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The estimation of young water 
fraction based on isotopic signals: 
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1 School of Geography and Tourism, Chongqing Normal University, Chongqing, China, 2 Department of 
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Chemical Sciences, University of Padova, Padova, Italy, 4 State Key Laboratory of Hydraulics and 
Mountain River Engineering, Sichuan University, Chengdu, China, 5 Department of Ecohydrology, 
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Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya’an, China, 7 Inner 
Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner 
Mongolia University, Hohhot, China, 8 Key Laboratory of Mongolian Plateau Ecology and Resource 
Utilization, Ministry of Education, Hohhot, China

Young water fraction (Fyw) is defined as the fraction of water in a stream with 
a transit time of less than 2–3 months. Fyw is a metric used to quantify the 
proportion of precipitation input converted into the runoff in the form of fast 
flow, which provides new insights for characterizing the mechanisms of water 
storage and release, understanding the time-scale of ecohydrological processes 
and indicating water-related risks. However, Fyw has been advanced for a 
relatively short time, and the research on its applicability conditions and main 
drivers is still ongoing. Studies estimating Fyw are still very few and this index 
has not been reported in many landscapes and climate backgrounds, limiting 
its further application in hydrological studies. On the basis of summarizing the 
progresses of Fyw in previous studies, this paper provides a preliminary analysis of 
the potential uncertainties in the Fyw estimation, which can be due to temporal 
trends in the isotopic composition of precipitation, uneven sampling interval of 
stream water, and complex hydrological systems. Finally, this paper provides 
some recommendations for the optimization of the sampling design and the 
methods used for the Fyw estimation.

KEYWORDS

young water fraction, isotope tracers, sources of uncertainty, water-related risks, 
further studies

Introduction

The rate of water transport in catchments regulates processes such as biogeochemical 
cycling, pollutant transport, and chemical weathering. The time water takes to travel through a 
catchment, from inputting as precipitation to reaching the outlet, is an important indicator to 
characterize the catchment hydrology and determine the sensitivity of the catchment to 
pollutants (Sprenger et al., 2019). Since the migration, transformation, and phase change of 
water are accompanied by the transport, mixing, and fractionation of hydrogen and oxygen 
stable isotopes (i.e., 18O and 2H), these isotopes are widely used to perform hydrological and 
meteorological analyses at different scales, such as the identification of water vapor sources and 
transport patterns, the quantification of the contribution of end members to runoff, and the 
evaluation of water interactions and estimation of evaporation losses (e.g., Chen et al., 2015; 
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Eissa et al., 2016, 2018; Zuecco et al., 2019; Laonamsai et al., 2021, 
2022; Wang et al., 2022). During the process of runoff generation in 
rainfall-dominated catchments, the isotopic signal in precipitation is 
usually dampened when it is transmitted to river water, due to the 
buffering effect of the catchment and its mixing with groundwater and 
soil water with relatively constant isotopic signals. Based on the 
regularities of isotope fluctuation decay during the conversion from 
precipitation into river water, mean transit time (MTT), mean 
residence time and damping ratio can be estimated to evaluate the 
water age and water transport rate (McGuire and McDonnell, 2006; 
Bansah and Ali, 2019; Sprenger et al., 2019; Benettin et al., 2022). Such 
metrics have been widely applied to analyze the catchment behaviors 
in many regions across the world.

Recently, Kirchner (2016) found that the distribution function of 
water transit time in a catchment is often not static in space, especially 
for those landscapes characterized by strong spatial heterogeneity, and 
great uncertainty is likely to exist in the estimation of MTT, because 
of the aggregation bias. Consequently, Kirchner (2016) developed the 
concept of a substitutive metric, the young water fraction (Fyw), 
which is defined as the runoff component that is younger than 
3 months in the water flowing through the catchment outlet. Fyw is 
negligibly affected by the aggregation bias (with an error usually less 
than 2%, Kirchner (2016)), and thus it can be  used to effectively 
investigate the hydrological processes and the response of a catchment 
to climate change and human activities (e.g., groundwater abstraction, 
contaminant transport, or land use changes), and to evaluate 
hydrogeological and environmental risks related to water storage and 
release mechanisms in catchments. The estimation of Fyw is based on 
the aggregate parameter model, with precipitation as the input and 
runoff at the outlet as the output (shown in Figure 1). The isotopic 
signal of the output water is considered as the convolution of the 
isotopic fluctuation function (set as a sine function) of the input water 
and the transit time distribution function (set as a Gamma function). 
Using the Fourier transform method, the shape and scale coefficients 
of the Gamma distribution function can be determined, and then Fyw 
can be  obtained by integration. Through a numerical simulation 
experiment, Kirchner (2016) found that Fyw can be approximated 
using the isotopic amplitude ratio between stream water and 
precipitation obtained by sine function fitting. This simple method is 
known as “amplitude ratio method” and has become the most 
commonly used method to estimate the Fyw. In the fitting of the sine 
function, the precipitation amount and the discharge are commonly 
used as weights for the observed isotopic compositions of precipitation 
and stream water (e.g., von Freyberg et al., 2018; Gallart et al., 2020a). 
To estimate Fyw, isotopic time series of input and output water, are 
required to be longer than a year. Typically, higher Fyw is associated 
with shorter flow paths, implying that surface water and groundwater 
in the catchment are more susceptible to pollutant contamination, 
while lower Fyw is associated with longer flow paths and slower 
recharge rates. Therefore, this metric could benefit the understanding 
of water recharge mechanisms, as well as of the exchange and transfer 
of pollutants, and is thus of practical importance for the management 
of water-related risks.

Jasechko et  al. (2016) collected isotopic data from more than 
60,000 precipitation samples from 459 meteorological stations and 
10,000 river water samples from 254 rivers worldwide, and they 
estimated the Fyw based on the amplitude ratio method. Jasechko 
et al. (2016) found that the arithmetic mean value of Fyw in rivers 

worldwide is 26%, the amount weighted mean value is 34% and the 
median value is 21%, providing a reference for studies on Fyw in 
different geographic regions, at different spatial scales, and under 
different climatic backgrounds. Since then, the Fyw estimation has 
been determined in different study areas. For example, Fyw was found 
to be positively correlated with vegetation coverage and proportion of 
swamp, negatively correlated with the watershed area and elevation, 
but not significantly correlated with average runoff coefficient in 
Tibetan Plateau catchments (Song et  al., 2017). Higher Fyw are 
typically associated with wetter climates, soils with lower permeability, 
and higher precipitation intensity in Swiss catchments (von Freyberg 
et al., 2018). Wilusz et al. (2017) reported that an increase in Fyw may 
result from increased precipitation amount in the Plynlimon region 
of Wales. In the Alpine area, the increase of snowpack duration 
promotes the emptying of groundwater storage in winter, thus 
decreasing the Fyw, while the snowpack with short duration is 
generally associated with the increased rapid flow path, resulting in 
increased Fyw (Gentile et al., 2022).

FIGURE 1

Conceptual scheme showing the Fyw estimation based on the 
lumped parameter model.
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In previous studies, the interference of environmental and 
systematic factors, such as sampling frequency, evaporation and 
snowmelt, on the accuracy of Fyw estimates have been preliminarily 
explored (e.g., Ceperley et al., 2020; Gallart et al., 2020a). However, the 
source of uncertainties and the extent of application of this metric 
have not been fully explored, which limits its development as a 
practical indicator for catchment properties. The goal of this paper is 
to summarize the potential sources of uncertainty and possible 
limitations of Fyw, in the aspects of both hydro-meteorological 
conditions and data quality. Furthermore, in this perspective paper 
we provide some methodological recommendations aimed to reduce 
the uncertainty in Fyw estimation.

Uncertainty in the complexity of isotopic 
composition of precipitation and stream 
water

The theoretical basis of the Fyw estimation is the attenuation of 
isotope amplitude during the mixing process between precipitation, 
with a clear seasonal isotope periodicity, and water sources (e.g., 
shallow and deep groundwater, soil water), with an isotopic 
composition less time variable compared to precipitation. In the 
Fyw estimation, the lumped parameter model is based on the 
premise that precipitation is the only initial water source in the 
hydrologic system and phase shift in the path of water migration is 
not considered. Under this hypothesis, the influences of 
precipitation input in multiple forms (e.g., snowmelt and ice melt) 
and natural and anthropogenic processes on the composition and 
periodicity of isotopes in stream water are generally overlooked. For 
instance, based on data from three Alpine catchments, Ceperley 
et  al. (2020) showed the limitations of isotopic periodicity in 
snowmelt-dominated catchments, and proposed an optimized 
method for the Fyw estimation in high altitude areas, considering 
the influence of lag release of water caused by the seasonal 
snowmelt. However, the uncertainty brought by melt water should 
be further explored in other mountainous catchments with different 
size and elevations, as well as with different contributions of melt 
water to stream runoff. In addition, previous research (i.e., Ceperley 
et al., 2020; Gentile et al., 2022) showed that there is a lack of studies 
providing Fyw, as well as transit times estimations in glacierized 
catchments; in these catchments Fyw can be  larger than Fyw 
determined for snowmelt-dominated catchments due to fast flow 
paths and a less permeable bedrock (Schmieder et al., 2019; Zuecco 
et al., 2019).

In precipitation, the isotopic variations caused by sublimation of 
snow and ice, water-vapor exchange and sub-cloud secondary 
evaporation may lead to uncertainty in the sine-wave fitting, whose 
impacts also need to be evaluated in the Fyw estimation. Previous 
studies also showed that processes such as evaporation and scheduling 
of reservoirs may interfere the isotopic periodicity in stream water 
inherited from rainfall (Reckerth et  al., 2017; Xia et  al., 2021).
Therefore, in catchments with complex flow systems or those heavily 
influenced by human activities, the uncertainty of the Fyw estimation 
based on the current estimation methods may be large. Therefore, to 
estimate Fyw is necessary to develop a more flexible approach, 
considering the isotopic variation associated with phase 
behavior changes.

Effects of trends in the isotopic 
composition of precipitation and stream 
water

Previous studies have confirmed that although Fyw is dependent 
on catchment properties, the accuracy of its estimation results is also 
confounded by systematic factors such as weighting methods, 
sampling frequency and selection of calculation periods (von Freyberg 
et al., 2018; Stockinger et al., 2019; Gallart et al., 2020a). Under the 
influence of climate change, the global temperature increase is 
widespread, leading to an enrichment trend in isotopic composition 
in precipitation at longer time scales. Wang and Chen (2020) reported 
the trend variations in temperature, precipitation, and δ18O in 
precipitation based on data from stations of the global network of 
isotopes in precipitation (GNIP) with long-term records. Wang and 
Chen (2020) found that among 98 selected stations around the world, 
about 2/3 (65 stations) showed a significant upward trend of δ18O in 
precipitation. Such a trend may also be transmitted to the isotopes in 
the river water and cause the amplitudes obtained from the sinusoidal 
function fit to not reflect the actual seasonal fluctuations of the 
isotopes in the water. The commonly-used amplitude ratio method for 
the Fyw estimation is based on the assumption that the isotopes in the 
waters vary seasonally following a fixed sinusoidal curve. However, in 
actual catchments, the isotope signals do not vary in a constant 
pattern. Fitting multi-year isotope records using sine waves will 
oversimplify the shape of the interannual isotope signal. The 
interannual differences in the amplitudes of isotopic fluctuations and 
the effects of isotopic trends at longer time scales on the periodicity 
are not considered, which are possible sources for inaccurate 
Fyw estimates.

Impact of the sampling approach of stream 
water

As the Fyw estimation is based on comparison of periodicity 
between precipitation and stream water, the extent that the captured 
isotopic records can reflect the actual variability is important. Gallart 
et  al. (2020a) found that the accuracy of estimated Fyw is greatly 
dependent on the sampling frequency of stream water. Weekly-
resolution sampling could not reflect the isotopic variation under high 
flows, thus resulting in an underestimation of Fyw in their catchment. 
Stockinger et al. (2019) pointed out that a 1-year isotopic time series 
is not long enough for an accurate Fyw estimation, and the selection 
of the fitting period may lead to a marked uncertainty. However, as the 
Fyw has been proposed for a relatively short time, in many studies, the 
time series of isotopic data, used to estimate the Fyw, was originally 
collected for the investigation of hydrological processes occurring at 
short timescales. Furthermore, in isotope-based studies, it is common 
to increase the sampling frequency of stream water in the rainy season 
with concentrated precipitation and high flows. Previous studies have 
shown that flows are positively correlated with Fyw (von Freyberg 
et al., 2018; Gallart et al., 2020b). Therefore, isotopic data collected 
mainly at the event timescale (i.e., during high flows) may lead to an 
overestimation of Fyw, as the proportion of high-flow condition in the 
“isotope discharge” (i.e., the observed flow accompanied with isotope 
collection), which is involved in sine-wave fitting, exceeds that of the 
low flow records. Additionally, it is difficult to guarantee long-term 
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and periodic stream water sampling, and the isotope datasets of river 
water with irregular sampling frequency and data gaps are common 
in many study areas, due to different research objectives and 
limitations in logistics conditions (e.g., Ceperley et  al., 2020). In 
previous studies focusing on Fyw, the influence of such widespread 
heterogeneous datasets on the estimation uncertainty has not been 
determined yet.

Concluding remarks and future 
perspectives

Although research on Fyw based on isotopic signals has received 
much attention during the past few years and has been continuously 
promoted, there is still a lack of comparative understanding on Fyw 
under different landscapes and climate conditions. The knowledge 
about the influencing factors of this metric and the sources of 
uncertainty in the processes and results of its estimation is still very 
limited. Factors, such as temporal isotopic trends under changing 
climate, commonly-used irregular sampling schemes for isotope 
hydrology, complex recharge sources and evaporation conditions, 
have potential impacts on the accuracy of Fyw estimation. In future 
studies, more effort to explore the error sources and to develop 
optimization methods for Fyw estimation should be  made. For 
example, future research should conduct Fyw estimations in areas 
with potential isotopic complexity (e.g., where there is a complex 
isotopic signal of melt waters or enhanced evaporation in the water 
sources), develop detrending models to reduce (or lower down) the 
impact of an existing trend on the isotopic periodicity, implement a 
sampling approach consistent with the full flow record during the 
observation period (i.e., able to capture all flows, without a bias toward 
low or high flows). To develop and test better methodological 
approaches for Fyw estimation, researchers should consider using 
long-term isotopic datasets (> 5–10 years) and datasets collected at 
very high temporal resolutions (e.g., von Freyberg et  al., 2017). 
Combining Fyw estimation and transit times modeling across more 
catchments should help to better understand the drivers of Fyw and 
its sources of uncertainty, as well as to develop specific 
recommendations for the application of this metric. By deepening the 
understanding of Fyw and by reducing the uncertainty in its 
estimation, this metric could be applied more effectively to improve 

our comprehension of runoff generation and tracer transport in a 
variety of catchments.
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Effective landslide disaster risk management contributes to sustainable
development. A useful method for emergency management and landslide
avoidance is Landslide Susceptibility Mapping (LSM). The statistical landslide
susceptibility prediction model based on slope unit ignores the re-lationship
between landslide triggering factors and spatial characteristics. It disregards the
influence of adjacent image elements around the slope-unit element. Therefore,
this paper proposes a hardwired kernels-3DCNN approach to LSMs considering
spatial-factor features. This method effectively solved the problem of low
dimensionality of 3D convolution in the hazard factor layer by combining
Prewitt operators to enhance the generation of multi-level 3D cube input data
sets. The susceptibility value of the target area was then calculated using a 3D
convolution to extract spatial and multi-factor features between them. A
geospatial dataset of 402 landslides in Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province, China, was created for this study. Nine landslide
trigger factors, including topography and geomorphology, stratigraphic lithology,
rainfall, and human influences, were employed in the LSM. The research area’s
pixel points’ landslide probabilities were then estimated by the training model,
yielding the sensitivity maps. According to the results of this study, the 3DCNN
model performs better when spatial information are included and trigger variables
are taken into account, as shown by the high values of the area under the receiver
operating characteristic curve (AUC) and other quantitative metrics. The proposed
model outperforms CNN and SVM in AUC by 4.3% and 5.9%, respectively. Thus,
the 3DCNN model, with the addition of spatial attributes, effectively improves the
prediction accuracy of LSM. At the same time, this paper found that the model
performance of the proposed method is related to the actual space size of the
landslide body by comparing the impact of input data of different scales on the
proposed method.
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1 Introduction

Geological disasters have constantly threatened human life and
properties and caused damage to the ecological environment, which
seriously restricts the sustainable development of human society (Xu
et al., 2020). In China, 4,772 geological disasters occurred in 2021,
with 3.2 billion yuan worth of direct economic damage, including
2,335 landslides, accounting for 49% of all geological disasters
(Ministry of Natural Resources of the People’s Republic of China,
2021). As a result, the monitoring and early warning of landslide
disasters has taken center stage in geological disaster prevention and
risk mitigation. Especially in recent years, due to environmental and
climate changes, the frequency and intensity of landslide disasters
have increased rapidly (Liu., 2020). Therefore, quick and accurate
analysis and evaluation of Landslide Susceptibility Mapping (LSM)
and identification of high susceptibility areas are critical for
effectively preventing and managing geological disasters caused
by landslides.

The analysis of landslide susceptibility based on big geospatial
data quickly inverts the regional landslide risk level by
constructing the relationship between landslide hazard points
and trigger factors. There are two main categories of landslide
susceptibility models: those based on statistical analysis and those
based on machine learning (ML) methods. Statistical analysis
methods include the information quantity method (Wang et al.,
2017), coefficient of determination method, etc. (LUO et al., 2021;
Zhao et al., 2021). ML methods mainly include logistic regression
(Sun et al., 2021), artificial neural network (Bragagnolo et al.,
2020), random forest (Gao and Ding, 2022) and support vector
machine (Nhu et al., 2020; Balogun et al., 2021; Wei et al., 2022a;
Sajadi et al., 2022), etc. The MLmethods have a higher accuracy in
landslide susceptibility evaluation than the statistical analysis
method. Furthermore, the ML methods can deal with the non-
linear correlation between landslide trigger factors and landslide
disaster points and avoid the difficulty of obtaining model
parameters (Zhu et al., 2017).

The ML methods require constructing a data format that
converts the original data of landslide trigger factors into slope
units suitable for input (Xu et al., 2020; Liu and Liang, 2022).
According to the first law of geography, there is a correlation
between any location, and that correlation gradually decreases
with distance (Tobler, 1970). Therefore, as a regional natural
disaster closely affected by the surrounding environment,
landslide disasters only take points or landslide units as the
research object, ignoring the correlation with the surrounding
geographical space units (Wu et al., 2015; Zhu et al., 2019).
Therefore, it is of practical significance to consider how to
combine spatial features with improving the accuracy of landslide
risk assessment. Some researchers have noticed the influence
characteristics of spatial features on LSM. Hong et al. divided the
research focus area into two smaller areas according to the Shannon
entropy equation, and the prediction accuracy of the regression
model increased by 10% (Hong et al., 2017). Huang et al. found that
the landslide susceptibility index (LSI) distribution was affected by
different landslide boundary manifestations (Huang et al., 2022).
Concurrently, Li et al. significantly increased the value of the
Receiver Operating Characteristic (ROC) of the LSM. The slope
unit’s landslide susceptibility value is determined by combining the

estimated likelihood of a landslide occurring (spatial probability)
with the anticipated area of the slope units where a landslide may
occur (Li and Lan, 2020). The structure of the convolutional neural
network (CNN) is inspired by the perception of spatial features in
the biological visual system. It can identify objects with specific
spatial features by using convolutional and pooling layers (Liu et al.,
2022). Wang et al. revealed that by rebuilding the input data and
confirming the efficacy of the CNN model for spatial feature
extraction, they have turned the landslide trigger factors into 2-
dimensional and 3-dimensional data. According to Yang et al., the
CNN model performs better than the ML model in predicting LSM,
and the suggested model produces the most precise and smooth
LSM (Yang et al., 2022). Wei et al. used a depthwise separable
convolution to extract spatial features and spatial pyramid pooling
to extract features at different scales, fusing them into machine
learning classifiers to train LSM (Wei et al., 2022b).

The above research on CNN models verifies the influence of
spatial features on LSM. However, these studies are limited by the
spatial constraints of the CNN model’s two-dimensional
convolution, which can only take into account the spatial
correlation of a single trigger factor but cannot combine the
correlation between trigger factors (Wang et al., 2019). The
three-dimensional convolution kernel neural network (3DCNN)
model can improve image classification accuracy by extracting
deep features in layers and has been effectively employed in
action recognition and hyperspectral image classification (Li
et al., 2017; Shi and Pun, 2017; Li et al., 2022). The intuitive idea
is to use the landslide trigger factors and spatial information to
design classifiers, incorporating converting spatial structures into
slope-unit classifiers. Spatial information contains valuable
distinguishing details pertaining to the shape and size of distinct
structures, which, when utilized appropriately, can result in more
precise classification maps (Fauvel et al., 2013). Essentially, the
spatial dependence is initially derived through a variety of spatial
filters, such as directional gradients, morphological profiles, and
entropies (Plaza et al., 2004; Ghamisi et al., 2015). To perform pixel-
level landslide susceptibility classification, these altered spatial
features are paired with landslide triggers and historical landslide
spatial locations.

This paper proposed the 3DCNN landslide susceptibility
mapping model that integrated the landslide trigger factors and
spatial features. First, we reconstruct spatial features and the
landslide trigger factors as three-dimensional input data. Next,
we apply a 3D convolution to explore the relationship between
the spatial features and the trigger factors. Ultimately, the 3DCNN
model, once trained, will predict landslide susceptibility. Because the
CNN model shows better spatial feature extraction performance in
the study of LSM, the three-dimensional convolution kernel can
perform the correlation calculation between the landslide trigger
factors (Ghorbanzadeh et al., 2019; Liu et al., 2022). A case study in
Xiangxi Tujia and Miao Autonomous Prefecture, China was used to
exemplify the practicality of the proposed model. For comparison
with the suggested method, the CNN and SVM model were utilized
as reference models. The various models were evaluated and
compared using performance criteria, such as statistical
indicators and receiver operating characteristic curves (ROC). At
the same time, this paper also examined the impact of input data
spatial scale on the calculation of LSM using the 3DCNN model.
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2 Study area and data sources

2.1 Study area

The Xiangxi Tujia and Miao Autonomous Prefecture is
situated in the northwest of Hunan Province, with coordinates
of 109°10′-110°22.5′E and 27°44.5′-29°38′N (Figure 1). It is
located in the intermediary region between the Wuling
Mountains and the Yunnan-Guizhou Plateau, with small
basins and valleys along the rivers between the mountains.
The central vein of the Wuling Mountains stretches in the
middle, with a northeast-southwest trend. In comparison, the
southeastern part belongs to the low hilly area of the Yuan River
valley. Wushui and Youshui, tributaries of the Yuan River, are the
main rivers. The total area of the state is 15,462 km2. The terrain
slopes from northwest to southeast, with an average altitude of
800–1,200 m. The east and west are mountainous areas of low
hills with an average altitude of 200–500 m. Streams and rivers
crisscross the area, and there are many alluvial plains on both
banks. The general outline of the geomorphological form is
dominated by mountain plains, with hills and small plains,
and the arc-shaped mountainous landform is prominent to the
north and west. The annual precipitation is 1,300–1,500 mm and

is concentrated during spring and summer. Xiangxi Prefecture
mainly experiences geological hazards such as landslides,
followed by mudslides and sinkholes. These are small and
medium in scale, mainly distributed in areas with high rainfall
intensity and vigorous human engineering activities. During this
period of heavy rainfall, a high incidence of geological hazards is
eminent .

2.2 Data sources

The information regarding landslide occurrences and geological
lithology in Xiangxi Prefecture was collected from the Xiangxi
Guoditong integrated spatial and temporal service platform. The
data structure is in geographic vector format, including 402 landslide
points and 356 geologic lithology units. The Digital Elevation Model
(DEM) data were obtained from “ASTERGDEM DEM 30 m
resolution digital elevation data” (https://search.earthdata.nasa.
gov/search). NDVI data from “Landsat8OLI_TIRS Satellite
Digital Product Data at 30 m Spatial Resolution” from the
2018 Geospatial Data Cloud (https://search.earthdata.nasa.gov/
search). The annual precipitation data were acquired from
“Global Precipitation Measurement Data level 3" (https://pmm.

FIGURE 1
The study area and historical landslide hazard points.
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nasa.gov/precipitation -measurement-missions) of NASA for the
year 2018, with annual precipitation. The unit is 1 mm, and the data
with road, river and distance data with residential areas are from the
first national geographic census re-sults data. For the convenience of

statistics and analysis, combined with the resolution of DEM and
remote sensing image data, The study area in Xiangxi Prefecture was
par-titioned based on a raster resolution of 30 m × 30 m with a total
of 31,374,840 raster units.

FIGURE 2
Diagrams of the landslide triggering factors.
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2.3 Trigger factors

The reasons behind landslide disasters are complex. The
influencing factors are mainly divided into two classes: internal
pregnancy factor (terrain landform, geological structure,
transportation water system, etc.) and external induced factors
(rainfall, earthquake, human engineering activities, etc.). LinJeng-
Wen et al. analyzed the correlation between the factors, and the
study’s results proved that the distinguishing factors are
independent and can be used as factor variables (Li et al., 2022).
This paper chooses 9 factors related to landslide disasters, including
DEM, slope, aspect, lithology, distance to faults, distance to roads,
rainfall, distance to rivers, and normalized difference vegetation
index (NDVI), as illustrated in Supplementary Table S1 and
Figure 2. The selection of these factors was based on the
reliability of model prediction and the ease of calculating the
three-dimensional convolution.

3 Methodology

Figure 3 illustrates the method flowchart used for LSM in this
study. First, this paper prepared landslide point data and landslide
trigger factors to construct training and validation sets. Second, the
SVMmodels were trained using 2D data format while the CNN and
3DCNN was trained using 3D data format. Then, the ROC curves
were used for quantitative evaluation of the prediction results

obtained by the three methods. Finally, the landslide
susceptibility mapping is carried out with three trained models.

3.1 SVM model

The SVMmodel is a binary classifier based on statistical learning
theory that finds the maximum margin hyperplane. This model is
effective in addressing various classification problems (Cherkassky
and Yunqian, 2004). In the study of LSM, the j-th trigger factor of
the i-th position in the layer is expressed as vij, i∈{1,2. . .,n},
j∈{1,2. . .,9}. Among them, the variable n represents the total
number of samples, while j represents the number of categories
of the landslide trigger factors. Then, the SVMmodel maps the input
vector v into u and classifies it, using a non-linear mapping ϕ(v), to a
high-dimensional feature space. as shown in Eq. 1.

f v( ) � wϕ v( ) + b (1)
The regression function of SVM, denoted by f(v), can be

expressed as the inner product of a weight vector w and the
input vector v, plus a bias term b. Alternatively, the optimization
problem can be formulated with Lagrangian transformation and
optimality constraints, allowing for the use of Eq. 2 to obtain f(x)
(Cremmer et al., 1983).

f v( ) � ∑n
i�1

ai − a*i( ) × K v, vi( ) + b (2)

FIGURE 3
Flowchart of the present study.
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where αi and αi* are the Lagrange multipliers, K (v, vi) is a kernel
function. This article uses the RBF kernel (Bugmann, 1998).

3.2 CNN model

The CNNmodel requires two-dimensional images as input, and
the slope-unit or landslide unit is not suitable for cooperation as the
input of the CNNmodel (as shown in Figure 4 left part). In order to
solve this problem, the original data needs to be reconstructed. As
shown in Figure 4 right part, the proposed method expands outward
from the centre of the landslide slope unit in each layer of the
landslide trigger factors layer to obtain the spatial characteristics of
the sample data (Li and Lan, 2020). After that, the multi-layer grid
data is brought into the CNN model for training.

In the convolutional layers, the CNN model runs a 2D
convolution kernel that collects features from a nearby
neighborhood on feature maps from the previous layer. The
result is then passed through a sigmoid function with an additive
bias. The value of the unit at position (x, y) in the jth feature map in
the ith layer is denoted as vij

xy and can be expressed as follows:

vxyij � tanh bij + ∑Pi−1

m�0
∑Pi−1

j�0
∑pi−1
j�0

wjvi
x + p

ri
( )⎛⎝ ⎞⎠ (3)

the expression for vij
xy, the value of the unit at position (x, y) in the

jth feature map in the ith layer in the CNN model, is given by the
hyperbolic tangent function tanh (), where bij is the bias for this
feature map, m indexes over the set of feature maps in the (i-1)th
layer connected to the current feature map, wijk

pq is the value at the
position (p, q) of the kernel connected to the kth feature map, andQi

and Pi are the width and height of the kernel, respectively.

The subsampling layers reduce the feature map resolution by
pooling over the local neighbourhood in the previous layer, which
increases the invariance to input distortions. To construct the CNN
architecture, multiple convolution layers and subsampling are
stacked alternately. The CNN parameters, including the bias bij
and the kernel weight w, are typically trained using supervised or
unsupervised approaches. The backpropagation algorithm is
employed to optimize all parameters in the CNN layer, with the
objective of minimizing the loss function (LeCun et al., 1998). The
formula is defined as follows:

Loss � − 1
m
∑m
i�1

li log l′i( ) + 1 − li( )log 1 − l′i( )[ ] (4)

The CNN model architecture, as shown in Figure 5, involves
optimizing all parameters in the CNN layer using the
backpropagation algorithm and minimizing the loss function,
where the two variables li and li’ represent the actual label and
tag of the i-th input sample, respectively. The parameters are
updated iteratively until the loss value reaches convergence.

3.3 3DCNN model

The CNNmodel applies 2D convolution kernels solely to the 2D
feature maps, enabling the computation of features solely from the
spatial dimensions of the single channel. Convolutional stages of
CNNs must perform 3D data augmentation in order to
simultaneously capture important features contained in several
contiguous layers of 3D feature data. By convolving a 3D kernel
into the cube created by stacking several trigger factors together, this
method computes features from both the spatial and trigger factor

FIGURE 4
Reconstruction of two-dimensional input data.
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dimensions. As a result of their connections to various trigger factors
in the former layer, the feature maps in the cnn model are able to
capture the pertinent features between landslide trigger factors. The
value of the unit at position (x, y, z) on the j-th feature map in the
i-th layer can be expressed as follows:

vxyzij � tanh bij +∑
m

∑Pi−1

p�0
∑Qi−1

q�0
∑Ri−1

r�0
wpqr

ijmv
x+p( ) y+q( ) z+r( )
i−1( )m⎛⎝ ⎞⎠ (5)

where Ri is the size of the 3D kernel along the landslide trigger
factors dimensionwijm

pqr and is the (p, q, r)-th value connected to the
m-th feature map in the previous layer. Here, the value at position (x,
y, z) on the jth feature map in the ith layer is determined by the (p, q,
r)-th value connected to the m-th feature map in the previous layer,
represented by wijm

pqr. The size of the 3D kernel along the landslide
trigger factors dimension is denoted by Ri. Figure 6 depicts the
architecture of the 3D convolutional kernel neural network.

The 3D cube that was recreated using the technique in Figure 4 is
also used as input data for the 3DCNN model in the architecture
depicted in Figure 6. We initially use a set of hardwired kernels to
generate various information channels from the input frame, like H1 in
Figure 6, in order to improve the feature amount in the vertical
direction. The four directional Prewitt operators used by the feature
hardwired kernel provide 45 feature maps in the second layer that are
divided into five separate channels known as raw, horizontal gradient,

vertical gradient, and two diagonal gradients. The attribute values of the
input frames from the nine landslide trigger factors are contained in the
original channel. By calculating the gradients along the horizontal,
vertical, and two diagonal gradients on the nine landslide hazard factors,
respectively, through the Prewitt operator, the feature maps in the
horizontal gradient, vertical gradient, and two diagonal gradient
channels are generated. Our prior knowledge of the characteristics is
encoded in this hardwired layer, and this method typically provides
greater performance than random initialization (Ji et al., 2012).

Then, we independently perform 3D convolutions to each of the
5 channels with a kernel size of 4 × 4×3 (3 in the trigger factor
dimension, 4 × 4 in the spatial dimension). Using two sets of various
solutions at each site, the number of feature maps is increased, yielding
two sets of extracted features in the C2 layer, each with 35 feature maps.
There are 490 trainable parameters in this layer. Each of the feature
maps in the C2 layer is subjected to 2 × 2 subsampling in the subsequent
subsampling layer S3, resulting in the same amount of feature maps
with lower spatial resolution. This layer contains 140 trainable
parameters. Applying 3D convolution with a kernel size of 3 ×
3×3 on each of the five channels in the two sets of feature maps
individually yields the next convolution layer, C4. We perform three
convolutions with various kernels at each position to increase the
number of feature layers, resulting in six separate sets of feature
maps in the C4 layer, each of which has 25 feature maps. There are
840 trainable parameters in this layer. Each feature map in the C4 layer

FIGURE 5
The structure of the CNN model.

FIGURE 6
The architecture of the 3D augmented convolution kernel neural network.
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is subjected to 2 × 2 subsampling to produce the same amount of feature
maps with lower spatial resolution in the subsequent layer S5. This layer
contains 300 trainable parameters. We only do convolution in the
spatial dimension at this layer because the temporal dimension’s size is
already quite tiny at this point. The size of the output feature maps is
reduced to 1 × 1 due to the convolution kernel size 2 × 2. All of the
150 1×1-sized feature maps in the C6 layer is connected to all
150 feature maps in the S5 layer.

The five input frames have been transformed into a 150D feature
vector that captures the motion information in the input frames
using many layers of convolution and subsampling. The number of
units in the output layer equals the number of actions. The 150 units
in the C6 layer are all fully connected to each unit. In this design, the
150D feature vector is subjected to a linear classifier in order to
classify actions. The number of trainable parameters at the output
layer for an action recognition issue with two classes (one class is a
landslide, and the other is non-landslide) is 300.

4 Experimental results

4.1 Factors analysis andmodels construction

Based on the study area’s actual circumstances and an
examination of topography, geomorphology, stratigraphic
lithology, geological structure, rainfall, surface water, and human
variables influencing the occurrence of landslides (Lin et al., 2019),
as shown in Supplementary Table S2 the selected landslide trigger
factors were tested for multiple covariances by stepwise regression
method (Jiping et al., 2022). The correlation between each
characteristic factor was tested by tolerance and variance
inflation factor (VIF) is shown in Supplementary Table S2
(Kalantar et al., 2019). The findings demonstrate that the
identified landslide trigger parameters have a tolerance greater
than 0.1, and the variance inflation factor is less than 10, which
indicates that each trigger factor has a low degree of co-linearity and
good independence.

To create the model’s architecture, 804 samples (402 positive
and 402 negative) from the entire dataset were used. Using these
samples, databases for the Xiangxi Prefecture were created based
on the number and distribution of landslide points. Next they
were randomly divided into validation groups, which made up
30% of the total, and training groups, which comprised 70% of the
total. Finally, each model was tested using both the validation
dataset and the complete dataset. The parameters for the CNN
and 3DCNN models are randomly initialized, and they are
trained via online error backpropagation. The learn-ing rate
was set to 0.0005 for the Xiangxi dataset, batch size, dropout
rate, and epoch were set to 32, 0.5, and 150 in order to find the
ideal hyperparameter.

Also, the weights were updated using SGD as the optimizer, and
mean square error (MSE) was chosen as the loss function. The
activation function was set to Tanh. The PSO approach is used to
identify the ideal parameters for the SVM model by the penalty
coefficient C and the RBF kernel function gamma (Fathi and
Montazer, 2013). Our tests were run on Windows 10, 64-bit, an
Intel i7-10700K processor running at 3.8 GHz with eight cores,
32 GB of RAM, and an NVIDIA GeForce RTX 2060Ti GPU (8 GB).

4.2 Validation and comparison methods

The evaluation of the three models’ effects in this paper was
undertaken using the “ReceiverOperatingCharacteristic” curve for
validation (Park and Kim, 2019). It is the relationship between
specificity and sensitivity; it s a g. The logic behind this is that if a test
is non-diagnostic, it is just as likely to produce a true positive or a
false positive. Specificity, actual positive rate, true positive rate, and
false positive rate all rise along with diagnostic competence. The
accuracy of the evaluation model is shown by the area under the
ROC curve (Area Under Curve, AUC). The evaluation model’s
prediction effect is stronger the closer the area value is near 1. The
area value, on the other hand, has no application value when it
equals 0.5. Figure 7 displays the ROC curves and AUC values for the
two models.

The 3DCNN model, CNN model, and SVM model all have
AUC values of 0.835, 0.816, and 0.794, respectively, as shown in
Figure 7. The three models may all have a higher prediction of
LSM since the AUC regions of their ROC curves are all greater
than 0.5. According to the specifics, the 3DCNN model’s ROC
curve is situated in the upper-most left corner, which means that
its AUC area is the largest and the point in the distance is farther
from the reference line, indicating that the 3DCNN model is, in
some ways, superior to the other two models. In other words, the
3DCNN of LSM model in Xiangxi Prefecture is more precise and
reliable.

4.3 Landslide susceptibility mapping

To create the LSM for Xiangxi Tujia and Miao Autonomous
Prefecture, this study used the SVM, CNN, and 3DCNN models

FIGURE 7
The ROC curve of three models with the 15 × 15 size of input
data.
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(Figure 8). For the purpose of computing the landslide susceptibility
index, all pixels within the study area were supplied into these
trained models (LSI). The LSI was then separated into five
susceptibility levels using ArcMap10.6’s natural break approach:

very low (VLS), low (LS), moderate (MS), high (HS), and very high
(VHS). The landslide susceptibility zones, which show the
proportion of each susceptibility level to the entire study region,
were employed to qualitatively examine the LSM.

FIGURE 8
Evaluation results of landslide susceptibility mapping. (A) LSM of the SVM model; (B) LSM of the CNN model; (C) LSM of the 3DCNN model.
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As shown in Figure 8, the VHS zones are mostly found in
Xiangxi Prefecture’s southeast and northwest. Due to the long
gullies, steep slopes, complex geological structures, and two
major rivers running through the area, coupled with the
increasing human engineering activities (such as road projects),
the area is highly susceptible to landslide disasters.

The analysis and counting of non-landslide and landslide hazard
points in the training samples was done using ArcMap. After that,
we determine what percentages of landslide points and non-
landslide points are located in each of the five prone zones.

Supplementary Table S3 shows that themajority of landslide hazard
spots are anticipated to have high and extremely high susceptibility
zones. A relative association between historical landslide events and
susceptibility areas is demonstrated by the fact that few landslides occur
in places with relatively low susceptibility. Furthermore, more than 80%
of historical landslide events for all methods were located in high-
sensitivity areas, confirming the plausibility of landslide susceptibility
mapping. The percentage of hazard points in each zone likewise
gradually grew according to the 3DCNN, CNN, and SVM models.
The highest percentages were 47.51%, 39.30%, and 30.85% in the high-
prone area. Hence, the proportion of the number of disaster points is
more significant than that of other districts, and the proportions are
47.51%, 39.30%, and 35.57%. We found that all three model methods
can predict the susceptibility of landslide hazards very well. Compared
with the CNN and SVM models, the 3DCNN model has higher
accuracy.

4.4 Scale size and model performance

In order to research how the spatial scale of the data input affects
the LSM using the 3DCNN model, we compared the input data
structures at five different spatial scales of 9 × 9, 15 × 15, 21 × 21,
27 × 27, 33 × 33, and 39 × 39. Furthermore, we compared and
analyzed the ROC curve of the corresponding 3DCNN model. In

Figure 9, the experimental outcomes are displayed. The 3D CNN
model’s ROC curve varies depending on the input data scales. As the
spatial scale increases, the AUC value of 3DCNN gradually
increases. When the sample point range is expanded to 21 × 21,
the AUC value reaches the maximum value of 0.859. The AUC value
rapidly declines, reaching a minimum of 0.781, which is 0.078 lower
than the highest AUC value and even worse than the performance of
the CNNmodel and the SVMmodel, as the sample space size rises to
39 × 39. The above reasoning proves that scale does affect LSM
performance, but this effect varies with size. A further comparative
study of the relationship between area and scale in the landslide
samples found that the average length and width of the landslide
samples in Xiangxi Prefecture used in this paper are 281.5 m and
563.7 m, respectively, projected to a grid of 10 × 20 landslide units
(Supplementary Table S4).

5 Discussions

LSM is essential for creating a thematic map that shows where and
how likely landslides are to occur. A landslide list made up of landslide
points and the association between landslide trigger variables is the basis
of LSM. Landslides, as a regional geographic entity, are considered
incomplete only in terms of points, with no spatial characteristics or
correlation feature between the landslide trigger factors. This research
aims to convert point landslide data into three-dimensional data by
incorporating spatial and correlation features between landslide trigger
factors. To do this, the fundamental module that we deployed was a
convolutional neural network. In order to allow for synergy, we
suggested a 3DCNN model that incorporates spatial and fators
correlation features among landslide trigger components.

By reducing variation and bias in prior related studies, the
hybrid model was considered to improve the ability to forecast
land slides. In our tests, the proposed 3DCNN model performed
better in terms of AUC than the other examined models. These

FIGURE 9
The ROC curve. (A) The ROC curve with different scale sizes of input data; (B) The 3DCNN model’s AUC and input data’s spatial resolution
connection.
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results met the hybrid model’s expectations to some extent and can
be considered promising. Meanwhile, the CNN-based models
outperformed conventional machine learning models regarding
overall performance (SVM). This is because the intricate design
of CNN-based models enhances their capacity to collect
representations of landslides at deep levels through convolution
and pooling procedures.

Aside from that, the suggested 3DCNN technique beat the other
two CNN-basedmodels, as shown in Figure 8 and Figure 9. This makes
sense because by extracting geographical data and correlation features
between landslide trigger components from the land-slide inventory,
the 3DCNN model improved landslide prediction accuracy. Using the
suggested 3DCNN model, more representations linked to landslides
were recovered from the limited datasets.

The contradiction between the complex structure and the scale
landslide samples necessitates avoiding overfitting despite CNN’s
outstanding feature extraction capabilities. We plot ROC curves on
training sets with varying scale sizes to further validate the models’
fit. According to Figure 9 and Supplementary Table S4, 3DCNN has
the maximum AUC value at a scale of 21 × 21, with a value of 0.859.
The ROC curves also vary depending on the geographic scale of the
data input. The model’s predictive performance gradually declines
as the spatial scale increases.When the size of the input data unit was
compared to the actual length and width of the landslide
(Supplementary Table S4), we discovered that the landslide is a
regional target with a limited spatial scale. Other noise effects are
amplified as the spatial scale is increased indefinitely. As a result, the
model’s accuracy in predicting landslide risk will decrease after
reaching the maximum spatial characteristic gain. To summarise,
the CNN landslide susceptibility model combined with spatial
features should consider the sample’s spatial scale.

The susceptibility maps can also show how plausible and reliable
the models are. Figure 8 illustrates how the majority of landslides in
the 3DCNN models occurred in the LSM’s VH susceptibility zone.
This indicates that the constructed models can accurately determine
the likelihood of a landslide occurring and provide acceptable
hazard mitigation methods to decision-makers, which is good
news from the perspective of disaster mitigation. Additionally,
scientists evaluate a susceptibility model’s dependability using the
Specificity and Sensitivity indices. By correctly categorizing non-
landslide zones as stable slopes and maximizing land usage, highly
accurate models can avoid financial losses. By precisely identifying
landslide-prone locations, high-sensitivity value models can also
offer safe mitigating advice. The suggested model in the current
study outperformed other baseline models in the validation set in
terms of specificity and sensitivity, highlighting the dependability of
disaster mitigation and land use planning.

6 Conclusion

We conducted our research in the Hunan Province’s Xiangxi
Prefecture for this paper. Experiments show that the relationship
between disaster-causing factors and spatial characteristics affects the
LSM prediction model’s accuracy. Under the same conditions as the
SVM and CNNmodels, increasing the spatial characteristics of landslide
hazard factors can improve LSM prediction accuracy. However, due to
the model’s complexity, the sample space scale limits this accuracy. The

experimental results confirmed this hypothesis as well. The model
performs best when the sample point range is expanded to
21 regions, i.e., when the input sample size covers the actual area of
the landslide. Because the sample LSM based on points ignores the
objective spatial attributes, expanding the factor or expanding the sample
area can improve the LSM’s prediction accuracy. However, due to data
constraints, this paper only considers the impact of a scale change in
30 m resolution sample data on LSM prediction accuracy. It does not
consider landslide hazard factors in different resolution scenarios, even if
the optimal scale value varies. We intend to investigate this step further
in our subsequent paper.
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In this paper, Qinghai alpine mining area is taken as the research object to explore
the deformation characteristics of overlying strata in alpine mining area, so as to
prevent geological disasters caused by over-exploitation in alpine mining area.
The location of old goaf in coal mine is detected by transient electromagnetic
method, and the results are used for numerical simulation. The numerical
simulation results show that after coal seam mining, the stress gradually
increases from the surface to the bottom, and the stress concentration occurs
at both ends and the middle of the mining area. The displacement change area is
highly coincident with the stress concentration area, and the displacement
monitoring map is consistent with the horizontal displacement cloud map
analysis, showing a “U” type distribution. The research results have certain
reference value for the future study of surface mining subsidence in inclined
coal seams.

KEYWORDS

alpine coal mining area, transient electromagnetic, overburden deformation, discrete
element numerical simulation, coal seam

1 Introduction

The mining of underground mineral resources led to the destruction of the overlying
strata, which, in turn, led to the subsidence of the surface. In the subsidence area, the surface
will produce ground fissures and unstable slopes (Liu et al., 2010; Diao 2011; Ji et al., 2022).
The long-term, large-scale, and high-intensity development of mineral resources had caused
severe damage to the geological environment. Therefore, it is essential for geological disaster
prevention and control engineering to predict the stress and strain characteristics of the
overburdened rock in the alpine mining area in time and accurately.
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First of all, in the field of geological disaster prevention and
control, a large number of scholars have carried out relevant
research. Huang et al. (2020) determined the correlation between
13 landslide condition factors (elevation slope, plane curvature,
profile distribution, topographic relief amplitude, total surface
radiation, population density, river normalized vegetation index,
topographic wetness index, and rock type) and landslide location
through frequency ratio analysis. They were used to compare
heuristic models, general statistical models, and mechanical
models, and a machine learning model with high accuracy and
reasonable LS distribution characteristics was obtained. Chang et al.
(2020) compared the advantages and disadvantages of simple
machine learning (SML) and unsupervised machine learning
(USML) on the LSP model and finally concluded that
USMLModelScan Aso was used for LSP implementation due to
its efficient modeling process, dimension reduction, and strong
scalability. The results had essential guiding significance for the
analysis of landslide stability. Jiang et al. (2018) proposed a
simplified approach for generating conditional random feds of
soil undrained shear strength. This method can detect the
strength of soil to calculate the stability of the slope (Zhao et al.,
2020; Zhao et al., 2022), used comparative tests, prices analysis,
X-ray diffraction (XRD), and scanning electron microscopy (SEM)
analysis to clarify the relationship between loess particle
composition, micro structures, and macro mechanics, and
analyzes the causes of subgrade settlement in alpine areas. It
provided a reference for geological engineering practice. Zhao
et al. (2018) and Zhao et al. (2019) used gypsum (MPG) and
MPE-cement to reinforce roadbed loess and carried out an
unconfined compressive strength test, permeability test, and
freeze–thaw test, which improved the strength of modified loess
and prevented the settlement of ground roadbed. Zhang et al. (2023)
used the finite-element groundwater flow system software to
simulate and predict the development of natural seepage field
and the dredging construction conditions of seepage field in the
West Qinling 1 # tunnel area and studied the change of seepage field
in a tunnel engineering aquifer. Zhang et al. (2023) investigated the
hydrochemistry, clarifying groundwater quality and assessing
human health risks, using various computed techniques of
geomodeling, EWQI, GIS mapping, and the USEPA
mathematical model.

With the in-depth research of many scholars on the stress
distribution of overlying rock mass caused by underground
mining, physical models and numerical simulation experiments
have been widely used (Li et al., 2019). Geophysical exploration
was the main detection method for goaf. Abhay et al. (2019) adopted
the resistivity method to conduct tomography detection for the old
stope in the Jharia coal field in India, which was helpful to identify
the abandoned slope and porous and permeable stratum conditions.
The vector finite-element method was used to simulate the TEM
response in homogeneous media in three dimensions. It had a good
effect on obtaining the HFIL diagram of the real position of the thin
layer formation logging instrument (Epov et al., 2007). Shi et al.
(2010) carried out terrain correction by combining the high-density
resistivity method with the total station instrument. They
determined the distribution location of the goaf and verified that
the high-density electrical method had a good effect on the detection
of goaf.

In addition, researchers have carried out various studies on the
deformation characteristics of overburdened rock in near-horizontal
and gently dipping coal seam goaf. Boris (1997), on the basis of
considering the underground geological characteristics of the slope,
used FLAC 2D and UDEC to comprehensively analyze the influence
of various factors such as excavation depth, excavation method, and
excavation site on slope changes during mining. He found that slope
instability is closely related to slope rock inclination conditions.

The abovementioned research showed that the transient
electromagnetic method and high-density resistivity method can
detect the approximate range, location, and occurrence state of the
goaf when studying the underground coal seam goaf and draw the
goaf plan accordingly. The plan can provide theoretical practice for
the numerical simulation of goaf deformation characteristics.
However, no scholars have combined the two methods to study
the deformation characteristics of overlying strata in alpine mining
areas.

This paper took the mined-out area of Xiaomeidong mine in
Datong Coal Mine of Qinghai province as the research object,
combined with the geological and hydrological data of the study
area, the transient electromagnetic method was used to detect the
mined-out area, and the section map of the mined-out area was
drawn. The numerical simulation method was used to analyze the
surface deformation law under the stress of the original rock in the
goaf from the perspective of theoretical analysis and explore the
deformation characteristics of the overlying rock in the goaf. It
revealed the deformation and failure mechanical characteristics and
fracture evolution process of mined-out overburdened rock under
the stress of original rock. The research results provided effective
theoretical support for surface deformation monitoring and disaster
prevention of the mined-out area in Xiaomeidong mine, which had
essential theoretical significance.

2 Engineering geology background

2.1 Meteorological and hydrological
conditions

The Xiaomeidong mine field was located in the southeast of
Datong Hui-Tu Autonomous County, Xining City, Qinghai
province. The critical research area belonged to plateau
continental climate. The mean annual temperature was 2.8–3.9°C.
The temperature difference was 25.3°C, average daily temperature
difference was 13.2°C ~ 13.8°C, and average annual precipitation was
between 508.7 and 532.6 mm. Summer and autumn had more
southeast wind, and the wind speed was small; winter and spring
had more northwest wind, with average wind speed 2 m/s,
maximum wind speed 17 m/s, and an average frost-free period of
96.3 days.

2.2 Geological condition

The study area was located in the southern margin of the
Xining–Datong Basin, which was composed of eroded low hills
and eroded valley plains. The erosion and denudation hills in the
area were mainly composed of Cretaceous, Paleogene mud,
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sandstone, and Quaternary loess. The altitude was 2,450–2,750 m,
the relative height difference was 300 m, the mountain was high and
the slope was steep, the ravines were cross, the terrain was
undulating, the topography was complex, the vegetation was
scarce, and soil erosion was serious. It was the strongest area of
modern water erosion. Some villagers in the area built houses
according to the mountains, and human engineering activities
have caused serious damage to the geological environment.

The coal seam was thick at the top and thin at the bottom, and
its structure was complex. The overall distribution characteristics
of the overlying strata in the goaf were stratified and crisscrossed.
The scale of the mined-out mine was basically the same as the
scale of the ore body. The old mined-out area under the surface of
the exploration area was covered with tunnels. The distance
between the mined-out area and the surface was increased
from south to north except the wellhead, and the thickness of
the mined-out area was mainly sand mud stone and waste rock,
which had low mechanical strength and were easily weathered.
Between the layers (between the upper and lower roadway) were
mostly sand and mud stone.

The mined-out subsidence area of the Xiaomeidong mine was
approximately rectangular in shape, with a length of about 1,600 m
and a width of about 650 m. The direction of its long axis was 46°.
Figure 1 shows the overall picture. The subsidence area was in the
deformation development period. With the extension of time, the
surface collapsed will develop from southwest to northeast, and the
goaf will lead to the surface movement, which will lead to the
continuous increase of the scale of the collapsed, the aggravation of
the damage, and further aggravation of the damage to the
geomorphic landscape. From the field investigation, it can be
concluded that the landslide (such as oil depot landslide) and

unstable slope around the Xiaomeidong mine were all induced by
the ground collapsed of the goaf, as shown in Figure 2.

Based on the field situation of the study area, this paper intended
to use the transient electromagnetic method to conduct geophysical
exploration of the hydrogeology of the coal mine site, constructed a
numerical analysis model of the subsidence area, studied and
inverted the characteristics of the subsidence area, and analyzed
its genesis mechanism and influence range.

3 Analysis of geophysical results

The transient electromagnetic method was a method to detect
the resistivity of the medium by using an ungrounded loop or
ground line source to emit a primary pulse magnetic field to the
ground and using coil or ground electrode to observe the
secondary-induced eddy current field caused by the
underground medium during the intermittent period of primary
pulse magnetic field. This method can judge the possible coal mine
goaf by detecting the resistivity below the surface, which provides a
reliable theoretical basis for the subsequent numerical simulation.
It had the advantages of automatically eliminating the main noise
source, no terrain influence, combined observation at the same
point, best coupling with the detection target, strong abnormal
response, simple shape, and strong resolution. Three transient
electromagnetic profile lines were set up in the Datong coal mine to
detect and identify water-bearing geology in the area, such as karst
caves and roadways, coal mine goaves, and deep irregular water
bodies, and to establish geological models. The study area was the
EH2-2′ survey line area. The geophysical arrangement is shown in
Figure 3.

FIGURE 1
Panoramic view of the subsidence area of the Xiaomeidong coal mine.
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The original resistivity data were obtained by line detection, and
then, the topographic data were added for apparent resistivity model
inversion. The error value was obtained by comparing the model
data calculated by forward modeling with the original data. When
the data error was less than 15%, the model was considered as a
qualified inversion model. Section directions are shown in the
geophysical survey layout. The horizontal axis of each profile was
the horizontal distance (unit m), and the vertical axis was the
elevation (unit m). This interpretation work was based on the
inversion profile and combined with the geological data and the
actual situation to explain each profile. The resistivity profile of the
measured line and its detailed interpretation are as follows.

The terrain of the EH2-2′ survey line was relatively flat, and the
surface layer was mainly covered with silt, which was relatively thick.
From the transient electromagnetic inversion results, it can be seen
that there was an obvious low-resistance area between 0 m and 28 m
down from the surface at a distance of 300–880 m, and the apparent
resistivity was less than 30Ωm, which was presumed to be a coal
mine goaf and subsidence water-rich area. There was an obvious
low-resistance area between 0 and 125 m down from the surface at a
mileage of 1,400–1,600 m, and the apparent resistivity was less than
30Ωm, which was presumed to be a coal mine goaf and water-rich
area. The apparent resistivity of the entire survey line section was

greater than 30Ωm and less than 50Ωm, which was presumed to
be a weak water-rich area of the coal mine goaf. Figures 4, 5 show the
details.

It could be seen that there were obvious low-resistance areas at
300–880 m from the surface, between 0 and 28 m from the surface,
between 1,400 and 1,600 m from the surface, and between 0 and
125 m from the surface. It was speculated that these two areas were
coal seam goaves. Therefore, these two areas were set as numerical
simulation research areas for subsequent coal seamstress and
displacement analysis.

4 Analysis of the deformation
characteristics of the overlying strata at
different working faces

Numerical calculation and analysis of coal and rock stability was
one of the essential methods for scientific research, which can reveal
the deformation and failure law of rock strata in site engineering. It
can solve problems such as the movement and deformation law of
surface overburden under various geological conditions and
different mining modes (Lei et al., 2018). At present, numerical
simulationmethods have been widely used in the field of overburden

FIGURE 2
Geological disaster of the Xiaomeidong coal mine. (A) Unstable slope and (B) oil depot landslide.
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migration and surface deformation. The most commonly used
numerical simulation methods mainly include finite-element
method, finite-difference method, and discrete-element method.
In this study, two-dimensional discrete element numerical
simulation technology was used to simulate the mechanical
behavior of the overlying strata and mining subsidence, and the
numerical simulation results obtained can be used to guide mine
safety production (Wang et al., 2021). This numerical simulation
method regards the rock mass as a collection of two basic elements of
rock and structural plane and continuously judges and updates the
contact state of the block during the calculation process. According

to these contact states, the load transfer mode between the blocks
was judged, the corresponding mechanical laws were selected for
contact, and the stress and deformation behavior of these basic
elements were defined.

4.1 Model establishment and survey line
setting

Due to the complex stratigraphic structure of the study area, in
the process of establishing the numerical model, the rock and soil
bodies with similar physical and mechanical properties were
appropriately simplified and the coal seam was simplified into
two layers of coal. The two groups of coal were mined
simultaneously.

The model was basically assumed to be an isotropic continuous
homogeneous medium, and the Mohr–Coulomb elastic–plastic
model was adopted as the mechanical model. The top surface of
the model was free, the bottom was a fixed constraint, and the
periphery was a horizontal displacement constraint. The initial
stress in the mining area was mainly self-weight stress, and the
acceleration of gravity was set at 9.81 m/s2, with a vertical downward
direction. Table 1 shows the physical and mechanical parameters of
rock strata.

As for the parameters of joints, their values should be relatively
smaller than those of rocks, so the tangential stiffness of joints
jks=5 GPa. The joint normal stiffness jkn=2.5 GPa. The values of
friction angle of joints and cohesion should be less than those of
rocks, and the friction angle of joints should be 15; cohesion was
0.2 MPa.

For the constitutive model, the elastic–plastic model was used in
modeling, and the block obeyed CONS = 2 in UEDC. The
constitutive model of joints obeyed jcons=3 in UDEC.

The established numerical calculation showed that the strike
length was 1,600 m, the vertical height was between 270 m and
470 m, the average vertical height was 370 m, the simulated mining

FIGURE 3
Layout plan of geophysical prospecting.

FIGURE 4
Inversion results of the transient electromagnetic method.
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FIGURE 5
Interpretation of inversion results of the transient electromagnetic method.

TABLE 1 Physical and mechanical parameters of overburden.

Rock character Density Bulk modulus Shear modulus Cohesive strength Internal friction angle Tensile strength

/kN·m-3 /GPa /GPa /MPa /° /MPa

Malmstone 2,400 6 2.3 0.7 30 0.6

Coal bed 1,400 3.9 1.1 0.5 30 1.04

FIGURE 6
Model grid division and survey line layout.
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thickness was 2.4 m, and the simulated coal seams were all inclined
coal seams, with the dip angle of M1 being 37 and the dip angle of
M3 being 43. The model is shown in Figure 7. Above the numerical
model coal seam, five monitoring lines were set for M1 and M3, one
monitoring line was set near the surface, and four monitoring lines
were set down at an equal distance. Figure 6 shows the layout of
survey lines.

4.2 Analysis of numerical calculation results

The movement and deformation of the overlying strata and
surface caused by coal mining was a complicated mechanical
process. In order to explore the movement law of the overlying
strata and surface caused by mining and to deeply analyze the
influencing factors of movement law under deep mining conditions,
taking coal mining in the Xiaomeidong mine as the research
background, based on the abovementioned numerical model
considering the dynamic response of the overlying strata mining,
a numerical simulation scheme was designed to analyze the
deformation characteristics and laws of the overlying strata and
surface after coal mining (Weng, 2019).

In the actual process of coal mining, there were many multi-
layer coal seams in many coal mines. Therefore, taking the actual
mining conditions of the Xiaomeidong mine as a prototype, taking
into account the rock mass structure conditions actually investigated
on the spot, and considering the mining schemes of single-layer
mining and multi-layer mining, this paper compared their
influences on ground deformation and destruction and provided
some theoretical basis for coal mining (Yan, 2019).

Prior to excavation, the model under the original stress needed
to be iteratively calculated to reach the equilibrium state. In this
working condition, after iterative calculation prior to excavation,
when the maximum node unbalanced force reached step 7,647,
compared with the initial total force, it was considered that the
equilibrium was reached and the dynamic simulation of later
excavation could be continued.

After balancing of the original model was completed, it was
necessary to start the simulation of coal seam excavation. In UDEC,
the delete range region command was used to delete the blocks that
needed to be excavated within a certain boundary. At this time, only
four corners of the excavation area needed to be determined, and the
coordinates (x and y) of each point could be input counterclockwise
to delete the blocks in the area to simulate the excavation work. After
excavation, iterative calculation was continued to balance. After the
solution was completed, the corresponding graphs were output to
provide calculation results for further explanation and analysis. The
graphs involved included a model graph, horizontal stress graph,
vertical stress graph, horizontal displacement graph, vertical
displacement graph, combined displacement graph, and
monitoring line graph. In this section, the simulation scheme of
single-layer excavation andmulti-layer excavation would be adopted
to analyze the working conditions of the abovementioned graphs.

Coal seam mining characteristics are shown in Table 2.

4.2.1 Analysis of stress field
After the calculation of the model was balanced, the stress

distribution was mainly analyzed by the stress cloud chart

because the cloud chart had more intuitive advantages than the
contour chart.

Figures 7A, B show the horizontal (x-direction) stress
nephogram after coal seam mining had reached equilibrium. The
nephogram took 4.0 MPa as the equivalent interval, with the
minimum value of 0 Mpa and the maximum value of −16.0 MPa
(representing compressive stress). The nephogram was in a layered
state, and the layered stress was increasing from top to bottom.
During single-layer mining, the stress was 0–8.0 MPa in a large area,
and the stress changes mainly occurred in the coal seam roof. The
stress increased in the central part of the mining area roof, and the
stress concentration was obvious in the horizontal direction near the
two ends of the mining subsidence area, with the stress value in the
range of 4.0–6.0 MPa, as shown in Figure 7A. During multi-layer
mining, the stress was 0–8.0 MPa in a large area. After coal mining,
there was stress concentration at both ends of the mined-out area of
coal seam M1 and obvious compressive stress concentration at the
lower end of the mined-out area of coal seam M3, as shown in
Figure 7B.

Figures 7C, D show the vertical (y-direction) stress nephogram
after coal seam mining was balanced. The nephogram took 4.0 MPa
as the equivalent interval, with the minimum value of 0 MPa and the
maximum value of −16.0 MPa (expressed as compressive stress),
and the large area was in the range of 0–12.0 MPa. During single-
layer mining, the stress changes mainly occurred in the coal seam
roof, and the stress increased in the central part of the roof in the
mining area and showed obvious stress concentration in the
horizontal direction near both ends of the mining subsidence
area, with the stress value in the range of 4.0–8.0 MPa, as shown
in Figure 7C. During multi-layer mining, stress concentration
occurred at both ends of M1 and M3 mining areas to a certain
extent, especially at the lower end of M3 mined-out area, and the
stress concentration area was distributed within 8.0–12.0 MPa, as
shown in Figure 7D.

Figures 7E, F show the distribution of shear stress after coal
seam mining reaches equilibrium. It could be seen from the figure
that there were positive and negative shear stresses in the rock
strata near the coal seam mining area. The positive shear stress
indicates that it was consistent with the moving direction along the
inclined layer, and the shear stress in the mined-out subsidence
area was mostly positive, reaching 0–2.0 Mpa. It could be seen from
Figure 7E that during single-layer mining, the direction of shear
stress in the center of the roof of the mining area was opposite to
the movement direction of the strata, and there were negative shear
stresses on both sides of the caving area. Shear stress concentration
occurred at both ends and the middle of the mining area, and the
shear stress was negative, reaching 1.0–2.0 Mpa. It could be seen
from Figure 7F that during multi-layer mining, the shear stress of
the deformation at the center and both sides of the roof and floor in
the mining area was negative, ranging from 0 to 0–2.0 MPa, and the
stress concentration occurred at the lower end of the M3 mining
area in coal seam.

Figures 7G, H show the cloud pictures of minimum principal
stress after coal seam excavation was balanced. Through the analysis
of the simulated cloud picture of principal stress, it could be further
judged whether there was tensile stress in the goaf of coal seam. It
could be seen from Figure 7G that after the single-layer excavation
reached a new balance, the minimum principal stress of the roof in
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the M1 mining area of coal seam was 0–4.0 MPa, which showed
compressive stress, and the stress concentration occurred on both
sides and the center of the excavation area with the minimum
principal stress peak value of -8.0 MPa. It could be seen from
Figure 7H that during multi-layer excavation, the minimum
principal stress of the roof in the coal seam mining area was
0–4.0 MPa and the stress change of the floor was small.

Figures 7I, J, show the nephogram of the maximum principal
stress after coal seam excavation was balanced. For the single-layer
excavation scheme, at the top of the M1 mining area of coal seam,
there was an obvious tensile stress area, and the overlying strata
delaminated and collapsed, forming a caving area. The maximum
principal stress in the caving area was 0–2.0 MPa and the angle was
60, as shown in Figure 7I. For the multi-layer excavation scheme, the
collapsed shape of overburden inmining area could be clearly shown
in the normal tensile stress area, as shown in Figure 7J.

From the abovementioned results, it could be seen that when the
coal seam is mined, the stress change mainly occurred in the roof of
the coal seam. The stress in the middle of the roof increases, and the
horizontal stress concentration near the two ends of the mining
subsidence area was obvious.

4.2.2 Analysis of the displacement field
After the coal seam was mined, the original stress balance

around the mined-out area was destroyed, which caused the
redistribution of stress, thus causing the deformation,
destruction, and movement of the rock stratum, which
developed from the bottom up to the surface and caused the
movement of the surface. Through the displacement nephogram
obtained by numerical simulation, the deformation shape and
movement angle of overlying strata in goaf could be observed
intuitively. This section comprehensively analyzes the
horizontal displacement, vertical displacement, and combined
displacement of the overlying strata in the mining area after coal
seam mining.

The deformation form of the overlying strata could be seen
from the figure. With the advancing of the working face, the main
roof had vertical and horizontal displacement, and the
deformation (horizontal and vertical) was also increasing.
Figures 8A, B show the horizontal (x-direction) displacement
nephogram after coal seam excavation was balanced. From the
numerical simulation results, it could be seen that after coal seam
excavation, the horizontal displacement of the roof in the middle
of coal seam mining area was the maximum, with the maximum
displacement of 1.6 m. The horizontal displacement of the strata
near the mined-out area of coal mine changed greatly, and the
strata in the excavated area showed obvious bending and

collapsed, and the deformation area was 0.8–1.6 m in the
large area.

Figures 8C, D show the vertical (Y-direction) displacement
nephogram after coal seam excavation was balanced. From the
numerical simulation results, it could be seen that after coal seam
excavation, the Y-direction displacement showed a certain rule: the
deformation of the overlying strata in goaf was concentrated in the
main collapsed area, and the vertical displacement after excavation
was distributed in layers. The displacement gradually decreased with
the increase in the range, and the displacement peak appeared at the
roof of goaf, with M1 vertical displacement exceeding 2.0 m in a
large range and M3 vertical displacement ranging from 1.5 to 2.0 m
in a large area (the negative sign in the figure indicates the vertical
downward movement of the strata).

Figures 8E, F show the combined displacement cloud pictures
after coal seam excavation was balanced. From the numerical
simulation results, it could be seen that after coal seam
excavation, the peak value of combined displacement of the roof
was concentrated at the top of goaf, and the maximum value of
combined displacement after mining appeared in the center of the
roof of the mining area. The more the distance from the center of the
mining area, the smaller the subsidence displacement. Under the
condition of full mining, the rock strata movement angle of the
surrounding rock above the M1 goaf was 59°, and that of the
surrounding rock above the M1 goaf was 53°.

From the results of numerical simulation displacement, it could
be seen that after coal seam excavation, the peak value of coal seam
roof displacement was concentrated on the top of goaf and the
maximum value of combined displacement after mining appeared in
the center of the roof in the mining area. The more the distance from
the center of the mining area, the smaller the settlement
displacement, which was consistent with the analysis of the stress
cloud map.

4.3 Analysis of displacement monitoring
data

The cloud map of displacement was a balanced overburden
movement pattern after coal seam excavation in order to verify
whether the results of this numerical simulation were reliable. In
order to analyze the displacement change of coal seam M3 more
clearly and intuitively, we set up five monitoring lines parallel to the
surface in the overlying strata of coal seam M1 and M3 mining areas,
namely,M1-1,M1-2,M1-3,M1-4,M1-5,M3-1,M3-2,M3-3,M3-4, and
M3-5, among which in M1, the distance between the measured points
was roughly equal. Figure 6 shows the layout of the monitoring line.

TABLE 2 Coal seam mining characteristics.

Mining area Mining
thickness

Coal seam dip
angle

Mining
length

Elevation of the mining
upper end

Elevation of the mining
lower end

/m /Degree /m /m /m

M1 2.4 37 225 +2,585 +2,450

M3 2.4 43 273 +2,475 +2,287
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As can be seen from Figure 9, the horizontal displacement
had positive and negative values at the horizontal distance of the
survey line, and coal seam M1 had a large displacement between

the horizontal distance of 100–300 m, and the peak value at the
monitoring point M1-108 was 1.34 m. The horizontal
displacement of the M3 coal seam after mining was generally

FIGURE 7
(Continued).
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FIGURE 7
(Continued). Stress nephogram of coal seam after excavation. (A)Horizontal stress nephogram of coal seamM1, (B) horizontal stress nephogram of
coal seam M1 and M3, and (C)vertical stress nephogram of coal seam M1. (D) Vertical stress nephogram of coal seam M1 and M3, (E) shear stress
nephogram of coal seam M1, (F) shear stress nephogram of coal seam M1 and M3, (G) minimum principal stress nephogram of coal seam M1, (H)
minimum principal stress nephogram of coal seamM1 and M, (I)maximum principal stress nephogram of coal seamM1, and (J)maximum principal
stress nephogram of coal seam M1 and M3 .
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FIGURE 8
Displacement nephogram after coal seam excavation. (A) Horizontal displacement nephogram of coal seam M1, (B) horizontal displacement
nephogram of coal seam M1 and M3, (C) vertical displacement nephogram of coal seam M1, (D) vertical displacement nephogram of coal seam M1 and
M3, (E) combined displacement nephogram of coal seam M1, and (F) combined displacement nephogram of coal seam M1 and M3.
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U-shaped, with a large horizontal displacement between
1,150–1,350 m. The maximum horizontal displacement
occurred at M3-109, and the maximum displacement
was −1.537 m.

As can be seen from Figure 10, the vertical displacement of the
monitoring point was negative, which was downward displacement,
and the maximum displacement of coal seam M1 was M1-404, with a
maximum displacement of 2.32 m. As can be seen from Figure 10A,
M1 had a large deformation in the goaf subsidence area with a
horizontal distance of 100–200 m, with a relatively uniform change
and a large vertical displacement. The subsidence deformation was
within the range of 2.0–2.4 m, while the overlying strata outside this
range had a small deformation, and the subsidence deformation was
within the range of 0–0.6 m. It could be seen from Figure 10B that
M3 had a large deformation in the mined-out subsidence area with a
horizontal distance of 1,100–1,350 m, with a relatively uniform change
and a large vertical displacement. The subsidence deformation was
within the range of 1.6–2.0 m, while the overlying strata outside this

range had a small deformation, and the subsidence deformation was
within the range of 0–0.2 m.

The combined displacement curve of Figure 11 could be
obtained from the data in the table.

As can be seen from Figure 11A, M1 had a large deformation
within the horizontal distance of 100–300 m. At this time, the
roof in the mining subsidence area collapsed and bent, and the
settlement deformation developed from above the mined-out
area to the surface. The maximum value of combined
displacement occurred at M1-404, and the maximum
displacement value was 2.611 m. It could be seen from
Figure 11B that M3 had a large deformation within the
horizontal distance of 1,200–1,300 m. At this time, the roof
of the mining subsidence area collapsed and bent, and the
settlement deformation developed from above the mined-out
area to the surface. The maximum combined displacement
occurred at M3-306, and the maximum displacement was
2.291 m.

FIGURE 9
Horizontal displacement curve of the coal seam after mining stability. (A) Horizontal displacement curve of M1 coal seam. (B) Horizontal
displacement curve of M3 coal seam.

FIGURE 10
Vertical displacement curve of coal seam after mining stability. (A) Vertical displacement curve of M1 coal seam. (B) Vertical displacement curve of
M3 coal seam.
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The analysis showed that the stress concentration area and
the displacement change area were highly coincident, and the
displacement monitoring map was consistent with the
horizontal displacement cloud analysis, showing a ’ U′-type
distribution. Under different rock depths, the closer to the
coal seam mining area, the greater the displacement change,
and the farther away from the main subsidence area, the smaller
the overburden displacement change. It was proved that the
numerical simulation results do have theoretical guidance for
mining subsidence control.

4.4 Analysis of surface movement

In the process of numerical simulation, the overlying strata of the
coal seam bent and sunk, and the strata close to the mined-out area of
the coal seam bent more. Correspondingly, the strata far from the
mining area were less affected by mining and the subsidence was less.
Combined with displacement monitoring data and numerical
simulation results, it can be seen that the mined-out area made the
overlying strata collapse, and the deformation continuously developed
from the roof to the surface, and the original surface sunk, as shown in

FIGURE 11
Combined displacement curve after coal seam mining is stable. (A) Combined displacement curve of M1 coal seam. (B) Combined displacement
curve of M3 coal seam.

FIGURE 12
Contour map of coal seam excavation subsidence.
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Figure 12, in which the red dotted line is the original surface position
and the blue dotted line is the surface position after subsidence.

Table 3 shows the predicted boundary angle, moving angle, and
crack values under sufficient conditions. Combined with the boundary
angle, movement angle, and fissure angle of M1 and M3 in Table 3, the
schematic diagramof boundary angle,movement angle, andfissure angle
of M1 and M3 could be obtained, as shown in Figure 13.

Among them, under the condition of full mining or near full mining,
the angle formed by the boundary crack and the horizontal line on the
side of the coal pillar was called the fissure angle. Under the condition of
fullmining or close to fullmining, themeasured subsidence curved on the
main section of the surfacemovement basin was used, and the point with
a subsidence value of 10 mmwas taken as the boundary point. The angle
between the line connecting the boundary point to the goaf boundary and
the horizontal line on the side of the coal pillar was called the boundary
angle. The moving angle was the angle between the horizontal line and
the line connecting the critical deformation point and the goaf boundary
at the edge of the subsidence area. These three together determined the
safety status of the mine and the surrounding buildings at this time.

From the analysis of Table 3 and Figure 13, it was inferred
that the subsidence of the coal seam would not threaten the
safety of the surrounding buildings and residents’ lives and
properties.

5 Conclusion

Based on special geological conditions, mining conditions, and
abundant measured data in the Xiaomeidong mining area, the

research idea of ’transient electromagnetic detection-numerical
simulation’ was put forward to explore its role in the prevention
and control of geological disasters (Huang et al., 2020, Huang et al.,
2020, Zhang et al., 2021).

1. Through the geophysical analysis of the old mined-out area
of the Xiaomeidong mine, the predicted water-rich area of
coal mine goaf subsidence obtained from the results was
basically consistent with the weak water-rich area and the
historical coal seam mining area of the Xiaomeidong
coal mine, and it was used as the basis of numerical
simulation.

2. The results of numerical simulation showed that under the action
of in situ stress, there was an obvious tensile stress zone at the top
of the mined-out area in the old mined-out area, and the
overlying strata were separated and collapsed, forming a
caving zone. The peak displacement of the coal seam roof was
concentrated at the top of the goaf. The more the distance from
the center of the mining area, the smaller the subsidence
displacement.

3. Through the analysis of the subsidence change of the coal
seam goaf, it was known that the boundary angle, moving
angle, and fissure angle of M1 and M3 coal seams were
within the safe range after mining, so they would not pose
a threat to the life and property safety of Xiaomeidong
village and nearby residents. In addition, it was
necessary to further compare the simulation results with
the real-time monitoring results to further improve the
evaluation results.

TABLE 3 Predicted boundary angle, movement angle, and fracture angle under sufficient conditions (unit: °).

Coal seam mining and direction Boundary angle/° Moving angle/° Fissure angle/°

M1 uphill direction 64 79 101

M1 downhill direction 43 49 58

M3 uphill direction 80 105 133

M3 downhill direction 40 46 61

FIGURE 13
Schematic diagram of the boundary angle, movement angle, and fracture angle.

Frontiers in Earth Science frontiersin.org14

Wei et al. 10.3389/feart.2023.1220142

35

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1220142


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

Z-XWwas responsible for field investigation and data curation. J-HD
was responsible for the method. MZ was responsible for the method and
writing. F-HX was responsible for the method. Y-JL was responsible for
field investigation. LF was responsible for data curation. All authors
contributed to the article and approved the submitted version.

Funding

This project was supported by the Open Fund of
Engineering Research Center of Catastrophic Prophylaxis

and Treatment of Road and Traffic Safety of Ministry of
Education (Changsha University of Science and Technology)
(kfj180404).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abhay Kumar, B. H. A. R. T. I., Pal, S. K., Saurabh, S., Singh, K. K. K., Singh, P. K.,
Prakash, A., et al. (2019). Groundwater prospecting by the inversion of cumulative data
of wenner–schlumberger and dipole–dipole arrays: A case study at turamdih,
Jharkhand, India. Earth Syst. Sci. 128, 107. doi:10.1007/s12040-019-1137-2

Boris, B. (1997). Numerical modeling of complex slope deformations. Canada
Dissertation of Department of Geological Science,University of Saskatchewan.

Chang, Z., Du, Z., Zhang, F., Huang, F., Chen, J., Li, W., et al. (2020). Landslide
susceptibility prediction based on remote sensing images and gis: comparisons of
supervised and unsupervised machine learning models. Remote Sens. 12, 502. doi:10.
3390/rs12030502

Diao, C. C. (2011). Development characteristics of ground fissures in Fushun urban
area. J. Liaoning Univ. Eng. Technol. Nat. Sci. Ed. 30 (3), 420–422.

Epov, M. I., Shurina, E. P., and Nechaev, O. V. (2007). 3D forward modeling of vector
field for induction logging problems. Russ. Geol. Geophys. s 48 (9), 770–774. doi:10.
1016/j.rgg.2006.05.003

Huang, F. M., Cao, Z. S., Guo, J. F., Jiang, S. H., and Guo, Z. Z. (2020). Comparisons of
heuristic, general statistical and machine learning models for landslide susceptibility
prediction and mapping. CATENA 191, 104580. doi:10.1016/j.catena.2020.104580

Huang, F. M., Cao, Z. S., Jiang, S. H., Zhou, C. B., Huang, J. S., and Guo, Z. Z., (2020).
Landslide susceptibility prediction based on a semi-supervised multiple-layer
perceptron model. Landslides 17, 2919–2930. doi:10.1007/s10346-020-01473-9

Huang, F. M., Jing, Z., Wang, Y., Huang, J., and Zhu, L. (2020). A deep learning
algorithm using a fully connected sparse autoencoder neural network for landslide
susceptibility prediction. Landslides 17 (01), 217-229. doi:10.1007/s10346-019-01274-9

Ji, L., Zhao, J. J., Wan, X., Li, Q. M., and Wu, S. G., (2022). Study on the influence of
goaf location on the deformation of high and steep hard rock slopes. People’s Pearl River
43 (3), 66–76. doi:10.3969/j.issn.1001-9235.2022.03.009

Jiang, S. H., Huang, J. S., Huang, F. M., Yang, J. H., Yao, C., and Zhou, C. B. (2018).
Modelling of spatial variability of soil undrained shear strength by conditional random fields
for slope reliability analysis. Appl. Math. Model. 63, 374–389. doi:10.1016/j.apm.2018.06.030

Lei, Z. Y. (2018). Study on roof instability law and control of fully mechanized top coal
caving face in steeply inclined coal seam. Xi’an, China Xi’an University of Science and
Technology.

Li, X. L., Hu, C. Y., Sun, Q. F., and Zhang, Z., (2019). UDEC software is used to study
the stress distribution in the collapsed process of mine goaf. Guizhou Geol. 36 (3),
254–260.

Liu, T. G., Li, G. J., Ma, X. Y., Yu, C. L., and Wang, C. J., (2010). Genesis analysis and
risk prediction of ground fissures in Jingyu County, Jilin Province. Chin. J. Geol.
Hazards Prev. 21 (1), 136–139. doi:10.16031/j.cnki.issn.1003-8035.2010.01.031

Shi, L. K., and Liu, H. Y. (2010). Application of high density resistivity method in goaf
detection. J. North China Inst. Water Resour. Hydro Power 31 (5), 122–123. doi:10.
19760/j.ncwu.zk.2010.05.035

Wang, L., Wang, S. M., Chen, X., Zhai, H., and Zhang, P., (2021). UDEC numerical
simulation study on dynamic development characteristics of coal seam roof separation
in wenjiapo mine.Min. Technol. 21 (05), 109–112. doi:10.13828/j.cnki.ckjs.2021.05.031

Weng, L. Y. (2019). Study on the law of overburden and surface deformation in Deep
Strip Mining considering the dynamic response of overburden mining. Qingdao, China
Shandong University of Science and Technology.

Yan, H. Y. (2019). Study on the formation mechanism of jianshanying deformation
body in faer coal mine, Guizhou Province. Chengdu, China Chengdu University of
Technology.

Zhang, Y. H., Dai, Y. S., Wang, Y., Huang, X., Xiao, Y., and Pei, Q. M., (2021).
Hydrochemistry, quality and potential health risk appraisal of nitrate enriched
groundwater in the Nanchong area, southwestern China. Sci. Total Environ. 784,
147186. doi:10.1016/j.scitotenv.2021.147186

Zhang, Y. H., Hu, X. B., Luo, H., Liu, Y., Yao, R. W., Ji, D., et al. (2023). Identifying the
change of seepage field in karst aquifer under tunnel engineering: insight from feflow
modelling. Lithosphere 2021, 6044574. doi:10.2113/2021/6044574

Zhao, M., Chen, L. Y., Wu, H. G., Guo, W., and Ye, C. W, (2018). Computer
microscopic test study on the suitability of modified polyimide grease used to improve
collapsible loess railway subgrade. CONCURRENCY COMPUTATION-PRACTICE Exp.
24, 30. doi:10.1002/cpe.4900

Zhao, M., Chen, L. Y., Wang, S. Y., and Wu, H. G., (2020). Experimental study of the
microstructure of loess on its macroscopic geotechnical properties of the Baozhong
railway subgrade in Ningxia, China. Bull. Eng. Geol. Environ. 9 (79), 4829–4840. doi:10.
1007/s10064-020-01816-9

Zhao, M., Guo, W., Chen, L. Y., and Wang, S. Y., (2019). Experiment on the frost
resistance of modified phospho gypsum: A case used to improve baozhong railway
subgrade loess. J. Mt. Sci. 12 (16), 2920–2930. doi:10.1007/s11629-018-5014-2

Zhao, M., Wu, H. G., Guo, W., Tan, B. R., Hu, C., Deng, R., et al. (2022). Experimental
study of the particle agglomeration on its mechanical properties of collapsible loess.
Front. EARTH Sci. 10. 943383 doi:10.3389/feart.2022.943383

Frontiers in Earth Science frontiersin.org15

Wei et al. 10.3389/feart.2023.1220142

36

https://doi.org/10.1007/s12040-019-1137-2
https://doi.org/10.3390/rs12030502
https://doi.org/10.3390/rs12030502
https://doi.org/10.1016/j.rgg.2006.05.003
https://doi.org/10.1016/j.rgg.2006.05.003
https://doi.org/10.1016/j.catena.2020.104580
https://doi.org/10.1007/s10346-020-01473-9
https://doi.org/10.1007/s10346-019-01274-9
https://doi.org/10.3969/j.issn.1001-9235.2022.03.009
https://doi.org/10.1016/j.apm.2018.06.030
https://doi.org/10.16031/j.cnki.issn.1003-8035.2010.01.031
https://doi.org/10.19760/j.ncwu.zk.2010.05.035
https://doi.org/10.19760/j.ncwu.zk.2010.05.035
https://doi.org/10.13828/j.cnki.ckjs.2021.05.031
https://doi.org/10.1016/j.scitotenv.2021.147186
https://doi.org/10.2113/2021/6044574
https://doi.org/10.1002/cpe.4900
https://doi.org/10.1007/s10064-020-01816-9
https://doi.org/10.1007/s10064-020-01816-9
https://doi.org/10.1007/s11629-018-5014-2
https://doi.org/10.3389/feart.2022.943383
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1220142


Detection and evolution of
disaster sources in high slopes of
open-pit mines based on
time-lapse high-density electricity
method

Kang Sen and Zhao Zihao*

School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, China

High and steep slopes in open pit mines used for ore production require careful
monitoring to ensure stability and safeguard lives, property, and social welfare.
Understanding the evolutionary characteristics of hazard sources within these
slopes is crucial for effective slope management. This article presents a novel
approach to identify the evolution of hazard sources within slopes by utilizing the
derivative of normalized inversion data versus time as a characteristic feature. To
analyze the evolution of hazard sources, raw apparent resistivity data collected at
different times are processed using smoothing and wavelet denoising algorithms
to reduce noise. Geological constraints are then applied to the collected data
through the parametric region method. The least squares method is employed for
independent inversion, and the inversion results are standardized. Subsequently,
the standardized inversion results are used to derive the derivative of resistivity
versus time equation, which reveals the evolution of hazard sources within the
slope. A case study is conducted on a large open pit rocky slope to analyze the
effectiveness of the proposed approach. The results demonstrate the successful
reduction of noise through the smoothing and wavelet threshold denoising
algorithms, effectively suppressing interference caused by acquisition
equipment and environmental electromagnetic noise. The application of the
parametric region method with geological constraints highlights the spatial and
temporal evolution characteristics of hazard sources within the slope. The findings
indicate varying degrees of evolution of hazard sources within the slope, with
significant changes observed mainly in the shallow part influenced by water
erosion and blasting vibration. Areas with lithological stability show minimal
changes, while original hazard source areas have evolved to different extents,
distinguishable based on the size and sparsity of contour values. By combining
inversion data analysis, noise reduction techniques, and geological constraints,
the proposed approach provides valuable insights into the evolution of hazard
sources within slopes. This information can aid in the development of effective
slope management strategies in open pit mines, contributing to enhanced safety
and protection of valuable assets.
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1 Introduction

China’s annual demand for ore is substantial, with a significant
portion being sourced from open-pit mines. Open-pit mining
represents a widespread method for mineral and resource
extraction from the Earth’s surface, and its implementation
demands meticulous management of unique hazards and risks.
These operations entail the excavation of extensive amounts of
earth and rock, engendering steep slopes and towering walls. The
slopes associated with open-pit mining pose significant dangers of
instability, resulting in slope failures, landslides, and rockfalls.
Through the identification and assessment of hazard sources,
such as unstable geological formations, weak rock layers, and
excessive slope angles, mining engineers can adopt appropriate
slope stabilization measures, design secure access roads, and
establish monitoring systems to detect incipient signs of
instability. Such measures ensure the safety of workers and
forestall accidents and injuries relating to slope failures. However,
the occurrence of landslide accidents in these mines poses a major
challenge to the expansion of their production. Addressing slope
safety concerns is crucial for mitigating this issue. Given that safety
primarily relies on preventive measures, effective control of the
dynamic changes in the slope’s medium becomes paramount.

The conventional high-density resistivity method is a
geophysical technique used to investigate the subsurface
properties of the Earth. It involves measuring the electrical
resistivity of the ground at multiple locations to create a
resistivity image or model. In this method, a series of electrodes
are placed at regular intervals along a survey line or grid. Typically,
the electrodes are inserted into the ground, and an electrical current
is injected into the Earth through one pair of electrodes. The
resulting potential difference is measured using another pair of
electrodes. By varying the electrode configurations and measuring
the potential differences at different locations, a resistivity profile of
the subsurface can be obtained. The resistivity of the subsurface
materials plays a crucial role in this method. Different geological
formations and structures, such as bedrock, clay, water-bearing
zones, or mineral deposits, have varying resistivity values. By
analyzing the resistivity data, geophysicists can infer the
subsurface lithology, identify potential groundwater resources,
locate mineral deposits, and map geological structures (Dupis,
1980; Loke and Barker, 1996; Loke et al., 2013).

In the field of engineering practice and research, ensuring mine
safety and accurately predicting the timing of slope damage
occurrence often involves the establishment of a numerical model
for the slope’s geotechnical body. This approach allows for the
simulation of the progressive collapse process of the slope, aiding in
the enhancement of safety measures (Du and Song, 2022; Bao et al.,
2023; Du et al., 2023; Ren et al., 2023; Song and Du, 2023).
Simultaneously, to preserve slope stability, the placement of
anchors within the slope body is frequently implemented, thereby
reinforcing slope stability through the enhancement of anchor
performance (Wang Q. et al., 2022; Li et al., 2023).

The high-density electrical method collects more data and has a
good application effect in detecting slope damage sources. The high-
density electrical method offers a comprehensive approach for
assessing and analyzing slope safety by detecting faults, fracture
zones, and water-conducting fissure zones within a slope. This

geophysical technique enables a thorough evaluation of potential
hazards and provides valuable insights into slope stability. (Dong
and Wang, 2003; Hojat et al., 2019; Lin et al., 2019). The high-
density electrical method can also be employed to measure the water
content within the slope. This capability allows for a comprehensive
assessment of the slope’s hydrological conditions, providing
important information for evaluating slope stability and potential
water-related risks (Lu et al., 2023).

However, the conventional resistivity method can only identify
the underground fault sources and cannot reflect the dynamic
changes of the fault sources. However, the time-lapse high-
density resistivity method can not only show the electrical
properties of underground media but also obtain the changes in
underground electrical structures by analyzing multiple detection
data of the same section at different times (Doetsch et al., 2010; Boyd
et al., 2021). The time-lapse high-density resistivity method excels in
providing high-resolution imaging of subsurface variations over
time. It facilitates in-depth insights into spatial and temporal
changes in resistivity, enabling a comprehensive understanding of
dynamic subsurface processes. This level of resolution is particularly
advantageous for detecting and evaluating disaster sources in the
high slopes of open-pit mines, where even small-scale changes can
significantly impact slope stability. In comparison with invasive
techniques such as drilling or excavation, the time-lapse high-
density resistivity method is non-invasive. It eliminates the need
for physical disturbance of the site, making it a cost-effective and
environmentally friendly option. This advantage holds particular
importance when assessing large areas or conducting long-term
monitoring campaigns. The time-lapse high-density resistivity
method surpasses other geophysical techniques with its high
resolution, real-time monitoring capabilities, sensitivity to fluid
migration, non-invasive nature, cost-effectiveness, and potential
for integration with complementary methods. These advantages
make it an invaluable tool for disaster detection and evaluation,
particularly in high slopes of open-pit mines, where proactive risk
management and effective mitigation strategies are crucial.

At present, it has achieved good application results in dynamic
detection of oil and gas reservoirs, groundwater pollution, leak
detection of dams, and leak detection of hazardous substances in
landfills (Johnson et al., 2021; Norooz et al., 2021; Zhang et al., 2022).
In the process of open pit mining, the rock and soil mass of the slope
is always in a state of deformation, and its internal electrical
structure also changes in real time. It is of great significance for
slope safety to master the evolution law of disaster sources in the
slope. Therefore, the study of hazard source evolution has also
become a current research hotspot (Loke et al., 2013; Lapenna and
Perrone, 2022). The study area is located on the northwest border of
Baotou City. After 60 years of mining, a large mine has formed a
high and steep slope of more than 200 m. In recent years, several
cave-ins have occurred. The rock mass of the open pit slope is
mainly dolomite and schist and contains a small amount of macular
dyke andmica schist. However, the main rock of the slope, dolomite,
is different in different regions due to various complex geological
processes such as alteration, weathering, and erosion. At the same
time, there are 108 geologically identifiable slope faults, mainly in an
east-west direction, due to geological formations. The stable
dolomite body contains a variety of lithologies such as iron-rich
oxidized dolomite, mica, and sodalite (Zhongxin et al., 1992;
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Fan et al., 2016; Wang et al., 2019). In this study, the rock slope of a
large open pit mine was taken as the research object. In 2016, the
high-density electrical method was used to explore the slope, and the
geophysical data body of the slope was established according to
factors such as weak structure fracture zone, lithology, and
groundwater extracted from the geophysical data. The slope
stability and rock mass characteristics at different depths were
analyzed in detail, and the distribution of fault sources was
finally determined. In 2020, the mine slope landslide occurred.

The landslide-affected region falls within the designated key
geological disaster prevention and control area, as established in
2016. Building upon this designation, the mine successfully

predicted slope collapses by integrating slope deformation
warning radar data. Analysis of the exposed geological
formations following the landslides validated the efficacy of the
high-density electrical method in detecting disaster sources within
the mine slope. To gain insight into the status of disaster sources in
non-landslide areas, understand their evolutionary patterns within
the mine slope, and enhance slope disaster prevention and control
measures, repeated high-density electrical explorations were
conducted in the non-landslide section of the mine slope in
2022. The derivative order and isoline distribution of high-
density electrical data over time were employed to visualize the
dynamic evolution of the disaster sources within the slope.

FIGURE 1
Geological sketch map of the Bayan Obo area, northern China. Cited after (Fan et al., 2016).
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2 Overview of the open pit mine slope

2.1 Geology

The mine is situated in a town within Baotou City, located in the
Inner Mongolia Autonomous Region. The region is characterized by
expansive grasslands and plateau hills and falls within the inland dry
climate zone. It experiences the influence of cold air masses originating
from Siberia, Lake Baikal, and Wendur Khan, resulting in low
temperatures, minimal precipitation, dry and windy conditions, and
significant temperature fluctuations. During the summer, there is a
concentration of short-term rainfall, and in recent years, there has been
an increase in summer rainfall compared to historical records, likely due
to warming trends (Wang X. et al., 2022).

The Bayan Obo REE-Nb-Fe deposit is located in the Bayan Obo
continental margin rift in the north of the NCC. The ore-hosting
dolomites, covered byK-rich slate (H9 term) and extending 18 km from
east to west with approximately 2 km width (Figure 1), were once
considered as a component of Bayan Obo Group, called H8 term. The
origin of the dolomites is still disputed, and it has been proposed to be
either sedimentary (Yang et al., 2009; Lai et al., 2012), or carbonatite rel
(Yang et al., 2011; Zhu et al., 2015). Basement rocks at Bayan Obo are
composed of Neoarchean mylonitic granite-gneiss (2,588 ± 15Ma),
Paleoproterozoic syenite and granodiorite (2018 ± 15Ma), and biotite
granite-gneiss and garnet-bearing granite-gneiss (−1890Ma). Dioritic-
granitic plutons, composed of gabbro, gabbroic diorite, granitic diorite,
adamellite, and biotite granite, are distributed within a large area in the
south and east Bayan Obo mine (Figure 1). These plutons were once
regarded as intruding from Devonian to Jurassic. New geochronology
data reveal that these plutons were formed in a post-collisional tectonic
regime at convergent margins in the late Paleozoic at a narrow time
from 263 to 281 Ma with a peak age of 269 Ma.

2.2 Geological hazards

Based on the site investigation and regional information, it has been
determined that the southwest side of the quarry primarily consists of
the Quaternary rock group, comprising layers of powder clay and
gravel, among others. Themain rock groups present in the slope include
the slate rock group, dolomite rock group, mica schist rock group, and
pyroxene veins. Notably, there is no distinct boundary between the slate
rock group and the dolomite rock group, resulting in a complex
geological structure. The area is characterized by extensive fault
development, with numerous fault fragmentation zones. These
fragmentation zones exhibit high water content, and evidence of
groundwater erosion can be observed, particularly in the weathering
zone of the upper part of the slope and in association with fault
influences. Among the identified geological features, certain disaster
sources such as cis-layer fracture zones, pyroclastic veins, and mica
rocks are known to induce slope collapse occurrences. These factors
play a significant role in the stability and potential hazards of the slope.

The slope collapse posed a direct threat to the safety of
production personnel and had significant implications for the
haul road and ecological restoration of the slope. Furthermore, it
resulted in the generation of substantial amounts of rock dust and
contributed to an increase in sandstorms within the surrounding
residential areas. As a consequence of the slope collapse,

approximately 800 m of the haul road were destroyed,
exacerbating the instability of the slope.

The slope collapse has presented a significant challenge in terms
of slope management. Currently, the No. 1 sweeping platform area
has suffered complete destruction, and ongoing rockfall poses a
persistent hazard. The No. 2 production and transportation area has
experienced significant accumulation due to the collapse, with the
impact continuing to expand. Additionally, there is a potential for
further collapse in the No. 3 area (Figure 2). Previous minor
collapses in area 4 have been reinforced, while the soft rock
formations in area 5 of the sweeping platform have accumulated
due to weathering and blasting vibrations (Figure 3).

3 Exploration method of the disaster
sources in the high slopes of open-pit
mines

3.1 Principle of the time-lapse high-density
resistivity method forward calculation

In the actual measurement of the high-density electrical method,
all electrodes are simultaneously placed on the measurement points,

FIGURE 2
Extent of lateral slope collapse and the affected area.
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maintaining a specific interval between them. The reflected apparent
resistivity profile is then processed and analyzed to extract
information regarding the distribution of stratigraphy. This
information can be utilized to delineate different geological
layers, identify anomalous areas, and determine the locations of
potential hazards. (Figure 4).

Open pit mining disrupts the original mechanical balance of
slope rock layers. The rock and soil bodies in the slope are influenced
by various factors such as gravity, freeze-thaw weathering,
continuous rainfall, groundwater movement, and periodic
blasting. As a result, they undergo continuous dynamic changes
in order to regain mechanical equilibrium, albeit on a macroscopic
scale these changes may be minute. Traditional high-density
electrical methods only provide information on the distribution
of hazard sources at the time of exploration through the detection of
subsurface electric fields. They fail to capture the evolving nature of
hazard sources within the slope. Various factors contribute to the
evolution of potential hazard sources, including faults, fractures, and
weak inclusions within the original rock. When an originally stable
rock layer fractures to form a fracture zone, the apparent resistivity
increases when the water content of the rock layer is low and
decreases when the fracture zone is water-filled. The apparent
resistivity also increases as faults develop and expand, particularly
in areas of higher resistivity, and decreases when faults are filled.
Weak inclusions undergo increased fracturing due to weathering,
resulting in a decrease in apparent resistivity when water content is
high, and an increase when porosity increases under external forces.

In summary, as hazard sources evolve, the resistivity of the
corresponding area undergoes changes. These electrical variations
serve as the basis for time-shifted high-density electrical exploration.
The time-shifted high-density electrical method introduces a time
dimension to the conventional approach. By conducting multiple
high-density electrical surveys over time on the same section, it
becomes possible to obtain resistivity distribution data for different
time periods. These resistivity distribution characteristics can then
be utilized to study the evolution of underground fault sources over
time, influenced by external forces. (Lesparre et al., 2017; Liu et al.,
2017).

In a homogeneous isotropic medium, the current field obeys the
following laws (Purcell and Morin, 2013):

FIGURE 3
Reinforcement area for side slope.

FIGURE 4
Schematic diagram of high-density electrical detection.
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j � σE (1)
Where j is the current density, σ is the conductance, and E is the

electric field strength. U represents the electric potential (also known
as voltage) at a point in an electric field relative to infinity. According
to the nature of the stable current field as a potential field, the
relationship between the electric field strength and the potential is
satisfied as follows (Purcell and Morin, 2013):

E � −∇U (2)
Assuming that a point source of current magnitude I is placed at

point A (xA, yA, zA) underground, the underground current field
satisfies the following differential equation (Purcell and Morin,
2013):

∂
∂x

σ
∂U
∂x

( ) + ∂
∂y

σ
∂U
∂y

( ) + ∂
∂z

σ
∂U
∂z

( )
� −Iδ x − xA( )δ y − yA( )δ z − zA( ) (3)

where σ is σ(x, y, z) and δ is the Dirac function.
The time-shifted resistivity method is employed to study the

spatial and temporal evolution of slope hazard sources by
conducting multiple surveys along the same profile while
keeping the coordinates of the excitation source and receiving
electrode unchanged. The resistivity values obtained represent
the relative resistivity of the surveyed area. Under the theoretical
assumption that only the changes in slope hazard sources under
external forces are considered, the evolution of these hazard
sources leads to variations in the relative resistivity of the
surveyed area. By monitoring the resistivity of the area and
analyzing the changes in resistivity over time, we can discern
the evolutionary patterns of hazard sources in response to
external forces.

To simplify the analysis, we assume that the electrical
properties of the subsurface medium do not change along the
direction perpendicular to the measurement profile (i.e., no
changes in the y-axis direction). Consequently, the four-
dimensional problem is reduced to a three-dimensional
problem, specifically the changes in resistivity of the two-
dimensional profile in the time dimension. By employing the
cosine Fourier transform, we eliminate the y-axis and obtain a
time-shifted partial differential equation in the wave number
domain, which describes the stable current field.

∂
∂x

σ x, z, t( ) ∂V
∂x

( ) + ∂
∂z

σ x, z, t( ) ∂V
∂z

( ) − λ2σV � −f (4)

where V(λ, x, z) is the spatial domain potential, U(x, y, z) is the
wavenumber domain potential after cosine Fourier transform, t is
time, and λ is called the wavenumber or Fourier transform variable,
σ � σ(x, z), V � V(λ, x, z), andf � 1

2 Iδ(x − xA)δ(z − zA).
The resistivity measured during high-density electrical logging

represents the resistivity of a specific region within the subsurface
medium. When considering the measurement area as a whole, the
change in resistivity over time can be represented by a resistivity
curve. The first-order derivative of this curve indicates the rate of
resistivity change within the subsurface medium, while the second-
order derivative reflects the sharpness of resistivity changes in the
area. The resistivity derivative for a point on the curve can be

approximated theoretically using a Taylor series expansion, which
allows us to analyze and understand the variations in resistivity.

ρ ti+1( ) � ρ ti( ) + ρ′ ti( )h + ρ″ ti( )
2

h2 +/ (5)

ρ(t) is the resistivity as a function of time, ρ(ti) is the resistivity of
the region at time i, ρ′(t) is the rate of change of resistivity with
respect to time, ρ′(ti) is the rate of change of resistivity at time ti ,
ρ(ti+1) is the resistivity of the region at time i + 1, and ti+1 differs
from time ti by h time.

After deformation, it can be written in the following form:

ρ′ ti( ) � ρ ti+1( ) − ρ ti( )
h

− ρ″ ti( )
2

h + O h2( ) (6)

where ρ″(ti) is the second-order derivative of the resistivity at time ti
and O(h2) is the second error residual term.

In the process of development of the fault zone, the larger the
absolute value of ρ′(ti), the area where the resistivity changes
drastically, the more the fault zone can be expanded; the more
the fault zone remains stable and the rock layer is not destroyed, the
smaller the absolute value of ρ′(ti), the area where the resistivity
does not change basically.

Eq. 4 represents a partial differential equation that describes the
electrical properties of the subsurface medium. It considers changes
in resistivity along the x and z directions and introduces the
wavenumber variable λ. By incorporating the cosine Fourier
transform, the equation simplifies the problem from four
dimensions to three dimensions by eliminating the y-axis. This
equation is essential for modeling the stable current field and
understanding the temporal changes in resistivity within the
subsurface medium. Eq. 5 characterizes the temporal variations
in resistivity within the subsurface medium. It utilizes a Taylor
series expansion to approximate the resistivity derivative at a specific
point on the resistivity curve. The equation highlights the
relationship between the first-order derivative (rate of resistivity
change) and the second-order derivative (sharpness of resistivity
changes). This equation provides a theoretical basis for analyzing
and interpreting resistivity variations, which are crucial for
understanding subsurface geological features and phenomena. Eq.
6 further refines the description of the resistivity derivative by
providing a more explicit formulation. It demonstrates that the
rate of resistivity change at a given time point can be approximated
by the difference in resistivity between consecutive time points
divided by the time interval (h), subtracting the second-order
derivative term, and incorporating an error residual term. This
equation enables a quantitative assessment of resistivity changes
and offers insights into the deformation and stability of fault zones
within the subsurface.

In summary, Eqs 4–6 play a significant role in this study by
mathematically representing the electrical properties, resistivity
changes, and behavior of fault zones within the subsurface
medium. They contribute to the methodology by establishing the
necessary theoretical framework and mathematical models for
analyzing and interpreting data obtained through high-density
electrical logging. These equations facilitate a deeper
understanding of resistivity variations and their implications for
subsurface geological structures and processes.
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3.2 Principle of the time-lapse high-density
resistivity method inversion

The least squares method is widely employed in high-density
electrical inversion and serves as the basis for the inversion
algorithm utilized in this study (Loke et al., 2014). In our
approach, apparent resistivity data from the same profile
obtained through high-density electrical sounding at different
times are utilized. Anomalies are detected using a consistent
threshold, and the same interpolation method is employed.
Additionally, a common wavelet threshold is chosen for
denoising the apparent resistivity data, thereby minimizing errors
arising from the measurement system and environmental currents.
Subsequently, the multi-period detection data are independently
inferred, and the resulting inversion results are further processed to
quantify the resistivity changes over time. This approach enables us
to investigate the variations in resistivity within the time dimension
(Camporese et al., 2015).

JTJ + λF( )Δqk � JTg − λFqk (7)
Where: F � αxCT

xCx + αyCT
yCy + αzCT

zCz, Cx is the horizontal
roughness filter, Cz is the vertical roughness filter, J is the Jacobi
matrix of partial derivatives, JT is the transpose of J, λ is the damping
factor, q is the model change vector, g is the column vector of the
difference between the apparent resistivity and the inverse model
resistivity, and J is the matrix of order m by n of the measured
apparent resistivity and the number of measurements.

4 Data processing

During the measurement process of the high-density electrical
method, various sources of noise such as electrode grounding,
undulating terrain, earth electric field, stray current from
underground cables, and system noise from the measurement
system can introduce artifacts and reduce the authenticity and
clarity of the inverse image. In this study, we have employed the
mean threshold filtering method to eliminate outliers and applied
conformal interpolation to segment the outliers. Additionally,
wavelet decomposition has been utilized to mitigate the influence
of instrument system noise and environmental noise. The same
threshold filtering and interpolation methods have been consistently
applied to ensure the validity of the data obtained from different
periods of the apparent resistivity data for the same profile (Fritsch
and Carlson, 1980; Ferahtia et al., 2012). A comparison of the
denoised third layer data from an exploration profile at the mine
is as follows (Figure 5).

To highlight the spatial and temporal progression of the disaster
source and mitigate the influence of potential coupling factors, we
incorporate the fundamental concept of the reference region
approach from the section linkage. This approach involves
employing group-ordered clustering, relative coordinate
transformation, and weighted averaging techniques to
geologically constrain the profiles at the same location. In this
approach, we identify a geologically stable region within the same
location profile and assume it remains in a constant state throughout
the monitoring period. This stable region serves as a reference point

against which we can assess the impact of other factors on the
disaster source region over time. By comparing the variations in the
disaster source region with the reference region, we can better
understand the spatial and temporal dynamics of the hazard.
This approach helps to isolate the effects of other factors and
provides a clearer picture of the evolution of the disaster source.

Data normalization plays a crucial role in highlighting the
inherent trends of the data, reducing random noise and
systematic errors, and providing a foundation for subsequent
data denoising and analysis. There are primarily two common
methods for data normalization: standardization and normalization.

Standardization involves transforming the data in such a way
that it has a mean of zero and a standard deviation of one. This
method ensures that the data distribution is centered around zero
and has a consistent scale. Standardization is useful when the
absolute values of the data are not as important as their relative
differences or when the data have varying scales or units.
Normalization, on the other hand, involves scaling the data to a
specific range, typically between 0 and 1. This method maintains the
relative proportions of the data and allows for easier interpretation
and comparison across different variables. Normalization is
particularly useful when the absolute values and the relationships
between them are important. Both standardization and
normalization methods have their advantages and can be applied
depending on the specific requirements and characteristics of the
data. The choice of method should be made based on the nature of
the data and the goals of the analysis. Assuming that a total of
100 periods of high-density electrical exploration have been
conducted and 100 sets of apparent resistivity data have been
obtained, i =1–100 in ρ(ti), the common data normalization
formula is as follows (Wilkinson et al., 2022):

ρsi �
ρi∑ρi

i � 1, 2,/, 100 (8)

Where ρsi is the normalized apparent resistivity data, ρi is the
apparent resistivity measured at time i, and ∑ ρi is the sum of the
apparent resistivity data at these one hundred times.

In this article, we use the normalization method, which can
reduce the influence of large and small values during the
measurement process. Assuming that the apparent resistivity data
consists of two sets of data, the equation for the amount of resistivity
change in the time dimension is as follows (Figure 6).

W � ρ
∣∣∣∣ 0

− ρi
∣∣∣∣∣

ρ0 + ρi( )Δt (9)

Where W is the derivative of resistivity versus time (taking the
absolute value to highlight the change in data); Δt is the interval
between two high-density electrical probes; ρ0 is the resistivity of the
probe inversion in 2016; and ρi is the apparent resistivity of the
probe inversion in 2022.

5 Fieldwork methods

The resistivity statistics provided in Table 1 illustrate the typical
resistivity ranges of various rock types within the study area. Mica
rocks exhibit the highest resistivity, usually exceeding 10,000Ωm.
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Micaceous dolomites possess relatively high resistivity values,
typically greater than 5,000Ωm. Altered dolomites with high
iron content exhibit lower resistivity, generally below 3,000Ωm.
Weak rock layers, such as sodium amphibolite dikes, display lower
resistivity values, typically below 50Ωm, due to their high

water-bearing capacity. Fracture zones, characterized by the
presence of natural surface water infiltration channels, exhibit
low resistivity. These resistivity parameters serve as valuable
indicators for determining the distribution of hazard sources
within the slope. By analyzing the resistivity values of different

FIGURE 5
Comparison of before and after denoising of the third layer of apparent resistivity data.

FIGURE 6
Working block diagram of the time-lapse high-density resistivity method.

TABLE 1 Resistivity characteristics of different strata in the study area.

Lithology Range of resistivity values (Ω ·m)
Quaternary Holocene series gravel layer, silty clay 12.5–50

Dolomite 6,000–50,000

Altered dolomite 200–3,000

Slate 30–300

Altered slate 10–60
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rock types, it becomes possible to infer the presence and
characteristics of hazard sources, thereby contributing to the
understanding and assessment of slope stability.

In 2016, we conducted an exploration of the slope using the
high-density electrical method. Based on the physical exploration
data, which included factors such as fault fracture zones,
lithology, and groundwater, we established a comprehensive
dataset of the slope. Detailed analysis of the slope stability and
rock characteristics at different depths was performed, leading to
the determination of the distribution of disaster sources within
the slope. In 2020, a landslide occurred on the slope of the mine,
and the affected area fell within the designated key geological
disaster prevention and control area established in 2016.
Utilizing the data obtained from the slope deformation early
warning radar, we were able to successfully predict the
occurrence of the landslide. Furthermore, the analysis of the
exposed geological features after the landslide confirmed the
effectiveness of the high-density electrical method in detecting
the disaster sources within the slope.

To further investigate the situation of intra-slope hazard sources
in areas where no landslide had occurred and to understand the
evolutionary patterns of these hazard sources within the mine, a
repeated high-density electrical exploration was conducted in 2022.
The primary objective of this exploration was to demonstrate the
dynamic evolution of intra-slope hazard sources by utilizing the
derivative magnitudes and contour distribution of the high-density

electrical method data with respect to time. By analyzing the changes
in the high-density electrical data over time and observing the
derivative magnitudes and contour distributions, we aim to gain
insights into the temporal evolution of hazard sources within the
slope. By employing the high-density electrical method and
analyzing the resulting data, we aimed to provide valuable
information for the prevention and control of slope hazards in
the mine (Figures 7, 8).

In order to maintain consistency and comparability with the
previous measurements conducted in 2016, the measurement lines
were arranged in areas unaffected by the landslide that occurred in
2020. To ensure the position of the measuring lines remained
unchanged, a GPS coordinate positioning device was used to
select the same electrode points as in 2016. The electrodes were
then placed at the same points, and the same measuring direction on
the slope steps was maintained for arranging the high-density
electrical measuring lines. For the measurements, the same high-
density electrical measuring instrument, such as the DUK-2B high-
density electrical measuring instrument, was selected. The
instrument type, electrode spacing, working voltage, insulation
coefficient, and other measuring parameters were also kept
consistent with the previous measurements to ensure the
comparability of the data obtained. By maintaining these
consistent measurement conditions, the study aimed to accurately
compare and analyze the changes in the slope hazard sources over
time (Table 2).

FIGURE 7
Location of the study area of the open mine, Inner Mongolia, China.
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According to the geological conditions and geophysical
characteristics of the area, a total of 2 survey lines were laid in
the high slopes of open-pit mines.

6 Results of detective areas and
explanation

In this article, we have selected two groups of profiles for
analysis: one group consists of profiles showing more
pronounced changes in the slope hazard sources, while the
other group comprises profiles without significant changes.
Prior to the analysis, a preliminary geological survey was
conducted, and relevant geological data were collected. Using
two high-density electrical methods, we examined the
underground structure and inferred the characteristics and
locations of the slope hazard sources. By analyzing the
resistivity changes observed in the physical inversion maps,
we identified areas exhibiting low resistivity anomalies. These
areas were determined to be fault fragmentation zones, water-
bearing soft rock layers, water-conducting fracture zones, and

other potential hazard sources based on their resistivity
variations.

Furthermore, by studying the resistivity changes over time in
the physical inversion, we observed minor variations in the slope
hazard sources. Areas demonstrating significant changes were
identified as regions with a higher potential for slope collapse
hazards. Through these analyses, we aim to provide valuable
insights into the dynamics of slope hazard sources and their
potential impact on slope stability.

In the analysis of Section 1, the raw data obtained from the high-
density electrical method in both 2016 and 2022 underwent mean-
filtering and wavelet denoising. Following the mean-filtering and
wavelet denoising, the data underwent further refinement through
geological correction using the parametric area method. This
correction method incorporates the geological information and
characteristics specific to the study area, aiming to enhance the
accuracy of the inversion results.

Through the application of the parametric area method for
geological correction, a more comprehensive consideration of
the subsurface geological structures and properties can be
achieved. Consequently, this approach enables more precise

FIGURE 8
Schematic diagram of the survey line layout and geological survey map.

TABLE 2 List of measurement parameters.

Arrangement Electrode distance/m Electrode number Load Voltage/V Layer number

Winner α AM=MN=NB 5 60 75 19

Winner γ

AM=MB=BN
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interpretations and representations of the
resistivity distribution in Section 1 for both the 2016 and
2022 datasets.

In 2016, the inversion was conducted using the least squares
method with smoothing constraints, resulting in the generation of
Figure 9A. The resistivity values across the entire section

FIGURE 9
Geophysical inversion section Section 1, (A, B); Section 2, (D, E) of the high-density resistivity method. The inversion section of the derivative of
resistivity changes with time (C, F).
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predominantly ranged between 100Ωm and 300 Ωm. However,
there was a notable decrease in resistivity between measurement
points 200 and 220, typically falling below 20Ωm. Beyond point
250, the resistivity values increased significantly, generally exceeding
10,000 Ωm. Additionally, localized anomalies with low resistivity
were observed at survey points 70 and 120, forming closed patterns.
By considering the findings from surface surveys, it can be inferred
that the majority of the slope rock layers consist of weathered
dolomite. Moreover, a fault fracture zone is present between
survey points 200 and 220, while mica rocks are observed in the
layers beyond point 250. The distinct resistivity variation between

deep and shallow dolomite layers can be attributed to various
geological factors, as suggested by previous studies. It is worth
noting that survey points 70 and 120 might represent pseudo-
anomalies or indicate minor fractures and the resistivity of deep
dolomite differs from that of the shallow portion.

In 2022, the inversion was also performed using the least squares
method with smoothing constraints, resulting in the generation of
Figure 9B. When compared with the 2016 results, the resistivity
distribution across the entire section remained largely consistent.
Notably, there were no localized anomalies with closed patterns
observed at measurement points 70 and 120 in 2022. This absence of

FIGURE 9
Continued.
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anomalies at those points may be attributed to false anomalies
generated during the inversion process in 2016 (Figures 9A,B).

Based on the analysis of the resistivity change relationship over
time, it can be observed that themajority of the area in profile 1 exhibits
a resistivity change rate below 0.09, indicating that the subsurface
structure remains relatively unchanged. However, there are specific
regions within the profile where the resistivity change rate exceeds 0.12,
indicating significant changes in the disaster source in those areas. In the
30–50 m region, which did not initially show the presence of disaster
sources in 2016, the derivative inversion diagram of normalized
resistivity versus time indicates values above 0.12. This evolution is
likely due to the combined effects of external freezing and thawing and
water erosion on the original geological fractures, leading to weathering
and fragmentation of the slate. Field surveys confirm the presence of
fault fragmentation zones in the side slope step, with broken
geotechnical bodies indicating the evolution of the disaster source in
this area. In the 120 m region, the derivative value is below 0.09,
suggesting that the disaster source has not significantly evolved
compared to the surrounding dolomite area. This implies that the
geotechnical body in the fault fragmentation zone remains relatively
stable, with a stronger water-supply capacity than the surrounding rock.
The measurement line in the 240–260 m area consists of mica-
containing dolomite, mica rock, and weathered dolomite. The
derivative of resistivity versus time in this region exceeds 0.15,
indicating the presence of exposed mica rock that has undergone
fragmentation due to the influence of atmospheric precipitation and
groundwater. Further fragmentation of weathered dolomite occurs
under external forces. Site investigations confirm the abundance of
mica rocks in this area, which are susceptible to destruction by water
erosion, leading to decreased resistivity (Figure 9C).

In summary, for profile 1, the majority of the area exhibits a
resistivity change rate below 0.09, suggesting limited evolution.
However, the disaster sources in this profile have evolved to
varying degrees. The 120 m region shows minimal evolution,
while the area of 200–220 m exhibits further internal
evolutionary damage. The 30–50 m region, originally considered
more stable, experienced significant changes due to the nature of the
slate, rainwater erosion, and periodic blasting vibrations. The
evolution of slope hazard sources is non-uniform and
asynchronous, influenced by geological conditions, structural
characteristics, and external factors such as precipitation and
blasting vibrations. The derivative of resistivity versus time, with
values above 0.12, indicates significant evolution in the respective
regions.

Figure 9D presents the inversion map of mine profile 2, obtained
by denoising the high-density electrical exploration data in 2016.
The map clearly illustrates a region with very low resistivity, ranging
from points 0 to 80 with values between 0 and 50Ωm. Based on the
known resistivity characteristics of different rock types and previous
geological studies, this area is interpreted as fractured dolomite and
shale. Notably, the resistivity remains low in the range from
measurement point 80 to 120, and an evident boundary is
observed between low resistivity on the left and high resistivity
on the right. This observation suggests the presence of a fault
fracture zone, which is further confirmed by the field geological
survey, and it corresponds to the boundary line between dolomite
and shale. The resistivity values beyond point 120, extending to
300 m, exceed 6,000Ωm, indicating the presence of intact dolomite.

Figure 8E depicts the high-density electrical inversion map of Profile
2 in 2022, employing the same parameters for data acquisition and
processing. Upon comparison with the 2016 results, the resistivity
distribution in most areas remains relatively stable, with no
significant changes observed. However, a noticeable alteration is
evident between survey points 150 and 200. In conjunction with field
surveys, this variation suggests the occurrence of mica-bearing
dolomite breakage in that region (Figures 9D,E).

In the 0–80 m area, the majority of derivatives exceed 0.1,
indicating that the disaster source has undergone some degree of
evolution compared to the surrounding rock. It is presumed that the
slate and weak rock layers in this area have experienced
fragmentation and an increase in rock voids due to water
erosion. Field surveys have provided verification of this evolution,
as the weak interlayer in the area was found to be filled with rock
debris, and the previously intact slate appeared broken. These
observations further support the occurrence of evolution in the
area. In the 150–220 m area, the derivative of shallow resistivity
versus time interval is above 0.1, while in the downward extension
area, the derivative value ranges between 0.05 and 0.1. These values
differ noticeably from the surrounding area, suggesting the presence
of two small fracture zones at approximately 160m and 190 m.
However, due to their limited influence area, these zones were not
detected during the exploration process. Weathering and
mechanical action have contributed to the expansion and
downward extension of these zones. Field surveys have revealed
fault zone outcroppings at 165 m and 187 m, providing further
evidence of the evolution of the disaster source in this area. In the
100–150 m area, both the shallow and deep resistivity derivatives
versus time interval range between 0.05 and 0.1. This area consists of
weathered dolomite, which is prone to weathering when exposed to
water. The upper part of the area may be affected by precipitation,
surface water, and blasting vibrations, leading to further weathering
damage. The lower part, on the other hand, may experience erosion
from underground bedrock water, resulting in the breakage of
weathered dolomite. The presence of groundwater seepage in the
lower part of the terrace during field surveys suggests some level of
evolution in this area, as it acts as a transitional zone between slate
and dolomite.

In summary, for profile 2, the disaster source originally
identified within the 0–80 m range undergoes noticeable
evolution, with further damage occurring due to water erosion.
The 150–220 m area, not initially identified as a disaster source,
experiences significant expansion and evolution of an unidentified
small fault at the junction of slate and dolomite. This evolution is
attributed to the high degree of rock weathering and periodic
blasting vibrations. The single high-density electrical method
inversion map alone may not easily identify these changes.
However, by utilizing the derivative of the inversion resistivity
versus time interval as a characteristic parameter in the time-
shifted high-density electrical method, the evolution of the
disaster source can be effectively highlighted (Figure 8F).

7 Conclusion

The mine is in production, and due to the complex geological
genesis, periodic blasting, and short-term heavy rainfall in the
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summer in themining area caused by climate warming, the slope has
collapsed several times, which greatly affects the life and property
safety of the mine operators. Time-shifted high-density electrical
method is a very effective method for slope exploration, which can
obtain information about the nature and distribution of
underground materials by observing the change of underground
resistivity with time.We have investigated and analyzed the slopes in
the area where no collapse has occurred and have reached the
following conclusions.

1 The time-lapse high-density electrical method can show the
evolution of fault sources within the slope, and the use of the
derivative of resistivity versus time can effectively identify the
stratigraphic structure within the slope. During our exploration,
the time-shifted high-density electrical method accurately
identified faults and weak rock layers, and can clearly reflect
the interface between dolomite and fault fracture zones.

2 We found that the geological structure of most areas of the slope did
not change significantly, but obvious changes were produced in the
original fault fracture zone, soft rock layer, and other hazard source
areas, and the potential collapse hazard areas can be classified
according to the magnitude of values and sparseness of contours.

3 The time-shifted high-density resistivity method is applicable to
slope hazard source monitoring, which can effectively identify the
morphological characteristics of the distribution and evolution of
hazard sources, on the basis of which the dynamic monitoring of
hazard sources within the slope can be realized. It can provide an
important basis for future slope safety management and a
theoretical basis for monitoring similar geological hazards.

In future research, it is important to conduct a comparative
analysis of this method with other approaches for detecting slope
hazard sources. Additionally, the implementation of intelligent
procedures for automated data collection and processing should
be considered. These advancements will contribute to enhancing the
effectiveness and efficiency of slope hazard detection and analysis.
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Earthquake-induced landslides are ubiquitous on slopes in terrestrial
environments, which can pose a serious threat to local communities and
infrastructures. Data-driven landslide assessments play a crucial role in
preventing future landslide occurrences and recurrences. We present a novel
granular computing approach that assesses landslide risk by combining fuzzy
information granulation and a stacked autoencoder algorithm. The stacked
autoencoder is trained using an end-to-end learning strategy to obtain a
central latent vector with reduced dimensionality. The multivariate landslide
dataset was used as both the input and output to train the stacked
autoencoder algorithm. Subsequently, in the central latent vector of the
stacked autoencoder, the Fuzzy C-means clustering algorithm was applied to
cluster the landslides into various groups with different risk levels, and the intervals
for each group were computed using the granular computing approach. An
empirical case study in Wenchuan County, Sichuan, China, was conducted. A
comparative analysis with other state-of-the-art approaches including Density-
based spatial clustering of applications with noise (DBSCAN), K-means clustering,
and Principal Component Analysis (PCA), is provided and discussed. The
experimental results demonstrate that the proposed approach using a stacked
autoencoder integrated with fuzzy information granulation provides superior
performance compared to those by other state-of-the-art approaches, and is
capable of studying deep patterns in earthquake-induced landslide datasets and
provides sufficient interpretation for field engineers.

KEYWORDS

earthquake-induced landslides, risk assessment, stacked autoencoder, information
granule, prototype selection

1 Introduction

Landslides are a major type of natural geohazard and are defined as the movement of a
mass of rock, debris, or Earth down a slope (Cruden, 1991; Gao and Meguid, 2018a; 2018b).
This can cause numerous casualties and economic losses in mountainous regions (Li et al.,
2023). Multiple factors can trigger landslides, including rainfall, earthquake shaking, water
level changes, storm waves, rapid stream erosion, and human factors. Among them,
earthquake-induced landslides are the most hazardous due to the rapid occurrence and
large size of slope failures (Shi et al., 2021).
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In practice, landslide risk assessment plays a crucial role in field
engineering (Rajabi et al., 2022). The general process involves
estimating the level of risk, deciding its appropriateness, and
exercising control measures to reduce risk by observing an
elevation in risk levels (Dai et al., 2002; Gao et al., 2020; Zhou
J. et al., 2021; Chowdhuri et al., 2022). Such procedures are typically
followed for landslide assessment and mitigation at regional or
catchment scales (Pokharel et al., 2021). The Geographic
Information System (GIS) environment in landslide susceptibility
map preparation is an effective method for identifying and
delineating landslide-prone areas to create a geospatial database
of landslide occurrence or ‘landslide inventory’ (Merghadi et al.,
2020). The geospatial properties of landslides can be compiled into a
comprehensive database using GIS (Karakas et al., 2021). These
properties include slope angle, slope aspect, soil type, precipitation,
lithology type, and geometric parameters (Gao et al., 2021; Kasama
et al., 2021; Zhou et al., 2022). All the properties in the database are
valuable for assessing slope stability and modeling the responses of
other slopes in the study area to predict future landslide occurrences
(Van Westen et al., 2006).

In recent years, data-driven models and frameworks have
achieved great success in landslide risk assessment using GIS-
based databases. For example, volumetric estimation, spatial
geometric computation, and maximum displacement prediction
are all considered part of the assessment tasks in engineering
practice (Zhou Q. et al., 2021). Althuwaynee et al. (2014)
integrated decision trees and logistic regression models to predict
the overall landslide risk using multivariate analysis. Huang et al.
(2018) applied a support vector machine (SVM) to forecast landslide
susceptibility using a GIS-based dataset. Xu et al. (2019) performed a
comparative analysis of seven benchmark data mining algorithms
and predicted the maximum landslide displacement in loess
landslides in Heifangtai, China. Gorsevski et al. (2016)
introduced an artificial neural network (ANN) to predict
landslide risks simultaneously using GIS-data and Lidar data. The
experimental results demonstrated that the ANN offered superior
prediction performance and was capable of learning the relationship
between geospatial properties and overall landslide risk.

For the time being, advanced analytical tools such as artificial
intelligence (AI) and deep-learning (DL) are also playing an
increasingly important role in evaluating landside risks in
practice. Zhao and Du (2016) initially proposed using
convolutional neural network (CNN) to analyze landslide risk
using remote sensing images. Paoletti et al. (2018) developed a 3-
D CNN to extract both spectral and spatial information in Lidar
images for risk assessment tasks. Yi et al. (2020) proposed a novel
landslide susceptibility mapping and risk assessment model using
multi-scale convolutional neural network (MCNN) in the image-
related tasks. Various levels of geological features from low to high
are studied by the algorithm to assess landslide risks. All above work
provided advanced insights in terms of landslide mapping and risk
assessment tasks.

Summarily, the majority of data-driven approaches that perform
landslide risk assessment adopt a supervised learning strategy to
train data mining or machine learning algorithms and then predict
risk labels for new instances (He and Kusiak, 2017; Li, 2022a). The
success of these approaches significantly depends on the availability
of high-quality datasets. To generate this type of dataset, time and

labor cost for field experts is inevitable. If the required dataset is
relatively small, the computational and labor costs can be controlled
at a reasonable level. However, some case studies may contain
excessive numbers of instances within the dataset, which is
challenging in practice. For instance, a single field expert may
require several weeks to offer risk labels for tens of thousands of
landslide instances. Therefore, it is important to develop a more
efficient approach to address this challenge.

Granular computing (GC) has recently become a popular data
science research direction, with considerable attention in both
industry and academia. The granular computing approach adopts
fuzzy rule-based modeling to derive granular descriptors for
interpreting a dataset that follows an unsupervised learning
strategy. Generally, two major advantages of using a granular
computing approach in practice exist. First, high flexibility in
coping with datasets with diverse geometries and enhancing the
representation of the information granules. Thus, the constructed
granules are more interpretable for understanding the essential
characteristics of the dataset. Second, information granules are
often constructed in a refined representation of the original data
structure, which intuitively reduces computation overhead. (Ouyang
and Zhang, 2022). In typical landslide risk assessment tasks,
conventional machine-learning approaches usually adopt
supervised-learning strategy which requires labeling the ground-
truth to guide the algorithm to learn data patterns. This step
becomes the foundation of a supervised-learning approach which
ensures the learning quality. Granular computing can be an effective
alternative option which utilizes an unsupervised-learning approach
to derive the patterns within the same dataset. In comparison, the
information granules can largely increase the efficiency of overall
computation cost while only sacrificing a limited amount of
information.

Based on the above discussion, this study proposes a
combinatory data-driven framework to perform landslide risk
assessment based on a stacked autoencoder (SAE) and fuzzy
information granules. First, the SAE was employed as an
information compressor that removed redundant information but
preserved valuable patterns within the landslide dataset. The
standard mean square error (MSE) loss was proposed as the loss
function for training the SAE algorithm. Second, when the loss
function of the SAE converged, the central latent representations of
the SAE were extracted for information granule construction. Three
training strategies are used to explore the optimal design of the SAE
architecture. The Fuzzy-C-means (FCM) algorithm was then
employed to select the prototypes for each subcluster. Finally,
fuzzy-rule-based information granules were constructed using
two risk measures, namely, Value-at-Risk (VaR) and
Conditional-Value-at-Risk (CVaR). The risk boundaries
indicating that the ranges for various levels of landslide risk were
computed, and interpretation with respect to each attribute was
provided. To evaluate the performance of the proposed framework,
comprehensive experiments were conducted using an actual
earthquake-induced landslide dataset collected from Wenchuan
County, Sichuan Province, China.

The main contributions of this study are summarized as follows:

1) This research introduced SAE to compress the landslide dataset
and reduced dimensionality effectively.

Frontiers in Environmental Science frontiersin.org02

Feng et al. 10.3389/fenvs.2023.1308808

53

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1308808


2) Fuzzy information granules were computed over the latent
representations of the SAE and risk boundaries were computed
for various levels of landslide risk based on the constructed granules.

The remainder of this article is organized as follows. The
methodology for the SAE algorithm and granular computation
process is introduced in Section 2. An overview of the case study
area and earthquake-induced landslide dataset is presented in
Section 3. The computational results and comparative analyses

are presented in Section 4. Discussions are presented in Section
5, and conclusions are presented in Section 6.

2 Methodology

2.1 Stacked autoencoder

An autoencoder (AE) is a popular deep-learning architecture
that effectively compresses information. In a typical AE algorithm,
the input is a vector or signal, and the output reconstructs the input
via an intermediate layer with a reduced number of hidden nodes.
AE algorithms attempt to learn higher-level feature representations
in the reduced hidden nodes, which can make the reconstruction of
the original input feasible (Zabalza et al., 2016; Li, 2022b). The basic
scheme of the AE algorithm is shown in Figure 1.

As shown in Figure 1, the autoencoder has a symmetric structure
consisting of two components: an encoder and a decoder (Adem
et al., 2019). The encoder contracts a nonlinear mapping between
the input vector and central hidden layer nodes. For a given input
data vector X′, a compressed hidden layer representation H can be
computed using Eq. 1.

H � fE WE p X + bE( ) (1)

where, WE and bE represent the weight and bias of the encoder
network; fE() denotes the activation function of the network.
Contrastingly, the decoder maps the hidden representation back
to the output layer for reconstruction through a similar
transformation. Given the hidden-layer representation H, the
reconstructed output X′ can be obtained using Eq. 2.

X′ � fD WD p H + bD( ) (2)

where, WD and bD represent the weight and bias of the decoder
network; fD() is the activation function of the decoder network. In

FIGURE 1
Schematic diagram of an autoencoder.

FIGURE 2
Schematic diagram of SAE.
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this research, the reconstructed output vectorX′ always has the same
dimensionality as the input vector X while the reconstruction loss
can be easily computed by measuring the difference between the two
vectors.

The training process of the AE algorithm aimed to reproduce the
input data vector in the output layer. Hence, internal hidden nodes
can provide compressed information from the original dataset
(Khamparia et al., 2020). To ensure high-quality data
reconstruction, the values in the hidden nodes can be regarded as
new reduced features representing the original vector X. Thus, the
training of the AE continuously optimizes the parameters θ �
WE, bE ,WD, bD{ } to pursue high-quality data reconstruction. The
parameter θ above is not a single parameter but a general
representation of thousands of parameters within the AE
algorithms that includes the weights and biases of numerous
neurons along with their connections. The loss function used for
training the AE is based on the reconstruction error, which can be
expressed as

L X,X′( ) � 1
n
∑n

i�1 xi − x′
i( )2 (3)

where, xi and x′
i denote the ith elements in the input and

reconstructed vectors X and X′; and L() represents the error
computed by the reconstruction. In Eq. 3, the loss function
computes the mean-square-error loss which is equivalent to
regression loss and it measures the difference between the
input vector X and reconstructed vector X′. The smaller value
of the loss function indicates the higher performance of data
reconstruction. Once the values of the loss function converge to a
small range, the AE can achieve high-quality data compression
and reconstruction.

2.2 SAE and latent representations

An stacked autoencoder (SAE) is considered as an expansion of
the traditional AE algorithm. The SAE simply stacks several layers
between the input and output layers. This hierarchical structure
enables the features to be learned through progressive abstraction
levels (Liseune et al., 2020). A schematic of a SAW is shown in
Figure 2.

As shown in Figure 2A, the hidden layers within the SAE were
pre-trained in a greedy layer-by-layer manner. For example, a
typical SAE structure comprises three hidden layers. If the input
and output vectors have eight dimensions, the first hidden layer has
six dimensions. It can then be formulated as a vanilla AE algorithm
to pre-train the first hidden layer. Once the loss function converges
to a small range, the pretraining is stopped. Next, a pre-trained
hidden layer with six dimensions was used as both the input and
output layers for the next pre-training step. The second hidden layer
with four dimensions served as the hidden layer in the training
step. Here, the same pre-training strategy was adopted as in the first
step. In the final pre-training step, the last hidden layer with only
three dimensions served as the hidden layer, whereas the pre-trained
layer with four dimensions provided by the last step served as both
the input and output layers. The majority of the reconstruction loss
has been reduced in the pre-training steps while only a limited
proportion of the loss has been reduced in the final fine-tuning
step. Overall, multiple autoencoders were pre-trained in a bottom-
up manner, enabling the encoder to effectively learn the pattern
inside the dataset.

As illustrated in Figure 2B, after the pre-training of all hidden
layers, all layers were stacked into a hierarchical and symmetric
structure. The dense layers are the pre-trained hidden layers, as
shown in Figure 2A. Then, back-propagation was applied to fine-
tune all SAE network parameters. As the input and output were
identical in our study, the fine-tuning was a supervised learning
process.

2.3 Prototype selection

The well-trained SAE in this study served as an information
compressor for dimension reduction purposes. Using the trained

FIGURE 4
Plot illustrating the various confidence levels of a single
information granule.

FIGURE 3
Plot depicting an example of the FCM clustering algorithm.
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SAE structure, higher-level patterns inside the dataset can be
effectively compressed into a central latent vector, which
preserves important information from the original data space. As
illustrated in Figure 2B, the central “Bottleneck” layer is considered

the most compressed version of the information from the input data
vector. Thus, for every input vector, the values within the
“Bottleneck” layer are extracted and utilized to construct
information granules in this research.

TABLE 1 Wenchuan landslides data description.

Name Unit Min Max Mean Std Skewness Kurtosis

Area m2 22.95 43969.79 2097.24 4120.69 5.29 38.33

Elevation m.a.s.l 2388.00 3448.00 2883.21 241.15 0.03 −0.79

Fault distance m 2.44 11089.10 2295.83 2107.67 1.09 0.43

Relief amplitude m 26.00 316.00 164.45 49.57 −0.22 0.29

Runout distance m 40.94 808546.79 21557.31 63921.32 7.43 70.93

Slide volume m3 57.99 537129.23 17034.88 44600.79 6.75 59.66

Slope angle ° 3.01 56.05 34.90 9.75 −1.11 1.30

Vertical drop m 27.87 331912.34 9922.30 27098.63 6.98 63.35

am.a.s.l. means meters above sea level.

TABLE 2 Training strategies of Stacked Autoencoder.

Strategy Hidden layer Hidden nodes Activation function Loss function Epoch

I 1 6 ReLU or sigmoid MSE loss 150

II 3 6-4-6 ReLU or sigmoid MSE loss 150

III 5 6-4-3-4-6 ReLU or sigmoid MSE loss 150

FIGURE 5
Photographs showing the onsite investigation and remote sensing detection of earthquake-induced landslides in Wenchuan County.
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In this study, an information granule is defined as a data
descriptor of a certain region in the data space according to its
size and position (He and Kusiak, 2017; Ouyang et al., 2019a). To
localize the granules, the selection of a prototype (data cluster
center) is an essential step. An FCM (Ouyang et al., 2019c)
algorithm was developed to partition the latent representations of
the SAE into several data clusters. The prototype (cluster geometric
center) served as a representation of a group of data points within
the same constructed granular space. Here, the FCM is selected over
the most popular K-mean algorithm is due to the superior capacity
of FCM in selecting an actual data point as the prototype while
K-mean algorithm is incapable to perform the same task.

For a given dataset H � h1, h2, . . . ,hn{ } from the central hidden
layer of the pre-trained SAE, the FCM partitions n data points into c
clusters, where C � C1, C2, . . . ,Cc{ }. Based on the similarity scores,
the partition matrix U(H) can be obtained and expressed in Eq. 4 as
follows:

U H( ) �
μ11 / μ1N
..
.

1 ..
.

μc1 / μcN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where, μij denotes the membership degree of data point hj to cluster
Ci. Here, the membership degree μij satisfies Eq. 5, 6:

∑c

i�1μij� 1,∀ j� 1, . . . ,n (5)
∑c

i�1∑n

j�1μij � n (6)

The FCM starts with the determination of the number of
clusters, followed by a random selection of the initial cluster
centers. Each data point was assigned a membership degree to
each cluster. Next, the cluster centers and corresponding
membership degrees are updated iteratively by minimizing the
objective function. The objective function of the FCM is
expressed in Eq. 7:

FIGURE 7
Bar charts depicting the distribution of reconstruction MSE error for all training strategies.

FIGURE 6
Plots showing the loss functions for all training strategies for SAE.
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Jc � ∑c
i�1
∑n
j�1
μmij hj − vi

 2 (7)

where, hj is the jth data point, vi is the ith cluster center, and n denotes
the total number of data points in cluster Ci. During the iterations, the
μmij and vi are updated using the rules in Eq. 8, 9 respectively:

μmij �
1

∑c
j�1

hj−vi‖ ‖
hj−vj‖ ‖( ) 2

m−1
(8)

vi �
∑n

j�1μ
m
ijhj∑n

j�1μ
m
ij

(9)

A visual interpretation of FCM clustering with the three sub-
clusters is shown in Figure 3. This demonstrates an example of a
dataset partitioned into three subclusters. The centers of each cluster
(red points) were selected as prototypes. Here, the gradient of color
shading indicates the value of membership similarity score with
respect to the assigned clusters. The brighter color indicates the
membership score is higher of a data point while a shallow color
indicates lower membership similarity score.

2.4 Optimization of information granule
structures

Once the prototypes were selected using the FCM algorithm, it
was essential to determine the size of the information granules.

According to the general rules of data description methods, a set of
information granules is the concentration of numeric prototypes
and their membership points, which are formed as data descriptors
(Li, 2022b). In this study, we considered generic and simple granule
formations based on the radius parameter and selected prototypes.
The generic rule-based information granules were depicted as in
Eq. 10.

Ri: IF hk is in the neighborhood of vi,THENyk

should be classified as groupCi

(10)

where, hk is the data point, vi is the prototype in the corresponding
cluster, and yk is the assigned cluster label for the data point hk.

Granule formation involves coverage and specificity indices that
directly influence the performance of the underlying data
description. The formation is based on two randomly selected
points: h+i and h−i for the upper and lower bound, respectively.
Coverage is a reflection of the capacity of an information granule to
cover data points between two points, which can be expressed in Eq.
11 and Eq. 12 as follows:

cov h+i( )� ∑
hk > vi && hk < h+i{ }

μik (11)

cov h−i( )� ∑
hk < vi && hk > h−i{ }

μik (12)

where, μik is the membership score of the data point hk with respect
to the ith subcluster; vi is the computed prototype for the ith sub-

FIGURE 8
Plots showing the comparison of specificity against coverage values against state-of-art approaches.
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cluster from the FCM algorithm; and h+i and h−i are randomly
initialized points indicating the upper and lower boundaries
presented above, respectively.

Specificity indicates the precision of the constructed information
granules. A higher specificity value indicated a smaller granule size.
The computation of specificity for the upper and lower bounds is
defined in Eq. 13 and Eq. 14, respectively, as follows:

sp h+i( )� 1− h+i − vi
 
hmax − vi‖ ‖ (13)

sp h−i( )� 1− vi − h−i
 
vi − hmin‖ ‖ (14)

where, ‖.‖ is the distance measure between the data points; vi is the
computed prototype from the FCM algorithm; h+i and h−i are
randomly initialized points indicating the upper and lower
bounds, respectively; h max and h min are the maximum and
minimum points, respectively, encountered within the generated
data subclusters for which the information granule is developed.

2.5 Evaluation of information granules

Generally, high-quality information granules are expected to
have both high coverage and specificity for describing data (Ouyang
et al., 2019b). However, in practice, these two functions are usually
in conflict and must be maximized simultaneously. Thus, the

product of these two functions was selected to search for the
optimal size of the information granules. The product of
coverage and specificity is Q and is expressed in Eq. 15 as follows:

Q�∫1

0
cov h( )sp h( )dh (15)

where, h is the data point used to define the granule boundaries. The
value of Q must be maximized to obtain the optimal solution for the
information granules, and the value of Q needs to be maximized.

Additionally, the representation capacity of the information
granules was considered in this study. Considering that granules
reflect the structure of the original dataset, the representation
capacity can be quantified using a reconstruction criterion. We
can reconstruct any data point hk into ĥk by Eq. 16.

ĥk �
∑n

j�1μ
m
ij vi∑n

j�1μ
m
ij

(16)

where, ĥk is the reconstructed value of hk; and μmij and vi can be
computed by (8) and (9), respectively. We can then compute the
reconstruction error V(c) using Eq. 17 as follows:

V c( ) � ∑n
k�1

ĥk − hk
 2 (17)

where, c is the number of clusters produced by the FCM, and
‖ĥk − hk‖2 denotes the Euclidean distance between hk and ĥk. The

FIGURE 9
Histograms showing the comparison of Q values against state-of-art approaches.
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smaller the value of V(c), the better the reconstruction capacity of
the information granule. In practice, V(1) is typically used as the
standard reference to measure the value of V(c) by computing
V(c)/V(1).

2.6 Granular boundaries

Information granules provide fuzzy rules to determine the
boundaries of the decision-making tasks. However, the
interpretability of these rules is vague. Two widely used risk
measures namely, VaR and CVaR were introduced to interpret
the boundaries with respect to all attributes or variables within
the original input dataset.

For a certain variable, all data points within the same
information granule follow a distribution with a cumulative
density function (CDF), F(X). Hence, given a confidence level p,
VaR and CVaR are defined as Eq. 18 and Eq. 19, respectively, (Shi
et al., 2021):

VaRp X( )�F−1
X p( ) (18)

CVaRp X( ) � VaRp X( ) + E X[ ] − E X ∧VaRp X( )[ ]
1 − p

(19)

where, VaR can be conceived as the inverse computation of the CDF
with respect to the confidence level p as expressed in Eq. 18, and
CVaR is the conditional expectation of the distribution when the
attributes of the data points exceed the VaR threshold. These can be
computed for each variable provided in the input dataset to offer
interpretable boundaries for the information granules. For example,
in a single information granule in 2-dimensional space, various
confidence levels for VaR are displayed in Figure 4.

3 Field investigation and data collection

In this study, data collected from multiple earthquake-induced
landslides inWenchuan County, Sichuan Province, China, were used to
perform a case study analysis using the proposed approach (Carabella
et al., 2022). The study area is located in the Longmen Mountains area
on the northwest edge of the Sichuan Basin. On 12 May 2008, the
Wenchuan earthquake, with a magnitude of 8.0 occurred in the
Longmenshan tectonic zone of Sichuan Province (Chigira et al.,
2010; Xie et al., 2020). This strong earthquake event in the
mountainous region triggered over 3000 landslides and chains of
related geohazard events, including rockfalls, debris flows, and
unstable slopes (Fan et al., 2019; Li et al., 2022).

TABLE 3 Measurement of information granules for three risk group.

Low risk group

SAE DBSCAN K-mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.61 0.08 0.55 0.21 0.51 0.12 0.58 0.07 0.09

Specificity 0.87 0.1 0.83 0.12 0.77 0.13 0.66 0.22 0.18

Q 0.71 0.14 0.55 0.17 0.59 0.15 0.39 0.05 0.01

V(c)/V(1) 0.07 0.02 0.07 0.03 0.05 0.02 0.04 0.01 0.38

Medium risk group

SAE DBSCAN K-Mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.68 0.11 0.59 0.07 0.52 0.13 0.61 0.12 0.04

Specificity 0.87 0.13 0.81 0.15 0.76 0.15 0.69 0.19 0.06

Q 0.74 0.08 0.57 0.05 0.63 0.18 0.35 0.02 0.01

V(c)/V(1) 0.11 0.05 0.1 0.06 0.08 0.03 0.09 0.04 0.09

High risk group

SAE DBSCAN K-Mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.76 0.14 0.65 0.07 0.6 0.09 0.53 0.11 0.02

Specificity 0.89 0.11 0.83 0.14 0.76 0.16 0.68 0.19 0.14

Q 0.66 0.07 0.53 0.08 0.62 0.15 0.32 0.03 0.02

V(c)/V(1) 0.15 0.04 0.11 0.06 0.08 0.03 0.06 0.04 0.04
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This area was selected as our study area because it has the
highest seismic intensity (Modified Mercalli Intensity XI) and
coseismic landslide density (Chen et al., 2020). The Yingxiu-
Beichuan fault crosses the study area and is the leading cause of
Wenchuan earthquake event in 2008. The elevation of the study
area varies from 760 to 3200 a.s.l. and the topography consists of
rugged mountains and deeply incised valleys. Multiple slides
and debris flows were discovered along the Mingjiang River
Valley, which is a tributary of the Yangtze River, with an average
annual discharge of 452 m3/s. Summer precipitation is the
leading factor that triggers post-earthquake slides and debris
flows. Typical examples of slides and debris flows are shown in
Figure 5.

Since the Wenchuan earthquake, earthquake-stricken regions
have been intensively monitored by geologists using remote-
sensing techniques combined with field investigations. Remote
sensing techniques offer highly precise information for geohazard
monitoring and mitigation. Data acquisition, including full
coverage and high resolution, was accomplished by multiple
groups of geologists in the period between 2008 and 2018. The
GIS method was then utilized to integrate the landslide inventory
into the spatial dataset to discover the quantitative relationships
between landslide activity and triggering factors.

We selected 3000 landslides for our case studies, the majority of
which were deep-seated landslides. Based on an on-site

investigation, eight geohazard-related geometrical variables of
the earthquake-induced landslides are provided in Table 1.
These variables are considered critical to fuzzy-rule-based
models for geo-risk assessment, according to expert opinions.
The statistical properties of each variable are summarized in
Table 1.

According to Table 1, eight geomorphology-related
variables–slide area, elevation, slope fault distance, relief
amplitude, runout distance, slide volume, slope angle, and

FIGURE 10
Box plots illustrating the interpretation of information granules
for all risk groups.

FIGURE 11
Map depicting the geospatial distribution of the earthquake
induced landslides in Wenchuan County, China.
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vertical drop–were measured and included. It also provides a
unit of measurement. Additionally, the minimum value,
maximum value, mean, and standard deviation were
computed as first-order statistical properties. Furthermore,
second-order statistical properties such as skewness and
kurtosis were computed. Finally, according to expert
opinions, three types of labels (high, medium, and low risks)
were assigned to all landslide cases in the dataset.

4 Experimental results

4.1 Training of SAE

The proposed data-driven information granule-based
approach was applied to the risk assessment of over
3000 landslide case studies in Wenchuan County, Sichuan
Province, China. Among which, 2500 cases were utilized for
cross-validation, and the remaining 500 cases were used as the
independent test dataset. Eight geomorphology-related landslide
variables are included in the granule construction dataset. Three
training strategies were implemented to achieve high-quality
information compression results. The strategies used are
summarized in Table 2 below.

In Table 2, the first strategy (Strategy I) contains only one
hidden layer with six hidden nodes. This is a typical
autoencoder. Both the ReLU and sigmoid functions were
tested as the activation functions, and the one with the
smallest error was selected. The MSE loss was selected as the
loss function, and the Adam optimizer was selected as the
optimization algorithm to reduce the loss function. The
maximum number of training epochs was 150, and once the
loss function converged, early termination was implemented.
The second strategy (Strategy II) adopts a similar approach with

three symmetric hidden layers. The two outer hidden layers on
each side have 6 hidden nodes, and the central “Bottleneck” layer
contains only 4 hidden nodes. Layer-by-layer pre-training and
fine-tuning of the stacked architecture are both included, as
described in Section 2.2 Figure 2. The third training strategy
(Strategy III) adopted the same training approach as Strategy II
with five hidden layers in total. The central “Bottleneck” hidden
layer contains only 3 hidden nodes which aims to further reduce
the dimension of the original data vector. The loss functions for
the three training strategies during the epochs are shown in
Figure 6.

The data reconstruction loss (MSE loss) was also measured for
the three training strategies. The error between the input and the
reconstructed outputs was measured for the test dataset for
performance evaluation. A histogram illustrating the
distribution of the MSE loss are provided below in Figure 7.
Here, the loss distribution comes from the MSE loss by
inputing all validation dataset (the remaining 30%) into the
trained SAE algorithm. Thus, the loss distribution in Figure 7 is
the validation loss distribution of the SAE algorithm with respect
to three different training strategies.

As shown in Figure 7, in comparison, the loss distribution for
training strategy III converges close to zero. This indicates that
strategy III produces a higher-quality data reconstruction
outcome, and useful information is successfully encoded into
the central latent layer. We then extracted a central latent vector
with less dimensionality to construct robust information
granules for landslide risk classification.

4.2 Constructing information-granules

Information granules were constructed using the central
latent vector of the pretrained SAE algorithm. The latent

TABLE 4 Computed VaR and CVaR for the three risk groups obtained by information granules.

Risk
gorup

Variable Area Elevation Fault
distance

Relief
amplitude

Runout
distance

Slide
volume

Slope
angle

Vertical
drop

Unit km2 masl m m km 107 m3 ° km

High VaR.95 5.39 3152.48 106.16 54.60 4.88 8.73 28.90 1.29

VaR.05 4.26 1679.61 48.83 26.52 3.63 7.56 12.52 0.48

CVaR.95 5.62 3334.26 108.37 56.23 5.12 8.89 30.78 1.40

CVaR.05 4.15 1437.23 47.73 26.17 3.38 7.37 10.58 0.47

Medium VaR.95 5.38 3133.84 57.33 26.95 4.51 10.05 53.94 1.13

VaR.05 2.74 1656.30 33.24 8.59 2.31 7.03 22.63 0.40

CVaR.95 5.45 3548.67 106.79 28.08 4.88 10.49 56.25 1.18

CVaR.05 2.61 1437.23 32.61 8.30 2.03 6.74 22.19 0.38

Low VaR.95 2.50 3194.43 86.00 39.78 2.72 4.43 52.43 1.58

VaR.05 0.11 1674.95 1.26 7.81 0.10 0.06 1.19 0.92

CVaR.95 2.64 3390.19 94.51 43.47 2.81 4.71 58.78 1.66

CVaR.05 0.09 1488.51 0.63 3.41 0.08 0.02 0.55 0.85
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vectors not only reduce dimensionality but also preserve
important information in the original input dataset. To
validate the superiority of using the SAE latent vector, other
state-of-the-art data structures for information granule
construction, including density-based spatial clustering of
applications with noise (DBSCAN), k-mean clustering, and
principal component analysis (PCA), were selected for
comparative analysis.

For the predefined three levels of risk by the experts, a global
measurement of granular quality was performed. Figure 8
displays the coordinates of various coverage-specificity curves
for the test dataset. The area under the coverage-specificity curves
directly indicates the quality of the constructed information
granules. The proposed approach, using the latent vector of
the SAE as the source data structure, had the largest area for
the three risk groups. This demonstrates the superior
performance of the SAE latent vector as the source data
structure to construct information granules.

In Figure 9, we also compute another metric Q with respect to
the different numbers of clusters provided by the FCM. The average
Q values and 95% confidence intervals were visualized for all
possible cluster numbers. It is significant that for all three risk
levels, the proposed approach using the latent vector of the SAE as
the source data structure has higher Q values, and thus, better
granule quality. Additionally, for representation capacity,
V(c)/V(1) was computed for the three groups of landslides with
different risk levels. All numerical results, including the mean and
standard deviation of coverage, specificity, Q, and V(c)/V(1) are
summarized in Table 3 below. Pairwise Student’s t-tests were also
conducted to determine whether there was a significant group
difference in measurement metrics between the proposed SAE
algorithm and other state-of-the-art algorithms. Here, the t-test is
an independent sample test which the sample size differs from two
sides. If the p-value is less than 0.05, it indicates that the
corresponding measurement metric of SAE is significantly higher
than all others which demonstrates the superiority of using SAE as
the data structure to formulate information granules. The p-values
of the t-tests are listed in Table 3.

4.3 Granular interpretation

Information granules are based on fuzzy rules that lack sufficient
explanation for field engineers. To improve the interpretability of
the proposed approach, two widely used risk measures, namely, VaR
and CVaR were computed to indicate the boundaries of each
variable in the original dataset. Information granules with respect
to each variable were visualized using box plots, and are presented in
Figure 10. Considering the scale differences across all variables, all
box plots used min-max rescaling to ensure that the values were
between 0 and 1.

According to Figure 10, the mean, median, 25th–75th, 10th–90th,
and 5th–95th percentiles for the distribution in each variable per group
are visualized. Here, the information granules denote the interval
between VaR.05 and VaR.95. A significant distinction between the
three risk groups existed with respect to area, runout distance, and
slide volume. This phenomenon confirms the expert opinion that these
three are the top factors in determining landslide risk.

Additionally, the geospatial distribution of the three risk
groups was labeled on the map with different colors, as
illustrated in Figure 11. These colored points indicate the
location and size of the corresponding earthquake-induced
landslides in Wenchuan County. Instead of a case-by-case risk
assessment, the proposed approach automatically classified the
risk of landslide occurrence in the study area.

5 Discussion

The information granules constructed for the three risk
groups were computed using the latent vectors of the (SAE)
algorithm. The interpretation of the information granules in
each risk group has been visualized in Figure 10 with respect to
each variable in the provided dataset. To provide meaningful
information to field engineers for classifying the risks of
applying these information granules, we computed the
CVaR.95/VaR.95 and CVaR.05/VaR.05 for each variable and
included them in Table 4.

As listed in Table 4, the computed values indicate the risk
boundaries for landslides in each risk group. A new sample can
be automatically applied to the explainable rules derived from
information granules to obtain the corresponding risk
assessment.

6 Conclusion

In this study, a data-driven framework is proposed to assess the
risks of earthquake-induced landslides using a semi-supervised
learning approach. The development of the proposed framework
consists of two phases: training the stacked autoencoder and
construction of fuzzy information granules. The stacked
autoencoder was trained using field landslide data, following an
unsupervised learning approach. The data vector was utilized as
both the input and output, and the mean squared error loss was
selected as the loss function for all training tasks. The deep patterns
within the dataset were effectively compressed into a central latent
space, and fuzzy information granules were constructed. The
boundaries in the latent space for all risk levels were optimized
and obtained.

The development of this framework was compared with that
of the different benchmarks in a case study area in Wenchuan
County, China. The computational results demonstrate that the
pre-trained stacked autoencoder can more effectively compress
deep data patterns into a low-dimensional space. A comparative
analysis based on the testing dataset demonstrated that the
information granules could cover most of the homogenous
data points in each subgroup. Additionally, stacked-
autoencoder-based information granules offer higher
accuracy, robustness, and specificity than other state-of-the-
art data structures. The proposed fuzzy information granules
based on the latent space of a stacked autoencoder are
promising for achieving satisfactory classification
performance, especially for earthquake-induced landslide
datasets, and can offer valuable suggestions to practicing field
geology engineers.
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Due to warm and humid air currents of the Indian Ocean and the southwest
monsoon, the Palong Zangbo catchment in southeastern Tibet has developed
oceanic glaciers in the valley, and the activity of glacial debris flows has been
gradually intensified under neotectonic activity, frequent earthquakes, climate
change, and extreme rainfall. In this paper, the topographic and morphological
data of the debris flow basin, the dynamic evolution characteristics of glaciers and
glacial lakes were analyzed by using multisource long-term series of remote
sensing images. Simultaneously, the distribution of moraines and landslide
sources were extracted based on satellite image. In addition, climate change in
the study area was analysed using temperature and rainfall data from the last
40 years, revealing that the average temperature in the study area from May to
October presented a fluctuating tendency as a whole, especially after 2013, when
the temperature gradually increased. As these temperature changes led to
continuous melting of the glaciers in the study area, the glacier area decreased
from 8,300 km2 in 1988–4,584 km2 in 2019, which decreased nearly 45%.
However, the number and area of glacial lakes in the study area gradually
increased under a power-law trend, which further led to a significant increase
on the possibility of glacial lake rupture in the study area. Due to the joint effects of
earthquakes, glacier melting and glacial lake collapse, the debris flows in the study
area were well developed, and a total of 122 debris flows were found with varying
channel lengths, areas andmaterial sources. Importantly, the characteristics of the
glaciers, glacial lakes and climate change in the study area have indicated that the
glaciers have retreated, the number of glacial lakes has increased, and the risk of
debris flow in this basin will increase in the future. Therefore, it is necessary to
strengthen monitoring and early warnings on floods due to glacial lake collapses
and debris flows in the study area to improve the risk management of debris flows
and floods and the prevention and mitigation of disasters.

KEYWORDS

glacial debris flow, glacial lake burst, climate change, debris flow activity, remote sensing

OPEN ACCESS

EDITED BY

Yunhui Zhang,
Southwest Jiaotong University, China

REVIEWED BY

Xun Huang,
Chongqing Normal University, China
Tong Shen,
Henan University of Urban Construction,
China
Huiran Gao,
Ministry of Emergency Management,
China

*CORRESPONDENCE

Liu Yang,
Yangliu00002023@163.com

RECEIVED 24 July 2023
ACCEPTED 08 November 2023
PUBLISHED 28 December 2023

CITATION

Yang L, Chuan T, Lingfeng G and Jiang X
(2023), The evolution of glacial lake and
glaciers and their potential impact on
glacial debris flow activity in the Palong
Zangbu catchment in Southeastern Tibet.
Front. Earth Sci. 11:1265852.
doi: 10.3389/feart.2023.1265852

COPYRIGHT

© 2023 Yang, Chuan, Lingfeng and Jiang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 28 December 2023
DOI 10.3389/feart.2023.1265852

66

https://www.frontiersin.org/articles/10.3389/feart.2023.1265852/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1265852/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1265852/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1265852/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1265852/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1265852&domain=pdf&date_stamp=2023-12-28
mailto:Yangliu00002023@163.com
mailto:Yangliu00002023@163.com
https://doi.org/10.3389/feart.2023.1265852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1265852


1 Introduction

The south eastern region of the Qinghai-Tibet Plateau is a
typical alpine canyon area in China with active oceanic glacial
activity (Wu et al., 2019). The area is characterised by a fragile
ecological and geological environment resulting from high-intensity
earthquakes, highland stress, strong tectonic activity and deep river
formation, and geological disasters such as rockfalls, landslides,
debris flows, ice avalanches and avalanches frequently occurring
in this area (Huang et al., 2021). According to the research, there
have been 430 watersheds which experienced debris flow in the
history of Nyingchi region. The highest frequency of debris flow
outbreaks reaches 21 times a year (Chen et al., 2011). In particular,
with climate change, the increasing melting glaciers and the glacial
lakes outburst have led to frequent glacial debris flow disasters in the
southeast of the Qinghai-Tibet Plateau (Liu et al., 2011; Wei et al.,
2018; Wang et al., 2014). Among them, the specific debris flows
induced by melting snow, glacial lake outbursts, and rainfall along
the Palong Zangbo River are extremely developed, which poses great
risks and threats to the Sichuan‒Tibet Highway, the Sichuan‒Tibet
Railway and the mountain towns along these routes (Cui et al., 2014;
Huang et al., 2021). Therefore, further analysis of the long-term
activity characteristics of glacial debris flows in the region is of great
significance for disaster prevention and mitigation.

As a fluid coupled with fluids and solids, the formation process
of debris flows is the result of the combination of steep terrain,
abundant material sources and strong hydrodynamics. The Palong
Zangbo Valley passes through the Jiali Fault Zone, where strong
tectonic uplift, river bank erosion and glaciation lead to steep
mountain slopes in the area (Huang et al., 2021). Particularly,
under the action of earthquakes, a large number of rockfalls and
landslides in the basin have been triggered (Chigira et al., 2010; Tang
et al., 2011). At the same time, strong freeze‒thaw cycles have led to
the storage of plentiful loose solid material in the watershed of the
region, especially with the melting glaciers, which have led to the
accumulation of a large amount of moraine in the channel,
providing sufficient material sources for the debris flow.
Numerous studies have been carried out on the shear failure
characteristics and stability of moraine soils (Xie et al., 2019; Fu
et al., 2021), which is of great significance on revealing the initiation
mechanism of glacial debris flows. However, the sources of materials
in the glacial watershed change with the melting of glaciers, resulting
in certain differences and dynamics in the outbreak characteristics of
glacial debris flows. Studies have shown that the development of
glacial debris flows is controlled by factors such as glacier thickness,
glacier area, lake area, rainfall intensity, temperature, watershed
area, source volume, and longitudinal grade of channels, among
which high temperature and rainfall are key factors to glacial debris
flow outbreaks (Yan, 2020). In addition, the Palong Zangbo Valley is
a highland thermal anomaly area (Huang et al., 2021), which directly
leads to the gradual melting of glaciers along the Palong Zangbo
River Basin, and abundant moraine provides a sufficient source for
the debris flows. With melting glaciers, the areas and water levels of
glacial lakes have increased (Li D. et al., 2021), and glacial lakes have
the potential to repeatedly burst (Yang et al., 2011a). For example,
from 1983 to 1986, there were multiple debris flows from glacial lake
outbursts in the Peilong gully, of which debris flows induced by
collapsing glacial lakes erupted in 1988 in the Midui gully, a barrage

lake was generated from the debris flow in the Guxiang gully in
1975 and 2005, then the Guxiang debris flow erupted due to lake
rupture, and the Tianmo debris flow was caused by ice and snow
meltwater and rainfall in 2007. Although the above studies about
Midui gully, Guxiang gully and Tianmo guly have clearly revealed
the initiation mechanism and activity characteristics of glacial debris
flows, with the gradual intensification of global warming. Research
on the relationship between dynamic laws of glaciers and glacial
lakes with the formation of debris flows is remain poorly understood
(Medeu et al., 2022; Racoviteanu et al., 2022), which further leads to
an insufficient understanding of the long-term activities of glacial
debris flows. Therefore, an understanding of the dynamic response
process between temperature change and glacial lakes, as well as the
dynamic changes in the development status of moraine due to
heating, is the basis to analyse the activity of glacial collapse
debris flows.

Impacted by the steep terrain, the ground surveys, UAV aerial
photography technology and laser scanning are difficult to monitor
the glacier changes on a large scale. Numerous previous studies
indicated that remote sensing and GIS can effectively monitor the
evolution of glaciers and glacial lake in alpine regions by identifying
information on glaciers and glacial lakes from satellite images
(Shrestha et al., 2016; Bajracharya et al., 2014). For example,
many researchers have monitored the long-term dynamics of
glaciers using high-definition remote sensing images (Bajracharya
et al., 2014). Simultaneously, the long-term evolution of glacial lakes
in Boqu in the central Himalayas were also monitored based on
satellite images (Chen et al., 2007; Wang et al., 2014; Zhang et al.,
2015; Nie et el., 2017; Li D. et al., 2021; Su et al., 2021). However,
although changes in glaciers and glacial lakes have been well
documented in the previous studies, the influencing factors of the
dynamic evolution of glaciers and glacial lakes are not fully
understood.

Importantly, with the gradual increase of glacial melting and the
water level of moraine lakes, flood events caused by glacial lake
ruptures have occurred frequently in recent years (Liu et al., 2014;
Riaz et al., 2014). More and more works have documented the chain
disaster events induced by changes in glaciers and glacial lakes (Yang
et al., 2011b; Cook et al., 2018; Li Y. et al., 2021; Shangguan et al.,
2021; Zhang et al., 2021). Obviously, understanding the response
relationship between temperature changes to glaciers and glacial
lakes and its impact on glacial debris flow activity will provide some
guidance for monitoring and providing early warnings on glacial
debris flows and preventing risk in the region. This is important for
disaster prevention and reduction under climate change. The main
purpose of this study is 1) analysis the dynamic evolution of glaciers
and glacial lakes; 2) understanding the influence of climate change
on evolution of glaciers and glacial lakes evolution; 3) revealed the
impact of glacier and glacial lake changes on the activity of glacial
debris flow.

1.1 Study area

The study area is located in the section from Ranwu to
Thongmai in the Palong Tsangpo Basin, mainly in Bomi,
Nyingchi (Figure 1). The study area is 16,021.12 km2, the highest
elevation is 6,650 m a.s.l, the lowest elevation is 2000 m a.s.l, the
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maximum altitude difference is approximately 4,650 m a.s.l, and a
large number of oceanic glacier gullies have developed upstream.
Glacial, alpine canyon, and river accumulation landforms are
extremely well developed. This area, located on the northern
Qinghai-Tibet Plateau, is at the junction of the northern Tibetan
and the Himalayan massif and is a typical deep alpine canyon. In
addition, the Jiali Fault and the Zamu-Maniwen Fault pass through
the study area (He et al., 2005). The geological structure around the
study area is extremely complex, and there is frequent seismic
activity in the area due to the activity belts of the Namtso-
Zhongsha, Jiali-Ranwu and Metuo structures. According to
previous researches, there have been as many as 9 strong
earthquakes with surface wave magnitude of 6.0 (Ms 6.0) or
above in the region in the past 60 years, and approximately
50 earthquakes of Ms 4.7 to Ms 5.9 magnitudes. One of the most
representative seismic events was the Ms 8.6 earthquake that
occurred in Chayu County on 15 August 1950.

Climatic conditions are the main triggers for geological disasters in
the region, and the study area has themonsoon climate of the temperate
semi-humid plateau in southeastern Tibet, which is affected by the
warm and humid air flow of the Indian Ocean and the southwestern
monsoon. The annual average temperature in the study area is 8.5°C,
and the lowest temperature is in January, when the average temperature
is approximately −0.2°C, while the highest temperature is in July, when
the average temperature is approximately 16.4°C. Overall, the highest
temperature of the year is 31 °C and the lowest temperature is −20.3°C.
The average annual rainfall is approximately 977.1 mm, and the rainfall

from March to October accounts for approximately 93.5% of the total
annual precipitation.

2 Data and methods

2.1 Sources and data processing

Tomonitor the dynamic changes in glaciers and glacial lakes in the
watershed of the study area over time, this study collected QuickBird,
IKONOS, SPOT-5 and Landsat images from 1988 to 2019. Table 1
shows that the QuickBird satellite image resolution is 0.61 m, the
SPOT5 image resolution is 2.5 m, and the IKONOS image
resolution is 1 m. The multispectral ETM+ and TM image
resolutions are 30 m. In addition, ASTER GDEM data measured by
the EARTH observation satellite Terra of NASA were collected with a
resolution of 30 m.

Subsequently, the collected remote sensing data were processed
by band combination, geometric correction, image fusion, image
mosaicking and cropping, based in ERDAS 9.2, ENVI 5.0 and
ARCGIS 10. Then, compared to the raw data, the geometric
accuracy, density, texture and tone information of the processed
images were significantly enhanced, improving the interpretation
accuracy and quality of the remote sensing images. Finally, the
evolution of glacier, glacial lake and their impact on glacial debris
flow activity were analysed according to the technical flowchart, as
shown in Figure 2.

FIGURE 1
Geographical map of the study area.
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2.2 Supervised classification and information
extraction

Regional reflection characteristics vary due to different textures,
compositions, and shading of materials on the surface; thus, materials
are shown in varying shades and shapes in remote-sensing images.
Based on these features, a supervised classification method has been
adopted to automatically extract the materials. In this region, glaciers
in bright white are mainly distributed above the alpine snow line, such
as in the ice bucket or inside the ice tongue (Figure 3A), and perennial
snow and ice, shown in white and covered by shadows, are mainly
distributed below the altitude of the formation glacier, on shady
mountain slopes, or in gently sloping areas with low amounts of
sunshine; in addition, glacial lakes in dark blue are generally
distributed in glaciers and in the lower parts of the perennial snow

and ice, and the terrain is relatively gentle (Figure 3B). To fully
understand the development characteristics of glacial snow and glacial
lakes in the study area, the samples were selected based on the
collected TM and ETM+ remote sensing images and the visual
interpretation of glaciers, glacial lakes and other geographical
features. Then supervised classification, a process of assigning a
class value to a set of grid cells in a raster GIS database based on
the values of similar grid cells that have been a priori classified as
representative of a class or group (Abburu and Golla, 2015; Merry
et al., 2023), was performed on the ENVI 5.0 platform to
automatically identify and extract the glaciers, glacial lakes and
snow of three remote sensing images from 1988, 2002 and 2010.

The limitation of using supervised classification for automatic
identification and extraction is that it incorrectly combines materials
with similar glacier features into the same category as mountain

TABLE 1 The information of data used in this study.

Data Time Spectral signature Resolution

QuickBird 14 November 2001, 25 November 2001, 19 November 2000, 12 February
2013 (Midui catchment)

RGB, NIR 0.61 m–0.72 m (Panchromatic), 2.44 m–2.88 m
(Multispectral)

IKONOS 30 April 2006 RGB, NIR 1 m (Panchromatic), 4 m (Multispectral)

SPOT-5 20 November 2001 R、G、NIR and VNIR-
SWIR

2.5 m (Panchromatic), 10 m (multispectral)

ETM+ 11 November 2002, 4 December 2002 SWIR 30 m (Panchromatic), 120 m (MWIR), 15 m
(Panchromatic)

TM 27 October 1988, 9 November 2010, 2 October 2010 SWIR 30 m (Multispectral), 120 m (MWIR)

GF 2019 VNIR 2 m

ASTER GDEM 2009 VNIR-SWIR 30 m

Rainfall and
temperature

1980–2020 — year

FIGURE 2
Technical flowchart in this study.
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shadows. Therefore, in this paper, two kinds of remote sensing
information of glacial lakes that were extracted by both
unsupervised and supervised classification methods were compared
and verified in the field, and then sifts and clusters of the remote
sensing information were determined by the supervised classification
method to remove and synthesise the small classification fragments to
obtain reliable and accurate results on the materials and to further
reveal the dynamic changes in glaciers and glacial lakes.

In addition, a large number of landslides have developed in the
debris flow basin of the study area, and abundant moraine material
with melting glaciers has also accumulated in the channel, providing
sufficient material for debris flows. Based on field investigation, this
study first constructed identification markers of debris materials,
moraines, debris flow accumulation fans and other landslides and
then combined them with high-definition remote sensing images
using the ArcGIS technology platform. A manual, interactive
interpretation of moraines was performed on the landslide
sources and accumulation fans in the debris flow basin, and the
source information of debris flow in the basin was constructed.

2.3 Extraction of historical rainfall and
temperature change characteristics

To analyse the effects of dynamic changes such as temperature,
rainfall and ground temperature on glaciers and glacial lakes in the
study area, the average monthly rainfall and temperature data of the
study area from 1988 to 2019 were collected. The data show that in
the study region, temperatures higher than 0 °C from May to
October were positively correlated with the melting of glacial
snow. Therefore, in this paper, the average temperature from
May to October each year was considered as the influencing
factor of or the reaction temperature to glacial snow melt.
Meanwhile, the average monthly rainfall in each year from
1988 to 2019 in the study area was also considered as the
influencing factor for interannual glacier and glacial lake dynamics.

Geothermal remote sensing inversion based on the radiation
transmission equation is a common method to obtain regional
geothermal data. Specifically, by this method, the thermal
radiation received by the sensor is inverted into the real ground
temperature after correction on the atmospheric radiation,
observation angle and amount of radiation on the specific surface
(Dash et al., 2002). The split window algorithm is the most common
technique for retrieving land surface temperature, in which the Qin
algorithm (Qin and Karnieli, 1999) can effectively retrieve the
surface temperature corresponding to any cell on the image. The
equations are as follows:

Ts � A0 + A1T4 − A2T5 (1)
A0 � 66.54067D4 1 − C5 −D5( )−62.23928D5 1 − C4 −D4( )[ ]/ D5C4 −D4C5( )

(2)
A1� 1+ 0.43059D5 1 − C4 −D4( )[ ]/ D5C4 −D4C5( ) (3)

A2 � 0.46585D4 1 − C5 −D5( ) +D4[ ]/ D5C4 −D4C5( ) (4)
Ci � εi.Ti θ( ) (5)
Ci � εi.Ti θ( ) (6)

where Ts is the surface temperature; T4 and T5 are the brightness
temperatures of thermal infrared channels 4 and 5 of the cells, with
K as the absolute temperature; εi is the specific emissivity in channel
i; and Ti(θ) is the atmospheric transmittance of electromagnetic
waves in channel i under the zenith angle θ of the sensor.

3 Analysis results

3.1 Temperature and rainfall dynamics

In glacial areas, temperature is key to the growth and ablation of
glacier formation, that is, temperature is a sensitive factor to dynamic
changes in glaciers. In this study, the rainfall and temperature
monitoring data were collected from a weather station. By
analysing the monthly average temperature data over the past

FIGURE 3
Glacier and glacial lake identification markers. (A) Glacier, (B) Glacial lake.
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40 years in the Palong Zangbo Valley, it was found that the
temperatures from May to October were higher than zero degrees,
which was conducive to glacier melting and the water level elevation
of glacial lakes. Thus, the average temperature of the above period was
analysed to reveal the dynamic changes. In Figure 4, the average
temperature variation in the study area in the period ranged from
5.5°C to 7.5°C over the past 40 years. Overall, the temperature in the
study area presented a growing increase in the first 4–5 years and then
continuously decreased in the following 4–5 years, that is, the pulsed
and dynamic temperature change presented in 4–5 years as a cycle.
However, the temperature significantly increased from 2012 to
2017 and then tended to rise slowly. This dynamic change in
temperature leads to some dynamic differences in the glacier ice
and snow cover area and the water level of the glacial lakes in the study
area, and it also has an impact on the ground temperature.

In Figure 5A, the geothermal variation ranged from −9°C to 46 °C
in the study area in 2002, which was mainly concentrated in the central
part of the study area, and the geothermal temperatures in the
northwest and southeast regions were relatively high. As the average
temperature from May to October in the study area increased from
5.8°C in 2002°C to 6.7°C in 2010, the maximum geothermal
temperature in the study area also increased to 53 °C (Figure 5B).
As the overall ground temperature increased, the range of low
temperature areas decreased. In 2013, the geothermal variation
range of the study area was from −12°C to 43°C, and the ground
temperature in the northwest region of the study area significantly
decreased, while the range of the low temperature in the central zone
expanded (Figure 5C). Until 2017, the minimum and maximum
ground temperatures were −10°C and 43°C, respectively
(Figure 5D). Compared with the previous period, the coverage of
the high temperature area increased significantly in 2017, and the low
temperature zones were distributed sporadically in the study region.
The dynamic differences in time and space between air temperature
and ground temperature further led to the dynamic variability of
glaciers and glacial lakes in the study area, which was conducive to
the development of glacial debris flows.

In addition, the average annual rainfall in the study area from
1980 to 2020 was mostly concentrated between 300 mm and 350 mm
and presented pulsed and dynamic changes (Figure 4), but it had
slight dynamic differences. However, before 2013, the rainfall and
temperature in the study area showed the opposite dynamic trend,
that is, the rainfall decreased gradually with increasing temperatures
over the years (Figure 4). However, in 2013, the rainfall and
temperature in the study area had the same dynamic change
trend; that is, the temperature increased with the growing rainfall
that year. With rising air and ground temperatures, the glacial
meltwater in the study area increased, while increased rainfall led
to further increases in runoff in the basin. Therefore, the risk of glacial
debris flows and debris flows due to glacial lake collapse in the study
area was further increased, and the landslide activity was enhanced.

3.2 Evolution of glaciers and glacial lakes

3.2.1 Dynamic changes in glaciers
The above analysis revealed that the air temperature, ground

temperature and rainfall in the study area changed dynamically over
time, which exacerbated glacial activity, resulting in dynamic
changes in glacial lakes and further affecting the glacial debris
flow activity to some extent. To reveals the dynamic differences
between glaciers and glacial lakes under the dynamic changes in
climatic conditions and ground temperature. The maximum
likelihood classifier in the ERDAS platform was used to supervise
the classification of glacial lakes. Simultaneously, the distribution
maps of glacial lakes in different periods in the study area were
obtained after cluster, filtration and removal analysis. In order to
enhance the accuracy of the supervised classification results, we
conducted visual interpretation and field investigations for
verification purposes (Figure 6), and the accuracy of automatic
classification results is approximately 97%, indicating that the
classification method used in this article is reliable. Figure 8
shows that the glacier coverage area of the study area in

FIGURE 4
Dynamic changes in temperature and rainfall in the study area.
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1988 was approximately 8,300 km2 and that the glaciers were mainly
distributed in the eastern and northern alpine areas of the study area
(Figure 7A). In 2002, the average temperature in the study area in the
period from May to August was as high as 5.76°C, which led to the
continuous melting of glacial snow in the eastern and northeastern
of the study area (Figures 7A,B), the glacier area decreased from
8,300 km2 in 1988–8,284 km2 in 2002, a decrease of 0.2% compared

to that of 1988 (Figure 8). From 2002 to 2010, the temperature of the
study area gradually increased overall (Figure 4), resulting in the
gradual melting of glaciers in most areas, and the glacier area
decreased to approximately 5,276 km2 (Figure 8), while the
geothermal data showed an increasing tendency in the eastern
and northeastern of the study area (Figure 5). As a result, the
glacier coverage in the northeastern and northeastern of the

FIGURE 5
Spatiotemporal difference in geothermal temperature in the study area.

FIGURE 6
Comparison of classification results and translation results. (A) Classification results, (B) Interpretation.
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FIGURE 7
Distribution characteristics of glaciers and glacial lakes during 1988–2019. (A) 1988, (B) 2002, (C) 2010, (D) 2013, (E) 2017, (F) 2019.

FIGURE 8
The dynamic evolution of glacial area.
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FIGURE 9
The long-term evolution of number and area of glacial lakes.

FIGURE 10
Dynamic response of temperature and glaciers and glacial lake. (A) The dynamic response relationship between temperature and glacier area, (B)
The dynamic response relationship between temperature and glacial lake area.
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study area decreased significantly from 2002 to 2010 (Figure 7C).
From 2010 to 2019, glaciers continued to melt in the southwestern
area, and the area decreased from 5,276 km2 in 2010–4,584 km2 in
2019 (Figures 7C–F; Figure 8), a reduction of approximately 13%.
This suggested that glacier melting has accelerated in this century.
Statistics on the glacier area in the past 30 years from 1988 to
2019 showed that as the global temperature has been gradually
rising, the glacier snow in the study area has been gradually melting,
and the glacier area has linearly decreased accordingly (Figure 8).

3.2.2 Dynamic changes in glacial lakes
The melting of glacial snow will inevitably lead to changes in the

number and area of glacial lakes in the study area. To study the
dynamic response of glacial lakes to air temperature and glacial snow
melting in the study area, based on the results of a supervised
classification and combined with ArcGIS statistical software, the
number and area of glacial lakes in each time period were
statistically analysed (Figure 9). The results concluded that in 1988,
there were approximately 280 glacial lakes occupying approximately
30 km2 in the study area. With the rapid melting of glacial snow, the
number and area of glacial lakes in the study area increased slowly
from 1988 to 2002, but there was a rapid increase from 2002 to 2017
(Figure 9), which was because since 2002, the average temperature in
the study area fromMay to October has shown a gradually increasing
trend overall (Figure 4). As the glacier retreated, some of the original
glacier cover areas formed glacial lakes, while the melting of glacial
snow cover led to a further increase in the water level of the previously
developed glacial lakes, resulting in a rapid increase in the number and
area of glacial lakes. From 2017 to 2019, the amount and area of glacial

lakes in the study area continued to increase steadily but slowly
(Figure 9), which may be because from 2017 to 2019, the average
temperature slowly increased in the period from May to October,
decelerating the melting of glacier snow. Meanwhile, the higher the
altitude is, the lower the temperature is, and the more slowly the
glacier melts. Therefore, with the rapidmelting of glacial snow in low-
altitude areas during the period, the number and area of glacial lakes
increased rapidly. However, the glacial snow in high-altitude areas
maymelt only at higher or extremely high temperatures; therefore, the
melting of glacial snow in high-altitude areas may slow down
gradually, as did the increase in the number and area of glacial lakes.

However, glacial snow in an ocean valley glacier is strongly
affected by the summer monsoon from the Indian Ocean and is
characterised by high accumulation and rapid melting. Although
slight climate change will cause the glaciers to greatly retreat or
advance, the number and area of glacial lakes in the study area
presented a power-law increasing trend in general (Figure 9). With
the growing area and water level of glacial lakes, the likelihood of
glacial lake rupture in the study area will gradually increase, which
will further induce glacial lake collapse debris flows.

3.2.3 The impact of temperature evolution on
changes in glaciers and glacial lake

Climate change is an important driving factor for the dynamic
changes of glaciers and glacial lakes. In order to analyze the response
of temperature evolution on changes in glaciers and glacial lake, the
average temperature, glaciers area and glacial lake area are used for
coupling analysis of their dynamic response relationships. Figure 11A
shows an opposite trend between temperature changes and glacier

FIGURE 11
Distribution characteristics of glacier debris flows.
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area changes, i.e., the average temperature gradually decreased
between 1988 and 2002, but the decrease in temperature leads to a
temporarily intensification of the glacier formation process.
Therefore, the glaciers area increased slightly during this period.
However, the average temperature increased after 2002, this leads
to continuous melting of glaciers, and the area of glaciers decreased
during this period (Figure 10A).

Inconsistent with the evolution of glacier area, the glacial lake
area generally increased between 1988 and 2017. However, as the
process of glacier melting intensifies, some glacial lakes experience a
process of collapse, and glacier degradation leads to the loss of water
supply to glacial lakes. These have led to the disappearance of some
glacial lakes in the study area, and the area of glacial lakes has
gradually declined after 2017 (Figure 10B).

3.3 Characteristics of debris flow

With climate change glacier snow has melted at an accelerated
rate, and glacial debris flows in the Palong Zangbo Valley have
become more active. The debris flow visual interpretation of
remote sensing images is mainly based on the extraction of the
watershed, distribution of loose solid material, erosion
characteristics of the channel and the morphological characteristics
of the accumulation fan. Remote sensing images combined with field
surveys have detected 122 debris flow basins along the Ranwu to
Tongmai section of the Palong Zangbo River, including 58 on the
right bank and 64 on the left bank (Figure 11). Impacted by the
climate change, debris flows frequently break out in these regions,
causing serious damage to infrastructure. For example, a catastrophic
debris flow in theMidui basin was trigged by the glacier collapse surge
in 1988. Field investigation found that the maximum discharge of
debris flow is about 1,000 m3/s. A total of 18 bridges and G318 road
were destroyed by this debris flow. In addition, the debris flow widely
occurred in Guxiang basin after 1955, and the G318 road frequently
destroyed by the Guxiang debris flow.

Additionally, Figure 12 shows that the area of debris flow in the
study area varied from 1.24 km2 to 319.13 km2, among which debris
flows with a drainage area of less than 50 km2 accounted for 84% of the
total and were mainly concentrated in the western part of the study area.
With the increase on the watershed area, the channel length also
increased (Figure 13). Figure 13 shows that the range of the channel
length of the debris flow in the study area was between 1,500 m and
35,000m. Only 25% of the watersheds had a channel length longer than
7,000 m, and watersheds with longer channel lengths were mainly
developed in the southeastern part of the study area. In addition, the
area is located in southeastern Tibet, where geological tectonic activity
is relatively active. In addition to triggering a large number of
coseismic landslides, earthquakes have also formed a large number
of damaged mountains. Under the action of rainfall, many shattered
mountains gradually became unstable and formed post-earthquake
landslides. Therefore, according to the interpretation results of the
remote images, landslides are well developed in the study area, but
there are significant differences in the development of landslides for
watersheds. Figure 14 shows that the landslide coverage area was
generally less than 1 km2 in a watershed area under 25 km2, but the
landslide coverage area increased linearly with the outbreak of large
landslides in the basin and the increasing watershed area, which may
be because with the increase in the watershed area and the melting of
glaciers and snow in the middle and upper reaches of the watershed,
the free face is more developed, and at the same time, with the
intensification of freeze‒thaw cycles and glacier erosion, some slopes
become unstable and form landslides. Of course, as the glacier
gradually retreats, the released moraine also gradually increases.
Figure 15 shows that approximately 70% of the watershed’s

FIGURE 12
Area of the debris flow watershed.

FIGURE 13
Channel length in the debris flow basin.

FIGURE 14
Landslides in each basin.
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moraine coverage area was under 2 km2, but the moraine coverage
increased linearly with increasing watershed area. Figure 11 shows
that most of the moraine accumulated in the middle and upper
reaches of each basin and themorainewas well developed in the debris
flow basin in the southeastern part of the study area.

In addition, the interpretation results of highly accurate remote
sensing images show that the development areas of moraine and
landslides in the debris flow basin were 117.79 km2 and 84.63 km2,

respectively, accounting for 3% and 2% of the debris flow basin area,
respectively. This suggests that although the moraine covers a small
area, field investigations have found that the moraine is thicker and
more developed than the landslide and is the main component of the
glacial debris flow provenance. Meanwhile, Figure 11 reveals that the
moraine on the left bank of the Palong Zangbo watershed is well
developed, indicating that the glacial activity on the left bank is stronger
than that on the right bank. In addition, the rock mass in the study area
is fragmented under the action of geological structures such as the Jiali
fault. More importantly, the joint plane in the rockmass is continuously
infiltrated and freeze‒thawed by the combined influence of glacier
meltwater and rainfall, resulting in the ice splitting effect and increasing
the joint. With the cycle of freezing and thawing, the surface rock mass
is completely disintegrated and destroyed, forming fragments and sand
grains. These freeze‒thawed and weathered detrital materials roll down
the slope to the channel to form accumulation cones or ice-water
accumulation fans at the foot of the slope after being washed away and
transported by the ice and snowmeltwater, which provides an abundant
source of loose debris for debris flows and constitutes the source of
debris flow activities.

It is concluded that with increasing temperature, the melting of
glaciers and snow has accelerated, which has led to the increasing
moraine in the debris flow basin in the study area. Then, due to the
effects of earthquakes and freeze‒thaw cycles, the amount of
landslide material and weathered debris in the study area

FIGURE 16
Active characteristics of glacier debris flow in the study area. (A)Moraines are exposed and transformed to channel, (B) Debris flow induced by flash
floods, (C) Breaked glacial lake of Midui, (D) Large amounts of channel material carried by debris flow.

FIGURE 15
Moraines in the debris flow basin.
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increased, that is, the more abundant the debris flow source was in
the study area, the higher the possibility of debris flow.

4 Discussion

Debris flow is one of the important disasters in glacier and seismic
disturbance area, but the trend of debris flow activity is not consistent.
In earthquake impacted area, sufficient landslide materials with poor
consolidation impact the debris flow activity (Tang et al., 2011).
Therefore, the richness of materials and rainfall have important
impact on debris flow activity in the seismic disturbed area.
However, the landslide activity in the seismic impact region
gradually decreased over time (Chen et al., 2020), resulting the
supply capability of the slope landslide material to the channel
weakens (Xiong et al., 2021a). Therefore, the debris flow activity in
the earthquake impacted area gradually decayed over time (Xiong et al.,
2021b). In consistent with seismic impact area, the average temperature

in the study area generally increased from 5.5°C to 7.5°C over the past
40 years (Figure 4). This leads to an overall intensification of the glacier
melting process, and the glacier area shows a linear decay trend
(Figure 7). Importantly, as the glacier melts, moraines are exposed
from the glacier and transferred from the slope to the gully
(Figure 16A), which supply sufficient materials for debris flow
occurrence, i.e., the melting of glaciers will lead to the increase of
moraines, thus providing sufficient material sources for debris flows,
which causes the richness ofmaterials for debrisflow in our study area is
gradually enhanced, this is inconsistent with earthquake impact regions.
Subsequently, the strong rainfall induced flash floods to erosion the
channel deposits and form debris flow (Figure 16B).

Additionally, as the ample amount of glacial snow melts, the
number and area of glacial lakes gradually increased followed a
power law in the study area (Figure 9). The melting of glaciers
may cause the water level of glacial lakes to increase, enhancing
the risk of glacial lake outburst, this can be supported by field
investigation and previous studies (Chen et al., 2017; Liu et al.,

FIGURE 17
Sediment surveys in the (A) Midui gully, (B) Peilong gully and (C) Tianmo gully.
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2014). For example, a glacier lake in Midui basin break in 1988
(Figure 16C), and the water level of the glacial lake dropped
rapidly by 25 m. Indeed, the flood induced by glacial lake break
will carry large amounts of channel material to forms debris flows
(Figure 16D). Importantly, the intensification of glacier melting
process will lead to the increase of river flow and erosion capacity,
and the coupled glacial lake outburst will lead to the increase of
hydrodynamic conditions of debris flow. That is, the activity of
glacier debris flow is affected by multiple factors and is more
complicated than that in earthquake area.

Thus, the activity of glacial debris flow in our study area will
increase in the later period, this is not consistent with earthquake
impact area. The above conclusion could be verified from field
investigations, such as the debris flow first recorded in 1953 in the
Guxiang gully, which has been extremely active for the past 20 years
and has evolved frequent debris flows since then (Hu et al., 2011). In
addition, field surveys have verified that the moraine, weathered
sediment, ice water sediment, and channel sediment in the Midui
gully (Figure 17A), Peilong gully (Figure 17B) and Tianmo gully
(Figure 17C) are well developed. Therefore, the debris flow occurred
in these basins in recent years.

5 Conclusion

Glaciers, which are extremely sensitive to climate change, could
reflect climate change and play an important role in predicting debris
flows in alpine and high-altitudemountains. The Palong Zangbo Valley
region in southeastern Qinghai-Tibet is a typical marine glacial area in
China in which mountain disasters such as flooding induced by glacial
lake outbursts and debris flows occur frequently. Through the collection
of temperature and rainfall data in the Bomi area over the past 40 years,
it was shown that the annual rainfall in the region did not differ greatly,
but the temperature has shown a fluctuating trend with a slow growth,
especially in recent years. Additionally, the results of geothermal
inversion in the study area revealed that the geothermal temperature
varies greatly in different regions. These changes have further
accelerated the melting of glacial snow in the southern and
southeastern parts of the study area. The glacial area has shown a
linear decay trend over time. With the melting of glacial snow, the
number and area of glacial lakes in the study area as a whole increased
significantly with the power-law trend, the water level of some glacial
lakes rapidly rose, and the risk of glacial avalanche increased, as did the
possibility of glacial lake collapse. With the melting of glaciers and the
collapse of glacial lakes, the debris flow in the area became more active,

and glacial debris flows have occurred in channels of varying lengths,
basin areas and sources, indicating that the debris flow activity was quite
different in the region. More importantly, in recent years, with the
combined effects of glacier melting, earthquakes and ice avalanches, the
risk of debris flow in the study area has increased. Therefore, to
effectively reduce the losses and risk caused by debris flow disasters,
it is necessary to strengthen monitoring efforts and early warnings of
glacial debris flow in the region.
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Research on optimization of
approach procedures for airports
in an alpine environment

Li Lu*, Xin Lai, Junliang Jiang and Juncheng Zhou

School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan, China

Obstacles in alpine environments pose significant challenges to aircraft safety
during terminal operations. Key challenges include constraints from obstacles
within the terminal clearance area and the labor-intensive manual calculations of
flight procedures. The focal point of concern lies in the design of approach
procedures, particularly due to the heightened risk of collisions with obstacles
during the descent segment in such terrain. To address these challenges, initially,
this paper proposes processing the terrain data and visualizing and extracting the
topographic data of the alpine airport by adopting a bi-cubic b-spline
interpolation and cellular automatic machine model. Then, the paper
proposes improving the A* path algorithm to make sure it can obey the
standards of flight procedure design, utilizing the improved A* path algorithm
to design approach procedures. As fuel consumption is directly connected with
the economy of aviation companies, this research finally suggests employing the
fuel consumption evaluation model to select the most efficient approach flight
procedures. This research takes a case study of a Yunnan airport and simulates
and designs the optimized approach procedures by A* path algorithm and
evaluation based on fuel consumption. Results indicate that the parameters of
optimized approach procedures align with the regulation of flight procedure
design and meet the requirements of real flight operation. Therefore, the core
tenant of this research can provide a feasible idea for flight procedures with alpine
airports and has the potential to reduce workload and enhance
operational efficiency.

KEYWORDS

airports in alpine environment, terrain data processing, approach procedures, improved
Ap algorithm, fuel consumption evaluation

1 Introduction

When an aircraft is flying over towering mountains, there exists a constant risk of
collision with the terrain. The western regions of China are predominantly rounded with
mountainous areas, which means that the profile changes of terrain elevation exceed 900 m
(3 000 ft) within a distance of 18.5 km (10.0 NM). Despite this, the tourism industry in these
regions has always flourished; therefore, it is imperative to develop the aviation
transportation in these alpine areas. Currently, the flight procedures of alpine airports
confront limitations arising from the extensive reliance on manual design and calculation
for obstacle clearance height. Consequently, it is necessary to solve the problem of the
presence of numerous obstacles during aircraft departure and arrival in these mountainous
terrains, and replace the manual workload with intelligence methods.
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The approach segment, as a critical period within the entire
flight phase, is considered pivotal due to the numerous potential
hazards that aircraft may encounter. When the aircraft descends
during the approach segment, the pilot’s attention is highly
concentrated on the aircraft’s landing configuration, aligning
with the runway, or descent gradient requirements, and other
operational procedures. Because of this, when approaching the
complex alpine environment, it is easy for aircraft to collide with
the mountain. Therefore, flight procedure design (DOC8168)
serves as a primary foundation for airport safety operations.
However, the manual calculations are prone to errors and some
mistakes, so intelligent approach procedure design has become a
focal point for research, especially in situations where terrain is
complex (Rahim and Malaek, 2007; Liu et al., 2018).

The authors of this research have done some work in 2022 to
optimize approach trajectories (Lu and Liu, 2022); in this paper,
they will continue to address the optimization of approach
procedures in alpine environments. Drawing upon the
standards of Performance-Based Navigation procedures design
(ICAO), an algorithmic model serves as the foundation for
formulating approach flight procedures in alpine airports.
Leveraging MATLAB software facilitates the design and
simulation of these procedures, producing approach flight
trajectories. Through an evaluation framework that considers
fuel consumption, the approach procedures are optimized to
offer a dependable solution for enhancing the manual calculation
and design of approach flight procedures. This optimization not
only contributes to increased safety but also provides valuable
ideas for augmenting airspace utilization in alpine terminal areas
(Malaek and Kosari, 2007; Lu, 2019).

Based on the former considerations, this research will start with
the perspective of secondary improvement of the A* algorithm and
conduct simulation research on the approach flight procedures of
mountainous airports. The holistic idea of the paper is shown
in Figure 1.

2 State of arts

Experts and scholars have conducted extensive research on
instrument flight procedures design, using safety assessment and
simulation in the early stages. In 2015, Qian Ge adopted the ant
colony algorithm to design and improve the departure and arrival
procedures of Lanzhou airport, and conducted optimization evaluation,
providing a good method for further procedure design (Qian, 2015). In
2017, ZhaoQian conducted an optimization evaluation of the approach
segment of the flight procedures based onGIS software (Zhao, 2017). In
2018, scholars such as Chen Shaoqian used the A* algorithm to
optimize flight trajectories based on thumbnails (Chen et al., 2019).
In 2019, Tang Li and others used an improved ant colony algorithm to
simulate unmanned aerial vehicles transporting disaster relief materials
inmountainous areas (Tang et al., 2019). The above research has laid an
important foundation for the subsequent research of path optimization
algorithms to solve civil aviation operation problems.

Scholars both domestically and internationally have conducted
significant research on the visualization of three-dimensional terrain.
In 2015, scholars such as Plat N combined the Kriging interpolation
method with LiDAR to calculate the average elevation values of terrain,
thus obtaining more accurate terrain elevation values (Plat et al., 2015).
In 2016, Zhao Qian used C language to program ArcGIS software for
grid simulation of three-dimensional terrain in the field and combined
the advantages of A * and Dijkstra algorithm to explore the optimal
trajectory in complex environments (Zhao, 2016). In 2017, scholars
such as He Shan used DLG interpolation to simulate three-dimensional
terrain, providing a reference for selecting DEM data to simulate three-
dimensional elevation terrain (He et al., 2017). In 2018, scholars such as
Yuan Wei established a grid terrain elevation map using V parallax,
which has important significance for the accurate expression of terrain
visualization (Yuan et al., 2018).

Experts in the aviation field have conducted in-depth research
on the calculation and evaluation of flight fuel consumption. The
calculation of flight fuel consumption not only saves costs for

FIGURE 1
Flow chart of the research idea.
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aviation operators from an economic perspective, but also serves as
an important reference for flight trajectory optimization evaluation.
In 1982, Bela P. Collins adopted the principle of energy conservation
for fuel consumption assessment. This method evaluated and
predicted fuel consumption by calculating parameters such as
thrust and speed. This method was a cornerstone for subsequent
research (Collins, 1982). In 2010, Wang Changkun provided ideas
for calculating fuel consumption based on multiple linear regression
analysis; results show that this method can correctly obtain the value
of fuel consumption (Wang, 2010).

The above research provides important ideas for this research,
but more work is needed to design flight procedures with
intelligence algorithms, especially approach procedures. This is
because, due to the steep terrains around the alpine airports,
uncontrollable factors can easily occur, for example, it can result
in collision during approach flight. In addition, the difficulty of
manual design means the research is urgent.

3 The processing of terrain

3.1 Visualizing of terrain

To design the approach flight procedures for alpine airports,
data on the surrounding terrain is needed. It is necessary to acquire
the basic information of the airport, such as the magnetic direction

of the runway and the clearance conditions of airport. The most
important consideration is the surroundings of high natural
mountains that can pose a safety hazard to aircraft operation. It
is then necessary to execute to visualize the terrain, finally extracting
terrain height data (Campos et al., 2016).

In order to visualize the three-dimensional terrain of the airport
terminal area, equidistant sampling of the terrain is necessary to
further apply the corresponding visualization algorithm. In this
research, bi-cubic b-spline interpolation is used, as its simulation
difference has lower noise performance, better continuity, and
higher smoothness.

Bi-cubic b-spline interpolation is based on b-splines to perform
interpolation calculations on any two directions of a spatial surface,
resulting in better local deformation and better locality and
continuity of the graph. The principle of this method is to
calculate pixel values in units of 16 control points, which can be
written in a matrix form as shown in Formula 1:

s �
s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s43

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Firstly, each row of control points is interpolated. Thematrix has
four columns of row vectors, so four columns of b-spline
interpolation curves can be obtained. The expression can be
written as a formula, as shown in Formula 2:

FIGURE 2
The saddle surface simulation.
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fi s( ) � ∑3
j�0
pk × Bj,3 s( ) × Sij, i � 0, 1, 2, 3 (2)

Among them, pk represents one of the control points Bj,3(s) is the
b-spline cardinality. The control point matrix has four rows and four
columns, and the four-row b-spline interpolation cardinality
expression has four forms, as shown in Formula 3, 4; Formula 5, 6:

B0 s( ) � 1 − s( )3/6 (3)
B1 s( ) � 3s3 − 6s2 + 4( )/6 (4)

B2 s( ) � −3s3 + 3s2 + 3s + 1( )/6 (5)
B3 s( ) � s3/6 (6)

Among them, the values of s are between 0 and 1. Since the bi-
cubic b-spline interpolation method interpolates in two directions
simultaneously, assuming these two directions, it can be written as
two directional vectors: and. Therefore, the cubic spline
interpolation expression in the direction can be written as a
matrix, as shown in Formula 7:

P u( ) � 1
6

−1 3 −3 1
3 −6 0 4
−3 3 3 3
1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u3

u2

u
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p0

p1

p2

p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(7)

Due to the continuous changes between 0 and 1 after weighting,
the values in the other direction v also continuously change between
0 and 1. From the above results, the bicubic b-spline interpolation

matrix of the three-dimensional surface can be obtained, as shown in
Formula 8:

P u( ) � 1
6
B3,i v( )

p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦BT
j,3 u( ) (8)

Using the bi-cubic b-spline interpolation method to simulate the
saddle surface, as shown in Figure 2, it can be seen that the error
accuracy of the saddle surface effect simulated by the bi-cubic b-spline
interpolation algorithm reaches 0, with good continuity performance;
this method can be used for simulation research on continuous terrain.

The following terrain figure is a visual simulation of
mountainous terrain by taking an example. MATLAB is used to
simulate the sampling terrain points combined with the bicubic
B-spline interpolation method; the three-dimensional terrain and
two-dimensional contour map of the mountainous area are shown
as Figures 3, 4. It can be seen that the terrain and topography of the
mountainous area can be well performed.

3.2 Extraction of terrain data

After presenting the terrain in three-dimensional format, it is
necessary to do grid processing of the terrain to extract terrain height
and position information, making it more convenient for outputting
approach procedures and identifying terrain obstacles. This study uses
the Cellular Automatic machine model to process grids. For example, if

FIGURE 3
Three-dimensional terrain display.
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the cell is assigned a value of 1, the grid can pass at the next moment,
indicating that there are no obstacles at the previous moment. If the cell
is assigned a value of 0, the grid is not accessible at the next moment,
indicating that there were obstacles at the previous moment.

The more grids the model selects, the more accurate the simulation
results will be. When using a cellular automatic machine to process
terrain, each grid contains four pieces of information: longitude, latitude,
terrain elevation, and traffic status. This research selects three-dimensional
Cartesian coordinates: X (longitude), Y (latitude), Z (terrain elevation),
and 0–1 (traffic status, 1 means that the obstacles in the grid can pass
through at this moment) (Kozmus Trajkovski et al., 2020).

After obtaining the terrain of the airport terminal area, the
matrix with terrain elevation Z is shown in Formula 9; n*n means
the number of grids (Lee and Shim, 2014).

Z �

h11 h12 / h1n
h21 h22 / h2n
· · · ·
· · · ·
hn1 hn2 / hnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Among them, h represents the terrain elevation information that
is contained in every cellular units. The larger the number of grids n,
the higher the accuracy.

3.3 The minimum stabilization distance

The design scope of the approach flight procedures involves the
whole area of the terminal airport (Chandra et al., 2016). After the terrain
is processed to grids, it is necessary to select the relatively low terrain area
as a feasible area for setting the waypoint. When the flight segment
distance is not less than the minimum stabilization distance (MSD), it is
necessary to ensure that the aircraft has sufficient margins to cut into the
next scheduled flight segment. Therefore, this study uses MSD as a
constraint when selecting a waypoint. If there are two way points on one
trajectory, theminimumdistance between them is equal to the sumof the
MSDof all segments (ICAO, 2014). In general, theMSDof way points in
different situations can be obtained by referring toDOC8168, because the
turning angle of an aircraft is always less than 120°, so the relationship
between the speed of the aircraft and MSD can be shown as in Table 1:

FIGURE 4
Contour map.

TABLE 1 The minimum stabilization distance (maxed changing angle 120°).

Speed (km/h) >or = 300 >or = 320 >or = 340 >or = 360 >or = 380 >or = 400 >or = 440 >or = 480

MSD (km) 3.2 3.4 3.9 4.3 4.7 5.2 6.3 7.4
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For example, if the flight speed is less than 400 km/h, the MSD at
one two way point is 4.7km, so the MSD between the two way points
will be double, which is 9.4 km. Therefore, we use amethod that draws a
circle with the current position as the center and is no less than theMSD
as the radius to find a feasible region, when the aircraft is at an airport or
a certain waypoint, as shown in Figure 5. Then, a certain altitude is set to
limit the terrain obstacles on the circumference, and a relatively low
terrain area as a feasible region is selected and marked in green, as in
Figure 5. This can allow the selection of the most suitable waypoint
within the feasible regions, and the parameters can show the flight
procedure design requirements.

4 Approach flight procedures design
algorithm and optimization
evaluation model

4.1 Approach flight procedures
design algorithm

The most important element in designing an approach
procedure for alpine environments is defining a suitable
algorithm or model to do the movement path plan. The
movement of an object seems to be very simple, but it is actually
very complex. Many scientific researchers have been exploring and
improving various path optimization algorithms. In 1959, Dutch
computer scientist Dijkstra studied vector path maps and developed
the Dijkstra algorithm. Later, heuristic algorithms were added to the
A-Star (A*) algorithm to scientifically process the optimal path
results based on the Dijkstra algorithm (Hentzen et al., 2018; Dunn
and Shultis, 2022).

For static environment path planning, A* and Dijkstra
algorithms are usually used; Dijkstra is also used for dealing with
partial problems and is suitable for non-direct graphs. Conversely,
A* is more suitable for directed graphs and is specifically designed

for overall path optimization. As for this research, the mountains in
alpine environments are a static obstacle, so the design of the
approach trajectory should automatically find all the areas of the
alpine terrain to define the best result. Therefore, in this research, an
improved A* algorithm was selected to solve the background
problem mentioned before (González-Arribas et al., 2019).

The classical model of the A* algorithm is to compare various
nodes and then add the compared nodes to the path library. The
mechanism for finding the path in each step can be seen as a
function guide. Based on this, the A* algorithm can be written as
Formula 10:

FIGURE 5
MSD used in feasible regions definition.

FIGURE 6
Manhattan distance display.
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F n( ) � G n( ) +H n( ) (10)
The relationship between F(n), G(n), and H(n) is not a real

additive relationship, as shown in Formula 10. F(n) represents
the total path from the starting point to the destination by using
the A* algorithm; G(n) is an evaluation function representing the
displacement generated from the starting point to the
destination, every displacement between grids is 1, and the
farther the destination is from the starting point, the larger
the displacement is. H(n) represents a heuristic guidance
function: if the heuristic function is 0, the A* algorithm is
equivalent to the Dijkstra algorithm, and different heuristic
functions produce different path algorithm results. The weaker
the heuristic function, the more nodes the A* algorithm
generates, resulting in a longer operation time. When the
number of steps required between the starting and destination
points is exactly equal to the heuristic function, the optimal
solution is generated, and its function is to preset the direction
of the path.

4.1.1 First improvement of the A* algorithm
The difference between the A* algorithm and other path

algorithms is that it contains heuristic functions, which can be
divided into various types. The commonly used distances include
Manhattan distance and Euclidean distance. These two distances
take different paths with obstacles. The following introduction will
compare in detail the two heuristic functions andnd make an
improvement on the A* algorithm by resetting the heuristic
function if necessary (Hongyan et al., 2021).

The Manhattan distance is the default heuristic function of the
A* algorithm, which is shown as Formula 11, but its optimization
idea is only to find the next point with the shortest step compared to
the previous position.

FMan n( ) � ∑n
i�1

xi − xi−1( ) + yi−yi−1( )∣∣∣∣ ∣∣∣∣ (11)

Euclidean distance is also a commonly used heuristic function,
which is shown as Formula 12, and its optimization idea is to refer to
the whole process, which is from the starting point to the final
destination, using the Pythagorean theorem as a model to define the
shortest distance to reach the destination.

FEuc n( ) � ∑n
i�1

�������������������
xi − xi−1( )2 + yi−yi−1( )2√

(12)

In this part, a simple obstacle avoidance simulation can be
conducted using Matlab for these two heuristic functions
respectively. Firstly, grid processing to the terrain is carried out
to obtain terrain data and set up the obstacles. The next step is to
program the A* algorithm; after running, the software can
automatically find the shortest path from the starting point to
the ending point. The black blocks represent the obstacles and
the green block represents the starting point. From the
simulation results, it can be seen that the A* algorithm for

FIGURE 7
Euclidean distance display.

FIGURE 8
Way points of every step.
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Manhattan distance only considers the shortest distance of each
step, shown as Figure 6, while the Euclidean distance considers the
optimal path of the entire simulation field, shown as Figure 7.

Based on the above analysis, the first improvement of the A*
algorithm is to set the heuristic function to Euclidean distance, and
select the next way point among the eight 3 dimensional grids
around the coordinate field, as shown in Figure 8.

4.1.2 Second improvement of A* algorithm
The A* algorithm needs to meet the DOC8168 operational

standards to obtain the optimal path. However, in practical
situations, obstacles in mountainous airports pose a threat to
flight safety. In order to seek the optimal approach trajectory, the
A* algorithm needs to be further improved to meet the obstacle
clearance rules of the flight procedure design (Hasegawa et al., 2015).

Each grid contains information on approaching aircraft, such as
height, position, gradient, and time. Therefore, the requirement for
obstacle avoidance needs to meet two key conditions. The first key
condition is that the highest obstacle in each grid will be seen as the
controlling obstacle, which will control the minimum flight height of
each segment, so the aircraft height will be measured by the
controlling obstacle, which can be depicted as Formula 13:

H0 ≥ hobs +MOC (13)

Here, the minimum obstacle clearance is MOC, Ho represents
the height of the aircraft, and hobs represents the height of the
controlling obstacle in the grid area.

As to the approach procedure, the flight trajectory still needs to
meet the descent gradient, that is, Hpnext represents the altitude of
the controlling obstacle in the next grid, the current aircraft altitude
is Ho, and the distance between two near grids is d. The relationship
between them is shown in Formula 14.

HPnxet +MOC −H0

d
� Gr (14)

The maximum Gr of the approach flight program shall not exceed
8% in the initial approach segment, with an MOC of 300 m and a
maximum turning angle of 120°. The maximumGr of the intermediate
approach segment shall not exceed 5.2%, the MOC shall be 150 m, and
the maximum turning angle shall not exceed 30°. The maximum Gr of
the final approach segment shall not exceed 6.1%, with aMOC of 75 m,
consistent with the runway center line (Paveen et al., 2020).

4.2 Fuel consumption evaluation model

The trajectories of approach can be easily obtained using the
improved A* algorithm; how to select the most optimized approach

procedures will be addressed in this step. The consumption of fuel
affects the operating costs of airlines, what’s more, the further
aircraft fly, the more fuel is consumed, and the higher the risk of
delay to the next flight phase. Therefore, using fuel consumption to
analyze the feasibility of approach trajectory is the best. This
research compares the fuel consumption of different approach
procedures as the main evaluation factor. However, fuel
consumption is related to various factors, such as flight altitude,
speed, different flight segments, and number of engines (Olmstead et
al., 2002).

During the aircraft approach process, gravity provides the forward
force for the aircraft during the descent period, and the approach
segment can be considered as a continuous descent. Referring to the
BADA manual (Thomas et al., 2004; Clarke et al., 2006), a function of
the fuel flow rate for a single engine per unit time and flight altitude can
be shown as in Formula 15:

fapp t( ) � Cf3 × 1 − h

Cf4
( ) (15)

Among them, Cf3 and Cf4 is the fuel consumption coefficient in
the descending section (unit: kg/min *N), as shown in Table 2 h
represents the standard sea level pressure altitude (in feet) at the
current position of the aircraft (Zeh et al., 2020). If N represents the
number of engines installed on a certain type of aircraft, the total fuel
consumption of the aircraft from time t0 to time t1, according to
BADA manual, the total fuel consumption of the approach segment
can be expressed as Formula 16.

Q t( ) � ∫t1

t0

f t( ) ·Ndt (16)

Due to the fact that the fuel flow rate per unit time during the
descent segment is related to the altitude of the aircraft, conversion is
required. The conversion between time t and altitude h for aircraft
can be written as in Formula 17:

dh � −grds

ds

dt
� vTAS

⎧⎪⎪⎨⎪⎪⎩ (17)

Among them, s represents the flight displacement and gr
represents the descent gradient of the aircraft. The relationship
between them can be obtained by Formula 18 after
transformation.

dh

dt
� − 1

gr
× vTAS (18)

By solving differential Eq. 18, the relationship between aircraft
altitude and time can be obtained as shown in Formula 19:

TABLE 2 The fuel consumption coefficient.

Fuel consumption coefficient Reference

Cf3 26.805

Cf4 45700

If N represents the number of engines installed on a certain type of aircraft, the total fuel consumption of the aircraft from time t0 to time t1, according to the BADA, manual, can be expressed as

in Formula 16.
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h � h0 − 1
gr

× vTAS × t (19)

Here, Ho represents the initial altitude of the aircraft during the
descent segment.

With the transformation, the whole fuel consumption of the
approach procedure can be depicted as in Formula 20:

Qapp h( ) � ∑n
k�1

∫hkj

hki

fapp t h( )( ) ·N · − gr

vTAS
( )dh (20)

Through the aforementioned fuel evaluation formulas, the
comprehensively optimal approach procedure can be determined,
since the formulas are associated with flight distance s, flight altitude
h, flight time t, and descent gradient gr during the conversion process.
The evaluation also covers a wide range, demonstrating good feasibility.

5 Case study

This section builds upon established optimization algorithm
theories to study practical airport cases, employing MATLAB for

the simulation and design of the airport’s approach flight
procedures.

This research takes one airport in the mountainous area of
Yunnan as a case study. The elevation of this airport is 863m, the
magnetic direction of the runway is 045° and 225°, and the length
and width are 2600 * 45 (m). The airport is located in a valley,
surrounded by high mountains 5 km away, with a magnetic
direction of 072° relative to the airport reference point. At a
distance about 40 km, there are obstacles with elevations of
3000 m, 2326 m, 2229 m, and 1686 m in the area. Therefore,
when designing the approach procedures manually, it is difficult
to overcome natural mountains. Therefore, this research will adopt
intelligence modeling for simulation testing.

For the terrain data of 60 square kilometers around this airport,
equidistant sampling points were conducted, as shown in Table 3,
where the terrain data have been adjusted and modified.

Firstly, using the bi-cubic b-spline interpolation method for 3D
modeling and simulation, the airport coordinate points are (0,0),
and the approach points are B and P way points. According to
Figures 9, 10, it can be seen that this airport is located in a
mountainous terrain similar to a canyon, and the ups and downs

TABLE 3 Equidistant sampling points of the practical terrain (in meters).

Altitude(m) (km) x = −30 km x = −20 km x = −10 km x = 0 km x = 10 km x = 20 km x = 30 km

y = 30 1400 2084 1216 1346.2 1489.8 1786 1985.8

y = 20 1100 1610 1320 1635.5 1280 1606 1890

y = 10 1450 1780 1310.7 1230 997.3 2198.4 2130

y = 0 1607.1 1201 795.3 863 1507.1 1887.2 2004.1

y = −10 1094.5 1053.2 1189.2 1451.9 1796.4 2398.1 2213.2

y = −20 848.4 1281.3 1782.1 1612.3 1793.2 2403.1 2092.4

y = −30 1602 1516.2 1121.3 781.2 673.2 596.1 539.2

FIGURE 9
Three-dimensional of the practical terrain.
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of the terrain continually changing can be seen from the
simulation map.

Secondly, the cellular automaton model is adopted for grid
processing of the terrain. The more grids, the smaller the
obstacles will be included in the terrain range, and the higher the
calculation accuracy. In this research, the terrain of the airport is
divided into grids with an equal distance of 1 km, as shown
in Figure 11:

After the terrain of this airport terminal area is grid processed,
each grid is assigned information such as terrain height, location,
and time, as shown in Figure 11. The green area represents the
feasible region.

The design of the approach procedures adopts the twice-
improved A* algorithm in this research. Starting from the arrival
way points B(1,n) and P(n/2,n/2), n stands for the number of grids
within the terminal terrain, so n equals to 120 in this research. The

FIGURE 10
Contour map of the practical terrain.

FIGURE 11
The feasible regions near the airport.
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four procedures are designed as shown in the following Figures 12,
13; Figures 14, 15; among them, procedures A and C’s arrival is from
way point B, procedures B and D’s arrival is from way point P, the
gradient of the four procedures in the initial approach segment is
7%, the intermediate approach segment is 5.2%, and the final
approach segment is 6.1%. The magenta areas on both sides of
the route represent the protected area. If the protected area cannot
be displayed completely, it indicates that the obstacle is too high. If
the protected area is shaded, this further indicates that the designed
procedure is not safe.

It can be observed that four of the approach procedures adhere
to the DOC8168 specifications. The gradient in the initial approach
segment is less than 8%, and the descent gradient in the final
approach segment does not exceed 6.1%. The intermediate
approach segment maintains an optimal descent gradient of
around 5.2%. The magenta protected areas all avoid obstacles,
which, when displayed completely, indicates that the flight
procedure can smoothly surpass the obstacles. Next, the fuel
consumption calculation method will be applied to optimize and
evaluate the four approach procedures.

FIGURE 12
Approach procedure A of this airport (left 2D, right 3D).

FIGURE 13
Approach procedure B of this airport (left 2D, right 3D).

FIGURE 14
Approach procedure C of this airport (left 2D, right 3D).
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After completing the design of the approach procedures, this
research evaluated the four simulated approach procedures based on
the fuel consumption evaluation model. Each approach procedure will
be divided into four segments, namely, 1, 2, 3, and 4, representing arrival
segment, initial approach segment, intermediate approach segment, and
final approach segment, respectively. According to the descent gradient,
the total fuel consumption for each segment of the approach was
calculated separately. The results are rounded to the nearest whole
number and shown in Table 4:

According to Table 4, the fuel consumption of approach
procedures A and D is slightly smaller than that of the same
approach direction program. Therefore, after optimization and
evaluation, approach procedures A and D are appropriate to be
retained. This decision can be adopted for the flight procedure
designer to have a brief insight to manual design approach
procedures for mountainous airports.

6 Conclusion

Flight procedure design is a key technology required for the
current development of civil aviation, especially in the approach
flight procedure of alpine airports, which have many flight
segments and are complex to design for under the presence
of dense obstacles. However, based on this challenge, this
research used the flight procedures design regulations and
standards to form a design idea for trajectory optimization,
software programming, and automatically drawing the
protected areas. By calculating obstacle clearance to actively
avoid obstacles, as we can see from the case study, the result of
the approach procedures designed by the improved A*

algorithm can strictly obey the regulation of DOC8168,
mainly about the turning angle, descent gradient, and the
MSD length. With By taking a further step and evaluating
fuel consumption, the optimized approach procedures for
alpine airports can be intelligently obtained. This removes
the difficulties that manually designing approach flight
programs, route layouts, protection areas, obstacle clearance
calculations and evaluations, gradient optimizations can incur.
They are also labor-intensive and inefficient. Ultimately, this
research provides a reliable design idea for manually calculating
flight procedures. However, in order to make the research
results more accurate, the following points need to be further
studied: (1) Further use of more accurate digital maps, such as
GIS software for in-depth research; and (2Consideration of
multiple program evaluation models to comprehensively
evaluate the designed approach flight program from multiple
aspects and dimensions.
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Study on deformation
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Uneven settlement phenomenon is very easy to occur in the sandy pulverized
ground stratum, the underground pipe corridor longitudinal and transverse
stiffness difference is obvious, so that it is easy to crack and deformation due
to uneven settlement in this type of stratum. This paper carries out research on
uneven settlement and cracking and deformation of Qihe tube corridor, analyzes
the reasons leading to uneven settlement and the factors affecting the
deformation and cracking of the tube corridor, and provides guidance for
foundation treatment and tube corridor repair and mixing and reinforcement.
It was found that the concrete structure of the corridor itself had exposed
reinforcement, pockmarks and holes, and that cracks on the structure of the
corridor sprouted and expanded from these defects. Defects and damages on the
concrete structure of the pipeline corridor are contributing factors to the
deformation and cracking of the members, and the uneven settlement of the
foundation is the main initiating factor for the cracking and deformation. The
analysis of the numerical simulation results of similar underground pipeline
corridors is carried out, and it is found that the simulation results are
consistent with the deformation characteristics of the Qihe pipeline corridor,
which further supports the conclusions of this paper. The main stratigraphic
factors contributing to the inhomogeneous settlement were found to be the
water-rich and loose bodies in the lower part of the strata, as revealed by the
physical means and the experimental verification boreholes. Localized hydraulic
effects such as pumping further accelerate the uneven settlement of the
foundation.

KEYWORDS

sandy chalky soil, uneven settlement, underground pipe corridors, rich water bodies, lax
bodies, numerical simulation
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1 Introduction

Uneven settlement of foundation is the main initiating factor
that induces cracking and deformation of the corridor structure, and
congenital defects of the corridor structure are factors that promote
cracking and deformation. In order to manage and prevent the
cracking and deformation of the pipeline corridor, it is necessary to
analyze and study the factors that lead to the uneven settlement of
the foundation.

Uneven settlement of foundations is one of the main factors
leading to damage to building structures, dynamic changes in
structural loading conditions and changes in the environment
caused by changes in the undercropping of foundations are
causing this uneven settlement (Chen and Hanna, 2023; Wu
et al., 2022). The degree to which a building is affected by
uneven settlement is related to its own characteristics, the greater
the stiffness of the building, the poor coordination of deformation,
the greater the effect of uneven settlement on it (Chen et al., 2011; Al’
Malul and Michail, 2018; Bao et al., 2020; Wang et al., 2022).
Therefore, for structures with large stiffness, the uneven
settlement of foundations should be strictly controlled, which is
not only reflected in general buildings, but also for the uneven
settlement of high-speed railroad foundations, which should be paid
more attention to (Zhang et al., 2023; Liu and Moore, 2021; Zhang
et al., 2021; Shi et al., 2022). When detecting and analyzing the
uneven settlement of building foundations, the traditional detection
method has the problems of large error and long time (Liu et al.,
2020). Uneven settlement of foundations is one of the common
engineering quality problems in wetted loess areas, and it was found
that changes in settlement area and settlement volume in wetted
loess areas have no significant effect on the interlayer displacement
ratio (Bao et al., 2020; Xu et al., 2022; Ho and Kuwano, 2021).
Underground pipe corridors are not only affected by uneven
settlement but also by ground cracks. It was found that with the
increase of ground crack settlement, a stress reduction zone near the
ground crack appeared at the bottom of the upper plate wall of the
tube corridor structure and revealed localized dehollowing
phenomena (Deng et al., 2022; Xie et al., 2020; Bian et al., 2017).
Diagnosis of inhomogeneous settlement in regional railroad tunnels
using spatial correlation of high-density strain measurement points
can effectively diagnose the influence range of inhomogeneous
settlement (Liang et al., 2023; Hu et al., 2021). After the highway
widens the roadbed, under the effect of differential settlement, the
old pavement surface layer and the upper base layer are subjected to
tensile stress within about 4 cm, and the base layer reaches the
destructive strength first. Below 4 cm of old pavement, the sub-base
first reaches breaking strength (Shen et al., 2021; Zhou, 2022; Wang
et al., 2023). There is a relationship between the water content of
foundation soils and uneven settlement, with a higher degree of
uneven settlement and a wider range of effects in foundations with
high water content (Ngugi Hannah et al., 2021). It was found that the
more permeable sand layer and the upper cohesive soil layer have
greater cohesion and can effectively reduce differential settlement
(Cong et al., 2021). The joints of underground pipeline corridors are
the weakest parts and are highly susceptible to the effects of uneven
settlement (Liu et al., 2020; Jiang et al., 2020; Xie et al., 2020;
Gebremedhn et al., 2019). Rigidly spliced box girder bridges
under the influence of uneven settlement, the spliced section will

appear the phenomenon of transverse stress peaks, which will lead to
concrete cracking and damage (Xu et al., 2023). Settlement
monitoring plays a crucial role in preventing geologic risks and
disasters, and stochastic differential equations reliably yield short-
term settlement predictions (Guo et al., 2023). Themonitoring of the
gypsum mine hollow area found that the surface deformation was
mainly horizontal displacement, and the direction of the horizontal
displacement was overall pointing to the hollow area (Xu et al.,
2023). The effect of rainfall on wet submerged loess is very
significant and can trigger strong inhomogeneous settlement
phenomena (Zhao, 2022).

In summary, uneven settlement is closely related to the
characteristics of the stratum in which it occurs. In soft and
sensitive strata such as chalky sandy soils, loose bodies and
water-rich bodies are likely to occur, and loose bodies are
susceptible to the influence of groundwater and rainfall.
Exploring the causes of uneven settlement of foundation is the
key to prevent and manage uneven settlement, this paper carries out
research on uneven settlement of Qihe corridor, analyzes the
deformation and cracking characteristics of the corridor, explores
the factors causing uneven settlement of the corridor, and provides
theoretical guidance for the next foundation treatment and the
repair and reinforcement of the corridor.

2 Overview of the pipeline corridor
project

Jingyi Road comprehensive pipeline corridor project is located
in the northwest of Qihe County, Qihe County, West Area, north of
Qishun Street, south to Qi Trade Street, a total length of 300 m. For
the open excavation construction of the pipe corridor, the
foundation holding layer is a pulverized soil layer with a
thickness of 0.6–2.7 m.

2.1 Engineering geological conditions

The stratigraphy of the pipeline corridor site is a sandy chalky
soil stratum. The groundwater belongs to the hydrogeological zone
of the Yellow River alluvial plain, and the lithology of the aquifer is
generally dominated by fine and powdery sand and silt, and the
aquifer is mostly distributed horizontally in the form of bands and
lenses, and vertically in the direction of staggered distribution of the
aquifer and the relative waterproof layer. The type of groundwater
dynamics is precipitation infiltration evapotranspiration.
Groundwater depth ranges from 0.40 to 2.80m, groundwater
level elevation is 20.31m, and annual variation of groundwater
level is 1.50 m. Figure 1 shows the engineering geologic profile.

2.2 Deformation characteristics of pipe
corridor

The pipeline corridor has experienced two heavy rainfalls, the
first of which occurred on 9 August 2022, during which pumps were
used to pump the water in the pipeline corridor to the river 30 m
away from the east side of the corridor in order to lower the
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groundwater level of the site and prevent the foundation from
settling unevenly. However, on August 16th, the
K0+549~K0+579 section of the corridor still had uneven
settlement, the corridor tilted to the south in general, and the
maximum settlement occurred in the corridor deformation joint
K0+579, the maximum settlement of the corridor on the north side
of the deformation joint reached 1.2 m, and the maximum
settlement of the corridor on the south side reached 0.1 m, and
at the same time, the ground around the cracks appeared. The
second heavy rainfall occurred in early October 2022, and the
pumping work continued until mid-October, during which the
subsidence of the pipe corridor on both sides of the deformation
joints increased, and the peripheral backfill collapsed, and the
maximum subsidence of the pipe corridor on the north side of
the deformation joints at K0+579 reached 2.0m, and the maximum
subsidence of the pipe corridor on the south side reached 1.1m,
while the peripheral backfill collapsed. The status of uneven
settlement at the site of the pipe corridor is shown in Figure 1H,
the surface subsidence depth of the upper part of the pipe corridor is
higher than that of other places, and a large number of longitudinal
tensioned downward misalignment cracks appeared on the surface,
and the longitudinal cracks were mainly distributed on the two sides
of the pipe corridor, which were caused by the significant subsidence
around the pipe corridor. There are also a small number of
transverse cracks distributed around the pipe gallery. The
duration of the first heavy rainfall was 4 h and the cumulative
rainfall was 76mm, which is of heavy rainfall level. The duration of
the second heavy rainfall was 3 h and the cumulative rainfall was
83mm, which is of heavy rainfall level.

During the pouring process of the pipe corridor structure, due to
the small distance between the formwork and the reinforcement and
the incomplete vibration of the concrete, the concrete of the pipe
corridor structure has defects and damages, which are mainly

manifested in the exposed tendons, pockmarks and holes.
Figure 2A, B shows the exposed reinforcement, pockmarked
surface and hole defects existing in the roof slab of the pipe
corridor at K0+552.5 m and K0+556.5 m. This defects and
damage left by the concrete casting will promote the subsequent
deformation of the concrete construction damage, in the subsequent
uneven settlement, these defects at the hidden danger will be
amplified, will be the first in these defective parts of the cracking
damage, which evolved to the destruction of the concrete structure
as a whole. Such defects and damages left due to concrete pouring
belong to the congenital influences on the structural deformation of
the pipe corridor.

The corridor experienced uneven settlement around the
corridor after two heavy rainfall events. Uneven settlement of
the foundation leads to unbalanced stress in the corridor
structure, and stress concentration occurs at the corridor’s
variable cross-section due to the change in cross-sectional
area, resulting in tension cracks. There are three cracks in
the structure of the pipe corridor, the first crack is located in
the east and west sides of the outer wall at K0+559m, the source
of cracking is located in the concrete surface, and the cracks are
radial expansion from the concrete surface. At K0+559 m there
are 7 cracks in the west wall with a maximum crack width of
11.5 mm (shown in Figure 2C) and 5 cracks in the east wall with
a maximum crack width of 13.3 mm (shown in Figure 2D). The
second crack was located on the top slab at K0+566m, with five
cracks distributed transversely and the maximum crack width of
1.24 mm (shown in Figure 2E). The third crack was located in
the top slab and exterior wall at K0+564m, where a crack
penetrated in the top slab causing the concrete to fall off
(shown in Figure 2F) and a hole in the waterproofing layer of
the exterior wall (shown in Figure 2G). It can be seen that the
uneven settlement of the foundation of the corridor makes the

FIGURE 1
Engineering geological profile.
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defects of the concrete structure amplified, and the cracks start
to sprout from the concrete defects, and expand through under
the action of further uneven settlement, leading to structural
cracking and damage.

Analyzing the cracking damage characteristics of the pipeline
corridor, it is found that the cracks on the concrete structure are
mainly sprouted from the exposed reinforcement and pockmarks at
the gestation, and penetrate into each other between the concrete
holes, and eventually formmacroscopic penetrating cracks. It can be
seen that inhomogeneous settlement is the main driving factor
leading to cracking damage, and original defects in concrete are
the main contributing factors leading to cracking damage in
concrete structures.

3 Deformation detection methods for
pipe corridors

3.1 High-density resistivity methods

In order to investigate the reasons for the uneven settlement of
the foundation of the corridor, the high-density resistivity method
was used around the corridor to carry out probing on both sides of
the corridor and to investigate the physical characteristics of the
foundation soil under the corridor. Six measurement lines were
arranged on both sides of the pipeline corridor, the lines were 1.0m,
3.0m and 15.0 m away from the outer wall (the distribution of the
lines is shown in Figure 3), the spacing of the measurement points
was 1.0 m, and the length of the lines was 60 m, and the dipole-
dipole device (the on-site arrangement is shown in Figure 3A). The
average ground elevation of the 1.0 m measuring line from the outer

wall and the 3.0 m measuring line from the outer wall is 18.4m, and
the 25# probing point corresponds to its maximum settlement, while
the average ground elevation of the 15.0 m measuring line from the
outer wall is about 21.4 m, and the 31# probing point corresponds to
its maximum settlement.

The maximum transmitting power of the high-density
resistance detector is 9000W, the maximum transmitting voltage
is ±1500V, the maximum transmitting current is ±6A, the current
accuracy is 0.1%, and the working environment temperature
is −20–60°C.

3.2 Multi-channel transient surface wave
methods

The detection results of the high-density resistivity method
indicate the suspected presence of water-rich and loose bodies in
the lower part of the pipe corridor, which were eroded by hydraulic
forces, resulting in the formation of cavities that led to the uneven
settlement of the upper part of the pipe corridor. Due to the diversity
of the subsoil, it is difficult to accurately and reliably reflect the real
situation of the subsoil with the results obtained by a single means of
detection. In order to improve the reliability of the detection
information so that the factors leading to inhomogeneous
settlement can be accurately identified, the multi-channel
transient surface wave method was used to detect the low-
resistance region on the basis of the results of the high-density
resistivity method. Along the pipeline corridor along the direction of
the arrangement of the east and west 2 lines of measurement, each
line arrangement of 24 geophones, channel spacing 1.0m, pile
number K0 + 579 excitation, offset distance of 1.0 m, detecting

FIGURE 2
Characteristics of surface settlement and internal concrete craking damage in pipeline corridors.
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the wave velocity of the soil layer below the top plate of the pipeline
corridor in the range of 15.0 m, the layout of the measurement line
as shown in Figure 3, the distribution of the field detection points as
shown in Figure 3B.

The multi-channel transient surface wave detector has a
sampling interval of 4–4000 μs, a sampling resolution of 24AD, a
dynamic range of more than 110dB, a channel phase error of less
than 0.1 ms, a frequency bandwidth of 0.1–5000Hz, and an
operating ambient temperature of −20–55°C.

3.3 Standard penetration probe

The results of both the high-density resistivity method and
the multi-channel transient surface wave method indicate a high
probability of the presence of water-rich and loose bodies in the
lower portion of the corridor, and accurately indicate the depth
and extent of the subsurface diseased bodies. In order to further
verify the authenticity and reliability of the exploration results,
based on the results of the high-density resistivity method and
multi-channel transient surface wave, drill holes were drilled to
verify the results at three points in the area of the suspected
sparsity, with hole 1 located in the west side of the pile No.
K0+587, hole 2 located in the west side of the pile No. K0+579,

and hole 4 located in the east side of the pile No. K0+580. In the
area where no abnormality is found, 3# holes (east side pile No.
K0+558) are arranged as comparison holes, which are 2.0 m
away from the outer walls on both sides of the pipeline corridor,
and the arrangement of the holes is shown in Figure 3.

4 Analysis of deformation detection
results of pipeline corridor

4.1 Analysis of the results of the high-density
resistivity method

The data collected by the high-density resistivity method
were inverted and analyzed, and Figure 4 shows a cloud map of
the results of the inversion analysis for the six survey lines. The
analysis results based on the cloud map show that: 1) along the
pipeline corridor direction, pile number K0+578~
K0+586.5 section, there is an obvious low-resistance area
below the bottom plate of the pipeline corridor, the resistivity
value is ≤8.0 Ω-m, and initially determined to be the distribution
of water-rich and sparse bodies, and the distribution range is
shown in Table 1. Water-rich body area due to K0 + 609 south
side of the pit pumping and other local hydraulic effects, resulting

FIGURE 3
Layout of object detection lines and boreholes.
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in the weakening of the soil structure, strength is further reduced,
the engineering properties of the soil body deteriorated,
endangering the safety of the upper corridor. The hydraulic
action triggered by pumping leads to the removal of soil
particles from the upper part of the water-rich body, which
gradually develops into a cavity and leads to the sinking of the
pipe corridor. 2) In the direction of the vertical pipeline corridor
axis, it can be seen from Figures 4B–E that the distribution range
of the low resistance area is slightly expanded from west to east.
As can be seen from Figures 4A, F, the farther away from the
centerline of the corridor, the soil below the bottom plate of the
corridor as a whole shows that the resistivity of the east side is
significantly lower than that of the west side in the same depth
range, indicating that the water content of the soil on the east side
is significantly higher than that on the west side.

4.2 Analysis of the results of multi-channel
transient surface wave method detection

Multi-channel transient surface wave exploration data
processing and interpretation are processed by special software,
after filtering and de-noising, multi-gun superposition, FK
frequency spectrum analysis, frequency dispersion curve
extraction, and obtaining V-H velocity depth curves to invert the
stratigraphic wave velocity distribution. Figures 5A, B show the
depth-velocity curves after data processing, and Figures 5C, D show
two-dimensional contour plots of the stratigraphic wave velocity
distribution after integrated inversion. Analyzing the change
characteristics of the V-H velocity curve, it is found that the
wave velocity of the soil layer in the range of 3.0 m below the
bottom plate on the east side of the pipeline corridor decreases

FIGURE 4
Results of the high-density resistivity method.

TABLE 1 Results of the high-density resistivity method.

Line position Distribution range along the pipeline corridor
alignment

Disease body depth distribution
range

1.0 m from the outer wall on the west side of the
corridor

Pile No. K0+579.5~ K0+585 0.0m–9.0 m below base plate

3.0 m from the outer wall on the west side of the
corridor

Pile No. K0+580~ K0+586.5 3.5m–9.0 m below base plate

1.0 m from the outer wall on the east side of the
corridor

Pile No. K0+578~ K0+586.5 3.5m–9.5 m below base plate

3.0 m from the outer wall on the east side of the
corridor

Pile No. K0+579.5~ K0+585 5.2m–9.5 m below base plate
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sharply, the shear wave velocity Vs. decreases from 232 m/s to
147 m/s, and the slope of the dispersion curve changes
significantly, and the presence of sparsity is suspected in the
range of this depth. The wave velocity value of the soil layer in
the range of 5.5 m below the bottom plate of the pipeline corridor on
the west side is 155 m/s, and the wave velocity value is obviously low,
indicating that there is a suspected loose body.

The wave velocity contour map shows that there exists a low
wave velocity zone with gradually increasing depth and width in the
west side of the pipeline corridor at pile number K0+572~K0+590
(horizontal coordinates 4–22), and the depth range is from 0.0 m
below the bottom plate to a maximum depth of 12.0 m (red dashed
area in Figure 5C). There are two main low-wave velocity areas on
the east side of the pipeline corridor (red dashed area in Figure 5D),
one of which is pile number K0+568~K0+577 (horizontal
coordinates 0–9), with a depth range of 0.0–5.0 m below the
bottom plate of the pipeline corridor. The other one is pile
number K0+584~ K0+590 (horizontal coordinates 16–22), and
the depth range is 0.0–12.0 m below the bottom plate of the pipe
corridor. These two low-wave velocity areas are suspected to be
sparsely populated.

Based on the above analysis, it can be seen that the detection
results of the multi-channel transient surface wave method also

indicate that there is a high probability of the presence of water-
rich and loose bodies in the lower portion of the pipeline
corridor, which coincides with the results obtained by the
high-density resistivity method. The multi-channel transient
surface wave test results corroborate with the high-density
resistivity method and further refine the extent and depth of
the subsurface diseased body, improving the reliability of the
detection information.

4.3 Analysis of results of standardized
penetration testing

The results of the standard penetration method show that the
standard penetration numbers of the holding layer pulverized soil
layer in the range of 2.0 m at the bottom of the foundation of 1#, 2#
and 4# verification holes are smaller than those of the
corresponding soil layer of 3# comparison holes. The standard
penetration number of the silt layer in the depth range of
3.5m–6.5 m below the base of 1#, 2# and 4# verification holes is
less than the standard penetration number of the corresponding
soil layer of 3# comparison holes. It can be seen that both the chalk
and silt layers in the area of the suspected sparsity are more sparse

FIGURE 5
Depth-velocity curves versus two-dimensional contour plots of stratigraphic wave velocity distributions.
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than the other areas where no anomalies were found. Figure 6A, B,
D show sample soils from verification holes 1#, 2#, and 4#,
respectively, and Figure 6C shows sample soils from
comparison hole 3#. Based on the analysis of the soil samples
taken from each of the boreholes in Figure 6, the samples from

verification boreholes 1#, 2# and 4# have loose soil and high water
content, while the sample from comparison borehole 3 has
relatively dense soil and low water content. Figure 6 shows
photographs of soil samples from the four borings at the site,
and Table 2 shows the results of the standard penetration tests.

FIGURE 6
Photographs of soil samples from verification and comparison borings.

TABLE 2 Standardized penetration test number results.

Soil layer name Standard depth of
Penetration/m)

Number of hammer blows corrected for rod length/N′ (hit)

3# drilled hole/(Contrasting
holes)

1# drilled
hole

2# drilled
hole

4# drilled
hole

Sand 3.15–3.45 9.7 1.9 2.9 7.8

4.65–4.95 11.0 2.8 8.3 2.8

Silty clay interlayer 5.15–5.45 — — — 2.7

Silt sand 6.15–6.45 13.5 12.5 13.5 —

6.65–6.95 — — — 3.5

7.65–7.95 15.0 11.3 12.9 —

8.15–8.45 — — — 12.9

9.15–9.45 16.0 12.6 13.4 —

10.65–10.95 15.4 — 17.0 —

12.15–12.45 15.8 — 15.0 —

14.15–14.45 16.2 — — —
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4.4 Comparative analysis

Table 3 shows the results of the comparative analysis of the two
physical means and the standard penetration probing method.
Comparing and analyzing the detection results of high-density
resistivity method and transient surface wave method, there are
suspected water-rich and loose bodies in the soil layer below the
bottom plate of the section of pile number K0+572~K0+590 on the
west side of the pipeline corridor. There are suspected water-rich
and loose bodies in the soil layer below the bottom plate of the
section of pile number K0+568~K0+590 on the east side of the
pipeline corridor. The distribution of spars in the depth range of 1#,
2# and 4# verification holes is basically consistent with the inversion
results of the two physical exploration methods. It can be
determined that there are water-rich and loose bodies in the
lower part of the corridor, and the strong rainfall makes the
water content of the loose bodies increase, and the hydraulic
effect triggered by pumping leads to the hollowing out of the
loose bodies and the formation of cavities, which triggers the
upper corridor to undergo inhomogeneous settlement.

5 Analysis and discussion of the chain of
causes of pipeline corridor damage

5.1 Causal chain analysis

Based on the results of the above analysis, it is shown that there
are two reasons for the cracking and damage of the pipe corridor.
One reason is the defects of concrete elements caused by poor
vibration and curing during concrete placement, which lay hidden
dangers for subsequent cracking and damage of concrete structures.
Another reason is the uneven settlement of the foundation of the

pipe corridor. The overlying soil layer of the corridor is thin, and the
possibility of structural deformation and cracking of the corridor
due to the loading of the overlying soil layer is small, so this is not
considered as one of the causes of cracking and damage of the
corridor. Figure 7 shows the network diagram of the chain
relationship between the causes of damage to the pipe corridor.

Uneven foundation settlement is the main driver of cracking and
deformation of concrete structures. Due to the uneven force applied
to the concrete structure as a result of the uneven settlement, stress
concentration occurs at the variable cross section of the pipe
corridor structure and at the concrete defects, and initial cracks
start to breed in these places. With the further development of the
uneven settlement of the foundation, the cracks on the concrete
structure gradually expand and develop, cracks and holes in the
concrete structure and pockmarked surface connected to each other
through, and eventually formed through the cracks, the structure of
the corridor subsequently cracking damage. It can be seen that the
uneven settlement of the foundation of the corridor is the main
driving factor leading to the deformation and damage of the
corridor, which provides the driving force for the cracks on the
structure of the corridor to sprout and expand. Defects on concrete
members are promoters of deformation cracking, and under the
action of uneven settlement, the defects on concrete members are
activated, and cracks begin to gestate and sprout at the defects.

Uneven settlement of the foundation becomes the main driving
factor for the cracking and deformation of the pipe corridor
structure, and the factors leading to the uneven settlement of the
foundation are the fundamental factors for the cracking and damage
of the pipe corridor. By means of physical exploration to explore the
reasons for the uneven settlement of the foundation of the pipe
corridor, the results show that the pipe corridor pile number K0+568
~ K0+590 section of the bottom plate below the depth range of
0.0 m–12.0 m, the foundation holding layer is suspected to exist in

TABLE 3 Comparative analysis results.

Detection method Line position/Drill position Distribution range along the pipeline
corridor alignment

Disease body depth
distribution range

High-density resistivity method 1.0 m from the outer wall on the west side
of the corridor

K0+579.5~ K0+585 0.0m–9.0 m below base plate

3.0 m from the outer wall on the west side
of the corridor

K0+580~ K0+586.5 3.5m–9.0 m below base plate

1.0 m from the outer wall on the east side
of the corridor

K0+578~ K0+586.5 3.5m–9.5 m below base plate

3.0 m from the outer wall on the east side
of the corridor

K0+579.5~ K0+585 5.2m–9.5 m below base plate

Multi-channel transient surface
wave method

2.0 m from the outer wall on the west side
of the corridor

K0+572~ K0+590 0.0m–12.0 m below base plate

2.0 m from the outer wall on the east side
of the pipe corridor

K0+568~ K0+577 0.0m–5.0 m below base plate

2.0 m from the outer wall on the east side
of the pipe corridor

K0+584~ K0+590 0.0m–12.0 m below base plate

Standard penetration probe Drill hole #1 K0+587 0.0m–6.5 m below base plate

Drill hole #2 K0+579 0.0m–6.5 m below base plate

Drill hole #3 K0+580 0.0m–5.5 m below base plate
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the water-rich body, sparse body, at the same time in the pile
number K0+564, K0 + 566, K0 + 559, the pipe corridor due to
the uneven settlement of the foundation to produce serious damage.
In order to further verify the reliability of the results of the physical
exploration, three verification holes and one comparison hole were
excavated within the uneven settlement range of the pipeline
corridor, and the distribution of loose bodies within the depth
range of the 1#, 2# and 4# verification holes exposed basically
coincided with the results of the inversion of the two physical
exploration methods. By analyzing the results of physical
exploration and verification of soil extraction, it was found that
the main reasons leading to the uneven settlement of the foundation
are the following 3 points.

(1) Several spars and water-rich bodies exist in the depth range of
0–12.0 m below the base plate of the pipeline corridor in this
section. Loose bodies are characterized by loose structure and
poor homogeneity, and water-rich bodies are characterized by
high water content, low strength and high compressibility.
Heavy rainfall led to a sudden increase in the water content
of the soil around the corridor, the strength of the loose body
was significantly reduced by rainwater soaking, the water
content of the water-rich body further increased, the strength
of the further reduction of its compression at the same time
increased. Due to the uneven distribution of loose and water-
rich bodies below the subgrade of the corridor, this leads to an
uneven settlement of the soil layer below the subgrade. This is
the stratigraphic condition in which uneven settlement occurs
in the pipeline corridor.

(2) The pumping of water after heavy rainfall caused a rapid decline
in the water table, the effective stress of the foundation soil
below the base plate of the corridor increased, soil compression
occurred, and further contributed to the uneven settlement of

the foundation, which is also an important causative factor for
the aggravation of the uneven settlement of the foundation.

(3) The pumping operation also triggered localized hydraulic
action, and such underground diseased bodies as loose
bodies and water-rich bodies were weakened by localized
hydraulic action, the soil structure was weakened, the
strength was reduced, and the bearing capacity of
foundations was decreased. The hydraulic action takes away
the soil particles within the loose body and water-rich body,
leading to the development of the loose body and water-rich
body into a cavity and accelerating the rate of settlement.

(4) The cross-section area of the pipe corridor structure is changing,
and under the effect of uneven settlement, the junction of the
cross-section change will have a significant stress concentration
phenomenon, which will lead to the cracking damage of the pipe
corridor structure.

Combined with the analysis of the actual situation on the site,
the first time after the rain pumping caused uneven settlement, K0 +
579 position deformation joints staggered, the corridor substrate soil
extrusion, surging into the interior of the corridor. The second
pumping location at K0+579 deformation seam caused the loss of
powdered soil in the holding layer of the base of the pipe corridor,
destroying the soil structure of the base and increasing the sinking of
the pipe corridor at both ends of the deformation seam.

5.2 Discussion

This paper investigates the cracking and damage characteristics
and uneven settlement factors of Qihe pipe corridor. The results of
the study show that there are self-factors and external factors in the
cracking damage of the pipe corridor, and the self-factors are the self

FIGURE 7
Network diagram of chain relationship between causes of cracking and damage in pipe corridors.
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defects such as pockmarks, holes, exposed tendons and other defects
caused by the lack of compactness of vibration and poor maintenance
during the pouring of concrete. The external factor is the uneven
settlement of the foundation of the pipe corridor. There are four
reasons for the uneven settlement of the foundation of the pipe
corridor: 1) the loose and water-rich bodies distributed in the
foundation of the pipe corridor. 2) Heavy rainfall causes a sudden
increase in the water content of water-rich and loose bodies in
foundations, which reduces strength and increases compressibility. 3)
Pumping causes the water table to fall, the effective stress on the
foundation soil increases, and the soil is compressed, thus promoting
increased uneven settlement. 4) Pumping causes localized hydraulic
action, and soil particles in loose and water-rich bodies are carried away
under hydraulic action, thus developing into cavities.

In the study of the uneven settlement factors of the foundation of
the pipeline corridor, it was found that the localized hydraulic action
caused by pumping carried away the soil particles in the loose and
water-rich bodies, resulting in uneven settlement of the foundation. The
main cause of cracking and damage in pipe corridors is the uneven
settlement of the foundation. These two results coincide with the

findings of Yang Zhao (Zhao et al., 2021). Yang Zhao analyzed the
cracks triggered by the uneven settlement of the comprehensive pipeline
corridor of Fuzhou Southeast Expressway and its causes, and used
numerical simulation methods to analyze the plastic damage area and
crack expansion process of the corridor (shown in Figure 8). Figures 8A,
B showwater seepage in the deformation joints andmisalignment of the
deformation joints, respectively, and Figures 8C, D show cracks in the
top slab and cracks in the sidewalls; Figure 8E shows the finite element
model of the corridor, Figure 8F shows the Y-direction stress cloud
diagram of the corridor, Figure 8G shows the curve of variation of the
tensile stress of the top slab of the corridor with the length of dehiscence
at the bottom of the slab, and Figure 8H shows the on-site drainage
from the precipitation wells; Figure 8I shows the rate of decrease in the
stiffness of the concrete, Figure 8J shows the degree of tensile damage of
the concrete, and Figure 8K shows the results of the analysis of crack
extension in the corridor. It was found that the main cause of cracking
in integrated pipe corridors is uneven settlement of foundations. The
pumped water carries a large number of fine sand particles, and the soil
on the outside of the pit is partially hollowed out, leading to uneven
settlement and misalignment of the deformation joints in the later stage

FIGURE 8
Uneven settlement cracking characteristics and Numerical Simulation Analysis of Comprehensive Pipe Corridor in Fuzhou Southeast Expressway
(Zhao et al., 2021).
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of the pipe corridor. This is the root cause of cracking in large
mileage sections of pipe corridors. Numerical simulation results
show that tensile stresses will occur locally in the top slab of the
pipe corridor in the event of dehiscence at the bottom of the slab.
Near the K3+917 location in the middle of the corridor, the
concrete in the top slab and side walls showed a decrease in
stiffness and tensile damage zones, indicating that the concrete
had cracked. The cracks in the pipe corridor will expand from the
top plate to the side wall and center wall, and the crack expansion
pattern is more consistent with the actual crack pattern in the
field. The uneven settlement of the comprehensive pipeline
corridor of Fuzhou Southeast Expressway studied by Yang
Zhao is basically consistent with the object of this paper in
terms of engineering geological conditions, cross-section shape
of the pipeline corridor, pumping operation, and deformation
mode of cracking, and the conclusions drawn are also in line with
each other. Uneven settlement is the main cause of pipeline
corridor cracking, pumping-induced hydraulic action to take
away the fine sand particles in the foundation soil, resulting in
hollowing out of the soil and dehollowing at the bottom of the
slab. The research results obtained by Yang Zhao further support
the conclusions of this paper, and his numerical simulation
results are also consistent with the cracking of the Qihe pipe
corridor, so that the numerical simulation results in Yang Zhao’s
paper can well reflect the plastic damage region and the crack
extension process of the pipe corridor studied in this paper.

The object of the study is the cracking damage caused by uneven
settlement of underground structures in soft ground. Physical
exploration methods and standard penetration detection methods are
used to reveal the causes of uneven settlement, and numerical simulation
methods are used to analyze the cracking process of underground pipe
corridors subjected to uneven settlement, and the results of the study
provide guidance for the prevention and control of uneven settlement of
underground structures. This paper investigates the effect of uneven
settlement on the cracking damage of underground pipeline corridors in
sandy chalky soil stratum, reveals themain reasons for triggering uneven
settlement, and provides guidance for the repair and prevention of
underground pipeline corridors. The results of the study are primarily for
diseased bodies in foundations, and when foundations without diseased
bodies are encountered, the results of this analysis will be unguided.
Underground engineering geological conditions are complex and
variable, the object studied in this paper is the cracking damage
characteristics of underground pipeline corridors triggered by
inhomogeneous settlement in soft ground, the research object is
relatively single, unable to reflect the deformation characteristics of
underground structures under various engineering geological
conditions in a holistic and comprehensive manner. Subsequent
studies should continue to characterize foundation settlement under
different geological conditions and the deformation and damage
characteristics of underground structures, so as to provide more
comprehensive guiding information for the construction of
underground structures and disaster prevention and control.

6 Conclusion

In this paper, the deformation and cracking caused by
inhomogeneous settlement of Qihe tube corridor is studied, and

the deformation characteristics of the corridor and the reasons for
the occurrence of inhomogeneous settlement are analyzed, and the
following conclusions are drawn.

(1) The concrete of the pipe corridor structure has exposed
reinforcement, pockmarks and holes, and the subsequent
deformation cracks start to develop and further expand from
these defects and damages. Defects and damages on concrete
elements are contributing factors for deformation and cracking of
pipe corridors, and uneven settlement is the main initiating factor
for deformation and cracking of pipe corridors. The research
results are of guiding significance for the prevention and control
of cracking damage in underground pipeline corridors.

(2) The detection of high-density resistivity method shows that
along the length direction of the pipe corridor, the section of pile
number K0+578~K0+586.5, there is an obvious low-resistance
area below the bottom plate of the pipe corridor, with a
resistivity value of ≤8.0Ω-m, which is suspected to be the
distribution of water-rich and sparse bodies. The results of
the multi-channel transient surface wave method of detection
are in agreement with the high-density resistivity method.

(3) Through the standard penetration detection, it was found that
the distribution of spars in the depth range of 1#, 2# and 4#
verification holes was basically consistent with the inversion
results of the two physical exploration methods.

(4) Stratigraphic factors that lead to uneven foundation settlement
are water-rich and loose bodies in the lower part of the strata,
and localized hydraulic effects, such as pumping, are catalysts
for accelerating uneven foundation settlement.

(5) The research results reveal the triggering factors of uneven
settlement of sandy chalky soil and the intrinsic and extrinsic
causes of structural damage of underground pipeline corridors,
and the results provide technical guidance for disaster
prevention and control in similar projects.
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The impact of slope and rainfall on
the contaminant transport from
mountainous groundwater to the
lowland surface water

Xiaojun Xu1, Ming Zhu1, Ling Zhou1, Mingxia Ma1, Jingmei Heng1,
Li Lu1, Weiyi Qu1 and Zhongyuan Xu2*
1Sichuan Communication Surveying and Design Institute Co., Ltd., Chengdu, China, 2Faculty of
Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China

The surface water and groundwater in the mountainous area are vulnerable to
contamination from the mining and transportation construction in Sichuan
Province, China. Pollutants produced by anthropogenic activities transport
within the groundwater from mountains to rivers on the plain, transferring
contamination to the surface water. This study investigates the process of
groundwater flow and contaminant transport from mountains to the lowlands
based on synthetic numerical models. Two key factors are considered:
precipitation and the slope of the mountain. Based on the real situation in
Sichuan Province, four rainfall recharge rates are defined as 600, 800, 1,000,
and 1,200mm/yr, and five slope angles are considered: 20°, 25°, 30°, 35°, and 40°.
The simulation results reveal that the groundwater level and solute transport are
strongly influenced by the precipitation amounts and slope angles. The
mountains with lower slopes maintain a relatively higher groundwater level
under steady-state rainfall conditions; for example, groundwater levels
decrease from 340m to 300m as slope angles increase at a 1,200mm/yr
precipitation level. Contaminant transport from the source in the mountain to
the surface river is faster with increasing precipitations and decreasing slope
angles. The model with 20° slope angle and 1,200mm/yr precipitation exhibits
the fastest solute migration, with the contaminant arrival time of 65 years.
Furthermore, the models with 35° and 40° slope angles at a 600mm/yr
precipitation level show the slow transport speed with the contaminant arrival
time of more than 75 years. In addition, higher precipitation may lead to more
contaminant transport to the river. The analysis and findings of this study offer
valuable insights into groundwater protection at the boundaries of mountains
and plains.

KEYWORDS

mountain–plain area, groundwater contamination, river pollution, solute transport,
MODFLOW simulation

1 Introduction

The water resource is the valuable natural resource for human survival in the world.
Surface water and groundwater are the primary constitutions of water resources on earth.
Due to intensive anthropogenic activities including industrial, construction, agricultural,
and sewage processes, the quality of surface water and groundwater is deteriorated
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(Paladino et al., 2018; Su et al., 2018). Accordingly, the quality of
surface water and groundwater has been the focus of attention for
water resource management (Li, 2020; Nasim et al., 2020).

So far, the hydrochemical monitoring of surface water and
groundwater has been carried out for improving groundwater
management in the world (Yin et al., 2021). Plenty of
hydrochemical data provide a robust support for water quality
evaluation in the spatial and temporal scale. Various water
quality indices (e.g., the WQI and EWQI) have been used to
evaluate the quality of surface water and groundwater (Amiri
et al., 2014; Lapworth et al., 2017; Zhai et al., 2017). Hence, the
spatial and temporal characteristics of the quality of surface water
and groundwater have been clarified properly. However, the
interaction between surface water and groundwater affecting
water quality has remained unclear, failing to explain the
dynamic evolution in the spatial and temporal scale.

The interaction between surface water and groundwater can be
analyzed using the approaches of hydrochemistry, isotopy, and
numerical simulation (Raiber et al., 2019; Marti et al., 2023;
Wang et al., 2023). Hydrochemistry and D-O stable isotopes
were used to reveal the hydrological relationship between surface
water and groundwater in the Notwane River Catchment, Southeast
Botswana (Modie et al., 2022). Multiple isotopic tracers (δD-H2O,
δ18O–H2O, δ15N–NO3

−, and δ18O–NO3
−) indicated that shallow

groundwater is contaminated with organic fertilizers and
subsequently transferred to surface water (Le et al., 2023). The
SWAT + gwflowmodel was constructed to investigate the long-term
groundwater–surface water interactions in the Scheldt Basin
(Liberoff and Poca, 2023).

Substantial amounts of population are living in basin areas in the
world due to the advantages of warm climate and gentle terrain. The
Sichuan Basin in southwestern China is the typically large-scale
basin within more than 100 million people. The quality of surface
water and groundwater has been investigated for decades. However,
previous studies mostly focused on the hydrochemical and isotopic
information of surface water and groundwater in the basin area
(Zhang et al., 2020; Zhang et al., 2021a; Zhang et al., 2021b). Seldom
studies investigate the dynamic interaction and transport processes
between surface water and groundwater at the boundaries of plains
and mountains. It is known that the contamination would be
transferred between surface water and groundwater (Xu et al.,
2022). Among those pollutions, the contamination produced by
the mining projects and tunnel constructions in the mountainous
area is a serious environmental problem (Tomiyama and Igarashi,
2022). The water system is interrupted by excavation, and the
unpredicted groundwater flow may pollute the fresh groundwater
in mining sites and surface water system in the plain (Wu et al.,
2018), especially the transport of heavy metal in the wastewater
(Santana et al., 2020). The recent investigation pointed out that
mountainous water system in Sichuan Province is heavily
contaminated by the regional mining and tunneling industry
(Sun et al., 2023). Hence, a hydrological model of large-scale
catchment from the basin margin to basin center is built in this
study. Afterward, the dynamic interaction between surface water
and groundwater is simulated under different conditions of climate
precipitation and terrain slope. Finally, the contamination in surface
water and groundwater can be evaluated under different conditions.
The achievements of this study would significantly contribute to

evaluating the quality of surface water and groundwater in the
catchment of the Sichuan Basin.

2 Methods

To investigate the issue of groundwater contamination from
mountains to lowland rivers, a 2D numerical model is constructed in
this study. The groundwater flow is steady-state since our model is
synthetic to represent the general situation. Flow is simulated using
MODFLOW (Harbaugh, 2005) with the Darcy equation (Eq. 1), and
the solute transport is simulated in MT3DMS (Zheng and Wang,
1999) to depict advection and dispersion (Eq. 2).

∂
∂x

K
∂H
∂x

[ ] + ∂
∂z

K
∂H
∂z

[ ] + w � 0, (1)

where K is the value of hydraulic conductivity [LT−1]; H is the
hydraulic head [L]; and w is the volumetric flux per unit volume
representing sources and/or sinks of water [T−1].

∂
∂xi

θDij
∂C
∂xj

( ) − ∂
∂xi

θviC( ) + qsCs � ∂ θC( )
∂t

2, (2)

where θ is the porosity of porous media [dimensionless]; vi is the
seepage velocity [LT−1]; C is the solute concentration
[dimensionless]; Cs is the solute concentration of water entering
from sources or flowing out from sinks [dimensionless]; Dij is the
hydrodynamic dispersion coefficient tensor [L2T−1]; and qs is the
volumetric flow rate per unit volume of aquifer representing the
fluid source (positive) and sink (negative) [T−1].

2.1 Model setup and boundary conditions

The framework of this synthetic model is based on the general
conditions of mountainous area around the Chengdu Plain in
Sichuan Province, China. The total length of the model is
1,700 m, with the left side representing the mountainous area at
a height of 500 m and the right side representing the plain area with
dimensions of 200 m in length and 150 m in height (Figure 1A). The
entire domain is discretized into numerous cells, with each cell
measuring 10 m × 10 m in size.

The model was defined as an unconfined aquifer, with the left
and right boundaries designated as no-flow boundaries,
representing the water divide between the mountain and the
river, respectively. The bottom also serves as a no-flow boundary,
indicating the presence of impermeable rock beneath the model. The
top is an active boundary, receiving the rainfall recharge at rates of
600, 800, 1,000, and 1,200 mm/year with an infiltration rate of 0.4.
These settings are based on the precipitation data around the
Chengdu Plain (Liu and Xu, 2016).

Furthermore, based on the slope inclination around Chengdu, we
consider five slope angles at the interaction of mountainous area and
lowlands, ranging from 20° to 40° (Figure 1B). Different slope angles
may change the water infiltration rate since steep slopes bring more
water flow on the surface. Although this is not considered in this
synthetic study, we hope to investigate the effect of slopes on the
groundwater flow.Additionally, we assume the lithology of themodel as
porous media, setting the hydraulic conductivity and porosity at 0.1 m/

Frontiers in Environmental Science frontiersin.org02

Xu et al. 10.3389/fenvs.2024.1343903

108

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1343903


d and 0.2, respectively. Dispersity in porous media is set at 10 m, with a
horizontal transverse ratio of 0.1 and a vertical transverse ratio of 0.01. A
contaminant source is defined near the left boundary at the
concentration of 1.0 (dimensionless), representing contamination
produced by anthropogenic activities in the mountain area.

2.2 Solute transport assessment

To assess river contamination, we use two evaluation metrics to
delineate solute transport from the mountainous area to the river:
contaminant arrival time and the totalmass of contamination over a 20-
year period. Contaminant arrival time denotes the moment when the
contaminant (concentration ≥0.01) first reaches the river from the
beginning of the simulation, providing ameasure of the solute transport
speed from the mountainous region to the river. The total mass of
contamination over a 20-year period represents the cumulative mass of
solute flowing into the river in the 2 decades following the contaminant
arrival time. For each scenario involving varying precipitation and slope
angles, both metrics are derived from simulation results to quantify the
vulnerability of the river to mountainous contamination.

3 Results and discussion

This study aims to investigate the effect of slope and
precipitation on the transport of contaminants from the

mountainous area to lowland river. Figure 3 illustrates examples
of simulation results for steady-state groundwater levels. At a
precipitation level of 1200 mm/yr, the highest groundwater head
level is approximately 300 m for the 40° slope angle, 320 m for the
30° slope angle, and 340 m for the 20° slope angle (Figures 2A–C). It
indicates that the groundwater head level increases with a steeper
slope angle. On the other hand, the precipitation also controls the
groundwater level, in which the groundwater head increases with
precipitation from 600 mm/yr to 1,000 mm/yr (Figures 2D–F).
Hence, it can be inferred that groundwater head levels possessed
a positive relationship with precipitation while a negative
relationship with the slope angle.

The process of solute transport was simulated from the
mountainous area to the river based on the steady-state flow field
(Figure 3). Figure 4 presents the arrival time and total contaminant
mass to the river for each simulation case. The arrival time analysis
reveals that pollutants take approximately 70 years to reach the river.
Specifically, the case of 20° slope angle at a 1,200 mm/yr rainfall
recharge rate exhibits the earliest arrival time at ~65 years. In
contrast, the case of 35° and 40° slope angles at a 600 mm/yr
rainfall recharge rate show the slowest solute transport with the
arrival time at ~75 years. Arrival time decreases with increasing
precipitation, indicating that higher rainfall recharge rates promote
the speed of solute transport. Furthermore, it increases with slope
angles, highlighting that the gentler slopes are more conducive to
contaminant transport. On the other hand, the total mass of
pollutants discharged into the river is greatly influenced by the

FIGURE 1
Model setup: (A) model domain and boundary conditions; (B) models with different slope angles.

FIGURE 2
Examples of head distribution with different slope angles and precipitation levels: (A) slope angle is 40° and precipitation is 1200 mm/yr; (B) slope
angle is 30° and precipitation is 1200 mm/yr; (C) slope angle is 20° and precipitation is 1200 mm/yr; (D) slope angle is 30° and precipitation is 1000 mm/yr;
(E) slope angle is 30° and precipitation is 800 mm/yr; (F) slope angle is 30° and precipitation is 600 mm/yr. For the head distribution of all models, see
Supplementary Figure S1.
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precipitation. The mass of contaminants discharged into the river
increases from 45 to 67 with the increasing rainfall recharge rate over
a 20-year period. However, the relationship between total mass and
slope angle is less apparent, suggesting that slope angles have a
limited impact on the mass of contaminants transported into
the river.

The findings of this study indicate the importance of evaluating
contaminant transport between the mountainous area and basin
plain, suggesting that a comprehensive analysis with multiple factors
are needed in studying the contamination interaction between
groundwater and surface water. In addition, the protection of
groundwater resources in the mining sites and tunnels should be
stressed as the contaminants possibly transport with groundwater
from mountains to the surface water in the basin. Engineers should
pay more attention to the groundwater flow system and water–rock
interaction around the mining sites and tunnels, as well as
techniques of water drainage and pollutant deposition in the
underground engineering.

4 Conclusion

This study conducts simulations to analyze contaminant
transport from the mountainous area to the lowland river.

The investigation considers multiple cases with varying
precipitation and slope angles along the gradient from the
mountain to the plain, with a focus on calculating the total
mass and arrival time of contamination. The simulation
results reveal that both groundwater level and solute transport
are influenced by precipitation and slope angles. The main
findings are listed below:

(1) The general groundwater head demonstrates an increase with
higher precipitation and a decrease with steeper slope angles,
ranging from 300–340 m.

(2) The arrival time of contaminants from the mountain to the
river exhibits a decrease with higher precipitation and an
increase with steeper slope angles, with the minimum arrival
time of approximately 65 years and the maximum arrival time
of more than 75 years.

(3) The total mass of contaminants discharging into the river in
20 years shows an increase with precipitation. Although the
trend is less clear with slope angles, slope angles have an
unclear impact on the mass of contaminants transported into
the river.
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Classification algorithm for land
use in the giant panda habitat of
Jiajinshan based on spatial
case-based reasoning
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Jiajin Mountain, where the giant pandas reside, is an essential nature reserve in
China. To comprehend the land use classification of the habitat, this article
proposes a remote sensing interpretation algorithm based on spatial case
reasoning, known as spatial case-based reasoning (SCBR). The algorithm
incorporates specific spatial factors into its framework and does not require
an extensive amount of domain knowledge and eliminates the need for a
complex model training process, making it capable of completing land use
classification in the study area. SCBR comprises a spatial case expression
model and a spatial case similarity reasoning model. The paper conducted
comparative experiments between the proposed algorithm and support vector
machine (SVM), U-Net, vision transformer (ViT), and Trans-Unet, and the results
demonstrate that spatial case-based reasoning produces superior classification
outcomes. The land use classification experiment based on spatial case-based
reasoning at the Jiajinshan giant panda habitat produced satisfactory
experimental results. In the comparative experiments, the overall accuracy of
SCBR classification reached 95%, and the Kappa coefficient reached 90%. The
paper further analyzed the changes in land use classification from 2018 to 2022,
and the average accuracy consistently exceeds 80%. We discovered that the
ecological environment in the region where the giant pandas reside has
experienced significant improvement, particularly in forest protection and
restoration. This study provides a theoretical basis for the ecological
environment protection of the area.

KEYWORDS

remote sensing image segmentation, land use, case-based reasoning, spatial features,
machine learning, Jiajinshan giant panda habitat

1 Introduction

As one of China’s nature reserves, the Jiajinshan Giant Panda Reserve is an important
part of China’s giant panda habitat network. It is also aWorld Heritage Site, a national-level
nature reserve, a national key scenic area, and a key biodiversity area. The Chinese
government attaches great importance to the conservation of ecological resources in the
Jiajinshan giant panda habitat. It has already implemented a series of policies, such as
establishing national-level nature reserves; strengthening, monitoring, and management of
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the habitat; and controlling environmental damages caused by
human activities. Land use classification refers to the
classification, division, and statistics of land within a certain area
to understand the types, distribution, and area of land use in that
region, which provides important information about land use types,
distribution, and area. It also provides basic data support for rational
land resource utilization, environmental protection, and sustainable
development. It has important scientific and practical value (Xu
et al., 2022; Zhang et al., 2022). Therefore, conducting land use
classification for the Jiajinshan giant panda habitat is crucial for its
scientific protection and sustainable development.

At present, land use classification based on remote sensing imagery
is a commonly used method (Castelluccio et al., 2017). In particular, it
involves a process of using satellite or aerial image data obtained using
remote sensing technology to classify and identify land cover through
digital image processing and classification algorithms. Common
classification methods include supervised classification (Shi et al.,
2012; Rwanga and Ndambuki, 2017), unsupervised classification
(Riese et al., 2019; Zhang et al., 2021), and semi-supervised
classification (Dalsasso et al., 2021; Xia et al., 2022). Among these,
supervised classification in the field of land use classification of remote
sensing images has always been an active research area. Its development
trajectory has gradually transitioned from traditional methods to
machine learning, and then to deep learning, while emphasizing
technological innovations such as multisource data fusion and semi-
supervised learning. In traditional methods, land use classification
mainly relied on manually designed features, such as texture, color,
and shape. The classificationmethods used includedminimumdistance

classification (Haapanen et al., 2004), support vector machine (SVM;
Ustuner et al., 2015), and decision trees (Pham et al., 2022). These
methods achieved success to a certain extent, but the classification
performance for complex land cover categories and high-dimensional
data was relatively poor. With the rise of machine learning, artificial
intelligence methods have gradually replaced traditional methods.
Significant achievements have been made in land use classification
using structures such as convolutional neural networks (CNN; Liu et al.,
2022) and transformers (Kaselimi et al., 2022). Simultaneously, various
improved deep learning architectures, such asU-Net (Wang et al., 2022)
and ResNet (Wang et al., 2023), have emerged to address different land
use classification problems. These network structures perform well in
handling different scales and complexities of land cover categories.
However, machine learning-based methods have obvious drawbacks,
such as requiring extensive training based on a large number of
annotated samples for an extended period and being prone to
overfitting. This makes AI-based methods still have considerable
room for improvement. Table 1 lists the strengths and weaknesses
of some recent algorithms.

Case-based reasoning (CBR) (Schank and Abelson, 1977; Aamodt
and Plaza, 1994), as an artificial intelligencemethod for solving complex
problems, has been widely researched and applied. Its basic idea can be
summarized as follows: for the given case (or new problems), CBR can
search for similar cases in a historical case bank and reuse the solutions
of those similar cases in the given case. If the solution through direct
reuse is deemed impractical, modifications to the case solution aremade
based on domain knowledge or alternative approaches, resulting in the
ultimate resolution. Furthermore, the typical cases with direct or revised

TABLE 1 Advantages and disadvantages of various algorithms for remote sensing land use classification.

Algorithm Year Advantages Disadvantages

Minimum distance — Simple and easy to understand Sensitive to outliers, not suitable for complex classes

Support vector machine (Burges,
1998)

1998 Handles high-dimensional data well, strong
generalization

High computational complexity, insensitive to large-scale and
imbalanced data

Decision tree (Quinlan, 1986) 1986 Easy to interpret and captures nonlinear relationships Sensitive to noise, prone to overfitting

Random forest (Breiman, 2001) 2001 Good performance on high-dimensional data,
mitigates overfitting

Long training times and relatively lower interpretability

k-nearest neighbors — Simple and easy to implement Sensitive to noise and outliers and requires tuning of k

Principal component analysis
(Hotelling, 1933)

1933 Effective dimensionality reduction and retains main
information

Ignores some details that may contain important information

Convolutional neural network
(Krizhevsky et al., 2012)

2012 Learns complex feature representations and suitable for
large high-dimensional data

Requires a large amount of labeled data, high computational
resources

U-Net (Ronneberger et al., 2015) 2015 Suitable for semantic segmentation tasks and preserves
high-resolution information

May not perform as well as other methods for small objects and
requires substantial data for training

ResNet (He et al., 2016) 2016 Addresses the vanishing gradient problem and suitable
for deep learning tasks

Long training times and requires substantial computational
resources

Multi-source data fusion — Improves classification accuracy and enhances
robustness

Challenges in handling data inconsistency during fusion and
complex fusion algorithms

Temporal information fusion — Captures temporal variations and enhances
classification accuracy

Higher demands on data acquisition, storage, and research on
handling temporal information

Semi-supervised learning — Reduces labeling costs and improves model
performance

Requires certain levels of model generalization and robustness

Transfer learning (Pan and Yang,
2009)

2009 Adapts to new environments and reduces dependency
on extensive labeled data

Careful selection of models and transfer strategies is necessary
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solutions are added to the case bank to expand its contents. CBR does
not require precise domain models but rather uses historical case
knowledge to deduce solutions for new cases. It has significant
advantages in solving complex and uncertain problems, especially in
domains where specialized knowledge is abstract and difficult to
generalize and express.

In recent years, CBR has been widely researched and applied in
various fields, such as environmental science (Bajo et al., 2010; Lee
et al., 2014; Mounce et al., 2016; Caro et al., 2017), urban
development (Li and Liu, 2006; Liu et al., 2014; Yu and Li,
2018), land use (Shi and Zhu, 2004; Du et al., 2010), geological
engineering (Fyson and Toll, 2008; Dou et al., 2015), mineral
resource evaluation (Chen et al., 2010), oil and gas engineering
(Skalle and Aamodt, 2004; Popa and Wood, 2011; Shokouhi et al.,
2014; Mazhari et al., 2018), and oil and gas resource evaluation
(Chen et al., 2010; Chen et al., 2014), and has achieved good results.
However, from the current research, there are still relatively few

attempts to use CBR for land use classification. In the
aforementioned studies, the reasoning models mainly employs
the classical attribute similarity reasoning, with less emphasis on
spatial similarity reasoning based on spatial features. The few studies
that have explored spatial similarity reasoning are focused on
specific domain problems. While spatial features of different
research objects vary from different domains to problems, and
because of the different features, the spatial similarity reasoning
methods tend to be different. Therefore, for land-use classification,
in addition to the attribute features, it is meaningful to explore the
spatial features and construct corresponding integrated reasoning
models to enhance the effectiveness and accuracy of land use
classification in the Jiajinshan giant panda habitat.

Therefore, this paper proposes a land use remote sensing
interpretation algorithm based on spatial case-based reasoning
(S-CBR). In particular, it comprises the construction of a spatial
case expression model and a spatial case similarity reasoning model.
Based on this, comparative experiments were conducted with
ablative analysis and land use classification experiments in the
Jiajinshan giant panda habitat. Further discussions analyze the
changes in land use classification from 2018 to 2022 over a 5-
year period. This provides decision support for relevant departments
in protection planning, rational resource utilization, monitoring of
land use changes, and even scientific research and education in
the region.

The remaining structure of the article is as follows: Section 2
provides a detailed introduction to the study area; Section 3
elaborates on the proposed spatial case reasoning algorithm;
Section 4 expounds on the experimental results of the algorithm
and related discussions; and Section 5 provides the conclusion of
this paper.

2 Study area

The Jiajinshan giant panda habitat is located in the Jiajin
Mountain region at the junction of Wenchuan County, Li
County, and Songpan County in Aba Tibetan and Qiang
Autonomous Prefecture, Sichuan Province, China (Figure 1). It
includes the Jiajinshan Nature Reserve, Shapinggou Nature
Reserve in Barkam County, Ma’anshan Nature Reserve in

TABLE 2 Data types and their acquisition sources.

Category Processing result Source

Topography Slope Google Earth Engine (https://developers.google.com/earth-engine)

Aspect

Isoheight

Meteorology Isotherm Google Earth Engine (https://developers.google.com/earth-engine)

Isohyet

Iso-evaporation lines

Hydrological Water network distribution OpenStreeMap (https://www.openstreetmap.org/)

Imagery Sentinel-2 satellite remote sensing data Google Earth Engine (https://developers.google.com/earth-engine)

MODIS NDVI MODIS NDWI time series data

FIGURE 1
Topographic map and location of the study area.
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Xiaojin County, and Baishuigou Nature Reserve in Wenchuan
County. It has an alpine sub-frigid humid climate, with an annual
average temperature ranging from −2°C to 12°C. The region
receives abundant rainfall, with an annual precipitation of
approximately 800–1,200 mm, mainly concentrated from May
to October. Due to high altitude, the climate in the Jiajinshan
giant panda habitat changes dramatically, with large temperature

differences between day and night, and the temperature at night
can drop to below −20°C. The Jiajinshan giant panda habitat is
located in the mountain area with complex terrain, numerous
rivers, and a forest coverage rate of over 70%. The region has
undulating topography, with mountain peaks over 3,000 m, and
the highest peak exceeding 5,000 m. The area is crisscrossed by
many rivers, including the Barkam River, Qingyi River, Songpan
River, and Dadu River. These rivers have abundant water resources
and are mostly tributaries of the Yangtze River. Due to its unique
geographical location and climatic conditions, the Jiajinshan giant
panda habitat possesses rich natural resources, including many
rare wildlife and plants. Endangered species such as giant pandas,
golden monkeys, and snow leopards live and reproduce here.
Therefore, research on land classification in this area is of great
significance to the protection of China’s ecological environment
and biodiversity.

TABLE 3 Allocation of weights for each feature.

Feature name Sub-feature Value

Attribute feature Spectral 0.384 0.24

NDVI 0.253

Temperature 0.161

Precipitation 0.086

Evaporation 0.013

Slope 0.086

Aspect 0.017

Spatial feature Isoheight 0.097 0.52

Isotherm 0.236

Isohyet 0.186

Isothyme 0.481

Peak area 0.5

Auxiliary feature Coupling value of growth rate 0.5 0.24

FIGURE 4
Spatial case-based reasoning process.

FIGURE 2
MODIS NDVI time series curve. (A) Different land use types tend
to have different time series curves. (B)Different land use types tend to
have different peak areas.

FIGURE 3
MODIS NDVI growth rate fitting curve. Different land use types
tend to have different growth rate fitting curves.
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3 Research methods

3.1 Data acquisition and processing

In this paper, multi-sources and multi-temporal data were used
as the basis for land use classification in the Jiajinshan giant panda
habitat. All the data were obtained from Google Earth Engine and
OpenStreetMap, more specifically, including Sentinel-2 satellite
remote sensing data, MODIS normalized difference vegetation
index (NDVI), MODIS NDWI time series data, digital elevation
model (DEM) data, and hydrological and meteorological data. The
specific data contents are given in Table 2.

The multiple-source data have various formats, and usually, the
resolution and coordinate systems are inconsistent, making them

difficult to use directly. To accurately and correctly identify land use
types, tools such as ArcMap and ENVI were used to process the raw
data. For DEM, hydrological and meteorological data, basic
elements such as slope, aspect, isoheight, distribution of water
network, isotherm, isohyet, and isothyme, and other calculations
were performed. Additionally, the size of the grid cells will greatly
affect the calculation amount and precision of the model.
Considering the calculation amount after dividing the cells and
whether the attributes of the grid cells can effectively reflect the real
features of the area and in combination with the available resolution
of multi-source and multi-temporal data, the research proposed to
use a regular grid cell at a size of 30 m × 30 m as the minimum unit
for land use classification, regarding each cell as homogeneity.

3.2 Construction of a spatial case
expression model

In case reasoning, each grid cell represents a case, where cases
with known land use categories are called known cases, and cases
that are unknown and awaiting classification are called unknown
cases. Unlike traditional case reasoning, which only uses attribute
features to construct case expression models, the proposed spatial
case reasoning model in this paper adopts an integrated approach
that incorporates attribute features, spatial features, and auxiliary
features in the construction of spatial case expression models.

3.2.1 Attribute features
Attribute features are extracted from multiple data sources,

including topography and imagery data. The Sentinel-2 satellite
imagery comprises 13 bands ranging from 440 nm to 2,090 nm. The
spectral information can reflect land cover types and biological
growth from different perspectives, providing an important basis for
land use classification. MODIS NDVI data contain NDVI values for
each grid cell during 23 periods within a year. They directly reflect
the changes in surface vegetation and water resources during
different periods of the year, making a strong factor for
identifying land use types. Additionally, factors such as

TABLE 4 Results of the ablation experiment.

Class O-CBR A-CBR S-CBR

Recall Precision F1 Recall Precision F1 Recall Precision F1

Water bodies 0.6702 0.6299 0.6078 0.7424 0.7488 0.7274 0.8540 0.8441 0.8532

Forests 0.6517 0.7012 0.7028 0.7484 0.7134 0.7494 0.8756 0.8091 0.8522

Grasslands 0.6567 0.6864 0.6062 0.7530 0.7467 0.7686 0.8369 0.8440 0.8904

Wetlands 0.7296 0.5538 0.6144 0.7372 0.7706 0.7367 0.8391 0.8526 0.8713

Cultivated lands 0.6580 0.6480 0.6141 0.7879 0.7407 0.7608 0.8092 0.8445 0.8420

Shrub lands 0.6692 0.6621 0.7228 0.7534 0.7669 0.7336 0.8548 0.8518 0.8253

Building lands 0.5928 0.6839 0.6757 0.7697 0.7402 0.7840 0.8541 0.8794 0.8637

Bare lands 0.6221 0.6650 0.6766 0.7479 0.7741 0.7602 0.8911 0.8391 0.8584

Snowfields 0.6131 0.6154 0.6078 0.7118 0.7538 0.7317 0.8315 0.8742 0.8227

Clouds 0.6366 0.6543 0.6718 0.7484 0.7447 0.7477 0.8537 0.8612 0.8211

TABLE 5 Results of the comparative experiments in 2020. Bolded entries
indicate the optimal results.

Class name SVM U-Net ViT Trans-
Unet

S-CBR

Water bodies 0.92 0.93 0.92 0.93 0.96

Forests 0.82 0.85 0.84 0.86 0.89

Grasslands 0.77 0.75 0.82 0.84 0.93

Wetlands 0.80 0.83 0.87 0.91 0.95

Cultivated lands 0.83 0.89 0.84 0.92 0.88

Shrub lands 0.82 0.88 0.85 0.91 0.94

Building lands 0.81 0.89 0.86 0.92 0.93

Bare lands 0.80 0.89 0.83 0.91 0.95

Snowfields 0.80 0.87 0.83 0.91 0.94

Clouds 0.84 0.88 0.84 0.92 0.93

AA 0.76 0.79 0.82 0.83 0.84

OA 0.81 0.85 0.89 0.92 0.95

Kappa 0.85 0.87 0.86 0.88 0.90
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temperature, precipitation, evaporation, slope, and aspect indirectly
affect land cover, local climate, and biological distribution, and thus,
they are also essential reference factors for land classification. In
summary, each case in the study comprises 19 factors, including
Sentinel-2 spectral imagery, MODIS NDVI, temperature,
precipitation, evaporation, slope, and aspect as its attribute features.

3.2.2 Spatial features
Spatial features are derived from topographic data,

meteorological data, and hydrological data. After fully
considering the spatial features of various land types, spatial
metric relationships were selected as spatial features.

Spatial metric relationships quantify the distance between two
geographic units. First, isolines with appropriate intervals are
obtained for the four basic data of elevation, temperature,
precipitation, and evaporation. For any grid cell within the study
area, the distances from the center of each grid cell to the isolines of
elevation, temperature, precipitation, evaporation, and the distance
to the water network are calculated as the spatial metric relationship
features of the case.

3.2.3 Auxiliary features
Auxiliary features are designed to supplement case features and

enrich the feature factors of case features. Auxiliary features are
further derived from attribute features or spatial features, and often
have special meanings for case features, so they are not repetitions of
the aforementioned features. The auxiliary features in this study are
obtained from MODIS NDVI time series data and consist of the
peak area (S) and coupling value of the growth rate.

Generally, different land use types exhibit different MODIS
NDVI time series curves, as shown in Figure 2A. The peak area
(S) and coupling value of the growth rate are designed to reflect this
feature. The peak area represents the area enclosed by the time curve

and the x-axis, which is composed of trapezoids formed by discrete
data, as shown in Figure 2B.

The formula is as follows:

S � ∑n−1
k�1

yk − yk+1
2

Δx. (1)

In Eq. 1, S represents the peak area; n represents the number
of time series; yk represents the NDVI value of the kth time
series; and Δx represents the time interval, which is set as 1 in
the study.

The coupling value of the growth rate is composed of the
slope of the fitted curve during the growth phase of the MODIS
NDVI time series curve and the maximum value of the fitted
curve (Figure 3). This is because different land use types had
different growth rates during the growth phase of the MODIS
NDVI time series curve, and they also have different peak values
(Figure 2A). The coupling value of the growth rate is calculated
as follows:

E � β + max NDVI . (2)

In Eq. 2, β represents the slope of the fitted curve, which is
obtained through the least squares method. maxNDVI represents the
maximum value of the fitted curve.

In summary, the spatial case expression model can be expressed
as follows:

C � (a1, a2, ..., ak; d11, d12, ..., d1m,
d21, d22, ..., d2m, dq1, dq1, ..., dqm,
...S, E, R).

(3)

In Eq. 3, ak represents the attribute feature value; k represents the
number of basic parameters; dqm represents the distance value from
the case to the mth isoline of the qth basic data; S represents the
feature value of the peak area of the case; E represents the coupling

FIGURE 5
Results of comparative experiments on land use classification in the study area using different methods. Subfigures include (A) image; (B) SVM; (C)
U-Net; (E) Trans-Unet; and (F) S-CBR.
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value of growth rate feature value; and R represents the land use
category of the case. For unknown cases, the value of R is left blank.

3.3 Construction of a spatial case similarity
reasoning model

The spatial case similarity reasoning model consists of two parts:
attribute similarity reasoning model and spatial similarity
reasoning model.

The similarity reasoning formula of attribute features and
auxiliary features is as follows:

Sa �
∑n
i�1

vhi
vui
wi

∑n
i�1
wi

If
vhi
vui

> 1, v
h
i

vui
� vui
vhi
. (4)

In Eq. 4, i represents a feature item corresponding to an attribute
feature; n represents the total number of attribute features; vi

h

represents the ith attribute feature value of the known-layer case;
vi
u represents the ith attribute feature value of the unknown case; wi

represents the weight of the ith attribute feature; and Sa represents
the attribute feature similarity between the known and
unknown cases.

The similarity reasoning formula of spatial metric relationship is
as follows:

Sd �
∑n
j�1

dhj
duj
wx

j

∑n
j�1
wx

j

If
dh
j

du
j

> 1,
dh
j

du
j

� du
j

dh
j

. (5)

FIGURE 6
Land use classification results: (A–E) represent the land use classification results from 2018 to 2022, respectively.

TABLE 6 Total precision of land use classification by year.

Year 2018 2019 2020 2021 2022

Precision 0.8166 0.8219 0.8437 0.8316 0.8521
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In Eq. 5, j represents the index of spatial metric relationships; n
represents the total number of items; dj

h represents the feature value
of jth spatial metric relationship of the known case; dj

u represents the
feature value of the jth spatial metric relation of the unknown case;
wj

x represents the weight of the corresponding metric relationship
feature; and Sd represents the spatial metric relationship similarity
value between the known and unknown cases.

The integrated reasoning formula of spatial similarity and
attribute similarity is as follows:

S � SsWs + SaWa

Ws +Wa
. (6)

In Eq. 6, Ws and Wa represent the weights of spatial similarity
reasoning and attribute similarity reasoning, respectively. Ss and Sa
represent the similarity values of spatial and attribute similarity,
respectively. S represents the similarity of the integrated inference of
spatial similarity and attributes similarity integrated reasoning.

3.4 Model evaluation metrics

In the context of spatial inference models for remote sensing
image analysis, the quality of inference results needs to be measured
using appropriate accuracy evaluation metrics. This paper adopts
two accuracy evaluation metrics: accuracy, commonly referred to as
accuracy or correctness, and evaluation metrics, such as recall,
precision, and F-measure.

The accuracy or correctness metric is the most widely used
accuracy evaluation measure. It is generally expressed as the ratio of
the number of correctly classified samples to the total number of
samples in the validation set, as shown in Eq. 7:

a � c

n
. (7)

In the formula, c represents the number of correctly classified
samples, n represents the total number of validation samples, and
a represents accuracy.

The evaluation metrics of recall, precision, and F-measure are
derived from the fields of machine learning and statistics. Compared
to simple accuracy or correctness metrics, these indicators provide a
more effective and detailed assessment of the results of model
classification. For a specific class to be predicted, this class is
referred to as the positive class, while the rest are considered
negative classes. True positives (TPs) represent the number of
samples in the validation set where the true class is positive and
the predicted result is also positive. False positives (FPs) represent
the number of samples in the validation set where the true class is
negative, but the predicted result is positive. False negatives (FNs)
represent the number of samples in the validation set where the true
class is positive, but the predicted result is negative. True negatives
(TNs) represent the number of samples in the validation set where
the true class is negative, and the predicted class is also negative.

FIGURE 7
Changes in the land use types of the Jiajinshan giant panda
habitat. (A) Changes in the proportion of land use categories in the
habitat of giant pandas in Jiajin Mountain. (B) Changes in the land use
types and areas of the Jiajinshan giant panda habitat.

TABLE 7 Evaluation of land use classification indicators by category (2018–2022).

Year Categories

Water
bodies

Forests Grasslands Wetlands Cultivated
lands

Shrub
lands

Building
lands

Bare
lands

Snowfields

2018 0.8401 0.8028 0.7954 0.8110 0.7954 0.8110 0.8167 0.8012 0.8164

2019 0.8440 0.8229 0.7990 0.7989 0.7996 0.8290 0.8374 0.8189 0.8304

2020 0.8548 0.8414 0.8278 0.8069 0.8529 0.8124 0.8268 0.8176 0.8294

2021 0.8534 0.8281 0.8136 0.8276 0.8413 0.8460 0.8431 0.8442 0.8627

2022 0.8633 0.8457 0.8471 0.8522 0.8608 0.8431 0.8572 0.8370 0.8436

Frontiers in Environmental Science frontiersin.org08

Xia et al. 10.3389/fenvs.2024.1298327

119

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1298327


Thus, the calculation for recall is given by Eq. 8:

R � TP

TP + FN
. (8)

It calculates the proportion of all correctly classified samples to
all samples that should have been predicted as positive class.

The calculation for precision is given by Eq. 9:

P � TP

TP + FP
. (9)

It calculates the proportion of all correctly classified samples to
all samples predicted as positive class.

Precision and recall are interrelated; ideally, the higher both
values are, the better the classification performance. However, in
general, when precision is high, recall tends to be low and vice versa.
If both are low, the classification performance is considered poor.
Therefore, when both high precision and high recall are desired, the
F-measure metric can be used to measure the trade-off between
them. Its calculation is shown in Eq. 10:

F � α2 + 1( )PR
α2 P + R( ) . (10)

In the formula, P represents the precision value, R represents the
recall value, and when the parameter α = 1, F-measure is commonly
referred to as the F1 evaluation metric, expressed as in Eq. 11

F1 � 2PR
P + R

. (11)

In addition, in the comparative experiments, we employed
overall accuracy (OA), average accuracy (AA), and Cohen’s
kappa coefficient to measure the overall effectiveness of different
methods. OA is a straightforward evaluation metric representing the
proportion of correctly classified samples to the total number of
samples. AA calculates the average accuracy of each class in a multi-
class classification problem, balancing the sample distribution across
different classes. Kappa is a measure of consistency that considers
random classification, addressing the issue of imbalanced sample
distribution affecting OA.

3.5 Experimental design

According to the aforementioned research methods, this study
employs Python as the programming language for algorithm
development. Remote sensing imagery and meteorological,
hydrological, and topographic data from 2018 to 2022 were
collected in the Jiajinshan giant panda habitat. In addition, the
land use of the study area was classified for each year, including
10 categories: water bodies, forests, grasslands, wetlands, cultivated
lands, shrub lands, building lands, bare lands, snowfields, and
clouds. In the experimental project, multiple remote sensing
images of each year were mosaicked with a median composition
method. Through visual interpretation, regions were uniformly
selected as the case bank, while the remaining regions were taken
as unknown cases. In the case bank, 30% of the cases were randomly
chosen as test cases to evaluate the effectiveness of the model.

Before conducting the spatial case reasoning of strata, it is
necessary to determine the internal and mutual weights of

attribute features, spatial features, and auxiliary features. The
weights of each factor can be determined as follows: first, case
reasoning was performed with individual feature sub-items to obtain
the classification precision based solely on that feature sub-item.
After performing case reasoning on all feature sub-items, the
importance ranking of all feature sub-items can be obtained.
Then, the analytic hierarchy process (AHP) is used to determine
the specific weights of each feature sub-item, as shown in Table 3.
The specific process of case-based reasoning used in the experiment
is shown in Figure 4.

4 Results and discussion

4.1 Ablation experiment

To verify the effectiveness of spatial features in the model, we
conducted three sets of controlled experiments based on the dataset
of 2020. These experiments include the ordinary case-based
reasoning (O-CBR) model with only attribute features, case-based
reasoning (A-CBR) model combining attribute and auxiliary
features, and spatial feature-integrated case-based reasoning
model. The experimental results are shown in Table 4.

Among the three CBR methods, the S-CBR method, which
incorporates spatial features, achieved the best performance,
while the O-CBR method, only using attribute features, had the
worst performance. The A-CBR method, which combines attribute
and auxiliary features, achieved moderate classification results. This
indicates that auxiliary features and spatial features play an
important role in remote sensing image segmentation, especially
in land use classification. It also proves that exploring features with
spatial significance is one of the approaches to applying general
artificial intelligence methods to land use classification of remote
sensing images.

4.2 Comparison experiments

To validate the advancement of the proposed algorithm, we
conducted comparative experiments based on imagery from the
study area in 2020. The selected algorithms for experimentation
range from traditional statistical learning algorithms to advanced
machine learning algorithms, including SVM (Burges, 1998), U-Net
(Ronneberger et al., 2015), vision transformer (ViT) (Dosovitskiy
et al., 2020), and Trans-Unet (Chen et al., 2021). Among these,
support vector machine represents traditional statistical learning
algorithms, U-Net is a convolutional neural network-based
algorithm, ViT utilizes the transformer structure, and Trans-Unet
combines the CNN and transformer. In the comparative
experiments, we fine-tuned the hyperparameters for some
methods. In particular, for the SVM, we used cross-validation to
set the regularization parameter (C), gamma parameter, and degree
of the polynomial kernel. The kernel function chosen was the default
radial basis function (RBF) kernel. In practical implementation, we
used GridSearchCV from scikit-learn to carry out this process. For
several other deep learning methods, we conducted comparative
experiments by referring to the optimal parameters mentioned in
their respective papers.
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Table 5 presents the results of the comparative experiments. It
can be observed that the proposed S-CBR algorithm exhibits
optimal experimental results for the majority of categories,
although its performance is less satisfactory for a few
categories. In terms of overall accuracy, S-CBR demonstrates
the best results. This indicates that the proposed algorithm has
advantages in experimental accuracy and is relatively
straightforward in its algorithmic principles.

Figure 5 illustrates the results of the comparative experiments,
and it aligns with the findings given in Table 5.

4.3 Experimental results and discussion of
spatial case-based reasoning

The results of an ablation experiment show that S-CBR achieves
the best land use classification performance of the Jiajinshan giant
panda habitat. Therefore, we chose the S-CBRmethod to classify the
land use of the Jiajinshan giant panda habitat based on remote
sensing images from 2018 to 2022. The classification results are
shown in Figure 6 and Table 6.

The results of the evaluation indicators given in Table 7 show
that the classification precision of land use in the Jiajinshan giant
panda habitat, based on spatial case-based reasoning, is above
80% for various categories. The precision is higher for water
bodies and snowfields while lower for grasslands, wetlands, and
cultivated lands (Table 7).

This may be because water bodies and snowfields have more
distinctive spectral features and are greatly influenced by
topographic images, which play a significant role in the
classification process. On the other hand, the spectral features
of cultivated lands, grasslands, and wetlands are relatively
similar, and from a spatial perspective, their distribution
patterns are not closely related to climate and topographic
factors. Hence, their classification results perform worse. From
the perspective of a 5-year span, the precision of classification
results in 2022 is the highest, while it is the lowest in 2018. This is
because the satellite imagery in 2022 had the lowest cloud
coverage, so the image quality is the best, while the opposite
was true for 2018. This indicates that image quality can affect the
characterization degree of image spectral features on land
objects, thus affecting the quality of classification results.

4.4 Analysis of changes in land use types

Figures 7A, B show the land use changes in the Jiajinshan
giant panda habitat from 2018 to 2022. Over the past 5 years, the
forest land has been the dominant land use type, with its
proportion decreasing first and then increasing. The trend in
grassland area changes is similar to the forest land, but its
proportion has been increasing year by year. The area of the
cultivated land reached its peak in 2020, and since then, it
decreased to some extent. The aforementioned changes in land
use types reflect that the ecological environment of the giant
panda habitat area in Jiajinshan has been improved, especially in
forest protection and restoration.

5 Conclusion

In order to understand the land use classification of the Jiajinshan
giant panda habitat, this paper proposes a land use remote sensing
interpretation algorithm based on spatial case-based reasoning,
including the construction of a spatial case expression model and a
spatial case similarity reasoning model. On this basis, comparative
experiments were conducted through ablation analysis, and the results
showed that the spatial feature-integrated case-based reasoning model
(S-CBR) achieved better classification results. Then, using S-CBR as the
representative algorithm, land use classification experiments were
carried out in the Jiajinshan giant panda habitat. The experimental
results showed that S-CBR had better performance in land use
classification. This paper further analyzed the land use classification
changes from 2018 to 2022 over a 5-year period, and the results can
provide a theoretical basis for the ecological environment protection in
this region.
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Data driven assessment of rock
mass quality in red-bed hilly area:
a case study of Guang’an city,
SW China
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The evaluation of geological suitability for urban underground space (UUS)
development is an indispensable prerequisite for its optimal utilization. As the
actual carrier of underground facilities, the evaluation of rock mass quality plays a
crucial role in assessing geological suitability. However, it is notable that the
evaluation of rock mass quality has regrettably remained somewhat marginalized
within the broader framework of the geological suitability assessment in recent
years. The selection of pertinent indicators for the evaluation of rock mass quality
inherently presents an appreciable degree of subjectivity. Predominantly
subjective evaluation methods continue to dominate the field, while the
application of objective algorithms, such as unsupervised clustering, remains
in its nascent stage. Furthermore, there is a lack of comprehensive investigations
into distinct combinations of attributes. This limitation confines the broader
applicability of the evaluation outcomes in the context of urban underground
space. Within this study, we meticulously amassed rock core test data from over
40 boreholes of engineering geological significance within the urban planning
ambit of Guang’An City. Utilizing the K-means unsupervised clustering algorithm
and the Principal Component Analysis (PCA) algorithm. We successfully
conducted an unsupervised clustering procedure with nine distinct physical
and mechanical attributes. This yielded an aggregation into five discernible
clusters. Building upon the derived clustering outcomes, a stratification of
rock mass quality was effectuated into three distinct tiers: Level 1
(characterized by pure sandstone), Level 2 (primarily dominated by sandstone),
and Level 3 (denoting fair conditions predominantly influenced by mudstone).
This structured stratification facilitates a relatively objective and comprehensive
evaluation of rock mass quality within the context of the red-bed hilly terrain. In
the course of this analytical trajectory, we conducted a dissection of the
clustering efficacy. For strongly correlated attributes, we propose a
preliminary dimensionality reduction procedure prior to the clustering
endeavor. Moreover, we recommend intervals of 10 m for the stratified
evaluation in red bed hilly urban terrains.

KEYWORDS

quality assessment of rock mass, K-means, urban underground space, red-bed hilly
areas, objective assessment
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1 Introduction

Since the commencement of the 21st century, concomitant with
the swift proliferation of the Chinese economy, a substantial surge in
population influx has gravitated toward urban locales, thereby
engendering an accentuated escalation in the urbanization
quotient. In order to address the issues arising from the
population-density imbalance, alleviate the problems associated
with large cities, and achieve sustainable future development, the
concept of “subterranean development” has emerged as an
important direction and trend in the development of large to
mega-cities worldwide (Pan and Jin, 2006; Peng and Peng, 2012;
Qu et al., 2015; Qian, 2019; Lapenna and Chambers, 2020; Zhang
et al., 2021b; Ge et al., 2021).

Urban Underground Space (UUS) represents an idiosyncratic
spatial reservoir subject to profound transformation throughout
its developmental trajectory. In contrast to surface domains, the
ramifications of UUS advancement, epitomized by entities like
subway systems, inherently harbor precise and exclusive
functionalities. Once deployed, such infrastructures stand
impervious to facile dismantlement or modification. Therefore,
prior to the development and utilization of UUS, a thorough
assessment of the geological suitability of the underground
conditions is essential (Andriamamonjisoa and Hubert, 2019;
Hu et al., 2019; Zhu et al., 2020; Tao et al., 2021). Furthermore,
the underground geological conditions, represented by the
subsurface rock and soil formations, play a crucial role as the
actual carriers of underground facilities. They have a significant
influence on the development of Urban Underground Space
(UUS) (Peng et al., 2019; Zhu et al., 2021; Tang et al., 2022).
Hence, the appraisal of rock mass quality assumes an eminent
stance within the overarching framework of a comprehensive
UUS evaluative paradigm.

The evaluation of rock mass quality, akin to the assessment of
Urban Underground Space (UUS), encompasses two primary
dimensions: the selection of evaluation attributes/indicators and
the discernment of suitable mathematical models. Previous studies
have shown that rock mass quality is primarily influenced by
lithological composition, physical properties, and mechanical
attributes (El et al., 2010; Zhou et al., 2019). Therefore, in the
evaluation process, it is common to consider attributes such as
bearing capacity, lithology, or selected mechanical experimental
properties as evaluation criteria (Zhang et al., 2020; Wu et al.,
2021; Tong et al., 2022; Wang et al., 2022; Li et al., 2023; Zhao
et al., 2023). Nonetheless, it is noteworthy that existing scholarship
alludes to the absence of a standardized corpus of criteria governing
attribute selection, and the imperative of the chosen attributes has
not been comprehensively interrogated within this context (Tan
et al., 2021). Hence, it is imperative to investigate the
interrelationships among evaluation indicators to choose an
appropriate type and quantity of indicators for the
evaluation endeavors.

In the evaluation of rock and soil quality, an array of semi-
quantitative mathematical models frequently finds application,
encompassing methodologies such as the Analytic Hierarchy
Process (AHP) and the Most Unfavorable Grade Method
(MUGM) (Xiong et al., 2006; Wang, 2013; Yuan, 2020; Li et al.,
2021; Tian et al., 2021), Fuzzy Comprehensive Evaluation (Zhou B.

et al., 2022; Zhao et al., 2022) and combination of the above method
(Wu, 2021; Tong et al., 2022). Although these methodologies
incorporate expert knowledge, their outcomes are conspicuously
shaped by subjective elements, consequently engendering challenges
in terms of result reproducibility. On the contrary, unsupervised
clustering algorithms, characterized by a diminished susceptibility to
subjective influences, have the capacity to yield relatively objective
evaluation outcomes.Wang et al. (2022) and Li (2020) employ Fuzzy
C-mean clustering algorithm to evaluate geological suitability; Du
et al. (2022) adopted spectral clustering in Jiaozhou Bay stability
evaluation. These studies have pioneered the application of
clustering methods in the suitability assessment of subterranean
spaces. However, extant scholarship reveals a paucity of research
delving into comparative analyses of clustering outcomes across
distinct attributes. Moreover, the formulation of definitive
guidelines for the curation of evaluation criteria remains an
unexplored terrain within this domain.

This study incorporates classical unsupervised learning
(K-means) and dimensionality reduction algorithms (PCA)
into the assessment of rock-soil mass quality in Guang’an
City. Through clustering physical and mechanical attributes
from over 40 boreholes of engineering geological, it evaluates
the effectiveness of various attribute combinations. Additionally,
a detailed analysis of the clustering results is performed.
Providing a foundation for the future utilization of
underground spaces in the red-bed hilly areas and offering
insights into the transition from empirical and expert-driven
suitability assessments to data-driven methodologies. In a
broader spectrum, this inquiry furnishes illuminating insights
germane to the structuring of a comprehensive evaluation
indicator framework, extending its relevance to the expanse of
diverse urban subterranean locales.

2 Geological setting

The study area is situated at the confluence of Chongqing
municipality and Sichuan province in the southwestern region of
China (Figure 1) (Zhang et al., 2021a). It serves as a pioneering
demonstration zone for the advancement of China’s western regions
and the establishment of the Chengdu-Chongqing economic sphere.
A further facet of its distinctiveness lies in its characteristic as a
prolific milieu characterized by the pervasive juxtaposition of red
sandstone-mudstone amalgams. The study area encapsulates a
dyadic delineation of natural terrains, delineated as the Sichuan
red bed hilly belt and the lower elevation sector of the Huaying
Mountain terrain. It is noteworthy that these domains are situated
within the precincts of the Upper Yangtze platform, concurrently
aligning with the Central Sichuan depression, as delineated in the
scholarly oeuvre authored by Wei et al. (2017).

The region exhibits a prevalence of tectonically inactive
fractures, with seismic activity of relatively low magnitude
primarily observed in the eastern sector (Zhou et al., 2022; Zhou
et al., 2023). Within Guang’An, a total of eight distinct geological
strata can be identified, namely the Cambrian, Ordovician, Silurian,
Carboniferous, Permian, Triassic, Jurassic, and Quaternary. The
initial six strata are predominantly present in the mountainous
terrain, while the remaining exposed strata in the red soil hilly area
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exhibit gentle dip angles ranging from 1 to 5°. The Jurassic
Shaximiao Formation (J2s), which is extensively distributed with
a thickness of 400–500 m, displays varying degrees of weathering,

ranging from moderate to severe (Zhou et al., 2022). Moreover,
approximately 80% of the entire outcrop consists of interlayered and
lenticular sand and mudstone (Figure 2).

FIGURE 1
Location of study area and distribution of wells.

FIGURE 2
Simplify geological map of study area [modified after (Zhou et al., 2022)].
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3 Methodology

3.1 Theory review of k-means

K-means, a prominent exemplar within the spectrum of
unsupervised machine learning algorithms, traces its origins to
an incipient proposition by Stuart (1982), wherein its
conceptualization was envisioned as a mechanism to effectuate
signal quantization within the realm of telecommunications. It is
of pertinence to highlight that its subsequent rediscovery and
consequential propagation within the scientific milieu can be
attributed to E. W. Forgy, who independently rekindled the
algorithm’s conceptual essence in the year 1965.

The fundamental tenet underpinning the K-means algorithm
entails the partitioning of a bestowed dataset into a set of K clusters,
with K signifying a predetermined numeric value. This partitioning is
actualized through the imperative of minimizing the cumulative sum of
squared distances, spanning the interrelation between individual data
points and their corresponding cluster centroids. The algorithm
embarks upon an iterative expedition, which commences with the
assignment of each data point to its nearest centroid, subsequently
culminating in the recalibration of these centroids, predicated on the
arithmetic mean encapsulated within the assortment of data points
ascribed to each specific centroid. This iterative voyage persists until
such time that the centroids evince nominal displacement, indicative of
a state of relative stasis, or alternately, upon the exhaustion of a
predetermined threshold pertaining to the maximum number of
iterative cycles. Concretely, the algorithm adheres to the following
sequential series of steps:

1. Initially, assign the data center vector with an appropriate value
based on the data characteristics (assuming an initial setting of
K = 3, representing three distinct types) (Eq. 1). In the case of
non-numeric data within the dataset, utilize the one-hot
encoding technique to initialize the category indicator
variable R, ensuring that all data instances are categorized
as type 1 (Eq. 2).
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Where K is the number of quasi-clustering clusters of the
dataset, uk is the center vector of the cluster, and 0 in uk0
indicates the first dimension (attribute).

2. Update data cluster type R in dataset according to the nearest
square Euclidean distance between uk and data (Eqs 3, 4).

xn − uk‖ ‖2 � xn0 − uk0( )2 + xn1 − uk1( )2 + . . . + xn,m − uk,m( )2 (3)

R �
1 0 0
0 0 1
..
.

0

..

.

1

..

.

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Where xn are dataset matrix,m is the dimensionality of the data
(the number of datasets attributes).

3. Update uk according to R which makes the center of all data
points for each cluster is the new uk (Eq. 5).

uk � 1
Nk

∑
clusterk

xn (5)

4. Repeat steps 2 and 3 until the values of R and uk no
longer change.

5. Calculate the loss function J for evaluating the clustering results
using the provided loss measure illustrated in Figure 3 (Eq. 6).
This involves computing the sum of the squared Euclidean
distances between each data point and its corresponding
cluster center uk.

J�∑
cluster0

xn −u0‖ ‖2 +∑
cluster1

xn −u1‖ ‖2 +∑
cluster2

xn −u2‖ ‖2 (6)

3.2 Description of cluster dataset

The dataset emanates from engineering geological drilling
endeavors undertaken within the chronological span of
2019–2021, encapsulated within the tapestry of the urban
planning expanse. A cumulative tally of 29 boreholes stands
completed, although their distribution within the study area is
characterized by an asymmetric dispersion, prominently
accentuated by a concentration bias towards the western terrain,
with a meager representation on the eastern facet. The altitudinal
and profundity metrics span the spectrum from 409 to 236 m and
120.4 to 50 m, correspondingly. The boreholes were meticulously
executed in a vertical trajectory, thereby accommodating
comprehensive coring along the entire well section. Notably, the
coring extents oscillate within the bounds of 0.3–0.7 m, as delineated
in Figure 4. Every distinct section within this vertical continuum

FIGURE 3
Demonstration of loss function (J) calculation results (also
known as elbow chart).
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manifests as a distinctive datum within the comprehensive dataset.
Predicated upon the coring findings in tandem with the geological
contextual milieu, the lithological spectrum was systematically
categorized into five distinct strata, namely clay, sandstone,
mudstone, shaly sandstone, and sandy mudstone. The suite of
mechanical experiments concomitant with the coring processes
were seamlessly orchestrated by two duly accredited entities,
situated within Sichuan and Chongqing correspondingly.
Notably, the ambit of mechanical experimentation encompassed
tensile strength and shear strength assessments, undertook by the
southern construction engineering testing corporation in
Chongqing, while the remaining array of attribute experiments
were adroitly executed under the aegis of the geological
engineering exploration institute corporation in Sichuan.
Pertinently, in instances where particular attribute assessments
were repeated on a single coring specimen, an average value was
judiciously computed to bestow attribute modeling consistency. The
comprehensive dataset amalgamates an aggregate of 442 data points,
each imbued with an assortment of 9 distinct attributes. The
summative statistical portrait of this clustered dataset is
comprehensively documented within Table 1.

3.3 K-means cluster

3.3.1 Dataset scaling
As delineated in Tables 1, 2, the nine attributes exhibit conspicuous

disparities in scales or magnitudes. This discrepancy can potentially
hinder the performance ofmachine learning algorithms. To address this
issue, two distinct feature scaling methodologies emerge as viable
remedies: min-max scaling and standard scaling. Min-max scaling
transforms the values to a range of 0–1 in the scaled dataset. In
contrast, standard scaling does not rescale the values to a specific
range like min-max scaling but is less susceptible to the influence of
outliers or anomalous data. This characteristic is particularly
advantageous when working with large datasets. Therefore, for this
study, we have selected the standard scaling method to rescale the
datasets (Formula 7).

X scale � X- �X( ) /var (7)

Where X_scale signifies the scaled dataset, X corresponds to the
original dataset, �X represents the mean value, and “var” denotes
the variance.

3.3.2 Methods for determining the optimal value
of K

The K-means algorithmmandates the a priori definition of K for
clustering. This value bears substantial significance, exerting
considerable impact on the resultant clusters. The discernment of
an apt K value assumes paramount importance, given its pivotal role
in shaping the ensuing cluster architecture. A misjudged selection of
K can culminate in suboptimal clustering outcomes, thereby failing
to effectively discern the sought-after cluster delineation.
Consequently, the judicious determination of the optimal K value
emerges as a pivotal factor in the pursuit of attaining robust
clustering results.

For datasets encompassing merely two or three attributes, the
determination of the suitable K value, or rather the cluster count, can
be gleaned through discerning visual insights from intuitive plots.
However, when the attribute count surpasses four, a mathematical
methodology assumes precedence in the quest for selecting the
appropriate K value. In this context, the inertia (sum squared
errors, SSE, formula 8) and silhouette coefficient stand as
prominent mathematical instruments employed in the quest to
ascertain the optimal K. The inertia, meticulously formulated by
Eq. (8), emerges as a statistical metric affording quantification to the
extent of variability or dispersion inherently housed within a dataset.
It embodies the sum of squared discrepancies between each data
point and the mean manifestation of the dataset. In the evaluation of
clustering efficacy, should the ascertained K value fall short of the
optimal K, an augmentation of K will be mirrored by a pronounced
elevation in inter-class aggregation, thereby engendering a
commensurate diminution in the inertia value. Once the K value
aligns with the optimal quotient, the inertia value stabilizes,
exhibiting insubstantial oscillation upon further K escalation. It
follows, therefore, that the trajectory of the inertia value plot
typically conforms to an “elbow” configuration, and the value at
the juncture of this bend is conventionally regarded as the optimal K.

SSE � ∑ X − �X( )2 (8)

FIGURE 4
Coring samples in the study area (A): upper section, (B) bottom section).
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TABLE 1 Statistics summary of the cluster dataset.

Statistics
project

Density
(g/cm3)

Water
content (%)

Porosity
(%)

Compressive
strength (MPa)

Tensile
strength
(MPa)

Deformation
modulus (MPa)

Elastic
modulus
(MPa)

Poisson ratio
(None)

Soften
coefficient
(None)

Count 442 442 442 442 442 442 442 442 442

mean 2.54 3.61 9.64 16.18 1.37 3103.49 3239.49 0.31 0.37

STD 0.05 0.75 1.67 14.21 0.84 1865.06 1926.69 0.06 0.16

Min 2.44 1.36 4.13 1.03 0.20 420.66 469.53 0.17 0.12

25% 2.50 3.40 9.19 4.93 0.61 1342.14 1403.01 0.27 0.23

50% 2.53 3.83 10.14 11.26 1.22 2664.58 2808.19 0.31 0.33

75% 2.59 4.10 10.75 23.68 1.99 4591.23 4787.69 0.37 0.48

Max 2.65 5.00 12.52 64.13 3.34 7663.39 7878.93 0.42 0.74

TABLE 2 The average sector of each cluster.

Cluster Average
depth (m)

Density
(g/cm3)

Water
content (%)

Por
(%)

CS
(MPa)

Tensile
strength (MPa)

Deformation
modulus (MPa)

Elastic
modulus (MPa)

Poisson ratio
(None)

Soften
coefficient
(None)

0 33.60 2.51 3.82 10.16 18.21 1.79 4082.49 4276.91 0.28 0.41

1 21.25 2.48 4.26 11.08 5.87 0.72 1612.26 1704.99 0.35 0.25

4 41.91 2.51 3.75 9.72 38.35 2.60 5838.12 6052.65 0.23 0.61

2 45.72 2.59 3.65 9.84 5.42 0.61 1443.36 1511.18 0.36 0.24

3 33.71 2.62 1.89 5.84 26.43 1.85 4170.14 4336.31 0.27 0.49
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However, it should be noted that the inertia method entails a
rather coarse estimation for determining the optimal K value. An
alternative avenue encompasses the computation of the
silhouette coefficient (SC, Eq. 9) across diverse K values. The
silhouette coefficient delineates the degree of similitude between
a data object and its affiliated cluster as juxtaposed against
alternative clusters. Its quantitative manifestation embodies
the amalgamation of clustering compactness and inter-cluster
separation. This metric, residing within a range spanning from
+1 to −1, holds profound explanatory power. A SC value of
+1 attests to the coherence of a data point with its corresponding
cluster while also highlighting its incongruity with adjacent
clusters. In contradistinction, a SC value of 0 bespeaks the
proximate alignment of data points with the inter-cluster
boundaries. Conversely, a SC value of −1 conveys the
misclassification of a data point within an erroneous
cluster context.

s i( ) � b i( )-a i( )( )/max a i( ), b i( )( ) (9)
Where s(i) represents the value of the i-th data point, a(i) denotes the
average dissimilarity value between i and all data points within its
own cluster, b(i) signifies the average dissimilarity value between i
and all data points within the nearest neighboring cluster, and max
(a(i), b(i)) conveys the pinnacle of dissimilarity observed between i
and any other data point.

To ensure the judicious choice of a clustering outcome, we will
employ both the inertia and silhouette coefficient methods. This
dual approach seeks to procure a reinforced validation of the optimal
K value, thus augmenting the thoroughness of our clustering
analysis while elevating its overall reliability.

The dataset underwent clustering using the Python
programming language, facilitated by the Scikit-Learn library
within the Spyder coding platform. The initialization of dataset
centroids was accomplished through the k-means++ algorithm,
introduced by David and Sergei (2007). The clustering procedure
retained the default parameter settings for all other aspects of
the process.

3.4 Principle component analysis (PCA)

Principal Component Analysis (PCA) stands as a widely
embraced statistical technique catering to dimensionality
reduction and data exploration purposes. It functions as a means
to transmute high-dimensional datasets into lower-dimensional
renditions, all the while preserving fundamental information.
PCA achieves this through the identification of principal
components, which are linear amalgamations of the original
variables. The fundamental underpinning of PCA lies in
discerning the directions, known as principal components, along
which data showcases its most pronounced variability. The
customary steps associated with PCA encompass the following:
①Computation of the covariance matrix; ②Computation of
eigenvectors and eigenvalues; ③Selection of principal
components; ④Data projection. For a more comprehensive
exposition, the exhaustive inquiry undertaken by Shlens (2014) is
recommended as a reference.

4 Results and discussion

4.1 Feature selection

Considering the intrinsic characteristics of the experimental
data attributes, a bifurcation into two principal categories is
discerned: physical properties and mechanical properties. The
former encapsulates density, porosity, and water content, while
the latter encompasses compressive strength, tensile strength,
deformation modulus, elastic modulus, Poisson’s ratio, and
softening coefficient. The selection of features for subsequent
clustering endeavors is fundamentally anchored in the
computation of correlation coefficients between these distinctive
attributes (Figures 5, 6).

On the whole, individual mechanical and physical properties
manifest a planar distribution concerning depth. The correlation
coefficient values span from −0.37 to −0.12 and from 0.2 to 0.29,
indicating a lack of pronounced correlation yet revealing distinct
zonations. Among these attributes, density can be dichotomized into
two classes based on a threshold of 2.55 g/cm3 (refer to Figure 5).
The left side is predominantly characterized by sandstone and shaly
sandstone, while the right side is predominantly occupied by
mudstone and sandy mudstone. This suggests that despite their
lithological similarities, these formations exhibit marked
divergences in their physical attributes. The categorization of
water content, porosity, and mechanical parameters proves to be
relatively intricate. Noteworthy is the significant differentiation
observed within the mudstone category, particularly between
mudstone and sandy mudstone. Additionally, several outliers are
evident within the sandstone category, resulting in a classification
that intersects between 3 and 4 categories.

Substantial positive or negative correlations are discernible
among the mechanical attributes, with correlation coefficient
values spanning from −0.86 to −0.97 and 0.86 to 0.99. The
demarcation between sandstone and mudstone is distinguishable,
although it lacks precise definition (refer to Figure 5). In broad
terms, the categorization can be roughly delineated into three
classes: ①predominantly consisting of mudstone; ②displaying a
mixed composition of shaly sandstone and sandy mudstone;
③primarily composed of sandstone.

The correlation coefficients among the physical parameters
manifest noteworthy disparities. The correlation coefficients
between density-porosity and density-water content are relatively
alike, spanning from −0.64 to −0.67, whereas the correlation
coefficient between porosity and water content approaches 1. The
correlation coefficient plot within the realm of physical properties
exhibits a relatively well-defined boundary, signifying substantial
stratification. It can be broadly categorized into 3–4 classes (refer
to Figure 5).

In the realm of supervised learning, it is typically advantageous
to opt for parameters that demonstrate a strong correlation with the
target data, especially for predictive tasks (Yu and Liu, 2003).
Conversely, within the domain of unsupervised clustering
learning, employing attributes with high correlations for
clustering can substantially elevate the influence of correlated
features and obscure inherent clusters, particularly in the
presence of noisy data (Parsons et al., 2004).
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To validate these concepts, we conducted unsupervised
clustering using six mechanical attributes. To compare the
clustering results of strongly correlated attributes across different
values of K (ranging from 2 to 15), we generated an elbow plot and
computed the silhouette coefficient values. The clustering results are
depicted in Figure 7. Initially, as K increases, the inertia values
exhibit a relatively smooth and insignificant variation, lacking a
distinct inflection point. This observation suggests that there may
not be a definitive optimal value of K. However, the silhouette
coefficient consistently decreases as K increases, indicating that with
the expansion of K, the boundaries between different clusters tend to
blur, resulting in a gradual decline in clustering performance.
Consequently, the optimal value of K likely falls within the range
of 2–4.

Therefore, we generated parallel coordinate clustering plots for
K = 2, 3, and 4 to visually elucidate the actual clustering results
(Figure 8). The observations drawn from these plots indicate that, as
K increases, the clusters tend to retain approximate parallelism.
Specifically, the softening coefficient, which exhibits the lowest
correlation coefficient with other mechanical attributes,
demonstrates noticeable intersections when K = 4. In contrast,
the remaining attributes do not manifest distinct intersections as
K increases. This discovery suggests that the choice of K has minimal
impact on the clustering results for strongly correlated attributes,
posing a challenge in ascertaining an optimal K value. Consequently,
it is recommended to consider data merging or dimensionality
reduction for strongly correlated attributes before embarking on

clustering, as this approach effectively mitigates computational
complexity and conserves processing time.

In light of these findings, this study incorporates PCA (Principal
Component Analysis) as a dimensionality reduction technique to
amalgamate porosity and water content into a singular attribute,
while condensing the six mechanical parameters into two attributes.
Following this transformation, a new dataset is created, and
subspace clustering is subsequently conducted upon it.

4.2 Optimal K

The new dataset is also assessed using inertia and silhouette
coefficient plots to ascertain the optimal K value. In the elbow plot,
the inertia values span from 300 to 2000, with the point of inflection
occurring between 4 and 7, signifying that the optimal K value falls
within the range of 4–7 (Figure 9). The silhouette coefficient plot
suggests that the ideal range for the optimal K value is between 3 and 7
(Figure 10). Upon closer inspection of the silhouette coefficient plot,
when K is set to 6 or 7, clusters with silhouette coefficients near the red
line (the average value) indicate blurred boundaries between different
clusters. However, when K is set to 4 or 5, the silhouette coefficients for
the clusters significantly surpass the average value, indicating strong
clustering performance. All things considered, in light of similar
conditions, the silhouette coefficient for K = 5 outperforms that for
K = 4. Consequently, K = 5 is chosen as the optimal number of clusters
for this clustering analysis. This result slightly deviates from the

FIGURE 5
The scatter matrix of the 9 attributes. DT-density; WAC-water content; POR-porosity; CS-compressive strength; TS-tensile strength; DM-
deformation modulus; EM-elastic modulus; PR-poisson ratio; SC- soften coefficient; Lithos-lithology.
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suggestion of 2–4 clusters in the correlation coefficient plot,
underscoring that the optimal number of clusters in multi-attribute
clustering, as determined through data analysis, may exhibit slight
variations from the outcomes depicted in intuitive charts and graphs.

4.3 Cluster results

From the clustering outcomes (Figures 11, 12), each cluster
demonstrates a predominant rock type, constituting more than 50%

of the total data points. Specifically, Cluster 0 (comprising 102 data
points), Cluster 1 (consisting of 70 data points), and Cluster 4
(encompassing 72 data points) predominantly consist of sandstone,
with no substantial disparities in their overall quantities. In Cluster
4, sandstone constitutes over 93% of the data points, while the
remaining 7% are also primarily sandstone. Clusters 0 and 1 both
exhibit a composition of over 80% sandstone and shaly sandstone
data points, suggesting significant variations in the properties and
attributes of sandstone. On the other hand, Cluster 2 (comprising
148 data points) and Cluster 3 (comprising 50 data points) are

FIGURE 6
Correlation coefficients values of the nine attributes.

FIGURE 7
Elbow (A) and silhouette coefficient (B) plots.
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predominantly composed of mudstone. Cluster 2, in particular,
contains over 88% mudstone data points, representing over 95%
of the total mudstone category. In Cluster 3, silty mudstone accounts
for over 60% of the data points. However, in terms of quantity,
Cluster 3 is considerably smaller than Cluster 2, implying that

mudstone may not exhibit as substantial variations in properties
as sandstone.

Through the computation of mean vectors for the identified
clusters (Clusters 0, 1, and 4), it becomes evident that there is no
significant disparity in rock density among them. Nevertheless, both

FIGURE 8
Different K (A): K = 2, (B) K = 3, (C) K = 4) values for parallel parameters.
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porosity and water content exhibit a discernible trend with depth.
Porosity gradually decreases from shallow to deep, following the
order of Cluster 1 (11.08%, 21.25 m) < Cluster 0 (10.16%, 33.6 m) <
Cluster 4 (9.27%, 41.91 m). Similarly, water content also decreases in
the same sequence: Cluster 1 (11.08%) < Cluster 0 (10.16%) <
Cluster 4 (9.72%). In parallel, physical parameters (e.g., CS) increase
following this order: Cluster 1 (5.87 MPa) < Cluster 0 (18.21 MPa) <
Cluster 4 (38.35 MPa).

Based on these observations, we deduce that the primary factor
contributing to the differentiation in sandstone properties is the
compaction effect. This effect results in reduced porosity, increased

rock densification, and consequent alterations in their mechanical
parameters. Furthermore, this discovery indirectly validates that
clustering algorithms can effectively perform the role of
conventional stratigraphic evaluation by identifying property
variations within the same rock type at different depths.

On the other hand, there exists a depth discrepancy of 12.1 m
and 8.3 m between Clusters 0, 1, and 4, with an average interval of
10.2 m (Table 2). Based on this observation, for urban areas situated
in the red bed hilly region, when employing a traditional
stratigraphic assessment of rock mass quality, we recommend
utilizing a depth interval of 10 m for stratification. Clusters 2 and

FIGURE 9
Elbow (A) and silhouette coefficient (B) plots.

FIGURE 10
Silhouette coefficient plots.
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3 also exhibit depth-related trends; however, owing to a substantial
shift in their predominant lithology, transitioning from fine-grained
sandy mudstone to mudstone, they are not directly comparable.

4.4 Assessment of rock mass

Based on the average vectors of the five clustering results,
excluding cluster 3, there is minimal disparity in the physical
parameters among the various lithological clusters. Consequently,

this study primarily stratifies the rock mass based on the mechanical
properties derived from the clustering outcomes. Cluster 4,
characterized by pure sandstone, manifests the highest
compressive strength, tensile strength, and deformation modulus,
positioning it as the category with relatively superior rock mass
quality within the study area. Clusters 1 and 2, possessing
comparable overall physical and mechanical parameters but the
lowest compressive strength, are categorized as having relatively
inferior quality within the study area. Clusters 0 and 3, due to
significant lithological distinctions leading to substantial variations

FIGURE 11
Parallel coordinate plot of cluster results, including all attributes (before PCA).

FIGURE 12
Parallel coordinate plot of cluster results (dataset after PCA).
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in physical parameters, exhibit minor deviations in the mean values
of the mechanical parameters, and are classified as intermediate
categories in terms of rock mass quality. Consequently, grounded in
the clustering results, the rock mass quality in the study area is
stratified into three levels: cluster 4 (optimal, grade 1) → clusters
0 and 3 (relatively good, grade 2) → clusters 1 and 2
(ordinary, grade 3).

Furthermore, cluster 1 is predominantly characterized by
sandstone, whereas cluster 2 is primarily composed of mudstone.
Despite substantial distinctions in lithology and depth between these
two clusters, their values for the nine attributes exhibit relatively
minor fluctuations. This implies that in the red bed hilly region,
there might not be a substantial correlation between rock mass
quality and either depth or lithology. This suggests that the
conventional stratified approach may not be imperative for rock
mass quality assessment in this context.

Based on the clustering outcomes, we constructed a three-
dimensional geological model of the study area for in-depth
exploration. Utilizing indicator kriging interpolation, we obtained
a grade distribution model for the rock mass quality assessment of
the study area (Figure 13). However, due to data concentration in the
central region, the kriging interpolation results were limited to this
area, leaving peripheral zones with sparse interpolated data. The
model indicates that Grade 1 represents 6.4%, Grade 2 comprises
50.8%, and Grade 3 constitutes 42.8% of the total. Grade 1 displays a
scattered distribution, primarily concentrated in the northern part of
the study area, while Grade 2 and 3 exhibit an interactive
distribution covering a significant portion of the area. In
summary, the rock mass quality across the entire study area
generally falls within the relatively good to ordinary range.
Considering other assessment factors, this dataset serves as
essential reference information for the comprehensive evaluation
of underground space suitability in this region.

5 Conclusion

The current investigation applied an unsupervised clustering
algorithm, K-means, coupled with PCA dimensionality reduction, to
appraise the geotechnical quality of a representative urban zone
within the red-bed hilly region. This strategy proficiently alleviated
the impact of subjective variables on the evaluation outcomes,
consequently attaining a heightened level of objectivity in the
assessment. The particular conclusions are delineated as follows:

1. The engineering geological drilling core test data from
Guang’an City were categorized into five clusters, and the
geotechnical quality was stratified into three levels. Cluster
4 signifies the highest quality (Level 1), primarily consisting of
pure sandstone, while clusters 0 and 3 denote a relatively
favorable quality (Level 2) characterized by the prevalence
of sandstone. Conversely, clusters 1 and 2 signify the lowest
quality (Level 3), predominantly comprised of mudstone. The
classification order is as follows: Cluster 4 (optimal, grade 1)→
Clusters 0 and 3 (relatively good, grade 2) → Clusters 1 and 2
(ordinary, grade 3). And the entire study area generally falls
within the relatively good to ordinary range.

2. The clustering results suggest that there is relatively minor
variation in the physical properties among distinct clusters,
whereas there is substantial variation in the mechanical
properties. Consequently, it is advisable to consider
compressive strength and the softening coefficient as
representative physical properties indicators for assessing
rock mass quality.

3. Within the red-bed hilly regions, there appears to be no notable
correlation between rock mass quality and depth. Therefore, it
is recommended to evaluate the underground space rock mass
as a unified entity. Nonetheless, for those employing the

FIGURE 13
3D model of assessment results using kriging interpolation.
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classical stratified evaluation method, a stratification interval of
10 m is suggested.
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Exploring the creep law of sandstone provides a theoretical basis for evaluating
the long-term stability of geotechnical engineering projects in red beds. Based on
a conventional triaxial test of sandstone, a progressive loading triaxial creep test is
conducted. The deformation characteristics and laws of each sample in different
deformation stages are summarized, and the laws relating steady creep rate,
stress and time are analyzed. On this basis, a nonlinear viscoelastic‒plastic creep
model based on fractional derivative theory and damage theory is established.
According to the nonlinear fitting results, the parameter sensitivities are analyzed.
The results verify the rationality of the model; this model has a good fitting effect
for each creep deformation stage, especially for the accelerated creep stage. The
constitutive relationship of the model is simple, clear and easily applicable. The
research results provide a reference for studying the long-term stability of
geotechnical engineering projects.

KEYWORDS

sandstone, creep test, rock damage, fractional class derivative, accelerated creep

1 Introduction

Rocks are divisible into soft and hard rocks according to their strength characteristics.
Soft rock is the most widely distributed rock type, and it is most closely related to human
engineering activities (Liu et al., 2023). Soft rock has low strength and shows great
rheological properties (Sun, 2007), severely affecting the long-term safety performance
of the project. The creep behavior of rock is directly related to the long-term stability of rock
slopes and rock engineering activities; additionally, this behavior is an important basis for
evaluating the long-term stability of the rock (Yang et al., 2014; Deng et al., 2016; Wang
et al., 2018a). Creep is a key mechanical behavior of rock, and it is an important foundation
for studying the long-term stability of rock engineering projects (Xu et al., 2004; Chang
et al., 2015; Wang et al., 2018a). There are significant differences in the mechanical
properties of rocks under different saturated conditions. Sandstone is one of the main
rock types in the China red bed area, and it is one of the most extensive strata in the China
branch. This kind of stratum is considered prone to landslides (Li et al., 2004), andmany red
bed landslides (Tang et al., 2015; Hu et al., 2017; Zhang et al., 2018) have developed in the
Yangtze River basin. Wang et al. (Wang et al., 2017) found that the strength of sandstone in
a saturated state is 40% higher than that under dry conditions. Song et al. (Song et al., 2015)
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conducted triaxial creep tests on carbonaceous slate and found that
under the same stress conditions, the strain value of saturated rock is
much larger than that of dry rock.

Many researchers have explored a suitable rock rheological
model to describe creep characteristics (Jiang et al., 2018). To
date, the commonly used creep models include Maxwell, Kelvin,
and Burgers. These models have clear physical definitions and
intuitive concepts; however, they must combine more
components to meet the experience requirements (Li and Chao,
2014; Luo et al., 2018). This kind of model is generally composed of
several mechanical elements in different manners, such as Hooke’s
spring body and Newton’s damping body. Based on traditional
component models, many scholars have established optimized
constitutive models by introducing new theories and methods,
such as damage mechanics and fractional derivatives. According
to Wang’s concepts of damage and damage acceleration, a
constitutive equation (Wang, 2004) is proposed that describes the
whole process creep curve of rock. Yang et al. conducted creep tests
and theoretical research on the creep characteristics of frozen sand
(Yang et al., 2010). Zhou et al. replaced the Newton body in a
traditional Xiyuan model with an Abel body and established a new
time-based fractional derivative creep constitutive model (Zhou
et al., 2018). Wang et al. established the Xiyuan creep
constitutive model (Wang et al., 2018b) based on the damage
mechanism through creep tests of granite at different
temperatures. Zhou et al. used the fractional derivative
viscoelastic Kelvin model to describe the creep characteristics of
different soft soils and achieved remarkable results (Zhu et al., 2017).
Hou et al. suggested that in the nonlinear rheological process of rock,
there is a nonlinear functional relationship between the viscosity
coefficient and the rheological time and stress level (Hou et al.,
2018). Zhou et al. introduced a fractional derivative to describe its
constitutive characteristics (Zhou et al., 2018) in salt rock creep tests.
Wu improved the Maxwell creep model by introducing a variable
fractional derivative (Wu et al., 2015).

In summary, studying rock creep characteristics and constitutive
models remain important research topics. Based on a triaxial creep
test of sandstone, with the advantages of the fractional derivative
creep model and damage theory, a new creep constitutive model is
proposed with the characteristics of a simple structure and clear
physical parameter definitions. By fitting the test results, the
parameters of the creep model are determined. In addition, the
triaxial creep law of sandstone is systematically analyzed in this
paper; the deformation characteristics of each stage of the rock creep
test curve and the relationship between the strain rate and stress level
are discussed. This creep model accurately describes the creep
characteristics of different stress conditions and creep
deformation stages throughout the process and provides an
important basis for research in the field of rock creep.

2 Triaxial creep test of rock

2.1 Preparation of rock samples and test
instruments

Sandstone is processed into a standard cylinder sample with a
diameter of 50 mm and a height of 100 mm according to

International Society for Rock Mechanics and Rock Engineering
(ISRM) standards (Zhang and Zhou, 2020). As shown in Figures 1,
2, deviations in diameter and height should be controlled within
0.3 mm, and the deviations of both ends should be controlled within
0.05 mm to minimize the end effects. The method of graded loading
is adopted to load the sandstone test. First, a triaxial creep test is
conducted to confirm the conventional triaxial compressive strength
of rock. According to the failure strengths of sandstone under
different confining pressures, the conventional triaxial strength
obtained is multiplied by an empirical coefficient of 0.8 as the
predicted long-term strength. Then, the predicted long-term
strength is divided into several grades, and the creep test is
conducted through graded loading. The computer control system
is used to collect the time and strain data during the test. Before the
test, the samples are wrapped with preservative film and held at a
constant temperature of 22°C to prevent the influences of air
temperature and humidity changes on the samples.

The test device is a ysj-01-00 rock triaxial creep testing machine,
as shown in Figure 1. The system is used for conventional triaxial
tests, triaxial rheological tests and uniaxial compression tests. The
instrument is controlled by a computer and powered by electricity,
gas and liquid. The instrument controls the confining pressure, axial
load and axial displacement. The confining pressures are 0–3
30 MPa, and the axial loads are 0–11,000 kN. The accuracies of
confining pressure and axial load are 0.5% F.S.

2.2 Creep test procedure

To improve the test efficiency, a load mode of step loading was
adopted. The strength of the sample was comprehensively
determined according to the results of the conventional triaxial
test. The loading curve and stress characteristics are shown in
Figure 3. The sample numbers were B-1, B-2 and B-3, and the
confining pressure values were 5 MPa, 10 MPa and 15 MPa,
respectively. The specific test steps were as follows:

(1) The prepared samples were wrapped with preservative film to
prevent water loss. The samples were removed when the test
began. When removing the fresh-keeping film, shaking
was avoided.

(2) The sample was removed and the preservative film was
removed; additionally, the sample was placed in a heat
shrinkable sleeve and the upper loading end and the lower
loading end of the test device were inserted into the heat
shrinkable sleeve. The sample was placed vertically on a
horizontal table top after contacting the loading end, and
then the loading end was slowly adjusted to make a contact
surface from two better contacts and alignments.

(3) A high-power hot air blower was used to blow out hot air
from bottom to top, and the hot air shrink tube gradually
shrunk. During the blowing process, the blower was screwed
and the sample did not move. The shrinkage of each heat
shrinkable tube should be reduced as much as possible to
place all parts under uniform stress. This method could
effectively reduce the error caused by the later loading test.

(4) The initial loading sample was loaded into the middle of the
base of the confining pressure cylinder, and then the lower
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loading end was rotated to optimize the contact surface
between the lower loading end and the base. After
adjusting the position and installation, the upper loading
end was manually controlled to move down slowly to
preload the sample. The load value was preset as
0.1 According to the preset value of confining pressure, a
computer was used to control the loading of
confining pressure.

(5) The axial load control mode was adjusted to the load mode
with a loading speed of 0.1 MPa/s, and then the axial load
value was preset. The control mode was adjusted from
manual mode to computer automatic control, and the
load recording time interval was 1 min. Furthermore, the

axial load was slowly loaded to the preset value and
remained constant.

(6) After the axial strain of each stage of loading was basically
stable, the computer was controlled to conduct the next stage
of loading, and the loading time of each stage was not less than
72 h. The specimens were subjected to progressive cyclic
loading until failure.

2.3 Test results and analysis

The test curve is obtained by the triaxial compression creep test,
as shown in Figure 4. The B1 sample lasts 480 h, the B2 sample lasts

FIGURE 1
Load testing system.

FIGURE 2
Experimental setup of the long-term creep test.
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557 h, and the B3 sample lasts 510 h, totaling 1,547 h. The curve
shows that the sample has undergone the stages of instantaneous
elastic deformation, initial deceleration creep, constant velocity
creep and accelerated creep. Due to the different confining
pressures and axial loads of the different specimens, the
deformation characteristics of the test curves are different. In
addition to the last stage of loading, the creep curves of the other
stages only include three stages: the instantaneous elastic
deformation stage, initial deceleration creep stage and constant
velocity creep stage. Only the last stage of accelerated creep
occurs. The appearance of accelerated creep indicates that the
microfracture process in rock is accelerated irreversibly until the
specimen is destroyed.

Figure 5 shows a statistical relationship between the steady-state
creep rate and the load. The figure shows that with the increase in the
load, the steady-state creep rate tends to increase nonlinearly.
However, at the last stage of loading, the steady-state creep rate
increases rapidly; this turning point is a sign that the specimen is
about to enter the accelerated failure stage (Fairhurst and Hudson,
1999; Jian-Zhi et al., 2023). When the confining pressure is 5 MPa,
the steady creep rate is 1.075 × 10−4/h. When the confining pressure
is 10 MPa, the steady creep rate is 1.078 × 10−4/h. When the
confining pressure is 15 MPa, the steady creep rate is 1.347 ×
10−4/h, and the values of the steady creep rate are on the same
order of magnitude. The evolution law of the steady creep rate with
time is represented by a rational number function. Through further
analyses and treatments of the test, the creep rate of each specimen
under the last stage of loading is obtained, as shown in Figure 6. The
results show that the creep rate of the B-1 sample is 0.0113/h, that of

the B-2 sample is 0.651/h, and that of the B-3 sample is 0.148/h.
There are no obvious correlations between the rates, but they exceed
the steady-state creep rate of each sample under the previous loading
level. The results show that the deformation rate of the last loading
curve of each sample decreases sharply in the early stage, remains
stable in the middle stage, and increases sharply in the later stage.
This phenomenon occurs because the expansion and penetration
characteristics of internal cracks in the rock are near the failure
degree of the specimen. The creep rate of the last stage is expressed
by a power function with an absolute value function.

According to an analysis of the whole process creep curve and
the change characteristics of the creep rate, the deformation of
each creep stage is counted, as shown in Figures 7–9. Figure 7
shows the statistics of the instantaneous deformation of each
sample under different confining pressures under various
loading conditions. The evolution law of deformation is
characterized by an exponential function. The figure shows that
with the increase in the loading series, the instantaneous
deformation decreases gradually, the amplitude of reduction in
the early stage is larger, and the reduction range in the later stage
gradually decreases and tends to a fixed value. This phenomenon
occurs because the internal cracks gradually close in the initial
stage of loading; with the increase in load, the cracks cannot be
further closed. Therefore, the reduction range of instantaneous
deformation decreases gradually. Additionally, the instantaneous
deformation of each sample during the first stage loading is much
larger than that of other loading stages. This phenomenon occurs
because during sampling, sample preparation and loading, the
microcracks in the rock mass are greatly affected by the

FIGURE 3
Loading levels and duration at all levels in creep tests.
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disturbance; thus, the strain presents the characteristics of
maximum value in the first loading.

Figure 8 shows the statistics of the strain in the decay creep stage
of each sample under different confining pressure conditions. The
strain in the decay creep stage decreases first and then increases. At

this stage, the closure of microcracks in the rock is greater than that
in the rock; the closure value of the microcracks in the early stage of
loading is larger than that in the rock. Furthermore, due to the lower
load, there are fewer internal cracks. With increasing load, the
closing amount of microcracks gradually decreases; the number
of microcracks increases gradually. Themacroscopic behavior is that
the strain first decreases and then increases until it reaches a relative
equilibrium state. Furthermore, the specimen enters the steady-state
creep stage. The evolution law of deformation is characterized by a
cubic function.

The results show that under the condition of constant loading,
the deformation amplitude of each stage increases gradually with
increasing total deformation under different loading conditions.
However, in the later stage, the strain increases sharply. The
evolution law of deformation is characterized by a cubic function.

3 Typical creep characteristics and
basic assumptions

Studying the creep mechanisms and characteristics of rocks are
the basis for understanding the long-term stability of geotechnical
engineering activities. As far as rock materials are concerned, many
scholars have performed much research on the long-term time effect
of rock deformation. Despite the results from the uniaxial
compression, triaxial compression and shear tests, it is observed
that the creep curve of rock in the whole process has typical zoning
characteristics. Generally, the creep deformation characteristics of
rock materials are divided into four typical stages, as shown in
Figure 10A: (i) the instantaneous elastic deformation stage; (ii) the
initial deceleration creep stage; (iii) the intermediate constant
velocity creep stage; and (iv) the late accelerated creep stage.
Additionally, according to the strain rate and strain curve
characteristics of rocks, rock creep is divisible into a deceleration
zone, constant velocity zone and acceleration zone, as shown in
Figure 10B. Unfortunately, the creep rate in the constant velocity
zone is not constant; however, the variation range is relatively small,
and the duration of this stage is longer than the time‒strain curve
throughout the process. Therefore, these phenomena need to be
divided into one stage separately.

(i) Instantaneous elastic deformation stage: the deformation in
this stage is only related to the stress level, not time; the
deformation in this stage is elastic deformation. The
deformation at this stage mainly depends on the stress
level σ0 and the elastic modulus E0. This stage is included
in the deceleration zone.

(ii) Initial deceleration creep stage: the strain rate in this stage
gradually decreases with time and gradually tends to a
constant value. The stress curve is convex at this stage.
This stage is included in the deceleration zone.

(iii) Intermediate constant velocity creep stage: the overall change
in the strain rate in this stage is small. From the microrate,
the variable speed in this stage is first negative and then
positive, but the overall absolute value is low. At this stage,
the generation of new microcracks in the rock mass and the
closure of old microcracks reach a relatively balanced state.
Furthermore, the applied stress level is insufficent for

FIGURE 4
Relationship curves of axial strain with time for sandstone under
different confining pressures. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C)
σ3 = 15 MPa.

Frontiers in Environmental Science frontiersin.org05

Zhou et al. 10.3389/fenvs.2024.1338016

142

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1338016


breaking the above equilibrium state, and the macroscopic
deformation rate is relatively stable. The constant velocity
zone mainly refers to this deformation stage.

(iv) Late accelerated creep stage: in this stage, the strain rate
gradually increases with time and finally tends to infinity, at
which time the specimen is destroyed. The acceleration zone

mainly refers to the deformation stage. Note that, according
to the research of many scholars, the deformation
characteristics of different lithologies at this stage are
obviously different. Generally, a rock mass with high
strength presents the characteristics of brittle failure
(Jianchao et al., 2022), and the curve exhibits an obvious

FIGURE 5
Steady-state creep rates under stress loading at all levels. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.

FIGURE 6
Long-term creep rate vs. last stage loading. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.

FIGURE 7
Strain statistics in the instantaneous deformation stage. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.
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sharp turning point. When the intensity of lithology is low,
the curve shows the characteristics of flexible failure;
additionally, the curve shows the morphological
characteristics of a first-out arc.

4 Viscoelastic‒plastic creep model

4.1 Establishment of a viscoelastic‒plastic
creep model

To better describe the creep characteristics of rocks, the Abel
clay pot based on a fractional derivative and the nonlinear damage
damping element based on damage theory are connected in series to
construct a new creep constitutive model, as shown in Figure 11.
This model effectively describes the creep characteristics of
sandstone. Total strain ε(t) is expressed by Eq. (1):

ε t( ) � εe + εve , σ < σs

ε t( ) � εe + εve + εvp , σ ≥ σs
{ (1)

In the creep test, there is instantaneous deformation with
extreme time during initial loading. The deformation ε0 is mainly
determined by the load size and has nothing to do with time; thus,

elastic elements are used to represent the elastic deformation at this
stage, as shown in Eq. (2):

εe � σ0
E0

(2)

Because of its inherent characteristics, the fractional differential
equations better describe the characteristics of nonlinear curves;
additionally, the equation has been widely used in research on
material rheology in recent years (Papoulia et al., 2010; Mainardi
and Spada, 2011; Sapora et al., 2016). Fractional calculus describes
derivatives and integrals of any order, and there are many
definitions. Operators of fractional integrals mainly include
Riemann–Liouville (R–L) fractional differential operator theory
(Miller and Ross, 1993) and the Caputo operator. In this paper,
Riemann–Liouville fractional differential theory is mainly adopted.

The R–L fractional derivative is one of many definitions
developed based on integer differential equations. This definition
is as follows: f is (0,+∞). The upper segment is continuous and in
(0,+∞). Integrable on any finite subinterval of Re(β)> 0, t> 0, the
following is true:

0Dt
−βf t( ) � d−βf t( )

dt−β
� 1
Γ β( )∫

t

0
t − τ( )β−1f τ( )dτ (3)

FIGURE 8
Strain statistics in the decaying creep stage. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.

FIGURE 9
Strain statistics in the constant creep stage. (A) σ3 = 5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.
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Γ(β) is the gamma function, which is defined as follows:

Γ β( ) � ∫∞

0
tβ−1e−tdt (4)

Abel clay pots represent the rheological properties of
geotechnical materials between ideal rheological bodies and
ideal rigid bodies. The Abel clay pot stress‒strain relationship is
as Eq. (5):

σ t( ) � η
dβε t( )
dtβ

0< β< 1( ) (5)

In studying the creep constitutive models of geotechnical
materials, it is considered that σ(t). As a constant value, the

creep constitutive equation of the Abel clay pot is obtained by
using R–L fractional differential operator theory at this time as
follows (Kiryakova and Al-Saqabi, 1999; Zhou et al., 2011):

εve � σ0
η

tβ

Γ 1 + β( ) 0< β< 1( ) (6)

The creep rate of the kettle is adhered to by taking the derivative
of Eq. 6, as shown in Eq. (7):

εa t( )• � σ0
η

βt β−1( )
Γ 1 + β( ) dt 0< β< 1( ) (7)

where E0 represents the elastic modulus of rock and σ0 is the initial
loading stress. After instantaneous elastic deformation, the stress

FIGURE 10
Complete creep curves of rock specimens under multiple stress levels. (A): Typical time-strain curve. (B): Typical time-strain rate curve.
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remains unchanged, and the rock shows viscoelasticity. The
viscoelastic deformation stage after instantaneous elastic
deformation includes the attenuation creep stage and the stable
creep stage. The strain in this stage is represented by the Abel viscous
pot element, as shown in Figure 11. The creep constitutive equation
is expressed as follows:

ε t( ) � σ0
E0

+ σ0
η1

tβ1

Γ β1 + 1( ) σ0 ≤ σS( ) (8)

It is not enough to use elastic elements and Abel clay pot
elements to express rock after entering the accelerated creep
stage. Zhou et al. (Zhou et al., 2013) established a salt rock
rheological model based on fractional derivative and found that
the model accurately describes the rheological test curve of salt rock.
Subsequently, the researchers proposed the variable coefficient Abel
damper. The viscosity coefficient of rock is not constant in the
rheological process. Therefore, for crack evolution and damage
accumulation on a fine scale, only the effect of load action time
is considered; the damage variable D is introduced to describe the
deterioration of the viscosity coefficient. The damage variable D can
be expressed by Eq. (9).

ηγ � ηγ D( ) � ηγ 1 −D( ) (9)

In Equation (3) (4), D assumes that the damage during rock
rheology evolves into a negative exponential function, which is
described as Eq. 10 follows:

D � 1 − e−αt (10)
where α is the coefficient related to the properties of the rock mass.
The variation in rock damage variables with loading time based on
the Weibull random distribution is described as follows:

D � 1 − e−βt
m

(11)
where β and m are parameters representing the mechanical
properties of the materials.

According to the strain equivalence principle (Lemaitre, 1996)
proposed by Lemaitre, the strain of damagedmaterial under full stress
is equal to that of undamaged materials under effective stress. Cauchy
stress is changed to effective stress ~σ to obtain the following Eq. 12:

~σ � σ

1 −D
(12)

By introducing the damage variable D into the damping
element, the constitutive equation of the nonlinear damage
damping element is obtained as follows:

ε � ~σ

η2
� σ

η2 1 −D( ) (13)

Combining the constitutive Eq. 13 of the nonlinear damage
damping element with the rock damage variable in Eq. 11yields the
following Eq. 14:

εvp � σ0 − σs
η2e

−βtm � σ0 − σs
η2

eβt
m

(14)

As shown in Figure 11, the total strain of unstable creep of rock
is obtained by connecting all parts of creep in series:

ε t( ) � σ0
E0

+ σ0
η1

tβ1

Γ β1 + 1( ) + σ0 − σs
η2

eβ2t
m

σ0 > σS( ) (15)

In summary, the creep constitutive Eq. 16 can be obtained from
Eq. Eq. 8 and Eq. 15:

ε t( ) �
σ0
E0

+ σ0
η1

tβ1

Γ β1 + 1( ) σ0 ≤ σS( )

σ0
E0

+ σ0
η1

tβ1

Γ β1 + 1( ) + σ0 − σs
η2

eβ2t
m

σ0 > σS( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(16)

4.2 Model validation

A triaxial creep test of sandstone is conducted; based on the
creep test data, the test results under different confining
pressures are fitted and analyzed to verify the accuracy and
rationality of the model. First, the elastic modulus is determined
according to the initial strain and deviator stress in the elastic
deformation stage E0. Then, the Levenberg‒Marquardt
algorithm is used to fit the experimental curve nonlinearly.
The model fitting parameters of this model are shown in
Tables 1–3.

The nonlinear viscoelastic‒plastic creep model proposed in
this paper describes the nonlinear creep characteristics of rock
masses, especially the irregular nonlinear damage creep in the

FIGURE 11
Creep constitutive model.
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accelerated creep stage. The creep model is easily used for
engineering tests and numerical simulations and effectively
predicts and evaluates the long-term stability characteristics of
geotechnical engineering projects. All samples show accelerated
creep deformation in the last loading stage until the samples are
deformed and destroyed. The creep curves of each sample are
selected for model verification and fitting, and the fitting results are
shown in Figure 12. The correlation coefficient is selected as the
evaluation index. The fitting results show that the correlation
coefficients are all near 1, proving that the constitutive model
has a good fitting effect and effectively describes the nonlinear
characteristics of curves.

5 Parameter sensitivity analysis and
discussion

The strain of this model formula depends on six parameters: E0,
M, β1, β2, η1 and η2. Considering the deformation curve of the last
stage of the specimen under an axial load of 45 MPa when the
confining pressure is 15 MPa, parameter sensitivity analysis is
conducted. Specifically, certain parameters are set to 70%, 85%,
100%, 115% and 130%, and the remaining parameters remain
unchanged. As shown in Figure 13, three parameters—E0, β1 and
η1—mainly correspond to the deformation characteristics of the
strain curve in the instantaneous deformation stage, attenuation

TABLE 1 Simulation parameters of the nonlinear creep damage constitutive model for sample B-1.

Loading level (MPa) E0 (GPa) η1 (GPa·h) β1 η2 (GPa·h) β2 m R2

4.50 10.490 47.564 0.127 0.952

9.00 12.587 308.960 0.305 0.980

13.50 14.770 437.807 0.331 0.991

18.00 16.071 669.656 0.373 0.994

22.50 17.294 716.639 0.415 0.992

24.75 15.556 652.780 0.345 0.993

27.00 10.490 1,569.309 0.923 2.368 4.356 0.678 0.995

TABLE 2 Simulation parameters of the nonlinear creep damage constitutive model for sample B-2.

Loading level (MPa) E0 (GPa) η1 (GPa·h) β1 η2 (GPa·h) β2 m R2

6.0 12.295 37.477 0.074 0.986

12.0 15.686 343.116 0.261 0.978

18.0 19.397 960.011 0.245 0.973

24.0 22.059 669.656 0.373 0.994

30.0 24.450 2,757.239 0.478 0.997

36.0 25.175 375.322 0.234 0.989

39.0 21.910 978.07611 0.419 0.996

42.0 19.617 623.533 0.921 773.898 5.594 × 10−4 4.728 0.995

TABLE 3 Simulation parameters of the nonlinear creep damage constitutive model for sample B-3.

Loading level (MPa) E0 (GPa) η1 (GPa·h) β1 η2 (GPa·h) β2 m R2

7.50 17.857 54.601 0.050 0.986

15.00 22.222 203.684 0.170 0.988

22.50 25.281 313.872 0.215 0.992

30.00 27.027 315.307 0.190 0.986

37.50 27.778 588.911 0.298 0.998

41.25 25.276 321.080 0.207 0.997

45.00 22.534 1,201.026 0.766 171.063 3.631 × 10−9 4.781 0.994
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creep stage and steady creep stage. Figure 13A shows that E0 mainly
controls the instantaneous elastic deformation stage and mainly
determines the amount of elastic strain; however, it has no influence
on the decay creep, steady creep and accelerated creep stages. The

magnitude of E0 is negatively correlated with the strain. WhenE0
increases, the curve moves downward; while when E0 decreases, the
curve moves upward. Figure 13C and Figure 13E show that β1 and η1
are the stages that mainly affect the attenuation creep and steady
creep characteristics; their values are not affected in the
instantaneous deformation stage. Then, different deformation
characteristics appear with curves of β1 and η1, which are
negatively correlated with the deformation rate in the steady
creep stage. The larger η1 is, the smaller the steady creep rate,
and the larger the deformation value in the decay creep stage.
Figure 13 shows that m, β2 and η2 jointly determine the
deformation at the accelerated creep stage. Figures 13B, F shows
that the larger the value of m is, the earlier the creep curve specimen
enters the accelerated creep stage; additionally, the larger the value of
m is, the higher the curve strain rate. Figures 13D, F show that β2 is
generally positively correlated with the deformation rate in the
accelerated creep stage, and η2 is generally negatively correlated
with the deformation rate in the accelerated creep stage; these
parameters determine the slope characteristics in the accelerated
creep stage. Therefore, through the different changes in parameters,
the curve presents different deformation characteristics and has a
high fitting degree in various deformation stages, and the results are
more reliable.

The experimental curve obtained in this paper has obvious
characteristics of flexible failure, and the final failure of the
sample requires a long process. The rheological characteristics are
obviously different from those of high-strength hard rock. The creep
curve has relatively obvious deformation stages, which are clearly
divisible into instantaneous deformation, attenuation creep,
constant velocity creep and accelerated creep. The creep model
proposed in this paper has a good fitting degree to the experimental
data; it is proven to be a model that describes the creep
characteristics of rocks well. According to the fitting results, the
order of the fractional derivative is always at a minimum when
different samples are loaded in the first stage; the order is close to
one when the samples are loaded in the last stage. This trend shows
that with increasing load, rock elasticity gradually decreases;
however, the viscosity gradually increases. In the accelerated
creep stage, the accumulation of rock rheological damage and
crack propagation are the main influencing factors leading to
deformation and failure, which are closely related to the damage
characteristics of materials. In this paper, a damage analysis of rock
is introduced into the analysis of the constitutive model, providing
some reference for the rheological study of rock. Although the
introduction of damage theory has promoted the development of
research in the field of rock rheology, the rheological research on the
accelerated failure stage of rock still needs systematic and in-depth
discussion.

6 Conclusion

Through triaxial creep experiments of sandstone, rock
deformation characteristics and mechanisms are studied. By
combining fractional derivative theory and damage theory, a new
creep constitutive model is established that effectively captures and
describes the deformation characteristics of each stage of creep. The
conclusions are as follows:

FIGURE 12
Experimental data and fitting curves by the creep model. (A) σ3 =
5 MPa, (B) σ3 = 10 MPa, (C) σ3 = 15 MPa.
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(1) The unified creep model has a simple structure, and the
parameters can be determined conveniently; this model
describes the deformation characteristics of different creep
stages, including instantaneous deformation, attenuation
creep, constant velocity creep and accelerated creep. It is

proven that the rheological model based on fractional
derivative theory and damage theory is reasonable
and practical.

(2) According to an analysis of the test curve, the deformation
characteristics and rates in different stages of the creep curve

FIGURE 13
Effects of each parameter on the creep response. (A) E0, (B) m, (C) β1, (D) β2, (E) η1, (F) η2.
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are obtained; the causes and mechanisms of these phenomena
are analyzed and summarized. During loading, the elastic
deformation of rock gradually decreases, while the
viscoplastic deformation gradually increases. Damage
theory effectively describes the creep accelerated failure
deformation stage of a rock mass.

(3) According to the test results, the nonlinear creep
parameters under different creep stress conditions are
obtained, and the accuracy of the creep model is
verified. The fitting curve is in good agreement with a
test curve. It is proven that the model describes the creep
curve of rock throughout the process, especially the creep
curve in the accelerated creep stage. A sensitivity analysis
of model parameters is conducted by a quantitative
evaluation method for verifying the rationality of
the model.
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For the widespread exposure of toppling deformation phenomena in anti-dip
engineering slopes such as hydropower, transportation, and mining, especially
deep-seated toppling, these large-scale deep-seated toppling deformations
reaching depths of hundreds of meters have become significant geotechnical
engineering problems that restrict large-scale engineering construction and
require urgent solutions. There are significant differences in the failure
characteristics and mechanisms of anti-dip rock slopes under different soft
and hard rock conditions. This study, starting from the failure characteristics
and mechanisms under different soft and hard conditions of rocks, summarizes
two types of toppling deformation: ductile bending deep toppling (DBDT)
and brittle fracture shallow toppling (BFST). The UDEC method is used to
preliminarily explore the threshold of rock mechanical parameters for these
two types of toppling, with 80 MPa (UCS, uniaxial compressive strength)
mechanical parameters serving as the preliminary threshold. The results
indicate that hard rock undergoes BFST, whereas soft rock undergoes DBDT.
The rock mechanical parameters of 100 MPa (UCS) and 20 MPa (UCS) were
selected to study the evolution process and mechanism of DBDT and BFST
deformations, respectively. Numerical simulation results have innovatively
revealed the mechanical behavior characteristics between rock layers during
the process of toppling deformation. Because toppling deformation mainly
originates from interlayer displacement deformation and intra-layer tensile
deformation of rock layers, the interlayer mechanical characteristics are of
great significance for understanding the mechanism of toppling deformation.
This research can provide a theoretical basis for the stability assessment and
development utilization of anti-dip rock slopes and toppled slopes.

KEYWORDS

toppling failure, soft and hard rock conditions, deformation characteristics, anti-dip
layered rock slope, evolution mechanism
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1 Introduction

Toppling failure occurs in layered or quasi-layered rock masses,
which trend parallel to the slope surface, with bending deformation
toward the free face. As a typical slope failure mode, this
occurs in an increasing number of engineering constructions,
such as hydropower, transportation, and mining (Cruden and Hu,
1994; Tamrakar et al., 2002; Goodman, 2013; Hungr et al., 2014;
Liu et al., 2016; Huang et al., 2017; Ning et al., 2019; Sardana et al.,
2019; Zhu et al., 2020; Zhao et al., 2021; Jensen et al., 2024). The
representative examples of toppling slopes include the left bank
slope of the Jinping first-level Hydropower Station, the Yinshuigou
slope of the Xiaowan Hydropower Station, the right dam shoulder
slope of the Huangdeng Hydropower Station, the dam front slope
of the Miaowei Hydropower Station, the dam front slope of the
Gushui Hydropower Station, the Guobu bank slope of the Laxiwa
Hydropower Station, the Cardinal River CoalMine slope in Alberta,
and the open-pit mine slope in Jinchuan.

The large-scale toppling deformation of rock masses with a
depth of hundreds of meters has become a major geotechnical
engineering problem that restricts the construction of large-scale
projects and needs to be solved urgently. Once instability and
failure occur, it can pose a threat to the safety of people’s lives and
property, bringing about significant disasters to the development of
the country (Xia et al., 2019; Tu et al., 2020; Zhao et al., 2021).

There are currently two mainstream classification methods
for toppling failure. One of them is the Goodman and Bray
(GB) method classification. Goodman and Bray (1976), through
extensive case studies and by considering differences in the
failure characteristics of toppling deformation, categorized toppling
into two major types: primary toppling and secondary toppling.
Primary toppling is further divided into three categories based
on the deformation and failure modes of rock layers: flexural
toppling, block toppling, and block-flexural toppling. Heok and
Bray (1981) categorized secondary toppling deformation into five
types based on the deformation location and mechanical mode of
rock layers: sliding-head toppling, plastic flow toppling, sliding-
toe toppling, tension-crack toppling, and sliding-base toppling. In
actual practice, toppling slopes often involve a combination of two
or more types of failure modes. Many scholars have conducted in-
depth research and analysis on its influencing factors, deformation
and failure mechanisms, and occurrence conditions. They mostly
use a single numerical simulation method or incorporate on-site
survey, monitoring, and model experiments. (Wang et al., 1992;
Huang et al., 1994; Han andWang, 1999; Huang, 2007; Huang, 2011;
Huang et al., 2017; Cai et al., 2023; Guo et al., 2023; Zhang et al.,
2024; Zheng et al., 2024).

Another classification of toppling deformation is summarized
by Huang et al. (1994; 2007; 2012; 2017), who have analyzed
numerous toppling cases. They classify toppling deformation into
three categories from the perspective of genetic mechanisms and
evolutionary processes: shallow toppling (brittle fracture toppling),
deep toppling (ductile bending toppling), and complex toppling
deformation (Figure 1).The brittle fracture shallow toppling (BFST)
primarily corresponds to the block toppling and block-flexural
toppling of the GB classification. The ductile bending deep toppling
(DBDT)mainly corresponds to flexural toppling. Complex toppling
mainly corresponds to secondary toppling. Nichol et al. (2002) also

mentioned two types of topplingmodes: brittle fracture toppling and
ductile bending toppling.

As key controlling factors influencing the development of
toppling deformation, in addition to the spatial relationship between
the rock layer orientation and slope surface, the rock soft and hard
conditions are also crucial factors influencing the development of
toppling slopes. Complex toppling is primarily influenced by the
rock mass structural characteristics of the slope. The BFST and
DBDT are significantly influenced by the soft and hard conditions
of the rock.

TheDBDTprimarily occurs in geological formations dominated
by soft rocks, including layers with certain thicknesses of hard
rocks or interlayers (Figure 1A). It is widely distributed in “flexible”
metamorphic rock formations, such as interbedded formations
of metamorphic sandstone and slate, carbonaceous slate, phyllite,
and other similar formations, as well as interbedded formations
of gneiss and schist (Huang et al., 2017; Cai, 2020). Such rock
masses are generally characterized by their soft nature behavior,
low strength, thin individual layers, steeply dipping slopes, or
nearly vertical orientations. They experience bending, creeping,
and time-dependent deformation under the influence of sustained
gravitational moments. This deformation is characterized by long-
term bending toppling with minimal fracturing and exhibits a
“flexible” deformation pattern.

The BFST primarily occurs in hard rock formations, such
as carbonate rock formations and platy or blocky igneous rock
formations subjected to jointing and fracturing (such as thin to
moderately thick limestone, sandstone, and densely jointed granite).
The essence of deformation in these formations is the “brittle”
fracturing of hard rock layers or the “rigid” structural rotation along
the bending fracture planes. Due to the brittle characteristics of these
rockmasses, even slight “bending” deformation can lead to fracture,
resulting in a clear bending fracture surface (Figure 1B).

Based on the summary of a large number of case studies and
starting from the soft and hard conditions of rocks, this study
summarizes two types of toppling deformation: DBDT and BFST.
Using the UDEC numerical simulation method, it preliminarily
explores the rock mechanical parameter threshold values for these
two types of toppling. Based on this, the study investigates the
deformation evolution and mechanisms of DBDT and BFST.

2 Geological setting of toppling failure

The failure characteristics of DBDT and BFST are described
through case studies.

2.1 Brittle fracture shallow toppling (BFST)

As a typical toppling case, the Guobu bank slope of the Laxiwa
Hydropower Station is used to illustrate the basic characteristics of
BFST.The bank slope comprises ditches and ridges.The lithology of
the slope rock mass mainly contains granites, which were formed in
the Indosinian Period.

TheGuobu bank slope at the LaxiwaHydropower Station reveals
a large-scale BFST. The reason for this is the intense unloading
effect on blocky granite due to the down-cutting of the valley.
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FIGURE 1
Schematic diagram of toppling model. (A) ductile bending deep toppling model; (B) brittle fracture shallow toppling modl.

FIGURE 2
Rock mass of toppling zones of bank slope at Laxiwa Hydropower Station. (A) Zone A rock mass; (B) zone B rock mass; (C) zone C rock mass; (D) zone
D rock mass; (E) toppled bank slope section at Laxiwa Hydropower Station.

This leads to the dense development of steep unloading fractures
parallel slope surface, effectively transforming the blocky rock mass
into a “plate-like” structure, resulting in the occurrence of toppling

deformation. According to the observed characteristics of toppling
deformation and structure, the toppling rock masses can be divided
into intensified strong toppling (zone A), strong toppling (zone B),
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FIGURE 3
Rock mass of toppling zones of the slope in front of the dam at Miaowei Hydropower Station. (A) Zone A rock mass; (B) zone B upper rock mass; (C)
zone B lower rock mass; (D) zone C rock mass; (E) toppled front slope of the dam section at Miaowei Hydropower Station.

weak toppling (zone C), and loose-tensile fracture rock mass (zone
D) (Figure 2). The zoning characteristics of the rock mass in the
toppled slope are described as follows (Cai et al., 2019):

Zone A—intensified strong toppling zone: the plate-like granite
rock mass undergoes intense “cantilever beam”-type toppling and
breaking, forming a tension-shear fracturing zone outside the gently
inclined slope. The shallow fractured rock mass near the slope
surface undergoes gravity overturning along the toppling fracture
surface (zone) inclined toward the outside of the slope.This situation
mainly occurs in the protruding part of the terrain where the three
sides of that face free face (Figure 2A).

This type of rock mass exhibits intense toppling fracture.
It generally has embedded fragmentation and blocky structures
with some local fragmented structures, and it is in a state of
intense unloading and relaxation. The prominent feature of this
deformation and fracturing is that unlike the situation where a
toppled angle greater than 50° is usually required for whole breaking
and fracturing to occur in plate-like metamorphic rock mass, the
plate-like granite rock mass begins to experience fracturing at a
toppled angle exceeding 18°, with overall breaking and fracturing
occurring at around 35°. In zone A, rock masses after toppling and
fracturing experience partial collapse and destabilization. Most of
them remain in a “stacked” shape on the shallow surface of the slope,
typically in a state of blocky fractures or disintegration.This situation
often leads to shallow stability issues of the toppled slope.

Zone B—strong toppling zone: toppling deformation results in
tension cracks between granite rock slabs, resulting in wide tension
cracks. The rock slabs are partially fractured and broken, and the
variation of toppled angle generally ranges from 10° to 15°.The rock
mass undergoes tensile and relaxation deformation, and the bedding
plane generally undergoes relatively strong tensile deformation,
with an overall blocky structure and locally embedded fragmented
structure.The rockmass is generally under overall strong unloading
and local weak unloading, with relatively poor integrity (Figure 2B).

Zone C—weak toppling zone: the toppled angle of the granite
rock slabs in this zone is very small, less than 5°, or almost
non-existent. There are only tensional fractures occurring between
rock slabs, and within rock slabs, there are localized minor
tensile fractures (fractures within the rock slabs become visible
when the toppled angle reaches 5°). The rock mass is generally
in a weak unloading state of tensional fracture, with a blocky
structure, and it exhibits relatively good overall integrity. This
type of deformation represents a weaker degree of toppling
deformation and generally occurs in the deeper parts of the
deformed rock mass, which is a relatively stable part within the
slope (Figure 2C).

Zone D—relaxation with tensional fractures: this zone
represents an elastic relaxation area in the deeper parts of the
slope, resulting from the outward toppling effect. No significant
toppling is observed; only localized relaxation and tensional
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TABLE 1 Typical cases of toppled slopes and their rock mass mechanical parameters.

Disaster point Deformation
features

Main lithology UCS
MP

Deformation
modulus MPa

Poisson’s ratio

Jiefang Gou slope at
Jinping Hydropower

Station

DBDT Metamorphic sandstone,
slate, and carbonaceous

slate

51/12.5 2,100 0.16/0.24

Hydrological station
landslide at the Jinping
Hydropower Station

DBDT Metamorphic sandstone,
slate, and carbonaceous

slate

51/12.5 2,100 0.16/0.24

Xingguang Group III
bank slope at Xiluodu
Hydropower Station

BFST Marl limestone, muddy
fine sandstone, and

sandy shale

78 900 0.3

Dam site toppled slope at
Miaowei Hydropower

Station

DBDT Slate and schist with
metamorphic sandstone

63/3.2 1,050 0.28

Guobu bank Slope at
Laxiwa Hydropower

Station

BFST Granite cut by joints 100 1,500/10,000 0.23

Double-sided toppled
slope

DBDT Quartz schist 18 1,600 0.28

Toppling slope at
Longtan Hydropower

Station

DBDT Sandstone and slate 60/130 1,500 0.27

Toppled lope at Gushui
Hydropower Station

DBDT Metamorphic sandstone,
slate, and limestone

15/130 1,580 0.2/0.25

UCS: uniaxial compressive strength; DBDT: ductile bending deep toppling; BFST: brittle fracture shallow toppling.

TABLE 2 Mechanical parameters of rock mass.

Scheme FA01 FA02 FA03 FA04 FA05 FA06

UCS(MPa) 10 20 40 60 80 100

Gravity (kg/m3) 2,700 2,700 2,700 2,700 2,700 2,700

GSI 62 62 62 62 62 62

Bulk modulus K(Pa) 4.2e9 5.9e9 8.4e9 10.3e9 11.9e9 13.0e9

Shear modulus G
(Pa)

2.5e9 3.6e9 5.0e9 6.2e9 7.1e9 8.0e9

Internal friction
angle φ(°)

33 38 44 47 49 51

Cohesion c (Pa) 1.7e5 2.3e5 3.3e5 4.2e5 5.0e5 5.9e5

Tensile strength (Pa) 3.0e4 4.0e4 6.0e4 8.0e4 1.0e5 1.2e5

Dilation angle (°) 2 2 2 2 2 2

UCS: uniaxial compressive strength.

fractures along joint surfaces are seen. The rock mass exhibits
a blocky-whole structure and is essentially in its original state.
This phenomenon is one of the characteristics of the plate-like
fractured granite rock mass, which shows its prominent elastic
properties (Figure 2D).

2.2 Ductile bending deep toppling (DBDT)

The slope in front of the dam at the Miaowei Hydropower
Station is a typical soft and hard interbedded structure slope,
primarily composed of metamorphic rocks. Using the slope in front
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TABLE 3 Mechanical parameters of the structural plane.

Structural
plane

Normal
stiffness jkn

Shear
stiffness jks

Cohesion c
(Pa)

Internal
friction angle

(°)

Dilation angle
(°)

Tensile
strength (Pa)

joint1 5e10 3e10 0 30 0 0

TABLE 4 Elastic modulus and Poisson’s ratio parameters of rock mass.

Scheme FA01 FA02 FA03 FA04 FA05 FA06

Bulk modulus K(Pa) 4.2e9 5.9e9 8.4e9 10.3e9 11.9e9 13.0e9

Shear modulus G(Pa) 2.5e9 3.6e9 5.0e9 6.2e9 7.1e9 8.0e9

Elastic modulus E(Pa) 6.3e9 9.0e9 12.5e9 15.5e9 17.8e9 20.0e9

Poisson’s ratio μ 0.25 0.25 0.25 0.25 0.25 0.25

FIGURE 4
Experimental design model.

of the dam as an example, the basic characteristics of the DBDT
are explained.

The exposed bedrock in this slope is the third sub-rock
group (J2h

2–3) in the upper section of the Jurassic Huakai
Left Formation. The rock types mainly include slate, phyllite,
schist, and metamorphic quartz sandstone, with alternating
soft and hard rock conditions. Due to significant tectonic
activity, the structural orientation of the rock layers varies
considerably in space, and the overall trend of the normal
bedding planes is with a dip angle of 80°–85°. Due to factors
such as slope terrain and rock mass structure, the slope in
front of the dam experiences strong toppling deformation
(Figure 3).

(1) Zone A—toppling and collapse zone

When the rock layers topple and rotate significantly, the rock
mass undergoes intense fracturing and breaking, forming a tensile
fracture zone steep dip outside the slope. There is significant

internal rock tensile fracture, strong relaxation, and clear evidence
of overhangs, with cracks filled with gravel, angular fragments, and
rock debris. For those with severe deformation, the rock mass above
the fracture zone is almost separated from the underlying bedrock,
and local gravitational fall displacement occurs. This type of
fracture is extremely intense toppling deformation and occurs in the
shallow surface of the rock mass undergoing toppling deformation
(Figure 3A).

(2) Zone B—strong toppling zone

This zone can be further divided into two subsections, upper and
lower, based on the intensity of toppling and the different fracturing
mechanisms.

Zone B upper-toppling and dislocation zone (Figure 3B).
When the rock layers experience significant toppling, in addition

to intense tensile fracturing within the layers, shear deformation
(tensile-shear) occurs along gentle dip outer joints of the slope,
exhibiting significant development of cutting shear layer.This type of
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FIGURE 5
Model overlay effect images of different rock mechanics parameters. (A) FA01, 10 MPa; (B) FA02, 20 MPa; (C) FA03, 40 MPa; (D) FA04, 60 MPa; (E)
FA05, 80 MPa; (F) FA06, 100 MPa.

deformation and fracturing belongs to the upper section of intense
toppling and occurs in the middle part of the rock mass undergoing
toppling deformation.

Zone B lower-toppling and tensile zone (Figure 3C).

With an increasing toppled angle of the rock layers, vertical
bedding tensile fracturing begins to develop within the layers or
along existing structural planes. This type of tensile fracturing
generally occurs in the hard rock layers between two softer rock
layers, representing a situation with a relatively strong toppling
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FIGURE 6
BFST displacement vectors evolution process. (A) Original model 10,000 steps; (B) original model 100,000 steps; (C) inserted cracks model 10,000
steps.

deformation. Spatially, it occurs in the deeper parts of the
toppled slope.

(3) Zone C—weak toppling deformation zone

In this zone, the toppled angle of rock layers is relatively small,
which is generally less than 10°. The layered rock masses experience
shear sliding along interlayer or relatively weak rock zones.There are
no significant fractures within the layers, and only minimal tensile
fractures occur within the harder rock layers. This type of situation
represents a weak toppling deformation and is typically found in the
deeper parts of the slope (Figure 3D).

It is worth noting that the interface between zones B and
C is also where the rock layers exhibit the higher curvature of
bending toppling. It is the location where rock layer fracturing
is most likely to occur. Therefore, the bottom surface of zone C
and the top surface of zone B serve as potential sliding surfaces
for deep-seated sliding associated with toppling deformation
(Figure 3E).

3 Typical toppling cases

From the existing research works, it is evident that the
mechanical properties of the toppled rockmass are closely related to
the development characteristics of its toppling deformation. Starting
from the soft and hard conditions of rocks, we can summarize the
relationship between the characteristics of toppling deformation and
the rockmass’smechanical parameters through typical cases. Table 1
presents the selected typical examples of toppled slopes and their
rock mass mechanical parameters.

According to the standard for engineering classification of rock
mass (Ministry of Construction of the People’s Republic of China,
2014), the uniaxial compressive strength (UCS) value is used to
differentiate between hard and soft rock for the classification of
engineering rock masses. If the UCS is greater than 30 MPa, it is
classified as hard rock, and if it is less than 30 MPa, it is classified
as soft rock. However, the soft and hard characteristics of toppling
rock masses are different from those of engineering rock masses.
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FIGURE 7
Plastic zone distribution of the original model at 100,000 steps.

FIGURE 8
Stress characteristics of the original model evolution process. (A) XX stress contour 10,000 steps; (B) YY stress contour 10,000 steps; (C) XY stress
contour 10,000 steps.
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FIGURE 9
Stress characteristics of the original model evolution process. (A) XX stress contour 100,000 steps; (B) YY stress contour 100,000 steps; (C) XY stress
contour 100,000 steps; (D) XY strain contour 100,000 steps.

4 Mechanical parameter threshold for
toppling soft and hard rocks

4.1 Model parameters

The classification of soft and hard rock in toppling rock masses
is different from the classification of general engineering rock
masses (Table 1). Table 1 provides statistics of rock mechanics
parameters for typical toppled rock mass cases, demonstrating
significant differences in mechanical parameters (saturated uniaxial
compressive strength, elastic modulus, and Poisson’s ratio) between
toppled rock masses and general rock masses. Hard rock typically

exhibits characteristics of breaking and fracturing, whereas soft
or relatively soft rock generally shows “flexible” features, involving
ductile deformation, and experiences ductile bending toppling.

This section adopts the discrete element method (UDEC) to
establish a numerical simulationmodel to investigate themechanical
parameter thresholds between BFST hard rock and DBDT soft
rock. The discrete element method is highly effective for analyzing
toppling deformations in layered and blocky rock masses.

The numerical model will provide a detailed representation of
the development and evolution of toppling deformations, including
the law of interlayer dislocation andmovement and the development
of interlayer stresses. The model parameters are chosen with
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FIGURE 10
Stress characteristics of the inserted crack model evolution process. (A) XX stress contour 100,000 steps; (B) YY stress contour 100,000 steps; (C) XY
stress contour 100,000 steps; (D) XY strain contour 100,000 steps.

reference to the research parameters of Nichol et al. (2002) to
analyze the effects of toppling deformations for different UCS rock
mechanical parameter sets. Considering that toppling deformations
commonly occur in rock masses with blocky or massive structures,
it is assumed to select a block structured rock mass with a rock
mass strength index (GSI=62). The UCS values selected for the
numerical model are 10, 20, 40, 60, 80, and 100 MPa, representing a
range of rock mechanical parameters for the threshold analysis. The
parameters used in the models are shown in Tables 2–4.

4.2 Numerical model

The experimental model in this study takes into account
the influence of boundary effects on the study area. The
simplified model has dimensions of 380 m (horizontal direction)
× 200 m (horizontal direction) and includes a single set of
bedding planes. The rock layers have a dip angle of 75°,
and within the main study area, the spacing between them
is 3 m. From the surface of the slope toward the interior of
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FIGURE 11
Displacement characteristics of the original model evolution process. (A) XX displacement contour 10,000 steps; (B) YY displacement contour 10,000
steps; (C) XX displacement contour 100,000 steps; (D) YY displacement contour 100,000 steps.

the slope, the spacing gradually increases to 3 m, 12 m, and
48 m. The main research area has a slope height of 80 m. The
numerical model created for this study is shown in Figure 4.
The boundary conditions of the model are set with velocity
constraints on the left and right boundaries (X-direction) and
the bottom boundary (Y-direction), whereas the slope surface
is considered a free face. The model’s rock materials adopt an
elastic–plastic model with the Mohr–Coulomb yield condition,
and the stress field in the model only considers the effects
of gravity.

4.3 Mechanical parameters threshold

The model was computed to obtain its toppling failure process.
The same steps of iterations were set (100,000). The final failure
patterns for different schemes were overlaid with the original model,
as shown in Figure 5.

The comparative analysis of overlay effect images for different
schemes with varying rock mechanics parameters reveals the
following. In the images (Figure 5), the left corner shows the final
failure state of the model, while the right corner displays enlarged
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FIGURE 12
Displacement characteristics of the inserted crack model evolution process. (A) XX displacement contour 10,000 steps; (B) YY displacement contour
10,000 steps; (C) XX displacement contour 100,000 steps; (D) YY displacement contour 100,000 steps.

overlay images of the models before calculation and after failure.
The black lines represent themodel before calculation, and the green
lines represent the final failure state after 100,000 steps.

From Figure 5, it is evident that within a UCS range of
10 MPa–80 MPa, significant bending toppling deformations occur
near the crest of the model. As UCS increases, the extent of the
toppling deformation and the magnitude of deformation decrease
gradually. Specifically, when UCS is 80 MPa, the bending toppling
deformations are minimal and not significant. When UCS is
100 MPa, as seen in the local magnification of the deformation

overlay images, the deformation values are minimal, and there are
no apparent toppling and bending phenomena.

Based on the analysis of the overlay effect images, it can
be concluded that the range of rock mechanics parameters
corresponding to bending toppling deformations in the model lies
within the range of 80 MPa–100 MPa for UCS. The Poisson’s ratio
of the rock is assumed to be 0.25, and the range of values for
tensile strength and elastic modulus are 0.01 MPa–0.12 MPa and
17.8 MPa–20.0 MPa, respectively. It is reasonable to preliminarily
assume that the rock mechanics parameters with UCS = 80 MPa

Frontiers in Earth Science 13 frontiersin.org164

https://doi.org/10.3389/feart.2024.1339169
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Junchao et al. 10.3389/feart.2024.1339169

FIGURE 13
Distribution and variation of structural plane openings. Each red line in the figure has a width equal to “each line thick,” where the overall width
represents the cumulative opening of multiple lines, and this width signifies the opening of the structural planes. (A) Original model 10,000 steps; (B)
original model 100,000 steps; (C) inserted crack model 50,000 steps; (D) inserted crack model 100,000 steps.

serve as the threshold values that separate soft rock with ductile
bending deformations from hard rock with brittle fractures. These
threshold values are as follows: tensile strength of 0.01 MPa,
Poisson’s ratio of 0.25, and elastic modulus of 17.8 MPa.

As the parametric study through numerical simulations is
not comprehensive enough and lacks depth, further calibration is
needed through extensive investigations of field cases to confirm
whether 80 MPa is indeed the critical threshold for ductile bending
toppling deformations. However, for trend analysis in numerical
simulations, this threshold can be considered a preliminary
reference value for rock mechanics parameters, subject to further
validation by additional research.

5 Evolution analyses of BFST and
DBDT

5.1 Brittle fracturing shallow toppling
(BFST)

For the BFST, the rock mechanical parameters are chosen with
UCS = 100 MPa.

The experimental design considered that the UDEC calculation
process cannot simulate block self-fracture breaking. We determine
bending fracture based on the plastic zone of tension failure, and
a verification model for rock tensile failure was chosen to reveal
the tensile fracture process in brittle fracturing toppling failure
(Cai et al., 2020).

The approach for brittle fracturing toppling failure is to insert a
stepped fracture plane based on the depth of toppling fracture. The
depth of fracture is determined according to themechanical analysis
(Cai et al. 2022). To analyze the mechanical behavior characteristics
throughout the development of toppling deformation, multiple
levels of fracture depths are inserted,mainly to capture tensile failure
in the plastic zone of the model.

5.1.1 BFST displacement vector evolution
After calculating 100,000 steps for the BFST model, there were

no significant macroscopic flexible toppling deformations or signs
of failure. On examining the distribution of the plastic zone, it
is apparent that the rock layers have experienced tensile failure.
As the UDEC software itself cannot simulate block self-fracture
breaking, and to account for the rock’s tensile fracture, fractures are
inserted to represent the occurrence of tensile fractures in themodel.
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FIGURE 14
Distribution and variation of shear displacement on structural planes. Each red line has a width equal to “each line thick,” where the overall width
represents the cumulative width of multiple lines, and this width signifies the value of shear displacement of the structural planes. (A) Original model
10,000 steps; (B) original model 100,000 steps; (C) inserted crack model 50,000 steps; (D) inserted crack model 100,000 steps; (E) definition of shear
displacement direction, two points A and A′, before separation (1), after separation (2); left lateral shear displacement is the left side of A at the original
corresponding point after separation.

The depths of these inserted fractures represent multiple levels of
toppling fracture depths.

In the model’s slope foot, based on studies of toppling fracture
surfaces (Aydan and Kawamoto, 1992), a straight line inclined at
an angle of 12° to the plane of the rock layers was chosen as the
base sliding surface for the lower sliding area of the slope. This
line intersects with the model’s toppling fracture depth. The specific
deformation and failure evolution process is described as follows.

The original model underwent 100,000 steps without showing
significant macroscopic flexural deformation or signs of failure.
However, the displacement vectors during the computation process
indicated the toppling deformation of the rock layers, with
the horizontal component being significantly greater than the
vertical component. The vector’s direction corresponds to the
direction of the toppling deformation. With an increase in the
number of iterative steps, the values of the displacement vectors
gradually increased, changing from 0.08866 m at 10,000 steps
to 0.4581 m at 100,000 steps, with the horizontal displacement

component increment being larger than the vertical component
increment. Figure 6 shows the overlay images of the initial model (in
gray) and the certain step model (in green), and a clear comparison
of the rock slab deformation before and after also highlights its
toppling deformation characteristics.

When the iteration reached 100,000 steps, the plastic zone was
primarily characterized by tension failure. Those yielded in past
elements during the model stress adjustment process were not
considered for the current slope failure. These elements on the yield
surface or undergoing tension failure is similar in shape to the
calculated fracture depth of a single rock slab in the rock layer,
approximately in a stepped shape, as illustrated in Figure 7.

Based on the distribution characteristics of the plastic zone after
100,000 steps and the toppling fracture depth (Cai et al., 2022), a
new calculationmodel was constructed by inserting cracks (fracture
surfaces).The newly toppled fractured model was then recalculated,
and each level of fracture depth at this time was simplified as the first
fracture depth.
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FIGURE 15
DBDT displacement vectors evolution process. (A) Original model 10,000 steps; (B) original model 50,000 steps; (C) original model 100,000 steps.

Figure 6C indicates that the maximum displacement vector of
the new model after 100,000 steps is 14.89 m, and the maximum
displacement vector occurs at the top corner of the slope, with
the toppling deformation being most prominent. At this point, the
failure baseline mainly occurs at the interface of the same level
fracture depth within the slope.

5.1.2 Stress and deformation characteristics
evolution

The results of the BFST original model are shown in Figure 8
to Figure 9.

Figure 8 displays stress distribution after 10,000 iterations, and
the Y-direction stress conforms to the typical layer-wise distribution.
The X-direction stress contour shows the presence of localized
compressive stress at the slope foot, with an area of tensile stress
concentration at the slope crest. The XY shear stress contour reveals
a concentration of shear stress in a certain depth range at the slope
foot, with the maximum shear stress value being 6×105Pa.

When the iteration increases to 100,000 steps (Figure 9),
the Y-direction stress shows compressive stress concentration in
individual layers at the bottom of the study area, as a result of
stress adjustments. The numerical values of compressive stress
concentration at the slope foot in the X-direction stress contour

have increased from 1.2×106 Pa to 1.5×106Pa, and the scale of tensile
stress concentration at the slope crest has also expanded. The range
of shear stress concentration at the slope crest in the XY shear
stress has increased. Figure 9 indicates that, at this point, the model
exhibits relatively small shear strains with an irregular distribution,
and there is no apparent potential surface for instability or failure.

After inserting cracks into the newly created model, the
stress–strain characteristics of 100,000 steps are as shown
in Figure 10. At this point, the rockmass exhibits significant toppling
deformation along the toppled fracture surfaces.

Figure 10 illustrates the X-direction stress, with compressive
stress increasing to 3.75×106Pa at the slope foot. Y-direction
stress experiences an increase in compressive stress within the
toppled slope along the same level fracture surfaces, with stress
values rising to 1–2×106Pa. XY shear stress, centered at the slope
foot, forms multiple bands of concentrated shear stress along the
same-level fracture surfaces, with shear stress values increasing
to 3.5×106Pa. Figure 10 indicates that shear strain mainly occurs
within the rock blocks at the slope foot and within the range
of the second-level fracture depth. These results suggest that the
implantation cracks of the newly created model result in significant
toppling deformation and stress concentration related to the toppled
fractured surfaces.
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FIGURE 16
DBDT displacement vectors evolution process. (A) Inserted cracks model 10,000 steps; (B) inserted cracks 50,000 steps; (C) inserted cracks model
100,000 steps.

After 100,000 iterations of the original model, the model overlay
images show that there was no significant deformation. The specific
displacement results can be seen in Figure 11. As the steps increase,
both the maximum displacements in the X and Y directions slightly
increase. At 10,000 steps, the maximum displacements were 0.06 m
in the X-direction and 0.06 m in the Y-direction. However, at
100,000 steps, the maximum displacement increased to 0.4 m in
the X-direction and 0.16 m in the Y-direction, with the X-direction
displacement being greater than the Y-direction displacement
change. Overall, the extent of deformation development did not
change significantly.

After inserting cracks and reconstructing the model, the overlay
image results of the newly created model reveal that significant
toppling deformation and failure occur after 100,000 iterations
(Figure 12). The results of the iterative calculations indicate that as
the steps increase, both the maximum displacements in the Xand
Ydirections increase. At 10,000 steps, the maximum displacements
were 1.2 m in the X-direction and 0.35 m in the Y-direction.
However, at 100,000 steps, themaximumdisplacements increased to
12.0 m in the X-direction and 6.0 m in the Y-direction. It is evident
that the X-direction displacement change is greater than that in the
Y-direction, indicating the characteristics of toppling deformation.
Additionally, the range of deformation and failure continuously
expands.

5.1.3 Characteristics of interlayer stress and
displacement

When the tensile and shear stress acting on the structural planes
exceed their strength, the cracks begin to open. Once the opening
exceeds a certain limit, it becomes impossible to obtain information
about further opening changes and the stress distribution on the
structural planes. The magnitude of the opening obtained in the
model is directly proportional to the forces acting on the structural
planes within the model. The opening of the structural planes can
reflect the stress distribution on the rock layer’s structural planes.

From Figure 13, each red line in the figure has a width equal to
“each line thick” shown in the figure. The overall width represents
the cumulative opening of multiple lines, and this width signifies
the opening of the structural planes. During the development of
toppling deformation, the maximum opening of the structural
planes in the original model was 0.0159 m at 10,000 steps and
0.1117 mat 100,000 steps, respectively. After inserting the cracks, the
maximum opening of the structural planes was 0.2795 m at 50,000
steps and 0.2697 m at 100,000 steps, respectively.

The structural plane opening of the original model initially
occurred at the front edge of the slope, and the deformation in
the original model was not significant. The opening values were
relatively small, with a maximum of 0.1117 m, and there was no
extension of the opening of the structural plane.
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FIGURE 17
Stress characteristics of the original model evolution process. (A) XX stress contour 10,000 steps; (B) YY stress contour 10,000 steps; (C) XY stress
contour 10,000 steps.

The structural plane opening of the inserted cracks model was
larger, and the opening phenomenon is significant. Additionally,
the pre-existing opening of the structural planes extended into the
deeper slope. The opening of the structural planes often occurred
near the root of the toppled fracture surfaces. The main reason
was the rotational deformation of rock blocks after the fracture,
which resulted in non-coordinated deformation between the blocks,
leading to the formation of open spaces near the fracture surfaces
and in triangular areas above the fracture surfaces. As the toppling
deformation continued, some of the local openings closed.

The toppling deformation originates from the interlayer shear
displacement, and the development of interlayer shear displacement
can reflect the displacement characteristics of toppling deformation.
From Figure 14, it is evident that each red line has a width equal to
“each line thick,” as shown in the figure.The overall width represents
the cumulative width of multiple lines, and this width signifies the
value of shear displacement of the structural planes.

During the development of toppling deformation, themaximum
shear displacement of the structural planes was 0.013 m at 10,000
steps and 0.0411 m at 100,000 steps in the original model. The

maximum shear displacement of the structural planes was 1.245 m
at 50,000 steps and 2.064 m at 100,000 steps in the inserted cracks
model.

Overall, the original model exhibited insignificant shear
deformation, with relatively small maximum shear displacement
values, reaching a maximum of 0.0411 m. There is no significant
extension of shear displacement along the structural planes. The
shear displacement of the structural planes was larger, and shear
dislocation was more pronounced in the inserted cracks model.

5.2 Ductile bending deep toppling (DBDT)

For the DBDT, the rock mechanical parameters are chosen with
UCS = 20 MPa. The DBDT takes into account the development
characteristics of the plastic zone, the distribution lawof shear strain,
and the curvature of rock slabs comprehensively. Different bending
curvature values are selected to insert cracks instead of potential
bending fracture surfaces to reconstruct the model for the toppling
failure process analysis.
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FIGURE 18
Stress characteristics of the original model evolution process. (A) XX stress contour 100,000 steps; (B) YY stress contour 100,000 steps; (C) XY stress
contour 100,000 steps; (D) XY strain contour 100,000 steps.

5.2.1 DBDT displacement vector evolution
After calculating 100,000 steps, significant macroscopic flexible

deformation becomes apparent, and the rock layers exhibit notable
tensile failure. The multiple fracture depths for toppling are
expressed through the depth of inserted cracks. Simultaneously,
considering the maximum tensile strain characteristics, the
deformation trace lines of maximum curvature experience complex
tensile and compressive stresses and the deformation failure is
severe. These areas serve as toppling bending surfaces and are
most likely to evolve into potential sliding surfaces after long-term
geological periods. Field investigations suggest that flexible toppling

deformation leading to instability and failure typically occurs at
moderate to relatively deep levels along the curvature surfaces.

The specific evolution of deformation failure is described as
follows.

Figure 15 illustrates the displacement vectors of the original
model during the calculation process. The direction of the
vectors corresponds to the toppling direction. As the number of
steps increases, the values of the maximum displacement vectors
gradually increase. The maximum displacement at 10,000 steps is
1.644 m, at 50,000 steps, it is 25.66 m, and at 100,000 steps, it is
25.67 m. Additionally, the increment in the horizontal displacement
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FIGURE 19
Stress characteristics of the inserted crack model evolution process. (A) XX stress contour 100,000 steps; (B) YY stress contour 100,000 steps; (C) XY
stress contour 100,000 steps; (D) accumulation rock mass of toppled bank slopes at Miaowei Hydropower Station.

component is larger than that of the vertical displacement
component.

At this point, the deformation displacement also tends to
stabilize, and it can be considered to have entered the creep
stage. Due to the software’s own limitations, the rock blocks will
not undergo further fracture. It is assumed that the final failure
of the slope will occur along the curved fracture surfaces along
the fracture surfaces with approximately equal curvature, and the
deepest maximum curvature trace line is inserted as the potential
sliding surface.

Figure 16 shows the deformation characteristics of the inserted
cracks model during the entire process of 100,000 iterations. The
calculation results indicate that as the number of steps increases,
the value of the maximum displacement vector gradually increases.

The toppling rock slabs begin to slide and become unstable along
the inserted potential sliding surface. The maximum displacement
at 10,000 steps is 5.935 m, at 50,000 steps it is 26.46 m, and at
100,000 steps, it is 37.27 m. At this point, themaximumdeformation
displacement occurs at the slope foot.

5.2.2 Stress and deformation characteristics
evolution

The results of the original models for the DBDT can be seen
in Figure 17 and Figure 18. Figure 17 shows the stress distribution
at 10,000 steps, and the stress distribution in the Y-direction
conforms to the typical layer-wise distribution. The X-direction
stress distribution indicates a concentration of compressive stress
in the slope foot, with a maximum X-direction stress value of
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FIGURE 20
Displacement characteristics of the original model evolution process. (A) XX displacement contour 10,000 steps; (B) YY displacement contour 10,000
steps; (C) XX displacement contour 100,000 steps; (D) YY displacement contour 100,000 steps.

3×106 Pa. The shear stress distribution in the XY plane shows a
concentration of shear stress in the slope foot, with amaximumshear
stress of 1.5×106 Pa. When it reaches 100,000 steps, the X-direction
stress distribution in the slope foot exhibits a higher concentration,
increasing from 3.0×106 Pa to 4.0×106 Pa.

Figure 18 indicates that the shear strain in the model at
100,000 iterations is nearly continuous, with a likely potential
surface for instability and failure that extend along the curvature
equivalent points from near the front edge of the slope to the
slope crest.

After 100,000 iterations, the rock mass of the inserted cracks
model exhibits significant sliding deformation along the trace
lines of the curvature equidistant points and the bending surfaces
(Figure 19).

The compressive stress in the X-direction at the slope foot
increases to 5.5×106 Pa. In the Y-direction, the compressive stress
in the X-direction near the slope foot experiences an increase along
the fracture surfaces, with stress values increasing to 6.5–7.5×106 Pa.
Shear stress in the XY plane is centered at the slope foot, forming
localized bands of concentrated shear stress along the same level

Frontiers in Earth Science 21 frontiersin.org172

https://doi.org/10.3389/feart.2024.1339169
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Junchao et al. 10.3389/feart.2024.1339169

FIGURE 21
Displacement characteristics of the inserted crack model evolution process. (A) XX displacement contour 10,000 steps; (B) YY displacement contour
10,000 steps; (C) XX displacement contour 100,000 steps; (D) YY displacement contour 100,000 steps.

fracture surfaces, with shear stress values increasing to 3.0×106 Pa.
The structural effect of the toppled rock mass controls the non-
collapse discretization of the accumulation rock mass, as shown
in Figure 19C.

The support conditions of the slope foot control the deformation
and failure of the toppling slope. If the support of the slope foot is
lost, the toppling slope will experience instability and failure along
the potential sliding surface with the maximum shear strain zone.
On the other hand, when the support conditions at the foot of the
slope are intact, the toppling slope experience enters a temporary

stable stage until the support conditions of the slope foot are lost
(Figure 19D).

As the steps of the original model increase, the maximum
displacements in both the X-direction and Y-direction increase
(Figure 20). At 10,000 steps, the X-direction displacement is 0.06 m
and theY-direction displacement is also 0.06 m.At 100,000 steps, the
X-direction displacement is 0.4 m and the Y-direction displacement
is 0.16 m. The displacement in the X-direction is greater than
the change in the Y-direction. Overall, the extent of deformation
development did not change significantly.
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FIGURE 22
Distribution and variation of structural plane opening and shear displacement on structural planes. Each red line in the figures (A) and (B) has a width
equal to “each line thick,” where the overall width represents the cumulative opening of multiple lines, and this width signifies the opening of the
structural planes. Each red line in the figures (C) and (D) has a width equal to “each line thick,” where the overall width represents the cumulative width
of multiple lines, and this width signifies the value of shear displacement of the structural planes. (A) Original model 10,000 steps; (B) original model
100,000 steps; (C) inserted crack model 50,000 steps; (D) the inserted crack model 100,000 steps.

After reconstructing the model, the calculation results indicate
that as the steps of the inserted model increase, the maximum
displacements in both the X-direction and Y-direction also increase
(Figure 21). At 10,000 steps, the X-direction displacement is 5.0 m,
and the Y-direction displacement is 4.0 m. At 100,000 steps, the X-
direction displacement is 35.0 m, and the Y-direction displacement
is 14.0 m. It is evident that in the initial stage of deformation, the
maximum displacement occurs at the slope crest, and then the
maximum deformation displacement occurs at the slope foot. The
deformation development at the slope foot further intensifies the
toppling deformation of the toppled rock mass.

5.2.3 Characteristics of interlayer stress and
displacement

From Figures 22A,B, it can be observed that the red lines in
the figure, with each line having a width equivalent to “each line
thick,” represent the cumulative width of multiple lines, signifying
the opening degree of the structural planes.

During the development of toppling deformation, themaximum
opening of these structural planes is recorded as 0.2693 m at 10,000
steps and 0.2672 m at 100,000 steps. The structural planes opening
of the original model initially occurs at the front edge of the slope,

and the original model exhibits a significant toppling deformation
effect with relatively large structural planes openings. The existing
structural planes opening continue to develop deeper into the
model. Structural planes openings mainly occur near the portions
with significant curvature and bending in the layers.This is primarily
due to the occurrence of detachment of layers as a result of the
interlayer bending. At this point, anti-slope scarps are visible at the
slope crest and the slope surface, and some of the local openings
close with the toppling deformation continuing.

The toppling deformation originates from the interlayer shear
displacement, and the development of interlayer shear displacement
can reflect the displacement characteristics of toppling deformation.
From Figures 22C,D, it is evident that each red line has a width
equal to “each line thick,” as shown in the figure. The overall width
represents the cumulative width of multiple lines, and this width
signifies the value of shear displacement of the structural planes.
During the development of toppling deformation, the maximum
shear displacement of the structural planes is recorded as 0.1382 m
at 10,000 steps and 2.447 m at 100,000 steps in the original model.
Overall, the original model exhibits significant shear deformation
with relatively large shear displacement of the structural planes, and
shear dislocation was more pronounced in the original model.
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5.3 Discussion of toppling failure

Generally, hard rock masses typically develop into shallow
toppling, primarily characterized by stability issues at shallow
depths of toppled slope. Most studies are focused on addressing
these concerns of shallow toppling stability. However, rock
masses dominated by soft rocks exhibit greater depths of
toppling deformation, and once overall instability and failure
occur, the engineering hazards are significant (Alejano et al.,
2018; Zheng et al., 2018).

The rockmassmainly composed of soft rock undergoes bending
and toppling deformation, resulting in certain interlayer openings at
the maximum bending position, while other parts exhibit interlayer
closures. In contrast, formations dominated by hard rock undergo
BFST, with significant rock fragmentation and overhead state at the
toppling fracture surface.

Ductile bending toppling deformations in formations dominated
by soft rock require a relatively long evolutionary process, whereas
brittle fracture toppling in formations dominated by hard rock
tends to be sudden. This study is in agreement with the works of
researchworkersnamely,Huang et al. (2017)andHuang.(2007).These
characteristics also indicate the primary features and mechanisms of
toppling deformations under different rock hardness conditions.

6 Conclusion

Using the UDEC numerical simulation method, we
can conclude that the range of rock mechanics parameters
correspond to bending toppling deformations within the range
of 80 MPa–100 MPa. This 80 MPa can be considered a preliminary
reference threshold for two types of toppling; this threshold can
be considered a preliminary reference value for rock mechanics
parameters of ductile bending deep toppling.

Based on the summary of a large number of case studies, we
summarize two types of toppling deformation: DBDT and BFST.The
Guobu bank slope at the Laxiwa Hydropower Station reveals a large-
scaleBFSTofblockygranite.The toppling rockmasses aredivided into
intensified strong toppling (zone A), strong toppling (zone B), weak
toppling (zoneC), and loose-tensile fracture rockmass (zoneD)based
on the characteristics of toppling deformation and structure.The dam
front slope at the Miaowei Hydropower Station is a typical DBDT
case with alternating soft and hard rock conditions.The toppling rock
masses aredivided into topplingandcollapse (zoneA), strong toppling
(zone B), and weak toppling (zone C).

Using the UDEC numerical simulation method, the
development process and characteristics of DBDT and BFST were
revealed from the displacement vector, overall displacement stress
characteristics, interlayer stress, and displacement characteristics,
which are in good agreement with the field investigation results.
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