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Editorial on the Research Topic

Reviews and perspectives in neuromorphic engineering: novel

neuromorphic computing approaches

In the XXI century, humanity is spurred to face global challenges: climate changes,

pollution, shortage of clean water, food and energy. These challenges regard Complex

Systems, such as the intertwined human societies, the world economy, urban areas,

natural ecosystems, and the climate of the Earth (UN General Assembly, 2015; Martin,

2007; Harari, 2018; Gentili, 2021; Gentili et al., 2022). Whenever we deal with Complex

Systems, we experience some limitations in their description, and in understanding

and predicting their behavior. Such limitations outline the so-called Epistemological

Complexity (Gentili, 2023). A limitation is due to Computational Complexity (Goldreich,

2008): many computational problems involving Complex Systems are solvable but

intractable. Examples are (1) Practical problems, such as scheduling and the traveling

salesman problem; (2) Fundamental science problems, such as the Schrödinger equation

and protein folding; (3) Pattern recognition problems faced through machine learning

algorithms. They are all exponential problems that become intractable when they have

large dimensions: it is impossible to determine their exact solutions in a reasonable time,

even if we use the fastest supercomputers in the world. A promising strategy to face

Epistemological Complexity and, hence, Computational Complexity is Natural Computing

(Rozenberg et al., 2012; Gentili, 2023). Natural Computing is an interdisciplinary research

line that draws inspiration from nature to formulate (a) new algorithms, propose

(b) new materials and architectures to compute, and (c) new methods and models

to understand Complex Systems. Wealthy sources of inspiration for new computing

architectures and algorithms are the human and animal brains. Their imitation has

sparked the burgeoning field of neuromorphic engineering that promises to outperform

conventional Artificial Intelligence (AI) algorithms and high energy-demanding hardware,
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offering a hopeful and optimistic outlook for the future

of computing. Combining new algorithms, materials and

architectures at the same time might be a complex task, but it may

be the most promising route to Natural Computing (Maher et al.,

2024). This Research Topic presents seven cutting-edge works in

this field.

Among the many examples of analog computing, Rudner

et al. highlight that Oscillatory Neural Networks (ONNs) are

particularly alluring. Computing is carried out on the basis of

the rich, complex, non-linear synchronization dynamics of an

artificial neural network. Using the phase of oscillators enables

a rich, robust, and parallel way of encoding of information, as

it is often done in biological systems. Artificial ONNs often rely

on some version of a Hebbian rule to define attractor states for

the oscillators’ phases. In their study, the authors, using computer

simulations, demonstrate that a state-of-the-art machine learning

method, namely Backpropagation Through Time, when applied to

a circuit-level model of the ONN (based on resistively coupled ring

oscillators), significantly enhances the computational power of the

ONNs in recognizing various patterns.

Abernot et al. present possible algorithms and implementation

of continual on-chip learning based on a digital ONN design for

pattern recognition. They highlight that Hopfield Neural Network’s

unsupervised learning algorithms are compatible with ONN on-

chip learning only if they satisfy two constraints on the weight

matrix, the symmetry and the 0-diagonal, and two additional

constraints on the learning algorithm, locality, and incrementality.

The results of this work show that two unsupervised learning rules

are compatible with ONN on-chip learning: Hebbian and Storkey.

The proposed architecture takes advantage of a Processing System

of a Zynq processor to implement the learning algorithms and

Programmable Logic resources to implement the digital ONN.

Jiménez et al. describe an ONN implemented in a commercial

CMOS technology to emulate the behavior of neural surrogates

based on the phase-change VO2 material. VO2 undergoes metal-

insulator transitions under given electrical stimuli. VO2 devices

stand out for their hysteresis in the characteristic I–V curve, which

enables compact low-power relaxation oscillators. The declared

purpose of this work is to study in-depth the synchronization

dynamics of relaxation oscillators similar to those that can be

performed with VO2 devices. The fabricated circuit is very flexible

since it allows programming the synapses to implement different

ONNs, calibrating the frequency of the oscillators, or controlling

their initialization. It uses differential oscillators and resistive

synapses, equivalent to memristors. The ONN has been tested in

its Associate Memory functionality.

Rajalekshmi et al. present a comprehensive analysis of the

structural and design aspects of graphene-based Resistive Random

Access Memory (RRAM) devices for their applications in in-

memory and neural computing. Graphene-based RRAM devices

are memristive systems with enhanced switching speed, retention

time, endurance, and power consumption. Graphene assures

additional performances, such as more substantial heat dissipation

and chemical stability. Moreover, graphene provides more than two

states to the memristive device, allowing the implementation of

analog computing devices and storage.

El Srouji et al. proclaim that co-integrated photonic and

electronic technologies are key to the future of neuromorphic

computing. Biological neural networks are remarkably

heterogeneous in terms of individual neuron dynamics and

morphological structure. Such neural heterogeneity increases

the sensitivity toward the complexity of behaviors and sensory

modalities the brain must handle. An optoelectronic approach

to neuromorphic computing is better suited to provide the

interconnect bandwidths necessary to support the neuronal fan-in

and fan-out required to model neural networks at biological scales

while allowing for flexible and programmable neural dynamics.

Gentili et al. outline neuromorphic engineering in wetware,

i.e., in a liquid solution, the peculiar phase supporting life.

In wetware, three are the principal strategies to mimic some

structural and functional features of the human brain. The first

one, described also by Csizi and Lörtscher, relies on networks

of chemical reactions: any solution containing reactive species

can be compared to a neural network. Some reactions reproduce

binary logic functions; others are appropriate for processing fuzzy

logic. In the presence of strong non-linear interactions between

the intermediate reactive species, some reactions exhibit bottom-

up self-organization phenomena that reproduce the dynamics of

real neurons and ONNs can be implemented. Such dynamic neural

surrogates can communicate through electro-chemical and optical

signals and become building blocks of feedforward and recurrent

networks. When the molecules participating in the chemical

reaction networks are biopolymers, such as DNA, RNA, and

proteins, we enter the realm of synthetic biology, which constitutes

the second strategy for developing neuromorphic engineering

in wetware. The third strategy is nanofluidic iontronics, which

represents the possibility of emulating neural networks through

hybrid circuits made of solid nanochannels and electrically

conductive ionic solutions.
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In the human brain, learning is continuous, while currently in AI, learning

algorithms are pre-trained, making the model non-evolutive and predetermined.

However, even in AI models, environment and input data change over time. Thus,

there is a need to study continual learning algorithms. In particular, there is a

need to investigate how to implement such continual learning algorithms on-chip.

In this work, we focus on Oscillatory Neural Networks (ONNs), a neuromorphic

computing paradigm performing auto-associative memory tasks, like Hopfield

Neural Networks (HNNs). We study the adaptability of the HNN unsupervised

learning rules to on-chip learningwithONN. In addition, we propose a first solution

to implement unsupervised on-chip learning using a digital ONN design. We show

that the architecture enables e�cient ONN on-chip learning with Hebbian and

Storkey learning rules in hundreds of microseconds for networks with up to 35

fully-connected digital oscillators.

KEYWORDS

oscillatory neural networks, on-chip learning, unsupervised learning, pattern recognition,

FPGA implementation

1. Introduction

Current Artificial Intelligence (AI) models are mainly used for two functions,

overcoming the human brain to solve a specific task, or replacing the human brain on more

general purpose tasks (Pehlevan and Chklovskii, 2019). In both cases, AI models need to

learn how to correctly solve a given task. However, while humans are capable of learning

continuously through life to adapt to the changing environment and learn new tasks, current

AI models are trained in advance for inference, making it impossible to learn from evolving

environments and input data (Thrun andMitchell, 1995; Ring, 1997). To adapt AI models to

evolving environments and input data, continual learning is necessary, so there are ongoing

efforts to develop continual learning algorithms for AI models (Thangarasa et al., 2020). In

particular, efforts are concentrated first on supervised continual learning (De Lange et al.,

2022; Mai et al., 2022) to improve the performance of classification models over time, and

then on continual reinforcement learning to learn from the environment, for example in

robotics (Lesort et al., 2020; Khetarpal et al., 2022).

Continual learning algorithms expect to learn novel data while avoiding catastrophic

forgetting (McCloskey and Cohen, 1989; French, 1999) of previously learned data, for

example, considering bio-inspired synaptic plasticity, or reminding solutions (Hayes et al.,

2020; De Lange et al., 2022; Jedlicka et al., 2022). Additionally, continual learning demands

to be implemented on-chip for fast and efficient performances. However, to allow continual
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on-chip learning, each synapse needs to be re-programmable in

a real-time latency requiring additional space, and resources, and

consuming more energy consumption than systems without on-

chip learning.

Moreover, there are several ongoing works to propose hardware

implementations of fast, low-resource, and power-efficient AI

computing paradigms. In particular, neuromorphic computing

(Christensen et al., 2022) takes inspiration from the human brain

neural network for the AI models architectures, and for the data

representation. The most widely used neuromorphic computing

paradigm is called Spiking Neural Network (SNN; Maass, 1997)

which takes inspiration from spikes transmitted among neurons

through the brain synapses by encoding information in the latency

between two spike signals. SNN has been widely explored in the

last decades both in terms of network implementation, with the

development of different SNN-based chips for edge AI computing

(Davies et al., 2018; Pehle et al., 2022), and in terms of learning,

in particular for continual learning (Wang et al., 2014; Lobo et al.,

2019). In this paper, we focus on another neuromorphic paradigm,

called the Oscillatory Neural Network (ONN), which is drawing

attention as an alternative neuromorphic solution for edge AI

computing.

ONN takes inspiration from the collective synchronization of

human brain neurons through oscillations (Tognoli and Kelso,

2009). ONN is an analog-based computing paradigm built as a

network of coupled oscillators (Izhikevich and Kuramoto, 2006;

Schwemmer and Lewis, 2012; Raychowdhury et al., 2019; Csaba

and Porod, 2020; Todri-Sanial et al., 2022) computing with the

parallel phase synchronization of coupled oscillators, called phase

computing. In phase computing, information is encoded in the

phase relationship between oscillators which can potentially limit

voltage amplitude and, therefore, reduce the energy consumption

(Delacour et al., 2023a), making it attractive for edge computing.

Currently, efforts are given on ONN implementation, from

materials to devices, on ONN circuit architecture (Abernot

et al., 2021; Delacour et al., 2023b), and on ONN applications

with demonstrators of ONNs for image processing (Fernandes

et al., 2004; Abernot and Todri-Sanial, 2023), robotic navigation

(Abernot et al., 2022a), or optimization problems (Wang and

Roychowdhury, 2019; Delacour et al., 2022). Yet, learning and

continual learning algorithms for ONN are still to be investigated.

Thus, this work focuses on ONN on-chip learning for pattern

recognition.

In state-of-the-art, ONNs are often studied as a fully-connected

recurrent architecture to perform pattern recognition similar to

Hopfield Neural Networks (HNNs) (Hoppensteadt and Izhikevich,

1997; Nikonov et al., 2015; see Figure 1). While in the literature

ONNs are typically trained with unsupervised learning rules that

were first introduced for HNNs. To the best of our knowledge,

learning rules specific to ONNs are yet to be developed. In this

work, we present an adaptation of HNN unsupervised learning

rules for ONNs while analyzing the different learning rules for

continual on-chip learning. Recently, we introduced an on-chip

learning architecture for a digital ONN implementation (Abernot

et al., 2022b) with the Hebbian learning rule applied to a small

15-neuron ONN for a three-digit pattern recognition application.

In this work, we go beyond by demonstrating that the ONN

FIGURE 1

ONN computing paradigm configured for pattern recognition.

architecture is compatible with other learning rules than Hebbian

by implementing the Storkey learning rule. Next, we analyze the

scalability of the ONN architecture to provide a more complete

evaluation of the system.

The main contributions of the paper are summarized as (i)

adaptation of existing HNN unsupervised learning rules to ONNs,

(ii) development of a continual on-chip learning algorithm on

ONN with unsupervised learning rules, (iii) an implementation

approach for on-chip learning on digital ONN for auto-associative

memory tasks, and (iv) present a scalability analysis of our

approach in terms of latency, precision and resource utilization.

First, Section 2.1 presents the ONN paradigm and its auto-

associative memory capabilities. Then, Section 2.2 gives details

on the various learning rules introduced for HNN and their

compatibility with ONN for on-chip learning. After, Section

2.3 defines the proposed hardware implementation to perform

on-chip learning with a digital ONN design. Section 3 shows

results obtained with our on-chip learning solution for various

ONN sizes, learning algorithms, and weight precision. Finally,

Section 4 discusses the results compared to state-of-the-art

and the advantages and limitations of our on-chip learning

implementation.

2. Materials and methods

2.1. Oscillatory neural networks

In ONNs, each neuron is an oscillator coupled with synaptic

elements representing weights between neurons (Delacour and

Todri-Sanial, 2021), and information is represented in the phase

relationship between oscillators such that ONN computes in

phase using the weakly coupled oscillator dynamics (Schwemmer

and Lewis, 2012). For example, for binary information, if an

oscillator oscillates with a 0◦ phase difference from a reference

oscillator, it will represent a binary “0” value, while if it oscillates

with a 180◦ phase difference from a reference oscillator, it will

represent a binary “1” value. Typically, one oscillator from the

network is used as the reference oscillator. The inference process
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starts with the initialization of each neuron phase as the input

information, then, oscillators’ phases evolve in parallel thanks

to the dynamics of coupled oscillators (Schwemmer and Lewis,

2012) until stabilization to a final phase state, which represents

the ONN inference output (see Figure 1). Phase computation can

potentially reduce the voltage amplitude meanwhile it enables

parallel computation, providing an attractive low-power edge

computing paradigm (Delacour et al., 2023a).

The evolution of the phases during inference is associated with

the minimization of an intrinsic parameter called the energy of the

network. Note, it does not have any relationship with the power

consumption of the system. The energy of the network is defined as

follows:

E =
∑

i

∑

j

Wijφiφj (1)

with φi the phase state of neuron i, φj the phase state of neuron

j, and Wij the coupling weight between neuron i and neuron j.

Considering this intrinsic energy parameter, ONN learning consists

of shaping the energy function, and more importantly, defining the

minima of this energy function given a specific task (see Figure 2A).

For example, ONN can solve graph optimization problems, like

max-cut (Bashar et al., 2020; Delacour et al., 2022, 2023b; Vaidya

et al., 2022), graph coloring (Wang and Roychowdhury, 2019), or

traveling salesman problem (Landge et al., 2020), by mapping a

graph to an ONN such that if you start the ONN with random

phases, it will evolve to the optimal solutions represented by

the minima of the energy function. More commonly, ONN is

used to solve auto-associative memory, or pattern recognition

tasks (Hoppensteadt and Izhikevich, 1997; Nikonov et al., 2015)

using a fully-connected architecture as in HNNs (Hopfield, 1982;

see Figure 1). Interestingly, the energy function is shaped such

that training patterns are minima of the energy landscape (see

Figure 2B), and when the network starts on corrupted information,

it will evolve and stabilize to one of the training patterns. Note, for

simplicity, we represent the energy function as a two-dimensional

function, however, it is N-dimensional depending on the states of

the N neurons.

2.2. ONN on-chip learning for pattern
recognition

In this paper, we focus on auto-associative memory tasks or

pattern recognition. The pattern recognition task is first defined,

then the ONN learning is presented. Finally, we explain constraints,

adaptation, and compatibility of unsupervised learning rules for use

as on-chip learning on ONN.

2.2.1. Pattern recognition
In this work, we define the pattern recognition task, also

called the auto-associative memory task, as the ability to learn

patterns and retrieve them from corrupted input information. For

example, considering images as patterns, a system configured for

pattern recognition can memorize images and retrieve them from

corrupted input with noisy or missing pixels. Classical HNNs

are fully connected recurrent networks, also characterized by an

energy function, which are state-of-the-art neural networks for

solving pattern recognition (Hopfield, 1982). In classical HNN,

each neuron follows a sign activation function, allowing two bipolar

activation values {−1; 1}, where in the case of images, each neuron

represents a pixel, and the neuron activation value {−1} or {1}

represents the pixel color. Thus, classical HNN can treat and learn

binary patterns, like images with black and white pixels. Recently,

alternative HNNs are proposed to treat and learn multi-state or

continuous patterns, such as the complex HNN using complex

activation functions and complex weights (Muezzinoglu et al.,

2003; Tanaka and Aihara, 2009), or the modern HNN considering

a softmax activation function (Ramsauer et al., 2021). For ONNs,

each neuron activation can take various phase values depending

on the ONN design such as for the treatment of multi-state or

continuous information, like gray-scale images.

For pattern recognition, the couplings among neurons

represent the memory of the network. During the learning process,

the training algorithm defines the coupling weight values such that

learning patterns become the minima on the energy landscape.

Learning does not ensure that all local minima are training patterns,

and in some cases, local minima can become stable phase states

while it does not correspond to any learning pattern, which is

also labeled as a spurious pattern (see Figure 2B). During the

inference process, one input pattern is applied to the network by

initializing the oscillators’ phases with the corresponding input

information. Then, phases evolve thanks to the inherent phase

interaction between coupled oscillators until they stabilize and the

final phase state represents the ONN output pattern (see Figure 1).

2.2.2. ONN learning for pattern recognition
Existing learning algorithms to train an ONN for pattern

recognition are mainly unsupervised learning rules, which were

first introduced for HNNs. Unsupervised learning algorithms

only use learning patterns to compute coupling weights, without

additional feedback, unlike supervised learning algorithms, and are

mainly used to solve clustering problems. In pattern recognition,

each pattern becomes the point of attraction of various clusters

created from the energy landscape (see Figure 2A). In this section,

we discuss how to adapt HNN-based unsupervised learning

algorithms for ONN.

Adapting HNN unsupervised learning rules to ONN requires

weight matrix symmetry and zero diagonal values to avoid self-

coupling. Originally, in HNN, the weight matrix is symmetric,

meaning weights between two neurons in both directions have

the same values, and the weight matrix diagonal has zero values

to avoid self-coupling. Later, to improve precision and capacity,

novel unsupervised learning algorithms were introduced allowing

asymmetric weight matrix (Diederich and Opper, 1987; Krauth

and Mezard, 1987; Gardner, 1988) and self-coupling (Gosti et al.,

2019). However, most ONN implementations, in particular analog

ONN implementations, do not support self-coupling and non-

symmetric weights as the coupling is often implemented with

discrete analog components like resistors or capacitors (Delacour

and Todri-Sanial, 2021). Consequently, even if the digital ONN
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FIGURE 2

Simplified representation of an energy landscape for (A) a global interpretation, and (B) an interpretation in the case of pattern recognition.

supports non-symmetric weights and self-coupling, there are

ongoing efforts to develop alternative analog ONN designs to allow

self-coupling and non-symmetric weights (Delacour et al., 2023b).

Most unsupervised learning algorithms introduced for HNN can

be modified to be used with ONNs by adding constraints on the

weight matrix. However, it was shown to impact negatively the

HNN precision and memory capacity (Tolmachev and Manton,

2020). We provide a classification of the unsupervised learning

rules respecting weights symmetry and 0-diagonal in Section 3.

Moreover, using unsupervised learning algorithms introduced for

classical HNN limits patterns to binary information while ONN

with its continuous phase values could, in principle, stabilize to

non-binary patterns e.g., any phase between 0◦ and 360◦. However,

to the best of our knowledge, there exist no unsupervised learning

rules for pattern recognition adapted to ONN capable of learning

non-binary patterns.

2.2.3. ONN on-chip learning adaptation
In this work, we define ONN on-chip learning for pattern

recognition as the ability of an ONN-computing system to learn

new patterns by updating ONN coupling weights meanwhile

avoiding catastrophic forgetting of previously memorized patterns.

There exist mainly two features to categorize unsupervised

learning rules for pattern recognition: locality which means that

the update of the coupling weight between neuron i and neuron

j only depends on activation values of neurons i and j on both

sides of the synapse, and incrementality, which means that the

update of the weights can be done pattern by pattern without

forgetting previously learned patterns. The locality feature is

important for on-chip learning because the update of the weights

can be implemented by using limited additional resources in each

synapse. Though locality is not mandatory as the update of the

weights is not always integrated and implemented at the synapse

level. The incrementality feature is also important to be able to

learn patterns one at a time. For efficient incremental learning,

previously learned patterns are memorized in the weight matrix of

the network to avoid learning them again. To avoid catastrophic

forgetting, some algorithms require repetitive learning of previous

and novel patterns but it is not optimal for on-chip learning as

it requires additional computing, and memory (Personnaz et al.,

1986; Diederich and Opper, 1987; Krauth and Mezard, 1987;

Gardner, 1988). Adding learning capacity to every synapse can be

costly in terms of resources, so it is important to also consider

sparsity and weight precision in the weight matrix. In this work,

we study the impact of weight precision on HNN and ONN

performances.

2.3. On-chip learning architecture

Here, we propose an architecture to perform ONN on-chip

learning for pattern recognition. In particular, we consider a digital

ONN implementation on FPGA, introduced in Abernot et al.

(2021) and we explore its capability for on-chip learning. The on-

chip learning architecture was first introduced in Abernot et al.

(2022b) for a small-size ONN with 15 neurons, however, in this

work, we study architecture scalability for different ONN sizes,

learning rules, and weight precision. Here, we present the digital

ONNdesign implementation for pattern recognition, its adaptation

to on-chip learning, and our evaluation methods.

2.3.1. Digital ONN design
ONNs with their phase dynamics are intrinsically analog in

nature and implemented with analog computing for low-power

implementations (Delacour et al., 2023a). However, digital ONNs

are attractive implementations for studying various applications,

fast demonstration, and investigating scalability (Moy et al., 2022;

Lo et al., 2023). In particular, a digital ONN implementation on

FPGA was introduced in Abernot et al. (2021) to explore novel

ONN architectures, learning algorithms, and applications. The
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FIGURE 3

Schematics of ONN digital design. (A) Schematic of a fully-connected digital ONN. (B) Detailed schematic of a two-neuron digital ONN.

digital ONN on FPGA showcased fast and efficient computation

for edge applications, for example performing obstacle avoidance

on mobile robots by reading proximity sensor information

(Abernot et al., 2022a), replacing convolution filters for image edge

detection (Abernot and Todri-Sanial, 2023), or even accelerating

the SIFT feature detection algorithm (Abernot et al., 2023a). We

believe ONN implementation on FPGA is attractive for real-time

applications for which providing on-chip learning is important.

Hence, we focus on the digital ONN implementation on FPGA

as introduced in Abernot et al. (2021). In the digital design, each

neuron is a 16-stage phase-controlled digital oscillator that can

represent phases between 0 and 180◦ with a precision of 22.5◦ and

each synapse is implemented using signed registers (see Figure 3).

Originally, synapses are fixed to 5-bit signed registers, but in

this work, we study the impact of weight precision on resource

utilization, precision, and latency of the ONN on-chip learning

architecture. We especially test three weight precision, with 3-

, 4-, and 5-bit signed register implementations. Note, the digital

design allows the implementation of non-symmetric weights with

self-coupling (non-zero diagonal). However, in this work, we only

consider symmetric weights without self-coupling to be coherent

and compatible with other ONN implementations, for example,

analog ONN designs (Jackson et al., 2018; Moy et al., 2022).

2.3.2. Architecture for on-chip learning
In this work, we perform ONN on-chip-learning using the

digital ONN design in an architecture implemented on the Zybo-

Z7 development board (Digilent, 2018), which is based on a ZYNQ

processor (Xilinx, 2011). The ZYNQ processor is equipped with

a Processing System (PS), a dual-core Cortex-A9 processor, and

Programmable Logic (PL) resources equivalent to anArtix-7 FPGA.

First, for the ONN on-chip learning architecture, ONN digital

design is implemented using PL resources as in Abernot et al.

(2021) and is controlled by PS to allow the integration of learning

algorithms in PS (see Figure 4).

Communication between PS and PL uses the AXI4-Light

parallel communication protocol. We use PS as master and PL as

slave such that when PS receives external pattern and command,

it controls the digital ONN in PL. If PS receives an external

learning command, the Master updates weights following the

learning rule and sends weights to the digital ONN in PL. If PS

receives an external inference command, PS sends the pattern to

the ONN and receives the ONN output after inference. AXI4-

Light communication accesses four 32-bit AXI4 registers to send

and receive information. The latency of weights transmission, for a

given ONN size, depends on the weight precision and the number

of weights to fit in a 32-bit register.

The learning process starts when PS receives an external

learning command in parallel with an input pattern. It engages the

update of the weights on PS following the implemented learning

rule before sending the updated weights to the digital ONN in PL

through the AXI4-light bus. Note, during weight update, ONN is

in reset mode. Once the weight update is over, ONN comes back

in inference mode and informs PS that the weight update is done.

The inference process starts when PS receives an input pattern with

an inference command, such that PS transmits the input pattern

through AXI4-Light to the digital ONN in PL, the digital ONN

infers, and it sends back its output pattern to PS through the AXI4-

Light. Note, an additional command performs a reset of the weights

to zeros if necessary.

2.3.3. Evaluation
Here, we study the compatibility of HNN learning rules to

ONN on-chip learning for pattern recognition and implement the

compatible learning rules in our digital ONN on-chip learning

architecture.We evaluate the performances of our architecture with

the implemented learning rules through three metrics, resource

utilization, capacity, and latency.

We analyze the resource utilization of our ONN on-chip

learning architecture as it determines the cost of implementation of
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FIGURE 4

Architecture for ONN on-chip learning.

our solution in hardware. In Abernot et al. (2022b), authors showed

that resource utilization increases drastically from off-chip to on-

chip learning for a 15-neuronONN. In this work, we go beyond and

study the scalability of the on-chip learning architecture for larger

ONN sizes.

Memory capacity is defined by the number of patterns a

network (HNN or ONN) can correctly learn and retrieve. It can

be evaluated by learning patterns in the network and verifying

if the network retrieves the correct training pattern when one

of the training patterns is presented. However, we believe it is

also necessary to verify if the network can retrieve the correct

training pattern from corrupted input information, corresponding

to none of the training patterns, to evaluate the robustness

to noise. In this work, we evaluate the capacity of N-neuron

HNN and ONN networks trained with up to N random training

patterns, by testing with corrupted input patterns generated from

training patterns with up to N/2 flipped pixels, represented by

the hamming distance. Note, an inference cycle is performed for

each input pattern. Also note, the size of the network, as well as

the correlation between the training patterns, impact the capacity

of the network, so we perform 100 trials for each configuration.

We first evaluate HNN capacity on Matlab to validate Hebbian

and Storkey learning rules for three HNN sizes (25, 50, and 100

neurons), then we implement Storkey and Hebbian in the on-chip

learning architecture to extract the real capacity metric for a 25-

neuron ONN because the resource utilization limits the ONN size.

A test flow is set up and automatized for testing the digital ONN

on-chip learning architecture using Matlab to send commands and

patterns to the system through a UART communication protocol

(see Figure 4).

We measure the latency of the 25-neuron ONN for on-

chip learning. The latency is divided into three parts, the ONN

computation latency, the weight computation latency, and the

transmission latency. The ONN computation latency is by default

stable no matter the weights and size of the network, so we expect it

to stay stable. The weight computation latency mainly depends on

the learning rule and computation complexity of the learning rule.

And the transmission latency depends on the weight precision and

the network size.

3. Results

This section presents results obtained with both HNN on

Matlab and ONN on FPGA. First, we explain the choice of the most

suitable learning rules to implement for ONN on-chip learning.

Then, we test the learning rules with ONN on-chip learning

constraints inMatlab to study the impact of the weight precision on

theHNN capacity and decide which weight precision to apply to the

digital ONN design. After, we implement the learning rules in our

digital ONN on-chip learning architecture and report on resource

utilization, capacity, and latency of our solution for various weight

precision.

3.1. Learning rules for ONN on-chip
learning

In this work, we focus on local and incremental unsupervised

learning algorithms introduced for HNNs to be compatible

with other ONN implementations. In particular, Tolmachev and

Manton (2020) recently surveyedHNNunsupervised learning rules

for pattern recognition and studied the impact of weight symmetry,

0-diagonal, and incrementality on HNN pattern recognition

capacity. In this work, we consider the various learning rules from

Tolmachev and Manton (2020) as potential candidates for ONN

on-chip learning and investigate which ones are best suited for

ONN on-chip learning (see Table 1). In Tolmachev and Manton

(2020), authors show that iterative rules, requiring learning each

pattern for more than one iteration (Diederich and Opper, 1987;

Krauth and Mezard, 1987; Gardner, 1988) have better precision

than other non-iterative learning rules, however, they are often

not incremental, making them not suitable for on-chip learning

implementation, as shown in Table 1. Table 1 highlights that, based

on the learning rules fromTolmachev andManton (2020), there are

only two unsupervised learning rules which satisfy the ONN on-

chip learning constraints, Hebbian and Storkey. Storkey learning

rule is known to have better capacity than Hebbian, while requiring

more computation. The weights update computation Wij between
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TABLE 1 HNN learning rules features.

Learning
rules

Weight
symmetry

Zero-
diagonal

Local Incremental

Hebbian x x x x

Storkey x x x x

Diederich

Opper I

x x

Diederich

Opper II

x

Gardner x x

Krauth

Mezard

x

Pseudo-

Inverse

x x

neuron i and neuron j, in a network of N neurons to learn a novel

pattern φ with Hebbian learning rule is

Wij = Wij +
1

N
φiφj (2)

And with Storkey learning rule is

Wij = Wij +
1

N
(φiφj − φihji − hijφj) (3)

with hij a local field computed with

hij =

N∑

k=1

Wikφk (4)

For the rest of the paper, we implement both Hebbian and

Storkey learning rules in our digital ONN on-chip learning

architecture.

3.2. Incremental learning with HNN on
Matlab

We study the impact of weight precision on HNN

accuracy for various HNN sizes. In particular, we analyze

the capacity of HNN trained with Hebbian and Storkey

for three HNN sizes, 25, 50, and 100 neurons, as well

as for five weight precision, 2, 3, 4, 5 bits, and full

precision.

Figure 5 shows the HNN capacity for a 100-neuron HNN

trained with Storkey with 1 up to 100 training patterns and

tested for 100 trials with corrupted input patterns with 1

up to 50 hamming distance. A black pixel represents that

over the 100 trials, for a given configuration, all tests were

successful, while a white pixel points out that none of the

tests were successful. The capacity lines highlight, for each

number of training patterns, the maximum hamming distance

of corrupted input patterns supported by the network, such

that the network successfully associates the corrupted input

FIGURE 5

Capacity of a 100-neuron HNN trained with Storkey with 100

training patterns tested with corrupted input patterns with di�erent

hamming distances (1 up to 50 flipped pixels) with the training

patterns. The capacity lines represent for each number of training

patterns the maximum hamming distance of corrupted input

patterns supported by the network, such that the network

successfully associates the corrupted input pattern with a training

pattern for at least θ trials over 100.

pattern with a training pattern for at least θ trials over 100,

with θ = {85; 90; 85; 100}. Then, to simplify the readability

of our results, we choose to represent only the capacity lines

for one value of θ . We choose θ = 90 to have results

representative of a majority of cases and to allow some error

tolerance.

Figure 6 shows the HNN capacity lines for θ = 90 for

the Hebbian and Storkey learning rules for the different weight

precision and network size. Figure 6 also plots the error bounds

for each weight precision configuration. Figure 6 first highlights the

difference in precision and capacity between Storkey and Hebbian

learning rules. HNN trained with Storkey can retrieve a larger

number of training patterns when initialized with more corrupted

input patterns (patterns with larger hamming distances), thus HNN

trained with Storkey shows better capacity than HNN trained with

Hebbian for all weight precision configurations. Then, Figure 6

displays that for Storkey learning, using 5-bit weight precision,

HNN obtains a similar capacity than considering full weights

precision. Note, the impact of reducing weight precision to 4-, 3-, or

2-bit precision depends on the network size. The larger the network

is, the more impact the reduction of the weight precision has on the

network capacity.

3.3. On-chip learning with digital ONN on
FPGA

After selecting suitable learning rules and studying their

efficiency for HNN on Matlab, we implement Hebbian and Storkey

learning rules in our digital ONN on-chip learning architecture and

consider three weight precision with 3-, 4-, and 5-bit precision to

study the impact on the resource utilization, capacity, latency, and

power consumption.
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FIGURE 6

Capacity of HNN networks of (A, D) 25 neurons, (B, E) 50 neurons, and (C, F) 100 neurons trained with (A–C) Storkey, or (D–F) Hebbian with various

weight precision. The capacity is represented, for each network size, for each learning rule, and each number of training patterns, by the maximum

hamming distance of corrupted input patterns supported by the network, such that the network successfully associates the corrupted input pattern

with a training pattern for at least θ = 90 trials over 100 (90%).

FIGURE 7

Resource utilization for various ONN sizes for various weight precision with (A) LUTs, and (B) Flip-Flops. We compare with the previous digital ONN

with random hard-coded weights in a 5-bit precision (5 bits*).

3.3.1. Resource utilization
First, we report on ONN resource utilization. From Abernot

et al. (2022b), we know that for a small 15-neuron scale

ONN, re-programmable synapses utilize a large number of

resources, in particular Look-Up-Tables (LUTs). In the proposed

architecture, a large number of LUTs are used as reconfigurable

memory of the weight matrix, so due to the fully-connected

ONN architecture, the number of synapses increases following

N(N − 1) for N neurons, and so the number LUTs also

increases. Figure 7 highlights the LUTs and Flip-Flops utilization
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FIGURE 8

Capacity of (A, B) HNN and (C, D) ONN networks of 25 neurons trained with (A, C) Hebbian or (B, D) Storkey.

for ONN with 20 up to 40 neurons with and without on-chip

learning.

To limit the impact of re-programmable synapses, we analyze

the impact of reducing the weight precision on resource utilization.

In Figure 7, we report on the number of Look-Up-Tables (LUTs),

as well as the number of Flip-Flops (FFs) necessary for our digital

ONN implementation, for 3-, 4-, and 5-bit precision. As mentioned

previously, in the proposed architecture, a large number of LUTs

are used as reconfigurable memory of the weight matrix. Thus,

we expect the reduction of the weight precision to also reduce

LUTs utilization. However, Figure 7 indicates that for some ONN

sizes, reducing the weight precision does not reduce the number

of LUTs. For example, for the 35-neuron ONN, the number of

LUTs is larger for the 4-bit precision than for the 5-bit precision.

We believe it depends on the configuration of the FPGA, which

provides fixed-size LUTs. Additionally, the reduction of the weight

precision from 5 to 3 bits does not significantly reduce the resource

utilization as expected, limiting the ONN size for on-chip learning

implementation. With our solution, we can implement an ONN

with up to 35 fully-connected neurons with re-programmable

synapses. Next, we consider a 25-neuron ONN to report on its

capacity and latency.

3.3.2. Capacity
Figure 8 presents capacity lines obtained for a 25-neuron

digital ONN trained on-chip with both Hebbian or Storkey for

three different weight precision (3, 4, and 5 bits) compared with

HNN trained with the same configuration. Figures 6B, D show

that for Storkey on-chip learning, HNN and ONN have similar

capacities. However, considering Hebbian learning, Figures 8A,

C demonstrate ONN has a better capacity than HNN. Figure 8

also shows less ONN capacity variations depending on the weight

precision than HNN capacity. These are unexpected as were not

observed in previous configurations, but this is, to the best of

our knowledge, the first large-scale capacity tests performed with

the digital ONN. We believe the difference between HNN and

ONN trained with the Hebbian learning rule might come from

the difference in the system dynamics between HNN and ONN.

Classical HNN can only take two state values, −1;1, because

of the sign activation function. However, the ONN activation

function allows it to take multi-state or continuous values during

dynamical evolution. Thus, even if an ONN trained with binary

patterns will stabilize to binary phase states 0◦;180◦, the activation

function, which is difficult to derive, allows non-binary phase states

during phase dynamics. We believe that the phase dynamics of

the ONN evolve slowly from a corrupted input pattern to the

correct training pattern, while the sharp HNN activation function

may evolve too fast, reaching a wrong training pattern. HNN

may require more precise weights, as with Storkey, to take the

correct decision, while the ONN can still evolve to a correct

training pattern even with less precise weights. However, we

believe it requires additional investigation to draw conclusions.

It is important to note that our architecture enables incremental
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TABLE 2 Measurements of latency for ONN training and inference with ONN oscillation frequency Fonn = 97.7KHz and PS clock frequency

FPS = 667MHz.

This work Abernot et al. (2022b)

Weights 3 bits (µs) 4 bits (µs) 5 bits (µs) 5 bits

Training

Hebbian learning 55 33 µs

Storkey learning 210 77 µs

Weight precision 140 NA

Weight transmission 18 71 175 86 µs

Total Hebbian 213 266 370 119 µs

Total Storkey 368 421 525 163 µs

Inference

Input transmission 9 NA

ONN computation 17 NA

Output transmission 18 NA

Total 44 NA

on-chip learning of a digital ONN design with two different

learning rules, Hebbian and Storkey, for pattern recognition

tasks.

3.3.3. Latency
Finally, we report on training and inference latency for a

25-neuron ONN working at Fosc = 187.5 KHz. Concerning

inference, we measure input pattern transmission latency from

PS to PL, ONN computation latency in PL, and ONN output

transmission latency from PL to PS. Table 2 shows that ONN

inference takes around two to three oscillation cycles to compute,

similar to the solution with off-chip learning (Abernot et al.,

2021). Then, the transmission of ONN input and output takes

27µs which is 1.5 times higher than the ONN computation.

Note, increasing the ONN size will also increase the transmission

latency as the information to transmit will be larger, while the

ONN computation should stay stable. Thus, the architecture

increases the inference latency compared to off-chip learning

solutions because of information transmission from PS to PL, and

reversely.

Concerning training, we differentiate the latency into three

steps, one to perform the training algorithm in PS, another

to rescale weights to the corresponding weight precision, and

finally to transfer weights from PS to the ONN in PL. Table 2

highlights that Storkey requires more computation time than

Hebbian. This is because Storkey requires more computation than

Hebbian, see Equations (2) and (3), and PS performs sequential

processing. Then, weight transmission increases drastically with

the increase of the weight precision and the number of neurons.

Reducing the weight precision has an important impact to reduce

transmission latency because we use AXI4-Lite with 32-bit parallel

transmission.

Our solution, for a network of 25 neurons, allows computing

Hebbian in 55 µs, and Storkey in 210 µs. Additionally, to

allow reducing weight precision to 3, 4, or 5 bits, additional

treatment is necessary, taking 140 µs. Then, transmission time

depends on the weight precision taking between 18 and 175

µs. In total, training a fully-connected ONN, configured for 5-

bits signed synapses, with a novel training pattern takes 370

µs with the Hebbian learning algorithm and 525 µs with

the Storkey learning algorithm. Thus, because Hebbian and

Storkey have similar precision in the digital ONN design,

it can be more of interest for a system with high time

constraints to implement Hebbian rather than Storkey on-chip

learning.

3.3.4. Power consumption
We extract the estimated post-place and route power

consumption of our digital ONN with re-programmable synapses

on Vivado considering the xc7z020-1clg400c target, and we

compare it with the digital ONN implementation without the re-

programmable synapses (Abernot et al., 2021) and with other fully-

connected ONN implementations (Jackson et al., 2018; Bashar

et al., 2021; Delacour et al., 2023b). We compute the energy

per neuron per oscillation by considering an ONN computation

time of three oscillation cycles. Table 3 highlights that the

digital ONN with re-programmable synapses requires slightly

more energy per oscillation than the digital ONN without re-

programmable synapses (Abernot et al., 2021), certainly because

of the additional LUTs resources necessary for the on-chip

learning. Also, both digital ONNs are in the same energy per

oscillation range as the analog ONN implementation in Bashar

et al. (2021) as they operate at a lower frequency than the other

implementations (Jackson et al., 2018; Delacour et al., 2023b).

Using a higher ONN frequency could reduce the computation time,

ultimately reducing the energy per computation and oscillation,

however, the digital ONN frequency is currently limited by the

FPGA.
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TABLE 3 Comparison of the digital ONN with re-programmable synapses with other fully-connected ONN implementations.

Jackson et al. (2018) Bashar et al. (2021) Delacour et al. (2023b) Abernot et al. (2021) This work

Neurons 100 30 16 60 25

Power 303 mW 1.76 mW 160 µW 20 mW 10 mW

Frequency 1 GHz 45 kHz 1 MHz 187.5 kHz 187.5 kHz

Energy/osc 0.3 pJ 1.3 nJ 10 pJ 1.78 nJ 2.13 nJ

4. Discussion

This paper studies possible algorithms and provides an

implementation to perform continual on-chip learning with a

digital ONN design for pattern recognition. It highlights that HNN

unsupervised learning algorithms are compatible with ONN on-

chip learning only if they satisfy two constraints on the weight

matrix, the symmetry and the 0-diagonal, and two additional

constraints on the learning algorithm, locality, and incrementality.

This work evaluated seven state-of-the-art unsupervised learning

rules developed for HNN (Tolmachev and Manton, 2020) and

defined two of them to be compatible with ONN on-chip learning,

Hebbian and Storkey. Both Hebbian and Storkey learning rules

exhibit similar capacity results when implemented in the proposed

architecture to perform on-chip learning on a 25-neuron ONN,

making them both suitable for continual ONN on-chip learning.

The proposed architecture takes advantage of a Zynq processor

(Xilinx, 2011) equipped with both PS and PL resources to

implement a fully-connected digital ONN introduced in Abernot

et al. (2021) with re-programmable synapses in PL, and execute

the unsupervised Hebbian and Storkey learning algorithms in PS.

The architecture was first introduced in Abernot et al. (2022b) for

a small-size ONN with 15 neurons, while this work evaluates the

scalability of the architecture. First, it is important to highlight

that the solution does not require many changes from the first

digital ONN design, making it easy to adapt and install. The

main scalability limitation of the architecture is due to the digital

ONN re-programmable synapses which demand a large number

of LUTs, even with reduced weight precision, limiting the ONN

size up to 35 fully-connected oscillators while the digital ONN

without re-programmable synapses could reach hundreds of fully-

connected neurons (Abernot et al., 2021). Another limitation of the

architecture is the latency induced by the separation between ONN

learning and computation in PS and PL. On one side, PS allows

to implement and compute a large panel of unsupervised learning

algorithms, executing them sequentially with a fast frequency of

Fps = 666 MHz. On the other side, it generates latency to transmit

the weights from PS to PL, increasing with the ONN size. An

alternative solution is to implement the training algorithms using

the parallel properties of PL resources to provide fast training and

remove the transmission latency. However, we believe it would

utilize additional PL resources, including LUTs, which are already

limited. Another solution is to use other communication protocols

than AXI-Lite between PS and PL, such as AXI-stream which

provides more parallel transmission. Overall, our solution permits

to train a 25-neuron ONN in hundreds of microseconds, between

350 and 550 µs which is the first solution to perform ONN on-chip

learning.

Future work will first explore alternative solutions to try to

overcome the current limitations of the ONN on-chip learning

architecture. Furthermore, the next developments will focus on

possible applications with the ONN on-chip learning architecture.

The digital ONN design has already been used for sensor data

treatment in various applications, like interfacing with a camera

for image recognition (Abernot et al., 2021) or using proximity

sensor data to perform obstacle avoidance (Abernot et al., 2022a),

so we are confident on the integration of our architecture with

different sensors. Possible applications for the digital ONN on-chip

learning architecture could be in the robotics domain where real-

time continual learning is often necessary, and where the digital

ONN design already showcased good performances (Abernot et al.,

2022a). For example, navigation, in the context of mobile robots, is

a complex task depending on the environment, where continuous

learning is necessary to adapt to evolving situations. A first proof

of concept of two pre-trained cascaded ONNs performing obstacle

avoidance from proximity sensors was shown in Abernot et al.

(2022a). Though in Abernot et al. (2022a), the pre-trained ONNs

are capable of finding a novel direction using information from

15 proximity sensors whose configurations are used to define the

training patterns. However, if we consider an obstacle avoidance

application using more sensor information than 15 proximity

sensors, it becomes impossible to define all possible training

patterns before inference. Using ONN on-chip learning allows

training the ONN continuously through time depending on the

environmental configuration given by the sensory information.

Thus, we believe that using the ONN on-chip learning architecture

can be beneficial in the case of applications with large-scale inputs

where all possible configurations can not be anticipated. A first

idea was proposed recently to perform real-time ONN on-chip

learning for an obstacle avoidance application using the proposed

architecture (Abernot et al., 2023b), however, a demonstrator is yet

to be developed.

5. Conclusion

This work analyses unsupervised learning rules for Oscillatory

Neural Network (ONN) learning for pattern recognition tasks, and

in particular for continual ONN on-chip learning. We evaluate the

adaption of unsupervised learning rules developed for Hopfield

Neural Networks (HNNs) for ONN on-chip learning and show

that Hebbian and Storkey learning rules are both suitable for

ONN on-chip learning. Additionally, we propose an architecture

capable of performing ONN on-chip learning using a digital ONN

implementation with various unsupervised learning algorithms. It

uses a Processing System (PS) of a Zynq processor to implement
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the learning algorithms and Programmable Logic (PL) resources

to implement the digital ONN. We point out that the architecture

limits the network in size, with up to 35 neurons, due to the large

resource utilization. Also, with the proposed architecture, learning

and inference latency increase with the network size, which can

become a limitation for time-constrained systems. Our current

solution can train a 25-neuronONN on-chip in hundreds of micro-

seconds, between 350 and 550 µs. This is, to the best of our

knowledge, the first solution to perform ONN on-chip learning

with unsupervised learning algorithms for pattern recognition.

We believe it can be useful for investigating novel ONN learning

algorithms and applications such as reinforcement learning for

robotic applications.
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Resistive random access memory is very well known for its potential application

in in-memory and neural computing. However, they often have di�erent types

of device-to-device and cycle-to-cycle variability. This makes it harder to build

highly accurate crossbar arrays. Traditional RRAM designs make use of various

filament-based oxide materials for creating a channel that is sandwiched between

two electrodes to form a two-terminal structure. They are often subjected

to mechanical and electrical stress over repeated read-and-write cycles. The

behavior of these devices often varies in practice across wafer arrays over these

stresses when fabricated. The use of emerging 2Dmaterials is explored to improve

electrical endurance, long retention time, high switching speed, and fewer

power losses. This study provides an in-depth exploration of neuro-memristive

computing and its potential applications, focusing specifically on the utilization of

graphene and 2D materials in RRAM for neural computing. The study presents a

comprehensive analysis of the structural and design aspects of graphene-based

RRAM, alongwith a thorough examination of commercially available RRAMmodels

and their fabrication techniques. Furthermore, the study investigates the diverse

range of applications that can benefit from graphene-based RRAM devices.

KEYWORDS

chemical vapor deposition (CVD), cryptography, graphene, neuromorphic computing,

resistive random access memory (RRAM)

1. Introduction

Graphene-based resistive random access memory (RRAM) devices have gained

significant attention in recent years for their potential applications in neural computing.

Graphene, a two-dimensional carbon material, has exceptional electrical and mechanical

properties, making it an attractive candidate for RRAM devices. RRAM is considered one

of the most promising emerging non-volatile memory, a potentially universal memory

device that comes under the broad category of memristive systems (Meena et al., 2014). The

advantage of RRAM is attributed to the ease of fabrication of a two-terminal structure that

can be used to create efficient crossbar arrays, high read speeds, and low area overheads. The

RRAMs in the crossbar can emulate multiply and accumulate (MAC) computations that are

universal operations essential for implementing neural computations.

RRAM is a memory based on a resistive switching mechanism where the conducting

filament is created and broken due to a change of external voltage (Yu et al., 2011a). The

binary RRAMs operate in two states: low resistance state (LRS) and high resistance state

(HRS). Various types of electrodes and metal oxides can be used for RRAM structure.

Titanium, hafnium, silicon, germanium, and nickel are the most common oxide materials,

whereas silicon, silver, indium, and tantalum are familiar electrode materials used in RRAM

memory devices.
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Unfortunately, RRAMmemory devices face various limitations

with the aforementioned electrode and oxide materials (Zhu et al.,

2015). For accomplishing the resistive switching property, the

electrode, and conducting filament can be modified with a wide

variety of materials. The electrode materials used for RRAM are

divided into the following five categories: (i) elementary substance

electrodes, (ii) silicon-based electrodes, (iii) alloy electrodes, (iv)

oxide electrodes, and (v) nitride-based electrodes (Zahoor et al.,

2020). Depending on the electrode material, the number of possible

states in the RRAM varies (Prakash and Hwang, 2019). As the

number of states increases, the device finds application as an analog

data storage device.

In RRAM, the graphene-related materials have been

incorporated to increase the switching speed, retention time,

endurance, and power consumption to improve the performance

as a non-volatile memory (Rehman et al., 2020). Graphene

provides additional properties such as transparency, flexibility,

enhanced heat dissipation due to the high thermal conductivity

of graphene, and chemical stability. Other than these properties,

as a two-dimensional system, graphene can provide more than

two states for the memristive device in implementing synapses

for neuromorphic computing. It is reported that till now more

than 16 states are possible with graphene in the memristive system

(Schranghamer et al., 2020). Building more than two stable states

in RRAMs to form analog computing systems or using them for

analog storage is a open problem in RRAM-based systems.

With graphene-enabled RRAMs, it is expected that the higher

number of states can improve the storage density and improve the

reliability of the device. Graphene-enhanced RRAM exhibits faster

switching speeds and enduring performance due to high carrier

mobility, and the unique two-dimensional structure minimizes

filament variability, ensuring stable set/reset processes in RRAM

devices. Exceptional thermal and mechanical stability of graphene

boosts RRAM features by optimizing performance across varying

conditions (Galashev and Rakhmanova, 2014; Pan et al., 2017;

Rehman et al., 2020). It is reported that RRAM devices offer

a switching speed of less than 10 ns, power losses of about 10

pJ, lower threshold voltage of less than 1V, long retention time

of greater than 10 years, high electrical endurance with more

than 108 voltage cycles, and extended mechanical robustness of

500 bending cycles. These advantages are complemented by its

ability to tolerate high-temperature variations. Graphene as an

interface layer acts as a resistive switching medium which help to

minimize power dissipation with low contact resistance. Graphene

helps to optimize the surface effect such as photodesorption and

chemisorption which are varied due to the increase and decrease of

the temperature.

This review starts with an overview of neuro-memristive

computing, graphene, and its synthesis techniques. Furthermore,

the RRAM, working principle, and the resistive switching

mechanism are discussed. The incorporation of graphene and

graphene oxide in RRAM as an electrode, and the middle layer is

elaborated in detail. The role of graphene in RRAM, to enhance

the properties such as endurance, and retention is analyzed, and

the enhancement in flexibility and transparency is discussed. The

progress of multilevel cell storage in RRAM is reviewed in detail.

Furthermore, the commercially available RRAM models and their

fabrication methods, complementary metal-oxide-semiconductor

(CMOS) compatibility with RRAM are also discussed.

2. Neuro-memristive computing

2.1. Memristive devices and neural
dynamics

Memristive devices have been studied for their potential to

create artificial neural networks that can learn and adapt in a

manner similar to biological neural networks (Huang et al., 2020).

These devices can be used to build artificial synapses that can

modify their strength based on the pattern of electrical signals

they receive. This is similar to how biological synapses modify

their strength in response to the timing and frequency of incoming

electrical signals (Zhang et al., 2023). Based on this, one potential

application of memristive devices in neural dynamics is in the

development of neuromorphic computing systems (Ma et al.,

2018). These systems are designed to mimic the way the brain

processes information, and memristive devices could provide a

way to build artificial neural networks that are more efficient and

flexible than traditional computing systems (Shehab et al., 2022).

This section will cover the details of different kinds of memristive

devices, their working, and their viability for application in

neuromorphic computing systems.

Memristor is one kind of two-terminal device, considered

a new-generation non-volatile memory (NVM) device. This

new computing system proposed by Sano et al. (2013) can

store information by changing the resistance of a material,

whereas conventional memory devices program data by change

of capacitance (Im et al., 2020). A pinched hysteresis loop is

a characteristic feature of a memristor. The loop represents the

behavior of the memristor as the voltage or current applied to

it is varied as shown in Figure 1. The pinched hysteresis loop

is a distinctive characteristic of memristors and distinguishes

them from other electronic devices such as resistors, capacitors,

and inductors. The pinched hysteresis loop arises due to the

inherent properties of the memristor’s material and structure,

which allow it to exhibit memory and resistance variations based

on the history of applied voltage or current. The exact shape and

characteristics of the loop depend on the specific properties of

the memristor, including its materials, fabrication methods, and

operating conditions. The pinched hysteresis loop of a memristor

has significant implications for applications in areas such as

memory devices, neuromorphic computing, and analog signal

processing. It enables the memristor to store information based

on its resistance state and offers unique opportunities for non-

volatile memory and computing architectures. The conventional

memristor model and its symbol are shown in Figures 2A, B.

These devices offer several advantages over conventional

memory technologies such as flash, dynamic random access

memory (DRAM), and static random access memory (SRAM),

including high density, low power consumption, and fast switching

speeds (Yang and Williams, 2013). The combination of metal

electrodes and insulators constructs a memristor configuration.

The schematic diagram of the cross-point device, showing metallic
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FIGURE 1

Example of pinched hysteresis loop of memristor.

FIGURE 2

(A) Memristor model according to Strukov et al. (2008). (B)

Traditional symbol, p-type and n-type memristors (copyright Starzyk

et al., 2014).

top and bottom electrodes and switching oxide is shown in Figure 3.

Resistive switching, phase change, spintronics ferroelectric, etc.

are the various kinds of properties of memristor devices that

are contributing to the development of emerging electronic

technologies. Among them, a resistive switching memristor

(RSM) is the most common memristive device which has low

power consumption, high endurance, and potential for use in

neuromorphic computing (Prodromakis and Toumazou, 2010;

Yu et al., 2018). The applied voltage to the electrodes in the

RSM device creates an electric field across the metal oxide layer,

causing a change in the oxidation state of the material. This

oxidation state changes the resistance of the material which can

be detected and used to store data. Phase change element based

phase change memory (PCM) is another type of memristive

device that uses a material to change its physical state between a

crystalline phase (low resistance) and an amorphous phase (high

resistance) in response to heat or electric current. Spintronics

memristors are a new type of magnetic RAM (MRAM) that works

on magnetic tunnel junction (MTJ) (Xue et al., 2011) and offers

high speed and high endurance performance. The resistance value

has changed due to the spin of the electron and the storage of

the data. Two ferromagnetic layers (FM) of these devices are

separated by a non-magnetic (NM) layer. When an electric current

is applied to the device, the spin of electrons in the magnetic

FIGURE 3

Schematic of the cross-point device, showing metallic top and

bottom electrodes, and switching oxide (Yang and Williams, 2013).

layers is affected, causing a change in the resistance of the device.

Ferroelectric tunnel junction (FTJ) (Ambriz-Vargas et al., 2017) is

the most significant ferroelectric memory device for neuromorphic

computation, having an insulating layer in between two metal

electrodes. This ferroic nanostructure is comprised of an ultra-

thin ferroelectric barrier, and its dominant mechanism is quantum

electron tunneling. In this structure, electrons are able to penetrate

through the potential barrier of the ultra-thin insulator. As research

in this field continues to progress, memristive devices are expected

to play an increasingly important role in the development of

advanced computing and memory technologies.

Memristive devices are of great interest in the field of

neuromorphic computing because they can be used to emulate the

synaptic connections between neurons in the brain. The neural

dynamics of memristive devices refers to the behavior of these

devices when they are used to implement neural networks. When

memristive devices are used as synapses in a neural network, their

resistance values change over time in response to the input signals

that they receive (Boybat et al., 2018). This behavior can be used to

implement learning in the neural network, allowing it to adapt to

new inputs and improve its performance over time. The dynamics

of memristive devices in neural networks are highly non-linear and

can be difficult to predict (Brivio et al., 2021). However, researchers

have developed models and simulations to study the behavior of

these devices in neural networks.

2.2. Memristors in crossbar

Memristors in crossbar arrays are a type of non-volatile

memory technology that holds promise for high-density, low-

power, and high-speed computing applications (Xia and Yang,

2019). In a crossbar array, memristors are arranged in a grid

pattern, with one set of wires running vertically and another set

of wires running horizontally, forming a series of intersecting

points. At each cross-point, a memristor can be programmed to

either a high or low resistance state, representing a binary 1 or 0,

respectively. By applying voltage to the appropriate sets of wires, the

resistance state of the memristor can be read or written. This allows

for parallel access to multiple memory cells, making crossbar arrays
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a potential solution for memory-intensive tasks such as machine

learning and artificial intelligence.

A single memristor or one-transistor/one-resistor (1T, 1R)

memristor array typically refers to a configuration where

memristors are organized in a regular grid pattern. The purpose of a

single memristor array is to enable the simultaneous operation and

interconnection of multiple memristors (Xu et al., 2021). In a 1T,

1Rmemristor array, each memristor is paired with a transistor. The

transistor serves as the access device or switch, allowing individual

memristors within the array to be addressed and read or written

to Kim et al. (2012). The key advantage of a 1T, 1R memristor

array is its high density and potential for low-power operation.

By combining the storage element (memristor) and the access

device (transistor) into a single unit, the overall footprint of the

memory array can be reduced. There are various ways to arrange

the memristors, depending on the desired application and circuit

design (Lu et al., 2022). The two-memristor crossbar array is a

grid-like structure where the two memristors are positioned at the

intersection of a row and a column. The rows and columns are

connected to input and output nodes or other circuit elements. This

configuration is commonly used in memristive crossbar arrays,

where the resistance states of the memristors can be manipulated

to enable or disable the connections between rows and columns

(Vourkas et al., 2016). Crossbar arrays are particularly relevant

in applications such as memory arrays, neural networks, and

digital logic circuits (Li et al., 2021). In a bridge memristive

crossbar array, two memristors are connected in series between

two nodes, forming a bridge structure. The nodes can represent

inputs, outputs, or intermediate connections in a larger circuit. The

bridge configuration allows for specific control over the flow of

current or signals through the array. By adjusting the resistance

states of the individual memristors in the bridge, it is possible to

selectively enable or disable the connection between the two nodes.

This can be achieved by applying appropriate voltage or current

across the bridge.

Memristors in crossbar arrays also have the potential for

use in neuromorphic computing, which seeks to emulate the

structure and function of the human brain (Xia and Yang,

2019). Memristor-based crossbar arrays can potentially perform

tasks such as pattern recognition and decision-making in a

highly efficient and parallelized manner. Starzyk et al. (2014)

developed a novel neural network architecture that utilizes

a compact crossbar layout of memristors, which allows us

to preserve a high density of synaptic connections. Yakopcic

et al. (2019) studied a memristor-based neuromorphic system

for ex-situ training of multi-layer perceptron algorithms. This

technique facilitates the direct translation of neural algorithm

weights onto the resistive grid of a memristor crossbar. It

is observed that a parallel crossbar improves the speed and

power dissipation. Hu et al. (2012b) proposed a memristive

crossbar array for high-speed image processing. It exhibits

automatic memory, continuous output, and high-speed parallel

computation, making it well suited for implementation in VLSI

(very large-scale integration) technology. Huang et al. (2021)

developed a vertical crossbar MIM (metal insulator metal)

RRAM device for neuromorphic computing that is based on

the 2D material ReSe2. This design has been shown to exhibit

FIGURE 4

ITIM configuration for implementing DNN neural network.

improved accuracy when used in brain-inspired neuromorphic

computing systems.

2.3. Neuro-memristive architectures

The memristive circuits and computing architectures are

one of the promising solutions for implementing neuromorphic

computing. The memristor implementations provide various

advantages such as scalability, on-chip area and power

reduction, efficiency, and adaptability, especially for device

scale-up architectures. There are existing different memristive

neuromorphic architectures in the literature used for edge

computing applications. The section reviews the most popular

neural architectures for edge computing applications.

2.3.1. Deep neural network (DNN)
The DNN is implemented using memristor crossbar arrays.

Each DNN layer is implemented using one transistor/memristor

(1T 1M) configuration as in Figure 4. Each layer consists ofM word

lines (WLs) and N bit lines (BLs). The transistor switch enables or

disables the column-wise memristor nodes. In Figure 4, v1, v2, ...

vn from the inputs, conductance gi,j of memristors as weights and

columns current i1, i2, ... im as outputs, where i, j are the coordinates

of the crossbar node. The output currents indicate the weighted

summation of input voltages. The bias is included as an additional

input line.

2.3.2. Convolutional neural network (CNN)
There are several analog memristive crossbar implementations

of CNN architecture (R et al., 2022). Figure 5 shows the hardware
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FIGURE 5

CNN implementation using memristor crossbar arrays (R et al., 2022).

implementation of CNN consisting of a convolution layer, mean

pooling layer, and dense layers. The convolution filters are realized

as memristive crossbars. The conductance of memristive devices is

the trained weights of the convolutional filter (CF). The number

of memristors in each layer is determined by the required feature

maps. The features are then fed to the pooling layer circuit. The

pooling layer reduces the dimensionality by performing mean-

pooling operation (R et al., 2022). The output of the mean-

pool operation is flattened and is connected to dense layers for

classification. The current-to-voltage (IV) converter block is used

to convert currents to corresponding voltages. The activation

functions used are ReLU (rectified linear unit) and softmax.

2.3.3. Cellular neural network (CeNN)
The CeNN is developed by Chua and Yang by mimicking the

features of neural networks and cellular automata finds applications

in the area of image processing (Chua and Yang, 1988a,b). The

CeNN network in Figure 6 consists of I × J cells. Each cell is

connected only to its neighboring cells. The connections from each

cellC(i, j) to its neighbors is defined by cloning templates,A(i, j; k, l)

and B(i, j; k, l), for feedback and feedforward connections (Chua

and Yang, 1988b; Duan et al., 2015). The input signalU is connected

to C(i, j) through the feedforward weights B(i, j; k, l). The output of

the cell yk,l is fed to C(i, j) through the feedback weights A(i, j; k, l).

The state equation can be mathematically expressed as Chua and

Yang (1988b).

dxi,j

dt
= −xi,j +

∑

ck,l

A(i, j; k, l)yk,l +
∑

ck,l

B(i, j; k, l)uk,l + Ib, (1)

where Ib is the bias current, xi,j is the cell state, and

yi,j is the output, respectively. There are various memristive

implementations of CeNN in the literature (Duan et al., 2015;

Hu et al., 2016). In Figure 6, the feedback and feedforward

connections in the CeNN network are implemented using

memristor crossbar arrays.

2.3.4. Recurrent neural network (RNN)
The recurrent neural networks-based methods demonstrated

outstanding ability in prediction tasks using time-series data by

combining large dynamical memory and adaptable computational

capabilities. Long short-term memory (LSTM), the special

configuration of RNN, is aimed at overcoming the vanishing

gradient problems in conventional RNN (Adam et al., 2018). The

memristive hardware implementation is presented in Figure 7A

(Adam et al., 2018). The input data to the network is the

concatenation of input data xt , data from previous cell ht−1 and

bt . The input is multiplied by a weight matrix which is the

programmed conductance value of the memristor crossbar array.

The crossbar outputs are the input to the activation functions

(either sigmoid or hyperbolic tangent) to get the gate values. ft is

the output value of forget gate, i(t) is the output of input/update

gate, o(t) denotes the output from the output gate, and c(t) denotes

the cell state.

The calculation time in LSTM is very heavy and time-

consuming. Echo state network (ESN), a reservoir computing

architecture, has emerged as an alternative to the gradient descent

training method for RNN (Yu et al., 2022). ESN consists of an

input layer where the inputs are associated with a weight matrix

win, followed by a recurrent and sparsely connected reservoir

using weight matrix wres and finally, a readout layer associated

with a weight matrix wout . The memristive architecture of the

ESN reservoir layer is shown in Figure 7B. In ESN, the output

readout layer is only trained, and the input and reservoir weight

matrices are randomly generated and fixed throughout. The input

weights are sampled from a uniform distribution u(−a, a), using a

scaling factor a and not trained. The weights of the reservoir are

sampled from u(−1, 1). Hence, the ESNs are conceptually simple

and practically easy to implement.

2.3.5. Spiking neural network (SNN)
The main advantage of SNN hardware implementation is

reduced power dissipation in comparison with the pulse-based
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FIGURE 6

(A) Structure of CeNN and (B) CeNN implementation using memristor crossbar array (Hu et al., 2016).

FIGURE 7

(a) Memristive crossbar LSTM architecture (Adam et al., 2018), (b) ESN architecture.

systems. The data signals are transmitted as spikes in SNN.

The SNN is based on the emulation of brain processing

using particular spike events represented by spike-timing-

dependent plasticity (STDP). STDP is based on presynaptic and

postsynaptic impulses. The implementation of SNN architectures

with STDP using memristive crossbar arrays is presented in

Figure 8. The architecture consists of presynaptic and postsynaptic

neurons connected through memristor crossbar arrays. Most

cases use a winner-takes-all (WTA) approach for implementation

(Wu et al., 2015b). Recent studies introduce stochasticity

by adding noise to WTA architecture (Bill and Legenstein,

2014; Krestinskaya et al., 2020). Stochasticity introduces the

biological concept of the probabilistic behavior of neurons in

the brain.

As discussed in the section, the field of neuromorphic

computing using memristor crossbar arrays is advancing and

the exploration of novel materials and devices for in-memory

computing is required to improve efficiency and scalability.

The RRAM devices are promising candidates for synapses and

neurons in neuromorphic circuits. The analog tunable capability

of RRAM devices enables novel computing functions for the

realization of neuromorphic computing. The material class for

RRAM devices is from magnetic alloys, metal oxides, 2D materials,

and organic materials. Existing studies in the literature report
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FIGURE 8

Memristive spiking neural network (Wu et al., 2015b).

that 2D material-based RRAM devices have better properties

compared to conventional electrode materials which enhances the

characteristics of RRAM in such a way to improve its application

in neural computing. The coming section reviews the mechanism

of the working principle of RRAM and the use of 2D materials for

enhancing the properties are discussed in detail.

3. Graphene and 2D materials based
RRAM for neural computing

Graphene and other 2D materials have the potential to

revolutionize neural computing due to their unique electrical,

mechanical, and optical properties. Graphene is a single layer of

carbon atoms arranged in a hexagonal lattice, and it is a highly

conductive and transparent material. Other 2D materials, such

as transition metal dichalcogenides (TMDs) and hexagonal boron

nitride (h-BN), also exhibit interesting properties that make them

promising for use in neural computing (Zhang et al., 2022).

TMDs have gained significant attention in recent years due

to their unique properties and potential applications in various

fields, including neural computing. TMDs are a class of materials

composed of transition metals (such as molybdenum or tungsten)

and chalcogen elements (such as sulfur or selenium). TMDs can

be used to create synaptic devices, which are fundamental building

blocks of artificial neural networks (Cao et al., 2021). TMDs exhibit

excellent electrochemical properties, allowing them to function

as efficient and reliable synapses. By controlling the electrical

current through TMD-based synaptic devices, the strength of

synaptic connections can be modulated, mimicking the synaptic

plasticity observed in biological neural networks (Sung et al., 2022).

TMDs can also be utilized in the development of neuromorphic

computing systems. These systems offer advantages such as parallel

processing, low power consumption, and efficient data processing

(Lu et al., 2023). TMD-based devices can be integrated into

neuromorphic architectures to perform tasks such as pattern

recognition, data analysis, and decision-making (Ko et al., 2020).

Another 2D material suitable for neural computing is h-BN

(Xie et al., 2022). h-BN is a two-dimensional material, similar

to graphene, but with insulating properties. It can serve as a

platform for fabricating electronic components, such as transistors,

interconnects, resistive memory, and sensors, with potential

applications in neural computing. h-BN has been explored as a

material for developing neuromorphic devices that can emulate the

behavior of biological neurons. The two-dimensional nature of h-

BN allows for the integration of multiple components into compact

and efficient architectures.

Graphene-based electrodes have been shown to be

biocompatible and capable of recording neural signals with

high resolution and sensitivity. Additionally, graphene-based

transistors have demonstrated fast switching speeds and low

power consumption, making them suitable for use in neural signal

processing. Another potential application is in the development

of neuromorphic computing, which aims to mimic the structure

and function of the human brain (Schranghamer et al., 2020).

Graphene and other 2D materials can be used to create artificial

synapses, which are the connections between neurons that allow

them to communicate with each other. The details of fabrication

techniques and applications of 2D materials are shown in Table 1.

Overall, graphene and other 2D materials and their

combinations hold a great promise for advancing the field of

neural computing and could lead to the development of more

efficient and powerful neural interfaces and neuromorphic

computing systems. Among the 2D materials, the present review

focuses mainly on the role of graphene and graphene oxide for

RRAM for application in neural computing. There are still many

challenges to overcome, such as improving the scalability and

reproducibility of these materials and devices, before they can

be widely adopted in practical applications (Lin et al., 2016). In

this section, the importance and synthesis methods of graphene

are discussed in brief and a detailed analysis on the structure and

working principles of RRAM is included for a better understanding

of the applications of graphene-based RRAM in neural computing.

3.1. Properties of graphene and the
di�erent methods for its synthesis

Graphene is a 2D material made up of a single layer of sp2

hybridized carbon atoms, arranged in a hexagonal lattice. The one

atomic layer thickness makes graphene lightweight and flexible.

The strong atomic bonding with the nearest carbon atoms provides

high mechanical strength to the system, greater than that of steel.

Many of these properties vary based on the quality of graphene

synthesized. Figure 9 shows the classification of graphene synthesis

methods prevalent today. The most popular approaches include

those as follows:

Frontiers inNeuroscience 07 frontiersin.org26

https://doi.org/10.3389/fnins.2023.1253075
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


R et al. 10.3389/fnins.2023.1253075

TABLE 1 Review on 2D materials for neuromorphic computing applications.

Sl no. References 2D Material Fabrication
method

Target application switching
voltage

1 Schranghamer et al.

(2020)

Graphene Chemical vapor

deposition (CVD)

High precision neuromorphic

computing

5.5 V

2 Qian et al. (2016) h-BN CVD Resistive memory 0.72 V

3 Xu et al. (2019a) MoS2 MOCVD Synapse 0.2 V

4 Kumar et al. (2019) WS2 RF sputtering Memristors 1.6 V

5 Krishnaprasad et al.

(2019)

MoS2/ Graphene CVD Synapse 1V

6 Liu et al. (2012) MoS2/r-Graphene oxide Liquid exfoliation Resistive memory 3.5 V

1. Chemical vapor deposition (CVD) - The copper or nickel

substrate is heated in a reactor chamber while introducing a

hydrocarbon gas (such as methane) to the chamber. These

hydrocarbons react with the substrate to form graphene.

2. Epitaxial growth - Substrates similar to crystal structure of

graphene [e.g., silicon carbide (SiC) or hexagonal boron nitride

(h-BN)] can be used to grow graphene for obtaining epitaxial

growth via CVD process.

3. Mechanical exfoliation - The bulk crystal graphite consists of

multiple layers of graphene. These layers are peeled off using

tape or a sharp object.

4. Electrochemical exfoliation - The electrolyte solution is used to

exfoliate graphene from graphite.

5. Solvothermal synthesis - The exfoliation of graphene from a bulk

crystal of graphite is done in an autoclave having high pressure

and temperature.

6. Thermal reduction of graphene oxide - The repeated reduction

of graphene oxide by heating in a hydrogen gas environment can

result in graphene formation.

The discovery of graphene was through the mechanical

exfoliation (Novoselov et al., 2004) of graphite. Different exfoliation

techniques such as mechanical exfoliation, liquid-phase exfoliation

(Nicolosi et al., 2013; Farajian et al., 2019), and electrochemical

exfoliation (Chen et al., 2019; Ejigu et al., 2019) are used for

the synthesis of graphene. In the case of mechanical exfoliation

of graphene, highly ordered pyrolytic Graphite (HOPG) is used.

The simplest method to exfoliate is by using a scotch tape,

and the graphene layer is transferred to the required substrate

by sticking the tape on it. However, large-scale synthesis of

graphene through this approach is time-consuming, expensive,

and not practical. In practice, the use of CVD is more

commonly used to obtain high-quality graphene films (Fujita et al.,

2017). In the CVD process, the gaseous reactants combine to

produce the graphene layer on the substrate surface. Depending

on the substrate temperature, the formation process of the

sample can be controlled. With the CVD process, relatively

high-quality graphene can be produced. The modern CVD

techniques can be classified into LPCVD (low-pressure CVD)

and UHVCVD (ultrahigh vacuum CVD) (replace with PECVD,

hot wall, and cold wall) (Mueller et al., 2014; Sharma et al.,

2020).

In CVD, the deposition of a monolayer graphene on the

surface of a metal substrate is relatively easy and has a large

area scalability potential. Several other growth techniques have

been reported for graphene synthesis toward RRAM applications

including atomic layer deposition (ALD) (Zhang et al., 2014a),

solution deposition techniques (Zhong et al., 2015), plasma-

assisted techniques, reduction of graphene oxide (Kurian, 2021),

arc discharge (Li et al., 2011). Solution coating methods such as

spin coating (Long et al., 2019), dip coating (Kim et al., 2019),

and drop coating (Puah et al., 2020) offer attractive platforms

for obtaining high-quality graphene films due to their low-cost

and large area processability. Laser scribing technology can be

used to convert GO to rGO using laser, and RRAM realized

using laser scribed reduced graphene oxide was reported in Li

et al. (2016). CO2 laser-induced graphene (LIG) can be used for

the fabrication of RRAM, where the graphene is transferred to

polydimethylsiloxane (PDMS) from polyimide (PI) (Jung et al.,

2021) and SnO2 is deposited on it. This will provide a flexible

RRAM device. Graphene is the thinnest material discovered to

date, and properties such as transparency, and flexibility make this

suitable for various electronic device applications.

3.2. Features and working mechanisms of
RRAM

RRAM is a non-volatile memory that makes use of a

material sandwiched between two metal electrodes that have

resistive switching properties. The resistance of the RRAM changes

depending on the voltage applied across it.

The popular resistive switching material such as titanium

dioxide (TiO2) resistance can be changed by the application of

electrical current to the RRAM. The change in resistance to a high

or low resistance is mapped to binary states of “0” and “1”, thereby

allowing digital storage. By applying voltage pulses to the RRAM

electrode resistance of the TiO2 film can be changed. The change in

resistance is dependent on the frequency as well as the amplitude

of the pulses applied. The RRAM can be read by applying a small

voltage pulse and reading the output currents without disturbing

the resistance state.

The MIM layer format is used to create the structure of

RRAM as shown in Figure 10. The resistive switching mechanism
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FIGURE 9

Schematic representation of di�erent methods of graphene synthesis.

is enabled with applications of voltage across the two terminals

of RRAM to define the resistive state. The HRS is considered the

OFF state, and the LRS is regarded as the ON state. The switching

mechanism from HRS to LRS happens through the application of

external voltage. Some of the materials which exhibit this switching

include the oxides of hafnium (Long et al., 2013; Zhao et al.,

2014b; Feng et al., 2016), titanium (Yang et al., 2009; Bousoulas

et al., 2016), tantalum (Chiu et al., 2012; Prakash et al., 2015;

Huang et al., 2016), zinc, nickel (Lee et al., 2008b), manganese

(Zhang et al., 2009), magnesium (Chiu et al., 2012), aluminum

(Wu et al., 2010), and zirconium (Lin et al., 2007; Wang et al.,

2009). In RRAM, the choice of electrode material is critical since

it affects the switching property of the system. A small read voltage

is applied to understand the system’s current state (either ON or

OFF) without disturbing the system’s state. Since RRAM is a non-

volatile memory, it will preserve the state even after removing the

external voltage.

RRAM can be classified into two types depending on the voltage

polarity to unipolar and bipolar resistive switching. The RRAM is

unipolar when the used voltage polarity is the same, and it is called

bipolar if reverse voltage polarity is used for switching between the

different resistance states (LRS and HRS).

The insulating and conductingmechanisms in the RRAMoccur

from the breakdown and growth of the filament on the application

of an external voltage. Depending on the resistive mechanism,

RRAM can be classified into (i) metal ion-based RRAM and

(ii) oxygen vacancies filament-based RRAM. In metal ion-based

RRAM, the switching mechanism happens by the migration of

metal ions in the filament and the oxidation and reduction

mechanism. The steps followed in the process of transitioning of

conducting state to the insulating state are depicted in Figure 11.

This type of mechanism happens in the case of metal electrodes

such as Au, Ni, or Cu at the top-level electrode. The migration of

metal ions occurs through the dielectric layer, and the subsequent

reduction or oxidation happens at the bottom. This will create

a metal filament between the two metal electrodes through the

dielectric barrier. This metal filament formation possesses the LRS

state, and the disappearance of the same enables the HRS state. In

Figure 11, the Ag/a-ZnO/Pt RRAM cells demonstrate the resistive

FIGURE 10

Schematic structure of RRAM with metal-insulator-metal layer

structure.

switching mechanism. In this case, the Ag electrode is the active

element that takes part in the filament formation mechanism, and

the Pt electrode is inert. The state of the RRAM devise in the

absence of an external electric field is shown in Figure 11A. On

applying an external voltage, the oxidation of silver takes place,

and it starts to get deposited on the dielectric layer. The bottom

electrode, having a negative polarity, will attract these ions, and the

ions get deposited on the bottom layer. The formation of metal

filament through this process puts the device in the LRS state, as

shown in Figures 11B–D. The device can be switched to the HRS

state by applying the voltage in the reverse direction, as shown in

Figure 11E. We can use graphene as a top/bottom electrode as well

as an active insulating layer instead of other materials, as discussed

in the following section.

In the case of oxygen vacancies-based RRAM, the resistance-

switching mechanism occurs with the creation of oxygen vacancies.

The reaction of oxygen ions with the anode material will create the

conducting filament. The properties of RRAM will depend on the

type of materials present in the top electrode, bottom electrode,

and middle layer. Different substitutions of the top and bottom

electrodes and middle layers with different materials can enhance
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FIGURE 11

Schematic of the switching mechanism of conductive bridge RRAM. (A) The pristine state of the RRAM device. (B, C) Oxidation of Ag and migration of

Ag+ cations toward the cathode and their reduction. (D) Accumulating Ag atoms and Pt electrodes leads to the growth of highly conductive

filaments. (E) Filament dissolution takes place by applying a voltage of opposite polarity (Zahoor et al., 2020).

the properties of RRAM. The use of 2D materials has shown an

enhancement in endurance, switching speed, threshold voltage,

retention time, etc. The graphene-based RRAM shows promising

results in the modification of RRAM toward better performance

and for making the system a multilevel cell storage device for the

application of MAC computing.

Different parameters will affect the performance of the RRAM

device. This study mainly focuses on the variability-averse multi-

level cell storage in the graphene-based RRAM system. The RRAM

devices have shown a large variability due to the stochastic nature

of the switching process.

4. Graphene-based RRAM

Improving the reliability, scalability, and cost-effectiveness of

the RRAM device is an essential requirement for practically

realizing in-memory and neural computing applications.

Graphene-based RRAMs (GRRAM) have different characteristics:

low power consumption, higher density, transparency, and

homogeneity. GRRAM can be divided into two sub-parts:

graphene RRAM and graphene oxide (GO) /reduced graphene

oxide (rGO) RRAM. In graphene RRAM, graphene is used as an

electrode, whereas in graphene oxide/reduced graphene oxide

RRAM, GO or rGO can either be used as a dielectric layer or

electrode to enhance the device’s performance.

4.1. Graphene as the electrode in RRAM

The main property of RRAM is the resistive switching

mechanism which has various difficulties related to the selection

of electrodes and the dielectric layer. The high conductivity and

high surface area-to-volume ratio of graphene makes it suitable

for electrodes. The power consumption is significantly less in

graphene-based electrodes in RRAM compared to conventional

metal electrodes in RRAM memory devices. Graphene as

an electrode offers various advantages over traditional metal

electrodes. The greater mechanical scalability, higher conductivity,

and ultrathin nature of graphene help to design non-volatile

RRAM memory devices. The mechanical properties of graphene,

including exceptional strength, flexibility, and elasticity, make it

an ideal candidate for use in RRAM devices. These properties

enable the fabrication of ultrathin memory cells and provide

the potential for integrating RRAM into complex, multi-layered

device architectures (Novoselov et al., 2005; Zhang, 2015). The

mechanical scalability of graphene allows for the creation of densely

packed memory arrays, contributing to higher storage capacities

and improved device performance (Papageorgiou et al., 2017).

Furthermore, graphene exhibits exceptional electrical conductivity

due to its unique electronic band structure (Yung et al., 2013). The

switching mechanism in RRAM involves the controlled migration

of ions within the memory cell, leading to changes in resistive

states. Graphene’s high conductivity facilitates efficient charge

transport during these switching processes, resulting in fast and

reliable switching. The high conductivity of graphene also helps

reduce power consumption and enables high-speed read and write

operations in RRAM devices.

Lee et al. (2010) report a detailed study on resistive

switching characteristics of non-volatile memory devices with

nano-materials. 2D material and nanomaterial are the extreme

candidates in the nano industry where organic channels and

metal electrodes decrease the transmittance value (transmittance

decrease of 25%) of the memory devices (Lee et al., 2010).

Graphene is used as electrodes, and single-wall carbon nano-tube

(SW CNT) is assumed as active layers between metals in non-

volatile memory devices. They implemented this memory device

with ozone treatment as graphene and oxygen atoms are bonded

together. The fabricated memory device revealed that it provides an

acceptable transmittance value. Graphene as an electrode provides
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FIGURE 12

Schematic structure of memristor nanostructures on metal and

graphene electrodes by a block copolymer self-assembly process.

a minimum decrease of transmittance of 3.6 %, which is 11.4 % and

25 % in Au and Al. They discovered that the non-volatile memory

device with graphene electrodes exhibits better conduction with

high mobility of 44cm2V−1s−1 and a switching speed of 100 ns.

The graphene-based memory device performs better than metallic

electrodes such as Au, Al, and Ag. The graphene SWCNT memory

device improves switching characteristics enhanced by 2× 102 (Yu

et al., 2011b).

Ji et al. (2011) approached a design to integrate an 8 × 8

crossbar array of organic memory devices with graphene. This

multi-layer graphene is an intermediate layer between insulating

polyamide (IP) layers. A fabrication process integrates this device

with the help of PET (polyethylene terephthalate) substrate. This

device offers a high switching ratio current of 106 with write-

once-read-many (WORM) characteristics. The bending cycle is 10

orders larger (Lee et al., 2010) and exhibits excellent cell-to-cell

uniformity. The retention time of the memory device has been

controlled in the order of 104. Their approach hasmaintained stable

and reliable device characteristics without degrading the current

performance. The WORM-type devices store the data permanently

without losing any unintended data.

Park et al. (2012) demonstrated a detailed fabrication

and characterization of high-density memristor nanodots with

platinum and graphene electrodes by a block copolymer self-

assembly process. Graphene is used as the bottom electrode, and

Pt is a top electrode, where silicon dioxide (SiO2) is considered

an active layer for resistive switches where the memory device

has been fabricated with a minimum process cost and less

complexity. The fabricated device exhibits a switching ratio of

102, an endurance of 80 voltage sweeps, and a unipolar switching

mechanism independent of the supply voltage. The formation of a

memristor on a graphene electrode is shown in Figure 12.

As transparent electronics devices are in high demand for the

electronics industry. Yao et al. (2012) have configured a transparent

non-volatile memory device based on SiOx active layer, indium

tin oxide, and graphene as bottom and top electrodes with the

glass substrate. Studies on the various device sizes are pursued

to enhance the reliability of non-volatile memory. Their study

revealed that the conduction filament generated in SiO2 active

layer maintains the constant current as the device size increases

or decreases. The switching ratio (105) and electrical endurance

(300 voltage sweeps) have improved compared to Park et al.

FIGURE 13

Schematic diagram of graphene-SiOx -indium tin oxide (ITO) device.

(2012). They have also explored how the proposed device with

graphene electrode offers better transparency characteristics and

low retention time would be beneficial for device application.

Figure 13 shows the graphene-SiOx-indium tin oxide (ITO) device.

A glass platform is a suitable choice for constructing

transparent memory devices. The RRAM is constructed with

indium tin oxide as the top electrode, alumina as the functional

oxide layer, and graphene as the bottom electrode. The non-volatile

memory device of this composition has a high transmittance of

82% in the visible region. It is stable and has non-symmetrical

bipolar switching properties with low set and reset voltages (less

than 1 volt). With its vertical two-terminal configuration, the

device has good resistive switching performance and a high

on-off ratio (switching ratio) (5×103) (Dugu et al., 2018). The

figure representing the device structure is shown in Figure 14.

Furthermore, transparent materials can be integrated with other

optical components to manipulate and direct light within the

sensing system. This integration enhances the functionality and

performance of optical sensors. Transparent RRAM devices could

be integrated with optical sensors, enabling direct interaction

between optical input data and neural network processing. This

could find applications in fields such as image recognition or

computer vision (Zhou et al., 2019; Kalaga et al., 2020).

A graphene-based memristive device (GMD) has been

proposed by Qian et al. (2014) and presented a comparative

analysis of output performance with a Pt-based memristive device

(PtmD). The schematic structure for PtMD and GMDs is shown

in Figure 15. The graphene electrode is integrated into TiOx by the

CVD fabrication method to obtain ultra-low switching power and

non-linearity. Unlike Yao et al. (2012), they have used graphene as

the bottom electrode, whereas Ti/Pt is used as the top electrode. The

GMD is fabricated on polyethylene naphthalate (PEN) and offers

excellent retention against mechanical bending. They discovered

that GMDs have less switching power compared to PtMDs, which

helps to protect the device from any thermal damage. Tunable,

ultralow-power switching in memristive devices are enabled by a

heterogeneous graphene oxide interface. The summary of RRAM

devices graphene as top and bottom electrode along with typical

characteristics are listed in Table 2.

Similar to Qian et al. (2014), Lee et al. (2015) fabricated a

graphene SET electrode-RRAM (GS-RRAM ) memory device and
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FIGURE 14

Schematic structure of the Ti/ZrO2/Pt RRAM device (Dugu et al., 2018).

compared it with a Pt-RRAM memory device. In this study, a thin

monolayer graphene that serves as a SET electrode is considered

to make a thin memory cell structure. The graphene SET electrode

helps to store (SET) and restore (RESET) oxygen ions during the

programming process. They revealed that the proposed model with

a graphene edge electrode has a lower SET compliance current,

low RESET current, and low programming voltages, where the

Pt-RRAM device cannot deal with low programming voltage or

current due to degradation issues of the memory window. The

efficient ion-storing capability of graphene helps reduce the power

consumption 300 times more in Pt-RRAM. Metal oxide-resistive

memory using graphene-edge electrodes (Chakrabarti et al., 2014)

explored the performance of RRAM, where graphene is used as

top and bottom electrodes. The TiOx/Al2O3/TiO2 dielectric layer

is sandwiched between the top and bottom electrodes. The device

exhibits forming-free switching characteristics where the device

transitions between different resistance states (HRS/LRS) without

requiring a separate “forming” process.The forming-free behavior

reduces the device complexity and faster the switching process.

The proposed device has increases the non-linearity of the current-

voltage characteristic with a reduced value of current compliance.

When the device exhibits increased non-linearity, the relationship

between voltage and current is not linear and more complex

and may involve various mechanisms, such as threshold effects,

hysteresis, or other non-linear behaviors. This non-linearity can

be influenced by factors such as the material properties of the

dielectric layer and the electrodes as well as the specific design

and operating conditions of the device. A stable retention time

of 104s, a switching ratio of 104, and a greater endurance value

(> 200 cycles) have been obtained for the graphene-insulator-

graphene (G-I-G) based RRAM configuration. Sohn et al. reported

a graphene-based 3D RRAM structure where the oxygen ions

originating from HfOx migrate toward the graphene layer, where

they aggregate to create a conductive filament (Sohn et al., 2015).

This filamentary layer exhibits exceptional thinness, primarily

attributed to the atomic-thick nature of graphene. This aligns

with the switching mechanism observed in HfO2 RRAM devices

FIGURE 15

Schematic structure for (A) platinum-based memristors devices

(PtMDs) and (B) graphene-based memristors devices (GMDs).

utilizing a top electrode composed of TiN in conjunction with a

passive bottom electrode (Yu et al., 2012).

4.2. Graphene as the middle layer in RRAM

Other than electrodes, graphene can also be used as a middle

layer in GRRAM for optimizing the switching properties. The

incorporation of graphene in the middle layer helps the filament

growth by generating a local internal field and acts as a trapping

site in the RRAM. The graphene middle layer is usually used for

multilevel switching. It is reported that graphene flakes when used

as a middle layer help trap charge and act as a storage medium.

Doh and Yi (2010) proposed few-layer graphene (FLG) as

an active layer in field-effect devices/ferroelectric devices. They

studied the effect of the graphene thickness variation to observe

the electrical performance. They discovered that the device has

bistable resistance characteristics with long retention time. The

resistance difference ratio has decreased with the increased value

of graphene film thickness. They also demonstrated that power

consumption is high due to the high value of operational voltage

(VG > 30V). He et al. (2012) proposed nanographene (NG) which

acted as an active layer fabricated on a SiO2 substrate. Various
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TABLE 2 Graphene as the top and bottom electrode.

References Bottom
electrode

Top electrode Active layer Substrate Switching ratio Endurance Retention ratio

Yu et al. (2011b) Graphene Graphene SWCNT PET 103 - 102

Ji et al. (2011) Al Graphene polyimide and

6-phenyl-C61 butyric

acid methyl ester

(PI:PCBM)

PET 106 - 104

Park et al. (2012) Graphene Pt SiO2 Si 102 80 -

Yao et al. (2012) ITO Graphene SiOx Glass 105 300 -

Dugu et al. (2018) ITO Graphene Alumina Glass > 103 - -

Chakrabarti et al. (2014) Graphene Graphene TiO-x/Al2O3/TiO2 - 104 > 200 104

Ji et al. (2011) Graphene Graphene SWCNT PET 103 102 103

Ji et al. (2011) Graphene Graphene ZnO Si 103 50 -

Chakrabarti et al. (2014) Graphene Graphene TiO-x/Al2O3/TiO2 - 104 102 104

Yao et al. (2012) Graphene Graphene SiOx Plastic 106 102

Park et al. (2012) Graphene SiOx Pt Si 102 80 104

Ying-Chih Lai et al.

(2013)

Graphene Al PMMA:P3BT PET 105 107 104
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FIGURE 16

Fabrication flowchart for nanographene (NG).

multi-level switching mechanisms have been observed, such as

unipolar, bipolar, and non-polar characteristics. Nanographene as

an active layer in RRAM has several advantages, such as tunable

conductivity and an easy fabrication process, unlike othermaterials.

This research has shown a better endurance value of 104 cycles, a

faster-switching speed of 500 ns, and a longer retention time of 105

cycles. The fabrication flow chart is shown in Figure 16.

Shindome et al. (2013) experimented with single and multi-

layer graphene nanoribbon RRAM device characteristics. The

drain current performance has been obtained for changing metal

electrodes. They revealed that drain current is more for multi-

layer graphene RRAM devices than single-layer graphene RRAM.

The research also exhibits lower switching energy with a decreased

value of channel width, which increases the packing density of the

device. Graphene nanoribbon RRAM can possibly scale down to

30nm. Shin et al. (2010) proposed the charging and discharging

effect (CDE) to study the bistable switching effects in graphene

devices. They also demonstrate bandgap engineering to improve

the switching ratio of the device. Two different charge carriers, p-

type and n-type, have been considered for this study. The proposed

study revealed that the current hysteresis of p-type graphene is

inverted into n-type graphene, which increases the stability of the

device. The summary of RRAM devices with graphene as an active

layer along with typical characteristics are listed in Table 3.

5. Graphene oxide (GO)/reduced
graphene oxide (rGO) RRAM

Graphene as a two-dimensional crystal has received more

attention from researchers in the semiconductor industry due to

its ultrahigh mobility, high thermal conductivity, and transparency

characteristics. Graphene oxide is a layered structure consisting of

a monolayer of graphene bound to oxygen in carboxyl, hydroxyl,

or epoxy groups. Having a high energy band-gap of graphene

oxide is possible to reduce the energy band-gap by removing

the C-O bonds and offers high solubility. Graphene oxide and

reduced graphene oxide are the two important carbon materials

mainly used in bioelectrochemical systems (BESs). Graphene oxide

offers a large hydrophilic surface area with oxygen-containing

functional groups, facilitating microbial attachment and tailored

electrochemical reactions on its electrode surface (Singh et al.,

2018). On the other hand, rGO, obtained from GO through

reduction processes, provides enhanced electrical conductivity,

improved biocompatibility, and potential catalytic activity, making

it an ideal candidate for efficient electron transfer and biofilm

formation in BES systems (Wu et al., 2019). Graphene oxide can

be deposited on any substrate due to its flexible nature. Nowadays,

GO is a good insulating and semiconductor material compared to

other materials and is highly used for RRAM devices. Graphene

oxide-based RRAM devices have various pros compared to other

materials. The RRAM device with GO can be scaled down in nano-

regime and increases the packing density due to the easy fabrication

process. Hu et al. studied graphene oxide (GO) based RRAM

device flexible non-volatile memory. For the purpose of this study,

aluminum (Al) has been chosen as the top and bottom electrodes,

while GO functions as the active layer. When a negative voltage

is applied, it induces an electric field that prompts the migration

of oxygen ions within the GO layer. This migration leads to the

formation of localized conductive filaments (CFs), consequently

causing the device to switch to a LRS. Notably, at the LRS, ohmic

conduction is not observed due to the transformation of the GO

film into a sp3-bonded state in the absence of CFs (Jeong et al.,

2010). During the forming process, a positive voltage bias applied

to the Al layer initiates the creation of a highly resistive region in

proximity to the tunneling electrode (TE). In the presence of an

external electric field, oxygen ions present in the dielectric layer

migrate toward the electrode. This migration fosters the continuous

development of an sp3 hybridization layer between the Al electrode

and the GO layers that have undergone structural modifications,

leading to the high-resistance state (HRS). Subsequently, when a

negative voltage bias is applied to the TE Al layer, the reverse

diffusion of oxygen ions occurs, resulting in the formation of CFs

that lead to the low-resistance state (LRS) near the contact interface,

driven by the influence of a negative electric field (Panin et al.,

2011). In 2009, He et al. (2009) first explored the RRAMdevice with

graphene oxide (GO) thin films, which are processed by the vacuum

filtration method. They found that the device has a low switching

voltage and offers a low switching ratio, which is improved later

by many researchers (Kim et al., 2011; Yi et al., 2014). Jeong

et al. (2010) fabricated a GO-based RRAM device prepared by

the spin casting method at room temperature and found to be

more reliable and flexible. This study has increased the retention

and endurance of the device, which would be helpful for memory

applications.

Graphene oxide (GO) can be used for non-volatile and

bistable memory devices for its high optical transparency and

flexibility. Vasu et al. (2011) studied the unipolar switching effect
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TABLE 3 Graphene as an active layer.

Reference Bottom
electrode

Top
electrode

Active layer Substrate Switch ing
ratio

Endurance Retention
time

He et al. (2012) Ti/Tu SiO2 NanoGraphene p-doped Si - 104 105

Shin et al. (2010) Cr/Au Al Graphene SiO2 - 102 -

Shindome et al.

(2013)

Ti/Au Ti/Au Graphene SiO2 103 104 105

Wu et al. (2012) ITO ITO Graphene Glass 106 - 104

He et al. (2013) Ti/Au Ti/Au Graphene Si/ SiO2 105 - -

Shindome et al.

(2013)

Ti/Cr/Au Ti/Cr/Au Graphene

nanoribbon

Si/ SiO2 106 102 103

on reduced graphene oxide (rGO) with the glass substrate to

obtain a high switching ratio and switching speed. The obtained

results exhibit a switching ratio of 105 and switching speed

of 10 µs.

Rani et al. (2012) implemented a cost-effective non-volatile

memory behavior in rGO memory devices for extracting better

endurance and retention time. It is found that the rGO memory

device exhibited an endurance value of 102 and a retention time of

105. Ho et al. (2014) demonstrated a comparative analysis between

rGO and GO RRAM devices for impedance spectroscopy and

current-voltage analysis. The impedance spectroscopy and current-

voltage analysis have been studied to determine the possible

physical mechanism for resistive switching behavior. It is observed

that switching behavior can be noticed in rGO-based RRAM

devices due to its oxidation and reduction at the top electrode.

The obtained results for rGO were better with the retention

time of 106s. However, the rGO memory device provides a large

value of the operating voltage of 4V, which increases the power

consumption.

Pradhan et al. (2016) proposed a non-volatile rGO-based

RRAM memory device to reduce the threshold voltage, which

solves the power losses problem of the device more than

Ho et al. (2014). Pradhan et al. (2016) proposed an rGO

RRAM device which exhibits a threshold value of less than

1V where 4V was achieved by Ho et al. (2014). They also

checked the variability of device size, film thickness, and

scan votlage.

Kim et al. (2014) demonstrated a transparent memory cell,

where reduced graphene is placed between two ITO electrodes

to observe the multi-level resistive switching purpose. This

memory device offers 80% optical transmittance where the

amplitude of applied pulse voltage was varied from 2 to

7V.

Lin et al. (2015) developed a ZnO RRAM device with a

capping rGO layer to study the resistive switching behavior. They

concluded that introducing the rGO layer increases the stability

of the ZnO memory device with a switching ratio of 105. The

rGO layer acts as an oxygen reservoir in the ZnO memory

device where ions are transit easily. On the other hand, oxygen

vacancies of the rGO layer oppose reacting with Al electrodes. They

also mentioned that ZnO RRAM device offers a great value of

endurance of 108. The summary of RRAM devices with graphene

oxide and reduced graphene oxide as an active layer is listed in

Table 4.

6. Comparison of the properties of
graphene-based materials with other
2D materials

In sections 4 and 5, the details of graphene, graphene oxide,

and reduced graphene oxide base RRAM and its characteristics

are discussed. There are other 2D materials such as transition

metal dichalcogenides (TMDs) (molybdenum disulfide (MoS2) and

tungsten diselenide (WSe2) etc.), which offer a diverse range of

electronic properties as discussed in section 3. TMDS based RRAM

is an emerging technology in the field of non-volatile memory

and nanoelectronics (Zhu et al., 2019). In TMD-based RRAM,

a thin layer of TMD material is used as the switching medium

between two electrodes. The resistance of this TMD layer can be

altered by applying an electric field, which changes the oxidation

state or defects in the TMD material (Zhang et al., 2018; Jian

et al., 2022). However, there are also challenges to overcome, such

as ensuring stable and reliable switching behavior, understanding

the underlying mechanisms that control resistance switching, and

developing scalable manufacturing processes (Zhang et al., 2018).

Table 5 presents the comparative study of different properties

of graphene and TMDs based RRAM. TMDs can form stable

heterostructures with graphene, combining the strengths of both

materials for various functionalities.

Metal oxides such as hafnium oxide (HfO2) and titanium

dioxide (TiO2) provide unique electronic properties suitable for

different device applications (Meyer et al., 2012). Along with

memory, they are used in optoelectronic devices, catalysis, and

sensing applications. Metal oxides exhibit resistive switching

behavior, which makes them suitable for RRAM applications,

where the metal oxide layer acts as the switching medium

(Sawa, 2008). When a voltage is applied across the electrodes,

localized changes in the metal oxide’s resistance state occur due

to various mechanisms, such as the formation and dissolution of

conductive filaments or changes in oxygen vacancy concentration

(Kumar et al., 2017). One advantage of metal oxide-based

RRAM is the potential for high memory cell density, HfO2

based systems provide multilevel cell storage capabilities (Qi
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TABLE 4 Graphene oxide and reduced graphene oxide as an active layer.

Reference Bottom
electrode

Top
electrode

Active
layer

Substrate Switching
ratio

Endurance Retention
time

Wu et al. (2014) Pt Cu GO Ti/SiO2/Si 20 102 104

Hong et al. (2010) ITO Al GO Glass 103 102 109

Jeong et al. (2010) Al Al GO PET 102 102 105

Wang et al. (2012a) ITO Al GO Glass 103 102

Hu et al. (2012a) Pt Pt GO SiO2 /Si 104 102 105

Liu et al. (2013) GO GO GO PET 102 103 103

Wang et al. (2012b) Pt Al GO Si 104 102 103

Venugopal and Kim

(2012)

Ag Ag GO SiO2 10 - 103

Wang et al. (2012a) ITO Al GO PET 102 102 104

Pradhan et al. (2016) Al Al GO Glass 102 102 104

Banerjee et al. (2015) ITO Au GO Glass 10 102 -

Wu et al. (2015a) ITO ITO GO PES 10 - 105

Nagareddy et al. (2017) Ti/Pt Ti/Pt GO Si/ SiO2 103 104 105

Kim et al. (2018) Pt Pt rGO Si/SiO2 105 - -

Saini et al. (2018) ITO Al/Au GO Glass 105 - –

Han et al. (2014) Ag Au rGO PET 104 102 105

Kim et al. (2014) ITO ITO rGO Glass 103 105 107

et al., 2018; Milo et al., 2019). Achieving stable and repeatable

resistive switching behavior is crucial for reliable memory

operation. Uniformity of switching characteristics across large

arrays of memory cells is also important for commercial

viability (Guan et al., 2012). Table 6 presents the comparative

study of different properties of graphene and metal oxide-based

RRAM devices.

7. RRAM for multi-level cell storage

Multilevel cell storage in RRAM helps to increase the storage

density of the memory cell without reducing its size of. In the

normal method, the cell size needs to be reduced to increase

the density, which requires complex patterning techniques. In

the case of multilevel cell storage, the number of bits stored

per cell can be increased to n (any integer above 2), increasing

the density to n times with 2n number of available states in

the cell. Among the different memory devices such as Spin

Transfer Torque RAM (STTRAM) and phase change memory.

RRAM shows excellent scalability beyond the 10 nm technology

node. The resistive switching mechanism in RRAM helps to

attain different intermediate levels by varying the programming

current. The size of the conducting filament in an RRAM device

depends directly on the applied current. Thus, by adjusting the

value of the current, different resistance states can be attained in

the system.

Themultilevel cell storage can be attained via different methods

such as (i) varying compliance current, (ii) adjusting reset voltage,

and (iii) changing the pulse width of program/erase operation

(Prakash and Hwang, 2016). The most common method among

these is the controlling of compliance current to obtain multi-

level cell storage. The effect of compliance current on the switching

mechanism of the Ti/ZrO2/Pt is studied by Lei et al. (2014), and

the device structure is as shown in Figure 17. In the Ti/ZrO2/Pt

device architecture, the multilevel cell storage is achieved by

controlling the magnitude of the compliance current. The observed

multilevel cell storage is explained using the voltage divider rule

in a series circuit model. By varying the compliance current, the

number of traps in the device is controlled; hence, the conductance

is varied. A low voltage four-level cell storage is attained in

Ta2O5/TiO2 system by controlling the RL and RS state of the

device (Terai et al., 2010). They found that multilevel cell storage

can be achieved by varying the reset voltage as well. In this

study, Ru et al. is used as the top and bottom electrode, and

the combination of Ta2O5/TiO2 is used as the middle layer. This

device achieved a 2-bit/cell storage by multi RH level operation.

In another study of the HfO2-based RRAM system, the multilevel

cell storage is achieved by controlling either Iset or Vstop (Lee et al.,

2008a).

In order to obtain the stable states in the multilevel cell

storage system, it is important to distinguish the reference states

from one another. The factors affecting the stability of resistance

states are cycle-to-cycle variability, device-to-device variability,
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TABLE 5 Comparative analysis of graphene-based RRAM and 2D TMDCmaterials-based RRAM devices.

Device
name

Reference Bottom
electrode

Top
electrode

Active
layer
material

Substrate Switching
speed

Endurance Retention
time

Graphene

oxide based

RRAM

Wu et al.

(2014)

Pt Cu GO Ti/SiO2 /Si 20 102 104

Liu et al.

(2013)

ITO GO GO PET 102 103 103

Nagareddy

et al. (2017)

Ti/Pt Ti/Pt GO Si/SiO2 103 104 105

Wang et al.

(2012b)

Pt Al GO Si 102 102 103

Sun et al.

(2015)

FTO Ag MoS2 Glass 103 - 102

2D TMDs

based RRAM

(MoS2 , WS2 ,

MoSe2 based)

Zhou et al.

(2017)

ITO Ag MoS2 Glass 104 102 103

Das et al.

(2019)

ITO Al MoS2 Glass 102 104 107

Kumar et al.

(2018)

Ni-Mn-In Cu MoS2 Si 102 102 103

Rehman et al.

(2017)

Ag Ag Ws2 PET 103 102 105

Zhou et al.

(2016)

Ag Ag MoS2 SiO2 102 102 103

TABLE 6 Comparative analysis of graphene-based RRAM and metal-based RRAM devices.

Device
name

Reference Bottom
electrode

Top
electrode

Active layer
material

Switching
speed

Endurance Retention
time

Graphene

Oxide based

RRAM

Wang et al.

(2012b)

Pt Al GO 104 102 103

Pradhan et al.

(2016)

Al Al GO 102 102 103

Wang et al.

(2012a)

ITO Al GO 102 102 104

Metal

oxide-based

RRAM

Park et al. (2012) Graphene Pt SiOx 102 80 103

Yao et al. (2012) ITO Graphene SiOx 105 102 105

Tsigkourakos

et al. (2017)

TiN/Ti Au TiO2−x - >50 cycles 105

Wu et al. (2018) Pd TiN HfOx /Ag/NPs - - 104

Chen et al.

(2017)

Al Al HfOx 104 - -

operation temperature, random telegraph noise, and interstate

switching variability. The study of the retention characteristics

and endurance of the device will help to understand the

reliability of the multiple resistance levels. It is observed that

the retention time for the low resistance state highly depends

on the operating current of the device (Ninomiya et al., 2013).

With the incorporation of graphene, it is expected to obtain

multiple states in the RRAM system. The property of this

multi-level cell storage will enable the graphene-based systems

to act as a synapse for neuromorphic computing and many

other applications.

8. Commercially available RRAM
models and its fabrication

For several years, researchers have demonstrated the potential

of memristive devices in laboratory experiments. As a result, there
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FIGURE 17

Schematic structure of the Ti/ZrO2/Pt RRAM device (Lei et al., 2014).

have been successful demonstrations of these devices in commercial

applications, with RRAM devices being particularly noteworthy

in solid-state drives (SSDs) and Internet of Things (IoT) devices.

Li et al. (2017) proposed a memory-centric computing approach

based on RRAM that leverages on-chip non-volatile memories

to perform local information processing in a highly energy-

efficient manner. Three in-memory operation schemes using

3D RRAM has been developed and experimented to ensure

their effectiveness and reliability, allowing for enhanced local

information processing that is highly efficient and optimized

for memory-centric computing systems. Wang et al. (2018)

demonstrated the integration of 1-transistor/1-resistor (1T1R)

memory cells using monolayer MoS2 transistors and few-layer

hBN RRAMs, creating a two-level stacked 3Dmonolithic structure.

The fabrication process was conducted at temperatures below 150
◦C. It is observed that this configuration exhibits forming-free

(at < 1V) gradual set and reset, where the filament formation

process in RRAM is not required for achieving the resistance

states and which is particularly advantageous for linear weight

updating in neuromorphic computing. However, some renowned

company has developed various kind of RRAM devices. Adesto

Technologies has recently launched a new chip family called

Moneta, which utilizes CBRAM (Conductive Bridging Random

Access Memory) technology. The Moneta family offers ultra-low

power memory solutions that are designed to significantly reduce

the overall energy consumption of connected devices. The chips

demonstrate read and write operations at 50-100 times lower power

compared to competitive solutions. The company has already

begun shipping samples of the Moneta family in four different

densities, including 32 Kbit, 64 Kbit, 128 Kbit, and 256 Kbit. Fujitsu

recently developed RRAM product which offers 1.5 times higher

memory density compared to the existing 8 Mbit RRAM. Other

renowned foundries such as Intel, Panasonic, and Samsung have

been developing RRAM technology. These companies have been

investing heavily in RRAM research and development to improve

the performance, reliability, and scalability of this promising

memory technology.

9. Graphene-based RRAM applications

The researchers are investigating using graphene or graphene

oxide (GO) as electrodes or switching material of RRAM targeting

in-memory computing for neuromorphic behavior (Izam et al.,

2016; Liu et al., 2018; Yan et al., 2018; Abunahla et al., 2020a).

The control of resistance for multiple states by memorizing the

previous state enables to mimic of biological synapses in the

human brain neural network (Sparvoli and Marma, 2018; Xu et al.,

2019b; Schranghamer et al., 2020; Kireev et al., 2022). With the

large development in memristive materials, an excessive amount

of work is being conducted in 2D materials-based memristors for

neuromorphic computing (Abunahla et al., 2020a,b; Alimkhanuly

et al., 2021). The graphene crossbar variability can be used to build

a unique physical unclonable function (PUF), which can be used for

various applications. Table 7 presents the review on graphene/GO

RRAM for neuromorphic computing.

9.1. Memory

The characteristic features of RRAM such as simple structure,

non-volatile, scalability, low power, and fast operation speed makes

it a prominent place for future memory devices. In comparison

with other materials, the 2D materials-based RRAM devices offer

better transparency and flexibility. The incorporation of graphene

will provide more feasible and effective methods to increase the

capacity of storage devices. The SET current/voltage, Iset/ Vset ,

RESET current/voltage, Ireset/ Vreset , resistance ratio ROFF/ RON ,

programming speed, power, and retention time are the parameters

for the evaluation of memory devices. Table 8 shows the list of

RRAMarchitecture in the literature with the evaluation parameters.

Zhao et al. (2014a) experimentally demonstrated that the

graphene electrode layer provides high built-in series resistance

to exhibit good device-to-device uniformity. This exhibits narrow

resistance/voltage variations in both ON and OFF states. The

switching characteristics of ITO/Al2O3/Graphene RRAM is

compared with ITO/Al2O3/Pt RRAM devices in Dugu et al. (2018).

The results in Dugu et al. (2018) show that graphene shows a

low SET/RESET current/voltage in comparison with conventional

RRAM electrodes such as Pt. A perceptron model is experimentally

in Sparvoli and Marma (2018).

Lu et al. (2022) have developed a two-terminal

memristor synapse based on a silicon-argon composite

film. In the case of the biological synapse, the weight

is varied by the release of neurotransmitters from the

preneuron induced by spikes. Thus, similar to that,

this memristive synapse varies its conductance by the

migration of the ions upon an external electrical signal

or stimuli.

9.2. Neural networks

The RRAM crossbar in-memory computing is considered

to be a potential solution for implementing power-efficient

neural network architectures (Li et al., 2018; Mehonic et al.,

2020). The analog/digital feature of RRAM, with the ability to

memorize, can be used to build artificial neural networks for

neuromorphic computation (Mehonic et al., 2020). Figure 18

shows crossbar architecture using RRAM devices for realizing the
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TABLE 7 A review on graphene RRAM for neuromorphic computing.

Sl no. Reference Graphene application No. of
conductance

states

Target
application

1 Abunahla et al. (2020a,b) Au/ partially redued graphene oxide (prGO)/Au 7 ANN of size 5× 4

and 4× 4

2 Alimkhanuly et al. (2021) electrode of 3D vertical RRAM 64 XNOR

3 Sparvoli and Marma (2018) RRAM fabrication with doped graphene oxide with silver 2 RRAM bridge

synapse

4 Schranghamer et al. (2020) Graphene field effect transistor 16 RRAM synapse

5 Xu et al. (2019b) Al2O3/graphene quantum dots/Al2O3 2 Synapse

6 Kireev et al. (2022) Bilayer Graphene-based Artificial Synaptic Transistors (BLAST) 100 Synapse transistor

TABLE 8 Di�erent RRAM architectures.

RRAM structure Iset/ Vset Ireset/ Vreset ROFF/RON Ratio SET/R ESET speed Power

MLG/Dy2O3/ITO (Zhao et al., 2014a) 1 µA/0.4V 20 µA /0.2V > 105 60 ns 4.4 µW

Unipolar

ITO/Al2O3/ Graphene (Dugu et al., 2018) 2.1 µA/0.8V 1.55mA/-0.65V ∼ 3.5× 103 NA ∼ 1mW

Bipolar

Al2O3/GQD/Al2O3 (Xu et al., 2019b) < 5nA/1.2V < 5nA/-1.2V NA NA NA

ITO/GO+0.1 % Ag/Al (Sparvoli and Marma, 2018) < 4.78mA/0.8V 2 pA/0.25V 7.5× 108 10µs NA

Unipolar

G/SiOx/ITO (Yao et al., 2012) 2 µA/4.26V 2mA/10V 104 50ns 20mW

Unipolar

Au/prGO/Au (Abunahla et al., 2020a,b) 25mA/3V 10mA/-6.5V 10 10s NA

Unipolar

TiN/HfOx/ Graphene (Alimkhanuly et al., 2021) < 1µ A/1.27V < 10µA/ -1.37V > 10X 500 ns NA

bipolar

MLG, multi-layer graphene; ITO, indium tinoOxide; GQD, graphene quantum dots; NA, not available.

FIGURE 18

3D RRAM crossbar array.
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neuromorphic computations. The weights of neural computations

are programmed onto the RRAM devices during the write

mode. Only a few studies have been reported in the literature

using graphene/GO-based RRAM for neuromorphic computing

(Abunahla et al., 2020a,b; Alimkhanuly et al., 2021). Both 2D

and 3D crossbar architecture with RRAM have been discussed

in the literature for neuromorphic computing. HebaAbunahla

et al. presented a novel planar analog memristor crossbar with

partially reduced graphene oxide (prGO) thin film (Abunahla

et al., 2020a,b). In Abunahla et al. (2020a,b), the crossbar

array has been fabricated and tested using the Iris dataset with

an accuracy of 96.67%. 5 × 4 and 4 × 4 crossbar arrays

have been fabricated, which is then used to classify the iris

flower based on its petal and sepal length and width into

different classes.

Alimkhanuly et al. (2021) demonstrated a 3D vertical

RRAM (VRRAM) by replacing the metal-based interconnects

with graphene due to the remarkable electronic and thermal

conductivities. In Alimkhanuly et al. (2021), the authors

fabricated a 416 × 224 × 8 size 3D array system. The

recognition performance of the fabricated 3D graphene

RRAM (Gr-RRAM) has been tested for the MNIST dataset.

The network size is 400 input, 200 hidden, and 10 output

neurons. The performance accuracy of Gr-RRAM is compared

with platinum RRAM (Pt-RRAM), and the results show that

the overall accuracy levels degrade for Pt-RRAM due to high

read inaccuracy.

9.3. Logic gates

The logic computing is yet another application of memristor

crossbar structure. The XOR operation-focused 3D VRRAM array

architecture is demonstrated in Alimkhanuly et al. (2021). The

XOR architecture using graphene-based VRRAM arrays have the

potential of a highly stackable nature for parallel processing

of multiple layers (Alimkhanuly et al., 2021). An XNOR logic-

inspired architecture is designed to integrate 1-bit ternary precision

synaptic weights into graphene-based VRRAM is presented

in Alimkhanuly et al. (2021). However, robustness to device

variability by using graphene-based RRAM in logic computing

is not yet investigated in the literature and still remains an

open problem.

9.4. Cryptography

The memristor crossbar arrays is also applied for cryptography

applications (Cai et al., 2022; Yu et al., 2023). An in-memory

hyperdimensional encryption using a memristor crossbar array

is presented in Cai et al. (2022). The robustness of binary

hypervectors against memristor crossbar non-ideality helps to

control the impact of noise generated by the memristor crossbar for

encryption. A 4D memristive hopfield neural network (MHNN) is

proposed in Yu et al. (2023) for image encryption applications. The

majority of memory-based cryptographic techniques for hardware

security are based on physical unclonable functions (PUFs) (James,

2019). A large number of memory-crossbar-based PUFs have been

proposed in the literature, for example, metal-oxide memristor-

based or RRAM (Rose and Meade, 2015; Yansong et al., 2015;

Uddin et al., 2017; Khan et al., 2021; Kim et al., 2021) etc. The

PUFmethods use variations in device parameters such as resistance

state, switching time, and threshold voltages. These unpredictable

probabilistic characteristics of memristor crossbars form the basis

for PUF applications. The variations in device parameters and

process variations affect the current flow through the device.

Any temporal or spatial variations affect all aspects of resistive

switching. The variation in PUF characteristics with the properties

of graphene has not been explored yet in the literature.

The stochasticity in graphene-RRAM device response has not

been extensively studied in the existing literature. The repeatability

of fabricated Gr-RRAM devices are experimentally evaluated in

the literature. The SET voltage varies for cycle-cycle variations for

Gr-RRAM was found to be 6.4% in Alimkhanuly et al. (2021).

As discussed in Kim et al. (2021), the SET voltage variations in

Gr-RRAM crossbar array can also be used for PUF generation

in cryptographic applications. The other device variations such as

resistance state, switching time, and threshold voltages have not

been considered for analysis with device-to-device and cycle-to-

cycle variations. The stochasticity in graphene-RRAM variation for

cryptography or PUF characteristics has not been explored yet in

the literature and is an open problem.

10. CMOS compatibility

CMOS technology faces various unwanted problems due to

the scaling of device attributes. The semiconductor industry is

planning to replace the silicon material with graphene material.

Since graphene is a conducting material and no energy band

gap is present in it, it is very difficult to use graphene for

digital device applications due to high-off state leakage and non-

saturating drive currents. However, graphene-based devices are

more acceptable for low-noise amplifiers and radio-frequency (RF)

in analog device applications (Banerjee et al., 2010). Rodriguez

et al. (2012) compared the RF behavior between graphene-based

field effect transistor (GFET) and Si-based metal oxide field effect

transistor (MOSFET). It is observed that the GFET device is

more acceptable for the narrow range of drain voltage and drain

current compared to Si-MOSFET. Cisneros-Fernández et al. (2019)

proposed frequency domain multiplexing of liquid-gate GFET

sensor for micro electrocorticogram (ECoG) recording purpose.

The proposed work also allows hybrid integration.

Nowadays, graphene with Si CMOS circuits can also be

constructed together for making heterogeneous devices. The

demonstration of graphene and Si CMOS hybrid circuits has

reduced barriers to entry of graphene in electronics. Huang

et al. (2014) constructed a low-temperature hybrid integrated

circuit where graphene devices and Si-CMOS circuits integrated

together. Gilardi et al. (2019) designed relaxation oscillators

using a GFET, Si CMOS D latch, and timing RC circuit. It is

observed that the introduction of graphene material in the Si-

CMOS logic circuit has improved the circuit complexity and

also added other device functionality. One of the truly unique

electronic properties of graphene not exhibited by conventional
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semiconductors is ambipolarity. The ambipolarity of graphene

helps to simplify the circuit and provide additional functionality.

Graphene’s ambipolarity eliminates the need for separate electron

and hole transistors, reducing the overall transistor count and

circuit complexity (Jabeur et al., 2010). The integration of graphene

into Si CMOS logic circuits could offer a feasible approach for both

simplification and enhanced functionality. Zhang et al. (2014b)

proposed CMOS-compatible all-metal-nitride RRAM based on

aluminum nitride (AlN). It is observed that the proposed device

provides a lower operation current of 100 A, retention time 3x105,

and endurance value of 105 Hz. AlN has high thermal stability,

allowing it to withstand the elevated temperatures used in CMOS

processes. This makes it possible to integrate AlN-based RRAM

fabrication steps into standard CMOS processes without causing

significant damage to the underlying circuitry (Jackson et al., 2013).

AlN can be deposited using various techniques that are already

employed in CMOSmanufacturing, such as PVD and CVD (Perez-

Campos et al., 2015). PVD and CVD methods allow for conformal

deposition of thin AlN films over complex three-dimensional

structures, including the intricate features found in modern CMOS

circuits (Cansizoglu et al., 2015). This conformal deposition

capability is crucial for integrating RRAM cells within the existing

CMOS architecture. The temperature requirements and chemical

interactions during AlN deposition are generally more manageable

compared to some graphene synthesis methods. Graphene-based

RRAM, on the other hand, could face more integration challenges

due to the specialized processes required for graphene synthesis and

transfer. Graphene synthesis and transfer techniques involve high-

temperature processes and chemical treatments that could affect the

performance of the graphene itself (Choi et al., 2022). Achieving

high-quality, defect-free graphene layers on a large scale while

maintaining CMOS compatibility remains a significant hurdle

(Moon and Gaskill, 2011). Yeh and Wong (2015) proposed a cost-

competitive One-Transistor-N-RRAM (1TNR) array architecture

for advanced CMOS technology where one committed transistor

controls the access of one RRAM. It is observed that the 1TNR

array architecture provides less leakage current than the cross-point

array. Therefore, there is the possibility that graphene-based RRAM

memory devices can be considered in CMOS technology soon.

11. Challenges and future scope

Due to its unique and interesting features, graphene has

surpassed all other nanomaterials in terms of its use in electronic

devices. Additionally, it was shown that graphene’s greater

mobility, less light absorption, and excellent mechanical qualities

enhance the functionality of transparent flexible electronic devices.

The difficulty is that the cost of manufacturing graphene will

increase the overall price of the device. The transfer of graphene

from one substrate to another without causing any damage

is a tedious process, which requires the need of sophisticated

instruments. Efficient methods need to be implemented to

overcome these drawbacks.

The past several years have seen a substantial increase in

research into new memory technologies, and numerous prototype

RRAM products have been created to show the potential for high-

speed and low-power applications. The CMOS compatibility and

ability to fabricate in smaller dimensionsmake the RRAMa suitable

candidate for device applications. A high endurance is reported

in graphene-based RRAM devices. To date, in a single RRAM

device, no technology has reported fast switching, low power,

and stable operation simultaneously. In a graphene-based RRAM

device, the properties need to be enhanced for better performance

of the device.

12. Conclusion

This review article offers an insightful look into the topic

of developing graphene-based RRAM devices in terms of neural

computing by giving a concise overview of the development of

memory architecture, the current trends, and the constraints. The

importance of graphene based RRAM, as well as its structure,

operation, and classification, have all been highlighted in a

thorough discussion. The methodology and a detailed investigation

on the MLC capabilities of RRAM have been presented. It is

proposed that the graphene-based RRAMcan be used formultilevel

cell storage. This modified memory device, with 2Dmaterial can be

used as a synapse. Along with this, the implementation of graphene

based RRAM for various important applications such as hardware

security and neuromorphic computing have been highlighted.
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Oscillatory neural networks (ONNs) exhibit a high potential for energy-efficient 
computing. In ONNs, neurons are implemented with oscillators and synapses 
with resistive and/or capacitive coupling between pairs of oscillators. Computing 
is carried out on the basis of the rich, complex, non-linear synchronization 
dynamics of a system of coupled oscillators. The exploited synchronization 
phenomena in ONNs are an example of fully parallel collective computing. A fast 
system’s convergence to stable states, which correspond to the desired processed 
information, enables an energy-efficient solution if small area and low-power 
oscillators are used, specifically when they are built on the basis of the hysteresis 
exhibited by phase-transition materials such as VO2. In recent years, there have 
been numerous studies on ONNs using VO2. Most of them report simulation 
results. Although in some cases experimental results are also shown, they do 
not implement the design techniques that other works on electrical simulations 
report that allow to improve the behavior of the ONNs. Experimental validation 
of these approaches is necessary. Therefore, in this study, we describe an ONN 
realized in a commercial CMOS technology in which the oscillators are built using 
a circuit that we have developed to emulate the VO2 device. The purpose is to 
be able to study in-depth the synchronization dynamics of relaxation oscillators 
similar to those that can be performed with VO2 devices. The fabricated circuit is 
very flexible. It allows programming the synapses to implement different ONNs, 
calibrating the frequency of the oscillators, or controlling their initialization. It uses 
differential oscillators and resistive synapses, equivalent to the use of memristors. 
In this article, the designed and fabricated circuits are described in detail, and 
experimental results are shown. Specifically, its satisfactory operation as an 
associative memory is demonstrated. The experiments carried out allow us to 
conclude that the ONN must be operated according to the type of computational 
task to be solved, and guidelines are extracted in this regard.

KEYWORDS

oscillatory neural networks, nano-oscillators, ASIC, phase-change material, 
neuromorphics, integrated circuits

1 Introduction

Current society demands more and more applications that require applying computationally 
hard and data-intensive algorithms, for example, neural networks. These are generally run on 
devices such as CPUs or GPUs, which offer great computing power but also require high energy 
consumption for their operation, which limits their use in edge computing. An alternative to 
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the use of CPUs or GPUs is their implementation in hardware. 
Currently, the development of these custom-specific hardware 
platforms is an area of high interest. It comprises many approaches, 
including digital and analog implementations. In the latter, the use of 
unconventional computing devices and paradigms is very promising. 
In this line of oscillatory neural networks (ONNs), the connection of 
a multitude of oscillator circuits by means of electrical coupling 
elements creates an intelligent collective system called oscillatory 
neural networks (ONNs) (Hoppensteadt and Izhikevich, 1999, 2000; 
Follmann et al., 2015; Sharma et al., 2015; Raychowdhury et al., 2019), 
with a high potential for energy-efficient computing. In ONNs, 
neurons are implemented with oscillators and synapses with resistive 
and/or capacitive coupling between pairs of oscillators. Computing is 
carried out on the basis of the rich, complex, non-linear 
synchronization dynamics of a system of coupled oscillators. When 
the oscillators synchronize in frequency, they tend to adopt a phase 
relationship that minimizes energy. The most commonly used ONN 
encodes information about the relationship between oscillator phases. 
Depending on the type of coupling, the phases of two interconnected 
oscillators tend to get closer (to be in phase) or to separate (to be out 
of phase or anti-phase). The energy landscape of the system is 
determined by the coupling configuration. Thus, the idea behind 
computing with ONNs is to map the solutions of the target task into 
their minimal energy states. The exploited synchronization 
phenomena are an example of what is called collective computing and 
are fully parallel. Convergence to the stable system state is fast, which 
paves the way for energy efficiency associated with low computation 
times. It has been proposed to be used as associative memory (AM) 
by configuring the couplings such that the patterns to be  stored 
(training patterns) are minimal energy states of the system (Nikonov 
et al., 2015). ONNs are also useful for solving optimization problems 
by formulating them as an Ising model (Lucas, 2014) and mapping 
them to an ONN (Dutta et al., 2021). The Ising model problem is 
solved by the natural evolution of the ONN state to states associated 
with minimum values in its energy function (Hamiltonian). The 
relationship between ONNs and Hopfield neural networks (HNNs) 
(Hopfield, 1982) is evident at this point.

ONN implementations with different types of oscillators have 
been reported (phase-locked loops and voltage-controlled oscillators 
(Hoppensteadt and Izhikevich, 2000), non-volatile logic based on 
magnetic tunnel junctions (Calayir and Pileggi, 2013), micro-electro-
mechanical systems and a feedback loop with transconductance 
amplifiers (Kumar and Mohanty, 2017), comparator and a digital 
circuit in Jackson et al. (2018), CMOS ring oscillators (Csaba et al., 
2016; Ahmed et al., 2021; Moy et al., 2022), STOs (Popescu et al., 
2018), or VO2 (Corti et al., 2018), (Dutta et al., 2019, 2021; Corti et al., 
2020; Núñez et al., 2021).

Structurally, the ONN resembles an artificial network based on 
the Hopfield model, HNN, which has been studied in-depth with 
regard to AM and pattern recognition tasks. The HNN has a simple 
conceptual model comprising a single, recurrent, fully connected layer 
of neurons with synaptic weights. Typically, the HNN model considers 
bipolar-state neurons. The state of each neuron is represented by Si 
and it takes values in {−1, +1}. State updates as:

 
S sign W Si

j
ij j=











∑
 

(1)

with Wij the weight of the synapse connecting neuron i and 
neuron j, Wij = Wji, and Wii = 0. The HNN gradually transitions from 
an initial input state until a fixed point is reached. Fixed (stable or 
attractors) states are determined by the synaptic weights. In 
AM applications, the weight values are assigned (trained) in such a 
way that the patterns to be stored are fixed as attractor states. When 
an input pattern is applied, it evolves toward the closest stored pattern. 
In other words, when a distorted version of a training pattern is 
applied to the HNN, the original one is retrieved (inference).

Of course, energy-efficient oscillators are also necessary to achieve 
the target goal of energy-efficient computation. In this sense, 
oscillatory-based computing is not new. There were early contributions 
from pioneers such as Von Neumann (1957) and Goto (1959) in the 
1950s. However, recent advances in technology have made it a popular 
and active research area. This is due to the emergence of phase-
transition devices that can implement highly efficient and compact 
oscillators with minimal energy consumption based on various 
physical phenomena. VO2 devices, in particular, stand out for their 
hysteresis in the characteristic I–V curve, which enables compact 
low-power relaxation oscillators (Csaba and Porod, 2020).

VO2 material undergoes metal–insulator transitions under given 
electrical stimuli. That is, abrupt switching occurs from/to a high 
resistivity state (insulating phase) to/from a low resistivity state 
(metallic phase). Without electrical stimuli, it tends to stabilize in the 
insulating phase. When the applied voltage increases and the current 
density flowing through it reaches a given amount, an insulator-to-
metal transition (IMT) occurs. Once in the metallic state, when the 
voltage decreases and the current density drops below a second given 
value, a metal-to-insulator transition (MIT) takes place. Figure 1A 
shows the I–V characteristic of a generic VO2. A compact oscillator 
has been proposed on its basis (Figure 1B; Maffezzoni et al., 2015; 
Parihar et al., 2015). Figure 1C depicts waveforms for the oscillator 
output. The state of the VO2 is also shown to better illustrate the circuit 

A

C

B

FIGURE 1

(A) I–V characteristic of the VO2 device. (B) VO2-based oscillator. 
(C) Output waveform of the oscillator including the state of the VO2 
device.
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behavior. VO2,STATE = ‘INS’ means the device is in the insulating state. 
VO2,STATE =  ‘MET’ corresponds to the device in the metallic state. 
Assuming that the VO2 is in an insulating state (marked with “A” in 
Figure 1C), the oscillator output is discharged through the resistor. 
This increases the voltage drop across the VO2 (VDD – VOUT) and so 
does the current through it. Once enough current density circulates, 
it switches to the metallic state (marked with “B” in Figure  1C). 
Equivalently, using the electrical model, switching to the metallic state 
occurs once the VO2 voltage reaches VIMT. The capacitor is then 
charged through the VO2. This charging is very fast because of the low 
RMET value. The voltage seen by the VO2 decreases until it reaches VMIT 
and the transition from metal-to-insulator state occurs. These nano-
oscillators are attractive for their area and potential energy efficiency.

Figure 2 shows an ONN design using VO2-based nano-oscillators 
as neurons and resistive couplings as synapses (Corti et  al., 2018, 
2020). In this work it is shown that two resistively-coupled oscillators 
synchronize in phase when coupling strength is high enough 
(resistance value low enough) and in anti-phase for large enough 
resistance values. That is, they proposed to use resistive coupling for 
both positive and negative weights. However, it is not easy to select 
suitable resistance values in actual applications. In fact, capacitively 
coupling is the easiest way to achieve anti-phase synchronization. 
Both types of coupling can be implemented using only resistance or 
capacitances with differential oscillators. A differential VO2 oscillator 
has been proposed (Shamsi et al., 2021). It resorts to coupling two 
oscillators capacitively to force both outputs to be out of phase (180° 
apart). It allows for implementing both types of interactions using 
only capacitive or resistive coupling. This is very attractive from the 
point of view of implementing the coupling elements with memristor 
or ferroelectronic devices in crossbar architectures. On the basis of 
this oscillator, an ONN working as AM was shown by simulation 
(Shamsi et al., 2021).

In recent years, there have been numerous studies on ONNs using 
VO2. Most of them report simulation results. Although in some cases 
experimental results are also shown (Shukla et al., 2016; Corti et al., 
2018, 2020; Dutta et al., 2019), they are not implementing the design 
techniques that other works on electrical simulations report that allow 
to improve the behavior of the ONNs (Shamsi et al., 2021). Therefore, 

experimental validation of these approximations is necessary. In this 
study, we  describe an ONN realized in a commercial CMOS 
technology in which the oscillators are built using a circuit that 
we  have developed to emulate the VO2 device. The purpose is to 
be able to study in-depth the synchronization dynamics of relaxation 
oscillators similar to those that can be performed with VO2 devices. 
The ONN has been designed to emulate not only VO2 devices but also 
fundamental characteristics of ONNs with this type of device, such as 
the fact that the interconnections between neurons are bidirectional. 
The fabricated circuit is very flexible since it allows programming the 
synapses to implement different ONNs, calibrating the frequency of 
the oscillators, or controlling their initialization. It uses differential 
oscillators and resistive synapses, equivalent to the use of memristors.

There are other two additional topics that must be introduced 
before proceeding with the CMOS ONN description.

The first one is the technique used to discretize the phase of the 
oscillators such that only two values are possible, and so the binary 
neurons of the reference HNN previously explained are reproduced. 
This can be achieved by Second Harmonic Injection Locking (SHIL) 
(Neogy and Roychowdhury, 2012). When a suitable synchronization 
signal, VSYNC, is injected into a non-linear oscillator, SHIL occurs, and 
the oscillator adopts a frequency half the frequency of VSYNC (fSYNC) and 
becomes phase-synchronized within one of the two possible phases 
that are 180° apart. For this to occur, the natural frequency of the 
oscillator must be close to fSYNC/2. SHIL is also extremely useful to 
stabilize the oscillator frequency against variability effects, easing the 
oscillators to synchronize in frequency, which is required for proper 
operation of the ONN.

Finally, the AM operation requires the application of an input 
pattern to the ONN. This is equivalent to forcing a given ONN state 
(a given phase pattern). In Corti et al. (2018), a method for this is 
presented. The authors proposed forcing a given initial state by 
selectively delaying the supply voltage of each neuron. For example, 
assuming that only binary patterns are applied, such as black and 
white pixel images, the initial state of the network has only two 
different phases, 180° apart. Those oscillators corresponding to black 
pixels are in one phase, and those corresponding to white ones are in 
the other phase. To achieve this, the black oscillators are switched on 

FIGURE 2

ONN design.
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at T0 and the white ones at T0 + TOSC/2, where TOSC is the period of 
the oscillations.

The rest of the study is organized as follows. Section “Materials 
and Methods” describes in detail the designed and fabricated 
integrated circuit, along with the experimental setup prepared for 
testing it. Section 3 presents the experimental measurements and 
characterization of the circuit. Specifically, the ONN operation as an 
associative memory is demonstrated satisfactorily. The experiments 
carried out allow us to conclude that the ONN must be operated 
according to the type of computational task to be  solved, and 
guidelines are extracted in this regard. Finally, section 4 summarizes 
the conclusions.

2 Materials and methods

2.1 Description of the fabricated CMOS 
differential ONN

An integrated circuit demonstrator of an analog 9-neuron ONN 
using a deep-submicron commercial CMOS technology (TSMC 
65 nm – 1.2 V) has been designed, fabricated, and tested. The 
differential oscillators forming the neurons closely resemble those 
developed using VO2 devices and previously introduced. Oscillator 
frequencies can be calibrated. Couplings or synapses are implemented 
with a four-terminal six-transistor circuit, which conductive 
characteristics are determined by two voltages, allowing the 
implementation of positive and negative weights. The ONN is fully 
connected and programmable. For flexibility, it can operate both with 
and without SHIL. Operation of the fully differential ONN described 
in this section was extensively validated at post-layout level simulation.

Figure 3 shows the layout of the fabricated circuit, showing the 
three types of circuits included (3×3 ONN, simple circuits, and 
differential oscillators with analog outputs) and their connections to 

the pad ring. The 3×3 ONN occupies a rectangle of 776 μm∙747 μm 
with some empty area inside, and the complete chip area, including 
pad ring, is 1710 μm∙1710 μm.

2.1.1 Differential oscillator
Each neuron consists of a differential relaxation oscillator that is 

formed by two single-ended oscillators whose outputs (VOUT1 and 
VOUT2) are coupled by a capacitance (CC). In turn, each of the single-
ended oscillators consists of a couple of resistors (R1 and R2), a P 
transistor, a capacitance (C), and a CMOS circuit that emulates the 
voltage–current characteristic of a VO2, as shown in Figure 4A. The 
emulator (Figure  4B) has been designed using a Schmitt-Trigger 
inverter whose output is connected to a CMOS inverter that controls 
the gate voltage of an NMOS transistor (N2). Its drain and source 
terminals are the two terminals of the emulator. The input of the 
Schmitt-Trigger inverter is connected to the output of the oscillator. 
Unlike the conventional Schmitt-Trigger oscillator (Hodges and 
Jackson, 1983), in the proposed design, the output of the Schmitt-
Trigger inverter is decoupled from the rest of the circuit, allowing its 
integration in complex oscillatory neural networks without penalty 
in energy efficiency by not having to increase its sizing. It also avoids 
using the floating resistor that appears in the conventional Schmitt-
Trigger, whose implementation usually includes a switched 
capacitance and a switch. Additionally, the circuit includes the 
control functionality of the switching voltages VIMT and VMIT, with the 
voltage VN on the gate of transistor N3, providing the proposed 
solution with greater flexibility as it allows to make programmable 
both the frequency and the amplitude of the resulting oscillator.

A step supply voltage is included for each single-ended oscillator 
(VDD,OSC1 and VDD,OSC2), through which the initial phase shift of the 
oscillator is controlled and, therefore, serves to establish the initial 
state of each neuron. Additionally, there are two inputs (VCTRL1 and 
VCTRL2), whose aim is to help with the frequency synchronization of 
the different oscillators in case it is compromised by the inherent 

Basic circuits

3x3 ONN

Differential oscillator
with analog outputs

 
FIGURE 3

Layout of the fabricated circuit.
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variability of the process and mismatch. Each oscillator can 
be connected to any of the six available calibration voltages by means 
of programmable switches controlled by programming registers. This 
scheme is illustrated in Figure 5.

As previously mentioned, a general method to improve the 
stability and synchronization of oscillatory neural networks is using 
SHIL. In this circuit, SHIL is injected through PMOS transistors, 
which are turned on and off through the input signal VSHIL.

2.1.2 Synapse
As an analogy of the Wheatstone bridge, Figure 6A shows the 

schematic of the synaptic circuit, which is capable of providing 
positive, negative, and zero weights. Being a four-terminal circuit 
makes it appropriate for differential structures. Depending on the gate 
voltages, it is possible to have positive (VP > VN), negative (VN > VP), or 
zero weight (VP=VN). The two PMOS transistors are used for 
controlling the current between the neurons. Transistors between the 
positive branches can transfer current when (VP-V1

+) < VTH because 
VP is applied to their gate. In addition, transistors between the negative 
branches can transfer current when (VN-V2

+) < VTH because VN is 

applied to their gate. Therefore, the current between the neurons is 
controlled using these PMOS transistors. Figure  6B depicts the 
topology of the fabricated differential ONN.

A training rule is used to store patterns in neural networks, 
adjusting the synaptic weights accordingly. Once the weights are 
known, we propose a mapping rule to obtain the physical resistances 
for the memristor-bridge synapses. To store patterns in the ONN, 
we use the Hebbian rule to calculate the weights:
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where P is the number of stored patterns and L is the number of 
pixels in each pattern (which is equal to the number of neurons in the 
ONN). Elements bi and bj of all stored patterns are used to calculate 
the weight Wij.

We propose here the following rules to map the sign and value of 
the above weights to the controlling voltages VP and VP. Weights Wij 
are mapped to the VP and VP values using the following relation:

A B

FIGURE 4

(A) Schematic of a differential oscillator. (B) Schematic of the circuit that emulates the behavior of the VO2 device.

 

 
FIGURE 5

Schematic of oscillator calibration voltage selection based on series/parallel loading of the control word.
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where α >1 is a constant value. The design parameters of the 
synaptic circuit are Wij, α, and V0. Parameters α and V0 will be obtained 
based on correctly functioning hardware.

Each synapse control voltage can be connected selectively to different 
voltages using programmable switches controlled by programming 
registers, similar to the oscillator calibration shown in Figure 5.

2.2 ASIC description

The ASIC consists of the following blocks:

 - ONN of nine differential oscillators is fully interconnected with 
each other through 36 synapses. The ONN includes a control 
system from which the voltages defining the synapse weights can 
be selected, as well as an oscillator calibration mechanism to 
improve network synchronization. The oscillator outputs are 
connected to digital pads through Schmitt-Trigger buffers with 
configurable hysteresis to regenerate rail-to-rail signal swings and 
to cope with the waveform shape of relaxation oscillators.

 - Basic circuits. Specifically, a single-ended oscillator, a differential 
oscillator, and two differential oscillators connected through a 
synapse similar to the one used in the ONN have been included. 
In all of them, the output is digital, as in the ONN. In addition, a 
differential oscillator has been included whose outputs are 
connected directly to analog pads in order to be able to observe 
the waveforms without digitizing.

2.2.1 Description of key signals/pads
The signals involved in the circuit are divided into the 

following categories:

 - Oscillator supply voltages: Since differential oscillators are being 
used and there are nine oscillators in the ONN, 18 signals are 
required. These signals are generated externally and applied to 
digital pads that generate step signals between 0 V and 

1.2 V. Controlling the relative timing on the initial phase selection 
step is essential: a delay between both signals corresponding to 
half a period involves applying input stimuli with opposite phases.

 - Control system signals: Includes the clock signal, the signal that 
codifies the information to be  loaded into the calibration/
programming voltage selection registers, and the signal that 
indicates that the information has been loaded into the serial 
registers and serial-to-parallel conversion can be done.

 - Oscillator calibration signals: These six signals can take values 
between 0 V and 1.2 V and allow the oscillator frequency to 
be tuned.

 - Synapse programming signals: These 12 signals are used to set 
the weights for the synapses. They take values between 0 V 
and 1.2 V.

 - Output stage configuration signals: These signals are used to set 
the thresholds of the ONN output Schmitt-Trigger buffer.

 - Synchronization signal: It is a digital signal that ranges between 
0 V and 1.2 V, with a frequency double that of the ONN’s 
oscillators, used to enable the SHIL mechanism.

2.2.2 Control logic for calibration and 
programming

Each oscillator and each synapse have twice as many flip-flops as 
switches to be controlled. That is, 12 for each oscillator (see Figure 5) 
and 12 for each synapse. Half of them are configured in a single shift 
register, generating, therefore, a connection of 12∙9 + 12∙36 = 540 
memory elements. These registers are controlled by the clock signal. 
A control word is serially loaded in the shift register. It contains the 
calibrating and programming bits indicating which switches are 
closed and which are not. Obviously, for each oscillator or synapse, 
only one of its switches should be closed. Once the control word is 
fully loaded, a signal that indicates that the data are ready to be loaded 
is activated, and the information contained in the shift registers is 
loaded in parallel to the flip-flops directly controlling the switches.

2.3 Test board and experimental setup

The experimental verification of the ASIC has been performed 
using a custom-designed test PCB for this purpose. The block diagram 
of the setup and test equipment is shown in Figure 7A, together with 

A B

FIGURE 6

(A) Schematic of the synapsis. (B) Differential ONN implementation from Shamsi et al. (2021).
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a photograph of the test PCB and its wiring in Figure 7B. The FPGA is 
used for programming the ONN (providing the bitstream that 
configures the assignment of synapses and calibration voltages) and for 
controlling the time-delayed power-on of the differential oscillators. A 
discrete micro-switch on-board allows to configure the initial state of 
the system, on which basis input patterns are applied to the ONN.

The main features of the PCB are summarized hereafter. First, the 
initialization of the differential oscillators is performed using two 
digital signals (common for each of them), which abruptly commute 
from low to high level with a delay equivalent to half an oscillator 
period. These signals are applied as the supply voltages of the 
differential oscillators. The order in which they are applied is given by 
the position of the micro-switch associated with each oscillator 
(labeled in Figure  7B as ‘Initial State Switches’). These signals are 
generated and switched off by the custom digital design in the FPGA, 
commanded by START and RESET signals sent by the Digital 
Discovery instrument. A commercial software application linked to 
the instrument allows the PC user to trigger these signals.

In addition, the synchronization signal for SHIL is provided using 
the Tektronix AFG3102 function generator, whose output is connected 
to the SMA connector on the PCB, which has access to an ASIC’s 
digital pad. Typically, the waveform used for the synchronization 
signal is a square signal with a voltage range between 0 V and 3.3 V. It 
is controlled by a trigger signal generated from the FPGA, allowing 
for the control of the time scheduling of both the start of the 
synchronization signal and the initialization of the oscillators.

The generation of the calibration and programming voltages is 
carried out on-board with a simple circuit consisting of an operational 
amplifier, a potentiometer, resistors, and capacitors. Each of the 12 
programming and the six calibration voltages has one instance of this 
circuit dedicated, with an individual potentiometer, as can be seen in 
the ‘Calibration’ and ‘Synapses’ boxes in Figure 7B.

Finally, regarding output observation, digital ones are monitored 
using oscilloscope probes or the logic analyzer included in the Digilent 
Digital Discovery instrument. Furthermore, the FPGA I/O pins are 
compatible with reading it directly. Analog outputs can be observed using 
oscilloscope probes. A Keysight DSOX4104A oscilloscope has been used.

3 Results

3.1 Exploring the dynamics

The first aim of the ASIC was to be able to explore the dynamics 
of coupled oscillator systems. Thus, before describing its application 
to solve computation tasks, we  report on the results of a set of 
experiments carried out to analyze the behavior of neurons, synapses, 
and the SHIL mechanism.

3.1.1 Oscillator performance
Although the ONN system has only digital outputs, simple analog 

oscillators were also included in the chip and connected to analog 
pads in order to be able to observe their behavior. Figure 8 depicts the 
experimental waveforms for an analog differential oscillator identical 
to the ones in the ONN. As expected, both outputs are 180° apart. The 
output average voltage ranges from 379 mV to 763 mV. Note that the 
small oscillation amplitude justifies the carefully designed Schmitt-
Trigger-based output stage included for digitalization.

Figure 9 depicts the two outputs of one of the oscillators after 
digitalization and applying two calibration voltages. Figure 9A is 
for 1.2 V, where it can be observed that the outputs are out of 
phase, showing correct operation. The waveforms in Figure 9B 
correspond to the same experiment for a calibration voltage of 
0.9 V. Note the frequency differences: by reducing the voltage 
applied to the calibration input, the frequency increases. The 
measured frequencies are 5.9 MHz and 7.18 MHz, respectively. 
The nine ONN oscillators have been characterized with a 
calibration voltage of 1.2 V. The average frequency obtained 
ranges between 5.5 MHz and 5.9 MHz, with a relative standard 
deviation between 25 m and 8 m. By varying the calibration 
voltage, it is possible to individually tune the frequencies of each 
oscillator between 6.02 MHz and 6.12 MHz, leading to a 
frequency difference reduction of a factor of 4.

Figure 10 depicts the obtained waveforms for the positive output 
of oscillator 1 with 1.2 V in the calibration voltages for different 
configurations of the output buffer stage. It can be observed that the 

A B

FIGURE 7

(A) Block diagram and (B) photograph of the test setup.
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duty cycle of the digital oscillator changes. In Figure 10C, control 
voltages have been selected so that an undesired glitch is observed.

All these experiments have been carried out with deactivated 
SHIL. This is achieved by applying a constant of 3.3 V to the SHIL 
signal PAD.

3.1.2 Second harmonic injection locking 
performance

A common SHIL signal, externally provided, enables the 
synchrony between the oscillators when the SHIL frequency is found 
in a determined range related to the natural oscillator frequency. To 
illustrate the impact of applying SHIL, the average frequency and the 
deviation with and without SHIL were measured. With SHIL at 
13.9 MHz, the average frequency increases to 6.95 MHz, and the 
relative deviation reduces to 4 m. Note that the oscillator synchronizes 

to half the SHIL signal as expected, and the SHIL signal helps to 
reduce the impact of oscillator jitter on frequency variation.

It is well-known that SHIL discretizes the oscillator phase so that 
only two phases can occur. These two phases are ideally 180° apart. 
This is shown in Figure 11. The output of two uncoupled oscillators is 
depicted with and without SHIL. Figures 11A,B corresponds to the 
case with SHIL. Since each oscillator can be in one of the two phases, 
they can both be either in-phase or anti-phase. We have been able to 
capture the two behaviors by slightly modifying the SHIL frequency. 
Note that the frequencies of the signals in Figures 11A,B are very close 
(6.769 MHz and 6.778 MHz), indicating that the modification of the 
SHIL signal has been minimal and yet able to introduce noise that 
leads to an oscillator being able to jump from one phase to the other. 
In no case has a situation been observed where the two oscillators have 
a phase difference other than 0° or 180°. By deactivating SHIL, any 
phase difference is possible (Figure  11C). Note that in these 
experiments, the two oscillators were individually calibrated to 
equalize their frequencies.

3.1.3 Synapse performance
As it was described, the implemented synapse can 

be programmed to enable both a positive and a negative coupling 
between a pair of oscillators. Positive (negative) coupling forces the 
two oscillators to be in phase (out of phase). Figure 12 shows the 
two cases. In Figure 12A, the synapse connecting the two oscillators 
was programmed with VP = 0 V and VN = 0.95 V. Figure  12B 
corresponds to VP = 0.95 V and VN = 0 V. The depicted waveforms 
have been obtained with SHIL activated. In this condition, the range 
of synapse voltages for which coupling is achieved is wide (from 
0.25 V to 1.2 V). However, when there was no SHIL, this range was 
significantly reduced. The minimum required voltage increases to 
0.95 V. Additionally, the range of valid SHIL frequencies is reduced 
with the synapse voltage. That is, both SHIL and coupling strength 
contribute to the operation of coupled oscillator systems.

To finish this first section on experimental results, we describe the 
behavior of three coupled oscillators with all-to-all connectivity. That is, 

 
FIGURE 8

Experimental waveforms for a differential oscillator with analog 
outputs.

A B

FIGURE 9

Experimental waveforms corresponding to the outputs of one of the oscillators after digitalization applying two calibration voltages: (A) 1.2  V and 
(B) 0.9  V.

53

https://doi.org/10.3389/fnins.2023.1294954
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiménez et al. 10.3389/fnins.2023.1294954

Frontiers in Neuroscience 09 frontiersin.org

each of the three differential oscillators is coupled, as depicted in 
Figure 13A. The type of coupling is negative, and so the phases of each 
pair of oscillators are forced to separate from each other. We have just 
shown that a pair of negative-coupled oscillators evolved toward the 
anti-phase relationship. Clearly, when there are three connected 
oscillators, as in Figure 13A, it is not possible to satisfy that relationship 
for every pair of oscillators. It is not possible that O1 is in anti-phase 
with O2 and with O3, and, at the same time, O2 and O3 are also in anti-
phase. It is interesting to check that our system behaves as expected. 
This expected behavior is completely different whether SHIL is applied 
or not. Assuming identical coupling, when no SHIL is applied, the three 
phases tend to be equally distributed (ideally to be 120° apart from each 
other). This is the state of the network that minimizes energy. With 
SHIL, since the phases are binarized, such a phase pattern is not allowed. 
The system tends to satisfy as many anti-phase relationships as possible. 
In this case, two out of the three can be satisfied.

The waveforms we  experimentally obtained are depicted in 
Figure 13B when no SHIL was applied and in Figure 13C when SHIL 
was applied. The three synapses were programmed identically with 
VP = 0 V and VN = 0.8 V. It can be observed that the expected behavior 
is obtained. Note that without SHIL, the three oscillators are not 
exactly 120° apart in phase. This can be due to variability in synapses, 
so that although the applied voltages are identical, the coupling 
strength can be slightly different.

It is interesting to point out that in these examples, we are in fact 
using physics to solve well-known computation problems. Without 
SHIL, the system solves the graph coloring problem (Wu et al., 2011; 
Parihar et al., 2017) associated with the triangle in Figure 13A. Different 

phases mean different colors for the nodes associated with the 
oscillators. With SHIL, the system obtains the Max-Cut of the 
corresponding graph. Nodes are split into two sets such that the 
number of edges between both groups is the maximum. A cut value 
of 2 was obtained in this case. Max-Cut is just one example of a 
problem that can be solved by coupled oscillator systems. A great 
interest has recently aroused in implementing oscillator-based Ising 
Machines (OIMs). OIMs efficiently solve Ising models, and there are 
procedures to map many hard-combinational problems into Ising 
models (Lucas, 2014).

3.2 ONN as associative memory

As it was described in the introductory section, an ONN can 
be used as an AM useful for pattern recognition applications. Unlike 
the graph coloring or Ising solver functionalities of the ONN 
described in the previous sub-section, the AM operation required 
applying an input pattern to the ONN. Thus, the initial phase pattern 
in the oscillators needs to be controlled in order to represent the 
input information. Corti et al. (2018) proposed to do it by controlling 
the timing of the power-on of each oscillator. Different works have 
shown that AM  functionality can be  achieved with this method 
(Núñez et al., 2021; Shamsi et al., 2021). In order to be able to use 
this initialization mechanism, the supply voltage of each oscillator 
can be  independently controlled in our design, as previously 
described. Thus, we can test the operation of the fabricated ONN 
as an AM.

 

A

C

B

FIGURE 10

Impact of the configuration of the output buffer stage on the duty cycle of the output voltage. (A, B) show how the duty cycle of the output voltage 
varies when the output buffer configuration is modified. (C) shows that an undesired glitch may appear if the setting is not correct.
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Figure 14A depicts the two selected patterns to be stored, and 
Figure 14B shows the distorted test patterns applied to validate 
the AM operation. Note: We used binary patterns representing a 
black and white 3×3 image to approximate the pattern 
recognition application.

The required coupling type (positive or negative) and strength 
were determined for each synapse from the weight matrix obtained 
with Hebb’s rule, and so the ONN was programmed accordingly. 
There were three different coupling values (one positive, one negative, 
and one null for uncoupling). Therefore, only two different voltages 

A

C

B

FIGURE 11

Output of two uncoupled oscillators is depicted with and without SHIL. (A) and (B) with SHIL and (C) without SHIL.

A B

FIGURE 12

Two coupled oscillators in which the synapse is programmed with (A) negative coupling: VP  =  0  V and VN  =  0.95  V and (B) positive coupling: VP  =  0.95  V 
and VN  =  0  V.
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were required for biasing the synaptic circuit. Positive (negative) 
couplings were coded with VP = 0.85 V and VN = 0 V (VP = 0 V and 
VN = 0.85 V) and uncoupled with VP=VN = 0 V. A SHIL signal of 
14.3 MHz was injected.

Table 1 reports the obtained results for the two stored patterns (P1 
and P2) and the 10 test patterns (T1–T10) that had been used during 
design for post-layout validation. For each, we indicate:

 • Hamming distance to the closest store pattern (in parenthesis).
 • The expected pattern is to be  retrieved according to the 

associative memory functionality. For each test pattern, we expect 
to retrieve the closest stored one in terms of Hamming distance. 
This distance metric is the number of elements that are different 
between two patterns.

 • Experimentally retrieved (read) pattern. A total of 100 trials were 
carried out for each input pattern. The number of times P1 is 
retrieved, followed by the number of times P2 is retrieved, is 
depicted. The reading operation is carried out at different time 

instants after the application of the test patterns, concretely at 3, 
10, and 720 oscillation cycles from the beginning. Considering 
that the oscillation period is approximately 140 ns, these 
measurements correspond to 42 ns, 1.4 μs, and 100.5 μs.

The test patterns were evaluated with the mathematical HNN 
model obtaining the expected pattern for all of them, as well as the 
ONN does. Particularly, T4 is the only test pattern that did not 
converge the expected pattern in 90 out of 100 at the first reading at 
3 cycles, but it quickly inferred and stabilized in the correct pattern 
from the second reading at 10 cycles, 1 μs later. Additionally, it can 
be  observed from the third read at 720 cycles that the retrieved 
pattern is kept. So, it is concluded that the ONN successfully stores 
the two patterns. In fact, the only two stable states that were observed 
in all our experiments are those patterns. It has also been 
demonstrated that the ONN exhibits associative memory 
functionality. That is, it is able to retrieve a stored pattern from an 
applied pattern that is not a stored one.

A

B C

FIGURE 13

(A) Three coupled oscillators with an all-to-all connectivity. Output waveforms: (B) when SHIL is not applied and (C) when SHIL is applied.

A B

FIGURE 14

(A) Two stored patterns and (B) 10 test patterns selected for the measured 3×3 ONN AM.
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4 Discussion

A 9-neuron CMOS ONN resembling a VO2-based ONN has 
been designed, fabricated, and tested. It uses a CMOS sub-circuit 
emulating the I–V characteristic of VO2 devices to build differential 
oscillators. The synapse is implemented with a 6-transistor bridge 
topology, enabling resistive coupling among oscillators. Both 
positive and negative weights can be realized. The fabricated ASIC 
is programmable, with a large degree of controllability and 
observability to be  able to dive into the dynamics of coupled 
non-linear oscillators, on which basis the computation is carried out.

Experiments carried out with two coupled oscillators (sub-section 
3.1.3) have allowed us to experimentally sustain that both SHIL and 
coupling strength contribute to the synchronization of the oscillators.

The AM functionality has been demonstrated. It is important to 
point out that when we started to test the AM functionality, the results 
were not completely deterministic. That is, repeating an experiment 
several times led to different results. For some of the test patterns, 
sometimes P1 was retrieved, while for others it was P2. After carefully 
analyzing this behavior, we noted that conditions were not actually 
identical across the 100 trials since the SHIL signal was continuously 
running. So, the timing of oscillators power-on with respect to the 
SHIL phase was not fixed. We solved it by synchronizing the SHIL 
signal triggering and the initialization of the oscillators. Even after this 
modification of the experimental setup, there was still some 
indeterministic behavior in the system associated with input patterns 
equidistant (in terms of Hamming distance) to the two stored patterns. 
For those input patterns, sometimes P1 was retrieved while others 
were P2. It was due to the impact of noise.

Furthermore, it was observed that the system could evolve from 
one stable state to another. For example, as described in sub-section 
3.1.2, a slight frequency shift of the SHIL induces noise that triggers 
a phase shift of an oscillator. Moreover, without any intended action 
on the experimental setup, and due to internal noise and other 
non-controllable noise sources, the phase flip can occur. It is 
extremely important to point out that the rate of this event is very 
different whether SHIL is applied or not. Under SHIL, this rate is 
much lower. In fact, we were not able to observe jumps from P1 to 
P2  in the AM  with SHIL, although they occurred if SHIL 
was deactivated.

This observed behavior is very interesting from the point of view 
of the application of ONNs as Ising machines. The OIM application 
requires being able to escape from local energy minima. Our findings 
illustrate that scaping is easier in the absence of SHIL and that it can 
be enhanced by noise. This agrees with different works stating the 
importance of the SHIL signal schedule to improve the probability of 
exactly solving the associated Ising model. That is, obtaining a phase 
distribution corresponding to the minimum configuration of the 
Ising Hamiltonian. The next step in the exploitation of this integrated 
circuit is linked to the validation of the results reported in Avedillo 
et  al. (2023), related to the resolution of combinatorial 
optimization problems.
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networks by machine learning

Tamás Rudner1, Wolfgang Porod2 and Gyorgy Csaba1*

1Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,

Hungary, 2Department of Electrical Engineering, University of Notre Dame (NDnano), Notre Dame, IN,

United States

We demonstrate the utility of machine learning algorithms for the design

of oscillatory neural networks (ONNs). After constructing a circuit model

of the oscillators in a machine-learning-enabled simulator and performing

Backpropagation through time (BPTT) for determining the coupling resistances

between the ring oscillators, we demonstrate the design of associativememories

and multi-layered ONN classifiers. The machine-learning-designed ONNs show

superior performance compared to other design methods (such as Hebbian

learning), and they also enable significant simplifications in the circuit topology.

We also demonstrate the design of multi-layered ONNs that show superior

performance compared to single-layer ones. We argue that machine learning

can be a valuable tool to unlock the true computing potential of ONNs hardware.

KEYWORDS

neuromorphic computing, oscillatory neural networks, machine learning design, ring

oscillators, low-power computing

1 Introduction

The computing power of neuromorphic and artificial intelligence (AI) algorithms

is greatly limited by the lack of low-power, energy-efficient hardware to run AI

computing tasks. Outsourcing even the simplest AI processing primitives (such as pattern

classification) to energy-efficient, specific-purpose hardware would greatly increase the

prevalence and computational power of AI algorithms.

Neuromorphic analog computing elements are currently being intensely researched,

as they promise significant energy savings in artificial intelligence (AI) computing tasks

compared to their digital counterparts (Schuman et al., 2017). Among the many flavors of

analog computing, oscillatory neural networks (ONNs) received special attention (Csaba

and Porod, 2020a). This is due to the facts that (1) ONNs are realizable by very simple

circuits, either by emerging devices or conventional transistor-based devices, (2) phases

and frequencies enable a rich and robust (Csaba and Porod, 2020a) representation of

information, and (3) biological systems seem to use oscillators to process information

(Furber and Temple, 2007), likely for a reason.

Despite the significant current research efforts and the large literature, most ONNs

seem to rely on some version of a Hebbian rule to define attractor states for the oscillator

phases (Delacour and Todri-Sanial, 2021). The Hebbian rule is used to calculate the value

of physical couplings between oscillators—such as resistances or capacitances—that define

the circuit function. The reliance on the Hebbian rule turns most current ONNs into a

sub-class of classical Hopfield networks, which are not very powerful by today’s standards.

While there are a few ONN implementations not relying on basic Hebbian rules (notably

Vassilieva et al., 2011), it is likely that current ONNs do not fully exploit the potential of the

hardware—due to the lack of a more powerful method to design the interconnections.
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In this study, we show, using computer simulations, that a

state-of-art machine learning method, namely Backpropagation

Through Time (BPTT), when applied to a circuit-level model

of the ONN, significantly enhances the computational power of

ONNs. Our studied system is an ONN made of resistively coupled

ring oscillators (Csaba et al., 2016; Moy et al., 2022), and its

circuit topology is described in Section 2.1. Next, in Section 2.2

we develop the differential equations describing the circuit and

show how a machine learning algorithm can be applied to design

the circuit parameters. In Section 3.1, we apply the machine-

learning framework for the design of an auto-associative memory

and compare it to a standard Hebbian rule-based device. Section

3.1.3 furthers this concept by the design of a multi-layered network,

which is a two-layer classifier and achieves superb performance

compared to a single-layer device.

An AI processing pipeline typically has to process a large

amount of input sensory data (such as audio, video, or text

streams). These operations consume significant power, due to the

sheer amount of sensory data. The ring oscillator-based ONN

present here can do classification tasks in an energy-efficient way,

and this way significantly increase the net power efficiency of the

computing pipeline.

Overall, our study presents a design methodology that unlocks

the true potential of oscillatory neural networks, overcoming

the limitations imposed by simple learning rules. Additionally,

the presented method allows for designing physically realizable

structures: our networks rely on nearest-neighbor interactions,

which is amenable to scaling, chip-scale realizations and uses

significantly fewer neurons than fully connected networks.

2 Materials and methods

2.1 Resistively coupled ring oscillators for
phase-based neuromorphic computation

It is well-established that the synchronization patterns of

coupled oscillators may be used for computation (Csaba and

Porod, 2020a). The idea of using phase for Boolean computation

goes back to the early days of computer science (Wigington,

1959) and is being rediscovered these days (Roychowdhury, 2015).

For neuromorphic computing, the original scheme of Izhikevich

(Hoppensteadt and Izhikevich, 1999, 2000) was studied using

various oscillator types and coupling schemes. A number of

computing models were explored, ranging from basic convolvers

(Nikonov et al., 2015) and pattern generators (Dutta et al., 2019)

to hardware for handling NP-hard problems (Chai Wah Wu, 1998;

Parihar et al., 2017; Moy et al., 2022).

Ring oscillators are among the simplest of oscillators. These

devices consists only of (odd number of) inverters, capacitances,

and resistances, see in Figure 1.

To give a simple example of how ring oscillators compute in

phase space, Figure 1 shows a two-oscillator system. Nodes that are

interconnected by a resistor will synchronize in phase. If identical

nodes (say V3, the 3rd voltage node of the ring oscillators) are

interconnected, the oscillators will run in phase. However, in a 7-

inverter ring oscillators, each node is phase-shifted by an angle of

2π/7 with respect to their neighbor. If, say, V3 of one oscillator

is connected to say V6 of the oscillators, the oscillators will pull

toward an anti-phase configuration. The waveforms of these two

cases are illustrated in the top part of Figure 2.

A larger network of oscillators with in-phase or out-of-phase

pulling resistors will converge toward an oscillatory ground state

configuration, which in fact maps to the solution of the Ising

problem (Moy et al., 2022). Simply put, the phase of each oscillator

will converge toward a value that optimally agrees to most of

the constraints imposed on the oscillator by other oscillators it is

coupled to. The dynamics of the coupled oscillator network will

approximate the solution of a computationally hard optimization

problem. For an Ising problem, the oscillator oscillator couplings

are part of the problem description, and there is no need to calculate

them.

While the Ising problem is important and shows the

computational power of ONNs, an Ising solver alone is not very

useful for solving most real-life, neuromorphic computing tasks. A

neuromorphic computing primitive (such as a classification task)

does not straightforwardly map to an Ising problem. So, if the

oscillator network is to be used as a neuromorphic hardware, then

the oscillator weights must be designed or trained to perform

certain computational functions.

Most ONNs are used as auto-associative memories, making

them applicable for simple pattern recognition/classification tasks.

The weights are designed based on the Hebbian learning rule

(Csaba et al., 2016; Delacour and Todri-Sanial, 2021), and this

is one of the cases when the Ising model easily maps to a

neuromorphic computing model. In fact, the connection between

Ising and Hopfield’s associative models (Hopfield, 1982; Michel

et al., 1989; Smith, 1999) was designed by Hopfield early on

Hopfield and Tank (1985). ONNs simply use oscillator phases as

the state variable of Hopfield neurons.

TheHebbian rule (and even its improved variants Righetti et al.,

2006; Tolmachev and Manton, 2020) has severe limitations: the

rule works best on all-to-all oscillator (neural) connections and it

does not trivially support learning on a set of training examples.

In addition, simple Hopfield models are not very powerful neural

networks by today’s standards—for example, a Hebbian-trained

Hopfield network achieves mediocre results in the standardMNIST

classification tasks (Belyaev and Velichko, 2020). This is why our

goal in this study is to go beyond these limitations and apply state-

of-the-art-learning techniques to trainONNweights. This allows us

to overcome the limitations of associative (Hopfield) type models

and design ONN versions of many other neural network models.

2.2 Machine learning framework for circuit
dynamics

Our methodology is to apply Backpropagation Through Time

(BPTT) (Werbos, 1990) to an in-silico model of the oscillators.

We constructed a circuit model of the coupled oscillator system;

the resulting ODEs are solved and the value of the loss function

is calculated at the end of the procedure. By backpropagating the

error, we can optimize the circuit parameters in such a way that the

ONN solves the computational task defined by the loss function.

Once the circuit parameters are determined via this algorithm, they
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FIGURE 1

Here, in the middle, we can see a two oscillator system, coupled together in every possible way with numbered voltage nodes. The oscillators are

built using seven inverters. The zoomed-in parts at the four corners are the di�erent node types we can have in a given system. In those four

schematics, the same colored nodes are at the same voltage levels and vprev and vnext are used as the node before vi and node after vi, respectively,

because of the circular design. The green arrows symbolize the currents flowing into the given node vi. The 0-labeled current is a symbol for 0

current, as by definition, the input current to inverters is 0. In addition, the vother,− and vother,+ is a symbol for the voltage node of another oscillator,

which is coupled to the particular oscillator negatively and positively, respectively. The Input-labeled waveform generators can be anything feeding

information into the system as external input currents.
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FIGURE 2

Phase-based computing by two ring oscillators: (top left) If R− (or the resistance between di�erent voltage nodes of two oscillators, say V3 and V6)

dominates in the coupling, the oscillators run in phase, while (top right) if R+ (or the resistance between same voltage nodes of two oscillators, say

V3) dominates, then anti-phase coupling is realised. The latter two are based on the criteria that coupling is realised by flowing currents and the

larger the current is, the more influence the oscillators will have on one another. (Bottom) If phases correspond to pixels of a grayscale image, the

phase dynamics may be used to converge to predefined patterns (Csaba et al., 2016). The illustrations of convergence to ‘A’ are taken from Csaba

and Porod (2020b).

can be ‘hard-wired’ into a circuit (ONN hardware) for an effective

hardware accelerator tool.

2.2.1 Computational model of resistively coupled
ring oscillators

For the sake of concreteness, we assume that our circuit

consists of n oscillators and each oscillator is composed

of seven inverters. The circuit has k input nodes. We

construct a simple ordinary differential equation (ODE)-

based circuit model based on the equations derived by

Lai and Roychowdhury (2005).

Each inverter is described on a behavioral level by a f (x) =

− tanh(ax) non-linearity connected to an RC delay element. This

way, a seven-inverter ring oscillator is modeled by seven first-order

non-linear ODEs.

The mathematical formulation consists of three parts: internal

dynamics of the oscillators (due to the inverters), dynamics due to

external signals (inputs), and the coupling’s dynamics.

In Figure 1, there can be seen the basis of the derivation of the

ODE of the circuit model. There are four types of nodes in the

system and for each of them, an ordinary, first-order differential

equation can be derived using Kirchoff’s current law as follows:

• Most nodes are inner-nodes (bottom right part in Figure 1) in

the oscillators (5 in each) and their equation is rather easy to

calculate:

C
dvi

dt
=

f (vprev)− vi

R

• There can also be negatively coupled nodes (top right part

on Figure 1), which are a little bit more complex than the

simple inner nodes. It also has another current component

flowing to vi, which is coming from the difference of the

voltage of a different node of another oscillator and the voltage

of the particular oscillator divided by the resistance between

the nodes. Here, the requirement for negative coupling is

that the two coupling nodes should be an odd even pair in
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terms of numbering of voltage nodes. Here, the equation is the

following:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,− − vi

R−
.

• There can be positively coupled nodes with inputs (top left

part on Figure 1). Positively coupled nodes are more complex

than the negative coupled nodes previously described, as it

not only has an incoming current from a different oscillator

but also has an external input indicated by the waveform

generators on Figure 1. Note that the requirement for positive

coupling between the two oscillators is to have an even even

or odd odd pairing of oscillators. The particular ODE for this

kind of arrangement is as follows:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,+ − vi

R+
+ Buin,

where B effectively controls the amplitude of the input

waveform. It is worth mentioning that input is not necessarily

present for this node, so it is possible that a node only has extra

current coming from positive couplings without any kind of

external input.

• The most complicated node is the one having positive and

negative couplings and also some input (bottom left part on

Figure 1). It is basically the merger of the previous two items

which is manifested in the equations as well:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,− − vi

R−
+

vother,+ − vi

R+
+ Buin.

Combining the previously presented knowledge, for the whole

system, we can arrive at the following ODE for the collection of

voltages at all the nodes, which describes all parts if we write a

differential equation for every node in the system using Kirchhoff’s

current law and assuming only resistors as couplings:

dV

dt
=

1

RC

(
f
(
PπV

)
− V

)
+

1

C
B
′u+

1

RcC
C
′V ,

where

f (x) = − tanh(ax),

is the simplified characteristic of an inverter with some a ∈ R.

Furthermore, π is a permutation, such that

π =

(
1 2 3 4 5 6 7

7 1 2 3 4 5 6

)

and P ∈ R
(7n)×(7n) is a block matrix in which for every 7x7

matrix block in the main diagonal there is a permutation matrix

corresponding to π . This orders the voltage nodes in the ring

oscillator to calculate the voltage differences arising between the

two endpoints of the resistors placed in between the two inverters.

B
′ ∈ R

(7n)×k is the connector matrix for the inputs. The inputs

are collected in u ∈ R
k. C′ ∈ R

(7n)×(7n) is the modified couplings

matrix which is to be constructed from the real, humanly readable

couplings matrix C ∈ R
n×n. The parameters R, C ∈ R

+ are fixed

for the oscillators; meanwhile, the Rc ∈ R
+ coupling parameters

are one of the two real, to-be-learnt parameters of the system

that govern the whole coupling dynamics. The other ones are the

parameters gathered in B
′, which directly relates to the amplitude

of the input signal (typically a sinusoidal current generator).

The Ci,j is related to the couplings between oscillators i and j

and the matrix is built the following way:

• All main diagonal entries are 0, as no oscillator is coupled to

itself.

• All entries in the upper triangle of the matrix are

corresponding to the positive (in-phase-pulling) couplings.

• All entries in the lower triangle of the matrix are

corresponding to the negative (anti-phase-pulling) couplings.

The construction of C
′ can be done easily from C

algorithmically. As every positive coupling is between 3-3

nodes of the oscillators and every negative connection is between

3-6 nodes of oscillators, the C
′ matrix is quite sparse. Similarly,

because inputs are only fed into the 3rd node of every oscillator,

the B′ matrix is sparse.

The ODEs are constructed for the circuit of Figure 3, in case

of a fully connected ONN. The oscillators are driven by sinusoidal

current generators, and the phase of these signals carries the input.

They define the initial states of the oscillators that is later changed

by the couplings between the oscillators.

Each oscillator is connected by two resistors, the value of which

has to be learned. The values of the coupling resistors are inversely

related to the coupling parameters, which are stored in the C

coupling matrix and the elements of this matrix are to be learned.

In the equations above, Rc is a predefined, constant value which

is the resistance scaling factor between two coupled nodes, usually

around 10 k�. The system learns the values in C. From this matrix,

the C′ modified coupling matrix is built. The real physical coupling

resistances’ values between nodes i and j is given by Rc
Ci,j

.

Similarly, the values in B
′ are related to the input current

generator’s amplitude, but they are directly proportional to the real

amplitude of input generators.

In the examples of the later sections, the grayscale pixel

colors will typically correspond to the input phases of the current

generators, and a pixel intensity from 0 to 1 is mapped to phases

φ ∈ [0,π]. Similarly, the output pattern is the stable, stationary

phase pattern of the oscillators.

The circuit model we use (Lai and Roychowdhury, 2005) is

simpler than a SPICE-level (Simulation Program with Integrated

Circuit Emphasis) circuit model, as it takes into account the

transistor characteristics by a behavioral curve. The internals of

the MOS transistors are neglected. This simplification is done to

facilitate learning as we will explain below.

2.2.2 Backpropagation for ONN circuit design
Backpropagation is the de facto standard algorithm used for the

training of neural networks (LeCun et al., 2015). After each run of

the neural network, the gradient of a properly defined loss function

is computed with respect to the trainable parameters of the system,

in an efficient manner.
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FIGURE 3

The circuit diagram of the entire computational layer. Input signal generators provide the sinusoidal signals with a phase that corresponds to an input

pattern, such as pixels of an image. These generators are connected to the computing oscillators, whose phase pattern provides the solution to the

problem. The 3–6 marks on the oscillators indicate the 3rd and 6th nodes in the ring oscillators’ circuit. The green, red, and blue colored circuit

elements’ values are learned during the learning process and the phases, indicated with orange are the inputs. On the schematic figure, the purple

connections indicate both the positive (red) and negative (purple) couplings. The grayscale pixel value is read from the image, converted to phase

information, then the sinusoidal current generators are connected to the oscillators one-by-one. The yellow arrows show that the output is read

from the oscillators and an image is formed.

BPTT (Backpropagation Through Time) is backpropagation

applied to a dynamic system (i.e., an ODE-based description).

The ODE is solved by a standard time-stepping technique, using

discrete time. This dicretized solution may be viewed as a many-

layer neural network such that one neural layer corresponds to a

temporal snapshot of the system dynamics. The BPTT algorithm

calculates and stores these layers (snapshots) in the forward pass

of the calculation, then calculates the derivatives of an objective

function with respect to trainable parameters in the backward pass.

To apply backpropagation or BPTT, a loss function (objective)

function has to be defined, and this assumes aminimum value when

the system is in the desired, computational state. The loss function

is typically defined on the end state of the ODEs; in our case, this is

the the stationary phase of oscillators at the end of the computation.

In this study, we apply BPTT to find out the circuit parameters

that enable the ONN to perform useful computation. After the

calculation of the gradient, a gradient descent method is used for

learning, in order to minimize the loss function. Each gradient

descent steps should bring the circuit parameters closer to their

optimal value.

We have written our simulation code in Pytorch (Paszke et al.,

2017)—the autograd feature of Pytorch makes the implementation

of backpropagation and BPTT straightforward. We also used the

torchdiffeq (Chen, 2018) package for implementing backward-

differentiable ODE solvers. This external, third-party library is

built upon PyTorch and provides various differentiable ODE

solvers implemented for PyTorch. A particularly useful feature of

torchdiffeq is that it can apply the adjoint method for the backward

step (Chen et al., 2018) and calculate the gradients with a constant

memory cost.

It must be noted that BPTT is computationally demanding for

a complex dynamic system such as our ONN. The time-domain

solution of a circuit model typically consists of thousands of time

steps. As BPTT works by unwrapping the time-domain solution

of an ODE to a many-layer neural network, the BPTT algorithm

must handle a many-thousand layer network and this may yield to

memory bottlenecks during the training.

Backpropagation through many layers inevitably suffers from

the vanishing gradient problem (Lillicrap and Santoro, 2019). We

found that our algorithm produces useful gradients up to a few

thousand time steps (layers). The ONN is constructed to safely

converge within this time frame.

The high computational demand of BPTT is the primary

reason we have chosen a simplified circuit model for the

simulation of ring oscillators. A typical Level 3 MOS model

contains hundreds of parameters; while a SPICE-level simulation

is straightforwardly possible even for larger circuits, learning

(backpropagation) becomes computationally demanding for

such models.

It is also important that BPTT supports only “in silico” training.

The design of the ONN (i.e., the learning) takes place on a different

hardware than the inference. The learning is done on a digital

computer model. Once the learning is finished, the inference is

done on a dedicated hardware that uses the computer-learned

circuit parameters. Online learning is not possible this way, but our

goal is to realize efficient, “hard wired” hardware for inference.
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FIGURE 4

On (A) we can see the simulation’s result for the positively coupled oscillators, meanwhile on (B), there is the same for the negatively coupled

2-oscillator system. The loss changed in both cases from high value to low value. In addition, the orange curves are indicating the learning

parameters’ values contained in C and not the real values of the resistors. Note that in (B), the parameter value corresponding to “R-” is going below

0, which would mean a negative resistance because of the connection of the parameters in C to the physical parameters, but this is only the

mathematical solution, for a given simulation, the parameters were clamped to be non-negative and if they hit zero, the connection removed. (A)

In-phase coupling learned. (B) Anti-phase coupling learned.

Figure 4 exemplifies the learning procedure for the two-

oscillator system of Figure 2. We selected the loss function of the

system as the dot product of the oscillator waveforms, which is

a standard choice for this type of problems. The loss should be

maximized (minimized) for in-phase (anti-phase) coupling. Such

mean-square machine learning algorithm adjusts the value of the

Ci,j parameters (and the coupling resistors) until this desired phase

configuration is reached.

This method can be straightforwardly generalized to achieve

convergence toward more complex patterns. If the loss function

aims to maximize the dot product of waveforms between same-

colored pixels and minimize them between different-colored ones,

then the phase pattern can converge toward any prescribed image.

If the phase pattern made to converge toward different patterns for

different inputs, then the ONN will act as an associative memory.

Since the Machine Learning (ML) technique is designing a

physical circuit, safeguards were taken not to arrive to unrealizable

circuit parameters such as negative resistances or exceedingly

strong couplings that would quench oscillations. This was done by

clipping the values after each learning step to a given interval.

3 Results

3.1 ONN-based pattern association on the
MNIST dataset

We have chosen the standard MNIST database for testing the

associative capabilities of our system. Since the BPTT algorithm

is computationally demanding, we made a few simplifications. We

downsampled the initially 28× 28 pixel-sized picture fromMNIST

to have either 14 × 14 or 7 × 7 size using average pooling. This

allowed us to have a reduced dimension for the input images, and

also keep the necessary information because of the average pooling.

In addition, 14x14MNIST images are still recognizable as a human,

so it allowed us to easily recognize if some patterns are easier for the

algorithm to distinguish from the others.

3.1.1 Baseline: ONN-based associative memory
with Hebbian learning

The simplest, well-studied ONN-based associative memory can

be designed by the Hebbian rule. If we want the phase pattern to

converge toward ξ or η for inputs resembling to ξ or η, then the

weights that realize this associative memory are:

C
cpl
ij =

1

2

(
ξiξj + ηiηj

)
,

where ξi and ξj is the i-th and j-th element of the pattern ξ , and

ηi and ηj is the i-th and j-th element of the pattern η, respectively.

The rule assumes all-to-all couplings, making a larger-scale

network hard to physically realize.

In our Hebbian learning scheme, the weights were determined

initially in a single-shot formula, and in our test case, we applied

the learning to optimize the value of base coupling resistances, Rc,

and the parameters in B′, which are the amplitudes of input current

generators.

The inner RC time constant of the ring oscillators was 2.0·10−10

s, which translates into a 500 MHz oscillation frequency (time

period T = 2 ns). The total simulation time for the network is 500

ns. The phase pattern is calculated from the last 300 ns window, so

convergence is achieved after less than 100 oscillation cycles or 200

ns.

3.1.2 ONN-based associative memories with
all-to-all and nearest-neighbor coupling

The same functionality that is realized by Hebbian learning can

be achieved by the BPTT method. The loss function we selected

was:

L =
1

n

n∑

k=0

(Ok − Tk)
2,

where Ok is the pattern calculated from the output of the

oscillators for the k-th input in the batch and Tk is the ground truth
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for the same, which were ideal patterns of “0” and “1”. In the above

formula, n is the size of the batch used for learning.

Figure 5 compares results from the Hebbian- and BPTT-

based designs. It is visually apparent that the BPTT-based design

associates to the right pattern from very much distorted patterns.

For the experiments seen in Figure 5, we downscaled the images

from 28 × 28 to 7 × 7 which distorted many of the inputs. It

helped speed up the computations, because an all-to-all coupled

728 oscillator system would result in almost 620000 resistors. This

is hard to physically realize.

Most importantly, the BPTT-based design allows the design of

sparsely interconnected circuit topologies. We used it to design the

Cij matrix of associative memory assuming only nearest neighbor

interconnections. The nearest-neighbor interconnected, BPTT-

designed network outperforms the fully interconnected Hebbian

network, even if the number of trainable parameters in the system

(≈ 8n vs. 1
2n

2) is significantly less. The qualitative results of this

comparison can be seen in Figure 5.

The result that a nearest-neighbor (NN) interconnected (BPTT-

designed) network outperforms the (Hebbian-designed) fully

connected network is important. In a fully connected ONN, the

number of connections grows quadratically with the number of

oscillators, making large, fully connected circuits unrealizable.

Only locally connected architectures yield to scalable, physically

realizable ONN circuits.

Quantitatively, the results of the different approaches for the

whole dataset S = {0, 1} can be seen in Table 1.

3.2 Multi-layered ONNs for classification
on the MNIST database

Single layer associative memories are not particularly efficient

for classifying all the 10 MNIST classes, as there are strong

TABLE 1 The MSEs of all the elements from the set and their respective

ground truths for the di�erent methods in case of the associative learning.

Method Hebbian Proposed
fully

connected

Proposed NN
connected

#Params 1,176 2,352 312

MSE 0.068 0.020 0.047

It is apparent that the fully connected network performed the best but even the nearest

neighbor connected layer is good enough to beat the Hebbian learning in terms of quantitative

association.

FIGURE 5

Here, we can see the comparison of the results of the fully connected, nearest neighbor connected, and the Hebbian-learned based networks. The

two blocks of five inputs are shown side-by-side. The first column in each block corresponds to the input digit, the next three is the output of the

systems (in order from left to right: fully coupled, nearest neighbor coupled and Hebbian-based). The last column in both blocks shows the target

digit. It is apparent that the fully connected system worked best, but even our proposed, nearest neighbor connected topology was outperforming

the Hebbian-based architecture.
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FIGURE 6

A simple two-layer classifier showing also the patterns forming in the hidden layer.

correlations between the different digits. The BPTT method does

not require the oscillators of the network to converge to a

prescribed phase pattern so there is no need to use associative

memory for classification. For this reason, we investigate a simple

multilayer ONN, where the second layer is a single oscillator

connected to all oscillators of the input layer as illustrated in

Figure 6.

We used architecture in Figure 6 in various ways: for binary

classification, one hidden layer and a single output yielded decent

results, as described in Section 3.1.3.1. For classifying all 10 digits,

we trained 10 blocks (Figure 6), each responsible for recognizing

one particular digit, and evaluated them with a winner takes all

decision (see Section 3.1.3.2). Finally, we swapped the “winner takes

it all” method for a small, MLP (multi-layered perceptron) model,

composed of just a few neurons. This architecture is shown in

Figure 7 and discussed in Section 3.1.3.3.

3.2.1 Binary classifiers with a single output
The two-layer classifier is shown in Figure 6. The phase of

the output oscillator carries the classification result: we compare

the output oscillator’s phase with a reference oscillator’s phase and

maximize (minimize) their phase difference for one (or the other)

pattern.

Since the optimal oscillator couplings are discovered by the

BPTT algorithm, this device does not necessarily work as an

associative memory. The phase patterns appearing in the hidden

layer are non-intuitive, albeit occasionally they vaguely resemble

the images to be recognized.

That having been said, without any apparent, clearly visible

structure in the hidden layer, the network was predicting the two

classes at a 98% success rate. The predictions made on some images

are present in Figure 6.

3.2.2 10-digit classifier using a winner takes it all
output

Classifying all 10 digits is a significantly more difficult

task than the basic binary classifier and requires many more

oscillators. Training a large number of oscillators simultaneously is

prohibitively difficult with ourmethod. Instead, training everything

at once, we trained 10 separate blocks (subnetworks), each being

responsible for recognizing one particular digit - as seen on

Figure 7. The blocks themselves are nearest-neighbor connected.

The individually trained networks are connected to a winner-takes-

all circuit that decides the result of the 10-class classification.

The results of the distribution of average values of the

predictions of each individual, competitive network can be seen

in Figure 8. After further training, the output probabilities of the

individual networks were improving, but still not aligned perfectly

to the desired distributions as can be seen on Figure 9. Some digits

predicts a high likelihood for the wrong classes. Using the winner

takes it all algorithm (i.e., the decision is made by the ONNs using

the 10 output likelihoods from the architectures and the highest one

is the winner), we achieved an accuracy around 70%. To put this

number in context, random guessing would be 10 %, but the state

of art for MNIST digits is above 99%.

3.2.3 10-digit classifier using a trained second
layer

Instead of the winner takes it all decision, we used a simple

multilayered perceptron at the end to improve classification

accuracy. It consists of 2 layers: one hidden layer and one output

layer. The hidden layer has 15 and the output has 10 neurons.

The structure of this new setup can be seen on Figure 10. This

means that only 325 extra parameters are introduced, which is

negligbly small compared to the roughly 16000 parameters of the

ONN layers.

The reason we have chosen a traditional Feed Forward Neural

Network (FFNN) layer to improve accuracy are entirely practical:

such FFNN is easy to train and we could train it straightforwardly

after all the ONN blocks were designed. We emphasize that this

conventional NN layer does not alter our conclusions, and the vast

majority of the computation is still done by the ONN network. It

is worth to note that there are very few multi-layered ONNs in the

literature [a few examples are Karg et al. (2021), Abernot and Aida

(2023), or Velichko et al. (2019)].
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FIGURE 7

Two of the three tested architectures for the time-independent MNIST classification are shown. Both consist the individually trained,

nearest-neighbor-connected subnetworks which were designed to distinguish between a single class and the rest of the classes using binary

cross-entropy loss function. The top block diagram describes the algorithm where to pick the prediction, we took the maximum of individual

network output probabilities. The more sophisticated version can be seen on the bottom block diagram. Here, we took the output probabilities of the

individual classifiers and fed them as inputs to a small, regular FFNN and trained it as if it were a 10-class classification problem using cross-entropy.

Using the outputs of the competitive networks as inputs to

this small neural network, we managed to reach 96.7% predictive

accuracy. This is excellent accuracy for a network of this size.

We implemented feedforward (perceptron) neural networks with

identical number of parameters, and such networks typically reach

93–95% accuracy. While the MNIST problem is solved with fairly

trivial networks with accuracy approaching 100%, these networks

are using hundreds of thousands of parameters and we only

had 20000 parameters in our training scheme.

We emphasize that in terms of computation workload, the

heavy lifting in this architecture is done by the ONN-based

preprocessing layer—the output layer contains a small number

of parameters and it is a very small-scale neural network by any

standard. The output layer is there since it is easily trainable so
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FIGURE 8

The distribution of predicted average probabilities for the individual, competitive networks in the winner takes it all model. The red-circled bars are

those that on average were too high as probabilities because the given subnetwork should not have high values for that specific digit. The green

arrows indicate which bar should be the highest. The yellow, orange, and red dots near the plots indicate how well the subnetwork managed to solve

its task. It can be seen that this had to be improved.

FIGURE 9

The distribution of the predicted average probabilities after extensive training. It is evident that the distributions improved, but there are still some

outliers where the non-target digits are having too high probabilities.

it can maximize network performance at low training cost. The

power consumption of the network is dominated by the ONN,

and so the entire architecture benefits from the energy-efficient

ONN operation. This result hints that ONNs excel as first layers

(preprocessing layers) in an AI pipeline.

Integrating oscillatory neural networks (ONNs) with compact

traditional neural networks, resembling perceptrons, presents a

promising avenue to leverage their combined strengths. ONNs can

perform complex, dynamic computation but they are difficult to

train. Perceptrons (what we used here) can be easily trained to
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FIGURE 10

A network architecture with ONN layers as preprocessors and a traditional neural network postprocessing the results. The easy-to-train output layer

significantly improves classification accuracy.

TABLE 2 The quantitative comparisons of binary and multi-class classifiers with the parameter count indicated.

Binary classifiers Multiclass classifiers with oscillators Benchmark

Method Fully NN FFNN-like Winner takes all Augmented Perceptron FFNN

#Param 38,416 1,600 40,180 16,000 16,325 16,363

Perf. (%) 98 98 72.3 (70–75) 66.7 (65–70) 95.1 (93–97) 94.4 (93–95)

The “Augmented” network is the MLP-augmented network, using the two-layered MLP as the last function instead of the “Winner takes all”. For the binary classifiers, the 98% performance is

the worst case scenario. The multiclass classifiers and the benchmark model have ranges between the worst and best performances. The differences are the random initial values for the learning

parameters.

specific tasks, but they have limited computational might. Putting

ONNs close to sensory inputs, where most input data has to be

handled (and where most power is consumed), and refining the

computing function, a higher level with an easily trainable layer

could harness the best of both worlds and yield the best overall

power efficiency for the network.

3.3 Comparison of ONN classifier
architectures

The Table 2 quantitatively summarizes some key findings of

our study. Most importantly, the ONN-based network outperforms

a standard FFNN with the same amount of parameters. This is

not entirely surprising for two reasons: one is that ONNs are

recurrent neural networks, exhibiting complex dynamics, unlike an

FFNN. The other reason is that ONNs carry information in the

phase, frequency, and amplitude of their signals, while a standard

neuron outputs only one value (which is usually a static voltage in a

hardware realization). So one may expect that an ONN, if properly

trained, may be able to performmore complex functions with same

number of neurons (processing units).

As a back-of-envelope calculation, if we assume a hardware

similar to Moy et al. (2022), a single ring oscillator in our circuit

would consume about a picojoule of power per inference, so the net

power consumption of the competitive multi-layered device (with

20,000 ring oscillators) is estimated to be 4×10−8 joules/inference.
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Highly optimized lightweight hardware neural networks achieve

in the ballpark of 1µ J/inference for a similar problem (Dressen,

2023). GPU-based networks are usually designed to achieve higher

accuracy at much higher power consumption, even if state-of-art

GPU chips are manufactured using a much more advanced

technology node than the work of Moy et al. (2022). Overall,

these numbers suggest that building the ONN we studied here

by simulations would give orders-of-magnitude improvements in

power efficiency compared to state-of-art solutions.

In conclusion, the ONN is not only more economical in terms

of parameters but does its job with a significantly higher power

efficiency than the equivalent digital or software implementation.

4 Discussion

In this study, we introduced an in-silico method to design

ONNs. We build a computational model of the ONN, apply

BPTT techniques on this model and determine circuit parameters

automatically using the BPTT training algorithm.

In the current literature of ONNs, Hebbian learning rules

are used almost exclusively to realize associative memories or

classifiers. The reader is referred to Núñez et al. (2021), Abernot

and Aida (2023), Delacour and Todri-Sanial (2021), and Nikonov

et al. (2015) and to the references therein. The performance and

the capabilities of a simple Hebbian rule is quite limited when

compared to modern ML algorithms. One may suspect that if an

ONN is designed by Hebbian rules, the capabilities of the ONNwill

bemore likely constrained by the learning rule, and not by theONN

hardware itself.

The BPTT-based design allowed us to use simulations for

exploring the limits of ONN hardware without the limitations

imposed by the simplicity of the training algorithm. We indeed

found that the state-of-art learning method significantly increased

the accuracy of the ONN classification, and this is one main result

of this study.

Another key benefit of our method is that it allows the design

of ONNs that is amenable to circuit realization. For example,

we have shown that a nearest-neighbor-connected ONN that is

designed by BPTT can outperform a fully connected Hebbian-

trained device. Since only locally connected ONNs are scalable

to meaningful problem sizes, this discovery opens the door to

physically realizable ONNs, which perform complex processing

functions without an unfeasibly high number of interconnections.

In addition to that, the BPTT method may also be used to design

higher-interconnected networks (such as all-to-all connected ones)

that greatly outperform their Hebbian counterparts.

Another result of the study was the design of multi-layered

ONN devices, of which very few exist in literature. The ONN first

layer (preprocessing layer) is followed by a simple perceptron-

based layer, and classification accuracy of 95 % is reached. In line

with expectations, we find that multiple layers significantly enhance

the capabilities of the network. We also find that the number of

circuit parameters we had to train is smaller than the number of

parameters of a similarly performing standard FFNN. This means

that the ONN is more economical in terms of parameters. This

benefit appears on top of the benefit in power efficiency: the analog

ONN circuit dynamics does its job from the fraction of the power

of a number-crunching digital solution.

Our design method is not without hindrances. One of its

drawback is that it is not applicable to online training, the

ONN must be trained on its computer model (in silico) and

then the weights are hard-wired into a hardware circuitry.

This is acceptable for an edge-AI accelerator, where energy-

efficient operation is the main figure of merit. Further research is

required to find training methods that would allow continuous,

online learning.
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Tackling the increasing energy demand of our society is one of the key challenges

today. With the rise of artificial intelligence, information and communication

technologies started to substantially contribute to this alarming trend and

therefore necessitate more sustainable approaches for the future. Brain-inspired

computing paradigms represent a radically new and potentially more energy-

e�cient approach for computing that may complement or even replace CMOS

in the long term. In this perspective, we elaborate on the concepts and properties

of complex chemical reaction networks (CRNs) that may serve as information-

processing units based on chemical reactions. The computational capabilities

of simpler, oscillatory chemical reactions have already been demonstrated in

scenarios ranging from the emulation of Boolean gates to image-processing

tasks. CRNs o�er higher complexity and larger non-linearity, potentially at lower

energy consumption. Key challenges for the successful development of CRN-

based computers are associated with their specific physical implementations,

operability, and readout modalities. CRNs are sensible to various reaction

triggers, and provide multiple and interlinked reaction pathways and a diverse

compound space. This bears a high potential to build radically new hardware

and software concepts for energy-e�cient computing based on neuromorphic

architectures—with computing capabilities in real-world applications yet to

be demonstrated.

KEYWORDS

chemical computing, neuromorphic computing, chemical reaction networks, low-

energy, brain-inspired

1 Introduction

Semiconductor technology constitutes one of the key-enabling technologies

responsible for numerous innovations in modern times. Thanks to the continuous

miniaturization of all integrated circuit components, the foundational technology has been

successfully adapted to varying and diverse computing tasks over several decades. The

validity and continuation of Moore’s Law is currently being controversially discussed. At

the same time, the increasing energy consumption of today’s computing infrastructures—

combined with other energy-expensive technologies—undoubtedly represents one of

the largest challenges to our society. The projected energy demand might soon surpass

the amount of energy being cumulatively generated. In the field of information and

communication technologies, this is due to an ever increasing number of systems (Internet

of Things (IoT), mobile systems, data centers, etc.) but also aggravated by emerging

artificial intelligence (AI) applications (image and voice recognition, analog sensor signal

processing, chatbots, etc.). The majority of AI applications entails workloads for which the

classical von–Neumann architecture, with separated memory and processing units, was
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originally not intended and now turns out to be costly in terms

of energy consumption. Furthermore, maintaining and running AI

systems creates similarly high costs as training thereof, currently

already consuming >500 MWh per day. Overall, this trend

will soon result in unaffordable energy demands beyond 100

TWh if the current systems cannot be substantially improved

(de Vries, 2023). Consequently, there are tremendous efforts in

semiconductor and related industries aiming at tuning existing

semiconductor devices (e.g., phase-change, FPGA), architectures

(e.g., specialized architectures), systems (e.g., GPUs, TPUs) or

computing tasks (e.g., in-memory computing) for AI applications.

Beyond those attempts, more disruptive and radically new ways

of computing beyond the use of electrons and transistors are

being evaluated. These initiatives include spintronics, quantum

computing, optical computing, DNA-based computing, and

neuromorphic computing. Generally, it is imperative for all new

approaches to prioritize sustainability aspects over the entire life-

cycle. This includes the use of abundant materials, green fabrication

processes, complete recycling, etc. to contribute to a circular

economy. To complement or replace existing technologies, it is

essential not only to meet the prevailing standards of scalability and

performance, but also to satisfy all aforementioned sustainability

constraints. At the moment, there seems to be no obvious successor

technology for CMOS. However, neuromorphic architectures

appear to be a promising foundation as they conceptuallymimic the

human brain, which serves as an unparalleled role model in terms

of energy efficiency. In addition, some neural networks are already

designed from an implicit, simplified brain inspiration, but with

orders of magnitude less complexity (Richards et al., 2019; Zador

et al., 2023).

In this perspective, we present the novel class of bio-

inspired, chemical information processing concepts that are based

on complex chemical reaction networks (CRNs). CRNs are

capable of processing information based on highly interconnected

and interlinked chemical reactions. Due to their chemical

self-organization and nonlinear characteristics, these systems

provide potentially useful means for low-energy and massively

parallel computing. To demonstrate the neuromorphic capabilities,

scalable physical implementations and operational protocols must

be developed.

2 Chemical reactions as
information-processing units

The human brain with its interconnected neurons and the

release of neurotransmitters in response to nerve impulses across

localized information-processing centers is still unmatched in

terms of energy efficiency. It consumes only around 20 watts

of power while performing more than 200 trillion operations

per second. New classes of HPC systems (e.g., ICNS Deep

South) parallel such cross-linked brain-inspired architectures

and are predicted to reach more than 100 trillion synaptic

operations per second at a significant—yet to be measured—

energy reduction. The cross-linking and collocation of memory

and information-processing units will be at the heart of next-

generation, semiconductor-based neuromorphic HPC to solve the

von-Neumann bottleneck. Additionally, radically new approaches

may take up the information-processing concept of our brain

even closer by using chemical compounds and chemical reactions

to encode and process information for computing purposes:

Not only does information processing on the chemical level

in living entities regulate and control fundamental processes

like immune response, growth, or gene expression, the human

brain runs entirely on chemical reactions for “logic” information

processing. It is therefore conceptually appealing to draw direct

analogies between the chemical compound and chemical reaction

space to bio-inspired brain-type architectures with reactions

emulating synapses and compounds representing neurons. By

their very nature, molecules can carry out complex tasks such as

molecular recognition and chemical reactions with the smallest

possible footprint and energy requirements. Furthermore, chemical

reactions can be cascaded, and are typically highly non-linear. It

has been demonstrated that interconnected chemical systems are

capable of mimicking Boolean logic gates (Tsompanas et al., 2021),

carrying out pattern recognition (Gizynski and Gorecki, 2017;

Parrilla-Gutierrez et al., 2020) or image processing tasks (Rambidi

et al., 1998), finding shortest paths (Rambidi and Yakovenchuk,

2001), or solving optimization problems (Guo et al., 2021). Like

other non-conventional computing architectures, these attempts

predominantly exploited time-dependent event-driven paradigms,

either in the form of spike-induced, or self-induced excitations (in

analogy to oscillatory, or spiking neural networks).

2.1 Beyond Belousov–Zabotinsky reactions

Chemical computing was pioneered using the Belousov–

Zabotinsky (BZ) reaction. The underlying chemical reactions result

in nonlinear temporal oscillations and spatial self-organization. In

the BZ oscillator, the time-evolution of excitations is determined by

chemical reactions and diffusion, therefore referred to “reaction–

diffusion” computing. In a very simplified representation, the BZ

can be described by three main reactions that form a closed-

loop catalytic cycle, as illustrated in Figure 1A. In BZ oscillations,

the clock rate correlates with the intrinsic oscillation frequency

and is somewhere between 1 and 100 Hz, not comparable to the

GHz frequencies of semiconductor devices (GHz). Apart from

that, the aforementioned complexity of information processing

in living entities may require massive parallel operation in

interlinked compartments. As a potential alternative, chemical

reaction networks that have a higher complexity than the BZ

reaction have been recently proposed as a chemical computing

platform (Ivanov et al., 2023). In principle, any real-world chemical

system can be encoded in the form of a chemical reaction

network, although the network width and depth (i.e., the number

of compounds formed and the number of reactions or reaction

sequences that connect these compounds) varies significantly.

Figure 1 conceptually illustrates, in a very simplified manner,

the different degrees of complexity and interlinkage of chemical

reactions suited for computing purposes.

Under the aspect of nonlinearity and complexity, CRNs more

closely resemble bio-inspired systems than oscillatory reactions.

The prebiotically relevant formose reaction is one of the archetype

CRNs of that kind to show a temporal evolution over time once
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the self-condensation of formaldehyde is energetically overcome.

As recently demonstrated, the formose CRN provides a high-

dimensional state space, nonlinear interactions, a fading memory

effect, and discrete output signals—namely products derived after

derivatization of the reaction mixture—that all depend susceptibly

on input variations (Robinson et al., 2022). A fading-memory

effect can moreover be realized by forcing the CRN into an out-

of-equilibrium steady state, where the system can then receive

inputs from and adjust its response to environmental conditions

by dynamically changing its underlying reactions. With all these

properties, the formose CRN can dictate some “design rules” and

properties of an artificial CRN to be used for future computing:

1. Complexity and nonlinearity: The evolution of a reaction

network constitutes a highly non-linear self-organization

process, as demonstrated for instance by van Duppen et al.

(2023) for the formose CRN;

2. Dynamicity: This evolution is highly time-dependent,

generating complex temporal patterns as a function of

different chemical inputs. These patterns can then be modulated

in a dynamical way by steering a CRN’s steady state through

variation of the input parameters;

3. Parallelizability: In CRNs, chemical reactions occur

simultaneously and independently in a massively parallel

manner, realizing the processing of a large amount of

information concurrently;

4. Low-energy operability: Due to the parallelization and

autonomous self-organization capabilities of CRNs, these

systems can be operated with extremely low external energy.

Furthermore, chemical systems exhibit a propensity to favor

pathways associated with the lowest overall system energy (if

not steered externally) and therefore autonomously populate

the kinetically least constrained reaction pathways;

5. Determinism and reproducibility: As chemical reactions are

defined by the laws of quantum mechanics, a reaction’s

outcome and its corresponding rate under given conditions are

unequivocally defined and should be precisely predictable and

reproducible, following deterministic rules instead of stochastic

(random) behavior. However, this does not directly translate

to the macroscale operation in a real lab. This is subject

to macroscopic effects, diffusion, local concentration effects,

evaporation, etc., where the unique but convoluted CRN state

must still be characterized by appropriate analytical techniques;

6. Tunability: A CRN must be tunable and its properties adaptable

to different computing tasks.

The design of a chemical reaction system that can transmit

signals, self-develop at corresponding non-equilibrium conditions

and respond to external and internal triggers that affect the

evolution to be used in the process of learning, are all crucial aspects

when designing a CRN-based computer. Figure 2 depicts the basic

components and a simple assembly of a chemical computer based

on CRNs. The chemical processor is fed with an operational

protocol derived from mapping real-world input data to reaction

input parameters, which comprise the initial chemical composition

and the reaction starting conditions. The reaction can then be

dynamically controlled and steered by changing the chemical input

flows and/or the reaction conditions. At different points in time,

intermediates and products are formed, which need to be read out

by some type of analytical instrument to collect output signals. For

details and challenges associated with encoding and read-out, see

Section 2.3.

2.2 Hardware requirements and challenges
for physical implementation

Compared to CMOS architectures, characterized by its

deterministic and scalable circuit design (rules), 3D assembly and

hierarchies with device and redistribution layers, wiring schemes,

thermal management and so forth, chemical reactions naturally

occur in a liquid environment and are often not solid state in

nature. Conceptually, computation of arbitrary complexity has

been theoretically demonstrated to be Turing complete in principle,

even by using only a small number of different molecular species

(Soloveichik et al., 2008). This can be achieved by storing and

processing information as integer counts of molecules in a well-

mixed solution. If chemical systems are perceived as stochastic, the

error probability is reduced at each computing step, and the total

error probability can made arbitrarily small by adjusting the initial

molecular species count. Then, a stochastic CRN can solve any

computational problem—no matter how complex—given enough

time and memory. However, a physical implementation of any

chemical computing approach into real-world computing devices

and systems will represent a disruptive change in design, fabrication

and operation compared to existing semiconductor architectures

with the following fundamental questions yet to be addressed:

1. Can automation and suitable hardware provide sufficient

control over all chemical reactions to reproducibly create

identical output states—both qualitative and quantitative—of

a CRN?

2. Do CRNs behave chaotically or do their reaction pathways

follow certain rules?

3. Can CRNs be cascaded to enable a scalable computing platform?

4. How fast can the system be encoded and what is the

typical latency?

5. How can chemical reactions be fueled as reagents are

being consumed?

6. What are means to clock a CRN?

7. Does self-organization and self-limitation within a CRN scale or

is there any fundamental limitation when miniaturizing it?

An obvious approach to handle and govern control over

wet-chemistry is to compartmentalize chemical reactions, e.g., by

introducing physical reactor volumes, following similar strategies

as found in biological systems and used when the required

selectivity cannot be achieved (Ruiz-Mirazo et al., 2014). In that

sense, semiconductor architectures and fabrication processes can be

highly beneficial as they enable scalable reaction volumes down to

fL with great flexibility regarding reactor volumes and types (static

reactors vs. flow reactors), while offering a high chemical resistivity

against corrosive solvents. In addition, the implementation of

smallest channels for mass-flow, and ion- and proton-selective

materials such as membranes is feasible. Furthermore, microfluidic
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FIGURE 1

Schematic and highly simplified illustrations of di�erent types of reaction networks: (A) The simplest form are closed-loop catalytic cycles as, for

instance, occurring in oscillatory reactions including the BZ reaction. In these reaction sequences, either a few dominant intermediates are

selectively formed (top) or, in more complex scenarios, cross-reactions between intermediates of the main reaction cycle occur (bottom). (B) In

contrast, CRNs comprise highly-interconnected, cascaded reaction sequences that populate individual branches of the reaction topology over time.

The time-evolution of CRNs occurs intrinsically at given fixed environmental conditions (upper row), or can be steered by dynamic input variation of

the compositional and/or operational input parameters (bottom row).

platforms provide means to control the reaction (e.g., dwell time,

temperature, etc.) and to monitor and feedback-control it, for

instance through electrode implementation. Highly complex 3D

liquid networks can be envisioned that may enable site-selective

supply of materials, e.g., to locally feed reactions or to steer the

reaction by providing reagents. The precise supply of feedstock

molecules is a crucial aspect in chemical computing, as chemical

compounds are consumed over time and must be fed for long

term operation. Currently, the lifetime of a chemical processor

is limited to a few minutes to hours, depending on the CRN’s

kinetics. Furthermore, silicon-based microfluidics may enable a

seamless integration into a CMOS stack or the direct use of

CMOS components suitable for controlling and monitoring wet-

chemical systems.

For a proof-of-concept, the chemical computer may still

be operated manually, involving typical labor-intensive chemical

procedures. For repeated use, unavoidable when processing larger

data sets, efficient operation can only be achieved if the platform

can be operated in full automation, ensuring reproducibility

and scriptability of all components including in-line analytical

readout, and in silico inference. In particular for CRNs where

the composition must be very accurately controlled at any time,

only a script-based orchestration of liquid handling hardware,

reactor operation and analytics can provide a precision suitable for

achieving reproducible chemical operations. In addition, handling

and disposal of chemicals require compliance with various safety

standards. Furthermore, the safe operation and risk assessment

relies on prior knowledge and understanding of the intermediates

and products formed. Another critical aspect is the realizable

computational speed: The typical latency of the CRN, together with

intrinsic kinetic properties that determine the reaction speed, can

only be modulated to a certain degree, and therefore constitute a

severe computing bottleneck. Furthermore, the determination of

the CRN state might require time-intensive post-processing steps,

e.g., derivatization, separation, etc. to characterize the products

both quantitatively and qualitatively. All these parameters are by

no means trivial to predict, and must be empirically addressed in

time-consuming parameteric studies when designing a new CRN

for computing.

2.3 Encoding and readout

Beyond the design and operation of the chemical processor

itself, a real-world computing task must be encoded into the

chemical world, and the corresponding solution decoded from the

properties derived from the chemical system. For that purpose,

specific problem-related data is mapped onto a typically rather

sparse input subspace, which comprises the chemical composition

and the operational input parameters at which the CRN can

autonomously self-develop. The non-equilibrium conditions that

span this subspace, however, are generally challenging to predict

a priori and require time-intensive parametric studies of this

multidimensional space. To obtain solutions to a given computing

problem, suitable analytical methods are required to read out the
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FIGURE 2

Methodological overview of the principle components and processing steps of a chemical computing platform: Problem-specific data is mapped to

chemical (pink) and static as well as dynamic operational (blue) inputs for a given computing problem. These inputs and reaction conditions

determine the evolution of the CRN, which acts as an information-processing unit based on the underlying CRN-embedded chemical reaction

pathways. The product (or intermediate) space of the CRN (type of compounds and quantities thereof) must be analytically identified and quantified

using libraries, and chemometric algorithms. All these characteristic features can be used to train a CRN’s response to a desired target function

in-silico, leading to classification, and forward prediction.

complex state of the CRN which is in principle given by the

type of products and their concentrations. In case the response

and temporal evolution of the CRN is not yet known for the

entire parameter space (chemical input + reaction conditions

+ initial state), high-resolution analytics must be employed to

identify and quantify all compounds. These methods are most

often based on sample extraction, preparation, separation and

physio-chemical sensing modalities, thereby creating a speed

bottleneck for computing. Suitable instrumentation includes gas or

liquid chromatography, mass spectrometry, trapped-ion mobility,

differential ion mobility etc., many of them further need to be

combined to achieve a complete picture. All these offline methods

cannot directly be incorporated into the computing platform

itself due to size limitations and an interruption of the chemical

reaction process upon sample extraction. In return, compounds

are identifiable through comparison with huge libraries, supported

by chemometric algorithms. These quantifications, which can

be traced down to parts-per-trillion levels, enable reasoning of

the detailed behavior of a CRN, at the cost of speed and ease

of operation.

At a later stage with known CRN behavior, such methods are

not suitable any more. Instead, a lower analytical resolution is

sufficient to determine essential features of the CRN state. Suitable

inline/online methods enable direct sensing within the reactor

or integration of the sensing component into the computing

platform to enable automated and timely measurements without

interrupting or terminating the platform operation. These

methods comprise, for instance, pH and electrochemical potential

measurements, ultraviolet—visible or Fourier-transformed

infrared (FTIR) spectroscopy and benefit from real-time

data acquisition. Mostly, however, quantitative information

is presented in highly convoluted features. For instance, in

FTIR spectroscopy, features may be assigned to characteristic

functional groups, and the total absorption intensities can

be integrated, but not dissected into individual compound’s

quantities. However, as long as enough of such features are

present in the spectra – which is the case for CRNs with high

chemical diversity in their output space – the signals represent

accumulated concentrations, which are directly proportional to

the individual compounds, thereby still representing the CRN

state. Furthermore, the analytics may only identify a subset of

all compounds generated or properties measured in an even

more convoluted way, including for instance (spectrally broad)

absorption or emission features, which are still cumulative

properties of the analytical matrix. In principle, only state-

representative, essential features are required to determine the

state of the CRN. Hence fully untargeted fingerprinting may be

another reasonable analytical modality for computing at much

less experimental effort. Consequently and by its nature, any

reasoning of the CRN’s chemical composition and behavior

will then not be possible anymore but the simpler readout

may be better scalable, cheaper and faster while still providing

enough features for computing. Hence, all these considerations

constitute a trade-off between precision, resolution, speed and ease

of use.

The exact timing and sequence of sampling of the CRN

state by analytical means is not trivial to assess, and the nature

of the data acquisition determines the scope of application.

While measurements of the instant response of the CRN are

only limited by the speed of instrumental data acquisition,

monitoring of an equilibrium or steady state depends on the

inherent chemical kinetics that govern reactions and that will

lead to the formation of new chemical species. These kinetics

dictate a specific evolution time for each type of CRN to

unfold its complexity. Subsequently, a single CRN state can be

sampled, yielding already enough data for classification tasks.

In contrast, the CRN reservoir state can be modulated by

static or dynamic changes in the input concentrations too,

providing a timely response of the network to evolve and

develop under these variations. This allows for monitoring a
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time-resolved read-out of the CRN state. This data can be

leveraged for various time-dependent computing tasks, such as

forward prediction, modeling complex dynamics of biological

systems, or solving voice recognition tasks, as the time-dependent

CRN input and output can always be mapped to these types

of problems.

2.4 Potential application areas

With the chemical computing platform depicted in Figure 2,

various applications, both in chemical sciences but also general

computing, can be envisioned. Conceptually, the CRN can be

considered a material embodiment of a fixed and non-linear

type of reservoir, whose properties are considered a black box

as being unknown at the beginning. For small networks, the

behavior of the reservoir may be mimicked by these AI/Machine

Learning algorithms, whose structure and dynamic behavior are

explainable. In reservoir computing, input variables are mapped

to the dynamics of a fixed system called a reservoir, whose

response is then read out by determining its state and mapped

to the desired computing solutions. For CRNs, there are multiple

features that may represent the state. A major advantage of the

reservoir computing approach for CRNs is the comparatively low

training effort as weights connecting reservoir nodes do not need

to be assigned explicitly, but are chosen randomly such that only

the readout-layer is trained. In a CRN, the intermediates and

reaction paths connecting these intermediates must hence not

be characterized explicitly, which would require the derivation

of reaction rate constants. However, if the chemical behavior of

the CRN is explainable, it can be encoded as a graph in which

compound nodes are connected by weights derived from reaction

kinetics, and must not be treated as a black box. However, the

mapping of a CRN reservoir‘s input layer to product output data

generates interpretable input–output correlations. These can be

used to perform simple classification or optimization tasks, for

instance the maximization of product outputs in the chemical

discovery sector. In a more long-term vision, they could even

be harnessed for the in-situ synthesis of drug molecules for

personalized patient treatment in the health-care sector. This

makes CRNs ideal candidates to forecast the spatiotemporal

behavior of dynamic and even chaotic systems.

3 Discussion

The energy-related economic and societal boundary conditions

imposed by an ever-increasing energy demand fuel the innovative

pressure to design fundamentally new computing approaches.

In this perspective, we discussed one emergent, brain-inspired

computing paradigm that exploits complex chemical reaction

networks as information processing units. Chemical reaction

networks are highly nonlinear, energy-efficient, and parallelizable

and therefore capable to mimic the information processing

capabilities of living systems, whose computing efficiency is still

unparalleled. However, an actual physical implementation of a

chemical (reservoir) computer poses various challenges associated

with operability, encoding of a real-world computing problem, and

readout. These operational parameters must be addressed carefully,

as they constitute a disruptive design change compared to the

predominant semiconductor architectures. Achieving a profound

understanding of the time-dependent behavior of complex

chemical reaction networks will enable the comprehension of

biological reaction networks and help improve automated and

yield-optimized retrosynthesis with multiple applications not

efficiently tackled by today’s computing systems.
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With the increasing number of applications reliant on large neural network

models, the pursuit of more suitable computing architectures is becoming

increasingly relevant. Progress toward co-integrated silicon photonic and CMOS

circuits provides new opportunities for computing architectures with high

bandwidth optical networks and high-speed computing. In this paper, we discuss

trends in neuromorphic computing architecture and outline an optoelectronic

future for heterogeneous, dendritic neuromorphic computing.

KEYWORDS

neuromorphic computing, silicon photonic computing, dendritic computing,

heterogeneous computing, analog computing

1 Introduction

Carver Mead introduced the term “neuromorphic” in 1990 in an invited article where

he explained the inherent wastefulness of digital computation. In brief, he argued that

each operation in a digital system requires the switching of about 10,000 transistors and

that much of the power required to switch these transistors is actually due to the excess

capacitance on each gate caused by wiring between each transistor. To reduce these

problems, Mead (1990) argued that computing algorithms should be designed for less

data movement and that engineers should use the natural properties of devices to perform

various operations. Despite these arguments, the success of digital computers based on the

von Neumann architecture continued to grow and dominate the market into the present

day (Backus, 1978).

A human brain, on the other hand, is a highly parallelized computing system whose

analog dynamics offer many advantages for high-performance computing. It is estimated

that the human brain can process up to 1023 operations every second compared to the

roughly 109 operations per second possible with a traditional computer based on the

von Neumann architecture (Thagard, 2002). Despite this fact, a desire for deterministic

components has enforced a preference for digital circuits in computer architecture.

Meanwhile, biological neural networks are surprisingly noise-tolerant despite synaptic

efficacies as low as 20% (Stevens and Wang, 1994). Nonetheless, as the trend of Moore’s

Law (Theis and Wong, 2017) wanes, further advancements in computing can no longer

rely on increasing transistor speeds and density. As a result, general-purpose computing

systems are expected to be increasingly replaced by application-specific integrated circuits

(ASICs) in various compute-intensive applications, including neural networks (Solli and

Jalali, 2015; Ranganathan, 2020). While vectorized tensor processing units (TPUs) and

graphical processing units (GPUs) have made traditional deep neural network (DNN)

architectures more practical on digital systems, carefully designed analog andmixed-signal

ASICs can often offer improvements to throughput and system latency while reducing

power consumption.
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Recent progress in the area of silicon photonics has pushed

industry leaders such as GlobalFoundries to develop a co-integrated

process design kit (PDK)—labeled GF 45SPCLO—that allows

circuit designers to place photonic elements and CMOS circuits

on the same physical substrate (Rakowski et al., 2020). This

process opens new doors for optoelectronic ASICs that employ

silicon photonic elements for high-bandwidth data communication

networks (Beausoleil, 2011) alongside CMOS electronic circuits for

high-speed computing structures (Hassan et al., 2023).

In the following manuscript, we will highlight two important

features of biological neural networks from the perspective that

co-integrated photonic and electronic technologies are key to

the future of neuromorphic computing. Section 2 will begin

by describing the advantages of heterogeneous neural dynamics

and discuss the limited number of neuromorphic devices that

incorporate this heterogeneity. Next, Section 3 will discuss the

computational properties of biological dendrites and review

existing approaches to implement dendritic computing. Finally,

we discuss a proposed optoelectronic chiplet architecture that is

capable of supporting these features in a scalable neuromorphic

system.

2 Heterogeneous neural dynamics

Artificial neural networks employ a variety of nonlinear

transformations (activation functions) to guide a model into

choosing an efficient encoding for a given task (Rasamoelina et al.,

2020; Mercioni and Holban, 2023). While artificial neural networks

are considered to be universal function approximators (Hornik

et al., 1989; Lu et al., 2017), it is well known empirically that the

choice of nonlinearity can be pivotal to the success of the DNN.

Similarly, it is known that biological neurons display a wide range

of dynamic behaviors—see Figure 1C for examples of three typical

behaviors of cortical neurons according to the Izhikevich model

(Izhikevich, 2003). However, when designing hardware accelerators

for neuromorphic computing, engineers must decide what level of

specificity or generality is needed to support the various neural

dynamics required for the most common DNNs. Following Mead’s

argument (Mead, 1990), it is far more efficient to use the natural

physical properties of a device to provide nonlinear behavior, but

these properties are often fixed after fabrication and impossible

to program. Even in the case of digital systems, general-purpose

computing elements necessarily consume more physical resources

and power in order to serve the generic case.

For example, Intel’s Loihi processor (Davies et al., 2018) is

designed as a many-core digital system where each “neurocore”

asynchronously updates a set of internal variables using a limited

digital core. In the first iteration of the chip, the internal updates

followed a fixed schedule and computed discrete updates to a

current-based, leaky-integrate-and-fire (CUBA LIF) model that

was not programmable. Loihi 2, however, included a micro-code

programmable neuron that allows an arbitrary neuron model to

be implemented as long as its instructions fit in the core’s local

memory (Orchard et al., 2021). Each core on Loihi 2 has the

same memory size and must contain all the necessary parameters

for neurons and synapses on that core. This means that more

complicated neuron models limit the maximum neuron density

of the core, and neurons which use different micro-code models

must be implemented on separate neurocores. Nonetheless, Intel

invested in this generality despite the additional implementation

complexity because of the expectation that heterogeneous neural

dynamics would hold several key computational benefits.

Biological neural networks are remarkably heterogeneous

regarding individual neuron dynamics and morphological

structure. Koch and Laurent (1999) argues that this heterogeneity

is a direct consequence of the complexity of behaviors and sensory

modalities that the brain must handle. To establish whether

this heterogeneity is advantageous or purely an evolutionary

epiphenomenon, several analyses have compared neural network

structures with and without heterogeneity and shown that the

variability of neural responses in heterogeneous populations

increases the sensitivity of a population code and, therefore,

improves the precision at which it can be read out (Shamir and

Sompolinsky, 2006; Chelaru and Dragoi, 2008; Marsat and Maler,

2010). Population codes are often associated with sensory stimuli

because of their ability to handle noisy input (Averbeck et al., 2006),

and these results show that heterogeneity may be key to balancing

sensitivity and signal-to-noise ratio. Perez-Nieves et al. (2021)

also showed that the heterogeneity of synaptic time constants

in a reservoir network improved generalization, robustness to

hyperparameters, and overall learning performance. While these

results were demonstrated by digital simulation, Mead’s argument

should remind us that an architecture that uses the natural

dynamics of its computing elements would be more efficient than a

digital emulator to implement a heterogeneous neural network.

2.1 Optoelectronic neurons

A number of efforts have been made to design analog photonic

neurons by drawing a bijection between semiconductor laser and

amplifier dynamics and the dynamics of a LIF neuron model (Tait

et al., 2014; Prucnal et al., 2016). These efforts are motivated by

the advantages in bandwidth and throughput of silicon photonic

interconnects (Miller, 2000, 2009; Agarwal et al., 2019; Huang

et al., 2022)—a crucial advantage considering that human synaptic

fan-out is on the order of 10,000 synapses per neuron. However,

optical dynamics are controlled by material parameters that are

fixed after device fabrication and are mostly unprogrammable

(i.e., carrier lifetimes in the gain medium of a laser). As a

result, photonic neurons may not be sufficient to replicate the

breadth of heterogeneity found in biological neural networks. An

optoelectronic approach, however, may be more feasible.

Electronics are preferable for designing programmable circuits

given the long history of well-developed design principles for

CMOS circuits, and many such programmable circuit models

have been demonstrated (Indiveri et al., 2011). An optoelectronic

neuron would combine this programmability with the benefits

of optical interconnects. Under this approach, photodetectors

transduce optical signals into electrical currents and are analogous

to the synaptic receptors in a biological neuron. These currents are

collected by a capacitor in the circuit analogous to the membrane

capacitance. A CMOS circuit behaves like the neuron soma and

provides the feedback dynamics that generate the neuron’s excitable
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FIGURE 1

(A) Diagram of a biological neuron compared to (B) a four-neuron layer of an optoelectronic neural network—a nanophotodetector (nano PD) and

nanolaser (nano LD) perform signal transduction. (C) Examples of various neural dynamics according to the Izhikevich neuron model (Izhikevich,

2003).

(spiking) behavior. In the biological neuron, the membrane

potential is only propagated to the axon when the activity near the

axon hillock reaches a threshold; similarly, in the optoelectronic

neuron, a CMOS amplifier drives a laser only when the neuron

is spiking. Figures 1A, B show a functional comparison between a

biological neuron (A) and a block diagram of the optoelectronic

neuron (B).

Few have demonstrated such optoelectronic neurons with

spiking dynamics, and those existing implementations show

limited or no programmable dynamics (Balle et al., 2013; Tait

et al., 2015). More recently, Lee et al. (2024) demonstrated

a programmable spiking optoelectronic neuron using the GF

45SPCLO PDK. However, because of the lack of on-chip lasers

available in this process, an off-chip vertical cavity laser was

externally connected to the neuron. The neuron efficiency was

projected to improve on a more advanced CMOS node and with an

on-chip micro-scale laser such as a low-threshold ring laser (Liang

et al., 2016). Despite the strengths of this optoelectronic approach,

a new process that can reliably integrate on-chip lasers alongside

these CMOS and silicon photonic circuits is required to make

packaging more feasible. Existing implementations of photonic

matrix multipliers have large footprints, where each matrix element

requires a roughly 900 µm2 area (Ramey, 2020; Feldmann et al.,

2021). This limits the number of synaptic connections and neurons

that are available on a single chip. As such, an advanced packaging

scheme is needed for photonic and optoelectronic neural networks

to be practical at the scales of modern DNNs. A 3D photonic-

electronic packaging scheme has been proposed for this purpose

in which chiplets are stacked and tiled onto an interposer using a

combination of 3D photonic and electronic interconnects (Zhang

et al., 2020). Early results have been demonstrated in other

application contexts (Chang et al., 2023); however, a complete

photonic-electronic neuromorphic chiplet network has not yet

been demonstrated.

3 Dendritic computing

Despite the variety of nonlinearities mentioned in Section 2,

the vast majority of DNNs rely on a point-neuron model that

lacks the temporal and spatial complexity of a biological neuron.

Under this limited model, synaptic integration and nonlinearities

across the network are considered instantaneous. Meanwhile,

biological neurons vary so widely in morphology and dynamics

that a standard taxonomy for neuron classification has yet to

be established (Zeng and Sanes, 2017). For example, pyramidal

neurons in Layer V are distinct from those in Layer II/III of

the human cortex and carry distinct properties for synaptic

integration even within the same cortical area (Spruston, 2008).

This diversity in biological networks has led to the hypothesis

that the increased spatio-temporal complexity could be related to

several major advantages of biological neural networks over the

modern implementation of DNN (Acharya et al., 2022).

Various ion channels line the cell membrane along these

dendritic branches (see Figure 2A), leading to both passive and

active effects that can be modeled by cable theory (Koch, 1984). In

the passive case, propagation along the dendrite is often compared

to a lossy transmission line that propagates a signal with both

attenuation and dispersion (Dayan and Abbott, 2001). Neurons

with dendrite models are also more expressive than point neurons;

Acharya et al. (2022) summarize three major features of dendrite

models: weight plasticity, delay plasticity, and structural plasticity.

Weight plasticity is the synaptic strength as modeled in DNNs. In

contrast, the delay and structural plasticities are unique features
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FIGURE 2

(A) Diagram of a dendritic branch with various ion channels. (B) Diagram of current flow between two synapses along a dendrite and an equivalent

multi-compartment model where current flow is indicated by arrow size. (C) Diagram of a photonic-electronic chiplet architecture for

optoelectronic dendritic computing. Each chiplet (white) shows several multi-compartment optoelectronic neurons and is coupled to other chiplets

through an interposer (blue) containing an inter-chip routing network (red). The neurons contain multiple programmable CMOS blocks (green)

interconnected via a switch matrix; leaf nodes receive optical input through a photodiode (PD), and root nodes emit optical output through a laser

diode (LD). A Mach-Zehnder Interferometer mesh is shown as an example photonic synaptic mesh.

of the dendrite that allow the dendrite to process sequences of

information (discussed in Section 3.2).

3.1 Multi-compartment models

A multi-compartment model can be used to discretize the

dendritic tree into localized segments under which the membrane

dynamics are considered uniform. Such a model is necessary

for neuromorphic computing because the cable dynamics of

a biological neuron membrane are too complex to model in

a continuous manner. Multiple software libraries such as the

NEURON (Migliore et al., 2006) and Brian 2 (Stimberg et al.,

2019) simulators have been written to model networks with such

neurons. Each local compartment model includes active dynamics

and membrane leakage currents, while a conductive channel

models the diffusive, axial current flow between compartments.

This model can be summarized by the following equation where

Vm represents the localized membrane potential, Cm represents

the localized membrane capacitance, Vi indexes the connected

compartments, gk(t) indexes synaptic conductances, Ek indexes the

reversal potential associated with a given synaptic conductance, and

F(Vm, t) summarizes the local membrane dynamics:

Cm
dVm

dt
= F(Vm, t)+

∑

k

gk(t)(Ek − Vm)+
∑

i

gi(Vi − Vm) (1)

Equation (1) highlights the similarities and differences between

synaptic currents and dendritic currents. When a signal is received

on the synapse, its conductance increases, and a current is

generated according to the voltage difference between membrane
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potential and the equilibrium potential related to the given synaptic

receptor. This equilibrium potential is often at the extrema of

possible membrane potentials, and thus, a given synapse results in

a polarizing or depolarizing current nearly exclusively.

In contrast, the conductance between dendritic compartments

is time-independent, and the current flow direction can fluctuate

depending on which compartment has the higher membrane

potential at a given moment. The activity at each compartment is

similar to the point model—a nonlinear response to a weighted

sum—though the location of each compartment changes the

efficacy and delay of its effect on the soma. By studying detailed

models of hippocampal CA1 cells, Poirazi and Papoutsi (2020)

showed that the complexity of these multi-compartment models

could only be mapped onto a two-layer ANN, indicating that a

single biological neuron is equivalent to a two-layer neural network.

This result, however, only considers the rate-coded behavior of the

neuron and does not fully capture the spike-timing sensitivity of

dendritic models.

Biological dendrites are also tapered so that diffusive, axial

currents preferentially flow in the feed-forward direction (toward

the soma). This can be modeled as a decreasing resistance

(increasing conductance) between compartments close to the soma.

Figure 2B shows how this model captures the behavior of a dendrite

with two synapses. The tapered end of the dendrite is shown on the

left, and the increase in cross-sectional diameter toward the right

of the dendrite allows more current flow toward the soma (not

pictured) to the right. Note that the arrows shown in the figure

indicate the directional preference for diffusive currents and do

not represent static current flow. Similarly, the multi-compartment

model has two compartments with synapses and a passive

compartment in between that models the passive length of dendrite

between the two synapses in the biological neuron. The following

subsection discusses the consequences of this feature for sequence

processing and highlights some early attempts at dendritic

computing architectures.

3.2 Temporal complexity

Because the point neuron model lacks temporal dependence,

machine learning tasks involving sequential data require carefully

designed neural network models. Recurrent neural networks

(RNNs) fake temporal complexity and memory by applying the

network repeatedly for some number of simulated time steps

(Elman, 1991; Lipton et al., 2015). Information is retained in

memory based on feedback pathways, but each point neuron

could instantaneously influence the output (Sutskever et al., 2014).

Convolutional neural networks (CNNs) have also been used for

processing sequences because a kernel could be used to detect

a feature at any position in the input sequence. However, both

RNNs and CNNs exhibit poor scaling properties, leading to

difficulties in handling data with long sequences (Werbos, 1990;

Kolen and Kremer, 2010). To combat this limitation, transformer

models (Vaswani et al., 2017), use an attention mechanism that

allows the network to process an entire sequence in a fixed

number of operations while maintaining temporal dependence—

future information is not available in the past. Because the

network is designed for a fixed number of operations, its

maximum sequence length—or context window—is inherently

limited. Multiple solutions have been proposed to circumvent this

limit (Ren et al., 2022; Hatamizadeh et al., 2023), but these solutions

all aim to implement sequential processing on a model lacking

temporal complexity.

In contrast, biological neuron dynamics show a wide range

of temporal complexity. In addition to the heterogeneity of

neural dynamics discussed in Section 2, the spatially distributed

morphology of biological neurons gives rise to temporal delays

that offer an additional dimension of encoding information:

temporal ordering. A single-compartment neuron model is

sensitive to the timing between incoming synaptic signals

but not their order. In contrast, the aforementioned tapered

geometry of biological dendrites allows a distinction between

the stimulation of two synapses in the forward direction

compared to the reverse direction, corresponding to a distinct

temporal order.

Nease et al. (2012) first demonstrated a mapping of the cable

model to reconfigurable analog CMOS blocks on a computing

architecture known as the Field-Programmable Analog Array

(FPAA). The device uses floating gates to set a switch matrix

and control the flow of currents between computational analog

blocks (CAB)—see Basu et al. (2010) for more details. Using

these CABs, the architecture was able to accurately replicate the

dynamics of a passive length of dendrite within its linear regime

and also demonstrate favorable computational properties in the

nonlinear regime. George et al. (2013) applied this architecture

toward modeling a Hidden Markov Model (HMM) for word

spotting. In this demo, the tapered effect of the dendrite was

also modeled, allowing for the detection of syllables in a word

only when presented with the correct sequential ordering. Because

these temporal dependencies were computed using the passive

transmission properties of the dendrite cable, the devices showed

> 1, 000× improvement in multiply-and-accumulate operations

per Watt (MACs/W)—when compared to an equivalent HMM

implemented on a digital system.

Boahen (2022) proposed a similar dendritic architecture

in which several ferroelectric domains control the gate of a

transistor. Under this architecture, the ferroelectric domains align

only when a sequence arrives in the correct order; voltage

is applied at the transistor source terminal while current is

read out at the drain to form a temporal order detector,

much like the dendrite. Boahen also argues that sequential

encodings can sparsify communication because each pulse in

a layer of N dendritic units represents a base-N digit and

thus conveys log2(N) bits. As a result, Boahen argues that this

architecture reduces the heat generated by an on-chip network

and provides a more suitable architecture for 3D integrated

electrical circuits.

These devices show how dendritic models provide a new

dimension for encoding and decoding information that can reduce

the power constraints of neural networks. In each of these

examples, however, it is assumed that the dendrite is deliberately

programmed to be selective to some sequence. Neither of the

two architectures describes a method for learning or training the

sequential encoding.
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4 Discussion

An optoelectronic approach to neuromorphic computing is

better suited to provide the interconnect bandwidths necessary

to support the neuronal fan-in and fan-out required to model

neural networks at biological scales while also allowing for flexible

and programmable neural dynamics. The density of optoelectronic

neurons may be limited due to the relatively larger scale of

photonic devices compared to CMOS circuits. However, because

neurons with dendritic trees are functionally similar to a two-

layer neural network, the incorporation of a CMOS dendrite

network would counteract these limitations by providing increased

expressivity to each neuron. Additionally, a dendritic tree offers

additional architectural flexibility to represent high-fan-in, low-

fan-out functional units as dendritic compartments while low-fan-

in, high-fan-out units are represented as neuron somas. As a result,

an optoelectronic, dendritic-computing architecture is likely the

key to advances in large-scale neuromorphic computing.

Figure 2 shows a diagram of an optoelectronic chiplet

architecture that captures the advantages of neural heterogeneity

and dendritic structures. A programmable electronic switch

matrix connects analog blocks that model active and passive

dendritic compartments. A photonic matrix multiplier—such

as a Mach-Zehnder Interferometer mesh—forms the receiving

synaptic mesh and serves as input to a number of dedicated

leaf nodes containing photodetectors. Each dendritic tree

would also contain a dedicated root node that models the

soma and drives a laser output. Each chiplet would contain

several multi-compartment optoelectronic neurons and be

coupled through a shared photonic-electronic interposer, which

provides a routing mesh between many chiplets. Using this

architecture, neural networks could be emulated with much

greater biological accuracy and at much lower power than existing

neuromorphic solutions.

This optoelectronic approach to heterogeneous, dendritic

neuromorphic computing would make the vision of brain-scale

neuromorphic computingmore feasible. However, this architecture

relies on the development of packaging methods for 3D photonic

and electronic integrated circuits, though an increasing number

of challenges for scaling contemporary electronic systems is

likely to provide a shared motivation toward the development of

such integration methods. Alongside these packaging methods,

more work is needed to determine an optimal number of

dendritic compartments and an optimal analog model that

concisely captures all of the relevant membrane dynamics of

the neuron.

5 Conclusion

Biological neural networks benefit from heterogeneous

neural dynamics and dendrite morphology that have been

largely unexplored in hardware accelerators. An optoelectronic

approach can implement high-bandwidth communication

networks and programmable dynamical systems to provide

a “best-of-both-worlds” solution for implementing biological

complexity in neuromorphic computing architectures. More work

is needed to optimize the architecture and computing model

however, the stark contrast in the energy efficiency of human

brains compared to modern computing systems offers substantial

motivations to pursue novel computing methods.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

LE: Writing – original draft, Writing – review & editing. MA:

Writing – review & editing. HA: Writing – review & editing. Y-JL:

Writing – review & editing. MB: Writing – review & editing. SY:

Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This research was based upon work supported in part by

the Office of the Director of National Intelligence (ODNI),

Intelligence Advanced Research Projects Activity (IARPA), via

[2021-21090200004]. The views and conclusions contained herein

are those of the authors and should not be interpreted as

necessarily representing the official policies, either expressed

or implied, of ODNI, IARPA, or the U.S. Government. The

U.S. Government was authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright

annotation therein.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers inNeuroscience 06 frontiersin.org85

https://doi.org/10.3389/fnins.2024.1394271
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


El Srouji et al. 10.3389/fnins.2024.1394271

References

Acharya, J., Basu, A., Legenstein, R., Limbacher, T., Poirazi, P., Wu, X., et al.
(2022). Dendritic computing: branching deeper into machine learning. Neuroscience
489, 275–289. doi: 10.1016/j.neuroscience.2021.10.001

Agarwal, S., Jacobs-Gedrim, R. B., Bennett, C., Hsia, A., Heukelom, M. S. V.,
Hughart, D., et al. (2019). “Designing and modeling analog neural network training
accelerators,” in 2019 International Symposium on VLSI Technology, Systems and
Application, VLSI-TSA (Hsinchu). doi: 10.1109/VLSI-TSA.2019.8804680

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,
population coding and computation. Nat. Rev. Neurosci. 7, 358–366.
doi: 10.1038/nrn1888

Backus, J. (1978). Can programming be liberated from the von Neumann style?
Commun. ACM 21, 613–641. doi: 10.1145/359576.359579

Balle, S., Figueiredo, J. M. L., Javaloyes, J., Romeira, B., Ironside, C. N., Piro,
O., et al. (2013). Excitability and optical pulse generation in semiconductor lasers
driven by resonant tunneling diode photo-detectors. Opt. Express 21, 20931–20940.
doi: 10.1364/OE.21.020931

Basu, A., Brink, S., Schlottmann, C., Ramakrishnan, S., Petre, C., Koziol, S., et
al. (2010). A floating-gate-based field-programmable analog array. IEEE J. Solid-State
Circuits 45, 1781–1794. doi: 10.1109/JSSC.2010.2056832

Beausoleil, R. G. (2011). Large-scale integrated photonics for high-
performance interconnects. J. Emerg. Technol. Comput. Syst. 7, 326–327.
doi: 10.1109/PHO.2011.6110559

Boahen, K. (2022). Dendrocentric learning for synthetic intelligence. Nature 612,
43–50. doi: 10.1038/s41586-022-05340-6

Chang, P. H., Samanta, A., Yan, P., Fu, M., Zhang, Y., On, M. B., et al. (2023). A
3D integrated energy-efficient transceiver realized by direct bond interconnect of co-
designed 12 nm finfet and silicon photonic integrated circuits. J. Lightwave Technol. 41,
6741–6755. doi: 10.1109/JLT.2023.3291704

Chelaru, M. I., and Dragoi, V. (2008). Efficient coding in heterogeneous neuronal
populations. Proc. Nat. Acad. Sci. 105, 16344–16349. doi: 10.1073/pnas.0807744105

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: The MIT Press.

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and
grammatical structure.Mach. Learn. 7, 195–225. doi: 10.1007/BF00114844

Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., et
al. (2021). Parallel convolutional processing using an integrated photonic tensor core.
Nature 589, 52–58. doi: 10.1038/s41586-020-03070-1

George, S., Hasler, J., Koziol, S., Nease, S., and Ramakrishnan, S. (2013). Low
power dendritic computation for wordspotting. J. Low Power Electron. Appl. 3, 73–98.
doi: 10.3390/jlpea3020073

Hassan, A., Saha, S., and Carusone, A. C. (2023). “Fully Integrated photonic
dot-product engine in 45-nm SOI CMOS for photonic computing,” in 2023
IEEE Silicon Photonics Conference (SiPhotonics) (Washington, DC: IEEE), 1–2.
doi: 10.1109/SiPhotonics55903.2023.10141931

Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J., andMolchanov, P. (2023). “Global
context vision transformers,” in Proceedings of the 40th International Conference on
Machine Learning (Honolulu, HI: PMLR), 12633–12646.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural Netw. 2, 359–366.
doi: 10.1016/0893-6080(89)90020-8

Huang, C., Sorger, V. J., Miscuglio, M., Al-Qadasi, M., Mukherjee, A., Lampe, L.,
et al. (2022). Prospects and applications of photonic neural networks. Adv. Phys. X
7:1981155. doi: 10.1080/23746149.2021.1981155

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron circuits. Front.
Neurosci. 5:9202. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Koch, C. (1984). Cable theory in neurons with active, linearized membranes. Biol.
Cybern. 50, 15–33. doi: 10.1007/BF00317936

Koch, C., and Laurent, G. (1999). Complexity and the nervous system. Science 284,
96–8. doi: 10.1126/science.284.5411.96

Kolen, J. F., and Kremer, S. C. (2010). “Gradient flow in recurrent nets: the
difficulty of learning longterm dependencies,” in A Field Guide to Dynamical Recurrent
Networks, eds S. C. Kremer, and J. F. Kolen (New York, NY: IEEE Press), 237–374.
doi: 10.1109/9780470544037

Lee, Y.-J., On, M. B., Srouji, L. E., Zhang, L., Abdelghany, M., Yoo, S. B., et
al. (2024). Demonstration of programmable brain-inspired optoelectronic neuron in
photonic spiking neural network with neural heterogeneity. J. Lightwave Technol. 1–12.
doi: 10.1109/JLT.2024.3368450. [Epub ahead of print].

Liang, D., Huang, X., Kurczveil, G., Fiorentino, M., and Beausoleil, R. G. (2016).
Integrated finely tunable microring laser on silicon. Nat. Photonics 10, 719–722.
doi: 10.1038/nphoton.2016.163

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of
recurrent neural networks for sequence learning. arXiv [preprint]. arXiv:1506.00019.
doi: 10.48550/arXiv.1506.00019

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). “The expressive power of
neural networks: a view from the widt,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA), 1097–1105.

Marsat, G., and Maler, L. (2010). Neural heterogeneity and efficient
population codes for communication signals. J. Neurophysiol. 104, 2543–55.
doi: 10.1152/jn.00256.2010

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Mercioni, M. A., andHolban, S. (2023). “A brief review of themost recent activation
functions for neural networks,” in 2023 17th International Conference on Engineering of
Modern Electric Systems, EMES (Oradea). doi: 10.1109/EMES58375.2023.10171705

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–129.
doi: 10.1007/s10827-006-7949-5

Miller, D. A. (2000). Rationale and challenges for optical interconnects to electronic
chips. Proc. IEEE 88, 728–749. doi: 10.1109/5.867687

Miller, D. A. (2009). Device requirements for optical interconnects to silicon chips.
Proc. IEEE 97, 1166–1185. doi: 10.1109/JPROC.2009.2014298

Nease, S., George, S., Hasler, P., Koziol, S., and Brink, S. (2012).
Modeling and implementation of voltage-mode CMOS dendrites on a
reconfigurable analog platform. IEEE Trans. Biomed. Circuits Syst. 6, 76–84.
doi: 10.1109/TBCAS.2011.2163714

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., et al. (2021). “Efficient neuromorphic signal processing with Loihi 2,” in IEEE
Workshop on Signal Processing Systems, SiPS: Design and Implementation (Coimbra),
254–259. doi: 10.1109/SiPS52927.2021.00053

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., and Goodman, D. F.
(2021). Neural heterogeneity promotes robust learning. Nat. Commun. 12, 1–9.
doi: 10.1038/s41467-021-26022-3

Poirazi, P., and Papoutsi, A. (2020). Illuminating dendritic
function with computational models. Nat. Rev. Neurosci. 21, 303–321.
doi: 10.1038/s41583-020-0301-7

Prucnal, P. R., Shastri, B. J., de Lima, T. F., Nahmias, M. A., and Tait, A. N. (2016).
Recent progress in semiconductor excitable lasers for photonic spike processing. Adv.
Opt. Photonics 8:228. doi: 10.1364/AOP.8.000228

Rakowski, M., Meagher, C., Nummy, K., Aboketaf, A., Ayala, J., Bian, Y., et
al. (2020). 45nm “CMOS - silicon photonics monolithic technology (45CLO) for
next-generation, low power and high speed optical interconnects,” in Optical Fiber
Communication Conference (OFC) 2020, (Washington, DC: Optica Publishing Group),
T3H.3. doi: 10.1364/OFC.2020.T3H.3

Ramey, C. (2020). “Silicon photonics for artificial intelligence acceleration:
Hotchips 32,” in 2020 IEEE Hot Chips 32 Symposium, HCS 2020 (Palo Alto, CA).
doi: 10.1109/HCS49909.2020.9220525

Ranganathan, P. (2020). Technical perspective: asic clouds: specializing the
datacenter. Commun. ACM 63, 102–102. doi: 10.1145/3399738

Rasamoelina, A. D., Adjailia, F., and Sincak, P. (2020). “A review of activation
function for artificial neural network,” in SAMI 2020 - IEEE 18th World Symposium
on Applied Machine Intelligence and Informatics, Proceedings (Herlany), 281–286.
doi: 10.1109/SAMI48414.2020.9108717

Ren, P., Li, C., Wang, G., Xiao, Y., Du, Q., Liang, X., et al. (2022). “Beyond fixation:
dynamic window visual transformer,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA: IEEE),
11987–11997. doi: 10.1109/CVPR52688.2022.01168

Shamir, M., and Sompolinsky, H. (2006). Implications of neuronal diversity on
population coding. Neural Comput. 18, 1951–1986. doi: 10.1162/neco.2006.18.8.1951

Solli, D. R., and Jalali, B. (2015). Analog optical computing. Nat. Photonics 9,
704–706. doi: 10.1038/nphoton.2015.208

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic
integration. Nat. Rev. Neurosci. 9, 206–221. doi: 10.1038/nrn2286

Frontiers inNeuroscience 07 frontiersin.org86

https://doi.org/10.3389/fnins.2024.1394271
https://doi.org/10.1016/j.neuroscience.2021.10.001
https://doi.org/10.1109/VLSI-TSA.2019.8804680
https://doi.org/10.1038/nrn1888
https://doi.org/10.1145/359576.359579
https://doi.org/10.1364/OE.21.020931
https://doi.org/10.1109/JSSC.2010.2056832
https://doi.org/10.1109/PHO.2011.6110559
https://doi.org/10.1038/s41586-022-05340-6
https://doi.org/10.1109/JLT.2023.3291704
https://doi.org/10.1073/pnas.0807744105
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1007/BF00114844
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.3390/jlpea3020073
https://doi.org/10.1109/SiPhotonics55903.2023.10141931
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1080/23746149.2021.1981155
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1007/BF00317936
https://doi.org/10.1126/science.284.5411.96
https://doi.org/10.1109/9780470544037
https://doi.org/10.1109/JLT.2024.3368450
https://doi.org/10.1038/nphoton.2016.163
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.1152/jn.00256.2010
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/EMES58375.2023.10171705
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1109/5.867687
https://doi.org/10.1109/JPROC.2009.2014298
https://doi.org/10.1109/TBCAS.2011.2163714
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1364/AOP.8.000228
https://doi.org/10.1364/OFC.2020.T3H.3
https://doi.org/10.1109/HCS49909.2020.9220525
https://doi.org/10.1145/3399738
https://doi.org/10.1109/SAMI48414.2020.9108717
https://doi.org/10.1109/CVPR52688.2022.01168
https://doi.org/10.1162/neco.2006.18.8.1951
https://doi.org/10.1038/nphoton.2015.208
https://doi.org/10.1038/nrn2286
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


El Srouji et al. 10.3389/fnins.2024.1394271

Stevens, C. F., and Wang, Y. (1994). Changes in reliability of synaptic function as a
mechanism for plasticity. Nature 371, 704–707. doi: 10.1038/371704a0

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8:e47314. doi: 10.7554/eLife.47314.028

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing Systems, Vol. 27
(Montréal, QC).

Tait, A. N., Nahmias, M. A., Tian, Y., Shastri, B. J., and Prucnal, P. R. (2014).
Photonic Neuromorphic Signal Processing and Computing. Berlin, Heidelberg: Springer,
183–222. doi: 10.1007/978-3-642-40224-1_8

Tait, A. N., Prucnal, P. R., Shastri, B. J., de Lima, T. F. and Nahmias, M. A. (2015).
Excitable laser processing network node in hybrid silicon: analysis and simulation.Opt.
Express 23, 26800–26813. doi: 10.1364/OE.23.026800

Thagard, P. (2002). How molecules matter to mental computation. Philos. Sci. 69,
429–446. doi: 10.1086/342452

Theis, T. N., and Wong, H.-S. P. (2017). The end of Moore’s law: a new beginning
for information technology. Comput. Sci. Eng. 19, 41–50. doi: 10.1109/MCSE.
2017.29

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., et al. (2017).
“Attention is all you need,” inAdvances in Neural Information Processing Systems (NIPS
2017), Vol. 30 (Long Beach, CA).

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

Zeng, H., and Sanes, J. R. (2017). Neuronal cell-type classification:
challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546.
doi: 10.1038/nrn.2017.85

Zhang, Y., Samanta, A., Shang, K., and Yoo, S. J. B. (2020). Scalable
3D silicon photonic electronic integrated circuits and their applications.
IEEE J. Sel. Top. Quantum Electron. 26, 1–10. doi: 10.1109/JSTQE.2020.2
975656

Frontiers inNeuroscience 08 frontiersin.org87

https://doi.org/10.3389/fnins.2024.1394271
https://doi.org/10.1038/371704a0
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1007/978-3-642-40224-1_8
https://doi.org/10.1364/OE.23.026800
https://doi.org/10.1086/342452
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1109/5.58337
https://doi.org/10.1038/nrn.2017.85
https://doi.org/10.1109/JSTQE.2020.2975656
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


TYPE Opinion

PUBLISHED 10 September 2024

DOI 10.3389/fnins.2024.1443121

OPEN ACCESS

EDITED BY

André van Schaik,

Western Sydney University, Australia

REVIEWED BY

Roberto Marangoni,

University of Pisa, Italy

Konrad Szaciłowski,

AGH University of Science and

Technology, Poland

*CORRESPONDENCE

Pier Luigi Gentili

pierluigi.gentili@unipg.it

RECEIVED 03 June 2024

ACCEPTED 27 August 2024

PUBLISHED 10 September 2024

CITATION

Gentili PL, Zurlo MP and Stano P (2024)

Neuromorphic engineering in wetware: the

state of the art and its perspectives.

Front. Neurosci. 18:1443121.

doi: 10.3389/fnins.2024.1443121

COPYRIGHT

© 2024 Gentili, Zurlo and Stano. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Neuromorphic engineering in
wetware: the state of the art and
its perspectives

Pier Luigi Gentili1*, Maria Pia Zurlo1 and Pasquale Stano2

1Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy,
2Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of

Salento, Lecce, Italy

KEYWORDS

chemical artificial intelligence, chemical reaction networks, emergence, oscillatory

chemical reactions, synthetic biology, DNA, proteins, fluidic memristors

1 Introduction

The UN General Assembly (2015) has compiled an Agenda, containing 17 goals to

be pursued worldwide to promote a sustainable future by 2030. Accomplishing these

goals requires designing and implementing more effective strategies to manage Complex

Systems, including human beings and their societies, the world economy, urban areas,

natural ecosystems, and the climate (Gentili, 2021a). A promising strategy, which is

literally blooming, relies on the development of Artificial Intelligence (AI) and Robotics.

AI helps humans collect, store, and process the Big Data required to monitor the constant

evolution of Complex Systems (Corea, 2019). AI also assists us in making up our minds

for controlling the behavior of Complex Systems. Hard and soft robotics allow humans

to access environments otherwise precluded. For instance, they help us (1) investigate

the geochemical characteristics of other planets and examine the abysses of our oceans

to discover new mines of precious materials and energy resources, (2) access the interior

organs of our bodies for less invasive surgery, (3) and work in dirty or dangerous places.

Two are the principal and traditional approaches exploited to develop AI (Lehman et al.,

2014; Mitchell, 2019). The first approach entails writing “intelligent” software that runs

on electronic computers based on von Neumann’s architecture, whose principal drawback

is having processing and memory units physically separated. Some software mimics

rigorous logical thinking, while others imitate the structural and functional features of

neural networks to learn how to perform tasks from data. The second approach for

developing AI entails implementing artificial neural networks in hardware for neuro-

prosthesis or designing brain-like computing machines, with processors and memory

confined in the same space (the so-called mem-computing; Sebastian et al., 2020). Artificial

neural networks are rigid if they aremade of silicon-based circuits or inorganicmemristors;

they are flexible if based on organic semiconductor films (Christensen et al., 2022; Lee

and Lee, 2019; Wang et al., 2020; Zhu et al., 2020). They can be designed with three

distinct architectures: (A1) feedforward (having trainable unidirectional connections),

(A2) recurrent (with trainable feedback actions), or (A3) reservoir (consisting of an

untrained non-linear dynamic system coupled to trainable input and output layers)

network (Nakajima, 2020; Tanaka et al., 2019; Cucchi et al., 2022; see Figure 1A).

In the last decade or so, a novel promising strategy to develop AI

has been put forward: it consists of mimicking human intelligence and

the forms of intelligence exhibited by all the other living beings through

molecular, supramolecular, and systems chemistry in wetware, i.e., liquid
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FIGURE 1

(A) Shows the three principal architectures of artificial neural networks: they are (A1) feedforward, (A2) recurrent, and (A3) reservoir networks. (B)

Showcases the three principal methodologies for developing neuromorphic engineering in wetware.

solutions (Gentili and Stano, 2023a,b; Kuzuya et al., 2023; Murata

et al., 2022), which is the peculiar phase supporting life. As

we believe that this still not-well-explored field represents a

huge opportunity to understand and exploit computation in the

molecular realm—thus closely mimicking the natural (biological)

cognitive abilities—here we would like to highlight the current

methodologies. In particular, we focus on artificial neural networks

in wetware and, hence, on the strategies to develop neuromorphic

engineering in the fluid phase. The selection of topics presented in

this short article is not meant to represent the whole diversity of this

research area—it rather mirrors our specific interests. The variegate

methodologies proposed so far can be grouped into three distinct

approaches (see Figure 1B) presented succinctly in the next three

paragraphs. Some future perspectives are shortly presented in the

last paragraph.

2 Chemical reaction networks

Any liquid solution containing two or more reactive solutes

may display some of the brain’s dynamic features, especially if

considered as a useful model or even a simplified version of

it. Although any brain is a complex three-dimensional cellular

architecture, chemical reaction networks can share some aspects of

their organization. Indeed, it is still possible to draw direct analogies

between the chemical compound and chemical reaction space to

bio-inspired brain-type architectures with the reactive molecules

of solutes representing the neurons and their mutual impacts

being the synapses (Csizi and Lörtscher, 2024). The molecules of

solvent, which do not react but assist the chemical transformations

of solutes, are like the brain’s glial cells. Some solute molecules’

collisions trigger chemical reactions, whereas others are chemically

ineffective. Specific steric and energetic conditions must be verified

to render a molecular impact reactive. The Arrhenius law defines

the transformation rate constant (kr) of the reagents into the

products and it formally corresponds to the activation function of

the molecular nodes:

kr = Ae
−Eact
RT (1)

In Equation 1, the pre-exponential factor A is related to the

steric requirements, whereas Eact is the minimum energy needed

to make an impact reactive. Usually, it is the thermal energy,

RT, available to all the molecules, which is exploited to overcome

the barrier Eact , unless other energetic inputs are unleashed from

outside. The kinetic constant kr , defined in Equation 1, is related

to the computational rate for the chemical reaction network: it

increases by heating. If the concentration of i-th solute is C0,i

(expressed in moles per volume of solution, i.e., in molarity M),

the total number of molecular neurons (N) per unit of volume

(expressed in liters) will be given by the Avogadro’s number times

the sum of the solutes’ analytical concentrations:

N =
(
6.022× 1023

) ∑

i

C0,i (2)

Molecular networks compute in a highly parallel manner,

and their computational rate (CR) might be remarkable: For a

bimolecular reaction of the type A+ B
kr
→ P, it will be:

CR =
(
krC0,AC0,B

) (
6.022× 1023

)
(3)

When the rate-determining step is the encounter of the

reactants (A and B) by diffusion, the apparent reactive constant(
kr

)
app

≈ 109M−1s−1, and if C0,AC0,B ≈ 10−9M2, then the

computational rate is hundreds of zettaFLOPS (i.e., ≈ 1023) per

unit of volume, i.e., five orders of magnitude faster than the best

supercomputer in the world, according to the TOP500 project
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(https://www.top500.org/). Of course, in a chemical reaction,

even if carried out by billions and billions of molecules, it is

generally impossible to address individual reaction events in order

to distinguish them because they occur randomly distributed in

space and time. The situation could be improved through micro-

compartmentalization, but it remains far from the performances

of the two-dimensional architecture of the processors inside

an electronic computer and even further from the remarkable

computational performances of the three-dimensional architecture

of a biological brain.

In any fluid solution, the network’s architecture is not fixed,

but fluid, subjected to the constant movement of the molecular

neurons, promoted by diffusion, stirring (if present), and advection

(if induced). It is a reservoir network (Figure 1A3), whose overall

shape and size are fixed by the solid device containing the

solution (Adamatzky, 2019) and whose computational rate is

directly proportional to the concentrations of the solutes. If the

molecules constituting the network are prepared and maintained

in a coherent quantum state, they can be employed to perform

quantum neuromorphic computing (Ghosh et al., 2021). When

molecular Brownian motion destroys the coherent quantum states,

the chemical reservoir can be exploited to implement classical logic.

If the input-output relationships are steep sigmoid functions, they

are appropriate for implementing binary logic gates (De Silva,

2013). The molecular logic gates have been demonstrated to be

reconfigurable because the input-output relationship can change

depending on the technique used to monitor the read-out layer

of Figure 1A3. When the input-output function is not sigmoid

but hyperbolic or linear, the molecular network is appropriate for

processing infinite-valued logic, like fuzzy logic (Gentili, 2018).

Fuzzy logic is a model of human capability to make decisions

using natural language. The words are fuzzy sets. It has been

demonstrated that fuzzy sets can be chemically implemented

through the context-dependent conformational distributions of

compounds (Gentili, 2021b; Gentili and Perez-Mercader, 2022).

The major challenges for neuromorphic engineering through

chemical reaction networks are to connect (1) different chemical

logic gates for the implementation of extended circuits analogous

to those in electronics and (2) distinct chemical words to

build molecular languages. One way is through optical signals

(Andréasson and Pischel, 2015) and another through microfluidic

platforms that allow controlling the encounter of molecular

reagents (Kou et al., 2008).

Some chemical reactive systems produce intermediates that

establish mutual strong non-linear relationships, typical of a

recurrent network, and give rise to bottom-up emergent properties,

such as spontaneous temporal and spatial self-organization

phenomena (Epstein and Pojman, 1998; Ashkenasy et al., 2017).

These chemical systems, whose iconic instance is the Belousov-

Zhabotinsky reaction, have been proposed as dynamic surrogates

of real neurons because they can reproduce their oscillatory,

chaotic, and excitable regimes (Okamoto et al., 1995; Izhikevich,

2007; Gentili and Micheau, 2020). They can communicate through

chemical, electrical, and optical signals, giving rise to spatio-

temporal synchronization phenomena, analogous to those shown

by real neural networks. The single neural surrogates can be

confined to either macro- or micro-reactors. They have been

arranged in all three archetypes of neural networks shown in

Figure 1A: feed-forward, recurrent, and reservoir networks (Gentili

et al., 2017; Litschel et al., 2018; Vanag, 2019; Gentili, 2022;

Tomassoli et al., 2024).

When the molecules participating in the chemical reaction

networks are biopolymers, such as DNA, RNA, and proteins, we

enter the realm of synthetic biology, which constitutes the second

strategy for developing neuromorphic engineering in wetware

(Vasle and Moškon, 2024).

3 Synthetic biology

The non-linear reactivity of biopolymers, i.e., DNA, RNA, and

proteins engaged in fundamental processes for cell life, is ideal for

implementing reservoir and recurrent networks (Cameron et al.,

2014; Tang et al., 2021) in vivo and in vitro. Since each biopolymer

exists as a collection of conformers, whose features are context-

dependent, the bio-chemical reaction networks are intrinsically

fuzzy (Gentili, 2024). Fuzzy neural networks guarantee adaptability

and the capability to make decisions in environments dominated

by uncertainty and vagueness (Zadeh, 1997; Gentili and Stano,

2022). Within a cell, biopolymers participate in chemical reactions

that occur in overcrowded micro- and nano-compartments (i.e.,

the organules), often at their interface, and involving tethered

reactive species, limiting their random Brownian motions. This

well-orchestrated and complex bio-chemical reaction network

gives rise to an autonomous cellular computing system. A cell

is capable of (1) collecting data about the external environment

and its internal state through transmembrane sensory proteins; (2)

processing the sensory data andmaking decisions, which (3) trigger

the genetic module or (4) modify cellular metabolism (Roederer,

2005; Gentili and Stano, 2024). Living cells are too complex to

be reproduced synthetically, from scratch, through a bottom-up

approach. The synthetic cells (SCs) implemented so far are more

similar to wetware machines that are programmed to compute and

accomplish specific tasks, such as assaying chemical information

and therapeutics (Chang, 1987; Guindani et al., 2022). However,

attention has been recently paid to how to make them more

organism-like, i.e., “minimally cognitive” (Damiano and Stano,

2018; Stano, 2023). For example, an explicitly declared goal is

to implant a sort of minimal brain made of chemical reaction

networks inside SCs (Braccini et al., 2023), aiming at a simple form

of autonomy. A step further will be reachable when an SC could

become a neural network node made of other SCs (with or without

involving natural cells) to imitate the organizational and functional

features of biological tissues. In these cellular networks, two- or

three-dimensional cultures of human brain cells (the so-called

brain organoids) will be employed, facilitating the reconstruction

of the histoarchitecture and functionality of real neural networks

(Smirnova, 2024).

4 Nanofluidic iontronics

Bioinspired nanofluidic iontronics represents the most recent

approach for developing neuromorphic engineering in wetware

(Hou et al., 2023). It consists of hybrid circuits made of solid

nanochannels and electrically conductive ionic solutions to imitate

real neurons that use ionic currents as information carriers. The
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solid nanochannels are not simple containers: their shape and

size affect the electrical properties of the devices. There are two

groups of nanofluidic devices: (1) nanofluidic transistors that

mimic structures and functionalities of biological ion channels,

and (2) nanofluidic memristors that mimic synapses (Xiong et al.,

2023a). Under nano-confinements, both water molecules and

ions exhibit anomalous transport behaviors, such as ultrahigh

ion/proton transport speed and selectivity (Robin et al., 2023).

These nanofluidic devices not only reproduce brain-like neural

electrical signals but also realize the logic operation or memory

functionalities. The way to endow bioinspired nanofluidics with

smart responsiveness is to modify the inner surface of the channels

with various responsive molecules, such as aptamers and antibodies

(Xiong et al., 2023b). A wide range of chemical species could

coexist and move freely in electrolyte solutions contributing to

abundant chemical information compared with solid memristors.

The biological compatibility of fluidic memristors is convenient for

the communication between real neurons and devices.

5 Discussion

Despite the recent impressive advancements in conventional

(hardware/software) AI and Robotics, we expect a profound

revolution in the sciences of the artificial (Cordeschi, 2002) will

definitely come from exploring fluid chemical systems and their

computational capabilities. The development of neuromorphic

engineering in wetware requires an interdisciplinary effort,

involving chemists, physicists, biologists, engineers, computer

scientists, and neuroscientists. Differently from general-purpose

electronic computers, neuromorphic devices in wetware will be

specific-purpose. In computing, they will be particularly alluring

for recognizing variable patterns, solving NP-hard problems, and

processing vague information (Adleman, 1994; Adamatzky et al.,

2005; Evans et al., 2024; Csaba and Porod, 2020; Gentili and

Stano, 2024) because chemical reaction networks performmassive-

parallel computations. Furthermore, neuromorphic devices in

wetware will guarantee a seamless interface with living beings

because they can interplay with living cells even at the

molecular level. They will reciprocally communicate through

both chemical and physical signals. Chemical communication can

be carried out not only through diffusion, but also advection,

chemical waves and motor proteins. Neuromorphic devices in

wetware will monitor, and heal if required, biological functions

through the implementation of multi-scale artificial and biological

communication networks, called Internet of Nano/Bio-things

(IoBNTs; Akyildiz et al., 2015; Stano et al., 2023). We think it is

reasonable to expect that such IoBNTs will approach the power of

biological intelligence to process information based on uncertain

and context-dependent data without an excessive expenditure

of energy.
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