
(0.84-
0.99)

0.026 13.72 0.056 0.789 0.14

Genus Methanobrevibacter GERD 4
Inverse
variance
weighted

-0.047 0.021
0.95
(0.91-
0.99)

0.026 0.333 0.953 0.931 0.95
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(OR=0.90, 95% CI:0.83–0.99, P=0.028), Genus Christensenellaceae

R 7 group(OR=0.90, 95% CI:0.83–0.99, P=0.018), Genus

Rikenellaceae RC9 gut group (OR=0.78, 95% CI:0.64–0.95,

P=0.015), Genus Ruminococcaceae NK4A214 group (OR=0.89,

95% CI:0.81–0.98, P=0.013), Genus Ruminococcaceae UCG005

(OR=0.90 , 95% CI:0 .82–0 .98 , P=0.019) , and Phylum

Euryarchaeota (OR=0.82, 95% CI:0.68–0.99, P=0.039).

Conversely, an up-regulation post GERD onset was documented

for Genus Collinsella (OR=1.15, 95% CI:1.04–1.26, P=0.005), Genus

Eggerthella (OR=1.24, 95% CI:1.06–1.46, P=0.007), Genus

Eubacterium rectale group (OR=1.12, 95% CI:1.01–1.24, P=0.029),

Genus Eubacterium ventriosum group (OR=1.12, 95% CI:1.01–1.23,

P=0.026), and Genus Family XIII UCG001 (OR=1.12, 95% CI:1.01–
Frontiers in Immunology 06104
1.24, P=0.046) (Figures 4, 5). Within the IVs, neither weak

instrument bias nor significant heterogeneity metrics were

identified. Further, the MR-PRESSO evaluation indicated no

discernible outliers. The data’s robustness was further affirmed by

the leave-one-out analysis (Table 2; Figures 3, 6–10).
Discussion

To our knowledge, this is the first MR study to assess the causal

relationship between the gut microbiome and susceptibility to

gastroesophageal reflux disease. Using GWAS summary data, we

confirmed an association between GERD and the gut microbiome.
B

C D

E F

A

FIGURE 4

(A–F) Scatter plots of significant causality of the GM and GERD.
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Our research findings are consistent with extant academic

literature, revealing a bidirectional relationship between GERD

and the gut microbiome. We identified specific risk factors,

including the Class Mollicutes, Genus Anaerostipes and Phylum

Tenericutes. In contrast, protective factors, such as the Family

Clostridiales Vadin BB60 group,Genus Lachnospiraceae UCG004,

Genus Methanobrevibacter and Phylum Actinobacteria, were

observed to be linked with GERD within the gut microbiome.

The emergence of GERD manifested alterations in the gut

microbiome composition. Following the MR analysis, GERD

exhibited a causal influence on one Phylum, two Families, and

ten Genera. Furthermore, the Phylum Actinobacteria, Family
Frontiers in Immunology 07105
Clostridiales Vadin, and Genus Methanobrevibacter have been

identified as contributors to the biosynthesis of Short-chain fatty

acids (SCFAs). SCFAs emerge from the bacterial fermentation of

indigestible dietary fibers within the gastrointestinal tract. The

primary constituents of SCFAs are acetate, propionate, and

butyrate. These acids not only serve as a principal energy source

for colonocytes but also play a pivotal role in the dual-directional

regulation of colonic motility, the preservation of intestinal

homeostasis, and the enhancement of the integrity of the

intestinal barrier (40–42). The human gastrointestinal epithelium

is inhabited by a myriad of microbial entities that are instrumental

in multiple physiological processes. An imbalance within this
B

C D

E F

A

FIGURE 5

(A) Scatter plots of significant causality of the GM and GERD. (B–F) Leave-one-out analysis for the impact of individual SNPs on the association
between GM and GERD risk.
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microbial composition, termed intestinal dysbiosis, has been

intricately linked to the etiology of numerous human pathologies.

Innate lymphoid cells (ILCs), encompassing NK cells, ILC1s, ILC2s,

ILC3s, and LTi cells, represent a subset of the innate immune

system. Predominantly localized within the body’s mucosal tissues,

these cells have lately been the subject of significant academic

scrutiny (43). Research has demonstrated a correlation between

the presence of Clostridiales and a spectrum of esophageal

pathologies, including esophagitis and BE. This association is

hypothesized to influence the inflammatory processes of the

esophageal mucosa and contribute to the development of

intestinal metaplasia (44–46).
Frontiers in Immunology 08106
Recently, numerous research endeavors have delved into the

association between gut microbiota and GERD. Ning L et al.

documented a diminished prevalence of the phylum

Actinobacteria in GERD patients, a result that is congruent with

the findings of this study (47, 48). research indicated a substantial

elevation in the levels of Proteobacteria and Bacteroidetes in

pediatric subjects suffering from GERD. Concurrently, there was a

notable decrease in the concentrations of Firmicutes and

Actinobacteria (49). A Japanese research endeavor employed a

distinctive method using quantitative 16S rRNA gene PCR to

ascertain total bacterial quantities. The findings suggest that the

relative proportions of taxa, including Proteobacteria, Firmicutes,
B

C D

E F

A

FIGURE 6

(A, B) Leave-one-out analysis for the impact of individual SNPs on the association between GM and GERD risk. (C–F) In reverse MR analysis, The
scatter plots for association between GERD and gut microbiota.
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TABLE 2 Summary results of bidirectional MR (GERD on target Gut microbiome).

Heterogeneity Horizontal pleiotrop

ochran’s Q P value
Egger

intercept P
MR-PRESSO P

49.131 0.899 0.859 0.904

22.259 0.384 0.052 0.398

81.301 0.071 0.527 0.072

64.943 0.443 0.708 0.438

56.898 0.723 0.110 0.712

58.047 0.685 0.325 0.71

57.356 0.708 0.147 0.706

82.493 0.059 0.216 0.078

70.367 0.273 0.391 0.28

70.735 0.262 0.395 0.28

53.945 0.784 0.594 0.768

50.213 0.895

0.3660.-
884GE-
GERD-
Genus-
Rumino-
cocca-
ceae UC-
G00565-
Inverse
variance
weigh-
ted-
0.1080.-
0460.90
(0.82-
0.98)
0.01960-
.1940.6-
110.689-
0.6
Exposure Taxa Outcome Nsnp Methods Beta SE OR (95%CI) P value
C

GERD Phylum Euryarchaeota 64 Inverse variance weighted -0.197 0.095 0.82 (0.68-0.99) 0.039

GERD Family Christensenellaceae 22 Inverse variance weighted -0.161 0.080 0.85 (0.73-0.99) 0.045

GERD Family Rikenellaceae 65 Inverse variance weighted -0.125 0.050 0.88 (0.80-0.97 0.012

GERD Genus Anaerotruncus 65 Inverse variance weighted -0.101 0.046 0.90 (0.83-0.99 0.028

GERD Genus Christensenellaceae R 7group 65 Inverse variance weighted -0.109 0.046 0.90 (0.82-0.98) 0.018

GERD Genus Collinsella 65 Inverse variance weighted 0.137 0.049 1.15 (1.04-1.26) 0.005

GERD Genus Eggerthella 65 Inverse variance weighted 0.219 0.082 1.24 (1.06-1.46) 0.007

GERD Genus Eubacterium rectale group 65 Inverse variance weighted 0.111 0.051 1.12 (1.01-1.24) 0.029

GERD Genus Eubacterium ventriosum group 65 Inverse variance weighted 0.111 0.050 1.12 (1.01-1.23) 0.026

GERD Genus Family XIII UCG001 65 Inverse variance weighted 0.109 0.054 1.12 (1.00-1.24) 0.046

GERD Genus Rikenellaceae RC9 gut group 64 Inverse variance weighted -0.249 0.102 0.78 (0.64-0.95) 0.015

GERD Genus Ruminococcaceae NK4A214 group 65 Inverse variance weighted -0.118 0.047 0.89 (0.81-0.98) 0.013
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Bacteroidetes, Fusobacteria, and Actinobacteria, hold greater

relevance to esophageal disorders than the absolute bacterial

counts (47).

Our study initially demonstrated that the Family Clostridiales

Vadin BB60 group, Genus Methanobrevibacter, and Genus

Lachnospiraceae UCG004 function as protective agents against

GERD. These results underscore the putative roles of distinct gut

microbiome entities in the pathogenesis of GERD, further

accentuating the imperative for comprehensive studies to

elucidate the foundational mechanisms and identify prospective

therapeutic avenues. The hypothesis posits bacterial biofilm’s role in
Frontiers in Immunology 10108
GERD etiology (21). A recent investigation identified differential

microbiota in NERD patients relative to control individuals and

those with esophageal adenocarcinoma (EAC). Researchers

employed 16S rRNA sequencing and mass spectrometry-based

proteomics to profile the esophageal microbiota and the host

mucosal proteome, respectively. An aggregate of 70 individuals

spanning four patient categories (NERD, reflux esophagitis,

Barrett’s esophagus, and EAC) along with a control group were

examined. The findings revealed a singular microbiota

configuration in NERD, divergent from the control and other

cohorts (50). Proton pump inhibitors (PPI) remain a
B

C D

E F

A

FIGURE 7

(A–F) In reverse MR analysis, The scatter plots for association between GERD and gut microbiota.
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foundational component in the therapeutic approach to reflux

disease. Modifications in the esophageal microbiome due to the

diminished gastric acidity induced by PPI have been investigated in

multiple research endeavors, illustrating their consequential impact

on microbial community configurations (51–61). The gut

microbiota comprises an extensive array of microorganisms

residing in the human gastrointestinal tract, facilitating various

physiological and biochemical processes for the host (62).

Alterations in the composition of esophageal microbiota can be

attributed to environmental influences. A diet rich in fats has been

strongly correlated with localized mucosal inflammatory
Frontiers in Immunology 11109
modifications in murine representations (63). The postulated

mechanism for this advantage is the decelerated fermentation,

resulting in enhanced luminal accessibility in contrast to

conventional fiber-laden products. The preliminary investigation

demonstrated notable beneficial impacts of sugarcane flour on

alleviating GERD symptoms, necessitating a more expansive

randomized controlled trial (64).Probiotics introduce bacterial

strains via dietary supplementation, aiming to optimize the gut

microbiota composition towards a more favorable equilibrium.

Evaluations of probiotics encompassing Lactobacilli spp. and

Bifidobacteria spp. have shown efficacy in alleviating GERD
B

C D

E F

A

FIGURE 8

(A–C) In reverse MR analysis, The scatter plots for association between GERD and gut microbiota. (D–F) In reverse MR analysis, Plots for "leave-one-
out" analysis for causal effect of GERD on gut microbiota risk;.
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manifestations (65–68). This research seeks to determine a causal

link between particular gut microbiota and GERD through MR

analysis. Comprehending the relationship between gut microbial

dysbiosis and the onset of GERD, as well as pinpointing the specific

gut microbiota associated with GERD, can facilitate the proactive

identification of individuals at elevated risk. This understanding

permits the prompt initiation of targeted preventative measures

and the tailoring of clinical interventions, which can mitigate

symptoms such as regurgitation and heartburn. Furthermore,

such approaches can enhance patients’ overall well-being and

curtail economic burden.
Frontiers in Immunology 12110
Our study possesses key strengths. Firstly, MR represents an

analytical methodology employing genetic variants as IVs to

elucidate the causal relationship between exposure and outcome.

The MR framework mitigates unobserved confounders and

counteracts reverse causation, which are prevalent in observational

research. Second, we employed the most extensive GWAS pertaining

to the gut microbiota currently available, though its sample size

remains notably constrained (n = 14,306). Prospective GWAS

investigations concerning the gut microbiota should endeavor to

augment the sample size to conventional GWAS benchmarks (n >

100,000) to enhance statistical power and minimize potential
B

C D

E F

A

FIGURE 9

(A–F) In reverse MR analysis, Plots for “leave-one-out” analysis for causal effect of GERD on gut microbiota risk.
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inaccuracies. Our research, admittedly, possesses certain limitations.

First, A segmented analysis considering overarching determinants

like age and gender was not feasible owing to the constraints inherent

in the GWAS summary data. Second, we refrained from adjusting for

multiple testing, as stringent corrections for multiple comparisons

might overlook strains that have a causal association with GERD.

Thirdly, the summary-level data from GWAS predominantly

originate from European cohorts, constraining the universal

applicability of our results.

In conclusion, while we have postulated a causal link between

gut microbiota and GERD at the genetic dimension, the underlying

biological pathways warrant further investigation. Our findings may

serve as a foundational framework for delving into the mechanisms

of specific gut microbiomes in individuals with GERD. In future
Frontiers in Immunology 13111
clinical endeavors, it may be feasible to gauge the prevalence of gut

microbiota in fecal samples as a prognostic tool for assessing GERD

risk. Additionally, modulating the gut microbiota could serve as a

preventive and therapeutic strategy for GERD.
Conclusion

This research identified certain microbial taxa as either

protective or risk determinants for GERD. Such findings may

offer valuable biomarkers for diagnostic purposes and potential

therapeutic intervention points for GERD. Subsequent research

endeavors ought to corroborate these results in human subjects

and delve deeper into elucidating the underlying mechanisms.
B

C D

A

FIGURE 10

(A–D) In reverse MR analysis, Plots for "leave-one-out" analysis for causal effect of GERD on gut microbiota risk.
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Paraprobiotic derived from
Bacillus velezensis GV1 improves
immune response and gut
microbiota composition in
cyclophosphamide-treated
immunosuppressed mice
Hyo-Jun Lee, My Thi Hoa Tran, Minh Ha Le, Elsa Easter Justine
and Yeon-Ju Kim*

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si,
Gyeonggi-do, Republic of Korea
Paraprobiotics that benefit human health have the capacity to modulate innate

and adaptive immune systems. In this study, we prepared the paraprobiotic from

Bacillus velezensis GV1 using the heat-killing method and investigated its effects

on immunity and gut microbiota in vitro and in vivo. The morphology of

inactivated strain GV1 was observed using scanning electron microscopy.

Treatment with GV1 promoted nitric oxide production and augmented

cytokine (IL-6, IL-1b, and TNF-a) expression and secretion in RAW 264.7

macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide

monohydrate (CTX)-induced immunosuppression by reversing spleen damage

and restoring the immune organ index, as well as by increasing the expression of

immune-related cytokines (TNF-a, IL-1b, IFN-g, and IL-2) in the spleen and

thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-

damaged colon and regulated gut microbiota by increasing the relative

abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae,

and Coriobacteriaceae) and decreasing that of harmful bacterial families

(Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the

heat-killed GV1 can be considered a potential immunoregulatory agent for use as

a functional food or immune-enhancing medicine.
KEYWORDS

paraprobiotics, Bacillus velezensis GV1, immunoregulation, gut mirobiota,
cyclophosphamide
frontiersin.org01115

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1285063/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1285063&domain=pdf&date_stamp=2024-02-22
mailto:yeonjukim@khu.ac.kr
https://doi.org/10.3389/fimmu.2024.1285063
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1285063
https://www.frontiersin.org/journals/immunology


Lee et al. 10.3389/fimmu.2024.1285063
1 Introduction

The immune system of an organism is responsible for

protecting against pathogens and maintaining homeostasis for

survival (1). Dysfunctional immune responses in the human body

due to factors such as the environment, genetics, age, nutrition, and

stress can result in immunodeficiency disorders (2). Recently, many

immunopotentiation agents have been used to improve immune

responses and enhance disease resistance. However, they frequently

cause a variety of side effects, including gastrorrhagia, severe

neurological lesions, anemia, and colic (3). Research has shown

that the use of natural products from fungi, microorganisms, plants,

and animals to regulate the immune system is safe and does not

cause side effects (4). Therefore, natural products are potential

sources of compounds that can improve the immune system

without triggering unwanted responses.

Probiotics are known to provide numerous benefits to human

health as living microorganisms. Particularly, they are recognized

for their crucial features such as immune system enhancement,

prevention of gastrointestinal infections, and protection against

oxidative stress (5). However, along with these benefits, probiotics

may induce side effects in specific population groups, and issues

related to their viability, stability, and sensitivity to storage

conditions are also associated (6, 7). Alternatives such as

prebiotics, paraprobiotics, and postbiotics have been proposed to

address these shortcomings of probiotics.

Paraprobiotics, also known as non-viable microbial cells or

inactivated probiotics, have garnered recognition for their ability

to confer health benefits when administered in suitable quantities.

They offer safety advantages by addressing concerns related to

viability, survival challenges, and safety considerations regarding

microbial movement and infection (8). Recent research endeavors

have been initiated to address the limitations associated

with probiotics across various domains, including the food

industry and therapeutic applications, through the application of

paraprobiotics (9, 10). Studies have illustrated that paraprobiotics

manifest anti-inflammatory effects, mitigating conditions like

colitis, and contribute to enhanced skin moisturization, thereby

preventing wrinkle formation (11–15). Numerous reports indicate

that probiotics subjected to heat-killing, a potential method for

creating paraprobiotics , have a significant impact on

immunomodulation (12, 13). Furthermore, recent studies

indicate that paraprobiotics manufactured based on this premise

exert an influence on immune responses in macrophages and

splenocytes (16, 17). Additionally, these investigations propose

that peptidoglycan, lipoteichoic acid, and wall teichoic acid

obtained from gram-positive microorganisms play a role in

immune regulation (18–20). Consequently, these findings

underscore the immunomodulatory efficacy of compositions

derived from gram-positive paraprobiotics.

Bacillus velezensis is a gram-positive, spore-forming bacterium

commonly found in soil, plant roots, and fermented foods (21).

Spore-forming bacteria, widely employed in medical, veterinary,

and more recently in the food industry, exhibit significant potential

due to their high resistance and exceptional stability under

processing conditions (22). Particularly within the realms of food
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and fermentation industries, the strain B. velezensis has gained

notable recognition for its crucial role in ensuring safety and

outcompeting rival microorganisms (23, 24). Although bacterial

species producing heat-resistant spores are fortunately non-

pathogenic, they can lead to food product spoilage (25). Hence,

this study explores the immune-enhancing effects of paraprobiotics

Bacillus velezensis GV1, with an emphasis on the safety of heat-

treated strains, for potential applications in health functional foods

and food industry, focusing on immune regulation and gut

microbiota modulation.
2 Materials and methods

2.1 Materials

De Man, Rogosa and Sharpe (MRS) broth was obtained from

Becton Dickinson & Company (B.D., New Jersey, USA). DMEM

medium, penicillin-streptomycin (PS), and fetal bovine serum

(FBS) were purchased from GenDEPOT (Katy, TX, USA).

Macrogen (Seoul, Republic of Korea) designed all the primers.

Live/Dead cell viability assay kits were provided by Thermo

Fisher Scientific, USA. Eosin Y Alcoholic was obtained from BBC

Biochemical (Mount Vernon, WA, USA). Cyclophosphamide

monohydrate (CTX), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazol ium bromide (MTT), and levamisole

hydrochloride (LMS) were purchased from Sigma-Aldrich (St.

Louis, MO, USA).
2.2 Bacterial strain and heat treatment

The strain GV1 was isolated from ginseng vinegar and

identified by 16S rRNA sequencing using four primers (27F,

1492R, 518F, and 800R). The NCBI accession number (16S rRNA

gene sequence) of GV1 was OP658964. Additionally, GV1 was

deposited in the Korean Collection for Type Cultures (KCTC)

under the accession number KCTC 15222BP. The strain was

cultured in 1 L of MRS broth at 37°C for 24 h. After this

incubation process, the bacterial cells were collected by

centrifugation at 4000 rpm for 10 min. The bacterial cell pellet

was washed thrice with phosphate-buffered saline (pH 7.4) and re-

suspended such that the optical density of the suspension was

OD600 1.0. Heat treatment was conducted at 121°C for 15 min.

Then, inactivated bacterial cells were freeze-dried for

further experiments.
2.3 Scanning electron microscope

The strain GV1 was inoculated into MRS broth and cultured for

24 h at 37°C. Heat-killed GV1 was prepared as described above.

Briefly, live and heat-killed bacterial cells were collected by

centrifugation and pre-fixed with glutaraldehyde (2.5% v/v) for

2 h. Then, the samples were washed with 0.05 M sodium cacodylate

buffer and treated with 1% osmium tetroxide for 1 h. After
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dehydration using ethanol (in a stepwise elevation from 30% to

50%, 70%, 80%, 90%, and 100%), the samples were treated with

hexamethyldisilazane and metallized using platinum. Observations

were performed under a SIGMA Field-Emission Scanning

Electron Microscope.
2.4 Cell culture and viability assay

RAW 264.7 cells were purchased from the Korean Cell Line

Bank (KCLB, Korea). The macrophages were maintained in DMEM

with 10% FBS and 1% PS inside a 5% CO2 incubator at 37°C. After

90% confluency, the cells were seeded in 96-well plates (2 × 105

cells/mL). Then, the cells were treated with different concentrations

of GV1 (0.5, 1, and 2 mg/mL) and a positive control, LPS (1 mg/mL),

for 24 h. After removing the supernatant, MTT solution (100 mL at

0.5 mg/mL) was added and the plates were incubated for 3 h; then,

DMSO was used to dissolve the formazan crystals. The absorbance

at 560 nm was measured using a microplate reader (FilterMax F5,

Molecular Devices, San Francisco, CA, USA).
2.5 Live/dead fluorescence assay

The cytotoxicity of GV1 toward RAW 264.7 cells was assessed

using a Live/Dead staining kit (L-3224, Invitrogen, Carlsbad, CA,

USA). The macrophages were sub-cultured in small cell culture

dishes overnight and then incubated with GV1 (0.5, 1, and 2 mg/
mL) and LPS (1 mg/mL). Following 24 h of treatment, calcein AM

and ethidium homodimer-1 dyes were mixed with fresh media and

added to the cells, which were thereafter incubated for 30 min in the

dark. Then, the cells were observed using a Leica DMLS Clinical

Microscope (Leica, Wetzlar, Germany).
2.6 Measurement of NO

After overnight incubation in 96-well plates (2 × 105 cells/mL),

macrophages were treated with GV1 (0.5, 1, and 2 mg/mL) and LPS

(1 mg/mL) for 24 h. The culture supernatants (100 mL) were

transferred to new plates and 100 mL of Griess reagent was added

for NO detection. The absorbance at 570 nm was measured using a

microplate reader (FilterMax F5).
2.7 Quantitative real-time polymerase
chain reaction

Total mRNA was extracted from RAW 264.7 cells and mouse

organs in accordance with the TRIzol reagent kit instructions

(Invitrogen). The amfiRivert cDNA Synthesis Platinum Enzyme

Mix (GenDEPOT) was then used to reverse-transcribe total RNA.

AmfiSure qGreen Q-PCR Master Mix (GenDEPOT) was used to

perform qRT-PCR using 50 ng of cDNA in a 20 mL reaction volume.

The sequences of primers are shown in Supplementary Table S1.
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2.8 Enzyme-linked immunosorbent assay

For in vitro experiments, RAW 264.7 cells were seeded in 96-

well plates and incubated with GV1 and LPS. The culture

supernatants were collected to investigate the production of TNF-

a, IL-1b, and IL-6 using an ELISA kit (R&D Systems, Minneapolis,

MN, USA), based on the manufacturer’s instructions.

For in vivo experiments, spleens of ICR mice in each treatment

group were harvested and washed with PBS. Spleen tissues (100 mg)

were homogenized and transferred to saline tubes. The tubes were

centrifuged at 10000 rpm for 5 min and the supernatants were

collected. The contents of TNF-a, IL-1b, IL-6 in the samples were

determined using ELISA kits (R&D Systems).
2.9 Animal experiments

Male ICR mice (six weeks old) weighing 25 ± 1 g were obtained

from OrientBio (Seongnam, Republic of Korea) and housed under

stable condition (temperature: 23 ± 2°C, humidity: 50% ± 10%,

light/dark cycle: 12 h). This study was approved by the Animal Care

and Use Guidelines of Kyung Hee University (KHGASP-23-046).

The mice were separated into 6 groups (8 mice per group): Control

(CON) group (normal saline), only CTX-treated group, CTX +

GV1 (5 mg/kg) group, CTX + GV1 (10 mg/kg) group, CTX + GV1

(20 mg/kg) group, and CTX + LMS (40 mg/kg) group (positive

control). For immunosuppression, all groups of animals were

injected with CTX (80 mg/kg) for 3 days before GV1 and LMS

treatment, except the CON group, which received saline only. GV1

or levamisole hydrochloride (LMS) was orally administered to the

mice once daily by gavage for a period of 20 days. Thereafter, the

mice were sacrificed to obtain their spleens, guts, and thymus glands

for further experiments. The spleens and thymus glands were

weighed to calculate the organ index as follows:

Index =
Weight   of   spleen   or   thymus   (g)

Body  weght   (g)
2.10 Histopathological analysis of spleen
and colon

Immediately after sampling, spleen and colon tissues were fixed

with 10% formalin buffer solution and embedded in paraffin for

hematoxylin and eosin (HE) staining. Then, the tissue sections were

observed under a microscope.
2.11 High-throughput sequencing

The genomic DNA of mice feces in the CON, CTX, and GV1

(20 mg/kg) groups was extracted using an E.Z.N.A.® Soil DNA Kit

(Omega Biotek, Norcross, GA, USA) following the manufacturer’s

protocol. The sequencing procedure was identical to that followed

in our previous study (5).
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2.12 Statistical analysis

Data were expressed as means ± standard deviations or standard

errors for in vitro or in vivo experiments, respectively. All

experiments were carried out in triplicate. Statistical comparisons

between groups were conducted using Student’s t-test and statistical

significance was set at different levels (p< 0.05, p< 0.01, and p< 0.001).

An analysis of variance (ANOVA) followed by Duncan’s test was

employed to evaluate the statistical significance between groups (SPSS

29.0). Different letters presented in tables and figures (a, b, c, d, e)

were regarded as statistical significance (p < 0.05).
3 Results

3.1 Field-emission scanning
electron microscope

Generally, the surface of heat-killed bacterial cells was rougher

and uneven compared with that of viable cells. Figures 1A, B show

representative FE-SEM images of both live and heat-treated GV1 (at

121°C for 15 min and, consequently, freeze-dried), respectively.

There were obvious signs of damage on the surfaces of heat-treated
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bacterial cells, unlike the untreated cells, indicating that heat

treatment inactivated GV1.
3.2 Cytotoxicity of GV1 toward RAW
264.7 cells

GV1 cytotoxicity toward RAW 264.7 cells was examined using an

MTT assay and Live/Dead staining. The results (Live/Dead staining:

Figure 2A; MTT assay: Figure 2B) revealed that treatment with GV1

(0.5, 1, and 2 mg/mL) had no impact on the viability of macrophages.

However, LPS (1 mg/mL) exhibited a slight cytotoxic effect on RAW

264.7 cells.
3.3 Effect of GV1 on NO production and
inducible nitric oxide synthase Expression
in RAW 264.7 cells

NO exerts significant antimicrobial, anticancer, and

immunomodulation effects but can also damage tissues (26).

Hence, we examined the effect of GV1 on NO production in

murine macrophages. As shown in Figure 2C, GV1 dose-
A

B

FIGURE 1

FE-SEM images of GV1: A comparative analysis of live and heat-killed morphology. (A) Live GV1; (B) Heat-Killed GV1. (10K X, Scale bar = 5mm; 30K X,
Scale bar = 1mm).
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dependently enhanced NO production at 28.3 ± 4.2, 39.2 ± 0.9, and

46.1 ± 0.8 μM at concentration 0.5, 1, and 2 mg/mL, respectively. NO

production was mediated by iNOS, which is also associated with

immune responses (27). Cell stimulation by several agents such as

LPS induces iNOS expression, thus increasing NO production (28).

iNOS levels were determined using qRT-PCR (Figure 2D); GV1

significantly induced iNOSmRNA expression. These findings suggest

that GV1 can stimulate RAW 264.7 cells by elevating the expression

of iNOS and enhancing NO production.
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3.4 Effect of GV1 on immune-related
cytokines in RAW 264.7 cells

It is well known that macrophages modulate adaptive and

innate immune systems by releasing immune-related cytokines

such as TNF-a, IL-6, and IL-1b (29). Several studies have shown

that LPS highly stimulates the expression of TNF-a, IL-6, and IL-1b
mRNA (Figure 2E) (30, 31). Treatment with GV1 enhanced the

expression levels of such cytokine mRNA in a dose-dependent
A

B D

E

F

C

FIGURE 2

Macrophage responses to GV1: Cytotoxicity and immunity enhancement. (A) Live/Dead staining enhancement; (B) Cell viability; (C) NO production;
Expression of mRNA (D) iNOS, (E) TNF-a, IL-6, and IL-1b; (F) Secretion of cytokines TNF-a, IL-6, and IL-1b. All data are presented as means ± S.D.
*p< 0.05, **p< 0.01, ***p< 0.001 vs. CON group.
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manner (Figure 2E). ELISA analysis confirmed that GV1 markedly

promoted TNF-a, IL-6 and IL-1b secretion (Figure 2F). These

findings suggest that GV1 can increase the expression and secretion

of immune-related cytokines in murine macrophages.
3.5 Effect of GV1 on body weight
and immune-related organs in
CTX-treated mice

In vitro experiments indicated that GV1 significantly enhances

immunity. Therefore, we investigated the effects of GV1 on CTX-

treated immunosuppressed mice. CTX, an alkylating cytotoxic

drug, is effective in treating autoimmune disorders and cancer.
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However, long-term use of high doses of CTX can cause

immunosuppression and intestinal problems such as viral

infections and microflora disorders (32). Hence, CTX is

frequently used to suppress immunity in mouse models. Body

weight and immune organ indexes play important roles in the

health of mice (33). LMS is a compound that improves immune

responses, especially under immunocompromised conditions;

hence, it was used as a positive control in this study (3). During

the experimental period, body weight slightly increased in all the

groups and there was no difference between groups (Figure 3A). As

shown in Figure 3B, the spleen and thymus indexes of the CTX-

induced group remarkably decreased compared with those of the

control group. GV1 treatment restored the spleen and thymus

indexes, and this recovery was greater than that in the LMS-
A B

D

C

FIGURE 3

Effects of GV1 on body weight and immune-related organs of CTX-treated immunosuppressed mice. (A) Body weight; (B) Spleen and thymus
indexes; (C) Expression of mRNA in spleen; (D) Expression of mRNA in thymus. All data are presented as means ± S.D. Adopt the Duncan analysis
method. Different letter combinations (a–e) is significant (p < 0.05).
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treated group. These data indicate that GV1 could reverse the

immune organ atrophy induced by CTX.

Furthermore, we evaluated the effect of GV1 on the expression

of mRNA of several immune-associated cytokines such as IL-6,

TNF-a, IFN-g, and IL-2 in mouse spleen and thymus tissues,

respectively. As shown in Figure 3C, the cytokine (TNF-a, IL-1b,
IFN-g, and IL-2) mRNA levels in the spleen tissue were dramatically

suppressed in the CTX group compared with those in the control

group. However, the GV1 groups exhibited dose-dependent

improvements in cytokine expression, compared with that in the

CTX group. Notably, the cytokine mRNA expression in the LMS

group was significantly lower than that in the GV1 groups.

Figure 3D illustrates that CTX remarkably reduced the cytokine

(TNF-a, IL-1b, IFN-g, and IL-2) expression levels in thymus tissues

compared to those in the control group. In contrast, expression of

cytokine mRNA in thymus tissues significantly increased in a dose-

dependent manner after oral administration of GV1. These results

suggest that GV1 greatly enhanced the expression of mRNA of

immune-associated cytokines in spleen and thymus tissues of CTX-

treated immunosuppressed mice.
Frontiers in Immunology 07121
3.6 Effect of GV1 on cytokine production
and histopathological analysis of spleen in
immunosuppressed mice

The spleen is an important immune organ that removes antigens

from the blood and initiates innate and adaptive immune responses

against pathogens (34). Therefore, we examined the effect of GV1 on

cytokine production and conducted a histopathological analysis of the

spleen in CTX-treated mice. As shown in Figure 4A, CTX treatment

suppressed immunocyte action, leading to a decrease in the levels of

immune-related cytokines (IL-1b, IL-6, and TNF-a) in spleen tissues of

mice. GV1 dramatically increased the secretion of IL-1b, IL-6, and TNF-
a in a dose-dependent manner. These findings suggest that GV1 could

improve cytokine secretion in the spleen of immunosuppressed mice.

Next, the spleen histology was observed. Compared with those

in the control group, the spleen cells in the CTX-treated group were

sparse and irregularly arranged (Figure 4B). The HE stain

histopathological images also showed clear necrotic areas devoid

of cell structures and intercellular space dilatation. However, the

number of such areas decreased in a dose-dependent manner in the
A

B

FIGURE 4

Immunomodulation effects of GV1 on spleen tissue in CTX-treated immunosuppressed mice. (A) Secretion of cytokines in spleen; (B) Histology
of spleen. (100 X, Scale bar = 100mm). All data are presented as means ± S.D. Adopt the Duncan analysis method. Different letter combinations
(a–d) is significant (p < 0.05).
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GV1 treatment groups. In particular, at a concentration of 20 mg/kg

GV1, the spleen tissues were tightly arranged and dense with clear

nuclei as well as less interstitial spaces; thus, their state was better

than that in the LMS group. These results demonstrate that GV1

can reverse CTX-induced damage in spleen tissues.
3.7 Effect of GV1 on colon histology in
immunosuppressed mice

Clinical evidence has shown that CTX treatment can cause colon

damage, which hinders gut immunity. Colon length was considerably

lower in the CTX group than in the control group (Figure 5A); oral

administration of GV1 reversed this decrease. At dosages of 10 and 20

mg/kg, GV1 dramatically increased colon length. HE-stained

colorectal sections of CTX-treated mice indicated that the thickness

of the epithelium had significantly reduced and that inflammatory

cells had infiltrated the submucosa and mucosa (Figure 5B). In

contrast, the GV1 groups exhibited remarkable protection against
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colonic crypt degradation and tissue inflammation. Interestingly, the

colon tissue almost completely recovered upon GV1 treatment at a

dosage of 10 mg/kg. Therefore, GV1 restored the length of the colon

and reduced colonic damage in a mouse model of CTX-

induced immunosuppression.
3.8 Effect of GV1 on gut microbiota in
immunosuppressed mice

The modulatory effect of GV1 on gut microbiota was

investigated via the high-throughput 16S rDNA sequencing of

fecal samples. The Venn diagram in Figure 6A presents OTUs

that were unique and common among three groups; there were a

total of 965 OTUs in all the groups. There were 516 shared OTUs

(55.8% of the total OTUs) among the groups. The CTX and GV1

groups showed 76 and 47 exclusive OTUs, respectively, whereas the

CON group displayed 90 exclusive OTUs. In addition, the diversity

and richness analysis, including metrics such as Ace, Chao1,
A

B

FIGURE 5

Protective effects of GV1 on colon in CTX-treated immunosuppressed mice. (A) Colon length; (B) Colon histology. (100 X, Scale bar = 100mm). All
data are presented as means ± S.D. Adopt the Duncan analysis method. Different letter combinations (a–c) is significant (p < 0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1285063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2024.1285063
Shannon, and Simpson revealed that GV1 group exhibited lower

values in comparison to the CON and CTX groups (Table 1).

We assessed the relative abundance of species at the phylum

and family levels to identify specific taxa related to GV1. The

intestines of mice mainly harbor Firmicutes, Bacteroides,

Proteobacteria, Actinobacteria, and Tenericutes (Figure 6B). The

differences in the relative abundance of these five major phyla were
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compared. CTX treatment led to a decreased Firmicutes/

Bacteroidetes ratio and a significant increase in Proteobacteria and

Tenericutes abundance, whereas GV1 treatment increased the

abundance of Actinobacteria , resulting in a microbiota

composition similar to that of the control group (Figure 6C). The

gut microbiota varied at the family level, with the top 12 relative

abundances being exhibited by Muribaculaceae, Lachnospiraceae,
A B

D E

C

FIGURE 6

Modulation of gut microbiota composition by GV1 and comparative analysis phylum and family levels in CTX-treated immunosuppressed mice.
(A) Venn diagram representation of OTUs in CON, CTX, and GV1 groups; (B) Relative abundances of gut microbiota in CON, CTX, and GV1 groups at
the phylum level, presented as a stacked bar chart. (C) Firmicutes/Bacteroidetes ratio; Relative abundance of Proteobacteria, Actinobacteria, and
Tenericutes; (D) Relative abundances of gut microbiota in CON, CTX, and GV1 groups at the family level, presented as a stacked bar chart;
(E) Heatmap image of family level. All data are presented as means ± S.D. Adopt the Duncan analysis method. Different letter combinations (a, b) is
significant (p < 0.05).
TABLE 1 a-Diversity metrics of gut microbiota across study groups.

Group ACE Chao1 Shannon Simpson

CON 661.7 ± 5.5 652.8 ± 4.86 4.4 ± 0.2 0.032 ± 0.006

CTX 650.0 ± 40.2 632.8 ± 38.2 4.3 ± 0.1 0.032 ± 0.004

GV1 601.1 ± 36.4 583.3 ± 31.8 4.0 ± 0.3 0.041 ± 0.017
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Lactobacil laceae , Ruminococcaceae , Erysipelotrichaceae ,

Rikenellaceae, Odoribacteraceae, Bacteroidaceae, Prevotellaceae,

Desulfovibrionaceae, Staphylococcaceae, and Coriobacteriaceae

(Figure 6D). CTX altered the relat ive abundance of

Desulfovibrionaceae and Staphylococcaceae compared with that in

the control and GV1 groups. GV1 treatment significantly altered

the relative abundances of Lactobacillaceae, Bacteroidaceae, and

Coriobacteriaceae (Figure 6E).

LEfSe was utilized to identify taxa with significant differences in

abundance. The linear discriminant analysis (LDA) is a statistical

method widely used in multivariate analysis to find the linear

combinations of features that best discriminate between different

classes. The cladogram visually represents the evolutionary

relationships or similarities between different groups, while the

histogram provides a graphical representation of the distribution

of LDA scores, shedding light on the significance and impact of each

component’s abundance in the context of differential effects (35).

The LEfSe results of comparing the control and CTX treatment

groups (Figure 7A) showed that CTX treatment promoted the

relative abundance of Muribaculaceae , Proteobacteria ,
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Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae,

Ruminococcaceae, Tenericutes, and Mollicutes. In contrast to the

CTX treatment (Figure 7B), GV1 treatment suppressed the relative

abundance of Lachnospiraceae, Proteobacteria, Deltaproteobacteria,

Desulfovibrionales , Desulfovibrionaceae , Erysipelotrichia,

Erys ipe lotr ichales , Erys ipe lotr ichaceae , Rikene l laceae ,

Prevotellaceae, Bacillales, Staphylococcaceae, Tenericutes, and

Mollicutes. Moreover, GV1 treatment promoted the growth of

Bacilli , Lactobacillales , Lactobacillaceae , Actinobacteria ,

Cor iobac t e r i i a , Cor iobac t e r ia l e s , Cor iobac t e r ia c eae ,

Verrucomicrobia, Verrucomicrobiaceae, Verrucomicrobiales,

and Akkermansiaceae.
3.9 Spearman correlation between gut
microbiota and host immune responses

Spearman correlation analysis was used to calculate the

correlation coefficient between gut microbial families and

immune response mediators. As depicted in Figure 8, immune
A

B

FIGURE 7

LEfSe analyses of fecal microbes via cladogram and histogram based on LDA score. (A) CON group vs. CTX group; (B) CTX group vs. GV1 group.
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indicators such as immune-related cytokines (IFN-g, TNF-a, IL-2,
IL-6, and IL-1b) and immune organ indexes (spleen and thymus)

had highly positive correlations with three types of host relative

abundances, namely, those of Akkermansiaceae, Coriobacteriaceae,

and Lactobacillaceae in the family level. In contrast, these indicators

had strong negative correlations with the relative abundances of

Desulfovibrionaceae, Staphylococcaceae, and Prevotellaceae.
4 Discussion

Paraprobiotics, also known as inactivated probiotics, have been

prepared using several methods, such as heat-killing, sonication,

and UV treatment, which not only inactivate microorganisms but

also alter their cellular structure (13, 15, 36). The components of

probiotic structures have been reported to play an important role in

the regulation of immune responses (37). Live cells of B. velezensis

have been studied extensively for their biological activity; however,

the biological effect of inactive B. velezensis has not received much

attention (38). Therefore, we studied the immunomodulatory

effects of heat-killed B. velezensis GV1 in vitro and in vivo to

identify the underlying contributing to the beneficial effects of

paraprobiotics on immunomodulation.

Macrophages play a crucial role in the immune system by

detecting and destroying pathogens. Upon activation,

macrophages generate NO, accompanied by the increased

expression of iNOS gene. NO serves as a signaling molecule that
Frontiers in Immunology 11125
induces interactions among various immune cells to enhance the

immune system’s ability to respond to pathogens, inhibiting their

replication and thereby, improving overall immune function (17).

The increase in NO production and iNOS expression in RAW 264.7

macrophages treated with heat-killed GV1 suggests that GV1

enhances immunity (Figures 2A, B). Additionally, GV1 dose-

dependently increased the expression and secretion of immune-

related cytokines such as TNF-a, IL-6, and IL-1b. Macrophages

have the ability to release cytokines, which bind to specific receptors

on cells and initiate an immune response. The application of heat-

treated Levilactobacillus brevis KU15159 has demonstrated the

stimulation of immune responses which is evidenced in the

upregulation of TNF-a, IL-6, IL-1b in RAW 264.7 cells (39).

Therefore, we speculated that GV1 may induce immune

responses by stimulating the secretion of NO and immune-related

cytokines in RAW 264.7 macrophages.

To further characterize the immunity-enhancing effect of GV1, we

studied its immunomodulatory activity in the CTX-treated

immunosuppressed mouse model. The immune response is

suppressed as evidenced by a decrease in the size of the spleen and

thymus, along with a reduction in the expression and production of

most immune-related cytokines, upon CTX treatment (40). The

thymus primarily, oversees the development of T lymphocytes, and

the spleen captures pathogens and activates and coordinates the

response of immune cells. Therefore, the thymus and spleen play

pivotal roles as major lymphoid organs in the immune system,

contributing significantly to lymphocyte development and the
FIGURE 8

Spearman correlation analysis of immune-related mediators and key microbial communities.
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orchestration of adaptive immune responses (41). As expected, the

spleen and thymus indexes significantly decreased upon CTX

administration. However, these decreases were reversed upon GV1

administration. Furthermore, GV1 dose-dependently enhanced the

expression of IL-6, TNF-a, IFN-g, and IL-2 mRNA in the thymus

and spleen tissues of immunodeficient mice. Notably, the expression of

IL-2 mRNA greatly increased in spleen tissues in the GV1 groups,

compared with that in the LMS group. IL-2 is a multifunctional

cytokine that increases NK cell lysis activity, promotes T and B cell

proliferation, and activates Treg cells, thus impairing killer cell

differentiation (42). These immune-related cells mainly reside in

spleen tissues; therefore, the spleen is considered a key immune

organ in the body (43). Hence, the protective effects of GV1 on the

spleen in CTX-treated immunosuppressed mice were further

investigated using ELISA assays and HE staining. Our data show

that GV1 remarkably enhances IL- 6, TNF-a, and IL-1b production in

the spleen of immunosuppressed mice. Histological results indicate

that GV1 can repair CTX-induced spleen tissue damage. Similarly, in

our previous study, Curtobacterium proimmune K3 lysate significantly

stimulated the secretion of immune-related cytokines in the thymus

and spleen, and reversed the atrophy of these organs in CTX-treated

mice (33). Therefore, we conclude that GV1 can repair immune organ

damage and promote the expression of immune-related cytokines to

improve the immune system in immunosuppressed mice.

The intestine is a vital organ with key functions in digestion,

nutrient absorption, and immunity. The intestinal ecosystem

continuously interacts to optimize these functions and maintain

the integrity of the gut (44). In conditions of immune suppression

and inhibition, the immune system fails to activate adequately,

leading to damage in the intestinal tract (45). In this study, we

investigated the role of GV1 in improving colon damage caused by

immune suppression. Treatment with GV1 demonstrated a

protective effect on the colon by increasing its length and

alleviating damage. This suggests that GV1 plays a role in

ameliorating immune suppression-induced damage, restoring

colon function, and enhancing the immune system’s resilience

against infections and other immune-related issues. The gut

microbial community, especially in relation to intestinal mucosal

immunity, plays a crucial role in regulating the host’s innate

and adaptive immune systems. Moreover, the efficacy of

immunotherapy can vary depending on the composition of the

gut microbiota (45). In this study, gut microbiota regulation by GV1

was investigated in CTX-treated mice. The number of OTUs, the

diversity and richness index of the GV1 group slightly decreased

compared to those of the normal and CTX groups, suggesting that

GV1 can modulate the abundance of bacterial species. It is

necessary to analyze the dominant gut microbiota at various

taxonomic levels (phylum and family) in order to determine the

overall differences and similarities between various groups. Our

results indicate that Bacteroidetes and Firmicutes are the most

abundant at the phylum level in fecal microbiota, which could be

modulated by paraprobiotic GV1. The Firmicutes/Bacteroidetes (F/

B) ratio is related to the maintenance of homeostasis, and an

imbalance in this ratio can cause obesity or inflammatory bowel

disease (46). In this study, CTX decreased the relative abundance of
Frontiers in Immunology 12126
Firmicutes and increased that of Bacteroidetes, causing an

imbalance in the F/B ratio. However, this ratio was balanced after

oral administration of GV1, similar to the results of a prior study.

Notably, GV1 reduced the relative abundance of Proteobacteria,

which was promoted by CTX treatment. Proteobacteria is a major

phylum of gram-negative bacteria that includes a large range of

pathogenic organisms, including Helicobacter pylori, Escherichia

coli, and Salmonella spp (47). Consistent with our results,

Lactobacillus plantarum BF_15 has been reported to inhibit the

growth of Proteobacteria, which was promoted by CTX treatment

(48). GV1 administration reversed the CTX-induced reduction in

gut microbiota diversity and richness possibly by inhibiting

pathogenic bacteria (belonging to Proteobacteria). At the family

level, the relative abundances of Lactobacillaceae, Akkermansiaceae,

and Coriobacteriaceae in the GV1 group were higher than those in

the CTX group. Lactobacillaceae have been reported to have an

effect on the immune system and gastrointestinal microbial

community of humans (49). Akkermansiaceae members exhibit

probiotic properties and are inversely related to various diseases,

including inflammation, diabetes, obesity, and metabolic disorders

(50–53). Coriobacteriaceae family members perform important

functions within organisms, such as modulating host glucose

metabolism in the liver and regulating bile acid and lipid

metabolism in the gut (54). In addition to enhancing the relative

abundances of beneficial bacterial families, GV1 reduces the

abundance of several families such as Desulfovibrionaceae,

Erysipelotrichaceae, Prevotellaceae, and Staphylococcaceae,

compared to that in CTX-treated immunosuppressed mice.

Among these families, Desulfovibrionaceae are considered as

harmful bacteria that can cause mucosal inflammation by

inducing toxic hydrogen sulfide to secrete sulfated mucin (55).

Kaakoush revealed that Erysipelotrichaceae are involved in

gastrointestinal inflammatory disorders and that they are

particularly found to be abundant in colorectal cancer patients

(56). Based on the result (Figure 8), Spearman correlation analysis

indicate that three types of key microorganisms (Akkermansiaceae,

Coriobacteriaceae, and Lactobacillaceae) positively correlate with

immune mediators such as immune-related cytokines and immune

organ indexes, consistent with previous research (57). These

data demonstrate that GV1 can promote immune responses in

CTX-treated immunosuppressed mice by modulating gut

microbiota dysbiosis.

This study delved into the entire process, from the production

of paraprobiotics GV1 to its immunomodulatory effects, along

with subsequent gut recovery and microbial community changes

(Supplementary Figure S1). However, the predominant use of a

mouse model as the experimental subject limits direct

applicability to humans. Considering the diversity and

complexity of the microbial community, additional diverse

microbial community analyses and in-depth studies over time

are required. Despite these limitations, GV1 demonstrated

positive outcomes in enhancing immune function and

regulating microbial community imbalance. This suggests

promising potential for GV1 in the treatment and prevention

of immune-related diseases and disorders. The research
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providesinsights into the immunological and microbiological

characteristics of paraprobiotics GV1, indicating its significance

as fundamental data for future studies, particularly in the fields of

the food industry and health-functional food applications.
5 Conclusion

This study focused on the immunomodulatory effects of

paraprobiotics, specifically discussing the ability of the heat-

treated form of B. velezensis GV1 to regulate the microbial

community within the human body. GV1 robustly stimulated

immune responses by enhancing the expression and secretion of

inflammatory cytokines in RAW 264.7 macrophages. Furthermore,

GV1 repaired damage to immune organs and increased the

expression of immune-related cytokines in immunosuppressed

mice induced by CTX. Additionally, GV1 promoted beneficial

bacteria and suppressed harmful bacteria, restoring balance to the

microbial community in the intestine. These findings indicate, for

the first time, that paraprobiotics prepared from B. velezensis GV1

can act as a stimulant to enhance immune responses. Such

discoveries could form the basis for developing paraprobiotics as

functional foods or drugs aimed at improving the immune system.

The effects of GV1 should be further investigated through

clinical trials, exploring its potential for industrial use as an

immunomodulatory agent.
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The causality of gut microbiota
on onset and progression of
sepsis: a bi-directional Mendelian
randomization analysis
Yuzheng Gao, Lidan Liu, Yuning Cui, Jiaxin Zhang
and Xiuying Wu*

Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
Background: Several observational studies have proposed a potential link

between gut microbiota and the onset and progression of sepsis. Nevertheless,

the causality of gut microbiota and sepsis remains debatable and warrants more

comprehensive exploration.

Methods: We conducted a two-sample Mendelian randomization (MR) analysis

to test the causality between gut microbiota and the onset and progression of

sepsis. The genome-wide association study (GWAS) summary statistics for 196

bacterial traits were extracted from the MiBioGen consortium, whereas the

GWAS summary statistics for sepsis and sepsis-related outcomes came from

the UK Biobank. The inverse-variance weighted (IVW) approach was the primary

method used to examine the causal association. To complement the IVW

method, we utilized four additional MR methods. We performed a series of

sensitivity analyses to examine the robustness of the causal estimates.

Results: We assessed the causality of 196 bacterial traits on sepsis and sepsis-

related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence

interval (CI) (0.69–0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74–

0.97, p = 0.016) had a protective effect on sepsis, whereas genus

Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01–1.20, p = 0.024) increased

the risk of sepsis. When it came to sepsis requiring critical care, genus

Anaerostipes (OR 0.49, 95% CI 0.31–0.76, p = 0.002), genus Coprococcus1

(OR 0.65, 95% CI 0.43–1.00, p = 0.049), and genus Lachnospiraceae UCG004

(OR 0.51, 95% CI 0.34–0.77, p = 0.001) emerged as protective factors.

Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI

0.48–0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27–0.86, p =

0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52–0.95, p = 0.023),

and genus Victivallis (OR 0.82, 95% CI 0.68–0.99, p = 0.042) presented a

protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95%

CI 1.00–2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04–1.50, p =

0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02–2.02, p = 0.040)

presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI

0.19–0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14–0.83, p =

0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22–0.83, p = 0.012)

were associated with a lower 28-day mortality of sepsis requiring critical care.
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Conclusion: This MR analysis unveiled a causality between the 21 bacterial traits

and sepsis and sepsis-related outcomes. Our findings may help the development

of novel microbiota-based therapeutics to decrease the morbidity and mortality

of sepsis.
KEYWORDS

causal relationship, genetics, gut microbiota, Mendelian randomization, sepsis
1 Introduction

Sepsis, one of the oldest and most elusive syndromes in

medicine (1), is a critical global public health issue and a leading

cause of morbidity and mortality worldwide (2). With the aging of

the population leading to suppressed immunity, advances in

medical care including immune-modulating medications, and the

impact of global warming, sepsis is predicted to become an

increasingly prevalent concern (3). Sepsis currently accounts for

nearly 26% of all global deaths, resulting in more than 20 deaths per

minute (4). The pathogenesis of sepsis is still not fully understood.

Sepsis can be caused by infections stemming from viruses, fungi, or

parasites, and non-immune alterations are known to contribute to

the imbalanced host response in sepsis (5). Recently, sepsis has been

defined as a dysregulated host response to infection, resulting in

life-threatening damage to organs and tissues (6, 7). Timely

antibiotics and systemic supportive care are the standard

treatment options, but effective therapies for sepsis remain elusive

(8), resulting in persistently high incidence and mortality rates.

Trillions of symbiotic bacteria colonize the human intestine and

are mainly composed of Bacillota and Bacteroidota (9–11); these

bacteria are also called the second genome and play a crucial role in

maintaining human health (12). It is widely accepted that various

diseases such as obesity and diabetes are caused by dysbiosis of the

gut microbiota (13–15). Moreover, the gut microbiota affects host

susceptibility and responsiveness to sepsis through multiple

pathways (16), and microbial dysbiosis has been recognized as a

remarkable contributor to increased susceptibility to sepsis and

subsequent organ dysfunction (17–19). In recent years, some

observational studies (19–25) have suggested that the gut

microbiota is associated with the onset and progression of sepsis.

However, in traditional observational studies, the association

between the gut microbiota and sepsis has been shown to be

influenced by confounding factors such as antibiotic use and

dietary habits, as well as reverse causality, which limits the

inference of causality. To investigate the causal effect between the

gut microbiota and sepsis, large-sample and high-quality

randomized controlled trials (RCTs) are still needed for further

validation. However, because of objective factors such as

technology, cost, and research methods, there are significant
02131
limitations in identifying the types of strains associated with early

diagnosis and prognosis.

Mendelian randomization (MR) analysis is a novel approach for

inferring causal associations that provides an alternative to RCTs.

This method utilizes single-nucleotide polymorphisms (SNPs)

identified by genome-wide association studies (GWASs) as

instrumental variables (IVs) to explore the causal association

between exposure (e.g., the abundance of the genus Dialister) and

outcome (e.g., sepsis) (26). Mendel’s laws of inheritance dictate that

parental alleles are randomly assigned to offspring, which is akin to

random assignment in RCTs. Genetic variation, in theory, is not

influenced by common confounding factors, such as the postnatal

environment, and genetic variation precedes exposure and

outcome, eliminating the issues of reverse causality and

confounding factors. Large-scale GWAS data have provided a

wealth of reliable genetic variation information for MR studies of

the gut microbiota (26, 27), and many studies (28, 29) have utilized

the two-sample MR method to investigate the causal associations

between the gut microbiota and various diseases.

This study aimed to utilize summary statistics from the

MiBioGen and UK Biobank consortiums and employ a two-

sample MR approach to investigate the causal association between

the gut microbiota and the onset and progression of sepsis.

2 Methods

2.1 Study design

The flow chart of this MR analysis is shown in Figure 1. This

study utilized publicly available GWAS summary statistics for a

two-sample MR analysis to assess the causal association between the

gut microbiota and the onset and progression of sepsis. Our MR

analysis relied on three assumptions (26): (1) the IVs are strongly

associated with the exposure; (2) the IVs are unrelated to

confounding factors that affect the exposure–outcome association;

and (3) the IVs only affect the outcome through the exposure and

not through any other pathways. Moreover, this study was reported

according to the Strengthening the Reporting of Observational

Studies in Epidemiology Using Mendelian Randomization

guidelines (STROBE-MR, S1 Checklist) (30).
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2.2 Exposure GWAS datasets

The genetic variation in the gut microbiota in this study was

derived from a genome-wide meta-analysis conducted by the

MiBioGen consortium (31), which represents the largest gut

microbiota GWAS to date. This study identified genetic

associations between gut microbial relative abundances and

human host genes. In this study, genotyping data and 16S

ribosomal RNA gene sequencing profiles from 18,340 participants

across 24 cohorts in Europe, America, the Middle East, and East

Asia were coordinated. Twenty cohorts included samples of single

ancestry, 16 of which were of European ancestry, for a total of

13,266 participants. The baseline characteristics of the exposure

population can be viewed in Supplementary Table S1. This

multiethnic large-scale GWAS divided the gut microbiota into

211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9

phyla). Fifteen bacterial taxa (12 genera and 3 families) with

unknown groups were excluded, with 196 bacterial taxa finally

included in our MR analysis. Summary-level GWAS data of the gut

microbiota are openly available at http://www.mibiogen.org/.
2.3 Outcome GWAS datasets

Summary-level GWAS statistics of sepsis, sepsis requiring

critical care, and 28-day mortality of patients with sepsis and

sepsis requiring critical care were obtained from the UK Biobank

consortium with adjustment for sex and age. The UK Biobank is a

large and publicly available biomedical database and research
Frontiers in Immunology 03132
resource. Since 2006, blood, urine, and saliva samples and

complete demographic, socioeconomic, lifestyle, and health

information data have been collected from approximately 500,000

participants aged 40 to 69 years throughout the United Kingdom

(32). All the participants in the case and control groups (both men

and women) included in the UK Biobank are of European descent.

The phenotype “sepsis, sepsis requiring critical care, 28-day

mortality of sepsis, and 28-day mortality of sepsis requiring

critical care” was applied in our research. Comprehensive

information on the diagnostic criteria and recruitment methods

used for participants in the UK Biobank consortium can be found in

the original publications. The profiles of the GWAS datasets of the

gut microbiota and sepsis and sepsis-related outcomes are available

in Table 1.
2.3 Instrumental variables

SNPs strongly associated with each bacterial trait were selected

as IVs in our MR analysis. To ensure the reliability and accuracy of

the results regarding the causal association between the gut

microbiota and the risk of sepsis and sepsis-related outcomes, we

utilized the following selection criteria to choose IVs: (1) To

improve the completeness of our results, SNPs associated with

each gut microbial taxon at the genome-wide significance threshold

(p < 5×10−8) and the locus-wide significance threshold (p < 1×10–5)

were chosen as IVs (33). (2) Using the 1000 Genomes Project

European sample data as the reference panel, this study conducted a

clumping analysis (r2 < 0.001, window size = 10,000 kilobases) to
FIGURE 1

Synopsis of MR analysis procedures and major assumptions.
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assess the linkage disequilibrium (LD) between the included SNPs

and removed highly correlated SNPs to ensure that the included

SNPs were independent of each other. (3) The exposure (gut

microbiota) and outcome (sepsis and sepsis-related outcomes)

data were harmonized, and palindromic SNPs with intermediate

allele frequencies were removed. (4) The F-statistic for the IVs was

calculated to evaluate potential bias due to weak IVs. An F-statistic

> 10 was interpreted as an indication of negligible bias from

weak IVs.
2.4 Statistical analysis

MR was conducted to analyze the causal relationships between

the gut microbiota and sepsis and sepsis-related outcomes. The

inverse-variance weighted (IVW) method was used as the primary

method to identify potential causal associations, as it is regarded as

the most powerful statistical method. A meta-analysis approach

combined with the Wald estimates for each valid SNP was used to

assess a total estimate of the effect of the exposure variables on

outcome. For each bacterial trait of the gut microbiota, if the IVW

method identified causality (p < 0.05), we performed the other four

MR methods, MR−Egger, weighted median, simple mode, and

weighted mode, to supplement the IVW results (34, 35). The MR

−Egger method delivers unbiased estimates even when all chosen

IVs exhibit pleiotropy, given that the Instrument Strength

Independent of Direct Effect (InSIDE) assumption is satisfied

(36). The weighted median method can still accurately estimate

the causality effect even when less than 50% of the genetic variants

violate the core assumptions of MR (34). Finally, we report the

causal results as odds ratios (ORs) with 95% confidence intervals

(95% CIs). The significance threshold was established at p < 0.05.

We considered an exposure–outcome pair to have a causal

association only when all MR methods consistently identified the

same direction of effect. To validate the robustness of the

established causal associations, we conducted a series of
Frontiers in Immunology 04133
sensitivity analyses. First, Cochran’s IVW Q statistics were

calculated to quantify the heterogeneity. A Q-value exceeding the

total number of IVs reduced by one suggested the presence of

heterogeneity and potentially invalid IVs. Similarly, Q statistics that

yielded a p-value < 0.05 also indicated the existence of heterogeneity

(37, 38). Second, we performed MR−Egger analysis to assess the

confounding effects of directional pleiotropy. When the intercept of

the MR−Egger was close to zero at a p-value > 0.05, we regarded

directional pleiotropy as not significant. Third, to assess overall

pleiotropy, Mendelian randomization pleiotropy residual sum and

outlier (MR-PRESSO) analysis was performed (39). We reported

the outcomes of the MR-PRESSO global test, and outlier-corrected

ORs and confidence intervals (CIs) were calculated for outliers and

horizontal pleiotropic SNPs. Finally, to detect pleiotropy caused by

a single SNP, a leave-one-out analysis was also performed.

To investigate whether sepsis and sepsis-related outcomes had

any causal influence on the identified significant gut microbiota, we

also conducted reverse-direction MR analysis on bacteria with

significant causal associations in forward-direction MR. The

settings and methods were identical to those used for forward-

direction MR.

All the statistical analyses were performed using R version 4.2.3

(R Foundation for Statistical Computing, Vienna, Austria, https://

www.r-project.org/). MR analyses were performed using

TwosampleMR (version 0.5.6) (26) and MR-PRESSO (version

1.0) (39).
3 Results

The details of the selected SNPs are shown in Supplementary

Table S2 (i.e., SNPID, effect allele, other allele, beta, standard error,

and p-value of exposure and outcome). Based on the selection

criteria for IVs, we identified 196 traits of the gut microbiota at five

biological levels (i.e., phylum, class, order, family, and genus)

as soc ia ted wi th seps i s and seps i s - re la ted outcomes

(Supplementary Table S3). As shown in Table 2, 8, 6, 12, and 9

bacterial traits were potentially causally associated with sepsis,

sepsis requiring critical care, 28-day mortality from sepsis, and

28-day mortality from sepsis requiring critical care, respectively,

according to the IVW MR analysis. Following the harmonization

process, every pair of bacterial traits and sepsis and sepsis-related

outcomes incorporated more than three SNPs. All of the F-statistics

of the selected IVs in this research were greater than 10, suggesting

that there was no weak instrument bias. It is important to

acknowledge that the classifications of the gut microbiota have a

considerable degree of overlap. Consequently, the SNPs included in

the class and their corresponding order could coincide significantly

(e.g., SNPs of the phylum Lentisphaerae, class Lentisphaeria, order

Victivallales, and genus Victivallis). A heatmap was generated to

visualize the causal association of bacterial traits identified in our

MR analysis with sepsis, sepsis requiring critical care, and 28-day

mortality of sepsis and sepsis requiring critical care (Figure 2).
TABLE 1 Summary information of the datasets utilized in this
MR analysis.

Trait Consortium Samples Case Control

Exposure

Gut microbiota MiBioGen 18,340 / /

Outcome

Sepsis UK Biobank 486,484 11,643 474,841

Sepsis requiring
critical care

UK Biobank 431,365 1,380 429,985

28-day mortality
of sepsis

UK Biobank 486,484 1,896 484,588

28-day mortality
of sepsis
requiring
critical care

UK Biobank 431,365 347 431,018
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TABLE 2 MR results of causal effects between gut microbiota and sepsis and sepsis-related outcomes (p < 1×10−5).

Gut
microbiota (exposure)

Method nSNP OR
95%
CI

p-
value

Egger
intercept

Egger_intercept
p-value

Cochrane
Q statistic

Cochrane Q
p-value

MR-
PRESSO

Sepsis

Class
Gammaproteobacteria

IVW 6 1.37
1.08–
1.73

0.010 −0.0009 0.979 7.1272
0.211

/

Class Lentisphaeria IVW 8 0.86
0.78–
0.94

0.002 0.0125 0.628 5.1588
0.641

/

Family Clostridiaceae1 IVW 10 1.21
1.04–
1.40

0.011 −0.0242 0.168 5.6311
0.776

/

Genus Coprococcus2 IVW 8 0.81
0.69–
0.94

0.007 0.0217 0.645 4.1443
0.763

/

Genus Dialister IVW 11 0.85
0.74–
0.97

0.016 −0.0092 0.658 4.7209
0.909

/

Genus
Ruminococcaceae UCG011

IVW 8 1.10
1.01–
1.20

0.024 −0.0036 0.909 6.1743
0.520

/

Order Victivallales IVW 8 0.86
0.78–
0.94

0.002 0.0125 0.628 5.1588
0.641

/

Phylum Lentisphaerae IVW 9 0.89
0.80–
0.99

0.035 0.0091 0.781 11.3614
0.182

/

Sepsis (critical care)

Class Lentisphaeria IVW 8 0.67
0.50–
0.91

0.011 −0.0387 0.662 8.8974
0.260

/

Genus Anaerostipes IVW 11 0.49
0.31–
0.76

0.002 0.0328 0.507 7.7479
0.653

/

Genus Coprococcus1 IVW 11 0.65
0.43–
1.00

0.049 0.0100 0.807 11.6969
0.306

/

Genus
Lachnospiraceae UCG004

IVW 12 0.51
0.34–
0.77

0.001 0.0406 0.467 11.9762
0.365

/

Order Victivallales IVW 8 0.67
0.50–
0.91

0.011 −0.0387 0.662 8.8974
0.260

/

Phylum Lentisphaerae IVW 9 0.70
0.53–
0.93

0.014 −0.0443 0.610 9.7340
0.284

/

Sepsis (28-day death)

Class Bacteroidia IVW 13 1.48
1.06–
2.08

0.023 0.0187 0.533 7.9222
0.791

/

Class Lentisphaeria IVW 8 0.68
0.53–
0.87

0.002 −0.0070 0.921 7.7980
0.351

/

Genus Coprococcus1 IVW 11 0.67
0.48–
0.94

0.020 0.0233 0.450 7.0174
0.724

/

Genus Coprococcus2 IVW 8 0.48
0.27–
0.86

0.013 −0.0129 0.945 15.9305
0.026

/

Genus Lachnospiraceae
FCS020 group

IVW 12 0.70
0.52–
0.95

0.023 0.0395 0.202 8.8919
0.632

/

Genus Ruminococcus
torques group

IVW 8 1.53
1.00–
2.35

0.049 −0.0656 0.118 5.9762
0.543

/

Genus Sellimonas IVW 9 1.25
1.04–
1.50

0.019 0.0149 0.850 6.3185
0.612

/

Genus Terrisporobacter IVW 5 1.43
1.02–
2.02

0.040 0.0376 0.513 2.7535
0.600

/

Genus Victivallis IVW 9 0.82
0.68–
0.99

0.042 −0.0003 0.998 2.3065
0.970

/

(Continued)
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3.1 MR analysis results (locus-wide
significance, p < 1×10−5)

3.1.1 Causality of the gut microbiota on sepsis
We found that five bacterial traits (class Lentisphaeria: OR 0.86,

95% CI 0.78–0.94; genus Coprococcus2: OR 0.81, 95% CI 0.69–0.94;

genus Dialister: OR 0.85, 95% CI 0.74–0.97; order Victivallales: OR

0.86, 95% CI 0.78–0.94; and phylum Lentisphaerae: OR 0.89, 95%

CI 0.80–0.99) had a potential protective effect on sepsis, while three

bacterial traits (class Gammaproteobacteria: OR 1.37, 95% CI 1.08–

1.73; family Clostridiaceae1: OR 1.21, 95% CI 1.04–1.40; and genus

Ruminococcaceae UCG011: OR 1.10, 95% CI 1.01–1.20) were

causally associated with a greater risk of sepsis according to the

IVW MR analysis. However, the weighted mode method revealed

that five bacterial traits had a significant causal association with the

risk of sepsis (class Gammaproteobacteria: OR 1.40, 95% CI 1.06–

1.85; class Lentisphaeria: OR 0.85, 95% CI 0.75–0.98; order

Victivallales: OR 0.85, 95% CI 0.75–0.97; phylum Lentisphaerae:

OR 0.87, 95% CI 0.77–0.99; and genus Dialister: OR 0.83, 95% CI

0.70–1.00). Moreover, the results of MR−Egger regression showed

that only the family Clostridiaceae1 (OR 1.64, 95% CI 1.08–2.50)
Frontiers in Immunology 06135
was significantly associated with the risk of sepsis. The

comprehensive MR results of the causal associations between

bacterial traits and sepsis are shown in Figure 3.

3.1.2 Causality of the gut microbiota on sepsis
requiring critical care

This study also explored the causal effect of the gut microbiota

on the risk of sepsis requiring critical care. All six bacterial traits

(class Lentisphaeria: OR 0.67, 95% CI 0.50–0.91; genus

Anaerostipes: OR 0.49, 95% CI 0.31–0.76; genus Coprococcus1:

OR 0.65, 95% CI 0.43–1.00; genus Lachnospiraceae UCG004: OR

0.51, 95% CI 0.34–0.77; order Victivallales: OR 0.67, 95% CI 0.50–

0.91; and phylum Lentisphaerae: OR 0.70, 95% CI 0.53–0.93) were

significantly associated with a potential protective effect on sepsis

requiring critical care in the primary IVW MR analysis. Moreover,

the results of the weighted mode method demonstrated that the

genus Anaerostipes (OR 0.46, 95% CI 0.25–0.84) and Coprococcus1

(OR 0.55, 95% CI 0.31–0.95) were also associated with a lower risk

of sepsis requiring critical care. The comprehensive MR results

concerning the causal association between bacterial traits and sepsis

requiring critical care are depicted in Figure 4.
TABLE 2 Continued

Gut
microbiota (exposure)

Method nSNP OR
95%
CI

p-
value

Egger
intercept

Egger_intercept
p-value

Cochrane
Q statistic

Cochrane Q
p-value

MR-
PRESSO

Sepsis (28-day death)

Order Bacteroidales IVW 13 1.48
1.06–
2.08

0.023 0.0187 0.533 7.9222
0.791

/

Order Victivallales IVW 8 0.68
0.53–
0.87

0.002 −0.0070 0.921 7.7980
0.351

/

Phylum Lentisphaerae IVW 9 0.72
0.56–
0.93

0.012 −0.0131 0.866 10.7141
0.218

/

Sepsis (28-day death in critical care)

Class Bacteroidia IVW 13 2.43
1.10–
5.37

0.029 −0.0163 0.817 7.8873
0.794

/

Class Lentisphaeria IVW 8 0.54
0.30–
0.95

0.034 0.0031 0.985 7.6435
0.365

/

Class Mollicutes IVW 12 2.03
1.01–
4.08

0.046 0.0251 0.809 7.0423
0.796

/

Genus Coprococcus1 IVW 11 0.42
0.19–
0.92

0.031 −0.0236 0.743 2.0631
0.996

/

Genus Coprococcus2 IVW 8 0.34
0.14–
0.83

0.018 −0.0311 0.908 3.6194
0.822

/

Genus
Ruminiclostridium6

IVW 14 0.43
0.22–
0.83

0.012 0.1002 0.197 12.9286
0.453

/

Order Bacteroidales IVW 13 2.43
1.10–
5.37

0.029 −0.0163 0.817 7.8873
0.794

/

Order Victivallales IVW 8 0.54
0.30–
0.95

0.034 0.0031 0.985 7.6435
0.365

/

Phylum Tenericutes IVW 12 2.03
1.01–
4.08

0.046 0.0251 0.809 7.0423
0.796

/

fron
IVW, inverse-variance weighted method; nSNP, number of the SNP used as the IVs for the MR analyses; OR, odds ratio; CI, confidence interval.
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3.1.3 Causality of the gut microbiota on 28-day
mortality from sepsis

Five bacterial traits (class Bacteroidia: OR 1.48, 95% CI 1.06–

2.08; genus Ruminococcus torques group: OR 1.53, 95% CI 1.00–

2.35; genus Sellimonas: OR 1.25, 95% CI 1.04–1.50; genus

Terrisporobacter: OR 1.43, 95% CI 1.02–2.02; and order

Bacteroidales: OR 1.48, 95% CI 1.06–2.08) were significantly

associated with an increase in 28-day mortality from sepsis, while

seven other bacterial traits (class Lentisphaeria: OR 0.68, 95% CI

0.53–0.87; genus Coprococcus1: OR 0.67, 95% CI 0.48–0.94; genus

Coprococcus2: OR 0.48, 95% CI 0.27–0.86; genus Lachnospiraceae

FCS020 group: OR 0.70, 95% CI 0.52–0.95; genus Victivallis: OR

0.82, 95% CI 0.68–0.99; order Victivallales: OR 0.68, 95% CI 0.53–

0.87; and phylum Lentisphaerae: OR 0.72, 95% CI 0.56–0.93) were

reported to be significantly associated with a lower risk of 28-day

mortality from sepsis in the primary IVW MR analysis. Moreover,

the weighted median method showed that the genus Coprococcus2

had a significant protective effect on 28-day mortality from sepsis

(OR 0.49, 95% CI 0.28–0.86), and the MR−Egger regression showed

that the genus Ruminococcus torques group (OR 3.86, 95% CI 1.31–

11.34) was associated with a greater risk of 28-day mortality from

sepsis. The detailed results from the MR analysis showing the causal
Frontiers in Immunology 07136
relationships between bacterial traits and 28-day mortality from

sepsis are illustrated in Figure 5.

3.1.4 Causality of the gut microbiota on 28-day
mortality from sepsis requiring critical care

The results of the primary IVW MR analysis showed that four

bacterial traits (class Bacteroidia: OR 2.43, 95% CI 1.10–5.37; class

Mollicutes: OR 2.03, 95% CI 1.01–4.08; order Bacteroidales: OR 2.43,

95% CI 1.10–5.37; and phylum Tenericutes: OR 2.03, 95% CI 1.01–

4.08) were significantly associated with a greater risk of 28-day

mortality from sepsis requiring critical care, and five bacterial traits

(class Lentisphaeria: OR 0.54, 95% CI 0.30–0.95; genus Coprococcus1:

OR 0.42, 95% CI 0.19–0.92; genus Ruminiclostridium6: OR 0.43, 95%

CI 0.22–0.83; genus Coprococcus2: OR 0.34, 95% CI 0.14–0.83; and

order Victivallales: OR 0.54, 95% CI 0.30–0.95) were causally

associated with a lower risk of 28-day mortality from sepsis

requiring critical care, suggesting a potential protective effect.

Moreover, the estimates of the weighted median method

showed that the class Bacteroidia was significantly associated

with 28-day mortality from sepsis requiring critical care (OR 2.96,

95% CI 1.01–8.71). MR−Egger regression revealed that the genus

Ruminiclostridium6 was significantly associated with 28-day
FIGURE 2

Heatmap of gut microbiota causally associated with sepsis, sepsis requiring critical care, 28-day mortality of sepsis, and 28-day mortality of sepsis
requiring critical care identified by the IVW method. Red represents risk factors, whereas blue represents protective factors.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1266579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2024.1266579
mortality from sepsis requiring critical care (OR 0.16, 95% CI 0.03–

0.77). The extensive MR findings on the potential causal link between

bacterial traits and 28-day mortality from sepsis requiring critical care

are displayed in Figure 6.

3.1.5 Sensitivity analysis
The robustness of the MR analysis results was confirmed by

scatter plots (Figures 7A–D) and leave-one-out plots (Figures 8A–D).

According to the MR−Egger regression intercept methods, there was

no evidence of horizontal pleiotropy for these 21 bacterial traits, with

causal associations with sepsis and sepsis-related outcomes

(Supplementary Table S4). Potentially significant heterogeneity was

detected only for the association between 28-day mortality from

sepsis and the genus Coprococcus2 (Cochran’sQ statistics = 15.93, p =

0.026) (Supplementary Table S4). Moreover, we found no significant

heterogeneity (p > 0.05) according to Cochran’s IVW Q statistics of

the remaining 20 bacterial traits. Visual examination clearly revealed
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that the removal of any single IV did not significantly affect the

overall results. Furthermore, MR-PRESSO tests showed the absence

of outliers in the results (Supplementary Table S5).
3.2 Results of the MR analysis (locus-wide
significance, p < 5×10−8)

In the MR analysis of the gut microbiota and its relationship

with sepsis and sepsis-related outcomes, none of the five MR

methods identified any significant causal associations. When a

sensitivity analysis was conducted, no evidence of heterogeneity

was found according to Cochrane’s Q test. Furthermore, no

horizontal pleiotropy was detected by either the MR−Egger

intercept test or the MR-PRESSO global test, and no outliers were

identified by the MR-PRESSO outlier test. The full results can be

found in Supplementary Table S6.
FIGURE 3

Forest plot of various MR results for eight bacterial traits causally associated with sepsis.
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3.3 Reverse-direction MR analyses

The reverse MR analysis results suggested that there is no causal

effect of septic traits on bacterial traits (Supplementary Table S7).
4 Discussion

To our knowledge, this is the first MR analysis to

comprehensively explore the causal effect of the gut microbiota

on sepsis onset, progression, and mortality using publicly available

genetic databases. In this study, MR analyses were performed on

196 bacterial traits to reveal the potential role of the gut microbiota

in the onset and progression of sepsis. We found that 21 causal

bacterial traits have a critical impact on the onset and progression of

sepsis. Notably, two bacterial traits of the gut microbiota

(Victivallales and Lentisphaeria) are the same, and therefore, we

only report the results for Victivallales.
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Muratsu et al. (40) noted an increase in Ruminococcaceae

abundance during the subacute phase of sepsis in mice,

suggesting a potential association between the presence of

Ruminococcaceae and sepsis. However, Stoma et al. (41) reported

a negative association between Ruminococcaceae and sepsis risk in a

population study, which contrasts with our findings. Moreover,

Zhang et al. (42) reported that the presence of Ruminococcaceae in

rats was negatively associated with lipopolysaccharide (LPS)-

binding protein (LBP) and proinflammatory factors, such as

interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a). Our
research, for the first time, suggested that Ruminococcaceae may

play a role in causing sepsis, potentially serving as a novel

biomarker. Based on our findings, we propose that the effects of

Ruminococcaceae on sepsis may depend on the specific species and

strains. Burritt et al. (43) reported that the presence of

Gammaproteobacteria in rats subjected to cecal ligation and

puncture was posi t ive ly associated with seps is r i sk .

Gammaproteobacteria has been shown to be positively associated
FIGURE 4

Forest plot of various MR results for six bacterial traits causally associated with sepsis requiring critical care.
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with the pathways of severe LPS-related hyperinflammatory stress,

which is a risk factor for sepsis in patients with decompensated

cirrhosis (44). Based on our results, as with Proteobacteria,

Gammaproteobacteria are considered to have proinflammatory

properties (45–47), which increase the risk of sepsis. A study

conducted by Arimatsu et al. (48) revealed that after mice were

exposed to oral pathogens belonging to Bacteroidales, a significant

positive association was observed between Bacteroidales and
Frontiers in Immunology 10139
systemic inflammation. Furthermore, consistent with our

findings, a positive association between Bacteroidales and the

proinflammatory cytokine TNF-a was identified (48), with TNF-

a known to be associated with the progression of sepsis (49).

Consistent with our results, Lachnospiraceae has been shown to

have health-promoting functions (50) and to play important roles

in ulcerative colitis, diabetes, the immune response, and nutrient

metabolism (51–55). Similarly, Peng et al. (56) reported a negative
FIGURE 5

Forest plot of various MR results for 12 bacterial traits causally associated with 28-day mortality of sepsis.
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association between Lachnospiraceae and sepsis in the small

intestines of mice. Moreover, Yu et al. (57) reported that

Lachnospiraceae in septic mice fed a methyl diet was negatively

associated with mortality, organ injury, and circulating levels of

inflammatory mediators. Furthermore, Gai et al. (58) reported that

the abundance of Lachnospiraceae in mice in the fecal microbiota

transplantation (FMT) group was considerably greater than that in

the control group, while septic mice in the FMT group exhibited

reduced morbidity and mortality. There is a close relationship

between the gut microbiota and the immune system (5, 59). IL-6

is a crucial cytokine involved in the innate immune response in

sepsis, contributing to adverse outcomes in tandem with other

pathophysiological processes (60–63). Moreover, animal models

have shown that the elimination of proinflammatory cytokines such
Frontiers in Immunology 11140
as TNF-a, IL-1b, IL-12, and IL-18 provides substantial protection

against organ damage and mortality (49). There is now a consensus

that the uncontrolled activity of proinflammatory cytokines

contributes to sepsis-related injury.

Short-chain fatty acids (SCFAs), which primarily consist of

acetic acid, propionic acid, and butyric acid, are the main end

products of gut microbiota metabolism in the human body. This

study identified a subset of the gut microbiota associated with the

onset and progression of sepsis, which included SCFA-producing

bacteria such as Coprococcus (64), Dialister (65), Lachnospiraceae

(66), Anaerostipes (67), Ruminococcaceae (66), Ruminococcus (68),

and Ruminiclostridium (69). Clinical and animal studies have

shown that gut-derived SCFAs are associated with decreased

sepsis risk and organ protection in patients with sepsis (70, 71).
FIGURE 6

Forest plot of various MR results for nine bacterial traits causally associated with 28-day mortality of sepsis requiring critical care.
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Coprococcus, an SCFA-producing bacteria, was reported to decrease

in patients with sepsis (72, 73), suggesting a negative association

between Coprococcus and the risk of sepsis. Furthermore, previous

mice experiments revealed that the presence of Coprococcus in

septic mice pretreated with Lactobacillus rhamnosus GG was

negatively associated with mortality (74, 75). Based on our

findings, Coprococcus could be a protective factor against sepsis,
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suggesting a possible mechanism by which Coprococcus regulates

the progression of sepsis by producing SCFAs. Furthermore,

consistent with our findings, Lachnospiraceae has been shown to

have the greatest contribution to intestinal protection through L-

lysine fermentation to SCFAs, such as acetate and butyrate (76, 77).

These substances play critical roles in maintaining immune balance

and suppressing inflammation (78–80), thereby enhancing the
A

B

D

C

FIGURE 7

Scatter plot of MR results. (A) Scatter plot of genetic correlations of eight bacterial traits and sepsis using five MR methods. (B) Scatter plot of genetic
correlations of six bacterial traits and sepsis requiring critical care using five MR methods. (C) Scatter plot of genetic correlations of 12 bacterial traits
and 28-day mortality of sepsis using five MR methods. (D) scatter plot of genetic correlations of nine bacterial traits and 28-day mortality of sepsis
requiring critical care using five MR methods.
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preventative and therapeutic efficacy against sepsis. Similarly,

consistent with our results, Ruminiclostridium, a butyrate-

producing bacteria, has been shown to be negatively associated

with the proportion of inflammatory factors (81), which might

reduce the inflammatory reaction and severity in sepsis.

Dysbiosis of the gut microbiota (an increase in pathogenic

bacteria) may be a cause of bacterial sepsis (82). In the presence

of a protective commensal microbiota, pathogenic bacteria in the

gut of healthy hosts may not proliferate or cause disease, but the
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absence of a protective microbiota can lead to an overgrowth of

pathogenic bacteria (83, 84). In a study by Hyoju et al. (85), mice

were fed a high-fat or normal-fat diet, given broad-spectrum

antibiotics, and then underwent partial hepatectomy. Compared

to mice fed a normal diet, mice fed a high-fat diet had reduced

microbial diversity in their gut microbiota, lower postoperative

survival rates, an increase in multidrug-resistant Gram-negative

bacteria, more intestinal bacterial spread, and higher mortality

rates. Moreover, some large-scale observational studies on
A

B

D

C

FIGURE 8

Leave-one-out analysis for (A) 8 bacterial traits on sepsis, (B) 6 bacterial traits on sepsis requiring critical care, (C) 12 bacterial traits on 28-day
mortality of sepsis, and (D) 9 bacterial traits on 28-day mortality of sepsis requiring critical care.
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patients have provided indirect evidence that disruption of the gut

microbiota is likely to cause sepsis (18, 20, 21). Features of the gut

microbiota in individuals with sepsis include diminished diversity;

decreased relative abundance of taxa such as Bacillota and

Bacteroidetes; decreased numbers of symbiotic bacteria such as

Faecalibacterium, Blautia, and Ruminococcus; and excessive

growth of potential pathogens, including Enterobacter ,

Enterococcus, and Staphylococcus (86–88). Similarly, significant

alterations in the microbiota may be linked to the progression of

sepsis (89). Research indicates that the gut microbiota plays a role

and is a major risk factor for late-onset sepsis (90, 91). Furthermore,

Du et al. (22) discovered that an imbalance in the gut microbiota is

associated with increased mortality rates and that the gut

microbiota can serve as a prognostic indicator for sepsis.

Maintaining a fine equilibrium between harmful pathogens and

beneficial probiotics in the gut is crucial for preserving the function

of the intestinal barrier (92). Hyoju et al. (85) reported that

compared to mice fed a regular diet, mice fed a high-fat diet had

decreased a-diversity of the gut microbiota, increased mortality

rates, and more gut microbiota taxa from the intestine that spread

throughout the body. Moreover, impairment of intestinal barrier

function can increase the entry of LPS produced by the gut

microbiota into the blood (92), triggering systemic inflammation.

This reduces the host’s ability to defend against infections, which

may increase the risk of sepsis or further exacerbate immune

dysregulation, ultimately leading to multiple organ failure. Some

probiotics (such as Lachnospiraceae) have been proven to exhibit

negative associations with intestinal permeability and plasma LPS

levels (93). Furthermore, some SCFAs produced by probiotics, such

as butyrate, are the main energy sources for intestinal epithelial

cells. They participate in cell proliferation and differentiation,

maintaining cellular homeostasis through anti-inflammatory and

antioxidant effects (94, 95). In addition, SCFAs can influence the

function of epithelial cells (70). Butyrate is known for both

strengthening intestinal epithelial health and reinforcing barrier

function (96) and is key for protecting against antigens such as

endotoxins. Acetate shields mice from intestinal Escherichia coli

translocation by influencing epithelial cell functions (97).

A leaky gut could be a cause or consequence of bacterial sepsis.

Severe defects in the gut barrier can lead to the translocation of

viable bacteria and bacteremia. This was shown in a study where

mice with a leaky gut caused by dextran sulfate solution had higher

levels of bacterial DNA in their blood (98). On the other hand,

during sepsis, damage to the epithelial tight junctions in the

intestines can contribute to the development of a leaky gut (99).

In both scenarios, a leaky gut amplifies systemic inflammation

through innate immune responses, particularly involving

macrophages and neutrophils (100–102), which causes the onset

and exacerbation of sepsis. Bacteroidales is significantly positively

associated with the levels of endotoxin in the blood and significantly

negatively associated with the gene expression of ileal tight junction

proteins (48). Based on our results, we speculate that dysbiosis of

the gut microbiota could enhance the translocation of Bacteroidales

by increasing intestinal permeability and impairing the mucosal

immune function of the gut, thereby exacerbating sepsis. Moreover,

Palmieri et al. (103) reported that Ruminococcus torques degrades
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gastrointestinal mucin in patients with Crohn’s disease, impairing

the mucus barrier produced by intestinal epithelial cells (IECs). The

mucus barrier separates intestinal immune cells from the microbial

community, reducing intestinal permeability. Impaired intestinal

permeability and mucosal immune function can lead to the

translocation of pathogenic microorganisms, triggering the

excessive production of inflammatory factors and ultimately

causing or worsening sepsis (104). However, consistent with our

results, Lachnospiraceae exhibits a protective effect, which has a

negative association with intestinal permeability and plasma LPS

levels (93) and prevents the excessive transfer of bacteria and toxins

to extraintestinal organs, which further mitigates immune

dysregulation in the body.

The gut microbiota and its metabolites activate the immune

system through multiple pathways. By producing molecules with

immunoregulatory and anti-inflammatory properties, such as

SCFAs, indoles, and secondary bile acids, the gut microbiota

modulates immune cells, including T cells, B cells, dendritic cells,

and macrophages, thereby facilitating antigen presentation and

immune modulation. Specifically, SCFAs enhance Th1 cell

production of IL-10 via G protein-coupled receptor 43 (GPR43)

(105) and stimulate IL-22 production by cluster of differentiation

(CD)4+ T cells and innate lymphoid cells through GPR41 and

histone deacetylase inhibition (106). Secondary bile acids interact

with Takeda G protein-coupled receptor 5 to reduce nucleotide-

binding oligomerization domain-like receptor family pyrin

domain-containing-3 inflammasome activation and downregulate

proinflammatory cytokine production in macrophages by

inhibiting NF-kB signaling. They also suppress NF-kB-dependent
inflammatory mediator expression in macrophages through

interaction with the nuclear receptor farnesoid X receptor (107).

Through polysaccharide A, Bacteroides fragilis induces T helper

(Th1) cell development and promotes immune tolerance by

interacting with Toll-like receptor 2 and T cells, inhibiting Th-17

differentiation, and enhancing regulatory T-cell activity (108).

Immune cells recognize microbe-associated molecular patterns,

such as LPS, peptidoglycan, and flagellin, and microbiota-derived

metabolites that can translocate from the gut into the systemic

circulation, thereby triggering immune responses (109, 110).

For other bacterial traits such as Dialister, Victivallales,

Lentisphaerae, Terrisporobacter, and Victivallis, the mechanisms

underlying their role in the onset and progression of sepsis

remain unclear due to the lack of relevant research or the

existence of greater controversy. Further exploration is needed to

shed light on these aspects.

The gut microbiota can be regulated by several potential

prevention and treatment strategies (111). First, potential

pathogens can be eradicated through selective decontamination of

the digestive tract. Second, beneficial bacteria or microbe-derived

metabolites can be substituted using probiotics, prebiotics, or

synbiotics. Finally, the gut microbiota can be partially replaced

by FMT.

Our MR analysis revealed the protective effects of Lentisphaerae,

Victivallales, Lachnospiraceae, Victivallis, Ruminiclostridium, Dialister,

Coprococcus, and Anaerostipes and the harmful effects of Tenericutes,

Bacteroidia, Gammaproteobacteria, Mollicutes, Bacteroidales,
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Clostridiaceae, Ruminococcaceae UCG 011, Terrisporobacter,

Sellimonas, and Ruminococcus torques group on sepsis. However, the

effect of these bacterial traits in the gut microbiota on the onset and

progression of sepsis has remained unclear until recently, which is

limited by the current research.

Our MR study has several advantages. First, our study analyzed

the causal effect of the gut microbiota on sepsis from the genus to the

phylum level. This contributes to understanding the mechanisms and

interactions between the gut microbiota and host immunity and

facilitates the comprehensive assessment of the influence of various

bacterial traits. Second, we performed MR analysis to explore the

causal association between the gut microbiota and sepsis, effectively

eliminating confounding factors and reverse causation, which may

interfere with causal inference. Third, the genetic variants of the gut

microbiota were sourced from the most extensive GWASs to date,

which enhances the credibility of our findings.

Nonetheless, this MR study has limitations. First, although this

study pinpointed causal associations from exposure to outcomes, it

may not have accurately gauged the association’s magnitude.

Further research is needed to validate these findings. Second, the

use of multiple statistical corrections could be overly stringent and

conservative, which might lead to overlooking bacterial traits that

could have a causal association with sepsis. Therefore, with

biological plausibility in mind, we did not consider multiple

testing results. Third, although the majority of the participants

whose gut microbiota data were collected in our study were of

European descent, a small amount of the microbiological data were

from other races, which may have confounded our estimates to

some extent. Fourth, we opted for a less strict threshold (p < 1×10−5)

to perform horizontal pleiotropy examination and sensitivity

analysis. Although this approach allowed us to identify a wider

range of associations, it also increased the potential for detecting

false positives. Increasing the sample size could increase the

precision of the estimation of associations between the gut

microbiota and sepsis. Finally, owing to the lack of individual

data, we were unable to conduct further population stratification

studies (e.g., gender) or explore possible differences in

different populations.
5 Conclusion

In summary, the results of our study support the theory that the

gut microbiota traits identified in this MR have a causal impact on

the risk of sepsis, the risk of sepsis requiring critical care, and the 28-

day mortality rate for sepsis and sepsis requiring critical care. This

MR analysis could offer pioneering insights for the development of

innovative prevention and treatment strategies against sepsis.
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The causal relationship between
gut microbiota and nine
infectious diseases: a two-
sample Mendelian
randomization analysis
Song Wang1†, Fangxu Yin1†, Wei Sun1†, Rui Li 1, Zheng Guo1,
Yuchao Wang1, Yiyuan Zhang2, Chao Sun3 and Daqing Sun1*

1Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China,
2Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China,
3Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
Background: Evidence from observational studies and clinical trials has

associated gut microbiota with infectious diseases. However, the causal

relationship between gut microbiota and infectious diseases remains unclear.

Methods:We identified gut microbiota based on phylum, class, order, family, and

genus classifications, and obtained infectious disease datasets from the IEU

OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis

was then performed to determine whether the gut microbiota were causally

associated with different infectious diseases. In addition, we performed reverse

MR analysis to test for causality.

Results: Herein, we characterized causal relationships between genetic

predispositions in the gut microbiota and nine infectious diseases. Eight strong

associations were found between genetic predisposition in the gut microbiota

and infectious diseases. Specifically, the abundance of class Coriobacteriia, order

Coriobacteriales, and family Coriobacteriaceae was found to be positively

associated with the risk of lower respiratory tract infections (LRTIs). On the

other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and

class Bacilli were positively associated with the risk of endocarditis, cellulitis, and

osteomyelitis, respectively. We also discovered that the abundance of class

Lentisphaeria and order Victivallales lowered the risk of sepsis.

Conclusion: Through MR analysis, we found that gut microbiota were causally

associated with infectious diseases. This finding offers new insights into the

microbe-mediated infection mechanisms for further clinical research.
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gut microbiota, infectious diseases, causality, GWAS, Mendelian randomization
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1 Introduction

Infections such as pneumonia and gastrointestinal infections

are the most common infections in hospitalized patients (1).

Statistically, these infections account for more than 20% of deaths

globally, with 245,000 sepsis cases occurring in the United Kingdom

(UK) alone annually (2, 3). Owing to antibiotic resistance, an aging

population, and emerging pathogens, the infection-induced disease

burden is expected to rise, making the identification of the factors

that can modify these illnesses essential (4–6). Generally, severe

bacterial infections are believed to be caused by the invasion of the

blood and tissues by pathogenic microorganisms, resulting in tissue

necrosis and even host death (7). Furthermore, with advancements

in sepsis research in recent years, it has been found that

uncontrolled infection may lead to dysregulation of the host’s

immune response. At the same time, excessive immune response

results in the secretion of a multitude of cytokines, leading to organ

dysfunction and, ultimately, host death (8–10). Therefore, effective

prevention and treatment of serious infectious diseases has

become critical.

In a healthy host, the gut microbiota regulate various

homeostasis mechanisms, including immune function and gut

barrier protection (11, 12). Mechanisms of gut microbiota leading

to infectious diseases, including allowing the expansion of

pathogenic gut bacteria, primes the immune system to produce a

robust pro-inflammatory response, thus reducing the production of

beneficial microbial products, such as short-chain fatty acids (13–

15). Furthermore, gut microbiota interact with infectious diseases.

On the one hand, susceptibility to infectious diseases may be

aggravated by intestinal micro-ecological disorders. Under certain

conditions, intestinal bacteria can directly invade peripheral blood

through intestinal mucosa. They could also enter distant organs

via the “gut–organ” axis, causing bacterial translocation and

eliciting systemic inflammatory responses. Further illness

progression can lead to organ dysfunction (16). On the other

hand, severe infection could also cause alterations in the human

intestinal microenvironment, resulting in the imbalance of

intestinal flora and the release of inflammatory factors, damaging

the intestinal mucosal barrier and further aggravating the disease

(17). Although an increasing number of studies has associated gut

microbiota with infectious diseases, the causal relationship between

the two remains unclear.

In recent years, Mendelian randomization (MR) analysis, a

statistical approach for investigating causal relationships, has been

mainly applied to the causal inference of epidemiological diseases.

Since alleles follow the random allocation principle, this impact is

not affected by confounding factors and reverse causation in

traditional epidemiological research (18). The publication of

large-scale genome-wide association study (GWAS) data has

resulted in the availability of a substantial number of reliable

genetic variants for MR studies (19). As a result, this study

analyzed the causal relationship between gut microbiota and

infectious diseases through the MR analysis, providing useful

insights into the clinical treatment of infectious diseases.
Frontiers in Immunology 02149
2 Materials and methods

2.1 Study population

As shown in Figure 1, we used a two-sample MR (TSMR)

approach to characterize the causal relationship between the

intestinal microbiome and infectious diseases and finally

conducted quality control tests, including the heterogeneity and

gene pleiotropy tests, to verify the reliability of the results.

The gut microbiota, which is investigated in the context of

human genetics by MiBioGen, an international consortium, was the

primary exposure factor for our study (20). Herein, the human gut

microbiota GWAS data, encompassing 18,340 individuals from 24

population cohorts, was used. A total of 196 bacterial groups

(including 9 phyla, 16 classes, 20 orders, 32 families, and 119

genera) were included after excluding 15 genera with no specific

species names.

Our primary outcomes were various infectious diseases with

GWAS datasets from the UK Biobank project (21), a prospective

cohort study that collected deep genetic and phenotypic data on

approximately 500,000 individuals across the UK. Each participant

had a wealth of phenotypic and health-related information. Genome-

wide genotype data were collected from all participants by linking

health and medical records to provide follow-up information.

Pneumonia, upper respiratory tract infections (URTIs),

lower respiratory tract infections (LRTIs), endocarditis, urinary
FIGURE 1

The study design of the present MR study of the associations of gut
microbiota and sepsis. LD, linkage disequilibrium, which used to
measure the correlations between SNPs; IVW, inverse-variance-
weighted, the main analyses to evaluate the relationship between
exposure and outcome; MR-PRESSO, Mendelian Randomization
Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic
biases in the SNPs and correct the pleiotropic effects; MR,
Mendelian randomization; SNPs, single-nucleotide polymorphisms,
as instrumental variables for the exposures and outcomes.
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tract infections (UTIs), appendicitis, cellulitis, osteomyelitis,

and sepsis were among the infectious diseases evaluated.

Information on exposure and outcome factor data is presented in

Supplementary Table 1.
2.2 Single-nucleotide
polymorphisms selection

Here, single-nucleotide polymorphisms (SNPs) significantly

associated with the relative abundance of 196 gut microbiota were

selected as available instrumental variables (IVs). According to

previous research, including multiple IVs can enhance the

interpretation of exposure variation and improve the accuracy

and reliability of analysis results. As a result, to ensure the

independence of the included SNPSs, this study selected IVs

based on the results of association analysis (with p < 1×10-5 as

the significance threshold), set the linkage disequilibrium criteria

(with R2 < 0.001) and genetic distance (with 10,000 kb), and

excluded highly correlated SNPs (22). Finally, SNPs associated

with the relative abundance of gut microbiota were projected into

the GWAS data on infectious diseases and the corresponding

statistical parameters were retrieved. To align the effect exposure

and outcome values with the same effect allele, the data were unified

based on the statistical parameters of the same site in the relative

abundance of gut microbiota and GWAS resu l t s of

infectious diseases.
2.3 Research design

When using SNPs as IVs in MR analysis, three key assumptions

should be met to better estimate the causal effects: (1) The IVs must

be closely related to exposure factors; (2) the IVs should not be

related to confounding factors; and (3) the IVs should only affect

the results through exposure and not by any other means.
2.4 Statistical analysis

In this study, Inverse variance weighted (IVW), MR-Egger,

Weighted Median (WME), Simple Mode (SM), and Weighted

Mode (WM) were used to estimate the causal effect. The IVW

method presumes that all genetic variants are valid. The IVW

approach employs the ratio method to calculate the causal effect

size of individual IVs and obtains the total effect size by aggregating

each estimate for weighted linear regression (23). The primary

distinction between the MR-Egger and the IVWmethods is that the

former considers the existence of the intercept term in regression

analysis (24). The WME approach takes advantage of all available

genetic variants’ intermediate effects. An estimate (25) was obtained

by weighting the inverse variance of each SNP’s correlation with the

outcome. The SM and WM methods are modality-based

approaches, and modality-based estimation models aggregate

SNPs with similar causal effects and return the estimates of causal

effects for most cluster SNPs. The influence of each SNP on the
Frontiers in Immunology 03150
cluster was weighted by WM per the inverse variance of its

resulting effect.

Given that the IVW approach is more efficient than the other

four MR methods, it was used herein as the preferred causal effect

estimation method. Additionally, the beta values obtained in the

results were converted into odds ratios (OR), and the 95%

confidence interval (CI) was calculated to better explain the

results. To verify whether the results were “false positives” due to

multiple tests, we used the Benjamini–Hochberg (BH) method

under the false discovery rate (FDR) standard to correct the MR

results for different classifications of gut microbiome (phyla, class,

order, family, and genus); the calculation formula is FDR(i) = p(i)

*m/i, specifically, all p-values are arranged in ascending order,

where p-values are denoted as p, the serial number of p-values is

denoted as i, and the total number of p-values is denoted as m (26).

Using the F statistic to test IV strength, the association of effect

estimates that test causation may be affected by weak instrumental

bias. The F statistic is calculated as follows: F = R2 (N−K−1)/k

(1−R2), where R2 = variance (per gut microbiome) interpreted by

IV, and n = sample size. The R2 is estimated from the minor allele

frequency (MAF) and B-value using the following equation: R2 = 2

× MAF × (1−MAF) × b2 (27).

Additionally, we included sensitivity analysis, heterogeneity level

test, and gene pleiotropy test in quality control to further test the

stability and reliability of the results. For sensitivity analysis, the

residual one method was used, and the combined effect value of the

remaining SNPs was determined by sequentially deleting single SNP

to evaluate the impact of each SNP on the results. The heterogeneity

test was performed to assess the heterogeneity of SNPs. The SNP

measurement error caused by experimental conditions and

population analysis, among other factors, could lead to bias in

estimating causal effects (28). Using the intercept term of the MR-

Egger regression, the horizontal gene pleiotropy test assesses whether

IVs affect outcomes by other means apart from exposure (29).

Potentially abnormal SNPs were identified through the Mendelian

Randomization Multi-Effect Residual and Outlier (MR-PRESSO)

(30) and leave-one-out methods (31). Finally, we performed reverse

MR to analyze whether there was a reverse causality between

infectious diseases and meaningful gut microbiota. The MR

Analysis and quality control for this study were analyzed using

version 4.0.3 R and version 0.5.6 TwoSampleMR packages.
3 Results

3.1 TSMR analysis

The results of the 196 gut microbiota examined in relation to

infectious disease are presented in Supplementary Table S2. The F-

statistics for the gut flora ranged between 14.58 and 88.42 (all

meeting the >10 threshold), implying that they are unlikely to be

impacted by weak instrumental bias (Supplementary Table S3).

Briefly, we identified 72 genera associated with infectious disease

risk (Figure 2). However, after rigorous BH correction, only eight

gut microbiota showed stability in their association with infectious

diseases (Table 1).
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3.2 Gut microbiota and pneumonia

Overall, nine gut microbiota were associated with the risk of

respiratory infections in the primary MR analysis, suggesting that

these gut microbiota may have an impact on the development of

pneumonia. Among them, genus Holdemanella [OR:1.10, 95%

confidence interval (CI): 1.03–1.19, p = 0.006] and genus

Oxalobacter (OR: 1.09, 95% CI: 1.02–1.1.15, p = 0.005) were

positively correlated with the risk of developing pneumonia. Class

Verrucomicrobiae (OR: 0.88, 95% CI: 0.80–0.97, p = 0.009), order

Verrucomicrobiales (OR: 0.88, 95% CI. 0.80–0.97, p = 0.009), family

Verrucomicrobiaceae (OR: 0.88, 95% CI. 0.80–0.97, p = 0.009),

genus Akkermansi (OR: 0.88, 95% CI: 0.80–0.97, p = 0.009), genus
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ChristensenellaceaeR.7group (OR: 0.83, 95% CI: 0.73–0.94,

p = 0.005), genus Coprococcus1 (OR: 0.89, 95% CI: 0.81–0.98,

p = 0.020), and genus RuminococcaceaeUCG002 (OR: 0.90, 95%

CI: 0.83–0.98, p = 0.020) were negatively correlated with pneumonia

(Figure 2). However, after BH correction, these genera were not

associated with pneumonia.
3.3 Gut microbiota and URTI

In the primary MR analysis, seven gut microbiota were found to

be associated with the risk of URTI. Among them, family

Defluviitaleaceae (OR: 1.41, 95% CI:1.07–1.85, p = 0.014), genus
FIGURE 2

Effect estimates of the association between meaningful gut microbiota and infectious disease risk in IVW analysis. SNPs, single-nucleotide
polymorphisms, as instrumental variables for the exposures and outcomes; OR, odds ratio; CI, confidence interval; URTI, upper respiratory tract
infection; LRTI, lower respiratory tract infection; UTI, urinary tract infection.
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TABLE 1 Effect estimates of the association between meaningful gut microbiota and infectious disease risk in MR analysis.

Gut microbiota Outcome SNPs Methods OR (95% CI) p-value pFDR

Class Coriobacteriia LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.05–1.55) 0.012

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.005

13 Simple mode 1.26 (0.91–1.73) 0.187

13 Weighted mode 1.26 (0.92–1.71) 0.176

Order Coriobacteriales LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.06–1.54) 0.010

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.007

13 Simple mode 1.26 (0.94–1.67) 0.147

13 Weighted mode 1.26 (0.92–1.71) 0.177

Family Coriobacteriaceae LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.07–1.53) 0.007

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.011

13 Simple mode 1.26 (0.93–1.69) 0.160

13 Weighted mode 1.26 (0.92–1.72) 0.184

Family Acidaminococcaceae Endocarditis

7 MR-Egger 0.73 (0.14–3.77) 0.719

7 Weighted median 1.67 (0.82–3.42) 0.159

7 IVW 2.70 (1.47–4.97) 0.001 0.045

7 Simple mode 1.58 (0.61–4.05) 0.382

7 Weighted mode 1.60 (0.66–3.88) 0.341

Genus Clostridiumsensustricto1 Cellulitis

7 MR-Egger 1.34 (0.96–1.87) 0.145

7 Weighted median 1.25 (1.01–1.54) 0.036

7 IVW 1.30 (1.13–1.51) 3.88E-04 0.046

7 Simple mode 1.25 (0.94–1.65) 0.173

7 Weighted mode 1.24 (0.97–1.57) 0.132

Class Bacilli Osteomyelitis

18 MR-Egger 0.93 (0.57–1.53) 0.775

18 Weighted median 1.22 (0.93–1.61) 0.151

18 IVW 1.36 (1.13–1.64) 0.001 0.022

18 Simple mode 2.02 (1.15–3.55) 0.025

18 Weighted mode 1.05 (0.68–1.64) 0.823

Class Lentisphaeria Sepsis

8 MR-Egger 0.79 (0.57–1.10) 0.211

8 Weighted median 0.85 (0.75–0.97) 0.016

(Continued)
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DefluviitaleaceaeUCG011 (OR: 1.44, 95% CI: 1.04–2.00, p = 0.027),

genus Erysipelatoclostridium (OR: 1.28, 95% CI: 1.02–1.59,

p = 0.030), and genus Veillonella (OR: 1.51, 95% CI: 1.03–2.23,

p = 0.036) were positively associated with the risk of URTI, while

class Clostridia (OR: 0.62, 95% CI: 0.44–0.86, p = 0.004), genus

Alistipes (OR: 0.69, 95% CI: 0.51–0.93, p = 0.015), and genus

Streptococcus (OR: 0.75, 95% CI: 0.57–0.98, p = 0.038) were

negatively associated with the risk of URTI (Figure 2). None of

these seven gut microbiota were associated with significance in

URTI after BH correction.
3.4 Gut microbiota and LRTI

Nine gut microbiota were associated with the risk of LRTI

(Figure 2). However, only three gut microbiota were associated

with significance in LRTI after strict BH correction (Table 1).

Specifically, we observed that the abundance of class Coriobacteriia

(OR: 1.29, 95% CI: 1.12–1.48, pFDR = 0.005), order Coriobacteriales

(OR: 1.29, 95% CI: 1.12–1.48, pFDR = 0.007), and family

Coriobacteriaceae (OR: 1.29, 95% CI = 1.12–1.48, pFDR = 0.011)

were associated with a higher risk of LRTI.

In sensitivity analyses, the WME results were comparable to

those of the IVW approach (OR: 1.28, 95% CI: 1.05–1.55, p = 0.012

for class Coriobacteria; OR: 1.28, 95% CI: 1.06–1.54, p = 0.010 for

order Coriobacteriales; and OR: 1.28, 95% CI = 1.07–1.53, p = 0.007

for family Coriobacteriaceae), but with wider confidence intervals

(Figure 3). Furthermore, the MR-Egger regression intercepts

showed no evidence of pleiotropy of these gut microbiota with

LRTI (intercept p = 0.977 for class Coriobacteriia; intercept

p = 0.977 for order Coriobacteriales; and intercept p = 0.977 for

family Coriobacteriaceae) (Table 2 and Supplementary Table S4).

No outliers were detected in the MRPRESSO regression.

Heterogeneity analysis confirmed the accuracy of the results

(Table 2 and Supplementary Table S5). Data robustness was

further validated by the leave-one-out results, showing a

consistent positive association between gut flora and LRTI risk

(Supplementary Table S6).
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3.5 Gut microbiota and endocarditis

In the primary MR analysis, nine gut microbiota were

associated with the risk of endocarditis (Figure 2). After BH

correction, it was found that family Acidaminococcaceae

abundance was positively associated with the risk of endocarditis

(OR: 2.70, 95% CI: 1.47–4.97, pFDR = 0.045) (Table 1).

In the sensitivity analysis, the WME method did not show

statistical significance (OR: 1.67, 95% CI: 0.82–3.42, p = 0.159)

(Figure 3). However, the MR-Egger regression intercept did not

show evidence of multiplicity of family Acidaminococcaceae with

endocarditis (Intercept p = 0.159) (Table 2 and Supplementary Table

S4). MRPRESSO regression did not detect outliers, too. The results of

heterogeneity analysis confirmed the accuracy of the results (Table 2

and Supplementary Table S5). The leave-one-out method further

validated the data robustness (Supplementary Table S6).
3.6 Gut microbiota and UTI

Seven gut microbiota were confirmed to be associated with the

risk of UTI after primary MR analysis. Among them, phylum

Euryarchaeota (OR. 1.07, 95% CI: 1.02–1.13, p = 0.011), class

Bacteroidia (OR: 1.11, 95% CI: 1.00–1.22, p = 0.044), order

Bacteroidales (OR: 1.11, 95% CI: 1.00–1.22, p = 0.044), genus

Intestinibacter (OR: 1.10, 95% CI: 1.00–1.20, p = 0.047), and genus

RuminococcaceaeUCG005 (OR: 1.12, 95% CI: 1.01–1.24, p = 0.025)

were positively associated with the risk of UTI, while family

Defluviitaleaceae (OR: 0.92, 95% CI: 0.84–1.00, p = 0.038) and

genus Defluviitaleaceae UCG011 (OR: 0.90, 95% CI: 0.82–0.99, p =

0.022) were negatively associated with the risk of UTI (Figure 2). No

gut microbiota was causally associated with UTI after BH correction.
3.7 Gut microbiota and appendicitis

Primary MR analysis identified four gut microbiota

associated with the risk of appendicitis. Among them, genus
TABLE 1 Continued

Gut microbiota Outcome SNPs Methods OR (95% CI) p-value pFDR

8 IVW 0.86 (0.78–0.94) 0.002 0.026

8 Simple mode 0.87 (0.71–1.07) 0.235

8 Weighted mode 0.89 (0.73–1.08) 0.273

Order Victivallales Sepsis

8 MR-Egger 0.79 (0.57–1.10) 0.211

8 Weighted median 0.85 (0.75–0.97) 0.015

8 IVW 0.86 (0.78–0.94) 0.002 0.033

8 Simple mode 0.87 (0.71–1.08) 0.243

8 Weighted mode 0.89 (0.73–1.08) 0.266
frontie
MR, Mendelian randomization; SNPs, number of single-nucleotide polymorphism. CI, confidence interval; OR, odds ratio; pFDR, p-value was calculated by the Benjamini–Hochberg method;
LRTI, lower respiratory tract infection; IVW, inverse variance weighted.
rsin.org

https://doi.org/10.3389/fimmu.2024.1304973
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1304973
LachnospiraceaeFCS020group (OR: 1.32, 95% CI:1.09–1.61,

p = 0.005) and genus Turicibactera (OR: 1.23, 95% CI: 1.01–1.50,

p = 0.043) were positively associated with the risk of developing

appendicitis, while family Acidaminococcaceae (OR: 0.73, 95% CI:

0.57–0.95, p = 0.017) and genus Eisenbergiella (OR: 0.86, 95% CI:

0.74–1.00, p = 0.045) were negatively associated with the risk of

developing appendicitis (Figure 2). No gut microbiota was causally

associated with appendicitis after BH correction.
3.8 Gut microbiota and cellulitis

Although 10 gut microbiota were associated with the risk of

cellulitis (Figure 2), only genus Clostridiumsensustricto1 was

positively associated with cellulitis after BH correction (OR: 1.30,

95% CI: 1.13–1.55, pFDR = 0.046) (Table 1).

In sensitivity analyses, the WME method showed similar results

to IVW (OR: 1.25, 95% CI: 1.01–1.54, p = 0.036) (Figure 3). The MR-
Frontiers in Immunology 07154
Egger regression intercept did not show evidence of multiplicity of

genus Clostridiumsensustricto1 with cellulitis (Intercept p = 0.856)

(Table 2 and Supplementary Table S3). MRPRESSO regression did

not detect outliers. The results of heterogeneity analysis confirmed

the accuracy of the results (Table 2 and Supplementary Table S5).

Meanwhile, leave-one-out results further validated the data

robustness (Supplementary Table S6).
3.9 Gut microbiota and osteomyelitis

Seven gut microbiota were associated with the risk of

osteomyelitis (Figure 2). However, only class Bacilliidae was

positively causally associated with osteomyelitis after BH

correction (OR: 1.36, 95% CI: 1.13–1.64, pFDR = 0.022) (Table 1).

In sensitivity analyses, the WME method showed similar results

to IVW (OR: 1.22, 95% CI: 0.93–1.61, p = 0.151) (Figure 3). The

MR-Egger regression intercept did not show evidence of
B C

D E F

G H

A

FIGURE 3

Scatter plots for the causal association between gut microbiota and infectious diseases. (A) Class Coriobacteriia and LRTI. (B) Order Coriobacteriales
and LRTI. (C) Family Coriobacteriaceae and LRTI. (D) Family Acidaminococcaceae and endocarditis. (E) Genus Clostridiumsensustricto1 and cellulitis.
(F) Class Bacilli and osteomyelitis. (G) Class Lentisphaeria and sepsis. (H) Order Victivallales and sepsis. LRTI, lower respiratory tract infection.
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multiplicity of class Bacilliidae with cellulitis (Intercept p = 0.125)

(Table 2 and Supplementary Table S3). The MRPRESSO regression

did not detect outliers. The results of heterogeneity analysis

confirmed the accuracy of the results (Table 2 and Supplementary

Table S5). Meanwhile, leave-one-out results further validated the

data robustness (Supplementary Table S6).
3.10 Gut microbiota and sepsis

We identified a total of 10 gut microbiota associated with sepsis

(Figure 2); only 2 gut microbiota were associated with sepsis after

BH correction (Table 1). Notably, class Lentisphaeria (OR: 0.86,

95% CI: 0.78–0.94, pFDR = 0.026) and order Victivallales (OR: 0.86,

95% CI: 0.78–0.94, pFDR = 0.033) abundance were negatively

correlated with the risk of developing sepsis.

In the sensitivity analysis, theWMEmethod showed similar results

to IVW (OR: 0.85, 95% CI: 0.75–0.97, p = 0.016 for class Lentisphaeria

and OR: 0.85, 95% CI: 0.75–0.97, p = 0.015 for order Victivallales)

(Figure 3), and the MR-Egger regression intercept showed no evidence
Frontiers in Immunology 08155
of pleiotropy (intercept p = 0.125 for class Lentisphaeria and intercept

p = 0.944 for order Victivallales) (Supplementary Table S3).

Heterogeneity analysis confirmed the accuracy of the results (Table 2

and Supplementary Table S5). Leave-one-out results verified data

robustness (Supplementary Table S6).
3.11 Inverse MR analysis

In the reverse MR, infectious disease was used as an exposure

factor, and gut microbiota, which has been associated with

infectious disease, was the outcome factor. The IVW results did

not support a causal relationship between infectious disease and

altered gut microbiota (Supplementary Table 7).
4 Discussion

In this study, TSMR was used to investigate the causal

relationship between the relative abundance of gut microbiota
TABLE 2 Heterogeneity and sensitivity analysis between meaningful gut microbiota and infectious diseases.

Gut microbiota Outcome Methods Q p Intercept p MR-PRESSO

Class Coriobacteriia LRTI

IVW 7.998 0.785 0.001 0.977 0.927

MR-Egger 7.997 0.714

Order Coriobacteriales LRTI

IVW 7.998 0.785 0.001 0.977 0.923

MR-Egger 7.997 0.714

Family Coriobacteriaceae LRTI

IVW 7.998 0.785 0.001 0.977 0.929

MR-Egger 7.997 0.714

Family Acidaminococcaceae Endocarditis

IVW 8.185 0.225 0.130 0.159 0.302

MR-Egger 5.290 0.382

Genus Clostridium sensustricto1 Cellulitis

IVW 5.574 0.473 -0.004 0.856 0.299

MR-Egger 5.534 0.354

Class Bacilli Osteomyelitis

IVW 18.370 0.366 0.030 0.125 0.416

MR-Egger 15.746 0.471

Class Lentisphaeria Sepsis

IVW 5.159 0.641 0.012 0.628 0.403

MR-Egger 4.899 0.557

Order Victivallales Sepsis

IVW 5.159 0.641 0.012 0.628 0.394

MR-Egger 4.899 0.557
MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; IVW, inverse variance weighted; LRTI, lower respiratory tract infection.
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and infectious diseases. It is currently believed that gut microbiota

influences host metabolic health by producing a range of

metabolites and molecules, including SCFA, bile acids, TMAO,

and LPS. For instance, enterogenic SCFAs can affect the pulmonary

immune environment in the respiratory system. Bacterial

transmission, inflammation, and mortality increased when mice

whose gut microbiota was disrupted by antibiotics developed

pulmonary streptococcal infections. Furthermore, in mice with

disrupted gut microbes, the alveolar macrophage metabolic

pathway was upregulated, and the cellular response was altered,

resulting in a reduced ability to phagocytize S. pneumoniae, causing

a less pronounced immunomodulatory response (32). An

imbalance of gut microbes can lead to damage to the intestinal

wall, or “leaky gut.” A large number of toxins and bacteria enter the

bloodstream through intestinal leakage to specific organs and

tissues, thus triggering a series of inflammatory immune

responses. Acute appendicitis is an intestinal infectious illness.

Pathogenic bacteria multiply and secrete endotoxins and

exotoxins, damaging the mucosal epithelium, forming ulcers, and

allowing bacterial entry into the muscle layer of the appendix via the

ulcerative surface. Increased interstitial pressure in the appendix

wall affects arterial blood flow, resulting in appendicular ischemia

and, in severe cases, infarction and gangrene (33). Infective

endocarditis refers to the inflammation of the inner lining of the

heart valve or ventricle caused by direct infection by bacteria, fungi,

and other microorganisms. Studies have shown that intestinal flora

destroys the intestinal mucosal barrier, and Enterococcus faecalis are

released into the blood to attach to the normal valve and cause

endocarditis (34). The main pathogen of cellulitis is hemolytic

streptococcus, which is caused by external invasion of

subcutaneous tissue or caused by lymphatic and hematologic

infection (35). The interaction between intestinal flora and

susceptibility to recurrent urinary tract infections (rUTI) may

promote intestinal colonization of uropathogenic Escherichia coli

(UPEC) through intestinal flora dysregulation and increase the risk

of bladder infection. Furthermore, intestinal flora has been reported

as an instigator, and its imbalance may cause systemic

inflammation, further worsening the inflammation and symptoms

after bladder infection (36). Gut microbiota can release pro-

inflammatory or anti-inflammatory mediators and cytokines to

regulate systemic bone metabolism through blood circulation.

Studies have shown that gut microbiota disturbances that

upregulate pro-IL1blevels indirectly affect osteomyelitis (37).The

occurrence and development of sepsis are closely related to the

imbalance of gut microbiota. The disturbance of gut microbiota can

induce sepsis through the destruction of intestinal mucosal barrier

function, mucosal immune function, and bacterial translocation. At

the same time, sepsis can also aggravate the imbalance of intestinal

flora, resulting in multiple organ dysfunction (38).

Our study identifies a causal link between gut microbiota and

infectious diseases, particularly that the abundance of class

Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae

are positively associated with the risk of LRTI. Coriobacteriia can be

found in the mouth, respiratory tract, gastrointestinal tract, and

reproductive tract. In the gut, class Coriobacteriia performs

important functions such as the conversion of bile salts and steroids
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and the activation of dietary polyphenols. However, they can also be

regarded as pathological diseases. According to previous research, the

abundance of class Coriobacteriia can increase the incidence of diseases

such as allergic rhinitis and endometriosis (39, 40). Family

Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli

were positively related to the risk of endocarditis, cellulitis,

and osteomyelitis, respectively. Family Acidaminococcaceae

belongs to strictly anaerobic Gram-negative coccus. Amino acids,

especially glutamate, are a major source of energy (41). Genus

Clostridiumsensustricto1 belongs to Gram-positive bacterium

fusobacterium; in the case of hypoxia, fusobacterium causes serious

infections including tetanus and gas gangrene (42). Class Bacilli can

bind lipopolysaccharide (LPS) and neutralize endotoxin. Therefore, the

microecological preparation prepared by Bacilli has played an

important role in the treatment of intestinal flora disorders and

Candida infection (43). However, Bacillus cereus strains usually

cause local wound and eye infection and systemic diseases (44). At

the same time, the increased abundance of class Lentisphaeria and

order Victivallales decreased the risk of sepsis. Surprisingly,

Lentisphaerae has been reported to be more abundant in cases of

inflammatory bowel disease (45) and less abundant in patients with

sepsis, which is consistent with our conclusions (46). Order

Victivallales has important effects on human infection and immune

development. Specifically, it was found to be positively associated with

clinical response to anti-programmed cell death protein-1 (PD-1)

immunotherapy in patients with advanced cancer (47). In this

regard, we believe that these gut microbiota may play a role in the

occurrence and development of infectious diseases by regulating

immunity. Interestingly, the findings of the reverse MR study do not

support a causal relationship between infectious diseases and changes

in gut microbiota.

One of the strengths of this study is that it established a causal

relationship between alterations in gut microbiota and infectious

diseases, offering candidate gut microbiota for subsequent functional

studies. However, the study also has limitations. First, it only used

European population GWAS data for TSMR analysis, and the

abundance of gut microbiota included herein is limited, GWAS

data of other gut microbiota need to be obtained in the future, to

explore the causal relationship between gut microbiota and infectious

diseases more comprehensively. Second, we did not further validate

these results with public or our own datasets. Third, although TSMR

is an efficient method of causality analysis, animal tests should be

conducted in the future to further verify whether there is a potential

causal relationship between gut microbiota and infectious diseases.

Fourth, there are few studies on these gut flora that have causal

relationship with infectious diseases, and more extensive studies are

needed to support our conclusions in the future. Fifth, the causal

relationship between gut microbiota and infectious diseases is

multifaceted, necessitating the exploration of the etiology and

pathogenesis of infectious diseases from multiple perspectives.

In conclusion, we used TSMR to explore the causal relationship

between gut microbiota and infectious diseases. The results showed

that the abundance of class Coriobacteriia, order Coriobacteriales, and

family Coriobacteriaceae was associated with LRTI risk; family

Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli

were found to be positively related to the risk of endocarditis, cellulitis,
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and osteomyelitis, respectively. At the same time, the increased

abundance of class Lentisphaeria and order Victivallales lowered the

risk of sepsis. These findings elucidate the involvement of gut

microbiota in the development of infectious diseases and offer a

reference value for the treatment of infectious diseases.
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