About this Research Topic
Recent work suggests that molecular recognition can be synthetically produced by chemists, for example, molecular imprinting and supramolecular chemistry.
Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with memory of the template molecules to be used in molecular recognition. To date, molecular imprinting has proven to be the most efficient and versatile technique for incorporating specific molecular recognition sites into polymers leading to polymeric artificial receptors. The resultant molecularly imprinted polymers (MIPs) have found use in a wide range of applications encompassing the fields of separation processes (chromatography, capillary electrophoresis, solid phase extraction, and membrane separation), immunoassays, antibody mimics, artificial enzymes, sensors, catalysis, organic synthesis, drug delivery, drug development, and even cell imaging.
In addition, chemists have also demonstrated that artificial supramolecular systems can be designed that exhibit molecular recognition. For example, the crown ethers, one of the earliest synthetic receptor, are capable of selectively binding specific cations. Undoubtedly, supramolecular chemistry is another important molecular recognition domain that has also showen plenty of applications, including materials technology, catalysis, medicine, data storage and processing.
Therefore, this Research Topic is intended to provide an opportunity for researchers from different perspectives to publish recent advances in molecular recognition. Researchers using different chemical methods (including molecular imprinting, host-guest chemistry, coordinative chemistry and supramolecular chemistry, etc.) and demonstrating various applications (including molecular sensing, separation, catalysis, drug delivery, materials design, cell recognition, etc.) are encouraged to contribute to this Research Topic. In addition to original research articles, reviews and opinions/perspective articles on promising future directions are welcome. We hope that researchers from different areas, such as polymer chemistry, organic chemistry, analytical chemistry, material chemistry, and even biochemistry , biotechnology, etc., will be represented in this Research Topic.
Keywords: Molecular imprinting, Host-guest chemistry, Coordinative chemistry, Cell recognition, Supramolecular assembly
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.