
Edited by  

Md Sazzad Hossain, Pedro Garcia and Karl H. Mühling

Published in  

Frontiers in Plant Science

Mineral nutrition and 
plant stress tolerance

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/research-topics/53779/mineral-nutrition-and-plant-stress-tolerance/overview
https://www.frontiersin.org/research-topics/53779/mineral-nutrition-and-plant-stress-tolerance/overview


August 2024

Frontiers in Plant Science 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-5262-9 
DOI 10.3389/978-2-8325-5262-9

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


August 2024

Frontiers in Plant Science 2 frontiersin.org

Mineral nutrition and plant stress 
tolerance

Topic editors

Md Sazzad Hossain — University of Kiel, Germany

Pedro Garcia — University of Almeria, Spain

Karl H. Mühling — University of Kiel, Germany

Citation

Hossain, M. S., Garcia, P., Mühling, K. H., eds. (2024). Mineral nutrition and plant 

stress tolerance. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-5262-9

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5262-9


August 2024

Frontiers in Plant Science 3 frontiersin.org

04 Editorial: Mineral nutrition and plant stress tolerance
Md Sazzad Hossain, Pedro Garcia Caparros and 
Karl Hermann Mühling

07 Transcriptome analysis of sugar and acid metabolism in 
young tomato fruits under high temperature and nitrogen 
fertilizer influence
Yanjiao Zheng, Zaiqiang Yang, Jing Luo, Yao Zhang, Nan Jiang and 
Wajid Ali Khattak

23 Identification of quantitative trait loci controlling nitrogen 
use efficiency-related traits in rice at the seedling stage under 
salt condition by genome-wide association study
Nhung Thi Hong Phan, Xavier Draye, Cuong Van Pham and 
Pierre Bertin

39 Nitrogen transport and assimilation in tea plant 
(Camellia sinensis): a review
Wenjing Zhang, Kang Ni, Lizhi Long and Jianyun Ruan

56 Physiological and molecular mechanisms of 
Acacia melanoxylon stem in response to boron deficiency
Zhaoli Chen, Xiaogang Bai, Bingshan Zeng, Chunjie Fan, Xiangyang Li 
and Bing Hu

70 Combination of seed priming and nutrient foliar application 
improved physiological attributes, grain yield, and 
biofortification of rainfed wheat
Layegh Moradi and Adel Siosemardeh

85 Silicon nanoparticles vs trace elements toxicity: Modus 
operandi and its omics bases
Mohammad Mukarram, Bilal Ahmad, Sadaf Choudhary, 
Alena Sliacka Konôpková, Daniel Kurjak, M. Masroor A. Khan and 
Alexander Lux

102 Do aluminum (Al)-hyperaccumulator and 
phosphorus (P)-solubilising species assist neighbouring 
plants sensitive to Al toxicity and P deficiency?
M. Delgado, P. J. Barra, G. Berrios, M. L. Mora, P. Durán, A. Valentine 
and M. Reyes-Díaz

117 Oat—an alternative crop under waterlogging stress?
Britta Pitann and Karl H. Mühling

129 SPX family response to low phosphorus stress and the 
involvement of ZmSPX1 in phosphorus homeostasis in maize
Bowen Luo, Javed Hussain Sahito, Haiying Zhang, Jin Zhao, 
Guohui Yang, Wei Wang, Jianyong Guo, Shuhao Zhang, Peng Ma, 
Zhi Nie, Xiao Zhang, Dan Liu, Ling Wu, Duojiang Gao, Shiqiang Gao, 
Shunzong Su, Zeeshan Ghulam Nabi Gishkori and Shibin Gao

Table of
contents

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


Frontiers in Plant Science

OPEN ACCESS

EDITED AND REVIEWED BY

Marta Wilton Vasconcelos,
Catholic University of Portugal, Portugal

*CORRESPONDENCE

Md Sazzad Hossain

sazzadmh.aha@sau.ac.bd

Karl Hermann Mühling

khmuehling@plantnutrition.uni-kiel.de

RECEIVED 08 July 2024
ACCEPTED 12 July 2024

PUBLISHED 25 July 2024

CITATION

Hossain MS, Garcia Caparros P and
Mühling KH (2024) Editorial: Mineral nutrition
and plant stress tolerance.
Front. Plant Sci. 15:1461651.
doi: 10.3389/fpls.2024.1461651

COPYRIGHT

© 2024 Hossain, Garcia Caparros and Mühling.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Editorial

PUBLISHED 25 July 2024

DOI 10.3389/fpls.2024.1461651
Editorial: Mineral nutrition and
plant stress tolerance
Md Sazzad Hossain1,2*, Pedro Garcia Caparros3

and Karl Hermann Mühling1*

1Kiel University, Kiel, Germany, 2Sylhet Agricultural University, Sylhet, Bangladesh, 3University of
Almeria, Almerı́a, Spain

KEYWORDS

plants, mineral elements, abiotic stress, biotic stress, plant physiology and biochemistry,
nutrient deficiency and toxicity
Editorial on the Research Topic

Mineral nutrition and plant stress tolerance
The provision of so-called global food safety and security is threatened by global

warming, climate change, and the increasing food demand for an ever-growing human

population (Berkhout et al., 2019; Sun and Weaver, 2020; Dobermann et al., 2022).

Improper plant nutritional management reduces crop production and quality becomes a

vital global concern affecting billions of people worldwide (Kumssa et al., 2015; Hofmann

et al., 2020; Dobermann et al., 2022). Any stress (biotic or abiotic) can disrupt plant

metabolism and lead to reduced growth, fitness, and productivity (Hossain and Dietz, 2016;

Ahmed et al., 2020). Understanding crop physiological and biochemical responses to

adverse environmental conditions is critical (Bashir et al., 2021). Mineral nutrition is one of

the most effective ways to reduce various stresses in crops to increase yield and quality. It

plays a crucial role in the response of plants to both biotic and abiotic stresses (Marschner

and Cakmak, 1989; Cakmak, 2005; Waraich et al., 2011; Marschner, 2012; Elmer and

Datnoff, 2014; Cabot et al., 2019; Sarwar et al., 2019; Kumari et al., 2022). Interactions

between mineral elements and biotic and abiotic stress responses are important for

developing strategies to improve crop productivity and quality in stressed environments.

Proper nutrient management can effectively mitigate the adverse effects of different stresses

through diversified mechanisms (Shoukat et al., 2024a, b; Waraich et al., 2011; Mannan

et al., 2022; Van Nguyen et al., 2022; Chowdhury et al., 2024).

Although considerable progress has been made in plant nutrition and stress tolerance

many aspects of plant nutrition remain unknown. However, more extensive efforts are

required to understand better the relationship between mineral elements and plant stress

tolerance. Mechanisms underlying the role of mineral nutrition and its interactions with

plants are proposed in this Research Topic, comprising diverse research articles, including

two reviews and seven original research papers.

Nitrogen metabolism in crops is crucial for various physiological processes and plant

growth, especially in staple crops like tea. In this review, Zhang et al. summarized the

current information on the underlying mechanisms to identify key regulators in functional

phenotypes and improve nitrogen use efficiency. The review highlighted the significance of

ammonium as the primary nitrogen source. The biological and molecular mechanisms

underlying the GS-GOGAT pathway, including nitrate reductase (NR), nitrite reductase
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(NiR), glutamine synthetase (GS), glutamate synthase (GOGAT),

and glutamate dehydrogenase (GDH), were also explained in detail.

Phan et al. conducted a genome-wide association study to

identify quantitative trait loci (QTLs) linked to nitrogen use

efficiency (NUE) in rice under saline conditions. The research

involved 2,391 rice accessions grown under two nitrogen

conditions and two NaCl concentrations to assess dry weight. A

total of 55 QTLs associated with the evaluated traits were identified,

with 28 being novel discoveries. These findings offer valuable

genetic resources for improving NUE in rice, particularly in

saline environments.

Sugar and acid metabolism are pivotal in tomato development

and fruit quality, necessitating further investigation into the

underlying transcripts, particularly under high temperature and

nitrogen fertilizer conditions. Zheng et al. reported that both

conditions elevated the levels of soluble sugars and organic acids

in young tomato fruits. Additionally, the study identified several

genes involved in sucrose metabolism (CWINV2, HK2, SPS, PK)

and sucrose transporters (SUT1, SUT4, SWEETs).

Chen et al. experimented to discern the main physiological and

molecular mechanisms of Acacia melanoxylon stem in response to

boron deficiency. Under boron-deficit conditions, stem growth was

reduced with shortened internodes. Transcriptomic analysis

revealed that genes linked to cell wall metabolism and structural

components were downregulated. Furthermore, additional genes

linked to hormone signaling showed significant alterations.

Moradi and Siosemardeh investigated the influence of seed

priming and foliar application of various chemical fertilizers on

rainfed wheat. Their study demonstrated that combining these

application methods significantly enhanced the physiological and

yield traits of the wheat. This information is crucial for growers

seeking to improve plant growth and yield under drought-

stressed conditions.

The review by Mukarram et al. focused on the interaction

between silicon nanoparticles (SiNPs) and trace elements (TEs)

toxicity. The authors emphasize exploring this interaction from an

omics perspective, encompassing plant metabolomics, proteomics,

and genomics. Furthermore, the review delves into the physiological

and biochemical mechanisms underlying this interaction.

Pitann and Mühling examined the waterlogging resistance of

oat at various developmental stages as an alternative for crop rotation

in regions with temporary submergence. Their findings revealed that

while late waterlogging negatively impacted the vegetative phase, it led

to improved performance in the generative phase, resulting in

increased grain yield. In contrast, early waterlogging severely affected

oat performance during vegetative and generative phases.

Delgado et al. assessed the facilitation effects of Gevuina

avellana, an aluminum hyperaccumulator, on the seedling growth

and performance of Vaccinium corymbosum, a plant sensitive to

aluminum intolerance and phosphorus deficiency, in soils

supplemented with varying aluminum doses. The results

indicated that co-cultivation with G. avellana ameliorated the
Frontiers in Plant Science 025
growth conditions for V. corymbosum, highlighting the beneficial

influence of G. avellana.

Luo et al. investigated the role of SPX-domain-containing

proteins (SPXs) in phosphorus homeostasis in maize, with a

particular emphasis on ZmSPX1. Their study demonstrated that

overexpressed lines exhibited increased root sensitivity to both

phosphorus deficiency and high-phosphorus conditions. These

findings hold significant implications for enhancing phosphorus

efficiency in maize breeding programs.

In conclusion, the articles included in this Research Topic

contribute to our understanding of the efficacy of various

nutrients in alleviating diverse stresses and plant nutrient

relations, while illustrating the need for more such research. A

better understanding of different nutrient elements could lead to

more rational fertilizing practices, avoiding interactions that could

contribute to the unbalanced mineral nutrition of plants for

maximizing crop yield. This knowledge is also necessary to obtain

more efficient genotypes in the acquisition of different nutrients.
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Introduction: Environmental temperature and nitrogen (N) fertilizer are two

important factors affecting the sugar and organic acid content of tomato fruit. N

is an essential nutrient element for plant growth and development, and plays a

key role in regulating plant growth, fruit quality and stress response. However,

the comparative effect of different N fertilizer levels on the accumulation of

soluble sugar and organic acid in tomato young fruit under high temperature

stress and its mechanism are still unknown.

Methods: Three N fertilizer levels (N1, N2, N3) combined with two temperatures

(28/18°C, CK; 35/25°C, HT) were used to study the effects of N fertilizer, HT and

their interaction on the soluble sugar and organic acid components, content,

metabolic enzyme activity and the expression level of key genes in tomato young

fruit, revealing how N fertilizer affects the sugar and organic acid metabolism of

tomato young fruit under HT at physiological and molecular levels.

Results: The content of soluble sugar and organic acid in tomato young fruit under

HT exposurewas increased by appropriate N fertilizer (N1) treatment, whichwas due

to the accumulation of glucose, fructose, citric acid and malic acid. High N (N3) and

HT exposure had a negative impact on soluble sugar and reduce sugar

accumulation. Further studies showed that due to the up-regulation of the

expression of sucrose metabolizing enzyme genes (CWINV2, HK2, SPS, PK) and

sucrose transporter (SUT1, SUT4, SWEETs) in tomato, N fertilizer increased the

accumulation of soluble sugar by improving the sucrose metabolism, absorption

intensity and sucrose transport of fruit under HT exposure. Due to the increase of

PEPC gene expression, N fertilizer increased the accumulation of citric acid and

malic acid by improving the TCA cycle of fruit under HT exposure.

Discussion: Nitrogen fertilizer can improve the heat tolerance of tomato young

fruits by improving sugar metabolism under HT exposure. The results can provide

theoretical support for the correct application of N fertilizer to improve the quality of

tomato fruit under HT exposure.
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transcriptomics, tomato, sugar, organic acid, high temperature, nitrogenous fertilizer
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1 Introduction

Tomato (Solanum lycopersicum L.) is one of the most important

horticultural crops in the world. The most efficient method for

obtaining premium fresh tomatoes for markets is the protective

planting of tomato crops (Renau-Morata et al., 2021). China grows

protected tomatoes on 810,000 ha cultivated land (Zheng et al.,

2022). Since tomato is rich in sugar and organic acid, lycopene, b-
carotene, flavonoids, ascorbic acid, phenolic acid, and other

nutrients that contributes to the maintenance of human health

and people’s taste (Wu et al., 2023), people have higher

requirements for tomato flavor and quality. However, in late

spring and early summer, the heat generated by solar radiation

caused the temperature in the greenhouse to rise sharply. In

addition, the greenhouse is a tightly sealed and inadequately

ventilated environment, resulting in the interior temperature

being 20°C to 30°C higher than the outside temperature

(Shamshiri, 2017; Zheng et al., 2020; Zheng et al., 2022).

Therefore, high temperature is always a common meteorological

disaster in greenhouses.

High temperature (HT) is one of the important environmental

factors affecting the sensory and nutritional quality of tomato fruits

(Ayenan et al., 2021). Exposure to HT reduces the content of sugar,

organic acid, lycopene, and other components in the fruit, thus

impacting negatively tomato fruit quality (Hernández et al., 2018;

Almeida et al., 2021; Hernández et al., 2022; Mesa et al., 2022).

Previous studies mainly focused on the ripening stage of tomatoes;

however, little is known about the impact of HT exposure on young

fruits. The young fruit stage (< 10 days post-anthesis) is the most

sensitive and golden period of the entire fruit development process

(Quinet et al., 2019; Zheng et al., 2022). This stage is the peak of cell

division activity, which determines the number of cells and,

subsequently influences the size, weight, and shape of the fruit

(Azzi et al., 2015). In addition to these morphological

characteristics, the sensory and nutritional quality characteristics

of mature tomato fruits are also identified early, including the

accumulation of sugars and organic acids (Azzi et al., 2015; Bauchet

et al., 2017). Eighty percent of the sugars in tomato fruits originate

from the source organs (leaves) and are transported through the

phloem and released into the fruit in the form of sucrose (Powell

et al., 2012). Sucrose is broken down into monosaccharide and

uridine diphosphate glucose (UDPG) under the action of invertase

and sucrose synthase (SS), providing energy to the fruit for the

synthesis of starch, cellulose, and various other cellular components

(Li et al., 2012). The timely unloading and utilization of sucrose in

the sink contributes to the formation of a sucrose concentration
Abbreviations: AI, acid invertase; NI, neutral invertase; SSc, sucrose synthase-

cleavage; SSs, sucrose synthase-synthesis; SPS, sucrose phosphate synthase; HK,

hexokinase; G6PD, glucose 6-phosphate dehydrogenase; 6PGD, 6-

phosphogluconate dehydrogenase; PFK, phosphofructokinase; PK, pyruvate

kinase; SUT, sucrose transporter; SWEET, sugars will eventually be exported

transporters; PEPC, phosphoenolpyruvate carboxylase; MDH, malate

dehydrogenase; ME, malic enzyme; CS, citrate synthase; cyt-ACO, cytosolic

aconitase; mit-ACO, mitochondrion aconitase; IDH, isocitrate dehydrogenase.
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difference between the source leaves and the fruit, which promotes

the continuous transport of sucrose to the fruit and plays a crucial

role in regulating the distribution and intensity of photosynthetic

compounds sink (Zhang et al., 2021). Moreover, sucrose and its

hexose cleavage products can regulate plant development and stress

response through carbon partitioning and sugar signaling

(Vijayakumar et al., 2021; Zhang et al., 2022). Several molecular

and physiological studies have shown that glucose serves as a signal

to promote cell division in embryos during early development

(Ruan et al., 2010). Research has shown that heat leads to a

reduction in the source/sink ratio, which impairs fruit

development by shortening cell division time and reducing cell

number and size, ultimately leading to accelerated fruit

development and reduced fruit quality (Adams et al., 2001;

Bertin, 2005). Therefore, examining the effect of HT on sugar and

acid metabolism during the young fruit stage is critical for

understanding the effect of HT on fruit quality of tomato.

In addition to HT, nitrogen (N) fertilizer application during

cultivation can also affect fruit development and quality (Erdinc

et al., 2018). Experimental results indicate that sugar and organic

acid content in tomato fruits is proportional to N fertilizer at a

certain level, which improves fruit quality (Hernández et al., 2020;

Ronga et al., 2020). Although N has a positive effect on fruit quality,

excess N affects the carbon (C) and N balance, decreasing the

amount of soluble sugar in tomato fruit, while increasing the

organic acid content, and decreasing fruit flavor quality (Bénard

et al., 2009; Gruda et al., 2018; Truffault et al., 2019).

Considering that both HT and N fertilizers are important

factors affecting fruit quality, some studies have investigated the

comprehensive effects of HT and N. N can reduce the reactive

oxygen species toxicity in rice (Wei et al., 2018) and corn (Yan et al.,

2017) to resist HT by increasing antioxidant concentration and

photosynthetic utilization rate. Xu et al. (2022) found that adequate

N fertilization can mitigate the adverse effects of HT during grain

filling on milling quality and chalky occurrence to some extent.

Previous research has shown that N fertilizer increases the

sensitivity of maize (Ordóñez et al., 2015), rice (Tang et al., 2019),

and wheat (Elıá et al., 2018) to HT, and these studies suggest that

excessive N exacerbates yield losses due to temperature increase.

These results highlight the complex relationship between N levels

and HT, suggesting that each crop species may have the best

combination of HT and N levels (Yang et al. , 2015).

Unfortunately, few studies have shown the possibility of such

interactions between HT and N fertilizer rates in tomato

young stage.

The development of high-throughput sequencing and genome

sequencing data for tomato offers important methods and

references for exploring complex regulatory networks and

identifying new key genes (Su et al., 2022). With the improved of

RNA sequencing (RNA-seq) efficiency, transcriptome analysis has

identified many genes involved in tomato response to heat stress.

For example, Gul et al. (2021) and Su et al. (2022) discovered key

genes associated with heat tolerance in tomato using RNA-seq

technology. In addition, the key genes involved in the biochemical

pathway and expression characteristics of transport, accumulation,
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and metabolism of sugars and organic acids in tomato fruit were

also discovered using RNA-seq technology (Li et al., 2022; Tao et al.,

2022; Wu et al., 2023). More importantly, the key genes that

respond to N and regulate the metabolism of sugar and organic

acids in fruits have been discovered (Wang et al., 2021; Cao et al.,

2022). With the advancement of molecular biology technology,

more genes involved in plant response to abiotic stress will be

discovered and identified in the future.

We hypothesize that there is an interaction between HT and N

fertilizer in young tomato fruit, and we also hypothesize that N

fertilizer resists heat stress by regulating the activity of sugar and

organic acid metabolism enzymes and gene expression. In this

paper, three N levels and two temperature treatments were applied

to compare the biochemical pathways of sugar and acid metabolism

in tomato fruits under different N and temperature treatments. The

objective of this study was to determine the interaction between N

and HT and to investigate their comprehensive effects on the

content, composition, and metabolic enzyme activity of soluble

sugars and organic acids in young tomato fruits. RNA Seq analysis

was used to identify the key genes involved in sugar and organic

acid metabolism in tomato young fruits exposed to N and HT. The

research results may provide a theoretical basis for appropriate N

application rates under HT conditions to improve heat resistance in

young tomato fruits.
2 Materials and methods

2.1 Experimental design

The experiment was conducted at the Agricultural

Meteorological Research Station of Nanjing University of

Information Science and Technology (32°13´N, 118°43´E; 29 m

above mean sea level) in Nanjing, Jiangsu Province, China. “Powder

crown” was used as test material, and once it formed 4-5 true leaves,

it was planted in a flower pot with dimensions of 28 cm (height) ×

34 cm (upper caliber) × 28 cm (bottom diameter), dated February

27, 2022. Soils contained fertilizers, including organic carbon

(12.93 g kg-1), organic matter (22.29 g kg-1), available phosphorus

(69.36 mg kg-1), available potassium (13.8 mg L-1), and total

nitrogen (0.13%). Before transplanting, phosphate and potassium

fertilizer were applied to the planting soil all at once as base

fertilizer, with the amount of phosphate fertilizer (monocalcium

phosphate) being 200 kg ha-1 (5.67 g plant-1) and the amount of

potassium fertilizer (potassium sulphate) being 300 kg ha-1 (8.51 g
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plant-1). N fertilizer was applied in three levels: 188 kg ha-1 (N1),

250 kg ha-1 (N2), and 313 kg ha-1 (N3). The N application rate of

250 kg ha-1 is the rate currently used by the local farmers. N

fertilizer (urea) was used as a topdressing (hole fertilization). Based

on the planting density of tomatoes, we calculated that the N

application for each tomato plant during the entire growth period

was N1 (5.33 g plant-1), N2 (7.10 g plant-1), and N3 (8.88 g plant-1),

respectively. We applied N in a ratio of 3:3:2:2 during the seedling,

flowering, second, and fourth ear fruit expansion stages of tomato

plants. Since our research focused on tomato young fruits, we didn’t

consider topdressing after flowering. The specific N application was

shown in Table 1. Each N level treatment was repeated 20 times (i.e.

20 pots), with one tomato seedling per pot, resulting in a total of 60

pots of tomatoes. After 10 days of transplanting (March 9, 2022),

tomato seedlings with consistent growth were randomly selected for

the first fertilization as topdressing during the seedling stage.

Transplanted tomato potted plants grew in a Velon glass

greenhouse. The greenhouse structure has an area of 30 m in

length × 9.6 m in width, and 4.5 m in height with north-south

orientation. The distance between pots was 35 × 40 cm, and watered

every 2 days according to the needs of plant growth to maintain

appropriate growth conditions. Until the first order of tomato

flowers fully bloomed, N was applied again to the corresponding

N level pots as topdressing (April 4, 2022). After 5 days, we

conducted a heat stress test, during which the fruits that

successfully set were marked and the date of set was recorded. To

evaluate the interaction between temperature and nitrogen fertilizer

application, we randomly divided pot plants with the same N level

into two groups and simultaneously treated them at two different

temperatures for 5 days (April 9, 2022)Two artificial climate

chambers (Convion BDW40, Canada) were used, one designed

for suitable temperature (CK) and the other designed for heat stress

(HT). The temperature range of CK treatment was 18-28°C (with an

error of ± 0.5°C), and the daily average temperature was 22.7°C; the

temperature range of HT treatment was 25-35°C (with an error of ±

0.5°C), the daily average temperature was 29.6°C. The daily

variation of temperature was similar to the daily variation of

temperature in the natural atmosphere of Nanjing. The minimum

and maximum temperatures occurred at 5:00 and 14:00

respectively, as shown in Figure S1. The tomato plants in the

artificial climate chamber were arranged in three rows, one row

(10 pots) at each N level. Plants at the same N level were

randomized. The two artificial climate chambers had the same

climate conditions except for temperature treatment.

Photosynthetically active radiation (PAR) of the artificial climate
TABLE 1 Application period and amount of N fertilizer (urea) (g plant-1).

Growth
stage

First application of N fertilizer Second application of N fertilizer

Seedling stage (10 days after transplanting, March
9, 2022)

Flowering period (the first order flower is in full bloom, April
4, 2022)

N1 1.60 1.60

N2 2.13 2.13

N3 2.66 2.66
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room was set as follows: 6:00-10:00 (800 mmol m-2 s-1), 11:00-14:00

(1000 mmol m-2 s-1), 15:00-18:00 (800 mmol m-2 s-1), and the

remaining period was 0 mmol m-2 s-1. The humidity was set to

60% at 6:00-18:00 in the daytime, 80% at night, and the CO2

concentration was set to 400 mmol mol-1. During heat stress, plants

were watered once a day to ensure the necessary water for normal

plant growth. Six treatments were set: N1 application in the CK

environment (CKN1); N2 application in the CK environment

(CKN2); N3 application in the CK environment (CKN3); N1

application in the HT environment (HTN1); N2 application in

the HT environment (HTN2); N3 application in the HT

environment (HTN3). After the heat stress test, three tomato

young fruit samples that set on the same day were taken from

each treatment, the skin and seeds were removed, the flesh was cut

into silk and placed in a zipper bag. Then, it was quickly frozen in

liquid nitrogen and stored at -80°C until subsequent analysis.
2.2 Measurements and methods

2.2.1 Determination of soluble sugars
Fructose, glucose, and sucrose contents were measured

following the procedure given by Ma et al. (2019) with slight

modifications. The soluble sugars in the fruit were determined

using the colorimetric method. The samples of tomato (5 g) were

finely grounded using mortar and pestle with the addition of 10 ml

of 80% ethanol, stirred evenly and keep it in a water bath at 80-85°C

for 40 min. After cooling, added 0.2 g activated carbon for

decolorization for 20 minutes, then centrifuged at 4000 r min-1

for 30 minutes. Take the supernatant into a 25 mL volumetric flask.

This extraction procedure was repeated three times and the

supernatants were combined and finally dilute to 25 mL with

distilled water. The solution was then used for the sugar analysis.

2.2.2 Determination of organic acids
The contents of organic acids were measured by high

performance liquid chromatography (HPLC) using the method

reported by Zheng et al. (2022) with some modifications. The

samples of tomato (1 g) were finely grounded using mortar and

pestle with the addition of 3 mL of distilled water. The solution was

transferred into a centrifuge tube and added distilled water to make

a constant volume of 5 mL, and then centrifuged at 4000 r min-1 for

10 minutes at 4°C. For each sample, 20 mL of the supernatant was

filtered through a 0.45 mm membrane and then injected into the

HPLC system for analysis. 0.01 mol L-1 KH2PO4 (pH 2.55):

methanol (97/3) (v/v) was used as the mobile phase with a flow

rate of 0.5 mL min-1. The column was 0.5 µm C18 column (250

mm×4.6 mm, Agilent, USA) at 30°C. Organic acids were detected at

a wavelength of 210 nm.

2.2.3 Extraction and determination of sucrose
and organic acids metabolism-related enzymes

Enzymes involved in sucrose metabolism were extracted

following the procedure proposed by Wu et al. (2020) with slight
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modifications. All procedures were conducted at 4°C. Tomato

samples (1 g) were homogenized with 10 mL of 100 mmol L-1

phosphate buffer (pH 7.5) containing 10 mmol L-1 MgCl2, 1 mmol

L-1 EDTA, 0.1% (v/v) tritonX-100, 0.2% 2-Hydroxy-1-ethanethiol,

and 2% polyvinyl pyrrolidone (PVP). The homogenate was

centrifuged at 4000 r min-1 for 15 min. The supernatant (crude

enzyme extract) was used to determine the activity of enzymes

involved in sucrose metabolism (acid invertase (AI), neutral

invertase (NI), sucrose synthase-cleavage (SSc), sucrose synthase-

synthesis (SSs), sucrose phosphate synthase (SPS)) following the

procedure given by Zheng et al. (2022) with slight modifications.

Enzymes involved in organic acids metabolism were extracted

following the procedure proposed by (Wu et al., 2020) with slight

modifications. Tomato samples (10 g) were homogenized with 10

mL of 200 mmol L-1 Tris-HCl buffer solution (pH 8.2) containing

600 mmol L-1 sucrose and 10 mmol L-1 isoascorbic acid. The

homogenate was centrifuged at 4000 r min-1 for 20 min, and then

taken the supernatant and made up to the final volume (10 mL)

with ice-cold extract buffer as crude enzyme solution. The solution

was used to determine the activity of enzymes involved in organic

acids metabolism, which included phosphoenolpyruvate

carboxylase (PEPC), malate dehydrogenase (MDH), malic

enzyme (ME), citrate synthase (CS), cytosolic aconitase (cyt-

ACO), mitochondrion aconitase (mit-ACO) and isocitrate

dehydrogenase (IDH).

2.2.4 Transcriptome sequencing analysis
The transcriptome analysis of tomato pulp grown under two

temperatures and three N levels was carried out. There were 3

biological replicates per sample, a total of eighteen samples. Total

RNA was extracted from the tissue using the TrizolLysis Reagent

reagent (Qiagen, Germany) according to the manufacturer’s

instructions. garose gel electrophoresis Biowest Agarose (Biowest,

Spain) was used to detect whether RNA was degraded, and Nanodrop

2000 (Thermo Fisher Scientific, USA) was used to detect the

concentration and purity of the extracted RNA. Then RNA quality

was determined by 5300 Bioanalyser (Agilent, USA) and quantified

using the ND-2000 (NanoDrop Technologies, USA). Approximately,

1mg of RNA per sample was used for cDNA library construction by

Illumina NovaSeq Reagent Kit for Illumina (New England BioLabs,

USA) following the manufacturer’s recommendations. The NovaSeq

6000 sequencing platform was used for high-throughput sequencing,

and 150 bp double ended data was obtained. The sequencing process

was completed by Shanghai Majorbio. To ensure the accuracy of

subsequent biological information analysis, the original sequencing

data was filtered through fastp (Renau-Morata et al., 2021) software

to obtain high-quality clean data. The original data after quality

control was compared with the reference genome (ftp://

ftp.solgenomics.net/genomes/Solanum_lycopersicum/Heinz1706/

assembly/build_4.00/) through HiSat2 software to obtain mapped

data (reads), and the quality of the transcriptome sequencing

comparison results was evaluated. RSEM was used to quantify gene

abundances. Essentially, differential expression analysis was

performed using the DESeq2 (Liao et al., 2022). DEGs with |
frontiersin.org

ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/Heinz1706/assembly/build_4.00/
ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/Heinz1706/assembly/build_4.00/
ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/Heinz1706/assembly/build_4.00/
https://doi.org/10.3389/fpls.2023.1197553
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al. 10.3389/fpls.2023.1197553
log2FC| > 2 and FDR ≤ 0.05 (DESeq2) were considered significantly

different expressed genes. In addition, functional-enrichment analysis

including GO and KEGG was performed to identify which DEGs

were significantly enriched in GO terms and metabolic pathways at

BH-corrected P-adjust ≤ 0.5 compared with the whole-transcriptome

background (Li et al., 2021).
2.3 Statistical analysis

Data were analyzed and graphed (bar graphs and heat maps)

using Origin 2023 (Electronic Arts Inc, USA). The data significance

was tested using the LSD method in one-way ANOVA with a

significance level of P < 0.05. Values were presented as the means

standard error (SE) in at least biological triplicate for

each measurement.
3 Results

3.1 Effect of nitrogen-temperature
treatments on sucrose metabolism

Under different temperatures (CK and HT), the main sugars

(i.e. sucrose, fructose, and glucose) involved in sucrose metabolism

in tomato young fruits showed varying degrees of response to N

levels (Figure 1). The results showed that temperature, N levels, and

their interactions had a significant impact on sucrose, glucose, and

fructose content (P < 0.001). Under the same N level, HT exposure

significantly reduced sucrose content. In addition, under the same

temperature environment (CK and HT), the sucrose content was

ranked as N3>N2>N1 (Figure 1A). Contrary to sucrose, HT

exposure significantly increased glucose content at the same N

level. In the CK environment, the glucose content increased with

the increase of N application, while in the HT environment, N3 was

significantly lower than N2 (10.045%) (Figure 1B). For fructose

content, at the N1 and N3 levels, compared to CK, HT exposure

significantly increased fructose content by 65.646% and 13.049%,

respectively (Figure 1C). The highest soluble sugar content was

observed under HTN1 treatment (Figure 1D).

Figure 2 shows the effect of N fertilizer on the key enzyme

activity of sucrose metabolism (i.e. AI, NI, SSs, SSc, and SPS) in

tomato young fruits under different temperature environments. The

results showed that temperature, N levels, and their interactions had

a significant impact on AI, NI, SSs, SSc, and SPS enzyme activities

(P < 0.001). Fertilizing to N2 and N3, HT exposure increased AI

activity by 193.647% and 95.716%, respectively (Figure 2A), and

increased SSc activity by 25.177% and 23.416%, respectively

(Figure 2B). At three N levels, HT exposure significantly

increased the activity of NI and SPS (Figures 2C, D); on the

contrary, HT exposure at the N1 and N2 reduced SSs activity by

52.673% and 26.223%, respectively. In addition, under the same

temperature, the activity of SSs was negatively correlated with N

application (Figure 2E).
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3.2 Effect of nitrogen-temperature
treatments on organic acid metabolism

Figure 3 shows the effect of N fertilizer on organic acid

composition (i.e. citric acid, malic acid, tartaric acid, a-
ketoglutaric acid, and succinic acid) at different temperatures. The

variance results showed that temperature, N levels, and their

interactions had a significant impact on the organic acid

compositions (P < 0.001). Under N1 and N2 treatments,

compared to CK, HT exposure increased the citric acid content

by 21.975% and 14.284%, respectively, while under N3 treatment,

HT exposure reduced the citric acid content by 11.462%

(Figure 3B). Fertilizing to N2 and N3, HT exposure increased the

malic acid content by 47.743% and 121.448%, respectively

(Figure 3C). On the contrary, at the same N level, HT exposure

significantly reduced the content of tartaric acid, a-ketoglutaric
acid, and succinic acid, compared to CK (Figures 3D–F). Overall,

the organic acid content was highest at CKN1, and fertilizing to N2

and N3, HT exposure increased the organic acid content by 6.253%

and 13.894%, respectively. In addition, CKN2 and CKN3, HTN1

and HTN3 treatments had no significant effect on organic acid

content (Figure 3A).

Figure 4 shows the effect of N fertilizer on the key enzyme

activity of organic acid metabolism (i.e. PEPC, ME, MDH, CS, cyt-

ACO, mit-ACO, and IDH) in tomato young fruits under different

temperature environments. The results showed that temperature, N

levels, and their interactions had a significant impact on the key

enzyme activities (P < 0.001). At the same N level, compared to CK,

HT exposure significantly reduced the enzyme activities of PEPC,

MDH, cyt-ACO, mit-ACO, and IDH (Figures 4A, C, E–G). At HT

environment, PEPC enzyme activity decreased with the increase of

N application, while MDH enzyme activity increased with the

increase of N application, and IDH enzyme activity had no

significant effect on N application. At the N3 level, HT exposure

significantly reduced CS enzyme activity by 31.078%, while at the

N1 and N2 levels, CK and HT temperature treatments had no

significant effect on CS enzyme activity (Figure 4D).
3.3 Quality assessment of transcriptome
sequencing results

To further explore the molecular events of sugar and organic

acid metabolism as affected by N and temperature, RNA sequence

analysis was performed on 18 tomato young fruit samples from 6

treatments and 3 biological replicates. The quality assessment of

transcriptome sequencing was shown in Table 2. At least 46719846

raw reads were obtained in all samples, after screening and filtering,

138,086,648 clean reads and 44977486 clean bases were obtained.

The proportion of clean reads in each sample was greater than 96%,

Q20 was more than 98%, Q30 was more than 94%, and the GC

content was higher than 43%. These results indicated that the

sequencing quality was favorable for subsequent analyses.
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3.4 Screening results of DEGs

To study the transcription of tomato fruit under HT at the same

N level, we compared and analyzed the transcriptome data of HTN1

vs CKN1, HTN2 vs CKN2, HTN3 vs CKN3. According to the

volcano map Figure 5, a total of 5217 DEGs were screened from

HTN1 vs CKN1. Among them, 2161 genes were up-regulated and
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3056 genes were down-regulated in the HTN1group compared with

the CKN1 group, respectively (Figure 5A). In HTN2 vs CKN2 group,

a total of 1624 DEGs were screened, including 549 up-regulated genes

and 1075 down-regulated genes, respectively (Figure 5B). A total of

1337 DEGs were screened out in HTN3 vs CKN3 group, of which 726

genes were up-regulated and 611 genes were down-regulated,

respectively (Figure 5C). The group of HTN1 vs CKN1 had the
B

C D

A

FIGURE 1

The contents of sucrose (A), glucose (B), fructose (C), and soluble sugar (D) in tomato young fruits under different nitrogen (N1, N2, and N3) and
temperature (CK, control; HT, high temperature) treatments. Different alphabets (a, b, and c) indicate significant differences between means at P <
0.05 using the LSD method. Error bars indicate standard errors (n=3); T, N, and T × N represent temperature treatment, N fertilizer treatment, and
their interaction, respectively; *** represents the significant level at P < 0.001.
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largest value of DEGs, and the number of DEGs in the HTN2 vs

CKN2 groups was greater than that in HTN3 vs CKN3 groups

(Figure 5D and Table S1), indicating that some genes are

differentially expressed in the various treatments of nitrogen-

temperature and that the number of differentially expressed genes

decreases with the increase of N fertilizer application.
3.5 GO functional categorization of DEGs

To further characterize nitrogen-temperature treatment-

responsive DEGs, GO analysis was performed. The top-20 GO

enrichment histograms of the DEGs was presented in Figure 6 and

Table S2. According to GO functional analysis, DEGs were mainly

divided into three functional categories: molecular function (MF),

cellular component (CC), and biological process (BP). The three

groups (HTN1 vs CKN1, HTN2 vs CKN2, and HTN3 vs CKN3) of

generated DEGs showed certain similarity in GO enrichment

analysis. There were eight items enriched in BP, among which

GO: 0009987 (cellular process), GO: 0008152 (metabolic process),
Frontiers in Plant Science 0713
and GO: 0065007 (biological regulation) were enriched in more

DEGs. There were seven entries enriched in CC, among which GO:

0044464 (cell part), GO: 0044425 (membrane part), and GO:

0043226 (organelle) were enriched in more DEGs. There were

five entries enriched in MF, among which GO: 0003824 (catalytic

activity) and GO: 0005488 (binding) were enriched in more DEGs.

The functional classification results of DEGs in metabolic process,

cell part and catalytic activity showed that the metabolism and

enzyme catalytic function of tomato young fruits would change

with the variation of temperature and N fertilizer application.
3.6 KEGG enrichment analysis of DEGs

To further investigate the possible molecular functions of DEGs in

HTN1 vs CKN1, HTN2 vs CKN2, and HTN3 vs CKN3, KEGG

enrichment analysis was performed, and 20 pathways with the most

significant enrichment were selected for representation a bubble chart

(Figure 7 and Table S3). The three groups were enriched with 1704,

549, and 461 DEGs, respectively, in which the categories of
C E

B D

A

FIGURE 2

The activity of AI (A), SSc (B), NI (C), SPS (D), and SSs (E) in tomato young fruits under different nitrogen (N1, N2, and N3) and temperature (CK,
control; HT, high temperature) treatments. AI, acid invertase; NI, neutral invertase; SSc, sucrose synthase-cleavage; SSs, sucrose synthase-synthesis;
SPS, sucrose phosphate synthase. Different alphabets (a, b, and c) indicate significant differences between means at P < 0.05 using the LSD method.
Error bars indicate standard errors (n=3); T, N, and T × N represent temperature treatment, N fertilizer treatment, and their interaction, respectively;
*** represents the significant level at P < 0.001.
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biosynthesis, signal transduction, and metabolism were the most

enriched pathways. Notably, in the metabolism category, the most

enriched pathway was carbohydrate metabolism, amino acid

metabolism, and lipid metabolism. KEGG analysis showed that

many DEGs were involved in starch and sucrose metabolism,

purine metabolism, glycolysis/gluconeogenesis, glyoxylate and

dicarboxylate metabolism, fructose and mannose metabolism, amino

sugar and nucleotide sugar metabolism, and glycosaminoglycan

degradation. These pathways were related to sugar and acid

metabolism in tomato young fruits, indicating that nitrogen-

temperature treatments during this period may have a significant

regulatory effect on sugar and organic acid metabolism.

3.7 Screening and differential expression of
sucrose and organic acid-related genes

To further analyze the DEGs encoding enzymes related to sucrose

and organic acid metabolism in HTN1 vs CKN1, HTN2 vs CKN2, and

HTN3 vs CKN3, 115 DEGs related to sucrose and organic acid
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metabolism were screened from RNA-seqdata. Among them, 74

DEGs related to sucrose metabolism were compared in three groups,

including 31 down-regulated genes and 26 up-regulated genes in every

group. There were 41 organic acid-related DEGs in the three groups,

including 21 down-regulated genes and 20 up-regulated genes in

HTN1 vs CKN1 group, and 19 down-regulated genes and 22 up-

regulated genes in HTN2 vs CKN2 and HTN3 vs CKN3 groups. In the

three groups, the genes related to sucrose and organic acid metabolism

were differentially expressed in different N-temperature treatments.

In the process of sugar metabolism, the DEGs were mainly

annotated in the metabolisms of sucrose, fructose, and glucose

(Figure 8A). Sucrose produced by photosynthesis is mainly

converted into hexose by invertase. After HT exposure, the

expression of Invertase was changed with the log2FC ranging from

-4.483 to 3.545 (Figure 8B). HTN1 and HTN2 decreased the

expression level of invertase and inhibited the conversion of sucrose

into fructose and glucose. Additionally, six genes related to SS were

found in 57 sucrose-related genes, of which HTN1 vs CKN1 and

HTN3 vs CKN3 were down-regulated and HTN2 vs CKN2 were up-
B C

D E F

A

FIGURE 3

The content of organic acid (A), citric acid (B), malic acid (C), tartaric acid (D), a-ketoglutaric acid (E) and succinic acid (F) in tomato young fruits
under different nitrogen (N1, N2, and N3) and temperature (CK, control; HT, high temperature) treatments. Different alphabets (a, b, and c) indicate
significant differences between means at P < 0.05 using the LSD method. Error bars indicate standard errors (n=3); T, N, and T × N represent
temperature treatment, N fertilizer treatment, and their interaction, respectively; *** represents the significant level at P < 0.001.
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FIGURE 4

The activity of three malate metabolism-related enzymes (PEPC (A), ME (B), and MDH (C)) and four citric acid metabolism-related enzymes (CS (D),
cyt-ACO (E), mit-ACO (F), and IDH (G)) in tomato young fruits under different nitrogen (N1, N2, and N3) and temperature (CK, control; HT, high
temperature) treatments. PEPC, phosphoenolpyruvate carboxylase; MDH, malate dehydrogenase; ME, malic enzyme; CS, citrate synthase; cyt-ACO,
cytosolic aconitase; mit-ACO, mitochondrion aconitase; IDH, isocitrate dehydrogenase. Different alphabets (a, b, and c) indicate significant
differences between means at P < 0.05 using the LSD method. Error bars indicate standard errors (n=3); T, N, and T × N represent temperature
treatment, N fertilizer treatment, and their interaction, respectively; *** represents the significant level at P < 0.001.
TABLE 2 Statistical results of transcriptome sequencing of young tomato fruit.

Sample Raw reads Clean reads Clean bases Q20 (%) Q30 (%) GC content (%)

CKN3-1 59711860 57773462 8389310670 98.09 94.41 43.56

CKN3-2 55895760 54011280 7945575293 98.14 94.50 43.45

CKN3-3 50871570 49138204 7212091624 98.12 94.52 43.18

CKN2-1 48281446 46532680 6894668437 98.12 94.47 43.59

CKN2-2 54235798 52550584 7745223564 98.10 94.44 43.50

CKN2-3 58843248 56702642 8324739785 98.16 94.60 43.72

CKN1-1 46859574 44977486 6626960613 98.00 94.15 43.18

CKN1-2 46719846 45752190 6726803489 98.44 95.11 43.38

CKN1-3 56527124 54751366 8076012865 98.22 94.74 43.30

HTN3-1 60819686 58929074 8628629685 98.19 94.67 43.43

HTN3-2 53312832 51365932 7550787419 98.07 94.38 43.39

HTN3-3 52782316 50938414 7415134572 98.19 94.74 43.49

HTN2-1 58130288 56421662 8110418149 98.12 94.49 43.59

HTN2-2 49348802 47686502 6967694734 98.21 94.72 43.62

(Continued)
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regulated. SPS had five DEGs, of which most were up-regulated at HT

exposure. The expression of hexokinase (HK) increased at HTN1 vs

CKN1, while it decreased at HTN2 vs CKN2 and HTN3 vs CKN3.

Glucose 6-phosphate dehydrogenase (G6PD) had three DEGs, two of

which were down-regulated. 6-phosphogluconate dehydrogenase

(6PGD) and phosphofructokinase (PFK) had four and eight DEGs,

respectively, of which most were down-regulated at HT exposure;

while the expression levels of pyruvate kinase (PK) increased at HT

exposure. These genes regulated the conversion between hexoses,

further promoting the accumulation of sugars. In addition, sucrose

transporters (sucrose transporter (SUT) and sugars will eventually be

exported transporters (SWEET)) changed significantly under different

nitrogen-temperature treatments. The expression of SUT decreased at

HTN1 vs CKN1, while it increased at HTN2 vs CKN2 and HTN3 vs

CKN3; conversely, the expression of SWEET increased at HTN1 vs

CKN1, while it decreased at HTN2 vs CKN2 and HTN3 vs CKN3,

which ensured sugar transportation.

The organic acid metabolism of tomato is mainly the

tricarboxylic acid cycle (TCA cycle), mainly involving citric acid

metabolism and malic acid metabolism. The expression of PEPC

increased under HTN1 vs CKN1 and HTN2 vs CKN2, while it

decreased at HTN3 vs CKN3. In the comparison of the three groups,

the expression of CS was down-regulated, while the expression of

IDH was up-regulated, and the increase of HTN2 vs CKN2 and

HTN3 vs CKN3 groups was higher than that of HTN1 vs CKN1. The

expression of cyt-ACO was up-regulated in HTN2 vs CKN2, it was

down-regulated in HTN1 vs CKN1 and HTN3 vs CKN3. The

differential expression of these genes regulates the synthesis and

degradation of citric acid. The expression of PEPC under HTN1

and HTN2 was increased, thus promoting the synthesis of malic acid.

The down-regulation of ME expression inhibited the oxidative

decarboxylation of malic acid to pyruvate. The expression levels of

MDH1 decreased at HT exposure. The expression ofMDH2 was up-

regulated in HTN1 vs CKN1 and HTN3 vs CKN3, it was down-

regulated in HTN2 vs CKN2. The differential expression of these

genes regulates the synthesis and degradation of malic acid.
4 Discussion

Global warming is causing temperature changes on a scale

unprecedented in the last 500 thousand years (Tiwari et al.,
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2020), and the frequency and intensity of global heat stress are

steadily increasing (IPCC, 2021), with significant negative impacts

on agricultural production. As an important agricultural country,

China must face the challenges posed by global warming. Against

this background, this study aims to simulate heat stress events

through pot control experiments and determine the response of

sugar and organic acid metabolism in tomato young fruits to heat

stress. These results will help to develop reasonable and effective

cultivation strategies for greenhouse tomatoes.
4.1 Appropriate N application improved the
sucrose metabolism and transport under
HT exposure

Soluble sugars, especially sucrose, fructose, and glucose, play a

central role in metabolite signaling and response to external stresses

in fruit structure and metabolism (Vijayakumar et al., 2021; Zhang

et al., 2022). Studies have shown that HT can promote the

accumulation of sugar content in fruits (Lokesha et al., 2019),

thereby increasing the cell osmotic potential, reducing the cell

water potential, and protecting the cell components from

pressure-induced damage (Alsamir et al., 2021). In this study, the

order of soluble sugar content among the six treatments was

HTN1>HTN2>HTN3>CKN2>CKN3>CKN1 (Figure 1D). This

result confirms that HT exposure significantly increases soluble

sugar content in fruits, which is consistent with previous reports

(Mesa et al., 2022). We also found that the soluble sugar content in

tomato fruit was more sensitive to heat stress, indicating that HT

environment was the main reason for the increase in soluble sugar

content compared to N fertilization. Soluble sugar components

responded differently to N levels under HT exposure. At the same N

level, HT exposure significantly reduced sucrose content, whereas

the sucrose content of HTN3 was significantly higher than that of

CKN1 (Figure 1A), indicating that excessive nitrogen application

under HT exposure may offset the negative effect of HT on sucrose.

Under HT exposure, N1 had the highest glucose and fructose

content, and with the increase of N application, the hexose

content decreased (Figures 1B, C), suggesting that excessive N

application under HT exposure may reduce the positive effect of

HT on hexose. The highest soluble sugar content was observed

under HTN1 treatment (Figure 1D), indicating that N1 was the
TABLE 2 Continued

Sample Raw reads Clean reads Clean bases Q20 (%) Q30 (%) GC content (%)

HTN2-3 55090132 53376982 7762799158 98.17 94.65 43.61

HTN1-1 50823150 49075548 7247235508 98.16 94.64 43.52

HTN1-2 51939976 50196488 7375184416 98.07 94.35 43.49

HTN1-3 52178858 50151088 7411129052 98.05 94.34 43.44

mean 53465125.89 51685088

total 962372266 930331584
Q20: The percentage of the number of bases with a Qphred value not less than 20 in the total number of bases. Q30: The percentage of the number of bases with a Qphred value not less than 30 in
the total number of bases. GC Content: The percentage of the sum of the quantities of G and C in the total number of bases in high-quality reads.
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optimal N application for tomato young fruits under HT exposure.

In conclusion, under the interaction of HT and nitrogen fertilizer,

the decrease in sucrose and the concomitant increase in glucose and

fructose indicate that sucrose degradation dominates its synthesis as

a strategy for tomato resistance to heat stress.

The content of soluble sugars and their components in fruits are

strongly regulated by metabolism and transport. Invertases (AI and

NI) irreversibly catalyze the hydrolysis of sucrose to glucose and
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fructose, which is crucial for the normal fruit development and

response to biotic and abiotic stresses (Qin et al., 2016; Chen et al.,

2021). In this study, AI activity of HTN2 and HTN3 was

significantly increased, and NI activity was significantly increased

at three N levels (Figures 2A, C). We also found a significant

negative correlation between sucrose content and NI, while glucose

content was significantly positively correlated with AI and NI

(Figure S2), indicating that the increase in invertase activity
B

C D

A

FIGURE 5

The volcano plot of DEGs. DEGs were selected by |log 2 FC| > 2 and padj < 0.05. The x-axis shows the fold change in gene expression, and the y-
axis shows the statistical significance of the differences. (A–C) represent the GO functions of DEGs at HTN1 vs CKN1, HTN2 vs CKN2, and HTN3 vs
CKN3. (D) The bar plot of DEG number generated by comparison of HTN1 vs CKN1, HTN2 vs CKN2, and HTN3 vs CKN3.
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regulated by N fertilizer under HT exposure was the reason for

sucrose degradation. In addition, N2 and N3 treatments under HT

exposure resulted in up-regulation of invertase genes, particularly

the cell wall invertase CWINV2 (Solyc10g085650.2 and

Solyc10g085640.1) (Figure 8), indicating that N fertilizer has a

positive regulatory effect on CWIN expression under HT

exposure. Up-regulation of CWIN expression accelerates sucrose

degradation while reducing sucrose concentration in the fruit,

promoting phloem unloading and generating sugar signals to

regulate cell division, ultimately providing more energy and

carbon scaffold for fruit development (Palmer et al., 2015; Li

et al., 2016). In the early stages of fruit development, tomato

fruits are a strong carbohydrate pool, and previous studies have

suggested that SSc plays an important role in the formation of the

pool because it can control the ability of tomato young fruits to

unload sucrose (Alsamir et al., 2021). However, in this study, the

results obtained have large variations. The SSc activity in response

to HT was significantly increased at N2 and N3 levels but still

significantly lower than AI (Figures 2A, B), and we could not find

any significant correlation between it and sucrose content (Figure

S2). Therefore, we speculated that N fertilizer regulates sucrose

unloading ability of tomato young fruits by affecting AI activity and

gene expression under HT stress, rather than SSc. SPS is a key

enzyme that promotes sucrose biosynthesis in the cytoplasm and

supports sugar exchange between the cytoplasm and vacuoles

(Quinet et al., 2019). In this study, SPS activity and gene

expression were up-regulated under HT exposure at three N

levels (Figures 2D, 8), suggesting that N fertilizer has a positive

regulatory effect on SPS under HT exposure. We found a significant
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positive correlation among SPS activity, AI, and SSc, indicating that

SPS can promote sucrose metabolism and contribute to increased

sucrose unloading in fruits (Gao et al., 2022). N fertilizer regulates

the interaction between sucrose and hexose in fruits by regulating

the activity and gene expression of AI, NI, SS, and SPS under HT

exposure, thereby controlling sugar content and composition.

Sucrose degrades to fructose and glucose, which are

phosphorylated by HK and then enter glycolysis and the TCA

cycle, providing energy for plant growth and development (Fernie

et al., 2004; Zhu et al., 2013). HK activity is negatively correlated

with hexose content (D'Aoust et al., 1999). In this study, HK

expression was down-regulated under HT exposure at N2 and N3

(Figure 8), which may lead to a decrease in HK activity, limiting

hexose metabolism and ultimately leading to hexose accumulation

(Figures 1B, C). In particular, HK2 (Solyc06g066440.3) was most

down-regulated and played an important role in hexose

accumulation at high temperatures. PFK expression was

significantly downregulated in HTN1 and HTN3, suggesting that

HTN1 inhibits the entry of glucose into glycolysis more strongly,

leading to glucose accumulation (Figure 1B). These results clarify

that N fertilizer increases the heat resistance of tomato fruit by

regulating hexose content and hexose sensor activity.

In addition to structural enzymes involved in sucrose

metabolism, sugar transporters (SUTs and SWETs) also play a key

role in the soluble sugar profile (Schroeder et al., 2013). In this

study, SUT1 (Solyc11g017010.2) was up-regulated in HTN2 vs

CKN2 (Figure 8), indicating that N2 treatment under HT could

increase the concentration of sucrose in phloem sap. SUT4 was

significantly up-regulated under HT exposure, indicating that it
B

C

A

FIGURE 6

GO enrichment column plot. Differentially expressed genes generated by a comparison of (A) HTN1 vs CKN1, (B) HTN2 vs CKN2, (C) HTN3 vs CKN3
are grouped into different GO terms of three ontologies: biological process, cellular component and molecular function.
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played an important role in sugar accumulation of tomato fruit

under HT exposure. The above results indicated that N fertilizer

had different regulatory effects on SUTs under HT exposure. Most

SWEETs were up-regulated under HT exposure (Figure 8), which

promoted the sugar flux between intercellular spaces or between

pulp cells and phloem, while SWEET2 (Solyc07g062120.4) and

SWEET1 (Solyc04g064610.3) were down-regulated, indicating that

these genes may act as exporters to extract sugar from the vacuolar

membrane and reduce its concentration, similar to that reported

previously (Yue et al., 2015). In summary, the changes in soluble

sugar content and components in fruits were not regulated by a few/

single genes, but rather by the joint efforts of multiple

metabolic pathways.
4.2 Nitrogen application improved CA
synthesis and TCA cycle, which contribute
to organic acid accumulations in tomato
young fruit

Sugar and organic acid metabolism are closely linked through

the TCA cycle. Organic acids are the material basis of the TCA cycle

and glycolysis and play an important role in fruit development (Li

et al., 2021). In this study, under HT exposure, citric acid content

significantly increased at N1 and N2 (Figure 3B), malic acid content
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increased at N1 (Figure 3C), while succinic acid, a-ketoglutaric
acid, and tartaric acid content significantly decreased at the three N

levels (Figures 3D–F). Therefore, HT at the N1 level significantly

decreased while the N2 and N3 levels significantly increased the

total acid content (Figure 3A).

The synthesis and conversion of citric acid are affected by the

activities of CS, ACO, and IDH (Liao et al., 2022). Chen et al. (2012)

found that citric acid content was positively correlated with CS and

negatively correlated with ACO and IDH. However, Liao et al.

(2019) found that the citric acid accumulation was regulated by

ACO and not CS. In this study, we found a significant negative

correlation between citric acid content and mit-ACO, whereas there

was no significant correlation with CS activity (Figure S2). Because

HT exposure significantly decreased CS activity at N3, we

speculated that N fertilizer-induced changes in organic acids are

normally triggered under excessive N conditions (Parisi et al.,

2004). Consistent with the changes in enzymes, CS gene

expression was downregulated under HT exposure. At the same

N level, HT exposure significantly reduced the activities of mit-

ACO and IDH, inhibiting citric acid degradation. This suggests that

the accumulation of citric acid content in response to HT under N

regulation is due to the weakened degradation of citric acid. IDH is

the major rate-limiting enzyme in the TCA cycle (Wu et al., 2023).

And it's also the key enzyme of C-N metabolism involved in N

metabolism, glyoxylate cycle, and other biochemical metabolic
B
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FIGURE 7

KEGG enrichment bubble plot. Differentially expressed genes generated by a comparison of (A) HTN1 vs CKN1, (B) HTN2 vs CKN2, (C) HTN3 vs
CKN3. Rich factor represents the ratio of the number of DEGs enriched by the pathway to the number of annotated genes. The color bar represents
the significance test p value adjusted for multiple hypothesis testing. The number represents the number of DEGs enriched in the pathway.
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pathways in plants (Anderson et al., 2000). Interestingly, although

the activity of IDH decreased during HT exposure, the expression of

IDH (Solyc01g005560.3, Solyc11g011930.3, Solyc02g082860.3) was

significantly upregulated (Figure 8), which may be due the fact that

tomato is forced to produce free oxygen under HT stress, which

increases the content of free ammonium in cells involved in the

glutamine synthase/glutamate synthase (GS/GOGAT) metabolic

pathway. Up-regulation of IDH expression provided the necessary

a-ketoglutarate for this metabolic pathway, which may reduce the

toxicity of free ammonium to plants.

N application can affect the nitrogen metabolism of fruits. This

study mainly investigated the regulation of nitrogen application on

sugar and organic acid metabolism in tomato young fruits under

HT exposure, with little involvement in its impact on fruit nitrogen

metabolism. Therefore, the results of this study are similar to those

of previous studies, but there are some differences, which may be

related to this. The next research work will focus on the effect of

nitrogen-temperature treatment on the nitrogen metabolism of

tomato fruit.
5 Conclusions

Nitrogen fertilizer, HT, and their interactions had significant

impact on the soluble sugar and organic acid content, composition,

and metabolic enzyme activity of tomato young fruits. N fertilizer

improved sugar metabolism under HT exposure by increasing the

activity of AI, NI, SSc, and SPS, upregulating the expression of

CWINV2, HK2, SPS, and PK, and increasing sucrose transport by
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upregulating SUT1, SUT4, and SWEETs, thereby improving the

heat tolerance of tomato fruits. In addition, N fertilizer upregulated

the gene expression of PEPC under HT exposure and

downregulated the expression of ACO, MDH, and ME, thereby

reducing the degradation of citric acid and malic acid, leading to the

accumulation of citric acid and malic acid. The soluble sugar

content and organic acid content were the highest under HTN1

treatment, while the soluble sugar content was the lowest under

HTN3 treatment. Therefore, we concluded that N fertilizer

increased the heat resistance of tomato young fruits and

improved fruit quality mainly due to the upregulation of sucrose

metabolism enzyme gene expression, and N1 was the optimal

nitrogen application under HT exposure. These results will help

to further develop reasonable and effective tomato fertilization

strategies in the context of global warming.
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Identification of quantitative trait
loci controlling nitrogen use
efficiency-related traits in rice at
the seedling stage under salt
condition by genome-wide
association study

Nhung Thi Hong Phan1,2*, Xavier Draye1, Cuong Van Pham2

and Pierre Bertin1

1Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2Agronomy
Faculty, Vietnam National University of Agriculture, Hanoi, Vietnam
Rice cultivation is facing both salt intrusion and overuse of nitrogen fertilizers.

Hence, breeding new varieties aiming to improve nitrogen use efficiency (NUE),

especially under salt conditions, is indispensable. We selected 2,391 rice

accessions from the 3K Rice Genomes Project to evaluate the dry weight

under two N concentrations [2.86 mM – standard N (SN), and 0.36 mM – low

N (LN)] crossed with two NaCl concentrations [0 (0Na) and 60 mM (60Na)] at the

seedling stage. Genome-wide association studies for shoot, root, and plant dry

weight (DW) were carried out. A total of 55 QTLs – 32, 16, and 7 in the whole,

indica, and japonica panel – associated with one of the tested traits were

identified. Among these, 27 QTLs co-localized with previously identified QTLs

for DW-related traits while the other 28 were newly detected; 24, 8, 11, and 4

QTLs were detected in SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively,

and the remaining 8 QTLs were for the relative plant DW between treatments.

Three of the 11 QTLs in SN-60Na were close to the regions containing three

QTLs detected in SN-0Na. Eleven candidate genes for eight important QTLs

were identified. Only one of them was detected in both SN-0Na and SN-60Na,

while 5, 0, 3, and 2 candidate genes were identified only once under SN-0Na,

LN-0Na, SN-60Na, and LN-60Na, respectively. The identified QTLs and genes

provide useful materials and genetic information for future functional

characterization and genetic improvement of NUE in rice, especially under

salt conditions.

KEYWORDS

GWAS, 3K Rice Genomes Project, NUE, saline, dry weight
Abbreviations: SN-0Na, standard N and 0 mM NaCl treatment; LN-0Na, low N and 0 mM NaCl treatment;

SN-60Na, standard N and 60 mMNaCl treatment; LN-60Na, low N and 60 mMNaCl treatment; SDW, shoot

dry weight; RDW, root dry weight; PDW, whole plant dry weight; SRR, ratio of shoot dry weight on root dry
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1 Introduction

Rice is a staple food for more than half of the world’s

population. Approximately 75% of the total area of harvested rice

in the world is cultivated in South and South-East Asia countries

(FAO, 2021). However, these regions are facing two severe

environmental concerns: salt intrusion and overuse of nitrogen

fertilizers (Heffer and Prud’homme, 2017; Smajgl et al., 2015;

Eckstein et al., 2019; Wassmann et al., 2019). In the past five

decades, N fertilizer consumption is an approximately 5-fold

increase in the world, with a 2-fold and 15-fold increase in

developed and developing countries, respectively (IFA, 2019).

Among them, approximately 20% of the total N fertilizers are

used for rice (Ladha et al., 2005). However, rice plants could

absorb less than half of the N applied, and the rest is wasted in

soil, water, and the atmosphere (Lea and Miflin, 2003; Ladha et al.,

2005; Udvardi et al., 2021). Therefore, improving nitrogen use

efficiency (NUE) for rice under saline conditions has become of

primary importance.

NUE is defined as the yield (grain, starch, biomass, depending

on the authors) per N applied unit. It can be partitioned into two

processes within the plant: absorption NUE (that refers to the

capacity of the plant to absorb the applied N) and physiological

NUE (that refers to its efficiency to use the absorbed N for metabolic

purposes) (Ladha et al., 2005; Murtaza et al., 2013; Nguyen et al.,

2014; Beatty and Good, 2018). NUE is strongly correlated with plant

growth and development affecting root morphology, tiller number,

biomass, and yield, and is governed by multiple interacting genetic

and environmental factors (Ladha et al., 2005; Nguyen et al., 2016;

Sharma et al., 2021; Sandhu et al., 2021; Phan et al., 2023).

Therefore, research on NUE has often been related to these traits,

especially dry weights. Identification of the QTLs (quantitative trait

loci) associated with NUE, or NUE-related traits is an important

step to improve NUE in rice.

Salinity reduces NUE by affecting all processes of N metabolism

in the plant, thus causing a severe decline in crop production. Salt

inhibits NO3
-, N content, glutamine synthetase, and nitrate

reductase but enhances NH4
+ content and glutamate synthase in

rice (Hoai et al., 2003; Wang et al., 2012; Phan et al., 2023). Notably,

NH4
+ increase does not always bring advantages because high NH4

+

uptake cannot always be assimilated, inducing ion toxicity and

decrease in NUE (Ouyang et al., 2010). The subsequent decrease in

N uptake and assimilation causes a decrease in photosynthesis,

antioxidant enzymes activity, dry weight, and grain yield

(Abdelgadir et al., 2005; Wang et al., 2012; Chen et al., 2022;

Phan et al., 2023). The effects of salt on rice may alter the

expression of some genes controlling N uptake and N

assimilation: OsNRT family, OsAMT family, OsNR1, OsGS1.2,

OsNADH-GOGAT, or OsFd-GOGAT (Wang et al., 2012; Rohilla

and Yadav, 2019; Huang et al., 2020; Decui et al., 2022).

Interestingly, some genes controlling N uptake were found to be

associated with salt tolerance/susceptibility in rice. Shi et al. (2017)

detected that OsNRT2.2, associated with nitrogen uptake in rice,

was also related to salt susceptibility, whereas Batayeva et al. (2018)

elucidated that OsAMT1.3, regulating ammonium transport, was

also associated with salt tolerance under severe salinity stress. In
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previous studies, we demonstrated that applying high N rates under

saline condition in rice did not result in a significant increase in

grain yield but caused significant reduction in both NUE and dry

weight; NUE was reduced by increasing either salinity or nitrogen

levels, and the reduction was mainly linked to absorption NUE

(Phan et al., 2017, 2023).

Previously, a large number of QTLs for NUE and its related

traits have been detected under different N concentrations by using

bi-parental linkage mapping populations (Fang and Wu, 2001;

Lafitte et al., 2002; Price et al., 2002; Hittalmani et al., 2003; Lian

et al., 2005; Li et al., 2005; Nguyen et al., 2016; Zhou et al., 2017).

Indeed, eight QTLs for plant height were identified under low or

high N levels (5 and 40 mg L-1) in a double-haploid population

consisting of 123 lines derived from a cross between IR64 and

Azucena (Fang and Wu, 2001). Genomic regions for plant height,

dry weight, and relative dry weight under two N treatments (1N -

normal N and 1/6N - low N level) were identified by using 239 RILs

from a cross between Zhenshan 97 and Minghui 63 (Lian et al.,

2005). Also, 14 QTLs for NUE component traits and 63 QTLs for

NUE-related traits were identified under three N levels (1N, 1/4N,

and 1/8N) in hydroponics by using 174 RILs from the cross IR64/

Azucena (Nguyen et al., 2016). Such bi-parental mapping method

presents high statistical power due to using many individuals

sharing an identical genotype at a given locus; however, it has a

low resolution because of the limited number of recombination

events in the development of the population.

In recent years, a lot of QTLs or candidate genes have been

identified by genome-wide association study (GWAS) by using high-

density genome-wide single nucleotide polymorphism (SNP)

detected by next-generation sequencing of unrelated individuals in

a population. The detected QTLs showed a high resolution due to the

long recombination histories of natural populations (Shi et al., 2017;

Batayeva et al., 2018; Naveed et al., 2018; Liu et al., 2019). A

combination of GWAS, gene annotation based on high-quality

reference genomes, and haplotype analysis is an effective way to

identify candidate genes for the tested traits and elite materials that

are useful for future breeding andmolecular dissection for rice (Wang

et al., 2017; Naveed et al., 2018; Norton et al., 2021). Regarding NUE

traits, OsNAC42, OsNPF6.1, and OsNLP4 have been detected by

GWAS in rice recently (Tang et al., 2019; Yu et al., 2021). GWAS can

be applied in a large amount of genotypes and save time compared to

conventional methods. In the last decade, 29 million SNPs were

discovered by sequencing 3,010 rice accessions from 89 countries in

the 3,000 Rice Genomes Project (3K RGP), providing useful

information for genetic research and breeding (3K RGP, 2014; Li

et al., 2014). However, most QTLs and genes mentioned above have

been detected under non-saline conditions. To date, no GWAS has

been conducted yet to examine a large rice population for NUE-

related traits under saline condition. Using the 3K RGP database,

GWAS was used to detect a large number of QTLs related to

agronomical traits: heading date, seedling length, 100-grain weight,

grain width, grain length, culm diameter, culm length, culm number,

leaf width, leaf length, leaf angle, panicle type, [https://snp-

seek.irri.org/_gwas.zul]. We focused on finding genetic information

related to the dry weight which is one of the most important NUE-

related traits, under varying N and NaCl treatments.
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2 Materials and methods

2.1 Plant growth

We selected 2,391 rice accessions from 75 countries from the

3,000 RGP (Supplementary Table S1; 3K RGP, 2014; Li et al., 2014)

for the main experiment (main EXP). Then, a selection of 1,332

accessions from 68 countries was realized based on low relatedness

criteria revealed by the phylogenetic tree, in order to realize a

confirmatory experiment (confirmatory EXP). It was created by

Archaeopteryx Tree image in TASSEL 5.2.57 by using the neighbor-

joining cladogram function of 2,391 accessions with 5,902 SNPs

(Bradbury et al., 2007) (Supplementary Figure S1). According to the

3K RGP, the accessions belonged to nine variety types, viz.

aromatic, aus, temperate japonica, tropical japonica, subtropical

japonica, indica-1A, indica-1B, indica-2, and indica-3, and the

admixture (japonica-admixed, indica-admixed, and admixed).

Confirmatory EXP was conducted with fewer accessions than the

main EXP aiming to reduce the competition between the genotypes

by increasing the space between the plants.
2.2 Main experiment

A hydroponic experiment was performed with 2,391 rice

accessions in a phytotron at the Université Catholique de

Louvain, Belgium, from March to April 2019. The seeds were

sown directly in holes on extruded polystyrene plates floating in

40L tanks, 74.5cm length x 54.5 cm width x 10.0 cm height, at a

density of eight seeds of the same genotype per hole, 630 holes per

tank with each hole for each genotype. The tanks contained the

Yoshida solution (Yoshida et al., 1976) which was renewed at 7, 10,

14, and 17 days after the treatment. The pH was adjusted daily

between 5.0 and 5.5 with KOH 2M or HCl 1M. One week after

sowing, five uniform plants per hole were maintained up to the end

of the experiment. The climatic conditions in the phytotron were

maintained at 30°C/25°C day/night, 85%-95% relative humidity,

12h photoperiod, and 210 μmol m-2 s-1 photon flux density at the

top of the tanks.

At the sowing time, rice seeds were put in the Yoshida solution

with two different N concentrations: standard N (SN, 2.86 mM N)

and low N (LN, 0.38 mM N). At the same time, two salinity levels,

viz. 0 mM NaCl (0Na) and 60 mMNaCl (60Na) were applied in the

solutions. Thus, two N concentrations crossed with two NaCl levels

led to a total of four treatments. Each treatment was carried out with

2,391 accessions; thus 4 tanks were used for each treatment. The

experimental design was laid out as an augmented RCBD (Federer

and Raghavarao, 1975) with four replications, comprising each of 4

tanks per treatment. Among the 2,391 accessions, 2,379 appeared

only once (i.e. 8 seeds at sowing but remaining 5 plants in one hole)

in each replicate, thus 594-595 accessions per tank. The 12

remaining accessions were replicated once in each of the four

tanks. The 23-24 remaining holes in each tank were filled by

three unsequenced genotypes to estimate the effect of the tanks.

Hence, 4 treatments were conducted in 16 plates/tanks, and 50,400
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plants. The tanks were moved in the phytotron twice a week. The

plants were harvested after 21 days of treatment.
2.3 Confirmatory experiment

The confirmatory EXP was conducted to confirm the results of

the main experiment, in an experimental design allowing lower the

competition between plants. It was carried out in a greenhouse at

UCLouvain, Belgium, from November to December 2019. The two

N concentrations and NaCl levels were maintained as in the main

EXP, whereas the number of accessions, plant density, duration of

treatment, and climatic conditions were modified.

To reduce the competition between the accessions, we increased

the space between the plants; thus, the number of accessions was

reduced to 1,332 instead of 2,391 accessions in the main EXP,

because of space constraints. Three seeds of each accession were

sown in each hole of the plate, then two uniform seedlings were

maintained after 5 days. Each plate – each tank – contained 360

holes with each genotype per hole. The space between the holes was

3 cm x 3.3 cm. Four tanks were used for each treatment. Among the

1,332 accessions from 3K RGP, 1,316 appeared only once, thus 329

accessions per tank. The 16 remaining accessions were replicated

once in each of the four tanks. The other 15 remaining holes in each

tank were filled by three unsequenced genotypes to calculate the

effect of the tanks. In total, the experiment was conducted in 16

tanks, and 11,520 plants and was laid out as an augmented RCBD

(Federer and Raghavarao, 1975). The tanks were moved inside the

greenhouse twice a week.

The climatic conditions were the same as in the main EXP,

except for the photoperiod which was set to 16h, in order to speed

up growth. The solution treatments were applied and renewed as in

the main EXP up to 14 days, then the plants were harvested after 17

days of treatment, which was adequate for screening.
2.4 Phenotyping

Shoot dry weight (SDW) and root dry weight (RDW) of each

accession were determined after 21 days in the main EXP and 17

days in the confirmatory EXP. The shoot and root samples were

collected individually, and oven-dried (48h at 70°C), and then dry

weights were determined. Then, the data of SDW and RDW of each

treatment were adjusted by augmentedRCBD package in R software

(Aravind et al., 2020) based on the check-varieties in both EXPs.

Plant dry weight (PDW) is the sum of SDW and RDW of the

same plant.

Shoot/root ratio (SRR) was calculated by SDW per RDW of

each accession.

Relative plant dry weight (RePDW) was calculated by the

following formulas:

RePDWLN−0N=SN−0Na =  PDWLN−0Na= PDWSN−0Na (1)

RePDWSN−60Na=SN−0Na =  PDWSN−60Na= PDWSN−0Na (2)
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RePDWLN−60Na=LN−0Na =  PDWLN−60Na= PDWLN−0Na (3)

RePDWLN−60Na=SN−60Na =  PDWLN−60Na= PDWSN−60Na (4)
2.5 Genome-wide association study

A total of 1,011,601 GWAS SNPs were downloaded from the

Rice SNP-Seek Database [https://snp-seek.irri.org, (Mansueto et al.,

2016)]. We selected the SNPs with a minor allele frequency > 5%

and missing rates< 5%, resulting in 588,792 SNPs. Subsequently, we

randomly selected 40% of these SNPs and got 235,210 SNPs.

The GWAS was performed with a Factored Spectrally

Transformed Linear Mixed Model (FaST-LMM) by FaST-LLM

software (Lippert et al., 2011). We randomly selected 2.5% of

these SNPs for measuring genetic similarities between the

accessions. Principal components analysis of the 588,792 SNPs

was done with the default setting by PLINK 1.9 (Purcell et al.,

2007). Then, the eigenvalue of the top three components was

selected as covariate data. The significant threshold was set at p ≤

0.0001 (-log10p-value ≥ 4).
2.6 Linkage disequilibrium decay

We analyzed LD decay in four populations, viz. whole panel 1

with 2,391 accessions, whole panel 2 with 1,332 accessions, indica

panel 1 with 1,418 accessions, japonica panel 1 with 652 accessions,

aus panel 1 with 182 accessions, and aromatic panel 1 with 66

accessions. Random selection of 20% of the 588,792 SNPs was used

to calculate the LD decay rate. We calculated r2 as an estimation of

LD using PLINK software version 1.9 (Purcell et al., 2007). The

syntax was “–r2 –ld-window-kb 1000 –ld-window 9999 –ld-

window-r2 0”. Marker pairs were grouped into bins of 1 kb and

the average r2 value of each bin was calculated. The LD decay rate

was measured as a distance at which the average r2 dropped to half

of its maximum value (Huang et al., 2010; Shi et al., 2017).
2.7 Haplotype analysis and candidate gene
identification

The process to identify candidate genes was described by Wang

et al. (2017). Multiple significant SNPs that were in a range of

linkage disequilibrium (LD) decay rates were considered as a single

QTL. Among all detected QTLs, we focused on the most important

QTLs to identify candidate genes by gene-based association analysis

and focused on the QTLs detected in both whole panels instead of in

either indica or japonica panels. The most important QTLs were

selected when they met at least one of the two following criteria:

either consistently identified in both EXPs or close to previously

reported cloned genes or fine-mapped QTL. We identified

candidate genes for each important QTL in the following steps.

Firstly, we identified all genes located inside the important QTL

region (± 100 kb from lead SNP) from the Rice Genome Annotation
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Project database [http://rice.uga.edu/cgi-bin/gbrowse/rice/

(Kawahara et al., 2013)]. Secondly, all available SNPs inside these

QTLs were searched from the 32 M SNPs data generated from 3 K

RGP in the Rice SNP-Seek Database [https://snp-seek.irri.org,

(Mansueto et al., 2016)]. Thirdly, all SNPs with minor allele

frequency less than 0.05 and missing rate over 5% were removed

to maintain only high-quality SNPs which were used to analyze

GWAS by the multi-locus GWAS analysis [mrMLM package in R

software (Zhang, 2019)]. The threshold was defined as -log10p-value

≥ 3 (Naveed et al., 2018). Then, for each candidate gene, we

assembled the different haplotypes based on all polymorphic

SNPs contained in the gene region by using PLINK software

version 1.9 (Purcell et al., 2007). Finally, we tested the significance

of phenotypic differences among major haplotypes (containing

more than 10 accessions per haplotype) through ANOVA with

the post-hoc Tukey HSD test. The genes with a significance level p-

value< 0.05 and significantly different between the major haplotypes

in both EXPs were considered to be candidate genes of the

target traits.
2.8 Statistical analysis

Pearson’s correlation coefficients between pairs of tested traits,

ANOVA, and Tukey’s tests were conducted by using R software

ver.3.4.2 (R Development Core Team, 2019).
3 Results

3.1 Phenotypic variation and traits
correlations

There was a wide range of variation for SDW, RDW, and PDW

traits among the tested accessions, and the variation differed

depending on N and NaCl treatments (Table 1 and Figure 1).

Among them, SN-60Na performed the largest variation in SDW,

followed by SN-0Na (in the main EXP) and LN-60Na (in the

confirmatory EXP), and finally the LN-0Na treatment. Among the

accessions, Babaomi, Molok, Aomierte 168, Local::IRGC 53300-1,

Nona Bokra, ARC 11867, Xitto, Moddai Karuppan, Dawk Put,

Hansraj, and Parn A 191 produced much higher SDWs than the

average value in the different treatments.

The correlations among the traits in different treatments of the

whole panel 1 (2,391 accessions in the main EXP) and panel 2

(1,332 accessions in the confirmatory EXP) were calculated

(Supplementary Table S2C). In both EXPs, there were strong

correlations between SDW, PDW, and RDW. Among the four

treatments, the correlation between SDW and RDW in LN-0Na

(0.69 in the main EXP and 0.75 in the confirmatory EXP) was

weaker than those in the three other treatments (0.90 and 0.87, 0.93

and 0.87, 0.76 and 0.86 in SN-0Na, SN-60Na, and LN-60Na in the

main and confirmatory EXP, respectively).

N, NaCl and their interactions showed the significant effect on

all the dry weights (Supplementary Tables S2A, B). SDW decreased

with either N-deficiency or NaCl application. RDW, however, was
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reduced by the presence of NaCl but increased under N-deficiency

treatment. Compared with the results of the main EXP, DWs in LN-

0Na in the confirmatory EXP were slightly higher, and DWs in SN-

60Na slightly lower than in the main EXP. DWs in LN-60Na and

SN-0Na in both EXPs were similar (Table 1).

The four genetic subgroups - indica, japonica, aromatic, and aus

– showed similar trends in both EXPs. Comparing these subgroups

with each other, SDW of indicas was the highest, followed by

japonicas, and then by aus under SN-0Na – the standard Yoshida

solution – in both EXPs. SDW of the aromatic accessions was much

lower than that of the indica type in the main EXP, whereas there

were similar in the confirmatory EXP (Supplementary Figure S3).

Under both LN-0Na and SN-60Na, indica and aromatic showed the

highest SDW, followed by japonica, and finally aus. Under LN-60Na,

the highest SDW was found in aromatic, followed by both indica and

japonica, and finally aus. Thus, the aromatic accessions appear to

better resist the simultaneous decrease in N and rise in NaCl

application than the other genetic subgroups, as far as PDW is

concerned, whereas aus accessions always showed the lowest PDWs.
3.2 Principal component analysis and LD
decay

The principal component analysis of 2,391 and 1,332 accessions

classified them into four main subgroups: indica, japonica, aromatic,

and aus (Figure 2). The admixed accessions spread out the whole plot.

The top three principal components (PC) of the analysis of 2,391

accessions explained 43.1 (PC1), 17.2 (PC2), and 7.3% (PC3) of the

total variation while those of the analysis of 1,332 accessions explained

43.0, 17.3 and 7.4% of the total variation. Hence, the population

structure should be considered in the following GWAS analysis.
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LD decay of both whole panels (2,391 and 1,332 accessions) and

the four main subgroups (indica – 1,418 accessions and japonica –

652 accessions, aus – 182 accessions, and aromatic – 66 accessions

from panel 1) were analyzed quickly with 1 kb bin. The results

indicated that the LD decay in the indica panel occurred on shorter

distances than in the aus, japonica, and aromatic panels (Figure 3).

The LD decayed to its half-maximum within around 134 kb for

indica, 186 kb for aus, 312 kb for japonica, 390 kb for aromatic, and

280 kb for two whole panels.
3.3 Detection of QTLs by GWAS

In this section, we present the results of GWAS of all accessions

of both panels (2,391 accessions and 1,332 accessions in the main

and confirmatory EXP, respectively) and their subpopulations

(1,418 indica accessions and 652 japonica accessions in the main

EXP, and 767 indica accessions and 375 japonica accessions in the

confirmatory EXP). For each trait, we analyzed GWAS with

phenotypic data three times: with 2,391 accessions in the main

EXP, with 1,332 accessions in the confirmatory EXP, and with the

same 1,332 accessions extracted from the 2,391 ones in the main

EXP. The Manhattan and Q-Q plot of the GWAS runnings is shown

in the Supplementary Figure S4. The Q-Q plots for the GWAS

results indicated that the model was well-fitted to the data.

We selected the confirmed QTLs, i.e. those that were identified

in both EXPs. Subsequently, a total of 55 confirmed QTLs for one of

the measured traits were detected in each of the four treatments

(Table 2 and Supplementary Table S4). These QTLs were named

according to the report of McCouch and CGSNL (Committee on

Gene Symbolization, Nomenclature and Linkage, Rice Genetics

Cooperative) (2008): qPDWNS, qRDWNS, qSDWNS, qRePDWNS,
TABLE 1 SDW, RDW, and PDW of rice accessions under different N and NaCl treatments at the seedling stage in the two experiments.

Trait Treatment

The main EXP The confirmatory EXP

Mean ± SD (g) Range (g) CV (%) Mean ± SD (g) Range (g) CV (%)

SDW

SN-0Na 0.052 ± 0.026 0.004–0.190 50.18 0.059 ± 0.022 0.011–0.160 37.63

LN-0Na 0.028 ± 0.008 0.007–0.063 28.64 0.035 ± 0.011 0.009–0.076 30.04

SN-60Na 0.043 ± 0.022 0.003–0.179 51.11 0.032 ± 0.013 0.004–0.097 41.78

LN-60Na 0.027 ± 0.008 0.005–0.058 29.29 0.025 ± 0.010 0.003–0.071 41.16

RDW

SN-0Na 0.012 ± 0.007 0.002–0.056 58.11 0.013 ± 0.005 0.002–0.040 42.75

LN-0Na 0.012 ± 0.004 0.002–0.042 35.27 0.016 ± 0.006 0.002–0.040 38.30

SN-60Na 0.010 ± 0.006 0.002–0.047 63.08 0.008 ± 0.004 0.002–0.031 51.67

LN-60Na 0.009 ± 0.003 0.002–0.031 35.15 0.010 ± 0.005 0.002–0.047 48.89

PDW

SN-0Na 0.063 ± 0.032 0.005–0.229 50.83 0.072 ± 0.027 0.013–0.198 37.71

LN-0Na 0.040 ± 0.011 0.012–0.092 28.42 0.051 ± 0.016 0.014–0.107 30.69

SN-60Na 0.053 ± 0.028 0.004–0.221 52.75 0.039 ± 0.017 0.004–0.128 42.74

LN-60Na 0.036 ± 0.011 0.007–0.084 29.21 0.035 ± 0.015 0.003–0.118 42.00
SD, standard deviation; CV, coefficient of variation; SN-0Na, no NaCl added and standard N concentration; LN-0Na, no NaCl added and low N concentration; SN-60Na, 60 mMNaCl added and
standard N concentration; LN-60Na, 60 mM NaCl added and low N concentration.
The main EXP: 2,391 accessions; the confirmatory EXP: 1332 accessions.
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(PDWNS, RDWNS, SDWNS, RePDWNS, refers to plant dry

weight, root dry weight, shoot dry weight, and the relative plant

dry weight between treatments of nitrogen and salt concentrations,

respectively) followed by the chromosome number and the detected

QTL number in this chromosome. Among these 55 QTLs, 32, 16,

and 7 were identified in the whole, the indica, and the japonica

panel, respectively. QTLs were detected neither in all three panels

together nor in both japonica or indica panels. There were some

hotspots containing 5 pairs of QTLs detected in both the indica and

the whole panel, viz., qPDWNS1.3 and qPDWNS1.4, qSDWNS1.2

and qSDWNS1.3, qPDWNS8.2 and qPDWNS8.3, qRDWNS8.1 and

RDWNS8.2, and qSDWNS8.2 and qSDWNS8.3. Only one other
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hotspot contained a pair of QTLs detected in both the japonica and

the whole panel: qRePDWNS4.2 and qRePDWNS4.3.

More QTLs (24) were detected under standard conditions

(SN-0Na) than in the three other treatments (8, 11, and 4 QTLs

under LN-0Na, SN-60Na, and LN-60Na, respectively). Among the

32 QTLs detected in the whole panel, 12 were found in SN-0Na, 6

in LN-0Na, 6 in SN-60Na, 3 in LN-60Na, and 5 for the relative

PDW between treatments. In the indica panel, the number of

QTLs detected for these five treatments and relative PDWwas 8, 1,

5, and 1, respectively, while in the japonica there were 4, 1, 0, and

0, respectively. One QTL for relative PDW between salinity and

non-salinity under standard N was identified in the indica panel,
FIGURE 1

Frequency distribution of phenotypic values for SDW, RDW, and PDW in four treatments in two hydroponic experiments on the Yoshida et al. (1976)
solution with 2,391 accessions (the main EXP) or 1,332 accessions (the confirmatory EXP) from the 3K Rice Genomes Project. LN: low N, 0.36 mM N,
SN: standard N, 2.86 mM N, 0Na: no NaCl added, 60Na: 60 mM NaCl added, dashed line: mean value of the DWs in each treatment.
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and 1 QTL for the relative PDW between low and standard N

under saline treatment was detected in the japonica panel. None of

the QTLs was detected in all four treatments simultaneously.

Three QTLs were detected in SN-60Na overlapped with three

QTLs detected in SN-0Na: qPDWNS1.2, qSDWNS1.1,

qPDWNS7.2 overlapped with qPDWNS1.3, qSDWNS1.2, and

qPDWNS7.1, respectively. Another QTL qPDWNS3.4 in SN-0Na

was detected in an overlapping region containing qPDWNS3.3

detected in LN-0Na.
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3.4 Candidate genes for important QTLs

Among the 55 QTLs, we focused on some important QTLs in the

whole panel – i.e. either with a lot of SNPs that passed the threshold or

close to previously reported cloned genes or fine-mapped QTLs – to

identify candidate genes. Thus, we detected 12 important QTLs, viz.

qRDWNS2.1, qPDWNS3.2, qSDWNS3.2, qPDWNS3.4, qPDWNS7.1,

qSDWNS7.1, qPDWNS7.2, qPDWNS7.3, qPDWNS8.2, qRDWNS8.2,

qSDWNS8.2, and qPDWNS9.1 that we retained for the further step of
FIGURE 2

PCA plot (PC1 and PC2) of five genetic groups of rice accessions (the four Oryza sativa subspecies indica, japonica, aus, and aromatic and admixed
accessions) using 588,792 SNPs from the 3K Rice Genomes Project. Left figure: PCA of 2,391 genotypes; right figure: PCA of the subset of 1,332
selected genotypes.
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identifying candidate genes. Afterward, we were able to narrow down to

a relatively small number of candidate genes, using a resolution of 200

kb for all identified important QTLs, resulting in 242 genes

(Supplementary Table S6). Subsequently, we re-analyzed GWAS for

the target traits by gene-based analysis of each QTL by multi-locus

mrMLM (Zhang, 2019). Finally, matching SNPs passing the threshold

in the gene-based analysis of the 242 genes above allowed us to select 12

genes harboring SNPs passing the threshold – -log10p-value ≥ 3 – to test

significant phenotypic differences between haplotypes (Supplementary

Table S7). Apart from the 12 genes above, we selected 3 additional

genes based on their functional annotation in the database (Kawahara

et al., 2013) for haplotype analysis (Supplementary Table S6). The

values of the target traits for the different haplotypes in each of the 15

genes were analyzed through ANOVA. Significant differences were

found among the major haplotypes in 11 of the 15 genes, which could

be considered promising candidates associated with the target traits

(Table 3; Figure 4; Supplementary Table S8). Meanwhile, 8 candidate

genes were shortlisted from the 12 genes that passed the threshold

(-log10p-value ≥ 3), and 3 other candidate genes that did not pass the

threshold were identified from the selected genes in the annotation.

Among them, six candidate genes of three important QTLs related to

DW under SN-0Na were shortlisted, viz. LOC_Os03g58350 and

LOC_Os03g58390 i n qPDWNS3 .2 and qSDWNS3 .2 ;

LOC_Os03g62480 and LOC_Os03g62490 in qPDWNS3.4;

LOC_Os07g11290 and LOC_Os07g11490 in qPDWNS7.1. Under SN-

60Na, four candidate genes of three QTLs were detected, viz.

LOC_Os02g38230 and LOC_Os02g38450 in qRDWNS2.1,

LOC_Os07g11420 and LOC_Os07g11490 for qSDWNS7.1 and

qPDWNS7.2. Under LN-60Na, two candidate genes were detected in

qPDWNS9.1: LOC_Os09g20350 and LOC_Os09g20480. Finally, no

candidate gene related to DW in LN-0Na was selected.
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Based on the haplotype analysis and candidate genes identification,

many useful accessions with high dry weight were shortlisted for future

functional characterization related to NUE under saline condition. The

accessions with haplotype ‘CATTTACGACC’ in LOC_Os02g38230

(OsNAR2.1) gene showed high RDW, e.g. Dawk Put, Nona Bokra,

Ex Ebokozuru, Aus 78-125, Tsimatahopaosa, among other genotypes.

The accessions with haplotype ‘AGGTGATAGAGCACCAAGAG

GAGGAGGCCAAATATAA’ in LOC_Os07g11420 and haplotype

‘AAACTTAAC’ in LOC_Os07g11490 produced higher SDW and

PDW than the accessions containing other haplotypes. These

genotypes were – among others – Dawk Put, Do Khaw, Aus 278,

Doc Phung D12, LG 9274, Khao Hae in LOC_Os07g11420 and Khie

Tom, Patnai 31-679, Kyauk Kyi, Suga Pankha, Quahng Luang, Toun,

Pokkali, ARC 14737 in LOC_Os07g11490. The accessions with

haplotype ‘TCATCAC’ in OsDREB6 (LOC_Os09g20350) gene

showed higher PDW under LN-60Na conditions, e.g. Nona Bokra,

Matali, Sachi, Mestre, RD 19, Babaomi, Sipot, San Bao Gu, Doc Phung

D12 (Supplementary Table S9).
4 Discussion

This study investigated the dry weights of rice grown under

different conditions of N and NaCl concentrations. The results

showed that SDW decreased with either N-deficiency or NaCl

application. It may be linked to a reduction in chlorophyll

content, N uptake, N content, and photosynthetic capacity

(Abdelgadir et al., 2005; Song et al., 2019; Phan et al., 2023).

Moreover, under N-deficiency, rice plants do not have enough

energy to maintain antioxidant activities to cope with oxidative

damage, leading to over-accumulation of Na+ and decrease in
FIGURE 3

LD decay in whole panel 1 containing 2,391 accessions, whole panel 2 containing 1,332 accessions, and four subspecies indica, japonica, aus, and
aromatic using 117,560 SNPs from the 3K Rice Genomes Project. Whole panels 1 and 2 share the same trend so that the curve for whole panel 1 is
partially hidden by the curve of whole panel 2.
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TABLE 2A QTLs were detected for dry weight traits under different N and NaCl treatments in the whole panel in both EXPs.

No. QTL Trait Treatment Chr. Peak
position Pvalue Known genes/QTLs

1 qPDWNS1.1 PDW SN-60Na 1 23013091 1.27E-06

_Na+ uptake, K+ uptake, ratio Na+/K+ (Koyama et al., 2001)

_Root fresh weight (Li et al., 2005)

_Drought tolerance (Hoang et al., 2019)

2 qPDWNS1.4 PDW SN-0Na 1 29822571 2.73E-05

3 qPDWNS3.2 PDW SN-0Na 3 33327465 3.66E-06
_Fresh weight, dry weight, plant height, agNUE in low N (Nguyen et al.,
2016)

4 qPDWNS3.4 PDW SN-0Na 3 35608381 3.44E-06

_N uptake: OsAMT3.2 (Suenaga et al., 2003)

_Length of the third seedling leaf: qLT3-1 (Cui et al., 2002)

_1st internode length: qIN1-3 (Yamamoto et al., 2001)

_Plant height in low N (Nguyen et al., 2016)

5 qPDWNS5.1 PDW SN-0Na 5 21591128 1.65E-06 _Fresh weight, shoot dry weight in standard N (Nguyen et al., 2016)

6 qPDWNS7.1 PDW SN-0Na 7 6200245 1.13E-05
_Tillers/plant: tp7b (Li et al., 2000)

_Fresh weight, dry weight (Nguyen et al., 2016)

7 qPDWNS7.2 PDW SN-60Na 7 6226107 2.42E-06
_Tillers/plant: tp7b (Li et al., 2000)

_Fresh weight, dry weight (Nguyen et al., 2016)

8 qPDWNS7.3 PDW LN-0Na 7 26352042 6.57E-06

_Root length (Wan et al., 2003)

_Shoot length: qSL7 (Jahan et al., 2020)

_N (Hsieh et al., 2018)

9 qPDWNS8.2 PDW SN-0Na 8 27507063 1.27E-06
_ N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

10 qPDWNS9.1 PDW LN-60Na 9 12272419 1.42E-05

_Salinity tolerance: OsDREB6 (Ke et al., 2014)

_Abiotic/biotic tolerance: OsPAO7 (Liu et al., 2014)

_Cl- accumulation (Genc et al., 2014)

_Shoot dry weight (Courtois et al., 2003)

_Root dry weight: rdw9 (Li et al., 2005)

_NUE: qPFP9.1 (Jewel et al., 2019)

_Salt susceptible index (Tiwari et al., 2016)

11 qRDWNS1.2 RDW SN-0Na 1 41096834 6.02E-06

_ Plant height in drought (Lafitte et al. 2002) _Biomass plant-1: qBMS1-2
(Hittalmani et al., 2003)

_Plant height: ph1 (Yu et al., 2002), qPH1-1 (Cui et al., 2002)

12 qRDWNS2.1 RDW SN-60Na 2 23177834 2.80E-07

_NUE: OsNAR2.1 (Yan et al., 2011)

_NUE: qPFP1.2 (Jewel et al., 2019)

_Plant height: qPH-2 (Mao et al., 2004), qCSH2 (Han et al., 2007)

_Root thickness: qRTT2-1 (Hemamalini et al., 2000)

13 qRDWNS8.2 RDW SN-0Na 8 27640269 6.47E-06
_N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

14 qRDWNS10.1 RDW LN-0Na 10 14391386 7.14E-06

15 qRePDWNS2.1 RePDW SN-60Na/SN-0Na 2 29744672 2.67E-05

16 qRePDWNS4.1 RePDW LN-60Na/LN-0Na 4 1740659 1.69E-06

(Continued)
F
rontiers
 in Plant Science
 0931
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1197271
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Phan et al. 10.3389/fpls.2023.1197271
TABLE 2A Continued

No. QTL Trait Treatment Chr. Peak
position Pvalue Known genes/QTLs

17 qRePDWNS4.2 RePDW LN-60Na/LN-0Na 4 4298186 1.46E-05 _Salt tolerance qSKD_4.1 (Batayeva et al., 2018)

18 qRePDWNS12.1 RePDW SN-60Na/SN-0Na 12 14854155 9.11E-06

19 qRePDWNS12.2 RePDW SN-60Na/SN-0Na 12 15112248 1.74E-05 _Drought tolerance (Bernier et al., 2007)

20 qSDWNS1.3 SDW SN-0Na 1 29822571 2.08E-05

21 qSDWNS3.2 SDW SN-0Na 3 33327465 2.56E-06
_Fresh weight, dry weight, plant height, agNUE in low N (Nguyen et al.,
2016)

22 qSDWNS4.1 SDW LN-0Na 4 23135184 2.71E-05
_Nitrogen use efficiency qNUE4.1 (Zhou et al., 2017)

_Plant height: qPH1-4-1 (Cui et al., 2004)

23 qSDWNS5.1 SDW SN-0Na 5 21591128 1.58E-06 _Fresh weight, shoot dry weight in standard N (Nguyen et al., 2016)

24 qSDWNS7.1 SDW SN-60Na 7 6307567 9.42E-07
_Tillers/plant: tp7b (Li et al., 2000)

_Fresh weight, dry weight (Nguyen et al., 2016)

25 qSDWNS7.2 SDW LN-0Na 7 20440198 1.83E-06
_Plant height: Ph7a (Zenbo et al., 1996)

_Root dry weight (Wan et al., 2003)

26 qSDWNS8.2 SDW SN-0Na 8 27507063 1.16E-06
_N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

27 qSRRNS4.1 SRR LN-0Na 4 28212797 4.40E-08

28 qSRRNS5.1 SRR LN-60Na 5 18406533 3.52E-06

29 qSRRNS6.1 SRR SN-60Na 6 24725704 1.30E-06 _Root to shoot ratio (Ikeda et al., 2006)

30 qSRRNS7.1 SRR SN-60Na 7 20705889 1.57E-05

31 qSRRNS7.1 SRR LN-60Na 9 1602896 7.57E-06

32 qSRRNS12.1 SRR LN-0Na 12 3395136 4.46E-07

Chr, Chromosome.
F
rontiers
 in Plant Science
 1032
TABLE 2B QTLs were detected for dry weight traits under different N and NaCl treatments in the indica panel in both EXPs.

No. QTL Trait Treatment Chr. Peak posi-
tion Pvalue Known genes/QTLs

1 qPDWNS1.2 PDW SN-60Na 1 29517723 1.27E-06

2 qPDWNS1.3 PDW SN-0Na 1 29612773 1.16E-05

3 qPDWNS1.5 PDW SN-60Na 1 33808595 1.46E-05

4 qPDWNS2.1 PDW SN-0Na 2 29617039 1.60E-06

_Seedling dry weight: qSDW2 (Han et al., 2007)

_Plant height: qPH-2 (Mao et al., 2004), in standard N (Nguyen et al.,
2016)

5 qPDWNS3.3 PDW LN-0Na 3 35495246 2.14E-05

_N uptake: OsAMT3.2 (Suenaga et al., 2003)

_Length of the third seedling leaf: qLT3-1 (Cui et al., 2002)

_1st internode length: qIN1-3 (Yamamoto et al., 2001)

_Plant height in low N (Nguyen et al., 2016)

6 qPDWNS8.3 PDW SN-0Na 8 27602390 1.43E-05
_N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

7 qRDWNS1.1 RDW SN-60Na 1 29517723 2.94E-05

(Continued)
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growth under saline conditions (Chen et al., 2022; Phan et al., 2023).

RDW, however, was reduced by the presence of NaCl but increased

under N-deficiency treatment. On the one hand, RDW may be

reduced by salt by reducing root number, altering root

morphological characteristics, as well as root oxidation capacity

(Chen et al., 2022; Phan et al., 2023). On the other hand, RDWmay

be enhanced by decreasing N because N-deficiency promotes root

length by enhancing cell division, cell elongation, amount of auxin,

or by modifying the interaction between auxin and abscisic acid

(Hsieh et al., 2018). The effect of N and NaCl also resulted in

changes in phenotypic variation in SDW and RDW: with the largest

variation in SN-0Na, following SN-60Na, LN-0Na, and the lowest

in LN-60Na (Figure 3 and Table 1). The change in the phenotypic

variation also might lead to a difference in the number of QTLs

detected under different N and NaCl conditions. Indeed, SN-0Na

treatment allowed to detect a very large number of QTLs (16),

followed by SN-60Na (11), LN-0Na (8), and finally LN-60Na (4).

LD decay occurred more quickly in the indica panel, followed

by aus, japonica, and finally in the aromatic panel. It was consistent

with previous studies. Shi et al. (2017) also showed that LD decayed
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more quickly in the indica group than in non-indica groups. Mather

et al. (2007) indicated that LD extends over a shorter distance in

indica than tropical japonica and temperate japonica. The

differences between the LDs among the groups were linked to

differences in outcrossing and recombination rate. Higher

recombination rates were associated with lower LD.

QTL identification can be influenced by both genotype-

environment interactions and by the number of accessions in the

population. Norton et al. (2021) and Talukdar et al. (2022) detected

different QTLs in different years of research or different irrigated

systems and none of the QTLs were detected under all the

conditions. In our research, two EXPs were conducted with different

numbers of accessions and light competition among the accessions. In

the entire panel, we detected 157 loci for the tested traits from 2,391

accessions in the main EXP and 138 loci from 1,332 accessions in the

confirmatory EXP (Supplementary Table S3A). Among them, 32

common QTLs were considered reliable because they were detected

in both EXPs. Previously, Batayeva et al. (2018) detected two QTLs

related to dry weight in non-saline condition but none of them under

saline conditions by using a population containing 176 temperate
TABLE 2B Continued

No. QTL Trait Treatment Chr. Peak posi-
tion Pvalue Known genes/QTLs

8 qRDWNS4.1 RDW LN-60Na 4 19933152 1.72E-07

9 qRDWNS8.1 RDW SN-0Na 8 27602390 5.92E-06
_N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

10 qRePDWNS3.1 RePDW LN-60Na/SN-

60Na
3 25687022 2.84E-10

11 qSDWNS1.1 SDW SN-60Na 1 29517723 8.08E-07

12 qSDWNS1.2 SDW SN-0Na 1 29612773 1.04E-05

13 qSDWNS1.4 SDW SN-0Na 1 30991676 7.13E-06

14 qSDWNS1.5 SDW SN-60Na 1 33808595 1.83E-05

15 qSDWNS1.6 SDW SN-0Na 1 37614990 1.34E-05

16 qSDWNS8.3 SDW SN-0Na 8 27602390 2.47E-05
_N (Hsieh et al., 2018)

_aNUE, agNUE, fresh weight, dry weight (Nguyen et al., 2016)

Chr, Chromosome.
TABLE 2C QTLs were detected for dry weight traits under different N and NaCl treatments in the japonica panel in both EXPs.

No. QTL Trait Treatment Chr. Peak position Pvalue Known genes/QTLs

1 qPDWNS3.1 PDW SN-0Na 3 4974560 1.32E-06

2 qPDWNS8.1 PDW SN-0Na 8 573918 1.50E-06

3 qRePDWNS4.3 RePDW LN-60Na/LN-0Na 4 4403318 1.56E-06 _Salt tolerance qSKD_4.1 (Batayeva et al., 2018)

4 qRePDWNS8.1 RePDW LN-60Na/LN-0Na 8 26569164 7.25E-06

5 qSDWNS3.1 SDW SN-0Na 3 4974560 7.85E-06

6 qSDWNS8.1 SDW SN-0Na 8 573918 2.98E-06

7 qSDWNS10.1 SDW LN-0Na 10 18157987 8.57E-07

Chr, Chromosome.
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japonica accessions. In the current study, we detected 3 of 32 QTLs

under both saline and non-saline condition, with standard N supply.

They co-localized with previously reported QTLs for tiller number per

plant, fresh and dry weight of plants (Li et al., 2000; Nguyen et al.,

2016). Other QTLs for DWs identified in our study under only saline

but not under non-saline treatments were also found in the genomic

regions containing QTLs for salt tolerance, viz. Na+ uptake, K+ uptake,

and Na+/K+ concentration in the tissue (Koyama et al., 2001), drought

tolerance (Hoang et al., 2019), salt susceptibility index (Tiwari et al.,

2016), and Cl- accumulation (Genc et al., 2014; Ke et al., 2014; Liu et al.,

2014). Phan et al. (2023) reported that the salt-tolerant cultivars

performed high NUE because they accumulated less Na+ than the

sensitive ones. Therefore, under saline conditions, the plants

accumulating less toxic ions such as Na+ and Cl- could maintain

water and nitrogen uptake. Consequently, the absorbed N can be better

assimilated, resulting in higher tiller number, and finally, growth could

be maintained. Among the 55 detected QTLs detected whether in the

entire (32), or indica (16), or japonica panel (7) and confirmed in both

EXPs in the present study, there were 28 QTLs for NUE-related traits

which had never been reported before, i.e the QTLs located on

chromosome 1, 2, 3, 5, 8, 10, and 12. The 27 other ones co-localized

with previously reported QTLs for NUE-related traits (Table 2).

Interestingly, a lot of QTLs co-localized with different traits in

various studies. Indeed, qPDWNS3.3 and qPDWNS3.4 co-localized

with the QTLs for the length of the first internode, length of the

third leaf, plant height, and N uptake OsAMT3.2 (Yamamoto et al.,

2001; Cui et al., 2002; Li et al., 2012; Suenaga et al., 2003; Nguyen et al.,

2016).OsAMT3.2 is one of the ammonium transporter genes regulating

ammonium uptake, expressed in old leaves, and was not influenced by

salt stress (Wang et al., 2012). qPDWNS7.3 in the region containing

QTLs for root length, shoot length, and N metabolism (Wan et al.,

2003; Hsieh et al., 2018; Jahan et al., 2020). qRDWNS2.1 for RDW
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detected in SN-60Na was in an interval containing OsNAR2.1 and

qPFP1.2 for NUE and in the region containing a QTL for root thickness

(Hemamalini et al., 2000), and plant height (Mao et al., 2004; Han et al.,

2007).OsNAR2.1 regulates N uptake and is related to drought tolerance

(Yan et al., 2011; Fan et al. 2017; Chen et al., 2019). qPDWNS9.1

detected in the LN-60Na treatment has been related to dry weight and

salinity tolerance in various studies (Courtois et al., 2003; Li et al., 2005;

Genc et al., 2014; Ke et al., 2014; Liu et al., 2014; Tiwari et al., 2016; Jewel

et al., 2019). This qPDWNS9.1 region contained OsDREB6 gene which

was reported playing an important role in enhancing tolerance to

osmotic, salinity, and cold stress (Ke et al., 2014).

Reanalyzing by multi-locus GWAS in mrMLM package plus

searching genes with functional annotation and haplotype analysis

allowed us to identify 11 candidate genes for SDW, RDW, and

PDW in eight important QTLs under SN-0Na, SN-60Na, and LN-

60Na (Table 3). Six, four, and two candidates were detected in SN-

0Na, SN-60Na, and LN-60Na treatments, respectively. Among

them, one gene was detected for PDW in both SN-0Na and SN-

60Na treatments. In SN-0Na (normal condition), the six candidate

genes detected in this study differed from the two QTLs identified

previously (Batayeva et al., 2018). Among these six candidate genes,

LOC_Os03g58350 (OsIAA14) is a gene belonging to the auxin-

responsive Aux/IAA gene family, that regulates lateral root

development in rice via auxin signaling (Zhang et al., 2018).

LOC_Os03g58390 (OsSIRP2) has been associated with salinity

tolerance and osmotic tolerance (Chapagain et al., 2018). The

other candidate genes were LOC_Os03g62480, LOC_Os03g62490,

LOC_Os07g11290, and LOC_Os07g11490.

Under the SN-60Na condition, four candidate genes were identified:

two candidate genes for RDW on chromosome 2 and two candidates for

SDW and PDW together on chromosome 7. The two candidate genes

for qRDWNS2.1 controlling RDW in SN-60Na on chromosome 2:
TABLE 3 List of 11 candidate genes for the important QTLs identified related to nitrogen use efficiency at the seedling stage under four N and NaCl
treatments.

No Genes Chr. Gene Product Name Trait Treatment QTL

1 LOC_Os02g38230 2 high-affinity nitrate transporter, putative, expressed RDW SN-60Na qRDWNS2.1

2 LOC_Os02g38450 2 expressed protein RDW SN-60Na qRDWNS2.1

3 LOC_Os03g58350 3
OsIAA14 - Auxin-responsive Aux/IAA gene family member,
expressed

PDW,
SDW

SN-0Na qPDWNS3.2, qSDWNS3.2

4 LOC_Os03g58390 3
zinc finger, C3HC4 type domain containing protein,
expressed

PDW,
SDW

SN-0Na qPDWNS3.2, qSDWNS3.2

5 LOC_Os03g62480 3 anthocyanidin 5,3-O-glucosyltransferase, putative, expressed PDW SN-0Na qPDWNS3.4

6 LOC_Os03g62490 3 prohibitin-2, putative, expressed PDW SN-0Na qPDWNS3.4

7 LOC_Os07g11290 7 expressed protein PDW SN-0Na qPDWNS7.1

8 LOC_Os07g11420 7 transposon protein, putative, CACTA, En/Spm sub-class
PDW,
SDW

SN-60Na qPDWNS7.2, qSDWNS7.1

9 LOC_Os07g11490 7 expressed protein
PDW,
SDW

SN-0Na, SN-
60Na

qPDWNS7.1, qSDWNS7.1,
qPDWNS7.2

10 LOC_Os09g20350 9 ethylene-responsive transcription factor, putative, expressed PDW LN-60Na qPDWNS9.1

11 LOC_Os09g20480 9 transporter, putative, expressed PDW LN-60Na qPDWNS9.1
Chr, chromosome.
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LOC_Os02g38230 (OsNAR2.1) and LOC_Os02g38450. Overexpression of

protein OsNAR2.1 improves N uptake as well as chlorophyll content,

photosynthetic rate, water use efficiency, and grain yield under drought

stress (Chen et al., 2019) but no information related to OsNAR2.1 in rice

has been reported under saline conditions. This gene interacts with

OsNRT2.1, OsNRT2.2, and OsNRT2.3a and plays a key role in enabling

plants to cope with a variable nitrate supply (Yan et al., 2011). Wang

et al., (2012) reported that the expression level of theOsNRT gene family

was influenced by salt stress, thereby reducing nitrate accumulation in

salt conditions. Especially, Shi et al. (2017) also documented that the gene
Frontiers in Plant Science 1335
OsNRT2.2, which interacts with OsNAR2.1, was associated with the salt

susceptibility index in rice at the germination stage. In our study, we

found that OsNAR2.1 is a candidate for controlling RDW under saline

condition. Another candidate gene for qRDWNS2.1 was

LOC_Os02g38450 for which no gene ontology classification has been

published. Other candidate genes on chromosome 7, viz.

LOC_Os07g11420 and LOC_Os07g11490 for qPDWNS7.1,

qSDWNS7.1, and qPDWNS7.2. were poorly documented previously.

In LN-60Na treatment, OsDREB6 (LOC_Os09g20350) in

qPDWNS9.1 is an ethylene-responsive transcription factor that
B

E

F

C

D

G

H

A

FIGURE 4

Gene-based association and haplotype analysis of targeted genes for qRDWNS2.1 (A), qPDWNS3.2 (B), qSDW3.2 (C), qPDWNS3.4 (D), qPDWNS7.1 (E),
qSDWNS7.1 (F), qPDWNS7.2 (G) and qPDWNS9.1 (H). Each point is one SNP in the association of the QTLs. The value and letter on the boxplot (a, b,
c, and d) indicate the number of individuals in each haplotype in the confirmatory EXP and multiple comparison results at the significance level of
0.05, respectively. *** significance level of ANOVA for phenotypic value of the main haplotypes at p < 0.001.
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controls tolerance to osmotic, drought, cold, and salinity stresses

(Ke et al., 2014). Some varieties with ‘TCATCAC’ haplotype, such

as Nona Bokra, Doc Phung D12 have been well-documented for

their salt tolerance (Lutts et al., 1996; Ho et al., 2018). Another

candidate gene for QTL qPDWNS9.1, LOC_Os09g20480 (homolog

to Sb02g023340 in sorghum and Traes_5AL_F8B48EC59 in

wheat), encodes a transporter protein. This gene has been

reported to be related to Cl- accumulation in wheat (Genc

et al., 2014).
5 Conclusion

By realizing a GWAS on 2,391 accessions with 235,210 SNPs

and confirming the results on 1,332 accessions, we detected 55

QTLs for SDW, RDW, PDW, and relative PDW in different

treatments. Among them, 28 QTLs were novel and the other 27

QTLs co-located with previously detected ones. Three of 11

QTLs that were identified under salt treatments were close to

regions containing 3 QTLs detected in non-saline conditions.

Some of the detected QTLs for DWs under saline conditions co-

localized with known QTLs or genes for salt tolerance. Then

further haplotype analysis allowed us to identify 11 candidate

genes for eight important QTLs related to DW traits. Further

study should be carried out to validate these genes in field

environment. Moreover, salt and N concentrations in the

tissue as well as NUE components should be determined and

submitted to GWAS to find genetic information as well as

candidate genes associated with these traits. Our results

provide useful germplasm and genetic information for the

future improvement of NUE in rice and rice production.
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Nitrogen is one of the most important nutrients for tea plants, as it contributes

significantly to tea yield and serves as the component of amino acids, which in

turn affects the quality of tea produced. To achieve higher yields, excessive

amounts of N fertilizers mainly in the form of urea have been applied in tea

plantations where N fertilizer is prone to convert to nitrate and be lost by leaching

in the acid soils. This usually results in elevated costs and environmental

pollution. A comprehensive understanding of N metabolism in tea plants and

the underlying mechanisms is necessary to identify the key regulators,

characterize the functional phenotypes, and finally improve nitrogen use

efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N

source, thus a large amount of nitrate remains activated in soils. The

improvement of nitrate utilization by tea plants is going to be an alternative

aspect for NUE with great potentiality. In the process of N assimilation, nitrate is

reduced to ammonium and subsequently derived to the GS-GOGAT pathway,

involving the participation of nitrate reductase (NR), nitrite reductase (NiR),

glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate

dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible

for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In

this review, we summarize what is known about the regulation and functioning of

the enzymes and transporters implicated in N acquisition and metabolism in tea

plants and the current methods for assessing NUE in this species. The challenges

and prospects to expand our knowledge on Nmetabolism and related molecular

mechanisms in tea plants which could be a model for woody perennial plant

used for vegetative harvest are also discussed to provide the theoretical basis for

future research to assess NUE traits more precisely among the vast germplasm

resources, thus achieving NUE improvement.

KEYWORDS

nitrogen transport, nitrate reduction, ammonia assimilation, NUE, camellia sinensis,
challenges and prospects
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1 Introduction

Nitrogen is an essential mineral nutrient for plant growth and

reproduction. Apart from being a fundamental building block of

proteins and nucleic acids, N also participates in carbon fixation

through photosynthesis as a component of chlorophyll (Bernard

and Habash, 2009). In agricultural production, applying N

fertilizers generally leads to significant yield increases (Suárez

et al., 2002; Liu et al., 2021c), for which N fertilizers’ use is

expected to increase up to 236 million metric tons to meet the

global food demands by 2050 (Beatty and Good, 2018). However,

less than 50% of the applied N as fertilizer is absorbed by plants and

harvested in grains (Raun and Johnson, 1999; Camargo et al., 2005).

Thus, a high amount of “unuse” N supplied as fertilizer is

transferred to water and the atmosphere, resulting in energy

waste, soil acidification, water eutrophication and greenhouse gas

emissions (Godfray et al., 2010; Liu et al., 2010). This negative

environmental consequence of nitrogen fertilization became a huge

challenge for stable and sustainable agricultural production

(Bodirsky et al., 2014). There is an urgent need for research

advances on N metabolism in the ecosystem; in this context, we

need to improve N use efficiency (NUE) by crops, for which the

genetic potential for N uptake and assimilation must be

further explored.

Tea is processed from the leaves of Camellia sinensis (L.) O.

Kuntze and becoming one of the most widely non-alcoholic

beverages consumed worldwide due to its unique taste and

potential health benefits (Wei et al., 2018). Since 2011, the global

planting area of tea have increased steadily and gradually, from 3.84

million hectares in 2011 to 5.09 million hectares in 2020 (Liu et al.,

2023). This perennial evergreen woody plant is cultivated in over 30

countries, and China has the greatest cultivated area (Zhang et al.,

2019b; Lei et al., 2022). In 2022, tea planting area of China reached

3.33 million hectares (Mei and Zhang, 2022). The geographic origin

of the tea plant is assigned to Yunnan province and neighboring

regions in southwestern China (Chen et al., 2005). China has

traditionally been the largest tea producer worldwide with

abundant germplasm resources, and China’s tea have been

exported to more than 140 countries or regions (Wei et al., 2012).

Currently, many cultivated tea varieties are extensively grown in

tropical and subtropical regions across the world, and tea

cultivation may increase the local smallholder income, especially

in mountainous areas, contributing to local economic development

(Yao et al., 2012). The N concentration in young buds and leaves is

about 60-70 g·kg−1 (Ma et al., 2013). Tea plants form new shoots

every season, and multiple picking and pruning have been done. In

agricultural production, tea plants have a high demand for N, which

is generally fulfilled through fertilization, active N uptake,

assimilation and translocation, as well as remobilization

processes. In China, the average annual N inputs reach 300-450

kg·hm−2 to cover tea N demand; an excessive N application rate has

been reported in over 30% of the tea plantation area (Ma et al., 2013;

Ni et al., 2019). These numerical data reinforce the crucial and

urgent need for optimizing the NUE of tea plant. A series of

interconnected processes, including N transport, assimilation and
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remobilization, are involved in NUE, thus the understanding on N

metabolism at molecular level will provide the basis for a more

rational application of N fertilizers during tea production.

Nitrogen is involved in many important metabolic pathways

closely related to the synthesis of amino acids (AAs), caffeine,

polyphenols, and other substances responsible for tea quality

(Tang et al., 2020). Inorganic N sources, including ammonium

(NH4
+) and nitrate (NO3

-), and small organic N-containing

compounds can be uptaken from the soil by the tea plant roots

and subsequently transported to the leaves by ammonium

transporters (AMTs), nitrate transporters (NRTs), and amino

acid transporters (AATs). The absorbed NO3
− is first reduced

into nitrite (NO2
−) in the cytoplasm by nitrate reductase (NR)

and further reduced to NH4
+ in plastids by nitrite reductase (NiR).

Ammonium assimilation involves the conversion of inorganic N to

organic N, mainly through the glutamine-glutamate (GS-GOGAT)

cycle, catalyzed by glutamine synthetase (GS) and glutamine-2-

oxoglutarate aminotransferase/ glutamate synthase (GOGAT)

(Bernard and Habash, 2009; Liu et al., 2022). It is noteworthy

that glutamate and ethylamine are catalyzed by theanine synthetase

(TS) to biosynthesize theanine (g-glutamyl-L-ethylamide), a unique

non-proteinogenic amino acid responsible for umami taste and

healthy beneficial component in tea. Thus, the content of Thea is an

important indicator for cultivar breeding and evaluating NUE.

These processes are schematically illustrated in Figure 1. Further

details on substrates, transporters, enzyme isoforms, and cell

compartments relevant to the N cycle in tea plants are given in

the following sections.

Since the tea plant genome was sequenced (Xia et al., 2020),

many enzymes involved in N metabolism and their encoding genes

were identified. Nitrogen dynamic regulation and physiological

function were widely investigated in tea plant, as these are all

critical aspects to improve NUE. In this article, we outline the

results of recent investigations about the mechanisms underlying:

(1) N absorption and transport in the form of NH4
+, NO3

−, and

AAs; (2) metabolic reduction of nitrate; (3) ammonia assimilation

and theanine (g-glutamyl-L-ethylamide) biosynthesis. We also

discuss the use of genetic, genomic, and phenotyping technologies

for improving NUE by tea plants and stress the relevance of

understanding the genetic basis of tea plant adaptive responses to

different N forms.
2 General nitrogen utilization traits by
tea plants

2.1 Tea plants acquire N preferentially
as NH4

+

Tea plant shows a preferential uptake of N in the form of

ammonium (NH4
+-N). Using the scanning ion-selective electrode

technique, Ruan et al. (2016) found that the NH4
+ influx rate in the

roots of tea plant was higher than that of NO3
−, and the presence of

NH4
+ would promote NO3

− influx rate. The yield of young shoots,

total root length, N uptake rate, and the contents of caffeine,
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theanine (Thea), glutamine (Gln), glutamate (Glu) and aspartate

(Asp) in tea leaves were significantly higher when NH4
+ was the

main N source, compared with NO3
− (Ruan et al., 2007; Ruan et al.,

2010; Ruan et al., 2019; Wang et al., 2022a). NH4
+-N can also

promote phosphorus (P) uptake (Chen et al., 2019) and increase

iron (Fe) and chloride (Cl) contents in mature leaves and sulfur (S)

content in the roots (Tang et al., 2019). As a signaling molecule,

NH4
+ could induce Thea and catechin biosynthesis in a short period

(Liu et al., 2017b; Huang et al., 2018). By sensing NH4
+ levels,

lysine-acetylated and crotonylated proteins profoundly influenced

some primary metabolic processes involved in amino acid

metabolism, photosynthesis, glycolysis, and carbon fixation (Jiang

et al., 2018; Sun et al., 2019).
2.2 Nitrogen concentration influences tea
plant growth and biochemical profile

To obtain an appropriate amount of harvestable product, i.e.,

young buds and leaves, multiple tender shoots are picked from the

plants every year. Adequate N nutrition is necessary to increase the

formation of young shoots, enhance the growth vigor andmaintain the

C/N balance (Ruan et al., 2010). A balanced C/N ratio is also important

to promote chlorophyll biosynthesis (Yang, 2011) and to ensure

adequate availability of free AAs (Liu et al., 2020; Wang et al., 2022a),

thus providing N reserve for reproductive growth (Fan et al., 2019).

N metabolism of tea plant is dynamically regulated by

environmental factors. Likewise, the growth of lateral roots was

regulated by N levels: their length and numbers decreased with

increasing N concentrations (Chen et al., 2023; Hu et al., 2023).
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Under N deficiency, the content of N, L-Thea, and chlorophyll

decreased significantly. The activity of many antioxidant enzymes

and leaf CO2 assimilation capacity also diminished (Lin et al., 2016; Lin

et al., 2019). However, low N levels positively regulated the expression

of phosphate transporter genes and promoted flavonoids and

polyphenols synthesis in tea leaves (Lin et al., 2023b). Appropriate N

supply contributes to the aroma and flavor quality of tea infusion. The

activity of the rate-limiting enzyme for N assimilation, GS, increased

with N application level, and the content of total AAs, alcohols, and

ketone compounds conferring aroma also increased, thus promoting

tea products’ integrated quality (Ruan et al., 2010; Deng et al., 2012; Liu

et al., 2021b).The accumulation of caffeine, a component of the bitter

taste and a central nervous system stimulant in tea, can be increased

with the increasing N supply (Ruan et al., 2010). Sufficient N also

promotes flavonol glycoside biosynthesis through the expression of

relevant genes and the accumulation of the corresponding substrate

carbohydrates (Dong et al., 2019). Lipidomic studies revealed that the

content of precursors for the formation of aroma-related substances

such as monogalactosyl diaclyglycerol (36:6 MGDG) and digalactosyl

diacylglycerol (36:6 DGDG) increased when the N fertilizer was

applied at adequate amounts, while an excessive N application led to

overaccumulation of hexenol and hexenal, compounds which cause an

unpleasant grassy smell in tea (Liu et al., 2017a).With the increase inN

supply, more C was allocated to N-containing compounds in mature

tea leaves and roots, leading to a decrease in flavonoid concentration in

the young shoots (Liu et al., 2021a). Long-term N overfertilization

reduced significantly benzyl alcohol and 2-phenylethanol contents in

tea leaves, as well as those of (E)-nerolidol and indoles in withering

leaves, becoming not conducive to the generation of floral and fruity

fragrances (Chen et al., 2021).
FIGURE 1

Molecular mechanism of nitrogen nutrient absorption and utilization in tea plant. NRT, nitrate transporter; NR, Nitrate reductase; NiR, Nitrite
reductase; AMT, Ammonium transporter; GS, Glutamine synthetase; GOGAT, Glutamate synthase; GDH, Glutamate dehydrogenase; Gln, Glutamine;
Glu, Glutamic acid; TS, Theanine synthetase; Thea, Theanine; LHT, Lysine and histidine transporter; CAT, Cationic amino acid transporter; Ala,
Alanine; Pro: Proline; AKG, a-Ketoglutaric acid. Gray background represents the genes just were cloned in vitro; Yellow background represents
functions of these proteins were validated in yeast; The red background represents functions of these proteins were validated in Arabidopsis,
Nicotiana tabacum or Camellia sinensis.
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3 Nitrogen transport in plants

In a wide range of organisms, N transport as NH4
+, NO3

−, and

soluble organic compounds across membranes is mediated by

transporter proteins (Wirén et al., 1997). These transporters can

be divided into high-affinity transporter systems (HATS) and low-

affinity transporter systems (LATS), depending on the specific

substrate affinity. The external N level also regulates the affinities

of transporters. For instance, there are inducible high-affinity

transporter systems (iHATS) and constitutive high-affinity

transporter systems (cHATS) to accomplish NO3
− transport

(Crawford and Glass, 1998; Forde, 2000). These transport

proteins play a vital role in both short- and long-distance

translocation of N inorganic ions and N-organic compounds.
3.1 NH4
+ transport

The membrane- loca l ized ammonium transporter /

methylammonium permease (AMT/MEP) facilitates the import

and export of NH4
+ (Howitt and Udvardi, 2000). In higher

plants, AMT proteins can be divided into two types: AMT1 and

AMT2. Most AMT1 proteins belong to the HATS group and are

synergically involved in NH4
+ transport through the apoplastic and

the symplastic routes (Yuan et al., 2007). AMT2 plays a role in the

translocation of NH4
+ from roots to shoots (Giehl et al., 2017). The

transcription of the gene encoding this protein is tightly controlled

through multiple factors, including external N level, circadian

rhythm, hormone contents, and mycorrhizal symbiosis (Couturier

et al., 2007; Kobae et al., 2010; Li et al., 2012; Li et al., 2016).

To cope with elevated NH4
+ concentrations, the AMT activity

may be post-translationally modified via the reversible

phosphorylation of the cytosolic C-terminal region, thus allowing

rapid adaptation to variable environmental conditions (Yuan et al.,

2013; Wu et al., 2019). In tea plants, CsAMTs expression seems to be

tissue-specific: CsAMT1.2 reached the highest transcript abundance

in roots, while CsAMT1.4 was mainly expressed in flower buds.

However, CsAMT1.1 and CsAMT3.1 were highly expressed in all

tissues, suggesting that these genes might have diverse functions in

NH4
+ transport (Zhang et al., 2018; Wang et al., 2022c; Zhang et al.,

2022a). Likewise, AMTs expression levels are responsive to changes

in NH4
+ availability. In roots, CsAMT1.1 expression peaked at 12 h

after the exogenous NH4
+ resupply, while CsAMT3.1 showed an

upward trend after 24 h and CsAMT1.2 expression level increased at

10 h, with a 2.5-fold change compared to 0 h, and then decreased

again by 24 h. In NH4
+-treated leaves, CsAMT1.1 expression was

up-regulated only after 4 h, exhibiting a 4.75-fold increase, whereas

CsAMT1.2 and CsAMT3.1 expression levels did not change until 24

h later. These data indicate that NH4
+ transport in tea roots is

mainly regulated by CsAMT1.2, while in leaves, the NH4
+ induction

is mainly controlled by CsAMT1.1 in the short term (Tang et al.,

2020). Across different experimental NH4
+ concentrations, most

CsAMTs were expressed at higher levels in leaves than roots, except

for CsAMT1.2, CsAMT1.4, and CsAMT2.1a. Remarkably,

CsAMT1.2 expression was significantly higher in roots than leaves
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under NH4
+ deficiency (0 mM NH4

+) or at 4 mM NH4
+,

demonstrating the major role of this transporter in NH4
+ uptake.

Other genes involved in NH4
+ transport, such as CsAMT2.1b,

CsAMT3.3 , CsAMT4.1a , CsAMT4.1b , CsAMT4.1c , and

CsAMT4.1d, exhibited similar expression profiles, with a

decreasing trend under low N supply and a notorious induction

under high N supply (Wang et al., 2022c). Furthermore, this report

indicates that CsAMTs expression in tea leaves is differentially

regulated over time by abiotic stresses, including drought and

salinity, as well as after methyl jasmonate treatments. Under these

treatments, specific CsAMTs genes were up-regulated or down-

regulated in different ways, suggesting different functions to cope

with various stresses (Wang et al., 2022c).

Transcriptome data revealed that CsAMT1.2 expression could

be highly induced by NH4
+-resupply; weighted gene co-expression

network analyses and the functional validation in an NH4
+-uptake

defective yeast line further corroborated that the high-affinity

transporter CsAMT1.2 was a “hub gene” in the N metabolic

network of tea plants, controlling NH4
+ uptake from the soil to

the roots (Zhang et al., 2020). Also, Wang et al. (Wang et al., 2022c)

found that 11 yeast transformant lines grew well on 0.3 mM NH4
+

as the sole N source, indicating their high affinity for NH4
+

permeation. The transcriptional regulation of CsAMTs differed

even at the cultivar level (Li et al., 2017). CsAMT1.1 and

CsAMT1.5 expression levels were significantly higher in the roots

of the FuDingDaBaiCha cultivar than Longjin43 cultivar (Zhang

et al., 2022a). After NH4
+ resupply, CsAMT1.2, CsAMT2.2, and

CsAMT2.3 genes were differentially induced in tea cultivars with

different NH4
+-uptake efficiency, indicating the uneven NH4

+

transport capacity among cultivars (Zhang et al., 2018; Zhang

et al., 2022b).
3.2 NO3
− transport

Membrane-bound nitrate transporters (NRTs) are required for

NO3
− uptake in plants. The members of the large NRT family can

be divided into four subfamilies: nitrate transporter 1/peptide

transporter (NRT1/PTR), collectively known as NPF, nitrate

transporter 2 (NRT2), chloride channel (CLC), and slow anion

channel associated/homologue (SLAC/ SLAH) (Krapp et al., 2014).

The NRT1 subfamily harbors many members, acting in NO3
−

transport from roots to shoots (Krapp et al., 2014). NRT transport

activity is also regulated through phosphorylation. AtNRT1.1 is a

dual-affinity protein: phosphorylation of the Thr101 residue by the

CBL-interacting protein kinase 23 changes its substrate affinity (Sun

et al., 2014). NRT2 are HATS proteins and belong to the nitrate/

nitrite porter (NNP) family, mainly expressed in roots. These

proteins have a role in both NO3
− accumulation and NO3

−

transport (Chopin et al., 2007; Li et al., 2007; Kiba et al., 2012).

To date, four CsNRT1 and four CsNRT2/3 genes have been isolated

from tea plants. These genes show tissue-specific expression

patterns and are differentially induced by exogenous NO3
−. It was

reported that CsNRT1.1 and CsNRT1.2 were mainly expressed in

leaves. CsNRT1.7, CsNRT2.5, and CsNRT3.2 had higher expression
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levels in mature leaves than other tissues, while CsNRT1.5,

CsNRT2.4, and CsNRT3.1 transcripts mainly accumulated in tea

roots (Feng et al., 2014; Wang, 2014; Wang et al., 2014; Yang et al.,

2016; Zhang et al., 2021). Further research showed that CsNRT2.4

expression was root-specific and strongly induced by N resupply.

Arabidopsis seedlings overexpressing CsNRT2.4 had a significantly

higher fresh weight and lateral roots length than wild-type

seedlings, especially under low N availability (0.1 mM NO3
−),

pointing out CsNRT2.4 as a high-affinity nitrate transporter that

might improve NO3
− uptake rate (Zhang et al., 2021). Additionally,

Wang et al. (2022b) identified a total of 109 CsNPF members by

analyzing the tea genome; these proteins could be divided into 8

groups according to their phylogenetic relationships, and the

transcription of most of these genes responded to NO3
− supply.

Similarly, CsNRTs expression profiles varied in tea cultivars with

different NUE (Wang et al., 2014). The expression of CsNRT2.4 and

CsNRT3.2 in the cultivar LongJin43 was higher than that observed

in ZhongCha108, indicating higher responsiveness to external

NO3
− supply in the former (Su et al., 2020).

Initially, CLC proteins were thought to be specifically involved

in chloride (Cl-) transport as channels or 2 Cl−/1 H+ antiporters

(Jentsch, 2008). Further research showed that AtCLCa is a

tonoplast-located 2 NO3
−/1 H+ antiporter that drives NO3

−

accumulation in the vacuoles (Jentsch, 2008; Monachello et al.,

2009). As anion channels, SLAC/SLAH proteins showed a strong

preference for NO3
− and have been associated with CO2 and

abscisic acid-dependent stomatal closure (Negi et al., 2008;

Vahisalu et al., 2008). In tea plants, Xing et al. (2020) identified

eight CLC genes across the wide genome of this species and named

them CsCLC1-8. Phylogenetic studies demonstrated that the

proteins encoded by these genes belonged to two subclasses;

further studies showed that CsCLC transporters might participate

in the uptake and long-distance transport of Cl− and F−, as their

expression levels varied in response to the addition of these two ions

at different concentrations. However, the role of CsCLCs in NO3
−

transport has not been elucidated. Similarly, there are no published

reports related to SLAC/SLAH proteins in tea plants.

To summarize the precedent information, Table 1 lists genes

involved in NH4
+ and NO3

− sensing, uptake, and transport in tea

plants reported to date. Further information about the subcellular

localization, sequence data, and functional corroboration

experiments is also provided.
3.3 Amino acid- N transport

Tea plants can directly absorb organic N and transport it to

actively growing parts. The amino acid theanine (Thea) is

synthesized and stored in root cells and then transported from

the root to the flush shoot in spring. These movements, which

include xylem loading/unloading, xylem-to-phloem transfer, and

post-vascular movements into the sink cells, are driven by plasmatic

membrane-localized amino acid transporters (AATs) (Fischer et al.,

1995; Dong et al., 2020; Lin et al., 2023a). Studies on tea plants AAT
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proteins have mostly focused on amino acid permeases (AAP),

lysine and histidine transporters (LHT), and cationic amino acid

transporters (CAT), which play important roles in AAs acquisition

and long-distance transport from source to sink (Guo et al., 2019;

Guo et al., 2020; Li et al., 2020; Liu, 2020).

Six CsAAPs members, CsAAP1, CsAAP2, CsAAP4, CsAAP5,

CsAAP6, and CsAAP8, were identified in tea plants through the

screening of a Saccharomyces cerevisiae mutant library. The

expression of genes encoding these transporters was tissue-specific

and regulated by the season and N levels. Thus, CsAAP1 expression

in roots increased in March and decreased by mid-April and was

highly correlated with root-to-bud Thea transport in seven tea

cultivars (Dong et al., 2020; Li et al., 2020). Besides, shading

promoted CsAAP2, CsAAP4, CsAAP5, and CsAAP8 expression in

young stems and suppressed CsAAP1, CsAAP2, CsAAP4, CsAAP5,

and CsAAP6 expression in the leaves, in accordance with Thea levels

in these tissues. These findings indicate that CsAAP2, CsAAP4,

CsAAP5, and CsAAP8 functions may be related to Thea movements

in the xylem, leading to high Thea accumulation in the stem. The up-

regulated genes might induce Thea transport into the companion

cells in the sieve elements for phloem loading and Thea delivery to

the terminal leaves (Yang et al., 2021).

LHT proteins were investigated more deeply. The CsLHTs

family comprises multiple members, among which CsLHT1 and

CsLHT6, highly expressed in roots, were identified as H+-

dependent high- and low-affinity amino acid transporters in yeast

heterologous systems. The overexpression of CsLHT1 and CsLHT6

in Arabidopsis lines significantly increased the root ability to uptake

exogenous nitrogen supplied as 15N-Gln and 15N-Glu, suggesting

that these transporters may contribute to the use of organic N from

the soil (Guo et al., 2019; Li et al., 2021). Likewise, the heterologous

expression of CsLHT4, CsLHT7, and CsLHT11 in Arabidopsis was

associated with a decline in aerial parts biomass compared with WT

plants, but CsLHT11 overexpressing plants had increased biomass

in the rosette leaves, regardless the N levels. Therefore, this protein

might have a regulatory function relevant to the development of

harvestable, young shoots in tea plants (Huang et al., 2023b).

Regarding the cationic acid transporters, it was reported that the

CsCAT gene family includes six members, mainly expressed in roots

and stems. It was also found that some CsCATs modify their

expression levels in response to abiotic stress and the exogenous

application of Thea, Gln, and ethylamine hydrochloride, a

precursor of Thea biosynthesis (Feng et al., 2018). CsCAT2 from

tea plant was homologous to glutamine permease 1 (GNP1) from

yeast, and it was found to be localized in the tonoplast as an H+-

dependent amino acid transporter. CsCAT2 was highly expressed in

the roots in winter, and this was negatively correlated with Thea

root-to-shoot translocation, providing evidence that this

transporter may meditate Thea storage in tea cell vacuoles (Feng

et al., 2021). These findings enrich our understanding of N

homeostasis in the form of AAs. Table 2 lists the genes involved

in AAs transport in tea plants. When available, data on subcellular

localization, sequencing, tea cultivars analyzed, specific substrates,

and functional corroboration experiments are supplied.
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TABLE 1 Genes isolated from tea plants in NH4
+ and NO3

− transport.

Gene
name

Sequence
information

Functional verification

References
Gene ID
a

Cultivar
b

Subcellular
localization

System c Function
description

CsAMT1.1
MV344632
KU361592

FD, LJ43
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.2
MW344636
KU361593

FD,LJ43 Plasma membrane
Yeast
in planta
(At.)

A key gene for NH4
+

uptake in roots

(Zhang et al., 2018; Zhang et al., 2022a;
Zhang et al., 2022b)

CsAMT1.3 MW344633 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.4 MW344635 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.5 MW344634 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT3.1 KP338998 LJ43
Predicted:plasma
membrane

– –
(Zhang et al., 2018)

CsAMT2.1 MW751970 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsAMT2.2 MW751971 FD Plasma membrane Yeast – (Zhang et al., 2022b; Song et al., 2023)

CsAMT2.3 MW751972 FD Plasma membrane Yeast – (Zhang et al., 2022b; Song et al., 2023)

CsAMT2.4 MW751973 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsAMT2.5 MW751974 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsNRT1.1 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.2 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.5 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.7 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT2.4 – ZC302 Plasma membrane
in planta
(Nt. At.)

A key gene for NO3
-

uptake in roots
(Zhang et al., 2021)

CsNRT2.5 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT3.1 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT3.2 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNPF2.3 CSS0041711 ZM#6 Plasma membrane in planta
(Nt.)

(Wang et al., 2022b)

CsNPF6.1 CSS0037113 ZM#6 Plasma membrane (Wang et al., 2022b)

CsNRT KJ160503 – – – – (Wang, 2014)

CsNRT1.2 KP453862 LJ43
Predicted:plasma
membrane

– –
(Feng, 2014)
F
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aGene ID, the beginning as “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/genbank/);
bCultivar, FD, FudingDaBaiCha; LJ43, LongJin43; ZC302, ZhongCha302; ZM#6, ZhongMing#6.
cSystem, At, Arabidopsis thaliana; Nt, Nicotiana tabacum.
-, related information not presented or studied in corresponding literature.
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TABLE 2 Genes isolated from tea plants in amino acids transport.

Gene
name

Sequence information Functional verification

Reference
Gene ID a Cultivar

b
Subcellular
localization

Substrate c System
d Function description

CsAAP1 TEA031577.1 SCZ
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

Highly correlated to Thea root-
to- shoot transport

(Dong et al., 2020; Li
et al., 2020)

CsAAP2 TEA009392.1 SCZ
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

–
(Dong et al., 2020; Li
et al., 2020)

CsAAP3
TEA003112.1
MK532959

SCZ; LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2020)

CsAAP4
TEA030129.1
MK532960

SCZ; LJ43
Predicted:plasma
membrane

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast –
(Dong et al., 2020;
Guo et al., 2020)

CsAAP5 TEA033139.1 SCZ –

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast – (Dong et al., 2020)

CsAAP6
TEA013446.1
MK532961

SCZ; LJ43
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

–

(Dong et al., 2020;
Guo et al., 2020; Li
et al., 2020)

CsAAP7
TEA005296.1
MK532962

SCZ; LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2020)

CsAAP7.1 XM_028244216.1 SCZ – – – – (Li et al., 2022)

CsAAP7.2 MG523885 SCZ
Endoplasmic
reticulum

Thea, Ala,
GABA, Ser, Glu,
Asn, Pro

Plays a role in AAs uptake from
soil and Thea long- distance
transport

(Li et al., 2022)

CsAAP8
TEA031424.1
MK532963

SCZ; LJ43
Predicted:plasma
membrane

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast –
(Dong et al., 2020;
Guo et al., 2020)

CsAAP9 TEA000756.1 SCZ – – (Dong et al., 2020)

CsLHT1 TEA026462.1 SCZ; LJ43 Plasma membrane
Glu, Gln, Ala,
Pro, Asn, Asp,
GABA

H+-dependent high affinity
transporter in uptake AAs from
soil

(Guo et al., 2019; Li
et al., 2021)

CsLHT2 TEA021847.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT3 TEA033469.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT4
TEA029168.1
CSS0010852.1

SCZ; FD
Predicted:plasma
membrane

–
in planta
(At.)

–
(Li et al., 2021; Huang
et al., 2023b)

CsLHT5 TEA016092.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT6 TEA003706.1 SCZ; LJ43 Plasma membrane
Glu, Gln, Ala,
Pro, Asn, Asp,
GABA

H+-dependent low affinity
transporter in uptake AAs from
soil

(Guo et al., 2019; Li
et al., 2021)

CsLHT7
TEA021821.1
CSS0033052.1

SCZ; FD
Predicted:plasma
membrane

–
in planta
(At.)

–
(Feng et al., 2018; Li
et al., 2021)

CsLHT11 CSS0019144.1 FD –
in planta
(At.)

(Huang et al. 2023b)

CsLHT8.1 – LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2019)

CsLHT8.2 – LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2019)

(Continued)
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4 N utilization

4.1 NO3
− metabolic reduction

NO3
− absorbed by plants is a nitrogen form in a highly oxidized

state, which must be reduced to NH4
+ through metabolic reduction

to be further utilized. In this process, nitrate reductase (NR) is the

rate-limiting enzyme (Jackson et al., 2008). Both NR and NiR are

substrate-inducible enzymes; their function is to transfer electrons

for NO3
− reduction. NO3

− taken up by roots was reduced into

ammonium in mesophyll cells of shoots, and the metabolic

reduction can also be catalyzed in roots (Miller and Cramer,

2005). In rice, the alleles of OsNR2 present differences between

the two most common subspecies, indica and japonica. Thus,

OsNR2 in indica rice promotes NO3
− uptake through

OsNRT1.1B, conferring to this subspecies increased yield and

greater NUE compared with japonica rice (Gao et al., 2019).

In tea plants, studies have mainly focused on the activity and

expression of CsNR and CsNiR. The activity of NR was related to

NO3
− content. Besides, this activity was lower in the less vigorously

growing organs, such as the larger roots, older leaves and stems. In

the new shoots, the in vitro NR activity decreased with the degree of

leaf development, being highest in the first leaf and lowest in the fifth

one (Wang and Su, 1990; Wu and Wu, 1993). NR activity was also

responsive to trace elements including copper (Cu) and zinc (Zn).

Foliar spraying of Cu and Zn increased the content of N-containing

compounds and the activity of NR (Han and Wu, 1992). Under the

same conditions, CsNR andCsNiR expression levels in tea roots were

more strongly influenced by NH4
+ than NO3

− (Tang et al., 2020).

CsNR expression in tea roots was higher than in other tissues and

was up-regulated by environmental stresses (Zhou, 2014). However,

the expression level of this gene significantly differed across various
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cultivars (Zhou et al., 2013). On the other hand, the expression of

CsNiRwas higher inmature leaves than in new shoots and roots, and

in roots, this gene expression was up-regulated after a short period of

N resupply. The change in gene expression was slower in leaves, and

this responsiveness also varied in different cultivars representing

diverse genotypes (Zhang et al., 2016). Most of these findings

correspond to earlier experiments; the experimental evidence for

CsNR and CsNiR functions in tea plants is still scarce.
4.2 Ammonia assimilation

Both NH4
+ absorbed directly by plant roots and NH4

+/NH3

formed through NO3
- reduction can be derived to AAs synthesis

using various keto acids generated through respiration; this process is

known as ammonia assimilation. In higher plants, more than 95% of

the NH4
+/NH3 pool is assimilated via the GS-GOGAT cycle.

Glutamine synthetase (GS) is the key enzyme in this pathway,

playing a major role in fixing NH4
+ to the d-carboxyl group of Glu

to form Gln (Thomsen et al., 2014). Tea plants have a particular

ammonia-assimilation route; their roots can biosynthesize a unique

amino acid, Theanine (Thea), a homolog of Gln (Lin et al., 2023a).

Glutamate synthase (GOGAT) catalyzes the conversion of Gln and 2-

oxoglutarate to Glu, thus providing Glu for ammonia assimilation

(Bernard and Habash, 2009; Valderrama-Martıń et al., 2022). When

plants germinate, senesce, and begin to form seeds, glutamate

dehydrogenase (GDH) can catalyze the reversible amination/

deamination so that the GS-GOGAT cycle allows NH3 reuse,

necessary for ammonia detoxification (Fontaine et al., 2012; Zhou

et al., 2015). Through these pathways, N absorbed by roots is

incorporated into proteins, nucleic acids, and other substances

needed for plant growth.
TABLE 2 Continued

Gene
name

Sequence information Functional verification

Reference
Gene ID a Cultivar

b
Subcellular
localization

Substrate c System
d Function description

CsCAT1 KY709681 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT2 KY709679 SCZ Tonoplast
Thea, Asp, Glu,
Ala, Gln, Val

Meditate Thea storage
(Feng, 2017; Feng
et al., 2018; Feng et al.,
2021)

CsCAT5 KY709680 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT6 KY709682 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT8 KY709684 SCZ – Thea, Glu, Gln, – –
(Feng, 2017; Feng
et al., 2018)

CsCAT9 KY709683 SCZ – Thea, Glu, Gln – –
(Feng, 2017; Feng
et al., 2018)
aGene ID, the beginning as “TEA” and “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/
genbank/);
bCultivar, SCZ, ShuChaZao; LJ43, LongJing43; FD, FudingDaBaiCha.
cSubstrate, Thea, theanine; Glu, glutamate; Gln, glutamine; Asp, aspartate; Asn, Asparagine; Ala, alanine; Val, valine; Pro, proline; Ser, serine; GABA, g-aminobutyric acid.
dSystem, At, Arabidopsis thaliana; Nt, Nicotiana tabacum.
-, related information not presented or studied in corresponding literature.
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4.2.1 Glutamine synthetase (GS) and theanine
synthetase (TS)

Two isoforms of GS were first identified by ion exchange

chromatography: cytosolic GS (GS1) and plastidic GS (GS2)

(Bernard and Habash, 2009). GS1 is localized in the cytoplasm of

non-photosynthetic tissues and is mainly involved in assimilating

NH4
+ absorbed from the soil and released from the plant N cycle.

GS2 is localized in the chloroplast stroma and is the main isoform in

chlorenchyma, having a major role in NH4
+ assimilation within the

photorespiratory pathway and NO3
- reduction in plastids

(Swarbreck et al., 2011; Thomsen et al., 2014).

GS has been studied in tea plants extensively. It may be noticed

in the GenBank database that the Japanese researchers Tanaka and

Taniguchi were the first to clone three CsGS1 genes from tea roots

in 2011: CsGS1.1 (AB115183), CsGS1.2 (AB115184), and CsGS1.3

(AB117934), but the functions of these genes had not been reported

(Lin et al., 2023a). Tang et al. (2018) cloned three CsGS1 genes from

the leaf of the cultivar Longjing43; the information obtained from

the sequence analysis showed that the 3’/5’-untranslated region

differed from those obtained previously, and CsGS1.1 and CsGS1.3

were mainly expressed in roots, while CsGS1.2 was mainly

expressed in mature leaves. NH4
+ or NO3

− supply also influences

the expression levels of these genes. The expression of CsGS1.1 in

leaves was up-regulated only by NO3
− in a similar manner as

AtGLN1.2, indicating that its role in ammonia assimilation

originates from NO3
− reduction (Lothier et al., 2011; Guan et al.,

2014). However, under the NH4
+ treatment, the expression of

CsGS1.2 was induced in both leaves and roots, and CsGS1.3

expression was only significantly increased in leaves (Tang et al.,

2018). Further research indicated that GS activity in tea plants was

quickly inhibited upon methionine sulfoximine addition, leading to

the reprogramming of AAs and nitrogenated lipids. This change

involved a decrease in the biosynthesis of all other AAs and

nitrogenated lipids, whereas the content of NH4
+, Thea, and

glycolysis and tricarboxylic acid cycle-related metabolites

increased, indicating that the inhibition reduced N reutilization in

the leaves (Liu et al., 2019).

L-theanine (g-glutamyl-L-ethylamide), also known as L-Thea, is

a distinctive non-proteinogenic amino acid that contributes an

umami taste and exhibits anti-depression benefits (Liu et al.,

2017d). Thea accumulation was dynamically regulated by

developmental growth, and environmental factors, including N

supply, temperature, light intensity, and salt stress (Ashihara,

2015). The synthesis of L-Thea is a unique and highly

characteristic aspect of nitrogen assimilation in tea plants.

Deciphering the underlying molecular mechanism of L-Thea

synthesis will provide valuable guidance for fertilization and

breeding strategies. Theanine synthetase (TS), an essential enzyme

for Thea metabolism, catalyzes the biosynthesis of Thea from

ethylamine and Glu, mainly in tea roots (Fu et al., 2021a). The

structure and properties of L-Thea are similar to those of L-Gln, and

some studies have confirmed that TS is highly homologous to GS

(Cheng et al., 2017). As indicated before, CsTS1 (DD410895) and

CsTS2 (DD410896) were firstly isolated through cDNA library

screening. CsTS1 is mainly expressed in the new shoots, roots,

and mature leaves, while CsTS2 reached higher expression levels in
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shoots (Deng et al., 2008). Both genes are involved in Thea

biosynthesis; this was validated through a heterologous expression

system (Lin et al., 2023a).

By performing genome studies, Wei et al. (Wei et al., 2018)

found that the predicted CsGSⅠ sequence shared high homology

with that of PtGS (Pseudomonas taetrolens), and PtGSI has been

engineered for Thea production at high levels, for which CsGSⅠ
was renamed as CsTSⅠ. The function of CsTS and CsGS was

investigated in depth through the transient overexpression in

Nicotiana benthamiana leaves or the stable expression in

Arabidopsis and knockdown in tea plants. The expression pattern

and distribution of CsTSⅠ correlated with Thea and Gln contents

in different tissues. CsTS I mainly accumulated in root tip

epidermal, pericycle, and procambium cells to form cytoplasmic

proteins. When fed with 10 mM ethylamine, CsTSI-overexpressing

Arabidopsis seedlings showed a significantly higher Thea content

than wild-type seedlings. Further research allowed the construction

of CsTSI RNAi and CsTSI overexpressing chimerical tea seedlings

with transgenic hair roots; the results demonstrated that the content

of Thea decreased and that of Gln increased, thus proving that

CsTSI biosynthesized Gln and Thea used glutamate as an acceptor

and ammonium or ethylamine as a donor, respectively (Wei et al.,

2018; Fu et al., 2021b; She et al., 2022). Fu et al. (2021b) used a non-

aqueous fractionation method and could determine that, in roots,

L-Thea biosynthesis mainly occurred in the cytosol through the

action of the key and cytosolic enzyme L-Thea synthetase CsTSI,

whereas in shoots, both the cytosol and chloroplasts were the major

sites for L-Thea biosynthesis, and CsGS1.1 and CsGS2 were, most

likely, the fundamental L-theanine synthetase. CsGS2 was identified

as a key enzyme regulating Thea biosynthesis in chloroplasts, L-

Thea content and distribution in leaf tissues would be affected by

light, as long-term shading treatment led to a decrease in the

proportion of L-Thea in the plastids by reducing CsGS2

expression levels. Thus, new shoots could accumulate more L-

Thea. In contrast, CsGS1.2 expression in albino new shoots was

higher than that found in common cultivars as a way to compensate

for the low CsGS2 expression in undeveloped chloroplasts. These

findings indicate that the mechanism underlying Thea synthesis

might differ across tea genotypes (Yu et al., 2021).

4.2.2 Glutamate synthase (GOGAT) and
glutamate dehydrogenase (GDH)

There are two isoforms of GOGAT in plants, with different

functions: ferredoxin-dependent GOGAT (Fd-GOGAT) and

nicotinamide adenine dinucleotide-dependent GOGAT (NADH-

GOGAT) . Fd-GOGAT ass imi la tes ammonia through

photorespiration in leaves, while NADH-GOGAT accumulates in

non-green tissues, playing a role in ammonia assimilation in root

(Suzuki and Knaff, 2005; Konishi et al., 2014).

GDH is abundant in plant tissues; this enzyme catalyzes

ammonia conversion to Glu and also deaminates Glu to a-
ketoglutarate. GDH-mediated ammonia assimilation and as a

stress-responsive enzyme, GDH detoxified the intracellular high

ammonia and biosynthesize Glu (Lea and Miflin, 2003; Fontaine

et al., 2012; Zhou et al., 2015). CsGOGAT was found to have

significantly higher expression in the leaf than in the root (Chen
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et al., 2015). Under N starvation, CsGOGAT expression increased,

and CsGDH expression decreased significantly; these changes were

correlated with leaf N content (Lin et al., 2014). CsGOGAT also

have a regulatory role in AAs changes in postharvest tea plant

leaves. The Thea content changed in spreading tea leaves under

different treatments, and CsGOGAT was involved in Thea

metabolic pathway, regardless of external light and temperature.

Also, CsGOGAT would interact with CsTS I and CsNiR during N

metabolism (Liu et al., 2017c). In tea plant, all CsGDHs identified to

date belong to the NADH-GDH group. Accumulation of CsGDH2

transcripts seemed to be flower-specific compared with the other

five plant tissues analyzed; CsGDH1 was mainly expressed in

mature leaves and roots, and CsGDH3 in new shoots and roots.

Under high NH4
+ supply, CsGS inhibition resulted in a significant

up-regulation of CsGDH3 and CsGDH2 in roots and leaves,

indicating the synergistic effect of CsGSs and CsGDHs in the

process of ammonia assimilation (Tang et al., 2021). The

expression of CsGDH2.1 in shoots increased greatly in the late

spring; further investigation revealed that Glu was a signal for Thea

hydrolysis, and CsGDH2.1-mediated Glu catabolism negatively
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regulated Thea accumulation in the new shoots in the late spring,

improving green quality by targeting to reduce CsGDH2.1

expression (Chen et al., 2022).

Summing up, studies directed to analyze the genes related to N

metabolism in tea plants mostly focused on their function in

regulating AAs biosynthesis. Knowledge about the functioning

and regulation of the enzymes involved in these processes is

mostly based on transcript analyses. There are still many gaps in

our understanding of their functions, especially for NR, NiR, and

GOGAT, concerning NO3
− reduction, N assimilation,

remobilization, and reassimilation of photorespiratory NH3. It is

noteworthy that, apart from the transcriptional regulation, post-

translational modifications (PTMs) can also be critical for the

regulation of many proteins relevant to N metabolism in

plants (Liu et al., 2022). Therefore, more detailed studies will

deepen our understanding of NUE determinants and allow

further optimization of NUE under actual tea garden

production scenarios.

Genes involved in ammonia assimilation by tea plants and their

most relevant data are shown in Table 3.
TABLE 3 Genes involved in ammonia assimilation in tea plant.

Gene
name

Sequence information Functional verification

References
Gene ID a Cultivar b Subcellular

localization
System c Functional

description

CsNR JX987133 LJ43 – – – (Zhou et al., 2013)

CsNiR – LJ43 – – – (Zhang et al., 2016)

CsGS1.1

AB115183
KY649469
TEA015580.1
MG778703

‘Sayamakaori’
posterity
LJ43
JX

Cytosol and
nucleus

E. coli
in planta (At.)

Biosynthesizes Thea and Gln
(Cheng et al., 2017; Tang et al., 2018; Wei
et al., 2018; Fu et al., 2021b; Yu et al.,
2021)

CsGS1.2

AB115184
KY649470
TEA032123.1
MG778705

‘Sayamakaori’
posterity
LJ43; JX

Cytosol
E. coli
in planta (At.)

CsGS1.3

AB117934
KY649471
TEA032217.1
MG778704

‘Sayamakaori’
posterity
LJ43; JX

Mitochondria
E. coli
in planta (At.)

CsGS2
TEA028194.1
MG778706

JX
Chloroplast,
mitochondria

E. coli
in planta (At.)

Thea synthetase in
chloroplasts

(Cheng et al., 2017; Wei et al., 2018; Fu
et al., 2021b; Yu et al., 2021)

CsGS EF055882 – – – – (Rana et al., 2008)

CsGS JN602372 JLP – – – (Lin et al., 2014)

CsTSⅠ TEA015198.1 SCZ Cytosol
in planta
(At. Tea plant
hairy roots)

Thea synthetase in cytosol. (Wei et al., 2018; Fu et al., 2021b)

CsTS1 DD410896 – – E. coli Biosynthesizes Thea after
supply with ethylamine

(Cheng et al., 2017; Fu et al., 2021b)

CsTS2 DD410895 – – E. coli (Cheng et al., 2017; Fu et al., 2021b)

CsTS3 JN226569 AJB
Predicted:
cytoplasm
peroxisome

– – (Li et al., 2011; Chen et al., 2015)

CsGOGAT JN602373 JLP – – – (Lin et al., 2014)

(Continued)
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5 An overview of nitrogen use
efficiency assessment by tea plants

Nitrogen use efficiency (NUE) is a complex trait influenced by the

interaction between environmental factors and intrinsic plant factors;

this variable can be approached at different levels and calculated in

different ways (Santa-Marıá et al., 2015). Initially, NUE was defined as

the crop yield per unit of applied N, a parameter also termed partial

fertilizer productivity (PFP) (Moll et al., 1982). Under specificN supply

conditions, NUE can be divided into two components: nitrogen uptake

efficiency (NUpE) and nitrogen utilization efficiency (NUtE) or

nitrogen physiological efficiency (NPE). NUpE may be defined as

the total amountN absorbed andNUtE as the dry weight or grain yield

per unit of absorbed N, accounting for the results at this growth stage

(Williams et al., 2021). Tea germplasm resources are abundant in

China; the genetic diversity of this plant, resulting from a long time of

artificial domestication and cultivar-breeding improvement, has

determined quite different N requirements (Zhang et al., 2018).

Additionally, because tea production does not target grain yield,

dissimilar NUE assessment criteria were adopted. Here, we integrate

the results of several studies and present four approaches to assessNUE

by tea plants.
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5.1 Biomass accumulation

By the end of the 20th century, it was reported that the rate of

increase in tea ground stem diameter and height and dry matter

production in different cultivars varied under sufficient N supply

compared to no N application (Ruan et al., 1993). Under low N

supply, tea plants’ height, root and shoot dry weight, and leaf SPAD

values were significantly decreased (Wang et al., 2015). Wang et al.

(2004) measured the added-N content in the biomass and the

growth of new shoots in six tea cultivars under four N levels

(based on 15N isotope labeling techniques), and redefined five

interdependent traits—nitrogen use efficiency (NE), nitrogen

uptake efficiency (NUE), nitrogen physiological utilization

efficiency (NPE), nitrogen economic efficiency (NEE) and N

responsiveness—according to growth characters and harvesting

organs. They found that the biomass increase was significantly

correlated with NEE, the weight of the new shoots was significantly

(positively) correlated with NE, NUE, and NEE, while NUE was the

main determinant of NE. These authors indicated that by

comparing the NE values of different cultivars, it is possible to

detect which cultivar can achieve the highest NUE for a given level

of N supply.
TABLE 3 Continued

Gene
name

Sequence information Functional verification

References
Gene ID a Cultivar b Subcellular

localization
System c Functional

description

CsGOGAT1 TEA003892.1 – – – – (Wei et al., 2018; Li et al., 2019)

CsGOGAT2 TEA026779.1 – – – – (Wei et al., 2018; Li et al., 2019)

CsGOGAT3 TEA030315.1 – – – – (Li et al., 2019)

CsFd–
GOGAT

– LJ43 – – – (Liu et al., 2017c)

CsNADH–
GOGAT

– LJ43 – – – (Liu et al., 2017c)

CsGDH JN602371 JLP – – – (Lin et al., 2014)

CsGDH1 TEA034004.1 LJ43 – – – (Tang et al., 2021)

CsGDH2 TEA009809.1 LJ43 – – – (Tang et al., 2021)

CsGDH3
TEA034006.1
TEA006665.1

LJ43 – – – (Tang et al., 2021)

CsGDH2.1 CSS0034454.1 SCZ Mitochondria

Yeast
in planta (Nt.)
asODN in tea
plant

Negatively regulates theanine
accumulation in the late–
spring

(Chen et al., 2022)

CsGDH2.2 CSS0007238.1 SCZ Mitochondria
Yeast
in planta (Nt.)

– (Chen et al., 2022)
aGene ID, the beginning as “TEA” and “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/
genbank/);
bCultivar, LJ43, LongJing43; JX, JinXuan; SCZ, ShuChaZao; JLP, JiuLongPao; AJB, AnJiBaicCha.
cSystem, E. coli, Escherichia coli; At, Arabidopsis thaliana; Nt, Nicotiana tabacum; asODN, antisense oligonucleotide.
-, related information not presented or studied in corresponding literature.
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5.2 Root-related traits

The root is the main organ for nutrient uptake and plays a direct

role in N acquisition (Lynch, 2007; Zhu et al., 2011). Root

development and activity are responsive to soil N levels (Ju et al.,

2015). Studies on plant response to N concentration gradients using

different tea cultivars suggested that N concentration has a

significant effect on root/shoot ratio, and this ratio could be used

as a screening index to detect low-N-tolerant cultivars (Wang et al.,

2015). On the other hand, the differences among cultivars in root-

related parameters such as root dry weight, root volume, or root

active uptake area were greater than those of root activity. Likewise,

root volume and active uptake area varied significantly across N

levels. Further correlation studies provided evidence that these

parameters may be considered as promising indices for selecting

and breeding tea cultivars with high NUE (Wang et al., 2005).
5.3 NH4
+ influx kinetics

In the early 1950s, Epstein and Hagen (1952) applied the

Michaelis-Menten equation for the first time to describe the

absorption process of ionic nutrients by plants. In this equation,

Vmax represents the maximum uptake rate; this value is directly

proportional to the uptake rate for ions, and Km is inversely

proportional to the affinity of the cell membrane for nutrient ions

(Zhang et al., 2018). Because tea roots show a preference for NH4
+

uptake as the nitrogen source, the kinetic parameters of this cation

are usually used to define tea adaptability to N availability.

According to current studies on NH4
+ dynamics, tea cultivars

may be classified into three categories: (1) cultivars with high Km

and high Vmax can produce high yields in soils with elevated N

contents; TeiGuanYin, HuangDan, and Yubukita cultivars belong

to this type; (2) cultivars with low Km and low Vmax may display a

good performance in soils with low N concentrations; YingShuang

and MaoXie belong to this type; (3) cultivars with high Km and low

Vmax are the most flexible concerning N levels, being appropriate

for both high and low N conditions; ZhongCha#302 and

FuDingDaBaiCha belong to this type (Wang et al., 2005; Liu,

2016; Zhang et al., 2018; Zhang et al., 2022b). Notably, N flux

was calculated as the N content in the roots based on 15N labeling in

most studies, and there are still many cultivars falling into different

groups in different studies due to different number of tested

cultivars and methodological approaches. Though NH4
+ influx

kinetics allowed a better understanding of N use by tea plants,

more precise methods, such as non-invasive procedures based on

micro-test technology, will be useful for future experiments (Ruan

et al., 2016; Su et al., 2020).
5.4 Activity and gene expression of N-
assimilation-related enzymes

The leaves are the main assimilation organs of inorganic N. The

accumulation of N-assimilates and the enzymes and genes
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regulating these metabolic processes could indicate NUE-related

sub-traits (Sun et al., 2019). Some studies showed that GS activity

varied among cultivars and N levels and was positively correlated

with N assimilation rate and NUpE (Wang et al., 2005; Du et al.,

2015). Lin et al. (2017; 2018) examined the activity of some

antioxidant enzymes and found increased activities in the low N-

tolerant cultivar HuangDan in a nitrogen-deficient environment.

This was linked to the maintenance of high photosynthetic rates

and to the adequate output of N-assimilates in the leaves. Still, by

combining genes, enzymes, and assimilates and exploring their

affiliation links, it was possible to evaluate NUE traits

comprehensively. Zhou (2012) measured soluble sugars, soluble

proteins, total N content, N-related enzymatic activities, and the

expression of AAs biosynthetic genes. Their results suggested that

the differences in these indicators varied in the five cultivars tested

as the N concentration increased and membership function could

be used to evaluated the NUE of each cultivar synthetically. Also,

CsAMTs expression profiles in response to NH4
+ differed among

cultivars (Zhang et al., 2018; Zhang et al., 2022b). Still, it was

possible to detect that CsNRT2 participated in NO3
− transport

under low N conditions (Hu et al., 2023; Lin et al., 2023b). The

AuTophaGy-related genes CsATG8e and CsATG3a were linked to

an improved plant ability for N recycling and tolerance to low N

levels (Huang et al., 2020; Huang et al., 2023a). These genes emerge

as promising indicators and may contribute to identifying higher

NUE among various germplasm resources.

Although multiple investigations have addressed NUE of tea

plants, most NUE-related traits were identified based on individual

morphology, physiological processes, relevant biochemical

components, or gene expression patterns. Nevertheless, there are

no universal standards for grading NUE in tea plants, and some

cultivars have shown heterogeneous results. The measurement of

biomass is time-consuming and susceptible to environmental

changes. And only the processes of N uptake, transport or

utilization not the comprehensive NUE have been measured in

tea plants. The practicability of method also depends on the number

of tested cultivars. Most importantly, NUE estimates are

complicated and current evaluation methods are not

comprehensive enough to cover and explain the meaning of

NUE. The methodological l imitat ions st i l l res is t our

understanding of N metabolic mechanisms. Therefore, analyses

combining omics data and molecular and genetic approaches will

be useful to elucidate further heritability and inheritance in this

species with a point of great value to improve NUE by tea plants.
6 Conclusions and perspectives

N is the driving factor for tea yield and quality. Facing the

practical problem of the disproportionate amount of N fertilizers

applied and the low N utilization rate by tea plantations, a

comprehensive study on the process of N transport, absorption,

and utilization is necessary to increase NUE, to improve quality

features such as aroma and flavor, and, ultimately, to promote the

sustainable development of the industry.
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Currently, it is clear that tea plants show a preferential uptake

and assimilation of NH4
+ over NO3

−, and more NH4
+ availability

allows tea plants to produce more AAs, which further act as

signaling molecules involved in other metabolic pathways. In

addition, great progress has been made in the elucidation of the

N primary metabolism network. Genes contributing to N transport

and assimilation have been cloned and sequenced, and the

functions of many genes have been identified by transgenic

experiments in yeast, Arabidopsis, and Nicotiana tabacum.

However, the current methods to assess tea NUE under actual

productive settings have limitations. For instance, some basic

indices related to plant physiological performance and gene

expression were proposed, but these approaches are time-

consuming and inappropriate for large-scale field cultivar

assessment. One drawback is that a stable transgenic system has

not been established yet; hence, we cannot knock out or overexpress

genes to provide functional evidence in homologous systems.

Therefore, there is an urgent need to develop an efficient and

stable gene transformation system for tea plants, even more

considering that the N metabolism network is regulated by

mult iple genes . Future research should consider the

following issues.

Firstly, most research on N uptake and utilization by tea plants

has focused on ammonia assimilation and AAs biosynthesis.

However, NH4
+-based fertilizers and urea are widely applied in

tea gardens, and these N forms are expected to be converted to

NO3
− by nitrification, entailing the risk of leaching. It has been

reported that NO3
- was the main chemical form of N loss by

leaching: about 51%-63% of the added N is lost in this way (Zheng,

2022). Therefore, the biological significance of NRT, NR, and NiR

in N utilization is not negligible. In rice, the nitrate sensor NRT1.1B

could perceive NO3
− signal at the plasma membrane and facilitated

SPX4 degradation by recruiting NBIP1, resulting in the cytoplasm-

to-nuclear shuttling of OsNLP3 to transduce NO3
− response (Hu

et al., 2019). Also, in Arabidopsis, the phosphorylation state of

NRT1.1 regulates the nitrate signaling for lateral root growth, and

the non-phosphorylable NRT1.1T101A would activate Ca2+-CPKs-

NLPs signaling pathway by inducing its endocytosis under high

NO3
− concentration (Zhang et al., 2019a).

Secondly, although significant progress has been made in recent

years regarding our understanding of the transcriptional regulation

of the GS-GOGAT cycle, there are few reports on how transcription

factors (TFs) regulate the expression of these downstream genes.

The latest research revealed that the lateral organ boundaries

domain gene CsLBD39 negatively regulated NO3
− transduction

(Teng et al., 2022). Functional studies on the regulation of N

metabolism by TFs need to be further expanded in both scope

and depth. Additionally, PTMs also influence NUE through their

effects on relevant proteins in plants. Phosphorylation and

dephosphorylation of NR are involved in regulating NR activity,

and phosphorylation, oxidation, tyrosine nitration, and S-

nitrosylation of GS protein are also key mechanisms for GS

function in many crops, including wheat, rice, and maize (Liu

et al., 2022). A recent study in tea plants found that CsALT, CsTSI,

CsGS, and CsAlaDC, proteins involved in Thea synthesis, were

modified through ubiquitination, implying that these enzymes’
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stabilities were regulated by this modification (Wang et al.,

2021b). Consequently, to establish a comprehensive N

mechanism network for tea plant, N transport, reduction and

assimilation requires precise regulation at both the transcriptional

and post translational levels, many efforts need to be made to

explore the PTMs, particularly to identify the modification sites that

may be relevant for N use regulation by tea plants.

Furthermore, plants can respond to changes in N uptake by

adjusting leaf expansion and photosynthetic rates, as well as

chlorophyll content. In senescent leaves, N assimilation decreased;

this was associated with the degradation of proteins and nucleic

acids; the released N was remobilized to developing tissues. The

expression of genes related to GS/GOGAT cycle during leaf

senescence was widely investigated; most of these genes were

expressed in phloem companion and parenchyma cells in cereals,

suggesting that GS/GOGAT cycle plays a vital role in N

remobilization from senescent organs to developing organs (Havé

et al., 2017; Liu et al., 2022). In addition, NH4
+, NO3

−, AAs, and

peptide transporters also can be up- or down-regulated during leaf

senescence. Thus, many aspects of N metabolic pathways would be

influenced by N recycling and remobilization (Breeze et al., 2011). It

is reasonable to hypothesize that there are some other undiscovered

factors and pathways, for example, components of C metabolism

that regulate N remobilization. Tea production involves the pruning

and picking of the tender leaves every season; this leads to a more

active N turnover between the senescent leaves and the new shoots.

Hence, for tea plants, an overview of the mechanisms involved in N

recycling and remobilization is important to improve N resorption

efficiency and also to reduce the use of N chemical fertilizers, which

are responsible for a large part of greenhouse gas emissions.

Finally, along with the deciphering of the tea genome in multiple

cultivars (Wang et al., 2021a), whole genome resequencing could

provide more efficient single nucleotide polymorphisms (SNPs)

markers to construct a high-density linkage map of tea populations.

Such maps will lay a foundation for further investigations of

quantitative trait loci (QTL) mapping and genome-wide association

studies (GWAS) in order to reveal the molecular basis for important

agronomic traits. In rice, forward genetics approaches revealed that

allelic variation at OsNR2 and OsNRT1.1B resulted in the nitrate-use

divergence between indica and japonica subspecies and were used to

improve the NUE of rice (Hu et al., 2015; Gao et al., 2019). Multiple

attempts have beenmade to detect relevantQTLs or variation sites and

quality-related traits in tea plants, including biochemical components,

leaf area (An et al., 2021), seed setting rate (Wei et al., 2021), bud flush

timing (Tan et al., 2022), and AAs (Huang et al., 2022), caffeine (Ma

et al., 2018), and flavonoid (Xu et al., 2018) contents. However, fewer

attempts to unravel nutrient uptake and utilization traits in the context

of genotype-to-phenotype mapping research have been reported.

Nutrient-related traits are generally regulated by multiple genes and

environmental factors, so it is difficult to quantify their phenotypes

precisely. More attempts need to reveal the processes of N cycling, and

to define the phenotypic indicators that reflect each step of N

metabolism. For example, chlorate (ClO3
−) is an analogic tracer for

NO3
− and the resistance ability toClO3

− is an efficient indicator for fast

screening the process of NO3
− transport and reduction divergency (Hu

et al., 2015). How to apply this method in woody plants is a challenge
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that needs to be considered in future research. Population genetics can

help us to explore better the gene regulatory loci affecting NUE-related

traits and to identify the TFs or promoters which are able to regulate or

activate the transcription of downstream structural genes. Exploiting

interpopulation genetic variation in different germplasms will be

instrumental for cultivar improvement. Thus, the use of precise

phenotyping methods on population is challenging but necessary for

future studies of discovering genetic variation associated with NUE-

related traits.

Therefore, future studies should focus on the regulation

mechanisms of NO3
− uptake and reduction in tea plants to

increase the utilization of NO3
− from the soils and reduce

leaching losses, a point of great significance for the genetic

improvement directed to high NUE cultivars as well as for

developing a sustainable tea plantations.
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Suárez, M. F., Avila, C., Gallardo, F., Cantón, F. R., Garcıá-Gutiérrez, A., Claros, M.
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Valderrama-Martıń, J. M., Ortigosa, F., Ávila, C., Cánovas, F. M., Hirel, B., Cantón, F.
R., et al. (2022). A revised view on the evolution of glutamine synthetase isoenzymes in
plants. Plant J. 110, 946–960. doi: 10.1111/tpj.15712

Wang, J. (2014). “Cloning and expression analysis of genes related to nitrogen
transporter in tea plants (Camellia sinesis),” in Dissertation (Hefei, Anhui Province:
Anhui Agricultural University).

Wang, L., Chen, C., Lin, Z., Wei, K., Wu, L., Feng, S., et al. (2015). Growth
characteristic of different cultivars of tea plant in response to nitrogen contents. J.
Tea Sci. 35, 423–428. doi: 10.13305/j.cnki.jts.2015.05.003

Wang, Y., Cheng, X., Yang, T., Su, Y., Lin, S., Zhang, S., et al. (2021b). Nitrogen-
regulated theanine and flavonoid biosynthesis in tea plant roots: protein-level
regulation revealed by multiomics analyses. J. Agric. Food. Chem. 69, 10002–10016.
doi: 10.1021/acs.jafc.1c02589

Wang, Y., Ouyang, J.-X., Fan, D.-M., Wang, S.-M., Xuan, Y.-M., Wang, X.-C., et al.
(2022a). Transcriptome analysis of tea (Camellia sinensis) leaves in response to
ammonium starvation and recovery. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.963269

Wang, X., and Su, J. (1990). Relationship between nitrate reductase activity and yield
traits and nitrogen nutrition in tea plants. J. Tea Sci. 64.

Wang, J., Tian, X., Jiang, C., and Li, Y. (2014). Cloning and expression analysis of
nitrate transporter gene in Camellia sinensis. Plant Physiol. J. 50, 983–988.
doi: 10.13592/j.cnki.ppj.2014.0049

Wang, Y., Wei, K., Ruan, L., Bai, P., Wu, L., Wang, L., et al. (2022b). Systematic
investigation and expression profiles of the nitrate transporter 1/peptide transporter
family (NPF) in tea plant (Camellia sinensis). Int. J. Mol. Sci. 23, 6663. doi: 10.3390/
ijms23126663

Wang, Y., Xuan, Y.-M., Wang, S. M., Fan, D. M., Wang, X. C., and Zheng, X. Q.
(2022c). Genome-wide identification, characterization, and expression analysis of the
ammonium transporter gene family in tea plants (Camellia sinensis L.). Physiol. Plant
174, e13646. doi: 10.1111/ppl.13646

Wang, X., Yang, Y., Chen, L., and Ruan, J. (2004). Genotypic difference of nitrogen
efficiency in tea plant [Camellia sinensis (L.) O. Kuntze]. J. Tea Sci. 24, 93–98.
doi: 10.13305/j.cnki.jts.2004.02.004

Wang, X., Yang, Y., Chen, L., and Ruan, J. (2005). Preliminary study on physiological
and biochemical indices related to nitrogen use efficiency in tea plant [Camelliasinensis
(L.)O·Kuntze). Acta Agronomica Sin. 31, 926–931.

Wang, P., Yang, J., Zhang, X., and Ye, N. (2021a). Research advance of tea plant
genome and sequencing technologies. J. Tea Sci. 41, 743–752. doi: 10.13305/
j.cnki.jts.2021.06.002

Wei, G., Huang, J., and Yang, J. (2012). The impacts of food safety standards on
China’s tea exports. China Econ. Rev. 23, 253–264. doi: 10.1016/j.chieco.2011.11.002

Wei, K., Wang, X., Hao, X., Qian, Y., Li, X., Xu, L., et al. (2021). Development of a
genome-wide 200K SNP array and its application for high-density genetic mapping and
origin analysis of Camellia sinensis. Plant Biotechnol. J. 20, pbi.13761. doi: 10.1111/
pbi.13761

Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., et al. (2018). Draft genome
sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea
genome and tea quality. Proc. Natl. Acad. Sci. U.S.A. 115, E4151–E4158. doi: 10.1073/
pnas.1719622115

Williams, S., Arcand, M., and Congreves, K. (2021). Nitrogen use efficiency
definitions of today and tomorrow. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.637108

Wirén, N., Gazzarrini, S., and Frommer, W. (1997). Regulation of mineral nitrogen
uptake in plants. Plant Soil 196, 191–199. doi: 10.1023/A:1004241722172

Wu, X., Liu, T., Zhang, Y., Duan, F., Neuhäuser, B., Ludewig, U., et al. (2019).
Ammonium and nitrate regulate NH4

+ uptake activity of Arabidopsis ammonium
transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites. J. Exp. Bot. 70,
4919–4930. doi: 10.1093/jxb/erz230

Wu, B., and Wu, X. (1993). Determination of nitrate reductase activity of tea pant
leaves in vitro and in situ. China Tea 8–10.

Xia, E., Tong, W., Hou, Y., An, Y., Chen, L., Wu, Q., et al. (2020). The reference
genome of tea plant and resequencing of 81 diverse accessions provide insights into its
genome evolution and adaptation. Mol. Plant 13, 1013–1026. doi: 10.1016/
j.molp.2020.04.010
Frontiers in Plant Science 1755
Xing, A., Ma, Y., Wu, Z., Nong, S., Zhu, J., Sun, H., et al. (2020). Genome-wide
identification and expression analysis of the CLC superfamily genes in tea plants
(Camellia sinensis). Funct. Integr. Genomics 20, 497–508. doi: 10.1007/s10142-019-
00725-9

Xu, L. Y., Wang, L. Y., Wei, K., Tan, L. Q., Su, J. J., and Cheng, H. (2018). High-
density SNP linkage map construction and QTL mapping for flavonoid-related traits in
a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genom. 19, 955.
doi: 10.1186/s12864-018-5291-8

Yang, Y. (2011). “Quality-related constituents in tea (Camellia sinensis (L.) O.
Kuntze) leaves as affected by nitrogen,” in Dissertation (Nanjing, Jiangsu Province:
Nanjing Agricultural University).

Yang, Y., Hu, Y., Wan, Q., Li, R., Wang, F., and Ruan, J. (2016). Cloning and
expression analysis of nitrate transporter NRT1.1 gene in tea plant (Camellia sinensis
(L.)). J. Tea Sci. 36, 505–512. doi: 10.13305/j.cnki.jts.2016.05.009

Yang, T., Xie, Y., Lu, X., Yan, X., Wang, Y., Ma, J., et al. (2021). Shading promoted
theanine biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia
sinensis L.) cultivar Shuchazao. J. Agric. Food Chem. 69, 4795–4803. doi: 10.1021/
acs.jafc.1c00641

Yao, M. Z., Ma, C. L., Qiao, T. T., Jin, J. Q., and Chen, L. (2012). Diversity
distribution and population structure of tea germplasms in China revealed by EST-
SSR markers. Tree. Genet. Genomes. 8, 205–220. doi: 10.1007/s11295-011-0433-z

Yu, Y., Kou, X., Gao, R., Chen, X., Zhao, Z., Mei, H., et al. (2021). Glutamine
synthetases play a vital role in high accumulation of theanine in tender shoots of albino
tea germplasm “Huabai 1.” J. Agric. Food Chem. 69, 13904–13915. doi: 10.1021/
acs.jafc.1c04567

Yuan, L., Gu, R., Xuan, Y., Smith-Valle, E., Loqué, D., Frommer, W. B., et al. (2013).
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Physiological and molecular
mechanisms of Acacia
melanoxylon stem in response to
boron deficiency
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Xiangyang Li1* and Bing Hu1*

1Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research
Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China, 2College
of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou,
Guangdong, China
Boron is an essential micronutrient for plant growth as it participates in cell wall

integrity. The growth and development of Acacia melanoxylon stem can be

adversely affected by a lack of boron. To explore the mechanism of boron

deficiency in A. melanoxylon stem, the changes in morphological attributes,

physiological, endogenous hormone levels, and the cell structure and

component contents were examined. In addition, the molecular mechanism of

shortened internodes resulting from boron deficiency was elucidated through

transcriptome analysis. The results showed that boron deficiency resulted in

decreased height, shortened internodes, and reduced root length and surface

area, corresponding with decreased boron content in the roots, stems, and

leaves of A. melanoxylon. In shortened internodes of stems, oxidative damage,

and disordered hormone homeostasis were induced, the cell wall was thickened,

hemicellulose and water-soluble pectin contents decreased, while the cellulose

content increased under boron deficiency. Furthermore, plenty of genes

associated with cell wall metabolism and structural components, including

GAUTs, CESAs, IRXs, EXPs, TBLs, and XTHs were downregulated under boron

deficiency. Alterations of gene expression in hormone signaling pathways

comprising IAA, GA, CTK, ET, ABA, and JA were observed under boron

deficiency. TFs, homologous to HD1s, NAC10, NAC73, MYB46s, MYB58, and

ERF92s were found to interact with genes related to cell wall metabolism, and

the structural components were identified. We established a regulatory

mechanism network of boron deficiency-induced shortened internodes in A.

melanoxylon based on the above results. This research provides a theoretical

basis for understanding the response mechanism of woody plants to

boron deficiency.
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boron deficiency, transcriptome, cell wall, hormone, Acacia melanoxylon
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1 Introduction

Boron is an essential trace mineral element for plants

(Warington, 1923) and plays a critical role in plasma membrane

integrity and function, cell wall structure and function, carbohydrate

and nucleic acid metabolism, phenol, and hormone metabolism, as

well as respiration and photosynthesis (Garcıá-Sánchez et al., 2020;

Bolaños et al., 2023; Chen et al., 2023). Boron primarily exists in the

form of boric acid (H3BO3) in soil, which is prone to leaching during

heavy rainfall (Shorrocks, 1997; Brdar-Jokanović, 2020). In more

than 80 countries globally, boron deficiency has become a widespread

concern problem in both agriculture and forestry. Boron deficiency

plants exhibit diverse visible symptoms in vegetative and

reproductive organs, such as reduced root growth, suppressed plant

height, decreased leaf area, lost apical shoot dominance, and reduced

fertility (Shorrocks, 1997; Wang et al., 2015).

Boron is mainly involved in the formation and structural

integrity of the primary cell wall by crosslinking pectin

polysaccharide rhamnogalacturonan II (RG-II) (O'Neill et al.,

2001; Camacho-Cristóbal et al., 2011). And nearly 90% of cellular

boron is positioned on the cell wall (Kobayashi et al., 1997). When

boron is lacking, the cell wall structure is disorganized, and the

intercellular pectin polysaccharides are impacted, thereby

preventing cell wall integrity (Martıń-Rejano et al., 2011). When

cell wall integrity is impaired, multiple signaling pathways are

induced, such as hormone signaling, reactive oxygen species

(ROS) accumulation, and the production of other cell wall

components (Vaahtera et al., 2019). In Arabidopsis seedlings, the

impaired cell wall integrity caused by boron deficiency triggers

ethylene (ET), auxin (IAA), and ROS signals, consequently

resulting in the reduction of root cell elongation (Camacho-

Cristóbal et al., 2015). Unfavorable boron conditions also result in

lipid peroxidation and imbalanced antioxidant enzyme activities

through the excessive buildup of oxidative stress (Tewari et al.,

2010). Specifically, boron deficiency increases the content of

malondialdehyde (MDA) and proline (Pro), as well as upregulates

the activity of lipoxygenase (LOX), and then regulates the activity of

antioxidative enzymes, such as superoxide dismutase (SOD),

catalase (CAT), and peroxidase (POD) (Molassiotis et al., 2006;

Tewari et al., 2010; Yin et al., 2022).

Although the molecular mechanism of plant response to boron

deficiency is not well studied, some results have been found at the

transcriptional level. In the case of Neolamarckia cadamba, Yin et al.

(2022) observed that the phenylalanine ammonia-lyase and

phenylpropanoid biosynthesis pathways were induced under boron

deficiency, resulting in increased shoot tip lignification. The

expression levels of the genes related to the synthesis of pectin and

cellulose in N. cadamba mature leaves were altered in response to

boron deficiency stress. Moreover, numerous transcription factors

(TFs) also serve as the switches of the regulatory signal cascade in

response to the boron deficiency stress process. The earliest reported

TFs involved in boron stress responses is AtWRKY6 in Arabidopsis

(Kasajima et al., 2010). A recent study further noted that BnaWRKYs

participated in the response to low boron, and BnaA9.WRKY47

contributed to the adaptation of Brassica napus to boron deficiency

through upregulating BnaA3.NIP5;1 (a boron transporter gene)
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expression to facilitate efficient boron uptake (Feng et al., 2020).

The study conducted by Song et al. (2021) utilized transcriptome

analysis to find numerous differentially expressed genes (DEGs)

related to antioxidant enzymes, TFs, and boron transporters, which

revealed the response mechanism of boron deficiency tolerance in

leaves of Beta vulgaris seedlings.

Acacia melanoxylon is an evergreen and fast-growing tree

belonging to the Leguminosae family and Mimosaceae subfamily

(Bradbury et al., 2011). Due to its strong adaptability, good

material properties, and short rotation period, it is an ideal

species that integrates economic, ecological, and greening

functions. A. melanoxylon is commonly distributed in areas

with high rainfall and slightly acidic soil, such as Australia,

South China, Brazil, and Ethiopia (Searle, 2000). This tree

species is easily affected by a lack of boron which hinders its

growth. Since the development of stem is a significant economic

indicator for forest tree species, the present study explored the

morphological and physiological effects of boron deficiency on A.

melanoxylon stem and used RNA-seq technology to identify the

DEGs related to the internode shortening caused by the

deficiency. Furthermore, it revealed the interaction network

among the cell wall organization or biogenesis, hormone signal

transduction pathways, and TFs in response to boron deficiency

stress, improving the understanding of the stem response

mechanism to boron deficiency in tree species.
2 Materials and methods

2.1 Plant materials and culture conditions

The elite A. melanoxylon clone SR17 was selected as plant

material. And two-month-old shoots were cultured into plastic

containers (30 cm × 26 cm × 14 cm) with 1/2 MS (Murashige &

Skoog) nutrient solution supplemented with the following

concentrations of macro- and micro-nutrients; 10.31 mM

NH4NO3, 9.39 mM KNO3, 1.50 mM CaCl2, 0.75 mM MgSO4,

0.63 mM KH2PO4, 0.06 mM CoCl2, 0.05 mM CuSO4·5H2O, 50 mM
FeNaEDTA, 50 mMMnSO4·H2O, 0.52 mMNa2MoO4·2H2O, 2.5 mM
KI, 14.96 mM ZnSO4·7H2O. Then, the plants with consistent plant

height and growth state were selected for further boron deficiency

treatment (without H3BO3). The control was cultured with the

nutrient solution with 50 mM of H3BO3. Each treatment was

performed in three replications with 16 plants in each replication.

The fresh nutrient solution was replaced every three days, and the

pH was maintained at 5.5-6.0 to balance ion absorption and

distribution. Experiments were conducted in a greenhouse facility

under natural sunlight conditions, 75% atmospheric humidity, and

a temperature range of 23-28 °C.
2.2 Growth parameters measurement and
sample collection

After 60 days under boron deficiency, plant height, branch

number, and internode length of the apical section (1st, 2nd, 3rd)
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were measured. Meanwhile, the total root length, root diameter, and

root surface area were calculated by using a scanner and root image

analysis software WinRHIZO Pro (Regent Instruments, QC, Canada).

Roots, stems, and leaves were also harvested and immediately

frozen in liquid nitrogen and then transferred to a -80 °C

refrigerator for further physiology, hormones, and RNA-seq

analysis. The 2.5 g fresh samples were dried in an oven at 75 °C

for a constant weight and then determined for the boron content.
2.3 Boron content measurement

0.5 g dried samples were ground to a fine powder and

underwent ashing at 500 °C. Then, the ash was digested in 0.1 M

HCl for 30 min and filtered using quantitative filter paper. Finally,

the boron content in plants was measured using the curcumin

colorimetry method with a UA-spectrophotometer (UV-2450,

Shimadzu, Kyoto, Japan) (Dible et al., 1954). The calculation

formulae are as follows:

Boron   accumulation   (mg · plant−1)  

=   boron   content   (mg · g−1)  �   corresponding   dry  weight   (g · plant−1)

Boron   transport   coefficient (BTC)  

=   shoot   boron   content (mg · plant−1)=root   boron   content (mg · plant−1)

Boron   efficiency   coefficient   (BEC)

=   total   dry  weight   of  B0(g)=total   dry  weight   of   control(g)
2.4 Physiological indicators measurement

The frozen stems (0.10 g) were selected for physiological

analysis. MDA content was measured using the 20% (w/v)

trichloroacetic (TCA) and 0.5% (w/v) thiobarbituric acid (TBA)

method (Heath and Packer, 1968). LOX activity was determined by

analyzing LOX-catalyzed linoleic acid oxidation at 234 nm (Pérez

et al., 1999). Pro content was extracted from 3% (w/v) aqueous

sulfosalicylic acid and estimated by ninhydrin reagent at 520 nm

(Bates et al., 1973). SOD activity was evaluated using the

nitrotetrazolium blue chloride (NBT) photochemical reduction

method (Giannopolitis and Ries, 1977). POD activity was

measured based on guaiacol oxidation at 470 nm using hydrogen

peroxide (H2O2). CAT activity was determined by measuring the

disappearance of H2O2 at 240 nm (Rao et al., 1996). Each assay had

three independent replications.
2.5 Endogenous hormone
contents measurement

An improved double antibody sandwich enzyme-linked

immunosorbent assay (ELISA) was used to quantify IAA, CTK,

GA, ABA, ET, and JA in stems according to the kit’s instructions

(Shanghai Enzyme-linked Biotechnology, Shanghai, China).
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Specifically, the frozen stems (0.20 g) were ground in liquid

nitrogen and homogenized in 2 ml phosphate-buffered saline

(PBS; 0.01 M, pH 7.5). After centrifugation at 10000 xg for

10 min, the supernatant (50.00 mL) and biotinylated plant

corresponding antibodies were added to wells and incubated at

37°C for 30 min. The liquid was removed, and the plates were

washed five times with washing buffer. Enzyme conjugate liquid (50

μL) was added to wells and incubated at 37 °C for 30 min, and the

plates were washed five times with washing buffer. Next, color

reagent A (50 μL) and B (50 μL) were added to wells and incubated

at 37°C for 10 min. Finally, the reaction was terminated by adding

color reagent C (50 μL). A standard curve was generated using five

known contents of hormones, the absorbance (OD value) was

measured at 450 nm, and the regression equation of the standard

curve was used to determine the content of each hormone. Each

assay had three independent replications.
2.6 Transmission electron
microscope analysis

The TEM slices were performed using the method of Kong et al.

(2013) with slight modifications. Specifically, stems from the same

parts under different boron treatments were cut into small pieces

(1 mm × 1 mm). The samples were fixed in glutaraldehyde in

phosphate buffer solution (PBS, 0.1 M) for 12 h at 4°C. Then, the

tissue blocks were rinsed four times using 0.1 M PBS (pH 7.4) and

post-fixed for 2-3 h with 1% buffered osmium tetroxide, followed by

rinsing in 0.1 M PBS (pH 7.4) for three times. Next, the samples

were dehydrated using an increasing ethanol concentration series

(30, 50, 70, 80, 95, 100, 100) and transferred into a mixture of

ethanol and acetone (3:1, 1:1, 1:3, 0:1). Ultrathin sections were

stained with 2% uranyl acetate and lead citrate, and were examined

with a TEM (Hitachi, HT7800/HT7700, Japan). The cell wall

thickness was measured (20 replicates for one treatment) with

Image J’s scale tool based on the TEM image scale.
2.7 Cellulose, hemicellulose, and water-
soluble pectin content measurement

The contents of cellulose and hemicellulose of stems were

determined as follows: 3.0 g dried samples were ground to a fine

powder and digested in a mixture of acidic detergent and 1-octanol

for 60 minutes. Then, the digestion liquor was filtered with a funnel.

The residue was digested in H2SO4 for 3 hours, then filtered again

and washed with hot water until neutral. Next, the residue was dried

to constant weight at 105°C. Finally, the cellulose and hemicellulose

content was determined using the gravimetric technique in a fully

automated fiber analysis system (Fibertech TM 8000, FOSS,

Denmark). Each assay had three independent replications.

0.3 g fresh stems were ground into powder and quickly

homogenized in 1 mL 80% ethanol. The samples were incubated

in a 95°C water bath for 20 min. After centrifugation at 4000 xg for

10 min, the precipitate was collected. The final residue was defined

as a crude cell wall after being washed with 1.5 mL 80% ethanol and
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acetone. 3 mg dried crude cell wall dissolved in 1 mL anhydrous

sodium acetate (pH 6.5) was shaken for 15 hours. After

centrifugation at 8000 xg for 10 min, the supernatant was

collected. The content of WSP was measured by reading the

absorbance at 530 nm with a tube photometer. Each assay had

three independent replications.
2.8 Transcriptomics analysis

The RNA of stems was extracted using the RNAprep Pure Plant

Kit (DP441, Tiangen, China). RNA quality and quantity were

verified with an RNA integrity number (RIN) greater than 7.2,

260/280 ratio of 1.8 to 2.0, 260/230 ratio of 1.8 to 2.2, and a

concentration greater than 300 ng·μL-1, RNA samples were selected

for further experiments. First-strand cDNA was synthesized using

the SuperScriptTM II Reverse Transcriptase kit (18-064-022,

Invitrogen, USA).

RNA-Seq of qualified libraries was performed using the

Illumina HiSeq4000 platform, with a sequencing strategy of 150

bp paired-end. The clean reads were mapped to the A. melanoxylon

reference genome sequence (unpublished) using HISAT2 (Kim

et al., 2015). After alignment, mRNA expression levels were

calculated by combining RNA-Seq by Expectation Maximization

(RSEM) with Fragments Per Kilobase of exon model per Million

mapped fragments (FPKM) values (Trapnell et al., 2010; Li and

Dewey, 2011). DEGs were identified using DESeq2 with |Log2(fold-

change) | ≥ 1, FDR ≤ 0.05, and P-value< 0.05 (Love et al., 2014). All

DEGs were mapped to GO terms in the GO database and pathways

in the KEGG database. The TBtools software was used to delineate

heatmaps based on the DEG results (Chen et al., 2020). The protein

interaction networks were visualized with Cytoscape (Shannon

et al., 2003). In addition, the RNA-seq data were submitted to

NCBI with the submission number: PRJNA995919.
2.9 qRT-PCR validation and
expression analysis

For quantitative real-time PCR (qRT-PCR), the same RNA and

cDNA stem samples used for transcriptome sequencing were

utilized. The qRT-PCR test was performed using the TB Green

Premix Ex TaqTM kit (RR820, TaKaRa, China). The qRT-PCR

reaction system and procedures were carried out according to the

kit requirements. All qRT-PCR amplifications were repeated three

times. All the genes were normalized against the level of protein

phosphatase type 2A (evm.TU.Chr3.536 PP2a). The details of the

gene-specific primers are listed in Supplementary File 1.
2.10 Statistical analysis

SPSS 26.0 (SPSS Inc., Chicago, USA) software was employed to

conduct variance analysis. The minimum significant difference

method (LSD) at P-value< 0.05 and 0.01. Principal component

analysis (PCA), Pearson correlation analysis, and figures were
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prepared using Origin 2021 (OriginLab Co., Massachusetts, USA).

Significant and extremely significant differences were expressed by *

and **, respectively.
3 Results

3.1 Effect of boron deficiency on plant
morphological attributes

Under the boron deficiency (B0) condition, the phenotype of

decreased plant height, shortened internodes, increased branches,

and brown roots were observed, compared to the control (50 mM
boric acid) (Figures 1A, B). The results of growth parameters shown

in Table 1 revealed that B0 treatment led to a 33.52% decrease in

plant height, 27.76% decrease for the 1-st internode, 36.99%

decrease for the 2-nd internode, and 42.59% decrease for the 3-rd

internode, and a 118.33% increase in the branch number.

Meanwhile, the primary root length and surface area were

decreased by 32.08% and 24.89%, respectively. Interestingly, the

root diameter increased by 41.37%. These results suggest that boron

is essential for growth in A. melanoxylon.
3.2 Effect of boron deficiency on plant
biomass and boron nutrient

Under the B0 condition, the fresh weights, dry weights, and

root-shoot ratio were decreased (Figures 2A–C). Meanwhile, boron

deficiency led to a 65.07% reduction of boron content in roots,

15.22% in stems, and 56.68% in leaves (Figure 2D). Under the

control condition, boron accumulation in roots was higher than in

stems, but under the B0 condition, it was lower than in the stems

(Figure 2E). Moreover, the BTCs of plants were 0.63 and 1.02 under

control and B0 conditions, respectively (Figure 2F). These results

suggest that A. melanoxylon preferentially transports boron from

roots to shoots during long-term boron deficiency. The BEC

coefficient of A. melanoxylon under the B0 condition is 90%,

indicating that the soluble boron content is low and the boron

utilization of the A. melanoxylon cultivar (SR17) is efficient.
3.3 Effects of boron deficiency on
physiological indicators and endogenous
hormone contents in stem

The experiments showed that boron deficiency led to an

increase in MDA content (15.04%, Figure 3A), LOX activity

(47.79%, Figure 3C), and a decrease in Pro content (18.14%,

Figure 3B). These changes induced increases in SOD (8.48%,

Figure 3D) and POD (29.75%, Figure 3E) activities and a decrease

in CAT activity (16.42%, Figure 3F).

Compared to the control condition, the endogenous IAA, GA, CTK,

ET, and JA contents were significantly reduced by 33.55%, 21.36%,

29.78%, 21.27%, and 20.63%, respectively (Figures 3G–I, K, L), while

ABA content increased significantly by 23.44% under B0 condition
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(Figure 3J). These results indicate that A. melanoxylon altered its stem’s

original endogenous hormone levels to adapt to boron deficiency.
3.4 Stem ultrastructure and cell wall
components content

TEM micrograph analysis showed that the cell wall of the stem

thickened under boron deficiency (Figure 4B), while it remained

regular under the control condition (Figure 4A). Results of ImageJ

software showed that the cell wall thickness under the boron

deficiency condition significantly increased by 2.08 times

compared to the control condition (Figure 4C). Moreover, the

WSP and hemicellulose contents were significantly decreased by

27.52%, and 16.33%, respectively, in comparison to the control

condition (Figures 4D, F), whereas the cellulose content increased

significantly by 33.35% under B0 condition (Figure 4E).
3.5 Transcriptome profiling of stem under
boron deficiency

After removing low-quality and short reads, the number of

clean reads ranged from 7.2 to 8.7 Gb, and the percentage of Q30

was more than 88.9% (Supplementary File 2). The 77.51% to

80.76% of unique reads can match the reference genome
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sequence (Supplementary File 3). We assessed the similarities and

differences among samples using Pearson correlation analysis and

PCA. The Pearson correlation coefficient (R2) between samples was

higher than 0.87, and the clustering was obvious (Supplementary

Figures 1A, B), indicating that the transcriptome data are reliable

for subsequent analysis.

The gene expression levels were measured according to FPKM,

with all samples restricted to the range 4 ≥ log10 (FPKM) ≥ -2

(Supplementary Figure 2A). Transcriptome analysis identified a

total of 5012 DEGs, of which 2348 genes were upregulated and 2264

genes were down-regulated (Supplementary Figure 2B). A volcano

plot was utilized to display the FC values in gene expression

(Supplementary Figure 2C). Furthermore, to better understand

the overall variation in DEG expression, a heatmap was built to

visualize the expression patterns of all DEGs. The DEGs were

classified into 3 clusters based on their expression patterns

(Supplementary Figure 2D). These results indicate that there is a

considerable change in the transcription levels of many genes in A.

melanoxylon stem under boron deficiency.
3.6 Real-time qPCR validation

To verify the authenticity and reproducibility of the

transcriptomic data, we selected 15 DEGs and designed specific
TABLE 1 Growth parameters of A. melanoxylon under boron deficiency.

Treatment plant
height

branch
number

internode
length-1st

internode
length-2nd

internode
length-3rd

main root
length

root
surface
area

root
diameter

Control 9.87 ± 2.33 1.20 ± 0.40 1.70 ± 0.64 2.31 ± 0.71 2.24 ± 0.87 7.16 ± 1.19 13.03 ± 5.29 0.53 ± 0.13

B0 6.46 ± 1.68** 2.62 ± 0.97 1.23 ± 0.47 1.46 ± 0.67** 1.29 ± 0.76** 4.85 ± 1.55** 9.79 ± 3.25 0.75 ±
0.19**
f

Control (50 mM boric acid); B0 (0 mM boric acid). All data are the mean of three replicates collected over 60 days of treatment. Values are the mean ± standard deviations. The ** indicates
significant differences by the Duncan test (P-value< 0.01).
FIGURE 1

A. melanoxylon plants morphology under boron deficiency. (A) Phenotype; (B) Internodes morphology. Control (50 mM boric acid); B0 (0 mM boric
acid). Scale bars of phenotype and internode morphology are 1 cm.
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primers for qRT-PCR. The relative expression of the selected genes

was compared with the results of RNA-seq analysis. The results

showed that the 15 genes differed slightly from the sequencing data

expression. Still, the overall expression trend was identical

(Supplementary Figure 3), confirming the reliability of this

study’s transcriptome sequencing results.
3.7 GO and KEGG pathways analysis
of DEGs

The 406 differentially expressed GO terms (P-value< 0.05) were

identified through GO enrichment analysis. Specifically, the

biological process (BP), molecular functions (MF), and cell

component (CC) included 224, 125, and 57 terms, respectively

(Supplementary File 4). The cell wall organization or biogenesis,

oxidoreductase activity, and microtubule cytoskeleton were the

most significantly enriched GO terms in BP, MF, and CC

ontology, respectively. Besides these categories, DEGs were

functionally related to lignin metabolism, secondary metabolism,

and DNA replication processes (Figure 5A; Supplementary File 4).

To identify DEGs enriched in various metabolic pathways, the

KEGG database was utilized, with a P-value< 0.05 as the screening

threshold. The DEGs were categorized into 18 functional categories,

including 2 environmental information processing, 2 genetic information

processing, and 14 metabolism pathways (Supplementary File 5). The

plant hormone signal transduction, biosynthesis of amino acids, and

phenylpropanoid biosynthesis were identified as the most abundant

KEGG pathways (Figure 5B).
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3.8 Response of cell wall organization or
biogenesis-related DEGs under
boron deficiency

DEGs related to cell wall organization or biogenesis were examined

to further investigate the effects of boron deficiency on cell wall

structure and composition. 127 DEGs encoding proteins or enzymes

were involved in cell wall metabolism, of which 106 were down-

regulated and 21 were upregulated under boron deficiency (Figure 6;

Supplementary File 6). 28 DEGs encoding pectinaceous components or

pectin-modifying enzymes, such as pectinesterase (PMEs),

polygalacturonase (PGLs), pectin acetylesterase (PAEs) and

galacturonosyltransferase (GAUT) were identified, of which 5 were

upregulated (evm.TU.Chr11.2523 PME2, evm.TU.Chr6.186 PME29,

evm.TU.Chr5.294 PME37, evm.TU.Chr10.3814 PGLR, and

evm.TU.Chr7.278 PMTD) and 23 down-regulated (Supplementary

File 6). 44 DEGs encoded structural components of cell walls such as

cellulose, glucans, xylans, and galacturonans. 44 DEGs encoded proteins

such as expansins (EXPs), trichome birefringence-like (TBLs), and

xyloglucan endotransglucosylase/hydrolase (XTHs), which are required

for cell wall loosening during growth. In addition, 3 TFs

(evm.TU.Chr12.383 MYB46, evm.TU.Chr12.81 MYB58, and

evm.TU.Chr11.734 HD1) were downregulation under boron deficiency.
3.9 Transcription factors regulate cell wall-
related genes under boron deficiency

A total of 314 DEGs encoding TFs (Supplementary File 7) were

found in the transcriptome database, of which 171 were upregulated
A B

D E F

C

FIGURE 2

The biomass and boron nutrient of A. melanoxylon changes under boron deficiency. Control (50 mM boric acid); B0 (0 mM boric acid). (A) Fresh
weight; (B) Dry weight; (C) Root-shoot ratio; (D) Boron content; (E) Boron accumulation; (F) BTC. All data are the mean of three replicates collected
over 60 days of treatment. Data are the mean ± standard deviations. The * indicates significant differences at P-value< 0.05, and ** indicates
significant differences at P-value< 0.01.
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and 143 were downregulated. Among these, MYBs were the most

abundant family (56), followed by AP2-EREBPs (43), bHLHs (26),

NACs (25), and WRKYs (18) in turn.

The interaction network of TFs and cell wall organization or

biogenesis-related genes was constructed to reveal the potential

regulatory mechanisms in A. melanoxylon stem under boron

deficiency. As shown in Figure 7, cell wall organization or
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biogenesis-related genes, such as GAUTCs, CESAs, and IRXs, were

found to interact with TFs, containing 2 HD1s, 1 NAC73, and 3

MYB46s. Moreover, NAC10 and MYB58 served as master switches

in charge of the transcriptional regulation of the cell wall network. It

is noteworthy that 2HD1s interacted not only withMYBs andNACs

but also with several CESAs and IRXs. In addition, 3 ERF92s, which

are part of the ET signaling pathway, interact with 4 CHIs.
A B

D E F

G IH

J K L

C

FIGURE 3

The physiology and hormone changes of A. melanoxylon stems under boron deficiency. Control (50 mM boric acid); B0 (0 mM boric acid). (A) MDA
content; (B) Pro content; (C) LOX activity; (D) SOD activity; (E) POD activity; (F) CAT activity; (G) IAA content; (H) GA content; (I) CTK content;
(J) ABA content; (K) ET content; (L) JA content. All data are the mean of three replicates collected over 60 days of treatment. Data are the mean ±
standard deviations. The ** indicates significant differences at P-value< 0.01.
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3.10 Response of plant hormone-related
DEGs under boron deficiency

Based on the DEGs’ enrichment results, there were 81 DEGs

involved in the plant hormone signal transduction pathways, of

which 30 were upregulated and 51 were downregulated

(Supplementary File 8). The number of DEGs involved in the

IAA signaling pathway was the most, followed by ABA and ET
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signaling pathways. We further analyzed the expression pattern of

DEGs in IAA, CTK, GA, ABA, ET, and JA pathways and visualized

them with process maps. As shown in Figure 8, all 11 DEGs in the

ET pathway were down-regulated. Hormone signal receptors

(GID1s, PYR/PYLs, and ETRs) and response regulator (AUX1s,

AUX/IAAs, ARFs, A-ARRs, DELLAs, and ERFs) genes were also

all down-regulated. In the JA signal transduction pathway, boron

deficiency upregulated JAR1, leading to the downregulation of
A B

FIGURE 5

GO function and KEGG enrichment pathway analysis of A. melanoxylon stems under boron deficiency. (A) GO function analysis. “Oxidoreductase
activity, acting…” means oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one
donor, and incorporation of one atom of oxygen. (B) KEGG enrichment pathway analysis.
FIGURE 4

Structure and composition of cell wall under different boron conditions. Control (50 mM boric acid); B0 (0 mM boric acid). (A) Transmission electron
microscope micrograph under control condition; (B) Transmission electron microscope micrograph under B0 condition; (C) Cell wall thickness;
(D) WSP content means water soluble pectin content; (E) Cellulose content; (F) Hemicellulose content. All data are the mean of three replicates
collected over 60 days of treatment. Data are the mean ± standard deviations. The ** indicates significant differences at P-value< 0.01.
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downstream protein JAZs and TF MYC2s. These results indicate

that the gene expression changes associated with plant hormone

signal transduction are likely to be implicated in the growth

regulation of A. melanoxylon stem under boron deficiency.

To clarify the complex interaction network between hormones,

we drew an interaction network diagram between DEGs

(Supplementary Figure 4). ABF (evm.TU.Chr.4.2387) belonging to

the ABA signal transduction pathway, interacted with the AUX/IAA

genes (evm.TU.Chr5.561 and evm.TU.Chr9.973) involved in the

IAA signaling pathway. The AHPs (evm.TU.Chr9.755 ,

evm.TU.Chr8.2827, and evm.TU.Chr13.2653) belonging to the

CTK signal transduction pathway, interacted with ETR92s

(evm.TU.Chr6.540, evm.TU.Chr8.2490 and evm.TU.Chr6.541)

involved in the ET signal transduction pathway.
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4 Discussion

4.1 Boron deficiency inhibits the growth
and development of A. melanoxylon

The present study showed that A. melanoxylon presented

various symptoms under boron deficiency, such as dwarf plants,

increased branches, shortened internodes, and notably shorter and

thicker roots (Figure 1). The morphological changes observed in

plants may be the end phenotypic results of altering cell wall

integrity and hormone homeostasis-related pathways. For

instance, Yin et al. (2022) found that severe morphological

changes induced by boron deficiency may be caused by damaging

the cell wall integrity in N. Cadamba. Chen et al. (2022) reported
FIGURE 6

Expression of DEGs for cell wall organization or biogenesis under boron deficiency. The heatmaps show log2FPKM values of the DEGs. Red indicates
up-regulation and blue indicates down-regulation.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1268835
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1268835
that boron deficiency induced jasmonate signaling and remodeling

of cell wall metabolism in pea (Pisum sativum) shoots, which was

the reason for changes in shoot growth and architecture. In our

study, long-term boron deficiency significantly altered the cell wall

structure, composition, and endogenous hormone levels, resulting

in morphological changes in A. melanoxylon stem. In addition,

antioxidant enzyme (SOD, POD, CAT, and LOX) activities,

antioxidant and oxidative stress indicators were also significantly

changed in response to boron deficiency in A. melanoxylon stem

(Figure 3). The reason may be that cells altered their osmotic

potential and activated the antioxidant mechanism to protect cell

membranes and maintain oxidative homeostasis under boron

deficiency stress (Zhu, 2016; Zhu et al., 2020).
4.2 Boron deficiency affects cell wall
organization or biogenesis in A.
melanoxylon stem

The growth inhibition of apical meristems was one of the early

responses to boron deficiency, which is attributable to the loss of cell

wall plasticity (Dell and Huang, 1997; Chen et al., 2023). Boron

deficiency disrupts the structural arrangement of the cell wall,

which in turn affects cell function and cell wall components

(Wang et al., 2015; Brdar-Jokanović, 2020). Boron crosslinked

with RG-II in the cell wall and was closely associated with the

biosynthesis of pectin, cellulose, and lignin (Hu and Brown, 1994;

Wu et al., 2017; Yan et al., 2022). Boron deficiency caused the cell

wall of A. melanoxylon stem to thicken, with a concomitant

decrease in the hemicellulose and WSP contents (Figure 4). At

the molecular level, boron deficiency caused a significant reduction

in the expression of the great majority of genes involved in cell wall

organization or biogenesis pathway in A. melanoxylon stem, as
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shown in Figure 5 and Supplementary File 3. A previous study has

also reported that boron deficiency downregulates the expression of

several cell wall-related genes in Arabidopsis roots (Camacho-

Cristóbal et al., 2008). These results suggest that boron deficiency

affects the structure and composition of the cell wall and is also

involved in the expression of cell wall-related genes. Furthermore,

the expression patterns of cell wall-related genes have been

demonstrated to be connected with plant morphology. For

example, overexpressing PmCESA2 in poplar increased secondary

cell wall thickness and xylem width, leading to higher cellulose and

lignin content, and improved biomass production (Maleki et al.,

2020). In Arabidopsis, overexpressing AtEXPA4 enhanced primary

root elongation, while knocking out AtEXPA4 slowed down

primary root growth (Liu et al., 2021). However, the functions of

these genes in A. melanoxylon have rarely been reported. To gain a

better understanding of the effects of boron deficiency on A.

melanoxylon stem, further investigations are needed to identify

the genes that are either activated or repressed by boron, and how

they affect the cell wall structure and composition.
4.3 Boron deficiency induced interactions
of cell wall and hormone-related genes in
A. melanoxylon stem

Cell wall integrity is an essential foundation of plant growth and

development. Previous studies have indicated that boron deficiency can

lead to changes in cell wall integrity and endogenous phytohormone

balance. For instance, in Arabidopsis, Camacho-Cristóbal et al. (2015)

found that boron deficiency damages cell wall integrity and activates

ethylene, auxin, and ROS signaling pathways, thus causing a rapid

reduction in root elongation. Additionally, Chen et al. (2022) proposed

that boron deficiency disorders cell wall structure, thereby triggering
FIGURE 7

The network of transcription factors with cell wall organization or biogenesis-related genes. Cycle nodes represent genes, yellow nodes represent
the transcription factors, while blue nodes represent cell wall organization or biogenesis-related genes. The size of node represents the power of
the interrelation among the nodes by degree value.
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the activation of JA signaling and subsequent compensatory changes in

cell wall metabolism. Consequently, it can be inferred that there is an

intricate interaction between cell walls and hormonal signaling

mechanisms in response to boron deficiency. This hypothesis has

also been validated by studies conducted on other plant species.

Specifically, mutations in AtCESAs inhibit cellulose biosynthesis,

leading to the redistribution of the auxin efflux carrier AtPIN1 in the

shoot apical meristem, thereby significantly affecting shoot apical

meristem development (Sampathkumar et al., 2019). Our research

found that 3 ET response factors (ERF92s) interact with the 4 class II

chitinases (CHIs) (Figure 7). Previous research has shown that CHI

participates in the catabolic process of cell wall macromolecules (De

Andrade Silva et al., 2020). Under boron deficiency, ERF92s were

downregulated, while CHIs were upregulated in A. melanoxylon stem

(Supplementary Files 6, 8). This suggests that the upregulation of CHIs

expression may enhance the disassembly of cell wall macromolecules,

thereby impeding the transduction of ET signaling.

Previous studies have reported the existence of crosstalk among

plant hormones under abiotic stress, forming complex signal

transduction networks (Waadt et al., 2022). Additionally, it has been

found that boron-related morphological and physiological disorders

are associated with the production and signal transduction of plant

hormones (Eggert and von Wirén, 2017; Chen et al., 2023). For

example, in Arabidopsis seedlings, the crosstalk between CTKs, ETs,
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and IAAs functions acts as a signal in response to boron deficiency,

regulating root cell elongation and boron transport (Herrera-Rodrıǵuez

et al., 2022). The interaction among IAAs, CTKs, and GAs also impacts

plant stem elongation (Santner et al., 2009; Hedden and Thomas, 2012;

Singh and Roychoudhury, 2022). In our study, we observed that the

ERF92s belonging to the ET signaling pathway interacted with the

AHPs belonging to the CTK signal transduction pathway (Figure S4).

This indicates that CTK affects the cell wall ofA. melanoxylon plants in

a boron deficiency environment through its interaction with ET.

Further research is needed to investigate the relationship between

other hormonal signals and plant development and cell wall integrity

under boron deficiency stress.
4.4 Boron deficiency induces TFs that
regulate cell wall-related genes in A.
melanoxylon stem

Previous studies have reported that MYBs and NACs are master

transcriptional switches of the secondary cell wall. They regulate the

expression of genes involved in the biosynthesis of cellulose, xylan,

glucomannan, and lignin (Zhong and Ye, 2014). AtMYB46 directly

regulates the expression of secondary wall-associated CESAs in

Arabidopsis (Kim et al., 2013). In Thellungiella halophila, the co-
FIGURE 8

Process map of plant hormone signal transduction pathway for auxin, cytokinin, gibberellin, abscisic acid, ethylene and jasmonic acid. The heatmaps
show log2FC values of the DEGs. Red indicates up-regulation and blue indicates down-regulation.
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overexpression of TsHD1 and TsNAC1 significantly inhibits plant

growth by restraining cell expansion (Liu et al., 2019). In our study,

network analysis reveals that MYBs (evm.TU.Chr12.2815,

evm.TU.Chr12.81, evm.TU.Chr10.3834, and evm.TU.Chr12.383),

NACs (evm.TU.Chr1.1777 and evm.TU.Chr10.4496) and HD1s

(evm.TU.Chr11.734 and evm.TU.Chr3.2229) regulate numerous

DEGs involved in cell wall organization or biogenesis (Figure 7). Our

research also found that these HD1s, NACs, and MYBs exhibit

significant down-regulation under boron deficiency (Supplementary

File 7). This suggests that long-term boron deficiency inhibits TFs-

mediated processes in cell wall organization or biosynthesis, ultimately

retarding the development of A. melanoxylon stem.
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Finally, we built a schematic model to visualize the process of A.

melanoxylon in response to boron deficiency, as shown in Figure 9.

Boron deficiency causes changes in boron nutrition, leading to

oxidative stress and alterations in cell wall structure and

composition. Hormone biosynthesis, transport, and signal

transduction are also disturbed. In addition, TFs and plant

hormone signal transduction-related genes impact cell wall

organization or biosynthesis, suggesting that the response of

plants to boron deficiency is a complex regulatory process. Taken

together, the inhibitory effects of boron deficiency stress on the

growth and development of A. melanoxylon stem are attributed to

changes in cell wall structure and composition and transcriptional
FIGURE 9

Schematic model of changes in the physiological and molecular mechanisms of A. melanoxylon stem under boron deficiency. The dashed line with
arrows indicate speculative rules inferred by RNA-seq enrichment of DEGs. Red words represent the up-regulation of substances or genes, blue
word represent down-regulation, and yellow words represent both up-regulation and down-regulation of genes.
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regulation. This study provides a theoretical basis for further

understanding the response mechanism of woody plants to boron

deficiency stress.
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Navarro-Gochicoa, M. T., and González-Fontes, A. (2011). Auxin and ethylene are
involved in the responses of root system architecture to low boron supply in Arabidopsis
seedlings. Physiol. Plant 142 (2), 170–178. doi: 10.1111/j.1399-3054.2011.01459.x

Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., and Therios, I. (2006).
Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot
tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot. 56
(1), 54–62. doi: 10.1016/j.envexpbot.2005.01.002

O'Neill, M. A., Eberhard, S., Albersheim, P., and Darvill, A. G. (2001). Requirement
of borate crosslinking of cell wall rhamnogalacturonan II for Arabidopsis growth.
Science 294 (5543), 846–849. doi: 10.1126/science.1062319
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Combination of seed priming
and nutrient foliar application
improved physiological
attributes, grain yield, and
biofortification of rainfed wheat

Layegh Moradi and Adel Siosemardeh*

Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan,
Sanandaj, Iran
Seed priming and foliar application are two crop management practices that can

increase grain yield and quality. The research aimed to assess the influence of

seed priming and foliar application on rainfed wheat. Two field experiments with

two seed priming rates (control and priming) and five foliar applications [control,

urea (4%), silicon (4 mM), FeSO4.7H2O (0.6%), and ZnSO4.7H2O (0.4%)] at the

anthesis/Z61 stage were conducted. Seeds were primed for 12 h at 25 ± 2°C, by

soaking in an aerating solution [urea (20 g L−1) + FeSO4.7H2O (50 ppm) +

ZnSO4.7H2O (50 ppm) + silicon (20 mg L−1)]. Seed weight-to-solution volume

ratio was 1:5 (kg L−1). A pot experiment was also conducted to examine the effect

of priming on root growth. Overall, combined seed priming and foliar application

induced a positive impact on physiological traits and attributes. Maximum

chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid concentrations

(1.58, 0.669, 2.24, and 0.61 mg g−1 FW), membrane stability index (77.31%),

superoxide dismutase and peroxidase activity (0.174 and 0.375 Unit mg−1

protein), 1,000-grain weight (35.30 g), biological yield, grain yield (8,061 and

2,456 kg ha−1), and minimum malondialdehyde concentration (3.91 µg g−1 FW)

were observed in seed priming combination with ZnSO4 foliar application. The

highest glycine betaine concentration (6.90mg g−1 DW) and proline (972.8 µg g−1

FW) were recorded with the co-application of seed priming and foliar urea

spraying. Foliar application of ZnSO4, FeSO4, and urea drastically enhanced grain

Zn (29.17%), Fe (19.51%), and protein content (increased from 11.14% in control to

12.46% in urea foliar application), respectively. Compared to control, seed

priming increased root length, root volume, and dry mass root by 8.95%,

4.31%, and 9.64%, respectively. It is concluded that adequate Zn, Fe, silicon,

and N supply through seed priming and foliar applications of these compounds

at the terminal stage of rainfed wheat alleviates drought stress and improves GY

and biofortification.

KEYWORDS

antioxidant, biofortification, grain yield, malondialdehyde, micronutrients, silicon,
terminal stage
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1 Introduction

In general, approximately 20% of the calories needed by the

global community are derived from wheat (Triticum aestivum L.),

which is one of the main sources of food in the world (Liu et al.,

2020). The demand for wheat production is rising in response to a

growing global population and food consumption growth (Liu et al.,

2015). Water scarcity has the greatest impact on agriculture, with

yields in rainfed areas decreasing by 40% to 60% (Saha et al., 2022).

During the wheat-growing season, uneven precipitation

distribution leads to drought stress in the Mediterranean. As a

result, rainfed wheat growth is negatively impacted by soil moisture

shortages, especially during anthesis and grain filling (Moradi et al.,

2022). Crop producers must maintain crops’ ability to adapt to

frequent stressors (Malko et al., 2022). Integrated agronomic crop

management methods are needed to alleviate the deleterious

impacts of drought and enhance quantitative and qualitative

yields. The singleton approach will not achieve this (Melash et al.,

2019). For this goal, we combined seed priming and foliar

application of urea, ZnSO4, FeSO4, and silicon in an experiment.

Research was conducted on the effects of these factors on

physiological characteristics and wheat yield quantitatively

and qualitatively.

Seed priming practice has been utilized in plants to boost the

quality of seed, thereby benefiting stand establishment and

mitigating drought stress in farmers’ fields (Liu et al., 2015). The

technique involves partially hydrating seeds in a specified

environment until the germination process begins without

exhibiting any signs of radical emergence. It is followed by

dehydrating to attend to the original seed’s dry weight. In

addition, priming can activate metabolic systems normally

activated during germination (“pre-germinative metabolism”) and

therefore accelerate germination and emergence, and therefore

allows seedlings to adapt to various environmental stresses.

Typical priming approaches include water (Hydro) priming,

osmopriming, hormonal priming, and nutritional priming (Liu

et al., 2015; Rai-Kalal and Jajoo, 2021). Seeds are soaked in a

solution containing nutrients during nutritional priming. Soil,

leaf, and seed nutrients may be applied to fulfill plant nutrient

demands (Farooq et al., 2012; Rehman et al., 2018; Farooq et al.,

2021). Fertilizer applied to soil takes effect slowly (5–6 days) if

environmental variables are favorable. It is difficult to apply

fertilizers uniformly to the surface of the soil in a soil application

(Johnson et al., 2005). It is advantageous to prime seeds so that

nutrients can easily be accessed by germinating seeds, and it is also

considered a cost-efficient method because very few nutrients are

required to prime seeds (Farooq et al., 2021). Seed priming

contributes to enhance drought resistance via increased

photosynthesis pigments, antioxidant defense, osmotic

adjustments, and membrane integrity (Saha et al., 2022). Research

has documented that in wheat plants, seed priming boosts nutrient

uptake, antioxidant enzymes, osmolyte concentrations like glycine

betaine (GB) and proline, chlorophyll content, membrane integrity,

yield characteristics and yield, and grain nutrient and protein

concentrations (Farooq et al., 2012; Rehman et al., 2018; Reis

et al., 2018; Malko et al., 2022).
Frontiers in Plant Science 0271
Drought stress becomes more intensified under mineral

nutrient deficiencies (Farooq et al., 2021). Rainfed wheat

development is typically impacted by drought stress in

Mediterranean regions due to unbalanced rainfall distribution

(Moradi et al., 2022). In such regions, foliage application

nutrients are a suitable technique to mitigate adverse drought

stress effects and improve rainfed wheat physiological

characteristics, grain yield (GY), and quality. Foliar nutrition is a

method proposed to reduce chemical fertilizers and environmental

risks (Aziz et al., 2019; Melash et al., 2019). In rainfed wheat

farming, where the plant has difficulty absorbing nutrients from

the soil in the final stages of its growth due to low soil moisture and

reduced root activity, this method can be very effective in supplying

nutrients (Melash et al., 2019).

Nitrogen (N) optimal utilization is vital for enhanced wheat

grain and protein production (Nehe et al., 2020). Because of the

utilization of N during the flowering and grain-filling stages,

nutrients tend to be transported efficiently to higher metabolic

demand points (grain) (Blandino et al., 2020). During the terminal

stages of growth, N intake has less effect on yield but a significant

influence on grain quality (Wang et al., 2021). Silicon enhances crop

yield, quality, and productivity by improving photosynthetic

activity and N assimilation. The International Plant Nutrition

Institute identifies silicon as a beneficial mineral based on its

useful role in plants. Owing to the potential for accumulation,

plants collect silicon between 0.1% and 10% of their dry matter. It is,

however, not recognized as a necessary nutrient for proper plant

development and growth (Bukhari et al., 2021; Sattar et al., 2021).

Research has found silicon to have a positive impact on various

plant species, notably when exposed to environmental stress, by

elevating antioxidant enzyme activity and osmolytes, which help

plants resist abiotic and non-abiotic stresses (Bukhari et al., 2021).

Zn and Fe are indispensable micronutrients for crop growth. Many

scientists have documented that foliage application of these

minerals is able to amplify drought tolerance of plants due to

their participation in the construction of many antioxidant enzymes

as cofactors, raising GY, and enriching wheat grains (Karim et al.,

2012; Zain et al., 2015; Sultana et al., 2018; Melash et al., 2019; Sattar

et al., 2021). Optimal fertilizer usage and the value of micronutrients

for soil and human wellbeing have been carefully discussed in recent

years, and with the change of approach toward nutrient

management, rather than focusing exclusively on boosting yields,

it also addresses its impact on society. In addition to increasing

yields per hectare, it also emphasizes its impact on people, aiming to

diminish malnutrition in countries and societies, and most

noteworthy, it emphasizes the role of Zn and Fe (Das et al., 2022;

Szerement et al., 2022). Thus, the utilization of such micronutrients

in crop production increases GY and product quality, which will

result in better health for humans.

Several studies have examined wheat priming and foliar

applications of nutrients (Amanullah et al., 2010; Farooq et al.,

2012; Zain et al., 2015; Rehman et al., 2018; Melash et al., 2019;

Farooq et al., 2021). Nevertheless, there is limited information

regarding the effects of simultaneous seed priming and continued

foliar fertilization on physiological characteristics, yield attributes,

and grain quality; such knowledge would be extremely useful for
frontiersin.org
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managing nutrients with the aim of reducing drought stress in

rainfed wheat crops and improving yields and quality. Here, we

evaluate the influence of priming and foliar spray of N, Zn, Fe, and

silicon on rainfed wheat. The hypothesis was that seed priming and

foliar application of nutrients could improve root growth, morpho-

physiological traits, productivity, and grain quality in rainfed wheat

crops. Therefore, the objectives of our experiment are to (a) assess

the effect of priming on root attributes; (b) assess the effect of

priming, foliar application of nutrients, and their interaction under

rainfed conditions on the photosynthetic pigments, compatible

osmolytes, malondialdehyde (MDA), superoxide dismutase

(SOD), and peroxidase (POD) activity; (c) investigate the effect of

foliar application nutrients and priming on the rainfed wheat yield

components and yield; (d) compare grain Fe, Zn, and protein

content (grain quality) of wheat grain under the influence of

priming and foliar minerals spraying; and (e) examine

relationships between physiological traits, yield, and yield attributes.
2 Materials and methods

2.1 Field experiment

2.1.1 Site descriptions
The field experiment was conducted at the University of

Kurdistan’s research farm, which is situated on the Dehgolan

plain (35 −19′ 1′′ N, 47 −18′ 54′′ E, 1,862 m above mean sea

level) during the wheat-growing seasons of 2021–2023. Table 1

shows organic C, available phosphorus, total N, and available

potassium, Zn, and Fe in the 0–0.3 m soil layer of the field. The

research field soil texture was loam. During the growing seasons of

2021–2022 and 2022–2023, 262.4 and 368.6 mm of precipitation

were recorded. In Table 2, the monthly precipitation, temperature,

and average relative humidity at the wheat-growing site

are presented.

2.1.2 Experimental design
In the two growing seasons, this study was conducted in

factorial with four replications utilizing a randomized complete

block design (RCBD) to assess the effect of seed priming and foliar

application on rainfed wheat (Cv. Baran). The experimental factors

included two priming levels (control and priming with) and five

foliar applications [control, urea (4%), silicon (4 mM), FeSO4.7H2O

(0.6%), and ZnSO4.7H2O (0.4%)]. Each plot was 2.9×8 m2, and the

distance between plots and blocks was 1 m and 2 m, respectively.
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Seeds were primed for 12 h at 25 ± 2°C, by soaking in an

aerating solution [urea (20 g L−1) + FeSO4.7H2O (50 ppm) +

ZnSO4.7H2O (50 ppm) + silicon (20 mg L−1)]. The ratio of seed

weight to solution volume was 1:5 (kg L−1). During the soak, an

aquarium pump supplied aeration. To ensure clump-free sowing of

the seeds, the seeds were dried in the shade after being removed

from the solution. Two foliar applications were performed, first at

the anthesis/Z61 (Zadoks et al., 1974) stage and again 10 days later,

using a manual high-pressure sprayer at a rate of 500 L ha−1. The

control plots were sprayed with water. A water spray was applied to

the control plots.

2.1.3 Crop management
During seeding, plots were fertilized with 150 kg ha−1 of urea

and 200 kg ha−1 of triple superphosphate. Wheat seeds were sown at

a density of 350 plants per m2. Tilling, planting, pest control, and

weed control are similar to those used in typical wheat production.
2.1.4 Measurements
Physiological characteristics were measured 8 days after the last

foliar application. To determine parameters such as chlorophyll

pigment, proline, GB, MDA concentration, SOD and POD activity,

flag leaf samples were randomly collected in each plot. Liquid

nitrogen was used to freeze samples and they were stored at −40°

C until analysis. We measured the membrane stability index (MSI)

after separating flag leaves from plots to study this parameter.

2.1.4.1 Carotenoids and chlorophyll content

A method based on Arnon’s (1949) method was used to

determine chlorophyll in flag leaves. We homogenized the leaf

samples in 10 mL of 80% acetone and centrifuged them at 5,000

rpm for 5 min. The extract absorbance was recorded at 645-nm

(A645), 663-nm (A663), and 470-nm (A470) wavelengths using a

spectrophotometer (UV-2100 Model).

2.1.4.2 Proline concentration

Based on Bates et al. (1973), proline concentration was

measured. In 10 mL of 3% (w/v) sulfosalicylic acid solution,

samples (0.5 g) were homogenized. For 1 h at 100°C, 2 mL of the

extract reacted with 2 mL of glacial acetic acid and 2 mL of fresh

acid ninhydrin solution in a test tube, and the reaction was finished

in an ice bath. A spectrophotometer (UV-2100 Model) was used to

measure the supernatant absorbance at 520 nm after adding 4 mL

of toluene.
TABLE 1 Pre-sow nutrient condition of experimental plots at 0–0.30 m depth.

Growing season Organic C
(%)

Total N
(g kg−1)

Available P
(mg kg−1)

Available K
(mg kg−1)

Zn
(mg kg−1)

Fe
(mg kg−1)

2021–2022 0.78 0.40 12.00 336.1 0.44 2.10

2022–2023 0.81 0.45 12.80 351.0 0.42 2.03

Pot experiment

2022–2023 0.73 0.37 13.10 330.0 0.38 2.30
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2.1.4.3 GB concentration

The GB was extracted from dry flag leaves using hot distilled

water (70°C). Dry flag leaves were soaked in distilled water for 48 h

and then shaken vigorously to measure GB. 2N HCl and potassium

tri-iodide solution were added to the extract (0.25 ml). A 90-min ice

bath was used to cool the contents after shaking. Following this, 20

mL of 1,2-dichloromethane (cooled at −10°C) and 2 mL of ice-cold

distilled water were added. There were two layers formed from the

mixture; 365-nm optical density measurements were performed

after discarding the upper aqueous layer (Grieve and

Grattan, 1983).

2.1.4.4 MDA concentration

The Heath and Packer (1968) method was used to determine

MDA content in leaf. Five milliliters of 0.1% trichloroacetic acid

(TCA) was homogenized with leaf samples (0.5 g), followed by

centrifugation at 10,000 g for 5 min at 4°C.

2.1.4.5 SOD activity

Superoxide dismutase activity was determined based on

Beauchamp and Fridovich (1971). Each sample was prepared

using 970 mL of mixed buffer, 20 mL of riboflavin, and 20 mL of

extract. For 10 min, the samples were shaken under the light. Using

a spectrophotometer, the absorbance at 562 nm was measured at

the end.

2.1.4.6 POD activity

Peroxidase activity was determined based on Hemeda and Klein

(1990). In an overall volume of 1.0 mL, the reaction mixture

contained 780 µL of 50 mmol potassium phosphate buffer (pH

6.6), 90 µL of 0.3% hydrogen peroxide, 40 µL of crude extract, and

90 µL of 1% guaiacol. The activity was detected by the rise in

absorption at 470 nm in response to guaiacol oxidation (E026.6

mM−1 cm−1).
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2.1.4.7 MSI

To determine the MSI, leaf discs were cut with scissors and

inserted into glass vials. The samples were washed twice with

double-distilled water for 5 min each. Following draining the

water from each vial, 10 mL of double-distilled water was added.

The vials were then shaken (150 rpm, 25°C, 30 min). The electrical

conductivity was measured using a conductivity electrode. The

conductivity was measured after 60 min of hot water bathing all

vials. According to Bajji et al. (2002), the MSI was calculated.

2.1.4.8 Yield components and yields

Grain yield at maturity was determined by cutting 3 m2 of each

plot in the center and expressing it at 12% moisture content. Divide

GY by biological yield (BY) at maturity to calculate the harvest

index (HI). We also measured the kernels per spike at maturity and

the 1,000-grain weight.

2.1.4.9 Fe and Zn content

The dried wheat grain samples were ashed at 550°C in a furnace

for 6 h, then dissolved in a 1:1 (v:v) HNO3 solution to determine Fe

and Zn content. Atomic absorption spectrometry was used to detect

Fe and Zn in grains (Jones and Case, 1990).

2.1.4.10 Grain protein content

To measure grain protein content, the N concentration was

initially measured with the Kjeldahl method. By multiplying the

grain N content by the N-to-protein conversion factor (5.7), the

grain protein content was calculated (Moradi et al., 2022).

2.1.5 Statistical analysis
In order to analyze the combined variance of the data, after

Bartlett’s test and ensuring homogeneity of variance, the factorial

combined analysis model based on the RCBD was used. Years were

considered random, and seed priming and foliar application were
TABLE 2 Wheat-growing season rainfall, minimum and maximum temperatures (Tmin; Tmax), and mean relative humidity (RHavg).

Month

2021–2022 2022–2023

Precipitation (mm) Tmin Tmax RHavg

(%)
Precipitation (mm) Tmin Tmax RHavg (%)

(°C) (°C)

Oct. 21.4 1.77 21.16 44.20 5.60 3.70 23.57 41.63

Nov. 32.4 −1.11 10.63 72.79 36.4 −2.03 12.85 63.36

Dec. 24.2 −4.32 9.00 65.39 22.00 −3.80 4.80 80.03

Jan. 32.4 −9.76 4.6 68.61 50.40 −11.06 0.18 83.50

Feb. 74.6 −6.30 6.79 74.16 15.20 −10.33 3.68 72.90

Mar. 34.6 −2.03 10.86 52.39 106.00 0.80 13.42 56.94

Apr. 33.8 2.68 19.77 45.89 81.20 1.75 17.36 54.06

May. 8.6 4.09 21.29 49.75 76.60 5.38 21.15 51.25

Jun. 0.4 8.25 30.79 35.24 5.2 7.14 28.49 39.87

Total 262.4 – – – 398.60 – – –
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used as fixed effects. Using SAS 9.4 software, we conducted an

analysis of variance. To compare the means, Duncan’s multiple

range test was used at a p ≤ 0.05 (Duncan, 1966). To assess the

relationship between the variables, Pearson correlation coefficients

were employed.
2.2 Pot experiment

2.2.1 Plant materials and experiment setup
The pot experiment was carried out during the 2022–2023

growing season at the University of Kurdistan, Kurdistan, Iran. The

purpose of this experiment was to evaluate the effect of seed priming

on root growth in rainfed wheat (Cv. Baran). The pot experiment

was conducted with soil obtained from the field. Table 1 shows

some of the physical and chemical characteristics of the medium

soil. The experiment was designed as a 4-replicate completely

randomized design with seed priming treatment [non-primed and

primed seeds with urea (20 g L−1) + FeSO4.7H2O (50 ppm) +

ZnSO4.7H2O (50 ppm) + silicon (20 mg L−1)]. As described in

section 2.1.2, the priming of seeds was done the same way in the

field experiment. First, plastic pots (12 in diameter and 100 cm in

height) were filled with 15 kg of soil (Table 1). A pot was placed in

the excavated ground and the surrounding area was filled with soil

so that it had the same surface as a field. Three seedlings remained

per pot after seedling establishment, and they were grown to

physiological maturity. Plants did not show any signs of disease

or pest activity.

2.2.2 Plant growth attributes
At maturity, plant dry mass (DM) and grain weight were

measured in grams for each pot in this experiment. The pots

were removed from the ground after harvesting the aboveground

part at maturity in order to measure root length, root volume, and

root dry weight. For 12 h, the pots were placed in water-filled

barrels. Roots were stirred and poured into a sieve (0.25 mm2

mesh). As the sieve was suspended over a water bath, it was

repeatedly shaken until soil was removed from the roots. The

remaining soil materials were manually removed from the sieve.

The measured root length, root volume, and root DM were then

averaged. Root length was calculated using a ruler from the base to

the tip, and total measurements were taken. Root masses were

placed in a water-filled measuring cylinder to determine root

volume. Water level increase was measured as cm3 pot−1. For

each pot, roots were oven dried for 48 h at 72°C, and root DM

was calculated as g pot-1.

2.2.3 Statistical analysis
Statistical Analysis Software (SAS Version 9.4) was used to

analyze the data using a completely randomized design (ANOVA).

To compare the means, Duncan’s multiple range test was used at a

p ≤ 0.05 (Duncan, 1966).
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3 Results

3.1 Variance analysis of studied
characteristics

A combined ANOVA for traits revealed that there was a

significant year, seed priming, and foliar application effect for

almost all traits (Table 3). Moreover, the interactions between

seed priming × foliar application for Chl a, Chl b, Chl T, and

carotenoid content, proline, GB, andMDA concentration, POD and

SOD activity, 1,000-grain weight, BY, and GY were also

significant (Table 3).
3.2 Chlorophyll and carotenoid content

In the 2022–2023 growing season, Chl a, Chl b, Chl T, and

carotenoid concentrations were 13.85%, 18%, 15.08%, and 14.58%

higher than in the 2021–2022 growing season, respectively

(Table 3). Leaf chlorophyll content for both primed and

unprimed seeds decreased in order to ZnSO4 > silicon > FeSO4 >

urea > control foliar application. Foliar application of ZnSO4,

silicon, FeSO4, and urea at seed-primed treatment increased total

chlorophyll content by 26.97%, 21.25%, 12.07%, and 7.99%,

respectively, compared to the control. Furthermore, silicon,

ZnSO4, FeSO4, and urea applied as foliar treatments at non-

primed seed treatment increased Chl T by 17.48%, 16.83%,

12.08%, and 8.23% in comparison with the control (Figures 1A–

C). Maximum carotenoid content (0.610 mg g−1 FW) was recorded

with seed priming and ZnSO4 foliar application, which was

significantly higher compared to other treatments (Figure 1D).
3.3 Proline concentration

Proline concentration was 6.65% higher in the first growing

season than in the second growing season (Table 3). For all foliar

applications, the highest proline concentration was obtained during

primed seed treatment. Proline concentration ranged from 604.1 µg

g−1 FW in non-primed seed and control foliar application to 942.7

µg g−1 FW in combination primed seed and urea foliar application.

Seed priming recorded greater proline concentrations (972.8, 942.7,

873.4, 814.1, and 725.5 µg g−1 FW) at foliar application of urea,

ZnSO4, silicon, and FeSO4 and no foliar application (Figure 2A).
3.4 GB concentration

A higher concentration of GB was observed in the 2021–2022

growing season (6.08 mg g−1 DW) than in the 2022–2023 growing

season (5.86 mg g−1 DW). The highest GB concentration (6.71 mg

g−1 DW) was observed at the co-application of seed priming and
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foliar spraying of urea. Foliar application of urea, ZnSO4, silicon,

and FeSO4 compared to control at seed priming treatment elevated

GB concentrations by 19.22%, 15.86%, 14.31%, and 10.06%,

respectively (Figure 2B).
3.5 MDA concentration

The concentration of MDA decreased by 7.15% in the second

growing season compared to the first growing season (Table 3). The
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results of the study confirm that, as a result of foliar applications, the

MDA concentration in wheat leaf was significantly smaller at

primed and non-primed treatments. However, the outcomes of

foliar application of ZnSO4 and silicon resulted in a greater

reduction in MDA concentrations than other foliar applications.

The highest MDA concentration (6.19 µg g−1 FW) was detected in

the control foliar application and non-primed seed. Foliar

application of ZnSO4, silicon, FeSO4, and urea compared to

control at seed priming treatment reduced MDA concentrations

by 30.61%, 28.80%, 17.40%, and 11.17%, respectively (Figure 3A).
TABLE 3 Analysis of variance (ANOVA) of factorial design for wheat studied wheat traits at two priming rates and foliar applications.

Year (Y) Priming
(P)

Foliar application
(FA)

Y×P Y×FA P
×
FA

Y × P ×
FA

Degrees of freedom (df) 1 1 4 4 4 4 4

Physiological and
biochemical

Chlorophyll a ** ** ** ns ns * ns

Chlorophyll b ** ** ** ns ns * ns

Total chlorophyll ** ** ** ns ns ** ns

Carotenoid ** ** ** ns ns ** ns

Membrane stability index ** * ** ns ns ** ns

proline * ** ** ns ns ** ns

Glycine betaine * ** ** ns ns * ns

Malondialdehyde ** ** ** ns ns ** ns

Peroxidase activity ** ** ** ns ns * ns

Superoxide dismutase ns ** ** ns ns ** ns

Spike per m2 ** ** ns ns ns ns ns

Yield components and
yield

Kernels per spike ** ** ** ns ns ns ns

1,000-grain weight ** ** ** ns ns ** ns

Biological yield ** ** ** ns ns * ns

Grain yield ** ** ** ns ns * ns

Harvest index ns ** ** ns ns ns ns

Grain quality

Protein ns * ** ns ns ns ns

Zn ns ** ** ns ns ns ns

Fe ns ** ** ns ns ns ns

Mean comparisons Chl a Chl b Chl T Carotenoid Proline
(ug g−1

FW)

GB
(mg g−1

DW)

MSI
(%)

MDA
(µg
g−1

FW)

POD
(Unit mg−1

protein)(mg g FW−1)

Year

2021–2022 1.30b ±
0.02

0.50b ±
0.010

1.79b ±
0.027

0.48b ± 0.018 818a ±
14.3

6.08a ± 0.10 68.5b ±
0.68

5.17a

±
0.11

0.318a ± 0.006

2022–2023 1.48a ±
0.02

0.59a ±
0.012

2.06a ±
0.031

0.55a ± 0.010 767b ±
21.1

5.86b ± 0.13 72.7a ±
0.93

4.80b

±
0.10

0.307b ± 0.007
ns, non-significant error within-group variance. *: p ≤ 0.05; **: p ≤ 0.01. Mean comparisons for chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid concentration, membrane stability
index, proline, glycine betaine, malondialdehyde, and peroxidase activity. As determined by Duncan’s test, no significant difference at p ≤ 0.05 exists between values in a column containing the
same letter within a group. Data are the mean ± SE [n = 40 for year].
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3.6 MSI

The MSI increased from 68.5% in the 2021–2022 growing

season to 72.7% in the 2022–2023 growing season (Table 3). MSI

values ranged from 64.71% in non-primed seed and no foliar

application to 77.321% in primed seed and silicon foliar

application. Seed priming recorded significantly elevated MSI

(77.32%, 77.07%, 74.55%, and 68.68%) at foliar application of

ZnSO4, silicon, FeSO4, and urea, respectively (Figure 3B).
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3.7 SOD activity

In both non-primed seed and seed primed treatments, ZnSO4,

urea, silicon, and FeSO4 foliar applications significantly improved SOD

activity. SOD activity values ranged from 0.13 Unit mg−1 protein in

non-primed seed and no foliar application to 0.174 Unit mg−1 protein

in primed seed and ZnSO4 foliar application. ZnSO4, FeSO4, silicon,

and urea applications significantly increased SOD activity compared to

no application in the seed priming treatment by 20.83%, 19.44%,
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15.28%, and 13.19%. For non-primed seeds, there is no statistically

significant difference in SOD activity between ZnSO4, silicon, FeSO4,

and urea foliar applications (Figure 3C).
3.8 POD activity

Peroxidase activity in 2021–2022 was higher than the 2022–

2023 growing season (Table 3). At both non-primed seed and seed

primed treatments, ZnSO4, urea, silicon, and FeSO4 foliar

applications significantly boosted POD activity. The highest POD

activity (0.375 Unit mg−1 protein) was observed in seed priming in

combination with ZnSO4 foliar application. This was statistically

similar to the foliar application of silicon (0.367 Unit mg−1 protein)

at seed priming treatment. In seed priming treatment, foliar

application of ZnSO4, silicon, FeSO4, and urea significantly

increased POD activity compared to no foliar application by

33.45%, 30.60%, 23.13%, and 17.44%, respectively (Figure 3D).
3.9 Yield and yield components

In the 2022–2023 growing season, spike per m2, kernels per spike,

1000-grain weight, BY, and GY were 22.63%, 7.84%, 7.64%, 46.52%,

and 45.50% higher than in the 2021–2022 growing season, respectively

(Table 4). A seed priming treatment resulted in an overall improvement
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in yield components and yield. In comparison to the control, seed

priming increased spikes per m2 and kernels per spike by 8.60% and

13.42%, respectively. A higher HI was found in the seed priming

(29.2%) treatment compared to the control treatment (28.9%) (Table 4).

Data in Table 4 indicated that kernels per spike increased in the order

control < ZnSO4 < silicon < FeSO4 < urea foliar applications. Foliar

application of ZnSO4, silicon, and FeSO4 had a positive effect on 1,000-

grain weight at both seed priming and control treatments, in contrast to

foliar application of urea, which slightly decreased 1,000-grain weight.

The maximal 1,000-grain weight on the whole foliar application was

observed in ZnSO4 foliar application at both priming (35.30 g) and

control (30.96 g) treatments (Figure 4A). For all foliar applications, the

highest BY and GY were obtained at primed seed treatment. Biological

yield ranged from 6,466 kg ha−1 in non-primed seed and control foliar

application to 8,062 kg ha−1 in combination primed seed and ZnSO4

foliar application (Figure 4B). The highest GY (2,456 kg ha−1) was

observed in seed priming in combination with ZnSO4 foliar application.

This was statistically similar to the foliar application of silicon (2,353 kg

ha−1) at seed priming treatment. Foliar application of ZnSO4 at seed

primed and non-primed seed treatments increased GY by 18.51% and

9.60%, respectively. In addition, silicon foliar application at seed primed

and non-primed seed treatments improved GY by 13.52% and 12.15%,

respectively (Figure 4C). According to the results of the pot

experiments, seed primed attained enlarged aboveground DM, grain

weight, root DM, root volume, and root length by 9.56%, 10.56%,

9.64%, 8.95%, and 4.37%, respectively (Table 4).
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(MSI), (C) superoxide dismutase (SOD), and (D) peroxidase activity (POD) of wheat. The Duncan’s test indicates that columns labeled by the same
letter are not significantly different at the p ≤ 0.05 level. Each mean is accompanied by a standard error (n = 8).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1287677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Moradi and Siosemardeh 10.3389/fpls.2023.1287677
3.10 Grain Fe and Zn content

Grain Fe (55.0 mg kg−1 DW) and Zn (42.0 mg kg−1 DW) content

in seed priming treatment was significantly higher than control.

Maximum grain zinc content (49.4 mg kg−1 DW) was achieved in

ZnSO4 foliar spray. In comparison to the control, foliar applications of

ZnSO4 enhanced grain Zn content by 29.32%. Only FeSO4 foliar

application significantly increased grain Fe content compared to no

foliar application. Grain Fe content ranged from 51.1 mg kg−1 DW for

no foliar application to 61.1 mg kg−1 DW for FeSO4 foliar

application (Table 4).
3.11 Grain protein content

Because of seed priming, grain protein content increased from

11.5% to 11.8% in comparison with control. Overall, urea, ZnSO4,

FeSO4, and silicon applied foliarly improved grain protein content

as compared with control. However, silicon foliar applications are

statistically similar to no foliar application in grain protein content.
Frontiers in Plant Science 0978
The protein content of grains ranged from 11.1% for no foliar

application to 12.5% for urea foliar application (Table 4).
3.12 Correlation among traits

According to Table 5, there is a significant positive association

between GY and all physiological traits except MDA concentration

(r = −0.62, p ≤ 0.01). Furthermore, there was a positive association

among GY with BY (r = 0.97, p ≤ 0.01), spike per m2 (r = 0.75, p ≤

0.01), kernels per spike (r = 0.69, p ≤ 0.01), 1,000-grain weight (r =

0.61, p ≤ 0.01), and Zn content in grains (r = 0.35, p ≤ 0.01). A

positive correlation was found between BY, spike per m2, kernels

per spike, 1,000-grain weight, MSI, SOD and POD activity, Chl T,

carotenoid, proline concentration, and grain Zn content. MSI was

positively associated with Chl T (r = 0.75, p ≤ 0.01), carotenoid (r =

0.76, p ≤ 0.01), proline (r = 0.44, p ≤ 0.01), GB (r = 0.49, p ≤ 0.01),

SOD activity (r = 0.63, p ≤ 0.01), POD activity (r = 0.64, p ≤ 0.01),

grain Zn content (r = 0.47, p ≤ 0.01), and grain Fe content (r = 0.35,

p ≤ 0.05), while MSI showed a strong negative relation with MDA
TABLE 4 The mean comparisons of spike per m2, kernels per spike, biological yield (BY), grain yield (GY), harvest index (HI), and grain Zn, Fe, and
protein content of wheat are influenced by seed priming (SP) and foliar applications (FA).

Mean comparisons Spike per m2 Kernels per spike HI
(%)

Zn Fe Protein (%)

(mg kg−1 DW)

Year

2021–2022 402b ± 5.35 15.3b ± 0.20 28.9a ± 0.24 40.2a ± 0.76 53.3a ± 0.73 11.1a ± 0.08

2022–2023 493a ± 6.84 16.5a ± 0.23 28.6a ± 0.23 41.2a ± 0.87 53.8a ± 0.89 11.6a ± 0.10

Priming

Control 430 a ± 6.87 14.9b ± 0.18 28.3b ± 0.20 39.4b ± 0.68 52.1b ± 0.69 11.5b ± 0.09

Priming 467a ± 7.25 16.9a ± 0.18 29.2a ± 0.24 42.0a ± 0.88 55.0a ± 0.86 11.8a ± 0.10

Foliar application

Control 448a ± 12.39 15.0d ± 0.34 28.3b ± 0.29 38.2b ± 0.64 51.1b ± 0.82 11.1c ± 0.15

Urea 460a ± 13.89 15.5cd ± 0.28 27.1c ± 0.27 38.0b ± 0.46 51.6b ± 0.55 12.5a ± 0.14

Silicon 456a ± 12.28 16.3ab ± 0.37 29.4a ± 0.26 38.7b ± 0.60 51.7b ± 0.95 11.4bc ± 0.08

FeSO4 437a ± 10.96 16.0bc ± 0.32 29.2a ± 0.30 39.2b ± 0.90 61.1a ± 0.83 11.6b ± 0.09

ZnSO4 442a ± 11.81 16.7a ± 0.38 29.8a ± 0.36 49.4a ± 0.95 52.1b ± 0.92 11.6b ± 0.13

Year 1,000-grain weight
(g)

BY GY

(kg ha−1)

2021–2022 30.1b ± 0.32 5,808b ± 63.0 1,677b ± 30.09

2022–2023 32.4a ± 0.40 8,510 a ± 95.4 2,440a ± 41.50

The mean comparisons of aboveground dry mass, grain weight, root dry mass, root length, and root volume wheat in the pot experiment.

Dry mass weight Grain weight Root dry mass Root length
(cm)

Root volume
(cm3 pot−1)

(g pot−1)

Control 13.6b ± 0.33 5.49b ± 0.21 1.66b ± 0.04 5.03b ± 0.11 84.7b ± 1.1

Priming 14.9a ± 0.48 6.07a ± 0.12 1.82a ± 0.06 5.48a ± 0.16 88.4a ± 0.92
frontie
As determined by Duncan’s test, no significant difference at p ≤ 0.05 exists between values in a column containing the same letter within a group. Data are the mean ± SE [n = 40 for year; n = 40
for seed priming; n = 16 for foliar application; n = 4 for seed priming in the pot experiment].
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content (r = −0.75, p ≤ 0.01). The MSI is positively related to all

traits except grain protein content while there is a significant

negative relation between MDA and all traits investigated

excluding grain protein content (no significant correlation

between MDA with grain protein content). There was no

significant relationship between Zn, Fe, and protein content of

grains. Grain protein content exclusively had a significant

association with proline and GB concentrations, and SOD and

POD activity (Table 5).
4 Discussion

Uneven precipitation patterns in Mediterranean areas during

rainfed wheat growing lead to soil moisture shortages (Moradi et al.,

2022). In such situations, integrated agronomic crop management

practices are required to alleviate drought stress’s negative impacts

(Melash et al., 2019). Seed priming (Liu et al., 2015; Rai-Kalal and

Jajoo, 2021) and foliar application of nutrients and different

compounds (Bukhari et al., 2021; Malik et al., 2021; Ghani et al.,

2022) are two drought amelioration techniques. The combination of
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these practices can perform a key role in elevating plant tolerance to

drought stress and improving GY and quality.

N, Fe, and Zn are essential nutrients needed for growth of plant

and are essential components of a variety of critical physiological

processes (Zain et al., 2015; Nehe et al., 2020; Sattar et al., 2021).

Silicon is a nutrient that is currently receiving heightened interest

from the scientific community, most notably in its application to

drought resistance (Ayed et al., 2021; Bukhari et al., 2021; Sattar

et al., 2021). Utilization of these elements through nutritional seed

priming is considered a cost-efficient approach since only a small

amount of nutrients are utilized to prime and ensure nutrient

availability for germinating seeds (Farooq et al., 2021). In the late

growth stages of rainfed wheat, insufficient soil moisture and

limited root activity result in a reduction in nutrient uptake

(Moradi et al., 2022). In the present study, the crop was exposed

to a continuous increase in ambient temperature with a lack of

atmospheric moisture and a decrease in soil moisture storage,

especially during grain filling due to lack of rainfall. As a

consequence, foliar application of nutrients during the final stages

of growth, when soil nutrient application is impossible due to

moisture limitations, leads to rapid absorption by the leaves (Aziz
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TABLE 5 Correlation coefficients of grain yield (GY), biological yield (BY), harvest index (HI), spike per m2 (SP), kernels per spike (KS), 1,000-grain weight (GW), total chlorophyll (Chl T) and carotenoid (Car)
content, membrane stability index (MSI), proline, glycine betaine (GB), and malondialdehyde (MDA) concentration, superoxide dismutase (SOD), peroxidase activity (POD), grain Zn content (Zn), grain Fe content

ar MSI Proline GB MDA SOD POD Zn Fe GPC

1
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(Fe), and grain protein content (GPC) of wheat are affected by priming levels and foliar applications

GY BY HI SP KS GW Chl T C

GY 1

BY 0.97** 1

HI 0.30** 0.06ns 1

SP 0.75** 0.80** 0.05ns 1

KS 0.69** 0.62** 0.39** 0.49** 1

GW 0.61** 0.49** 0.57** 0.30** 0.75** 1

Chl T 0.85** 0.78** 0.43** 0.53** 0.75** 0.75** 1

CAR 0.77** 0.69** 0.44** 0.47** 0.70** 0.73** 0.92**

MSI 0.61** 0.55** 0.32** 0.37** 0.67** 0.63** 0.75** 0

Proline 0.26* 0.23* 0.22* 0.17ns 0.58** 0.54** 0.51** 0

GB 0.23* 0.21ns 0.28* 0.18ns 0.52** 0.52** 0.44** 0

MDA −0.62** −0.52** −0.50** −0.35** −0.75** −0.83** −0.82** −

SOD 0.30** 0.22* 0.41** 0.17* 0.63** 0.61** 0.55** 0

POD 0.30** 0.24* 0.44** 0.10ns 0.64** 0.71** 0.59** 0
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Fe 0.10ns 0.05ns 0.25* 0.11ns 0.23 0.18ns 0.14ns

GPC −0.10ns −0.03ns −0.19ns 0.02ns 0.07ns −0.07ns 0.03ns −

ns, non-significant; *p ≤ 0.05; **p ≤ 0.01.
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et al., 2019; Melash et al., 2019). In this study, it was observed that

seed priming and foliar spraying of ZnSO4, silicon, FeSO4, and urea

alleviated adverse drought effects and improved plant physiological

properties (Figures 1A–D, 2A, B, 3A–D).

Chlorophyll and carotenoids, which are pigments essential for

photosynthesis, also play a crucial role (Kiran et al., 2021; Zhang

et al., 2023). Water shortages exacerbate nutrients such as N, Zn,

and Fe deficiency that reduce leaf pigment content due to a decrease

in pigment synthesis, a reduction in the enzyme activity engaged in

photosynthetic pigment synthesis, and a rise in photosynthetic

pigment degradation (Kiran et al., 2021; Moradi et al., 2022;

Zhang et al., 2023). Chlorophyll and carotenoid content are

indicators of plant resistance to environmental stresses because it

is directly linked with photosynthesis (Ayed et al., 2021).

Nevertheless, our results indicated that overall chlorophyll and

carotenoid content in primed seed was greater than in non-

primed seed; foliar application (especially ZnSO4 and silicon)

increased photosynthetic pigments in both primed and unprimed

seed treatments; however, foliage spraying had the greatest effect in

primed seeds (Figures 1A–D). The increase in photosynthetic

pigment contents due to priming and foliar application

treatments enhances nutrient availability and water conservation

(Hussain et al., 2019; Farooq et al., 2021). Numerous studies

indicated that seed priming and foliar spraying of N, Fe, Zn, and

silicon mitigated the injurious impacts of drought stress and

enhanced leaf carotenoid and chlorophyll content (Hussain et al.,

2019; Melash et al., 2019; Ayed et al., 2021; Farooq et al., 2021;

Sattar et al., 2021). In the same way, our observations are also

supported by Khan et al. (2022) and Anwar et al. (2021), who

reported that seed priming and foliar application improved

photosynthetic pigments. The higher content of photosynthetic

pigments as a result of foliar spray and priming of nutrients can

be associated with the presence of these elements in the structure of

pigments (such as N in chlorophyll structure) and their effect on

reducing negative effects of drought stress and ultimately preserving

pigments. Increased leaf chlorophyll and carotenoid concentrations

were detected under seed priming and foliar application, which not

only improved photosynthesis but likewise enhanced crop growth,

GY, and grain quality.

Under drought stress, plants maintain potential water balance

and cellular metabolism by synthesizing and collecting compatible

osmolytes such as GB and proline. Owing to osmolytes’ functions of

regulating osmotic pressure, maintaining turgor pressure, and

regulating cell volume, metabolic activity is preserved under low

water potential. Plants can also utilize GB and proline as nitrogen

and carbon sources under extreme conditions (Tian et al., 2017;

Bukhari et al., 2021). In the current research, seed priming and

foliar application improved proline and GB concentrations. Foliar

spraying of nutrients (mainly N and Zn) enhanced these compatible

osmolytes in primed and non-primed seed treatment; however,

proline and GB concentration improvement in primed seed was

highest (Figures 2A, B). Foliar application of nutrients and seed

priming preserve the plant and enhance growth by stimulating the

synthesis of osmolytes and maintaining osmotic potential when

water is scarce (Malik et al., 2021; Sattar et al., 2021; Saha et al.,

2022). Various enzymatic antioxidants, such as SOD and POD, as
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well as non-enzymatic antioxidants, participate in ROS

detoxification (Khan et al., 2023). Proline and GB are non-

enzymatic antioxidants that protect the plant from negative

effects by stabilizing reactive oxygen species (ROS; Malik et al.,

2021; Malko et al., 2022). Several factors may have contributed to

this elevation in GB and proline accumulation, including those

attributed to the presence of these components in the structure of

these osmolytes, as their participation in the structure of many

enzymes engaged in the synthesis of these osmolytes as cofactors

and the expression of genes encoding key enzymes involved in the

synthesis of proline and GB have increased (Umair Hassan et al.,

2020; Saha et al., 2022). Previous research demonstrated that foliar

nutrients and seed priming raised proline and GB accumulation

under drought stress (Bukhari et al., 2021; Malik et al., 2021; Singhal

et al., 2021; Ghani et al., 2022).

Mineral nutrition acts as a key function in alleviating stress

caused by drought in plants. Plants have several processes for

dealing with drought damage, including enzymatic (for example

POD) and antioxidants that are not enzyme-based (for example,

proline and GB as free amino acids) (Malik et al., 2021; Malko et al.,

2022). Seed priming and foliar application of nutrients reduce ROS

damage via elevating enzymatic and non-enzymatic antioxidant

contents and strengthening drought resistance in plants (Farooq

et al., 2021; Malik et al., 2021; Sattar et al., 2021). In plants,

antioxidants play an essential role in enhancing plant tolerance to

stress in response to abiotic stresses (Khan et al., 2023). According

to our results, seed priming and foliar application positively affected

antioxidant enzymes (POD and SOD) activity. Seed priming

together with foliar application of silicon, ZnSO4, FeSO4, and

urea compared to foliar application of these compounds in

unprimed seed increased POD activity by 24.40%, 22.55%,

25.36%, and 14.58%, respectively. Likewise, POD activity in no

foliar application and primed seed treatment was 9.77% higher than

in no foliar application and non-primed seed (Figure 3D). This

study demonstrated that seed priming and foliar application of

nutrients and elevated nutrient availability have a positive effect on

POD and SOD activity, because it is due to the presence of these

nutrients in the enzyme structure as well as many antioxidants

contain this compound as cofactors (Karim et al., 2012; Rehman

et al., 2018; Umair Hassan et al., 2020; Kiran et al., 2021; Saha et al.,

2022). In previous research, it has been displayed that seed priming

and foliar application of these components enhance the enzyme-

based antioxidant defenses of plants (Kiran et al., 2021; Lv et al.,

2021; Malik et al., 2021; Sattar et al., 2021; Singhal et al., 2021; Khan

et al., 2022; Raza et al., 2023).

Stress induced by water and nutrient deficiency results in

oxidative stress in plants, causing membrane lipid peroxidation.

Tissue MDA amounts represent membrane lipid peroxidation,

which eventually damages integrity of membranes (Chavoushi

et al., 2020; Farooq et al., 2021). The MSI is widely recognized as

a physiological marker and stress tolerance evaluation tool. Abiotic

tolerance in plants relies heavily on maintaining membrane

integrity and stability since membranes are the main targets of

environmental stresses (Malik et al., 2021). The contents of the cell

leak out when the membrane of cell is disrupted, reducing cell

membrane development and elevating electrolyte leakage (Malik
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et al., 2021; Singhal et al., 2021). In this study, seed priming and

foliar spray of nutrients, and a co-application of these techniques,

reduced MDA concentration and improved MSI (Figures 3A, B).

The results of this experiment suggest that seed priming enhances

root growth (Table 4) and increases access to water and nutrients.

Nutrient supply via foliar spray and seed priming modulated ROS

adversity by reducing the rate of lipid peroxidation (Figure 3A). As

a result of regulating antioxidant mechanisms (Figures 3C, D) and

maintaining lipid biological membranes (Figure 3B), it was evident

that enzymatic activity (SOD and POD activity) had a strong

positive correlation with non-enzymatic (carotenoid, proline, and

GB concentration) antioxidants and MSI, and there was a

significant negative correlation between MDA concentration with

SOD and POD activity and carotenoid, proline, and GB

concentration (Table 5). Our result is supported by previous

studies that indicated that nutrient supply by foliar spray and

seed priming stabilizes the membranes and reduces MDA

concentration, which consequently mitigates oxidative stress and

lowers membrane injury (Hussain et al., 2019; Chavoushi et al.,

2020; Ayed et al., 2021; Farooq et al., 2021; Malik et al., 2021; Raza

et al., 2023).

The growth, yield components, and GY are strongly related and

the efficiency of one influences the other. Furthermore, a significant

boost in growth and yield components improves the GY (Malko

et al., 2022). According to this study, the seed priming had a positive

influence on the kernels per spike, 1,000-grain weight, BY, GY, HI,

and root growth (Table 4; Figure 4). Recently, numerous researchers

(Rehman et al., 2018; Hussain et al., 2019; Ayed et al., 2021; Raza

et al., 2023) reported that seed priming increased yield components

and yield that supported our results. Enhanced tolerance in plants

grown from a primed seed resulted in improved root development

and, consequently, assisted in improved water and nutrition uptake

under water scarcity conditions (Farooq et al., 2021). During the

reproductive stage, water shortage, reduction in root activity, and

nutrient deficiency in rainfed wheat affect grain development,

kernels per spike, and grain weight, eventually reducing the yield

and quality offinal products (Saha et al., 2022). The present research

found that foliar spray of ZnSO4, silicon, and FeSO4 during the

terminal stage significantly increased kernels per spike, 1000-grain

weight, BY, and GY in comparison with the control (Table 4 and

Figure 4). Furthermore, urea foliar application significantly

enhanced BY compared with the control (Figure 4). In this study,

it seems that urea foliar spray, despite staying green (maintaining

photosynthetic capacity and improving current photosynthesis)

and increasing BY, has delayed leaf senescence and remobilization

of dry matter to grain; ultimately, it had no significant effect on GY

(the lowest HI obtained in urea foliar spray treatment). In the past,

researchers have consistently published that foliar application of

nutrients significantly improved yield components and GY (Karim

et al., 2012; Zain et al., 2015; Sultana et al., 2018; Kiran et al., 2021).

Analyses of correlation clearly confirmed that GY was closely

associated with physiological characteristics (Table 5). This study

describes that seed priming and foliar application of nutrients

improved drought resistance through the increase in compatible

osmolytes (GB and proline) and carotenoid concentrations

(Figure 1D; Figure 2) and antioxidant enzyme (POD and SOD)
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activity (Figure 3B), decrease in MDA concentration (Figure 3A),

and maintenance of cell membrane integrity (Figure 3B); prevented

chlorophyll degradation (Figures 1A–C); and eventually enhanced

GY (Figure 4C). Our results indicated that chlorophyll content, MSI

(Table 3), spike per m2, kernels per spike, 1,000-grain weight, and

BY (Table 4) in plants during 2022–2023 were higher than those

during the 2021–2022 growing season (Table 5; Figure 2), which

might be associated with more precipitation in the second growing

season (Table 2).

In this study, seed priming and nutrient foliar application

influenced grain quality. We found that seed priming significantly

increased grain Fe, Zn, and protein content (Table 4). An adequate

nutrient source is extremely vital in seed germination and the initial

stages of development; nutritional seed priming improves root growth,

nutrient uptake, and plant growth (Farooq et al., 2021; Malko et al.,

2022; Saha et al., 2022). Results of our pot experiment indicate that root

growth is significantly improved by seed priming (Table 4). These

findings suggest that the mechanism of improved grain quality by seed

priming practice is based on the improvement in boosted root growth

and development, enhanced nutrient absorption, and translocation of

nutritional elements from root to shoot and grain, and ultimately led to

improved grain quality (grain Zn, Fe, and protein content). This

finding was in line with previous investigations suggesting that seed

priming improves grain quality (Rehman et al., 2018; Anwar et al.,

2021; Singhal et al., 2021). The application of nutrients in the terminal

stage of rainfed wheat due to the high efficiency of foliar spraying is

rapidly absorbed by plants. This permits nutrients to be transported

directly to points with high metabolic demand (grains). Earlier studies

showed that foliar nutrient application could boost grain quality

(Melash et al., 2019; Sultana et al., 2018; Kiran et al., 2021; Kiran

et al., 2021). In the current study, foliar nutrient application also

improved grain quality. Foliar application of ZnSO4, FeSO4, and urea

drastically boosted grain Zn, Fe, and protein content, respectively

(Table 4). Thus, foliar nutrient delivery at the terminal stage is a

high-efficiency method for biofortification in rainfed wheat cultivation.

The farmer community can use seed priming and nutrient foliar

application at the terminal stage to mitigate the adverse effects of

drought stress and improve growth attributes, grain yield, and quality

of rainfed wheat.
5 Conclusion

Results from this study have clearly demonstrated that the

combination of seed priming [by urea (20 g L−1) + FeSO4.7H2O

(50 ppm) + ZnSO4.7H2O (50 ppm) + silicon (20 mg L−1) solution]

and foliar application of these compounds [urea (4%), silicon (4

mM), FeSO4.7H2O (0.6%), and ZnSO4.7H2O (0.4%)] improved

physiological and yield characteristics. Foliar application of

ZnSO4, FeSO4, and urea drastically affected grain Zn, Fe, and

protein content, respectively. To improve drought resistance, GY,

and quality of rainfed wheat, seed priming and foliar spraying are

recommended as crop management practices. Future investigations

are necessary to assess the influence of seed priming and foliar spray

of these compounds at various growth stages on rainfed wheat in

various cultivars and soils.
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Phytotoxicity of trace elements (commonly misunderstood as ‘heavy metals’)

includes impairment of functional groups of enzymes, photo-assembly, redox

homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs)

can ameliorate trace element toxicity. We discuss SiNPs response against several

essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb,

Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport

of trace elements as the first line of defence. SiNPs charge plant antioxidant

defence against trace elements-induced oxidative stress. The enrolment of SiNPs

in gene expressions was also noticed on many occasions. These genes are

associated with several anatomical and physiological phenomena, such as cell

wall composition, photosynthesis, and metal uptake and transport. On this note,

we dedicate the later sections of this review to support an enhanced

understanding of SiNPs influence on the metabolomic, proteomic, and

genomic profile of plants under trace elements toxicity.
KEYWORDS

silica, trace elements, metal stress, nanoparticles, heavy metal, oxidative stress,
metalloid stress, sequestration
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1 Prologue: ‘heavy metals’ or ‘trace
elements’: a terminological dilemma?

The term ‘heavy metal’ loosely signifies metals with a density

higher than 7 g/cm3 (Bjerrum, 1936). The group supposedly enlist

metals considered contaminants and can cause phytotoxicity or

ecotoxicity sensu lato. However, there are several inconsistencies.

Firstly, no authoritative list exists till now that notes all the heavy

metals. Secondly, the ‘heaviness’ is somehow perceived as ‘toxicity’,

which gave rise to anomalies such as including arsenic and

antimony in this group even when they are not metals. Thirdly,

density is neither a promising predictive factor when studying metal

interaction with living organisms nor explains significant details

about the element itself (Nieboer and Richardson, 1980). Thus,

categorising them according to density is crude and non-scientific.

Understandably, this classification has been refuted several times by

plant scientists and others alike (Hodson, 2004; Appenroth, 2010).

While Chapman (2007) amusingly suggests that the term would be

better off with the ‘music’ industry rather than science, Duffus

(2002) considers the word ‘meaningless’ and ‘misleading’. The

IUPAC (International Union of Pure and Applied Chemistry) has

neither recommended this term. It is unfortunate to witness the

ever-increasing use of ‘heavy metals’ in the title and topic of refereed

publications from several highly cited journals of plant and

environmental science (see Pourret and Bollinger, 2017). It poses

a moral dilemma for young researchers whether to use this term

since the keyword ‘heavy metals’ still has massive indexing and

visibility on scientific databases e.g., Web of Science and Scopus.

Maybe it is what encourages the established research from the field

to still use this misnomer (Cobbett and Goldsbrough, 2002; Rascio

and Navari-Izzo, 2011; Ali et al., 2013; Pollard et al., 2014; Adrees

et al., 2015).

Contrary to ‘heavy’ metals, other more appropriate and

scientifically sound terms should be used to signify the

characteristics and properties of the studied element. This could

include ‘trace metals’, ‘toxic trace elements’, or ‘potentially toxic

trace elements’ in perspective research. ‘Trace elements’ are those

elements ‘found in low concentration, in mass fractions of ppm or

less, in some specified source, e.g., soil, plant, tissue, groundwater,

etc.’ (Duffus, 2002). However, referring to these elements or metals

as toxic is imprecise again or redundant at best. Paracelsus (1493-

1541) laid the fundamental rule of toxicology: all elements and their

derivatives are toxic in high enough doses (see Duffus, 2002).

Therefore, we recommend the usage of ‘trace elements’ in the title

and as a topic for future studies related to toxic trace elements. We

also urge the responsible authorities, particularly editorial board

members, to discourage the usage of the ‘heavy metals’ keyword in

future submissions.
2 Introduction

A plant’s health chiefly depends on soil composition. Soils have

frequently been exposed to excessive amounts of essential and non-

essential nutrients through industrial wastes, municipal composts,
Frontiers in Plant Science 0286
agricultural effluents, sewage sludge and surface mining wastes, and

their toxic levels damage plant species differently (DalCorso, 2012).

Trace elements (TEs) are a group of elements present in low

concentration (mass fraction of ppm or less) in the specified

medium (soil, plant, etc.) and includes Cd, Pb, Mn, As, Fe, Cr,

Cu, Ni, Co, Ag, Zn, Sb, Ti, and Hg. TEs contamination has become a

severe environmental threat worldwide. Besides naturally deriving

from parent rocks, most of the TEs in the soils result from

anthropogenic activities such as mining and processing of metal

ores, energy and fuel production, intensive agriculture, and sewage

processing, including several other industrial processes (Tóth et al.,

2000; Khan et al., 2008; Brunetti et al., 2009; Yadav et al., 2019). TEs

are not bio- or thermo-degradable so that they may persist in the

soil for thousands of years, given their relative non-mobility and

their technically and financially demanding remediation from the

soil (Rahimi et al., 2017; Masindi and Muedi, 2018). Natural soils

are the primary source of TEs in plants. Despite the selective

membrane of root cells, much of the elements present in the soil

translocate into plant tissues. In contrast, their availability depends

mainly on the solubility in the soil solution or the root exudates

(Blaylock and Huang, 2000). Therefore, the plants may efficiently

uptake hazardous TE levels, affecting their functioning and animal

and human health through the food chain (Adriano, 2001).

Some trace elements such as Zn, Cu, Ni, Fe, Mo, and Mn are

essential for plant metabolism. Zn has been shown to play a crucial

role in enzyme systems involved in carbohydrate and protein

metabolism, auxin formation, and stabilises cell membrane

integrity (Hafeez, 2013). There is also evidence that Zn may

contribute to the plant defence system by regulating stress protein

expression and stimulating the antioxidant enzymes (Cabot et al.,

2019; Hassan et al., 2020). Ni has been reported as an integral

component of various enzymes essential for ureolysis, nitrogen

fixation, hydrogen metabolism, and antioxidant system (Fabiano

et al., 2015; Lavres et al., 2016; Siqueira Freitas et al., 2018).

Similarly, Fe forms cofactors of many vital enzymes and is a

central component of the electron transport chain and a crucial

element for chlorophyll biosynthesis (Schmidt et al., 2020). Cu plays

a pivotal role in regulating the photosynthetic and respiratory

electron transport chain, besides affecting cell wall formation,

antioxidant activities, and hormone perception (Yamasaki et al.,

2008; Printz et al., 2016). Furthermore, Mn is crucial for

photosynthetic machinery as the primary cofactor for the oxygen-

evolving complex in photosystem II (PSII) and may participate in

plant antioxidative system (Millaleo et al., 2010; Alejandro et al.,

2020). Besides the earlier mentioned TEs, several studies proved the

beneficial role of Co and Cr for plant growth and yield, although

they are not classified as essential nutrients (Samantaray et al., 1998;

Gad, 2012; Akeel and Jahan, 2020). On the contrary, TEs such as Pb,

Cd, Hg, and As have no documented beneficial role in the

metabolism of higher plants. They are considered the “main

threats” even in trace amounts (Chibuike and Obiora, 2014). The

effect of TEs toxicity depends, of course, on a particular element

involved in the process and its concentration in the soil. However, it

may vary significantly among plant species and varieties. Such

variations result from the different (i) pathways and mechanics

through which TEs are absorbed by roots (Williams et al., 2000), (ii)
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mechanisms of their releasing and redistribution into the shoot, and

(iii) abilities to exclude, chelate or accumulate TEs in particular

structures, which plants have adopted (Salt et al., 1998). These

mechanisms are involved in the maintenance of essential TEs

homeostasis. Furthermore, the plant species can be divided into

(hyper)accumulating and non-accumulating plants, whereas most

of the plant kingdom is considered non-accumulators (Viehweger,

2014). However, in general, TEs toxicity leads to the blocking of

functional groups of many enzymes (Tang et al., 2020),

malfunctions in photosynthetic machinery (Giannakoula et al.,

2021), production of reactive oxygen species (ROS) and

associated oxidative damage (Ma et al., 2022; Sardar et al., 2022),

and impairment of plant mineral nutrition through the replacement

of essential nutrients at cation exchange sites of plants (Arif et al.,

2016). Such alterations in overall biochemistry and physiology affect

plant development and growth and may lead to plant death in

severe cases (Chibuike and Obiora, 2014).

To date, only a handful of published articles target the

interaction of TEs with silicon nanoparticles (SiNPs). The existing

reviews on this nexus deal mostly with heavy metals, the term which

is in itself confusing (vide supra section Prologue), and therefore,

several toxic elements were purposefully left behind. Also, the

existing literature reviews often need to restrict their significant

discussion to SiNPs over bulk silicon or address the omics aspect

sufficiently. In our earlier review article, we demonstrated SiNPs

potential in mitigating the abiotic stress in general, where heavy

metal stress was also discussed (Mukarram et al., 2022).

Nonetheless, one of this article’s limitations was the absence of an

elaborated mechanism on SiNPs dialogue with TEs toxicity.

To overcome these concerns, we included a wide range of toxic

elements in the present review that were studied with SiNPs,

irrespective of their ‘heavy metals’ stigma. We also addressed how

SiNPs could interact with plant metabolomics, proteomics, and

genomics during TEs toxicity. So, the novelty of this review article
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over the existing ones lies in its understanding of the SiNPs-TEs

interaction and its omics perspective. Through this article, we hope

to instigate a discussion among the silicon community regarding its

active correspondence with plant physiology, especially when there

are still several ambiguities around this nexus.
3 Trace elements phytotoxicity

Although several TEs are essential to plants, their

overaccumulation in agricultural soils endangers plant growth

and development while compromising crop marketability and

global food security (Asati et al., 2016; Figure 1). Variations in

responses of different plant species to TEs toxicity have been

observed. Plant behaviour can change with soil pH and

composition and specific TEs. TEs toxicity potentially alters root

and shoot morphology and anatomy (Martinka et al., 2014). It

adversely affects photosynthesis and respiration by changing the

leaf’s structural integrity and physiology, damaging energy (photon)

allocation, and regulating critical metabolic processes (Küpper et al.,

2002; Ying et al., 2010; Chandra and Kang, 2016). Hampered

growth, chlorosis, necrosis, changes in stomatal functions, leaf

rolling, lowered water potential, altered membrane function,

efflux of cations, and changes in the activities of critical metabolic

enzymes are the widely reported symptoms of TEs toxicity in plants

(Van Assche and Clijsters, 1990; Marschner, 2012; Hasan et al.,

2017; Aponte et al., 2020). TEs toxicity severely affects PSI and PSII,

restricting photosynthetic output. TEs accumulation targets two

crucial photosynthetic enzymes, i.e., ribulose 1,5-bisphosphate

carboxylase (RuBisCO) and phosphoenol pyruvate carboxylase.

Cd has been reported to alter the structure and activity of

RuBisCO by substituting Mg++ ions, which are needed as a

cofactor of carboxylation reactions (Ashfaque et al., 2016). At the

cellular level, these TEs cause configurational changes in the
FIGURE 1

Trace elements (TEs) phytotoxicity in higher plants. The optimum concentration of several TEs promotes plant growth and development (such as Zn,
Cu, Ni, Fe, Mo, Mn, Cu, and Cr) (panel on the left). Nonetheless, their overaccumulation, in addition to other toxic elements (such as Hg, As, Cd, and
Pb), jeopardises cellular homeostasis and retard plant physiology and productivity (panel on the right).
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endoplasmic reticulum, Golgi apparatus, chloroplast, and

mitochondria and increase nucleus size and cellular vacuolisation

(Małkowski et al., 2019; Sperdouli et al., 2022; Liu et al., 2023). A

rise in oxidative stress linked with excessive accumulation of TE

ions is strongly considered the first symptom of TE-induced toxicity

(Rodrıǵuez-Serrano et al., 2009; Sharma and Dietz, 2009; Ghori

et al., 2019; Gupta et al., 2019; Ma et al., 2022). To cope with the

oxidative stress caused by TEs toxicity and protect cellular and

subcellular compartments, plants have developed several

mechanisms to sustain the essential TEs ion concentrations and

lessen exposure to non-essential TEs. Among these tolerance

mechanisms, some are required for metal homeostasis that lowers

the damage via exclusion, detoxification, the restriction of metal

ions into the apoplast, and the extracellular chelation of metal ions

(Ovečka and Takáč, 2014). However, other mechanisms involve

extruding individual TE ions from the intracellular environment or

their sequestration into the compartments to separate them from

other important cellular components (Manara, 2012). Hyper-

tolerance and the hyperaccumulation of TEs in the plant body

without having any harmful effect on viability are the best-known

strategies employed by plants under a TEs-induced toxic

environment (Baker and Brooks, 1989; Assunção et al., 2001,

Assunção et al., 2003; Vaculıḱ et al., 2009, Vaculıḱ et al., 2012;

Van der Ent et al., 2013; Baker et al., 2020; Pinto Irish et al., 2023).
4 SiNPs and plants: uptake and action
during the optimal environment

Although biogenic silicon (bulk-Si) is classified as a non-

essential element for plant growth and development, its stress-

mitigating potential has been widely reported (Korndörfer and

Lepsch, 2001; Ma, 2004; Liang et al., 2015; Luyckx et al., 2017;

Vaculıḱ et al., 2020). Silicon is the most abundant metalloid on the

earth’s surface. However, most Si is present in the soil as insoluble

oxides or silicates, which is unavailable for plant uptake. The

chemical weathering of silicate minerals liberates dissolved Si as

plant-available monosilicic acid, whereas its concentration in soil

solution commonly varies between 0.1 and 0.6 mM (Epstein, 1994;

Hodson et al., 2005). In this context, recent advances in

nanotechnology could alleviate the scarfed amount of monosilicic

acid in most cultivated soil and the limits of silicate fertilisation via

the connection of Si-derived benefits with benefits associated with

the properties of nanoparticles (Bhat et al., 2021). The smaller size

and broader absorption surface area of SiNPs over bulk-Si should

enable their easier absorption, distribution, and accumulation in

plants (Galbraith, 2007). However, Etxeberria et al. (2009) consider

nanoparticle uptake an active transport requiring various other

cellular mechanisms such as recycling, signalling, and regulating the

plasma membrane.

Despite a scarcity of available reports, Mukarram et al. (2022)

discussed the SiNPs could follow a similar transport route as their

bulk counterpart – the plant root absorbs Si from the soil solution in

the form of monosilicic acid (Si(OH)4) (Mitani-Ueno and Ma,

2021). The absorption and distribution of Si in the plant are ensured
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by two different types of Si transporters: channel-type transporters

(referred to as Low Silicon 1, Lsi1) and efflux transporters (referred

to as Low Silicon 2, Lsi2), which were first described in rice (Ma

et al., 2006, Ma et al., 2007). The Lsi1 from the nodulin-26 major

intrinsic protein (NIP) III subgroup of aquaporins drives the

passive influx of Si from the apoplast into the root cells. At the

same time, Lsi2, belonging to an uncharacterised anion transporter

family, is responsible for the active efflux of Si from the root cells

towards the xylem, i.e., xylem loading (Ma and Yamaji, 2015).

Following monosilicic acid absorption in the root stele, Si is

transported to the shoot through the xylem by transpirational

flow, with subsequent Si unloading to the leaf epidermal cells. As

the content of monosilicic acid in the cells increases, monosilicic

acid becomes highly polymerised and changes to form an

amorphous silica gel (SiO2·nH2O) (Mitani et al., 2005; Schaller

et al., 2021; de Tombeur et al., 2022). The silica can accumulate

under the epidermal cell wall, forming cuticle-silica double layers

which provide additional protection against mechanical injury and

fungal, bacterial, nematode, and insect attacks (Debona et al., 2017;

Rastogi et al., 2019; Zellner et al., 2021). The transporter ensuring

the xylem loading is not yet fully known undoubtedly. However,

Yamaji et al. (2008) described the Lsi6 transporter in rice, which is

responsible for the Si unloading from the xylem and subsequently

regulating its deposition in the shoots (Figure 2).

All abovementioned transporters are localised in the plasma

membrane; however, they show different tissue and/or cellular

specificity of their localisation, indicating that they are involved in

different steps of absorption, xylem loading, and distribution of Si

(Ma et al., 2011; Ma and Yamaji, 2015). Besides, interspecific

differences in the presence, tissue, cellular localisation, and

polarity of transporters, as well as their expression patterns, exist,

determining the different abilities to accumulate Si in various plant

species (Ma et al., 2011; Ma and Yamaji, 2015; Mitani-Ueno and

Ma, 2021). Accordingly, the plant species are divided into

accumulators, intermediate accumulators, and non-accumulators

(Takahashi et al., 1990). The Poaceae, Equisetaceae and Cyperaceae

families are known accumulators (>4% Si), the Cucurbitales,

Urticales and Commelinaceae intermediate Si accumulators (2–

4% Si), while most of the other species have little or no ability to

accumulate Si (Hodson et al., 2005; Currie and Perry, 2007).

SiNPs involvement with several metabolic and physiological

activities has been described under optimal and stress conditions

(El-Shetehy et al., 2021; Fan et al., 2022; Naaz et al., 2023). SiNPs

can improve photosynthesis by PSII reaction centres opening and

promoting the absorption, transmission, and transformation of

light energy, the electron transport rate of PSII, chlorophyll and

carotenoid biosynthesis, and other related enzymes (Sharifi-Rad

et al., 2016; Fatemi et al., 2020; Mukarram et al., 2021). Moreover,

SiNPs can upregulate the expression of many genes encoding

proteins directly involved in photosynthetic machinery (Song

et al., 2014; Hassan et al., 2021). The smaller sized-SiNPs can

penetrate seed coat promptly and improve seed germination and

growth and later overall growth, development, and crop yield

(Epstein, 1994; Haghighi et al., 2012; Azimi et al., 2014;

Janmohammadi et al., 2016; Karunakaran et al., 2016; Sun et al.,

2016; Kheyri et al., 2019). In addition, SiNPs can trigger the
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multiplication of growth-promoting rhizobacteria responsible for

nutrient recycling and soil health maintenance, promoting plant

maturation (Karunakaran et al., 2013). All these functions

contribute to plant resistance against various physical, chemical,

and biological stressors (Figure 2).
5 SiNPs-mediated TEs sequestration

The TEs sequestration from plant environs, such as soil, air, and

water, is a constant challenge. Several experiments have recently
Frontiers in Plant Science 0589
targeted sustainable approaches to remedy TEs excess. Among

various methods, the application of SiNPs in the form of a foliar

spray, seed priming, and soil incorporation has emerged as a novel

and eco-friendly approach to combat TEs stress (Asgari et al., 2018;

Hussain et al., 2019; Rizwan et al., 2019). SiNPs treatment effectively

enhanced the photosynthesis and growth in plants exposed to TEs-

stressed conditions (Cui et al., 2017; Khan et al., 2020a). At the

latest, the magnetic properties of SiNPs are curative towards

contaminated water (Mahboub et al., 2022). SiNPs might operate

in several ways to sequestrate different TEs, such as forming

complexes with toxic TE ions, arresting their uptake, TEs
FIGURE 2

The hypothetical model for SiNPs uptake, transport, and action in higher plants under physiological settings. It is possible that SiNPs, like bulk
silicates, could be absorbed by plant roots in the form of silicic acid (Si(OH)4) and transported to endodermis by aquaporin channel Lsi1. Lsi2 might
facilitate xylem loading at the endodermis-stellar apoplast junction. From there, it could join the transpiration stream to move to aerial parts. Lsi6
could assist xylem unloading at the shoot for distribution to shoot tissues or deposition in the cell walls or as specified silica cells (phytoliths). Silica
deposition at the cell wall, silica cells or phytoliths are crucial to cell wall strengthening, reduced palatability for herbivores, and resisting wind, rain,
and lodging. This action can be understood as the ‘direct’ effects of SiNPs. Additionally, SiNPs supplementation shows a strong correlation with
superior plant physiology. This includes improved seed germination and seedling development, photosynthesis, gas-exchange, plant-water relation,
nutrient uptake, and redox homeostasis. The direct involvement of SiNPs in these upgrades still lacks unequivocal proof. Nonetheless, several
research findings support the possible ‘indirect’ interaction of SiNPs with plant biochemistry and physiology. These mechanical and physiological
enhancements mediate SiNPs-induced growth and productivity in higher plants.
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compartmentalisation within plants, stimulating the antioxidant

defence system, and other omics aspects (Kopittke et al., 2012;

Lukačová et al., 2013; Tripathi et al., 2016; Zhou et al., 2021). We

will explore these possibilities in the later sections.
5.1 Cadmium

Being a non-essential trace element, the accumulation of Cd in

agricultural soils is an onerous threat to plants (Haider et al., 2021).

Thus, eliminating Cd from the soil is crucial to sustaining food

security and environmental safety. SiNPs-mediated amelioration of

Cd has been reported in several plant species, including

Phyllostachys edulis (Emamverdian et al., 2021), Satureja hortensis

(Memari-Tabrizi et al., 2021), Oryza sativa (Cui et al., 2017;

Hussain et al., 2020), and Triticum aestivum (Hussain et al.,

2019). Applying SiNPs against Cd stress has been considered

more efficient than regular fertilisers (Chen et al., 2018). The

experiment on Phyllostachys edulis suggested that SiNPs make a

complex with Cd ions via adsorption and reduce the accumulation

of Cd in roots and leaves (Emamverdian et al., 2021). It

subsequently enhances the germination and growth parameters.

Soil-applied SiNPs can alleviate Cd stress in Triticum aestivum

plants with improved growth and chlorophyll content (Ali et al.,

2019; Khan et al., 2020a). Further, SiNPs minimise Cd

accumulation and oxidative stress while improving nutrient

uptake and antioxidant defence system in Triticum aestivum

(Thind et al., 2021). Roots treated with SiNPs have increased the

xylem cell wall lignification in Trigonella foenum-graceum

(Nazaralian et al., 2017). The increased cell wall lignification was

coupled with an improved xylem cell wall thickness. Such cell wall

adjustments improve nutrient transport and silicon for faster

growth (Asgari et al., 2018). SiNPs engage the Cd ions on the

root surface to terminate their translocation in the aerial parts or

immobilise them in the soil (Silva et al., 2017). Cui et al. (2017) also

reported the downregulation of OsLCT1 and OsNramp5, genes with

SiNPs application involved in Cd uptake and transport,

respectively, in Oryza sativa. At the same time, SiNPs upregulated

genes involved in Cd transport into the vacuole (OsHMA3) and Si

uptake (OsLsi1). Higher silicon uptake can further restrict Cd

uptake and transport and, thus, Cd toxicity.
5.2 Lead

Pb is a non-essential element and a detrimental contaminant for

agricultural soils. It hampers plant metabolism, cell adhesion, and

signalling by accumulating ROS in the cell wall (Küpper, 2017;

Aslam et al., 2021). Foliar application of SiNPs boosted

photosynthetic machinery and antioxidant enzymes in

Coriandrum sativum and restricted Pb toxicity (Fatemi et al.,

2020). A tissue culture experiment on Pb stress mitigation via

silicon dioxide nanoparticles in Pleioblastus pygmaeus showed a

reduction in the soluble protein content assimilated in the cell

membrane while maintaining the cell membrane vitality

(Emamverdian et al., 2019).
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5.3 Arsenic

Arsenic contaminates groundwater globally, and irrigation with

As-rich water amplifies its bioaccumulation and toxicity in several

crops (Finnegan and Chen, 2012; Farooq et al., 2016; Vaculıḱ and

Vaculıḱová, 2017; Abbas et al., 2018; Abedi and Mojiri, 2020).

Nonetheless, SiNPs application arrests As uptake and translocation

to aerial parts of tissues and alleviates phytotoxicity in Solanum

lycopersicum (González-Moscoso et al., 2019, González-Moscoso

et al., 2022). SiNPs were reported to lower oxidative stress via

improving antioxidative defence (SOD, APX, GR, and DHAR) in

Zea mays seedlings (Tripathi et al., 2016). Further, SiNPs increase

the mechanical strength of the cell wall in rice suspension cells

under As toxicity via increasing pectin content, cation exchange

capacity, and pectin methyl-esterase activity, reducing pectin

methyl-esterification. SiNPs also blocked the uptake of As by

inhibiting the expression of genes encoding As uptake (OsLSi 1,

low silicon 1;OsLSi 2, low silicon 2) (Cui et al., 2020) since As and Si

share a common transport system. Thus, adding SiNPs into the As

medium causes a direct competition for the transport proteins (Cui

et al., 2020). Moreover, SiNPs treatment enhances the expression

levels of plasma-membrane localised NIP aquaporin family

proteins, OsNIP1;1 and OsNIP3;3, which are permeable to

arsenite (Mitani-Ueno et al., 2011; Sun et al., 2018). The

overexpressed OsNIP1;1 and OsNIP3;3 are reported to reduce the

As accumulation in Oryza sativa plants (Sun et al., 2018).
5.4 Mercury

Mercury (Hg) is a highly toxic pollutant that contaminates

cropland to different extents worldwide (Liu et al., 2020a). Li et al.

(2020) demonstrated that exogenously applied SiNPs ameliorate the

adverse effects of Hg in Glycine max seedlings. SiNPs significantly

reduced Hg uptake, accumulation, and translocation in these

seedlings. Further analysis with synchrotron radiation X-ray

fluorescence showed lower Hg accumulation in the epidermis and

pericycle of roots and stems of Glycine max plants treated

with SiNPs.
5.5 Chromium

SiNPs-mediated alleviation of Cr toxicity has been reported in

Pisum sativum via reduced Cr uptake and accumulation in plant

tissues (Tripathi et al., 2015). It was proposed that SiNPs facilitated

mineral nutrient uptake and downplayed ROS synthesis

by triggering antioxidant enzymes. SiNPs protected leaf

ultrastructure under Cr toxicity in Triticum aestivum (Manzoor

et al., 2022). While Cr deteriorated cellular organelles, SiNPs

protected the cell walls, cell membranes, mitochondria, granal

lamellae, thylakoids, nucleoli, and nuclear membrane. In a

hydroponic study with Brassica napus, Huang et al., 2024

witnessed 100 um SiNPs (20 nm) boosted Si content in leaves

increased by 169%, mostly restricted to intercellular spaces,
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chloroplasts, guard cells, and stomata. This can upgrade PSII

biochemistry (NPQ, ETR, and quantum yield of PSII) and

photosynthetic productivity. In the same study, SiNPs hampered

the expression of Cr (and related TEs) transporter genes such as

ST1, ST8, ABCG37,HMA, andMT, resulting in decreased Cr uptake

(by 92% in roots and 76% in leaves). In Oryza sativa seedlings,

SiNPs reversed the Cr-induced cell cycle arrest at the G2/M phase

along with IAA application (Sharma et al., 2022). Similarly,

endogenous NO levels in root tips were improved which could

assist in ROS scavenging and upregulated antioxidant activity as

was reported in the study.
5.6 Copper

Emamverdian et al. (2020) demonstrated the mitigative effect of

SiNPs on three different TEs stresses: Mn, Cu, and Cd on

Arudinaria pygmaea. Enhanced localisation of Cu and Mn by

SiNPs was observed in the root surface, which could minimise

TEs accumulation in the stem and leaves. Also, SiNPs treatment

enhanced the photosynthetic capacity, biomass, and overall growth,

which authors correlated with the reduced TEs uptake and

accumulation in the plant shoot. Similarly, Riaz et al. (2022)

suggested that SiNPs can relieve Cu2+ toxicity in wheat seedlings.

SiNPs treated plants showed increased root length and plant height

and enhanced antioxidant defence system. It was manifested by

decreased malondialdehyde (MDA) and H2O2 contents and Cu2+

concentrations in shoots.
5.7 Manganese

Si-induced alleviation of Mn toxicity has been reported in

several studies, suggesting Si could contribute to the depression of

Mn uptake and transport (Li et al., 2015). It could restrict lipid

peroxidation by upregulating non-enzymatic and enzymatic

antioxidants (Shi et al., 2005; Li et al., 2015). The reduced ·OH

accumulation was also detected in the leaf apoplast (Dragis ̌ić
Maksimović et al., 2007, Dragis ̌ić Maksimović et al., 2012).

Moreover, Doncheva et al. (2009) observed a substantial

thickening of epidermal layers after the Si treatment in the Mn-

sensitive maize variety over a tolerant one. It suggests that Si could

induce Mn storage in non-photosynthetic tissue to prevent Mn-

toxicity effects on chloroplast functions. Similarly, Iwasaki and

Matsumura (1999) assume that Si could assist in displacing and

storing Mn in a metabolically inactive form around the base of the

trichomes on the leaf surface. The mitigative effect of Si in the form

of nanoparticles on Mn-toxicity was also described in the

aforementioned study (Emamverdian et al., 2020; see Chapter 5.6).
5.8 Zinc

Generally, Zn is a vital element for plant growth, as it is

imperative in numerous metabolic pathways. Its deficiency is one

of the plant’s most widespread micronutrient deficiencies (Anwaar
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et al., 2015; Kaur and Garg, 2021). However, as was reported by

Long et al. (2003), a concentration above 3000 mg kg−1 Zn in dry

soil can have a noxious effect on plant yield and growth as it alters

the ionome of plants through the inhibition of nutrients’ uptake and

translocation (Bokor et al., 2015). The potential utilisation of Si in

alleviating Zn toxicity has been studied, for example, in cotton or

bamboo species (Anwaar et al., 2015; Emamverdian et al., 2018a).

Both studies suggested that Si can limit Zn bioavailability and

instigate the plant defence system by increasing antioxidant

capacity and non-enzymatic activity, thus alleviating cellular

oxidative damage. Similarly, Song et al. (2014) described that Si

activated and regulated some photosynthesis-related genes in Oryza

sativa with high-Zn exposure, improving photosynthesis over Zn-

stressed plants that lacked Si treatments. These studies operated

with bulk-Si, whereas using the SiNPs could potentially support its

beneficial effects. However, in highly Zn-polluted soils, Zn can

coexist with silica in the form of a Zn-silicate complex (Goswami

et al., 2022), and Bokor et al. (2015) revealed such a complex can

have a comparable negative effect on Lsi gene expression and

mineral nutrition homeostasis as high concentration of Zn alone.
5.9 Antimony

Sb is a non-essential metalloid with noxious effects for plants.

However, studies to manage Sb-toxicity with SiNPs are rare. Still, there

are several reports of Si-induced mitigation of Sb-toxicity in higher

plants that could point in the right direction. Vaculıḱová et al. (2014,

2016) described Si-induced alleviation of Sb-toxicity on root growth

and architecture in maize seedlings. Si supported the antioxidant

defence system and thus reduced oxidative stress symptoms, and

although Si did not reduce Sb content in roots, it considerably

restricted Sb translocation to shoot. Shetty et al. (2021) attributed the

blocked Sb translocation to root lignification, which was observed to a

greater extent in Si-treated plants of Arundo donax. Moreover,

enhanced photosynthetic pigments and overall photosynthetic yield

were described. In poplar callus exposed to Sb-stress, Si declined the

content of Sb in the calli and supported overall callus growth and

nutrient uptake as well as the content of photosynthetic pigments. The

improved Sb tolerance was secured via the Si-induced modification of

antioxidant enzyme activity (Labancová et al., 2023). These findings

also correspond to results obtained from the wild-type and the low-

silica rice mutant cultivated with 10 or 30 mmol L−1 Sb (Huang et al.,

2012). Si treatment promoted growth and decreased Sb content in the

shoots of both mutants by regulating the Sb distribution between the

roots and shoots.
5.10 Nickel

Although Ni is an essential component of several metalloenzymes

of plants, it could be very toxic at supraoptimal concentrations. Like Sb,

Ni-toxicity management is something least discussed in the literature

with SiNPs. Exogenous Si was investigated in rice as a possible

mitigative driver for Ni stress. Si protected the seedlings by

upregulating the antioxidant defence components and glyoxalase
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systems, helping the ROS scavenge and detoxify cytotoxic

methylglyoxal (Hasanuzzaman et al., 2013). The Si-induced recovery

of growth, gas exchange, and pigment contents in cotton seedlings

under the Ni stress was observed. It was secured by decreasing the Ni

uptake and accumulation in the leaf, stem, and roots. It also increased

antioxidant enzyme activities to restrict MDA, H2O2, and electrolyte

leakage in leaves and roots (Khaliq et al., 2016). The enhanced

antioxidant system, improved integrity of cell membranes and

averted Ni-induced root anatomy alteration were also denoted as the

mechanisms of Si-induced mitigation of Ni toxicity in maize plants

(Vaculıḱ et al., 2021). Improved leaf water status, enzymatic and non-

enzymatic defence systems, and increased content of assimilatory

pigments and leaf area were also described by Fiala et al. (2021).
6 Mechanisms underlying SiNPs-
mediated defence responses

There are several mechanisms and pathways that SiNPs can

adopt to mitigate TEs phytotoxicity. For instance, silicon can limit

TEs uptake and translocation by lowering the ion activities in the

medium. At a cellular level, it can regulate the co-precipitation of

elements, antioxidant machinery, gene expression concerning TE

transport and chelation, and morphological adjustments (Adrees

et al., 2015; Emamverdian et al., 2018b). Here, we discussed the

active processes of SiNPs against TEs toxicity (Figure 3).
6.1 TEs immobilisation in soil

Exogenous SiNPs ameliorate toxic TEs effects and improve

overall plant growth (Tripathi et al., 2016; de Sousa et al., 2019;

El-Saadony et al., 2021). These overcome responses have been

correlated with soil physical properties, including TEs speciation,

changes in soil pH, or deprivation of TEs due to co-precipitation

with silicon (Bhat et al., 2019). Pretreatment of bulk-Si enhances

phenolic root exudation (Chen et al., 2016) and organic acid

exudation (Fan et al., 2016), which might be critical in TEs

mitigation. Silicon immobilises TEs on the root’s outer surface by

increasing the soil’s pH or altering TEs speciation by forming

silicate complexes in soil solution. He et al. (2013) observed the

complexification of most Cd with wall-bound silicon in rice root

cells, leading to reduced Cd uptake and translocation. Kopittke et al.

(2017) performed synchrotron studies and confined most of the Al

complexed with Si in the Sorghum bicolor root cap. They evinced

that this Si-Al complex formation in the root periphery could

minimise the metal accumulation in the cell wall. Thus, the Si-

mediated extrinsic defence mechanism through organic acid or

phenolic exudation could be crucial in TEs toxicity mitigation.
6.2 Barrier to uptake and transport

Non-controlled silica deposition can harm a plant; hence, plants

evolved effective mechanisms of cell walls’ silicification (Kumar
Frontiers in Plant Science 0892
et al., 2017). Silicon binds to lignin in the cell wall to form a Si-TE

ion complex that subsequently arrests ion translocation from the

root to the other plant organs (He et al., 2013; Sheng and Chen,

2020; Soukup et al., 2020). Most Si-mediated fruitful effects are

reported to be linked with the accumulation of Si in roots, stems,

leaves, and hulls, which acts as a physical barrier by enhancing the

mechanical strength of plant tissues (Ma et al., 2006; Emamverdian

et al., 2018b). Si, along with lignin, can deposit in dermal regions of

the cell walls, thickening the Casparian strips and blocking the TE

transport in plants (Kim et al., 2014). Si-induced changes in the cell

wall binding properties might be essential in mitigating TEs

toxicity. Si reduced Cd accumulation in roots and grains of rice

(Chen et al., 2019) and maize (Liu et al., 2020b) which could result

from Si deposition in root cells apoplast hindering Cd uptake (Song

et al., 2009; Wang et al., 2015). It is stipulated that Si enhances Lsi

expression while suppressing Nramp 5 (Cd transporter gene) in rice

roots, suggesting that upregulated Si transporters resist Cd toxicity

under ample silicon supply (da Cunha and do Nascimento, 2009;

Ma et al., 2015). Considerable amounts of covalent-bound Si are

also complexed with hydroxyl groups of pectin contained in the cell

wall (Schwarz, 1973; Sheng and Chen, 2020). He et al. (2015)

suggests that hemicellulose, rather than pectin and cellulose, is the

primary ligand bound to Si complexes in rice. Si accumulated in the

cell walls in hemicellulose-bound organosilicon compounds can

improve cell wall mechanical properties and regeneration and

inhibit the Cd uptake by a mechanism of Cd complexation and

subsequent co-deposition (He et al., 2015; Ma et al., 2015).
6.3 Active participation in the antioxidant
defence system

TEs overaccumulation stages the ROS-induced oxidative

emergency, threatening many vital processes. Thus, the plant’s

top priority for survival under such scenarios is scavenging ROS.

This goal is facilitated by an antioxidant system comprising

several enzymatic (SOD, CAT, APX, POD, and GR) and non-

enzymatic (ascorbic acid, a-tocopherol, proline, carotenoids,

flavonoids, and reduced glutathione) antioxidants. In this

context, pretreatment of SiNPs was reported to stimulate the

enzymatic antioxidants against TEs toxicity in Solanum

lycopersicum under As stress (González-Moscoso et al., 2019,

González-Moscoso et al., 2022), Glycine max under Hg stress (Li

et al., 2020), and Satureja hortensis (Memari-Tabrizi et al., 2021)

and Triticum aestivum under Cd toxicity (Ali et al., 2019). The

formation of free radicals under TEs toxicity directly damages the

cell membrane permeability and stability that, in time, would

cause the homeostasis collapse of cells and tissues. However,

silicon counteracts it by enhancing the stability of the plasma

membrane under TEs stress (Vaculıḱ et al., 2020). Another TEs

detoxifying mechanism is the synthesis of various chelating

agents, i.e., flavonoids, phenolics, and organic acids (Bhat et al.,

2019). Silicon reportedly influences the synthesis of several

chelating compounds, including cysteine, glutathione, and

phytochelatins, under TEs toxicity (Rahman et al., 2017).
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7 ‘Omics’ bases of SiNPs-induced
TEs sequestration

7.1 Metabolomics
Plants evolved several responsive manoeuvers against TEs

toxicity, such as minimising TEs bioavailability and uptake,

enriching plants with nutrients, and stimulating the antioxidant

system and the biosynthesis of protective agents (osmolytes, organic

acids, metallothioneins, and phytochelatins) (Tripathi et al., 2015;

Moharem et al., 2019; Cao et al., 2020; Lian et al., 2020; Wang et al.,

2020a, Wang et al., 2020b). Among the different NPs applied, SiNPs

have proven to be quite promising (Tripathi et al., 2015; Wang et al.,

2015; Tripathi et al., 2017; Khan et al., 2020a). Though not an

exclusively effective metal/metalloid barricade, the apoplasmic

barrier also fulfils essential defensive functions in plant roots by
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regulating the flow of ions, oxygen and water (Lux et al., 2004; Chao

et al., 2013). The efficiency of apoplasmic barriers as contaminant

barricades can be enhanced by NPs application (Rossi et al., 2017).

NPs attach to the TEs in the root cell walls, making stable complexes

and rendering them unavailable. NPs-TEs complexes, once

adsorbed, become immobile, obstructing the mobility of the TEs

inside the plants and reducing their biological activity (Cui et al.,

2017; Wang et al., 2021; Zhou et al., 2021). Accumulating organic

acids (behaving as metal chelators) and chelating TE contaminants

are necessary adaptations to TEs tolerance. The biosynthesis of such

protective organic acids is improved by SiNPs, reducing the damage

caused by TEs like Cd and As (Cui et al., 2017; Tripathi et al., 2017;

Zhou et al., 2021). The interaction of SiNPs with the TEs is crucial

while studying the different characteristics of TEs stress alleviation.

SiNPs can also reduce the mobility and bioavailability of TE

contaminants in the soil (Tripathi et al., 2015; Wang et al., 2015;

Tripathi et al., 2017; Khan et al., 2020a). The application of
A

B

D

C

FIGURE 3

The mechanistic overview of silicon nanoparticles (SiNPs)-mediated TEs tolerance. SiNPs can increase the pH of the growing medium (soil and
hydroponics) or alter elemental speciation by forming silicate complexes. It leads to TEs adsorption and immobilisation (A). Further, the remaining
TEs translocation is discouraged by blocking TEs receptors (B). At inter- and intracellular spaces, SiNPs boost the biosynthesis of chelators
compound, organic acid, and phenolic root exudation to minimise TEs toxicity (C). SiNPs optimise redox status under TEs excess through supporting
enzymatic and non-enzymatic antioxidant defence systems (D) and contribute to overall TEs tolerance in higher plants. TEs: trace elements; SiNPs:
silicon nanoparticles; AsA: Ascorbic acid; GSH: glutathione; APX: ascorbate peroxidase; ROS: reactive oxygen species; H2O2: hydrogen peroxide;
CAT: catalase; POD: peroxidase; alphabetic abbreviations inside panel (D) – C: chloroplast; P: Peroxisomes; N: Nucleus; V: Vacuole;
M: mitochondria.
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mercapto SiNPs increased the stability of Cd and, thus, decreased its

mobility (Wang et al., 2020b). Alternatively, Si may co-precipitate

with metals/metalloids as silicates in the roots and leaves of different

plants. Co-precipitation of Zn as Zn silicates or Si–Zn complexes in

the cell walls of leaf epidermal cells was seen inMinuartia verna and

Cardaminopsis halleri (Neumann et al., 1997; Neumann and Zur

Nieden, 2001). Gu et al. (2011, 2012) suggested the sequestration of

Zn–Si and Zn-Cd precipitates in rice to the cell walls of less

bioactive tissues. Similarly, Mn, Cu, and Cd might co-precipitate

with Si to restrict their accumulation in shoot phytoliths, but it is

not fully confirmed yet (Iwasaki et al., 2002; Zhang et al., 2008;

Oliva et al., 2011; Emamverdian et al., 2020).

SiNPs regulate a variety of physiological phenomena in plants,

notably nutrient assimilation, CO2 fixation, accretion of secondary

metabolism products and activities of different enzymes under

normal as well as perturbed environmental conditions (Tripathi

et al., 2015, Tripathi et al., 2017; Ahmad et al., 2019; Khan et al.,

2020a; Mukarram et al., 2021). Al-toxicity alleviation in barley and

maize after Si supplementation has been endorsed to accumulate

phenolic compounds (Adrees et al., 2015; Vega-Mas et al., 2019).

SiNPs have also been observed tomodulate the regulatory enzymes of

the shikimic acid pathway, leading to increased accretion of phenols

in the leaves, as has been reported in Mentha piperita (Ahmad et al.,

2019). Because of their metal-chelation capacity with flavonoid-

phenolics, phenols play a critical role in TE toxicity mitigation by

reducing the uptake and translocation of toxic TEs, as has been

reported for Al andMn (Kidd et al., 2001; Dragisǐć Maksimović et al.,

2007; Shahnaz et al. , 2011). Bulk-Si facilitates phenol

overaccumulation by triggering phenylalanine ammonia-lyase

(PAL), a critical regulatory enzyme of the phenylpropanoid

pathway (Rahman et al., 2015; Ahanger et al., 2020). It also

upregulated PAL, cinnamyl alcohol dehydrogenase, and chalcone

synthase in Rosa hybrida (Shetty et al., 2011). Likewise, Si-induced

PAL activity also assisted in managing Cu stress in Arabidopsis

thaliana roots (Li et al., 2008).

Bulk-Si can influence the biosynthesis of H2O2, nitric oxide (NO),

and hydrogen sulphide (H2S) to govern Ag and Cd toxicity in mustard

and pepper (Soundararajan et al., 2018; Vishwakarma et al., 2020; Kaya

et al., 2020a). Si decreases electrolyte leakage and H2O2 and MDA

content by boosting the antioxidant system, possibly with NO

involvement, and regulates plant growth and development under TE

toxicity (Tripathi et al., 2021). SiNPs-induced NR biosynthesis in

Mentha piperita and restricted H2O2 production in Cymbopogon

flexuosus suggests SiNPs crosstalk with H2O2 and NO (Ahmad et al.,

2019; Mukarram et al., 2023). Thus, it does not seem hasty speculation

that SiNPs could interact with gaseous signalling molecules in a similar

fashion to bulk-Si. It will hold relevance during TEs stress alleviation as

well. The nitrate reductase (NR) pathway is the best-characterised NO

biosynthetic pathway (Planchet and Kaiser, 2006). In addition to the

general function of nitrate-to-nitrite reduction, NR also performs a

crucial part in plants by transferring an electron to nitrite using NAD

(P)H as a source of electrons, ultimately resulting in NO biosynthesis

(Planchet and Kaiser, 2006). The synergistic interaction of NO and Si

can discourage As uptake and increase phytochelatin biosynthesis,

reducing As translocation in mustard (Ahmad et al., 2021). In a similar

study, Liu et al. (2020b) established the collegial effect of Si and NO in
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mitigating Cd toxicity in Triticum aestivum seedlings. Si stimulates

endogenous H2S accretion that upregulates antioxidants’ activity in

Capsicum annuum raised on Cd- and B-spiked soils (Kaya et al.,

2020a, 2020b).
7.2 Proteomics

Given the scanty literature concerning the SiNPs-mediated TEs

tolerance in plants, the proteomic approach is comparatively novel to

gaining insights into the expression of various stress-related enzymes

and proteins. TEs-stimulated oxidative stress leads to altered protein

expression and structure, leading to loss of protein activity or its

content. Nevertheless, silicon and SiNPs supplementation regulates

the expression of several proteins and enzymes of signal transduction

cascades of the antioxidant defence system (Tripathi et al., 2015;

Muneer and Jeong, 2015a; Mukarram et al., 2022). Once inside the

cells, silicon plays an imperative role in stress alleviation bymaintaining

ion homeostasis and structural rigidity, upregulating antioxidant

metabolism, and increasing the expression of genes and proteins

involved in stress alleviation (Ma, 2004). SiNPs-induced upregulation

of the different primary and secondary metabolic enzymes is well-

reported. Mukarram et al. (2021) reported that the expression of

terpene (neral, geranial) and NR enzyme activity was upregulated in

SiNPs-treated Cymbopogon flexuosus. Si application improves PSII

polyprotein expression under Zn toxicity (Song et al., 2014). Further,

the bulk-silicon enhanced the protein content related to stress (17%),

hormones (11%), and other cellular biosynthesis (11%), and many

others associated with gene expression and secondary metabolism in 25

mM salt-stressed Lycopersicon esculentum plants (Muneer and Jeong,

2015b). The stress-related proteins included zinc finger A20, COPINE 1

family protein, caffeoyl-CoA O-methyltransferase, and others. Down-

regulation of Zn transporter (OsZIP1) protein after Si supplementation

decreases Zn uptake in Oryza sativa (Huang and Ma, 2020). Si

accumulation involves both influx and efflux transporters. The SiNPs

application has been endorsed for upregulating the menthol-reductase

enzyme to proliferate menthol in mint oil (Ahmad et al., 2019).

Similarly, geraniol dehydrogenase enzyme activity was positively

influenced by SiNPs foliar application in Cymbopogon flexuosus

under 160 mM and 240 mM salt stress (Mukarram et al., 2023).

SiNPs-induced antioxidants can improve isoenzyme patterns and

genomic alterations to restrict TE toxicity in Pisum sativum and UV-

B stress in Triticum aestivum (Tripathi et al., 2015, Tripathi et al., 2017).

Further, Si can delay chlorophyll-protein complex degradation such as

supercomplexes, PSI core binding LHCI, PSI core, F1-ATPase binding

Cytb6/f complex, PSII core, and trimeric and monomeric LHCII

(Wang et al., 2019). Si can also improve photosynthetic performance,

given its observed benefits on absorption, transformation, and transfer

of light energy through optimising thylakoid membrane proteins in

water-deprived Oryza sativa seedlings (Wang et al., 2019).
7.3 Genomics

Studies on TEs-stressed plants have indicated that ROS-induced

DNA damage was more pronounced in the Cd and Pb-exposed
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plants, as indicated by the disappearance of several normal bands in

the RAPD pattern of the DNA. In contrast, new DNA amplicons

could be located in TE-exposed plants treated with different NPs.

Moreover, oxidation of proteins is a common TEs toxicity symptom

as TEs ions directly interact with protein molecules due to their

strong affinity with carboxyl- thionyl- and histidyl groups (Hossain

et al., 2015). Studies have revealed that the NPs within the plant cell

systems may interact with these sulfhydryl and carboxyl groups,

eventually altering the protein activity by acting and reacting

similarly to the metal ions (Hossain et al., 2015). As discussed,

different NPs upregulate the expression of various genes in plants,

speeding up the biosynthesis of several primary and secondary

metabolism products (Večerǒvá et al., 2016; Marslin et al., 2017).

The role of SiNPs exemplifies regulating an array of

transcription factors (TFs) implicated in abiotic mitigation,

notably DREB2, NAC, NAM, and CUC. These TFs overexpress

genes associated with scavenging free radicals and maintaining

osmotic potential and ionic homeostasis (Manivannan and Ahn,

2017). Moreover, silicon can induce regulatory proteins coupled to

gene expression under stress, particularly TFs for transcription

elongation (SPT4), ribosomal protein L16, RNA polymerase

mediator, tRNA-lysidine synthase, MADS-box, ribosome-

recycling factor and reverse transcriptase (Muneer and Jeong,

2015b; Al Murad et al., 2020).

Exogenous application of SiNPs modifies plant’s nutrient status,

facilitating N, Fe, Mg, Zn, and Si absorption (Wang et al., 2015;

Ahmad et al., 2019; Mukarram et al., 2021). SiNPs-mediated

increase in Si uptake leads to a decrease in the Cd uptake,

facilitating the growth of Oryza sativa seedlings raised on Cd-rich

soils. Cui et al. (2017), in their study on rice, observed that SiNPs

upregulate the expression of Si transporter (OsLsi1) while the

expression of Cd-transporters (OsLCT1, OsNramp5) is down-

regulated. Down-regulation of essential abiotic stress tolerance

genes, notably ERF5 (ethylene response factor 5, RBOH1

(respiratory burst oxidase), MAPK2, and MAPK3 (mitogen-

activated protein kinases), by the application of SiNPs, is well-

reported (Almutairi, 2016). SiNPs-mediated regulation of primary

metabolism, biosynthesis and modifications of secondary

metabolism products, particularly phenols, possibly enhances the

tolerance against stress (Rahman et al., 2015; Tripathi et al., 2015,

Tripathi et al., 2017; Ahmad et al., 2019; Ahanger et al., 2020).

Furthermore, SiNPs were suggested to induce different transcripts

(CfADH2a-b, CfADH1, CfAKR2b, CfAAT3, and CfALDH) to

regulate the constitutional makeup of plant essential oil

(Mukarram et al., 2021).

Despite growing studies on SiNPs, most publications need more

genomic insights. Here we introduce significant recent findings

dealing with the influence of Si on gene activity, generally to

indicate a possible role with SiNPs. Different studies have

suggested the positive regulation of gene transcripts of various

metabolic processes by Si application (Brunings et al., 2009;

Chain et al., 2009; Debona et al., 2017). The role of Si in

upregulating photosynthetic genes has been studied in detail. For

example, Zn-induced damage in PsbY expression was overcome by

Si supplementation (Song et al., 2014). Moreover, increased PSII

activity and electron transfer rate by upregulating PsbY mRNA
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transcripts are endorsed for Si supplementation in rice under Zn

stress. The other Si-upregulated genes under Zn-toxicity include

PetC, PsaH, PetH encoding chloroplast, cytochrome proteins, and

ferredoxin NADP+ reductases, respectively (Song et al., 2014).

Moreover, Si upregulates several genes encoding for electron

transport chain proteins and light-harvesting complex viz., PetE,

PetF, PsbQ, PsbP, PsbW, and Psb28. Furthermore, increased

expression of gene transcripts (PsbW, Psb28, PsbQ, and PsbP)

involved in the photolysis of water has been attributed to Si

application (Zhang et al., 2018). PetH, Os03g57120 and

Os09g26810 genes involved in stress mitigation, NAD(P)H and

glutathione biosynthesis are also upregulated by Si (Manivannan

and Ahn, 2017). Kaushik and Saini (2019) have reported the

upregulation of LeGR (glutathione reductase gene) in Solanum

lycopersicum after Si supplementation. In Triticum aestivum, Si

attenuates TEs toxicity by upregulating metallothionein and

phytochelatin synthase gene expression (TaMT1, TaPCS1)

(Hossain et al., 2018). Genes coding for enzymatic oxidants

(SlCAT, SlGR, SlGST, SlSOD, SlPOD, SlGPX) have been observed

to be upregulated by exogenous sourcing of Si attenuating stress

response in Solanum lycopersicum (Khan et al., 2020b).
8 Conclusion and future trends

Only a few published articles have focused on the interaction

between SiNPs and TEs toxicity, with existing reviews mainly

discussing heavy metals and neglecting other toxic elements.

These reviews also fail to emphasise SiNPs over bulk silicon or

adequately address the omics aspect. In our previous review

(Mukarram et al., 2022), we explored SiNPs potential in

alleviating abiotic stress, including metals stress, but needed TEs

and a detailed modus operandi. To address these concerns, our

present review includes a wide range of toxic elements studied with

SiNPs, regardless of the ‘heavy metals’ label, and explores how

SiNPs interact with plant metabolomics, proteomics, and genomics

during TEs toxicity. The novelty of our review lies in its

understanding of the SiNPs-TEs interaction and its omics

perspective, aiming to stimulate a discussion within the silicon

community about its active involvement (if any) in plant

physiology, particularly given the existing uncertainties in this field.

In the present review, we focused mainly on the action of SiNPs

during TEs presence. It could be understood from several studies

that SiNPs have superior benefits against TEs excess over bulk-Si.

The modus operandi relies upon SiNPs-induced chelation and

immobilisation of TEs at the first contact site, i.e., soil. Once toxic

elements are inside the plant, SiNPs might compartmentalise TEs or

restrict them in vacuoles and cell walls. SiNPs further attenuate TEs

stress by inducing biochemical defence such as antioxidants,

osmolytes, and other specialised compounds. Several proteins

and genes have been identified to support SiNPs action in TEs-

stressed plants. Nonetheless, future studies could address the

following concerns:
1. Much prospective research is encouraged on SiNPs

interaction with TEs toxicity.
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2. It is high time to produce empirical proof of whether SiNPs

provide more anatomical and structural support or

physiological participation during TEs toxicity.

3. More research is required for SiNPs action on certain (less-

discussed) trace elements such as Mo and Se.

4. A lack of omics approaches in contemporary studies is

still prevalent.

5. The aquaporins for TEs uptake and distribution need to be

identified and sequenced.

6. Silicon channels are needed for other model plant species,

especially C4 plants, such as sorghum and sugarcane where

silica can be stored at higher concentrations.
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Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-
tolerant maize varieties. Environ. Exp. Bot. 65, 189–197. doi: 10.1016/
j.envexpbot.2008.11.006
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Do aluminum (Al)-
hyperaccumulator and
phosphorus (P)-solubilising
species assist neighbouring
plants sensitive to Al toxicity and
P deficiency?
M. Delgado1*, P. J. Barra1,2*, G. Berrios3, M. L. Mora1,
P. Durán1,2,4, A. Valentine5 and M. Reyes-Dı́az1,3

1Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological
Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile, 2Biocontrol Research
Laboratory, Universidad de La Frontera, Temuco, Chile, 3Departamento de Ciencias Químicas y
Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile,
4Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria,
Universidad de La Frontera, Temuco, Chile, 5Department of Horticultural Sciences, Faculty of
AgriSciences, University of Stellenbosch, Stellenbosch, South Africa
We aimed to evaluate the facilitation effects of an aluminum (Al)

hyperaccumulator species bearing cluster roots, Gevuina avellana, on the

seedling growth and performance of an Al-intolerant and phosphorus (P)-

deficient-sensitive plant, Vaccinium corymbosum. For this, seedlings of G.

avellana and V. corymbosum were grown alone or together as follows: i) two

G. avellana seedlings, ii) one G. avellana + one V. corymbosum and iii) two V.

corymbosum, in soil supplemented with Al (as Al2(SO4)3) and in the control

(without Al supplementation). We determined relative growth rate (RGR),

photosynthetic rate, chlorophyll concentration, lipid peroxidation and Al and

nutrient concentration [Nitrogen (N), P, potassium (K), calcium (Ca), magnesium

(Mg), sodium (Na), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and sulfur

(S)] in leaves and roots of both species. The results showed that, in general, G.

avellana did not assist V. corymbosum to enhance its RGR nor reduce its Al

uptake. However, G. avellana assisted V. corymbosum in enhanced N acquisition

and, consequently, to increase its chlorophyll concentration and photosynthetic

rate. Besides, V. corymbosum had lower lipid peroxidation in leaves when grown

in the soil with high Al supplementation in association with G. avellana. Our

results suggest a facilitating effect of G. avellana to V. corymbosum when grown

in soils with high Al concentration, by enhancing chlorophyll concentrations and

photosynthetic rate, and decreasing the oxidative damage to lipids.
KEYWORDS

cluster roots, facilitation, nutrients, Proteaceae, Gevuina avellana, highbush blueberry
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Introduction

Acidic soils (pH ≤ 5.5) are widely distributed, representing

about 30% of the total world’s land area and, approximately 50% of

the world’s potential arable lands. However, soil acidity is an

important limitation for crop productivity. This is because,

various restrictive factors for agricultural production usually

coincide in these soils, such as toxic levels of aluminum (Al) and

deficiencies in essential minerals for robust plant nutrition, such as

phosphorus (P). Although Al is the third most abundant element in

the earth’s crust, it lacks any discernible role in known biological

processes (Tolrà et al., 2011). Under acidic conditions, the Al is

released from soil particles into the soil solution as the trivalent

ionic form (Al3+), which is particularly toxic for plants (Kochian

et al., 2015). Aluminum rapidly hinders root growth, limiting both

root expansion, and consequently constraining the absorption of

water and essential nutrients vital for the plant’s fitness. Aluminum

exists not only in the Al3+ ionic form but also is found as several

insoluble forms including aluminosilicates, Al-humus complexes

and other precipitated forms. Both the soluble and insoluble forms

of Al can react and strongly retain minerals with negative charge,

such as phosphate (H2PO4
-, HPO4

2-), decreasing its availability for

plant nutrition (Kochian et al., 2004). Thus, both Al toxicity and P

deficiency converge to exert a deep impact on plant growth and

crop yields on acidic soils (Kochian et al., 2004; Chen and

Liao, 2016).

In Southern Chile, soils from volcanic origin represent about

50-60% of arable land and support most of the agricultural

production and forestry activities of the country (Borie and

Rubio, 2003). The two main soil orders found in the southern-

central Chile are Andisols and Ultisols, which inherently

predisposed to natural acidity, harbor substantial amounts of

active Al3+ and strong phosphate retention (Mora et al., 2006,

2017). Therefore, these soils are characterized by having high

amounts of total P although with a very low P availability (Borie

and Rubio, 2003). Consequently, traditional agricultural practices

on acidic soils requires continuous application of agrochemicals,

such as P fertilizers (a non-renewable resource) to increase P

availability, and lime application (calcium carbonate) to increase

soil pH and reduce Al phytotoxicity (Mora et al., 1999). However,

these agricultural practices continued over time are unsustainable,

since often they present negative environmental and socio-

economic impact, and are not economically viable or physically

manageable for many farmers worldwide (Samac and Tesfaye,

2003). Consequently, there is an increasing interest to develop

environmentally friendly strategies to diminish our agrochemical

dependency, and contribute to more sustainable agriculture.

Intercropping systems have proven to be an effective and

sustainable alternative to counteract nutrient deficiency, along

with increasing the use efficiency of fertilizers in the soil. This

achievement can be attributed to the phenomenon of interspecific

facilitation, encompassing both above- and belowground

interactions (Michel et al., 2019; Schoebitz et al., 2020; Xu et al.,

2020). Within belowground interactions, there are several studies

evidencing that nutrient mobilization by the roots of some species

plays an important role in the facilitation process, enhancing the
Frontiers in Plant Science 02103
nutrient uptake and growth of neighboring non-mobilizing species

(Li et al., 2014; Lambers et al., 2018; Shen et al., 2023). In general,

the nutrient mobilization is via root exudation of organic

compounds, including phosphatases, organic acids, phenolic

compounds, which increases the mineralization and solubilization

of nutrients in the soil. The interspecific facilitation of nutrient

acquisition by association of two or more plant species having

different abilities to mobilize nutrient, have involved numerous

species, including species bearing specialized root structures, such

as cluster roots (Muler et al., 2013; Teste et al., 2014; Shen

et al., 2023).

Cluster roots are described as ephemeral rootlets and root hairs

around the central root forming structures type “brush” or

“raceme” that actively exude organic compounds which play a

pivotal role in efficiently mobilizing essential nutrients (Lambers

et al., 2006; Lambers et al., 2015a). Many species have this type of

root adaptation, including species that belong to Proteaceae family,

which have been widely described as plants with remarkable ability

to both acquire and utilize P efficiently (Lambers et al., 2015a). The

nutrient-acquisition strategy of Proteaceae involves chemical

modification of its rhizosphere through the exudates from their

cluster roots, which release nutrients from the soil (Delgado et al.,

2015; Lambers et al., 2015a). The primary exudates consist of

organic acids which carry negative charges, enabling them to

displace phosphate bound in the soil through interactions with

cations such as Al3+, Fe3+ and Ca2+ (Ryan et al., 2001), making the

previously bound phosphate readily available for plant uptake.

Additionally, the organic acids chelate Al3+ to form stable and

non-toxic complexes and, therefore, it is also involved in the

detoxification of this metal (Kochian et al., 2015; Chen and

Liao, 2016).

Certain cluster root-bearing species, such as several members of

Proteaceae family have been classified as Al hyperaccumulator

species. This means that they are able to accumulate high

concentrations of Al within their leaves (≥ 1000 mg kg−1 dry

weight) without manifesting any signs of stress or toxicity (Jansen

et al., 2002). This intriguing trait suggests that the roots of these Al

hyperaccumulator plants might absorb Al from their rhizosphere,

potentially leading to a reduction of soil Al levels through

continuous Al accumulation in leaves, bark and wood, as was

early proposed by Webb (1954). Conversely, there are studies

indicating that Al-hyperaccumulator species might acidify the

rhizosphere, thereby increasing Al availability, as observed in

Camellia sinensis L (Ruan et al., 2004; Chen et al., 2006). Despite

these insights, our current understanding remains lacking in

providing a comprehensive clarification regarding the influence of

Al-hyperaccumulator species on soil Al availability, particularly

within the context of species possessing cluster roots. Furthermore,

the potential facilitative effect of an Al hyperaccumulator species,

coupled with its ability to solubilize P, on a plant species sensitive to

both Al toxicity and P deficiency, remains largely unexplored. In

light of this, our study aimed to evaluate the effects of an Al

hyperaccumulator species bearing cluster roots, Gevuina avellana

Mol (Delgado et al., 2019), on the growth and performance of a

neighboring species. For this investigation, we used Vaccinium

corymbosum L., an economically important crop species, as a
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model species sensitive to both Al toxicity (Cárcamo-Fincheira

et al. , 2023) and P deficiency (Pinochet et al. , 2014).

Consequently, we posit that species with the dual ability to

accumulate Al and solubilize P, may be suitable for the

establishment and growth of neighboring plants in soils with high

Al content and low P availability, such as volcanic soils in

Southern Chile.
Material and methods

Study species

Gevuina avellana is a native species from temperate rain forest

of southern South America. This species belongs to the Proteaceae

family, that typically produce cluster roots (Supplementary Figure

S1), which exude large amounts of organic acids (Delgado et al.,

2021). In their natural habitat, G. avellana grows in a wide range of

soil conditions, whose P (Olsen) availability are in a range of 2.0 to

12.4 mg kg-1 (Delgado et al., 2018). In nursery conditions, this

species can grow under nursery substrate having high P availability

(22 mg kg-1) and it continues to forming cluster roots (Fajardo and

Piper, 2019). Delgado et al. (2019) reported that G. avellana has the

ability to accumulate large amounts of Al in its leaves (> 3,500 mg

Al kg-1 dry weight) when growing under natural conditions. Thus,

according to the criteria established by Jansen et al. (2002) G.

avellana is considered an Al hyperaccumulating species (≥ 1,000 mg

Al kg-1 in leaves).

Vaccinium corymbosum L. is an economically important crop

cultivated in southern-central Chile for its world-famous and high-

demand fruits (Montalba et al., 2019). Despite the fact that this

species is adapted to acid soils, it is sensitive to Al3+ toxicity. The

presence of Al3+ triggers a cascade of molecular, physiological and

morphological changes in V. corymbosum, culminating in reduced

productivity and yield (Reyes-Dıáz et al., 2010, 2011; Inostroza-

Blancheteau et al., 2011a, b; Inostroza-Blancheteau et al., 2013;

Ulloa-Inostroza et al., 2016). Indeed, gypsum amendments are

frequently used to ameliorate Al3+ toxicity in V. corymbosum

(Alarcón-Poblete et al., 2019, 2020). According to the manual of

fertilization for V. corymbosum cultivated in southern Chile

(Pinochet et al., 2014), the maximum availability of exchangeable

Al is 0.2 cmol+ kg-1, above which the V. corymbosum presents Al-

toxicity. Likewise, according to Alarcón-Poblete et al. (2019),

different cultivars of V. corymbosum presented leaf morphology

alterations as well as photochemical and biochemical damages

when grown in soil containing 22% of Al saturation. On the other

hand, mineral fertilizers (including phosphate fertilizers) are

required to ensure a better growth and yield of V. corymbosum.

The optimal mineral content in soils for maximum performance of

V. corymbosum depends on the mineralogical characteristics of the

soil. Thus, in some regions of the world, the optimal available P

content in the soil lies in a range between 30-60 mg kg-1 (Komosa

et al., 2017; Ochmian et al., 2018). In contrast, the critical level for

cultivating this species is 16 mg kg-1; below this value, V.

corymbosum yield decline due to P deficiency (Pinochet et al.,

2014). Therefore, we propose that the V. corymbosum is a good
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model species to study the facilitating effects of G. avellana under Al

toxicity and P deficiency.
Plant material

Plants of G. avellana and V. corymbosum were obtained from

commercial nurseries. Gevuina avellana plants were cultivated from

seeds, and were two years old when the experiment commenced,

whereas V. corymbosum plants were produced in vitro and were

one-year-old. At the beginning of the experiment, mean initial

biomass (± s.e.) for G. avellana and V. corymbosum were 1.2 ± 0.8

and 2.6 ± 0.3 g, respectively. In this study, we used V. corymbosum

cultivar Star because according to recent studies that evaluated the

resistance to Al toxicity in different cultivars established in Chile,

this cultivar emerged as the most Al-sensitive among the ones

evaluated (Cárcamo et al., 2019; Cárcamo-Fincheira et al., 2023).
Experimental design

In order to determine the facilitating effect of G. avellana on a

sensitive species to Al toxicity and P deficiency, a greenhouse assay was

carried out in the Universidad de La Frontera, Temuco, Chile. For this,

soil from the series Freire, collected in Experimental Station Maquehue

(38° 50′ 27″ S, 72° 41′ 39.03″W) of the Universidad de La Frontera was

used. To increase the Al in soil, we added Al sulfate (Al2(SO4)3),

following the methodology reported by González-Villagra et al. (2021).

We added 25 g of Al2(SO4)3 per 1.5 kg of soil, and after a month of soil

incubation at room temperature (25° C approximately), we achieve

values of exchangeable Al and percentage of Al saturation of 4.7 cmol+

kg-1 and 26.5%, respectively. Another part of the soil was not added

with Al2(SO4)3 to be used as a control. The supplementation with Al2
(SO4)3 to the soil shift the pH from ~5.7-6.2 down to 4.4-4.7, increasing

significantly the availability of other elements such as Mn and S at the

end of the experiment (Table 1).

In this study, we conducted a greenhouse experiment in which

both G. avellana (n = 60) and V. corymbosum (n = 60) individuals

were subjected to two different conditions: i) the ‘Al supplemented

soil’, where the soil was supplemented with Al2(SO4)3 and ii) the

control, where no additional Al was added to the soil. The experiment

utilized 4 L pots to accommodate the plants in the Al supplemented

soil and the control, and they were allowed to grow either alone or

together in the following combinations: i) 2 seedlings of G. avellana

(conspecific species, n=10 pots), ii) 1 seedling of G. avellana + 1

seedling of V. corymbosum (interspecific species, n=10 pots), and iii)

2 seedlings of V. corymbosum (conspecific species, n =10 pots). The

experiment was carried out under greenhouse conditions for 16

months (see the plants at the end of the experiment in

Supplementary Figure S2). During the experiment, plants were

watered regularly with tap water according to their requirements.

Temperatures inside the greenhouse fluctuated between -1.6 and 31°

C for the autumn-winter season (mean temperature: 11°C), and

between 6.3 – 36.6°C for the spring-summer season (mean

temperature: 18°C). The maximum light intensity recorded at noon

varied between 129 and 485 µmol m–2 s–1 for the autumn-winter
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season, and between 283 and 712 µmol m–2 s–1 spring-summer

season. At the end of the experiment, the morphological, chemical

and physiological responses of these species were analyzed.
Morphological measurements

Relative growth rate in height (RGRh) and biomass (RGRb) were

determined in all surviving plants (Plant survival was 80 to 100% per

treatment). For RGRh, seedling height (H) was recorded for all

seedlings at the beginning (HInitial) and at the end (HFinal) of the

experiment. The RGRh was calculated according to Barrow (1977),

where RGR (cm cm–1 day–1)= (ln HFinal – ln HInitial)/(t), t being the

time (days) between the initial and final height measurements. The

same calculations were made for RGRb, where the initial biomass was

the average biomass of 8 initial plants. For biomass determinations, the

leaves, stem and roots (non-cluster roots and cluster roots) of the

seedlings were separated and weighed fresh using an analytical balance

(Radwag AS 220.R2 Plus, Poland). Subsequently, leaves samples were

divided into two subsamples: one for lipid peroxidation analyses; and

the other for biomass and chemical analyses. For biomass analyses, the

fresh samples (subsamples in the case of leaves) were dried in an oven

at 60°C for 48 h to obtain dry weight. The dry biomass of total leaves of

each seedling were calculated as the total fresh weight corrected for the

moisture content of the leaves biomass subsample. The biomass
Frontiers in Plant Science 04105
distribution was calculated according to the percentage of each organ

with respect to the total dry biomass of the plant. The total biomass of

each individual corresponds to the sum of the dry weights of the

different organs of the plant.
Photosynthetic performance

Two days before the plants were harvested, photosynthetic rate,

transpiration rate and stomatal conductance were measured between

9 and 12 a.m. in mature leaves formed during the experiment of both

species, G. avellana and V. corymbosum. Two photosynthetic

measurements were made per plant and six biological replicates per

treatment were determined. For this, we used a portable infra-red gas

analyzer photosynthesis system (LI-6400, LI-COR Bioscience, Inc.,

Lincoln, Nebraska, US) using a broad-leaf cuvette (area 2.5 cm2) and

controlled light source (500 µmol photons m-2 s-1), temperature (20°

C) and external CO2 (360 ppm). We decided to use 500 µmol

photons m-2 s-1 because, in the case of V. corymbosum, previous

studies reported that this species reach their maximum

photosynthetic response at this photosynthetic photon flux density

(PPFD) (Reyes-Dıáz et al., 2016; Petridis et al., 2018). In the case ofG.

avellana, prior to determining the photosynthesis rate, we performed

photosynthesis curves in response to PPFD, and we found that at 500

mmol photons m−2 s−1 this species had already reached its maximum
TABLE 1 Soil chemical analysis of the experiment at the start and at the end of the experiment where Gevuina avellana and Vaccinium corymbosum
were grown alone or in combination with or without aluminum sulfate supplementation in the following combinations: i) 2 seedlings of G. avellana
(2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum (1Ga + 1Vc), and iii) 2 seedlings of V. corymbosum (2Vc).

Start

- (Al2(SO4)3)

Start

+ (Al2(SO4)3)

End of experiment End of experiment

2Ga 1Ga+1Vc 2Vc 2Ga 1Ga+1Vc 2Vc

N (mg kg-1) 16.5 (1.4) 11.0 (0.4) a 12.5 (1.0) a 11.7 (1.8) a 14 (1.00) 11.3 (1.0) a 9.8 (1.2) a 8.8 (0.5) a

P-Olsen (mg kg-1) 18 (0.00) 16 (0.7) a 16 (0.0) a 11.7 (0.3) a 15 (0.00) 13.8 (0.3) a 13.3 (0.3) a 13.8 (0.3) a

K (mg kg-1) 174 (14.6) 102.6 (5.1) b 163.2 (4.3) a 180.8 (19.5) a 195.5 (2.3) 110.5 (8.0) b 114.4 (6.3) b 145.6 (10.0) a

pH (H2O) 5.7 (0.12) 6.2 (0.0) a 6.1 (0.0) a 6.0 (0.1) a 4.4 (0.02) 4.7 (0.0) b 4.7 (0.0) b 4.7 (0.0) b

Organic Matter (%) 15.5 (0.3) 14.3 (0.3) a 14.8 (0.3) a 14.5 (0.3) a 14.7 (0.33) 14.3 (0.3) a 14.3 (0.3) a 14.5 (0.3) a

K (cmol+ kg-1) 0.4 (0.04) 0.3 (0.0) b 0.4 (0.0) a 0.5 (0.0) a 0.5 (0.01) 0.3 (0.0) b 0.3 (0.0) b 0.4 (0.0) a

Na (cmol+ kg-1) 0.1 (0.03) 0.7 (0.0) ab 0.7 (0.0) b 0.7 (0.1) ab 0.2 (0.00) 0.7 (0.0) ab 0.8 (0.0) ab 0.9 (0.0) a

Ca (cmol+ kg-1) 9.3 (0.31) 9.2 (0.3) b 8.3 (0.2) b 8.4 (0.5) b 11 (0.07) 11.8 (0.3) a 11.1 (0.2) a 11.5 (0.4) a

Mg (cmol+ kg-1) 1.4 (0.02) 1.5 (0.0) a 1.4 (0.0) ab 1.4 (0.1) ab 1.5 (0.01) 1.4 (0.0) ab 1.3 (0.0) b 1.5 (0.0) a

Al (cmol+ kg-1) 0.1 (0.01) 0.1 (0.0) b 0.1 (0.0) b 0.1 (0.0) b 4.7 (0.07)* 1.6 (0.0) a 1.8 (0.0) a 1.9 (0.0) a

Al saturation (%) 0.5 (0.4) 0.5 (0.0) b 0.6 (0.0) b 0.7 (0.1) b 26.5 (0.39)* 10.0 (0.3) a 11.7 (0.3) a 11.7 (0.4) a

Mn (mg kg-1) n.d. 7.2 (0.3) b 7.6 (0.5) b 6.1 (0.4) b 8.7 (0.3) 18.9 (0.6) a 18.0 (1.0) a 14.9 (1.7) a

S (mg kg-1) n.d. 28 (1.3) b 27 (0.3) b 25 (2.6) b n.d. 625 (10) a 600 (0.0) a 619 (6.3) a

*ECEC (cmol+ kg-1) 11.4 (0.3) 11.7 (0.0) b 10.9 (0.3) b 11.1 (0.6) b 17.8 (0.01) 15.7 (0.3) a 15.2 (0.2) a 16.0 (0.4) a

Sum of cations (cmol+ kg-1) 11.3 (0.3) 11.7 (0.3) b 10.9 (0.3) b 11.0 (0.6) b 13.1 (0.08) 14.2 (0.3) a 13.5 (0.2) a 14.3 (0.4) a
1ECEC, effective cation-exchange capacity.
Each value corresponds to a mean of 3 samples ± standard error in brackets. Different letters indicate significant differences among treatments at the end of the experiment (P ≤ 0.05). * Indicate
significant differences between treatments at the start the experiment (P< 0.01).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1371123
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Delgado et al. 10.3389/fpls.2024.1371123
photosynthesis rate, not being photoinhibited at this light intensity

(Supplementary Figure S4). Additionally, at the end of the

experiment, photosynthetic pigments such as Chlorophyll a,

Chlorophyll b and carotenoids were determined in mature leaves.

For this, 0.1 g of fresh leaf sample was homogenized with 1 mL of

ethanol 96%. Homogenized sample mixture was centrifuged for

13,000 rpm for 5 min at 4°C. The supernatant was separated and

the same step is repeated with the precipitate and then the

two supernatants are combined. The solution mixture was

spectrophotometrically measured at 665 nm, 649 nm and 470 nm.

The quantification of Chlorophyll a, Chlorophyll b, and carotenoids

were determined according to Lichtenthaler and Wellburn (1983).
Lipid peroxidation

At the end of the experiment, lipid peroxidation was evaluated

by thiobarbituric acid reacting substance (TBARS) quantification in

fresh leaves of G. avellana and V. corymbosum following the

modified protocol by Du and Bramlage (1992) using a

Multimodal Microplate Reader Synergy HTX (BIOTEK). For this,

we used 8-10 biological replicates per treatment.
Chemical measurements in leaves
and roots

At the end of the experiment, leaves and roots of all surviving

plants of G. avellana and V. corymbosum were washed with tap

water and later dried at 60°C for 48 h (n = 8 -10 replicates per

species and treatment). The dried samples were ground to a powder

using a grinding machine made of stainless steel (Bioscientific

instruments, MRC, UK), and ground samples were used to

analyze macro- and micronutrients including P, nitrogen (N),

sulfur (S), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn),

calcium (Ca), sodium (Na), potassium (K), magnesium (Mg) and

Al. For concentrations of micronutrients (Na, Mn, Cu, Fe, and Zn)

and some macronutrients (Ca, K and Mg) as well as Al, 0.5 g of

sample were ashed at 500°C for 8 h. The resulting ash was digested

using hydrochloric acid (2 M) as described in Sadzawka et al.

(2004b) and the different elements were quantified using an atomic

absorption spectrophotometer (GBC Scientific Equipment Pty Ltd.,

SavantAA, Sigma, Dandenong, Victoria, Australia). Phosphorus

concentrations were determined spectrophotometrically using the

vanado-phosphomolybdate method, while N concentrations were

determined by Kjeldahl distillation after acidic digestion (Sadzawka

et al., 2004b). For S concentration, leaves and roots were dried as

mentioned above, treated with 95% magnesium nitrate (MgNO3 ×

6H2O), and ashed at 500°C for 4 h. Ashed samples were digested in

10 mL of HCl (2 M) at 150°C for 60 min, filtered and graduated with

deionized water to 50 mL. Subsequently, filtered samples were

mixed with barium chloride (BaCl2) and Tween-80. The resulting

solution was measured spectrophotometrically (Spectronic

GenesysTM, NY) at 440 nm, as described by Sadzawka

et al. (2004b).
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Chemical measurements in soil

Three soil samples per treatment were analyzed at the beginning

and end of the experiment (Sadzawka et al., 2004a). Mineral N were

determined using the Kjeldahl method according to Bremner (1960)

using a Kjeldahl UDK129 distiller equipment (VELP Scientific, Italy).

Soil P (Olsen) was determined colorimetrically by applying

the phosphoantimonylmolybdenum blue complex method

(Drummond and Maher, 1995). Organic matter was measured

following the wet digestion method by Walkley and Black (1934).

Exchangeable cations [potassium (K), sodium (Na), calcium (Ca),

and magnesium (Mg)] and exchangeable Al were extracted according

to Sadzawka et al. (2004a) and determined using an atomic

absorption spectrophotometer (GBC Scientific Equipment Pty

Ltd.). Percentage of Al saturation was calculated with respect to the

total sum of the exchangeable cations (Ca+, K+, Na+, Mg+, Al+). Soil

pH was determined in soil suspended in water (ratio 1:2.5; w/v H2O).

Soil Mn concentration was determined using the diethylenetriamine

pentaacetic acid (DTPA) method described by Lindsay and Norvell

(1978) and measured by atomic absorption spectrophotometry (GBC

Scientific Equipment Pty Ltd.).

Sulfur in soil was measured according the methodology by

Sadzawka et al. (2004b). Briefly, sulfur was extracted using a Ca

(H2PO4)2 0.01 M solution, followed by a turbidimetric measurement

of sulphate as BaSO4 and measured spectrophotometrically

(Spectronic GenesysTM, NY) at 372 nm.
Statistics

Statistical analyses were carried out separately for each species

using a one-way ANOVA with Tukey’s posteriori test (P ≤ 0.05) for

parameters related to growth (n = 8-10 replicates), physiological

[photosynthetic rate, chlorophyll concentration, (n = 6 replicates)],

biochemical [lipid peroxidation, (n = 8-10 replicates)] and chemical

[nutrients and Al concentrations, (n = 8-10 replicates)] responses of

G. avellana and V. corymbosum when grown alone or in

combination with or without Al supplementation. All data passed

the normality and equal variance tests. Statistical analyses were

performed using the Sigma Plot v.12.
Results

Relative growth rate and
biomass distribution

The findings of this study revealed significant increases in the

total biomass (Supplementary Table S1) and RGR in biomass for G.

avellana when it grew together with V. corymbosum in both soil

conditions, regardless of the presence or absence of Al (Figure 1). In

contrast, similar RGR in biomass were recorded for V. corymbosum

across all treatments, irrespective of soil condition and neighboring

species (Figure 1). Upon analyzing the biomass allocation patterns,

it was observed that G. avellana allocated approximately 48% of its
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biomass to leaves, 15% to the stem, 25% to non-cluster roots, and

12% to the formation of cluster roots. In contrast, V. corymbosum

allocated its biomass differently, with approximately 16% directed

to leaves, 23% to the stem, and the majority, 61%, to non-cluster

roots (Supplementary Figure S3). These biomass allocations

remained unaffected by the experimental treatments.
Photosynthetic performance

Although no significant differences were observed in the leaf

chlorophyll (a + b) concentration of G. avellana plants (Figure 2A),

this species showed a significantly higher photosynthetic rate when

grown in Al-supplemented soil compared to control plants

(Table 2). On the contrary, V. corymbosum presented a higher

leaf chlorophyll concentration and photosynthetic rate in control

soil conditions (Table 2, Figure 2B). Interestingly, V. corymbosum

plants grown in Al-supplemented soil, significantly increased its

photosynthesis rate and leaf chlorophyll concentration when grown

together with G. avellana than when grown accompanied by a

conspecific species (Table 2, Figure 2B). The ratio of chlorophyll a:b

showed that G. avellana leaves presented significatively higher

chlorophyll-a when grown in Al supplemented soil (Figure 2C).

In leaves of V. corymbosum plants it was observed that the ratio of

chlorophyll a:b was significantly lower in plants grown in the

control soil but only when was accompanied by G. avellana

(Figure 2D). The carotenoids concentration in G. avellana leaves

decreased significantly when plants were grown in Al supplemented

soil (Figure 2E), whereas in leaves of V. corymbosum the carotenoid

concentration increased significantly in plants grown in the control

soil but only when was accompanied by G. avellana (Figure 2F).
Leaf N:P ratio

The leaf N:P ratio served as a reliable indicator to assess whether

N or P limitation influenced the plants, with values < 10 suggesting
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N limitation, values > 16 indicating P limitation, and values between

10 and 16 implying that plant growth was equally constrained by N

and P (Koerselman and Meuleman, 1996). The results showed that

G. avellana was co-limited by N and P in all treatments, whereas V.

corymbosum was P limited in the control soil and co-limited by N

and P when plants grown in Al supplemented soil (Figure 3).
Lipid peroxidation

The lipid peroxidation of G. avellana leaves was higher in plants

that grew in the control soil. On the contrary, higher lipid

peroxidation was observed in the leaves of V. corymbosum plants

that grew in the Al-supplemented soil and accompanied by another

V. corymbosum plant (Figure 4).
Leaves and roots nutrient concentration

The Al-supplemented soil significantly affected the nutrients

uptake from the plants, depending on the species (Tables 3, 4). For

example, G. avellana maintains its levels of foliar and roots N

concentration independent of the soil from which it grew and the

neighboring species (conspecific or interspecific). In contrast, V.

corymbosum presented lower N values in the Al supplemented soil,

these being significantly lower when this species grows accompanied by

a conspecific species than when it grows accompanied by G. avellana.

The leaf and roots P concentration was significantly lower in G.

avellana plants that grew in the Al supplemented soil and when

grown with a conspecific species (Table 3). In contrast, V.

corymbosum did not show significant differences in foliar P

concentration in the different treatments evaluated, although it did

show a significantly higher P concentration in roots when it grew in

control soil and accompanied by a conspecific species (Table 4).

In general, mineral nutrients such as K, Mg and Mn

significantly increased their concentration in the leaves and roots

of both species when they were grown in the Al supplemented,
FIGURE 1

Relative growth rate (RGR) in biomass of Gevuina avellana and Vaccinium corymbosum growing alone or in combination with or without aluminum
sulfate supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum
(1Ga + 1Vc), and iii) 2 seedlings of V. corymbosum (2Vc). Each bar corresponds to mean of eight to ten samples ± standard error (SE). Different
letters indicate significant differences among treatments (P ≤ 0.05).
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regardless of whether the neighboring species was interspecific or

conspecific. Similar trend was found in Na concentration in leaves

and roots of G. avellana (Table 3). However, Na concentration in

leaves and roots of V. corymbosum tends to decrease with Al

supplementation, being significantly lower in the leaves of V.

corymbosum plants that grew together with an interspecific

species and in the roots of plants that grew together with a

conspecific species (Table 4).

The concentration of Ca and Cu in the leaves of G. avellana and

V. corymbosum also increased with Al supplementation, however,
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this was only significantly higher when both species were

accompanied by an interspecific species. No significant differences

were found in roots Ca concentration of both species in the different

treatments evaluated (Tables 3, 4).

The Zn concentration in leaves and roots varied depending on the

species and the treatment. First, G. avellana did not present significant

differences in leaf Zn concentration, but root Zn concentration

increased when the plants grew with Al supplementation and when

they were accompanied by a conspecific species (Table 3). On the

contrary, in V. corymbosum plants a decrease in the leaf Zn
B

C D

E F

A

FIGURE 2

Chlorophyll a + b concentration, ratio chlorophyll a:b and total carotenoids of Gevuina avellana (A, C, E) and Vaccinium corymbosum (B, D, F) growing
alone or in combination with or without aluminum sulfate supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling
of G. avellana + 1 seedling of V. corymbosum (1Ga + 1Vc), and iii) 2 seedlings of V. corymbosum (2Vc). Each bar corresponds to mean of six samples ±
standard error (SE). Different letters indicate significant differences among treatments (P ≤ 0.05).
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concentration was observed in the soil supplemented with Al, being

significantly lower when the plants grew accompanied by a conspecific

species (Table 4).

No significant differences were observed in Fe concentration in

leaves and roots of V. corymbosum plants among the evaluated

treatments (Table 4). On the contrary, G. avellana presented a

decrease in leaf Fe concentration when the plants grew in the Al

supplemented soil and accompanied by a conspecific species

compared to the control plants. On the other hand, an increase in

roots Fe concentration was observed in G. avellana plants in all the

treatments compared to the plants that grew in the control soil and

accompanied by a conspecific species (Table 3).

In both species, leaf Al concentration was similar among

treatments, independent of soil conditions and neighboring

species. In the control soil, the roots Al concentration of G.
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avellana plants was significantly lower when this species grows

together with a conspecific species than when it grows together with

V. corymbosum. The Al supplemented soil increased significantly S

levels in leaves and roots of both species (Tables 3, 4).
Discussion

Contrary to initial expectations, there was no evidence of the

facilitating effect ofG. avellana on theV. corymbosum seedlings growth

(Figure 1). Rather surprisingly, G. avellana exhibited an enhancement

in its own growth when grown alongside with V. corymbosum

(Figure 1; Supplementary Table S1). These findings align with the

observations made by Fajardo and Piper (2019), who reported that

Nothofagus species did not experience an improvement in their survival
TABLE 2 Photosynthesis rate, transpiration rate and stomatal conductance of Gevuina avellana and Vaccinium corymbosum growing alone or in
combination with or without aluminum sulfate supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G.
avellana + 1 seedling of V. corymbosum (1Ga + 1Vc), and iii) 2 seedlings of V. corymbosum (2Vc).

Treatment
Photosynthesis rate
(µmol CO2 m-2 s-1)

Transpiration rate
(mmol H2O m-2 s-1)

Stomatal conductance
(mol H2O m-2 s-1)

Gevuina avellana

2Ga-Al 4.4 (0.2) b 1.3 (0.03) n.s. 0.4 (0.01) b

1Ga+1Vc-Al 4.7 (0.1) b 1.4 (0.05) n.s. 0.4 (0.02) ab

2Ga+Al 5.3 (0.0) a 1.3 (0.05) n.s. 0.5 (0.01) a

1Ga+1Vc+Al 5.3 (0.1) a 1.5 (0.04) n.s. 0.5 (0.01) a

Vaccinium corymbosum

2Vc-Al 5.4 (0.1) a 1.3 (0.03) b 0.4 (0.01) b

1Ga+1Vc-Al 5.4 (0.1) a 1.5 (0.05) a 0.5 (0.02) a

2Vc+Al 3.4 (0.2) c 1.1 (0.02) b 0.3 (0.02) c

1Ga+1Vc+Al 4.8 (0.1) b 1.5 (0.04) a 0.5 (0.02) a
Each value corresponds to mean of six samples ± standard error (SE). Different letters in each column indicate significant differences among treatments (P ≤ 0.05). n.s., There are no significant
differences among treatments.
FIGURE 3

Leaf N:P ratio of Gevuina avellana and Vaccinium corymbosum growing alone or in combination with or without aluminum sulfate supplementation
in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum (1Ga + 1Vc), and iii) 2
seedlings of V. corymbosum (2Vc). Each bar corresponds to mean of eight to ten samples ± standard error (SE). Different letters indicate significant
differences among treatments (P ≤ 0.05).
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and growth when they were planted next to G. avellana. Notably,

however, G. avellana did exhibit growth enhancement when co-

cultivated with Nothofagus or some conspecifics species. These

authors concluded that Proteaceae species have a competitive

advantage over non-cluster root-bearing species at the seedling stage,

especially on nutrient-rich substrates. In our study, it was observed that

V. corymbosum showed lower roots P concentration when it grows in

association with G. avellana (Table 3). This suggests that the

competitive advantage of G. avellana may be attributed to the

significant exudation of carboxylates such as oxalate and succinate

from its large cluster roots (Delgado et al., 2021; Zúñiga-Feest et al.,

2021). These exudates likely contributed to the higher leaf P

concentration compared with V. corymbosum (Tables 3 and 4).

While there are currently no studies specifically addressing P

mobilization around the cluster roots of G. avellana, research

conducted on other Proteaceae species, such as Embothrium

coccineum (Delgado et al., 2015; Renderos et al., 2022), have shown

similar levels in the labile P fraction in the rhizosphere ofmature cluster

roots compared to non-cluster roots and bulk soil, hinting at the

possibility of localized P mobilization and accelerated P uptake by

plants with cluster roots.

Based on the N:P ratio thresholds established by Koerselman

and Meuleman (1996), our findings indicate that G. avellana

consistently experiences co-limitation of both N and P across all

treatments. In contrast, the growth of V. corymbosum appeared to

be predominantly constrained by P, when plants were grown under

control soil conditions (Figure 3). This observation reaffirms the

high P demands of the V. corymbosum species, as previously

described Pinochet et al. (2014) (≥ 16 mg P kg-1 soil).

Interestingly, in the Al-supplemented soil, V. corymbosum plants

were co-limited by N and P. This was attributed to a decrease in

foliar N concentration, particularly evident in conspecific plant

pairs. The decrease in foliar N concentration due to Al toxicity has

been previously reported in V. corymbosum (cv. Brigitta) (Qilong

et al., 2020). This phenomenon is primarily associated with reduced

root growth, resulting in a diminished nutrient uptake ability. In

our study, a reduction in roots growth of V. corymbosum
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(Supplementary Figure S3) was not observed. It can be speculated

that a nutrient imbalance, rather than direct Al toxicity, was most

likely the underlying reason for the negative effects of soil Al2(SO4)

supplementation on the foliar N concentration.

Although it was expected to observe a facilitating effect on P

acquisition, as in the case of other Proteaceae species inhabiting in

extremely P-poor environments (Teste et al., 2020; Shen et al., 2023), a

facilitating effect was found for G. avellana on V. corymbosum in foliar

chlorophyll concentration and photosynthesis rate (Figure 2, Table 2),

when both species growth together in Al supplemented soil. Since N is a

fundamental element for photosynthetic pigments and consequently for

the photosynthesis process (Lambers and Oliveira, 2019), the facilitating

effect of G. avellana can be attributed to the fact that this species induced

a higher N uptake rate in V. corymbosum when it grew in Al

supplemented soil, presenting values similar to those when it grew in

the control soil (Table 4). In this context, it is relevant to mention that

there is some evidence showing that, unlike other species of Proteaceae

species inhabiting in extremely P-impoverished soil (e.g. South Africa

and Australia), the southern South American Proteaceae Embothrium

coccineum induced cluster roots formation mainly under poor N soils,

suggesting that this roots structures could promote N–acquisition (Piper

et al., 2013). In Hakea actites (Proteaceae), the cluster roots formation

and expression of peptide transporter were up-regulated in response to N

starvation, probably to increase N uptake under conditions of low N

availability (Paungfoo-Lonhienne et al., 2009). From these insights, it is

proposed that cluster roots of G. avellana could indeed possess

mechanisms which can facilitate N availability to neighboring plant

species. In this regard, one plausible mechanism could involve organic

acid release, which stimulate microbial activity in the rhizosphere.

Microbial degradation of organic matter can release N, which may

subsequently contribute to higher levels of available N for plants. While

this hypothesis provides a compelling direction, additional studies are

required to reveal the actual role of cluster roots of G. avellana in N

acquisition and its possible mechanisms underlying this process.

A significantly higher photosynthetic rate was observed in G.

avellana plants when they were grown in Al supplemented soil,

regardless of the plant combinations involved. This intriguing
FIGURE 4

Lipid peroxidation of leaves of Gevuina avellana and Vaccinium corymbosum growing alone or in combination with or without aluminum sulfate
supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum (1Ga +
1Vc), and iii) 2 seedlings of V. corymbosum (2Vc). Each bar corresponds to mean of eight to ten samples ± standard error (SE). Different letters
indicate significant differences among treatments (P ≤ 0.05).
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finding is congruent with the growing body of evidence which

underscores the benefits associated with the presence of Al in the

soil. This is especially pertinent for plant species that are naturally

adapted to acidic environments and particularly pronounced in Al

hyperaccumulator species (Watanabe and Osaki, 2002; Bojórquez-

Quintal et al., 2017; Muhammad et al., 2018; Sun et al., 2020).

Similarly, studies have reported higher photosynthetic rates in Al

hyperaccumulator plants, such as Camelia sinensis and C. japonica

when were supplied with Al compared to control conditions

(Mukhopadyay et al., 2012; Hajiboland et al., 2013; Liu et al.,
Frontiers in Plant Science 10111
2020). In Qualea grandiflora, another Al hyperaccumulator plant

species, a significant increase in photosynthetic pigment

concentrations, encompassing chlorophyll a, b, and carotenes, was

observed in plants supplied with Al (Cury et al., 2019). Our findings

support the contention that Al may exert a positive impact on the

photosynthetic rate in the Al-hyperaccumulator plant. In our study,

the increase in the photosynthetic rate in G. avellana is probably

due to the increased stomatal conductance (Table 2) and increased

proportion of chlorophyll a (Figure 2C), the primary chlorophyll

pigment for photochemisty (Björn et al., 2009). Furthermore, the
TABLE 3 Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn),
aluminum (Al) and sulfur (S) concentrations in leaves and roots of Gevuina avellana grown alone or in combination with or without aluminum sulfate
supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum (1Ga +
1Vc), and iii) 2 seedlings of V. corymbosum (2Vc).

Gevuina avellana (Leaves)

- (Al2 (SO4)3) + (Al2 (SO4)3)

2Ga 1Ga+1Vc 2Ga 1Ga+1Vc

N (mg g-1) 10.1 (0.21) a 10.6 (0.45) a 9.6 (0.37) a 10.3 (0.64) a

P (mg g-1) 0.99 (0.06) a 1.06 (0.07) a 0.75 (0.06) b 0.89 (0.06) ab

K (mg g-1) 2.9 (0.1) c 3.7 (0.2) b 7.1 (0.6) a 8.54 (0.9) a

Ca (mg g-1) 7.03 (0.21) b 6.4 (0.3) b 7.5 (0.4) ab 9.3 (1.0) a

Mg (mg g-1) 0.96 (0.03) b 1.0 (0.1) b 3.2 (0.3) a 2.8 (0.2) a

Na (mg g-1) 1.13 (0.6) b 1.0 (0.1) b 2.5 (0.2) a 2.7 (0.4) a

Mn (mg kg-1) 552 (31.3) b 532 (38.6) b 1161 (95) a 1286 (170) a

Fe (mg kg-1) 95.0 (6.8) a 74.8 (4.1) ab 65.9 (2.2) b 88.4 (14.09) ab

Cu (mg kg-1) 2.74 (0.14) b 2.6 (0.2) b 3.2 (0.18) ab 3.9 (0.2) a

Zn (mg kg-1) 12.3 (0.8) a 12.2 (1.0) a 15.2 (1.1) a 13.0 (0.8) a

Al (mg kg-1) 1501 (80.7) a 1599 (142) a 1325 (82) a 1594 (149) a

S (mg g-1) 0.9 (0.0) b 1.00 (0.1) b 11.9 (1.0) a 10.5 (0.7) a

Gevuina avellana (Roots)

- (Al2 (SO4)3) + (Al2 (SO4)3)

2Ga 1Ga+1Vc 2Ga 1Ga+1Vc

N (mg g-1) 9.8 (0.2) a 10.6 (0.3) a 10.7 (0.6) a 9.2 (0.4) a

P (mg g-1) 0.20 (0.00) ab 0.23 (0.01) a 0.19 (0.01) b 0.22 (0.01) a

K (mg g-1) 2.48 (0.12) b 2.81 (0.33) b 4.10 (0.36) ab 5.94 (0.39) a

Ca (mg g-1) 4.19 (0.10) a 4.22 (0.10) a 3.72 (0.14) a 3.63 (0.28) a

Mg (mg g-1) 1.25 (0.04) b 1.32 (0.06) b 1.37 (0.06) ab 1.62 (0.13) a

Na (mg g-1) 1.80 (0.10) b 1.89 (0.21) b 2.11 (0.10) b 2.79 (0.19) a

Mn (mg kg-1) 92.9 (6.0) b 152.3 (14.6) b 334.8 (20.7) a 364.7 (39.34) a

Fe (mg kg-1) 1768 (130) b 3859 (444) a 3334 (404) a 2738 (347) ab

Cu (mg kg-1) 17.55 (1.6) b 22.43 (2.3) ab 29.5 (2.2) a 23.1 (1.3) ab

Zn (mg kg-1) 12.7 (0.9) b 16.8 (1.2) ab 31.2 (6.8) a 16.8 (0.7) ab

Al (mg k1) 3775 (205) b 7026 (692) a 8277 (639) a 7882 (541) a

S (mg g-1) 0.99 (0.06) b 1.17 (0.04) b 5.7 (0.4) a 5.0 (0.2) a
Each value corresponds to a mean of eight to ten samples ± standard error in brackets. Different letters indicate significant differences among treatments (P ≤ 0.05).
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increase in leaf Mg concentration (Table 3), a central element

within the chlorophyll molecule, may also contribute to this effect

(Farhat et al., 2016).

In addition to Mg, the concentration of other essential mineral

nutrients such as K and Mn significantly increased in both leaves and

roots of both species when grown in the Al supplemented soil. This

effect held true regardless of whether the neighboring species is

interspecific or conspecific. Furthermore, in the Al hyperaccumulator

species, G. avellana, there was a significant rise in Na levels in leaves;
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and a concurrent increase in Fe, Cu and Zn in the roots was observed.

The beneficial effects of Al on plant nutrient uptake have been observed

in other species. For instance, Osaki et al. (1997) reported increased

content of N, P, Mg and K in different organs of several plant species

upon Al treatment. Similarly, the stimulation of growth by Al in the Al

hyperaccumulator C. sinensis was attributed to the increased

absorption of vital plant nutrients, such as Ca, Mg, K and Mn (Fung

et al., 2008), as well as N and P (Konishi et al., 1985). Bojórquez-

Quintal et al. (2017) proposed that Al could induce the expression or
TABLE 4 Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn),
aluminum (Al) and sulfur (S) concentrations in leaves and roots of Vaccinium corymbosum grown alone or in combination with or without aluminum
sulfate supplementation in the following combinations: i) 2 seedlings of G. avellana (2Ga), 1 seedling of G. avellana + 1 seedling of V. corymbosum
(1Ga + 1Vc), and iii) 2 seedlings of V. corymbosum (2Vc).

Vaccinium corymbosum (Leaves)

- (Al2 (SO4)3) + (Al2 (SO4)3)

2Vc 1Ga+1Vc 2Vc 1Ga+1Vc

N (mg g-1) 11.1 (0.4) a 10.7 (0.2) a 8.5 (0.2) b 10.5 (0.4) a

P (mg g-1) 0.56 (0.02) a 0.54 (0.02) a 0.63 (0.02) a 0.66 (0.03) a

K (mg g-1) 7.0 (0.2) b 7.7 (0.3) b 13.2 (0.4) a 13.7 (0.8) a

Ca (mg g-1) 6.6 (0.3) b 7.6 (0.5) ab 7.9 (0.3) a 8.7 (0.6) a

Mg (mg g-1) 1.8 (0.1) b 2.1 (0.1) b 3.2 (0.1) a 3.4 (0.4) a

Na (mg g-1) 1.0 (0.1) a 1.2 (0.1) a 0.9 (0.1) ab 0.7 (0.1) b

Mn (mg kg-1) 78 (5.9) c 123 (14.8) b 717 (37) a 718 (86) a

Fe (mg kg-1) 114 (9.6) a 139 (12.8) a 107 (13.3) a 81 (5.3) a

Cu (mg kg-1) 3.2 (0.2) b 4.0 (0.3) ab 3.3 (0.12) ab 4.3 (0.3) a

Zn (mg kg-1) 23.8 (1.1) a 21.8 (1.3) ab 16.3 (0.7) c 18.0 (1.2) bc

Al (mg kg-1) 157 (18.2) a 196 (26.6) a 142 (21.1) a 121 (9.3) a

S (mg g-1) 0.48 (0.03) c 0.62 (0.04) b 8.2 (0.4) a 8.5 (0.9) a

Vaccinium corymbosum (Roots)

- (Al2 (SO4)3) + (Al2 (SO4)3)

2Vc-Al 1Ga+1Vc-Al 2Vc+Al 1Ga+1Vc+Al

N (mg g-1) 9.9 (0.3) a 9.6 (0.21) a 8.67 (0.26) b 8.7 (0.2) ab

P (mg g-1) 0.87 (0.04) a 0.25 (0.02) b 0.26 (0.01) b 0.28 (0.03) b

K (mg g-1) 2.78 (0.11) b 2.60 (0.22) b 2.59 (0.11) b 3.16 (0.14) a

Ca (mg g-1) 3.51 (0.15) a 3.21 (0.42) a 3.69 (0.27) a 2.93 (0.27) a

Mg (mg g-1) 1.24 (0.03) b 1.23 (0.17) b 1.63 (0.04) a 1.84 (0.07) a

Na (mg g-1) 0.50 (0.02) a 0.56 (0.08) a 0.43 (0.02) b 0.51 (0.05) a

Mn (mg kg-1) 172 (14.6) c 225 (26.4) c 580 (30.2) b 743 (45.3) a

Fe (mg kg-1) 3543 (425) a 4008 (862) a 3703 (399) a 4723 (731.8) a

Cu (mg kg-1) 25.8 (2.2) b 28.7 (5.6) ab 28.8 (1.9) ab 37.5 (3.4) a

Zn (mg kg-1) 17.3 (0.9) a 20.2 (4.3) a 20.0 (0.8) a 23.4 (2.3) a

Al (mg kg-1) 5723 (556) a 6411 (820) a 8022 (605) a 8395 (958) a

S (mg g-1) 1.13 (0.05) b 1.12 (0.04) b 3.93 (0.26) a 3.78 (0.3) a
Each value corresponds to a mean of eight to ten samples ± standard error in brackets. Different letters indicate significant differences among treatments (P ≤ 0.05).
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activity of transport proteins (channels and transporters) and an

alteration in the membrane potential and proton (H+) flux. This, in

turn, could facilitate nutrients uptake by plant roots.

Carotenoids are known to play important roles in plants as

antioxidants, and during environmental stress, plants usually respond

by increasing their carotenoid concentrations (Havaux, 2014).

Intriguingly, our observations revealed significantly lower

concentrations in leaf carotenoids of G. avellana plants cultivated in

Al-supplemented soil compared to control (Figure 2E), suggesting that

this species may not have been experiencing stress during Al exposure.

Indeed, the lipid peroxidation of G. avellana leaves was lower in plants

that were cultivated in the Al supplemented soil. Similar results were

found in the roots of C. sinensis, where it was observed that Al reduced

the lipid peroxidation in root tips, which was related to the fact that Al-

induced an increase in the activities of antioxidant enzymes (e.g.

superoxide dismutase, catalase, and ascorbate peroxidase (Ghanati

et al., 2005). Thus, the results suggest a positive effects of Al on the

membrane integrity of G. avellana plants. On the contrary, higher lipid

peroxidation was observed in the leaves of V. corymbosum plants that

were cultivated in the Al supplemented soil, supporting previous

reports indicating membrane damage induced by Al in this species

(Ulloa-Inostroza et al., 2016; González-Villagra et al., 2021).

Interestingly, V. corymbosum accompanied by G. avellana reduced

significantly the lipid peroxidation in leaves when grew in the Al

supplemented soil, clearly showing a facilitating effect of G. avellana

towards V. corymbosum. It is proposed that, by increasing the N

concentration of V. corymbosum when it grew with G. avellana

(Table 4), V. corymbosum could have increased the activities of

antioxidant enzymes, thus decreasing lipid oxidation.

In both species, leaf Al concentration was similar among

treatments, suggesting a high self-regulation in Al uptake. This

adaptive mechanism is highlighted by Delgado et al. (2019), who

found that G. avellana growing in natural conditions showed similar

leaf Al concentrations, independent of Al saturation percentage and

soil pH. These authors reported ranges from 3,959 to 6,256 mg Al kg-1

for mature leaves and 7,150 to 11,040 mg Al kg-1 for senescent leaves of

adult plants. In contrast, the current study used of 2-year-old plants,

with an average of 1,505 mg Al kg-1. It is most probable that the

capacity for Al hyperaccumulation in this species, increases with the

age of the plant. With respect to roots Al concentration, G. avellana

plants exhibit significantly higher values when grown alongside V.

corymbosum, compared to cultivation alongside conspecific species in

soil without Al supplementation (Table 3). It was found that in this soil

condition, leaves of V. corymbosum were limited by P (Figure 3) and

therefore, it is likely that V. corymbosum activated mechanisms such as

roots carboxylate exudation to mobilize P from the soil. Such responses

are common among plants facing P deficiency (Chen and Liao, 2016).

Beyond liberating P from the soil, it also serves as a formidable defense

against Al toxicity, particularly in plants that possess the inherent

ability to exclude the entry of Al into their tissues. This is achieved

through the formation of harmless Al-organic complexes within the

rhizosphere, reducing the potential harm posed by Al (Kochian et al.,

2004; Chen and Liao, 2016). Thus, it is proposed that the greater Al

uptake ofG. avellanawas due to the fact that it took up the Al excluded

by V. corymbosum. Interestingly, V. corymbosum presented higher Al

concentrations in the roots than in leaves (36 to 69 times more), a
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pattern observed in Al-sensitive plants (Kochian et al., 2004; Alarcón-

Poblete et al., 2020; Cárcamo-Fincheira et al., 2023). This trend

underscores a limited translocation of Al, thus, confirming the low

Al tolerance in the aerial part of the V. corymbosum (Star

cultivar) plant.

When plants were grown in Al supplemented soil, both species

increased their Mn uptake. This could be due to Al supplementation

decreasing the soil pH from 6.1 to 4.7 (Table 1) thereby increasing the

solubility of Mn with decreasing soil pH (Lambers and Oliveira, 2019).

On the other hand, several authors have reported that leaf Mn

concentration is a good proxy for rhizosphere carboxylate

concentrations (Shane and Lambers, 2005; Lambers et al., 2015b; Pang

et al., 2018; Lambers et al., 2021). This is because carboxylates exuded by

roots simultaneously mobilize P and other nutrients from the

rhizosphere, especially Mn, which enters roots via transporters with

limited substrate specificity (Lambers et al., 2021). Indeed, the leaf Mn

concentration in 100 chickpea genotypes has been positively correlated

with carboxylate amount in rhizosheath (Pang et al., 2018). In the current

study, there was a 2-fold increase in foliar Mn concentration in G.

avellana when grown in Al supplemented soil, while in V. corymbosum

this increase was 7-fold, which was independent of the neighboring

species. These results suggest that V. corymbosum presented high stress

in the Al-supplemented soil and it is likely that this species may have

exuded large amounts of carboxylates under these conditions.

The S values were exceptionally high in the soil supplemented

with Al2(SO4)3 compared with those values found in the soil of

control treatment (Table 1). Consequently, leaf S concentrations ofG.

avellana and V. corymbosum plants supplemented with Al2(SO4)3
were up to 12 and 15 times more than control plants (Tables 3, 4),

with these values being considered in the high ranges for plants (~ 10

mg kg-1 DW) (Lambers and Oliveira, 2019). Sulfur is integral to

numerous physiological processes in plants, including protein

synthesis, enzyme activation, chlorophyll formation, defense

mechanisms, and secondary metabolite production (Kopriva et al.,

2019). It has been reported that S can alleviate the toxicity of metals

such as cadmium (Ferri et al., 2017; Lyčka et al., 2023) and Al (Guo

et al., 2017), because some S-containing compounds, such as

glutathione and phytochelatins, play vital roles in the complexation

of metals and their subsequent sequestration into vacuoles.

Additionally, these S-containing compounds contribute to the

alleviation of oxidative stress by functioning as antioxidant

molecules. Our results showed that the addition of Al2(SO4)3 seems

to benefit G. avellana, due to increased proportion of chlorophyll a

(Figure 2C), photosynthetic rate (Table 2), leaf Mg concentration

(Table 3) and decreased lipid peroxidation (Figure 4). On the

contrary, V. corymbosum plants worsens their condition under the

soil supplemented with Al2(SO4)3, raising the possibility that S

supplementation may not have been sufficient to alleviate Al

toxicity or that the S could have generated a toxic effect on the

plant. Most studies have focused on the interactions occurring

between S and other macro and micro-nutrients when plants are

subjected to S deficiency (Courbet et al., 2019), however, the excess of

S and its effect on the plant has been scarcely explored. We recognize

that future studies are necessary to elucidate the effect of Al and S

separately on these plants. In any case, it is important to highlight and

report that G. avellana facilitate to V. corymbosum when both species
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grown in the Al2(SO4)3 supplemented soil. Additionally, it is

interesting to mention that unlike G. avellana, another Proteaceae

species, Hakea prostrata, tightly controls its S acquisition (Prodhan

et al., 2017). The ability to modulate S and N uptake in some species,

has been linked to match its low protein concentration and low

demand for rRNA, and its consequently low P requirements

(Prodhan et al., 2017), as an adaptation of plants that have evolved

in extremely P-impoverished habitats [values of total soil P ranging

from 6.6 to 20.3 mg P kg−1 (Hayes et al., 2014)]. Thus, it is probable

that G. avellana, which has evolved on relatively nutrient-rich soils

(values of total soil P ranging from 63.1 to 951.6 mg P kg−1 (Delgado

et al., 2018)), has not evolved the ability to regulate S uptake.
Conclusions

Contrary to expectations, it was rather surprisingly found that G.

avellana did not contribute to higher growth rates either P acquisition in

V. corymbosum. On the contrary, G. avellana shows better growth rates

when grown associated with V. corymbosum. In addition, V.

corymbosum had a decrease in root P concentrations, when grown in

association with G. avellana, indicating a highly competitive capacity of

this latter species for P acquisition. On the other hand, G. avellana did

not assist in the decrease of Al uptake of V. corymbosum, although it

contributed to an increase in N acquisition, and consequently higher

chlorophyll concentrations and photosynthesis rates. Besides, V.

corymbosum decreased the lipid peroxidation in leaves when grown in

soil with Al supplementation and accompanied by G. avellana. Overall,

our results suggest a facilitating effect of G. avellana to V. corymbosum

and vice versa. The benefit of facilitation ofG. avellana toV. corymbosum

is only observed when both species grown in the Al supplemented soil.

The information provided in this manuscript is relevant to know some

nutritional and physiological aspects of these species. Future research is

required to reveal the possible role of cluster roots ofG. avellana in the N

acquisition. Finally, this study has opened avenues for future research,

suggesting the need for additional facilitation tests employing soil with

more pronounced contrasts of the studied element (e.g. N, P or Al, and

maintaining other soil properties constant) in order to find a greater

impact of the nutrient under study on growth of the plant.
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Cárcamo-Fincheira, P., Reyes-Dıáz, M., Omena-Garcia, R. P., Nunes-Nesi, A., and
Inostroza-Blancheteau, C. (2023). Physiological and metabolic responses to aluminum
toxicity reveal differing resistance mechanisms to long-term exposure in highbush
blueberry cultivars. Sci. Hortic. 309, 111665. doi: 10.1016/j.scienta.2022.111665

Chen, Z. C., and Liao, H. (2016). Organic acid anions: An effective defensive weapon
for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J. Genet.
Genomics 43, 631–638. doi: 10.1016/j.jgg.2016.11.003

Chen, Y. M., Wang, M. K., Zhuang, S. Y., and Chiang, P. N. (2006). Chemical and
physical properties of rhizosphere and bulk soils of three tea plants cultivated in
Ultisols. Geoderma 136, 378–387. doi: 10.1016/j.geoderma.2006.04.003

Courbet, G., Gallardo, K., Vigani, G., Brunel-Muguet, S., Trouverie, J., Salon, C., et al.
(2019). Disentangling the complexity and diversity of crosstalk between sulfur and
other mineral nutrients in cultivated plants. J. Exp. Bot. 70, 4183–4196. doi: 10.1093/
jxb/erz214

Cury, N. F., Silva, R. C., Andre, M. S., Fontes, W., Ricart, C. A., Castro, M. S., et al.
(2019). Root proteome and metabolome reveal a high nutritional dependency of
aluminium in Qualea grandiflora Mart. (Vochysiaceae). Plant Soil. 446, 125–143.
doi: 10.1007/s11104-019-04323-3

Delgado, M., Valle, S., Barra, P. J., Reyes-Dıáz, M., and Zúñiga-Feest, A. (2019). New
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Oat—an alternative crop under
waterlogging stress?
Britta Pitann* and Karl H. Mühling*

Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
Introduction: Waterlogging is one vast environmental constraint that limits crop

growth and yield worldwide. Most major crop species are very sensitive to

waterlogging, leading to enormous yield losses every year. Much is already

known about wheat, barley or maize; however, hardly any data exist on oat

and its tolerance against waterlogging. Thus, this study aimed to investigate if

oats can be an adequate alternative in crop rotation under conditions of temporal

submergence and if cultivar differences exist. Furthermore, this study was to test

(1) whether yield was differently affected when stress is applied at different

developmental stages (BBCH 31 and 51), and (2) nutrient imbalances are the

reason for growth restrictions.

Methods: In a large-scale container experiment, three different oat varieties were

cultivated and exposed to 14 consecutive days of waterlogging stress at two

developmental stages.

Results: Even though vegetative growth was impaired after early waterlogging and

which persists till maturity, mainly due to transient nutrient deficiencies, growth

performance after late waterlogging and grain yield of all three oat varieties at

maturity was not affected. A high tolerance was also confirmed after late

waterlogging in the beginning generative stage: grain yield was even increased.

Discussion:Overall, all oat varieties performed well under both stress treatments,

even though transient nutrient imbalances occurred, but which were ineffective

on grain yield. Based on these results, we conclude that oats, independently of

the cultivar, should be considered a good alternative in crop production,

especially when waterlogging is to be expected during the cultivation phase.
KEYWORDS

nitrogen, oat, phosphorus, waterlogging, yield
1 Introduction

Climate change has been and is a serious topical global issue. While in the past the focus

was mostly laid on the increase of climate-relevant gases, today, it is also important to

understand the impact of hydrological changes. For example, in the course of climate

change, an increase in the frequency and intensity of extreme weather events is to be
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expected, which threatens not only the security of the water supply

but also food production as such. According to the

Intergovernmental Panel on Climate Change (IPCC, 2022),

almost half of the world’s population is already particularly

affected by water scarcity. However, also the opposite is to be

expected with more phases of heavy rainfall events, resulting in

an increased risk of flooding associated with temporary

waterlogging. Climate models already show that the global

amount of precipitation increases by approximately 2% for every

one-degree increase in temperature (Kreienkamp et al., 2016).

According to actual estimates, approximately 12% of the world’s

arable land is currently at risk of waterlogging, and this is being

exacerbated by unfavorable soil conditions (e.g., high clay content)

and/or poor management systems (e.g., soil compaction and poor

drainage) (Najeeb et al., 2015; Ploschuk et al., 2018; Alifu et al.,

2022). Also, in Europe, the problem of waterlogging has long since

arrived, with prolonged phases of heavy rainfall in winter and early

spring, being more the rule than the exception (Deumlich and

Gericke, 2020).

For Germany, it is undisputed that so-called heavy rainfall

events have occurred more frequently over the past 15 years, at least

regionally (Winterrath et al., 2017). This, in turn, has a vast effect on

the agricultural sector, causing high yield losses of the major crops

(e.g., Ploschuk et al., 2018).

Waterlogging induces several physiological changes in crops and

thus affects various aspects of plant metabolism and growth

(Horchani et al., 2009). These changes are primarily a response to a

reduced availability of oxygen in the soil. Waterlogging as such is

defined as the saturation of soil with water beyond its holding

capacity (Striker, 2012). As a result, gaseous exchange with the

atmosphere is inhibited, and gas diffusion in the soil is impeded

(Jackson and Ricard, 2003), further driven as remaining oxygen is

consumed by microbial activity. This lack of oxygen together with an

increase in CO2 leads to anoxic soils (Ponnamperuma, 1972) and,

consequently, results in severe hypoxia/anoxia within plant roots

(Armstrong, 1980). This leads to root damage and decay, and also

oxygen-depleted roots immediately shift from aerobic respiration to

low ATP-yielding fermentation (Gibbs and Greenway, 2003). As a

consequence, plants subsequently respond with stomata closure,

which in turn reduces transpiration, a driver for water uptake and

translocation. As an inevitable result, also nutrient uptake and

translocation are restricted (Jackson and Drew, 1984; Colmer and

Voesenek, 2009; McDonald, 2021), which may be further exacerbated

by a shift of redox potential toward more reducing conditions.

Together with the hampered gas exchange at the stomata and thus

CO2 uptake, also photosynthesis is reduced, which in combination

with restricted nutrient uptake leads to a marked decrease in plant

biomass production and yield (Ashraf, 2012; Shao et al., 2013;

Voesenek and Sasidharan, 2013; Arguello et al., 2016).

Depending on plant species, physiological tolerance, timing,

and duration of the waterlogging event, yield losses can largely vary

(Setter and Waters, 2003; de San Celedonio et al., 2014; Arduini

et al., 2016; Ploschuk et al., 2018). Notably, high-yielding crops such

as wheat or rapeseed are more susceptible to waterlogging in later

developmental stages (Araki et al., 2012; Wollmer et al., 2018a, b;

Hussain et al., 2022, 2023). According to Pampana et al. (2016), the
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yield of durum wheat was not affected when waterlogging occurs at

the three- to four-leaf stage, which is also in line with de San

Celedonio et al. (2014), who reported that wheat and barley are

more sensitive at anthesis compared to tillering. This contradicts

the results of Wu et al. (2015) and Ghobadi and Ghobadi (2010),

who found that wheat was more prone to waterlogging when

stressed at the seedling stage compared to later growth stages.

However, there is a great consensus that the longer the

waterlogging event persists, the greater the yield loss (Ghobadi

and Ghobadi, 2010; Zhang et al., 2016; Tian et al., 2020).

Oats (Avena sativa L.) are among the food crops that rank sixth

regarding cereal production right after wheat, maize, rice, barley,

and sorghum (Ruja et al., 2021). Although being displaced by

higher-yielding energy and protein crops in the past (Hoffman,

1995), today, oats are experiencing a revival as “super food” owing

to their nutritional composition, and their production is gaining

popularity again. Oats are well known for their versatility, thus

tolerating a wide range of climatic conditions (Welsh, 1995; Ruja

et al., 2021). However, while yield performance under waterlogging

of the major crops has been well documented, studies on the

response of oats to waterlogging are still scarce. However, there

are indications that oats show a higher agronomic tolerance; i.e.,

they have the capability to maintain yields despite facing

waterlogging during their growth cycle (Arduini et al., 2019).

Watson et al. (1976) and Cannell et al. (1985) suggested that the

better recovery potential of oats may be due to their capability to

stay green during waterlogging and higher tiller fertility at maturity

(Setter and Waters, 2003).

Based on these early findings and a lack of information, this

study aims to investigate whether oats can be used as an alternative

crop, especially under the changing climatic conditions present in

Northern Germany. To gain further knowledge about possible

cultivar variations, three oat varieties, namely, black oats, white

oats, and yellow oats, were compared to facilitate cultivar choice on

waterlogging-affected sites. Thus, it is hypothesized that 1) oats

growth performance is less affected by waterlogging at later

compared to earlier growth stages, 2) different oat varieties show

no differences in growth performance and yield formation upon

waterlogging, and 3) waterlogging-induced nutrient deficiencies are

not yield-effective in oats.
2 Materials and methods

2.1 Plant cultivation and
SPAD measurements

The experiment was conducted in the outdoor area of the

Experimental Station of the Institute of Plant Nutrition and Soil

Science, Kiel University, Germany (54°20′50″N, 10°6′55″E) starting
in March 2021. Three oat (A. sativa L.) varieties (obtained from

Saaten Union, Niedersachsen, Germany), Zorro (black oat; A. sativa

var. nigra), Symphony (white oat; A. sativa var. alba), and Apollon

(yellow oat; A. sativa var. aurea), were grown to maturity in large-

scale containers (height, 0.9 m; area, 0.16 m2; volume, 120 L; see also

Hohmann et al., 2016) with a seeding density of 300 seeds per
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container, which were later thinned to 90 plants after emergence. As a

substrate, a subsoil (Cambisol; IUSS Working Group WRB, 2015)

from the experimental station “Hohenschulen” of Kiel University,

Germany, and arable topsoil from the district of Ost-Holstein

(Schleswig-Holstein, Germany) were selected (see details in Table 1).

The containers were filled with air-dried and homogenized soil

as follows (from bottom to top): 1) 20 kg gravel as a drainage layer,

2) 100 kg subsoil + sand (1:1, w/w), 3) 30 kg subsoil + topsoil (1:1,

w/w), 4) 10 kg topsoil plus fertilizer according to standard

application for oats [in kg/ha: 100 N (split into N1 prior to

seeding and N2 at shooting stage), 55 P, 80 K]. Weed and

pathogen control were applied as required.

Soil plant analysis development (SPAD) values were measured

on the fifth leaf after waterlogging at BBCH 31 and on the flag leaf

after stress treatment at BBCH 51 (Meier, 2001). An average of 10

readings per container was taken using a chlorophyll meter (SPAD-

502, Konica Minolta Sensing Europe B.V., Wrocław, Poland).
2.2 Stress treatments

Soil moisture was maintained at 60% water-holding capacity

(WHC) until treatments started. While the respective controls (W0)

were watered at 60% WHC throughout the entire crop cycle,

waterlogging (100% WHC) was imposed for a total of two

consecutive weeks: 1) W1 = early waterlogging at BBCH 31 and

2) W2 = late waterlogging at BBCH 51. Water treatment was

checked every 2 days, and re-irrigation was performed based on

weight loss if necessary. After terminating waterlogging, water was

drained to achieve a target WHC of 60%, which was then retained

until harvest. The experiment was set up with four replicates per

treatment and oat variety in a completely randomized design

(CRD). Randomization of the position of containers was

performed twice a week together with the check of WHC.
2.3 Plant sampling and analysis

Two weeks after terminating waterlogging (W1 and W2), 30

plants (including side shoots) were randomly selected and
Frontiers in Plant Science 03119
harvested, and fresh weights were recorded. At maturity, the 30

remaining plants (including side shoots) per container were

harvested and separated into straw and panicles. Subsequently,

the biomass of straw and panicles, grain yield, and yield

parameters were quantified. Panicles per container were counted

and hand-threshed to determine total grain and thousand kernel

weight. The number of grains per panicle was calculated as follows

(Equation 1):

Grains   per   panicle

=
Total   grain  weight ÷ thousand   kernel  weight � 1, 000  

Panicles   per   container
(1)

To record dry weights, samples of each treatment were oven-

dried at 60°C to constant weight and subsequently milled (Cyclotec

1093, Foss Tecator, Höganäs, Sweden) to fine powder for

further analysis.

For mineral nutrient analysis, 200 mg of finely ground plant

material of each plant part per replicate was digested with 10 mL

69% HNO3 in a microwave oven (1800 W, MARS 6, Xpress, CEM,

Matthews, MC, USA) at 190°C for 45 min and subsequently

analyzed by inductively coupled plasma–mass spectrometry (ICP-

MS; Agilent Technologies 7700 Series, Böblingen, Germany)

according to the method described by Jezek et al. (2015).

Determination of total N was conducted using a CNS elemental

analyzer (Flash EA 1112 NCS, Thermo Fisher Scientific, Waltham,

MA, USA), for which 5–10 mg of finely ground plant material was

weighed into tin capsules. Results were validated using a certified

wheat flour standard (Isotopenstandard Weizenmehl, IVA

Analysentechnik, Meerbusch, Germany) as a reference.
2.4 Statistical analysis

Data were statistically analyzed using SPSS software (version

25.0). The analysis was based on four replicate containers per

treatment set up as CRD. The effects of treatments per cultivar

were tested using one-way ANOVA according to Duncan’s

(homogeneity of variance) or Games–Howell (heterogeneity of

variance) multiple-range tests at p ≤ 0.05. Significant differences are

indicated by different letters. The significance of the correlations was

tested using two-tailed Pearson’s correlation coefficient at p ≤ 1%.
3 Results

3.1 Fresh weights and SPAD values

After 14 days of waterlogging at BBCH 31 (W1), all oat varieties

clearly showed stunted growth and beginning chlorosis at older

leaves (see Supplementary Figure 1). All oat varieties were similarly

affected and showed a significant reduction in fresh weight of 58%,

57%, and 53% for black, white, and yellow oats, respectively

(Figure 1A). Except in white oats, dry weight was not significantly

reduced compared to the corresponding non-stressed control (data

not shown).
TABLE 1 Physico-chemical properties of the soils.

Subsoila Topsoilb

Soil type sL lS

pH (CaCl2) 5.5 6.1

Total N (g/kg soil) <0.3 n.a.

Phosphorus (mg/100
g soil)

5.0 5.0

Potassium (mg/100
g soil)

4.0 7.9

Magnesium (mg/100
g soil)

8.1 5.1
aAccording to analysis by Institut Koldingen GmbH, Germany.
bAccording to analysis by AGROLAB Agrar und Umwelt GmbH, Germany.
n.a., not applicable.
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At the second sampling date, 1 week after the late waterlogging

event (W2), differences in the recovery potential between varieties

became obvious (Figure 1B). While black oats were able to

recover from early waterlogging, white and yellow oats still

showed significantly impaired growth 6 weeks after water

drainage. Interestingly, late waterlogging at BBCH 51 had no

negative effect on the total fresh weight of all oat varieties

and could maintain weights similar to the corresponding

control (Figure 1B).

These results were largely confirmed at the final harvest

(Figure 1C). While the recovery of white oats after the early

waterlogging was not confirmed till maturity, fresh weight
Frontiers in Plant Science 04120
increased to the level of control for black and yellow oats

(Figure 1C). However, the fresh weight of all oat varieties

remained unaffected by late waterlogging.

SPAD values were measured always right after the termination

of the waterlogging treatment. Significant differences were

monitored between control plants and plants waterlogged at

BBCH 31 for all three oat varieties (Figure 2A; Supplementary

Figure 2). This waterlogging-induced decline in SPAD values was

even more pronounced after stress treatment at BBCH 51 for white

and yellow oats when compared to early waterlogging and control,

while SPAD values in black oats remained unaffected by late

waterlogging (Figure 2B; Supplementary Figure 3).
A

B

C

FIGURE 1

Fresh weight of the whole aboveground plant material after 14 days of waterlogging (A) at BBCH 31 and (B) at BBCH 51, as well as (C) at harvest
after maturity. Bars represent means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant)
between waterlogging treatments always within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
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3.2 Yield and yield parameters

Whether the fresh weight was now broken down into the

individual main major yield components, differences between oat

varieties became obvious. While the number of panicles of black

oats showed a slight but non-significant reduction at W1 and W2,

white and yellow oats showed a significant reduction (Figure 3A).

Concerning the number of grains per panicle, in black and white

oats, W1 had a negative effect, leading to a reduced number of

grains, while yellow oats were not influenced (Figure 3B). However,

after W2, white oats compensated for the reduced number of

panicles with the number of grains per panicle on the level of the

control. Similarly, also, black and yellow oats significantly increased

the number of grains after late waterlogging compared to W1 and

remained on the level of their respective control (Figure 3B).

Contrary to this, thousand kernel weight was not responsive at all

to W1 and W2 in either black or white oats, while it was on a

relatively high level in yellow oats compared to the other two

varieties, but with a reduction after W2 (Figure 3C). This in turn

led to an unchanged grain yield under W1 for both black and white

oats, while under W2, there was even an increase in grain yield for

both varieties (Figure 3D). However, yellow oats were the only

variety that reacted sensitively to early waterlogging but could

regain grain yield at least on the level of the control after late

waterlogging (Figure 3D). Although differences in the major yield

parameters were recognizable, the harvest index and the grain:straw

ratio were unresponsive to both timings of waterlogging (data

not shown).

Correlating yield with the single yield parameters showed that

there was no correlation between yield and the number of panicles

per container and thousand kernel weight for all three oat varieties,

with all coefficients of determination being non-significant

(Supplementary Figures 3A–C, G–I). However, yield significantly

correlated to the number of grains per panicle at least for black oats
Frontiers in Plant Science 05121
(R2 = 0.735; Supplementary Figure 3D) and white oats (R2 = 0.779;

Supplementary Figure 3E). Only yellow oats lacked such a

correlation between yield and number of grains (R2 = 0.118,

Supplementary Figure 3F).
3.3 Nutrient concentration in plant tissues

Early waterlogging (W1) resulted in a reduction of nitrogen (N)

concentration in all three oat varieties. Hereby, the decrease was the

highest in white oats (55%) followed by yellow oats (44%), and the

lowest was in black oats (36%) (Figure 4A). Similarly to N, all oat

varieties showed a strong decline in phosphorus (P) concentration,

with white oats being most responsive compared to yellow oats and

black oats (Figure 4B). Additionally, also S showed a marked

decrease after early waterlogging (data not shown).

After late waterlogging, all oat varieties were able to recover,

showing a N concentration similar to their respective control

(Figure 5A). Furthermore, no effect of W2 on shoot N

concentration could be determined. Similarly, the P status could

be restored to the control level (black oats) or even increased (white

oats and yellow oats) till BBCH 51 (Figure 5B). However, similar to

early waterlogging, W2 led to a significant decrease in P in all three

oat varieties (Figure 5B).

At the timepoint of maturity, all plants were harvested, and

nutrient concentrations in straw and grains were determined. With

respect to straw N, it was observed that both black oats and white

oats showed no changes in N concentration (Figure 6A). Only in

yellow oats was a significant difference between W1 and W2

measurable, whereas no significant difference between W2 and

the respective control was obvious. Likewise, also in grains of

black and white oats, no effect of either W1 or W2 could be

detected on N concentration (Figure 6B). However, yellow oats

showed an increase in N at maturity when waterlogged at BBCH 51.
A B

FIGURE 2

SPAD values after waterlogging (A) at BBCH 31 and (B) at BBCH 51. Bars represent means + standard errors (n = 4). Different letters refer to
significant differences (p = 0.05) between waterlogging treatments always within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2,
waterlogging at BBCH 51; SPAD, soil plant analysis development.
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A similar pattern was measured for P concentration. Black oats

were unable to regenerate the straw P level at W2, while in white

and yellow oats, P concentration increased to the level of the well-

drained control (Figure 6C). However, in grains of black and yellow

oats, no waterlogging effect was measured (Figure 6D), but a

significant increase in P in white oats at W1 and W2.

Furthermore, N and P concentrations in total shoot biomass as

well as in grain at harvest were not effective on grain yield, with all

coefficients of the determination being non-significant

(Supplementary Figure 4).
4 Discussion

Globally, anthropogenic climate change intensified the risk of

waterlogging, having multifaceted and severe impacts on economic

and political pathways (IPCC, 2022), but also on crop production as

such (Yang et al., 2017; Kaur et al., 2020b). Excess soil water has

reduced rice, maize, soybean, and wheat yields by up to 50%

annually (Hossain and Uddin, 2011; Ploschuk et al., 2018;

Borgomeo et al., 2020; Ding et al., 2020; Tian et al., 2021). In
Frontiers in Plant Science
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Europe, according to actual estimates, flood-related risks and thus

waterlogging will increase with a mean increment in annual output

losses of approximately 11 million € per 1.5°C increase in global

warming level (GWL) (Koks et al., 2019). However, are there any

options to counteract such losses?

Identifying and breeding crop species being tolerant to

waterlogging, in addition to other agronomical tools, can help

mitigate the negative impact on crop physiology and improve overall

agricultural resilience, especially in the long term (Kaur et al., 2020b).

To date, many studies have focused on the major high-yielding energy

and protein crops, such as wheat, oilseed rape, or maize. However, less

is known about whether there are alternative crops that can be included

in crop rotations and thus increase crop diversity when there is a risk of

temporal waterlogging, which otherwise will delay farm operations

(e.g., planting, fertilization, and harvest). Oats may represent one such

alternative; that is why this study was conducted to evaluate the

response of three different oat varieties to temporal waterlogging at

two important developmental stages: shooting and panicle emergence.

In order to simulate field-like conditions and to overcome limitations

such as root growth restriction, which ultimately will affect nutrient

uptake, large containers were chosen.
D

A B

C

FIGURE 3

Yield components after harvest at maturity. (A) Number of panicles. (B) Grains per panicle. (C) Thousand kernel weight. (D) Grain yield. Bars
represent means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s. = non-significant) between waterlogging
treatments within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
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4.1 Growth performance and nutrient
status of oats under temporal waterlogging

Waterlogged plants usually show wilting and development of

chlorosis especially of the older basal leaves (Arbona et al., 2008).

Also, Wollmer et al. (2018a) reported chlorosis formation on older

leaves and even spot necrosis in winter wheat, which they explain as

the oxidation of cell membranes by reactive oxygen species (ROS)

formation and their reduced detoxification under waterlogging (Tan

et al., 2008). Generally, chlorophyll reduction can be accredited to

oxygen deficiency-induced changes in plant metabolism, promoting

overproduction of ROS, mainly H2O2, and thus photooxidative

damage of chloroplast (Yordanova et al., 2004; Zhang et al., 2015;

Ren et al., 2016; Hasanuzzaman et al., 2017). As a consequence,

photosynthesis will be decreased and thus biomass production (Zeng
Frontiers in Plant Science 07123
et al., 2020; Pais et al., 2023). However, even though SPAD

measurements confirmed a decrease in chlorophyll in this study

after early waterlogging (Figure 2), all tested oat varieties showed no

distinct chlorosis but slightly brighter color compared to non-

stressed plants (see Supplementary Figure 1). This is in contrast to

wheat or barley, as oats have the capability to become less chlorotic

and stay green even under waterlogged conditions, which gives an

advantage to tolerate transient water stress (Setter and Waters,

2003). However, even though reduced biomass production under

waterlogging is associated with lower photosynthetic activity

(Ashraf, 2012), it is more likely a consequence of disturbed water

and mineral uptake, rather than a photosynthesis effect (Colmer and

Greenway, 2010; de San Celedonio et al., 2017).

As other crops (e.g., de San Celedonio et al., 2014; Ploschuk

et al., 2018; Arduini et al., 2019; Hussain et al., 2022), oats also
A B

FIGURE 5

(A) Nitrogen and (B) phosphorus concentration of the whole aboveground plant material after 14 days of waterlogging at BBCH 51. Bars represent
means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments
within one oat variety. W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
A B

FIGURE 4

(A) Nitrogen and (B) phosphorus concentration of the whole aboveground plant material after 14 days of waterlogging at BBCH 31. Bars represent
means + standard errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments
within one oat variety. W0, control; W1, waterlogging at BBCH 31.
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respond with an initial reduction in shoot growth especially when

waterlogged in an early developmental phase (Figure 1A;

Supplementary Figure 1). In agreement with Watson et al. (1976),

growth reduction in oats under waterlogging was more pronounced

when applied in an early growth stage and must be ascribed to a

reduced or damaged root system. Notably, a loss in seminal roots

and death of seminal root apical meristem were described, e.g.,

wheat (see Herzog et al., 2016). Ploschuk et al. (2023) also showed

that root mass density was significantly reduced after early

waterlogging in wheat, barley, oilseed rape, and pea, triggered by

a lack of oxygen and the formation of ethylene. Likewise, also in

oats, an initial decrease in shoot dry weight of 40% was explained by

a decline in root dry weight of 50% (Watson et al., 1976; Cannell

et al., 1985).

Hampered root growth is always accompanied by a decline in

nutrient uptake, subsequently contributing to growth reduction.

This effect is further triggered by a drop of redox potential and

changes in pH in soil, also affecting nutrient transformation and

availability, i.e., N and P (Patrick and Mahapatra, 1968;

Hasanuzzaman et al., 2017, and literature within; Kaur et al.,

2020b, and literature within). Such an effect is also shown in this

study: nitrogen concentration dropped in W1 plants in all oat
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varieties (Figure 4A), corresponding to SPAD data (Figure 2),

indicating a transient undersupply in the shooting stage. These

results are in agreement with Arduini et al. (2019) for oats, Ren et al.

(2017) for maize, Zhou et al. (1997) for oilseed rape, and Wollmer

et al. (2018a) for wheat. In soil, nitrogen concentration, i.e., nitrate,

will be decreased by several processes under waterlogging, such as

runoff, denitrification, or nitrate leaching (see Kaur et al., 2020b,

and literature within). However, decreasing nutrient concentrations

in the vegetative shoot tissues can be explained not only by reduced

root growth but also by inhibited uptake mechanisms. As plants

switch to anaerobic respiration, they lack ATP, a necessity to drive

ion uptake and xylem loading mediated by H+-ATPases (Colmer

and Greenway, 2010; Elzenga and van Veen, 2010). Such decline in

N concentration was not prominent in W2 plants (Figure 5A),

which is attributed to the N fertilization (see Section 2.1) performed

right after drainage of W1. This N dose served as a “post-

waterlogging rescue N fertilizer” (Watson et al., 1976; Rasaei

et al., 2012; Kaur et al., 2020a), leading to a regeneration of N

status, which could be maintained until maturity in both straw and

grain (Figure 6A). However, among all temperate cereals, oats must

be considered as the crop with the greatest ability to regenerate from

waterlogging (Watson et al., 1976; Cannell et al., 1985; Solaiman
D

A B

C

FIGURE 6

(A, B) Nitrogen and (C, D) phosphorus concentration in straw (A, C) and grains (B, D) after harvest at maturity. Bars represent means + standard
errors (n = 4). Different letters refer to significant differences (p = 0.05; n.s., non-significant) between waterlogging treatments within one oat variety.
W0, control; W1, waterlogging at BBCH 31; W2, waterlogging at BBCH 51.
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et al., 2007). Setter and Waters (2003) suggested that this is due to

an extensive formation of aerenchyma, which coincides with

increased root porosity (Herzog et al., 2016). Also, Solaiman et al.

(2007) described an increase in root porosity from 6% (well

drained) to approximately 20% (waterlogged) in adventitious

roots of oats compared to 2% in seminal roots. By this, O2 in

roots is kept high, allowing the roots to maintain aerobic respiration

and high ATP levels and thus improve nutrient uptake

characteristics (Colmer and Greenway, 2010; Takahashi

et al., 2014).

As the redox potential drops, the solubility of P increases due to

a loss of sorption sites. This in turn leads to a higher pore water

concentration (Patrick and Mahapatra, 1968) and thus plant

availability and uptake. However, like N concentration, P

concentration also declined at W1 (Figure 4B), indicating a

period of deficiency. As this was not expected, it must be

reasoned that 1) P either leached down (Smith, 2020; Rupngam

et al., 2023), 2) P retention in soil was increased due to sorption

and/or precipitation with free Fe (Patrick and Mahapatra, 1968;

Smith, 2020; Rupngam et al., 2023), or 3) uptake is inhibited, as the

limited internal energy under waterlogging is directed to internal

pH regulations and transport of solutes involved in anaerobic

respiration (Greenway and Gibbs, 2003). This effect was reversed

at W2 for all oat varieties (Figure 5B), indicating a full regeneration

of the P status in W1 plants, which can be ascribed to an increased

uptake due to higher available P and uptake in submerged soils.

However, submergence at W2 again led to an undersupply of P in

all three oat varieties. However, these were only of a transient nature

in white and yellow oats (Figure 6C). Even though it seems that the

time span till maturity was not enough for full recovery in black

oats, a dilution effect must be assumed, as P content was on the level

of control for all waterlogging treatments in all oat varieties (data

not shown), though grains were not affected at all by all

waterlogging events (Figure 6D). This is in line with Cannell et al.

(1985), who also found no differences in N and P concentrations at

harvest between treatments.
4.2 Yield response of oats under early and
late waterlogging

Although much research was conducted on various crops, such

as wheat (e.g., de San Celedonio et al., 2017; Ploschuk et al., 2018;

Wollmer et al., 2018a; Pais et al., 2023), oilseed rape (e.g., Wollmer

et al., 2019; Hussain et al., 2023; Zhu et al., 2023), barley (e.g.,

Masoni et al., 2016; de San Celedonio et al., 2017), or maize (e.g.,

Tian et al., 2019; Liang et al., 2020), there are hardly any data

available on oats’ response to waterlogging, especially regarding

cultivar differences, the existence of flooding-related quantitative

trait loci (QTLs), or -omics data on waterlogging and associated O2

deprivation (Mustroph, 2018).

While yield decreases in a range of a few percent up to an almost

total loss are reported, a meta-study by Tian et al. (2021) revealed

that approximately 3% of all database samples showed contrasting

behavior, thus increasing yield. One explanation for this

phenomenon is the capability of such crop varieties to tolerate
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time periods of waterlogging. Thereby, it plays a crucial role in

which developmental stage waterlogging occurs and for how long

crops are submerged. In this study, it was found that oats, for the

most part, are characterized by a high tolerance to both early and

late waterlogging. While the grain yield of black and white oats was

unaffected by early waterlogging and even increased after late

waterlogging (Figure 3D), only yellow oats were sensitive to early

waterlogging. However, the grain yield reduction of yellow oats after

late waterlogging was only slightly but non-significantly reduced

(Figure 3D). Such high recovery rates, at least as shown for black

and white oats, are also consistent with the few published data for

oats. For example, Watson et al. (1976) showed that when

waterlogging ceased, oats recovered better than, e.g., wheat or

barley. They reported that especially ear emergence was more

delayed in these crops, which was even more pronounced at very

early waterlogging (2 weeks after seeding) or when seeding was

already delayed, shortening the recovery phase and leading to less

grain per ear. In contrast, similarly to waterlogging at BBCH 51 in

this study, waterlogging 6 weeks after seeding or at ear emergence

was of minor effect, which was also confirmed for winter wheat

(Watson et al., 1976; Cannell et al., 1985). Also, other studies, e.g.,

on wheat, report that early reproductive states are more adversely

affected than tillering stages (Setter and Waters, 2003). However,

this contradicts the results of Wollmer et al. (2018a), who showed

the highest yield reduction of wheat after waterlogging in the

generative phase.

In oats, the by far largest reduction in grain yield was observed

when plants were waterlogged at the tillering stage, caused by the

formation of smaller grains. This effect was almost completely

eliminated, when N was applied (Watson et al., 1976). This is in

agreement with this study, in which the grain yield of W1 and W2

plants was similar or even increased in the case of black and white

oats (Figure 3). Only in yellow oats was the speed of grain yield

recovery somewhat slower but could reach a value comparable to

the control after W2. Similar results were found for winter oats

(Cannell et al., 1985), where tillering was reduced but could be

reversed by N application. Reductions in tillers though were not

found in this study at W1, rather than an increase for white oats

(data not shown), probably compensation grain yield reductions.

Only white and yellow oats at W2 showed a reduced number of

panicle-bearing tillers, but this was also reversed and did not affect

grain yield due to compensation by a distinct increase in grain

number per panicle in yellow oats (Figure 3). A reduction in kernel

weight of 9% in oats, as reported by Cannell et al. (1985), could

thereby only be confirmed in yellow oats (Figure 3), while the other

two varieties did not show any change compared to the well-drained

treatment. In comparison, under similar conditions, for wheat, a

reduction of 10%–30% was reported (Cannell et al., 1985; Ploschuk

et al., 2018), indicating the high recovery potential of the tested oat

varieties in this study. However, the observed reduction is not

caused by a reduced number of grains per panicle rather than the

reduced number of panicles in total.

In complete contradiction to the already discussed studies are

data by Arduini et al. (2019). Similar to this study, oats were

waterlogged at tillering after seeding in spring, differently from

Watson et al. (1976), who used winter oats. This difference has of
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large effect on the regeneration period; while winter oats had a

prolonged phase of 118 days after draining, the recovery phase in

spring oats is much shorter. Therefore, Arduini et al. (2019) argued

that higher temperatures of 20°C during waterlogging could in part

be responsible for the higher sensitivity observed in their study.

Although after 14 days of waterlogging a not yet significant decrease

in harvest index became obvious, A. sativa compared to Avena

byzantina showed a 79% and 83% reduction in grain yield,

respectively, resulting in a decrease in harvest index of 8% and

10%, respectively, after 35 days of submergence (Arduini et al.,

2019). Similarly, in the present study, the harvest index remained on

the level of the respective controls for all three oat varieties (data not

shown) at W1 and W2 after only 14 days of waterlogging, which

may go back to an increased tiller fertility (Watson et al., 1976;

Cannell et al., 1985).
5 Conclusions

Even though there are only limited data on oats’ response to

waterlogging, it is obvious from the literature that a high diversity

exists among different varieties. Thus, this study contributes to the

understanding of the stress tolerance of oats and offers a solution to

rethink established crop rotations, especially in the context of

climate change and the associated risk of flooding/waterlogging in

the future.

The oat varieties tested in this study, i.e., black, white, and

yellow oats, are standard cultivars recommended in Germany due

to their stable yield potential. All varieties differed slightly in their

response to waterlogging, but all showed an initial decrease in fresh

weights when waterlogged in the vegetative phase. This growth

reduction was most probably caused by a transient deficiency in

nitrogen and phosphorus; however, N deficiency was counteracted

by a second N-fertilizer dose right after ceasing the stress,

guaranteeing a proper N supply till maturity. Further, also, the P

status recovered, although the oat varieties differed in the

regeneration time, which may be attributed to the restoration

capacity of the root system. Although all varieties were differently

affected regarding yield components, i.e., number of panicles, grains

per panicle, or thousand kernel weight, all oat varieties showed

grain yields comparable to well-drained soil conditions or even

higher in case of black and white oats, independent from the timing

of the waterlogging stress. However, early waterlogging in the

vegetative phase (BBCH 31) was more harmful in contrast to late

waterlogging in the generative phase (BBCH 51), but all varieties

were able to compensate till maturity. Thus, it is reasoned that oats,

or at least the varieties used in this study, showed a high tolerance

level to temporal submergence, which was not affected by

waterlogging-induced nutrient deficiency.

Therefore, we conclude that oats represent a suitable alternative

and can compete with high-yielding but more sensitive crops, such

as wheat, especially on marginal sites with lower yield potential and

sites that are prone to waterlogging in Northern Germany.
Frontiers in Plant Science 10126
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

BP: Writing – original draft, Writing – review & editing,

Conceptualization, Investigation. KM: Conceptualization, Writing

– review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

We acknowledge the kind provision of the three oat varieties by

Saaten Union. We also thank M. Bach, B. Biegler, T. Heimbeck, and

S. thor Straten for excellent technical assistance.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.

The reviewer AN declared a past co-authorship with the authors

to the handling editor.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1386039/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1386039/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1386039/full#supplementary-material
https://doi.org/10.3389/fpls.2024.1386039
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pitann and Mühling 10.3389/fpls.2024.1386039
References
Alifu, H., Hirabayashi, Y., Imada, Y., and Shiogama, H. (2022). Enhancement of river
flooding due to global warming. Sci. Rep. 12, 20687. doi: 10.1038/s41598–022-25182–6

Araki, H., Hamada, A., Hossain, M. A., and Takahashi, T. (2012). Waterlogging at
jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain
filling. Field Crop Res. 137, 27–36. doi: 10.1016/j.fcr.2012.09.006
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and the involvement of
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3Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of
Agriculture, Chengdu, Sichuan, China, 4National Key Laboratory of Wheat and Maize Crop Science,
College of Agronomy, Henen Agricultural University, Zhengzhou, China, 5Maize Research Institute,
Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China, 6Sichuan Academy of
Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu,
Sichuan, China, 7College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China,
8Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University,
Hangzhou, China
Phosphorus (P) is a crucial macronutrient for plant growth and development, and

low-Pi stress poses a significant limitation to maize production. While the role of

the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and

signaling transduction has been extensively studied in other model plants, the

molecular and functional characteristics of the SPX gene family members in

maize remain largely unexplored. In this study, we identified six SPX members,

and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX

genes in rice. The promoter regions of ZmSPXs were abundant in biotic and

abiotic stress-related elements, particularly associated with various hormone

signaling pathways, indicating potential intersections between Pi signaling and

hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific

expression patterns, with significant and differential induction in anthers and

roots, and were localized to the nucleus and cytoplasm. The interaction between

ZmSPXs and ZmPHRs was established via yeast two-hybrid assays. Furthermore,

overexpression of ZmSPX1 enhanced root sensitivity to Pi deficiency and high-Pi

conditions in Arabidopsis thaliana. Phenotypic identification of the maize

transgenic lines demonstrated the negative regulatory effect on the P

concentration of stems and leaves as well as yield. Notably, polymorphic sites

including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/

deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low-

Pi tolerance index. Furthermore, significant sites were classified into five

haplotypes, and haplotype5 can enhance biomass production by promoting

root development. Taken together, our results suggested that ZmSPX family

members possibly play a pivotal role in Pi stress signaling in plants by interacting
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with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response

verified in transgenic Arabidopsis and can affect the Pi concentration of maize

tissues and yield. This work lays the groundwork for deeper exploration of the

maize SPX family and could inform the development of maize varieties with

improved Pi efficiency.
KEYWORDS

maize, low-Pi stress, SPX gene family, PHRS, candidate gene association analysis
1 Introduction

Maize (Zea mays L.) stands as a pivotal crop globally, not only as

a source of food and high-quality feed but also for industrial

applications (Feng et al., 2022; Jiao et al., 2023). P is an essential

macronutrient for plant growth and development and plays a vital

role either directly or indirectly in many physiological and

biochemical processes, such as photosynthesis, respiration, signal

transduction, and metabolic processes (Luo et al., 2019). Plants

primarily acquire P in the inorganic form of Pi from the soil to

support their growth and yield (Kumar et al., 2019). The low

availability of Pi in soils is a significant limiting factor for plant

growth and yield, posing a significant challenge (Balyan et al., 2016).

Consequently, the growing need for increased food production and

higher crop yields is expected to lead to a rise in the demand for Pi

inputs in cropland. The global application of Pi fertilizer on croplands

has increased several times from 1961 to 2013 and already surpassed

the estimated planetary boundary (Zou et al., 2022). Excessive

fertilizer application has led to a myriad of environmental and

ecological issues, including water eutrophication.

In response to low-Pi stress, plants have developed a series of

adaptive mechanisms, primarily manifested through changes in

root morphological structure, physiological and biochemical

regulation, and the expression of Pi starvation-inducible genes.

Specifically, under low-Pi stress, alterations in root morphology

and configuration were characterized by the inhibition of primary

roots, accompanied by an increase in the length and quantity of

lateral roots and root hairs (Raghothama, 1999; Lynch, 2011).

Additionally, the root radius decreases, resulting in a higher root–

shoot ratio and a shallower root system. These morphological

changes facilitate plants in expanding the contact area between

roots and the superficial soil (Raghothama, 1999; Lynch, 2011; Luo

et al., 2023). Furthermore, low-Pi stress triggers modifications in

plant enzyme system activity, further contributing to the plant’s

adaptation to Pi scarcity. For example, Pi deficiency inhibits the

activity of ATP synthase, which subsequently impacts ATP and

NADPH production, thereby reducing the photosynthetic rate,

carbon fixation, and overall plant growth (Carstensen et al., 2018;

Garcia et al., 2023; Iqbal et al., 2023; Saengwilai et al., 2023).

Enhancing the activities of sulfur lipid and glycolipid synthases,
02130
as well as phospholipid hydrolases, contributes to altering the

composition of the lipid membrane. Moreover, low-Pi stress can

elevate the activity of defense-related enzymes, enabling plants to

better adapt to the low-Pi environment (Shimojima, 2011; Liang

et al., 2014; Chen et al., 2015). Additionally, the increase in root

exudates represents another strategy for plants to cope with low-Pi

stress. This includes the secretion of protons, organic acids, and acid

phosphatase, which serve to acidify the soil surrounding the roots

and release inorganic Pi for plant uptake (Lynch et al., 2005; Shen

et al., 2005; Zhang et al., 2010). When encountering Pi deficiency,

plants also maintain Pi homeostasis through a series of molecular

reactions. For instance, the phosphate starvation response (PSR)

pathway involves a MYB transcription factor known as PHR1,

which serves as a key regulator in PSR. It governs transcription

and takes part in physiological and biochemical adaptations (Zhang

et al., 2014). PHR1 is capable of directly binding to the cis-elements

P1BS (PHR binding sequence, GNATATNC), which were found in

the promoter regions of several PSR genes, including Phosphate 1

(PHO1), phosphate transporter traffic facilitator 1 (PHF1),

phosphate transporters (PTs), induced by phosphate starvation

(IPS1), miRNA399, and miRNA827 (Rubio et al., 2001; Puga

et al., 2017). As Pi sensors, SPX proteins can interact with

AtPHR1 or OsPHR2, and under normal conditions, they inhibit

their transcriptional activity. This interaction between SPX proteins

and PHR transcription factors serves to prevent the toxicity

resulting from excessive Pi accumulation (Wang et al., 2014).

Notably, the SPX proteins themselves do not directly sense Pi but

instead sense soluble inositol polyphosphates (InsPs) with a high

affinity (Wild et al., 2016). Recently, the crystal structure of the SPX

domain revealed the basic surface for InsP6, and biochemical

studies have shown that InsP7 stimulated the interaction between

OsSPX4 and OsPHR2 with higher binding affinity than InsP6 (Jung

et al., 2018). Among these, InsP8 acts as an intracellular Pi signaling

substance, regulating Pi balance by modulating the interaction

between AtSPX1 and AtPHR1 (Dong et al., 2019). Consequently,

SPX genes play a crucial role in Pi signaling pathways and

homeostasis in plants (Li et al., 2021).

The SPX proteins, namely, SYG1 (suppressor of yeast gpa1),

Pho81 (CDK inhibitor in the yeast PHO pathway), and XPR1

(xenotropic and polytropic retrovirus receptor), can be classified
frontiersin.org
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into four subfamilies based on the presence of structural

characteristics: class 1 only contained SPX domain, and the other

three have (SPX-MFS, SPX-EXS, and SPX-RING) domains (Chiou

and Lin, 2011; Yang et al., 2017; Yue et al., 2017). Recently, two

additional classes of SPX proteins, namely, SPX-SLC and SPX-VTC,

had been characterized in algae, and they were involved in Pi

synthesis and transportation in vacuoles. However, these classes

appear to have been lost throughout the evolution of plants, with

the type of Pi storage changing from polyphosphates in algae to Pi

in the later-diverging streptophytes (Wang et al., 2021a). It seems

that the SPX domain has some extra domains that may have been

lost during the evolution of SPX proteins and have not been

comprehensively identified yet (Kopriva and Chu, 2018;

Nezamivand-Chegini et al., 2021). SPX gene family members have

been studied for their significant roles in Pi signaling and

homeostasis in various plant species, including four SPXs in

Arabidopsis thaliana and six SPXs in rice (Secco et al., 2012). In

A. thaliana, AtSPX1 and AtSPX3 played a positive role in plant

adaptation to Pi starvation. Additionally, AtSPX1 and AtSPX3

demonstrated redundancy, and AtSPX3 may negatively regulate

the expression of AtSPX1 (Duan et al., 2008). Moreover, under

normal-Pi conditions, AtSPX4 acted as a negative regulator of PSR

gene expression in shoots, influencing both PHR1-dependent and

PHR1-independent Pi starvation responses. Disruption of the

AtSPX4 function led to excessive Pi accumulation in the shoots

(Osorio et al., 2019). In rice, OsSPX3/5 negatively regulated the

transport of Pi from roots to shoots. OsSPX4 interacted with

OsPHR2 in the cytoplasm, inhibiting Pi signaling. Meanwhile,

OsSPX6 was upregulated under low-Pi stress, leading to the

activation of OsPHR2 (Lv et al., 2014; Zhong et al., 2018).

Furthermore, OsSPX4 was involved in the regulation pathway of

nitrogen and Pi signals, and ubiquitinated OsSPX4 facilitated the

activation of Pi signaling by nitrate, coordinating the utilization of

nitrogen and Pi (Hu et al., 2019). Moreover, SPX genes have been

reported via bioinformatics analysis in diverse species (Yao et al.,

2014b; Du et al., 2017; Kumar et al., 2019; Xiao et al., 2021) because

of their possible involvement in a number of physiological and

molecular processes. However, despite these advancements, the

specific functions of these SPX gene family members have

remained unknown in maize. In our previous study, SPX proteins

carrying only the SPX domain were predicted under low-Pi

conditions in maize (Nie et al., 2021). Therefore, in the present

study, we conducted a bioinformatics analysis to investigate the

relationship of SPX proteins containing only the SPX domain across

various species. Additionally, we explored the expression patterns of

these SPX genes in maize, examined their interaction with PHRs,

and elucidated the function of ZmSPX1 through transgenic

experiments and candidate gene association analysis in maize.

Taken together, our findings suggested the involvement of

ZmSPXs in transcription regulations during Pi starvation and

found that ZmSPX1 was involved in response to low-Pi

conditions and provide a solid foundation for a deeper

understanding of the molecular mechanism of genes and

improving P use efficiency (PUE) in maize and will promote

future studies on this important gene family in plants.
Frontiers in Plant Science 03131
2 Materials and methods

2.1 Plant material and growth conditions

Using the CRISPR/Cas9 (Clustered regularly interspaced short

palindromic repeats/CRISPR-associated protein 9) system, the

ZmSPX1 gene was knocked out in the maize inbred line KN5585

by the Agrobacterium tumefaciens-mediated transformation

method. The mutation site was detected using ZmSPX1-KO-F

and R primers (Supplementary Figure S1; Supplementary Table

S1). The construction method for maize overexpressing lines

utilizes the homologous recombination method to introduce the

coding sequence (CDS) of the ZmSPX1 gene into the vector

pCAMBIA3301. Subsequently, A. tumefaciens-mediated

transformation of the maize recipient line KN5585 was employed

to generate transgenic plants. The results for the detection of

overexpression and the specific primers used for detection are

provided in Supplementary Figure S2 and Supplementary Table

S1, respectively. Seeds of 178 (low-Pi tolerant maize inbred line), A.

thaliana (Columbia), and tobacco (Nicotiana benthamiana) were

provided by the Maize Research Institute of Sichuan Agricultural

University. A relatively low-Pi field site in Wenjiang farm (WJ,

Chengdu, Sichuan Province, plain region, available Pi 22.8 mg/kg)

of Sichuan Agricultural University was selected for the experiments

on low-Pi treatment of maize inbred line 178. Each plot received

two levels of Pi treatments (low- and normal-Pi conditions), with

each treatment replicated thrice. The plots measured 3 m in length

with 0.8 m between rows. Prior to reaching the five-leaf stage, plant

thinning reduced the number to 14 plants per plot (58,000 plants/

ha). In the normal-Pi treatment plots, the following fertilizers

(Stanley Agriculture Group Co., Ltd.) were applied: 150 kg of

urea, 900 kg of calcium superphosphate, and 350 kg of potassium

chloride per hectare before planting; 130 kg of urea per hectare at

the six-leaf stage; and 210 kg of urea per hectare as a side dressing

prior to tasseling. The low-Pi treatment plots received the same

fertilizer combination as the normal-Pi plots, with the exception of

the calcium superphosphate. The seeds of A. thaliana were planted

in nutrient soil and soil sterilized at 121°C for 20 min and cooled for

30 min. Then, seeds were cultured in nutrient soil at 23°C for 12 h of

light and darkness until the A. thaliana mature.
2.2 Bioinformatics identification of ZmSPXs
in maize

Based on our previous research (Nie et al., 2021), ZmSPX

homologous genes were identified with high similarity sequence:

ZmSPX1 (GRMZM2G035579), ZmSPX2 (GRMZM2G171423),

ZmSPX3 (GRMZM2G024705), ZmSPX4 (GRMZ2G122108),

ZmSPX5 (GRMZM5G828488), ZmSPX6 (GRMZM2G065989),

and ZmSPX7 (GRMZM2G083655). The ZmSPX family members

were identified in maize, and the reliability of the ZmSPX CDS was

predicted using BioXM 2.6 software. The conserved domain of

ZmSPXs was verified using the National Center for Biotechnology

Information (NCBI) search database (Marchler-Bauer et al., 2015).
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Amino acid sequences query homologous amino acid sequences of

SPXs in maize, wheat, soybean, rape, rice, and Arabidopsis using the

BLASTP program from the NCBI (http://www.ncbi.nlm.nih.gov);

phylogenetic relationships were aligned using Mega (version

11.0.13) (Kumar et al., 1994). The gene IDs of the SPX gene

family in other species were acquired from previous research

studies (Secco et al., 2012; Yao et al., 2014b; Du et al., 2017;

Kumar et al., 2019). Finally, ZmSPXs were studied for cloning

and functional analyses based on protein comparison and

transcriptome sequencing, respectively. The promoter region

(2,000 bp) of ZmSPXs was utilized to predict the functional

region of these genes using the BDGP online database (http://

www.fruitfly.org/seq_tools/promoter.html) (Supplementary Table

S2), and the cis-acting elements within the promoter were

predicted using the plantCARE web server (http://bioinformatics.

psb.ugent.be/webtools/plantcare/html).
2.3 Cloning of ZmSPX family members
in maize

Total RNA was extracted from the leaves and roots of 178

inbred lines following the manufacturer’s protocol of Thermo

Fisher Scientific, Life Technologies (TRIzol Reagent®; the

protocol can be found at https://www.thermofisher.com). The

cDNA reverse transcription was performed using the

PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara Bio

Inc., Otsu, Japan). The CDS of ZmSPXs was then amplified

using the cDNA as a template. The polymerase chain reaction

(PCR) primers were designed based on the CDS of the B73

reference, targeting the specific sequences of the ZmSPX family

members using Primer Premier 5 software. The forward and

reverse primers are listed in Supplementary Table S3. The PCR

was performed in a 25-µL volume containing phanta max buffer

12.5 mL (Phanta Max Super-Fidelity DNA Polymerase, Nanjing

Vazyme Biotech Co., Ltd., Nanjing, China), phanta max super

fidelity 0.5 mL, dNTP 4 mL, cDNA 1 mL, 1 mL of each forward and

reverse primer, and 7 mL ddH2O. PCR was programmed for 3 min

at 95°C followed by 30 cycles of 95°C for 15 s, annealing for 15 s,

72°C for 45 s, extension for 5 min at 72°C, and final 12°C for

preservation. Then, PCR products were separated using 1%

agarose gel, purified using a DNA purification kit, and cloned

into pEASY®-Blunt zero Cloning Vector (TransGen Biotech Co.,

Ltd., Beijing, China) according to the manufacturer’s protocol.

Finally, positive clones were selected for sequencing by TsingKe

Biological Technology Co., Ltd. (Beijing, China). The coding

sequence of ZmSPXs was compared with that of the B73

reference inbred line using DNAMAN v6.0 software.
2.4 Expression pattern of ZmSPX family
members under Pi deficiency in
different tissues

Different maize tissues were harvested in the silking stage from

normal-Pi and low-Pi treatments. Total RNA was extracted from
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different maize tissues of 178 inbred lines including leaf, stem,

anther, cornsilk, root, ear, and ear bract according to the TRIzol

Reagent® (Invitrogen, Carlsbad, CA, USA) manufacturer’s

instructions, and reverse transcription was performed using

PrimeScript™ II 1st Strand cDNA synthesis kit (Takara Bio

Inc., Otsu, Japan). Relative quantitative results were calculated

by normalization to the reference gene (GAPDH). At least three

independent experiments were performed, and each experiment

was performed in technical triplicate. All primers used in the qRT-

PCR assay were designed in BEACON DESIGNER 7 and are listed

in Supplementary Table S4. qRT-PCR data were analyzed using

the 2−DDCT method.
2.5 Subcellular localization of
ZmSPX protein

The full-length CDS region was cloned into plant expression

vector pCAMBIA2300 for the ZmSPXs. The homologous

recombination primers with enzyme cutting sites (SmaI and

XbaI) were designed by CEDesignV1.04 software and are shown

in Supplementary Table S5. The subcellular localization was assayed

in tobacco leaves according to the previously reported transit

transformation method (Zhou et al., 2018; Sahito et al., 2020a, b).

The transformed tobacco epidermal cells were observed using the

A1R-si laser confocal microscope (LSCM, Nikon, Tokyo, Japan) to

visualize the green fluorescent protein (GFP) fluorescent signals.

The experiment was repeated at least three times to ensure

consistency of results.
2.6 Yeast two-hybrid assays of ZmSPXs
and ZmPHRs

The full-length CDSs of ZmSPX family members ZmPHR1

(GRMZM2G006477) and ZmPHR2 (GRMZM2G162409) were

amplified using gene-specific primers from the cDNA samples.

The primers were designed using CE design v1.04 and Primer 5.0 to

incorporate (EcorR I, BamH I, and Nde I) restriction sites, as

specified in Supplementary Table S6. Phanta Max high-fidelity

DNA polymerase (Nanjing Vazyme Biotech Co., Ltd.) was used

to amplify the targeted fragments, and then the amplified fragments

were inserted into bait (pGBKT7) and prey (pGADT7) vectors. All

possible combinations were co-transferred into the Y2HGold yeast-

competent cell. pGBKT7-53 and pGBKT7-lam were used as positive

and negative controls, respectively. To exclude the possible

autoactivation of ZmSPX members, a control experiment was

carried out by transformation of loaded bait and prey plasmids

with empty prey and bait plasmids, respectively. After screening on

solid DDO (−Leu/−Trp) medium for 2–4 days at 28°C, selected

monoclonals were inoculated in liquid DDO (−Leu/−Trp) medium

until OD600 = 0.3–0.5. These cultures were inoculated on QDO

(SD/−Ade/−His/−Trp/−Leu/X-a-Gal) medium after 10-fold

dilution. Results were observed after 3–5 days of incubation at

30°C.
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2.7 Overexpression of ZmSPX1 in
A. thaliana

Cloning of the full open reading frame (ORF) of ZmSPX1 into

the vector pCAMBIA3300-35s-PROII MCS-bar and subsequent

transformation into wild-type (WT) Arabidopsis produced several

transformants through the floral dip method previously described

(Clough and Bent, 1998). The seeds of the T0 generation were

harvested and sown in the soil to select positive transgenic

seedlings. Two-week-old seedlings of T1 plants were screened by

spraying with Basta (1/1,000) solution. After the transgenic plants

were harvested, DNA was extracted, and PCR was performed to

confirm the positive ZmSPX1 transgenic lines.
2.8 Phenotypic characterization of ZmSPX1
transgenic lines under low-Pi stress

The seeds of both WT and ZmSPX1 transgenic lines were

sterilized with 75% (v/v) ethanol for 60–90 s and 2% sodium

hypochlorite for 8–15 min, followed by several rinses with

distilled water. Fifty seeds of both WT and transgenic lines were

cultured on 1/2 normal MS agar medium, initially kept at 4°C for 2

days, and subsequently transferred to a greenhouse with a light

cycle of 16 hours at 22°C and a dark cycle of 8 hours at 18°C for 7

days. After 7 days, seedlings were transferred to 1/8 normal MS agar

medium and subjected to different Pi concentrations: 0 mmol/L

(control), low Pi (0.1 mmol/L), normal Pi (1 mmol/L), and high Pi

(10 mmol/L). The seedlings were kept in a controlled environment

for 2 weeks. Phenotypic observations under different Pi

concentrations were recorded after 2 weeks, and their roots were

scanned using aWinRHIZO root-scanning method. All Arabidopsis

seedlings were dried and digested for the detection of P and

nitrogen concentration through a chemical continuous

flow analyzer.
2.9 Sequencing and association analysis of
ZmSPX1 in maize association population

A total of 211 out of 360 inbred lines were screened from the

current Southwest China breeding program (Zhang et al., 2016). These

lines were used for association analysis of ZmSPX1 in maize. The

genomic DNA was extracted from leaves at the seedling stage

according to the cetyltrimethylammonium bromide (CTAB) method

(Porebski et al., 1997). The genomic sequence of ZmSPX1 from the

B73 inbred line was utilized as the reference sequence and obtained

from the Maize Genomic Database (http://www.maizegdb.org). The

targeted fragment was amplified using high-fidelity phanta max

enzyme polymerase (Vazyme Biotech Co., Ltd.). Amplified

fragments were sequenced by TsingKe Biological Technology Co.,

Ltd. Then, the targeted sequence of ZmSPX1 was compared with the

reference genomic sequence of the B73 using DNAMAN v6.0 software,

and the sequences of 211maize inbred lines were trimmed neatly using

Bio-Edit 7.1 software (Strable and Scanlon, 2009). Single-nucleotide

polymorphisms (SNPs) and insertions/deletions (InDels) were
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identified in all tested inbred lines with a <0.05 minor allele

frequency (MAF), and linkage disequilibrium (LD) between two

polymorphic sites was generated using Tassel software v2.1

(Bradbury et al., 2007). Association analysis was carried out between

SNPs and InDels and 22 phenotypic traits using Tassel software

(Bradbury et al., 2007; Luo et al., 2019). The standard mixed linear

model (MLM) including a population structure (Q) and kinship

matrix (K) was chosen to detect the significant association of SNPs

and InDels as described previously (Zhang et al., 2016; Luo et al., 2019).

The association of sites was considered significant at p < 0.05, and the

calculated p-values were converted into −log10
(p value).
3 Results

3.1 Evolutionary tree analysis of SPXs
in plants

The SPX homologous genes ZmSPX1 (GRMZM2G03557),

ZmSPX2 (GRMZM2G171423), ZmSPX3 (GRMZM2G024705),

ZmSPX4 (GRMZM2G122108), ZmSPX5 (GRMZM5G828488),

ZmSPX6 (GRMZM2G065989), and ZmSPX7 (GRMZM2G0836555)

were predicted in our previous study, and genes were located on

different chromosomes (Supplementary Table S7). However, in the

fourth edition of the maize genome, ZmSPX1 and ZmSPX7 were

merged into a single gene. Additionally, preliminary transcriptome

results indicated that ZmSPX7 (GRMZM2G0836555) did not

respond to low-Pi stress (Supplementary Table S7). Hence, in

subsequent experiments, the ZmSPX1–6 in the third version of the

maize genome were exclusively analyzed. Furthermore, ZmSPX1,

ZmSPX2, ZmSPX3, ZmSPX4, ZmSPX5, and ZmSPX6 were

amplified in maize according to the targeted CDS by PCR.

Specifically, the CDS length of ZmSPX1 was 354 bp, encoding a

protein comprising 117 amino acids. Correspondingly, ZmSPX2,

ZmSPX3, ZmSPX4, ZmSPX5, and ZmSPX6 have CDS lengths of

846 bp, 687 bp, 996 bp, 765 bp, and 759 bp, encoding proteins of 281,

228, 331, 254, and 252 amino acids, respectively. Simultaneously, SPX

genes of wheat, soybean, rape, rice, and Arabidopsis were also

searched for in the database (Secco et al., 2012; Yao et al., 2014b;

Du et al., 2017; Kumar et al., 2019). Among them, Arabidopsis has

four SPX genes (AtSPX1–4), rice has six SPX genes (OsSPX1–6),

soybean has nine SPX genes (GmSPX1–9), and rape and wheat have

11 and 15 SPX genes, respectively (Supplementary Table S8). To

deepen our understanding of the evolutionary relationships between

these SPX proteins, a phylogenetic tree based on the SPX proteins in

these plants was constructed (Figure 1). The six SPX genes of maize

were distributed across different clades. Notably, ZmSPX5 and

ZmSPX6 displayed the closest evolutionary relationship, clustering

within the same clade but occupying distinct branch points

(Figure 1). Interestingly, the closest evolutionary relationship

existed between the SPX genes in maize and rice. Specifically,

ZmSPX5 and OsSPX5, ZmSPX3 and OsSPX3, and ZmSPX1 and

OsSPX1 were all located at the same branch point (Figure 1).

Furthermore, while ZmSPX4 and OsSPX4 were positioned at

different branch points on the evolutionary tree, they belonged to

the same clade and were situated at adjacent branch points (Figure 1).
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Remarkably, ZmSPX2 showed a close evolutionary relationship with

BnaA3SPX3 (Figure 1).
3.2 cis-Acting element analysis of
promoter region of ZmSPXs

Generally, the results showed that ZmSPX gene family members

were associated with abscisic acid response, light reaction, methyl

jasmonate (MeJA) reaction, low-temperature response, auxin

response, and regulation of zein metabolism cis-acting elements

(Supplementary Table S9). Specifically, ZmSPX gene family

members also possess unique cis-acting regulatory elements. For

instance, ZmSPX1 contains response elements for gibberellin and

salicylic acid. The ZmSPX2 gene responds to light and is also

involved in defense and stress responses. ZmSPX3 is involved in

the light responsiveness. ZmSPX4 contains a conserved DNA

module (ATCT-motif) involved in photoreaction. ZmSPX5 is

involved in anaerobic induction. ZmSPX6 contains DNA-binding

protein binding sites and responds to light. It also contains MYB

binding sites involved in the regulation of flavonoid biosynthesis

genes. Previous studies have demonstrated that SPXs can interact

with the MYB domain and the CC domain of PHRs (Jia et al., 2023).

Additionally, our results also indicated that ZmSPX gene family

members also contain MYB binding sites or MYB recognition sites
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(Supplementary Table S9). All of these findings suggested that

ZmSPXs may play a role in the regulation of ZmPHRs in

association with certain hormones.
3.3 Expression pattern of ZmSPXs under
low- and normal-Pi conditions

Expression patterns of ZmSPXs were analyzed under low- and

normal-Pi treatments in different tissues of 178 maize inbred lines,

including ear leaf, stem, anther, cornsilk, root, ear, and ear bract

(Figure 2). Notably, the ZmSPXs exhibited higher expression levels in

anthers compared to other tissues but were significantly inhibited

under low-Pi conditions. Meanwhile, ZmSPX1–5 were induced by

low-Pi stress in roots (Figure 2). Collectively, these results showed

that the ZmSPX family members were involved in response to the

low-Pi stress and play a specific function in different tissues of maize.
3.4 Subcellular localization of
ZmSPX proteins

ZmSPX1, ZmSPX3, ZmSPX4, ZmSPX5, and ZmSPX6 were

found to be local ized in the nucleus and cytoplasm

(Supplementary Figure S3). ZmSPX2 was mainly localized in the
FIGURE 1

Phylogenetic tree of SPXs in plants. The phylogenetic tree was created in the Mega 11 program. In plants, proteins harboring the SPX domain are
classified into four families based on the presence of additional domains in their structure, namely, the SPX, SPX-EXS, SPX-MFS, and SPX-RING
families. The SPX proteins of this phylogenetic tree carry only the SPX domain.
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nucleus (Supplementary Figure S3). In a previous study (Xiao et al.,

2021), subcellular localization studies of ZmSPXs in maize

protoplasts revealed that ZmSPX1 (equivalent to ZmSPX5 in this

study) and ZmSPX3 (equivalent to ZmSPX4 in this study) were

localized in both the nucleus and cytoplasm. ZmSPX5 (equivalent

to ZmSPX2 in this study) was exclusively localized in the nucleus.

Moreover, ZmSPX4 (equivalent to ZmSPX6 in this study) and

ZmSPX5 (equivalent to ZmSPX2 in this study) were detected in

both the nucleus and cytoplasm, while ZmSPX6 (equivalent to

ZmSPX1 in this study) was found in the chloroplast. The results

showed partial consistency in the subcellular localization between

tobacco tissue and maize protoplasts. However, some discrepancies

were observed, presumably attributed to variations in cell types

across different species.
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3.5 Interaction between ZmSPXs and
ZmPHRs in maize

In this study, a yeast two-hybrid assay was conducted to identify

the interaction between ZmSPX and ZmPHR proteins. Initially, the

self-activation of ZmSPX and ZmPHR genes was assessed. Our

findings showed that ZmPHR1 and ZmPHR2 demonstrated normal

growth on SD/−Ade/−His/−Trp-deficient medium, while the

ZmSPXs transformed with yeast cells did not grow on the

selective medium (Figure 3A), indicating that the ZmSPXs had no

self-activation effect. Therefore, SPX protein was chosen as bait and

PHR protein as prey to verify the interaction. Furthermore, protein

interaction was examined in various combinations of ZmSPXs,

ZmPHR1, and ZmPHR2. Results revealed that combinations such
A B

FIGURE 3

Yeast two-hybrid (Y2H) assay of ZmSPXs and ZmPHRs. (A) Self-activation analysis of ZmSPXs, ZmPHR1, and ZmPHR2. The medium is SD/−Leu-Trp-
His-Ade (the medium lacking leucine, tryptophan, histidine, and adenine). (B) Y2H assay of ZmSPXs and ZmPHRs. PGADT7 and PGBKT7 vectors were
used for positive and negative control, respectively. Yeast dilution ratio was 1, 1:10, 1:100, 1:1,000, and 1:10,000. The medium is SD/−Ade/−His/−Leu/
−Trp/+X-a-Gal.
FIGURE 2

Expression pattern of ZmSPX family members in different tissues of 178 inbred lines under low- and normal-Pi conditions. Significant differences are
indicated by Student’s t-test: *p < 0.05, **p < 0.01. NS, No significance.
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as ZmSPX1 and ZmPHR2, ZmSPX2 and ZmPHR1, ZmSPX3 and

ZmPHR1, ZmSPX5 and ZmPHR1, and ZmSPX6 and ZmPHR1 all

exhibited robust growth on SD/−Ade/−His/−Leu/−Trp/+X-a-gal
medium, indicating their protein interactions (Figure 3B). It is

suggested that ZmSPXs and ZmPHRs may modulate the maize

response to low-Pi stress at the post-transcriptional level.
3.6 Overexpressing and knocking out
ZmSPX1 in maize revealed its correlation
with Pi absorption and its effect on yield
and yield-related traits

To investigate the function of ZmSPXs in response to low-Pi

stress, overexpression lines of ZmSPXs were created in Arabidopsis.

However, only the overexpression of ZmSPX1 served to enhance

root sensitivity to Pi deficiency and high-Pi conditions in A.

thaliana (Supplementary Figures S4, S5). In order to further

explore the function and role of ZmSPX1, we generated knockout

and overexpressing maize transgenic lines for this gene. Our

experimental results demonstrated a significant reduction in the

hundred-grain weight and grain weight per year in the

overexpressing lines compared to the wild type, while the

knockout lines exhibited a marked increase (Figures 4A, B, D, E).

Moreover, analysis of the P concentration in the grains of the

knockout and overexpressing lines revealed no significant difference

compared to the wild type (Figures 4C, F). We also assessed the P
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concentration in the internode, sheath, and leaf of the transgenic

plants in the field trials. The findings indicated a higher P

concentration in the knockout lines in these tissues than in the

wild-type lines, whereas the overexpressing lines showed lower P

concentrations compared to the wild-type lines (Figures 4G–I).

These results suggested that ZmSPX1 affected the P concentration

in maize stems and leaves and exerted a certain impact on the yield

of maize, but not on the grains.
3.7 Sequence variation and association
analysis of ZmSPX1

To identify significant variations associated with phenotypic

traits, we performed genome sequence amplification on 211

inbred lines and conducted multiple sequence alignments. We

obtained a total of 1,390 bp of sequences, comprising 780 bp

upstream of the initiation codon, 354 bp of the coding region, and

256 bp downstream of the initiation codon (Supplementary Table

S10). We identified a total of 41 variants, which included 34 SNPs

and seven InDels. The average distances between SNPs and InDels

were 40.89 bp and 198.57 bp, respectively. The sequence variation

frequencies varied across regions, with the highest frequency

observed in the upstream sequence of the initiation codon

(0.038) and the lowest in the coding region (0.006)

(Supplementary Table S10). By utilizing a 200-bp sliding

window with a 50-bp step size, we analyzed the nucleotide
G

H
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FIGURE 4

Phenotypic identification of ZmSPX1 transgenic maize materials. (A–C) Statistical analysis of differences in hundred-grain weight, grain weight per
ear, and P concentration in grain between ZmSPX1 overexpressing lines and wild-type lines. (D–F) Statistical analysis of differences in hundred-grain
weight, grain weight per ear, and P concentration in grain between ZmSPX1 knockout lines and wild-type lines. (G–I) The internode P concentration,
sheath P concentration, and leaf P concentration in ZmSPX1 overexpressing lines, knockout lines, and wild-type lines. Significant differences are
indicated by Student’s t-test: *p < 0.05, **p < 0.01.
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diversity (p × 1,000) of the ZmSPX1. We observed the overall

nucleotide diversity to be 0.009, with the upstream sequence of the

initiation codon exhibiting the highest diversity (0.013) among all

regions and the coding region displaying the lowest diversity

(0.002). Additionally, we investigated the selection pressure of

ZmSPX1 using Tajima’s D, Fu and Li’s D*, and F* tests

(Supplementary Table S10). The results showed that the

upstream sequences displayed positive values, indicating a mode

of balanced selection in their sequence evolution, with both

Tajima ’s D and Fu and Li ’s F* tests being significant

(Supplementary Table S10). Conversely, the coding region and

downstream showed negative values, suggesting that these regions

have experienced either negative selection or population

expansion (Supplementary Table S10).

Additionally, to further investigate the relationship between

sequence variations of ZmSPX1 and the phenotype in the maize

seedling stage, we employed an MLM for candidate gene

association analysis. We identified, under normal-Pi treatment,

37 markers (30 SNPs and seven InDels) as significantly

associated with 17 traits, explaining 2.6% to 8.6% of the

phenotypic variation (Supplementary Table S11). We found,
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under low-Pi treatment, a total of 10 markers to be

significantly correlated with 13 traits, with R2 ranging from

2.8% to 5.4% (Supplementary Table S12). Moreover, 37

markers were significantly correlated with 16 traits of low-Pi

tolerance index, explaining 2.8% to 20.2% of the phenotypic

variation (Figures 5A, B; Supplementary Table S13). As the low-

Pi tolerance index integrated traits under low- and normal-Pi

conditions, we utilized all sequence variant sites significantly

associated with the low-Pi tolerance index for haplotype division.

First, LD analysis revealed the presence of multiple LD blocks

with high linkage relationships (Figure 5C). Then, we categorized

all variant sites into five haplotypes (MAF > 0.05) and conducted

comparisons among the different haplotypes (Figure 5D;

Supplementary Table S14). The findings indicated that in the

low-Pi tolerance index of root traits, the fresh weight of the

crown root index of Hap5 was significantly higher than that of

Hap1, Hap2, and Hap4, while the fresh weight of the seminal root

index was higher than that of Hap3 and Hap1. Additionally, the

root volume of Hap5 was significantly higher than that of Hap1.

Furthermore, we observed that the dry weight of the whole plant

index of Hap5 was significantly higher than that of other
D
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C

FIGURE 5

Candidate gene association analysis of ZmSPX1 with traits of low-Pi tolerance index. (A, B) The results of the candidate gene association analysis.
(C) Linkage disequilibrium (LD) heatmap of ZmSPX1. (D) Phenotypic difference between different haplotypes. The abbreviation for each trait: primary
root length (PRL), plant height (PH), number of seminal roots (NOSR), fresh weight of overground (FWOO), fresh weight of seminal root (FWOSR), dry
weight of root (DWOR), fresh weight of crown root (FWOCR), number of leaves (NOL), number of root forks (F), root/shoot ratio (R/S), dry weight of
leaves (DWOL), fresh weight of whole plant (FWOWP), dry weight of whole plant (DWOWP), total length of root (TLOR), root surface area (SA), and
root volume (RV). TLP means the low-Pi tolerance index (Low-Pi/Normal-Pi). Means with the same letter in (D) are not significantly different at p <
0.05 according to one-way ANOVA followed by Tukey’s multiple comparison test.
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haplotypes. Based on these results, it can be inferred that Hap5

enhances biomass production by promoting root development.
4 Discussion

4.1 The maize transgenic lines of ZmSPX1
exhibited significant impacts on P
concentration and yield

Pi homeostasis is crucial for plant growth and development,

with ZmSPX1 playing a pivotal role in Pi uptake by plants from both

the source and reservoir. Consequently, we first analyzed the

phenotypes in ZmSPX1 overexpression transgenic A. thaliana and

WT under different Pi concentration treatments. Under both Pi

deficiency and high-Pi conditions, we observed a more robust root

system development in the WT plants, whereas the growth of the

root system was inhibited in the overexpressing (OE) lines. These

results indicated that overexpression of the ZmSPX1 gene in A.

thaliana enhanced the sensitivity of roots to both Pi deficiency and

high-Pi conditions. Therefore, we proceeded to construct

transgenetic lines for ZmSPX1 in maize. The knockout ZmSPX1

in maize led to an increase in P content in the stems and leaves.

Additionally, a significant rise in hundred-grain weight and grain

yield per ear was also observed in the knockout maize lines.

Conversely, overexpression of ZmSPX1 in maize demonstrated

contrasting phenotypes. Studies in dicotyledonous model plants

have demonstrated that SPXs, functioning as negative regulators,

can impede the central regulator PHR1 from acting on downstream

low-Pi response genes (Jia et al., 2023). Conversely, research reports

in monocotyledonous model plants such as A. thaliana and soybean

suggest that SPXs serve as positive regulators. Overexpression of

SPX1 induced the expression of low-Pi response genes and thus

increased plant P concentration (Duan et al., 2008; Yao et al.,

2014a). These results indicated that the expression patterns and

functions of the SPX1 gene in maize and A. thaliana are different,

which may also explain why the P concentration in A. thaliana

overexpressing lines of SPX was higher than that in wild-type plants

under normal-Pi conditions.

Additionally, a previous study demonstrated that OsPHO1;2

and ZmPHO1;2 play a crucial role in Pi allocation during grain

filling. The activity of ADP-glucose pyrophosphorylase (AGPase)

was inhibited in the knockout mutants of OsPHO1;2 and

ZmPHO1;2, resulting in a defect in grain filling and a reduction

in hundred-grain weight (Ma et al., 2021). Regarding the plant Pi

signaling pathway (Wang et al., 2021b), the E2 ubiquitin-binding

enzyme PHO2 can degrade PHO1 through its N-terminal SPX

domain. The mRNA level of PHO2 was regulated by the cleavage of

miR399. PHR1 can bind to the promoter region of miRNA399 to

modulate its expression. Therefore, the relationship between SPX

proteins and PHO1 was established through this network. However,

further research is needed to investigate whether the impact of

ZmSPX1 on maize grain yield, as observed in this study, is related

to ZmPHO1.
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4.2 Association analysis of the ZmSPX1
gene: implications for low-Pi signaling
pathway and marker development for
efficient Pi utilization in maize

To further investigate the relationship between the ZmSPX1

gene and low-Pi stress response-related traits, we conducted an

association analysis utilizing sequence variations of the gene in the

population and integrated the corresponding phenotypes. The

results revealed that variant sites in ZmSPX1 are significantly

associated with numerous low-Pi-related traits. This finding

complements the findings from the phenotypic identification

experiments in Arabidopsis involving the overexpression of the

ZmSPX1 gene, providing strong evidence for the pivotal role of the

ZmSPX1 gene in the low-Pi stress response pathway in maize.

Additionally, we identified beneficial haplotypes based on 37

markers significantly associated with low-Pi tolerance indexes.

Among these, Hap5 manifested a notable low-Pi tolerance

phenotype, presenting an opportunity for the development of

low-Pi-tolerant maize materials based on this outcome, and the

identification of novel markers for screening purposes.
5 Conclusion

In conclusion, our study delineated the evolutionary

relationship of maize SPXs with counterparts in other plants,

particularly revealing a close relationship and collinearity with

rice SPX genes. The presence of hormone-responsive elements in

ZmSPXs promoters suggests their involvement at the nexus of

hormone and Pi signaling. Expression pattern analyses indicated

that ZmSPXs genes were upregulated under low-Pi stress, with

pronounced expression in anthers and roots, and were localized to

the nucleus and cytoplasm. The interaction of ZmSPXs with PHR

proteins underscored the significance of SPXs in maize’s low-Pi

stress signaling pathways. Specifically, overexpression of ZmSPX1

can enhance root sensitivity to Pi deficiency and high-Pi

conditions in A. thaliana, emphasizing the pivotal role of the

SPX gene family in the Pi stress response in maize. Finally,

ZmSPX1 transgenic maize lines exhibited changes in P

concentration in different tissues and yield, demonstrating that

ZmSPX1 plays an important role in regulating the transport and

distribution of P in maize and ultimately influencing yield. These

findings will provide valuable information for further

investigations into the mechanisms of the SPX-mediated Pi

signaling pathway.
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SUPPLEMENTARY FIGURE 1

CRISPR/Cas9-induced mutation in the ZmSPX1 gene.

SUPPLEMENTARY FIGURE 2

Detection of expression level of ZmSPX1 gene in overexpressing plants.

Significant differences are indicated by Student’s t-test: *P < 0.05, **P < 0.01.

SUPPLEMENTARY FIGURE 3

Subcellular localization of ZmSPXs in tobacco epidermal. GFP, green

fluorescence protein.

SUPPLEMENTARY FIGURE 4

Detection of overexpression of the ZmSPX1 in Arabidopsis thaliana. M: DNA
marker BM2000.

SUPPLEMENTARY FIGURE 5

Characterization of Arabidopsis thaliana ZmSPX1-overexpression plants in

response to low-Pi conditions. (A) TheWT and OE seedlings were subjected
to treatments with P concentrations of 0 mM, 0.1 mM, 1 mM, and 10 mM for

14 days. (B-C) The expression of AtPHR1 and ZmSPX1 in WT and OE. The
numbers 1 and 2 on the abscissa represent different independent replicates.

(D-F) Measurement of root traits. Significant differences are indicated by
Student’s t-test: *P < 0.05, **P < 0.01. Under Pi-free and high-Pi conditions,

only the ZmSPX1 overexpression lines exhibited negative regulation of root

growth when compared with the WT. Phenotypic of OE and WT was
analyzed under Pi deficiency (0 mmol/L), low-Pi (0.1 mmol/L), normal-Pi

(1 mmol/L) and high-Pi (10 mmol/L) treatments. The results indicated that,
except under low-Pi conditions, the total root length, total root projected

area, and total root surface area of the OE were significantly lower than
those of the WT. Furthermore, the expression patterns of the AtPHR1 and

ZmSPX1 genes were analyzed in the WT and OE plants. The results

demonstrated significant downregulation of the AtPHR1 in the OE plants
and substantial upregulation in the WT plants. In contrast, ZmSPX1 was

upregulated in the OE plants and downregulated in the WT plants.
Concurrently, we also examined the nitrogen and P concentration of the

OE and WT (Supplementary Figure S6). Under low-Pi conditions, the
nitrogen concentration in the OE was notably lower than that in the WT.

However, under 1mM Pi concentration treatment, the nitrogen

concentration in the OE was significantly higher than in the WT, while at
10mM Pi concentration condit ions, the difference in nitrogen

concentration between OE and WT was not statistically significant. Under
Pi deficiency and low-Pi conditions, there was no significant difference in P

concentration between the OE and WT. Nevertheless, at Pi concentrations
of 1mM and 10mM, the P concentration in the OE was markedly elevated

compared to that in the WT. Owing to the exceptionally low biomass of

Arabidopsis tissues, there was a potential for deviations in the measurement
of nutrient concentrations, and no consistent results were observed with

regard to root traits. As a result, this study advanced to develop
overexpression and knockout lines for ZmSPX1 in maize to investigate the

gene’s impact on P concentration in maize tissues.

SUPPLEMENTARY FIGURE 6

The nitrogen and P concentrations of ZmSPX1 overexpression Arabidopsis
l ines under varying Pi levels. (A) Nitrogen concentrations. (B)
P concentrations.
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