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Updates on radiation-induced lymphopenia
Radiotherapy is a commonly employed and effective treatment for cancer, seeking to

achieve an optimal balance between tumor cell death and minimizing damage to healthy

tissues. Radiation-induced lymphopenia (RIL) is a common side effect due to the high

radiosensitivity of lymphocytes even at low doses (<1Gy), leading to their direct depletion

(1). While the detrimental effects of radiotherapy on lymphocytes have been recognized

since 1905, its influence on tumor control and survival has remained largely unclear until

recently (2). Moreover, awareness and understanding of the prognostic effects of RIL

remain limited in daily clinical practice.

Radiotherapy induces a substantial drop in lymphocyte levels during treatment, with

the most significant decrease occurring in the first week and continuing in subsequent

weeks, which is attributed to lymphocyte cell death and migration toward the tumor (3).

The review by Paganetti outlined that differences in radiosensitivity exist among

lymphocyte subpopulations (i.e. B cells appear to be more radiosensitive than T cells,

whereas natural killer cells appear to be the most radioresistant).The review indicates that

not only the absolute lymphocyte counts are affected by radiation, but also lymphocyte

diversity and activity. This is supported by the finding that despite the eventual recovery of

the lymphocyte counts, the extent of lymphocyte restoration (i.e. lymphocyte quantity)

appears unrelated to survival (i.e. lymphocyte quality) (4).

Numerous studies and reviews have addressed the incidence of RIL and its implications

for survival (3). Overall, severe RIL appears to occur in 30-50% of patients with solid

tumors, and is most severe after radiotherapy of tumors in the brain, thorax and upper

abdomen (5). Multiple meta-analyses have shown the detrimental association of RIL with

pathologic response, progression-free survival (PFS) and overall survival (OS), both for

specific tumor locations (3, 6–8) and for solid tumors in general (e.g. a pooled hazard ratio

[HR] of 1.65, and a 95% confidence interval [CI] of 1.43-1.90 were found for the negative

impact of RIL on OS in solid tumors) (5).

Multiple factors have been found to contribute to the occurrence and severity of RIL.

Clinical characteristics described in the literature associated with RIL (e.g. lower baseline

ALC, older age and worse patient performance score) may correspond to a more fragile

reserve or compensation system (5). Other factors such as a higher tumor stage, a larger

planning target volume (PTV), more radiotherapy fractions and a higher heart, lung or
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integral body dose, correspond to a larger proportion of the blood

pool (i.e. circulating lymphocytes) being irradiated (4, 7, 9). More

recently, the effective dose to immune cells (EDIC) was found to be

significantly correlated with severe RIL in esophageal squamous cell

carcinoma by Xu et al. and Qiu et al. (10) and in breast cancer by

(Chen et al.). The EDIC estimates the dose to immune cells by

calculating the radiation dose to circulating blood as a surrogate,

with contributions from each blood-containing organ, including the

lungs and heart, and large and small blood vessels. Another study

confirmed that severe RIL was associated with a higher dose of

circulating blood cells. In addition, in a study of hepatocellular

carcinoma patients with bone metastases treated with radiotherapy,

Chen et al. found that the systemic immune-inflammation index

and the neutrophil-to-lymphocyte-ratio were independently

correlated with poor prognosis.

A significant finding since the advent of immunotherapy is that a

reduction in lymphocyte numbers appears to correlate with decreased

effectiveness of lymphocyte-activating immunotherapeutic agents

(11, 12). In a meta-analysis by Zhang et al., including 10 cohorts

with a total of 1,130 lung cancer patients treated with

immunotherapy, RIL was associated with worse PFS (HR 2.05, 95%

CI 1.62-2.60) and OS (HR 2.69, 95% CI 2.10-3.43), suggesting the

importance of monitoring lymphocyte counts in lung cancer patients

undergoing immunotherapy. A study by Pasquier et al. found that the

inclusion of at least one tumor-draining lymph node (TDLN) in the

clinical target volume was associated with worse PFS in locally

advanced non-small cell lung cancer (NSCLC) patients treated with

immunotherapy after concurrent chemoradiation therapy.

Radiotherapy targeting TDLNs may disrupt the anti-tumor

immune response by interfering with the generation of progenitor-

exhausted T cells that seed the tumor, resulting in diminished

infiltration of CD8+ T cells and decreased expression of T-cell

recruiting chemokines.

Identifying patients with an elevated risk of developing RIL is

desirable to mitigate this risk and potentially improve oncological

outcomes. Such patient selection may help to determine who may

benefit most from strategies aimed at avoiding RIL. Multiple

prediction models for RIL have been reported in the literature and

Van Rossum et al. externally validated two models, developed in lung

and esophageal cancer. The PTV-based predictive model yielded

better external performance in NSCLC patients when compared to a

dosimetry-based model (13). Xu et al. developed and internally

validated a machine learning model to predict severe lymphopenia

during pelvic radiotherapy in cervical cancer patients. Consequently,

these predictive models may assist in identifying patients at increased

risk for severe RIL who may benefit from lymphopenia-mitigating

strategies, which may ultimately improve survival.

Methods to potentially mitigate lymphopenia are aimed at

minimizing unintended radiation exposure to circulating blood and

secondary lymphoid organs. This includes avoiding doses to major

vessels, the heart, lungs, and lymphocyte-rich organs such as lymph
Frontiers in Oncology 026
nodes, spleen, and bone marrow. A recent systematic review

summarizes the existing literature on dosimetric factors associated

with RIL in solid tumors and provides a foundation for potential use in

future clinical trials aimed at mitigating RIL risk (14). Since these

constraints have not been validated in prospective trials, adhering to the

“as low as reasonably achievable” (ALARA) principle for organs at risk

remains advisable in current practice. Other methods include reducing

the number of radiation fractions (i.e. hypofractionation) or reducing

the field size or integral body dose (e.g. with proton-beam therapy or

online adaptive [MRI- or CT-based] radiotherapy) (15–17).

In conclusion, RIL is linked to poorer oncologic outcomes in

patients with various types of solid tumors. While clinicians may

currently have limited awareness of RIL, it is expected to become

increasingly important in the coming years with the introduction and

advancement of immunotherapy. Future research should determine

whether and in which patients’ lymphopenia-mitigating strategies

could be beneficial in terms of oncological outcomes.
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Radiation Induced Lymphopenia Is
Associated With the Effective Dose
to the Circulating Immune Cells in
Breast Cancer
Fang Chen1,2†, Jian-Yue Jin3†, Timothy S.K. Hui1, Haiman Jing1, Hong Zhang4,
Yaqing Nong1, Ying Han1, Weili Wang3, Lingyu Ma1, Fan Yi1, Qingqing Chen1,
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1 Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China, 2 Department of
Clinical Oncology, Hong Kong University Li Ka Shing Medical School, Hong Kong, Hong Kong SAR, China, 3 Department of
Radiation Oncology, Case Western Reserve University, Cleveland, OH, United States, 4 Department of Radiation Oncology,
University of Maryland School of Medicine, Baltimore, MD, United States, 5 Department of Population and Quantitative Health
Sciences, Case Western Reserve University, Cleveland, OH, United States

Background: Lymphopenia is a known significant factor for treatment outcome in cancer
patients, with underlying risk factor poorly understood in breast cancer. We hypothesize
that the effective dose to the circulating immune cells (EDIC) which was related with
lymphopenia in lung cancer will also have significant effect for radiation induced
lymphopenia (RIL) in patients with breast cancer.

Material and Methods: Patients treated with adjuvant radiotherapy (RT) and with
complete blood tests within one week from RT end/start (post/preRT) were eligible in
this study. Radiation dosimetric factors were collected retrospectively, and EDIC for each
patient was calculated based on the doses to lung, heart and total body according to the
model description, as previously reported. RIL was defined by the CTCAE5.0 based on
postRT peripheral lymphocyte count (PLC). Linear regression was first used to test the
correlation between EDIC with post/preRT PLC ratio and postRT PLC, using all these as
continuous variables. Normal tissue complication probability (NTCP) was used to develop
models that predict the CTCAE graded RIL from EDIC.

Results: A total of 735 patients were eligible. The mean post/preRT PLC ratio was 0.66
(95% CI: 0.64-0.68) and mean EDIC of breast cancer was 1.70Gy (95% CI: 1.64-1.75).
Both post/preRT PLC ratio and postRT PLC were significantly correlated with EDIC
(P<0.001), with R2 of 0.246. For patients with normal preRT PLC, the post/preRT PLC
ratio was better associated with EDIC, and postRT PLC was expressed as PLCpreRT ×
(0.89 – 0.16 × EDIC). For patients with preRT lymphopenia, postRT PLC was better
associated with EDIC and it was 1.1 – 0.17 × EDIC. Using binned EDIC as the dose
variable, the bootstrap validated NTCPs fit the data nicely with R2 of 0.93, 0.96, and 0.94
for grade-1, grade-2, and grade-3 RIL, respectively. The corresponding EDIC to induce
50% of grade-1, grade-2 and grade-3 RIL was 1.2, 2.1 and 3.7 Gy, respectively.
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Conclusion: EDIC is a significant factor for RIL in patients with breast cancer, and may be
used to compute the risk of lymphopenia in each individual patient with the use of the
conventional NTCP modeling. External validation is needed before the EDIC can be used
to guide RT plan.
Keywords: lymphopenia, radiation, effective dose to the circulating immune cells (EDIC), prediction model,
breast cancer
INTRODUCTION

The immune system is critical for the development and
management of malignant tumors. Lymphocyte is a major
component of the immune system while lymphopenia was
reported to be associated with poor prognosis in patients with
breast cancer and other malignant cancers (1–4). However,
lymphocytes are extremely radiosensitive (5, 6) and exposure
to as low as 1 Gy of radiation can destroy mature circulating
lymphocytes (7). Therefore, radiotherapy (RT) can damage the
immune system and cause potential immunosuppression while it
is applied for its role on killing malignant tumor cells.

Radiation induced lymphopenia (RIL) is common and known
as a negative prognostic factor in many types of malignant solid
tumors (8–15). In breast cancer, we have demonstrated that
60.5% patients had lymphopenia and 92.7% patients had some
degree of reduction in peripheral lymphocyte count (PLC) after
adjuvant RT (16). RIL or the ratio of nadir PLC and pretreatment
PLC were also found to be a potential predictor for ipsilateral
breast tumor recurrence or 5-year disease-free survival in breast
cancer (17, 18). Meanwhile, several phase III clinical trials
involving immunotherapy showed positive results which have
significantly changed the treatment strategy for triple negative
breast cancer (19, 20). The keynote 522 study (20) had enrolled
previously untreated stage II or stage III triple-negative breast
cancer and most of them would receive adjuvant RT concurrent
with pembrolizumab after surgery. The effect of immunotherapy
might be weakened by RIL since patients with low PLC had lower
immune response rate while receiving checkpoint inhibitors (21).
Therefore, it is important to establish a prediction model of RIL
to improve RT plan of a better lymphocyte-sparing technique to
reduce treatment-related lymphopenia.

Studies had revealed that radiation dose to the lymphatic
system played an important role on RIL (6, 12). Our prior study
also found that several radiation dosimetric factors (such as
the circulating immune cells; RIL,
therapy; PLC, peripheral lymphocyte
r; LYM, lymphocytes; Nadir-PLC, the
ing radiation; PreRT PLC, peripheral
R, organ at risk; CTCAE, Common
EUD, equivalent uniform dose; MLD,
; ITDV, integral dose or integral total
omplication Probability; OS, overall
vival; CRT, chemoradiotherapy; PFS,
nt metastasis free survival; ESCC,
stereotactic body radiation therapy;
lative volume receiving more than
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mean lung dose) were significant risk factors for lymphopenia
after RT in patients with breast cancer (16). A simple RIL model
based on radiation dose to the lymphatic system will be helpful
clinically to improve RT plan and minimize lymphopenia. The
lymphatic system is a complicated system composed of lymphoid
organs such as lymph nodes/ducts, bone marrow and thymus,
non-lymphoid organs such as lung and liver where lymphocytes
reside, and circulation blood which transport lymphocytes to
different parts of the body (22). Here we hypothesized that
radiation dose to the lymphocytes in circulation blood to be
critical for RIL because it was observed in breast and brain
radiation patients while there is little lymphoid tissue in radiation
of these regions (13, 23, 24). In addition, RIL is directly measured
according to the number of lymphocytes in a unit volume of
blood, and the active lymphocytes in circulation blood may be
more radiosensitive than non-active lymphocytes in other parts
of the lymphatic system (5, 6).

However, it is difficult to determine the radiation dose to the
lymphocytes in circulation blood because they are moving
targets. We have previously developed a model for the effective
dose to the circulating immune cells (EDIC) for thoracic
radiat ion based on planning dosimetr ic data , and
demonstrated that EDIC was associated with both overall
survival (OS) and local progression free survival (LPFS) after
thoracic radiotherapy in non-small cell lung cancer (NSCLC)
patients (25). This EDIC model has been validated externally in
NSCLC (26) and esophageal cancer (15, 27), and further
extended to abdominal radiation with consideration of other
immune organs beyond circulating blood, including spleen,
lymphatic ducts and bone marrows (22). Because the main
irradiated blood-containing structures of breast cancer are
similar to that of other thoracic malignancies, we hypothesized
that this modeled EDIC may also be applicable to breast cancer.
The purpose of this study is two folds: 1) to investigate whether
EDIC is associated with RIL in patients with breast cancer; 2) to
develop a normal tissue complication probability (NTCP) model
for RIL by considering the EDIC as the dose to the circulating
lymphocytes, similar as the conventional NTCP model for other
normal structures (such as NTCP of radiation induced
pneumonitis versus lung dose).
MATERIALS AND METHODS

Study Population
Patients with breast cancer who had received adjuvant
radiation between March 2015 to February 2020 in the
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University of Hong Kong-Shenzhen Hospital were enrolled
in this study. Inclusion criteria: pathology confirmed invasive
breast cancer, aged 18-year-old and above, underwent adjuvant
radiation therapy. Exclusion criteria: non-invasive breast
cancer, recurrent or stage IV breast cancer, breast lymphoma,
immune related diseases, without PLC within 7 days
before and after radiation in the University of Hong Kong-
Shenzhen Hospital.

Data Collection
Following information of patients were collected: 1) radiation
dosimetric factors including RT technique, RT fields, RT
fractionations, mean heart dose (MHD), mean lung dose
(MLD), and integral dose, which has a unit of dose*volume
(to avoid confusion, here we referred it as integral total dose
volume [ITDV]); 2) Other clinical factors including age, tumor
laterality, ER/PR/HER-2 subtype, stage, surgical approaches,
chemotherapy, endocrine therapy, target therapy; 3) PLC
within 7 days at the beginning and end of radiation.
Lymphopenia was graded by Common Terminology Criteria
for Adverse Events (CTCAE) version 5.0. Lymphopenia was
defined as PLC cut-off of 1.06 × 109 in our institution. Grade 1,
2, 3 and 4 lymphopenia were defined as PLC cut-off of 1.06-
0.8 × 109, 0.8-0.5 × 109, 0.5-0.2 × 109 and 0.2 × 109/L,
respectively. The study endpoints were numerical value of
post/preRT PLC ratio, and postRT lymphopenia graded by
CTCAE5.0 based on postRT PLC.

EDIC Calculation
A recently reported EDIC model was used for this study (25). The
details of the EDICmodel derivation have been described previously
and validated externally (22, 25). Basically, the model derivation
includes 4 steps: 1) convert the mean dose of each single blood
containing organ (such as lung and heart) in one fraction into blood
dose and volume by considering continuous blood flow through the
organ during the time of radiation delivery (22, 25); 2) estimate the
fractionation effect by considering that the irradiated blood
uniformly mixed with un-irradiated blood after each fraction (13);
3) convert the blood dose volume data modified by the fractionation
effect into a blood equivalent uniform dose; and 4) finally EDIC is
the sum of the blood equivalent uniform doses (EUDs) contributed
by each blood-containing organs, including lung, heart, large
and small blood vessels with an assumption that large and small
vessels are uniformly distributed in the body. The model is
finally expressed as EDIC = 12%�MLD + 8%�MHD + ½45%
+35%�0:85� ( n

45 )
1
2 � � ITDV=(61:8� 103), w h e r e MLD ,

MHD, and ITDV are the mean total lung dose, mean heart
dose and integral dose (or integral total dose volume),
respectively, and n is the number of radiation fractions (25).
The ITDV was calculated as the mean external contour dose
multiplying with the volume of the external contour. The CT
scan region was from the lower jaw to L1 vertebra in this study.

Statistical Method
The effects of potential risk factors of RIL (post/preRT PLC ratio)
were estimated using univariate analysis initially and further
estimated using multivariable model. To avoid the unstable and
Frontiers in Oncology | www.frontiersin.org 310
inaccurate estimates of the coefficients, the stepwise linear
regression based on the Akaike information criterion
minimum was used to select variables for inclusion in the
multivariate analysis. Meanwhile, the collinearity testing was
performed using the variance inflation factor (VIF), and VIF >
10.0 was interpreted as indicating multicollinearity. Variables
with VIF > 10.0 were not included in the final model. Coefficients
and corresponding 95% confidence interval were calculated for
the linear regression model. Another linear regression was used
to investigate the numerical correlation between the post/preRT
PLC ratio (or postRT PLC) with EDIC. Statistical analysis was
performed using R software (version 3.6.2; https://www.R-
project.org).

To develop the NTCP model for RIL, the Solver program in
Excel was used to fit the clinical data into the NTCP model. The
patients were binned into the following 8 groups according to
their EDIC values: 1) EDIC <1.0; 2) 1≤ EDIC<1.5; 3) 1.5≤
EDIC<2.0; 4) 2.0≤ EDIC<2.5; 5) 2.5≤ EDIC<3.0; 6) 3.0≤
EDIC<3.5; 7) 3.5≤ EDIC<4.0; and 8) EDIC≥4.0. The
average EDIC in each bin was calculated. The percentage of
patients had Grade 1+, Grade 2+ and Grade 3+ lymphopenia at
each bin was also calculated, respectively. The calculated
percentage of patients with lymphopenia was considered as
clinically observed NTCP for lymphopenia, and NTCP versus
average EDIC was then fitted with the NTCP model expressed as

NTCP = 1= 1 +
D50
EDIC

� �k
" #

(1)

where D50 and k are fitting parameters. When the value of EDIC
that generated NTCP of 50% was considered to be D50. For
better comparison, we also used the original binary data for each
patient to fit the NTCP model. Bootstrap validations were also
performed for both binning and original binary data settings.
Internal generalizability was evaluated over 1000 bootstrap
samples, which were obtained by selecting patients randomly
from the study cohort, with replacement to produce datasets
having the same number of patients as the original cohort.
Confidence intervals (CIs) for fit parameters were calculated
using the bias corrected and accelerated bootstrap (BCa) method.
RESULTS

Characteristics of Patients and Radiation
Dosimetric at Baseline
Between March 2015 to February 2020, 1559 patients with
breast cancer received adjuvant RT in the University of Hong
Kong-Shenzhen Hospital. Among them, 735 patients with
invasive breast cancer were el igible for this study
(Supplementary Figure 1 for patient selection). Table 1 lists
the characteristics of patient, tumor, pre-radiation treatment
factors and radiation dosimetric factors at baseline. The median
age was 45 years (range 26-86). The mean doses of lung, heart
and integral body were 5.5Gy (95% CI: 5.3-5.6), 2.4Gy (95% CI:
2.2-2.5) and 4.4Gy (95% CI: 4.3-4.5), respectively.
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Correlation Between EDIC and postRT/
preRT PLC (or postRT PLC)
Overall, 92.7% patients had some degree of reduction in PLC
postRT, and 60.5% (445/735) patients had lymphopenia postRT
(Supplementary Table 1). The mean post/preRT PLC ratio was
0.66 (95% CI: 0.64-0.68). The mean EDIC of breast cancer was
1.70Gy (95% CI: 1.64-1.75). Univariate and multivariable regression
analyses showed that EDIC was one of the significant risk factors
(P<0.001) for lymphopenia (post/preRT PLC ratio) (Table 1).

Linear regression showed that the post/preRT PLC ratio
decreased with increasing EDIC (R2 = 0.246, p<0.001)
(Figure 1A). However, we noted that a significant number of
patients were outliers that not fit to the linear regression.
Interestingly, most of these outlier patients had baseline
(preRT) lymphopenia (or low preRT PLC), which may had
confounded the radiation effect. In this study, 14.3% (105/735,
95%CI: 14.2-14.3%) patients had CTCAE5.0 defined
lymphopenia before RT (11.4%, 2.5%, 0.4% and 0 for grade 1,
2, 3 and 4, respectively) (Supplementary Table 1). As shown in
Figures 1B–D, the correlation represented by R2 was improved
from 0.246 to 0.283 by excluding 3 patients with grade-3 baseline
lymphopenia, improved to 0.309 by excluding additional 18
patients with grade-2 baseline lymphopenia, and further
Frontiers in Oncology | www.frontiersin.org 411
improved to 0.318 by excluding 84 grade-1 baseline
lymphopenia patients. The percentage outliers were 2/3 (66.7%),
3/18 (11.1%), 2/84 (2.4%) and 1/640 (0.1%) for patients with
baseline (Pre-RT) grade-3, grade-2, grade-1 and grade-0
lymphopenia, respectively. In patients with normal preRT PLC,
the postRT PLC (or potential RIL) might be estimated by the
linear regression of the post/preRT PLC ratio with EDIC, and
specifically be computed as PLCpostRT = PLCpreRT × (0.89 – 0.16 ×
EDIC) (Figure 1D). Meanwhile, these data also indicated that
patients with baseline lymphopenia before RT tended to have a
different behavior.

The postRT PLC also decreased with increasing EDIC (R2 =
0.275, p<0.001) (Figure 2A), and its correlation was better than
that of post/preRT PLC ratio to EDIC. However, the correlation
did not improve when patients with preRT lymphopenia were
excluded (Figures 2B, C). The correlation was better than that of
the post/preRT PLC ratio to EDIC if all patients were considered,
but it was not as good as that of the post/preRT PLC ratio to
EDIC if patients with preRT lymphopenia were excluded.

We also compared the correlation of post/preRT PLC ratio to
EDIC and postRT PLC to EDIC for patients with grade 1+ and
grade 2+ pre-RT lymphopenia. As shown in Figures 3A–D, the
correlation of postRT PLC to EDIC for patients with grade 1+
TABLE 1 | Patient characteristics, dosimetric factors and their predictive values on radiation induced lymphopenia (post/preRT PLC ratio).

n (%)/Mean (95%CI) Univariate analysis Multivariable analysis

Coefficient (95%CI) p value Coefficient (95%CI) p value

Age [median (range)]-year 45 (26-86) -0.001 (-0.003, 0.001) 0.355
Tumor side (left vs non-left)† 371(50.5%) vs 364 (49.5%) -0.035 (-0.069, -0.001) 0.046
Tumor stage*
IA/IB 193 (26.2%) 0
IIA/IIB 332 (45.2%) -0.061 (-0.100, -0.021) 0.003
IIIA/IIIB/IIIC 210 (28.6%) -0.224 (-0.268, -0.181) <0.001

Node status (N0 vs N+) 290 (39.5%) vs 445 (60.5%) -0.139 (-0.172, -0.105) <0.001
BCT vs Mastectomy 373 (50.7%) vs 362 (49.3%) 0.105 (0.071, 0.138) <0.001
SLNB vs ALND 265 (36.1%) vs 470 (63.9%) 0.135 (0.100, 0.170) <0.001
Chemotherapy (none vs yes) 69 (9.4%) vs 666 (90.6%) 0.008 (-0.051, 0.067) 0.800
Target therapy (non vs yes) 556 (75.6%) vs 179 (24.4%) -0.019 (-0.059, 0.022) 0.364
Endocrine therapy (none vs yes) 186 (25.3%) vs 549 (74.7%) -0.004 (-0.044, 0.035) 0.837
RT technology
RapidArc 123 (16.7%) 0 0
2D-fields 277 (37.7%) 0.351 (0.307, 0.395) <0.001 0.176 (0.078, 0.275) <0.001
3DCRT 335 (45.6%) 0.268 (0.225, 0.311) <0.001 0.146 (0.069, 0.223) <0.001

EDIC (95% CI)—Gy 1.7 (1.6-1.8) -0.156 (-0.177, -0.136) <0.001 -0.106 (-0.156, -0.055) <0.001
RT fields (breast vs breast/chestwall + regional LNs) 277 (37.7%) vs 458 (62.3%) -0.153 (-0.187, -0.119) <0.001
RT Dose (40.5Gy vs 50Gy) 665 (90.5%) vs 70 (9.5%) -0.109 (-0.167, -0.051) <0.001 0.056 (-0.009, 0.120) 0.091
Use of breathing control (none vs yes) 721 (98.1%) vs 14 (1.9%) -0.202 (-0.327, -0.077) 0.002
RT fractions (15 vs 25) 665 (90.5%) vs 70 (9.5%) -0.109 (-0.167, -0.051) <0.001
Mean heart dose (95% CI)—Gy 2.4 (2.2-2.5) -0.036 (-0.044, -0.029) <0.001
Heart dose_Dmax (95% CI)—Gy 26.5 (25.2-27.9) -0.001 (-0.002, -0.0001) 0.026 0.001 (0.0002, 0.002) 0.012
Mean dose of the total body (95% CI)—Gy 4.4 (4.3-4.5) -0.069 (-0.078, -0.060) <0.001
V5 of bilateral lungs (95%CI)—Gy 22.3 (21.3-23.2) -0.009 (-0.010, -0.008) <0.001
V20 of bilateral lungs (95%CI)—Gy 10.2 (9.9-10.5) -0.017 (-0.021, -0.013) <0.001
Mean bilateral lung dose (95%CI)—Gy 5.5 (5.3-5.6) -0.046 (-0.053, -0.040) <0.001
April
 2022 | Volume 12 | Article
RT, radiotherapy; LN, lymph nodes; BCT, Breast conserving therapy; SLNB, Sentinel lymph node biopsy; ALND, Axillary lymph node dissection; EDIC, effective dose to the circulating
immune cells); V5 (20), relative volume receiving more than 5Gy (20Gy).
†Non-left included 363 right and 1 bilateral breast cancer.
*Tumor stage was identified as the higher stage between clinical and pathological stage for patients who had received neoadjuvant chemotherapy and was identified as pathological stage
for patients who had upfront surgery.
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preRT lymphopenia was the best (R2 = 0.366, p<0.001).
Therefore, for these patients with baseline lymphopenia, the
postRT PLC (or potential RIL) might be approximated by
linear regression of absolute postRT PLC with EDIC, and
specifically be computed as PLCpostRT = 1.1 – 0.17 × EDIC
(Figure 3D). Again, all these data (Figures 1–3) indicate that
overall, the post-RT lymphocytes decreased with increasing
EDIC. However, the decreasing models may be different for
patients with different pre-RT PLC status.

RIL Normal Tissue Complication
Probability (NTCP) Modelling
The NTCP versus mean EDIC based on the binned data was
plotted in Figures 4A–C for Grade-1 and above, Grade-2 and
above, and Grade-3 and above RIL respectively. The data were
fitted with the NTCP model in Eq.1, with R2 = 0.96, 0.98 and
0.98, for Grade-1, Grade-2 and Grade-3 RIL, respectively. The
D50 (dose of EDIC at 50% probability of having RIL) for EDIC
was 1.2 (95%CI: 1.0-1.4), 2.1 (95%CI: 2.0-2.3) and 3.7 Gy (95%
CI: 3.5-3.9), and the k value was 2.4 (95%CI: 1.8-3.2), 4.0 (95%CI:
3.1-5.3), and 4.9 (95%CI: 3.8-6.5), correspondingly. Table 2
showed the results of model fitting of using binary data of each
patient without binning, and Bootstrap validation for both
binned data and binary data without binning. The binary data
Frontiers in Oncology | www.frontiersin.org 512
appeared to have quite consistent mean D50 and k values as the
binned data, while its 95% CIs were narrower than that of the
binned data. On the other hand, the binned data showed much
better fittings (R2 Values) than that of the binary data of
individual patient. The Bootstrap validation appeared to show
very consistent data as the original data for both the binned data
and binary data without binning.

The NTCP models for different grades of RIL could thus be
expressed as:

NTCP

= 1= 1 +
1:2

EDIC

� �2:4� �
for Grade� 1 and above RIL (4a)

NTCP

= 1= 1 +
2:1

EDIC

� �4:0� �
for Grade� 2 and above RIL (4b)

NTCP

= 1= 1 +
3:7

EDIC

� �4:9� �
for Grade� 3 and above RIL (4c)
A B

C D

FIGURE 1 | Inverse linear relation between post/preRT PLC Ratio and EDIC for (A) all 735 patients; (B) 732 patients excluding 3 patients with grade 3 preRT
lymphopenia; (C) 714 patients excluding additional 18 patients with grade 2 preRT lymphopenia; (D) 630 patients excluding additional 84 patients with grade 1
preRT lymphopenia.
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DISCUSSION

This study of 735 patients at the first time in breast cancer
demonstrated a significant correlation between EDIC and RIL,
and that both post/preRT PLC ratio and postRT PLC decreased
linearly (R2<0.4) with increasing EDIC. The post/preRT PLC
ratio had a better correlation with EDIC in patients with normal
preRT PLC, and the postRT PLC appeared to have a better
correlation with EDIC in patients with preRT lymphopenia.
Comparing to the numerical correlation by the linear
regression, EDIC fitted better into the sigmoid-shaped NTCP
model for RIL (R2>0.96). The EDIC value of 50% incidence of
grade-1 RIL was 1.2 Gy, the corresponding EDIC to reach 50% of
grade-2 and grade-3 RIL was 2.1 and 3.7 Gy, respectively.

The significance of EDIC for RIL in breast radiation makes
biological sense and is supported by radiation physics rationales.
Lymphocytes are produced in bone marrow and thymus, and
then travel through blood circulation into various functional
sites. Radiation can directly kill circulating immune cells as they
pass through the irradiated field. EDIC is the estimation of
equivalent dose to the circulating immune cells in blood
contributed by the irradiation of the blood-containing organs
in thoracic radiation according to the mean dose to these organs
(such as MLD, MHD and ITDV). In addition, the radiation dose
Frontiers in Oncology | www.frontiersin.org 613
fractionation effect is also considered in the EDIC model (25).
EDIC has been reported to be associated with RIL in other
thoracic malignancies such as lung and esophageal cancers (15,
25–27). As a type of thoracic cancers, breast cancer is similar to
the NSCLC and esophageal cancer in terms of that its main
irradiated blood-containing organs are lung and heart.
Therefore, the EDIC model may be also applicable in breast
cancer. However, the irradiation pattern or dose distribution in
these organs may be quite different for breast cancer in
comparison to that of the NSCLC and esophageal cancer. The
irradiated lung and heart volumes in breast cancer are usually
much smaller. According to the EDIC model derivation (25), the
contribution of a blood-containing organ (such as lung) to EDIC
is approximately expressed as B%*Mean Organ Dose (MOD)
when A% is larger than 20% and fraction number is larger than
20, where MOD is the mean organ dose, A% is the percentage
blood-current that flow into the organ, B% is the percentage
blood-volume that present within the organ. This expression was
derived based on the assumption that the blood flow through the
organs in a serial pattern, and should be applicable for any blood-
containing organs with any non-uniform dose distributions. The
lung is composed of 5 lobes and each lobe may be approximately
considered as having a serial blood-flow pattern with A%=20%.
From the physics model perspective, the EDIC model can be
A B

C

FIGURE 2 | Inverse linear relationship between EDIC and postRT peripheral lymphocyte counts (PLC) for (A) all 735 patients; (B) 732 patients excluding 3 patients
with grade 3 preRT lymphopenia; (C) 714 patients excluding additional 18 patients with grade-2 preRT lymphopenia.
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applied in breast cancer radiation. Indeed, significance of EDIC
on both postRT PLC and RIL of this study support the validity of
this model in breast cancer.

It is interesting to note that when a patient had a normal
preRT PLC, the post/preRT PLC ratio had better correlation with
Frontiers in Oncology | www.frontiersin.org 714
EDIC. This is consistent with the theory that when the preRT
PLC is normal, the killing of circulation lymphocytes in blood by
radiation plays the most important role in the reduction of PLC.
However, 14.3% patients had preRT lymphopenia in this study,
which was reported to be related with prior chemotherapy in our
A B

C D

FIGURE 3 | Post/preRT PLC ratio versus EDIC for (A) 21 patients with grade-2+ preRT lymphopenia; (B) 105 patients with grade-1+ preRT lymphopenia; PostRT
PLC versus EDIC for (C) 21 patients with grade-2+ preRT lymphopenia; and (D) 105 patients with grade-1+ preRT lymphopenia.
A B C

FIGURE 4 | EDIC NTCP model for (A) Grade 1+, (B) Grade 2+ and (C) Grade 3+ postRT lymphopenia. Patients were divided into 8 groups with a 0.5 Gy increment in
each group (<1, 1-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, >4.5). NTCP, Normal Tissue Complication Probability. EDIC, Effective Dose to the circulating Immune Cells.
April 2022 | Volume 12 | Article 768956
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another study of 1012 patients with early or locally advanced
breast cancer (28). Therefore, we also explored the relationship
of EDIC and lymphopenia in this population. When a patient
had preRT lymphopenia, the absolute postRT PLC was better
associated with EDIC. This is consistent with previous report
that when the preRT PLC is low, the regeneration of new
lymphocytes from other parts of lymphatic system begins to
play a role (12). This regeneration of new lymphocytes weakens
the association between EDIC and post/preRT PLC ratio. The
lower the preRT PLC, the larger the deviation from the
correlation of EDIC and post/preRT PLC ratio. For 3 patients
with grade-3 preRT lymphopenia, 2 of them were outliers, while
3 over 18 patients were outliers for grade-2 preRT lymphopenia,
and 2 over 84 patients were outliers for grade-1 preRT
lymphopenia in this study.

It is important to note that this study also provided a NTCP
model of RIL based solely on EDIC. The NTCP model of each
grade of lymphopenia fits well with the sigmoid-curved dose
toxicity relationship, using EDIC for both binned data or binary
data for each patient without binning. These two approaches
achieved quite consistent results, and bootstrap validation also
confirmed the similar results. These data suggest that EDIC is
likely a true key dosimetric parameter, or at least a good
surrogate of the true dosimetric parameter that directly
impacts the RIL. EDIC might be used as a reference for
clinician in dose prescription and treatment planning. With
the guide of this EDIC model in lymphopenia, we may
improve our treatment to limit RIL. For example, adjustment
of beam energies, directions and number of beams may be able to
reduce EDIC and hence limit RIL. In addition, according to the
EDIC derivation (25), reducing the radiation fraction number n
may also reduce EDIC through the term of (n/45)1/2, which is
contributed by blood-containing organs with a relatively small A%
(such as A% <25%). Thus, hypofractionated treatments such as
stereotactic body radiation therapy (SBRT) may reduce EDIC.
Indeed, SBRT was reported to be associated with significantly less
RIL than conventionally fractionated RT in locally advanced
pancreatic cancer and breast cancer (18, 29, 30). Hypofractionated
radiation in this study was also found to have less risk of
RIL (Table 1).

This is the first study to validate the association of EDIC and
RIL in patients with breast cancer. However, it should be noted
Frontiers in Oncology | www.frontiersin.org 815
that several other dosimetric factors were also reported to be
significantly associated with RIL. These factors include lung V5
and heart V50 in lung cancer, brain V25 in glioma, and mean
whole body dose in esophageal cancer (9, 12, 13, 31–33). In our
prior study, lung V5 and volume modulated arc therapy rather
than three-dimensional conformal technique were also risk
factors for severe RIL (16). Although EDIC is a combination of
several dosimetric parameters, it may not be the best model. A
more comprehensive model with an optimal combination of
other dosimetric parameters (such as lung V5) and likely
including immune organs like bone marrow and thymus may
turn out to be a better predictor than the EDIC. Adding other
clinical factors may further improve the prediction of RIL in
breast cancer. Further study is needed to determine these
parameters and the best combination of them for better
prediction. From a theoretic view point, EDIC is just an
approximation of the dose to the immune cells in the
circulating blood. The dose to the lymphatic stations, bone
marrow and other lymphatic structures may also affect RIL.
The regeneration of new lymphocytes may complicate the
prediction. It should also be noted that the survival of this
study is not mature yet. Future studies will be performed to
explore the association of EDIC and other dosimetric parameters
with the long-term treatment outcomes of patients.

CONCLUSIONS

This study demonstrated that EDIC was significantly associated
with radiation induced lymphopenia (RIL) in breast cancer.
Using EDIC as the dose variable, the risk of RIL can be
predicted nicely by a conventional NTCP model. The
corresponding EDIC to induce 50% of grade-1, grade-2 and
grade-3 RIL was 1.2, 2.1 and 3.7 Gy, respectively. Should it be
validated by external datasets, these number may be used as
reference to guide radiation plan optimization and improve
survivals for patients.
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TABLE 2 | Parameters in NTCP modeling.

Grade 1+ Grade 2+ Grade 3+

Binned data Crude D50 (Gy) 1.2 (95%CI: 1.0-1.4) 2.1 (95%CI: 2.0-2.3) 3.7 (95%CI: 3.5-3.9)
k 2.4 (95%CI: 1.8-3.2) 4.0 (95%CI: 3.1-5.3) 4.9 (95%CI: 3.8-6.5)
R2 0.96 0.98 0.98

Bootstrap validation D50 (Gy) 1.2 (95%CI: 1.1-1.3) 2.1 (95%CI: 2.0-2.2) 3.7 (95%CI: 3.3-4.4)
k 2.4 (95%CI: 2.0-2.9) 4.0 (95%CI: 2.6-4.9) 5.5 (95%CI: 2.6-9.0)
R2 0.93 0.96 0.94

Binary data without binning Crude D50 (Gy) 1.2 (95%CI: 1.1-1.3) 2.2 (95%CI: 2.1-2.3) 3.7 (95%CI: 3.6-4.0)
k 2.1 (95%CI: 1.6-2.6) 3.9 (95%CI: 3.2-4.7) 4.4 (95%CI: 3.7-5.3)
R2 0.13 0.3 0.27

Bootstrap validation D50 (Gy) 1.2 (95%CI: 1.1-1.4) 2.2 (95%CI: 2.0-2.3) 3.7 (95%CI: 3.4-4.4)
k 2.1 (95%CI: 1.7-2.5) 3.9 (95%CI: 3.2-4.8) 4.4 (95%CI: 3.4-5.9)
R2 0.12 0.3 0.27
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A machine learning model for
grade 4 lymphopenia prediction
during pelvic radiotherapy in
patients with cervical cancer

Zhiyuan Xu1,2†, Li Yang1,2†, Hao Yu3* and Linlang Guo4*

1Clinical Oncology Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China,
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University of Hong Kong - Shenzhen Hospital, Shenzhen, China, 3Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, China, 4Department of Pathology, Zhujiang
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Background/purpose: Severe lymphopenia during pelvic radiotherapy (RT)

predicts poor survival in patients with cervical cancer. However, the risk of

severe lymphopenia has not been well predicted. We developed a machine

learningmodel using clinical and dosimetric information to predict grade 4 (G4)

lymphopenia during pelvic RT in patients with cervical cancer.

Methods: This retrospective study included cervical cancer patients treated

with definitive pelvic RT ± induction/concurrent chemotherapy. Clinical

information and a set of dosimetric parameters of external beam

radiotherapy plan were collected. G4 lymphopenia during RT, which was also

referred to as G4 absolute lymphocyte count (ALC) nadir, was defined as ALC

nadir <0.2 × 109 cells/L during RT according to Common Terminology Criteria

for Adverse Events (CTCAE) v4.03. Elastic-net logistic regression models were

constructed for the prediction of G4 lymphopenia during pelvic RT using a

repeated cross-validation methodology.

Results: A total of 130 patients were eligible, and 43 (33.1%) patients had G4

lymphopenia during RT. Onmultivariable analysis, G4 ALC nadir was associated

with poor overall survival (OS) [hazard ratio (HR), 3.91; 95% confidence interval

(CI), 1.34–11.38, p = 0.01]. Seven significant factors [Eastern Cooperative

Oncology Group (ECOG) performance score, pre-RT hemoglobin, pre-RT

lymphocytes, concurrent chemotherapy, gross tumor volume of regional

lymphadenopathy (GTV_N volume), body volume, and maximum dose of

planning target volume receiving at least 55 Gy (PTV_5500 Dmax)] were

obtained by elastic-net logistic regression models and were included in the

final prediction model for G4 ALC nadir. The model’s predicting ability in test

set was area under the curve (AUC) = 0.77 and accuracy = 0.76. A nomogram of

the final predicting model was constructed.

Conclusions: This study developed and validated a comprehensive model

integrating clinical and dosimetric parameters by machine learning method,

which performed well in predicting G4 lymphopenia during pelvic RT for
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cervical cancer andwill facilitate physicians to identify patients at high risk of G4

lymphopenia who might benefit from modified treatment approaches.
KEYWORDS

cervical cancer, machine learning model, lymphopenia, prediction, pelvic radiotherapy
1. Introduction

Cervical cancer is the fourth most frequently diagnosed

cancer and the fourth leading cause of cancer death in women

(1). Pelvic radiotherapy (RT) plays an integral part in the

treatment of locally advanced cervical cancer (2), but it can

also result in toxicities, including effects on host immunity. A

higher radiation dose to immune cells was reported to be

associated with poor treatment outcomes in patients with non-

small cell lung cancer (NSCLC) (3). Lymphocytes, one of the

most important components of the immune system, are

especially critical in mediating cellular immunity against

malignant tumor cells. In cervical cancer patients treated with

concurrent chemoradiotherapy (CCRT), the incidence of grade

3 (G3) and grade 4 (G4) lymphopenia during CCRT, graded by

Common Terminology Criteria for Adverse Events (CTCAE),

reached as high as 73% and 16%, respectively, and G4

lymphopenia was associated with poor survival (4). Although

it has clinical significance, the risk of G4 lymphopenia has not

been well predicted in cervical cancer patients.

Many factors were reported to be associated with

lymphopenia during RT. Radiation per se is among the most

important risk factors for lymphopenia because lymphocytes

continuously traverse the irradiated field and are extremely

sensitive to radiation (5). The modeled RT dose to peripheral

lymphocytes were associated with lymphopenia in patients

treated with RT (6). Radiation field size, dose per fraction, and

fraction number are all correlated with risk of lymphopenia (7).

Dose–volume parameter (volume receiving at least 40 Gy) of the

pelvic bone marrow was associated with a higher risk of acute G3

[odds ratio (OR)=1.018] or late grade 2 (G2) lymphopenia

(OR=1.005) in prostate cancer patients treated with RT (8).

The RT dose to the large blood vessels, bone, and whole body

were also correlated with lymphopenia (6). Besides these dose–

volume parameters, our previous study demonstrated that the

International Federation of Gynecology and Obstetrics (FIGO)

stage, pre-treatment lymphocyte, and pre-treatment hemoglobin

were significantly associated with lymphopenia during CCRT in

cervical cancer patients. Other studies showed that baseline

lymphocyte had an important role in predicting lymphopenia

during RT (8, 9). Integrating both dosimetric and clinical
02
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information might improve the prediction performance

for lymphopenia.

Machine learning (ML), one of the most relevant subsets of

artificial intelligence (AI) in medicine, mainly focuses on making

as accurate predictions as possible. Compared with traditional

statistical methods, ML could be more suited in highly

innovative fields with a huge bulk of data (10). By using deep

ML method to integrate dosimetric and clinical information,

Cong Zhu et al. (9) developed a model to predict G4 RT-induced

lymphopenia in patients with esophageal carcinoma with area

under the curve (AUC) at 0.831, accuracy at 0.769, and precision

at 0.670.

At present, ML method has not been widely applied in the

prediction of G4 lymphopenia during pelvic RT for cervical

cancer. By integrating both clinical factors and a set of

dosimetric parameters, this study aimed to build an ML model

to predict G4 lymphopenia during pelvic RT in patients with

cervical cancer, with the hope to aid the physician’s decision-

making process in clinical practice.
2. Materials and methods

2.1 Patients

This study was approved by the institutional ethics

committee of the University of Hong Kong-Shenzhen Hospital

[No (2022).020], and informed consent form from each patient

for this study was waived. A cohort of patients diagnosed with

cervical carcinoma from January 2015 to February 2021 in the

University of Hong Kong-Shenzhen Hospital was selected for

this study. Patients were included if they met the following

criteria: 1) ≥18 years old; 2) newly diagnosed, pathology-

confirmed cervical carcinoma; 3) FIGO stage (2018) IB-IVB

(only stage IVB with oligo-metastases scheduled for radical

pelvic RT were included); 4) major treatment was external

beam radiotherapy (EBRT) followed by brachytherapy (BT) or

stereotactic body radiotherapy (SBRT, if BT was contraindicated

or declined) with or without induction or concurrent

chemotherapy; and (5) complete blood counts (CBCs) were

tested before and weekly during RT. Patients were excluded if
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they had the following: 1) cervical small cell carcinoma; 2)

concomitant secondary primary malignant tumor; 3) acquired

immune deficiency syndrome (AIDS); 4) pelvic RT in recurrent

or adjuvant settings; and 5) did not complete planned EBRT.
2.2 Radiation therapy

All patients received pelvic EBRT followed by BT or SBRT.

The simulation computed tomography (CT) scans for EBRT

were taken with 3-mm slices from the interspace between

thoracic vertebra 9 and 10 to the upper one-third of the

femur. EBRT techniques were RapidArc or three-dimensional

conformal radiotherapy (3D-CRT). For RapidArc, gross tumor

volume (GTV) of the primary tumor (P) and regional

pathological lymph nodes (N) detected by physical

examination, simulation CT, pelvis magnetic resonance

imaging (MRI), or positron emission tomography (PET)/CT

were denoted as GTV_P and GTV_N, respectively. CTV_4500

[clinical target volume (CTV) receiving prescribed dose

of ≥45Gy], including cervix, bilateral parametrium, uterus,

part of vagina, and pelvic lymphatics; CTV_5500 (CTV

receiving prescribed dose of ≥55 Gy), pelvic GTV_N + 3 mm

margin; CTV_5750 (CTV receiving prescribed dose of ≥57.5

Gy), retroperitoneal GTV_N + 3 mm margin; PTV_4500,

PTV_5500, and PTV_5750 [planning target volume (PTV)

receiving prescribed doses of ≥45, ≥55, and ≥57.5 Gy],

CTV_4500, CTV_5500, and CTV_5750 + 5 mm margin,

respectively. Prescription dose was delivered as 45 Gy in 25

fractions (45 Gy/25 Fr) to PTV_4500 with a simultaneous

integrated boost (SIB) of 55 Gy to PTV_5500 or 57.5 Gy to

PTV_5750. For 3D-CRT, two sequential phases were adopted:

45 Gy/25 Fr to whole pelvis as phase I; boosting to pelvic wall

with 16 Gy/8 Fr for FIGO IIIB or 10 Gy/5 Fr for other stages as

phase II. All EBRT was delivered daily, five fractions per week.

CT- or MRI-guided BT was started 3–4 weeks after the initiation

of EBRT with 192Ir (iridium) high-dose rate, once a week for a

total of 4 weeks. Cumulative equivalent doses in 2 Gy/Fr (EQD2)

of > 84 Gy for stage IB–IIIA and >90 Gy for ≥ stage IIIB were set

to cervical primary tumor.
2.3 Chemotherapy

Concurrent cisplatin (40 mg/m2) was given weekly during

EBRT for up to 5–6 weeks. If creatinine clearance ≤50 ml/min,

carboplatin at the dose of AUC = 2 mg/ml/min was given weekly

as an alternative. Induction chemotherapy (IC) with paclitaxel

and carboplatin was given if anticipated RT waiting time

exceeded about 3 weeks. For patients aged over 70 or with

FIGO stage IB1, no chemotherapy was recommended.
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2.4 End points and dose–volume
histogram metrics

Absolute lymphocyte count (ALC) was measured as ×109

cells/L and graded by CTCAE v4.03. G4 lymphopenia during

RT, which was also referred to as G4 ALC nadir, was defined as

ALC nadir < 0.2×109 cells/L during RT. Progression-free

survival (PFS) was the time between the initiation of RT and

the date of disease progression or death from any cause. Overall

survival (OS) was the time between the initiation of RT and the

date of death from any cause. Dose–volume histogram (DVH)

metrics of both tumor targets and organs at risk (OARs) during

EBRT were extracted directly from the Varian eclipse treatment

planning system (version15.0, External Beam Planning, Varian)

with anisotropic analytical algorithm. The tumor targets of

interest included GTV_P, GTV_N, CTV_4500, PTV_4500,

and PTV_5500. The OARs of interest included body (defined

as the part of body within the range of simulation CT scan for

EBRT) and bones (defined as bones within 2 cm beyond PTV).

For each structure, the whole volume [in cubic centimeter (cc)],

maximum dose (Dmax, in Gy), mean dose (Dmean, in Gy), and

the percentage of the whole volume receiving ≥5, ≥10, ≥20, ≥30,

≥40, and ≥45 Gy (denoted as V5, V10, V20, V30, V40, and V45,

respectively) were extracted.
2.5 Univariate and multivariable analysis

For the outcomes of OS and PFS, G4 ALC nadir and all

clinical characteristics were analyzed by the univariate and

multivariable Cox proportional hazards regression (cox-PH)

models. Kaplan–Meier product-limit estimates with time-to-

event curves were generated. To classify factors associated with

G4 ALC nadir, all clinical characteristics and DVH metrics from

tumor targets and OARs were analyzed between patient groups

with or without G4 ALC nadir by the univariate logistic

regression method.
2.6 Elastic-net logistic
regression modeling

Elastic-net logistic regression is a type of penalized logistic

regression (11, 12). Elastic-net uses both L1 and L2 norm penalty

on the regression covariates and uses a mixing parameter that

defines the proportion (alpha parameter) of penalty applied to

the covariates between both L1 and L2 norms. Taken together,

the elastic-net regression method allows retention of correlated

covariates and also regularizes model predictors in a manner

that allows for improved prediction performance. The risk

factors selected from clinical characteristics and DVH metrics
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by elastic-net logistic regression models were applied to

construct the multivariable logistic regression model.

Elastic-net logistic regression models were constructed for

G4 ALC nadir prediction using a repeated cross-validation (CV)

methodology to approximate the models’ generalization abilities

when lacking an external validation dataset (13, 14). To

determine the important features for G4 ALC nadir by elastic-

net logistic regression models, we selected the best alpha

parameter in one randomly separated train set as the first step;

then, one elastic-net model was established in the train set and

validated in the rest of the test set in 10-fold CV; finally, the 10-

fold CV process was repeated 100 times in different held-out sets

to estimate model mean efficacy [95% confidence interval (CI)],

which is called repeated CV, considering to reduce overfitting in

the small sample size. The statistically significant features were

selected as the important features for G4 ALC nadir.
2.7 Statistical considerations

The Wilcoxon paired rank test was applied to compare the

performances between two models. A p-value <0.05 was

considered statistically significant in all statistical analysis. The

Bonferroni correction was applied in multiple statistical testing.

R software (version 4.0.2, R Development Core Team, Vienna,

Austria) was used to conduct all statistical analyses. Elastic-net

logistic regression modeling was implemented by the R

package glmnet.
3. Results

3.1 Patient characteristics and
clinical outcomes

Both pre-RT characteristics and clinical outcomes of the

patients are listed in Table 1. A total of 130 patients formed the

study cohort. The median age at diagnosis was 53 [interquartile

range (IQR), 46–63] years. RapidArc was used in 79.2% of the

patients. Twenty percent of patients had IC, and 83.8% received

concurrent chemotherapy. The median (IQR) follow-up was

26.4 (14.2–41.6) months. The incidence of death, disease

progression, local failure, regional lymph node metastasis, and

distant metastasis during follow-up was 19.2%, 24.6%,11.5%,

3.8%, and 15.4%, respectively.

ALC of all patients declined during RT and generally

recovered to some extent at the completion of RT, as shown in

Figure 1A. The median pre-RT ALC was 1.74×109 cells/L. The

counts declined during RT to the median ALC nadir as 0.24×109

cells/L, and the median onset time of ALC nadir was 33 days

from the initiation of RT. Finally, ALC partially recovered to the

median counts of 0.57×109 cells/L at the end of RT. The
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incidence of pre-, during-, and post-RT G4 lymphopenia were

0%, 33.1%, and 4.6%, respectively (Figure 1B).
3.2 G4 ALC nadir during RT was
associated with poor clinical outcomes

During follow-up, there were a total of 25 deaths. G4 ALC

nadir was seen in 33.1% of patients. Patients with G4 ALC nadir

had worse OS (p = 0.023) and PFS (p = 0.054) than those

without G4 ALC nadir as shown in Figures 2A, B. On univariate

analysis, OS was significantly worse in patients with G4 ALC
TABLE 1 Baseline characteristics and clinical outcomes of the patients.

Features Categories Median (IQR)or num
(%)

Death No 105 (80.8%)

Yes 25 (19.2%)

Disease progression No 98 (75.4%)

Yes 32 (24.6%)

Post-RT local failure No 115 (88.5%)

Yes 15 (11.5%)

Post-RT regional LN
metastasis

No 125 (96.2%)

Yes 5 (3.8%)

Post-RT distant metastasis No 110 (84.6%)

Yes 20 (15.4%)

Age (years) 53 (46-63)

ECOG 0-1 114 (87.7%)

2 16 (12.3%)

FIGO stage (2018) I–II 36 (27.7%)

III 84 (64.6%)

IV 10 (7.7%)

Body mass index 23.1 (20.1-25.1)

RT technique 3D-CRT 27 (20.8%)

RapidArc 103 (79.2%)

Induction chemotherapy No 104 (80%)

Yes 26 (20%)

Concurrent chemotherapy No 21 (16.2%)

Yes 109 (83.8%)

Pre-RT regional LN
metastasis

No 45 (34.6%)

Yes 85 (65.4%)

Pre-RT CBCs (×109 cells/L) Leukocytes 6.6 (5.1-8.1)

Hemoglobin (g/
L)

118 (103-130)

Platelets 260 (216.5-316.8)

Neutrophils 4.3 (3.1-5.6)

Lymphocytes 1.7 (1.3-2.1)

Monocytes 0.3 (0.2-0.4)
CBCs, complete blood counts; ECOG, Eastern Cooperative Oncology Group; FIGO,
International Federation of Gynecology and Obstetrics; IQR, interquartile range; LN,
lymph node; OS, overall survival; PFS, progression-free survival; RT, radiotherapy; 3D-
CRT, three-dimensional conformal radiotherapy.
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nadir than those without G4 ALC nadir [hazard ratio (HR), 2.44;

95% CI, 1.1–5.39; p = 0.03], and PFS was also worse in patients

with G4 ALC nadir (HR, 1.96; 95% CI, 0.98–3.94; p = 0.05), as

shown in Table 2. On multivariable analysis, patients with G4

ALC nadir still had significantly poor OS and a trend of poor

PFS than those without G4 ALC nadir (HR, 3.91; 95% CI, 1.34–

11.38; p = 0.01, and HR, 1.82; 95% CI, 0.75–4.42; p = 0.19,

respectively). Although without statistical significance (p > 0.05),

G4 ALC nadir showed a trend of promotion effects in the

occurrence of local failure, regional lymph node metastasis,

and distant metastasis after RT (OR, 1.41, 1.37, and 1.83,

respectively) (Figure 2C).
3.3 Clinical and DVH characteristics and
their correlations with G4 ALC nadir

The clinical characteristics were compared between the

patient groups with or without G4 ALC nadir, and the

univariate analysis results (ORs and p-values) are listed in

Supplementary Table S1. Age, Eastern Cooperative Oncology
A

B

FIGURE 1

The change of absolute lymphocyte count (ALC) from baseline to post-
RT. (A) ALC declined during RT and generally recovered to some extent
at the completion of RT. (B) The median ALC and incidence of G4
lymphopenia at different time points (pre-, nadir during-, and post-RT).
A B

C

FIGURE 2

G4 ALC nadir and different treatment outcomes. (A) Patients with G4 ALC nadir had worse overall survival (OS) (p = 0.023). (B) Patients with G4
ALC nadir had worse progression-free survival (PFS) (p = 0.054). (C) The incidence and risk of local failure, regional lymph node metastasis, and
distant metastasis after RT in patients with G4 ALC nadir.
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Group (ECOG) performance status score, pre-RT hemoglobin,

and pre-RT lymphocytes had protective effects from the

occurrence of G4 ALC nadir (OR, 0.97, p = 0.03; OR, 0.11,

p =0.04; OR, 0.97, p = 5.6e−3; OR, 0.22, p = 2.0e−4, respectively),

while the usage of concurrent chemotherapy promoted the

occurrence of G4 ALC nadir (OR, 5.73; p = 0.02). Body mass

index (BMI) had protective (OR, 0.9; p = 0.06) and pre-RT

regional lymph node metastasis had promotive (OR, 2.22; p =

0.06) effects from the occurrence of G4 ALC nadir with

borderline significance.

All DVH metrics of interest were summarized in the format

of median (IQR) in Supplementary Table S2. The radiation

dosimetrics of different structures had high correlations

(Pearson’s correlations > 0.5). There were little correlations

among clinical characteristics and DVH dosimetrics, also

among radiation dosimetrics and volumes, as shown in

Supplementary Figure S1.

The DVH dosimetrics of each structure were compared

between the patient groups with or without G4 ALC nadir as

shown in Figure 3, and univariate logistic regression analysis

results of each DVH dosimetrics in each structure for G4 ALC

nadir are listed in Supplementary Table S3. The volume of

GTV_N was correlated with the occurrence of G4 ALC nadir

(OR, 1.07; p = 0.01). The volume of GTV_P, all dosimetrics of

PTV_5500, and the volume, V5, and V10 of the body showed a
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tendency to correlate with the occurrence of G4 ALC nadir (all

p-values <0.1).
3.4 Elastic-net regression modeling for
selecting risk factors affecting G4
ALC nadir

In searching grids from 0 to 1 step 0.05, the best alpha in the

elastic-net logistic regression model with best performances was

selected as 0.6 in one randomly separated train set. Then, elastic-

net models were established in differently separated train sets

and validated in the rest of the test sets in 10-fold CV for 100

iterations to summarize the prediction performances. As

summarized in all models, mean AUC value in train sets was

0.84 (IQR, 0.82–0.86) and that in test sets was 0.76 (IQR, 0.69–

0.83). The selected frequencies of all the 14 clinical

characteristics and 63 DVH parameters in elastic-net

regression models in 100 iterations bootstrapping are shown in

Supplementary Figure S2.

The most moderate elastic-net model was selected as the

final model. In building the model, the correlations between

regression coefficients and lambda are shown in Figures 4A, B.

The final model is shown in Figure 4C. Considering both the

significance and selected frequency in bootstrapping, seven
TABLE 2 Univariate and multivariable analysis of potential factors associated with survivals.

Features OS PFS

HR 95% CI p-value HR 95% CI p-value

Univariate analysis

G4 ALC nadir: yes vs. no 2.44 1.1–5.39 0.03 1.96 0.98–3.94 0.05

Multivariable analysis

G4 ALC nadir: yes vs. no 3.91 1.34–11.38 0.01 1.82 0.75–4.42 0.19

Age 0.01 2.09e−05–5.67 0.16 0.13 8.39e−04–18.91 0.42

ECOG: 2 vs. 0 and 1 1.81 0.46–7.17 0.4 1.75 0.49–6.25 0.39

FIGO stage III vs. I–II 0.8 0.22–2.91 0.74 1.26 0.43–3.67 0.68

FIGO stage IV vs. I–II 5.83 1.01–33.71 0.05 5.45 1.39–21.45 0.02

Body mass index 3.28e−03 4.37e−07–24.6 0.21 0.55 6.34e−04–478.03 0.86

RT technique: RapidArc vs. 3D-CRT 0.28 0.07–1.08 0.06 0.92 0.32–2.65 0.88

Induction chemotherapy: yes vs. no 1.4 0.35–5.67 0.64 0.77 0.24–2.45 0.65

Concurrent chemotherapy: yes vs. no 0.11 0.02–0.56 8.43e–03 0.79 0.21–2.98 0.73

Pre-RT regional LN metastasis: yes vs. no 3.78 0.88–16.3 0.07 1.11 0.38–3.3 0.85

Pre-RT leukocytes 6.92e−10 1.01e−27–4.72e+08 0.31 0.06 1.55e−14–2.27e+11 0.85

Pre-RT hemoglobin 9.30e−04 2.23e−07–3.87 0.1 0.04 7.04e−05–28.45 0.35

Pre-RT platelets 16.28 0.52–514.45 0.11 1.27 0.07–23.36 0.87

Pre-RT neutrophils 1.60e+09 1.5e−05–1.71e+23 0.2 60.81 1.41e−08–2.62e+11 0.72

Pre-RT lymphocytes 7.17e+04 0.04–1.33e+11 0.13 4.89 1.15e−04–2.08e+05 0.77

Pre-RT monocytes 1.18e−09 4.64e−18–0.3 0.04 1.13e−04 3.92e−10–32.55 0.16
fronti
ALC, absolute lymphocyte count; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; FIGO, International Federation of Gynecology and Obstetrics; G4, grade 4; HR,
hazard ratio; LN, lymph node; OS, overall survival; PFS, progression-free survival; RT, radiotherapy; 3D-CRT, three-dimensional conformal radiotherapy.
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important risk factors were included in the final model

(Figure 4C), including four clinical characteristics (ECOG, pre-

RT hemoglobin, pre-RT lymphocytes, and concurrent

chemotherapy) and three DVH parameters (GTV_N volume,

PTV_5500 Dmax, and body volume).
3.5 Development and validation of the
prediction model for G4 ALC nadir

The final multivariable logistic regression model was further

constructed with these seven factors selected by elastic-net

model in one seldomly separated train set, as shown in

Figure 4C. Among clinical characteristics, ECOG (OR, 0.16;

95% CI, 0.02–1.15; p = 0.07), pre-RT lymphocytes (OR,

3.01e−04;95% CI,0–0.13; p < 0.01), and pre-RT hemoglobin

(OR, 6.16e−05; 95% CI, 0–0.08; p < 0.01) were protective factors
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for occurrence of G4 ALC nadir, while concurrent

chemotherapy was a promoting factor for G4 ALC nadir (OR,

10.12; 95% CI, 1.76–58.18; p < 0.01). Among DVH parameters,

body volume played as a protective factor (OR, 0.56; 95% CI,

0.35–0.89, p = 0.01), while the GTV_N volume and PTV_5500

Dmax promoted the incidence of G4 ALC nadir (OR, 1.16; 95%

CI, 0.7–1.93; p = 0.56; OR, 1.58; 95% CI, 1–2.51; p = 0.05,

respectively). It was consistent with the coefficient in the final

LASSO-net regression model.

The final multivariable logistic regression model with seven

important factors was compared with the multivariable logistic

regression model with four clinical characteristics selected by

elastic-net model. Their prediction abilities were testified in both

train and test sets, as summarized in Figure 5B, and one example

of AUC in the train and test sets was shown in Figure 5A. Four

evaluation criteria, including sensitivity, specificity, accuracy,

and AUC were all summarized and compared in Figure 5B.
A

B

C

FIGURE 3

Summary of dose–volume histogram (DVH) metrics of both tumor targets and organs at risk (OARs) in patients with or without G4 ALC nadir
(red is the summary of DVH metrics in patients without G4 ALC nadir; green is the summary of DVH metrics in patients with G4 ALC nadir).
Panels (A, B) show the median (95%CI) of Dmax and Dmean of both tumor targets and OARs in patients with or without G4 ALC nadir. Panel (C)
shows the relative volume (in percentage) covered by different dose levels of both tumor targets and OARs in patients with or without G4
ALC nadir.
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A B

C

FIGURE 4

Elastic-net regression modeling for selecting important features for G4 ALC nadir. (A) Elastic-net coefficient profiles of all factors. (B) The
selected optimal parameter (lambda) in the most moderate elastic-net model. (C) Forest plot of the seven selected important features for G4
ALC nadir.
A

B

C

FIGURE 5

Evaluations of the models and nomogram for G4 ALC nadir prediction. (A) One example of receiver operating characteristic (ROC) curve of the
prediction models in train and test sets. (B) Comparison of four evaluation criteria of different prediction models in train and test sets. (C) Nomogram of
the final prediction model with seven parameters.
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The final model with seven important factors had significantly

higher AUC (mean, 0.84; 95% CI, 0.83–0.84) than the model

with four clinical features (AUC mean, 0.8; 95% CI, 0.8–0.81) in

train sets (a Wilcoxon paired rank test, p < 0.01), and the final

model also had significantly higher AUC (mean, 0.77; 95% CI,

0.76–0.79) than the model with only four clinical features (mean,

0.76; 95% CI, 0.75–0.78) in test sets (a Wilcoxon paired rank test,

p < 0.01). These results indicated that the DVH parameters

improved the prediction performance for G4 ALC nadir. Finally,

for the purpose of clinical usage in the future, the corresponding

nomogram of the final multivariable logistic regression model

with seven important factors for predicting G4 ALC nadir was

plotted, as shown in Figure 5C.
4. Discussion

Lymphocytes are the most radiosensitive cells among the

erythroid, myeloid, and lymphoid lineage with LD50 (lethal dose

required to reduce the surviving fraction of lymphocytes by 50%)

of only 2 Gy (5). RT-induced lymphopenia was common and

correlated with poor survival in patients with different types of

solid tumors, such as thoracic malignancies, brain tumors, head

and neck cancers, and cervical cancer (15). In cervical cancer, the

reported incidence of G4 lymphopenia during CCRT was 16%,

and G4 lymphopenia could predict poor survival (4). The

current study confirmed the results of previous studies. In our

study, the incidence of G4 ALC nadir during pelvic (chemo)RT

was as high as 33.1%, and G4 ALC nadir was associated with

poor survival outcomes. Therefore, studies that focused on the

prediction model for G4 lymphopenia are justified.

In this study, using the important risk factors selected from

elastic-net models in machine learning framework, we developed

and validated a multivariable logistic regression model for

predicting G4 lymphopenia during pelvic (chemo)RT in

cervical cancer patients with mean AUC = 0.84 (95% CI, 0.83–

0.84), mean accuracy = 0.78 (95% CI, 0.77–0.79) in train sets and

mean AUC = 0.77 (95% CI, 0.76–0.79), mean accuracy = 0.76

(95% CI, 0.75–0.78) in test sets. The final multivariable logistic

regression model included four clinical characteristics (ECOG,

pre-RT hemoglobin, pre-RT lymphocytes, and concurrent

chemotherapy) and three DVH parameters (GTV_N volume,

PTV_5500 Dmax, and body volume). Until now, we are not

aware of any similar prediction models in cervical cancer. There

are some other studies using machine learning algorithms to

predict RT-induced lymphopenia in esophageal cancer (9, 16).

Zhu and colleagues (9) constructed a novel deep learning model

using dosimetric and clinical information to predict G4

lymphopenia during CCRT for esophageal cancer. Compared

with their novel hybrid deep learning model in the train set, the

AUC (0.84 vs. 0.831) and accuracy (0.78 vs. 0.769) of our final

model were numerically similar (9). The performance of the final

proposed model with both clinical and dosimetric factors was
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evaluated based on four prediction metrics and compared to the

multivariable model with only clinical factors selected by elastic-

net model. As expected, the model including both clinical and

dosimetric factors outperformed the model including only

clinical factors [mean AUC, 0.84 (95% CI, 0.83–0.84) vs. 0.8

(95% CI, 0.8–0.81), p < 0.01 in train sets, and mean AUC of 0.77

(95% CI, 0.76–0.79) vs. 0.76 (95% CI, 0.75–0.78), p < 0.01 in test

sets]. With regard to potential clinical applications, we

speculated that our model might play a role in the following

clinical scenarios. First, as our model was totally based on pre-

RT clinical and dosimetric parameters, it will enable physicians

to assess EBRT plans for G4 lymphopenia risk and to identify

patients at high risk who might benefit from modified treatment

approaches and to guide modification of treatment approaches.

Second, with the success of immunotherapy in solid tumors, the

immunomodulatory effects of RT in conjunction with immune

checkpoint blockade are currently under active investigation in

cervical cancer (17). Lymphocytes are key effectors of

immunotherapy, and lymphopenia was predictive for

compromised efficacy of immunotherapy (18). It was reported

that treatment-related severe lymphopenia was correlated with

disease progression in NSCLC patients receiving consolidative

immunotherapy after definitively chemoradiation (19).

Applying lymphocyte-sparing RT has been recommended

when combining RT with immunotherapy (20). RT-induced

lymphopenia, which can be predicted using our model, should

be one of the issues to take into consideration in designing

clinical trials of RT combined with immunotherapy in cervical

cancer (21).

In our proposed model, concurrent chemotherapy was a

significant promote clinical factor for G4 ALC nadir (OR, 10.12;

95% CI, 1.76–58.18, p < 0.01), which was consistent with some

previous studies (22, 23). In a study with large cohort of patients

(N = 3,920) with different cancer types, the use of concurrent

chemotherapy, particularly platinum compounds versus none,

was associated with a lower ALC at end of RT (612 vs. 937 cells/

ml, p < 0.001) (22). Another study with 711 patients who

received definitive RT for NSCLC revealed that receipt of

concurrent chemotherapy was associated with lower

lymphocyte nadirs in multivariable analysis (p < 0.0001) (23).

However, the contribution of concurrent chemotherapy to

lymphocyte depletion is difficult to conclusively establish in

studies demonstrating decreased ALC after CCRT. There were

studies that showed that lymphopenia during CCRT was not

significantly different among patients receiving different

chemotherapy regimens, suggesting that no chemotherapy

regimen per se was more likely to be cytotoxic to lymphocyte

(24). In a study comparing effects of concurrent cisplatin

administration during RT to RT alone on the immune

function of patients with cervical cancer, administration of

concurrent cisplatin might synergistically increase cytotoxic

effects of radiation on tumor cells but did not alter the

magnitude and the characteristics of radiation-induced
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immunosuppression (25). When patients received induction

chemotherapy followed by consolidation chemoradiation, the

drop in ALC occurred after consolidation therapy but not

induction therapy, suggesting that induction chemotherapy did

not play a major immediate role in causing lymphopenia (24,

26). Our study also showed that induction chemotherapy did not

correlate with G4 ALC nadir during RT (OR, 1.09; p = 0.85). In

esophageal cancer, neither induction chemotherapy nor the type

of concurrent chemotherapy [e.g., taxane and 5-fluorouracil (5-

FU) versus platinum and 5-FU or taxane and platinum or other]

was associated with G4 lymphopenia (27). All these results

suggest that the effect of concurrent chemotherapy on

lymphopenia during RT is complex. More studies on the

synergistic mechanism of chemotherapy and RT on the

immune system are needed. Our study showed that ECOG

was a protective factor from developing G4 ALC nadir.

Patients with ECOG of 2 were less likely to develop G4 ALC

nadir than those with ECOG of 0–1 (OR, 0.16; 95% CI, 0.02–

1.15; p = 0.07). The possible reason for this result might be that

patients with ECOG of 2 received less concurrent chemotherapy

(p = 0.002).

Other two factors that promoted the incidence of G4 ALC

nadir in our final model were GTV_N volume and PTV_5500

Dmax. In clinical practice, the dose level of 55 Gy was prescribed

for metastatic locoregional lymph nodes. Both the two parameters

indicated that the irradiation dose of the lymphatic system was

positively correlated with G4 ALC nadir. Studies about the role of

nodal irradiation for solid tumors on the reduction in circulating

lymphocytes are scarce. Haas et al. studied the immunological

effects of nodal irradiation for Hodgkin’s disease and showed that

lymphoid irradiation (LI) was cytotoxic to peripheral blood T cells

(28). They also postulated that the bone marrow outside the

irradiation fields was a major source of T cells repopulating the

peripheral blood after LI (28).

Among the clinical factors, pre-RT hemoglobin and

lymphocytes were protective from developing G4 ALC nadir,

which were consistent with results from previous studies (8, 9, 27,

29). Zhu et al. reported that patients with G4 lymphopenia during

CCRT for esophageal cancer had lower level of baseline hemoglobin

(12.94 vs. 13.28 g/dl, p = 0.008) and baseline ALC (1.42 vs. 1.78 x

109/L, p <0.001) (9). Sini et al. also suggested that baseline ALC

played an extremely important role in the development of

lymphopenia in patients treated with pelvis RT for prostate

cancer (8). Baseline ALCs below 1.83 x 109/L were predictive of

an enhanced probability of acute G3 lymphopenia (8). Recent

studies found that erythroid cells can regulate immune responses

(30). CD71+erythroid cells (CECs), which are immature red blood

cells, including erythroblasts and reticulocytes, exert

immunosuppressive functions by producing reactive oxygen

species to decrease T-cell proliferation or secreting cytokines,

including transforming growth factor b (TGF-b), which promotes

T-cell differentiation into regulatory T cells (30, 31). In patients with

cancer, anemia leads to increased frequency of CECs in the
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peripheral blood contributing to diminished immunity (30), and

late-stage tumors can induce anemia and immunosuppressive

extramedullary erythroid progenitor cells (32). In addition to

affecting erythroid cells, as a systemic disease, cancer induces

many functional and compositional changes to the immune

system as a whole (33). Reduced abundance and decreased

function of T cells in the blood was observed in cancer (33). All

these studies can partly explain our results that pre-RT hemoglobin

and lymphocytes were protec t ive fac tors for G4

lymphopenia occurrence.

We observed that body volume was included in our final

model as a protective factor for the occurrence of lymphopenia

(OR, 0.56; 95% CI, 0.35–0.89, p = 0.01). In our study, body volume

was defined as the part of body within the range of simulation CT

scan for EBRT. On the condition of same irradiation dose, patients

with larger body volume would receive lower dose per unit of

body volume. We further did linear regression analysis and

demonstrated that body volume was moderately correlated with

BMI (R2 = 0.602, p <0.01). Univariate analysis of this study also

showed that BMI had a propensity to protect patients from

developing G4 ALC nadir (OR = 0.9, p = 0.06), which was

consistent with previous studies (9, 27). Due to the significant

correlation, BMI was not included in the final predictionmodel by

the machine learning framework, while it might improve the

model’s generalizability in external dataset.

Bone marrow displays structural and functional features

resembling a secondary lymphoid organ and contains follicle-

like structures similar to lymph nodes or spleen. Approximately

8%–20% of bone marrow mononuclear cells are lymphocytes

(34). The correlation of bone marrow irradiation with

lymphopenia is controversial. Some studies showed that the

doses to the pelvic bone marrow was correlated with RT-induced

lymphopenia (8, 35). However, a study on dosimetric predictors

of lymphopenia induced by palliative RT showed that bone

marrow dose–volume parameters did not predict lymphopenia.

Our study did not find any relationship between DVH

parameters of bones and occurrence of G4 ALC nadir. We

postulate two possible reasons for the negative results of this

study. First, lymphocytes are extremely radiosensitive to

radiation (5), the doses to the pelvic bone exceeded the lethal

dose of the lymphocyte (mean dose of bone was as high as 29.2

Gy). Second, the whole irradiated bones were treated as a whole

organ during the process of our analysis. However, radiation to

different parts of the pelvic bones may contribute differently to

hematological toxicities. A study in patients treated with whole-

pelvis RT for prostate cancer showed that the model for acute G3

lymphopenia included V40 of the whole pelvis, and the 1-year

G2 lymphopenia model included V40 of the ilium (8).

It is also meaningful to explore the relationship between

tumor biology and the risk of developing G4 ALC nadir.

Squamous cell carcinoma accounted for approximately 80% of

all cervical cancers, and adenocarcinoma accounted for

approximately 20% (36). In our study, the majority of patients
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(95.4%) had squamous cell carcinoma, and histology types were

not associated with the incidence of G4 ALC nadir (squamous

vs. non-squamous: 33.1% vs. 33.3%, p > 0.999). Cho et al. also

reported that histology types did not correlate with

chemoradiation-induced lymphopenia in cervical cancer (p =

0.713) (4). Most cervical cancers are positive for human

papillomavirus (HPV) (37). In our study, it was not possible

to analyze the relationship between HPV and occurrence of G4

ALC nadir because there were a lot of missing data on HPV and

we are not aware of any such analysis by others as well. With

regard to FIGO stage, it had no significant impact on the

occurrence of G4 ALC nadir in univariate analysis in our

study, which was consistent with the results from Cho et al.

(4). In FIGO (2018), locoregional lymph nodes (pelvic and

paraaortic) are indicators for staging, and patients with

locoregional lymph nodes metastases only are staged as IIIC.

In clinical practice, radiation dose boosts mainly to locoregional

metastatic lymph nodes, which was included in the final model.

With regard to ways of reducing the risk of lymphopenia or

restoration of the number of lymphocytes in the peripheral blood,

several measures can be attempted. First, according to our

proposed model, if patients are at high risk of G4 lymphopenia,

measures can be taken before treatment, such as correcting

anemia, modifying EBRT plan to reduce PTV_5500 Dmax, or

restoring a physiological number of lymphocytes in the peripheral

blood by use of cytokines IL-2, IL-7, and IL-15, which play a role

in the development, proliferation, and survival of T cells (18).

This study had some limitations. First, there were some

discordances on the time points of blood tests due to the

retrospective nature of the study. Second, lymphocyte subtypes

changed differently after pelvic RT (38, 39) and had different

impacts on treatment outcomes (40, 41). However, lymphocyte

subtypes were unavailable for the patients included in the study,

as lymphocyte subtypes were not routinely tested in our clinical

practice, and no blood was collected for further tests. Third,

body volume in the final model is determined by the extent of

the simulation CT scans, which might be hard to synchronize

across different centers. However, body volume was selected as a

protective factor for the occurrence of G4 ALC nadir through

elastic-net regression modeling; we think it is still meaningful to

keep it in the final model to remind readers of its potential role in

the occurrence of G4 ALC nadir during CCRT in cervical cancer,

and we also recommend external validation of the role of body

volume. Fourth, although the data were split into a training and

a testing set, it would be better to use external data from different

institutions to validate our results.

In conclusion, the present study developed and validated a

comprehensive model integrating clinical and dosimetric

parameters by machine learning method, which performed

well in predicting G4 lymphopenia during pelvic RT for

cervical cancer and may facilitate physicians to identify

patients at high risk of G4 lymphopenia who might benefit

from modified treatment approaches.
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SUPPLEMENTARY FIGURE 1

The Pearson’s correlations among clinical characteristics and dose-
volume histogram (DVH) metrics.

SUPPLEMENTARY FIGURE 2

The selected frequencies of 14 clinical characteristics and 63 dose-
volume histogram (DVH) parameters in Elastic-net regression models in

100 iterations bootstrapping.
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therapy in locally advanced
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simulation based on
circulating blood cells
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Woojin Lee1 and Byoungsuk Park1
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Medicine, Seoul, Republic of Korea, 2Division of Cancer Epidemiology and Genetics, National Cancer
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Background: We estimated the dose of circulating blood cells (CBCs) in patients

with locally advanced non-small cell lung cancer for predicting severe radiation-

induced lymphopenia (SRIL) and compared pencil-beam scanning proton

therapy (PBSPT) and intensity-modulated (photon) radiotherapy (IMRT).

Materials and methods: After reviewing 325 patients who received definitive

chemoradiotherapy with PBSPT (n = 37) or IMRT (n = 164). SRIL was diagnosed

when two or more events of an absolute lymphocyte count < 200 µL occurred

during the treatment course. Dose information for the heart and lungs was

utilized for the time-dependent computational dose calculation of CBCs.

Results: The dose distribution of CBCs was significantly lesser in the PBSPT

group than that in the IMRT group. Overall, 75 (37.3%) patients experienced SRIL

during the treatment course; 72 and 3 patients were treated with IMRT and

PBSPT, respectively. SRIL was associated with poor progression-free and overall

survival outcomes. Upon incorporating the dose information of CBCs for

predicting SRIL, CBC D90% > 2.6 GyE was associated with the development of

SRIL with the baseline lymphocyte count and target volume. Furthermore, PBSPT

significantly reduced the dose of CBC D90% (odds ratio = 0.11; p = 0.004)

compared with IMRT.

Conclusion: The results of this study demonstrate the significance of the dose

distribution of CBCs in predicting SRIL. Furthermore, reducing the dose of CBCs

after PBSPT minimized the risk of SRIL. Lymphocyte-sparing radiotherapy in

PBSPT could improve outcomes, particularly in the setting of maintenance

immunotherapy.
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1 Introduction

Given the physical characteristics of proton and photon (X-ray)

beam therapies, proton beam radiation therapy (RT) has intrigued

physicians by improving treatment outcomes in patients with non-

small cell lung cancer (NSCLC) (1). However, a randomized

controlled trial comparing intensity-modulated (photon) RT

(IMRT) and proton beam therapy failed to demonstrate clinical

benefit in terms of oncologic outcomes and normal tissue toxicities

(2). Furthermore, previous retrospective studies showed a trend but

no significant benefit in preventing radiation pneumonitis following

proton beam therapy (3–5).

Severe radiation-induced lymphopenia (SRIL), which is

significant depletion of lymphocytes due to radiation exposure,

has been investigated with the emerging interest in immune

responses against tumors (6–8). Its clinical significance has been

evaluated in various solid tumors (6, 9–12). In this context, we

previously showed that pencil-beam scanning proton therapy

(PBSPT), an advanced beam delivery technique in proton beam

therapy, decreased the occurrence of SRIL (12). Although the

etiology of SRIL is multifaceted, the consensus is lacking for dose

constraints, which could lead to SRIL because of the lack of tools to

compute the dose to circulating lymphocytes.

We previously developed a time-dependent computational

framework called the hematological dose (HEDOS), which

estimates the dose to circulating blood cells (CBCs) based on a

whole-body blood flow simulation and is used to construct the

dose–volume histogram of blood cells (bDVH) (13). It has been

applied to selective cases. Xing et al. demonstrated the impact of

external beam delivery techniques, including IMRT, volumetric-

modulated arc therapy, passive proton beam, and PBSPT for the

liver treatment plan without clinical data (14). Qian et al. applied

HEDOS to correlate the dose to CBCs for patients with metastatic

NSCLC, melanoma, or renal cell carcinoma who received

immunotherapy and underwent palliative RT (15).

The present study aimed to investigate the clinical effect of the

dose information of CBCs on the occurrence of SRIL in patients

with NSCLC undergoing concurrent chemoradiotherapy (CCRT)

and further determine the association between the occurrence of

SRIL and the treatment modality (IMRT or PBPST).
2 Materials and methods

2.1 Patient population

Upon approval from the institutional review board (approval

no.: 2020-01-034), we retrospectively reviewed the data obtained

from 325 patients treated with CCRT between November 2016 and

December 2019. A total of 124 patients were excluded from the

analysis for the following reasons (Supplementary Figure 1): lacking

information for the dose distribution to the healthy organs (n = 40),

missing follow-up data (n = 26), incomplete CCRT course (n = 20),

provision of induction chemotherapy before CCRT (n = 18), use of
Frontiers in Oncology 0232
the hybrid IMRT/PBSPT technique (n = 15), and missing weekly

blood test reports (n = 5). Finally, the data obtained from 201

patients were analyzed (164 in the IMRT group and 37 in the

PBSPT group). The requirement to obtain informed consent was

waived because of the retrospective nature of this study.
2.2 Treatment

The detailed institutional policies of planning IMRT and PBSPT

have been previously described (3). Briefly, based on four-

dimensional computed tomography in ten breathing phases, the

planning target volume (PTV) was delineated with a 5-mm margin

from the clinical target/gross tumor volume. A total dose of 66 GyE

in 30 fractions was prescribed in both IMRT and PBSPT groups.

Supplementary Table 1 summarizes the planning criteria for the

organs at risk. In the IMRT group, the volumetric-modulated arc

therapy was the most frequently used (n = 100, 61.0%), followed by

the step-and-shoot method with the 6-MV photon coplanar beam

(n = 64, 39.0%). In the PBSPT group, single-field optimization was

adopted in 22 (59.5%) patients. The two-field plan was used in 23

(62.2%) patients, and the pencil beam algorithm was applied to all

patients. Pinnacle (version 9.2, Royal Phillips Electronics, Miami,

FL, USA) and RayStation (RaySearch Laboratories, Stockholm,

Sweden) were used for planning IMRT and PBSPT, respectively.

Regarding chemotherapy, 189 (94.0%) patients received six

cycles of paclitaxel/cisplatin; six patients received paclitaxel/

carboplatin; four patients received gemcitabine/cisplatin; and two

patients received combined etoposide and cisplatin. Subsequently,

19 (9.5%) patients received maintenance therapy with durvalumab.
2.3 SRIL

Following weekly peripheral blood count assessments during

CCRT, lymphopenia was graded based on the Common

Terminology Criteria for Adverse Events version 5.00. Based on

the absolute lymphocyte count (ALC), SRIL was diagnosed when

two or more events of ALC < 200/µL (grade 4) occurred during the

CCRT course.
2.4 bDVH

We used the pre-generated spatiotemporal blood distribution

based on International Commission on Radiological Protection

89th publication that has been described before (13). Dose data of

the heart and lungs from each patient’s treatment plan were utilized

for HEDOS calculations. The beam-on-time of IMRT and PBPST

were both assumed to be 60 s/beam, and the detailed time structure

of beam delivery was not considered. We used the dose after all

fractions for the analysis. Also, we used 5.3 L for total CBC volume

for all patients to compute dose distribution to CBC and thus the

volume of one CBC was 0.053 mL (16).
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2.5 Statistical analysis

Overall survival (OS) rates were calculated from the first date of

CCRT to the date of death or last follow-up. Progression-free survival

(PFS) rates were calculated from the first date of CCRT to the date of

progression, death, or the last follow-up. Baseline characteristics were

evaluated using the chi-squared test or Fisher’s exact and Mann–

Whitney U tests to assess categorical and continuous variables,

respectively. The Kaplan–Meier method and log-rank test were used

for OS and PFS. A Cox regression model was used for the

multivariable analysis of factors affecting OS and PFS that had a p-

value < 0.05 in the univariable analysis. The logistic regression analysis

was performed to evaluate the predictive factors of SRIL. The factors

were selected in stepwise regression after ten-fold cross-validation and

included in the multivariate analysis of SRIL. To identify the optimal

cutoffs for dosimetric parameters of CBCs, maximally selected rank

statistics were performed. A null multivariate model was built based

on patient and tumor characteristics. The Akaike information

criterion (AIC) was used to compare multivariate models to select

the most discriminative dosimetric predictor of SRIL. Statistical

significance was set at a two-tailed p-value < 0.05. All statistical
Frontiers in Oncology 0333
analyses were performed using SPSS version 25.0 (IBM Corp.,

Armonk, NY, USA) and R version 4.0.2 (R Foundation for

Statistical Computing, Vienna, Austria).
3 Results

3.1 Patient population

Overall, compared with the patients in the PBSPT group,

patients in the IMRT group were younger, more frequently

diagnosed with adenocarcinoma, and had a more advanced nodal

disease (Supplementary Table 2). Although the target volume or

prescription dose did not differ between the two groups (PBSPT and

IMRT groups), the dose parameters for V5GyE, V10GyE, and

V20GyE of the lungs, mean lung dose, V30GyE of the heart, and

mean heart dose were significantly lower in the PBPST group than

those in the IMRT group (Table 1). Moreover, bDVH was

significantly lower in the PBPST group than that in the IMRT

group (Table 1). Figure 1 shows bDVHs for the entire population

stratified by RT modality.
TABLE 1 Detailed information on dose parameters according to the radiation therapy modality.

Total IMRT PBSPT p-value

n = 201 n = 164 n = 37

GTV, cc 108.9 [67.4–203.4] 109.4 [67.9–205.8] 104.7 [66.0–194.1] 0.966

CTV, cc 314.4 [208.1–495.2] 310.2 [202.0–489.2] 350.2 [232.9–520.4] 0.269

PTV, cc 575.8 [387.4–805.9] 572.6 [385.9–792.5] 592.3 [389.3–890.4] 0.522

CTV V100%, % 96.3 [95.0–97.8] 96.2 [95.0–97.2] 99.0 [96.0–99.1] <.001

PTV V95%, % 97.1 [94.1–98.8] 97.1 [94.2–99.0] 96.8 [94.1–98.4] 0.174

Radiotherapy Total dose, GyE 66.0 [66.0–66.0] 66.0 [66.0–66.0] 66.0 [66.0–66.0] 0.769

BED, Gy 80.5 [80.5–80.5] 80.5 [80.5–80.5] 80.5 [80.5–80.5] 0.997

Lungs V5GyE, % 51.2 [42.6–61.3] 54.9 [47.2–63.2] 35.2 [27.2–41.5] <0.001

V10GyE, % 40.9 [33.8–47.1] 43.4 [36.2–49.7] 30.7 [23.7–36.1] <0.001

V20GyE, % 31.3 [24.1–36.5] 32.3 [26.4–37.4] 23.5 [20.1–27.5] <0.001

Mean dose, GyE 17.6 [14.3–20.6] 19.0 [15.3–21.3] 13.9 [11.1–16.2] <0.001

Heart V30GyE, % 12.6 [5.9–26.3] 14.6 [5.7–28.2] 9.1 [6.0–12.9] 0.013

V45GyE, % 7.2 [2.9–16.2] 8.0 [2.9–17.4] 5.4 [3.0–8.5] 0.090

Mean dose, GyE 12.0 [6.0–18.9] 13.3 [7.1–21.5] 7.5 [5.1–10.3] <0.001

CBC Mean, GyE 2.93 [2.22–3.93] 3.10 [2.29–4.09] 2.39 [1.76–3.02] 0.002

D10, GyE 3.49 [2.66–4.64] 3.66 [2.73–4.76] 2.94 [2.12–3.64] 0.003

D20, GyE 3.30 [2.50–4.36] 3.47 [2.58–4.52] 2.74 [1.99–3.43] 0.003

D30, GyE 3.16 [2.39–4.19] 3.32 [2.47–4.35] 2.60 [1.90–3.25] 0.002

D40, GyE 3.03 [2.30–4.05] 3.20 [2.37–4.21] 2.48 [1.82–3.12] 0.002

D50, GyE 2.92 [2.21–3.92] 3.09 [2.29–4.08] 2.38 [1.76–3.01] 0.002

(Continued)
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3.2 SRIL

ALC in the entire cohort decreased gradually during the CCRT

course and recovered afterward (Supplementary Figure 2). From

week 4 to the last week of the CCRT course, ALCs were significantly

lower in the IMRT group than in the PBSPT group (Supplementary

Figure 2, Supplementary Table 3). Among 107 (53.2%) patients who

developed grade 4 lymphopenia during the CCRT course, 75 (37.3%

of entire patients) experienced SRIL, including three (8.1% of

PBPST group) in the PBPST group and 72 (43.9% of IMRT

group) in the IMRT group (p < 0.001). In addition, none of the

patient or tumor characteristics, except for baseline ALC values,

differed between the two groups. Patients with SRIL showed

significantly lower baseline ALC than those without SRIL

(median, 2,010/µL vs. 2,140/µL, p = 0.029, Table 2). Regarding
Frontiers in Oncology 0434
dose-volume parameters, patients with SRIL had a larger target

volume and showed a higher dose distribution to the lung and heart

than those without SRIL (all p < 0.001, Table 2). Moreover, bDVH

for patients with SRIL also differed from that for patients without

SRIL (Figure 2).
3.3 Prognostic value of SRIL

With a median follow-up of 39.8 (IQR [interquartile range],

21.0–49.4) months, the 3-year OS and PFS rates were 62.4% and

26.2% for the entire cohort, respectively. Patients with SRIL showed

poorer OS and PFS outcomes than those without SRIL (3-year OS,

48.3% vs. 70.9%, p < 0.001; 3-year PFS, 10.5% vs. 36.1%, p < 0.001,

Figures 3A, B). The multivariable analysis revealed that SRIL

remained a significantly unfavorable factor for both OS and

PFS (Table 3).
3.4 Factors predicting SRIL

First, we performed a multivariate analysis to predict the

development of SRIL based on clinical and treatment factors other

than dose information of CBCs. Both baseline ALC (odds ratio [OR]

= 0.60, 95% confidence interval [CI]: 0.37–0.94, p = 0.026) and PTV

(OR = 1.02, 95% CI: 1.01–1.03, p = 0.001) were related to an increased

risk of SRIL (Table 4, Supplementary Table 4). AIC in the null model,

including baseline ALC and PTV, was 245.52 (Supplementary

Table 5). Subsequent analysis showed that bDVH was related to an

increased risk of SRIL in the univariate analysis (Supplementary

Table 4). In the stepwise regression model, CBC of D90% as the

continuous variable (OR = 3.25, 95% CI: 1.98–5.67, p < 0.001) was the
TABLE 1 Continued

Total IMRT PBSPT p-value

n = 201 n = 164 n = 37

D60, GyE 2.81 [2.12–3.78] 2.98 [2.20–3.95] 2.29 [1.68–2.89] 0.002

D70, GyE 2.70 [2.04–3.63] 2.83 [2.11–3.80] 2.19 [1.61–2.77] 0.001

D80, GyE 2.57 [1.93–3.46] 2.70 [2.00–3.61] 2.07 [1.53–2.64] 0.001

D90, GyE 2.39 [1.79–3.22] 2.52 [1.86–3.33] 1.91 [1.41–2.45] <0.001

CBC V0.5GyE, % 100.0 [100.0–100.0] 100.0 [100.0–100.0] 100.0 [100.0–100.0] 0.290

V1.0GyE, % 100.0 [100.0–100.0] 100.0 [100.0–100.0] 100.0 [99.9–100.0] <.001

V1.5GyE, % 100.0 [98.53–100.00] 100.00 [99.22–100.00] 99.2 [82.7–100.0] <.001

V2.0GyE, % 98.9 [73.7–100.0] 99.5 [80.4–100.0] 85.2 [19.3–99.1] <.001

V2.5GyE, % 84.4 [20.1–99.7] 91.0 [26.8–99.8] 38.2 [0.6–87.7] 0.001

V3.0GyE, % 42.4 [1.3–95.9] 57.7 [2.2–96.9] 7.8 [0.0–50.5] 0.002

V3.5GyE, % 9.7 [0.0–77.7] 18.3 [0.0–84.6] 0.5 [0.0–16.2] 0.002
fron
Values are expressed as median [interquartile range].
IMRT, intensity-modulated radiation (photon) therapy; PBSPT, pencil-beam scanning proton therapy; GTV, gross tumor volume; CTV, clinical target volume; PTV, planning target volume;
GyE, gray equivalent; BED10, biological effective dose with a/b of 10; Vxx%, volume receiving more than proportion to prescribed dose; Dxx, dose to XX% of volume; VXXGyE, volume receiving
over XX GyE; CBC, circulating blood cell.
FIGURE 1

Dose-volume parameters of circulating blood cells in both
treatment modalities for all patients.
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TABLE 2 Patient, tumor, and treatment characteristics stratified by severe radiation-induced lymphopenia. .

Patient and tumor characteristics
SRIL No SRIL

n = 75 n = 126 p-value

Sex Female 18 (24.0) 24 (19.0) 0.404

Male 57 (76.0) 102 (81.0)

Age 63 [57–68] 64 [58–69] 0.340

ECOG 0 6 (8.0) 22 (17.5) 0.061

1 or 2 69 (92.0) 104 (82.5)

Smoking history Never-smoker 18 (24.0) 21 (16.7) 0.204

Ex- or current-smoker 57 (76.0) 105 (83.3)

Tumor laterality Left 25 (33.3) 53 (42.1) 0.110

Right 49 (65.3) 66 (52.4)

Central 1 (1.3) 7 (5.6)

Tumor location Upper lobe 42 (56.0) 69 (54.8) 0.226

Middle lobe 5 (6.7) 18 (14.3)

Lower lobe 28 (37.3) 39 (31.0)

Pathology Non-ADC 36 (48.0) 57 (45.2) 0.704

ADC 39 (52.0) 69 (54.8)

T-stage cT1 or cT2 43 (57.3) 81 (64.3) 0.327

cT3 or cT4 32 (42.7) 45 (35.7)

N-stage cN2 24 (32.0) 46 (36.5) 0.516

cN3 51 (68.0) 80 (63.5)

Clinical stage IIIA 7 (9.3) 25 (19.8) 0.086

IIIB 55 (73.3) 75 (59.5)

IIIC 13 (17.3) 26 (20.6)

Baseline ALC, (×103/mL) 2.01 [1.48–2.33] 2.14 [1.68–2.60] 0.029

Baseline ANC (×103/mL) 4.82 [3.74–6.40] 5.01 [3.47–5.99] 0.973

Details of radiation therapy

Modality IMRT 72 (96.0) 92 (73.0) <.001

PBSPT 3 (4.0) 34 (27.0)

GTV, cc 171.8 [93.4–275.2] 89.7 [46.8–154.0] <.001

CTV, cc 441.4 [283.4–613.4] 264.9 [174.6–411.7] <.001

PTV, cc 739.5 [531.2–938.5] 471.4 [339.1–707.6] <.001

Total dose, GyE 66.0 [66.0–66.0] 66.0 [66.0–66.0] 0.782

BED10, Gy 80.5 [80.5–80.5] 80.5 [80.5–80.5] 0.960

Lung V5GyE, % 58.4 [51.2–64.5] 47.0 [36.4–58.4] <.001

V10GyE, % 44.7 [40.9–48.8] 37.7 [30.7–45.9] <.001

V20GyE, % 33.8 [29.9–38.5] 28.2 [22.3–33.4] <.001

Mean dose, GyE 20.1 [17.1–22.3] 16.2 [13.1–19.4] <.001

Heart V30GyE, % 21.4 [10.8–35.0] 9.5 [3.5–19.5] <.001

V45GyE, % 13.0 [5.6–18.6] 5.3 [1.5–11.2] <.001

(Continued)
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only significant factor among bDVH along with baseline ALC (OR =

0.46, 95% CI: 0.27–0.76, p = 0.004, Table 4).

Finally, we separately generated models with each significant

dosimetric variable of CBCs together with the null model. After

comparing AIC, the model including CBC D90% > 2.6 GyE was

associated with the lowest AIC at 218.46 (Supplementary Table 5)

and remained significant in the multivariate analysis (OR = 6.38,

95% CI: 3.19–13.26, p < 0.001), along with baseline ALC and PTV

(all p < 0.05, Table 4).

A dose-volume relationship between CBC D90% and the

probability of SRIL was observed (Figure 4). In addition, the

number of grade 4 lymphopenia events and CBC D90% were

positively correlated (Supplementary Figure 3). When analyzing

factors affecting D90% > 2.6 GyE, PBSPT significantly satisfied the

dose criteria for CBC D90% of 2.6 GyE (OR = 0.11, 95% CI: 0.03–
Frontiers in Oncology 0636
0.31, p = 0.004, Table 5). Furthermore, CBC D90% > 2.6 GyE was

associated with poorer OS and PFS outcomes after excluding SRIL

from the multivariable analysis (Supplementary Table 6).
4 Discussion

In this study, we investigated the prognostic value of SRIL and

the correlation of bDVH with the development of SRIL in patients

with locally advanced NSCLC treated with CCRT. SRIL was

associated with poorer OS and PFS outcomes compared with the

control. Moreover, at CBC D90% > 2.6 GyE, the risk of SRIL

significantly increased together with baseline ALC and PTV.

Moreover, PBPST was a significant contributor to minimizing

CBC D90%. In addition, CBC D90% had a prognostic value for

OS and PFS outcomes. To the best of our knowledge, this was the

first study to discover the clinical impact of CBCs in patients with

NSCLC and the potential benefit of PBSPT in minimizing radiation

exposure to CBCs compared with IMRT (photon).

The negative impact of treatment-related lymphopenia on

treatment outcomes in NSCLC has been widely investigated in

recent studies (12, 17–23). Upadhyay et al. systematically reviewed

14 studies involving patients with lung cancer and reported that

severe lymphopenia increased the risk of death with a pooled hazard

ratio of 1.59 (p < 0.001) and the risk of death/progression with a

pooled hazard ratio of 2.1 (p < 0.001) (17). Considering the

radiosensitivity of lymphocytes, thoracic RT, which inevitably

irradiates highly vascularized lymphocyte-rich organs, such as the

lungs and heart, is a major contributor to lymphopenia or SRIL

(24). We had previously reported the prognostic value of SRIL in

patients with NSCLC (12). Although we could not perform

subgroup analyses for patients treated with immunotherapy

owing to the small sample size, the clinical significance of SRIL in
TABLE 2 Continued

Patient and tumor characteristics
SRIL No SRIL

n = 75 n = 126 p-value

Mean dose, GyE 9.4 [3.9–15.6] 4.0 [1.2– 7.7] <.001

CBC Mean, GyE 3.81 [2.80–4.81] 2.55 [1.86–3.34] <.001

D10, GyE 4.53 [3.34–5.72] 3.05 [2.23–3.92] <.001

D20, GyE 4.28 [3.15–5.40] 2.87 [2.10–3.72] <.001

D30, GyE 4.11 [3.01–5.17] 2.75 [2.01–3.58] <.001

D40, GyE 3.96 [2.90–4.98] 2.64 [1.93–3.45] <.001

D50, GyE 3.79 [2.79–4.80] 2.54 [1.85–3.32] <.001

D60, GyE 3.66 [2.69–4.62] 2.45 [1.78–3.14] <.001

D70, GyE 3.52 [2.59–4.43] 2.35 [1.69–3.02] <.001

D80, GyE 3.36 [2.46–4.21] 2.21 [1.60–2.87] <.001

D90, GyE 3.14 [2.30–3.89] 2.05 [1.48–2.67] <.001
fron
Values are expressed as number of patients (%) or median [interquartile range].
ECOG, Eastern Cooperative Oncology Group; ADC, adenocarcinoma; ALC, absolute lymphocyte count; ANC, absolute neutrophil count; IMRT, intensity-modulated radiation (photon)
therapy; PBSPT, pencil-beam scanning proton therapy; GTV, gross tumor volume; CTV, clinical target volume; PTV, planning target volume; GyE, gray equivalent; BED10, biological effective
dose with a/b of 10; Dxx, dose to XX% of volume; VXXGyE, volume receiving over XX GyE; CBC, circulating blood cell.
FIGURE 2

Dose-volume parameters for circulating blood cells stratified by
severe radiation-induced lymphopenia.
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BA

FIGURE 3

Overall (A) and progression-free (B) survival stratified by severe radiation-induced lymphopenia.
TABLE 3 Prognostic factors for overall and progression-free survival.

Overall survival Univariable analysis Multivariable analysis

Variables HR 95% CI p-value HR 95% CI p-value

Treatment modality (IMRT vs. PBSPT) 0.84 0.46–1.50 0.551

Sex (Female vs. male) 1.62 0.94–2.78 0.083

Age (<65 vs. ≥ 65 years) 1.18 0.78–1.77 0.442

Histology (non-ADC vs. ADC) 0.52 0.35–0.79 0.002 0.61 0.40–0.93 0.021

Clinical T-stage (T1–2 vs. T3–4) 1.18 0.78–1.79 0.444

Clinical N-stage (N2 vs. N3) 0.73 0.48–1.12 0.151

GTV Continuous (per 10cc) 1.33 1.12–1.57 0.001 1.01 1.00–1.02 0.142

Total dose (>66 vs. ≤66 GyE) 1.56 0.72–3.37 0.263

BED10 (<80 vs. ≥80 GyE) 1.20 0.73–1.95 0.469

Baseline ALC (continuous) 0.41 0.20–1.11 0.137

SRIL (No vs. yes) 1.54 1.02–2.33 0.040 1.42 1.01–2.25 0.043

Progression-free survival Univariable analysis Multivariable analysis

Variables HR 95% CI p-value HR 95% CI p-value

Treatment modality (IMRT vs. PBSPT) 0.57 0.36–0.91 0.019 0.75 0.45–1.22 0.244

Sex (Female vs. male) 0.84 0.57–1.21 0.344

Age (<65 vs. ≥ 65 years) 0.63 0.45–0.87 0.005 0.68 0.48–0.94 0.021

Histology (non-ADC vs. ADC) 1.08 0.78–1.48 0.651

Clinical T-stage (T1–2 vs. T3–4) 0.98 0.71–1.35 0.881

Clinical N-stage (N2 vs. N3) 1.11 0.79–1.55 0.550

(Continued)
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the context of immunotherapy for NSCLC was highlighted (18, 19,

21–23). Jing et al. discovered that SRIL (defined as ALC < 230/µL at

the end of CCRT) disrupted survival benefits of maintenance

therapy with durvalumab following CCRT (21). In addition to the

development of SRIL, Cho et al. reported that recovery from SRIL at

3 months after CCRT was significantly related to PFS and OS

outcomes in patients treated with maintenance immunotherapy

(18). The dismal effect of SRIL might stem from the reduced

systemic anti-tumor immune response by lymphocytes and

depletion of tumor-infiltrating lymphocyte (7, 25). The depletion

of CD4+ T cells from SRIL, which control cell-mediated immunity

against tumors and exert anti-tumor effects on CD8+ T cells, could

influence the prognosis (26).

In view of decreasing the incidence of SRIL, several studies

suggested various dose-volume criteria for predicting SRIL (12, 17,

20, 23, 27–29). In addition to the baseline ALC and target volume, most

studies revealed that the dose to the lung or heart was predictive of

SRIL (17). In this context, we had previously reported that lung V5Gy

(OR = 1.07) and baseline ALC (OR = 0.73) were independent
Frontiers in Oncology 0838
predictive factors of SRIL in 223 patients with NSCLC treated with

CCRT (12). However, a dose–volume correlation in the lung or heart

only indirectly provides the potential impact of RT on SRIL. Joseph

et al. reported a negative correlation between the integral body dose

and post-RT ALC in patients with lung cancer (29). Furthermore,

neither dose to the lungs nor heart was significantly related to post-RT

ALC. In addition, several reports highlighted that the effective dose to

circulating immune cells (EDIC), which incorporates the mean lung

dose, mean heart dose, and integral dose, was related to SRIL in lung,

breast, and esophageal cancers (29–31). However, the EDIC equation

was formulated based on limited patient data, i.e., patients receiving

IMRT with over 25 fractions, and built for thoracic radiation fields

only. The EDIC equation is yet to be validated with proton patient data.

We chose HEDOS over EDIC in this study because using HEDOS, we

can calculate the dose to CBCs utilizing the organ DVH from any

treatment modality or treatment site. With a patient-specific bDVH

from HEDOS results, the various DVH metrics were tested to find the

most significant dosimetric factors for SRIL that could be used to guide

the treatment plan in a way to reduce the SRIL risk. The last feature we
TABLE 3 Continued

Progression-free survival Univariable analysis Multivariable analysis

Variables HR 95% CI p-value HR 95% CI p-value

GTV Continuous (per 10 cc) 1.01 1.00–1.02 0.142

Total dose (>66 vs. ≤66 GyE) 1.09 0.63–1.88 0.768

BED10 (<80 vs. ≥80 GyE) 1.43 0.98–2.10 0.065

Baseline ALC (Continuous) 0.75 0.60–0.93 0.009 1.33 0.91–1.93 0.139

SRIL (No vs. yes) 1.91 1.39–2.64 <.001 1.65 1.17–2.33 0.004
fron
*The foreparts of parentheses were set as the reference group.
HR, hazard ratio; CI, confidence interval; IMRT, intensity-modulated radiation (photon) therapy; PBSPT, pencil-beam scanning proton therapy; ADC, adenocarcinoma; GTV, gross tumor
volume; GyE, gray equivalent; BED10, biological effective dose with a/b of 10; ALC, absolute lymphocyte count; SRIL, severe radiation-induced lymphopenia.
TABLE 4 Multivariate analysis to predict severe radiation-induced lymphopenia.

Variables
Multivariate analysis

OR 95% CI p-value

Model 1 (without CBC data)

Baseline ALC (Continuous) 0.60 0.37–0.93 0.026

PTV (Continuous, per 10 cc) 1.02 1.01–1.03 0.001

Model 2 (Stepwise model)

Baseline ALC (Continuous) 0.47 0.27–0.78 0.005

PTV (Continuous, per 10 cc) 1.01 1.00–1.02 0.049

CBC D90, GyE (Continuous) 2.13 1.54–3.06 <.001

Model 3 (AIC comparison)

Baseline ALC (Continuous) 0.48 0.28–0.78 0.004

PTV (Continuous, per 10 cc) 1.01 1.00–1.02 0.022

CBC D90, GyE (≤ 2.6 vs. > 2.6 GyE) 6.38 3.19–13.26 <.001
*The foreparts of parentheses were set as the reference group.
CBC, circulating blood cells; ALC, absolute lymphocyte count; PTV, planning target volume; D90, dose to 90% of volume; GyE, gray equivalent; AIC, Akaike information criterion.
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employed in HEDOS was the dose rates from beam-on-times during

beam delivery. Therefore, dose criteria for CBCs could be considered

when planning for patients scheduled to receive immunotherapy.

Proton beam therapy is advantageous over photon RT in reducing

the low-dose radiation to out-of-field. Based on the aforementioned

evidence of the dose-response relationship between the healthy organs

and SRIL, proton beam therapy is considered to be a potential

therapeutic tool for lymphocyte-sparing RT. PBPST alleviates the

risk of SRIL by reducing the lung V5Gy compared with IMRT in

patients with NSCLC (12). The clinical significance of proton beam

therapy in reducing SRIL has also been explored in primary brain

tumors and esophageal cancer (32–34). However, to the best of our

knowledge, this is the first analysis determining the clinical

significance of PBSPT when incorporated with the dose calculation

of CBCs. PBPST could positively affect the dose distribution to CBCs

compared with IMRT. Furthermore, FLASH RT with an ultra-high

dose-rate could enhance the immune-related tumor response by

minimizing radiation to CBCs and subsequently reducing SRIL.
Frontiers in Oncology 0939
This study has several limitations. First, this study was

associated with inherent limitations owing to its retrospective

design. Second, the limited number of patients in the PBSPT

group might have led to an overestimation of the effect of PBSPT.

However, the target volume or baseline ALC, which could affect the

SRIL development, did not differ significantly. Other limitations

related to HEDOS calculations are using a uniform blood path

distribution for all patients, implying that we used same the blood

flow rate and blood volume for all patients, as these values were

unavailable and impossible to measure in this retrospective study.

We did not consider the realistic time structure of the beam delivery

of IMRT or PBSPT. As these beams consist of many beamlets with a

high dose to a small irradiation area, the realistic beammay produce

a few CBCs irradiated with very high dose rates, thereby changing

the bDVH shapes. The impact of the realistic time structure on the

dose to CBCs should be further investigated. Further analyses are

required to develop a model for predicting healthy tissue

complication probability for SRIL based on CBCs.
FIGURE 4

Dose-response relationship between dose to 90% of circulating blood cells and severe radiation-induced lymphopenia.
TABLE 5 Factors related to the dose to 90% of circulating blood cells.

Variables
Univariate analysis Multivariate analysis

OR 95% CI p-value OR 95% CI p-value

Sex (Female vs. male) 1.00 0.51–2.00 0.996

Age (<65 vs. ≥ 65 years) 0.90 0.51–1.57 0.712

Histology (non-ADC vs. ADC) 0.67 0.38–1.18 0.165

Clinical T-stage (cT1–2 vs. cT3–4) 1.20 0.68–2.13 0.533

Clinical N-stage (cN2 vs. cN3) 0.97 0.54–1.75 0.927

Baseline ALC (Continuous) 1.15 0.80–1.67 0.443

PTV (per 10 cc) (Continuous) 1.03 1.02–1.04 <.001 1.03 1.02–1.05 <.001

Total prescribed dose (>66 vs. ≤66 GyE) 1.15 0.45–3.10 0.771

Treatment modality (IMRT vs. PBSPT) 0.22 0.09–0.51 0.001 0.11 0.03–0.31 0.004
fron
*The foreparts of parentheses were set as the reference group.
ADC, adenocarcinoma; ALC, absolute lymphocyte count; PTV, planning target volume; GyE, gray equivalent; IMRT, intensity-modulated radiotherapy; PBSPT, pencil-beam scanning proton
therapy.
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The occurrence of SRIL was associated with an increased risk of

tumor progression and death in patients with NSCLC treated with

CCRT. We proposed and clinically validated the significance of

bDVH in predicting SRIL. CBC D90% > 2.6 GyE significantly

increased the risk of SRIL, and PBPST could decrease CBC D90%

compared to IMRT. This analysis should be further validated through

randomized controlled trials comparing PBPST and IMRT,

particularly providing evidence of lymphocyte-sparing from the

sparing dose to CBCs in the setting of maintenance immunotherapy.
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Higher radiation dose on
immune cells is associated with
radiation-induced lymphopenia
and worse prognosis in patients
with locally advanced
esophageal squamous
cell carcinoma

Jianjian Qiu, Hancui Lin, Dongmei Ke, Yilin Yu, Jiaying Xu,
Hejin Qiu, Qunhao Zheng, Hui Li , Hongying Zheng,
Lingyun Liu, Zhiping Wang*†, Qiwei Yao*† and Jiancheng Li*†

Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
Background: To explore the effective dose to immune cells (EDIC) for better

prognosis while avoiding radiation-induced lymphopenia (RIL) in patients with

locally advanced esophageal squamous cell carcinoma (ESCC).

Materials and methods: Overall, 381 patients with locally advanced ESCC

receiving definitive radiotherapy with or without chemotherapy (dRT ± CT)

between 2014 and 2020 were included in this study. The EDIC model was

calculated by radiation fraction number and mean doses to the heart, lung, and

integral body. The correlation between EDIC and clinical outcomes was analyzed

using Cox proportional hazards regression, and risk factors for RIL were

determined by logistic regression analysis.

Results: The median EDIC was 4.38 Gy. Multivariate analysis revealed that low-

EDIC significantly improved the OS of patients when compared with high-EDIC

(HR = 1.614, P = 0.003) and PFS (HR = 1.401, P = 0.022). Moreover, high-EDIC

was associated with a higher incidence of grade 4 RIL (OR = 2.053, P = 0.007)

than low-EDIC. In addition, we identified bodymass index (BMI), tumor thickness,

and nodal stage as independent prognostic factors of OS and PFS, while BMI

(OR = 0.576, P = 0.046) and weight loss (OR = 2.214, P = 0.005) as independent

risk factors of grade 4 RIL. In subgroup analyses, the good group had better

clinical outcomes than the remaining two groups (P< 0.001).

Conclusion: This study demonstrated that EDIC significantly correlates with poor

clinical outcomes and severe RIL. Optimizing treatment plans to decrease the

radiation doses to immune cells is critical for improving the outcomes.

KEYWORDS

effective dose to immune cells (EDIC), esophageal carcinoma, radiation-induced
lymphopenia (RIL), prognosis, radiotherapy
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Introduction

Esophageal cancer (EC) is among the most common

malignancies in China and worldwide, with 3 million deaths

annually (1–3). However, most patients are diagnosed at an

advanced stage due to a lack of effective screening methods for

early-stage EC (4, 5). Radiotherapy is an essential treatment strategy

for patients with locally advanced EC and there has been great

progress in it. Nonetheless, the prognosis of locally advanced EC

remains unsatisfactory (6), with a 5-year overall survival (OS) rate

of 15%–25% worldwide (7). Fortunately, immunotherapy has

shown enormous promise in clinical trials, and is used in clinical

practice with a dramatically improved survival rate of patients with

lung cancer and malignant melanoma (8–13). In addition, the

development of monoclonal antibodies, anti-programmed death-1

(PD-1) and anti-programmed death-ligand 1 (PD-L1), has

produced a significant therapeutic response in EC (14). Hence,

radiotherapy can be combined with immunotherapy as a novel

treatment strategy for patients with EC.

The immune system is crucial for promoting tumorigenesis.

However, thoracic radiotherapy alters the immune system function

and thus affects tumor control. On the one hand, it stimulates the

immune system by releasing specific antigens and cascade reactions

of atypical cytokine signals, thereby limiting tumor growth and

metastasis (15). The abscopal effect, which is tumor shrinkage

outside the radiation fields, has confirmed this theory observed in

animal experiments and clinical practice (16–18). On the other

hand, since lymphocytes are sensitive to radiation (19, 20),

radiotherapy can suppress the immune function by killing them,

thereby reducing the therapeutic effect. Moreover, previous studies

revealed that radiation-induced lymphopenia (RIL) is associated

with poor prognosis (19, 21). Additionally, increasing the radiation

dose to the tumor increases the radiation dose to immune cells. To

this end, a clinical trial considered the immune system as a risky

organ to calculate the effective dose to immune cells (EDIC) and

found that the radiation dose of the immune system was associated

with OS and local tumor control (22). Consistently, another study

of non-small cell lung cancer also proved the relationship between

EDIC and the prognosis of patients (23). However, there are only a

few studies on this aspect in esophageal squamous cell carcinoma
Abbreviations: EDIC, effective dose to immune cells; RIL, radiation-induced

lymphopenia; ESCC, esophageal squamous cell carcinoma; BMI, body mass

index; EC, esophageal cancer; PD-1, programmed death-1; PD-L1,

programmed death-ligand 1; TNM, tumor-node-metastasis; IMRT, intensity-

modulated radiation therapy; 3D-CRT, 3-dimensional conformal radiation

therapy; GTV, gross tumor volume; CTV, clinical target volume; PTV,

planning target volume; OARS, organs at risk; CBC, complete blood count;

DVH, dose-volume histogram; MLD, mean lung dose; MHD, mean heart dose;

MBD, mean body dose; CTCAE, common terminology criteria for adverse

events; ROC, receiver operating characteristic curve; OS, overall survival; PFS,

progression-free survival; HR, hazard ratio; OR, odds ratio; 95% CI, confidence

interval; LRFS, local recurrence-free survival; SBRT, stereotactic body

radiotherapy; and RT, radiotherapy.
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(ESCC). Therefore, we aimed to apply a model to calculate the

EDIC, and explore the relationship of EDIC with clinical outcomes

and RIL in patients with locally advanced ESCC.
Materials and methods

Study population

We included 381 patients with locally advanced ESCC who

underwent definitive radiotherapy with/without chemotherapy

at Fujian Medical University Cancer Hospital between 2014 and

2020 in this study. This study complied with the Declaration

of Helsinki and was approved by the Institutional Ethics

Committee. The inclusion criteria were as follows (1):

Cytologically or pathologically confirmed ESCC (2), age > 18

years (3), treatment with definitive radiotherapy (≥ 50 Gy and ≥

25 fractions) (4), no distinct metastasis or other malignancies

(5), no surgery, and (6) available clinicopathologic and follow-up

data. All patients were staged according to the 8th version

of AJCC.
Treatments and follow-up

Several radiotherapy oncologists comprehensively evaluated

the auxiliary examinations of patients before the initiation of the

treatment, under the guidance of clinical practice guidelines. All

patients underwent individualized thoracic radiotherapy with

either intensity-modulated radiation therapy (IMRT) or 3-

dimensional conformal radiation therapy (3D-CRT). The

radiation dose prescriptions were 50–70 Gy in 25–34 fractions,

five days per week. The gross tumor volume (GTV) included

primary esophageal tumor and involved lymph nodes. Due to

micrometastasis, the clinical target volume (CTV) included GTV

of ≥ 3 cm in the upper and lower margin, and 0.5 cm in the

lateral margin. Based on CTV, the planning target volume (PTV)

expanded by a 0.5–1 cmmargin. According to the 2019 esophageal

carcinoma Guidelines of the National Comprehensive Cancer

Network, the plans of all patients must meet the dose-volume

limitations for organs at risk (OARS). All patients received 0–7

cycles of sequential or concurrent chemotherapy. Chemotherapy

regimens included docetaxel, paclitaxel + nedaplatin, cisplatin,

lobaplatin or carboplatin, and 5-fluorouracil + cisplatin. The

patients were followed up every three months in the first year,

every six months after the second year, and then annually. Follow-

up was to monitor the patient’s survival status and disease

changes, and the median follow-up time was 21 months.
Data collection

We extracted clinical features, including gender, age, weight

change, body mass index (BMI), chemotherapy regimens,

chemotherapy cycles, tumor location, tumor length, tumor

thickness, TNM stage, and complete blood count (CBC), from
frontiersin.org
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electronic medical records. In this study, patients with a weight loss

of 1 kg or more from their usual weight at diagnosis were defined as

having lost weight (within 1 month). The Pinnacle system was used

to obtain the dose-volume histogram (DVH) data of patients. Mean

lung dose (MLD), mean heart dose (MHD), and mean body dose

(MBD) were used to calculate the EDIC of the patient. In this study,

the lymphocyte count was collected before and during radiotherapy

(weekly). The minimum lymphocyte count during thoracic

radiotherapy was defined as the lymphocyte nadir. The Common

Terminology Criteria for Adverse Events (CTCAE) version 4.0

graded RIL.
Calculation of EDIC

EDIC estimates the dose to immune cells by using the radiation

dose to circulation blood as a surrogate (22, 23). The circulation

blood pool that is irradiated in radiotherapy includes the heart,

lungs, and the large and small vessels/capillaries in the remaining

organs. Additionally, the components were estimated from

anatomy/physiology textbooks to estimate the percentage of

cardiac output and blood volume for each component. The heart

and lungs account for about 8% and 12% of the cardiac output,

respectively. In addition, the blood volume in great vessels and

small vessels account for 45% and 35% of cardiac output,

respectively. The dose effectiveness factor for small vessels was

0.85. The final model was developed based on the following

equation for patients undergoing ≥ 25 fractions of thoracic

radiation:

EDIC  =  0:12*MLD  +  0:08*MHD  +  ½0:45 

+  0:35*0:85*(n=45)
1=2

*MBD�
Statistical analysis

The primary endpoint was OS, which was defined from the date

of pathological diagnosis to death due to any cause or last follow-up.

The secondary endpoint was PFS, calculated from the date of

pathological diagnosis to disease progression, death, or last

follow-up. The Kaplan–Meier (KM) method was used to estimate

the survival curves and univariate cox analysis to identify the crucial

clinical factors that affect survival outcomes. The covariates with a P

value< 0.05 in univariate analysis were incorporated into the

multivariate analysis, which identified the independent prognostic

factors. We evaluated the correlations among independent

prognostic factors using Spearman correlation analysis. The

logistic regression analysis was used to identify the potential risk

factors with grade 4 RIL. The receiver operating characteristics

(ROC) curve computed the optimal cut-off values of BMI, tumor

length, tumor thickness, and EDIC. All statistical analyses were

two-sided, and P value of < 0.05 was considered statistically

significant. All statistical analyses were performed using SPSS

software (version 25.0).
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Results

Patient characteristics

In all, we included 381 patients in the final analysis and the

clinical characteristics are summarized in Table 1. The median age

of patients was 67 and 69.6% were males. Approximately 49.6%

of patients experienced weight loss. Chemotherapy accounted

for 75.1% and 56.4% of patients received concurrent

chemoradiotherapy. Most common primary tumors were located

in the upper (34.4%) and lower (48.3%) thorax. About 23.1% of the

patients were at stage II, 29.4% were at stage III, and 47.5% at were

stage IVA. The rates of grades 1, 2, 3, and 4 RIL were 1.3%, 15.0%,

62.2%, and 21.5%. The cut-off values for BMI, tumor length, tumor

thickness, and EDIC were 19.03, 5.9 cm, 1.7 cm, and 4.78 Gy.
Prognostic factors of OS and PFS

The median OS and PFS were 21 months (range, 2.1–105.6

months) and 17.2 months (range, 1.2–101.4 months), respectively.

Using univariate analysis, we identified BMI (P = 0.001), tumor

location (P = 0.025), tumor length (P< 0.001), tumor thickness (P<

0.001), N stage (P = 0.001), TNM stage (P = 0.004), and EDIC (P<

0.001) as significant prognostic factors of a worse OS (Table 2). Of

these, the multivariate analysis identified BMI (HR = 0.619, 95%CI,

0.452-0.848, p = 0.003), tumor thickness (HR = 1.859, 95% CI:

1.313–2.630, P< 0.001), N stage (HR = 1.534, 95% CI: 1.102–2.134,

P = 0.011), and EDIC (HR = 1.614, 95% CI, 1.176–2.215, P = 0.003)

as independent risk factors of OS. Additionally, univariate analysis

recognized BMI (P = 0.001), tumor length (P< 0.001), tumor

thickness (P< 0.001), N stage (P = 0.001), TNM stage (P< 0.001),

and EDIC (p = 0.002) as significant prognostic factors of a worse

PFS (Table 3). On multivariate analysis, BMI (HR = 0.667, 95% CI:

0.494–0.900, P = 0.008), tumor thickness (HR = 1.797, 95% CI:

1.282–2.517, P = 0.001), N stage (HR = 1.396, 95% CI: 1.021–1.910,

P = 0.037), and EDIC (HR = 1.401, 95% CI: 1.050–1.869, P = 0.022)

were identified as independent risk factors of PFS. After adjusting

for other risk factors, EDIC was identified as a significant prognostic

factor for both, OS and PFS. Spearman’s analysis results showed

that there is no correlation or weak correlation between the

prognostic factors (correlation coefficient: 0.150 - 0.207). As

shown in Figure 1, there were noteworthy differences in the OS

and PFS in EDIC, BMI, tumor thickness, and N stage.

Further, to determine the association of EDIC with clinical

outcomes, we divided EDIC into three categories according to cut-

off values (< 4.19 Gy, 4.19–5.38 Gy, and ≥ 5.38 Gy) and equal study

population (< 3.63 Gy, 3.63–5.35 Gy, and ≥ 5.35 Gy). The OS and

PFS rates for EDIC divided into three groups based on the cut-off

values are shown in Figure 2 (P< 0.001 and P = 0.0014). Patients

with EDIC ≥ 5.38 Gy had significantly worse OS and PFS than those

with EDIC< 4.19 Gy (P< 0.001 and P = 0.005). Comparisons

between other groups were not statistically significant. The

median OS for patients with EDIC ≥ 5.38 Gy and< 4.19 Gy were

23.6 and 51.3 months, respectively. The median PFS for patients
frontiersin.org
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with EDIC ≥ 5.38 Gy and< 4.19 Gy were 20.6 and 45.1 months,

respectively. Furthermore, EDIC was divided into three groups

according to the equal study population. The OS and PFS curves

of the two EDICs are shown in Figure 3 (P = 0.001 and P = 0.0029).

Patients with EDIC ≥ 5.35 Gy had significantly worse OS and PFS

than those with EDIC< 3.63 Gy (P = 0.001 and P = 0.029). Both

approaches showed a strong correlation of EDIC scores with OS

and PFS.
Survival is stratified by EDIC, BMI, tumor
thickness, and N stage

The EDIC, BMI, tumor thickness, and N stage were crucial

prognostic factors for survival. Patients with EDIC ≥ 4.78 Gy, BMI<

19.03, tumor thickness ≥ 1.7 cm, and N2/N3 were considered to

have one score. We observed that the lower the score, the worse the

prognosis. Then, we divided the patients into three groups based on

the independent prognostic factors: the poor group (0–1 scores), the

intermediate group (2 scores), and the good group (≥ 3 scores). KM

curves showed prominent differences in the OS (P<0.001) and PFS

(P<0.001) among the three groups (Figure 4).
TABLE 1 Patient clinical characteristics.

Characteristics No.of patients
(n = 381)

Age (years)

< 67 180 (47.2%)

≥ 67 201 (52.8%)

Gender

Male 265 (69.6%)

Female 116 (30.4%)

Weight loss

No 192 (50.4%)

Yes 189 (49.6%)

BMI

< 19.03 100 (26.2%)

≥ 19.03 281 (73.8%)

Radiotherapy

IMRT 299 (78.5%)

3D-CRT 82 (21.5%)

Chemotherapy

concurrent chemotherapy 215 (56.4%)

sequential chemotherapy 71(18.6%)

without chemotherapy 95 (24.9%)

Chemotherapy regimen

paclitaxel + platinum 198(52.0%)

5-fluorouraci + platinum 50(13.1%)

docetaxel + platinum 38(10.0%)

no 95 (24.9%)

Tumor location

Cervical 37 (9.7%)

Upper thoracic 131 (34.4%)

Middle thoracic 29 (7.6%)

Lower thoracic 184 (48.3%)

Tumor length (cm)

< 5.9 209 (54.9%)

≥ 5.9 172 (45.1%)

Tumor thickness (cm)

< 1.7 276 (72.4%)

≥ 1.7 105 (27.6%)

T stage

T2 26 (6.8%)

T3 188 (49.3%)

(Continued)
TABLE 1 Continued

Characteristics No.of patients
(n = 381)

T4 167 (43.8%)

N stage

N0 111 (29.1%)

N1 165 (43.3%)

N2 83 (21.8%)

N3 22 (5.8%)

TNM stage

Stage II 88 (23.1%)

Stage III 112 (29.4%)

Stage IVA 181 (47.5%)

Radiation-induced lymphopenia

Grade 1 5 (1.3%)

Grade 2 57 (15.0%)

Grade 3 237 (62.2%)

Grade 4 82 (21.5%)

EDIC

< 4.78 217 (57.0%)

≥ 4.78 164 (43.0%)
BMI, body mass index; IMRT, intensity-modulated radiation therapy; 3D-CRT, 3-
dimensional conformal radiation therapy; T, tumor; N, node; TNM, tumor-node-
metastasis; EDIC, effective dose to the immune cell; RIL, radiation-induced lymphopenia.
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Risk factors of RIL

The lymphocyte count declined remarkably during thoracic

radiotherapy, and the median lymphocyte nadir was 0.4*109/L.

Univariate logistic analysis showed that lower EDIC was associated

with a higher lymphocyte count (P = 0.004). The multivariate

logistic regression analysis revealed that EDIC was significantly

correlated with RIL (OR, 2.053, 95% CI: 1.221–3.451, P = 0.007)

after adjusting for other confounding variables. In addition, the

BMI (P = 0.046) and weight loss (P = 0.005) were independent risk

factors of RIL (Table 4).
Frontiers in Immunology 0546
Discussion

This study included 381 patients with locally advanced ESCC

and revealed that EDIC is correlated with RIL during thoracic

radiotherapy, and is an important prognostic factor for both, OS

and PFS. These findings implicate that undue radiation doses to

immune cells, especially lymphocytes, lead to severe lymphopenia

and poor clinical outcomes.

Previous studies reported that high heart and lung radiation

doses are significantly associated with decreased OS (24, 25).

Someone argued that heart and lung toxicity leads to poor
TABLE 2 Univariate and multivariate cox regression analysis of patient clinical characteristics with overall survival.

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age (years)

≥ 67 vs< 67 1.343 0.998-1.808 0.052

Gender

Female vs Male 1.108 0.805-1.618 0.220

Weight loss

Yes vs No 1.247 0.930-1.673 0.141

BMI

≥ 19.03 vs< 19.03 0.586 0.432-0.797 0.001 0.619 0.452-0.848 0.003

Radiotherapy

IMRT vs 3D-CRT 1.187 0.818-1.723 0.368

Chemotherapy

Concurrent vs sequential vs without 1.092 0.917-1.300 0.325

Tumor location

Cervical/Upper vs Middle/Lower 1.411 1.044-1.908 0.025 1.162 0.845-1.598 0.357

Tumor length (cm)

≥ 5.9 vs< 5.9 1.921 1.428-2.585 < 0.001 1.296 0.920-1.825 0.138

Tumor thickness (cm)

≥ 1.7 vs< 1.7 2.306 1.704-3.121 < 0.001 1.859 1.313-2.630 < 0.001

T stage

T4 vs T2/T3 1.112 0.830-1.491 0.477

N stage

N2/N3 vs N0/N1 1.691 1.244-2.298 0.001 1.534 1.102-2.134 0.011

TNM stage

Stage III/Stage IVA vs Stage II 1.818 1.207-2.741 0.004 1.173 0.752-1.830 0.482

EDIC

≥ 4.78 vs< 4.78 1.879 1.398-2.524 < 0.001 1.614 1.176-2.215 0.003

RIL

Grade 4 vs Grade ≤3 1.141 0.805-1.618 0.458
HR, hazard ratio; CI, confidence interval; BMI, body mass index; IMRT, intensity-modulated radiation therapy; 3D-CRT, 3-dimensional conformal radiation therapy; T, tumor; N, node; TNM,
tumor-node-metastasis; EDIC, effective dose to the immune cell; RIL, radiation-induced lymphopenia.
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survival. However, according to the RTOG 0617 trial, the high-

dose group had lower heart and lung toxicity than the low-dose

group (22). Additionally, in multivariate cox analysis, MHD

was significantly associated with local recurrence-free survival

(LRFS), while MLD was important for PFS. This suggests that

MHD and MLD were correlated with survival because of disease

control or progression and not toxicity (22). Instead, MHD and

MLD may be a surrogate for radiation dose to circulating

lymphocytes in blood and are vital for tumor development.

Therefore, the EDIC model was developed to predict the dose to
Frontiers in Immunology 0647
circulating lymphocytes from the mean heart, lung, and

body doses.

Circulating lymphocytes are among the most radiosensitive

cells with a D50 (dose required for 50% pre-treatment

lymphocyte cell death) of approximately 2 Gy. RIL is a

common phenomenon observed during radiotherapy. The

significance of EDIC for RIL in this study is consistent with

previous findings (20) and can be explained by the principles of

radiobiology. Moreover, several studies demonstrated that

dosimetric factors, such as heart V50 and lung V5 in lung
TABLE 3 Univariate and multivariate cox regression analysis of patient clinical characteristics with progression free-survival.

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age (years)

≥ 67 vs< 67 1.189 0.897-1.574 0.229

Gender

Female vs Male 1.091 0.935-1.274 0.268

Weight loss

Yes vs No 1.297 0.980-1.717 0.069

BMI

≥ 19.03 vs< 19.03 0.612 0.456-0.822 0.001 0.667 0.494-0.900 0.008

Radiotherapy

IMRT vs 3D-CRT 1.023 0.714-1.466 0.902

Chemotherapy

Concurrent vs sequential vs without 1.034 0.875-1.223 0.692

Tumor location

Cervical/Upper vs Middle/Lower 1.261 0.949-1.676 0.110

Tumor length (cm)

≥ 5.9 vs< 5.9 1.841 1.389-2.441 < 0.001 1.238 0.893-1.718 0.201

Tumor thickness (cm)

≥ 1.7 vs< 1.7 2.219 1.659-2.969 < 0.001 1.797 1.282-2.517 0.001

T stage

T4 vs T2/T3 1.231 0.932-1.626 0.143

N stage

N2/N3 vs N0/N1 1.613 1.202-2.164 0.001 1.396 1.021-1.910 0.037

TNM stage

Stage III/Stage IVA vs Stage II 2.038 1.365-3.042 < 0.001 1.421 0.923-2.186 0.110

EDIC

≥ 4.78 vs< 4.78 1.566 1.182-2.075 0.002 1.401 1.050-1.869 0.022

RIL

Grade 4 vs Grade ≤3 1.053 0.751-1.477 0.766
HR, hazard ratio; CI, confidence interval; BMI, body mass index; IMRT, intensity-modulated radiation therapy; 3D-CRT, 3-dimensional conformal radiation therapy; T, tumor; N, node; TNM,
tumor-node-metastasis; EDIC, effective dose to the immune cell; RIL, radiation-induced lymphopenia.
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cancer and mean body dose in EC, are essential risk factors (19,

26, 27).

Radiotherapy causes immunosuppression by killing circulating

lymphocytes in many solid tumor treatments. Thus, it could

theoretically reduce the treatment efficacy and affect the

prognosis, and is considered a negative prognostic factor in

malignant solid tumors (19, 28). Nonetheless, the decrease in

lymphocyte count after irradiation is not always associated with

poor post-treatment survival outcomes. For instance, in a study of

395 EC patients, the 5-year OS difference between grade 4 and non-
Frontiers in Immunology 0748
grade 4 lymphopenia was not statistically significant (29). Similarly,

83% of the patients with oropharyngeal cancer receiving definitive

CRT at the MD Anderson Cancer Center had ≥ grade 3 and 25%

had grade 4 lymphopenia, which did not affect the survival or local

control outcomes (30). Similarly, Holub et al. did not find an

association between post-treatment lymphopenia and survival

outcomes (31). Likewise, we observed no difference in OS and

PFS between grade 4 RIL compared with grades 1–3. The median

survival of patients with grade 1–3 RIL was 6 months longer than

those with grade 4 (36.8 vs. 30.4 months); however, the difference
B

C

D

E

F

G

H

A

FIGURE 1

Kaplan-Meier curves of EDIC, BMI, tumor thickness, and N stage for all patients showing (A–D) overall survival (p< 0.001, p = 0.001, p< 0.001, p =
0.001, respectively); (E–H) progression-free survival (p = 0.002, p = 0.001, p< 0.001, p = 0.001, respectively). EDIC, effective dose to the immune
cell; BMI, body mass index; HR, hazard ratio; N, node.
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was not statistically significant. Therefore, the relationship between

RIL and prognosis is unclear. Several reasons may account for the

negative results in this study. Firstly, in addition to direct damage to

lymphocytes by RT, lymphocytes infiltrating from peripheral blood

after RT stimulation might also contribute to circulating

lymphopenia. Second, the radiosensitivity of lymphocytes

also represents the radiosensitivity of cancer cells, which

predicts better survival (32). Third, there may be a bias in the

lymphocyte nadir because more than half of the patients in this

research received chemotherapy, which often has considerable

hematological toxicity, especially for patients receiving concurrent

chemoradiotherapy. Finally, since lymphocyte changes dynamically

during radiotherapy, it is difficult to evaluate the immune status of

patients using only the lymphocyte nadir, which results in

negative results.

Our study confirmed the association between EDIC and RIL

and revealed the impact of EDIC on the survival of patients with

locally advanced ESCC. Consistently, previous studies

demonstrated that high EDIC was an important risk factor for

OS, PFS, and disease-free survival in lung cancer (23, 33). This may

be due to the radiation-induced damage to immune cells, which are

vital for limiting metastatic growth and maintaining the spreading

cancer cells in an inert state (34–36). Tumor progression is the
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leading cause of death in patients with cancer. Although EDIC is an

objective variable influenced by radiotherapy planning, its potential

determinants, such as tumor size and N stage, were not considered,

which may be related to clinical outcomes. The number of positive

lymph nodes and tumor size are negatively associated with the

survival of patients with EC (37). In addition, tumor size and N

stage can affect the radiation area and dose during the development

of radiotherapy schedules. Large GTV was a risk factor for worse OS

and PFS in previous studies (38, 39). However, after adjusting for

GTV size effects, a second study of RTOG0617 data revealed that

EDIC was still substantially linked with OS and LPFS (22). Another

study suggested that PTV did not correlate with OS or LPFS (23).

Interestingly, spearman’s analysis results showed that there is no

correlation or weak correlation between EDIC and tumor thickness

or N stage in this study. In all, the survival significance of EDIC may

provide new insights into treatment schedule optimization in our

daily practice.

The EDIC scoring is a powerful tool to assist clinicians in

identifying high-risk patients for early intervention. It is a combined

influence of beam-on time, radiation dose, and immune cell

fractions. Hence, several approaches related to these factors can

potentially decrease EDIC. Advanced radiotherapy techniques, such

as high-dose, hypofractionated SBRT, and high-dose-rate FLASH
B

C

D

A

FIGURE 2

Patients are stratified by EDIC cut-off values. Kaplan-Meier curves for (A) overall survival by three categories; (B) overall survival first versus third; (C)
progression-free survival by three categories; (D) progression-free survival first versus third. EDIC, effective dose to the immune cell; R, hazard ratio.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1066255
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2023.1066255
RT, reduce radiation delivery time thereby decreasing the

circulating blood exposure (40). Moreover, proton beam therapy

has better dose distribution and significantly lowers the dose in

surrounding normal tissues than IMRT. Near the heart and lungs

can drop the dose sharply (41). Of course, there are other advanced

radiotherapy technologies, such as image-guided adaptive therapy

and heavy ions therapy. From the perspective of clinicians, it is

important to optimize planning by adjusting beam energy and

direction and the number of beams before therapy. In addition, to

accommodate anatomical changes and tumor regression, we may

need to optimize the treatment plan again.

This study has certain limitations. Firstly, since it was a

retrospective study, there was inevitable selection bias and did not

consider all confounding factors, such as chemotherapy regimen,
Frontiers in Immunology 0950
radiotherapy dose, and target volume size (such as GTV or PTV).

Secondly, the EDIC equation only considered the estimate of

circulating or resident immune cell pools in large organs within

the radiation field, including the heart, lungs, liver, and kidneys. It

did not incorporate the contributions of lymphatic vessels, lymph

nodes, thymus, spleen, and bone marrow. Hence, it may not fully

represent of the influence of radiation on the immune cells.

Although the contribution of bone marrow to acute lymphopenia

is small, it plays a role in lymphocyte recovery after treatment. The

adult thymus is degenerated, hence its contribution to the

associated lymphocyte pool is small. Additionally, due to

anatomical location, the radiation dose to the spleen in thoracic

radiotherapy is limited and has little effect on lymphopenia.

Therefore, we need to refine the EDIC model by including
B

C

D

A

FIGURE 3

Patients are stratified by the equal study population. Kaplan-Meier curves for (A) overall survival by three categories; (B) overall survival first versus
third; (C) progression-free survival by three categories; (D) progression-free survival first versus third. EDIC, effective dose to the immune cell; R,
hazard ratio.
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BA

FIGURE 4

overall survival (A) and progression-free survival (B) in subgroup analysis based on multivariate analysis results.
TABLE 4 Univariate and multivariate logistic regression analysis for radiation-induced lymphopenia.

Characteristics
Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Age (years)

≥ 67 vs < 67 0.984 0.603-1.605 0.948

Gender

Female vs Male 1.074 0.629-1.835 0.794

Weight loss

Yes vs No 2.050 1.239-3.392 0.005 2.214 1.258-3.586 0.005

BMI

≥ 19.03 vs < 19.03 0.494 0.293-0.831 0.008 0.576 0.335-0.989 0.046

Radiotherapy

IMRT vs 3D-CRT 0.942 0.516-1.716 0.844

Chemotherapy

Concurrent vs sequential vs without 0.872 0.648-1.172 0.363

Tumor location

Cervical/Upper vs Middle/Lower 1.486 0.898-2.458 0.123

Tumor length (cm)

≥ 5.9 vs < 5.9 1.992 1.213-3.272 0.006 1.646 0.982-2.758 0.059

Tumor thickness (cm)

≥ 1.7 vs < 1.7 1.293 0.760-2.200 0.343

T stage

T4 vs T2/T3 0.829 0.505-1.363 0.460

N stage

N2/N3 vs N0/N1 1.495 0.884-2.527 0.133

TNM stage

(Continued)
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lymphoid structures and other related organs. Lastly, this is a single-

center, small-sample study that needs to be validated by a

prospective multicenter study with a larger sample size.
Conclusion

This study identified a correlation of EDIC with poor clinical

outcomes and severe RIL, which indicates that high doses to the

immune system were related to tumor progression and death. Hence,

it is important to optimize treatment plans to decrease the radiation

doses to immune cells for improving the clinical outcomes.
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TABLE 4 Continued

Characteristics
Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Stage III/Stage IVA vs Stage II 1.308 0.713-2.401 0.386

EDIC

≥ 4.78 vs < 4.78 2.089 1.273-3.428 0.004 2.053 1.221-3.451 0.007
OR, odds ratio; CI, confidence interval; BMI, body mass index; IMRT, intensity-modulated radiation therapy; 3D-CRT, 3-dimensional conformal radiation therapy; T, tumor; N, node; TNM,
tumor-node-metastasis; EDIC, effective dose to the immune cell.
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and Jian He1*
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Background: Previous studies have shown that systemic inflammation indicators

could predict the survival outcomes of patients with malignant tumors receiving

various treatments. Radiotherapy, as a crucial treatment modality, effectively

alleviates discomfort in patients with bone metastasis (BM) and greatly improves

the quality of life for them. This study aimed to investigate the prognostic value of

systemic inflammation index in hepatocellular carcinoma (HCC) patients with BM

treated with radiotherapy.

Methods: We retrospectively analyzed clinical data collected from HCC patients

with BM who received radiotherapy in our institution between January 2017 and

December 2021. The pre-treatment neutrophil-to-lymphocyte ratio (NLR),

platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index

(SII) were derived to determine their relationship with overall survival (OS) and

progression-free survival (PFS), using the Kaplan-Meier survival curves. The

optimal cut-off value of the systemic inflammation indicators for predicting

prognosis was assessed by receiver operating characteristic (ROC) curves.

Univariate and multivariate analyses were performed to ultimately evaluate the

factors associated with survival.

Results: The study included 239 patients with a median 14-month follow-up.

Themedian OSwas 18months (95% confidence interval [CI] = 12.0-24.0) and the

median PFS was 8.5 months (95% CI = 6.5-9.5). The optimal cut-off values for the

patients were determined by ROC curve analysis as follows: SII =395.05,

NLR=5.43 and PLR = 108.23. The area under the receiver operating

characteristic curve values for SII, NLR and PLR in disease control prediction

were 0.750, 0.665 and 0.676, respectively. Elevated systemic immune-

inflammation index (SII>395.05) and higher NLR (NLR>5.43) were

independently associated with poor OS and PFS. In multivariate analysis, Child-

Pugh class (P = 0.038), intrahepatic tumor controlled (P = 0.019), SII (P = 0.001)
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and NLR (P = 0.007) were independent prognostic factors of OS and Child-Pugh

class (P = 0.042), SII (P < 0.001) and NLR (P = 0.002) were independently

correlated with PFS.

Conclusion: NLR and SII were associated with poor prognosis in HCC patients

with BM receiving radiotherapy and might be considered reliable and

independent prognostic biomarkers for HCC patients with BM.
KEYWORDS

hepatocellular carcinoma, bone metastasis, radiotherapy, systemic immune-
inflammation index, prognostic value
Introduction

Hepatocellular carcinoma (HCC), one of the most common

cancers worldwide, is an aggressive tumor, which is prone to

extrahepatic metastasis that occurs in 25.5-38.5% of patients (1–

3). In recent years, with the continuous prolongation of the survival

period of liver cancer and the gradual progression of imaging

diagnosis technology, the positive diagnosis rate of bone

metastasis (BM) among HCC patients has increased significantly

(4–8). Those patients often suffer pain, pathological fractures, spinal

cord compression, hypercalcemia and other skeletal-related events

(SRE), seriously damaging their quality of life (9). Thus, having a

method for determining the survival in HCC patients with BM can

us anticipate the development of detrimental symptoms stated

above and prepare treatments preemptively to help mitigate them.

Recently, accumulating studies have confirmed that peripheral

blood markers have prognostic significance in patients with

malignant tumors (10–15). NLR, defined as neutrophil-to-

lymphocyte count ratio, and PLR, defined as platelet-to-

lymphocyte count ratio, are proved to be applicable biomarkers

for patient prognostic evaluation and therapeutic decision-making

(16, 17). SII is a comprehensive parameter, defined as the absolute

platelet count multiplied by the neutrophil-to-lymphocyte count

ratio (18, 19). The NLR, PLR, and SII are sensitive inflammatory

markers in peripheral blood that can predict poor outcomes and

prognosis for HCC patients who underwent surgical resection (20–

22), liver transplantation (23, 24), stereotactic ablative radiation

therapy (25), transarterial chemoembolization (26) or sorafenib

treatment (27).

However, there are still much to learn about the prognostic

potential of systemic inflammation biomarkers on HCC patients

treated with palliative radiation therapy for bone metastases.

Therefore, investigating the clinical significance of systemic

Immune-Inflammation markers in those patients can further

deepen our understanding of tumor inflammation and help us

manage the wellbeing of our patients better.

In this retrospective study, our main purpose is to investigate

the prognostic value of inflammatory indexes (NLR, PLR, and SII)
0255
before radiotherapy for predicting survival outcomes in HCC

patients with BM.
Materials and methods

Patients

Patients who were diagnosed with HCC with bone metastases

between January 2017 and December 2021 and received

radiotherapy for bone metastases at Zhongshan Hospital, Fudan

University were retrospectively identified. The eligibility criteria

were as follows: (1) Clinical diagnosis or pathologically confirmed

hepatocellular carcinoma and no coinciding other malignancy; (2)

Computed tomography (CT), magnetic resonance imaging (MRI),

or bone scan evidence of bone metastasis at the index site; (3)

Child-Turcotte-Pugh (CTP) class A or B liver function; (4) over

the age of 18. The exclusion criteria were as follows: (1) pregnant

or lactating women; (2) combined with other serious

complications; (3) with serious infection or bleeding disease; (4)

using immunosuppressive or anti-inflammatory drugs before

treatment; (5) incomplete or absent follow-up. Ethics approval

for the use of human subjects was obtained from the research

ethics committee of Zhongshan Hospital, and informed consent

was obtained from each patient.
Data collection

Demographic information and tumor variables of all patients

were collected, including gender, age, Eastern Cooperative

Oncology Group performance status (ECOG PS), HCC etiologic

history, liver functionality, sites and number of bone metastases,

other distant metastatic sites, serum ALP and AFP and blood cell

counts. Among them, blood information such as platelet(P),

neutrophil (N), and lymphocyte (L) were collected from reports

of routine blood samples performed within one week before the

radiotherapy for bone metastases.
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Treatment and follow-up

The treatments were administrated as described previously

according to our institutional protocol (28). All patients

underwent external beam radiotherapy with linear accelerator

beam energies ranging from 6–15 megavolts (MV). Each

radiation dose was administered using the ONCOR Avant-Garde

Linear Accelerator (Siemens Medical Solutions, Inc. Oncology Care

Systems Group). The types and modalities of radiation therapy were

chosen based on the location and size of the lesions as well as the

general condition of the patients. The bone metastatic lesions were

scheduled the full radiation dosage at 28-60 Gy in 5-30 fractions.

All patients were assessed via blood examination, CT, MRI, and

bone scan at 1 to 3 months after radiotherapy completion and every

3 months thereafter. Survival data was followed up by telephone

and email 3-monthly until December 2021 to understand the

patient’s survival status, tumor recurrence, or time to metastasis.

Overall survival (OS) was defined as the time from the initiation of

radiotherapy for bone metastases to death or the last follow-up, and

progression-free survival (PFS) was calculated from the time from

the first day of radiotherapy for bone metastases to recurrence and

deterioration, death, or final follow-up.
Statistical analysis

The SII, NLR, and PLR were calculated as follows: SII = P ×N/L,

NLR = N/L, and PLR = P/L. All statistical analyses were performed

using SPSS version 26.0 (IBM, Armonk, NY, USA). The continuous

variables were presented as the median ± interquartile range (IQR).

The categorical variables were described by numbers and percentages.

Patient characteristics were examined using the c2 test or Fisher exact
test. OS and PFS were assessed with the Kaplan-Meier to analyze the

survival probability, and Log–rank test was used to calculate the

significance of differences. Cox proportional hazard model was

applied for the univariate and multivariate analyses to calculate the

hazard ratios (HRs) and 95% confidence intervals on survival

outcomes. Variables with P values <0.1 in univariable analyses were

selected for multivariable analyses. Receiver operating characteristic

(ROC) curve analysis was performed to determine the optimal cut-off

values of serum biomarkers in predicting patient survival based on the

Youden index. The area under the curve (AUC) was calculated to

evaluate the discriminatory power. A two-tailed P value less than 0.05

was considered statistically significant in the study.
Results

Patient characteristics

The clinical characteristics of all patients are shown in Table 1,

who were diagnosed with HCC with bone metastases between

January 2017 and December 2021 in Zhongshan Hospital, Fudan

University (Shanghai, China). A total of 239 patients with a median

age of 58 years were retrospectively identified; 89.1% were male (213/

239) and 23.6% were female (26/239). Among them, 96.7% (231/239)
Frontiers in Oncology 0356
had an ECOG PS score of 0–1, 77.8% (186/239) were positive for

hepatitis B virus, and 3.8% (9/239) for hepatitis C virus, 95.8% (229/

239) and 4.2% (10/239) patients were Child-Pugh class A and B,

respectively. There were 20.5% (49/239) patients diagnosed with bone

metastases at the same time of diagnosis of HCC. The median

radiation dose was 40 Gy (IQR, 30-45 Gy), delivered in 10-20

fractions. In addition to bone metastases, 46% of patients (110/239)

had other sites of distant metastases, such as lung and adrenal gland.

The blood characteristics of all patients are shown in Table 2. The

median SII, NLR, and PLR were 705.05(IQR, 298.28-783.23), 4.73

(IQR, 2.38-6.00) and 163.56 (IQR, 95.12-196.67).
Sites of bone metastases and number
of lesions

In 239 patients, a total of 389 bone metastatic sites were

identified. Sites of bone metastases for all patients were shown in

Figure 1. The most common site of bone metastases was the spine

(66%), followed by ribs (32%) and pelvis (29%). One hundred fifty-

two patients (64%) had a single bone metastatic site, while the other

patients (36%) had more than one bone lesion.
Optimal cut-off analysis

The optimal cut-off values for the patients were determined by

ROC curve analysis (Figure 2) as follows: SII =395.05, NLR=5.43

and PLR = 108.23. In disease control prediction, the area under the

receiver operating characteristic curve values for SII, NLR, and PLR

were 0.750, 0.665 and 0.676, respectively. Consequently, patients

were stratified into two groups (low and high groups) based on the

optimal cut-off value of each index.
Overall survival analysis

The median follow-up duration was 14 months. The median

overall survival was 18 months (95%CI, 12.0-24.0). The 1-,2-,3-year

OS rate was 58.9%, 44.6%, 42.1%, respectively.

Compared with the low SII group, the high SII group had inferior

survival outcomes. Themedian OS of the low SII group was statistically

higher than that of the high SII group (NR vs. 16 months, P = 0.015;

Figure 3A). The median OS of the low NLR group was 29 months,

significantly higher than the 9 months of the high NLR group (P =

0.011; Figure 3B). However, there was no significant difference between

low PLR and high PLR group (P=0.083; Figure 3C).

A total of 24 variables were applied for univariate Cox regression

analysis, and P-values less than 0.1 were included in the multivariable

analysis. For OS, univariate analysis indicated that ECOG performance

status (P = 0.018), Child-Pugh class (P < 0.001), multiple intrahepatic

tumors (P = 0.086), intrahepatic tumor controlled (P = 0.034), AFP

level (P < 0.001), ALP level (P = 0.001), ALT level (P = 0.011), AST level

(P = 0.007), SII (P =0.018), NLR (P = 0.014), and PLR (P = 0.092) were

statistical prognostic factors. Multivariate analysis determined that

Child-Pugh class (P = 0.038), intrahepatic tumor controlled (P =
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0.019), SII (P = 0.001) and NLR (P = 0.007) were independent

prognostic factors (Table 3).
Progression-free survival analysis

The median progression-free survival was 8.5 months (95%CI, 6.5-

9.5). The 1- and 2-year PFS rate was 36.8% and 21.2%, respectively.

Regarding survival outcomes of different groups, the median PFS

of the low SII group was statistically higher than that of the high SII

group (21 vs. 6 months, P < 0.001; Figure 4A). The median PFS of the

low NLR group was 11.5 months, which was significantly extended

than the 4.5 months of the high NLR group (P < 0.001; Figure 4B). The

median PFS of the low PLR group was 13 months, significantly higher

than the 6.5 months of the high PLR group (P < 0.001; Figure 4C).

The result of the univariate analysis revealed that ECOG

performance status (P = 0.052), etiology (P = 0.028), Child-Pugh class

(P = 0.007), intrahepatic tumor controlled (P = 0.014), extraosseous

metastases (P = 0.008), multiple bone metastases (P = 0.099), AFP level

(P = 0.011), ALT level (P = 0.089), SII (P < 0.001), NLR (P < 0.001), and

PLR (P < 0.001) were significant risk factors for PFS. Multivariate

analysis determined that Child-Pugh class (P = 0.042), SII (P < 0.001)

and NLR (P = 0.002) were independently associated with PFS (Table 4).
Discussion

High NLR, PLR, and SII have been associated with poor survival

in individuals with several solid tumors, including lung cancer,

gastric cancer, colorectal cancer, and pancreatic cancer (12, 18, 29).

High NLR and PLR correspond to worse OS and PFS in geriatric

patients with HCC who underwent resection (29, 30). An elevated

NLR and PLR independently predicted higher mortality in NSCLC

patients treated with immunotherapy (11). NLR is an objective and

valuable inflammatory marker that can predict survival outcomes

and liver toxicity in HCC patients treated with SBRT. Likewise,

post-PLR ≥263.0 was a prognostic factor of inferior PFS and OS in

small hepatocellular carcinoma patients treated with SBRT (31). SII

could be considered a combination of NLR and PLR and thus might

be a better predictive biomarker, which has been proven to be an

independent predictor in patients with HCC who received

sequential therapy with sorafenib and regorafenib (32). In a meta-

analysis comprising 2796 HCC patients, the results revealed that

elevated pre-treatment SII was related to lower OS (HR:1.54, P <

0.001) and earlier time to recurrence (HR:1.77, P < 0.001) (33).
TABLE 1 Patient and treatment characteristics.

Variable n or median % or IQR range

Age, years 58 50-66

Sex

Female 26 10.9%

Male 213 89.1%

ECOG performance status

0-1 231 96.7%

≥2 8 3.3%

Etiology

B-viral 186 77.8%

C-viral 9 3.8%

Non-B, non-C 44 18.4%

Child-Pugh class

A 229 95.8%

B 10 4.2%

Recurrent HCC 49 20.5%

Number of intrahepatic tumors

single 130 54.4%

multiple 109 45.6%

Size of intrahepatic tumors (cm)

≤5 112 46.9%

>5 127 53.1%

Intrahepatic control

controlled 150 62.8%

uncontrolled 89 37.2%

Extraosseous metastases

absent 129 54.0%

present 110 46.0%

Lymph node metastasis

absent 148 61.9%

present 91 38.1%

Vascular tumor thrombus

absent 134 56.1%

present 105 43.9%

Number of BMs

single 124 51.9%

multiple 115 48.1%

Radiation dose, Gy 40 30-45

(Continued)
TABLE 1 Continued

Variable n or median % or IQR range

Fraction number 11 10-20

BED10, Gy 50.7 39.0-58.5
ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; BM, bone
metastasis; BED10, biological effective dose calculated using a/b = 10.
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While previous studies have mainly focused on HCC patients

receiving various other treatments, there are few reports on the

prognostic role of these indicators in HCC patients with BM

receiving radiotherapy. The development of bone metastasis is

considered a multi-step process, including the displacement of cancer

cells from the primary site, vascular invasion, distal capillary migration

and attachment to bone, recruitment of inflammatory factors, and

adjacent tissue invasion. Among them, systemic inflammation is an

important accelerator in the proliferation, invasion, and metastasis of

tumor cells. It plays an essential role in the tumor microenvironment,

thus influencing cancer development and therapeutic response (34, 35).

As one of the most common palliative treatments for patients with

bone metastasis, radiotherapy is a crucial treatment modality,

effectively alleviating discomfort and greatly improving quality of life

(36). Previous studies revealed that systemic inflammation would

inevitably impact radiotherapy’s efficacy (37, 38). In this study, we

evaluated the association between several immune inflammatory

parameters (NLR, PLR, SII) and clinical outcomes in HCC patients
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with BM. We demonstrated that NLR and SII were independently

associated with survival outcomes in patients after radiotherapy. The

optimal predictive potential of these biomarkers was determined based

on the ROC curve, and the patients were divided into high- and low-

value groups. Patients with NLR> 5.43 or SII >395.05 have poorer

clinical outcomes. In the multivariate cox regression analyses, the

results revealed that SII independently predicted OS (HR, 2.539; 95%

CI, 1.439–4.481; P = 0.001) and PFS (HR, 2.726; 95% CI, 1.557-4.773; P

< 0.001). NLR independently predicted OS (HR, 1.771; 95% CI, 1.171-

2.679; P = 0.007) and PFS (HR, 1.942; 95% CI, 1.268-2.973; P = 0.002).

The molecular mechanisms of the prognostic significance of NLR,

PLR, and SII for cancer patients may correlate with the function of

platelets, neutrophils, and lymphocytes, reflecting inflammatory

response and immune dysfunction. Beyond hemostasis and

thrombosis, blood platelets also play a part in numerous pathways

pivotal for cancer progression and metastasis. Research indicated that

platelets can protect tumor cells from shear forces and assault of NK

cells, and communicate with multiple growth factors, chemokines,

inflammatory factors, and other immune cells, thereby inducing tumor

cells proliferation and distant extravasation (39). Neutrophils,

considered essential for the immune surveillance of tumor cells, exert

multifaceted and sometimes opposing roles during cancer initiation,

progression and dissemination (40). Neutrophils may be

reprogrammed into a cancer-promoting state in the cancer

microenvironment. They could produce some granule proteins

(MMP-9 and ARG-1), subsequently degrading the extracellular

matrix, and suppressing antigen-presentation and T lymphocyte

activation, thereby resulting in immune escape, prompting cancer

cells evasion and decreasing sensitivity to radiation treatment (41,

42). It is well established that as one of the most vital cells of the

immune system, lymphocytes play a crucial role in tumorigenesis,

cancer progression, metastatic seeding, and therapy resistance.

Lymphocytes can directly interact with circulating tumor cells

through the FAS-FASL axis or immune-checkpoint molecules, such

as PD1-PDL1 and CTLA 4, which will induce immunosuppressive

responses, leading to enhanced survival of the tumor cells (43, 44).

Together with those findings, we can better understand the interactive

functions of the immune inflammatory biomarkers with cancer

progression and therapeutic response.

We considered several limitations to this study as follows. Firstly,

this was a real-world retrospective study from only a single center, with

a small sample size, and existing unavoidable in presence of objective

biases. Therefore, it is reasonable to conduct additional large-scale and

muti-center studies to validate the prognostic potential of immune-

inflammatory indicators. Secondly, there were measurement biases

because peripheral blood cell counts were performed only once.

Inflammatory indicators in the peripheral blood can be influenced

by infections, cirrhosis-associated hypersplenism, or medications

including steroid. Lastly, HCC patients with bone metastases often

sought treatment until significant symptoms had occurred, so we are

unable to identify the exact number of patients with bone metastases

who exhibited minor or no symptoms.

In conclusion, NLR and SII were associated with poor

prognosis in HCC patients with BM receiving radiotherapy and

might be considered reliable and independent prognostic

biomarkers for HCC patients with BM. Furthermore, the systemic
TABLE 2 Blood characteristics.

Variable n or median % or IQR range

AFP level

≤400 ng/mL 159 66.50%

>400 ng/mL 80 33.50%

ALP level

≤150 U/L 149 62.30%

>150 U/L 90 37.30%

g-GT level

≤75 U/L 113 47.30%

>75 U/L 126 52.70%

ALT level

≤40 U/L 147 61.50%

>40 U/L 92 38.50%

AST level

≤40 U/L 123 51.50%

>40 U/L 116 48.50%

HGB(g/L) 128.69 114.50-144.50

WBC(109/L) 10.3 3.96-7.23

PLT(109/L) 154.45 93.5-194.00

Neutrophil(109/L) 4.14 2.60-5.10

Lymphocyte(109/L) 1.16 0.70-1.50

SII 705.05 298.28-783.23

NLR 4.73 2.38-6.00

PLR 163.56 95.12-196.67
AFP, alpha-fetoprotein; ALP, alkaline phosphatase; g-GT, gamma-glutamyl transferase; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; HGB, hemoglobin; WBC, white
blood cell; PLT, platelet; SII, system immune-inflammation index; NLR, neutrophil-to-
lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; IQR, interquartile range.
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FIGURE 1

Sites of bone metastases in all patients.
FIGURE 2

ROC curve analysis for optimal cut-off value of SII, NLR and PLR. ROC, receiver operating characteristic; SII, systemic immune-inflammation index;
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
TABLE 3 Univariate and multivariate cox proportional hazards analysis for overall survival.

Variable
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age, years (>50) 0.950(0.492-1.833) 0.877

Sex(male) 1.144(0.717-1.826) 0.573

ECOG performance status≥2 3.417(1.233-9.465) 0.018 1.432(0.240-8.537) 0.693

Etiology(B-viral or C-viral) 1.071(0.624-1.838) 0.803

(Continued)
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TABLE 3 Continued

Variable
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Child-Pugh class(B) 5.584(2.639-11.818) <0.001 4.659(1.090-19.910) 0.038

Recurrent HCC 0.809(0.449-1.456) 0.809

Multiple intrahepatic tumors 1.435(0.951-2.165) 0.086 1.006(0.678-1.492) 0.978

Size of intrahepatic tumors (>5cm) 1.098(0.727-1.658) 0.656

Intrahepatic uncontrolled 1.615(1.037-2.516) 0.034 1.651(1.088-2.504) 0.019

Extraosseous metastases 1.069(0.707-1.616) 0.751

Lymph node metastasis 1.315(0.863-2.006) 0.203

Vascular tumor thrombus 0.846(0.555-1.290) 0.438

Multiple bone metastases 1.129(0.748-1.704) 0.564

AFP level>400 ng/mL 2.619(1.705-4.022) <0.001 1.354(0.864-2.122) 0.186

ALP level>150 U/L 2.042(1.348-3.091) 0.001 1.369(0.869-2.156) 0.175

g-GT level>75 U/L 1.405(0.930-2.123) 0.107

ALT level>40 U/L 1.721(1.134-2.611) 0.011 1.308(0.750-2.281) 0.344

AST level>40 U/L 1.765(1.166-2.670) 0.007 0.763(0.437-1.332) 0.341

Fraction number 1.012(0.978-1.048) 0.491

Fraction dose, Gy 0.898(0.723-1.116) 0.333

BED10, Gy 0.999(0.984-1.016) 0.946

SII>395.05 1.712(1.095-2.676) 0.018 2.539(1.439-4.481) 0.001

NLR>5.43 1.780(1.121-2.825) 0.014 1.771(1.171-2.679) 0.007

PLR>108.23 1.468(0.940-2.293) 0.092 0.923(0.558-1.528) 0.755
F
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ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; ALP, alkaline phosphatase; g-GT, gamma-glutamyl transferase; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; BED10, biological effective dose calculated using a/b = 10; SII, system immune-inflammation index; NLR, neutrophil-to-lymphocyte
ratio; PLR, platelet-to-lymphocyte ratio.
TABLE 4 Univariate and multivariate cox proportional hazards analysis for progression-free survival.

Variable
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age, years (>50) 0.890(0.605-1.309) 0.555

Sex(male) 1.008(0.567-1.792) 0.977

ECOG performance status≥2 2.713(0.990-7.437) 0.052 2.213(0.421-11.624) 0.348

Etiology(B-viral or C-viral) 0.631(0.419-0.952) 0.028 0.995(0.653-1.517) 0.981

Child-Pugh class(B) 3.138(1.360-7.241) 0.007 4.174(1.052-16.563) 0.042

Recurrent HCC 1.402(0.920-2.136) 0.116

Multiple intrahepatic tumors 0.924(0.649-1.316) 0.662

Size of intrahepatic tumors (>5cm) 1.151(0.812-1.632) 0.431

Intrahepatic uncontrolled 1.593(1.100-2.305) 0.014 1.359(0.894-2.066) 0.152

Extraosseous metastases 1.603(1.129-2.276) 0.008 1.477(0.990-2.206) 0.056

Lymph node metastasis 1.277(0.894-1.825) 0.179

Vascular tumor thrombus 0.916(0.644-1.303) 0.627

(Continued)
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TABLE 4 Continued

Variable
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Multiple bone metastases 1.341(0.946-1.902) 0.099 1.217(0.814-1.818) 0.339

AFP level>400 ng/mL 1.656(1.124-2.440) 0.011 1.382(0.878-2.176) 0.162

ALP level>150 U/L 1.219(0.841-1.767) 0.295

g-GT level>75 U/L 1.209(0.854-1.714) 0.285

ALT level>40 U/L 1.369(0.953-1.965) 0.089 1.067(0.695-1.637) 0.768

AST level>40 U/L 1.080(0.760-1.536) 0.667

Fraction number 0.990(0.960-1.020) 0.497

Fraction dose, Gy 1.095(0.936-1.281) 0.257

BED10, Gy 1.003(0.990-1.017) 0.612

SII>395.05 3.687(2.373-5.730) <0.001 2.726(1.557-4.773) <0.001

NLR>5.43 2.746(1.891-3.987) <0.001 1.942(1.268-2.973) 0.002

PLR>108.23 2.216(1.470-3.341) <0.001 0.897(0.544-1.478) 0.669
F
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ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; ALP, alkaline phosphatase; g-GT, gamma-glutamyl transferase; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; BED10, biological effective dose calculated using a/b = 10; SII, system immune-inflammation index; NLR, neutrophil-to-lymphocyte
ratio; PLR, platelet-to-lymphocyte ratio.
A B

C

FIGURE 3

Overall survival in HCC patients with BM treated with radiotherapy based on their systemic immune-inflammation index (A) and neutrophil-to-
lymphocyte ratio (B) and platelet-to-lymphocyte ratio (C).
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inflammation indexes are convenient and readily available

during routine clinical practice, adding no additional financial

burden to patients, so they are worthy of widespread use in

clinical practice.
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Impact of radiation on host
immune system in patients
treated with chemoradiotherapy
and durvalumab consolidation
for unresectable locally
advanced non-small cell
lung cancer

Corentin Pasquier1, Léonor Chaltiel2, Carole Massabeau1,
Audrey Rabeau3, Louisiane Lebas4, Amélie Lusque2,
Jean-Sébastien Texier5, Elizabeth Cohen-Jonathan Moyal1,6,7,
Julien Mazières3,6 and Jonathan Khalifa1,6,7*

1Department of Radiation Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de
Toulouse-Oncopole, Toulouse, France, 2Department of Biostatistics, Institut Claudius Regaud/Institut
Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France, 3Department of Thoracic
Oncology, Centre Hospitalier Universitaire de Toulouse, Hôpital Larrey, Toulouse, France,
4Department of Pulmonology, Centre Hospitalier Intercommunal des Vallées de l’Ariège (CHIVA),
Saint-Jean-de-Verges, France, 5Department of Nuclear Medicine, Institut Claudius Regaud/Institut
Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France, 6Université de Toulouse III Paul
Sabatier, Toulouse, France, 7Institut National de la Santé et de la Recherche Médicale U1037, Centre
de Recherche contre le Cancer de Toulouse, Toulouse, France
Background: The optimal modalities of radiotherapy when combining

concurrent chemoradiation (CCRT) and immunotherapy (IO) for locally

advanced non-small cell lung cancer (LA-NSCLC) remain to be determined.

The aim of this study was to investigate the impact of radiation on different

immune structures and immune cells in patients treated with CCRT followed by

durvalumab.

Material and methods: Clinicopathologic data, pre- and post-treatment blood

counts, and dosimetric data were collected in patients treated with CCRT and

durvalumab consolidation for LA-NSCLC. Patients were divided into two groups

according to the inclusion (NILN-R+) or not (NILN-R−) of at least one non-

involved tumor-draining lymph node (NITDLN) in the clinical target volume

(CTV). Progression-free survival (PFS) and overall survival (OS) were estimated

by the Kaplan–Meier method.

Results: Fifty patients were included with a median follow-up of 23.2 months

(95% CI 18.3–35.2). Two-year PFS and 2-year OS were 52.2% (95% CI 35.8–66.3)

and 66.2% (95% CI 46.5–80.1), respectively. In univariable analysis, NILN-R+

(hazard ratio (HR) 2.60, p = 0.028), estimated dose of radiation to immune cells

(EDRIC) >6.3 Gy (HR 3.19, p = 0.049), and lymphopenia ≤ 500/mm3 at IO

initiation (HR 2.69, p = 0.021) were correlated with poorer PFS; lymphopenia ≤
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500/mm3 was also associated with poorer OS (HR 3.46, p = 0.024). In

multivariable analysis, NILN-R+ was the strongest factor associated with PFS

(HR 3.15, p = 0.017).

Conclusion: The inclusion of at least one NITDLN station within the CTV was an

independent factor for poorer PFS in the context of CCRT and durvalumab for

LA-NSCLC. The optimal sparing of immune structures might help in achieving

better synergy between radiotherapy and immunotherapy in this indication.
KEYWORDS

radiotherapy, immunotherapy, non-small cell lung cancer (NSCLC), tumor-draining
lymph nodes (TDLN), EDRIC, lymphopenia, elective node irradiation
Introduction

The most important improvement in patients with unresectable

stage III non-small cell lung cancer (NSCLC) was recently obtained

by the addition of consolidation immunotherapy (durvalumab) to

concurrent chemoradiation (CCRT), which now constitutes the

standard of care (1, 2). However, the optimal radiation therapy

regimen in the context of immunotherapy remains to be determined.

One of the immunosuppressive effects of radiotherapy is the

direct depletion of circulating lymphocytes or progenitors in

lymphoid organs (3–5). Before the era of immunotherapy (IO),

several studies highlighted the detrimental impact of lymphopenia

on patients treated by CCRT for unresectable LA-NSCLC (5–8).

Several models have been proposed to estimate the dose delivered to

circulating immune cells. Jin et al. developed a three-step model to

calculate the estimated dose of radiation to immune cells (EDRIC)

during thoracic radiotherapy, assuming the following: a) the dose to

circulating immune cells including rapidly circulating ones in the

heart, lung, and blood vessels and slowly circulating ones in the

lymphatic system and blood reservoirs (a portion of veins/

capillaries) is a surrogate for the EDRIC; b) at each fraction, the

radiation dose is uniformly delivered to all cells for rapidly

circulating ones and only to those in the irradiated volume for

slowly circulating cells. In this model, the blood dose relating to the

contribution of a given organ is approximated by its mean organ

dose, the percentage of cardiac output, the percentage of blood

volume it receives, the time for one blood circulation, the irradiation

time, and the number of fractions. Second, the equivalent uniform

dose (EUD) is determined from a blood dose/volume histogram

(percentage of blood volume irradiated at a given dose). Third, the

EDRIC is the sum of the EUDs of each organ. In summary, the

EDRIC can be approximated as a function of the mean heart dose,

the mean lung dose, the mean body dose, and the number of

fractions (9). In a secondary analysis of the RTOG 0617 trial, they

showed that a higher EDRIC was significantly associated with

poorer outcomes (10). The model was adjusted and externally

validated in a retrospective cohort of stage III NSCLC following

definitive CCRT (11). In addition, EDRIC was negatively associated

with lymphocyte and neutrophil counts. More recently, the impact
0266
of lymphopenia (12–14) and EDRIC (15) on outcomes has been

suggested in the context of durvalumab consolidation.

As the tumor-draining lymph nodes (TDLNs) are the main sites of

lymphocyte priming, their sparing in the context of radiotherapy and

IO should be addressed. In the context of high dose per fraction,

preclinical models have established the deleterious effect of TDLN

irradiation on the radiation-induced anti-tumor immune response,

whether or not it is associated with immune checkpoint inhibitors (16–

18). However, the impact of radiation dose on non-involved tumor-

draining lymph nodes (NITDLNs) as well as other “immune” organs at

risk (iOARs), such as bone marrow, spleen, and immune cells in the

context of conventionally fractionated CCRT and durvalumab

consolidation for stage III NSCLC, remains to be established.

Therefore, the aim of this study was to assess the impact of

radiation on different immune structures including NITDLNs and

iOARs with regard to clinical outcomes in a cohort of patients

treated by CCRT followed by durvalumab.
Materials and methods

Study population

Between January 2015 and March 2022, patients with

unresectable LA-NSCLC who underwent platinum-based CCRT

followed by durvalumab consolidation were retrospectively

analyzed through the electronic database of a Comprehensive

Cancer Center (xxx). Inclusion criteria were as follows: 1)

histologically documented NSCLC; 2) imaging evaluation including

at least computed tomography (CT) of the chest, abdomen, and pelvis

and/or F-18 fluorodeoxyglucose positron emission tomography/

computed tomography (18F FDG-PET/CT) and brain CT or

magnetic resonance imaging (MRI); 3) diagnosis of unresectable

locally advanced disease; 4) treatment with platinum-based CCRT

(at least two cycles concurrent with radiotherapy) and initiation of

durvalumab consolidation therapy (10 mg/kg every 2 weeks or 1,500

mg every 4 weeks) if no disease progression after CCRT; 5) complete

blood counts accessible at baseline and follow-up. Patients who

underwent sequential chemoradiotherapy were excluded.
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This study was approved by the institutional review boards of

our institution. Patients received a letter detailing the aim of the

study and the use of data collection and could refuse inclusion at

any time, but informed consent was not necessary because of the

retrospective nature of the study.
Data collection

Demographics
Patient characteristics such as age, WHO performance status,

clinical staging (TNM), histology, PD-L1 expression, and

mutational status were collected. Standardized uptake value

(SUV) max and SUV peak were evaluated from 18F FDG-PET/CT

of eligible patients by a single physician.
Radiotherapy data
Treatment was delivered by intensity-modulated radiation

therapy (IMRT) with volumetric modulated arc therapy (VMAT),

and motion was managed by using 4D-CT and motion-adapted

gross tumor volume (GTV) in all patients. Target volumes for the

whole cohort were based on the European guidelines (19–21). The

lung window setting on planning CT scan was used to delineate the

GTV of the primary tumor. Depending on the histology, a 5–8-mm

expansion was made and edited accounting for the surrounding

anatomy to create the clinical target volume (CTV) of the primary

tumor. Lymph nodes were included in target volumes in the event

of enlarged and/or FDG-avid nodes (21). Nodal CTV was defined as

the whole lymph node station(s) of the involved node(s). A 5-mm

margin was applied around the CTV to create the planning target

volume (PTV) in all patients. Patients were treated with curative

intent radiotherapy, most commonly to 66 Gy in 2-Gy fractions,

prescribed on the median of the PTV.

NITDLNs were retrospectively segmented in eligible patients by

a single physician. Lymph node stations were defined according to

the Japan Lung Cancer Society atlas (22). TDLNs were defined

according to the topography of the primary tumor (23–25): stations

10/11R, 7, 4R, and 2R for right upper lobe tumors; stations 10/11R,

8, 7, 4R, and 2R for middle lobe or right lower lobe tumors; stations

10/11L, 7, 2L, 4L, 5, and 6 for left upper lobe tumors; stations 10/

11L, 7, 2L, 4L, 5, 6, and 8 for left lower lobe tumors.

Patients were divided into two groups: 1) patients with at least

one NITDLN station included in the CTV (radiation to non-

involved lymph node (NILN-R+)) and 2) patients with no

NITDLN station included in the CTV (NILN-R−).

In addition, we retrospectively delineated the thoracic vertebrae

from T1 to T12 and the spleen on planning CT scans.

All dosimetric parameters were extracted from dose–volume

histograms available in our planning system (Eclipse®, Varian, Palo

Alto, CA, USA).

Biological data
White blood cell (WBC) count, absolute lymphocyte count

(ALC), absolute neutrophil count (ANC), and neutrophil-to-

lymphocyte ratio (NLR) were collected from complete blood
Frontiers in Oncology 0367
count before treatment, at the end of CCRT and the initiation of

consolidative immunotherapy (durvalumab). ALC nadir was also

reported. Lymphopenia was graded according to the Common

Terminology Criteria for Adverse Events (CTCAE v5.0). A cutoff

of 500/mm3 was chosen as clinically relevant in this cohort.

The lymphocyte variation rate (LVR) from baseline to the end

of CCRT was calculated according to the following equation:

(ALC   end  CCRT − ALC   baseline)
ALC   baseline

 �   100:
Calculation of EDRIC
EDRIC was calculated by using dosimetric data including mean

heart dose (MHD), mean lung dose (MLD), mean body dose

(MBD), and the number of fractions as reported by Ladbury et al.

(11):

EDRIC = 0:12�MLD + 0:08�MHD

+   0:45   +   0:35� 0:85� #of   fractions
45

� �1=2
" #

�MBD :

With the use of data from Jin et al. and Ladbury et al. (10, 11),

the 6.3-Gy cutoff was used to split the cohort into two groups.
Outcomes and follow-up

Overall survival (OS) was defined as the time from initiation of

durvalumab to death or the last follow-up (censored data).

Progression-free survival (PFS) was defined as the time from

initiation of durvalumab to progression or death. Patients still alive

and without recurrence were censored at the last follow-up. Time to

local recurrence (TLR) was defined as the time from initiation of

durvalumab to local recurrence. Patients who did not experience local

recurrence as the first event were censored at the date of the first event

(distant recurrence or death) or the last follow-up.

Controlled disease after CCRT was confirmed by CT in all

patients. During consolidation IO, patients were monitored by full-

body CT scan and clinical examination every 3 months. At the end

of durvalumab or after confirmation of the first disease progression,

follow-up was at the discretion of the treating oncologist.

Tumor response was evaluated according to the Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1 (26).

Statistical analysis

Data were summarized by frequency and percentage for

qualitative variables and by median and range for continuous

variables. Groups were compared by using the chi-square or

Fisher’s exact test for qualitative variables and the Kruskal–Wallis

test for continuous variables. Correlations between continuous

variables were calculated with Spearman’s coefficient.

All survival times were estimated by the Kaplan–Meier method

with 95% confidence intervals (CIs). In univariable analyses, p-
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values were calculated by using the Cox proportional hazards model

for continuous variables and the log-rank test for qualitative

variables, and hazard ratios (HRs) with 95% confidence intervals

were estimated with the Cox proportional hazards model for each

variable. Cox proportional hazards model was also used to perform

multivariable analyses. HRs with 95% confidence intervals were

estimated for each variable.

All statistical tests were two-sided, and p-values<0.05 were

considered significant. No adjustment was made for multiple

comparisons. Statistical analyses were conducted by using Stata®

version 16.
Results

Patient characteristics

In total, 50 patients were included. The baseline and treatment

characteristics of the population are summarized in Table 1. Of the

TABLE 1 Patients characteristics.

Baseline characteristics

Age at initial diagnosis Median, years (Rang

Sex
Male
Female

Smoking history
Current
Former
Never

History of previous neoplasia
Yes
No

ECOG PS
0
1

Tumor histology
Adenocarcinoma
Squamous cell

Other

PDL1 Expression
< 1%
≥ 1%

Unknown

Overall stage (AJCC 8th)

II
IIIA
IIIB
IIIC

Chemotherapy regimen

Carboplatin + Vinorelb
Cisplatin + Vinorelbi

Carboplatin + Pemetre
Cisplatin + Pemetrex

Radiation total dose and regimen

66 Gy / 33 fx
64 Gy / 32 fx
62 Gy / 31 fx
60 Gy / 30 fx
55 Gy / 20 fx

Duration of CCRT Median, days (range

Time interval between CCRT and durvalumab initiation Median, days (range

Response to CCRT
Stable disease
Partial response

CCRT, concurrent chemoradiotherapy.
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patients, 52% (n = 26/50) had adenocarcinoma histology, and 72% (n

= 36) had stage IIIA or IIIB disease. PD-L1 expression was ≥1% in 37

patients. Most patients were treated with carboplatin-based

concurrent chemoradiotherapy (58%, n = 29), and the median

number of cycles of chemotherapy was 4 (range, 3–6). All patients

were treated with IMRT and image-guided radiation therapy (IGRT).

The median dose to the PTV was 66 Gy (55–66 Gy) with a median

dose per fraction of 2 Gy (2–2.75 Gy). Eleven patients (22%) had

NILN-R+. The median number of irradiated non-involved station(s)

was 1 (1–3), and the most common stations targeted were 7, 4, and 2.

Forty-two patients (84%) had a partial response at the end of CCRT.

All patients received durvalumab as consolidative radiotherapy, and it

was started at a median time of 34 days from the end of CCRT.
Dosimetric data

In the whole cohort, the median total PTV was 326 cm3 (114.1–

1,284 cm3); mean heart, lung PTV, and body dose were 9.4 Gy (0.8–
Total / N =50 NILN-R-
n = 39

NILN-R+
n = 11

p-value

e) 61,5 (36 – 75) 61 (36-73) 68 (49-75) 0.497

38 (76%)
12 (24%)

30 (77%)
9 (23%)

8 (73%)
3 (27%)

1

12 (24%)
36 (72%)
2 (4%)

9 (23%)
29 (74%)
1 (3%)

3 (27%)
7 (64%)
1 (9%)

0.438

10 (20%)
40 (80%)

8 (20%)
31 (80%)

2 (18%)
9 (82%)

1

18 (36%)
32 (64%)

14 (36%)
25 (64%)

4 (36%)
7 (64%)

1

26 (52%)
21 (42%)
3 (6%)

21 (54%)
15 (39%)
3 (7%)

5 (46%)
6 (54%)

0

0.769

6 (12%)
37 (74%)
7 (14%)

5 (13%)
28 (72%)
6 (15%)

1 (9%)
9 (82%)
1 (9%)

1

3 (6%)
19 (38%)
17 (34%)
11 (22%)

2 (5%)
12 (31%)
15 (39%)
10 (25%)

1 (9%)
7 (64%)
2 (18%)
1 (9%)

0.186

ine
ne
xed
ed

28 (56%)
19 (38%)
1 (2%)
2 (4%)

21 (54%)
16 (41%)
1 (2%)
1 (2%)

3 (27%)
7 (64%)
1 (9%)

0

0.529

34 (68%)
5 (10%)
1 (2%)
8 (16%)
2 (4%)

28 (72%)
3 (7%)
1 (3%)
6 (15%)
1 (3%)

6 (55%)
2 (18%)
0 (0%)
2 (18%)
1 (9%)

0.297

) 86 (52 – 147) 85 (52 – 147) 92 (71 – 130) 0.468

) 34 (6 – 81) 34 (13 – 81) 34 (6 – 54) 0.504

8 (16%)
42 (84%)

6 (15%)
33 (85%)

2 (18%)
9 (82%)

1
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17.9), 12.2 Gy (5.6–19.2), and 7.1 Gy (2.7–12), respectively. Median

EDRIC was 7.6 Gy (2.8–11.6). Of the patients, 72% (36/50) had

EDRIC > 6.3 Gy. Forty-two patients (84%) had NITDLNs available

for dosimetric analysis because eight patients in the NILN-R− group

had all the TDLNs involved. The median mean dose to NITDLNs

was 40.4 Gy (25.8–64.3) in the NILN-R+ group vs. 23.2 Gy (3.1–

58.9) in the NILN-R− group (p = 0.002).

Dosimetric data are summarized in Table 2.
Biological data

Median ALC at baseline, at the end of CCRT, and IO initiation

was 1,715/mm3 (628–3,060), 495/mm3 (130–1,500), and 705/mm3

(175–1,960), respectively. Median NLR at baseline, at the end of

CCRT, and IO initiation was 2.75 (0.9–10.5), 5.46 (2–24.6), and 4.28

(1.4–16.2), respectively. Eleven patients (22%) experienced
TABLE 2 Dosimetric data.

Dosimetric parameters Total (N = 50)

Volume of PTV
(median, cm3) (range)

326 (114.1 – 1284) 352.

Volume of tumor GTV
(median, cm3), (range)

52.0 (0.4 - 837.5) 47.

Mean heart dose
(median, Gy) (range)

9.4 (0.8 – 17.9) 8.

Mean lung dose
(lung minus PTV)
(median, Gy) (range)

12.2 (5.6 – 19.2) 12

Mean spleen dose
(median, Gy) (range)

0.3 (0 – 2.8)

Mean dose to T1-T12
(median, Gy) (range)

11.1 (2.8 – 22.6) 11

Mean body dose
(median, Gy) (range)

7.1 (2.7 – 12) 7

EDRIC
(median, Gy) (range)

7.6 (2.8 – 11.6) 7.

EDRIC
≤ 6.3 Gy (n, %)
> 6.3 Gy (n, %)

14 (28%)
36 (72%)

Volume NITDLN
(median, cm3) (range)

26.5 (0 – 132.1) 26

Dose NITDLN Total (N =41) NI

Mean dose Gy
(median, Gy) (range)

28.9 (3.1 – 64.3) 23

V10Gy %, (range) 76.4 (2.7 – 100) 74.

V20Gy %, (range) 59.3 (0.0 – 100) 51.

V30Gy %, (range) 40.3 (0.0 – 100) 36

V40Gy %, (range) 31.1 (0.0 – 100) 18

V50Gy %, (range) 20.1 (0.0 – 100) 13

NILN-R+, inclusion of at least one non-involved tumor draining lymph node; NITDLN, non-in
lymphocyte count.
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lymphopenia ≤ 500/mm3 at IO initiation. Median nadir

lymphopenia was 480/mm3 (130–1,215). Twenty-seven (54%)

patients experienced grade 3 or 4 (G3/4) lymphopenia. The

median LVR was −71.7% (−84.6%; −26.7%). No clinical/

dosimetric difference was found between patients with ALC ≤

500/mm3 and patients with ALC > 500 mm3 at IO initiation.

Patients with ALC ≤ 500/mm3 at IO initiation had significantly

lower ALC at baseline and the end of CCRT when compared to

patients with ALC >500 mm3, but both groups had a similar LVR

(Supplementary Table 1). Similarly, no clinical/dosimetric

difference was found between patients with grade 1/2

lymphopenia at nadir and patients with grade 3/4 lymphopenia.

Spearman’s correlation was weak between the LVR and any

clinical/dosimetric relevant variables (Supplementary Table 2).

There was no association between the LVR and the number of

concurrent chemotherapy cures (LVR of −71.7% (−84.6; −26.7)

versus –71.7% (−84.3; −42.2) for 1–2 versus 3 cures, respectively)
NILN-R-
(N=39)

NILN-R+
(N=11) p-value

2 (114.1 – 1284) 305.8 (203.3 – 698) 0.824

5 (0.4 – 837.5) 60.3 (2.4 – 266.5) 0.7

2 (0.8 – 17.9) 10.7 (1.7 – 15) 0.787

.6 (5.6 – 19.2) 11.2 (8.4 – 16.4) 0.218

0.3 (0 – 2.8) 0.3 (0.1 – 1.7) 0.911

.4 (2.8 – 22.5) 10.9 (5.4 – 16.3) 0.386

.3 (2.7 – 12) 6.2 (3.9 – 10.5) 0.467

8 (2.8 – 11.6) 6.8 (4.2 – 10.6) 0.355

10 (26%)
29 (74%)

4 (36%)
7 (64%)

0.475

.3 (0 – 132.1) 31 (6.5 – 90.5) 0.297

LN-R- (N=31) NILN-R+ (N=11) p-value

.2 (3.1 – 58.9) 40.4 (25.9 – 64.3) 0.002

2 (2.7 – 100.0) 89.9 (43.8 – 100.0) 0.112

7 (0.0 – 100.0) 76 (42 – 100.0) 0.014

.4 (0.0 – 99.8) 66.7 (34.4 – 100) 0.006

.9 (0.0 – 98.4) 57 (19.8 – 100) 0.001

.5 (0.0 – 92.7) 49.2 (13.2 – 100) 0.001

volved tumor draining lymph node; EDRIC, estimated dose to immune cells; ALC, absolute
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nor between the LVR and the total prescribed dose (LVR of –71.7%

(−84.3; −29.5) versus −71.7% (−84.6; −26.7) for dose< 66 Gy versus

dose of 66 Gy, respectively).
Survival outcomes

The median follow-up time was 23.2 months (95% CI 18.3–

35.2 months).

Fourteen patients (28%) had died at the cutoff date for analysis.

ThemedianOSwas not reached, and the 2-year OS was 66.2% (95%CI

46.5–80.1). In univariable analysis, previous history of neoplasia (HR

4.44, 95% CI 1.27–15.5, p = 0.011) and lymphopenia ≤ 500/mm3 at IO

initiation (HR 3.46, 95% CI 1.10–10.87, p = 0.024) were significantly

associated with poor OS. In multivariable analysis, the results were

similar, but the associations were not significant (Table 3).

At the time of analysis, 24 patients experienced disease

progression or death. The median PFS was 31.4 months (95% CI

14.0–not reached). NILN-R+ (HR 2.60, 95% CI 1.08–6.27, p = 0.028),

G3/4 lymphopenia at nadir (HR 2.73, 95% CI 1.09–6.82, p = 0.026),

lymphopenia ≤ 500/mm3 at IO initiation (HR 2.69, 95% CI 1.12–6.46,

p = 0.021), and EDRIC > 6.3 Gy (HR 3.19, 95% CI 0.94–10.82, p =

0.049) were associated with worse PFS in univariable analysis

(Figure 1). In the univariable Cox regression model for continuous

variables, tumor SUVmax (HR 1.04, 95% CI 1.00–1.08, p = 0.030),

ALC at IO initiation (HR 0.85, 95% CI 0.72–1.00, p = 0.047), and

nadir ALC (HR 0.79, 95% CI 0.63–0.99, p = 0.038) were significantly

associated with PFS. The multivariable analysis, including NILN-R+,

lymphopenia ≤ 500/mm3 at IO initiation, EDRIC > 6.3 Gy, and

SUVmax, revealed that NILN-R+ was the strongest factor

associated with PFS (HR 3.15, 95% CI 1.23–8.10, p = 0.017).

SUVmax was still a prognostic factor (p = 0.038), and there was a

trend toward worse PFS with EDRIC > 6.3 Gy (HR 3.03, 95%

CI 0.83–11.00, p = 0.093) (Table 4).

The association between PD-L1 status and OS or PFS was not

tested owing to the small number of PD-L1-negative patients

(n = 6).
Toxicity

At the end of CCRT, 96% had experienced at least one adverse

event of any cause and grade, and 20% (10/50) had grade 3 toxicity.

The most common grade 3 adverse event was hematologic toxicity

(90%, 9/10), and one patient experienced grade 3 esophagitis.

Immune-related adverse events (iRAEs) occurred in 66% (33/50)

of patients. No grade 4 or 5 iRAE was reported. Five patients

(15.2%) experienced grade 3 iRAE: three cases of musculoskeletal

toxicity and two cases of skin toxicity (rash). No grade 3

pneumonitis adverse event occurred in the cohort.
Discussion

In this retrospective study, we evaluated the impact of radiation

on the immune system, in the context of CCRT followed by
Frontiers in Oncology 0670
durvalumab for stage III NSCLC. One of the main findings is the

negative effect of the prophylactic radiation of at least one NITDLN

station(s) (NILN-R+). To our knowledge, this is the first study to

demonstrate the deleterious impact of radiation on NITDLNs on

outcomes in the era of durvalumab after CCRT in NSCLC. Indeed,

radiation to NITDLNs was an independent factor for worse PFS in

our cohort.

Before the era of durvalumab, involved-field radiotherapy

(IFRT) in patients treated with conformational 3D radiotherapy

(3D-CRT) was shown to be non-inferior to prophylactic irradiation

of all NITDLN stations, known as “elective nodal irradiation”

(ENI), in terms of loco-regional recurrence (27–30). In a recent

randomized trial, Nestle et al. compared two target volume

delineation strategies: one strategy based upon 18F FDG-PET/CT

only versus another combining 18F FDG-PET/CT and CT data plus

ENI. This trial was the first to show the non-inferiority of reducing

target volumes and avoiding ENI based on modern molecular

imaging staging (31). Moreover, the risk of locoregional

progression was lower in the 18F FDG-PET/CT-based target

group (14% vs. 29% at 1 year, HR 0.57; per protocol analysis).

However, it was shown that incidental dose to NITDLNs is high

when using IFRT with the 3D-CRT technique, as most of the

uninvolved nodal stations receive more than 40 Gy (32). Since the

implementation of IMRT, there has been no formal comparison of

ENI vs. IFRT. In the study by Nestle et al., as many as 50% of

patients were treated with IMRT (31). In our cohort of IMRT-only

treatment, a subgroup of patients had at least one NITDLN station

included in the CTV (e.g., in the event of NITDLNs between two

involved nodal stations). Most of them had only one station

included (64%), and the most common stations targeted

were stations 2, 4, and 7. Whether or not this strategy is safe in

the context of IMRT and consolidation IO remained to be

established; herein, we showed that NILN-R+ was associated with

worse outcomes.

These findings are in line with a disturbance of the anti-tumor

immune response due to prophylactic nodal irradiation. Several

preclinical data from TDLN irradiation support these findings.

First, some studies highlighted the key role of TDLNs in the anti-

tumor immune response (33, 34). Indeed, Dammeijer et al.

demonstrated that in the context of immune checkpoint

inhibitors, TDLNs contribute to the anti-tumor effects by

generating progenitor-exhausted T cells that seed the tumor (33).

Furthermore, they showed that PD-1/PD-L1 interactions in TDLN,

but not in the tumor, correlate with prognosis in melanoma

patients. Marciscano et al. underlined the fact that irradiation of

TDLNs restrained the adaptive immune response when stereotactic

radiation and immunotherapy were associated (16). A decrease in

tumor-infiltrating immune cell density such as CD8+ T cells and

attenuation of chemokines associated with T-cell chemoattraction

could explain this phenomenon. Similarly, Buchwald et al. found a

proliferation of tumor-specific CD8+ T cells in TDLNs following

tumor radiotherapy without treatment of lymph nodes (17). More

recently, Darragh et al. showed that ENI to a dose of 8 Gy × 3 could

disrupt the local and systemic anti-tumor response following

combined primary head and neck tumor radiation (3 × 8 Gy) and

immunotherapy (anti-CD25) mainly through a decrease in tumor
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TABLE 3 Univariable and multivariable analyses for overall survival.

Variable
Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value

Sex
Male 1

Female 0.51 (0.11–2.29) 0.371

ECOG PS
0 1

1 1.40 (0.44–4.50) 0.569

Smoking history
Former smoker 1

Current smoker 1.55 (0.51–4.66) 0.436

History of previous neoplasia
No 1 1

Yes 4.44 (1.27–15.50) 0.011 3.0 (0.75–11.95) 0.119

Histology
Squamous cell 1

Adenocarcinoma 0.42 (0.15–1.20) 0.096

Overall stage (AJCC 8th)
II/IIIA/IIIB 1

IIIC 2.07 (0.61–7.01) 0.230

Radiation total dose
<66 Gy 1

66 Gy 0.86 (0.27–2.79) 0.807

NILN-R+
No 1

Yes 0.95 (0.21–4.29) 0.943

Response to CCRT
Partial response 1

Stable disease 1.83 (0.57–5.86) 0.303

Grade lymphopenia (nadir)
1/2 1

3/4 2.54 (0.80–8.01) 0.103

Lymphopenia at IO initiation
>500/mm3 1

≤500/mm3 3.46 (1.10–10.87) 0.024 2.38 (0.66–8.56) 0.183

EDRIC
≤6.3 Gy 1

>6.3 Gy 2.79 (0.61–12.73) 0.168

Age* 1.07 (0.99–1.15) 0.093

SUVmax* 1.03 (0.99–1.08) 0.154

Duration of CCRT (days)* 1.00 (0.98–1.03) 0.746

PTV* 1.18 (0.98–1.41) 0.073

Mean NITDLN dose* 1.01 (0.96–1.06) 0.708

Days from CCRT to IO* 0.99 (0.95–1.04) 0.803

ALC at IO initiation* 0.81 (0.63–1.04) 0.095

Nadir lymphopenia (/mm3)* 0.72 (0.51–1.02) 0.062

NLR at baseline* 0.98 (0.76–1.27) 0.877

NLR at end of CCRT* 1.09 (0.97–1.22) 0.143

NLR at IO initiation* 1.12 (0.95–1.33) 0.173
F
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NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; NITDLN, non-involved tumor-draining lymph node; CCRT, concurrent chemoradiotherapy; IO, immunotherapy;
EDRIC, estimated dose to immune cells; ALC, absolute lymphocyte count; NLR, neutrophil-to-lymphocyte ratio; ECOG PS, Eastern Cooperative Oncology Group Performance Status; AJCC,
American Joint Committee on Cancer; PTV, planning target volume; SUV, standardized uptake value.
*Continuous variables.
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antigen-specific T-cell priming in TDLNs and consequently

decrease in circulating antigen-specific T cells (both CD4+ and

CD8+) and infiltration into the tumor microenvironment (18).

All this evidence suggests that ENI is probably not the optimal

strategy when combining radiotherapy and IO. While the PACIFIC

trial in NSCLC is the only phase III trial to have shown a benefit of the

adjunction of immune checkpoint inhibitors (ICIs) to

chemoradiotherapy for locally advanced disease, the JAVELIN trial

and the PEMBRORAD trial in locally advanced head and neck cancer

assessing the adjunction of avelumab and pembrolizumab to

chemoradiotherapy, respectively, failed to demonstrate any

improvement in outcome (35, 36), nor did the KEYNOTE-412 with

pembrolizumab in head and neck cancer (NCT03040999) and the

CALLA trial with durvalumab in cervical cancer (NCT03830866),

according to recent unpublished data (37, 38). One of the key

differences between the PACIFIC trial and the other negative trials is

the absence of extended ENI in the former, while it was systematically

used in the latter. Therefore, the sparing of uninvolved TDLNs during

the planning of radiotherapy in the context of immunotherapy could

be a promising approach to optimize such a therapeutic association,

along with other approaches such as margin reduction,

hypofractionation, or alternative radiotherapy techniques including

FLASH radiotherapy (39).

We also performed an exploratory analysis to establish a dose

cutoff that should not be exceeded in NITDLN. In univariable

analysis, no dose cutoff to NITDLNs was correlated with outcomes,

possibly due to the lack of power in our study. Interestingly, we

found that the median (incidental) dose to NITDLNs in the NILN-

R− group was 23.2 Gy. This dose obtained with IMRT is lower than

the incidental dose delivered to NITDLNs (approximately 40 Gy)
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with 3D-CRT (32). This finding underlines the fact that IMRT can

achieve better TDLN radiation dose-sparing in order to obtain a

stronger synergic effect when combined with IO.

Moreover, our analysis of a modern homogeneous cohort

treated with CCRT and consolidation IO seems to confirm the

benefit of dose reduction to circulating immune cells as suggested

by Ladbury et al. in the pre-immunotherapy era (11). At the 6.3-Gy

cutoff, EDRIC was a prognostic factor for PFS (≤6.3 vs. >6.3 Gy, p =

0.049) in univariable analysis. In multivariable analysis, there was

only a trend for significance (EDRIC > 6.3 Gy: HR 3.03, p = 0.093).

In addition, a recent retrospective study found similar results in a

cohort of 100 patients with locally advanced NSCLC treated with IO

consolidation (15). Nevertheless, McCall et al. used the equation

developed by Jin et al. by considering uniform body volume

between patients (10, 15), while we used the model developed by

Ladbury et al. with the incorporation of MBD instead of integral

total dose divided by 62 × 103. The exploration of ALC at three

different times was necessary to better appreciate our EDRIC data.

We found that ALC ≤ 500/mm3 at durvalumab initiation was a poor

prognostic factor for PFS in univariable analysis (HR 2.69, 95% CI

1.12–6.46, p = 0.021). Nadir ALC was also an important prognostic

factor, as patients who did not experience G3/4 lymphopenia had

better PFS. These results are consistent with the findings from

Friedes et al. (14). Nonetheless, except for age, baseline ALC, and

ALC at the end of CCRT, no clinical/dosimetric data were

associated with lymphopenia ≤ 500/mm3 at IO initiation in our

cohort, and no clinical/dosimetric correlation could be established

with the LVR. Especially, neither NILN-R+ nor EDRIC was

associated with lymphopenia in this cohort, perhaps because we

did not consider the dose to large vessels in the model. Indeed, Cho
B

C D

A

FIGURE 1

Main variables associated with PFS in univariable analysis. (A) NILN-R. (B) EDRIC. (C) Lymphopenia at IO initiation. (D) Grade of lymphopenia at nadir.
NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; IO, immunotherapy; EDRIC, estimated dose to immune cells; PFS,
progression-free survival.
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TABLE 4 Univariable and multivariable analyses for progression-free survival.

Variable
Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value

Sex
Male 1

Female 1.25 (0.49–3.17) 0.642

ECOG PS
0 1

1 2.04 (0.80–5.18) 0.127

Smoking history
Former smoker 1

Current smoker 1.78 (0.72–4.38) 0.205

History of previous neoplasia
No 1

Yes 1.76 (0.64–4.89) 0.269

Histology
Squamous cell 1

Adenocarcinoma 0.77 (0.33–1.78) 0.540

Overall stage (AJCC 8th)
II/IIIA/IIIB 1

IIIC 2.24 (0.90–5.57) 0.076

Radiation total dose
<66 Gy 1

66 Gy 0.74 (0.31–1.77) 0.500

NILN-R+
No 1

Yes 2.60 (1.08–6.27) 0.028 3.15 (1.23–8.10) 0.017

Response to CCRT
Partial response 1

Stable disease 1.53 (0.57–4.14) 0.398

Grade lymphopenia (nadir)
1/2 1

3/4 2.73 (1.09–6.82) 0.026

Lymphopenia at IO initiation
>500/mm3 1

≤500/mm3 2.69 (1.12–6.46) 0.021 1.93 (0.77–4.83) 0.158

EDRIC
≤6.3 Gy 1

>6.3 Gy 3.19 (0.94–10.82) 0.049 3.03 (0.83–11.0) 0.093

Age* 1.04 (0.98–1.09) 0.182

SUVmax* 1.04 (1.00–1.08) 0.030 1.05 (1.00–1.09) 0.038

Duration CCRT (days)* 1.01 (0.99–1.03) 0.350

PTV* 1.06 (0.92–1.23) 0.426

Mean NITDLN dose* 1.02 (0.99–1.06) 0.125

Days from CCRT to IO* 0.99 (0.96–1.02) 0.507

ALC at IO initiation* 0.85 (0.72–1.00) 0.047

Nadir lymphopenia (/mm3)* 0.79 (0.63–0.99) 0.038

NLR at baseline* 1.14 (0.93–1.39) 0.200

NLR at end of CCRT 1.06 (0.98–1.14) 0.155

NLR at IO initiation 1.06 (0.94–1.20) 0.346
F
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NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; NITDLN, non-involved tumor-draining lymph node; CCRT, concurrent chemoradiotherapy; IO, immunotherapy;
EDRIC, estimated dose to immune cells; ALC, absolute lymphocyte count; ECOG PS, Eastern Cooperative Oncology Group Performance Status; NLR, neutrophil-to-lymphocyte ratio; AJCC,
American Joint Committee on Cancer; PTV, planning target volume; SUV, standardized uptake value.
*Continuous variables.
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et al. found a correlation between dose to large vessels and

lymphopenia (13). Moreover, the monitoring of tumor-specific

subpopulations of lymphocytes could not be assessed. For these

reasons, we cannot rule out that the impact of radiation to

NITDLNs on the outcome is correlated with circulating tumor-

specific lymphocytes via a decrease in tumor antigen-specific T-

cell priming.

We also explored the impact of radiation dose on other iOARs

on outcomes. Dose to thoracic vertebrae was not associated with

worse outcomes or lymphopenia. Doses to the spleen were very low

in our cohort, so no correlation could be established.

This study has some limitations mainly due to its retrospective

nature and its small cohort size. Multiple comparisons have been

performed, which can inflate the alpha risk and the likelihood of

type I error. However, due to the exploratory nature of our study, no

adjustments were made for multiple comparisons, and all p-values

and confidence intervals were shown to allow readers to interpret

the results themselves according to the number of tests performed.

Therefore, our results are exploratory and need to be confirmed in a

larger cohort. However, notably, the single-center design

guaranteed homogeneity in radiotherapy techniques and follow-up.
Conclusion

In conclusion, we found that prophylactic irradiation of at least

one NITDLN was a strong independent factor for worse PFS in

patients treated with consolidation immunotherapy following

CCRT for locally advanced NSCLC. Moreover, we confirmed the

impact of lymphopenia and irradiation of immune cells (EDRIC)

on outcomes in this population. These findings lend weight to the

idea that modern radiotherapy techniques should spare host

immune structures and especially NITDLNs when combining

radiotherapy and immunotherapy for locally advanced disease.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Oncology 1074
Ethics statement

The studies involving human participants were reviewed and

approved by Institutional review boards of Toulouse Cancer

Institute. Written informed consent for participation was not

required for this study in accordance with the national legislation

and the institutional requirements.
Author contributions

Conceptualization, JK and CP; methodology, JK and CP; formal

analysis, CP, LC, AL, and JK; investigation, all; data curation, CP;

writing—original draft, CP and JK; writing—review and editing, all;

supervision, JK. All authors contributed to the article and approved

the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1186479/

full#supplementary-material
References
1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall
survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med
(2018) 379:2342–50. doi: 10.1056/NEJMoa1809697

2. Spigel DR, Faivre-Finn C, Gray JE, Vicente D, Planchard D, Paz-Ares L, et al. Five-year
survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III
non-small-cell lung cancer. J Clin Oncol (2022). doi: 10.1200/JCO.21.01308

3. Trowell OA. The sensitivity of lymphocytes to ionising radiation. J Pathol
Bacteriol (1952) 64:687–704. doi: 10.1002/path.1700640403

4. Chadha AS, Liu G, Chen HC, Das P, Minsky BD, Mahmood U, et al. Does
unintentional splenic radiation predict outcomes after pancreatic cancer radiation therapy?
Int J Radiat Oncol Biol Phys (2017) 97:323–32. doi: 10.1016/J.IJROBP.2016.10.046

5. Abravan A, Faivre-Finn C, Kennedy J, McWilliam A, van Herk M. Radiotherapy-
related lymphopenia affects overall survival in patients with lung cancer. J Thorac Oncol
(2020) 15:1624–35. doi: 10.1016/J.JTHO.2020.06.008
6. Damen PJJ, Kroese TE, van Hillegersberg R, Schuit E, Peters M, Verhoeff JJC,
et al. The influence of severe radiation-induced lymphopenia on overall survival in solid
tumors: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys (2021)
111:936–48. doi: 10.1016/J.IJROBP.2021.07.1695

7. Campian JL, Ye X, Brock M, Grossman SA. Treatment-related lymphopenia in
patients with stage III non-small-cell lung cancer. Cancer Invest (2013) 31:183–8.
doi: 10.3109/07357907.2013.767342

8. Tang C, Liao Z, Gomez D, Levy L, Zhuang Y, Gebremichael RA, et al.
Lymphopenia association with gross tumor volume and lung V5 and its effects on
non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys (2014)
89:1084–91. doi: 10.1016/J.IJROBP.2014.04.025

9. Jin JY, Hu C, Xiao Y, Zhang H, Ellsworth S, Schild SE, et al. Higher radiation dose to
immune system is correlated with poorer survival in patients with stage III non–small cell
lung cancer: a secondary study of a phase 3 cooperative group trial (NRG oncology RTOG
0617). Int J Radiat Oncol (2017) 99:S151–2. doi: 10.1016/j.ijrobp.2017.06.351
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1186479/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1186479/full#supplementary-material
https://doi.org/10.1056/NEJMoa1809697
https://doi.org/10.1200/JCO.21.01308
https://doi.org/10.1002/path.1700640403
https://doi.org/10.1016/J.IJROBP.2016.10.046
https://doi.org/10.1016/J.JTHO.2020.06.008
https://doi.org/10.1016/J.IJROBP.2021.07.1695
https://doi.org/10.3109/07357907.2013.767342
https://doi.org/10.1016/J.IJROBP.2014.04.025
https://doi.org/10.1016/j.ijrobp.2017.06.351
https://doi.org/10.3389/fonc.2023.1186479
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pasquier et al. 10.3389/fonc.2023.1186479
10. Jin JY, Hu C, Xiao Y, Zhang H, Paulus R, Ellsworth SG, et al. Higher radiation
dose to the immune cells correlates with worse tumor control and overall survival in
patients with stage III NSCLC: a secondary analysis of RTOG0617. Cancers (Basel)
(2021) 13. doi: 10.3390/CANCERS13246193

11. Ladbury CJ, Rusthoven CG, Camidge DR, Kavanagh BD, Nath SK. Impact of
radiation dose to the host immune system on tumor control and survival for stage III
non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol
Biol Phys (2019) 105:346–55. doi: 10.1016/J.IJROBP.2019.05.064

12. Thor M, Shepherd AF, Preeshagul I, Offin M, Gelblum DY, Wu AJ, et al. Pre-
treatment immune status predicts disease control in NSCLCs treated with chemoradiation
and durvalumab. Radiother Oncol (2022) 167:158–64. doi: 10.1016/J.RADONC.2021.12.016

13. Cho Y, Kim Y, Chamseddine I, Lee WH, Kim HR, Lee IJ, et al. Lymphocyte
dynamics during and after chemo-radiation correlate to dose and outcome in stage III
NSCLC patients undergoing maintenance immunotherapy. Radiother Oncol (2022)
168:1–7. doi: 10.1016/J.RADONC.2022.01.007

14. Friedes C, Chakrabarti T, Olson S, Prichett L, Brahmer JR, Forde PJ, et al. Association
of severe lymphopenia and disease progression in unresectable locally advanced non-small
cell lung cancer treated with definitive chemoradiation and immunotherapy. Lung Cancer
(2021) 154:36–43. doi: 10.1016/J.LUNGCAN.2021.01.022

15. McCall NS, McGinnis HS, Janopaul-Naylor JR, Kesarwala AH, Tian S, Stokes
WA, et al. Impact of radiation dose to the immune cells in unresectable or stage III non-
small cell lung cancer in the durvalumab era. Radiother Oncol (2022) 174:133–40.
doi: 10.1016/J.RADONC.2022.07.015

16. Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica
BJ, et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic
radiation therapy and immunotherapy. Clin Cancer Res (2018) 24:5058–71.
doi: 10.1158/1078-0432.CCR-17-3427

17. Buchwald ZS, Nasti TH, Lee J, Eberhardt CS, Wieland A, Im SJ, et al. Tumor-
draining lymph node is important for a robust abscopal effect stimulated by
radiotherapy. J Immunother Cancer (2020) 8. doi: 10.1136/jitc-2020-000867

18. Darragh LB, Gadwa J, Pham TT, Van Court B, Neupert B, Olimpo NA, et al.
Elective nodal irradiation mitigates local and systemic immunity generated by
combination radiation and immunotherapy in head and neck tumors. Nat Commun
(2022) 13:7015. doi: 10.1038/S41467-022-34676-W

19. De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C,
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It is well known that radiation therapy causes lymphopenia in patients and that

this is correlatedwith a negative outcome. Themechanism is not well understood

because radiation can have both immunostimulatory and immunosuppressive

effects. How tumor dose conformation, dose fractionation, and selective lymph

node irradiation in radiation therapy does affect lymphopenia and immune

response is an active area of research. In addition, understanding the impact of

radiation on the immune system is important for the design and interpretation of

clinical trials combining radiation with immune checkpoint inhibitors, both in

terms of radiation dose and treatment schedules. Although only a few percent of

the total lymphocyte population are circulating, it has been speculated that their

increased radiosensitivity may contribute to, or even be the primary cause of,

lymphopenia. This review summarizes published data on lymphocyte

radiosensitivity based on human, small animal, and in vitro studies. The data

indicate differences in radiosensitivity among lymphocyte subpopulations that

affect their relative contribution and thus the dynamics of the immune response.

In general, B cells appear to be more radiosensitive than T cells and NK cells

appear to be the most resistant. However, the reported dose-response data

suggest that in the context of lymphopenia in patients, aspects other than cell

death must also be considered. Not only absolute lymphocyte counts, but also

lymphocyte diversity and activity are likely to be affected by radiation. Taken

together, the reviewed data suggest that it is unlikely that radiation-induced cell

death in lymphocytes is the sole factor in radiation-induced lymphopenia.

KEYWORDS

lymphopenia, lymphocytes, radiotherapy, radiosensitivity, blood dose
1 Introduction

Radiation-induced lymphopenia (RIL) has long been observed in radiation therapy

patients (1–3) and develops in up to ~70% of patients undergoing external beam radiation

therapy (4–8). High-grade RIL has been shown to correlate with poor overall survival,

disease recurrence, and metastasis rates (9). A correlation between lymphopenia and dose
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to circulating lymphocytes has been demonstrated (e.g., (6, 8, 10–

13). Therefore, it has been speculated that lymphopenia is caused by

an increased radiosensitivity of circulating lymphocytes (7) and the

large volume of blood irradiated during radiotherapy.

Treatment delivery techniques differ in the distribution of the

low dose bath outside of the planned treatment volume and in the

duration of treatment in a fraction (10, 14, 15) resulting in different

dose distributions experienced by circulating lymphocytes (6, 16–

19). In a study of esophageal cancer, 35% of patients had grade 4

RIL when treated with concurrent chemotherapy and either

intensity-modulated photon (IMRT) or proton therapy, which

was correlated with overall survival (20). Due to the lower

integral dose, patients treated with protons had 70% less grade 4

RIL compared to IMRT. However, this was not confirmed in a study

of 150 oropharyngeal cancer patients (21) and in locally advanced

non-small cell lung cancer (NSCLC) treated with either IMRT or

proton therapy (15). Dose to lymphocytes is also influenced by

patient specific factors such as baseline levels of absolute counts and

lymphocyte subpopulations, which are known to differ between

patient groups (22), as well as fractionation and dose rate (18, 23–

27). Consequently, lymphocyte sparing radiation therapy has been

proposed (8, 28). Smaller target volumes and hypo-fractionated

regimens may be associated with higher post-treatment lymphocyte

counts. For example, during a 30-fraction treatment with 2 Gy/

fraction to a target volume of 8 cm in diameter, 95% of the

circulating blood receives doses greater than 0.5 Gy, with a mean

dose to the circulating blood greater than 2 Gy (8). Larger field sizes

increased chromosomal aberrations in circulating lymphocytes in a

prospective series of lung cancer patients treated with carbon-ion

therapy (29) and were associated with lower post-treatment

lymphocyte counts in lung cancer treated with protons (15).

There have been several other studies of field size effects on

lymphopenia in solid tumors (5, 30, 31).

Although the amount of circulating blood plays a role,

considering that only a few percent of the total lymphocyte

population is circulating, compared to those residing in organs or

lymph nodes, is not clear whether RIL is simply caused by

radiation-induced depletion of circulating lymphocytes. Radiation

has deleterious effects not only on circulating lymphocytes but also

on tumor-infiltrating lymphocytes and lymphocytes residing in

structures such as the bone marrow (32), spleen (33), and lymph

nodes (34). Lymphopenia has been shown to correlate strongly with

dose to the spleen (33, 35–37). The capillaries in the spleen are

permeable, resulting in high transit times for lymphocytes in the

spleen, which in turn results in significant dose to lymphocytes in

treatments involving the spleen. By assessing chromosome

aberrations in lymphocytes in breast cancer patients, it has been

shown that the number of lymph nodes in the field plays a

significant role (34). A correlation with bone marrow dose has

also been shown by several investigators (32, 38–41), but not by

Saito et al. (36). Lymphopenia has also been associated with lymph

node irradiation in prostate radiation therapy (42) and breast

radiation therapy (43). Consequently, dose constraints to

lymphoid organs have been proposed to mitigate lymphopenia

(44). Reduced total counts as well as counts in lymphocyte sub-
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populations were reported for colorectal cancer patients (45) and

liver SBRT patients (46).

The interaction of radiation with the immune system is complex

(47). Radiation therapy can have both immune-stimulatory (18, 48–

52) and immune-suppressive (5) effects. Radiation can promote the

release of damage-associated molecular patterns (DAMPs) and

tumor antigens via immunogenic cell death, activate the

production of type I interferon (IFN) and IFN-stimulated genes

via DNA damage that is sensed via the cGAS/STING pathway, and

activate antigen-presenting cells, including dendritic cells (DCs) and

macrophages (53). Antigen-presenting cells travel through

lymphatic vessels to the draining lymph nodes (for instance)

where they present antigens to naïve lymphocytes initiating their

differentiation into effector and memory cells. Activated

lymphocytes returnvia the blood to the tumor site where they

recognize tumor antigens and carry out various effector functions.

Radiation can also suppress the immune response via IFN-mediated

upregulation of immune checkpoint molecules (e.g., PD-L1) (54)

and by inducing immune-suppressive populations including

myeloid-derived suppressor cells. Additionally, radiation can

also directly kill immune cells and thereby modulate the

immune response.

While some patients respond favorably to immunotherapy, many

develop progressive disease (55). This has led to interest in combining

immunotherapy with radiation (56–62). Synergistic combinations of

radiation and immunotherapy have shown promise (62–66) as they

help to overcome the immunosuppressive tumor microenvironment

and thus enhance the therapeutic effect of radiation (67, 68). The

optimal sequencing of radiation with immunotherapy (18, 69–72) as

well as the best radiation modality for combination therapies (6, 16, 17,

73–76) are being studied extensively. It has even been suggested that low

dose whole-body irradiation may improve outcome after subsequent

treatment regimens due to radiation induced antigen release (52).

Furthermore, pre-clinical data suggest that nodal irradiation may

attenuate the combinatorial efficacy of immunotherapy-radiation

combination regimens (77). There are numerous clinical trials

combining radiation with immunotherapy (78).

While radiation-induced cell death is not the only key

parameter when optimizing radiation treatments in this context,

it certainly has a profound impact. Section 2 summarizes the

published methods for estimating the dose delivered to circulating

lymphocytes during radiation therapy. In section 3, studies

assessing the radiation sensitivity of lymphocytes are reviewed.
2 Estimating the dose to the blood
and to circulating lymphocytes in
radiation therapy

Under the assumption that the dose to circulating blood is a

surrogate for the dose to circulating lymphocytes, several efforts

have been made to estimate the blood dose from radiation exposure.

To estimate the cumulative blood dose from whole-body

irradiation, Molloy et al. developed a blood perfusion model in
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which the circulation was modeled in a sinusoidal motion between

the upper and lower body without regard to individual organs (79).

The blood volume was divided into discrete voxels and a statistical

dispersion was introduced to reflect the inhomogeneous blood flow

in the body. The treatment beam was simulated assuming a time-

dependent dose cloud depending on the field size and

machine motion.

Yovino et al. (7) calculated the dose to circulating blood for a

high-grade glioma patient as a function of dose rate and photon

treatment technique. The model uses the three-dimensional dose

distributions in the brain and calculates the dose to the blood

passing through the radiation field by assuming that 16% of the

cardiac output enters the brain with a total blood volume of 5 l and a

blood flow velocity of 10 mm/sec. The model includes several

simplifications, such as uniformly distributed blood flow without

whole-body blood flow dynamics. Another assumption is that blood

does not re-enter the treatment field during the duration of a single

beam and/or segment. Between beams and between treatment

fractions, the cumulative dose was calculated by convolution of

the blood dose histograms. The simulations predicted that a single

fraction of radiation would deliver 0.5 Gy to 5% of the circulating

cells. After 30 fractions, 99% of the circulating blood had received

≥0.5 Gy. Target volume and field size were the most important

parameters. This model was also used byWild et al. (8) who came to

similar conclusions.

Basler et al. (80) used dose-volume histograms for liver

treatments to estimate the dose to circulating lymphocytes in

VMAT. A mean hepatic blood flow velocity of 10 mm/s with a

total body blood volume of 5 l was considered. Cardiac output was

set at 5 l/min with a circulation time of 60 s for the total blood

volume. The model assumes that regional hepatic blood flow is

comparable in the different liver segments. Full blood mixing in

between fields or fractions was considered and the probability of re-

entering a specific liver segment and treatment field was calculated

based on the cardiac output and relative volumes of the liver

segments. The results show that the dose to the circulating

lymphocytes was mainly influenced by the beam-on time and the

target volume.

Jin et al. (81) used a similar approach as Yovino et al. to

calculate the dose to the blood using a blood flow network

consisting of the lungs, heart, large vessels, and body mass. The

blood dose and blood volume contributing to each of these

compartments during a single fraction were estimated and

converted to an equivalent uniform dose, with the total effective

blood dose being the sum of the contributions from all irradiated

organs. The model was applied to lung treatments, taking into

account mean lung dose, mean heart dose, and the integral dose.

Blood dose was correlated with radiation-induced lymphopenia.

This model was subsequently applied in other studies that

demonstrated a correlation between blood dose and lymphopenia

in non-small cell lung cancer (82), esophageal cancer (83, 84), and

breast cancer (11), especially when the blood dose was above 4

Gy (84).

The dose to the blood was also estimated to analyze the

transcriptional response of genes over time in blood samples after

irradiation in vivo (85, 86). Considering that most of the blood is
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irradiated during a 2-min treatment time, the authors determined

the mean blood dose as a function of the mean dose to the irradiated

volume, the irradiated blood volume, and the body blood volume.

Shin et al. developed a compartmental model that considers

blood flow throughout the human body based on compartments

defined by the ICRP (International Commission on Radiological

Protection) (23). The algorithm assumes a dynamic model

describing the spatio-temporal distribution of blood particles

(BPs) in organs throughout the body using a discrete-time

Markov process. Blood transit times were modeled using ICRP

reference mean transit time distributions assuming a Weibull

distribution. This was then convolved with the time-dependent

radiation field delivery. The simulations revealed different dose

levels to the circulating blood for brain irradiation compared to liver

irradiation even for similar field sizes due to the different blood flow

characteristics of the two organs. The authors also showed that the

blood dose-volume histogram is highly sensitive to changes in the

treatment time, indicating that dynamic modeling of blood flow and

radiation delivery is necessary to evaluate dose to the

circulating blood.

To add another level of complexity and accuracy, blood dose

algorithms have been developed that explicitly consider venous and

arterial vascular trees to account for inhomogeneous organ dose

distributions and blood flow dynamics. Hammi et al. (87) developed

an intracranial blood flow model based on the major cerebral

vasculature extracted from patient MRI data and extended with a

network of generic brain vessels. The brain model contains more

than 1000 vascular pathways. To determine the dose to the

circulating blood, Monte Carlo simulations track the propagation

of each individual blood particle through the brain and the time-

dependent radiation field delivery. The mean dose to the blood pool

was estimated after fractions of proton and photon therapy and

showed that the fraction of blood volume receiving any dose after

the first fraction was significantly lower for proton therapy. Higher

dose rates effectively reduced the fraction of blood irradiated to low

doses but increased the amount of blood receiving high doses. The

model was also applied by Qian et al. (13), who showed that the

treatment dose to the whole body, bone, and large blood vessels as

well as the modeled dose to circulating lymphocytes were correlated

with lymphopenia.

The internal vasculature of the adult liver, including hepatic

arterial, hepatic venous, and hepatic portal venous vessel trees, was

created within individual lobes of the ICRP adult female and male

livers by Correa-Alfonso et al. (88). For each iteration of the

algorithm, pressure, blood flow, and vessel radii within each tree

were updated as each new vessel was created and connected to a

viable bifurcation site. Liver models were created with virtual

vasculature of ~6000 non-intersecting straight cylinders

representing the circulations of the vascular tree. To combine the

vascular trees with a dynamic dose delivery model, the trees were

translated into centerlines that can be deformed to account for

patient specific organ contours and for BPs entering the liver. An

explicit simulation was implemented to track BPs along different

vascular pathways through the liver (24). The dosimetric impact of

treatment modality, delivery time, and fractionation on circulating

blood cells was quantified showing that doses are highly sensitive to
frontiersin.org
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the beam-on time and demonstrating the trade-off between low

dose to a large fraction of blood cells and high dose to a small

fraction of blood cells. It was concluded that proton treatments are

not necessarily advantageous in terms of dose to the blood even

though they are associated with a lower integral dose because of the

importance of the beam-on time. Similar vascular tree models have

been developed for the brain (89) and lung (90). Such organ-specific

vasculature models can be combined with a Markov chain approach

to link them to whole body blood flow based on reference values for

cardiac output and organ blood volumes (23, 24).

These blood dose models have been used to demonstrate how

the dose to the patient’s circulating blood depends not only on

hemodynamic data but also on treatment modality, beam delivery

parameters such as field size, treatment time, fractionation, and

dose. While they have been able to show trends in RIL, their main

weakness is that the results from blood dose simulations do not

necessarily translate directly to doses to circulating lymphocytes,

which may have different transition and flow parameters than the

blood. Unfortunately, these are more complex and not as well-

known (91, 92).

Jin et al. (93) developed a lymphocyte trafficking model that is

an extension of an algorithm discussed previously (21). The

framework considers 5 compartments of the immune system, i.e.

the circulating blood, the bone marrow, specific lymphatic organs

such as spleen, lymph nodes/vessels, and other lymphatic tissues in

non-lymphatic organs such as gut, lung, liver and skin. Circulating

and noncirculating lymphocytes are considered separately.

The model also incorporates lymphocyte radiosensitivity and

reproductivity. The authors assume that lymphocytes in the blood

circulate at a higher rate than the blood. Clinical beam delivery

times were not taken into account as the irradiation time was

assumed to be equal to the blood circulation time, and all organs

were treated as homogeneous.

To study the interaction between immunotherapy and

radiotherapy, Friedrich et al. introduced a biophysical model of

lymphocyte trafficking that takes into account primary and

distal tumor masses, immune cell kinetics targeting tumor cells,

and immune cell replenishment after radiation (94). Model

parameters were derived from mouse data. The model suggests

that the immune response is stronger when checkpoint inhibitors

are administered at the time of radiation or shortly thereafter. It

predicts that there is a window for radiotherapy that optimally

balances radiogenic immune response and depletion of the immune

cell pool.

In order to understand the impact of high-dose rate irradiation

on the dose to the circulating blood and lymphocytes an algorithmic

model was developed by Cucinotta and Smirnova (95). The model

also incorporates a one-target-one-hit model of radiation-induced

damage as a basis to consider the response of blood lymphocytes to

the radiation exposure. It considers time-dependent dose delivery,

radiosensitivity and concentration of lymphocytes, as well as blood

flow characteristics through the blood circulatory system including

the total blood volume and heart rate. The model confirms that the

level of surviving blood lymphocytes increases as the dose

rate increases.
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3 Radiosensitivity of lymphocytes

Monocytes and macrophages isolated from peripheral blood

cells are highly radioresistant (96, 97). Monocytes do not express

proteins required for non-homologous end-joining and are

impaired in base excision repair, which is likely to limit repair

especially at higher doses (98). When monocytes proliferate into

macrophages and dendritic cells, proteins are upregulated that

make these cells repair competent. Dendritic cells are thought to

be highly resistant to radiation-induced apoptosis (99). However,

the irradiation of dendritic cells may impair their ability to stimulate

T cells (100).

Peripheral blood lymphocytes are primed to undergo apoptosis

(101). While most mammalian cells are radioresistant at rest and

radiosensitive during proliferation, the opposite is true for

circulating lymphocytes. Even a small amount of DNA damage

appears to be sufficient to activate a DNA damage response and

apoptosis (102). Damage to peripheral lymphocytes (e.g.,

chromosome aberrations) has been used as bio-dosimeters to

predict late radiation toxicity in radiation therapy patients (103).

The literature discussed in the following sections is not always

consistent in terms of notation. Naïve T cells can be categorized into

helper Th cells (CD3+, CD4+) and cytotoxic Tcyt cells (CD3+, CD8+)

with regulatory Treg cells (CD4+ CD25+, Foxp3+) as a subset of Th

cells. Categorization can also be done into naïve, effector Teff (CD25+),

and memory T cells (effector memory TEM (CD45RO+, CD25-,

CCR7-) and central memory TCM (CD45RO+, CD25+, CCR7+)).

Naïve B cells (CD27-) and B cells (CD19+, CD20+) can also play an

immune-suppressive role, for example by blocking the Tcyt cell

response. Naïve NK cells (CD16-) can become effector, regulatory,

and memory NK cells (CD16+, CD56+, CD3-). NKT cells are a subset

of T cells that express both CD3+ and CD56+.
3.1 Lymphocyte radiosensitivity
studies in humans

The results of in vivo radiosensitivity studies in patients with

qualitative or quantitative information are summarized in

Tables 1A, B with the latter showing estimated alpha values

[Gy-1] for a linear dose-response curve (exp(-aD)). A rather

comprehensive study of lymphocyte radiosensitivity was

performed by Trowell et al. already in 1952 (110). After whole-

body irradiation, lymphocytes were counted in lymph nodes. In

addition, lymph nodes and blood samples were irradiated in vitro.

In 1975, Heier et al. (1) analyzed early and late T cell and B cell

counts in patients with seminoma testis. B cells seemed to be more

radiosensitive. They also concluded that B cells recovered more

rapidly than T cells after the irradiation of the iliac and paraaortic

lymph nodes and that irradiation of the thymus did not alter

lymphocyte recovery.

Lymphocyte radiosensitivity in vivo was evaluated by Clave

et al. (105) based on whole-body irradiation of patients prior to

bone marrow transplantation. Lymphocyte subpopulations were

counted after irradiation at 2 Gy/fraction. B cells were the most
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sensitive, followed by T cells (CD4+, CD8+) and NK cells. CD34+

progenitor cells appeared to be highly radioresistant. Note that

the easurements include circulating lymphocytes while also

irradiating lymphatic vessels. A similar study by Girinsky et al.

found no statistically significant difference in radiosensitivity

between T cells and B cells (111). Lymphocyte depletion and

recovery for different subpopulations has also been studied for

low dose whole body irradiation from the Chernobyl accident and

in atomic bomb survivors (112).

B cells were the most sensitive and NK cells the least sensitive

lymphocyte fraction in cancer patients receiving pelvic radiation

therapy (106). No significant differences between Th cells and Tcyt

cells were reported. The counts of the lymphocyte subpopulation as

a function of total body dose can be translated into alpha values in a

linear dose-response curve. Belka et al. (107) evaluated lymphocyte

subpopulations after radiation therapy and found that B cells and T

cells seemed to be most affected. Recovery of CD8+ cells was

significantly faster than that of CD4+ cells, and naïve cells were

generally more sensitive than memory cells. Lymphocytes were still

unable to respond adequately to antigen stimulation even after

recovery of the population.

A comprehensive assessment of circulating immune cell

populations in response to stereotactic body radiation therapy in

patients with liver cancer was performed by Gustafson et al. (46).

They found a severe decrease (~50%) in T cells in liver SBRT

patients, even in the absence of bone marrow or nodes in the field,

with CD4+ cells being most affected, while CD8+ cells showed no

significant differences compared to pre-treatment levels. More

specifically, within the CD4+ compartment, Treg cells were not

affected. SBRT did not appear to affect mature NK cells (CD16+)

but did affect pre-cursor cells (CD16-). McGee et al. analyzed the
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blood of 31 patients after stereotactic ablation radiation therapy

(113). They showed that the effect of radiation on T cells and NK

cells depends on the treatment site. Therapy of parenchymal sites

induced a systemic immune response (i.e., a decrease in NK cells

and an increase in memory CD4+ and CD8+ T cells). This was not

seen in non-parenchymal sites (bone and brain).

Zhao et al. (108) analyzed lymphocyte subpopulations after SBRT

of early-stage lung cancer. The number and relative percentage of

CD4+ T cells were significantly decreased, whereas the number of

CD8+ T cells was less affected as their relative percentage was almost

unchanged. This decreasing ratio of CD4+/CD8+ T cells was also

observed by Yang et al. (104) in head and neck cancer patients. The

change in the ratio could not be explained by the small difference in

radiosensitivities of CD4+ T cells and CD8+ T cells but was

presumably caused by radiation-induced priming and mobilization

of CD8+ T cells compensating for the loss of CD8+ T cells.

Lymphocyte subpopulations in patients after radiation therapy have

also been studied in other sites, such as in prostate cancer (42, 114–116)

and in breast cancer (117, 118), demonstrating radiosensitivity of B

cells in particular.

Heylmann et al. (97) analyzed T cells and monocytes after

treatment in leukemia patients receiving whole body irradiation (6

times 2 Gy). Monocytes showed high radioresistance, and the

difference in the lower response between T cells and NK cells was

not statistically significant. Three patients who received 12 Gy in 3

days (2 times 2 Gy per day) were analyzed. Analysis of gH2AX foci

indicated efficient elimination of damaged B cells during treatment.

In NK cells (CD56+), DNA damage accumulated in the surviving

NK after repeated irradiation. Whether these cells later undergo

apoptotic death or survive in the presence of DNA damage

was unclear.
TABLE 1A Ranking of lymphocyte radiosensitivity based on lymphocyte depletion in patients.

Radiosensitivity Ranking Dose Range Time Reference

B > T 40 Gy (20 fractions) 12 d – 10 y (1)

CD4+ > CD8+ Therapeutic (104)

B > T > NK, CD34+ 0-2 Gy 6 h (105)

B > Th; Tcyt > NK 50 Gy (25 fractions) 5 w (106)

B > T; Tnaive > Tmemory 26 Gy (13 fractions) 11 d – 4 m (107)

CD4+ > CD8+ > pre-curser NK > NK, Treg 50-60 Gy (3-5 fractions) (46)

CD4+ > CD8+ 50-60 Gy (5-10 fractions) (108)

B > T, NK 12 Gy (6 fractions) (97)

TABLE 1B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on lymphocyte depletion in patients (fits performed using
LMfit in python).

Th Tcyt B NK Peripheral lymphocytes Reference

0.45 +/- 0.02 0.46 +/- 0.03 0.67 +/- 0.03 0.37 +/- 0.03 (106)

0.40 (0.08 – 2.0) (93)

0.58 (0.28 – 1.23) (118)
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Assuming an exponential dose response relationship, the alpha

value of circulating lymphocytes has also been deduced indirectly in

patients. A lymphocyte trafficking model was fitted to 51 patients

with abdominal cancer treated with radiotherapy (93). The patient

specific a values had a median of 0.40 Gy-1 (range 0.08 – 2.0 Gy-1).

Similarly, for hepatocellular carcinoma the dose to circulating

lymphocytes was estimated using a dynamic blood circulation

model (23) and combined with the observed lymphocyte

depletion in patients, empirically accounting for both cell death

and lymphocyte replenishment. The in vivo derived patient-specific

a had a median value of 0.58 Gy-1 (range 0.28 - 1.23 Gy-1) (109).

Schaue et al. (119) isolated lymphocytes from colorectal and

prostate cancer patients before, during, and one week after

chemoradiation therapy. In most patients, they found an increase

of Treg cells as well as CD8+ cells after radiation which was more

pronounced in colorectal patients. A relative resistance of Treg could

have negative consequences in radiation therapy of their tumor

protective role as compared to the immune stimulatory role of more

radiosensitive Tcyt cells and Th cells. However, radiation can also

reduce protein expression and reduce functionality of Treg

cells (120).
3.2 Lymphocyte radiosensitivity
studies in mice

Results from preclinical studies of in vivo radiosensitivity with

qualitative or quantitative information are summarized in

Tables 2A, B and include fitting of exponential dose-response

curves where possible (Figure 1).

Anderson et al. (121) investigated the effect of radiation on

lymphocyte migration. Activated thoracic duct lymphocytes from

CBA inbred mice were used as a surrogate for T cells (80-85% T

cells, 15-20% B cells) and those from athymic (nude, nu/nu) mice

were used as a surrogate for B cells (97%). B cells were highly

radiosensitive compared to T cells and activated T cells were more

radioresistant than their resting counterparts. In another study, T

cells were shown to be more radioresistant than B cells in the spleen

of C3Hf mice (122). After whole-body irradiation, T and B cells

were analyzed after 3 days. At low doses (0.47 Gy), the number of T

and B cells in the spleen was significantly higher compared to

unirradiated control mice.

That B cells are more radiosensitive than T cells was also

observed after whole-body irradiation with doses of 0.5-15 Gy

(123). Mice were sacrificed and thymus, spleen, mesenteric lymph

nodes, femur, tibia and fibula were removed, and peripheral blood

was analyzed after 6 days. The authors also studied recovery of T

and B cell populations after 6 Gy and showed that cells in the

thymus and spleen recovered more rapidly than those in the lymph

nodes and in the bone marrow. Hochman et al. (140) reported the

relative resistance of NK cells in the spleen of (C57BL/6 x C3H/He)

F mice and the temporary cessation of progenitor activity. Sado

et al. (124) showed that cells from C3H mice were more

radioresistant compared to BALB/c, C57BL/6, and B10.BR mice.

After whole-body irradiation, T cells were analyzed in the spleen
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after 3 days. CD8+ T cells were slightly more radiosensitive than

CD4+ T cells.

Harrington et al. (125) irradiated C57Bl/6 mice with doses of 0-

7 Gy (whole-body) and analyzed splenic T cells (CD4+ and CD8+),

B cells, and NK cells after 1, 4, and 7 days after irradiation. They

observed a 7-fold enrichment of NK cells and a 3-fold enrichment

of T CD4+ cells, while the proportion of CD8+ cells was unchanged

and B cells decreased. While radiation may reduce the total number

of lymphocytes, the spleen may be enriched when comparing

subpopulations. B cells were most sensitive to radiation, followed

by CD8+, CD4+, and NK cells. In a study by Chambers et al. (126)

on lymphocyte subpopulations after whole-body irradiation of

mice, the total number of peripheral lymphocytes decreased as a

function of dose and the lymphocyte distribution changed. Relative

to the total number of lymphocytes, CD8+ increased slightly on day

1 and then decreased, while CD4+ increased 2-fold on day 4 after 7

Gy. The relative contribution of NK cells increased 9-fold at day 4 at

7 Gy, while the relative number of B cells decreased at all dose levels,

e.g., by half at 1 Gy. This indicated radioresistance of NK cells

relative to CD4+, CD8+, and B cells.

Mice were exposed to a whole-body dose of 3 Gy of protons and
60Co X-rays by Kajioka et al. (127) and acute effects on the immune

system were assessed. Overall, B cells were the most sensitive cell

population, while T cells were moderately sensitive and NK cells

were the most resistant cell population. Within the T cell

population, Th cells were more resistant than Tcyt cells. This was

also true for the splenic lymphocyte population. B cells had the most

rapid recovery and recovered completely in the spleen but not in

circulating lymphocytes. Grayson et al. (128) found that naive T

cells were more sensitive than their memory counterparts (CD8+)

after whole body irradiation of mice at 2-6 Gy. Lymphocytes were

isolated from the spleen, lymph nodes, bone marrow, and

peripheral blood. In a dose-dependent manner, memory CD8+ T

cells were enriched in the spleen, increasing from 20% of the total

CD8+ population in untreated mice to 76% after 6 Gy. Garg et al.

(129) analyzed immune cell populations in the intestinal mucosa

after whole body irradiation of mice and found that B cells were

more sensitive compared to T cells.

In another study of apoptosis in mouse spleen cells, animals

were sacrificed 4 h, 1, 3 or 7 days after irradiation (130). The authors

analyzed Th, Tcyt, Treg, NK, B, and CD8+CD44+ memory T cells.

Low dose radiation decreased apoptosis compared to the control. In

terms of apoptosis at 4h, CD8+ and B cells were more resistant to

low doses but were very sensitive to 2 Gy, while NK cells and Treg

were much more resistant to higher doses. B cells were the most

sensitive, followed by Tcyt, Th, Treg, and NK cells. Analysis of

subpopulations after 7 days showed that Tcyt cells started to

regenerate earlier than Th cells.

In a series of investigations, Qu et al. compared the

radiosensitivity of CD4+CD25high Foxp3+ Treg cells and

CD4+CD25- T cells in mice after 2 Gy (131) and 5 Gy (132)

whole-body irradiation. In vivo depletion showed an increased

sensitivity of CD8+ compared to CD4+, while the level of

CD4+CD25high Treg increased. For both spleen and lymph nodes,

the radiosensitivity of CD8+ was higher than CD4+, followed by
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Treg cells. In the thymus, the levels of CD4+CD8+ decreased.

However, the newly developed Treg cells in the thymus were less

sensitive to radiation than other thymocytes. The function of Treg

cells was impaired after 5 Gy radiation but not after 2 Gy, suggesting

a threshold effect.

Assessing lymphocyte populations after low-dose total body

irradiation in mice, Liu et al. found significant decrease in the Treg
cell population (52), but an increase in memory T cells (CD4+/CD8+).

Despite increased radiosensitivity, Tcyt cells were activated in mice after

fractionated low-dose exposure (0.2 Gy), which was not previously
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observed for Th cells (141). Spleen cells were analyzed after whole body

irradiation of mice with 10 Gy in another report (133). Analysis was

performed at 24, 48, 72, and 120 h. CD4+ T cells were significantly

more resistant than CD8+ T cells, and CD44high T cells, including NKT

cells and memory T cells, were significantly more resistant than

CD44low (naive) T cells. Furthermore, the effect of radiation on

naturally occurring Treg cells was investigated in a mouse model

(134). The number of Treg cells increased after irradiation as they

appeared to be more radioresistant compared to other lymphocytes.

Their functional integrity was also unaffected. However, this
TABLE 2A Ranking of lymphocyte radiosensitivity based on lymphocyte depletion in mice.

Radiosensitivity Ranking Dose Range Time Reference

B > T; resting T > activated T 0 - 10 Gy 4 d (121)

B > T 0 - 100 Gy 3 d (122)

B > T 0.5 - 15 Gy 6 d (123)

CD8+ > CD4+ 0 - 10 Gy 3 d (124)

B > CD8+ > CD4+ > NK 0 - 7 Gy 1, 4, 7 d (125)

B > CD8+ > CD4+ > NK 1 - 7 Gy 1, 4, 7 d (126)

B > T > NK; CD4+ > CD8+ 3 Gy (127)

Tnaive > Tmemory (CD8+) 2 - 6 Gy 4 - 60 d (128)

B > T (CD4+) 8 Gy 4 h - 12 d (129)

Spleen; B > CD8+ > CD4+ > Treg > NK 0.01 - 2 Gy 4 h - 7 d (130)

Total, spleen, lymph nodes: CD8+ > CD4+ > Treg 2, 5 Gy 0.5, 5, 15 d (131, 132)

Treg > Tmem 1.25 Gy (52)

CD8+ T; CD44lo Tnaive > CD44hi T (NKT and Tmem) 10 Gy 24, 48, 72, 120 h (133)

Treg radioresistant 0 - 20 Gy (134)

Spleen; CD4+ > Treg 2 Gy 4 h – 11 d (135)

Tnaive > CD8 TEM > CD8 Tcm 0 - 4 Gy 72 h (136)

Cardiac: B > CD8+ > CD4+; Spleen: B > CD8+ = CD4+ 2 Gy/day (137)

CD8+ circulating > CD8+ infiltrating
CD8+ nodes, spleen > CD8+ gut

0 - 20 Gy 24 h (138)

Circulating > Splenic 6, 12 Gy 1, 4, 7 d (139)

TABLE 2B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on lymphocyte depletion in mice (fits were performed
using LMfit in python and include only data points ≤ 3 Gy).

Th Tcyt T Treg B NK Spleen T Ref.

0.65+/-0.01 1.31+/-0.07 4 d (121)

0.17+/-0.03 0.54+/-0.02 3 d (122)

0.43+/-0.01 0.53+/-0.01 3 d (124)

0.32+/-0.01 0.44+/-0.01 0.68+/-0.02 0.18+/-0.04 4 d (125)

0.82+/-0.06 0.97+/-0.03 0.74+/-0.10 0.42+/-0.22 0.32+/-0.25 1.00+/-0.15 4 h (130)

0.51+/-0.04 0.69+/-0.02 0.34+/-0.05 0.83+/-0.01 0.55+/-0.04 0.69+/-0.01 1 d (130)

0.66+/-0.09 0.73+/-0.05 0.35+/-0.11 0.75+/-0.01 0.44+/-0.09 0.72+/-0.06 3 d (130)
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observation could also be caused by radiation-induced Treg

cell activation.

Balogh et al. (135) irradiated C57Bl/6 mice with 2 Gy (whole body)

and analyzed changes in lymphocyte fractions isolated from the spleen.

Treg cells were less prone to apoptosis than other lymphocytes after in

vivo irradiation. The results showed a greater decrease in CD4+

numbers compared to Treg cells that were not only less susceptible to

radiation-induced apoptosis but also recovered faster than CD4

+Foxp3- cells. However, irradiated Treg cells were functionally

compromised with a reduced suppressive capacity (~2.5 fold). In

addition, radiation increased the proliferation rate of surviving CD4+

cells. In a study by Pugh et al. (136), mice were irradiated in vivo at

doses up to 4 Gy and splenocytes as well as peripheral lymphocytes

were analyzed at 3, 12, 17, and 24 h. CD8 TEM cells were more resistant

and naive T cells more sensitive. CD8 TCM cells were significantly more

resistant in vivo than in vitro. The authors hypothesize that this may be

due to the genome-wide chromatin structure that governs early DSB

binding and survival. Chromatin remodeling occurs during the

differentiation of naive T cells to memory T cells.

In T cell recovery after low-dose whole body irradiation of

female C57BL/6 mice, CD4+ T cell reconstitution was delayed more

than that of CD8+ T cells (142). Venkatesulu et al. showed

lymphopenia after heart (2 Gy per day for 5 days) and spleen (1

Gy per day for 5 days) irradiation of female BALB/c mice in vivo

(137). B cells were most sensitive in both cohorts. For cardiac

irradiation this was followed by CD8+, while CD4+ depletion was

moderate in comparison. For splenic irradiation there was no

significant difference between CD8+ and CD4+. Radio-resistance
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also been shown in a C57BL/6J mouse model after studying partial

body irradiation with and without lymph node involvement (139).

The authors also investigated the effect of different field sizes using a

small animal image-guided irradiation device.

A study by Arina et al. (138) in which mice were irradiated with

a whole-body dose of 8 Gy showed a dose-dependent loss of

circulating CD8+ T lymphocytes, but not of tumor-infiltrating

CD8+ T cells after 24 h. The authors also quantified the

sensitivity of parenchymal CD8+ in various organs. Within

certain solid organs there was a higher radio-resistance compared

to T cells in circulation and in lymphoid organs. Lymph nodes and

spleen had the most radiosensitive CD8+ T cells, while CD8+ T cells

in the intestine were the most radioresistant. They hypothesized

that the higher radioresistance of parenchymal CD8+ T cells from

non-lymphoid compared to lymphoid solid organs is due to the

presence of tissue resident memory cells. In tissues harboring the

most radioresistant CD8+ T cells (intraepithelial and tumor), not

only cells with the standard memory T cells but all CD8+ T cells

were similarly radioresistant. In contrast, memory T cells in the

liver were more radiosensitive than other T cells.
3.3 In vitro lymphocyte
radiosensitivity studies

Results from in vitro radiosensitivity studies with qualitative or

quantitative information are summarized in Tables 3A, B
FIGURE 1

Radiosensitivity of lymphocyte sub-populations in mice for studies shown in Table 2B. First row: Splenocytes, B cells, and NK cells. Second row:
Combined T cells and Tcyt cells. Third row: Th cells and Treg cells. Data points are shown up to 5 Gy but alpha value fits were only done for data
points ≤3 Gy because lymphocytes will not receive more than the prescription dose in a single fraction in radiation therapy, and because the
majority of the dose-response data show a more shallow slope and a saturation at higher doses. The data points were extracted from the published
figures (using plotdigitizer (plotdigitizer.com)). Experimental error bars are not shown but are included in the fits (performed using LMfit in python).
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TABLE 3A Ranking of lymphocyte radiosensitivity based on in vitro studies.

Radiosensitivity Ranking Dose Range Time Reference

B > T 0 - 10 Gy 24, 48, 72, 96 h (143)

B > T 0 - 4 Gy 96 h (144)

NK = T 0 - 30 Gy 4 h (145)

NK (CD56+, CD16+) > NK (CD56+) 0 - 30 Gy 3, 48 h (146)

CD4+ = CD8+ 0 - 5 Gy (147)

T; patient variation (148)

NK > CD8+, B > CD4+ 15 Gy 48 h (149)

B > CD4+ > CD8+ > NK 2 Gy 24 h (150)

CD8+ > CD4+ 2, 9 Gy 48 h (151)

CD8+ > CD4+ 0 - 2 Gy 48 h (152)

NK > CD8+ > B > CD4+ 0 - 1.5 Gy 44 h, 68 h (153)

B > CD8+ > CD4+; Th (male) > Th (female) 0 - 2 Gy 18 h (154)

CD34+CD38- stem > CD34+CD38+ differentiated 5 Gy 4 h, 16 h (155)

Peripheral lymphocytes 0 – 15 Gy 4, 24, 48, 72 h (156)

Peripheral lymphocytes 0 - 8 Gy 24, 48, 72 h (157)

CD34+CD38- stem > CD34+CD38+ progenitors 3 Gy 0.5 – 6h (158)

Treg (CD4+CD25+) > T (CD4+CD25-) 0 - 2 Gy (159)

B > CD8+ > CD4+ 0 - 8 Gy 24, 48, 72 h (160)

NK (CD56+, CD16+) = NK (CD56+) 0 - 80 Gy 2 – 72 h (161)

T(non-prof) > T(prof); CD34+(non-prof) = CD34+(prof);
Th > Tcyt > CD34

0 – 2 Gy 6 – 48 h (96)

NK > B > T 0 – 60 Gy 24, 48, 72 h (162)

protons vs. photons 0 - 4 Gy 1 h, 4 h (75)

CD4+ > Treg 0, 10 Gy 48 h (120)

T(non-prof) > B > T > NK > CD34; Th > Treg > Tcyt 0 – 8 Gy 1 – 24 h (97)

CD4+CD25- T > CD4+CD25high Foxp3+ Treg 5 Gy 12 h (131, 132)

CD8+ > CD4+; TCM, Tnaive > TEM 1 - 10 Gy 3 - 24 h (136)

TABLE 3B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on in vitro measurements (fits were performed using LMfit
in python and include only data points ≤ 3 Gy).

Tp T Tcyt Th Treg Time Reference

0.00 +/- 0.02 24 h (143)

0.11 +/- 0.02 48 h (143)

0.26 +/- 0.05 72 h (143)

0.45 +/- 0.03 96 h (143)

0.77 (163)

0.65 (163)

0.05 +/- 0.01 24 h (162)

0.34 +/- 0.03 72 h (162)

(Continued)
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TABLE 3B Continued

Tp T Tcyt Th Treg Time Reference

0.61 +/- 0.05 0.68 +/- 0.02 (147)

0.21 +/- 0.01 0.15 +/- 0.02 48 h (152)

0.56 +/- 0.04 0.17 +/- 0.01 44 h (153)

0.08 +/- 0.01 0.04 +/- 0.01 18 h (154)

0.22 +/- 0.05 0.43 +/- 0.08 0.30 +/- 0.04 24 h (97)

0.18 +/- 0.03 0.36 +/- 0.03 0.44 +/- 0.06 24 h (96) unstim

0.25 +/- 0.02 0.10 +/- 0.01 0.13 +/- 0.01 24 h (96) stim.

TCM CD4+ TEM CD4+ Tnaive CD4+ TCM CD8+ TEM CD8+ Tnaive CD8+ Time Reference

0.69 +/- 0.17 0.76 +/- 0.14 2.14 +/- 0.07 0.85 +/- 0.03 0.32 +/- 0.01 1.84 +/- 0.07 72 h (136)

B NK General Peripheral Lymphocytes Time Reference

0.26 +/- 0.06 24 h (143)

0.53 +/- 0.10 48 h (143)

0.66 +/- 0.10 72 h (143)

1.15 +/- 0.13 96 h (143)

0.17 +/- 0.01 18 h (154)

0.34 +/- 0.07 0.31 +/- 0.04 24 h (97)

0.12 +/- 0.01 0.17 +/- 0.01 0.14 +/- 0.01 24 h (162)

0.31 +/- 0.05 0.65 +/- 0.07 0.49 +/- 0.02 72 h (162)

0.08 +/- 0.01 18 h (161)

0.72 +/- 0.04 (147)

0.18 +/- 0.01 48 h (152)

0.01 +/- 0.01 4 h (156)

0.18 +/- 0.01 24 h (156)

0.30 +/- 0.02 48 h (156)

0.50 +/- 0.04 72 h (156)

0.06 +/- 0.01 24 h (157)

0.11 +/- 0.01 48 h (157)

0.15 +/- 0.01 72 h (157)

0.05 +/- 0.01 24 h (160)

0.15 +/- 0.02 48 h (160)

0.26 +/- 0.04 72 h (160)

0.37 +/- 0.04 24 h (96) unstim

0.12 +/- 0.01 24 h (96) stim.

0.08 +/- 0.02 4 h (75) X-rays

0.32 +/- 0.04 4 h (75) protons

0.45 [0.05-1.2] (148)
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andinclude fitting exponential dose response curves where

possible (Figure 2).

The survival of unstimulated T and B cells from a healthy

donor was evaluated in 1-day intervals up to 4 days after

irradiation with doses up to 10 Gy by Prosser et al. (143). They

observed a higher radiosensitivity of B cells compared to T cells.

Cole et al. measured T cell survival in blood from 9 donors and T

cell lines (163). The in vitro survival of human peripheral blood

lymphocytes and thymocytes (T cell progenitors) was also

measured after 4 days in a study by Kwan and Norman in

healthy volunteers (144). B cells appeared to be slightly more

radiosensitive than T cells. The authors concluded that there are
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subpopulations of T and B cells with different radiosensitivities,

resulting in a biphasic survival curve for T cells. Brovall et al.

(164) studied NK cell activity in the peripheral blood of healthy

adults. While activity was lost at 30 Gy, it was enhanced at lower

doses (5 to 20 Gy, depending on the donor). This suggests that

radiation affects the cytotoxic function of NK cells before death

or apoptosis is observed. Zarcone et al. (145) investigated the

effect of radiation on different NK cell activities. The cytotoxic

functions of NK and T cells showed identical sensitivity to

radiation. Similarly, Rana et al. (146) investigated cytotoxic

activities of NK cells as a function of dose up to 30 Gy and

showed that CD16+ were the most radiosensitive.
FIGURE 2

Radiosensitivity of peripheral lymphocytes, NK cells, T cells, and B cells. Data are grouped to illustrate both, differences between experiments as well
as differences between subpopulations. Data points are shown up to 5 Gy but alpha values fits include only data points ≤ 3 Gy because lymphocytes
will not receive more than the prescription dose in a single fraction in radiation therapy, and because the majority of the dose-response data show a
more shallow slope and a saturation at higher doses. The data points were extracted from the published figures (using plotdigitizer (plotdigitizer.
com)). Experimental error bars are not shown but are included in the fits (performed using LMfit in python).
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Nakamura et al. (147) investigated the radiosensitivity of

proliferating Th and Tcyt lymphocytes in vitro using a colony

formation assay. This particular study is often cited when

discussing lymphopenia and its relationship to lymphocyte

radiosensitivity. Strikingly, the measured cell survival curves

follow a linear-quadratic dose-response fitted by the linear

quadratic model (PBL: a=0.29+/-0.01; b=0.14+/-0.01; CD4+

a=0.32+/-0.01; b=0.13+/-0.01; CD8+ a=0.19+/-0.03; b=0.14
+/-0.01), whereas in the majority of in vitro studies reviewed, the

response curves show either an exponential or upward-sloping

curve and a decrease in response (saturation) at higher doses.

Using blood from cancer patients and healthy individuals, Geara

et al. analyzed the radiosensitivity of peripheral T lymphocytes in

vitro and demonstrated a significant variation among individuals

(148). Patient-specific a values were fitted with a median of 0.45 Gy-1

(range 0.05 - 1.20 Gy-1). Seki et al. (149) showed that CD8+ T cells

were more susceptible to interphase death than CD4+ T cells and NK

cells were the most radiosensitive. Philippe et al. (150) assessed

apoptosis after 24 h in vitro. B cells showed more apoptotic cells

than T cells. Among T cells, Th cells were the most sensitive, followed

by Tcyt cells. NK cells were the most resistant. Spontaneous apoptosis

in immune subsets of in vitro cultured cells correlated with differences

in radiation induced apoptosis. Radojcic and Crompton used

peripheral lymphocytes from three donors to assess the age

dependence of CD4+ and CD8+ cell apoptosis at 2 and 9 Gy and

suggested that radiosensitivity may be higher in younger individuals

(151). CD8+ were more sensitive than CD4+.

Wilkins et al. studied the apoptotic response in lymphocytes using

blood from healthy volunteers. One study focused only on CD8+ and

CD4+ cells (152). CD8+ T cells were more sensitive to radiation-

induced apoptosis than CD4+ at doses up to 2 Gy at 48 h. The authors

state that the relative amounts of CD4+ and CD8+ in the combined

culture likely influenced the observed apoptosis due to changes in the

production of specific cytokines in the cell culture. A second study

examined B cells, NK cells, and CD4+ and CD8+ T-cells at 44 h and

68 h after exposure to up to 1.5 Gy (153). Although B cells showed the

highest radiation-induced apoptotic response at 1 Gy, CD8+ T-cells

appeared to be the most sensitive based on their low spontaneous

apoptotic fraction. At 48 h, the radiation-induced apoptosis of the cell

subpopulations decreased in the order of NK cells, CD8+ T cells, B cells

and CD4+ T cells, although the differences were not significant. Again,

lymphocytes in isolation appeared to be more responsive to radiation

than those cultured in the presence of other lymphocytes.

In a study of spontaneous and radiation-induced apoptosis of

human lymphocytes in vitro, lymphocytes from females were less

radiosensitive compared to those from males and radiosensitivity

seemed to increase with age (154). Tcyt cells were more sensitive than

Th cells. Hayashi et al. (155) investigated radiation-induced apoptosis of

stem/progenitor cells in human umbilical cord blood. The CD34

+/CD38− stem cell population was more sensitive to radiation-

induced apoptosis, compared to more differentiated CD34+/CD38+

and CD34−/CD38+ cells. Human lymphocytes were irradiated in vitro

with doses up to 15 Gy by Torudd et al. (156). Apoptosis was assessed

at 4, 24, 48, and 72 hours. There was very little effect at the early time

point at 4 hours. In the context of establishing a predictor of patient’s

response based on individual lymphocyte radiosensitivity, Bordon et al.
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toxicity and patient’s radiosensitivity in cervical cancer. Radiation-

induced apoptosis was analyzed at 24, 48, and 72 hours.

Milyavsky et al. (158) reported that human hematopoietic stem

cells (CD34+) exhibited delayed DNA double-strand break rejoining,

persistent gH2AX foci, and increased apoptosis after irradiation

compared to progenitor cells. Cao et al. (159) compared the

radiosensitivity of Treg cells (CD4+CD25+) and effector T cells (CD4

+CD25-) in vitro using lymphocytes from healthy individuals and

hepatocellular carcinoma patients. In the range of 0-2 Gy, Treg cells

were more radiosensitive than effector T cells, the opposite trend

compared to a previous in vivo study (135). Treg cell functionality

was moderately affected in Cao et al. (165) using in vitro cultured and

in vitro irradiated Treg cells, showing a dose-dependent reduction in

Treg cell proliferation as well as an alteration in phenotype.

In another study of peripheral lymphocytes from healthy

donors, radiation-induced apoptosis in vitro was not apparent

until 24 h after exposure when data were analyzed at 24, 48, and

72 h (160). Radiosensitivity was highest for B cells, followed by Tcyt

cells, and Th cells, but the trend was reversed for B cells and Tcyt

cells after 48h and 4 Gy. Hietanen et al. (161) applied single and

fractionated doses to enriched NK cell populations. Cell survival

was reported from 2 to 72 h and for doses up to 80 Gy. The response

based on the reported a values was very similar for CD16+ and

general CD56+ cells at 18 h at doses up to 40 Gy.

A review of the radiosensitivity of human and murine peripheral

blood lymphocytes concluded that stem cells, Th cells, Tcyt cells,

monocytes, neutrophils and, to a high degree, B cells exhibit a

radiosensitive phenotype, whereas Treg cells, macrophages, dendritic

cells and NK cells appear to be more radioresistant (166). The same

authors studied stimulated (proliferating) and unstimulated (non-

proliferating) peripheral lymphocytes in the blood from healthy

volunteers (96). Unstimulated peripheral lymphocytes contained

mainly T cells arrested in G0/G1. Upon stimulation of the CD3 T-

cell receptor and the CD28 co-receptor with anti-CD3 and anti-CD28,

respectively, the cells begin to proliferate. Lymphocytes were shown to

be highly radiosensitive but stimulation induced radioresistance in

several T cell subsets, with the exception of CD34+ cells which did not

become radioresistant when stimulated to proliferate. There was no

difference in repair between stimulated and unstimulated cells, i.e., the

difference in radiosensitivity was likely caused by the induced DNA

damage. The investigators found that most of the cells underwent

apoptosis with only a small fraction of necrosis, with data collected

between 6 and 48 hours after irradiation. It was concluded that T cells

and B cells are highly sensitive and undergo apoptosis at doses as low as

0.125 Gy with no apparent threshold and a saturation of ~50% at about

1-2 Gy. Sensitivity was highest for non-proliferating T cells followed by

B cells, and NK cells. However, while non-proliferating T and B cells

were sensitive, they had a high repair capacity, which was also the case

for CD34+. There was no significant difference in radiosensitivity

between the non-proliferating T cell subcategories. The same authors

then measured the in vitro dose response of blood cells from healthy

volunteers (97). The analysis included unstimulated T cells (Treg, Th,

Tcyt) purified with magnetic beads as well as unstimulated B cells, and

NK cells obtained from peripheral blood. Doses ranging from 0.5 to 8

Gy were administered. Th cells were the most sensitive (30% apoptosis
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level at 0.5 Gy, while Treg, NK and B cells showed values around 20–

25%). The authors point out that absolute numbers may be associated

with uncertainties because there may be early apoptotic events that

have been fragmented, or late apoptotic events that have not yet

materialized at the time of the assay.

Apoptotic cells may lose membrane integrity and become

secondary necrotic cells that retain immune activation properties.

Falcke et al. (162) studied lymphocyte cell death by apoptosis,

primary necrosis, and secondary necrosis (late apoptotic). They

found that B cells and NK cells died mainly by apoptosis (secondary

necrosis), whereas T cells showed significant primary and secondary

necrotic cells. NK cells were the most sensitive to radiation, followed by

B cells and T cells. The researchers also analyzed cell viability. In an in

vitro study of human peripheral lymphocytes, necrosis was more

frequent than apoptosis, especially with proton irradiation (75). This

may indicate a mechanistic difference in lymphocyte damage when

comparing photon and proton radiation (75, 167). The accumulation

of radiation-induced repair protein foci differed after proton versus X-

ray irradiation (168). Annexin V labeling was performed 1 h and 4 h

after irradiation with doses of 0-4 Gy (75). Alpha values for peripheral

lymphocytes differed between X-rays and protons as well as between

apoptosis and necrosis (apoptosis X-rays: a=0.02+/-0.01 Gy-1;

apoptosis protons: a=0.03+/-0.01 Gy-1; necrosis X-rays: a=0.04
+/-0.01 Gy-1; necrosis protons: a=0.15+/-0.03 Gy-1).

Using blood from healthy volunteers Beauford et al. (120) found that

Th cells were more radiosensitive than Treg cells. Although Treg cells

appeared to be more resistant, radiation caused a decreased Foxp3

expression as well as decreased expression of CD25 and CTLA-4,

resulting in a reduced ability to suppress CD8+ T cell proliferation.

Vandevoorde et al. (169) compared the dose response of CD34+ cells and

umbilical cord T cells from newborns and adults. Naïve and memory T

cells were analyzed in vitro 0.5 h after irradiation with low doses (100-200

mGy). Newborn peripheral T lymphocytes were significantly more

radiosensitive than adult peripheral T lymphocytes. This may be due

to immunophenotypic changes of T lymphocytes with age.

De Kruyff et al. (170) analyzed the functional behavior of lymph

node T cells inmouse cell cultures as a function of dose. Specifically, the

authors evaluated the helper activity of CD4+ T cells in terms of their

ability to induce immunoglobin synthesis (IgG, IgM, and IgE synthesis)

in B cells. The capacity for IgG synthesis was not affected, while that for

IgE (which depends on IL-4 and IL-5) was significantly reduced. Thus,

IL-4 in Th cells appears to be sensitive to radiation, causing T cell

functions to show large variations in radiosensitivity. Pugh et al. (136)

measured the radiosensitivity of naïve lymphocytes, effective memory

cells (CD8, TEM), and central memory cells (TCM) from mice in vitro.

There was no significant difference in radiosensitivity between T cell

subsets. However, CD8 TEM cells were more radioresistant and showed

less interphase death than TCM cells or naïve T cells. CD4 T cells were

more radioresistant than CD8 T cells. This pattern was extended to

both CD4 naïve T cells and TCM cell subsets. It was unclear whether the

enhanced radioresistance of Treg cells could fully account for the

enhanced radioresistance of any specific CD4 subset.

Qu et al. compared the radiosensitivity of CD4+CD25high Foxp3+

Treg cells and CD4+CD25- T cells in vitro showing higher sensitivity for

CD4+CD25- T cells than for CD4+CD25high Treg cells at 2 Gy (131)

and 5 Gy (132), respectively. They reported that more dead cells were
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observed in the Teff cell population than in the Treg cell pool, which

correlated with a higher levels of anti-apoptotic protein expression in

Treg cells. They also found that the Teff cell suppressive capacity of the in

vitro irradiated Treg cells was only moderately affected by radiation. The

evaluation was performed 2 weeks after irradiation.
4 Summary and discussion

The radiosensitivity of lymphocytes has been evaluated in a variety

of ways, including studies in humans, pre-clinical studies, and in vitro

clonogenic cell survival assays. The available data published in the open

literature have been reviewed in this work. Interpretation of

experimental data is often difficult. For example, in vitro

measurements must be corrected for spontaneous apoptosis, which is

particularly relevant for B cells. In addition, data from in vivo studies

have to take into account that a part of the lympho-hematopoietic

system has been irradiated, allowing for lymphocyte redistribution

from non-irradiated areas. Expression changes may also occur.

Studies based on lymphocyte depletion in patients consistently

suggest that B cells are the most radiosensitive, followed by T cells and

NK cells, with helper T cells (CD4+) being more radiosensitive than

cytotoxic T cells (CD8+). The preclinical studies support this difference

between B and T cells. Preclinical studies also suggest that circulating

lymphocytes appear to be more radiosensitive than non-circulating

lymphocytes and tumor infiltrating T lymphocytes. In addition,

parenchymal T cells from non-lymphoid solid organs appear to be

more radioresistant than those from lymphoid solid organs. The

obtained average dose-response alpha values derived from

lymphocyte depletion in mice are ~0.8 Gy-1, ~0.6 Gy-1, and ~0.4 Gy-

1, for B cells, T cells, and NK cells, respectively (for doses up to 3 Gy,

after 4 hours to 4 days). For splenocytes, an average value of ~0.8 Gy-1

was extracted. There is some indication that naïve lymphocytes, which

make up more than 50% of the lymphocyte population (depending on

age, health status, and other factors) are more radiosensitive.

The reported in vitro data are less consistent than the in vivo

results, but generally show the same ranking of radiosensitivity (B > T

(CD8+) > T(CD4+) > NK) with response differences that are smaller

than in vivo, i.e., average alpha values of ~0.4 Gy-1, ~0.3 Gy-1, and ~0.3

Gy-1 for B cells, T cells, and NK cells, respectively (for doses up to 3 Gy,

after 4 hours to 4 days). One report shows significantly higher

radiosensitivity for memory T cells. The fitted alpha values depend

on the chosen dose range as most measured cell survival curves show a

decreasing slope with increasing dose, i.e., a saturation typically starting

already between 0.5 and 2 Gy. There is also a strong time dependence.

Although radiation-induced apoptosis is measurable early after

exposure, it continues to increase up to and beyond 48 hours,

resulting in steeper dose-response curves. Many clinical studies on

radiation-induced lymphopenia point out the importance of the dose

to the circulating lymphocytes and refer to the high radiosensitivity of

lymphocytes, often citing a single study (147). This widely cited study

reports higher radiosensitivity than other studies and appears to be the

only one showing a linear-quadratic dose response curve.

To assess the dose-response of lymphocytes in vivo for lymphopenia

studies in patients, it is necessary to estimate the dose to lymphocytes.

This work also reviews methods to estimate dose to the blood. While
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various models have been proposed to estimate the dose to the blood

(based on reasonably well-known organ transit times of the blood), the

dose to circulating lymphocytes is related but not identical to the blood

dose. In addition to the recirculation of lymphocytes between blood and

secondary lymphoid tissues, several factors cause lymphocyte transit

times to be, on average, to be much longer than blood transit times.

Lymphocytes often attach and detach from endothelial cells and

radiation may cause upregulation of adhesion molecules that alter

leucocyte adhesion to endothelial cells (171), which may increase

mean transit times and thus dose to lymphocytes. In addition, they

may have to deform to squeeze through capillaries because their size is

much larger (~6mm) than, for example, platelets (172, 173). In particular,

pulmonary capillaries are thought to be slightly smaller than the diameter

of lymphocytes (173). In the liver, a relatively low average velocity of T

cells has been reported because theymight be crawling on the endothelial

wall of the sinusoids instead of flowing with the blood. This could reduce

the average velocity to ~6-7 mm/min. Thus, CD8 T cells can super-diffuse

in the liver for almost 20minutes (172). It is therefore likely that the dose

to the blood, while a potential surrogate for the dose to lymphocytes, does

not accurately predict the correct dose experienced by circulating

lymphocytes. Research efforts are underway to explicitly model

lymphocyte trafficking rather than relying on the use of blood dose as

a surrogate for dose to circulating lymphocytes (91, 92, 174).

While lymphocyte radiosensitivity is likely to play an important role in

lymphopenia, radiation-induced effects such as cell survival or cell motility

on lymphocytes are not necessarily robust predictors of immune

suppression. Radiation also affects lymphocyte infiltration into tumors

and tumor sensitization, increases antigen release, and other mechanisms

(175). Zhao et al. (176) investigated lymphopenia in SBRT for early-stage

lung cancer patients and concluded that lymphocyte radiosensitivity alone

cannot explain lymphopenia without considering lymphocyte recovery

times. The number of circulating lymphocytes might also decrease due to

inflammation caused by low-dose baths in secondary irradiated organs

during radiation therapy. In contrast to naïve adaptive lymphocytes which

frequently migrate between secondary lymphoid organs, tissue-resident

lymphocytes generally do not recirculate through the blood (177), but are

also irradiated. The circulatory behavior of lymphocytes and their lymph

node transit times also differs among lymphocytes subpopulations (178,

179), e.g., CD4+ seem to recirculate more rapidly compared to CD8+. In

addition, radiation likely affects lymphocytemigration, for instance, through

radiation-induced changes in sphingosine-1-phosphate (180). Lymphocyte

depletion is also likely related to indirect mechanisms, such as radiation-

induced expression of TNF-a which has a cytotoxic effect on lymphocytes

(107, 181, 182). In addition, lymphocyte function appears to be affected at

lower doses than cell survival in both in vitro and clinical studies (183–185).
5 Conclusions

The reported data suggest differences in radiation sensitivity

among lymphocytes subpopulations, which may affect their relative

contribution and thus the dynamics of the immune response. The data

reviewed here show low dose (< 3Gy) radiosensitivity of lymphocytes

in the same order of magnitude as normal fibroblasts (186). In general,

B cells appear to be more radiosensitive than T cells, and NK cells

appear to be the most resistant. Patient variability is likely to be of the
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same order of magnitude as the differences between subpopulations.

Because tumor-infiltrating lymphocytes appear to be quite

radioresistant, differences in radiosensitivity between circulating

lymphocytes and lymphocytes in lymphoid organs may have

implications for lymphopenia and thus for considerations of dose

prescription and dose scheduling in radiation therapy as well as for

fractionation and scheduling of therapies involving both radiation and

immune checkpoint inhibitors. An important aspect is also the

influence of radiation dose distribution, delivery time and beam

arrangement, which has been discussed in the context of highly

conformal radiotherapy and its positive effect on lymphopenia

(114, 187).

It remains an open question whether the observed effects of radiation

on lymphocyte counts in patients are indeed mainly due to the radiation

sensitivity of circulating lymphocytes. To answer this question, it is

necessary to consider not only the dose to different lymphocyte

compartments in the field (e.g., the lymphatic system), but also

radiation effects on lymphocyte trafficking and residence times (91, 92).

Certainly, data on cell death don’t fully capture radiation-induced effects

on lymphocyte functionality (135). This review outlines areas where

additional research is needed tomechanistically explain radiation induced

lymphopenia in patients and its correlation with treatment outcome.
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Severe radiation-induced
lymphopenia during concurrent
chemoradiotherapy for stage III
non-small cell lung cancer:
external validation of two
prediction models

Peter S. N. van Rossum1,2*, Celia Juan-Cruz1, Barbara Stam1,
Maddalena M. G. Rossi1, Steven H. Lin3, Azadeh Abravan4,5,
José S. A. Belderbos1 and Jan-Jakob Sonke1

1Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital,
Amsterdam, Netherlands, 2Department of Radiation Oncology, Amsterdam University Medical Centers
(UMC), Amsterdam, Netherlands, 3Department of Radiation Oncology, The University of Texas MD
Anderson Cancer Center, Houston, TX, United States, 4Division of Cancer Sciences, School of Medical
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United
Kingdom, 5Department of Radiotherapy Related Research, The Christie National Health Service (NHS)
Foundation Trust, Manchester, United Kingdom
Background: Severe radiation-induced lymphopenia (RIL) in patients undergoing

chemoradiotherapy (CRT) for non-small cell lung cancer (NSCLC) is associated

with decreased immunotherapy efficacy and survival. At The Christie and MD

Anderson Cancer Center (MDACC), prediction models for lymphopenia were

developed in lung and esophageal cancer patients, respectively. The aim of this

study was to externally validate both models in patients with stage III NSCLC.

Methods: Patients who underwent concurrent CRT for stage III NSCLC in 2019–

2021 were studied. Outcomes were grade ≥3 and grade 4 lymphopenia during

CRT. The Christie model predictors for grade ≥3 lymphopenia included age,

baseline lymphocyte count, radiotherapy duration, chemotherapy, mean heart

and lung doses, and thoracic vertebrae V20Gy. MDACC predictors for grade 4

lymphopenia were age, baseline lymphocyte count, planning target volume

(PTV), and BMI. The external performance of both models was assessed.

Results: Among 100 patients, 78 patients (78%) developed grade ≥3

lymphopenia, with grade 4 lymphopenia in 17 (17%). For predicting grade ≥3

lymphopenia, the Christie and MDACC models yielded c-statistics of 0.77 and

0.79, respectively. For predicting grade 4 lymphopenia, c-statistics were 0.69

and 0.80, respectively. Calibration for the Christie and MDACC models

demonstrated moderate and good agreement, respectively.
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Conclusion: The PTV-based MDACC prediction model for severe RIL

demonstrated superior external performance in NSCLC patients compared to

the dosimetry-based Christie model. As such, the MDACC model can aid in

identifying patients at high risk for severe lymphopenia. However, to optimize

radiotherapy planning, further improvement and external validation of

dosimetry-based models is desired.
KEYWORDS

lung cancer, radiotherapy, chemoradiotherapy, lymphopenia, hematologic toxicity
Introduction

Non-small cell lung cancer (NSCLC) accounts for

approximately 85% of all lung cancer cases and presents as locally

advanced (stage III) disease in approximately one-fifth of patients

(1, 2). Since the early 1990s, the standard treatment for patients with

unresectable stage III NSCLC has consisted of radiotherapy in

combination with concurrent platinum-based chemotherapy (3,

4). After a few years, consolidative immunotherapy (i.e.,

durvalumab) after concurrent chemoradiotherapy (CRT) became

the new standard of care in this setting as the PACIFIC trial

demonstrated a sustained survival benefit (5, 6). By blocking PD-

L1, durvalumab allows the patient’s vital T-lymphocytes to

recognize and kill tumor cells.

As these important anti-tumor lymphocytes are the most

radiosensitive cells of the hematopoietic system, many get killed

during radiotherapy, which puts patients at risk of radiation-

induced lymphopenia (RIL) (7). With growing interest in this

topic driven by the emergence of immunotherapy, in recent years,

several studies demonstrated an independent association between

lymphopenia and detrimental survival in NSCLC (8–12). In

addition, two recent studies in NSCLC patients observed that

severe lymphopenia before the initiation of immunotherapy was

associated with worse progression-free and overall survival

outcomes (13, 14).

The apparent impact of lymphopenia on the efficacy of

consolidative immunotherapy and survival provides a strong

incentive to identify patients at high risk of severe lymphopenia

who could potentially benefit from lymphopenia-mitigating

strategies. Thus, before starting CRT, accurate prediction of the

individual risk of developing severe lymphopenia during CRT

would be of interest. One such elaborate model predicting grade ≥3

lymphopenia originated from The Christie (Manchester, UK) and

was developed in 901 lung cancer patients, of whom 227 patients

received concurrent CRT for NSCLC (11). External validation of the

Christie model in 305 patients with esophageal cancer yielded a

satisfactory c-statistic of 0.78 (11). A more simple prediction model

(i.e., not requiring any dosimetric parameters) predicting grade 4

lymphopenia originated from MD Anderson Cancer Center

(MDACC, Houston, Texas, USA) and was developed in 860

patients with esophageal cancer (15). External validation of the
0296
MDACC model in 219 patients with esophageal cancer in another

country yielded a satisfactory c-statistic of 0.80 (16).

The Christie experience (11) suggested that a prediction model

for lymphopenia developed in lung cancer could be used

interchangeably in esophageal cancer. Although validated in other

esophageal cancer cohorts, the MDACC model (15) has not yet

been validated in patients with lung cancer. Therefore, the aim of

this study was to externally validate and compare both the Christie

and MDACCmodel for predicting grade ≥3 and grade 4 RIL during

concurrent CRT in patients with stage III NSCLC.
Methods

This single-center retrospective cohort study was approved by

the institutional review board and the need for informed consent

was waived. All patients had an institutional opt-out option upon

first consultation in case they wished their data would not be used

for research purposes. Reporting of this study was performed in

accordance with the “Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis or Diagnosis” (TRIPOD)

guidelines (17).
Study population

Consecutive patients who underwent concurrent CRT for stage

III NSCLC at our comprehensive cancer center between February

2019 and November 2021 were eligible for inclusion. Patients who

opted out for consenting to use their data for research were

excluded. Some patients were treated at a satellite location of our

hospital where no routine determination of absolute lymphocyte

counts (ALCs) was performed and these patients were therefore

excluded. In addition, patients were excluded in case a baseline ALC

or ALC beyond the first 3 weeks of CCRT was lacking or in case

therapy was discontinued in the first 2 weeks for issues unrelated to

lymphopenia. Finally, a patient with an active hematologic

malignancy (and associated high baseline ALC) was excluded. A

detailed comparison of the inclusion and exclusion criteria of the

development cohorts (11, 15) and the current validation cohort is

provided in Supplementary Table 1.
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Treatment

Chemotherapy consisted of cisplatin 6 mg/m2 in 24

administrations (five times per week) and was administered as a

bolus injection, 1–2 h before radiotherapy (18). All patients were

treated with hypofractionated radiotherapy (24 × 2.75 Gy) up to 70

Gy (EQD210) to the primary tumor and up to 60 Gy (EQD210; 24 ×

2.42 Gy) to the involved lymph nodes. Photon-based intensity-

modulated radiotherapy was used in all patients and the two dose

levels were achieved using a simultaneous integrated boost

technique (19). A 4D-CT scan with intravenous contrast was

acquired, from which a 3D-midposition-CT scan (MidP) was

reconstructed. An 18F-FDG PET-CT scan was registered to the

MidP to guide gross tumor volume (GTV) delineation of the

primary tumor and pathologic lymph nodes in all patients. No

CTV concept was applied. Subsequently, the GTVs were expanded

to a planning target volume (PTV) using individualized margins

according to the peak-to-peak respiratory amplitude movement of

the primary tumor and lymph nodes.
Predictors

The refined dosimetry-based Christie model predictors for

grade ≥3 lymphopenia included higher age, lower baseline ALC,

longer duration of radiotherapy, higher mean heart and lung doses,

and higher thoracic vertebrae V20Gy (i.e., volume of thoracic

vertebrae receiving ≥20 Gy) (11). In the more simple PTV-based

MDACC model, predictors for grade 4 lymphopenia consisted of

higher age, lower baseline ALC, and higher PTV in interaction with

a lower body mass index (BMI) (15). For the current study, all of

these predictors were collected from our institutional database in

addition to other baseline characteristics (i.e., gender, year of

treatment start, histology, tumor location, and clinical stage).

The original Christie prediction model (11) is defined by the

following logistic regression formula, where p describes the

individual risk to develop grade ≥3 lymphopenia:

log (
p

1 − p
) = −4:654 + 0:019*Age − 0:544*Baseline _ALC

+ 0:435*chemotherapy½0¼ no; 1¼ yes�
+ 0:090*Radiotherapy _ duration

+ 0:028*Mean _ heart _ dose

+ 0:046*Mean _ lung _ dose

+ 0:014*Vertebrae _V20Gy :

The original MDACC prediction model (15) for the prediction

of grade 4 lymphopenia is defined as follows:
Frontiers in Oncology 0397
log (
p

1 − p
) = −22:845 + 0:021�Age − 1:019*Baseline _ALC

+ 0:516�BMI + 3:579� log (PTV)

− 0:086�BMI� log (PTV) + 0:949� Photons½0
= no,  Protons; 1 = yes,  Photons� :
Outcomes

ALC was routinely measured mostly twice per week (but at least

once weekly) during concurrent CRT as part of routine blood

examinations to evaluate hematologic and renal chemotherapy

toxicity. The frequency of blood examinations in The Christie

and MDACC cohorts was generally less and details are provided

in Supplementary Table 1. The lowest measured ALC during CRT

on a per-patient basis was defined as the nadir. The primary

outcomes of grade ≥3 and grade 4 lymphopenia were defined as

ALC nadirs during CRT of <0.5 and <0.2 K/μL, respectively, in

accordance with the Common Terminology Criteria for Adverse

Events (version 5). The studied outcome measure consisted of the

external model performance in terms of discrimination and

calibration of the Christie and MDACC models to predict the risk

of grade ≥3 and grade 4 lymphopenia.
Statistical analysis

A table with baseline characteristics was constructed.

Univariable logistic regression analyses were performed to explore

the crude associations of (baseline) variables with grade ≥3 and

grade 4 lymphopenia. Next, for each patient, the individual

predicted probabilities of grade ≥3 and grade 4 lymphopenia

according to the Christie and MDACC prediction models were

calculated. The discriminatory model performances were assessed

by calculating external c-statistics and by plotting ROC curves.

External model calibration performances (i.e., the agreements

between predicted and observed proportions of grade ≥3 or grade

4 lymphopenia) were visually assessed in calibration plots using 3

equally sized risk groups (i.e., tertiles of predicted risks).

In case of miscalibration due to a different a priori risk (i.e.,

incidences) of grade ≥3 or grade 4 lymphopenia in the current cohort

compared to the original Christie and MDACC development cohorts,

the intercept was updated for each model and each outcome. This

intercept was updated in such way that the sum of predicted

probabilities was equal to the observed number of events (20). Model

coefficients were not updated. Analyses were performed using SPSS

version 27.0 (IBM Corp., Armonk, NY) and R version 3.5.1 (“rms”

package). A p-value<0.05 was considered statistically significant.
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Results

From a total of 148 identified patients who underwent concurrent

CRT for stage III NSCLC in the study period, 100 patients were

eligible for analysis. The 48 patients were excluded because of the opt-

out procedure (n = 3), concurrent CRT was administered at the

satellite location of our hospital with no routine ALC values available

(n = 16), baseline ALC values were missing (n = 24), ALC values

beyond 3 weeks after start of treatment were missing (n = 2), therapy

was discontinued early due to a severe COVID-19 infection or

unexpected sudden death (n = 2), or an active hematologic

malignancy was present (n = 1).

The majority of the 100 included patients were male (55%) and

were diagnosed with a clinical T4 (50%) and/or N2–3 (84%) lung

cancer. The predominant histologic tumor types were

adenocarcinoma (48%) and squamous cell carcinoma (35%), and

the primary tumor was mostly located in an upper lobe (67%).

Baseline patient-, tumor-, and treatment-related characteristics are

presented in Table 1.

The course of ALC values over the time of treatment showed an

overall declining trend and is illustrated in Figure 1. The median

duration of treatment was 32 days [IQR: 31–33]. The ALC nadir

was observed at a median of 30 days [IQR: 25–31] after the start of

concurrent CRT, generally corresponding to the fifth week of

treatment. Grade ≥3 lymphopenia during concurrent CRT

occurred in 78 patients (78%), and among those patients, grade 4

lymphopenia was observed in 17 (17% of total).

Explorative logistic regression analysis for grade ≥3 and grade 4

lymphopenia is presented in Table 2. Significant univariable

associations were observed for baseline ALC and PTV with both

grade ≥3 and grade 4 lymphopenia. For the 78 patients with versus

22 patients without grade ≥3 lymphopenia, median baseline ALC

was 1.53 [IQR: 1.13–1.93] versus 2.36 [IQR: 1.93–2.62] K/μL,

respectively, and median PTV was 392 [IQR: 237–522] versus 203

[132–347] mL, respectively. For the 17 patients with versus 83

patients without grade 4 lymphopenia, median baseline ALC was

1.37 [IQR: 1.02–1.73] versus 1.83 [IQR: 1.24–2.33] K/μL,

respectively, and median PTV was 499 [IQR: 325–718] versus 296

[IQR: 190–496] mL, respectively. In addition, right-sided tumor

lateralization and mean lung dose appeared significantly associated

with grade ≥3 lymphopenia.

For prediction of grade ≥3 lymphopenia, application of the

Christie and MDACC models yielded c-statistics of 0.77 (95% CI:

0.65–0.89) and 0.79 (95% CI: 0.67–0.91), respectively (Figure 2A).

For prediction of grade 4 lymphopenia, the Christie and MDACC

models yielded c-statistics of 0.69 (95% CI: 0.57–0.81) and 0.80

(95% CI: 0.70–0.89), respectively (Figure 2B).
TABLE 1 Baseline characteristics of 100 included patients.

n (%)

Age (years)* 66.1 ± 8.4

Male gender 55 (55%)

BMI (kg/m2)* 25.3 ± 4.5

Year of treatment start

2019 30 (30%)

2020 38 (38%)

2021 32 (32%)

Histology

Adenocarcinoma 48 (48%)

Squamous cell carcinoma 35 (35%)

Other (large cell) 17 (17%)

Primary tumor lateralization

Left sided 40 (40%)

Right sided 59 (59%)

Missing 1 (1%)

Primary tumor location

Upper lobe 67 (67%)

Middle lobe 4 (4%)

Lower lobe 25 (25%)

Trachea/main bronchus 3 (3%)

Missing 1 (1%)

Clinical T-stage

cT1 20 (20%)

cT2 18 (18%)

cT3 12 (12%)

cT4 50 (50%)

Clinical N-stage

cN0 11 (11%)

cN1 5 (5%)

cN2 60 (60%)

cN3 24 (24%)

Overall clinical stage

IIIA 46 (46%)

IIIB 39 (39%)

IIIC 15 (15%)

Baseline ALC (K/µL)† 1.71 [1.18–2.19]

PTV (mL)† 0.337 [0.204–0.503]

Mean heart dose (Gy)† 4.34 [1.93–8.62]

(Continued)
TABLE 1 Continued

n (%)

Mean lung dose (Gy)† 11.1 [9.16–13.2]

Thoracic vertebrae V20Gy (%)† 23.5 [14.8–32.4]
*Expressed as mean ± SD. †Expressed as median [IQR]. ALC, Absolute lymphocyte count;
BMI, Body mass index; PTV, Planning target volume.
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FIGURE 1

Lymphocyte counts over the course of treatment.
TABLE 2 Exploratory univariable logistic regression analyses for grade ≥3 and grade 4 lymphopenia.

Grade ≥3 lymphopenia Grade 4 lymphopenia

OR (95% CI) p-value OR (95% CI) p-value

Age (years) 1.04 (0.98–1.10) 0.170 1.00 (0.94–1.07) 0.988

Male gender 1.64 (0.63–4.24) 0.311 2.23 (0.72–6.90) 0.163

BMI (kg/m2) 1.01 (0.91–1.12) 0.910 0.95 (0.84–1.07) 0.388

Histology

Adenocarcinoma Ref Ref

Squamous cell carcinoma 1.44 (0.48–4.35) 0.521 1.74 (0.56–5.34) 0.337

Other (large cell) 0.71 (0.21–2.47) 0.594 0.78 (0.15–4.19) 0.773

Right-sided tumor lateralization 4.46 (1.61–12.3) 0.004* 0.96 (0.33–2.78) 0.943

Primary tumor location

Upper lobe Ref Ref

Other 2.66 (0.82–8.64) 0.103 1.13 (0.38–3.38) 0.825

Clinical T-stage

cT1–2 Ref Ref

cT3–4 1.49 (0.57–3.88) 0.416 1.15 (0.39–3.42) 0.801

(Continued)
F
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Application of the Christie model for predicting grade ≥3

lymphopenia resulted in an uncorrected calibration in which the

predicted risk consistently underestimated the observed risk.

Therefore, the model was updated by intercept correction to take

into account the higher a priori risk of grade ≥3 lymphopenia in the

current cohort compared with the development cohort (i.e., 78%

versus 55% (11); Supplementary Figures 1A, B). In contrast, the

MDACC prediction model for predicting grade 4 lymphopenia

resulted in an uncorrected calibration in which the predicted risk

consistently overestimated the observed risk. Therefore, the model was

updated by intercept correction to take into account the lower a priori

risk of grade 4 lymphopenia in the current cohort compared with the

development cohort (i.e., 17% versus 37% (15); Supplementary
Frontiers in Oncology 06100
Figures 1C, D). Separately, the intercept of the Christie model

(developed for predicting 55% grade ≥3 lymphopenia (11)) was also

adjusted to the currently observed incidence of grade 4 lymphopenia

(17%), and the intercept of the MDACC model (developed for

predicting 37% grade 4 lymphopenia (15)) was similarly adjusted to

the observed incidence of grade ≥3 lymphopenia.

The resulting agreement between predicted and observed risks

(i.e., calibration performance) of the models was visually assessed

(Figure 3). For predicting grade ≥3 lymphopenia, the Christie and

MDACC models demonstrated moderate and good agreement,

respectively (Figure 3A). For predicting grade 4 lymphopenia, the

Christie andMDACCmodels demonstrated moderate and excellent

agreement, respectively (Figure 3B).
A B

FIGURE 2

ROC curves demonstrating the discriminatory performances of the two models for predicting grade ≥3 lymphopenia (A) and grade 4 lymphopenia (B).
TABLE 2 Continued

Grade ≥3 lymphopenia Grade 4 lymphopenia

OR (95% CI) p-value OR (95% CI) p-value

Clinical N-stage

cN0–1 Ref Ref

cN2–3 2.55 (0.81–8.05) 0.110 0.87 (0.22–3.45) 0.839

Overall clinical stage

IIIA Ref Ref

IIIB-C 3.25 (1.19–8.88) 0.022* 1.27 (0.44–3.65) 0.662

Baseline ALC (K/µL) 0.24 (0.11–0.53) 0.001* 0.25 (0.09–0.69) 0.007*

Log(PTV) [mL] 4.53 (1.83–11.3) 0.001* 5.86 (1.83–18.7) 0.003*

Mean heart dose (Gy) 1.08 (0.96–1.20) 0.195 1.01 (0.92–1.11) 0.853

Mean lung dose (Gy) 1.22 (1.05–1.40) 0.008* 1.10 (0.94–1.28) 0.226

Thoracic vertebrae V20Gy (%) 1.04 (0.99–1.08) 0.088 1.02 (0.98–1.06) 0.381

Radiotherapy duration (days) 0.86 (0.63–1.16) 0.857 0.94 (0.66–1.33) 0.713
*Statistically significant univariable association with the outcome. ALC, Absolute lymphocyte count; BMI, Body mass index; CI, Confidence interval; OR, Odds ratio; PTV, Planning target volume.
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Discussion

This study demonstrated that the majority (78%) of patients with

stage III NSCLC experience grade ≥3 lymphopenia during

concurrent CRT, and in 17% of patients, the ALC drops as low

as<0.2 K/mL (i.e., grade 4). The performance of the simple PTV-

based MDACC prediction model for severe RIL (15) in our current

external cohort appeared superior in terms of discrimination and

calibration in comparison to the more refined dosimetry-based

Christie model (11). In fact, the MDACC prediction model

developed in esophageal cancer for grade 4 RIL (15) demonstrated

good external performance in our setting of concurrent CRT for

patients with stage III NSCLC with a c-statistic of 0.80 and excellent

calibration. In addition, after intercept adjustment to the a priori risk,

the MDACC model appeared capable of satisfactorily distinguishing

patients who will experience grade ≥3 lymphopenia versus those who

will not with a c-statistic of 0.79 and good calibration. The herein

reported external model performance (in another center in another

country) suggests good overall generalizability of the model.

As the MDACC lymphopenia model developed and validated in

esophageal cancer appeared compatible in lung cancer, the model

could potentially serve as a generalized thoracic cancer risk tool for

predicting severe lymphopenia. Similarly, the Christie lymphopenia

model developed in lung cancer was previously validated in a cohort

of esophageal cancer as well with satisfactory results (11). As such,

these current and previous findings can help encourage increased

collaboration of investigators and clinicians in the fields of

esophageal cancer and lung cancer to jointly elucidate the impact

of lymphopenia, improve risk prediction, and study strategies to

mitigate the lymphopenia risk.

Because the simple PTV-based MDACC model does not

contain dosimetric variables, the model cannot aid in optimizing

radiotherapy planning parameters for lymphopenia mitigation. For

the important goal of lymphopenia mitigation by adjusting

radiotherapy plans, refined dosimetry-based prediction models

such as the Christie model are required. However, this study
Frontiers in Oncology 07101
demonstrates that applying such a complex dosimetry-based

model in an external setting carries more risk of suboptimal

performance (i.e., appears less robust across varying disease sites,

lymphopenia outcome definitions, and care settings). Therefore, for

moving forward with radiotherapy planning optimization aimed at

reducing the risk of severe lymphopenia, further improvement and

external validation of dosimetry-based models is desired.

The initial poor calibration of the prediction models is

explained by the lower incidence of grade 4 lymphopenia in the

current lung cancer cohort (13%) in comparison with the

esophageal cancer cohorts from MDACC used for development

(37%) (15), and our higher incidence of grade ≥3 lymphopenia

(78%) in comparison to the Christie development cohort (55%)

(11). After intercept correction to adjust for this varying incidence,

the calibration of the MDACC model in our external lung cancer

cohort was good to excellent, revealing that the same predictors in

esophageal cancer hold their predictive value in lung cancer.

The relatively high incidence of grade 4 lymphopenia in

esophageal cancer has been confirmed in multiple series (16,

21–23), and is attributed to the major collateral irradiation of

large pools of lymphocytes (e.g., heart, lungs, and aorta) in

typical esophageal cancer radiotherapy fields (7, 22). Besides

the major role of blood pool irradiation, the risk and depth of

RIL may also be affected (to a lesser extent) by irradiation of

the spinal column that contains a significant portion of the

hematopoietic potential in adults and replenishes the

circulating lymphocyte pool (7, 22). The statistical power of

lymphopenia risk modeling in esophageal cancer is strengthened

by the high number of events, but limited by the relatively small

variation in tumor location and thus in dosimetric parameters. In

contrast, risk modeling in lung cancer is hampered by the lower

incidence of grade 4 lymphopenia, but strengthened by the larger

variation in dosimetric parameters by greater tumor location

variability. Therefore, combining knowledge and data from both

esophageal and lung cancer populations carries the potential to

overcome current limitations.
A B

FIGURE 3

Calibration plots demonstrating the agreement between the predicted risks by the 2 models and the observed risks of grade ≥3 lymphopenia (A) and
grade 4 lymphopenia (B).
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Although the typical depletion of lymphocytes over the course

of treatment is typical for radiotherapy-only as well as CRT cohorts,

the addition of chemotherapy does result in an even lower ALC

nadir (24). A study comparing different doublet platinum-based

chemotherapy regimens (i.e., cisplatin-etoposide, cisplatin-

docetaxel, carboplatin-paclitaxel, and carboplatin-docetaxel)

found an equal 88%–89% grade ≥3 lymphopenia rate for each

regimen (25). Since reported incidence rates of grade ≥3

lymphopenia in stage III NSCLC patients undergoing 3-weekly

doublet platinum-based chemotherapy vary from 49% to 89% (7, 9–

11, 22, 25), the incidence in the current study of 78% does not

appear different with our daily low-dose cisplatin regimen.

Before commencing treatment, the MDACC prediction model

allows the identification of individual patients at high risk for severe

lymphopenia. These patients may benefit from lymphopenia-

mitigating strategies. Examples of such strategies include further

hypofractionation, sparing lymphocyte-rich organs in radiation

treatment planning, or reducing PTV by minimizing radiotherapy

margins through modern daily online adaptive radiotherapy (e.g.,

using MR-linac) (7, 11, 26). In addition, a significant lymphocyte-

sparing effect of proton beam therapy, through decreasing the

integral body dose, has been convincingly demonstrated in

esophageal cancer and more recently also in lung cancer (7, 11,

12, 26–28). In the recent systematic review-based LymphoTEC

initiative, dose constraints were described that can be used in

clinical practice and future studies to limit the risk of RIL and

possibly improve oncologic outcomes (29). Experimental attempts

to attenuate lymphopenia included isolating lymphocytes before

treatment with reinfusion upon treatment completion (which

appeared feasible and safe, but not effective) (30), or

administering interleukins (e.g., IL-2, IL-7, and IL-15) essential

for lymphocyte proliferation and survival with promising results in

pilot studies (31).

Besides inherent shortcomings resulting from the retrospective

design of the current study, some other limitations require mention.

First, no causal inferences can be made between predictors and the

outcome of severe lymphopenia since this was no intervention

study. The observational design allows for concluding strong

associations only. Second, a larger sample size could have

increased the precision of estimations and may have allowed for

further model improvements. Third, in the analyses on the

performance of the Christie model for predicting grade 4

lymphopenia and the MDACC for grade ≥3 lymphopenia, the

studied outcome was (intentionally) defined differently from how

it was defined in the original publications. Intercept corrections

were applied to adjust for the large differences in a priori risks

between grade ≥3 and grade 4 lymphopenia, but model coefficients

were kept the same. This approach assumed that the relative

contribution of predictors would be similar for grade ≥3 and

grade 4 lymphopenia, but this assumption might not completely

hold. However, this method was chosen because further model

updates (e.g., adjusting model coefficients) would imply developing

a new prediction model, which, in turn, would require another

internal and external validation. Fourth, the survival impact of

lymphopenia was not studied here as follow-up was too short for

this recent cohort. This study is strengthened by the homogeneous
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study cohort and the frequent (i.e., twice-weekly) determination of

ALC values with only very few missing values.

In conclusion, 78% and 17% of patients with stage III NSCLC

who undergo concurrent CRT develop grade ≥3 and grade 4

lymphopenia, respectively. The simple PTV-based MDACC

prediction model (15) for grade 4 lymphopenia developed in

patients with esophageal cancer demonstrated good external

performance in the setting of lung cancer, and outperformed the

more refined dosimetry-based Christie prediction model (11). Good

to excellent discriminative ability and agreement between predicted

and observed risk were observed. Before treatment, the MDACC

model can identify thoracic cancer patients at high risk of severe

lymphopenia who might benefit most from lymphopenia-

mitigating strategies, which may ultimately improve survival. To

optimize radiotherapy planning with the purpose of reducing the

risk of severe lymphopenia, further improvement and external

validation of dosimetry-based models (such as the Christie

model) is desired.
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Background: Treatment-related lymphopenia (TRL) is common in patients with

lung cancer, particularly in those with radiotherapy. However, the influence of

TRL on the efficacy of immune checkpoint inhibitors (ICIs) for patients with lung

cancer remains poorly understood. We performed a systematic review and

meta-analysis to investigate the influence of TRL on survival of lung cancer

patients on ICIs.

Methods: In order to accomplish the aim of the meta-analysis, a comprehensive

search was conducted on databases including PubMed, Embase, Cochrane

Library, and the Web of Science to identify observational studies with

longitudinal follow-up. The Cochrane Q test was employed to evaluate

heterogeneity among the included studies, while the I2 statistic was estimated.

Random-effects models were utilized to merge the results, considering the

potential impact of heterogeneity.

Results: Ten cohort studies with 1130 lung cancer patients who were treated

with ICIs were included. Among them, 427 (37.8%) had TRL. Pooled results

showed that compared to patients without TRL, patients with TRL were

associated with poor progression-free survival (hazard ratio [HR]: 2.05, 95%

confidence interval [CI]: 1.62 to 2.60, p < 0.001; I2 = 22%) and overall survival (HR:

2.69, 95% CI: 2.10 to 3.43, p < 0.001; I2 = 0%). Sensitivity analysis limited to

patients with non-small cell lung cancer showed similar results (HR: 2.66 and

2.62, both p < 0.05). Moreover, subgroup analyses according to the diagnostic

criteria of TRL, regression analysis model (univariate or multivariate), and

indications of ICIs (for locally advanced or advanced lung cancer) showed

consistent results (p for subgroup difference all > 0.05).

Conclusion: TRL was associated with poor survival of lung cancer patients who

were treated with ICIs.
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Introduction

Lung cancer is a prevalent malignancy affecting the global

population (1). According to the global cancer statistics in 2020,

lung cancer constituted 11.4% of all cancer cases and accounted for

18.0% of cancer-related fatalities worldwide (2). Histologically, lung

cancer can be categorized as non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC), with therapeutic interventions

primarily encompassing surgery, radiation therapy, chemotherapy,

and targeted drug therapy (3, 4). A growing body of research

underscores the significance of the immune system in cancer

surveillance and anti-tumor activity (5, 6). Recent evidence has

emphasized the significant role of immune checkpoint inhibitors

(ICIs) as efficacious anticancer agents through the inhibition of

programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1),

or cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) receptors,

thereby augmenting the cytotoxicity of T lymphocytes towards

tumor cells (7). The overall effectiveness and safety of

immunotherapy utilizing ICIs have been generally demonstrated

in patients afflicted with metastatic and locally advanced non-small

cell lung cancer (NSCLC) (8), as well as small cell lung cancer

(SCLC) (9). However, subsequent observations suggest that the

therapeutic response to ICIs may vary in individual patients with

lung cancer (10). Accordingly, uncovering of the clinical factors that

are related to the efficacy of ICIs in patients with lung cancer is of

great clinical significance.

Lymphopenia is a prevalent occurrence in cancer patients,

primarily attributed to the administration of anticancer treatments

such as radiotherapy and chemotherapy, referred to as treatment-

related lymphopenia (TRL) (11, 12). A recent meta-analysis

encompassing 14 studies revealed that the average occurrence of

severe lymphopenia (defined as an absolute lymphocyte count [ALC]

< 500/ul) in lung cancer patients undergoing radiotherapy was 64.2%

(13). Although sever TRL has been related to poor prognosis in

patients with various solid tumors including lung cancer in early

studies, patients with concurrent ICIs were rarely included in these

studies (14). The potential impact of TRL on the effectiveness of ICIs,

specifically by reducing the active T lymphocytes, has been postulated

(15). However, the precise effect of TRL on the efficacy of ICIs in

individuals with lung cancer has yet to be fully elucidated.

Consequently, we conducted a comprehensive review and meta-

analysis to examine the influence of TRL on the survival outcomes

of lung cancer patients undergoing ICIs treatment.
Materials and methods

The study adhered to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses statement (16, 17) and the

Cochrane Handbook (18) throughout the stages of planning,

conducting, and reporting.
Frontiers in Oncology 02106
Inclusion and exclusion criteria of studies

The development of inclusion criteria adhered to the PICOS

recommendations and aligned with the objective of the

meta-analysis.

P (patients): Patients with pathologically confirmed diagnosis of

lung cancer who were treated with ICIs.

I (exposure): Patients with TRL at the initiation or during ICIs

treatment. Diagnostic criteria and cutoffs for defining TRL were

consistent with those of the original studies. We included studies of

patients with lymphopenia related to any anticancer treatment, not

limited to those of patients received radiation only.

C (control): Patients without TRL.

O (outcomes): The study compared the progression-free

survival (PFS) and/or overall survival (OS) outcomes between

individuals with and without TRL. In essence, PFS denotes the

time from the initiation of treatment to the occurrence of disease

recurrence or progression, while OS represents the time from the

initiation of treatment to the patient’s eventual demise.

S (study design): This study incorporated longitudinal follow-

up studies, such as cohort and nested case-control studies, along

with post-hoc analyses of clinical trials. Excluded from the meta-

analysis were reviews, editorials, meta-analyses, preclinical studies,

and studies that did not involve patients with lung cancer or with

ICIs, failed to evaluate TRL, or did not report the survival outcomes

of interest during follow-up. In cases where there was an overlap in

patient populations, the study with the largest sample size was

included in the meta-analysis.
Search of databases

A comprehensive search was conducted in electronic databases,

namely PubMed, Embase, Cochrane Library, and Web of Science,

encompassing the period from inception to July 10, 2023. The

search strategy employed relevant terms pertaining to the subject

matter of our investigation, aiming to identify studies published

within this timeframe, which included: (1) “lymphopenia” OR

“lymphocytopenia”; (2) “lung cancer”; and (3) “immunotherapy”

OR “immune checkpoint inhibitor” OR “PD-1” OR “PD-L1” OR

“CTLA-4” OR “programmed death 1” OR “programmed death

ligand 1” OR “pembrolizumab” OR “atezolizumab” OR

“n i v o l umab ” OR “ i p i l imumab ” OR “du r v a l umab ”

OR “tremelimumab” OR “camrelizumab” OR “tislelizumab” OR

“s int i l imab” OR “cemipl imab” OR “ tor ipal imab” OR

“lambrolizumab” OR “pidilizumab” OR “avelumab”. Only studies

that met the criteria of being published as full-length articles in

English and appearing in peer-reviewed journals were included in

our analysis. Additionally, during our manual screening process, we

thoroughly examined the references cited in relevant original and

review articles to identify any potentially relevant studies.
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Data extraction and quality evaluation

Two authors independently performed literature searches, data

collection, and assessments of study quality. In cases where

discrepancies emerged, a third author was consulted for

deliberation, leading to a consensus. The analysis of studies

encompassed the gathering of data related to study information,

design characteristics, patient diagnosis, demographic factors,

medications for immunotherapy, definition of TRL, number of

patients with TRL, median follow-up durations, outcomes

reported, and variables adjusted for the evaluation of the

association between TRL and survival of lung cancer patients on

ICIs. The quality of the study was assessed using the Newcastle-

Ottawa Scale (NOS) (19), which evaluates participant selection,

group comparability, and outcome validity. The scale consisted of

nine stars, with a greater number of stars indicating a study of

higher quality.
Statistics

Hazard ratios (HRs) and their corresponding 95% confidence

intervals (CIs) were utilized as the variables to assess the

relationship between TRL and the survival of lung cancer patients

receiving immune ICIs. To stabilize and normalize the variance, a

logarithmical transformation was applied to the HR and its

corresponding standard error in each study (20). The Cochrane Q

test and the I2 statistic (21) were employed to estimate between-

study heterogeneity. A value of I2 greater than 50% indicates the

presence of significant heterogeneity among the studies. The

random-effects model was utilized to combine the findings, as it

has been recognized to account for potential heterogeneity (18).

Sensitivity analysis limited to patients with NSCLC was performed.

Additionally, subgroup analysis was conducted to explore the

influence of cutoffs for TRL, different regression analysis model

(univariate or multivariate), and indications of ICIs (for locally

advanced or advanced lung cancer) on the outcomes. The cutoffs for

defining overall TRL (<1000 lymphocytes/ul) and severe TRL (<500

lymphocytes/ul) were in accordance with the Common

Terminology Criteria for Adverse Events (CTCAE) criteria (22).

Publication bias was estimated using a funnel plot, which involved

visual assessments of symmetry, as well as Egger’s regression

asymmetry test (23). The statistical analyses were conducted using

RevMan (Version 5.1; Cochrane Collaboration, Oxford, UK) and

Stata software (version 12.0; Stata Corporation, College

Station, TX).
Results

Database search and study retrieval

Figure 1 illustrates the procedure employed for conducting the

literature search and study retrieval. Initially, a total of 781 records

were acquired from the designated database, and subsequently, 172

duplicate entries were eliminated. Upon scrutinizing the titles and
Frontiers in Oncology 03107
abstracts, an additional 583 studies were excluded due to their

incompatibility with the objectives of the meta-analysis. Following

comprehensive evaluations of the full texts of 26 studies, 16 were

excluded based on the rationales outlined in Figure 1.

Consequently, ten studies were deemed suitable for the

subsequent meta-analysis (24–33).
Study characteristics

Overall, one prospective (27) and nine retrospective cohort

studies (24–26, 28–33) were included in the meta-analysis. The

characteristics of the studies incorporated in this analysis are

concisely outlined in Table 1. These studies were conducted in

the United States, Korea, and France, and were published within the

timeframe of 2019 to 2023. All of the studies encompassed patients

diagnosed with lung cancer who underwent treatment with ICIs.

Among these studies, eight exclusively focused on patients with

NSCLC (24, 25, 28–33), whereas the remaining two also

encompassed patients with SCLC (26, 27). The drugs for ICIs

varied among the included studies, which involved nivolumab,

pembrolizumab, durvalumab, atezolizumab, ipilimumab, or a

combination of nivolumab and ipilimumab. The cutoffs for the

diagnosis of TRL also varied among the included studies, and

accordingly, 427 patients (37.8%) were diagnosed as TRL. The

follow-up durations varied from 4.7 months to 24.0 months, with

the median follow-up duration of 13.0 months. Outcome of PFS

was reported in nine studies (24, 26–33), while the outcome of OS

was reported in eight studies (24–27, 29–31, 33). Univariate

regression analysis was used in three studies when the association

between TRL and survival of lung cancer patients on ICIs was

reported (25, 26, 30), while in the other seven studies (24, 27–29,

31–33), multivariate regression analysis was used with the

adjustment of confounding factors such as age, sex, performance

status, histological type of cancer, and other concurrent anticancer

treatments etc. The NOS of the included studies were six to nine,

indicating that they were of moderate to good quality (Table 2).
Influence of TRL on PFS in lung cancer
patients treated with ICIs

Nine studies (24, 26–33) evaluated the association between TRL

and PFS in lung cancer patients treated with ICIs. Since one study

reported the outcome in two cohorts of patients with different

concurrent radiotherapy strategies (27), these two datasets were

included independently into the meta-analysis. Pooled results

showed that compared to those without TRL, lung cancer patients

with TRL was associated with poor PFS (HR: 2.05, 95% CI: 1.62 to

2.60, p < 0.001; Figure 2A) with mild heterogeneity (I2 = 22%).

Sensitivity analysis limited to patients with NSCLC showed similar

results (HR: 2.26, 95% CI: 1.76 to 2.91, p < 0.001; I2 = 0%). Further

subgroup analysis showed consistent association between TRL and

poor PFS in studies with TRL diagnosed as ALC < 1000 and < 500/

ul (p for subgroup difference = 0.64; Figure 2B), in studies with

univariate and multivariate analysis (p for subgroup difference =
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0.69; Figure 2C), and in studies with ICIs for locally advanced or

advanced lung cancer (p for subgroup difference = 0.73; Figure 2D).
Influence of TRL on OS in lung cancer
patients treated with ICIs

Eight studies (24–27, 29–31, 33) with nine datasets were

included for the meta-analysis of the association between TRL

and OS in lung cancer patients on ICIs. Results of the meta-

analysis showed that TRL was associated with poor OS (HR: 2.69,

95% CI: 2.10 to 3.43, p < 0.001; Figure 3A) with no significant

heterogeneity (I2 = 0%). Consistent results were observed in

sensitivity analysis limited to NSCLC only (HR: 2.62, 95% CI:

1.99 to 3.44, p < 0.001; I2 = 0%). Moreover, subgroup analyses
Frontiers in Oncology
 04108
according to the diagnostic criteria of TRL (p for subgroup

difference = 0.80, Figure 3B), the analytic models (p for subgroup

difference = 0.26, Figure 3C), and indications of ICIs (p for

subgroup difference = 0.63, Figure 3D) also showed similar results.
Publication bias

The funnel plots depicting the meta-analyses of the correlation

between TRL and survival outcomes among lung cancer patients

receiving ICIs are presented in Figure 4. Upon visual inspection, the

plots exhibit symmetrical patterns, indicating a minimal presence of

publication bias. Furthermore, the application of Egger’s regression

tests yielded p-values of 0.37 and 0.49, further supporting the notion

of a low probability of publication bias.
FIGURE 1

Flowchart of database search and study inclusion.
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TABLE 1 Characteristics of the included studies.
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5 13.2 PFS and OS None
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Age, ECOG PS, and PD-L1
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7 4.7 PFS and OS
Age, sex, ECOG PS,
histological type, and

smoking

(Continued)

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
3
.12

8
75

5
5

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg
Study Country Design Diagnosis
Number

of
patients

Mean
age

(years)

Male
(%)

ICIs used
Definition of
lymphopenia

Num
patien
lymph

Karantanos
2019 (25)

USA RC
Advanced
NSCLC

22 62 54.5 Nivolumab

ALC < 900/ul at
baseline or 6

months after the
initiation of ICIs

Cho 2019
(24)

Korea RC
Advanced
NSCLC

268 64 67.9

Nivolumab,
pembrolizumab,

or a
combination of
nivolumab and
ipilimumab

ALC < 1000/ul at
baseline or during

ICIs
1

Li 2019
(26)

USA RC

Lung cancer
patients with

brain metastases
(NSCLC 93.6%)

20 65 46 Any ICIs
ALC < 1000/ul at
baseline or during

ICIs

Chen 2020
(27)

USA PC

Lung cancer
patients receiving

combined
immunotherapy
and radiotherapy
(NSCLC 36.4%)

165 65 56.4
Ipilimumab or
pembrolizumab

ALC < 1300/ul at
baseline or during

ICIs

Friedes
2021 (28)

USA RC
Unresectable

locally advanced
NSCLC

78 66 55
Durvalumab or
Ipilimumab +
nivolumab

ALC < 500/ul at
the initiation of

ICIs

Jing 2022
(30)

USA RC
Locally advanced

NSCLC
117 NR 59 Durvalumab

ALC < 230/ul at
baseline or during

ICIs

Cho 2022
(29)

Korea RC Stage III NSCLC 66 65 82
Durvalumab or
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ALC < 500/ul at
the initiation and

during ICIs

Thor 2022
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USA RC Stage III NSCLC 113 67 59 Durvalumab
ALC < 700/ul at
the initiation of
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Lee 2022
(31)

Korea RC
Advanced
NSCLC

231 66 78.5
Durvalumab,

pembrolizumab,
or atezolizumab

ALC < 1000/ul at
baseline or during

ICIs
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Discussion

This study conducted a systematic review and meta-analysis,

incorporating data from ten cohort studies, to examine the

correlation between TRL and survival outcomes in lung cancer

patients undergoing ICIs treatment. The results of our analysis

suggest that the presence of TRL at the start or during ICIs

treatment is linked to unfavorable PFS and OS in lung cancer

patients. Additionally, when focusing solely on studies involving

patients with NSCLC, the findings remained consistent.

Furthermore, subgroup analyses based on the cutoff value for

diagnosing TRL, the chosen analytical model, and indications of

ICIs also yielded consistent results. Taken together, these results

suggest that TRL may be a risk factor of poor survival of lung cancer

patients on the treatment of ICIs.

To the best of our knowledge, this study represents a potentially

pioneering meta-analysis that examines the impact of TRL on the

effectiveness of ICIs in individuals diagnosed with lung cancer. It is

worth highlighting several notable advantages inherent in the

employed meta-analysis methodologies. For instance, an extensive

search of four widely utilized databases was conducted, thereby

yielding up-to-date evidence pertaining to the association between

TRL and the survival outcomes of lung cancer patients undergoing

ICIs treatment. Moreover, it is worth mentioning that all the studies

included in this analysis were cohort studies, indicating a possible

longitudinal association between TRL and heightened risk of

disease progression and mortality in these individuals.

Furthermore, subgroup analysis based on the threshold values of

ALC for diagnosing TRL yielded consistent findings, implying that

even a mild TRL of ALC < 1000/ul may have a detrimental impact

on the prognosis of lung cancer patients receiving ICIs. Finally,

consistent results were obtained for subgroups of univariate and

multivariate regression analyses, which suggested that the

association between TRL and poor survival of lung cancer

patients on ICIs may be independent of variables such as age, sex,

functional status, and previous anticancer treatments. Collectively,

these findings highly suggest the importance of monitoring

lymphocyte count in peripheral circulating during the treatment

with ICIs for patients with lung cancer.

The negative consequences observed in patients experiencing

lymphopenia may be ascribed to modifications in the tumor

microenvironment. These alterations can be linked to the

accumulation of myeloid-derived suppressor cells, type-2

macrophages, or regulatory T cells, along with the generation of

suppressive cytokines and metabolites, which can foster tumor

advancement (15). Additionally, it has been postulated that

neoantigen-specific T cells can be detected in the peripheral blood

of patients with NSCLC undergoing anti-PD-L1 therapy. Notably,

patients who exhibited an objective response demonstrated an

increased presence of neoantigen-reactive T cells, which exhibited

distinct phenotypic characteristics compared to non-responsive

patients (34). The migration of these T cells to metastatic sites

following immune checkpoint blockade stimulation is believed to

play a crucial role in eliciting an effective antitumor response.

However, the inhibition of T-cell function and subsequent

lymphopenia in the peripheral blood may impede the transfer of
T
A
B
LE

1
C
o
n
ti
n
u
e
d

St
u
d
y

C
o
u
n
tr
y

D
e
si
g
n

D
ia
g
n
o
si
s

N
u
m
b
e
r

o
f

p
at
ie
n
ts

M
e
an

ag
e

(y
e
ar
s)

M
al
e

(%
)

IC
Is

u
se
d

D
e
fi
n
it
io
n
o
f

ly
m
p
h
o
p
e
n
ia

N
u
m
b
e
r
o
f

p
at
ie
n
ts

w
it
h

ly
m
p
h
o
p
e
n
ia

M
e
d
ia
n

fo
llo

w
-

u
p

d
u
ra
ti
o
n

(m
o
n
th
s)

O
u
tc
o
m
e
s

re
p
o
rt
e
d

V
ar
ia
b
le
s
ad

ju
st
e
d

P
as
qu

ie
r

20
23

(3
3)

Fr
an
ce

R
C

U
nr
es
ec
ta
bl
e

lo
ca
lly

ad
va
nc
ed

N
SC

LC
50

61
.5

76
D
ur
va
lu
m
ab

A
LC

<
50
0/
ul

at
th
e
in
it
ia
ti
on

of
IC
Is

25
23
.2

P
FS

an
d
O
S

A
ge
,s
ex
,E

C
O
G

P
S,

hi
st
ol
og
ic
al
ty
pe
,a
nd

sm
ok
in
g

R
C
,
re
tr
os
pe
ct
iv
e
co
ho

rt
;
P
C
,
pr
os
pe
ct
iv
e
co
ho

rt
;
N
SC

LC
,
no

n-
sm

al
l
ce
ll
lu
ng

ca
nc
er
;
IC
Is
,
im

m
un

e
ch
ec
kp

oi
nt

in
hi
bi
to
rs
;
A
LC

,
ab
so
lu
te

ly
m
ph

oc
yt
e
co
un

t;
P
FS
,
pr
og
re
ss
io
n-
fr
ee

su
rv
iv
al
;
O
S,

ov
er
al
l
su
rv
iv
al
;
E
C
O
G

P
S,

th
e
E
as
te
rn

C
oo

pe
ra
ti
ve

O
nc
ol
og
y
G
ro
up

P
er
fo
rm

an
ce

St
at
us
;P

D
-L
,p

ro
gr
am

m
ed

de
at
h
lig
an
d
1;

E
G
FR

,e
pi
de
rm

al
gr
ow

th
fa
ct
or

re
ce
pt
or
;R

T
,r
ad
io
th
er
ap
y;
K
P
S,
K
ar
no

fs
ky

pe
rf
or
m
an
ce

st
at
us
.

frontiersin.org

https://doi.org/10.3389/fonc.2023.1287555
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1287555
T cells to the tumor site. In this particular scenario, lymphopenia

serves as a surrogate marker indicating resistance to ICIs,

necessitating the need for treatment modifications to overcome

this resistance (35, 36). Notably, a recent investigation involving

lung cancer patients with TRL who received ICIs revealed that

inadequate lymphocyte recovery correlated with a shorter PFS, an

increase in regulatory T cells, and a depletion of CD8+ T cells in the

peripheral blood. These findings suggest that prompt recovery from

TRL may hold significance in enhancing the prognosis of these

patients (37).

For patients with cancer, radiation is a common cause of TRL,

which is called radiation-induced lymphopenia (RIL). In lung

cancer patients, the risk factors of RIL include advanced age, ALC

before treatment, higher mean lung dose, larger volume of lung and

heart receiving low dose (V5), longer treatment duration, and

longer total beam-on time etc. (38–40). Among the studies

included in the current meta-analysis, TRL caused by radiation

therapy most frequently occurred at or within the six months after

the initiation of the ICIs therapy. Results of the meta-analysis

suggested that TRL may be associated with poor survival of lung

cancer patients receiving ICIs, which is consistent with the results of

studies in other types of tumors. A previous study of 105 patients

with recurrent metastatic esophageal cancer receiving

immunotherapy showed that lymphopenia is associated with a

poorer immunotherapy prognosis in these patients (41). In

another study of patients treated with nivolumab for recurrent/

metastatic head and neck cancer, head and neck cancer, persistence

of lymphopenia during immunotherapy was shown to be a

predictor of worse OS (42). One attractive question at current
Frontiers in Oncology 07111
stage is whether a prompt recovery from TRL may hold significance

in enhancing the prognosis of patients with lung cancer on ICIs. A

recently published pilot observational study in stage III NSCLC

patients undergoing durvalumab consolidation therapy have

suggested that recovery from TRL at the initiation of ICIs were

associated with improved PFS and OS as compared to those without

lymphocyte recovery (43). From a clinical standpoint, the

restriction of radiotherapy dosage to the lungs, heart, and

vertebrae presents modifiable risk factors that could potentially

decrease the occurrence of RIL and PFS and OS, particularly in

patients with non-modifiable risk factors such as advanced age,

lower pre-radiotherapy ALC, and larger tumor size. However,

modifying Lung V5 may pose technical challenges as it could lead

to an increase in V20, thereby exacerbating fibrosis. Alternatively,

shorter treatment duration may prove to be a more effective strategy

when combined with immunotherapy to mitigate lymphopenia

(44). Moreover, in the case of metastatic lung cancers, the

utilization of stereotactic body radiotherapy to irradiate a specific

portion of the tumor, as opposed to conventional radiotherapy

targeting the entire tumor, has the potential to reduce RIL, while

simultaneously preserving lung function and promoting antigen

release. This, in turn, can contribute to the abscopal response (45).

To comprehensively comprehend the relationship between TRL

and unfavorable survival, as well as to devise efficacious approaches

for improving the prognosis of patients experiencing lymphopenia

during ICIs therapy, further translational investigations and clinical

trials are imperative.

This study has several limitations that should be acknowledged.

Firstly, the protocol of the meta-analysis was not prospectively
TABLE 2 Study quality assessment via the Newcastle-Ottawa Scale.

Study
Representativeness
of the exposed

cohort

Selection
of the

non-exposed
cohort

Ascertainment
of exposure

Outcome
not

present at
baseline

Control
for age

Control for
other

confounding
factors

Assessment
of outcome

Enough
long

follow-up
duration

Adequacy of
follow-up of

cohorts
Total

Karantanos
2019 (25) 0 1 1 1 0 0 1 1 1 6

Cho 2019
(24) 0 1 1 1 1 1 1 1 1 8

Li 2019
(26) 0 1 1 1 0 0 1 1 1 6

Chen 2020
(27) 1 1 1 1 1 1 1 1 1 9

Friedes
2021 (28) 0 1 1 1 1 1 1 1 1 8

Jing 2022
(30) 0 1 1 1 0 0 1 1 1 6

Cho 2022
(29) 0 1 1 1 1 1 1 1 1 8

Thor 2022
(32) 0 1 1 1 1 1 1 1 1 8

Lee 2022
(31) 0 1 1 1 1 1 1 0 1 7

Pasquier
2023 (33) 0 1 1 1 1 1 1 1 1 8
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registered, which is acknowledged as a limitation. Secondly,

majority of the studies included in this analysis were

retrospective, which introduces the possibility of selection and

recall biases. To validate the findings, it is necessary to conduct

large-scale prospective studies. Thirdly, among eight of the ten

included studies, patients with NSCLC were included, while the
Frontiers in Oncology 08112
other two studies included patients with NSCLC and SCLC.

Accordingly, we could only observe the association between TRL

and survival in NSCLC patients with ICIs via a sensitivity analysis

limited to studies of patients with NSCLC only, instead of a

subgroup analysis of NSCLC versus SCLC. It is important to

considering subgroup analysis in NSCLC versus SCLC, because
A

B

D

C

FIGURE 2

Forest plots for the meta-analyses regarding the association between TRL and PFS of lung cancer patients on ICIs; (A) overall meta-analysis;
(B) subgroup analysis according to the cutoff for the diagnosis of TRL; (C) subgroup analysis according to the different analytic models used in the
original studies; and (D) subgroup analysis according to the indications of ICIs.
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compared to NSCLC, SCLC is characterized by an exceptionally

high proliferative rate, strong tendency for early widespread

metastasis, and acquired chemoresistance (46). Currently, we

could not determine if the association between TRL and survival

of patients with SCLC on ICIS could be different from those of
Frontiers in Oncology 09113
NSCLC, and studies are needed to address this association in

patients with SCLC in the future. Furthermore, although the

subset of studies employing multivariate regression analyses

yielded comparable findings, it is important to acknowledge that

the influence of residual factors on the correlation between TRL and
A

B

D

C

FIGURE 3

Forest plots for the meta-analyses regarding the association between TRL and OS of lung cancer patients on ICIs; (A) overall meta-analysis;
(B) subgroup analysis according to the cutoff for the diagnosis of TRL; (C) subgroup analysis according to the different analytic models used in the
original studies; and (D) subgroup analysis according to the indications of ICIs.
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unfavorable survival outcomes in these patients cannot be

definitively dismissed. Ultimately, due to the nature of this meta-

analysis being based on observational studies, it is not possible to

establish a causal relationship between TRL and the heightened risk

of cancer progression and mortality in lung cancer patients

undergoing ICIs. Therefore, it is imperative to conduct clinical

studies to ascertain if effective prevention or recovery of TRL could

favorably influence the survival of lung cancer patients with

ICIs treatment.
Conclusions

The results of the meta-analysis suggest a correlation between

TRL and decreased survival rates among lung cancer patients
Frontiers in Oncology 10114
receiving ICIs, particularly in those with NSCLC. However,

further prospective studies are necessary to confirm these

findings. On the other hand, the meta-analysis underscores the

significance of monitoring peripheral lymphocyte counts in lung

cancer patients undergoing ICI treatment. Additionally, it is crucial

to investigate whether interventions aimed at preventing or

expediting the recovery of TRL are linked to improved survival

outcomes for lung cancer patients undergoing ICIs treatment.
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FIGURE 4

Funnel plots for the publication bias underlying the meta-analyses of the association between TRL and survival outcomes of lung cancer patients on
ICIs; (A) funnel plots for the meta-analysis of the association between TRL and PFS; and (B) funnel plots for the meta-analysis of the association
between TRL and OS.
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