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Editorial on the Research Topic
New progress in cancer biomarkers and therapy

As we are aware, cancer poses a significant threat to human health, with projections
suggesting it may surpass cardiovascular disease as the primary cause of premature death in
many countries in the coming years, as per the latest data from “Global Cancer Statistics
2020” (Sung et al., 2021). Despite that sounds pretty terrible, there’s optimism surrounding
advancements in tumor biology that could potentially improve this scenario (Nakamura
et al., 2021; Bai et al., 2023; Loi et al., 2023). Of notable importance are cancer biomarkers,
which carry substantial clinical implications, aiding in early detection, monitoring
treatment progress, and predicting cancer prognosis (Sarhadi and Armengol, 2022;
Wang and Deng, 2023). Over the past several decades, analytical techniques in tumor
biomarker research are essential tools for identifying, quantifying, and characterizing
molecules or proteins that can serve as indicators of cancer presence, progression, or
response to treatment. These techniques encompass a range of methods, each offering
unique advantages and applications, including but not limited (Jayanthi et al., 2017; Japp
et al., 2021; Eftekhari et al., 2022; Lee et al., 2023): immunohistochemistry (IHC), enzyme-
linked immunosorbent assay (ELISA), flow cytometry, fluorescent probe, biosensor,
polymerase chain reaction (PCR), next-generation sequencing (NGS), mass
spectrometry (MS), surface enhanced raman spectroscopy (SERS), liquid biopsy,
bioinformatics, etc. These analytical techniques play a crucial role in the discovery,
validation, and clinical application of tumor biomarkers, contributing to improved
cancer diagnosis, prognosis, and treatment outcomes. In this Research Topic, our focus
lies on the theme of “cancer biomarkers,” encompassing various aspects such as: 1) the
exploration of new cancer biomarkers, which includes novel analytical techniques,
identification of new molecules or proteins, and their association with emerging cancer
types; 2) understanding the biological properties inherent to cancer biomarkers; 3)
elucidating the mechanisms of action and biological significance of these biomarkers;
and 4) exploring how biomarkers can inform chemotherapy and biotherapy strategies. In
addition to traditional methods, cutting-edge tools and concepts such as proteomics,
bioinformatics, machine learning, artificial intelligence (AI), and single-cell sequencing
play pivotal roles in the discovery and comprehension of cancer biomarkers. Particularly
noteworthy is the potential of cancer biomarkers in shaping clinical approaches to cancer
prevention and treatment, warranting in-depth investigation.

OPEN ACCESS

EDITED AND REVIEWED BY

Giovanni Nigita,
The Ohio State University, United States

*CORRESPONDENCE

Guohui Sun,
sunguohui@bjut.edu.cn

Chengwei He,
chengweihe@um.edu.mo

Jianhua Wang,
wangjianhua@shouer.com.cn

RECEIVED 20 February 2024
ACCEPTED 23 February 2024
PUBLISHED 07 March 2024

CITATION

Sun G, He C and Wang J (2024), Editorial: New
progress in cancer biomarkers and therapy.
Front. Mol. Biosci. 11:1388872.
doi: 10.3389/fmolb.2024.1388872

COPYRIGHT

© 2024 Sun, He and Wang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Editorial
PUBLISHED 07 March 2024
DOI 10.3389/fmolb.2024.1388872

5

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1388872/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1388872/full
https://www.frontiersin.org/researchtopic/53718
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1388872&domain=pdf&date_stamp=2024-03-07
mailto:sunguohui@bjut.edu.cn
mailto:sunguohui@bjut.edu.cn
mailto:chengweihe@um.edu.mo
mailto:chengweihe@um.edu.mo
mailto:wangjianhua@shouer.com.cn
mailto:wangjianhua@shouer.com.cn
https://doi.org/10.3389/fmolb.2024.1388872
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1388872


In this Research Topic, we successfully published 12 high-quality
papers that will be of interest for researchers in cancer biomarkers. Of
the 12 papers, seven are related to the cancer risk prediction, three are
related to the potential of small metabolites as cancer biomarkers, the
application of fluorescence in situ hybridization (FISH) in cancer
diagnosis and the influencing factors of caner biomarkers. Another
two papers are reviews that summarize the biological implications of
potential cancer biomarkers.

The opening paper conducted by Yang et al. highlights the
significance of M2 macrophage-related genes in both the treatment
and prognosis of pancreatic cancer. Using multiple bioinformatic
tools, the authors constructed the risk predictive models and
revealed that the risk levels were closely associated with tumor
mutational burden, immune checkpoint blockade related genes, and
immune cells. Moreover, they predicted the potential associations
between different risk models and the efficacy of chemotherapeutic
agents (e.g., metformin, paclitaxel and lapatinib), and underscored
the utility of WGCNA-based analysis of M2 macrophage-related
genes in prognosticating outcomes for pancreatic cancer patients
and suggested novel avenues for immunotherapy in this context. In
the next work, Deng et al. explored the role of lysine acetylation-
related genes (LARGs) in oral squamous cell carcinoma (OSCC)
using bioinformatic methods. They developed a lysine acetylation-
related prognostic model using TCGA OSCC datasets and revealed
that patients with lower risk scores had better prognoses in both the
overall cohort and within the subgroups, thus offering a new model
for classifying OSCC and determining its prognosis. Xie et al.
examined Centrosomal Protein 55 (CEP55) as a cancer-testis
antigen, assessing its expression in tumors and its impact on
prognosis. They developed a CEP55-based model for
hepatocellular carcinoma (HCC), linking high CEP55 levels to
increased cell cycle activity, proliferation, and immune pathways.
CEP55 correlated with immune modulators and showed promise in
predicting responses to immune checkpoint inhibitors (ICIs). The
study also associated CEP55 expression with specific HCC
molecular subtypes and devised a nomogram for survival
prediction. Overall, CEP55 may serve as a prognostic biomarker
and predictor of ICI efficacy, potentially influencing tumor immune
microenvironments across various cancers. In head and neck
squamous cell carcinoma (HNSCC), tumor microenvironment
(TME) also plays an important role in tumor progression,
however, the relationship between TME characteristics and the
prognosis of HNSCC patients remains poorly understood. Wan
et al. utilized the “estimate” R package to calculate the immune and
stromal cell scores and identify seven new markers. They
constructed a risk model categorizing HNSCC samples into low-
and high-risk groups, validated for accuracy using Kaplan-Meier
survival and ROC analyses. CIBERSORT algorithm revealed
significant differences in immune cell infiltration between risk
groups. These findings shed light on TME roles and unveil new
prognostic biomarkers for HNSCC patients.

In acute myeloid leukemia (AML), ferroptosis offers potential
against drug resistance. Using TCGA data, Wu et al. created a
prognostic model incorporating eight prognosis-related ferroptosis
genes (PRFGs) via LASSO regression. The constructed nomogram,
integrating LASSO score, age, and cytogenetic risk, accurately
predicts overall survival. Low-risk patients demonstrate
significantly improved survival. Gene expression analyses reveal

the relevance of PARPs with different clinical subgroups and the
overall survival in AML patients. Immune-related pathways
influence prognosis disparities, suggesting a TME role.
Combining PARP inhibitors with ferroptosis inducers shows
promise as an AML therapy. This comprehensive approach aids
in patient stratification and prognosis, offering novel treatment
avenues. In another paper, Geng et al. developed an extracellular
matrix (ECM)-based prediction model for ovarian serous
adenocarcinoma survival using AI techniques. Analyzing TCGA-
OV data, 15 key ECM genes were identified, validating the ECM risk
score’s predictive efficacy. Multivariate COX analysis revealed
independent prognostic factors. High ECM risk score patients
responded better to thyroglobulin-targeted immunotherapy, while
low-risk patients benefitted from RYR2 gene-related treatment.
Low-risk patients showed elevated immune checkpoint gene
expression and immunophenoscore levels, indicating better
immunotherapy response. The ECM risk score serves as a
reliable tool for immunotherapy sensitivity assessment and
ovarian cancer prognosis prediction. Zhao et al. reported an
interesting study aimed to identifying clinical-significant
circadian clock (CC)-related genes in ovarian cancer (OC). Using
TCGA data, 12 CC genes was analyzed to generate a Circadian Clock
Index (CCI). High CCI correlated with poor overall survival (OS)
and immune biomarkers. WGCNA identified a CCI-correlated gene
module, yielding 15 hub genes significantly associated with OS and
immune cell infiltration. Upstream regulators such as transcription
factors andmiRNAs of key genes were also predicted. These findings
reveal 15 crucial CC genes having indicative value for OC prognosis
and immune microenvironment, offering insights into OC
molecular mechanisms.

Small molecule metabolites may serve as ovarian cancer
biomarkers, yet causal links are unclear. Utilizing Mendelian
randomization, Chang et al. identified 242 single nucleotide
polymorphisms (SNPs) correlated with small molecule
metabolites as instrumental variables to elucidate the causal
relationship. Six metabolites correlated with reduced ovarian
cancer risk, including hexadecenoylcarnitine and
methioninesulfoxide. Fifteen metabolites were associated with
subtype cancers; methionine sulfoxide and tetradecanoyl carnitine
linked to reduced risk in clear cell and high-grade serous cancers,
while tryptophan elevated risk in endometrioid cancer. These
findings suggest potential biomarkers for early detection and
highlight metabolites’ etiological roles, warranting further
investigation into underlying mechanisms. UroVysionTM FISH,
often used for urothelial carcinoma (UC), may also detect
carcinoma of non-urothelial lineages (CNUL). Ke et al. found
that 64% of CNUL cases showed positive urine FISH results.
Histological FISH results aligned with urine FISH in most cases,
suggesting FISH’s applicability in CNUL diagnosis. Squamous cell
carcinoma antigen (SCCA) is a specific biomarker of squamous cell
carcinoma, however, the elevation of SCCA in pneumonia patients
without malignancy has not been studied. Wang et al. analyzed the
influencing factors of SCCA elevation in community-acquired
pneumonia patients. Among 309 community-acquired
pneumonia (CAP) patients with normal serum indicator levels,
46.3% showed elevated SCCA. Age inversely affects SCCA
elevation (OR = 0.97), while higher body temperature
significantly increases risk (OR = 3.75). Patients in higher
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quartiles of body temperature face substantially elevated SCCA risk.
Thus, age and body temperature influence SCCA levels in CAP
patients, with higher temperatures indicating heightened SCCA risk.

The last two papers are reviews by Yang et al. and Huang et al.,
respectively. Tyrosineprotein kinase-1 (ROS1) gene rearrangements
occur in 0.9%–2.6% of non-small-cell lung cancers (NSCLCs).
Targeting ROS1 can effectively inhibit tumor growth, offering
clinical benefits. Yang et al. synthesizes insights into
ROS1 rearrangements in NSCLCs, covering their oncogenic
mechanisms, prevalence, detection methods, molecular features,
therapeutic options, and drug resistance mechanisms. Abnormal
translation regulation, crucial in cancer, involves eukaryotic
translation initiation factor 4A1 (eIF4A1), an RNA helicase. It is
regulated by microRNAs and long non-coding RNAs, impacting
tumor cell proliferation and metastasis. Huang et al. summarized
that eIF4A1 could serve as a biomarker for tumor diagnosis, staging,
and outcome prediction, aiding precision medicine and targeted
therapy. Small molecule inhibitors also show promise in clinical
practice, supporting eIF4A1’s therapeutic potential.

In conclusion, we sincerely hope that the articles included in this
Research Topic on cancer biomarkers will contribute to the research
on cancer prevention and treatment, particularly by providing
valuable insights into early diagnosis, biomarker-based therapy,
and effective prognosis for tumors.
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An artificial intelligence prediction
model based on extracellular
matrix proteins for the prognostic
prediction and
immunotherapeutic evaluation of
ovarian serous adenocarcinoma

Tianxiang Geng1, Mengxue Zheng2, Yongfeng Wang3,
Janne Elin Reseland1 and Athina Samara1*
1Department of Biomaterials, FUTURE, Center for Functional Tissue Reconstruction, Faculty of Dentistry,
University of Oslo, Oslo, Norway, 2Laboratory of Reproductive Biology, Faculty of Health and Medical
Sciences, University of Copenhagen, Copenhagen, Denmark, 3Department of Obstetrics and
Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai,
China

Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating
from epithelial cells and one of the most common causes of death from
gynecological cancers. The objective of this study was to develop a prediction
model based on extracellular matrix proteins, using artificial intelligence
techniques. The model aimed to aid healthcare professionals to predict the
overall survival of patients with ovarian cancer (OC) and determine the efficacy
of immunotherapy.

Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection
was used as the study dataset, whereas the TCGA-Pancancer dataset was used for
validation. The prognostic importance of 1068 known extracellular matrix proteins
for OCwere determined by the Random Forest algorithm and the Lasso algorithm
establishing the ECM risk score. Based on the gene expression data, the
differences in mRNA abundance, tumour mutation burden (TMB) and tumour
microenvironment (TME) between the high- and low-risk groups were assessed.

Results: Combining multiple artificial intelligence algorithms we were able to
identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5,
TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1,
FGF23, and confirm the validity of this ECM risk score for overall survival
prediction. Several other parameters were identified as independent prognostic
factors for OC by multivariate COX analysis. The analysis showed that
thyroglobulin (TG) targeted immunotherapy was more effective in the high
ECM risk score group, while the low ECM risk score group was more sensitive
to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM
risk scores had higher immune checkpoint gene expression and
immunophenoscore levels and responded better to immunotherapy.

Conclusion: The ECM risk score is an accurate tool to assess the patient’s
sensitivity to immunotherapy and forecast OC prognosis.
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Introduction

Ovarian cancer (OC) is one of the most common gynaecological
malignancies. According to the Global Cancer Observatory of the
World Health organization (WHO) international agency for
research on cancer, a total of 207,252 new fatalities due to
ovarian cancer were reported in 2020, placing it 14th out of
36 different types of tissue cancers (World Health Organization
International Agency for Research on Cancer, 2020). Most ovarian
malignancies originate from epithelial cells, and the most prevalent
histological subtype of epithelial ovarian cancer is ovarian serous
adenocarcinoma (Heintz et al., 2006). Early OC detection is the best
treatment scenario, but as OC presents with nonspecific symptoms
and reflects detection, most patients are given a stage III diagnosis,
indicating that the disease has spread throughout the peritoneum
and/or has involved the lymph nodes (Prat and FIGO Committee on
Gynecologic Oncology, 2014). A multi-stage evaluation is necessary
to manage OC, to determine personalized treatment, and to predict
the presence of distant metastases, tumour stage and prognosis.

As a new treatment option, immunosuppressants, address the
tumour microenvironment (TME) (Pitt et al., 2016). For ovarian
cancer, this cutting-edge therapeutical approach is recently being
studied and applied (Yang et al., 2022, 2023). Despite the fact that
many variables have been demonstrated to predict the therapeutic
effectiveness of immunosuppressant’s, the accuracy of this strategy
still needs to be improved (Gibney et al., 2016). Tumour
development, spread and invasion are all dependent on the TME
(Schreiber et al., 2011; Lei et al., 2020), which contains multiple cell
types, including stroma, vasculature, secretory factors, surrounding
stroma and the internal environment of the tumour cells. As the
TME is primarily determined by the genomic landscape of the
tumour, several algorithms have been developed to predict tumour
purity and estimate the abundance of tumour-infiltrating immune
cells based on gene expression profiles (Tamborero et al., 2018).
These include CIBERSORT, MCP, Xcell, EPIC, ESTIMATE, Timer,
IPS, and QuantiSeq.

As an essential component of TME, the non-cellular network
surrounding the cells, known as the extracellular matrix (ECM), is
tightly associated to the pathophysiology of healthy and cancerous
tissue (Frantz et al., 2010; Henke et al., 2020; Zhu et al., 2022). This
renders ECM a crucial study niche for the initiation, progression,
dissemination, and furthermore treatment and prognosis of
epithelial ovarian cancer (Ween et al., 2011). The metabolic
disruption of various ECM protein-related factors derived from
epithelial cells during tumorigenesis leads to the formation of a
pro-tumorigenic microenvironment that favors tumor growth and
metastasis. This is followed by tumour cell-mediated ECM
remodelling, which ultimately promotes the survival of tumour
cells at the expense of healthy tissue (Zigrino et al., 2005).
Therefore, ECM proteins, which have bidirectional effects on
the generation, recurrence and metastasis of tumour cells
(Valmiki et al., 2021 should be considered key players to the
treatment and prognosis of tumours (Donelan et al., 2022; Zhu
et al., 2022).

An artificial intelligence algorithm, Random Forest (RF) has
been recently employed to predict disease progression by virtue of its
high performance and interpretability (Wu et al., 2021). A
convincing predictive model can be constructed by combining
analysis of gene expression data with diagnostic and therapeutic
data. This model could be effective at forecasting patient survival, the
course of the tumour, and recurrence following various types of
treatment (Lin et al., 2022; Miao et al., 2022). Big data machine
learning may also also be applied. Despite the recent advances in
machine learning methods for ovarian cancer survival analysis,
integration of multi-omics data with immunotherapy targeting is
an approach that has not been thoroughly explored (Henderson
et al., 2016; Belotti et al., 2022). This approach could be
advantageous for the identification of potential therapeutic
targets and may lead to improved outcomes for ovarian cancer
patients.

In this study we used artificial intelligence algorithms to
integrate multifaceted omics data with immunotherapy targets in
ovarian cancer. Specifically, we employed the Random Forest and
Lasso algorithms to process gene expression and survival data from
the TCGA database. The tumour risk score was calculated to
construct features for predicting OC prognosis and
immunotherapy efficacy.

Materials and methods

Datasets and data quality control

Transcriptome expression profiles, somatic mutation data and
clinical survival data were downloaded from the TCGA database
(Supplementary Table S1). FPKM expression data from the UCSC
XENA Project (https://xenabrowser.net/datapages/), which
included the TCGA cancer gene expression sequencing data,
were analysed together to increase the reliability of data analysis.
Normal ovary tissue transcriptome sequencing data from the GTEx
database (https://www.gtexportal.org/home/) were used as
representative normal/healthy tissue data. We utilized the
immune cell markers used in the Tumour MicroEnvironment
(TME) analysis following the method described at Bindea et al.
(2013) and ECM-related gene information was obtained from Naba
et al. (2016). Following quality control measures on gene expression
data and somatic mutations (SNPs and small INDELs), we filtered
out 373 valid sample samples from the pool of 758 valid patient
survival datasets of the TCGA-OV collection.

Construction and evaluation of an ECM risk
score model related to survival

The TCGA-OV data were randomly partitioned into a training
set (n = 298) and a test set (n = 75). We used the randomForestSRC
package (3.1.1) (Ishwaran et al., 2022) to down-size the 1068 ECM
genes including survival information of OC patients. Further
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dimensionality reduction was performed by the Lasso algorithm in
the glmnet package (4.1–2) (Friedman et al., 2010). Survival analysis
of key genes in OVwas performed with multivariate COX regression
in the survival package (3.2–10) (Therneau, 2015).

Differential expression and enrichment
analyses

Two groups of patients with high and low-risk scores were generated.
To calculate the differential gene expression between cancer data and
normal tissue datawe usedDESeq2 v.1.36.0 (Love et al., 2014) inR (4.2.1).
We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes
andGenomes (KEGG) enrichment analyses usingClusterProfiler v.3.14.3
(Yu et al., 2012) in R (3.6.3). To find BP term enrichment, the Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005) of ranked lists of
differentially expressed genes was carried out. Significant enrichment in
GSEAanalysis is achievedwhen the False discovery rate (FDR) is 0.25 and
an adjusted p-value of 0.05.

Tumour microenvironment (TME) and
somatic mutation analyses of the TCGA-OV
dataset

We used the “maftools” package (2.12.0) (Mayakonda et al.,
2018) for the calculation and evaluation of somatic mutations for
each patient. The “drugInteractions” function was employed to
analyse the correspondence between mutated genes and currently
available genetic drugs based on the DGIdb database (Griffith et al.,
2013). We further used multiple algorithms built into the IOBR
package (0.99.9) (Zeng et al., 2021) to assess the immune cell
infiltration level, including B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells. Then we explored the
variations in immune infiltration and somatic mutation between
groups with high and low-risk scores.

Statistical analysis

The differences between the two datasets were determined using the
Mann-Whitney U test (also known as the Wilcoxon rank sum test) and
independent t-test. To evaluate between-group differences, one-way
analysis of variance (ANOVA) with the Kruskal–Wallis test and chi-
square test were utilised. Correlation analysis was conducted using non-
parametric Spearman correlation tests. The connection between potential
genes and overall survival was examined using a single-variable Cox
regression analysis (OS). The difference was shown to be statistically
significant when p < 0.05 was used (p < 0.05 *; p < 0.01 **; p < 0.001 ***).

Results

Screening and validation of ECM-related
prognostic key genes

The clinicopathological characteristics of 379 OC patients in the
TCGA database, are summarized in Table 1. The random forest

algorithm was used to decrease the training set. 147 genes were
screened out of 1068 ECM-related genes, and the accuracy of this
survival prediction model was validated using the test set. The
receiver operating characteristic curve (ROC) for the training set
and test set were plotted separately, with the area under the curve
(AUC) of 0.810 for the training set and 0.684 for the test set
(Figure 1A).

The results of “lambda.min” of the Lasso algorithm were
employed and 15 key genes closely related to prognosis were
obtained (Figures 1B, C). These were Ameloblastin (AMBN),
Chemokine (C-X-C motif) ligand 11 (CXCL11), Peptidase
inhibitor 3 (PI3), Chondroitin sulfate proteoglycan 5 (CSPG5),
Transforming growth factor (TGFBI), Tolloid-like 1 (TLL1),
Endothelial cell-specific molecule 1 (ESM1), Matrix
metallopeptidase 17 (MMP17), Angiopoietin-like 4 (ANGPTL4),
Fibroblast growth factor 23 (FGF23), Hemicentin 2 (HMCN2),
Interleukin 12A (IL12A), C-type lectin domain family 5, member
A (CLEC5A), FRAS1 related extracellular matrix protein 2 (FREM2),
serine protease 1 (PRSS1), and the gen prediction model with the
risk coefficient of 15 genes given by the Lasso algorithm was
constructed:

Risk score � TGFBI p 0.0092( ) + CSPG5 p −0.0307( )
+ PI3 p 0.0481( ) + CXCL11 p −0.1219( )
+MMP17 p 0.0512( ) + IL12A p 0.0084( )
+ ESM1 p −0.0317( ) +HMCN2 p 0.0707( )
+ TLL1 p 0.4759( ) + FGF23 p 0.0328( )
+ PRSS1 p −0.0277( ) + ANGPTL4 p 0.0245( )
+ FREM2 p −0.0014( ) + CLEC5A p 0.0311( )
+ AMBN p 1.2734( )

The Cox model was used to verify the predictive ability of the
15 key genes for the 1-year, 3-year and 5-year overall survival (OS),
and the key genes fit well with the ideal line at the three-time points
(Figure 1D). The TCGA-OV sample was divided into two groups
with high and low-risk scores based on the average risk score.
Furthermore, the Kaplan Meier (KM) curves of high/low-risk

TABLE 1 Characteristics of OC patients; source TCGA database.

Characteristics N

Age

≤60 208

>60 171

Total 379

OS

Alive 147

Dead 232

Total 379

FIGO stage

Stage I 1

Stage II 23

Stage III 295

Stage IV 57

Total 376
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score groups were plotted, showing a significant difference between
the high and low-risk score groups (Figure 1E). Additional
multifactorial Cox models were used to analyse the relationship
between the 15 key genes and ovarian cancer OS (Table 2), and we
found thatAMBN, CXCL11, CLEC5A,CSPG5 FREM2, MMP17, and
PI3 were independent prognostic factors for ovarian cancer.

Differential expression analysis and
functional enrichment of high and low ECM
risk score groups

The ECM risk score, survival information, and one-to-one
correspondence to the expression of the 15 key genes for each sample
in TCGA-OV are presented in Figure 2A. The results of differential gene
expression of high vs. the low-risk score group showed that 1004 genes
were significantly upregulated (logFC > 0.4, adj. p < 0.05), and 378 genes
were significantly downregulated (Figure 2B).

We documented that there is a substantial difference in the
extracellular matrix-related processes in the enrichment of
GOKEGG functions (Supplementary Figure S1A). Additionally, it
was shown that biological processes associated with immune cells
differed dramatically (GO:0071621, GO:0043030 et al.). Two
immune-related pathways were revealed to be blocked in the
high ECM risk score group in the GSEA results (Supplementary
Figure S1C). Based on the 15 key prognostic genes in the TCGA-OV
at the principal component analysis (PCA cluster), there was little
difference between the high and low-risk subgroups in the PC1 and
PC2 dimensions (Figure 2C).

We also examined the expression of the 15 key genes in normal
ovarian tissue vs. the TCGA-OV collection, and in low/high ECM
risk score groups (Figures 2D, E). In the expression analysis of
normal vs. tumour tissues, only PRSS1 was not significantly
differentially expressed in normal versus tumour tissues. The
expression levels of TLL1, HMCN2, FREM2 and MMP17 were
significantly higher in normal ovarian tissues than in tumour

FIGURE 1
Construction of ECM risk score model (A) AUC for random forest train model (blue) and test model (red); (B) Lasso dimensionality reduction for
random forest prognosis model; (C) Locus plot of all genes in random forest prognosis model; (D)Nomogram survival plot for 15 key prognosis genes; (E)
KM survival plot for high/low ECM risk score group.
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tissues. AMBN, TGFBI, CSPG5, PI3, CXCL11, ESM1, FGF23,
ANGPTL4, CLEC5A and IL12A all showed significantly higher
expression in tumour tissues samples.

In the differential expression analysis of low/high ECM risk
score groups, AMBN, IL12A and FREM2 were not statistically
different, whereas PI3, TGFBI, TLL1, HMCN2, MMP17, CLEC5A,
ANGPTL4, FGF23 had higher expression in the high-risk group and
CXCL11, CSPG5, ESM1, PRSS1 were highly expressed in the low-
risk group.

The genes BCRA2, MUC1 and MUC16 (in the red-framed
rectangles in Figures 1C, D, and the heat map), were also
assessed to supplement our analysis with three genes from the
same dataset, previously functionally characterized for their
prognostic role in OC (Wang et al., 2007; Zhai et al., 2020;
Custódio et al., 2022). The genes are also.

Assessing the role of ECM risk score in
tumour immune cell infiltration and
immunotherapy response

The analysis using almost all algorithms, documented that
CD8 T cells showed a significant difference, with lower levels of
infiltration in the high-risk group than in the low-risk group. In the
high-risk group, the signature score of CD4 T memory resting cells
was higher, and lower in all other T cells (Figure 3A). Neutrophils
scored variable results among the four algorithms: there were group
differences in the infiltration levels of neutrophils in the
CIBERSORT and MCPcounter algorithms, with both algorithms

showing higher levels in the high-risk group (Figure 3B). According
to the EPIC, MCPcounter, and xCell algorithms, the high-risk group
had higher numbers of cancer-associated fibroblasts (CAFs)
(Figure 3C).

Both the xCell and ESTIMATE algorithms indicated a lower
immune microenvironment score for the high-risk group when
computing the immune microenvironment score. The high-risk
group displayed a higher stromal score in the ESTIMATE
algorithm, indicating the presence of more stromal cells (Figure 3D).

The analysis of B cells also showed high variation among the
algorithms used: significant differences between groups were only
documented by the xCell algorithm; naive B cells and plasma cells
showed group differences under the CIBERSORT algorithm but
not when the xCell algorithm was employed (Supplementary
Figure S2). There was no discernible difference between the two
groups in monocytes (Supplementary Figure S2). Only xCell
revealed group differences in DC cells (Supplementary Figure
S2). NK cells only showed between-group differences under the
MCPcounter and quantiseq algorithms, but there was an opposite
trend: NK cells showed relatively low levels in the high-risk group
under the MCPcounter algorithm but relatively high levels in the
high-risk group under the quantiseq algorithm (Supplementary
Figure S2). The high-risk group’s Macrophage M1 levels were only
marginally different to the low-risk group according to the
CIBERSORT and xCell results, and there was no difference
between groups when the EPIC method was used
(Supplementary Figure S2).

We also extracted the expression levels of eight
immunological checkpoint genes (Figure 3E). The expression

TABLE 2 Multifactorial Cox survival analysis of the 15 key genes in TCGA-OV patients.

Characteristics High Low (Reference) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

TGFBI 186 187 1.118 (0.863–1.448) 0.398 0.822 (0.587–1.150) 0.252

CSPG5 186 187 0.754 (0.582–0.978) 0.033 0.811 (0.611–1.077) 0.047

P13 186 187 1.470 (1.133–1.908) 0.004 1.379 (1.044–1.820) 0.023

CXCL11 186 187 0.614 (0.472–0.798) <0.001 0.567 (0.425–0.756) <0.001

MMP17 186 187 1.689 (1.301–2.192) <0.001 1.553 (1.150–2.098) 0.004

IL12A 186 187 1.010 (0.780–1.308) 0.939 0.942 (0.716–1.238) 0.666

ESM1 186 187 0.936 (0.723–1.213) 0.618 1.035 (0.783–1.369) 0.809

HMCN2 186 187 1.503 (1.157–1.953) 0.002 1.172 (0.871–1.578) 0.294

TLL1 186 187 1.400 (1.080–1.815) 0.011 1.285 (0.966–1.711) 0.085

FGF23 186 187 1.191 (0.919–1.543) 0.185 1.085 (0.821–1.436) 0.565

PRSS1 186 187 0.818 (0.630–1.061) 0.131 0.979 (0.738–1.299) 0.885

ANGPTL4 186 187 1.377 (1.061–1.786) 0.016 1.064 (0.794–1.424) 0.679

FREM2 186 187 0.724 (0.558–0.940) 0.015 0.633 (0.473–0.847) 0.002

CLEC5A 186 187 1.577 (1.213–2.051) <0.001 1.444 (1.044–1.998) 0.026

AMBN 6.630 (2.508–17.526) <0.001 8.544 (3.045–23.976) <0.001

*Total number of patients 373.

Statistically significant values are indicated in bold.
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levels of six immune checkpoint genes (TIGIT, CD274, PDCD1,
CTLA4, LAG3, and PDCD1LG2) was higher in the low-risk
group than in the high-risk group, with the exception of
SIGLEC15 and HAVCR2. The IPS score for the major
histocompatibility complex (MHC), and for senescent cells
(SC) was greater in the low-risk group than in the high-risk

group. Endothelial cells (EC) IPS score did not differ
statistically significantly between the two groups. However,
the high-risk group had a higher Classical Pathway (CP) IPS
score than the low-risk group. Both the aggregated z-score (AZ)
and the weighted total IPS showed that the low-risk group was
higher than the high-risk group (Figure 3F).

FIGURE 2
Differential analysis of function between high/low ECM risk score group (A) Information of sample group based on ECM risk score and 15 key
prognosis gene expression heatmap. (B) Volcanomap of differential gene expression analysis in TCGA-OV. (C) Principal component analysis (PCA cluster)
based on the 15 key prognostic genes in TCGA-OV. (D) 15 key genes expressed in normal ovary and TCGA-OV. (E) 15 key genes expression in ECM high/
low-risk score groups. The genes BCRA2, MUC1 and MUC16 (in red frames) have been functionally characterized in other studies, for their
prognostic role in OC, and used as a reference.
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Validation of the prognostic function of ECM
risk score in the TCGA-pan-cancer dataset

TCGA pan-cancer data with survival information were used to
validate the ECM risk score. A total of 9162 “Primary Solid Tumour”
data with both gene expression data and survival data were included
in the analysis. We screened all adenocarcinoma expression data and
survival data as a validation dataset. 2084 samples meeting the
criteria were extracted, of which 1580 samples carried information
on initial treatment outcome. We found that the low-risk group had
a higher initial treatment Complete Response (CR) and Partial
Response (PR), there was no significant difference in the number
of patients with Progressive Disease (PD) between the low- and

high-risk groups, and the number of patients with Stable Disease
(SD) was significantly higher in the high-risk group than in the low-
risk group (Figure 4A). We also analysed the expression levels of
eight immune checkpoint genes in the high/low ECM risk score
group (Figure 4B). Only four immune checkpoint genes showed
significant differences between the two groups. Fifteen ECM’ key
genes were extracted from all gene expression data, and the ECM
risk score was calculated for each patient. The expression levels of
15 ECM key genes were differentially expressed in both the high and
low-risk groups (Figure 4C). Computes the predicted survivor
function for a Cox proportional hazards model and plots the KM
curve (Figure 4D). The ECM risk score was found to be a good
predictive tool for overall survival prognosis in the adenocarcinoma

FIGURE 3
Comparison of immune cell infiltration between high/low ECM risk score group groups in TCGA-OV. Comparison with several algorithms for T cell
(A) infiltration, Neutrophil (B), cancer-associated fibroblast (CAFs) (C), Immune microenvironment score (D) infiltration, expression levels of 8 immune
checkpoint genes in high/low ECM risk score group in TCGA-OV (E), and IPS score in high/low ECM risk score group in TCGA-OV (F).
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FIGURE 4
Validation of ECM risk key genes in TCGA Adenocarcinoma. First-course treatment outcome of high/low ECM risk score group in TCGA-
Adenocarcinoma (A). Expression levels of 8 immune checkpoint genes (B) and 15 ECM key genes (C) in high/low ECM risk score group in TCGA-
Adenocarcinoma. KM survival plot for high/low ECM risk score group in TCGA-Adenocarcinoma (D).
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FIGURE 5
Differential analysis of somaticmutations between high/low ECM risk score group in TCGA-OV. The relation of the top 25mutated genes in the high
(A) and low (B) ECM risk score groups. Analysis of cancer-related key pathway components affected by somatic genemutations in the high (C) and low (D)
ECM risk score groups. Differential analysis of somatic gene mutatios between high/low ECM risk score group (E). Oncogenic signalling pathways
enrichment analysis in high (F) and low (G) ECM risk score group.
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data. However, it was not adequate in effectively predicting for OS
between the high and low-risk groups after 4000 days.

Relationship between ECM risk score and
tumour mutation burden (TMB)

We further investigated the connection between the ECM risk
score and TMB because OC is marked by a high degree of somatic
mutation. Missense Mutation was the main component of somatic
mutation in the high/low ECM risk score group. In the single
nucleotide variant (SNV) analysis showed that the highest rate of
C > T was observed in both groups. Variants per sample of the high
ECM risk score group were lower than in the low ECM risk score
group (Supplementary Figures S3A, B). In both high/low ECM risk
score groups, CSMD3, TTN, TP53, FLG2, MUC16, FLG and FAT3
were found in the top 20 mutated genes (Supplementary Figures
S3C, D). In comparison to the high-risk group, the mutation rates in
TP53, TTN and RYR2 were higher in the low-risk group, while those
of CSMD3, USH2A and FLG2 were nearly identical (Supplementary
Figures S3E, F).

In the mutation Exclusive/Co-occurring analysis of the top
20 mutation genes, we found 11 pairs of genes with Co-occurring
relationships in each of the high/low ECM risk score groups but
2 pairs of Exclusive in the low ECM risk score group (Figures 5A, B).
We also examined the mutation status of the elements of eight
signalling pathways that have been demonstrated to be crucial in the
development of tumours (Sanchez-Vega et al., 2018). We found that
the number of genes affected by somatic mutations in most
signalling pathways was approximately the same between the two
groups, except for RTK-RAS, NOTCH, WNT, and PIK2 (Figures 5C,
D). The expression levels of all somatic mutations were analysed
between the high/low ECM risk score groups, and we found
statistically significant differences in CSMD1, FRMPD1,
IL1PARL2 and PKHD1. All four genes showed a higher mutation
rate in the low ECM risk score group (Figures 5D, E). Based on the
differences in somatic mutations between the two groups, we
enriched the analysis for drug-gene interactions, and the
“Druggable Genome: was found to be highly enriched within
both groups (Figure 5F, G).

Additionally, we documented that the low ECM risk score group
was more responsive to RYR2 gene-related immunotherapy,
whereas the high ECMs risk score group may be more responsive
to TG-related immunotherapeutics (Supplementary Table S2). We
also analysed the mutations in 15 key genes (Supplementary
Figure S4).

Discussion

Ovarian cancer is a malignant tumour with a high mortality rate.
Because of its insidious onset, it is usually late-stage when obvious
clinical symptoms appear (Prat J and FIGO Committee on
Gynecologic Oncology, 2014). Patient prognosis is thus based on
an accurate and reliable assessment. As the extracellular matrix is
closely linked to epithelial cells, we aimed to construct a prognostic
prediction model based on extracellular matrix proteins to evaluate
the prognostic survival of patients with ovarian serous

adenocarcinomas. We successfully filtered 15 key genes out of
1068 extracellular matrix-associated proteins, with excellent
predictive ability on ovarian serous adenocarcinoma prognosis
using the Random Forest and the Lasso algorithms.

We used the random forest algorithm as is a popular machine
learning technique with documented outstanding performance in a
wide range of predictive modeling tasks, including cancer prognosis
prediction (Toth et al., 2019; Li Y et al., 2020). When analyzing
tumor sequencing data, the relationship between variables and
outcomes can be complex due to the volume of data. Random
forest can handle a large number of input variables without
overfitting, which has been a challenge for traditional models
such as logistic regression or decision trees (Maroco et al., 2011;
Lan et al., 2020). Additionally, traditional linear models are unable to
handle the nonlinear relationship between a large amount of
sequencing data and survival outcomes, but random forest can
address this issue (Lee and Lim, 2019). Compared to support
vector machines (SVM), random forest is less sensitive to outliers
andmissing data, which is important in cancer prognosis prediction,
where data quality may vary and missing data is common
(Pelckmans et al., 2005; Lee and Lim, 2019).

Among the 15 key genes generated by our our analysis, CSPG5,
CXCL11 and ESM1 mRNAs were abundantly expressed in OC tissue
compared to normal tissue. Cancer cells, fibroblasts, endothelial cells,
and immune cells such as leukocytes, monocytes, and dendritic cells are
primarily responsible for CXCL11 production (Gao and Zhang, 2021)
CXCL11 is an effector chemokine regulating T cell recruitment that
promotes effector immune cells (e.g., CD8T cells, Th1 cells, TH17 cells
and antigen-presenting cells). Studies have shown that induction of
CXCL10 and CXCL11 expression in breast cancer cells enhances the
infiltration of CD8 T cells (Liu et al., 2011; Gao et al., 2019). In addition
to its influence on tumour progression through its angiostatic effects
(Strieter et al., 2006), CXCL11 is part of the CXCR7/CXCL11 axis that
was shown to induce the epithelial–mesenchymal transition and
metastatic behaviour of OC cells under ERα control (Benhadjeba
et al., 2018). ESM1 is a soluble proteoglycan expressed by vascular
endothelial cells and is associated with inflammatory cell recruitment
(Hung et al., 2020). Vascular endothelial dysfunction can be brought on
by high levels of ESM1 (Kalantaridou et al., 2006; Rocha et al., 2014; Sun
et al., 2019), whereas it has also been shown to be closely correlated with
OC development and progression (Li et al., 2023). Our analysis showed
that the tumour tissue had significantly higher ESM1 expression levels
than normal ovarian tissue, which may be associated with abnormally
elevated cell proliferation and tumour tissue revascularization.
Furthermore, CSPG5, also known as Neuroglycan C (NGC), is a
protein originally associated with extracellular matrix production in
the nervous system (Pintér et al., 2020) and shown to decrease first and
then increase following ischemic and hypoxic injury, presumably
associated with ECM damage repair (Matsui et al., 2005). Of note,
two recent studies showed that expression of CSPG5 was significantly
correlated with the prognosis of patients with epithelial OC (Su et al.,
2021; Wang et al., 2023). In our study, higher CSPG5, CXCL11 and
ESM1 expression and inflammatory cell infiltration, especially of
CD8 T cells, were present in the low-risk group. The high level of
immune cell environment may explain the better prognosis for overall
survival in the low-risk group.

Interestingly, two proteins commonly associatedwith bone biology
and development were identified among the ECM prognostic markers.
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AMBN was discovered as a tooth enamel matrix protein, playing an
important role in enamel, cranial and long bone development. It was
however demonstrated that AMBN was among four factors that were
potential independent prognostic factors for prostate cancer (Xu et al.,
2018). In our multifactorial Cox analysis, AMBN was shown to be one
of the independent prognostic factors for ovarian serous
adenocarcinomas. Furthermore, the analysis revealed a prognostic
role for FGF23, the bone-derived hormone secreted by osteoblasts
and osteocytes (Guo and Yuan, 2015). Previous studies have shown
its expression alterations in breast cancer (Cekin et al., 2020) and
identified that serum or plasma FGF23 concentrations are elevated in
patients with advanced stage epithellal ovarian cancer (Tebben et al.,
2005). According to our data, FGF23 was expressed in the tumours, and
its expression levels were higher in the high-risk group.

MMP17, PI3, TLL1, ANGPTL4, and TGFBI have all been previously
associatedwith cancer. Our analysis found that transcripts of all these five
genes were expressed at higher levels in the high-risk group than in the
low-risk group. MMP17 has been associated with the maintenance of
normal physiological function in vascular smooth muscle (Martín-
Alonso et al., 2015) and a promotive effect on tumour cells (Paye
et al., 2014). Additionally, it was shown that its expression was much
higher in EOC patients than in pericarcinomatous tissues (Xiao et al.,
2022). PI3, also known as elafin, is an elastase-specific inhibitor that
directly affects tumour suppression by inhibiting elastase (Hunt et al.,
2013). High levels of PI3 are associated with severe disease severity in
various cancers (Hunt et al., 2013; Longatto-Filho et al., 2021), while
another TCGA-OVanalysis showed its prognostic value inOC (Li J et al.,
2020). Additionally, high elafin expression has been associated with
unfavorable OS but better immunotherapy responses (Lu et al., 2023).
Recent studies have found that TGFBI CpG islands are hypermethylated
in adjacent normal colon tissue, with the corresponding sequences
showing hypomethylation in colon cancer tissue, and that higher
TGFBI levels are associated with poorer prognosis (Zhang H. et al.,
2019). In mammals, Tolloid-like (mTLL)-1 is a BMP-1-associated
protease, and BMP1/TLL1 is involved in the process of tissue
remodelling in the ovary, assisting in the maturation of pre-collagen
molecules and the deposition of collagen fibres (Ohnishi et al., 2005). In
hepatocellular carcinoma (Matsuura et al., 2017), SNP may impact the
splicing of TLL1 mRNA and result in short variants with high catalytic
activity, speeding up the development of liver fibrosis and cancer. In a
recent study,TGFBI, PI3, TLL1 andMMP17were predicted to be among
the 19 genes that comprise the TME-related high grade serous ovarian
carcinoma prognostic genetic panel (Belotti et al., 2022). ANGPTL4 is
regulated by peroxisome proliferator-activated receptor γ (PPARγ)
(Aryal et al., 2019), who has been observed to be significantly
increased in malignant ovarian tumours (grade 1, 2 and 3) compared
to benign and borderline tumours (Zhang et al., 2005). It was also
recently identified in a scRNA-seq study of ovarian cancer CAF ligands
to epithelial cells (Carvalho et al., 2022). Finally, ANGPTL4 and TGFBI
were identified both in a hypoxia riskmodel constructed to reflect theOC
immune microenvironment in and predict prognosis (Wei et al., 2021),
and among the genes that comprise an OC glycolysis-related gene
signature (Zhang et al., 2021).

To further assess the relationship between the ECMrisk score and the
immune microenvironment, we assessed the abundance of multiple
inflitrating cells in the immune microenvironment of these patients
using multiple algorithms. Patients with more infiltrating and
activated immune cells in TME may have better immunotherapeutic

outcomes (Li et al., 2016). We observed higher levels of CD8 T cell
infiltration in the low-risk group, suggesting enhanced immune
surveillance via CD8+ T cells, while this implies a possible enhanced
susceptibility to PD-1/PD-L1-targeted immune checkpoint therapies
(Strickland et al., 2016; Iyer et al., 2021). Furthermore, the degree of
macrophage infiltration was similar to both CD8 and CD4 T cell
infiltration, with both showing high levels in the low-risk group. This
is consistent with previous studies describing a positive correlation
between T cells and macrophage infiltration levels (Desbois et al., 2020).

Previous studies have also shown that cancer cells regulate their local
microenvironment to promote tumour survival, chemoresistance and
evasion of immune surveillance (Kim et al., 2007) and that there is a tight
association between malignant tumour cells and CAFs in promoting
tumour growth and survival (Xing et al., 2010; Karagiannis et al., 2012;
Chen et al., 2021). scRNA-seq analysis of high grade serous ovarian
cancers, also showed that CAFs induce epithelial-mesenchymal
transition (EMT) of tumor cells via TGFβ signaling, with consequent
effects on chemoresistance and metastasis (Kan et al., 2020). In
accordance with these, our results also showed that higher levels of
CAFs were found in high-risk groups with poor prognosis.

It is known that the immune microenvironment immune cells,
immunomodulating factors and immune checkpoint molecules are
crucial for the immune escape of tumour cells (Charoentong et al., 2017;
Zhang Y. et al., 2019). We thus developed an immunophenoscore (IPS)
based on immune subpopulation infiltration and expression of immune
regulatory molecules using the random forest to identify determinants
of immunogenicity. Among several IPS subtypes tested, we found that
the low-risk group had higher IPS and could benefit during treatment
with immune checkpoint inhibitors. As the immunophenoscore is a
surrogate to patients’ immunotherapeutic outcomes, our IPS results of
the ECMs risk scores may only be considered of predictive value, and
future studies will confirm their clinical importance.

We also explored the tumour mutation burden (TMB) changes in
the TCGA-OV cohort. The ovarian cancer genome exhibits high levels of
instability, as evidenced by functional cells (Stewart et al., 2011), copy
number changes (Schwarz et al., 2015), and status of somatic mutations
(Bashashati et al., 2013). TMB is the total number of substitutions and
insertion/deletion mutations per megabase in the exon-coding region of
the gene under evaluation in the tumour cell genome (Stenzinger et al.,
2019). Somatic mutations may result in tumourigenesis and many
somatic mutations can generate neoantigens facilitating anti-tumour
immunity (Gubin et al., 2015). In a study on immunotherapy for
lung cancer, researchers discovered that patients with PD-L1 1% but a
subgroup of 10 mutations/Mb in the combination chemotherapy group
had a better objective response rate (ORR) and median progression-free
survival (median PFS, mPFS) with the immune combination regimen
CheckMate 227 (Hellmann et al., 2018). This suggests that in the higher
TMB population, PFS was better in the combination immunotherapy
group than in the chemotherapy alone group, irrespective of PD-L1
expression. In our study, the mean TMB values were higher in the low-
risk group than in the high-risk group, implying that the low-risk group
may have more potential for immunotherapy. TP53, the gene encoding
the tumour suppressor protein p53, is one of the most commonly
mutated genes in human cancers, and driver mutations are prevalent
in high-grade ovarian plasmacytoma (Ahmed et al., 2010). Chalmers and
coworkers have shown that TP53 mutations were associated with high
TMB (Chalmers et al., 2017). Our study similarly confirmed that in the
TCGA-OV datasets TP53mutations were the most frequent in the high-
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and low-risk groups, and thatTP53mutations were higher in the low-risk
group than in the high-risk group. However, there are limitations to
cohort-based studies. Most mutated genes are unique to each case, and in
clinical treatment, patients should be treated based on their mutation
sequencing results. Our analysis may provide theoretical support for the
selection of immunological agents.

Our study aimed to investigate the role of the matrisome and the
gene changes in the ECM in a widely studied, publicly available
ovarian cancer transcriptomic and clinicopathological collection of
patients. The role of matrisome has been regretfully understudied in
this type or cancer that commonly goes undetected till it reaches
high grades, as the ECM can influence drug resistance. We used
bioinformatics and machine learning methods to investigate the
TCGA-OV collection and identified several prognostic genes, some
of which have also been identified by previous studies. Given the
current cost-effectiveness of biotechnological approaches, rapid
genetic testing tools are commonly promoted and widely applied
in clinical diagnostics and treatment (Young and Argáez, 2019).
These tools have improved accuracy and testing times have
significantly shortened. Targeted multigene tests and genetic
screening can be thus rapidly employed to assist diagnosis
postoperatively and develop more effective treatment plans.

Conclusion

In conclusion, this study developed an ECM risk score prediction
model to enable prognosis of patients with ovarian serous
adenocarcinoma. We further identified the tumour
microenvironment and somatic mutations using the TCGA-OV
collection datasets. These results should be further validated with
targeted future studies to evaluate their real predictive function and
their use in personalized immunotherapy applications.
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Objective: To identify circadian clock (CC)-related key genes with clinical
significance, providing potential biomarkers and novel insights into the CC of
ovarian cancer (OC).

Methods: Based on the RNA-seq profiles of OC patients in The Cancer Genome
Atlas (TCGA), we explored the dysregulation and prognostic power of 12 reported
CC-related genes (CCGs), which were used to generate a circadian clock index
(CCI). Weighted gene co-expression network analysis (WGCNA) and protein-
protein interaction (PPI) network were used to identify potential hub genes.
Downstream analyses including differential and survival validations were
comprehensively investigated.

Results: Most CCGs are abnormally expressed and significantly associated with
the overall survival (OS) of OC. OC patients with a high CCI had lower OS rates.
While CCI was positively related to core CCGs such as ARNTL, it also showed
significant associations with immune biomarkers including CD8+ T cell infiltration,
the expression of PDL1 and CTLA4, and the expression of interleukins (IL-16,
NLRP3, IL-1β, and IL-33) and steroid hormones-related genes. WGCNA screened
the green gene module to be mostly correlated with CCI and CCI group, which
was utilized to construct a PPI network to pick out 15 hub genes (RNF169, EDC4,
CHCHD1, MRPL51, UQCC2, USP34, POM121, RPL37, SNRPC, LAMTOR5,MRPL52,
LAMTOR4, NDUFB1, NDUFC1, POLR3K) related to CC. Most of them can exert
prognostic values for OS of OC, and all of them were significantly associated with
immune cell infiltration. Additionally, upstream regulators including transcription
factors and miRNAs of key genes were predicted.

Conclusion: Collectively, 15 crucial CC genes showing indicative values for
prognosis and immune microenvironment of OC were comprehensively
identified. These findings provided insight into the further exploration of the
molecular mechanisms of OC.
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1 Introduction

With 207,252 deaths worldwide in 2020 (Sung et al., 2021), the
mortality rate of ovarian cancer is ranked first among gynecological
malignant tumors. The characteristics of insidious symptoms, high
degree of malignancy, and easy metastasis of ovarian cancer make it
a great challenge for early screening. Nearly 70% of OC patients are
diagnosed at an advanced stage (Cho and Shih Ie, 2009). Moreover,
the pathogenesis and metastasis mechanism of OC remain elusive,
so it is particularly urgent to identify new biomarkers and potential
drug targets for improving the clinical outcomes of OC patients.

Circadian rhythm is a physiological cycle phenomenon of about
24 h in mammalian body. Accumulating evidence has elucidated the
significance of circadian rhythm composed of central and peripheral
clocks in harmony with the external environment (LeGates et al.,
2014; Jagannath et al., 2017). BMAL1 and CLOCK form a dimer,
which promotes the expression of cryptochrome (CRY1 and CRY2)
and period (PER1, PER2, and PER3) genes. CRY and PER form a
complex that enters the nucleus and suppresses theCLOCK–BMAL1
complex (Etchegaray et al., 2003; Hirayama et al., 2007; Nader et al.,
2009). This forms the transcription-translation loop of the central
clock. Nuclear receptors REV-ERBα and retinoic acid-like orphan
receptor α (RORα) regulate the ROR element on the BMAL1
promoter, providing a stable oscillation cycle (Badiu, 2003). The
circadian clock gene is the molecular basis for the circadian clock to
produce and maintain circadian rhythms. At present, increasing
evidence has found that more than ten circadian clock genes form
transcriptional translation loops, including ARNTL, CLOCK, CRY1,
CRY2, NR1D1, NR1D2, PER1, PER2, PER3, RORA, RORB, RORC,
etc. (Yang et al., 2017). Target genes regulated by circadian clock
genes are called clock control genes, which are effector molecules of
the circadian clock. In mammals, clock control genes play an
important role in maintaining physiological homeostasis (e.g.,
hormone secretion, cell growth, proliferation, and cell
metabolism) (Udo et al., 2004).

A growing number of studies strongly support the existence
of crosstalk between cancer and the circadian clock (Battaglin
et al., 2021). Increasing data have suggested that circadian clocks
exerted a vital function in the regulation of cancer-related
physiological systems, such as cell proliferation, cell apoptosis,
DNA injury and repair, and metabolism (Peyric et al., 2013;
Dakup and Gaddameedhi, 2017). The imbalance of the circadian
clock particularly affects the progression of endocrine-related
cancers including cervical, prostate, and ovarian cancers by
dysregulating key hormone levels (Morales-Santana et al.,
2019; Hadadi and Acloque, 2021). Aberrant expression of
ARNTL and CRY1 was found in OC cell lines (Tokunaga
et al., 2008). Moreover, the low expression of CRY1 and
BMAL1 was reported to be associated with the poor survival
of OC patients (Tokunaga et al., 2008), and the overexpression of
BMAL1 could inhibit the cell growth of OC (Yeh et al., 2014). But
controversy still exists. For existence, a recent study did not find
the increased risk of ovarian cancer for night-shift work (Dun
et al., 2020). Thus, a comprehensive understanding of circadian
clock is required to better evaluate its critical role in the

carcinogenesis of OC, which will enable the identification of
clinical biomarkers and molecular targets.

Moreover, previous studies indicated that circadian clock gene
disruption contributes to independent risk factors for tumor
microenvironment (TME) (Aiello et al., 2020; Xuan et al., 2021).
However, the specific functions of circadian clock in the prognosis
and therapy of OC are still unclear. Therefore, this study aimed to
elucidate the vital role of the circadian clock in OC using multi-
omics methods. We integratively identified 15 potential key genes
related to CC, which showed great correlations to the infiltration
levels of multiple tumor immune microenvironment (TIME) cell
types. These data strengthened the linkage of CC and tumor
immune status of OC, and extended the understanding of its
molecular mechanism, and survival analysis results suggested
their good potential in the future development of new prognostic
biomarkers and immunotherapy targets. The workflow of this study
is shown in Figure 1.

2 Materials and methods

2.1 Data collection and preprocessing

We downloaded the gene-expression dataset (TCGA-OV) and
the complete OS data of 378 OC in the TCGA database from the
UCSC XENA project (https://xena.ucsc.edu). The disease-specific
survival (DSS) and corresponding clinicopathologic characteristics
including age, stage, grade, tumor status, and lymphatic invasion
status were also achieved. The RNA-seq data were preprocessed as
we previously reported (Zhang et al., 2022). 12 literature-derived
CCGs in basic mammalian central feedback loop were collected
(ARNTL, CLOCK, PER1, PER2, PER3, CRY1, CRY2, NR1D1,
NR1D2, RORA, RORB, and RORC) (Shen et al., 2020; Cash et al.,
2021). Gene expression levels between the tumor and adjacent
normal tissues were compared using the online GEPIA database
(Tang et al., 2017).

2.2 Correlations of CCI with the prognosis
and TIME of OC

Based on the TCGA-OV dataset, we generated a circadian clock
index to comprehensively represent the overall activity of the CC
status, which was computed as the average RNA-seq z-scores of the
12 core CCGs for each sample. All patients were designated into the
high- and low-CCI groups depending on the optimal cutoff for the
Kaplan-Meire survival analysis. The single sample gene set
enrichment analysis (ssGSEA) algorithm was applied to infer the
activated CD8 T cell infiltration by the “GSVA” package (Bindea
et al., 2013; Charoentong et al., 2017; Zhang et al., 2022; Guo et al.,
2023). Scatter plots were drawn to determine the correlations of CCI
with TIME signatures including activated CD8 T cell infiltration, the
expression of well-known immunotherapeutic targets such as PDL1
and CTLA4, and steroid hormones-related genes. The correlations
between CCI and multiple interleukins including the IL-1
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superfamily, IL-6 family, IL-10 family, IL-17 family, and other
interleukins were also evaluated.

2.3 WGCNA and key module identification

We construct a co-expression network with the “WGCNA”
package in R (Langfelder and Horvath, 2008; Tang et al., 2022b).
First, we filtered the median absolute deviation (MAD) top
5,000 genes for sample clustering (Tang et al., 2022b). Next,
we select the best soft-thresholding power to ensure the scale-free
topology (R2 > 0.9). The adjacency was then transformed into a
topological overlap matrix (TOM) by using TOM similarity and
the corresponding dissimilarity (dissTOM). Finally, at least
30 co-expressed genes were aggregated into different MEs by
the dynamic tree-cut method. We decided on a cut line (0.3) for
merging highly similar modules to make the modules more
compact (Zhang et al., 2022). To determine their relevance to
clinical traits, Pearson correlations between module eigengenes
and clinical phenotypes were calculated and were shown with a
correlation heatmap. In this study, we chose the most significant
module that correlated with CCI and CCI group for further
analysis, and gene significance (GS) and module membership
(MM) were also calculated. The CC-related genes were
determined as those with MM > 0.5 and GS > 0.4 in the most
significant module.

2.4 PPI network construction and key genes
identification

The PPI network is a useful tool to explore molecular
interactions as well as to identify potential key biomarkers.
Based on the CC-related genes of OC, we constructed a PPI
network by the Search Tool for the Retrieval of Interacting
Genes (STRING) database with a combined score of higher

than 0.7 (high confidence) (Zhang et al., 2021). The
Cytoscape software (version 3.8.2, http://www.cytoscape.org)
was then utilized for the visualization. Next, we performed
sub-module analysis with the MCODE plugin. Potential key
genes of CC were defined as those with a clustering coefficient of
1 in the entire PPI network.

2.5 Function enrichment

The DAVID database was used to conduct the function
enrichment for the CC-related genes and the key genes in the
most significant gene module. The Gene ontology (GO) database,
which is comprised of MF, BP, and CC, is used for performing gene
annotation, and the Rectome database was used to analyze the major
pathways. The “ggplot2” package was used for data visualization.

2.6 Assessment of prognostic and clinical
significance

For survival evaluation, we depicted the Kaplan-Meire plots with
log-rank tests for OS or DSS by the optimized expression value,
which was carried out on the 378 OC patients (Guo et al., 2021; Tang
et al., 2022b), who were subsequently classified into different risk
groups. To unveil the correlations between the expression of these
key genes and clinicopathological traits, we compared their
expression levels between different subgroups divided by
clinicopathological features including age, stage, grade, tumor
status, and lymphatic invasion status. Pearson correlation
matrices were further computed to evaluate the co-expression of
these crucial genes of CC. Besides, we use boxplots and ROC curves
to assess the predictive capabilities of these key genes for
discriminating the distinct CCI groups. The online cBioPortal
database (http://www.cbioportal.org/) was used to verify their
genetic alterations with an oncoprint diagram.

FIGURE 1
Workflow of this study.
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2.7 Immune infiltration profile

To explore the relationships between the potential key genes and
TIME, we utilized the CIBERSORT algorithm (Newman et al., 2015;
Tang et al., 2022a) to estimate the relative abundance of 22 immune
cell types in each OC sample based on the TCGA-OV dataset. The
relative abundance of immune cells in different CCI groups was
computed and presented by a heatmap plot. Spearman correlation
analysis was used to assess the relevance of the key genes’ expression
and immune cell infiltration.

2.8 Prediction of upstream regulations-
transcript factor and miRNA

MiRNet 2.0, an up-to-date online platform that illustrates
“multiple-to-multiple” relationships and functional interpretation
was used to examine the upstream transcription factors of key genes.
We selected the JASPAR database to screen the possible
transcription factor-key gene interactions in the present study.
Moreover, the upstream miRNAs of the key genes were
putatively predicted with miRTarBase 8.0, which is a powerful
tool to predict miRNA-target interactions (MTIs) that were
verified by multiple cell-based experiments. The transcription
factor-key gene interactions and miRNA-key genes interactions
were visualized by the Cytoscape software.

3 Results

3.1 Survival and differential analysis of
12 CCGs in OC

To achieve a systematic understanding of the circadian clocks in
OC, we first selected 12 well-known circadian genes in this study,
namely, ARNTL, CLOCK, PER1, PER2, PER3, CRY1, CRY2, NR1D1,
NR1D2, RORA, RORB, and RORC. Based on the GEPIA online
database, we preliminarily compared themRNA levels of these genes
in OC tissues and adjacent ovary tissues (Supplementary Figure
S1A). As a result, the mRNA level of RORC was upregulated, while
the expression of ARNTL, CRY2, NR1D1, PER1, PER3, and RORA
was decreased in OC tissues versus normal tissues. This evidence
demonstrates that core circadian clock genes are widely altered at the
mRNA level in OC. To analyze the prognostic value of circadian
clock genes in OC, we performed Kaplan-Meier analysis and log-
rank tests of the 12 CCGs for OS of OC. As shown in Supplementary
Figure S1B, we found that ARNTL (p = 0.021), CRY1 (p = 0.0074),
CRY2 (p = 0.045), NR1D1 (p = 0.0035), NR1D2 (p = 0.0062), PER1
(p = 0.014) and PER2 (p = 0.025) were significantly associated with
the OS of OC. These results suggest a possible link between CC and
the progression and prognosis in OC.

3.2 CCI was significantly associated with the
prognosis and immune status in OC

Firstly, we computed CCIs for all of the OC patients and
performed heatmap visualization to show the expression pattern

of CCI genes with CCI group annotation in OC (Figure 2A). To
evaluate the prognostic power of CCI, we carried out Kaplan-
Meier analysis for OS. As a result, OC patients with high
expression CCI (p = 0.009) had much poorer OS rates than
the low CCI group (Figure 2B). Subsequently, we confirmed the
correlations between CCI and two core CCGs (ARNTL, CLOCK)
by scatter plots, and found strong positive correlations for both
ARNTL (p = 1.28e-42, rpearson = 0.63) and CLOCK (p = 3.61e-
19, rpearson = 0.44) were linked to CCI in OC (Figures 2C, D).
Numerous studies have elaborated on the close correlation
between the disruption of CC and the activity of tumor
immune status as well as therapeutic effects in various
cancers (Yang et al., 2017; Sulli et al., 2019; Kinouchi and
Sassone-Corsi, 2020; Xuan et al., 2021; He et al., 2022). To
explore the correlations of CCI and immune signatures, we
clarified the correlation between CCI and CD8+ T cells in OC
and found that the CCI was negatively associated with the
abundance of CD8+ T cells (p = 5.94e-04, rpearson = −0.18).
Considering the well-known indicative powers of PDL1 and
CTLA4 for immunotherapeutic response in cancers and their
prognostic values in OC (Huang et al., 2017; Huang and Odunsi,
2017), we also examined the correlations between CCI and the
expression of them. Interestingly, CCI was positively correlated
with the expression of PDL1 (p = 1.20e-05, rpearson = 0.22) and
CTLA4 (p = 0.01, rpearson = 0.13) (Figures Figure2E–G). Given
the particular relevance and pleiotropic role of interleukins in
the progression of cancer, which has attracted great interest
of interleukins in translational cancer research recently
(Briukhovetska et al., 2021), we further examined the
correlations between CCI and several interleukin families. As
a result, IL-16 was with the strongest correlation with CCI, and
significant associations were also observed for NLRP3 and IL-1
superfamily (including IL-1β and IL-33) (Figure 2H;
Supplementary Figure S1). Besides, we also found significant
correlations between CCI and several steroid hormones-
related genes (SRD5A2, HSD17B12, and NR3C1)
(Supplementary Figure S2). Collectively, these data
demonstrated CCI may provide indicative value for future
immunotherapy in OC.

3.3 Identification of key biomarkers and CC-
related genes via WGCNA

WGCNA is a useful approach to construct a co-expression
network of genes and to identify significant gene modules or key
biomarkers from multiple samples in cancer. In this study, we
conducted WGCNA to disclose the most important module
associated with CCI and the CCI group. We chose the
optimal soft-thresholding power of 4 (scale-free R2 > 0.90) as
the soft-thresholding to construct a scale-free network
(Supplementary Figure S3), followed by the hierarchical
clustering of samples using the average linkage method
(Figure 3A). Next, the adjacency matrix was produced and
transformed into a TOM, which was used to calculate the
dissTOM (1-TOM) for evaluating the distance of genes. The
dissTOM was subsequently used to conduct hierarchical
clustering and to generate dynamic gene modules. After
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merging highly similar modules by the cut line of 0.3, a total of
twelve modules were identified (Figure 3B). The Pearson
correlation heatmap showed the green module has the most

significant correlation with both the CCI group and CCI (R2 =
0.61 and p = 3e−39 for the CCI group, R2 = 0.7 and p =
13e−57 for CCI, respectively). Thus the green gene

FIGURE 2
Survival significance of circadian clock index (CCI) and the correlations between CCI and common immune signatures. (A) Clustering heatmap of
the expression pattern of CCI genes with CCI group annotation in OC. (B) Kaplan-Meire plots for OS in the high- and low-CCI group of OC patients. (C,D)
The strong correlations between CCI and two core CCGs in OC. (E–G) The significant correlations between CCI and important immune signatures. (H)
correlations between CCI and interleukin families.
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module was selected for further study (Figure 3C). Besides,
the GS and MM of each gene for CCI and the CCI group in
the green module were presented in Figures 3D, E and 178CC-

related genes in the green module were picked out with
the MM > 0.5 and GS > 0.4 for the CCI group and GS >
0.5 for CCI.

FIGURE 3
WGCNA for identification of keymodule and circadian clock-related genes in OC. (A) Sample clustering tree with CCI and CCI group annotations. (B)Gene
clustering dendrogram with the topological overlap matrix (TOM) based dissimilarity. (C) Pearson correlation analysis between module eigengenes and CCI and
CCI group. (D,E) Scatter plots visualizing the gene significance (GS) vs. module membership (MM) of each gene for CCI and the CCI group in the green gene
module. CC-related genes were regarded as those with MM > 0.5 and GS > 0.4 for CCI group and GS > 0.5 for CCI in the green module.
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3.4 PPI network of CC-related genes

We constructed a PPI network with the CC-related genes in the
green module using the STRING online database and the Cytoscape
software (Tang et al., 2020), which contained 107 interactive nodes
and 424 edges (Figure 4A). The clustering coefficient was 0.554 and
the average number of neighbors was 9.258. Four clusters (blue
nodes) were identified by the MCODE app with a high network
score (>6). To explore the involved biological functions and
pathways of the 178 circadian clock-related genes, we conducted
GO and Rectome pathway analysis. GO analysis demonstrated these
CC-related genes were mostly enriched in the GO terms of protein

binding, cytosol, nucleoplasm, RNA binding, etc. (Figure 4B).
Meanwhile, pathway analysis suggested the green gene module
was mainly related to the Rectome pathway of Metabolism of
RNA and so on (Figure 4C).

3.5 Identification and function enrichment
of key genes of the circadian clock

For the identification of the key genes, we selected the top
15 nodes in the PPI network with a clustering coefficient of 1,
i.e., RNF169, EDC4, CHCHD1, MRPL51, UQCC2, USP34,

FIGURE 4
PPI network of circadian clock-related genes. (A) PPI network of 107 interactive gene nodes by the STRING database and Cytoscape software. Four
clusters (blue nodes) were identified by the MCODE app. (B,C) GO (B) and Rectome pathway (C) enrichment analysis of the 178 circadian clock-related
genes. BP, biological process; CC, cellular component; MF, molecular function.
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POM121, RPL37, SNRPC, LAMTOR5, MRPL52, LAMTOR4,
NDUFB1, NDUFC1, and POLR3K. Figure 5A showed the
15 key genes (red) of CC with connected neighbors (blue) in
the PPI network. We also employed GO enrichment to elucidate
their biological functions and found them remarkably correlated
with the GO term of the mitochondrial inner membrane,
mitochondrion, and nucleoplasm (Figure 5B). Meanwhile,

Rectome pathway analysis showed that the key genes of CC
played roles in Mitochondrial translation initiation,
Mitochondrial translation elongation, Mitochondrial
translation termination, Cellular response to starvation, and
Metabolism of RNA and proteins pathways (Figure 5C).
The above results indicate their potential hub roles for
tumorigenesis.

FIGURE 5
Identification and function enrichment of key genes of the circadian clock. (A) 15 key genes of CC with connected genes in the PPI network. (B,C)
GO (B) and Rectome pathway (C) enrichment analysis of 15 key genes of CC (Clustering coefficient = 1).
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3.6 Aberrant expression and prognostic
values of the key genes

Next, we verified the expression of the filtered key genes in
the GEPIA database. EDC4, SNRPC, and UQCC2 were found
significantly differentially expressed in OC vs. normal tissue (p <
0.05). All of them were elevated in OC tissues compared with the
normal tissues (Supplementary Figure S4). To evaluate the
prognostic powers of these key genes, we examined the
15 key genes in perspective of OS and DSS using Kaplan-
Meier analysis and log-rank tests. Among these key genes, the
expression levels of CHCHD1, LAMTOR5, MRPL51, MRPL52,
NDUFB1, NDUFC1, POM121, SNRPC, UQCC2, and USP34 were
significantly linked to OS of OC (Figure 6). For DSS survival
analysis, We found that low expression of CHCHD1 (p = 0.048),
LAMTOR5 (p = 0.00048), MRPL51 (p = 0.016), MRPL52 (p =
0.036), NDUFB1 (p = 0.013), NDUFC1 (p = 0.035), SNRPC (p =

3e-04), UQCC2 (p = 0.0029) was significantly associated with
worse prognosis (Figure 7). These data showed the good
potential of the 15 key genes for the development of
prognostic indicators in OC.

3.7 Correlation analysis of the key genes

To seek the clinical relevance of these key genes, we compared
the expression levels of all 15 key genes between subgroups by
clinical variables including age, stage, grade, tumor status, and
lymphatic invasion status, but all showed no significant
differences for most of these features except age and tumor stage
(Figures 8A, B). Moreover, Pearson correlation analysis coupled
with statistical significance demonstrated strong correlations
between the expression of these key genes, implying their tight
connections (Figure 8C).

FIGURE 6
Kaplan–Meier survival curves of the 15 key genes characterizing OS difference with log-rank tests in OC (only significant genes were shown). OS,
overall survival.
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3.8 All of the key genes were highly
indicative of the CCI group in OC

To evaluate the discriminating capacities of the 15 key genes in
different CCI groups, we compared the transcription expression
levels of the 15 key genes between the high-CCI group and the low-
CCI group. Consequently, all of the 15 key genes showed statistical
differences between the high CCI group and the low CCI group
(Figure 9A). The above findings prompted us to speculate that these
key genes may have good discriminating capacities for different CCI
groups, which was verified by plotting ROC curves. The area under
the curves (AUCs) of individual key genes exceeds 0.7 (Figures
9B–D). The above findings proved their great potential for
discriminating between different CCI groups.

3.9 The key genes were significantly
correlated to the immune infiltration of OC

To further explore the correlations between the CCI group and
immune infiltration, the relative proportions of 22 immune cell
types in OC were calculated by the CIBERSORT algorithm
(Figure 10A). Then, we examined the correlation between
immune cell infiltration and the expression of the 15 key genes,
which indicated that all 15 key genes of the CCI group were
significantly associated with most of the immune cells
(Figure 10B). At least 8 of them were negatively associated with
the infiltration of CD8 cells. And interestingly, we found 11 kinds of
immune cells were positively correlated to T cells CD4 memory

resting, while they were all negatively correlated to B cells memory in
OC. The above results indicated that these key genes might play an
important role in the immune status of OC.

3.10 Other downstream validations of the
key genes

Subsequently, we focused on the potential upstream regulations,
including transcription factor and regulative miRNA of the 15 key
genes of CC. We predicted the upstream transcription factors of the
15 key genes by the JASPAR database that was integrated into the
web-based application of miRNet. A transcription factor-key gene
network was constructed and visualized by the Cytoscape software,
which includes all 15 key genes and 44 putative upstream TFs
(Supplementary Figure S5). Obviously, well-known oncogenic
transcription factors such as JUN, and E2F1 were involved in the
expression regulation of the key genes. Considering the critical role
of miRNA in regulating gene expression and in tumorigenesis
(Zhang et al., 2016), the upstream miRNAs of the 15 key genes
of CC were predicted by the miRTarBase 8.0 database. The miRNA-
target network was next constructed and visualized by the Cytoscape
software, which includes 13 of the 15 genes and 242 putative
upstream miRNAs (Supplementary Figure S6). Hence, these data
could lay a firm basis for the role of the CC-related key genes in the
further exploration of the molecular mechanisms of OC.

To obtain a deeper underlying of the 15 key genes from the DNA
layer, we analyzed the gene mutation landscape of the 15 key genes
of CCI with the aid of cBioPortal. Supplementary Figure S7 showed

FIGURE 7
Kaplan–Meier survival curves of the 15 key genes characterizing DSS difference with log-rank tests in OC (only significant genes were shown). DSS,
disease-specific survival.
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all kinds of common genetic mutations of the 15 key genes including
inframe-mutation, Missense-mutation, truncating-mutation,
amplification, deep deletion, mRNA high, and mRNA low.
Among these genes, RNF169 was the most mutated one, which

exhibited a genetic mutation rate of 14% in the TCGA-OV cohort,
other frequently mutated key genes including EDC4 (11%),
CHCHD1 (10%), MRPL51 (10%), UQCC2 (10%), and
USP34(10%), respectively. These results may disclose the

FIGURE 8
Correlation analysis of the key genes in OC. (A) Boxplots showing the correlations of the key genes with age (A) and stage (B). (C) Pearson correlation
matrices of expression values of the key genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance.
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molecular mechanisms of the dysregulation of these key genes from
the genomic level.

4 Discussions

Ovarian cancer is the most common malignancy among all
gynecological cancers, and its histopathological classification mainly
includes epithelial ovarian cancer, sex cord-stromal tumors, and
germ cell tumors, among which epithelial tumors are the most
common, accounting for more than 90%. Ovarian cancer is a
malignant tumor of the female reproductive system with the
highest mortality rate, and the current treatment is mainly
surgical treatment supplemented by radiotherapy, chemotherapy,
immunotherapy, etc., but the overall survival rate of ovarian cancer
is still poor. Biorhythms play an important role in regulating
numerous physiological activities of mammals, including cell
growth, secretion, and metabolism (Reppert and Weaver, 2002).
Numerous studies have confirmed a close link between biorhythm
and cell cycle and apoptosis (Fu et al., 2002). Abnormal expression
of cell cycle-related genes will cause cell cycle disorder, resulting in
an imbalance of cell growth and apoptosis, which can lead to the
occurrence of cancer (Viallard et al., 2001). The ovaries have specific

cyclical activities, which are closely related to human reproductive
health, but the biorhythm and the occurrence and regulation
mechanism of ovarian cancer are not clear.

The change in the gene dose of the circadian clock and loss of
control of gene doses in the linked transcription-translation
feedback loop lead to disruption of the circadian clock, and thus
develop into tumors (Lee et al., 2011). The ovary is one of the
important reproductive organs of mammals, and the rhythmic
expression of circadian clock genes is found in the intact ovary
(Fahrenkrug et al., 2006). In infertility studies, it has been found that
the reproductive cycle of the ovaries is affected by circadian rhythms,
and their rhythms are coordinated and synchronized by
neurological and endocrine tissues (Gallego et al., 2006;
Etchegaray et al., 2009). This coordination is facilitated by gene
expression and cellular physiology at all levels of the hypothalamic-
pituitary-ovary (HPO) axis. The expression of circadian clock genes
has been observed in the endocrine regulatory axis of the ovaries,
and the circadian clocks at all levels coordinated and synchronized
with each other to maintain normal reproductive behavior (Alvarez
et al., 2008). In peripheral ovarian tissues, changes in the timing of
circadian clock gene expression may be the result of hormonal
imbalances associated with polycystic ovary syndrome (PCOS)
(Amaral et al., 2014). The reproductive function of the ovaries is

FIGURE 9
Discriminating capacities of the key genes between different CCI groups. (A) Comparison of expression levels of the 15 key genes in different CCI
groups. (B–D) ROC curves for the evaluation of the discriminating capacities for the 15 key genes between different CCI groups.
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richly related to biorhythms, so the relationship between ovarian
cancer and biorhythms is of great interest to us.

We comprehensively identified 15 key genes by elucidating the
relationship between circadian clock control genes and survival,
tumor stage, and subtype in ovarian cancer patients using various
statistical and bioinformatics methods. These genes play a role in

translation, mitochondrial translation initiation, extension,
termination, and protein metabolism pathways that influence
tumor progression and development. For example, POM121
forms the core component of the nuclear pore complex,
mediating the transport of molecules in and out of the nucleus,
and blocking the function of POM121 can inhibit the nuclear

FIGURE 10
Relationship between key genes of CC and the abundance of immune infiltration cells. (A) The landscape of tumor immune infiltration regarding the
CCI group in OC. (B) Heatmap showing the correlation matrix of the 15 key genes and relative abundance of 22 immune cell types. Red denotes the
positive correlation, while blue denotes the negative correlation.
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localization of transcription factors including MYC and E2F1,
thereby reducing the growth rate of prostate cancer tumors
(Rodriguez-Bravo et al., 2018). The expression levels of mRNA
and protein of POM121 in colon cancer, oral squamous cell
carcinoma (Ma et al., 2019), lung cancer (Zhang et al., 2020),
and laryngeal cancer tissues are also found to be higher than in
adjacent tissues (Zhao et al., 2020). EDC4 is a well-known regulator
of mRNA decapping, which was related to mRNA decapping,
genome stability, and sensitivity of drugs. EDC4 plays a key role
in homologous recombination by stimulating end resection at
double-strand breaks. Lack-of-function mutations in EDC4 were
detected in breast cancer (Gudkova et al., 2012). SNRPC is one of the
specific protein components encoding U1 small ribonucleoprotein
(snRNP) granules and is upregulated and prognostically related in
liver cancer patients (Hernandez et al., 2018). The same trend of
changes in the POM121, EDC4, and SNRPC genes was also found in
ovarian cancer.

The linkage between mitochondrial alteration and cancer has
been uncovered in multiple cancer types including liver (Huang
et al., 2016), lung (Qi et al., 2020), colon (Tailor et al., 2014),
breast (Zhao et al., 2013), and ovarian (Kingnate et al., 2018)
cancers. In this study, several key genes of CC such as CHCHD1,
MRPL52, MRPL51, UQCC2, NDUFB1, and NDUFC1 are all
important regulators in the mitochondrial respiratory chain,
which had significant effects on the expression of
mitochondrially encoded proteins. For example, MRPs play an
important role in the synthesis of the basic subunits of the
oxidative phosphorylation (OXPHOS) complex, MRPL51, and
MRPL52 may interact with Mhr1 to regulate mtDNA repair (Cai
et al., 2021). The protein encoded by UQCC2 affects insulin
secretion and mitochondrial ATP production by regulating
mitochondrial respiratory chain activity. NDUFB1 and
NDUFC1 are auxiliary subunits of NADH dehydrogenase
(complex I), responsible for transporting electrons from
NADH to the respiratory chain necessary for oxidative
phosphorylation. The downregulation of NDUFC1 expression
significantly inhibits the proliferation of hepatoma cells (Sahu
et al., 2019) and increases the number of apoptotic cells in liver
cancer (Han et al., 2022). We suspect that circadian clock genes
may regulate the function of these genes through a transcription-
translation feedback loop, thus having a potentially pivotal role in
tumorigenesis and development.

Given the circadian rhythm regulation of cancer-related
physiological systems such as immune response, cell cycle, and
apoptosis, immune therapy may become a promising trend in
tumor treatment (Dumbell et al., 2016). The immune system
plays a vital role in immune surveillance, with immune cells
penetrating the tumor microenvironment and helping to regulate
tumor progression. Immune cells are the cellular basis of
immunotherapy, and a deeper understanding of immune
infiltration in the tumor immune microenvironment can reveal
the underlying molecular mechanism and provide new strategies
for improving the efficacy of immunotherapy (Wu J. et al., 2019).
Immunoinvasive studies have shown that the tumor immune
microenvironment plays a key role in cancer progression and
influences clinical outcomes in cancer patients (Zhang and
Zhang, 2020). Studies have shown that the induction of immune
response and the regulation of autoimmunity are affected by the

regulation time of the immune system (Sutton et al., 2017). Studies
have also shown that the body’s immune system fluctuates
rhythmically with circadian rhythms (Wang et al., 2023), and the
body’s internal clock (biorhythm) has an important impact on the
ability of immune cells to recognize cancer cells and promote their
clearance, a discovery that may be used to improve the effectiveness
of cancer treatment.

The composition of immune cells in the tumor
microenvironment also affects cancer prognosis (Ock et al.,
2016; Guo et al., 2022). Studies have shown a strong
correlation between the circadian clock and immune cells
(Zhou et al., 2020), and in many tumors, and downregulation
of core clock genes (PER1, PER2, PER3, CRY1, and CRY2)
expression is significantly associated with T cell failure and
upregulation of immunosuppressive molecules (Wu Y. et al.,
2019). Our study found that CCI in OC was negatively
correlated with CD8+ T cell abundance, which coincided with
the change in response intensity of CD8 T cells during
vaccination with time (Nobis et al., 2019). At the same time,
melanoma studies have found dendritic cells and CD8+ T cells to
exert circadian rhythm anti-tumor functions and control the
volume of melanoma (Qian et al., 2021). The above observations
suggest that CCI may be a candidate for future immunotherapy in
OC. Interestingly, further analysis found that the selected key
genes were closely linked to immune infiltration. Studies have
shown that POM121 inhibits macrophage inflammatory response
by reducing NF-κB phosphorylated P65 nucleation, which is
associated with tumor lymph node metastasis staging (Zhang
et al., 2020), and the expression of USP34 in diffuse large B-cell
lymphoma is significantly higher than that in reactive lymphoid
hyperplasia (Li et al., 2018). USP34 can also promote the
proliferation and migration of pancreatic cancer cells by
upregulating p-AKT and p-PKC proteins (Gu et al., 2019).
Similarly, the EDC4 and Dcp1a complexes are involved in the
post-transcriptional regulation of IL-6, thereby affecting the
function of immune cells (Seto et al., 2015). In this study, the
expression levels of 15 key genes were analyzed concerning the
proportion of immune cell types. As a result, 11 key genes were
negatively associated with T cell gamma delta, most of which
were also negatively correlated with the infiltration of CD8 T cell.
The left four genes (USP34, RNF169, EDC4, and POM121 were
positively correlated with the infiltration of CD8 T cell, T cell
gamma delta, B cells memory, and T cells CD4 memory
activated). These data in turn strengthened the utility of CCI
as a potential immunotherapy target. Consequently, the
combination of drug treatment timing and circadian rhythm
may be a new strategy to improve the therapeutic responses and
improve the survival rate of patients with OC. Therefore, the
circadian rhythm of cancer immune surveillance is not only
critical for controlling tumor size but can also be used to
guide scientists and doctors to administer cancer
immunotherapy to patients at the right point in time, pointing
to a new direction for cancer treatment. The expression of CCI-
related genes and the identified key CC genes are expected to be
taken into consideration in clinical practice for determining a
personalized treatment regimen in patients with OC, and the CCI
or key CC genes-based drugs and small compounds might be
further designed for targeted therapy.
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Upstream transcription factors or miRNAs of the key CC genes
were comprehensively predicted, and well-known oncogenic
transcription factors were involved. Genomic alterations revealed
frequent somatic mutations of RNF169, EDC4, CHCHD1, MRPL51,
UQCC2, and USP34, which were poorly studied in OC, thus
providing new insights into the molecular regulation of these
genes from the genomic layer.

In summary, we comprehensively identified 15 key CC genes
with clinical implications, which not only improve the
understanding of the critical role of CC in tumor initiation and
progression, as well as the tumor immune microenvironment but
also provide novel insight for future biomarkers or molecular
classification development.
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Background: M2 macrophages perform an influential role in the progression of
pancreatic cancer. This study is dedicated to explore the value of
M2 macrophage-related genes in the treatment and prognosis of pancreatic
cancer.

Methods: RNA-Seq and clinical information were downloaded from TCGA, GEO
and ICGC databases. The pancreatic cancer tumour microenvironment was
revealed using the CIBERSORT algorithm. Weighted gene co-expression
network analysis (WGCNA) was used to detect M2 macrophage-associated
gene modules. Univariate Cox regression, Least absolute shrinkage and
selection operator (LASSO) regression analysis and multivariate Cox regression
were applied to develop the prognostic model. The modelling and validation
cohorts were divided into high-risk and low-risk groups according to the median
risk score. The nomogram predicting survival was constructed based on risk
scores. Correlations between risk scores and tumour mutational load, clinical
variables, immune checkpoint blockade, and immune cells were further explored.
Finally, potential associations between different risk models and
chemotherapeutic agent efficacy were predicted.

Results: The intersection of the WGCNA results from the TCGA and GEO data
screened for 317 M2 macrophage-associated genes. Nine genes were identified
by multivariate COX regression analysis and applied to the construction of risk
models. The results of GSEA analysis revealed that most of these genes were
related to signaling, cytokine receptor interaction and immunodeficiency
pathways. The high and low risk groups were closely associated with tumour
mutational burden, immune checkpoint blockade related genes, and immune

OPEN ACCESS

EDITED BY

Wei Zhang,
University of Southern California,
United States

REVIEWED BY

Chengfei Zhao,
Putian University, China
Guokun Zhang,
Changchun Sci-Tech University, China

*CORRESPONDENCE

Youming Ding,
dingym@whu.edu.cn

Kailiang Zhao,
zhaokl1983@qq.com

†These authors have contributed equally
to this work

RECEIVED 12 March 2023
ACCEPTED 27 June 2023
PUBLISHED 04 July 2023

CITATION

Yang D, Zhao F, Su Y, Zhou Y, Shen J,
Zhao K and Ding Y (2023), Analysis of M2
macrophage-associated risk score
signature in pancreatic cancer TME
landscape and immunotherapy.
Front. Mol. Biosci. 10:1184708.
doi: 10.3389/fmolb.2023.1184708

COPYRIGHT

© 2023 Yang, Zhao, Su, Zhou, Shen, Zhao
and Ding. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: RNA-seq, CRNA sequencing; TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus; ICGC, International Cancer Genome Consortium; GSEA, Gene set enrichment analysis; GSVA,
Gene set variation analysis; TME, Tumormicroenvironment; ICB, Immune checkpoint blockade; WGCNA,
Weighted gene coexpression network analysis; TMB, Tumor mutational burden; LASSO, Least absolute
shrinkage and selection operator; DCA, Decision curve analysis; KEGG, Kyoto Encyclopedia of Genes and
Genomes; ICI, Immune checkpoint inhibitors.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 04 July 2023
DOI 10.3389/fmolb.2023.1184708

40

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1184708/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1184708/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1184708/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1184708/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1184708/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1184708&domain=pdf&date_stamp=2023-07-04
mailto:dingym@whu.edu.cn
mailto:dingym@whu.edu.cn
mailto:zhaokl1983@qq.com
mailto:zhaokl1983@qq.com
https://doi.org/10.3389/fmolb.2023.1184708
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1184708


cells. The maximum inhibitory concentrations of metformin, paclitaxel, and
rufatinib lapatinib were significantly differences on the two risk groups.

Conclusion: WGCNA-based analysis of M2 macrophage-associated genes can
help predict the prognosis of pancreatic cancer patients and may provide new
options for immunotherapy of pancreatic cancer.

KEYWORDS

M2 macrophages, pancreatic cancer, WGCNA, prognostic model, immunotherapy

Background

Pancreatic cancer is one of the worst prognoses of all
malignant parenchymal tumours-the 5-year survival rate is
only around 9% (Bray et al., 2018; Christenson et al., 2020).
Age has been identified as a risk factor for pancreatic cancer.

With the global trend of ageing, the incidence of pancreatic
cancer is increasing every year (Siegel et al., 2018; Siegel et al.,
2020; Huang and Setiawan, 2022). In recent years, advances
have been made in the comprehensive treatment of pancreatic
cancer, such as immune checkpoint blockade therapy, which
has provided new treatment options for patients with

FIGURE 1
Analysis of immune infiltration in pancreatic cancer. (A) 22 immune cell subpopulation in TCGA pancreatic cancer samples. (B) Proportional heat
map of 22 immune cell in TCGA pancreatic cancer samples. (C) Correlation analysis of 22 immune cells.
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chemotherapy-resistant pancreatic cancer (Le et al., 2015;
Ullman et al., 2022). However, immunotherapy still requires
large randomised prospective studies to confirm its role in
improving the prognosis of patients with pancreatic cancer
(Fan et al., 2020; Ostios-Garcia et al., 2021; Ullman et al., 2022).

The tumour microenvironment is the internal environment
upon which tumour cell genesis, growth and metastasis depend
(Yang et al., 2021). The tumour microenvironment in pancreatic
cancer consists of a large number of tissue interstitial, immune cell

infiltrates and other components, of which tumour-associated
macrophages are the main component. M2-type macrophages are
the main type of tumour-associated macrophages, which play an
irreplaceable role in functions such as trophic competition,
inflammatory response, metabolic changes, tumour metastasis
and immunosuppression (Feig et al., 2012; Noy and Pollard,
2014; Cohen et al., 2015; Davies and Taylor, 2015).

However, few existing studies have investigated the
potential role of tumour-associated macrophages in the

FIGURE 2
WGCNA Analysis. (A, C, E) TCGA database aggregation of gene modules with similar expression models based on the WGNCA algorithm and
correlation analysis of modules with immune infiltrating cells. (B, D, F)GEO database aggregation of gene modules with similar expression models based
on the WGNCA algorithm and correlation analysis of modules with immune infiltrating cells.
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tumour microenvironment of pancreatic cancer as a mechanism
for chemoresistance and immunotherapy in pancreatic cancer
(Ip et al., 2017). Consequently, this study was based on the
construction of co-expression networks through The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
and International Cancer Genome Consortium (ICGC)
databases employing a WGCNA analysis approach to identify
prognostic models of macrophage-associated genes in the
pancreatic cancer microenvironment. This study
systematically investigated the potential mechanisms of the
genes in the model and the response of patients in different
risk groups to chemotherapy and immunotherapy to provide a
practical reference model for individualised clinical treatment
of pancreatic cancer.

Data downloading and processing

RNA sequencing (RNA-seq) data, clinical profiles and tumour
mutation burden data for pancreatic cancer patients were obtained
from the Cancer Genome Atlas data (https://portal.gdc.cancer.gov/
repository). Meanwhile, clinical profiles and RNA expression data
for pancreatic cancer patients from the GSE71729 database were
downloaded from the Gene Expression Omnibus (GEO) repository
(nlm.nih.gov/gds/). Gene expression data and prognostic data from
the International Cancer Genome Consortium (ICGC) database of
pancreatic cancer patients were utilized for model validation
(https://dcc.icgc.org/projects/LIRI-JP). Inclusion criteria (Bray
et al., 2018): survival time >0 and (Christenson et al., 2020)
complete clinical information.

Evaluation of immune cell infiltration

Immune cells in the tumour microenvironment affect tumour
progression and treatment efficacy. CIBERSORT predicts the
proportion of 22 immune cells in tumour sample expression
data based on linear support vector regression principles. Based
on results at p < 0.05, the proportion of immune cells in patients
with pancreatic cancer samples from the TCGA and GEO
databases was calculated and the results presented by the
ggplot2 R package.

WGCNA

Genes associated with M2 macrophages in pancreatic cancer are
identified by an algorithm using weighted gene co-expression
network analysis (WGCNA), which is a common analytical
method for exploring the relationship between gene sets and the
phenotype of interest. The R-based “WGCNA” package was built for
co-expression networks of genes in TCGA and GEO, respectively. A
proximity matrix was constructed based on the best soft threshold β
from 1–20 to match the gene distribution to a connection-based
scale-free network. Neighbourhood relationships were then
converted into a topological overlap matrix (TOM) and clustered
in a chain hierarchy based on the mean of different TOM-based
metrics. Similar genes are introduced into the same candidate

modules using a “dynamic tree cutting” algorithm. Correlations
between the module signature genes and the phenotypes of interest
were analysed using Pearson’s correlation test (p < 0.05). Finally, the
expression of genes in the co-expression modules of WGCNA was
performed to correlate the proportion of immune cell infiltration in
patients.

Building the model

The results of the WGCNA analysis of the TCGA and GEO
databases were used to select the set of genes most relevant to
M2 macrophages in the module and to take the intersecting
genes of both. The intersecting genes were first integrated with
patient survival data from TCGA; then univariate COX
regression was used to identify the genes that affected patient
survival. Next a penalty function was generated using lasso
regression to compress the coefficients of the variables to
prevent overfitting of the model. Finally, the results of the
multifactorial COX regression analysis were confirmed for
M2 macrophage-related genes affecting survival in pancreatic
cancer patients.

Risk score = βgene A × expr gene A + βgene B × expr gene
B+. . .+ βgene N × expr gene N, expr is the mRNA expression of
the pivotal gene and β is the corresponding regression
coefficient in multivariate genetic Cox regression analysis.

Model validation

Results based on TCGA multifactorial COX regression
analysis were screened from the ICGC database for the
appropriate genes and combined with survival times to
validate the data from the modelling group. Time-dependent
ROC curves were employed to validate the accuracy of risk scores
in predicting patient prognosis.

Nomogram

The nomogram provided a visual representation of a patient’s
prognosis. Based on the risk score and the patient’s clinical data a
nomogram was constructed to predict the patient’s prognosis at
1 year, 2 years and 3 years. Calibration curves (by bootstrap method
with 500 resamples) and receiver operating characteristic (ROC)
curves were applied to evaluate the nomogram.

Sample tumour mutation burden analysis

The TCGA database provides the raw tumour mutation burden
data for the samples. The study first downloaded the original tumour
mutation burden for each sample of pancreatic cancer samples and
calculated the value of the tumour mutation burden for each sample.
Waterfall plots for the high-risk and low-risk groups were plotted by
“maftools”. In addition, survival curves were plotted between the
four subgroups based on the median mutational load of pancreatic
cancer patients.

Frontiers in Molecular Biosciences frontiersin.org04

Yang et al. 10.3389/fmolb.2023.1184708

43

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/projects/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1184708


GSEA enrichment analysis

To explore the ranking of genes in the model that lie in the
correlation of different phenotypes, functional annotations were
explored utilising the c2. cp.kegg.v7.4. symbol and c5. go.v7.4.
symbol collections against the Gene Set Enrichment Analysis
(GSEA) software. The first six of the annotated results were
selected for display and defined as statistically significant with a
two-sided p-value of <0.05.

GSVA enrichment analysis

To explore the pathways by which genes in the M2macrophage-
associated model may influence the pancreatic cancer tumour
microenvironment. The MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb) was used for pathway analysis of
M2 macrophage-associated genes.

The relationship between risk models and
the tumour microenvironment

To further explore the relationship between the role of
M2 macrophage-associated risk models in the immune
microenvironment, XCELL, timer, quantitative, MCPcer, EPIC,
Sibe sorting and Sibe sort-abs were employed to explore the
relationship between risk scores and patient immune function.

Scores for each sample were first assessed based on gene
expression using the ESTIMATE algorithm. Secondly, Spearman
correlation analysis was applied to evaluate the relationship between
risk scores and tumour immune function.

Immunological target prediction
Immunotherapeutic targets play a decisive role in

immunotherapy and immune tolerance. Expression of
M2 macrophage-associated genes and 47 and
immunotherapeutic targets between high and low risk groups
were systematically analysed. The immune round of cancer cells
determines the efficacy of immunotherapy. The immune panel
score (IPS) is an important measure of the immune prototype.
The immune score of a sample was integrated by calculating the
scores for antigen presentation, effector, suppressor and
checkpoint separately.

Drug sensitivity prediction

M2 macrophage-associated models may influence the
effectiveness of chemotherapy in patients. Differences in drug
sensitivity between high- and low-risk groups were explored
based on the “pRRophetic” “ggplot2”. Differences in half-
maximal inhibitory concentrations (half-inhibitory
concentrations) of various chemotherapeutic agents were
evaluated between high- and low-risk groups of patients with
pancreatic cancer using the Wilcoxon signed-rank test.

FIGURE 3
Building a risk model (A) Venn diagram. (B) Log (λ) change curves of regression coefficients. (C) Tenfold cross-validation of adjusted parameter
choices in lasso regression. Vertical lines are plotted from the best data according to theminimumcriterion and 1 standard error criterion. (D, E) Results of
univariate and multivariate COX regression analyses.
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Real-time PCR

20 Total RNA from pancreatic cancer tissue and paired
paracancer tissue samples was treated with an RNA separator
total RNA extraction reagent (Vazyme). The cDNA was
synthesized from total RNA using NovoScript® plus an all-in-
one first strand cDNA synthesis kit (Novo protein). GAPDH was
appllied as an internal control. Primers used for RT-PCR assay
are shown in Additional File 1: Table 1.

Statistical analysis

The Wilcoxon rank sum test was used as a backup to compare
differences between two groups. kruskalWallis test was used to
compare differences between three groups and more. Kaplan-
Meier method and log-rank test were used for prognostic
analysis. All data analysis was done by R (4.1.2, https://www.r-
project.org/) software. Bilateral p < 0.05 was considered statistically
significant.

Results

Patient data

After collating and screening the clinical and expression data
of the patients, 172 samples from the TCGA database, 79 from
the GEO database GSE71729 and 80 from the ICGC database
were included in the study. The median follow-up time for
patients with pancreatic cancer in the TCGA, GEO and ICGC
databases were 15.61 [interquartile range (IQR): 8.98–22.49]
months, 13 (IQR: 6.00–22.00) months, 15.20 (IQR: 8.66–26.46)
months respectively.

Tumour microenvironment analysis

The proportions of 22 immune cells were calculated for each
sample of pancreatic cancer patients in the TCGA and GEO
databases were calculated based on the CIBERSORT algorithm,
respectively (Additional File 1: Supplementary Tables S2, S3). As
shown in Figure 1A, the row names represent each sample and
the different colours of the cylindrical plot represent the
proportion of different immune cells. The heat map
(Figure 1B) demonstrates the difference in immune infiltration
between normal and tumour tissue. The correlation heat map
suggests a potential relationship between the 22 immune cells
(Figure 1C).

WGCNA

A WGCNA co-expression network was built based on gene
expression files (TCGA: 19,819 genes, GEO: 19,014 genes) and
immune cell infiltration results. The optimal soft threshold
power (TCGA: b = 8,GEO: b = 11) when the scale-free
topology index first reached 0.9 was set as the first set of

power values to build the scale-free network (Figures 2A, B).
Genes with similar expression patterns were grouped into the
same gene module to form a hierarchical clustering tree based
on a “dynamic tree cutting” algorithm (module size = 60).
Finally, a weighted hierarchical clustering analysis was
performed to obtain the clustered gene modules (Figures 2C,
D). The highest correlations with M2 macrophages in the TCGA
and GEO databases were green and turquoise respectively. The
intersecting genes of the two modules were finally identified as
the set of M2 macrophage-associated genes for the next
analysis(Figures 2E, F).

Building the model

The 317 genes in the TCGA and GEO databases were finally
recognised as M2 macrophage-associated genes (Figure 3A).
Clinical data and follow-up information of patients were
extracted from the TCGA database and merged with the
expression of the 317 genes. Sixty genes were screened for
association with patient prognosis after univariate COX
regression analysis. The results of the Lasso regression were
used in the multifactorial COX regression analysis (Figures 3B,
C), and the final 9 genes (ABCB4, APOBEC3C, ENPP6,
FGFBP2, LIPE, MT2A, OXER1, PLD4, ZNF589) were
selected for model construction (Additional File 1:
Supplementary Tables S4, S5). Risk scores were calculated for
each sample using the risk score formula and the samples were
divided into low and high risk groups depending on the median
score. Risk score is an independent prognostic element for
patients (Figures 3D, E). Protein expression levels in
pancreatic cancer patients were explored based on the HPA
database. The results suggested that the protein of the target
gene is differentially expressed in normal tissues and pancreatic
cancer tissues. Meanwhile, model genes were differentially
expressed in both tumor tissues and normal tissues
(Additional File 2).

Validation of the model

Survival curves classifying each of the nine genes into high
and low risk groups based on median expression levels indicated
that the expression levels of all nine genes correlated with patient
prognosis (Figure 4). The heat map clearly demonstrated the
difference in expression of the model genes between the high-
and low-risk groups. Scatterplot of risk scores and patient
survival revealed a higher proportion of patients with higher
risk scores. The results were validated in the validation group
(Figure 5).

Correlation of clinical variables

High and low risk groups were correlated with clinical variables.
The correlation between high and low risk groups and age, gender,
pathological grade and tumour stage, respectively, is shown in
Figure 6.
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Predicted prognosis nomogram

The risk score was combined with clinical information to
construct the nomogram predicting the prognosis of patients at
1, 2 and 3 years to enhance the functionality of the risk score in
clinical practice. For example, if the total patient score for the
example in the nomogram is 274, the overall probability of
patient survival at 1, 2 and 3 years is 0.875,0.606 and
0.539 respectively (Figure 7A). Calibration curves showed
stable predictive power of the nomogram (Figure 7B). Time
dependent ROC curves indicated 1, 2 and 3 years AUC values of
0.760, 0.781 and 0.802 for the modelling group and 0.759,
0.673 and 0.767 for the validation group (Figures 7C, E),
indicating that the model has high predictive ability of the
model. Simultaneously, the AUC values for risk scores were
higher than for other clinical variables (Figures 7D, F).

GSEA enrichment analysis

GSEA enrichment analysis was performed to explore the
possible pathways through which M2 macrophage-associated

genes affect the immune microenvironment. The genes were
divided into high and low expression groups according to their
median expression and the differences in signalling pathways
between the two groups were investigated. The KEGG
enrichment project indicated that ABCB4 was involved in
signalling, cytokine receptor interaction, and cellular value-
added signalling pathways, APOBEC3C was linked to
immune rejection, cytokine receptor interaction, and
gastrointestinal immune signalling pathways, ENPP6 mainly
affected cell adhesion, cytokine receptor interaction
signalling pathways, FGFBP2 was related to academic
signalling, drug metabolism, haematopoietic cell pathways,
LIPE affected signaling pathways of calcium signaling,
biosynthesis, leucine isoleucine synthesis, MT2A was
concerned with signaling pathways of chemical signaling,
hematopoietic cell lineage, gastrointestinal immunity,
OXER1 was associated with chemical signaling, steroid
synthesis signaling pathways, PLD4 was engaged in cell
adhesion, chemical signaling, cytokine receptor interaction
signaling pathways, ZNF58 impacted signaling pathways of
chemical signaling, immunodeficiency, and taste perception
(Figure 8).

FIGURE 4
Prognostic analysis of the model gene. (A) APOBEC3C. (B) ABCB4. (C) ENPP6. (D) FGFBP2. (E) LIPE. (F) MT2A. (G) OXER1. (H) PLD4. (I) ZNF589.
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Tumour mutation burden analysis

The tumour mutation burden was first calculated for all
samples. Statistically significant differences in tumour
mutation burden levels between the two groups (Figure 9A).
Correlation analysis between risk score and tumour mutation
burden indicated that a higher risk score implied a higher tumour
mutation burden (Figure 9B). The sample was immediately
divided into a high and low tumour mutation group by
median tumour mutation value. There was a significant
difference in survival between the two groups (p < 0.05).
Figures 9E, F showed that this finding was validated in the
high-risk and low-risk groups.

The relationship between risk models and
the tumour microenvironment

The potential relationship between model genes and the
tumour microenvironment was investigated based on
Spearman correlation analysis (Figure 10A). Figure 10B
indicated that immune scores, stromal score, and ESTIMATE
scores were different between the high-risk and low-risk groups
(p < 0.05). The results of the correlation between risk scores and
tumour microenvironment analysed by the four methods
CIBERSORT-ABS (Figure 10C), CIBERSORT (Figure 10D),
QUANTISEQ (Figure 10E), and XCELL (Figure 10F)
immediately afterwards demonstrated the potential of

FIGURE 5
Prognostic analysis. (A, B) Risk signature survival analysis in TCGA and ICGC databases. (C, E, G) Heat plot, risk score plot and scatter plot based on
TCGA dataset. (D, F, H) Heat plot, risk score plot and scatter plot based on ICGC dataset.
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FIGURE 6
Correlation analysis of risk models and clinical variables. (A) Heat map showing clinical characteristics and risk scores for each sample. (B) Age. (C)
Gender. (D) Grade. (E) Stage. (*p < 0.05; **p < 0.01; ***p < 0.001).

FIGURE 7
Nomogram and its verification. (A)Nomogramof patients’ prognosis at 1–3 years. (B)Calibration curves. (C, D) ROC analysis based on TCGA dataset.
(E, F) ROC analysis based on ICGC dataset.
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M2 macrophage-related model genes to influence the pancreatic
cancer tumour microenvironment.

GSVA enrichment analysis

GSVA enrichment analysis revealed a negative correlation
between ABCB4, ENPP6, FGFBP2, LIPE, OXER1, PLD4,
ZNF589 and the p53 signaling pathway. ABCB4, APOBEC3C,
ENPP6, FGFBP2, MT2A, PLD4 and the MAPK signaling
pathway were positively correlated. ABCB4, ENPP6, PLD4 and
the calcium signaling pathway were positively correlated.
FGFBP2, PLD4 and calcium signaling pathway were positively
correlated (Figure 11A).

Immunotherapy predictions

The prognostic model for M2 macrophage-associated genes
was negatively correlated with most immune checkpoint
blockage-associated genes (CD40, IDO2, TNFRSF8, CD48,

CD28, PDCD1) and a few immune checkpoint blockage
genes (TNFSF9, TNFSF4, CD44, CD276) were positively
correlated with the risk score model (Figure 11B). Higher IPS
scores in the low-risk group (pd1-negative and ctla4-negative)
indicated that the low-risk group was better treated with the
new immune checkpoint inhibitors (ICI) (Figures 11C–F).
These results demonstrated the potential role of
M2 macrophage-related risk groups in predicting the
outcome of immunotherapy in patients.

Predicting chemotherapy drug efficacy

Analysis of the chemotherapeutic drugs’ semi-inhibitory
concentrations identified that paclitaxel, rafatinib and
lapatinib had a higher drug sensitivity in the low-risk group
than in the high-risk group, while metformin had a higher drug
sensitivity in the high-risk group. The results of the study showed
a correlation between the effect of chemotherapeutic drugs and
the prognostic model of M2 macrophage-associated genes
(Figures 11G, H).

FIGURE 8
GSEA enrichment analysis. (A) ABCB4. (B) APOBEC3C. (C) ENPP6. (D) FGFBP2. (E) LIPE. (F) MT2A. (G) OXER1. (H) PLD4. (I) ZNF589.
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Independent sample validation

The gene expression difference was verified by RT-PCR
detection of 20 samples of pancreatic cancer patients from
Renmin Hospital of Wuhan University. The results showed that
APOBEC3C and LIPE were highly expressed in pancreatic cancer
tissues. However, ABCB4, ENPP6, FGFBP2, MT2A, OXER1,
PLD4 and ZNF589 were low expressed in pancreatic cancer
tissues (Figure 12).

Discussion

Pancreatic cancer is highly aggressive and most patients are
diagnosed at an advanced stage and are deprived of effective
treatment options (Hidalgo et al., 2015; Karamitopoulou, 2019).
The immune system of the body is the last barrier to kill tumour
cells. The low immunogenicity and immune escape characteristics of
pancreatic cancer reduce the therapeutic efficacy of patients with
pancreatic cancer (Liu et al., 2022). Tumour-associated
macrophages account for a substantial proportion of the
pancreatic cancer tumour microenvironment, and the major part
of pancreatic cancer-associated macrophages differentiate into M2-
type tumour-associated macrophages (Velasco et al., 2023). Recent
studies have demonstrated that M2-type macrophages are involved
in immune escape from pancreatic cancer (Campbell et al., 2010;
Evan et al., 2022). Therefore, further study to uncover M2-related

genes in the tumour microenvironment macrophage-associated
genes and the mechanisms of action between the tumour
microenvironment may increase new horizons for immune
tolerance in pancreatic cancer therapy.

In recent years, there have been some advances in the treatment
of solid tumours. For example, immunotherapy has been applied in
the treatment protocols for solid tumours such as breast cancer, lung
cancer and liver cancer (Link et al., 2018; Locati et al., 2020).
However, only a few tumours have achieved favourable clinical
outcomes. There is an urgent clinical need for new treatment options
to stimulate the patient’s immune system to kill tumour cells. The
tumour microenvironment provides a supportive ecological
environment for cancer cell development and metastasis. It has
been found that in solid tumours macrophages occupy a
predominant component of the tumour microenvironment.
However, macrophages have a dual role in cancer (Hinshaw and
Shevde, 2019; Pittet et al., 2022). In different settings macrophages
exhibit different forms of activation. In the classical pathway
macrophages differentiate into M1 macrophages in response to
stimulation by bacterial products and interferons (Cao et al.,
2022). M2 macrophages are produced in the type 2 immune
response by factors such as IL-4 and IL-13 via the alternative
pathway (Biswas and Mantovani, 2010). The M1 type of
macrophage possesses the function of killing tumour cells
(Schlundt et al., 2021). In contrast, M2 is involved in the entire
process of tumourigenesis and metastasis. It has been shown that
m2 macrophages can be recruited by individual tumour initiating

FIGURE 9
Tumour mutation load analysis, (A) Differential counting of tumour mutation burden between high and low risk groups. (B) Correlation analysis of
risk score and mutation burden. (C, D) OncoPrint between high and low risk groups. (E) Prognostic analysis of tumour mutation load, (F) Prognostic
analysis of tumour mutation load in high and low risk groups.
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cells and thus provided a culture ecology for early tumourigenesis
(Gordon and Plüddemann, 2019). Meanwhile, the pro-angiogenic
and remodelling matrix of m2 cells can promote tumour growth and
metastasis (Raghavan et al., 2021). The immune tolerance that
occurs during tumour immunotherapy may be related to the
overexpression of suppressive counter-receptors (e.g., PDL1 and
PDL2) by m2 macrophages that suppress the body’s immune
function (Pushalkar et al., 2018). Therefore, blocking
macrophage-associated immunosuppressive targets may be a way
to suppress adaptive immune responses. Blocking macrophage-
associated immunosuppressive targets may therefore be a
potential therapeutic option to suppress adaptive immune
responses and enhance the efficacy of immunotherapy
(Stakheyeva et al., 2017; Riquelme et al., 2018).

The M2 macrophage-associated genes identified in this study
have been reported in the existing pancreatic cancer tumour
microenvironment (Mazarico et al., 2016; Saito et al., 2022).
Mazarico et al. (2016) discovered that ABCB4 was overexpressed
in pancreatic cancer-resistant patients treated with gemcitabine,
indicating that ABCB4 may enhance immune escape of tumour
cells by affecting macrophage function, leading to resistance to
chemotherapeutic agents. Qian (Qian et al., 2020; Qian et al.,
2022) revealed that overexpression of APOBEC3C induces
genomic instability in pancreatic cancer, increases tumour cell
heterogeneity and participates in the remodelling of the tumour
immune microenvironment by influencing the function of immune
cells. In the tumor microenvironment, ENPP can inhibit the
aggregation of immune cells by reducing cGAMP, resulting in

FIGURE 10
Estimated abundance of tumor-infiltrating cells. Patients in the (A) high-risk group had a stronger correlationwith tumor-infiltrating immune cells, as
shown by the Spearman correlation analysis. (B) Association between prognostic risk signatures and central immune checkpoint genes. The asterisks
represented the statistical p-value. The correlations predicted by the four methods CIBERSORT−ABS (C), CIBERSORT (D), QUANTISEQ (E), and XCELL (F)
were validated. (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 11
(A) GSVA enrichment analysis. (B) Correlation analysis of immune checkpoint blockade gene expression levels and risk scores. (C–F) IPS score
distribution map. Estimates of chemotherapy effect risk scores. (G) Metformin. (H) Rafatinib. (I) Paclitaxel. (J) Lapatinib.

FIGURE 12
Analysis of expression differences. Verifying the expression of genes that constitute the risk model through RT qPCR.
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enhanced immune escape of tumor cells (Matas-Rico et al., 2021;
Borza et al., 2022). Böker (Böker et al., 2022) showed a large number
of single nucleotide variants in FGFBP2 in pancreatic tumour cells,
and these changes affect the growth and migration of tumour cells.
Masi revealed that OXER1may be involved in the remodelling of the
tumour immune microenvironment through multiple pathways and
could be a potential target for immunotherapy (Masi et al., 2021).
Although LIPE, MT2A, PLD4 and ZNF589 have been studied in
other tumours, their relationship with tumour-associated
macrophages in pancreatic cancer remains to be investigated.
These findings not only provide new insights into the
pathogenesis and immune tolerance mechanisms of pancreatic
cancer in the future, but also may be potential new therapeutic
targets for pancreatic cancer.

Undoubtedly, there are still some limitations in the present
study. Firstly, the difference in mRNA expression was verified in
tumor and normal tissues. However, further validation in cells and
animals should proceed. Secondly, the results of the study needmore
work before they can be applied clinically.

Conclusion

TheM2macrophage-associated prognostic model for pancreatic
cancer performed excellently in patient prognosis, tumour mutation
load analysis, immune checkpoint prediction, and chemotherapy
drug sensitivity prediction. Meanwhile, M2 macrophage-related
genes may be involved in the targeting of immunotherapy in
pancreatic cancer patients.
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Background: Centrosomal Protein 55 (CEP55) was initially described as a main
participant in the final stage of cytokinesis. Further research identified CEP55 as a
cancer-testis antigen (CTA) that is aberrantly expressed in different malignancies
and a cancer vaccination candidate. The current study aimed to disclose the
complete expression of CEP55, its effect on variousmalignancy prognoses, and its
role in the tumor microenvironment.

Methods: Transcriptional information regarding tumor and normal tissues, as well
as externally validated and protein expression data were gathered from the Cancer
Genome Atlas, Genotype-Tissue Expression project, Gene Expression Omnibus,
and Human Protein Atlas. We examined the effect of CEP55 on tumor prognosis
using Kaplan-Meier (KM) and univariate Cox regression analyses. In addition, we
investigated the connections between CEP55 expression and hallmark cancer
pathways, immune cell infiltration, and immune regulator expression across
malignancies. We constructed and validated a CEP55-related risk model for
hepatocellular carcinoma (HCC) and explored the correlations between
CEP55 expression and HCC molecular subtypes. Finally, we investigated
putative small-molecule drugs targeting CEP55 using a connectivity map
(CMap) database and validated them using molecular docking analysis.

Findings: CEP55 was aberrantly expressed in most cancers and revealed a
prognostic value for several malignancies. Cancers with high CEP55 expression
showed significantly enhanced cell cycle, proliferation, and immune-related
pathways. For most malignancies, elevated CEP55 expression was associated
with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 cells.
In addition, CEP55 expression was linked to immunomodulators and the potential
prediction of immune checkpoint inhibitor (ICI) responses, and strongly
associated with distinct molecular HCC subtypes, whereby the CEP55-based
nomogram performed well in predicting short- and long-term HCC survival.
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Finally, we used connectivity map (CMap) and molecular docking analyses to
discover three candidate small-molecule drugs that could directly bind to CEP55.

Conclusion: CEP55 affected the occurrence and development of various cancers
and possibly the regulation of the tumor immune microenvironment. Our findings
suggest that CEP55 is a potential biomarker for prognosis and a powerful biomarker
for ICI efficacy prediction.

KEYWORDS

CEP55, pan-cancer, prognostic biomarker, immunotherapy efficiency, CMAP, molecular
docking

1 Introduction

The considerable increase in cancer incidence and mortality in
recent decades has caused this disease to become the primary cause
of death and a main factor in the decrease in life expectancies
worldwide (Sung et al., 2021). Approximately 1,958,310 million new
cancer cases and 609,820 cancer-related deaths are expected in the
United States in 2023 (Siegel et al., 2023). Although targeted therapy
and immunotherapy advances have greatly improved tumor
treatment, the long-term survival rates of patients with various
forms of tumors are unsatisfactory (Hughes et al., 2016; Sharma
et al., 2017). Novel, sensitive diagnostic markers and suitable
therapeutic targets are critical for improving prognoses for cancer
patients.

Various proteins are involved in the pathogenesis and
progression of cancers, including survival-associated signaling
kinases with relatively common mutants (e.g., BRAF V600E and
KRAS G12D) (Cisowski et al., 2016), DNA damage repair response
molecules (e.g., p53 and Rad51) (Bonilla et al., 2020), and cell cycle
progression-associated compounds (e.g., Rb1 and CDK4/6) (Fassl
et al., 2022). In particular, the targeting of cell cycle progression has
advanced greatly with the development of CDK4/6 inhibitors that
are now in clinical use for HER2+ breast cancer and are under
investigation for the treatment of a variety of Rb1+ cancers (Xu et al.,
2017; Pesch et al., 2022). However, these treatments are ineffective
for the large proportion of cancers that have CDK4/6 or
Rb1 mutations. Therefore, cell cycle inhibitors must be sourced
that can be used in these contexts.

Centrosomal Protein 55 (CEP55, also known as c10orf3 and
FLJ10540) was initially described in physiological studies as a
midbody- and centrosome-associated coiled-coil protein with a
size of approximately 55 kDa (Fabbro et al., 2005). Aberrant
expression of CEP55 has been strongly associated with clinical
features and prognoses in cancer patients, which has led to an
increasing interest in this molecule as a possible therapeutic target
(Jeffery et al., 2016). In recent years, this interest has led to the
identification of multiple independent molecular mechanisms that
explain CEP55 activity. CEP55 interacts with endosomal sorting
components to recruit the endosomal sorting complex required for
transport (ESCRT) to the midbody, and may play a significant role
in the constriction of the intracellular bridge and the promotion of
abscission and cytokinesis (Zhao et al., 2006). Defects in cytokinesis
can cause the generation of aneuploid cells, which is a key step in
tumorigenesis; therefore, CEP55 is suggested to be involved in
tumor initiation (Lens and Medema, 2019). In addition,
CEP55 binds and stabilizes the PI3K catalytic subunit and

facilitates the activation of the PI3K/Akt pathway, thus
promoting the survival and proliferation of cancer cells
(Montero-Conde et al., 2008). This association offers an
alternative mechanism for CEP55 to participate in the later
stages of tumor progression and metastasis. Beyond these cell
division and signaling roles, CEP55 has recently been identified
as an immunogenic tumor-associated antigen (TAA) and cancer-
testis antigen (CTA), which recommend it as a potential candidate
for cancer vaccine therapies. CEP55 peptides are naturally present in
breast cancer cells and can induce an increase in antigen-specific
cytotoxic T lymphocytes (CTLs) (Inoda et al., 2009). CEP55-specific
CTLs could be capable of recognizing and killing chemotherapy-
resistant colon cancer stem cells (Inoda et al., 2011; Gao and Wang,
2015). A recent study revealed that CEP55 is expressed in exosomes
derived from malignant cells and has the potential to be a non-
invasive diagnostic marker for tumors (Qadir et al., 2018).
Collectively, the results of these studies demonstrate that
CEP55 could have various functions in multiple cancers.
However, a comprehensive picture of CEP55 in the tumor
immune microenvironment has not yet been reported, and small
therapeutic compounds targeting CEP55 remain elusive.

Through an integrated analysis of the genomic and expression
data of multiple independent databases, this study aimed to
thoroughly characterize the functions of CEP55 in the regulation
of tumor biological processes and the immune microenvironment
and its potential as an immunotherapy and chemotherapy target at
the pan-cancer level. CEP55 was aberrantly expressed in most
cancers and showed prognostic value for several malignancies.
High CEP55 expression was strongly correlated with the
infiltration of myeloid-derived suppressor cells (MDSCs) and
Th2 cells in most cancers, and was substantially related to
distinct molecular subtypes of HCC, whereby the CEP55-based
nomogram performed well in predicting short- and long-term
HCC survival. Finally, using a connectivity map (CMap) and
molecular docking analyses, we identified three potential small
molecules targeting CEP55, which may mitigate the
immunosuppressive microenvironment and enhance the anti-
tumor effect of ICIs.

2 Materials and methods

2.1 Data acquisition and processing

Gene expression data and pathological and clinical information
from The Cancer Genome Atlas (TCGA) project and normal
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samples from the Genotype-Tissue Expression (GTEx) dataset were
downloaded from UCSC Xena (https://xenabrowser.net/). This
study comprehensively analyzed 33 types of cancer from
9,807 tumor tissues from TCGA database and 7,873 normal
tissues (727 from TCGA database and 7,146 from the GTEx
database). Batch effects were corrected using the UCSC TOIL
RNA-seq Recompute workflow as previously described (Vivian
et al., 2017). Transcripts per kilobase million (TPM) normalized
expression data were used for subsequent analyses. Microarray
expression data of 29 cancers were downloaded from the GEO
database (http://www.ncbi.nih.gov/geo/) for external validation.
HCC gene expression data from the ICGC (https://dcc.icgc.org/)
database (including 197 normal tissues and 240 HCC tumor tissues)
and the GSE14520 dataset (including 239 normal tissues and
247 HCC tumor tissues) were included in the validation of
CEP55 in HCC. Information on the datasets used in this study is
detailed in Supplementary Table S1.

2.2 CEP55 protein expression, localization,
and interaction

The Human Protein Atlas (HPA; www.proteinatlas.org)
initiative uses multiple omics methods to focus on protein
expression in cells, tissues, and organs (Uhlén et al., 2015). The
expressions of CEP55 in normal tissues and cell types were obtained
using the “Tissue” and “Single Cell Type” sections of this atlas. The
“Pathology” section was used to validate the protein levels of CEP55
(HPA023430) in various cancers. Immunofluorescence staining
images from the “Subcellular” section were used to explore the
subcellular localization of CEP55. The protein-protein interactions
of CEP55 were analyzed using the ComPPI website (https://comppi.
linkgroup.hu/), which provides integrated information regarding
protein-protein interactions and their localization (Veres et al.,
2015).

2.3 Genomic alteration analysis of CEP55

The cBioPortal site (http://www.cbioportal.org/) is a public
open-access link to multidimensional cancer genomic features,
including genetics, epigenetics, gene expression, and proteomics
(Cerami et al., 2012; Gao et al., 2013). The CEP55 genome
alterations and their relationships with survival were determined
using the “Mutation,” “Plots” and “Cancer Types Summary”
modules of this portal. Since microsatellite instability and tumor
mutation burden (MSI and TMB, respectively) can predict
responses to immunotherapy, MSI scores were obtained from the
somatic mutation data. TMB scores were calculated using a Perl
script and modified by dividing the scores by the total length of the
exons. Spearman’s correlation coefficient was used to assess the
relationship between CEP55 expression and TMB or MSI.

2.4 Tumor immune infiltration analysis

The “Estimate”method infers the fraction of infiltrating stromal
and immune cells in tumor samples (Yoshihara et al., 2013). The R

package “estimate” was utilized to compute the “Immune Score,”
“Stromal Score,” “Tumor Purity” and “Estimate Score” in this study.
The Tumor Immune Estimation Resource (TIMER) database
provides a comprehensive resource for analyzing the abundances
of infiltrated immune cells across cancers using various immune
deconvolution methods (Li et al., 2017; Li et al., 2020). The
correlations between CEP55 expression and pan-cancer immune
infiltration levels were accessed from the “Immune Association”
section of the TIMER2.0 database (http://timer.cistrome.org/).

2.5 Functional and pathway enrichment
analysis

The patients with CEP55 mRNA expression levels in the highest
30% were referred to as the high-CEP55 group and those with the
lowest 30%were referred to as the low-CEP55 group. The “limma” R
package was used to determine the different expression genes
(DEGs) of the high- and low-CEP55 subgroups (Ritchie et al.,
2015). The cancer HALLMARK geneset (h.all.v7.2. symbols) was
used for the functional and pathway enrichment analyses. The
normalized enrichment score (NES) and false discovery rate
(FDR) for each cancer type were determined using the R package
“clusterProfiler” (Yu et al., 2012).

2.6 Immunotherapy prediction analysis

Immunomodulators, which contain various
immunoregulatory genes, are critical components of
immunotherapy treatments (Thorsson et al., 2018).
Spearman’s correlation coefficients between CEP55 expression
and the immunomodulators were calculated for each cancer type.
To explore the influence of CEP55 in the response to ICIs,
CEP55 expression differences between responders and non-
responders were calculated for nine independent
immunotherapy cohorts. Detailed information on each
immunotherapy cohort is provided in Supplementary Table S2.

2.7 Connectivity map for specific inhibitor
analysis

The Connectivity Map (Cmap; https://clue.io/) database
contains millions of gene expression profiles from different cell
types that have been treated with perturbagens and is commonly
used to predict cellular responses to chemical stimuli (Lamb et al.,
2006). The 150 main up- or downregulated DEGs for each cancer
type were subjected to Cmap analysis. Detailed lists of the query
results were acquired and the scores were used to perform a heatmap
analysis.

2.8 Molecular docking analysis

The 3D structure of CEP55 was downloaded from the PDB Data
Bank (http://www.rcsb.org/), and the structural formulae of the
small compounds were obtained from PubChem (https://

Frontiers in Molecular Biosciences frontiersin.org03

Xie et al. 10.3389/fmolb.2023.1198557

57

https://xenabrowser.net/
http://www.ncbi.nih.gov/geo/
https://dcc.icgc.org/
http://www.proteinatlas.org
https://comppi.linkgroup.hu/
https://comppi.linkgroup.hu/
http://www.cbioportal.org/
http://timer.cistrome.org/
https://clue.io/
http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1198557


pubchem.ncbi.nlm.nih.gov/). AutoDockTools (v1.5.7) software was
used for the molecular docking analysis. A docking free energy
of ≤ −7.0 kcal/mol was considered stable binding. The molecular

docking results were visualized using PyMOL software (v2.4.0) and
the Protein Plus online server (https://proteins.plus/) (Schöning-
Stierand et al., 2020).

FIGURE 1
CEP55 expression and localization in normal tissues and cells. (A) The expression of CEP55 in normal tissues. (B) The expression of CEP55 in normal
cells. (C) Subcellular localization of CEP55 in A-431 and U251 cell lines. The images were retrieved from the HPA (www.proteinatlas.org) database. (D)
Protein-protein interaction (PPI) network of CEP55. (E) The correlation between CEP55 mRNA expression and cell cycle progression. The picture was
obtained from the HPA (www.proteinatlas.org) database.
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2.9 Survival analysis

Overall survival (OS) and disease-specific survival (DSS) were
used to determine the prognostic value of CEP55 expression across
the various cancer types. Patients were separated into low- and high-
CEP55 expression groups using the median CEP55 expression as the
cutoff value. The “survival” and “forestplot” R packages were used to
conduct a Cox regression analysis for pan-cancer. The Kaplan-Meier
method and log-rank test were used for the survival analysis.

2.10 Statistical analyses

All computational procedures and statistical analyses were
conducted using R software (https://www.r-project.org). Two
normally distributed groups were analyzed for statistical
significance using the unpaired Student’s t-test, and non-
normally distributed groups were compared using the Wilcoxon
rank-sum test. The chi-squared or Fisher’s exact test was used to
compare the contingency table variables, and the log-rank test was
used to compare the results of the survival analysis using Kaplan-
Meier method. Statistical significance was defined as p < 0.05.

3 Results

3.1 The expression and localization of
CEP55 in normal tissues and cells

We first analyzed CEP55 expression in tissues and cells using the
HPA database and enhanced expression was observed in the testis
and lymphoid tissues such as the thymus, tonsils, and lymph nodes.
At the cellular level, CEP55 was highly expressed in germ cells
(spermatocytes, early spermatids, and spermatogonia), epithelial
cells (granulosa cells and squamous epithelial cells), and
immune-related cells (plasma cells and Hofbauer cells) (Figures
1A,B). The immunofluorescence (IF) images of the HPA database
showed that CEP55 was mainly located in the plasma membrane,
centriolar satellites, and midbody region (Figure 1C).
CEP55 interacted proteins were localized in the cytosol,
extracellular space, membrane, mitochondria, nucleus, and
secretory pathway (Figure 1D). Based on the fluorescent
ubiquitination-based cell cycle indicator (FUCCI) assay and
single-cell RNA sequences from the HPA database,
CEP55 showed a strong correlation with the cell cycle and
variable peak expression across cell cycle phases, which are
consistent with its function in cytokinesis (Figure 1E).

3.2 Aberrant expression of CEP55 in cancer
tissues

To further investigate the critical role of CEP55, we analyzed its
expression in various cancers. Through integrated GTEx-TCGA
data analysis, CEP55 showed significantly higher expression in
tumor tissues than normal tissues in approximately 30 cancers,
23 of which were verified by external datasets: adrenocortical cancer
(ACC), breast invasive carcinoma (BRCA), bladder urothelial

carcinoma (BLCA), colon adenocarcinoma (COAD), cervical and
endocervical cancer (CESC), cholangiocarcinoma (CHOL), diffuse
large B-cell lymphoma (DLBC), glioblastoma multiforme (GBM),
esophageal carcinoma (ESCA), kidney chromophobe (KICH),
kidney papillary cell carcinoma (KIRP), kidney clear cell
carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung
squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD),
ovarian serous cystadenocarcinoma (OV), rectum adenocarcinoma
(READ), pancreatic adenocarcinoma (PAAD), skin cutaneous
melanoma (SKCM), sarcoma (SARC), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), and uterine corpus
endometrioid carcinoma (UCEC) (Figure 2A; Supplementary
Figure S1). Furthermore, CEP55 expression was considerably
higher in cancer tissues than in the corresponding tumor-
adjacent normal tissues in 17 cancers: BRCA, BLCA, CHOL,
ESCA, COAD, HNSC, KICH, KIRP, KIRC, LIHC, LUSC, LUAD,
prostate adenocarcinoma (PRAD), STAD, READ, THCA, and
UCEC (Figure 2B). At the protein level, immunohistochemistry
(IHC) data from the HPA database revealed that CEP55 expression
was considerably greater in cancer tissues than in normal tissues
(Figure 2C). Therefore, we assessed the correlation between
CEP55 expression and clinical characteristics and found that
CEP55 expression was greater in high-stage tumors (Stages III
and IV) than in low-stage tumors (Stages I and II) of ACC,
HNSC, KICH, KIRP, KIRC, LIHC, LUAD, and LUSC, whereas
CEP55 expression was lower in high-stage than low-stage COAD
tumors (Figure 2D; Supplementary Figure S2A). CEP55 was elevated
in high-grade (Grades III and IV) malignancies in BLCA, KIRC,
HNSC, LIHC, LGG, OV, andUCEC, but showed reduced expression
in high-grade CESC and STAD tumors (Figure 2E; Supplementary
Figure S2B). Moreover, patients with recurrences during follow-up
showed increased expression of CEP55 in ACC, KIRP, KICH, LIHC,
LGG, PRAD, pheochromocytoma and paraganglioma (PCPG),
UCEC, SARC, and uveal melanoma (UVM), and reduced
expression in STAD (Figure 2F). These findings indicate that
CEP55 is frequently overexpressed in multiple cancers and is
associated with clinical characteristics.

3.3 CEP55 correlates with prognosis in pan-
cancer

To assess the relationship between CEP55 expression and pan-
cancer prognosis, we estimated overall survival (OS) and disease-
specific survival (DSS) using univariate Cox regression with TCGA
dataset. Increased expression of CEP55 showed significant
correlations with poor OS rates in UVM (HR = 1.56, p = 0.037),
PAAD (HR = 1.64, p < 0.001), MESO (HR = 1.75, p < 0.001), LUAD
(HR = 1.15, p = 0.002), LIHC (HR = 1.12, p = 0.014), LGG (HR =
1.47, p < 0.001), KIRP (HR = 1.66, p < 0.001), KIRC (HR = 1.36, p <
0.001), KICH (HR = 2.35, p < 0.001), and ACC (HR = 2.17, p <
0.001). Higher CEP55 expressions predicted better OS rates in LUSC
(HR = 0.90, p = 0.008) and THYM (HR = 0.69, p = 0.033)
(Figure 3A). Higher expression of CEP55 was also related to
poor DSS in UVM (HR = 1.59, p = 0.035), PRAD (HR = 2.18,
p < 0.043), PAAD (HR = 1.69, p < 0.001), MESO (HR = 2.03, p <
0.001), LUAD (HR = 1.18 p = 0.004), LIHC (HR = 1.22, p = 0.002),
LGG (HR = 1.48, p < 0.001), KIRP (HR = 2.08, p < 0.001), KIRC
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FIGURE 2
CEP55 expression in human cancers. (A)CEP55 expression in tumor and normal tissues based on the integrated data from TCGA and GTEx datasets.
(B) The expression of CEP55 in tumor and paired tumor-adjacent normal tissues based on the TCGA dataset. (C) Immunohistochemical staining of
CEP55 in cancers. The images are from the HPA (www.proteinatlas.org) database. (D) The expression of CEP55 in high- and low-stage tumors. (E) The
expression of CEP55 in high- and low-grade tumors. (F) The expression of CEP55 in recurrent and non-recurrent tumors. Asterisks indicate
statistical p-values (ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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(HR = 1.61, p < 0.001), KICH (HR = 2.66, p < 0.001), and ACC
(HR = 2.13, p < 0.001) (Figure 3B; Supplementary Table S3). KM
survival curves showed better OS in the low-CEP55 expression
group for PAAD (HR = 1.71, p = 0.011), MESO (HR = 4.86, p <
0.001), LIHC (HR = 2.00, p = 0.001), KIRP (HR = 2.64, p = 0.0013),
ACC (HR = 8.63, p < 0.001), LGG (HR = 3.07, p < 0.001), KIRC
(HR = 1.91, p < 0.001), LUAD (HR = 1.51, p = 0.003), and PRAD
(HR = 7.07, p = 0.031); however, high OS was observed in the high-

CEP55 group for THYM (HR = 0.21, p = 0.030) and STAD (HR =
0.67, p = 0.009) (Figure 3C; Supplementary Figure S3A). In PAAD
(HR = 1.70, p = 0.026), MESO (HR = 6.5, p < 0.001), LIHC (HR =
2.21, p < 0.001), KIRP (HR = 6.26, p < 0.001), ACC (HR = 8.01, p <
0.001), BRCA (HR = 1.54, p = 0.038), KIRC (HR = 2.78, p < 0.001),
LGG (HR = 3.30, p < 0.001), LUAD (HR = 1.68, p = 0.003), PRAD
(HR = 6.48, p = 0.038), and UVM (HR = 2.56, p = 0.034), the low-
CEP55 expression group had higher DSS, while for STAD (HR =

FIGURE 3
The correlation between CEP55 expression and overall survival (OS) and disease-specific survival (DSS). (A) The correlation between
CEP55 expression and overall survival (OS). (B) The correlation between CEP55 expression and disease-specific survival (DSS). (C) Kaplan-Meier overall
survival curves of CEP55 in PAAD, MESO, LIHC, and KIRP. (D) Kaplan-Meier disease-specific survival curves of CEP55 in PAAD, MESO, LIHC, and KIRP.
Asterisks indicate statistical p-values (ns, p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001).
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0.59, p = 0.012), the high expression group showed better DSS rates
(Figure 3D; Supplementary Figure S3B). These results indicate that
higher CEP55 expression is generally associated with worse
prognoses for the majority of tumors.

3.4 Mutation landscape of CEP55 in pan-
cancer

We inspected the mutation profiles of CEP55 using the
cBioPortal database to investigate genomic alterations. Genetic
variations in CEP55 were detected in 20 of the 33 cancer types.
The highest alteration frequency was observed with UCEC, with
6.24% of all UCEC cases (Figure 4A). “Mutation” was the primary

variation type in most of the cancers, such as UCEC, BLCA, and
SKCM, while “amplification” and “deep deletion”were predominant
in other cancers, such as UCS, PRAD, and SARC. The relationships
between alteration type and CEP55 expression in pan-cancer are
shown in Figure 4B. A total of 86 putative non-synonymous
mutation sites were detected between amino acids 0 and 464,
including 68 missenses, 16 truncating, and 2 splice variants
(Figure 4C). Moreover, patients with CEP55 variation showed a
trend toward better prognosis in terms of OS and disease-free
survival (DFS) (Figures 4D,E). Tumor mutation burden (TMB)
and microsatellite instability (MSI) are associated with the
occurrence and development of malignancies and are regarded as
predictive markers for responses to immunotherapy. We then
analyzed the relationships between CEP55 expression and TMB/

FIGURE 4
Mutation characteristics of CEP55 in cancers. (A) The alteration frequencies of CEP55 in various cancers. (B) Themutation counts of CEP55 in various
cancers. (C) Themutation sites of CEP55. (D) Kaplan–Meier curve for OS in the altered and unaltered groups. (E) Kaplan–Meier curve for DSS in the altered
and unaltered groups. (F) The correlations between CEP55 expression and TMB (purple) and MSI (green). Asterisks indicate statistical p-values (ns, p >
0.05, *p < 0.05, and **p < 0.01).
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FIGURE 5
Gene set enrichment analysis (GSEA) and immune infiltration analysis in pan-cancer. (A) Heatmap of enrichment scores. The size of the circle
represents the value of the false discovery rate (FDR), and the color represents the normalized enrichment score (NES). (B) The correlations between
CEP55 expression and estimated scores. Red, positive correlation; Blue, negative correlation. (C–D) Scatter plots of correlations between
CEP55 expression and immune, stromal, and estimated scores in THCA and KIRC. (E) Correlations between CEP55 expression and infiltration
abundances of Th2 cells, Th1 cells, and MDSCs.
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MSI in all cancers. CEP55 expression was positively correlated with
TMB in UCEC, STAD, SARC, SKCM, READ, PAAD, PRAD, LUSC,
LGG, LUAD, KICH, KIRC, COAD, HNSC, CESC, BLCA, BRCA,
and ACC, and negatively correlated with TMB in THYM. In
addition, the expression of CEP55 was positively associated with
MSI in UCS, UCEC, STAD, COAD, SARC, READ, LUSC, and
DLBC, but these were negatively correlated in SKCM and DLBC
(Figure 4F, p < 0.05; Supplementary Table S4).

3.5 Functional analysis based on
CEP55 expression

To further elucidate the biological role of CEP55 in cancer, a
differential expression analysis was performed between high- and
low-CEP55 expression groups for each cancer type. Gene set
enrichment analysis (GSEA) was then performed using the
different expression genes (DEGs) for each malignancy. Cancers
with high CEP55 levels were considerably enriched in cell cycle- and
proliferation-related pathways, such as the mitotic spindle, E2F
targets, and G2M checkpoints, indicating that the malignancies
were in a high proliferation state. Furthermore, we discovered
that immune-related pathways, such as the IL6-JAK-
STAT3 signaling, inflammatory response, IFNα response, and
IFNγ response pathways, were significantly enriched in high-
CEP55 malignancies, particularly for KICH, LGG, THCA, and
LIHC (Figure 5A; Supplementary Table S5). These findings
suggest that CEP55 is involved in tumor invasion and
progression, as well as immunological responses.

3.6 CEP55 expression correlates with tumor
immune cell infiltration

Tumor-infiltrating immune cells are directly involved in the
occurrence, progression, and metastasis of malignancies. The GSEA
revealed a correlation between CEP55 expression and immune-
related pathways. We further explored the relationships between the
expression of CEP55 and the abundance of tumor-infiltrating
immune cells. First, we calculated the immune and stromal
scores using the ESTIMATE algorithm. CEP55 expression was
significantly correlated with immune scores in ESCA, CESC,
HNSC, LGG, KIRC, LIHC, LUSC, LUAD, PRAD, SKCM, THCA,
STAD, and THYM (Figures 5B–D, p < 0.05; Supplementary Table
S6). Furthermore, to investigate the immune cells that were
correlated with CEP55, we used the TIMER2.0 database, which
estimates the abundance of diverse immune cells using multiple
methods. The pan-cancer immune cell invasion is shown in
Supplementary Figure S4. The majority of the malignancies
showed substantial correlations between the expression of
CEP55 and the presence of myeloid-derived suppressor cells
(MDSCs) and T helper 2 (Th2) cells (Figure 5E).
CEP55 expression was positively correlated with the number of
MDSCs infiltrating the malignancies, including ACC (Cor = 0.769,
p = 2.07e-15), LIHC (Cor = 0.69, p = 5.48e-50), and LUAD (Cor =
0.656, p = 5.05e-62). Moreover, CEP55 expression was positively
correlated with the infiltration abundance of Th2 cells in ACC
(Cor = 0.809, p = 4.86e-18), BLCA (Cor = 0.778, p = 9.62e-76),

BRCA (Cor = 0.873, p = 1.45e-311), BRCA-LumA (Cor = 0.745, p =
1.17e-92), BRCA-LumB (Cor = 0.715, p = 2.31e-31), LUAD (Cor =
0.762, p = 6.73e-95), MESO (Cor = 0.821, p = 6.21e-22), READ
(Cor = 0.703, p = 1.11e-14), SARC (Cor = 0.79, p = 2.86e-53),
SKCM-Primary (Cor = 0.773, p = 1.91e-21), SARC (Cor = 0.764, p =
3.26e-23), and UCEC (Cor = 0.716, p = 5.60e-15). These profiles
show that CEP55 expression is selectively correlated with the
infiltration of immune cell populations into tumors and may
serve as a key regulator in the tumor microenvironment.

3.7 CEP55 correlates with
immunomodulators and predicts response
to cancer immunotherapy

To better characterize the mechanistic relationship between
CEP55 and the tumor immunological milieu, we assessed the
correlation between CEP55 expression and a collection of
immunomodulators (Thorsson et al., 2018). CEP55 expression
was positively correlated with most immunomodulatory variables
in OV, THCA, KIRC, LGG, LIHC, MESO, BLCA, BRCA, PRAD,
and UVM, but negatively correlated with STAD, PAAD, ESCA, and
THYM (Figure 6A; Supplementary Table S7). We further studied
whether CEP55 expression affected patient response to ICIs by
detecting the differences in CEP55 expression between ICI response
(CR/PR) and non-response (SD/PD) patients. For urinary tumors
treated with PDL1 inhibitors (the IMvigor210 cohort),
CEP55 expression differed significantly between the CR/PR and
SD/PD groups (Figure 6B), with the CR/PR group exhibiting higher
CEP55 expression than the SD/PD group (Figure 6C). When
patients with urinary malignancies were treated with a
PDL1 inhibitor, those with high CEP55 expression outlived the
patients with low CEP55 expression (Figure 6D). Patients with high
CEP55 expression responded to the PDL1 inhibitor at a rate of
28.2%, which was considerably greater than the 17.4% shown in
patients with low CEP55 expression (Figure 6E). CEP55 and
PDL1 expression showed a strong positive correlation
(Figure 6F). Moreover, in the GSE91061 melanoma cohort
treated with PD1 and CTLA4 inhibitors, CEP55 expression
decreased considerably after ICI treatment in the CR/PR group
(Figure 6G). These findings indicate that, in addition to its role in
carcinogenesis, as previously documented, CEP55 may also be
involved in the modulation of the tumor immune
microenvironment; therefore, it has the potential as a biomarker
to predict immunotherapy response.

3.8 Construction and validation of CEP55-
Related risk model in HCC

Two recent studies have identified certain functions of
CEP55 in HCC. Li et al. demonstrated that CEP55 regulated
the JAK2-STAT3-MMPs signaling pathway and promoted HCC
cell migration and invasion (Li et al., 2018). Yang et al. revealed
that CEP55 participated in SPAG5-mediated proliferation and
migration of HCC cells and provided a viable therapeutic target
for the clinical treatment of HCC (Yang et al., 2018). These
findings indicate that increased CEP55 expression could be
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particularly important in the context of HCC. Therefore, we
investigated the effects of CEP55 on HCC. Consistent with
previous findings, CEP55 was documented to be more
abundant in tumor tissues than in non-tumor tissues in both

the ICGC and GSE14520 datasets (Figures 7A,B). In addition, the
group with high CEP55 expression had a lower survival rate
(Figures 7C,D). The prognostic effect of CEP55 in HCC was
further examined using univariate and multivariate Cox

FIGURE 6
CEP55 in association with immunomodulators predicts cancer immunotherapy response. (A) Heatmap of correlation efficiency of CEP55 with
immunoregulators. Red, positive correlation; Blue, negative correlation. (B)Differences in CEP55 expression between responders and non-responders in
multiple immunotherapy cohorts. (C) CEP55 expression in CR/PR and SD/PD patients of the IMvigor210 cohort. (D) Kaplan-Meier curve of the low and
high-CEP55 subgroups in the IMvigor210 cohort. (E) The proportion of responders and non-responders in the high and low-CEP55 expression
groups of the IMvigor210 cohort. (F) The correlation between CEP55 expression and PDL1 expression in the IMvigor210 cohort. (G) CEP55 expression
changes after ICI treatment in the GSE91061 cohort. Asterisks indicate statistical p-values (ns, p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001).
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regression analyses of HCC datasets. The univariate (HR = 1.12,
p < 0.001) and multivariate (HR = 1.10, p < 0.001) analyses of
TCGA LIHC dataset showed that CEP55 expression was
significantly correlated with prognosis. Similar outcomes were
found using the GSE14520 dataset with univariate (HR = 1.69, p =
0.011) and multivariate (HR = 1.32, p = 0.041) Cox regression
analyses (Figures 7E,F). Moreover, a time-dependent ROC curve
analysis was performed to evaluate the predictive classification
efficiency of CEP55 expression in HCC. In TCGA dataset, the
area under the curve (AUC) values for 0.5-, 1-, 2-, 3-, and 5-year
overall survival were 0.74, 0.75, 0.68, 0.67, and 0.67, respectively,
whereas the corresponding values of the GSE14520 dataset were

0.6, 0.57, 0.61, 0.63, and 0.61 (Figure 7G). These results indicate
that CEP55 expression may help predict the short- and long-term
survival status of patients with HCC. We then merged the
separate prognostic markers to create a nomogram that
doctors can use as a quantitative technique to predict death in
HCC patients (Figure 7H). Each patient can be assigned a total
score by adding the scores for each prognostic criterion. Higher
overall scores would indicate a worse prognosis for the patient. In
addition, the calibration graphs of several cohorts (TCGA and
GSE14520) revealed that the nomogram performed similarly to
the ideal model and was capable of explaining a large portion of
patient outcomes (Figures 7I,J).

FIGURE 7
Validation of CEP55 expression and construction of prognostic risk model for HCC. (A-B)CEP55 expression in normal and tumor tissues in the ICGC
and GSE14520 datasets. (C-D) Kaplan-Meier curve of the high and lowCEP55 expression groups in the ICGC and GSE14520 datasets. (E-F)Univariate and
multivariate Cox regression analyses for CEP55 expression and clinical features in TCGA and GSE14520 datasets. (G) Time-dependent ROC curve analysis
to assess the predictive efficacy of CEP55 in TCGA and GSE14520 datasets. (H)Nomogram for quantitatively predicting the probability of 1-, 2-, and
3-year OS for HCC patients. (I-J) Calibration plots of nomogram in TCGA and GSE14520 datasets. Asterisks indicate statistical p-values (ns, p > 0.05, *p <
0.05, **p < 0.01, and ***p < 0.001).
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3.9 CEP55 expression is linked to HCC
subclass

Subsequently, using data from TCGA LIHC cohort and the
GSE14520 dataset, we examined the association of tumor-associated
clinicopathological characteristics with CEP55 expression (Figures
8A,B). These components were significantly correlated in HCC,
based on the chi-squared test. In TCGA cohort, CEP55 expression
was correlated with age, serum AFP level, pathologic stage,
histologic grade, and tumor recurrence (p < 0.05). Similarly, in
the GEO cohort, CEP55 expression was associated with tumor stage,
survival status, tumor size, viral infection, and serum AFP level (p <
0.05). Several studies have reported that molecular-based
stratification of HCC could identify disease subtypes with

differential outcomes (Lee et al., 2004; Boyault et al., 2007;
Hoshida et al., 2009), and the relationships between
CEP55 expression and these subtypes were analyzed. In TCGA
cohort, increased CEP55 expression was substantially related to
Boyault’s G3 subclass (p < 0.001), Chiang’s unannotated subclass
(p < 0.001), Hoshida’s1 subclass (p < 0.001), Lee’s Survival_Down
subclass (p < 0.001), and TCGA iCluster1 subclass (p < 0.001). Low
CEP55 expression was associated with Boyault’s G5/G6 subclass (p <
0.001), Chiang’s CTNNB1 subclass (p < 0.001), Hoshida’s2 subclass
(p < 0.001), Lee’s Survival_Up subclass (p < 0.001), and TCGA
iCluster2 subclass (p < 0.001). Similarly, increased
CEP55 expression in the GEO cohort was substantially related to
Boyault’s G3 subclass (p < 0.001), Chiang’s unannotated subclass
(p < 0.001), Hoshida’s1 subclass (p < 0.001), and Lee’s Survival_

FIGURE 8
Relationships betweenCEP55 expression and HCCmolecular subtypes in (A) TCGA and (B)GSE14520 datasets. Asterisks indicate statistical p-values
(ns, p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 9
Prediction and validation of potential therapeutic compounds. (A) Heatmap of scores for each drug in the CMAP database for various cancers. Red,
negative score; Blue, positive score. (B) The mechanisms of action (MoA) that were shared by the compounds. (C–E) Docking position of the
CEP55 predicted active pocket with cytochalasin B, palbociclib, and bisbenzimide.
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Down subclass (p < 0.001). Low CEP55 expression was associated
with Boyault’s G5/G6 subclass (p < 0.001), Chiang’s
CTNNB1 subclass (p < 0.001), Hoshida’s2 subclass (p < 0.001),
and Lee’s Survival_Up subclass (p < 0.001). Based on these results,
we showed that the expression of CEP55 may predict an HCC
prognosis and that CEP55 exhibits diverse patterns of expression in
various molecular subtypes of this disease.

3.10 Prediction and validation of potential
therapeutic compounds

We screened CEP55-associated inhibitors and components for
each cancer type using the connectivity map (CMap) database.
Various substances, including purvalanol-A, NCH-51, and ISOX,
demonstrated therapeutic potential against CEP55 expression
(Figure 9A; Supplementary Table S8). Topoisomerase, CDK,
HDAC, and PI3K inhibitors were common mechanisms among
small-molecule drugs (Figure 9B). We used a molecular docking
approach to determine whether these small molecules could attach
to CEP55. Cytochalasin B and CEP55 had a binding free energy
of −7.16, and cytochalasin B formed hydrogen bonds with CEP55 via
GLU-179 and GLN-183 (Figure 9C). Palbociclib and CEP55 had a
binding free energy of −7.38 and hydrogen bonds were formed
between these through GLU-206, ARG-191, and TRY-804
(Figure 9D). Bisbenzimide and CEP55 showed a binding free
energy of −7.00, and these hydrogen bonds were created via LYS-
196 (Figure 9E). Thus, these clinically available compounds could
bind CEP55, and further studies should be conducted to evaluate the
outcomes of CEP55 inhibition in a tumor context. The design of new
molecular inhibitors, particularly proteolysis-targeting chimeras,
may also be able to use these as reference scaffolds.

4 Discussion

CEP55 has been identified as a critical factor in cellular
abscission, and further research revealed that it is abnormally
expressed in various cancers and is implicated in cancer cell
proliferation, invasion, and migration (Jeffery et al., 2016).
CEP55 knockdown arrests the cell cycle at the G2/M phase and
suppresses gastric cancer cell expansion (Tao et al., 2014).
Furthermore, CEP55 drives the migration and invasion of oral
cavity squamous cell carcinoma by increasing FOXM1 and
MMP-2 activity (Chen et al., 2009). Recently, researchers
demonstrated that CEP55 promoted the epithelial-mesenchymal
transition (EMT) and activated the PI3K/AKT/mTOR pathway in
renal cell cancer (Chen et al., 2019). Collectively, these reports show
that apart from regulating the cell cycle, CEP55 may also actively
participate in the central cell processes required for the occurrence of
malignancies. The possible involvement of CEP55 in the tumor
microenvironment warrants further investigation.

In the present study, we investigated CEP55 expression and its
relationship with pan-cancer prognoses. CEP55 expression was
revealed to be considerably higher in tumor tissues than non-
cancerous tissues in the following cancers: ACC, BRCA, BLCA,
COAD, CESC, CHOL, DLBC, GBM, ESCA, KICH, KIRP, KIRC,
LIHC, LUSC, LUAD, OV, READ, PAAD, SKCM, SARC, STAD,

THCA, and UCEC. In addition, overexpression of this protein has
been reported in association with numerous malignancies, including
gastric carcinoma, lung cancer, renal cell cancer, breast cancer, and
esophageal squamous cell carcinoma (Ma et al., 2003; Jones et al.,
2005; Sakai et al., 2006; Yan et al., 2021). CEP55 is involved in
multiple malignancy risk signatures for predicting cancer prognosis,
progression, and chemotherapy response, and is within the main
70 overexpressed genes in cancers with chromosomal instability (the
CIN70 signature) that are frequently used to predict clinical
prognoses and distant metastases (Carter et al., 2006). CEP55 is
also part of the PAM50 signature, which is used for breast cancer
categorization and prognostic prediction. Our findings show that
CEP55 may be a carcinogenic indicator and a viable prognostic
biomarker for a variety of malignancies.

In addition to its involvement in cell cycle and proliferation-related
pathways, this study showed that CEP55 was closely associated with
immune-related pathways, including the IL6-JAK-STAT3 signaling and
the IFNα/γ response pathways. In addition, this protein is highly
expressed in the lymph nodes, tonsils, and other immune-associated
tissues. This suggests that CEP55 could have a more active role in
immune modulation than those previously reported. We discovered
that abnormal CEP55 expression was substantially linked to the
invasion of MDSCs and Th2 cells in most malignancies. MDSCs
have a diverse population of cells that are descended from myeloid
cells, and activated MDSCs produce the immune-suppressive factors
arginase 1, iNOS, and ROS (Gabrilovich and Nagaraj, 2009). T-helper 1
(Th1) and Th2 cells are the major functional subsets of CD4+ T cells
(Chatzileontiadou et al., 2020; Zhu and Zhu, 2020), and the two
subgroups differ in terms of cytokine production and immunological
responses. Th1 cells boost the cytotoxic effects of NK and CD8+ T cells
by secreting Th1-type cytokines such as TNFα, IL2, and IFNγ
(Mosmann and Coffman, 1989; Murphy et al., 2000; Alspach et al.,
2019), whereas Th2 cells produce immunosuppressive cytokines,
including IL-4, IL-5, IL-10, and IL-13. Th2-type cytokines inhibit
Th1 cell development and the immune response, thereby limiting
antitumor immunity (Protti and De Monte, 2012; Nakayama et al.,
2017; Basu et al., 2021). Balancing Th1/Th2 cells is essential for
maintaining immune homeostasis, and a change in this ratio toward
increased Th2 cell infiltration could promote cancer development and
weaken the immune system (Kidd, 2003; Ruterbusch et al., 2020).
According to the results of this investigation, CEP55 expression was
positively linked to Th2 cell infiltration, suggesting that CEP55 may be
the catalyst or promoter of this Th1/Th2 balance shift. In addition, the
current study indicated that CEP55 could be implicated in the
modulation of the immunosuppressive microenvironment in
malignancies and can be a marker for predicting responses to ICIs.
However, the fundamentalmechanisms bywhich CEP55 participates in
immune modulation and immunotherapy responses remain unknown.

HCC is the fourth leading cause of cancer-relatedmortality globally
and the most common primary liver cancer (Villanueva, 2019). The
elevated CEP55 expression in tumor tissue and its association with poor
survival in HCC identified in this study corroborate previously
published results. Overexpression of this protein causes AKT
phosphorylation and activation, which promotes survival and tumor
formation in HCC (Chen et al., 2007). HCC is a heterogeneous
malignancy of hepatocytes that is characterized by the accumulation
of many genomic and epigenomic changes that have undergone
Darwinian selection. Effective precision medicine for HCC therapy
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can be achieved by the accurate molecular subtyping of HCC
(Rebouissou and Nault, 2020). We demonstrated that distinct
hepatocellular carcinoma molecular subtypes can be identified based
on CEP55 expression. Owing to the high levels of CEP55 expression in
exosomes, CEP55 may be a viable biomarker for liquid biopsies to
predict survival and direct precision medicine for HCC patients.
Moreover, CEP55 expression was significantly inversely associated
with specific metabolic pathways in HCC, such as xenobiotic and
bile/fatty acid metabolism. Metabolic reprogramming has been
identified as one of the variables driving cancer aggression and
affecting neoadjuvant chemotherapy response (Wu et al., 2022).
Therefore, a greater understanding of the function of CEP55 in
metabolic regulation is required.

We detected possible inhibitors for the regulation of
CEP55 expression or the targeting of CEP55-related pathways and
confirmed these using molecular docking analyses. Three small-
molecule compounds were identified that had a strong affinity for
CEP55: cytochalasin B, which is a G-actin superimposed inhibitor that
can suppress the growth of many types of cancer (Croop and Holtzer,
1975); palbociclib, which is a CDK4/6 inhibitor licensed by the FDA for
the treatment of ER+, HER2-breast cancer (Konar et al., 2022), and
given that CDK4/6 are critical cell cycle regulators, off-target effects of
palbociclib on CEP55 may contribute to its efficacy in triggering tumor
cell cycle arrest; and bisbenzimide, which is involved in numerous
pharmacological actions, including anticancer, antiparasitic,
antibacterial, antifungal, antiviral, and chemosensor activities (Verma
et al., 2020). However, the exact effects of these three small compounds
on CEP55 remain to be further investigated. We expect that by binding
to CEP55, these three molecules will alleviate the immunosuppressive
microenvironment and enhance the antitumor activity of ICIs.

Several studies have investigated the specific roles of CEP55 in
malignancies. Fu et al. demonstrated that CEP55 was a diagnostic
and predictive factor in patients with LUAD and LUSC (Fu et al.,
2020). Yang et al. discovered that CEP55 was overexpressed in liver
cancer tumor tissue and linked to poor prognoses and enhanced
immune infiltration (Yang et al., 2020). However, these studies did
not thoroughly analyze the role of CEP55 in the tumor immune
microenvironment. Yang et al. found that CEP55 was correlated
with the infiltration of B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells in liver cancer.
Through our pan-cancer analysis, we found that CEP55 was
significantly correlated with MDSCs and Th1 cells in most
cancers and positively correlated with the expression of
checkpoints, such as PD1, CTLA4, LAG3, and TIGIT in certain
cancer types. This indicates that CEP55 overexpression may be a
driving factor for CD8+ T cell exhaustion. Furthermore, we used
molecular docking analysis to predict and validate chemicals that
could bind to CEP55, which has not been previously reported.

This study had some limitations. Although we validated the
results of this work using a large number of datasets, additional
experiments and clinical investigations are required to identify the
precise function of CEP55 in carcinogenesis and development.
Furthermore, we discovered that the expression of CEP55 is
associated with an imbalance in Th1/Th2 cells; however, it is
unclear how CEP55 controls the differentiation of Th1 and
Th2 cells and additional research is required to elucidate the
underlying processes. In addition, the potential of tumor-
expressing CEP55 as a TAA for modulating immune activity

should be explored, possibly through the identification and clonal
tracing of CEP55 antigen-specific T cells in the context of human
tumors.

In conclusion, our analysis provides a comprehensive
assessment of CEP55 expression in various cancers. CEP55 is a
powerful tumor prognostic marker that is involved in tumor
immune modulation. Therefore, CEP55 has potential as a
therapeutic target.
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Introduction: The tumor microenvironment (TME) is crucial for the development of
head and neck squamous cell carcinoma (HNSCC). However, the correlation of the
characteristics of the TME and the prognosis of patients with HNSCC remains less
known.

Methods: In this study, we calculated the immune and stromal cell scores using
the “estimate” R package. Kaplan-Meier survival and CIBERSORT algorithm
analyses were applied in this study.

Results: We identified seven new markers: FCGR3B, IGHV3-64, AC023449.2,
IGKV1D-8, FCGR2A, WDFY4, and HBQ1. Subsequently, a risk model was
constructed and all HNSCC samples were grouped into low- and high-risk
groups. The results of both the Kaplan-Meier survival and receiver operating
characteristic curve (ROC) analyses showed that the prognosis indicated by the
model was accurate (0.758, 0.756, and 0.666 for 1-, 3- and 5-year survival rates). In
addition, we applied the CIBERSORT algorithm to reveal the significant differences
in the infiltration levels of immune cells between the two risk groups.

Discussion: Our study elucidated the roles of the TME and identified new
prognostic biomarkers for patients with HNSCC.

KEYWORDS

head and neck squamous cell carcinoma, tumor microenvironment, immune infiltration,
tumor mutation burden, prognosis, nomogram

1 Introduction

With approximately 600,000 new cases diagnosed annually, squamous cell carcinoma of
the head and neck (HNSCC) is the sixth most common malignancy worldwide. More than
50% of HNSCC cases develop to an advanced stage with a 5-year overall survival (OS) rate of
approximately 50% (Miyauchi et al., 2019; Yi et al., 2020; Siegel et al., 2021).

Immunotherapy has revolutionized the treatment of cancer, and the clinical application of
immune checkpoint inhibitors (ICIs) has provided benefits to patients with various malignant
tumors. A known characteristic of HNSCC is severe immunosuppression (Romano and Romero,
2015); therefore, therapy with ICIs play an important role in the treatment of HNSCC patients
(Chen et al., 2021). Although many studies have suggested that patients with recurrent and

OPEN ACCESS

EDITED BY

Wei Zhang,
University of Southern California,
United States

REVIEWED BY

Min Zhang,
Chinese PLA General Hospital, China
Juan Liu,
Tsinghua University, China

*CORRESPONDENCE

Yuanshuai Li,
liyuanshuai2022@163.com

Wen Yue,
yuewen0206@126.com

Xinlong Yan,
yxlong2000@126.com

†These authors share first authorship

RECEIVED 01 June 2023
ACCEPTED 07 August 2023
PUBLISHED 21 August 2023

CITATION

Wan L, Li Y, Pan W, Yong Y, Yang C, Li C,
Zhao X, Li R, Yue W and Yan X (2023),
Effective TME-related signature to
predict prognosis of patients with head
and neck squamous cell carcinoma.
Front. Mol. Biosci. 10:1232875.
doi: 10.3389/fmolb.2023.1232875

COPYRIGHT

©2023Wan, Li, Pan, Yong, Yang, Li, Zhao,
Li, Yue and Yan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 21 August 2023
DOI 10.3389/fmolb.2023.1232875

73

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1232875/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1232875/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1232875/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1232875/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1232875&domain=pdf&date_stamp=2023-08-21
mailto:liyuanshuai2022@163.com
mailto:liyuanshuai2022@163.com
mailto:yuewen0206@126.com
mailto:yuewen0206@126.com
mailto:yxlong2000@126.com
mailto:yxlong2000@126.com
https://doi.org/10.3389/fmolb.2023.1232875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1232875


metastatic HNSCC may benefit from ICI immunotherapy, most have
shown limited success in the clinical setting, with a 13%–18% overall
response rate (Solomon et al., 2018; vonWitzleben et al., 2020). The role
of immune infiltration in the TME is important for tumorigenesis and
tumor progression, both of which affect the clinical prognosis of patients
with tumors (Ferris, 2015; Gavrielatou et al., 2020). Furthermore, there is
increasing evidence that the tumor mutation burden (TMB) is associated
with immunotherapy response (Liu et al., 2019).

Here, we comprehensively analyzed the relationship between the
TME, prognosis, TMB, and ICIs in patients with HNSCC. We then
established a risk model based on the TME to improve prognostic
risk stratification, facilitating better treatment and decision–making
for patients. Differentially expressed genes (DEGs) identified here
could facilitate a more in-depth understanding of tumor progression
and immunotherapy treatment. In addition, this study may help
elucidate the mechanism of tumor escape and establish a framework
for the development of new prognostic markers.

2 Materials and methods

2.1 Data download and processing

From The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/), we downloaded the mRNA expression, clinical
information, and somatic mutation data of HNSCC samples. After
obtaining the somatic mutation data, we used Perl scripts based on the
JAVA 8 platform to determine the mutation frequency with number of
variants/the length of exons (38 million). Meanwhile, the tumor
mutation burden (TMB) value for each sample was calculated.

2.2 TME analysis

Using the “estimate” R package, we estimated the infiltration levels of
immune and stromal cells, in the form of two scores, immune score and
stromal score (Yoshihara et al., 2013).Meanwhile, the sumof immune and
stromal score was reflected by the ESTIMATE score. We then explored
the correlation between the expression levels of model genes and these
scores by performing the Spearman’s rank correlation coefficient test.
Additionally, we employed the CIBERSORT algorithm to assess the
22 types of infiltrating immune cells of each sample (Newman et al., 2015).

2.3 Identification of differentially expressed
genes (DEGs) based on the stromal and
immune scores

According to the median stromal and immune scores, we divided
502 HNSCC patients into high- and low-score groups. To identify
DEGs between the two score groups, we applied the “limma”Rpackage,
with a false-discovery rate (FDR)≤ 0.05 and |log2 fold change (FC)| ≥ 1.

2.4 Construction and validation of the
prognostic prediction model in HNSCC

By taking the intersection of the DEGs from the both score
groups, the univariate Cox analysis was conducted to primarily

screen out immune- and stromal-related genes with prognostic
value, using the “survival” R package. A least absolute shrinkage
and selection operator (LASSO) analysis was further applied to
narrow these prognostic genes. Finally, a multivariate Cox
regression model was utilized to select candidate genes related to
survival and to construct the prediction model. The risk score was
then calculated as follows: risk score = (0.2086 × expression level of
FCGR3B) + (−0.0550 × expression level of IGHV3-64) + (−1.8215 ×
expression level of AC023449.2) + (0.0075 × expression level of
IGKV1D-8) + (0.0582 × expression level of FCGR2A) + (−0.5416 ×
expression level of WDFY4) + (0.0914 × expression level of HBQ1).

Based on the median risk score, we classified all HNSCC patients
into low- and high-risk groups. The Kaplan-Meier (KM) survival
analysis and the receiver operating characteristic (ROC) curve
analyses were used to analyze the OS between the two risk
groups and assess the sensitivity and specificity of the signature
using the “survivalROC” and “timeROC” R packages.

2.5 Functional enrichment analysis

We carried out the Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis for the DEGs between the two risk groups,
using the “clusterProfiler,” “enrichplot,” and “org.Hs.eg.db” R
packages. Furthermore, we used the “GSVA” R package to
perform a gene set variation analysis (GSVA) with the purpose
of estimating the variation of pathway between the low- and high-
risk groups, based on the “c2.cp.kegg.v7.4.symbols.gmt” database,
which was downloaded from the Molecular Signatures Database
(v7.4, http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
(Hanzelmann et al., 2013).

2.6 TMB calculation and visualization

The somatic mutation data were obtained from the TCGA
database. The TMB was defined as the total number of somatic
gene coding errors, base substitutions, insertions, or deletions
detected per megabyte bases of tumor tissue. The value of it for
each patient was defined as the total mutation frequency/the length
of the human exon (38 Mb) (Lv et al., 2020; Jiang et al., 2021). When
calculating TMB, we excluded all synonymous mutations. At the
same time, we further studied the mutation status under different
risk groups.

2.7 Construction of the protein-protein
interaction (PPI) network and the
competitive endogenous RNA (ceRNA)
network

We performed differential analysis for patients between high-
and low-risk groups and used the differential genes to construct the
PPI network by using the Search Tool for the Retrieval of Interacting
Genes (STRING) database.

Construct protein-protein interaction (PPI) network. In
addition, we used model genes in the Starbase database (http://
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FIGURE 1
Determination of TME-related DEGs and functional analysis. Distribution of immune and stromal score by clinical characteristics, including (A)
tumor grades, (B) sex, (C) T classification, (D)Nclassification, and (E) tumor stages. (F)Common upregulated and downregulated genes based on immune
and stromal scores. (G)GO and (H) KEGG analyses of 395 common DEGs. (I)Correlation between the proportions of 22 types of immune cells in the TME
of HNSCC patients. (J) Violin plots were used to display the differential infiltration of 22 types of immune cells between tumor and normal samples.
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starbase.sysu.edu.cn/). The ceRNA regulatory network of model
genes was screened and constructed in the database. When
predicting the miRNA binding to the model gene through this
database, we first ensured that there should be a negative correlation
between the expression of miRNA and mRNA. At the same time,
miRNA was differentially expressed in normal and tumor. In
addition, using the median value of candidate miRNAs, we
divided patients into high and low expression groups, and
screened miRNAs with survival differences between the two
groups through km database. Subsequently, we screened lncRNAs
through the Starbase database. According to the theory of ceRNA,
there was a positive correlation between lncRNA expression and
mRNA. At the same time, the candidate lncRNA should be
differentially expressed in normal and tumor tissues, and have
survival differences in different expression groups based on the
median expression level. According to the theory, the ceRNA
networks related to the important model genes was screened and
constructed.

2.8 Statistical analysis

All statistical analyses were accomplished using the R software
(v4.1.1). We followed the methods of Ai-Min Jiang, Yue Zhao, and
Ke-Wei Bi et al. (Bi et al., 2020; Jiang et al., 2021; Zhao et al., 2021).
To compare the expression level of model genes between the tumor
and normal samples, we conducted the Wilcoxon test. To explore
the correlation between model gene expression levels and the OS of
patients, we used the log-rank test and KM curve analysis.
Meanwhile, we performed the univariate and multivariate Cox
regression analyses to explore the independent prognostic value
of the risk mode. p-value ≤0.05 was regarded as significant.

3 Results

3.1 Acquisition of DEGs based on immune
and stromal scores

To elucidate the relationship between the immune and stromal
scores and clinical features of HNSCC, we used the Wilcoxon test to
analyze the differences among patients with different statuses. We
found significant differences in immune scores according to tumor
grade (Figure 1A), sex (Figure 1B), and T and N stage (Figures 1C,
D). Furthermore, stromal scores were significantly different between
tumor stage I and III (Figure 1E). These results showed that the
immune- and stromal-related activities were associated with
HNSCC progression.

Based on the median immune score, we identified 1,558 DEGs,
including 1,255 upregulated and 303 downregulated genes
(Supplementary Table S1). There were 1,307 DEGs, including
1,191 upregulated and 116 downregulated genes, based on the
stromal score (Supplementary Table S2). At the intersection of
these two sets of DEGs, 365 upregulated and 30 downregulated
genes were identified (Figure 1F; Supplementary Table S3).

We then performed a gene ontology (GO) enrichment analysis
on the 395 genes that may be the key factors in the TME. We found
that these genes were predominantly associated with the immune

responses, such as phagocytosis, activating cell surface receptor
signaling pathways, and B cell-mediated immunity (Figure 1G).
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis gave similar results, with responses such as
phagosome, NF-kappa B signaling pathway, and B cell receptor
signaling pathway (Figure 1H). These results indicated that
immune-related activities were important characteristics in the
TME of HNSCC.

Furthermore, to identify the proportion of the 22 kinds of
immune cells in the TME of patients with HNSCC, we
conducted a CIBERSORT analysis, using the “CIBERSORT” R
package. Using the Pearson analysis, we found that
M0 macrophages negatively correlated with CD8+ T cells.
However, CD8+ T cells positively correlated with activated
memory CD4+ T cells (Figure 1I). These results indicated that
there were significant differences between the normal and tumor
groups. The normal samples had a higher proportion of native B,
resting memory CD4+ T, resting mast, and resting dendritic cells
than the tumor samples. Moreover, in the tumor patient group, the
proportion of resting NK cells andM0macrophages was higher than
that in normal group (Figure 1J).

3.2 Establishment of the prognostic
prediction model with TCGA cohort

The univariate Cox analysis of the 395 DEGs identified 50 genes
significantly related to OS (Supplementary Table S4). We then used
the LASSO regression analysis to screen these genes, and 13 genes
were finally identified (Figures 2A, B). All HNSCC samples were
then randomly divided into training and validation cohorts, at a
ratio of 1:1. The 13 genes were further screened using the
multivariate Cox regression analysis. Finally, a set of seven genes,
FCGR3B, IGHV3-64, AC023449.2, IGKV1D-8, FCGR2A, WDFY4,
and HBQ1, was selected to construct the prognostic model and
calculate the risk score (Figure 2C).

Based on the median risk score, 126 and 125 patients were in the
low- and high-risk groups, respectively. The results of the principal
component analysis (PCA) indicated that patients at different risks were
clearly separated into two groups (Figure 2D). Moreover, patients in the
high-risk group had a higher death rate and shorter survival time than
those in the low-risk group (Supplementary Figure S1A). Based on the
KM analysis, we found that patients in the low-risk group had a
significantly better OS than those in the high-risk group (p < 0.001;
Figure 2E). The model had a good predictability for OS, with the area
under the curve (AUC) being 0.758, 0.756, and 0.666 for 1, 3, and 5-year
OS rates through the time-dependent ROC analysis, respectively
(Figure 2F).

To test whether the risk score was independent of other clinical
features, such as age, sex, tumor stage, and tumor grade, we
performed univariate and multivariable Cox regression analyses.
The results showed that it was independent (Figures 2G, H).

Furthermore, we established a nomogram to predict the 1-, 3-,
and 5-year survival rates in patients with HNSCC, according to the
expression levels of the model genes (Figure 2I). Using the
calibration curve, we found that the nomogram had a good
predictive value compared to the ideal model (Figure 2J). In the
training cohort, the concordance index (C-index) was 0.687.
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3.3 Validation of the prognostic model

According to the median risk score, there were 133 and
115 HNSCC patients in the low and high-risk groups, respectively.
The PCA showed a good separation between the risk groups

(Figure 3A). The analysis of survival time and patient status in both
risk groups showed consistent results (Supplementary Figure S1B).
Furthermore, the p-value of the KM analysis was 0.01283 (Figure 3B),
and the AUC values were 0.709, 0.647, and 0.629 for 1-,3-,5- y survival
rates in HNSCC patients, respectively (Figure 3C).

FIGURE 2
Construction of a prognostic model in the training cohort. (A,B) LASSO regression algorithm. (C) A prognostic model was constructed by the
multivariate Cox regression analysis. (D) Principal component analysis. (E) Kaplan–Meier (KM) curves of OS for patients in the high- and low-risk groups,
respectively. (F) Time-dependent ROC curve analysis of the prognostic model. (G) Univariate and (H)multivariate cox regression analyses to evaluate the
prognostic signature. (I) Nomogram predicting the survival of HNSCC patients. (J) Calibration plot based on the 1-, 3-, and 5-year OS rates of the
nomogram. *p < 0.05, **p <0.01, ***p <0.001, and ****p <0.0001.

Frontiers in Molecular Biosciences frontiersin.org05

Wan et al. 10.3389/fmolb.2023.1232875

77

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1232875


3.4 Gene set variation analysis and
functional analysis based on the risk model

Using the “limma” R package, we performed a differential
analysis of the two risk groups, using the following criteria:

FDR ≤0.05 and |log2FC | ≥ 1. In the training and validation
cohorts, we identified 750 (Supplementary Table S5), and
755 DEGs (Supplementary Table S7), respectively. Based on
these DEGs, GO enrichment and KEGG pathway analyses
were performed. We found that in both cohorts, the DEGs

FIGURE 3
Assessment of the prognostic model in the validation cohort. (A) Plot of principal component analysis. (B) KM curve of OS for patients in the high-
and low-risk groups. (C) Time-dependent ROC curve analysis of the prognostic model. (D,E)GOand KEGG analyses of DEGs between the high- and low-
risk groups in the training cohort. (F) GSVA analyses to estimate the variation of pathway between the low- and high-risk groups in the training cohort.
(G,H)Distribution of immune and stromal scores between the high- and low-risk groups in the training cohort. (I)Comparison of infiltration levels of
22 immune cells between the high- and low-risk groups in the training cohort.
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FIGURE 4
Assessment of the relationships between the risk score and infiltration levels of 22 immune cell types in the training cohort. (A) Activated dendritic
cells, (B) eosinophils, (C) activated mast cells, (D) neutrophils, (E) resting NK cells, (F) naive CD4+ T cells, (G) M1 macrophages, (H) resting mast cells, (I)
follicular helper T cells, and (J) regulatory T cells. Differential expression of (K) PD-L1, (L) PD1, and (M) CTLA-4 between the tumor and normal samples.
Expression levels of (N) PD1, and (O) CTLA-4 between the high- and low-risk groups in the training cohort. The differential expression of (P) PD-L1,
and (Q) CTLA-4 between the high- and low-risk groups in the validation cohort. The TMB value in both risk groups in the (R) training cohort, and (S)
validation cohort.
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were mainly associated with immune-related activities, such as
humoral immune response, immune response-activating signal
transduction, and immune response-activating cell surface
receptor signaling pathway (Figures 3D, E; Supplementary
Figures S1C–S1F).

Subsequently, the Gene set variation analysis (GSVA) was used
to explore the different biological activities between the two risk
groups, with FDR ≤0.05 as the criterion. The results showed that
pathways related to metabolism, such as fatty acid metabolism,
glycine, serine and threonine metabolism, and ascorbate and
aldarate metabolism, were significantly enriched (Figure 3F;
Supplementary Figure S2C).

3.5 Analysis of immune cell infiltration
between the two risk groups

We found that in both cohorts, patients in the low-risk group
had a stronger immune response (Figure 3G; Supplementary Figure
S2B) and higher stromal scores (Figure 3H; Supplementary Figure
S2C) than those in the high-risk groups, using the Wilcoxon signed-
rank test. To explore the differences in immune cells, we used the
deconvolution algorithm CIBERSORT. The results indicated that in
the training cohort, native B (p < 0.001), plasma (p = 0.006),
follicular helper T (p < 0.001), regulatory T (p < 0.001), resting
mast (p < 0.001), and resting dendritic cells (p < 0.001) were
significantly more abundant in the low-risk group than those in
the high-risk group, whereas M0 macrophages (p = 0.002),
M2 macrophages (p = 0.019), activated mast cells (p < 0.001),
neutrophils (p < 0.001), and activated dendritic cells (p = 0.012)
were less abundant (Figure 3I). In the validation cohort, similar
results about the immune status were obtained (Supplementary
Figure S2D).

A Pearson analysis was used to analyze the relationship between
the risk score and infiltration levels of the 22 immune cell types. In
the training cohort, the risk scores had a significantly positive
correlation with activated dendritic cells (Figure 4A), eosinophils
(Figure 4B), activated mast (Figure 4C), neutrophils (Figure 4D),
resting NK (Figure 4E), and naive CD4+ T cells (Figure 4F).
However, the risk score was negatively correlated with
M1 macrophages (Figure 4G), resting mast (Figure 4H), follicular
helper T (Figure 4I), and regulatory T cells (Figure 4J).

In the validation cohort, the risk score was positively correlated
with eosinophils (Supplementary Figure S2E), activated mast cells
(Supplementary Figure S2F), neutrophils (Supplementary Figure
S2G), and resting NK cells (Supplementary Figure S2H), whereas
it was negatively correlated with naïve B (Supplementary Figure
S2I), resting mast (Supplementary Figure S2J), CD8+ T
(Supplementary Figure S2K), and regulatory T cells
(Supplementary Figure S2L).

3.6 Association of immune checkpoint
molecules with the prognosis prediction
model

To explore the relationship between the immune checkpoint
molecules and the prognostic model, we evaluated the differential

expression of checkpoint molecules in the two risk groups.
Compared with the normal tissues, PD-L1 and CTLA-4
expression levels were upregulated in HNSCC tissues (p <
0.001; Figures 4K, M), whereas PD1 expression levels were
downregulated (p < 0.001); (Figure 4L). In both cohorts, the
expression level of CTLA-4 in the low-risk group was
significantly higher than that in the high-risk group (Figures
4O, Q). In the training cohort, the expression levels of PD1 in the
low-risk group were significantly higher than those in the high-
risk group (Figure 4N), whereas PD-L1 was more highly
expressed in the low-risk group than the high-risk group in
the validation cohort (Figure 4P).

These results indicated that the expression levels of immune
checkpoint molecules were higher in the low-risk group than those
in the high-risk group. Therefore, the prognostic model may provide
effective predictive biomarkers, which will enable the optimization
of immune checkpoint therapies.

3.7 Mutation analysis and visualization

In the different risk groups of both cohorts, we found that there
was a difference in TMB. Namely, in both cohorts, the TMB of the
high-risk group was higher than that of the low-risk group
(Figures 4R, S).

We utilized the “maftools” R package to analyze and visualize
the somatic mutation profiles of 478 HNSCC patients. The
detailed mutation information of each sample was illustrated
via a waterfall plot, and different mutation types were
distinguished by various color annotations. We found that
missense mutations, single-nucleotide polymorphism (SNP),
and C > T mutations comprised the vast majority of the
classification categories. Additionally, the median value of
mutations in the samples was 78, and the maximum
mutations was 2,393 (Figure 5A). We then presented the
number of variant classifications in different samples using
box plots. The top 10 mutated genes were TP53 (66%), TTN
(35%), FAT1 (21%), CDKN2A (20%), MUC16 (17%), CSMD3
(16%), NOTCH1 (16%), PIK3CA (16%), SYNE1 (15%), and
LRP1B (14%) (Figure 5B).

We also investigated the somatic mutation status of different risk
groups in the two cohorts. The results showed that the top
10 mutated genes in the four groups differed. In the high-risk
group of the training cohort, the top 10 mutated genes were
TP53 (72%), TTN (36%), FAT1 (25%), CDKN2A (25%), CSMD3
(18%), PIK3CA (16%), MUC16 (15%), KMT2D (15%), NOTCH1
(15%), and PCLO (15%) (Figure 5C). In the low-risk group, they
were TP53 (63%), TTN (34%), FAT1 (21%), CDKN2A (19%),
PIK3CA (18%), CSMD3 (17%), MUC16 (16%), SYNE1 (14%),
DNAH5 (13%), and NOTCH1 (12%) (Figure 5D). In the high-
risk group of the validation cohort, 114 patients possessed somatic
mutations, and the top 10 mutated genes were TP53 (68%), TTN
(36%), FAT1 (24%), CDKN2A (23%), NOTCH1 (22%), MUC16
(19%), SYNE1 (18%), KMT2D (17%), LRP1B (17%), and CSMD3
(16%) (Figure 5E). In the low-risk group, they were TP53 (62%),
TTN (32%), MUC16 (17%), FAT1 (16%), PIK3CA (16%), CSMD3
(16%), LRP1B (16%), SYNE1 (16%), CDKN2A (15%), and
NOTCH1 (14%) (Figure 5F).
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3.8 Acquisition of core genes and
establishment of the competitive
endogenous RNA (ceRNA) network

To elucidate the biological relationships among the 395 DEGs,
we used the Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://www.string-db.org/), based on genes

with co-expression coefficients higher than 0.9 (Figure 6A). We
identified 130 genes with strong mutual correlations, and also
identified the top 30 genes according to the number of degrees
between the two pairs (Figure 6B).

We identified two common genes, FCGR2A and FCGR3B,
which were located at the intersection of the 130 STRING-
identified and model genes (Figure 6C). Using the Wilcoxon test,

FIGURE 5
Visualization of mutation profiles. (A) Classification of mutation types, including variant classifications, variant types and SNV classes. Waterfall plots
displayed the top 30 mutated genes in (B) all the TCGA cohorts, (C) the high-risk group, and (D) low-risk groups of the training cohort, (E) and the high-
risk group, and (F) low-risk groups of the validation cohort.
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FIGURE 6
Protein-protein interaction network and the landscape of core genes. (A) Interaction network of 395 DEGs. (B) The top 30 core elements calculated
by the number of degrees. (C) Common genes at the intersection of 130 genes and model genes. The differential expression of (D) FCGR2A, and (E)
FCGR3B in tumor and normal samples. Distribution of FCGR2A and FCGR3B in (F, G) tumor grades, (H) T and (I) N classifications. Comparison of
infiltration levels of 22 immune cells in the high- and low-expression groups based on themedian expression levels of (J) FCGR2A, and (K) FCGR3B.
Analysis of immune cell infiltration levels and somatic copy number alterations in (L) FCGR2A, and (M) FCGR3B.
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we found that the expression levels of FCGR2A and FCGR3B were
significantly higher in HNSCC samples than those in normal
samples (Figures 6D, E). Furthermore, using the paired-sample
test analysis, we found that the expression of FCGR2A
significantly differed between normal and tumor tissue
(Supplementary Figure S3A). However, no significant survival
differences were observed between the high- and low-expression
groups based on the median expression levels of FCGR2A
(Supplementary Figure S3B) and FCGR3B (Supplementary
Figure S3C).

We then examined the expression of the two genes under
different clinical conditions. The results showed that FCGR2A
was significantly differentially expressed between tumor grade I
and II (Figure 6F). Moreover, the expression level of FCGR3B was
significantly different between tumor grades (Figure 6G), T
(Figure 6H) and N stages (Figure 6I). In both cohorts, the results
indicated that the expression of FCGR3B in the high-risk group was
significantly higher than that in the low-risk group (Supplementary
Figures S3E, S3F). In the training cohort, the expression of FCGR2A
in the high-risk group was higher than that in the low-risk group
(Supplementary Figure S3D).

We then used two methods to identify the immune cells associated
with FCGR2A and FCGR3B. First, HNSCC samples were divided into
low- and high-expression groups based on the median expression of
FCGR2A. The Wilcoxon test was used to compare the different
infiltration levels of the 22 immune cells in the two groups. The
results indicated that the infiltration levels of the resting memory
CD4+ T cells, activated resting memory CD4+ T, resting NK cells,
andM1 andM2macrophages in the high-expression groupwere higher
than those in the low-expression group, whereas plasma, activated
dendritic, resting dendritic, follicular helper T cells, and
M0 macrophages showed the opposite trend (Figure 6J).
Subsequently, using Spearman’s rank correlation analysis, we found
that the infiltration levels of plasma, naive CD4+ T, activated memory
CD4+ T, follicular helper T cells, resting dendritic, activated dendritic,
activated mast cells, M0 and M1 macrophages, eosinophils, and
neutrophils were closely correlated with the expression of FCGR2A.
Considering the intersection of the immune cells from the two sets of
results, memory B, plasma, resting memory and activated memory
CD4+ T, follicular helper T, resting dendritic, activated dendritic,
activated mast, resting NK, activated NK cells, M0, M1,
M2 macrophages, and neutrophils were correlated with the
expression of FCGR2A (Supplementary Figure S3G). The immune
cells that closely associated with FCGR3B were memory B, resting
memory CD4+ T, follicular helper T, resting NK, activated NK, resting
dendritic, activated mast cells, and neutrophils (Figure 6K;
Supplementary Figure S3H).

To analyze the effects of somatic cell copy number alternations
(CNAs) of these two genes on infiltration of immune cells, such as B,
CD4+ T, CD8+ T, dendritic cells, neutrophils, and macrophages, we
applied the Tumor Immune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/). The results showed that the six immune
cells were significantly affected by the arm-level deletion and gain of the
two genes in HNSCC (Figures 6L, M). It has been widely acknowledged
that miRNAs are short noncoding RNAs that can induce mRNA
silencing and instability by binding to specific target sites. We
predicted that the upstream miRNAs might bind to FCGR2A. These
upstream miRNAs, including hsa-miR-124-3p, hsa-miR-145-5p, hsa-

miR-299-3p, hsa-miR-513a-5p, hsa-miR-506-3p, and hsa-miR-671-5p,
were found through the ENCORI (https://starbase.sysu.edu.cn/)
database, which predicted target genes using PITA, RNA22,
miRmap, DIANA-microT, miRanda, PicTar, and TargetScan
programs. We performed the following analysis only for the
predicted miRNAs that appeared in more than two programs. Based
on the ceRNA hypothesis, hsa-miR-506-3p was finally chosen (Figures
7A–C). Next, we predicted the upstream lncRNAs. The results showed
that there were 33 possible lncRNAs upstream of hsa-miR-506-3p.
LncRNAs can competitively bind to sharedmiRNAs to increasemRNA
expression. Therefore, there should be a negative correlation between
lncRNAs and miRNAs or a positive correlation between lncRNAs and
mRNAs. Based on expression, survival and correlation analysis, we
found that AC110048.2 may potentially be the upstream lncRNA of the
miR-506-3p/FCGR2A axis in HNSCC (Figures 7D–F).

Finally, we established a transcription factor regulatory network
for the model genes, using the Cistrome website (http://cistrome.
org/). From this database, 314 transcription factors were identified.
There were 59 differentially expressed transcription factors between
normal and tumor samples under the criteria FDR <0.05 and |
log2FC | ≥ 1 (Supplementary Table S7). According to the criteria of |
correlation coefficient| > 0.3 and p-value <0.001 using Pearson’s
correlation analyses, we identified 10 transcription factors associated
with the model genes, and constructed the transcription factor
regulatory network (Figure 7G; Supplementary Table S8).

4 Discussion

Cancer immunotherapy, which differently regulates the immune
system, has been widely used in the field of oncology (Baxevanis et al.,
2009; Yang, 2015). The TME is closely connected with immunotherapy
and plays an important role in tumor genesis and development (Quail
and Joyce, 2013). Therefore, it is necessary to explore potential
therapeutic targets for early diagnosis and therapy. Thus, immune-
based prognostic characteristics have become the focus of cancer risk
prediction (Belli et al., 2018; Roma-Rodrigues et al., 2019; Shi et al., 2021).

In this study, based on the transcriptome data of HNSCC, we
calculated the scores of immune and stromal cells in the TME, and
found that they were significantly different in each phase of tumor
development, suggesting that TME played a significant role in tumor
growth. Based on the median scores, we obtained 395 DEGs related
to the TME. The GO and KEGG enrichment analysis showed that
these genes were significantly enriched in immune- and
metabolism-related pathways, which preliminarily suggested that
immune-related genes and pathways had significant association
with the occurrence and development of HNSCC.

Based on these DEGs, a prognostic model consisting of FCGR3B,
IGHV3-64, AC023449.2, IGKV1D-8, FCGR2A, WDFY4, and
HBQ1 was constructed. Moreover, based on the model genes, a
clinical prediction nomogram was constructed and verified to have
good predictability. Based on the literature, FCGR3B is a gene that
encodes FcγRIIIb and plays an important role in the immune system.
Therefore, the biological function of FCGR3B in head and neck
squamous cell carcinoma (HNSCC) may be related to the immune
system. Another study found that copy number variations of FCGR3B
were associated with susceptibility to autoimmune diseases, suggesting
that FCGR3B may be involved in regulating immune responses
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(Leemans et al., 2011; Molokhia et al., 2011; Alberici et al., 2020). The
IGH family is involved in the development of B-cell malignancies.
Somatic hypermutation of IGHV genes is characteristic of many B-cell
lymphomas (Sahota et al., 1997; Ghia et al., 2007; Varettoni et al., 2013).
One member of the IGH family, IGHV3-64, was found to be involved
in the regulation of immune cells, particularly the positive regulation of
B cell activation. Currently, some studies have explored the biological
functions of IGHV3-64 in other cancers. For example, in chronic
lymphocytic leukemia (CLL), the expression level of IGHV3-64 is
closely related to clinical prognosis (Crombie and Davids, 2017). In
addition, there are studies suggesting that IGHV3-64 may be associated
with the development and prognosis of gastrointestinal (Guan et al.,
2020). However, the results of these studies are inconsistent, and more
research is needed to determine the biological functions of IGHV3-64 in
different cancers. Previous studies have shown thatWDFY4 is involved

in the function of various immune cells, and it can modulate B cells
through noncanonical autophagy, and participates in the regulation of
systemic lupus erythematosus (Zhao et al., 2012; Yuan et al., 2018).
Furthermore, the deficiency of WDFY4 results in a decrease in CD8+

T cells (Li et al., 2021). Hemoglobin subunit theta 1 (HBQ1) is often
used as an indicator related to tumor metabolism. When patients with
breast cancer were treated with the combination of bevacizumab and
doxorubicin, HBQ1 was often differentially expressed (Borgan et al.,
2013; Bae et al., 2022) and IGKV1D-8 was primarily involved in
immune response (Gaudet et al., 2011). However, there have been a
few reports on AC023449.2 and IGKV1D-8 (Alberici et al., 2018;
Treffers et al., 2018; Dai et al., 2021). FCGR2A is closely associated
with immunity and is considered a cell-surface receptor on phagocytic
cells. Although FCGR2A has rarely been reported inHNSCC, our study
showed that immune cells, such as memory B, plasma, resting memory

FIGURE 7
Establishment of the competitive endogenous RNA network constructed using the starBase database. Correlation of expression of (A) hsa-miR-
506-3p with FCGR2A, and (D) AC110048.2 with FCGR2A. The expression levels of (B) hsa-miR-506-3p, and (E) AC110048.2 in HNSCC and normal
samples. KM curves of the prognostic value of (C) hsa-miR-506 in the KM plot database, and (F) AC110048.2 in the StarBase database. (G) The
transcription factor regulatory networks associated with the model genes. Red ellipse indicates upregulated model genes; blue ellipse indicates
downregulated model genes; green triangle indicates transcription factors.
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CD4+ T, activated memory CD4+ T, follicular helper T, resting and
activated dendritic, activated mast, resting and activated NK cells, M0,
M1, and M2 macrophages, and neutrophils, were closely associated
with FCGR2A expression in HNSCC. As a product of immune cells,
FCGR3B plays an important role in the connection and clearance of
neutrophils and other immune complexes (Coxon et al., 2001; Fanciulli
et al., 2007). We found that immune cells including memory B, resting
memory CD4+ T, follicular helper T, resting and activated NK, resting
dendritic, activated mast cells, and neutrophils, were closely associated
with FCGR3B.

Following GO and KEGG analyses, we found that the DEGs
were strongly associated with immunity in the two risk groups. The
GSVA results indicated that metabolism-related pathways, such as
fatty acid, butanoate, glycine, serine, and threonine metabolism,
were significantly different between the two risk groups. Changes in
cell metabolism affected tumor progression. Fatty acid metabolism
plays a crucial role in tumorigenesis and Epithelial–mesenchymal
transition (EMT) regulation.

Furthermore, the infiltration of CD8+ T cells was higher in the
low-risk group than that in the high-risk group. We also found that
in both cohorts, the low-risk group had a higher expression of PD1,
PD-L1, and CTLA-4. We therefore speculated that the low-risk
group may benefit the most from antibody therapies targeting the
PD1, PD-L1, and CTLA-4 immune checkpoints. However, in both
cohorts, the TMB was higher in the high-risk group than that in the
low-risk group.

5 Conclusion

In conclusion, our study highlights the importance of the tumor
microenvironment (TME) in the development and prognosis of
head and neck squamous cell carcinoma (HNSCC). By analyzing
gene expression data from the TCGA database, we identified seven
new markers that were found to be associated with HNSCC
prognosis. We also constructed a risk model based on the TME
that accurately predicted patient outcomes. Our study further
revealed significant differences in the infiltration levels of
immune cells between low- and high-risk groups. These findings
provide a better understanding of the mechanisms of tumor
progression and immune infiltration in HNSCC and offer
potential biomarkers for prognosis and treatment. Our study may
also facilitate the development of new therapeutic strategies for
HNSCC patients.
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Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high
proportion of oral cancers, is characterized by high aggressiveness and rising
incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine
acetylation-related genes (LARGs) are therapeutic targets and potential
prognostic indicators in various tumors, including oral squamous cell
carcinoma. However, systematic bioinformatics analysis of the Lysine
acetylation-related genes in Oral squamous cell carcinoma is still unexplored.

Methods: We analyzed the expression of 33 Lysine acetylation-related genes in
oral squamous cell carcinoma and the effects of their somatic mutations on oral
squamous cell carcinoma prognosis. Consistent clustering analysis identified two
lysine acetylation patterns and the differences between the two patterns were
further evaluated. Least absolute shrinkage and selection operator (LASSO)
regression analysis was used to develop a lysine acetylation-related prognostic
model using TCGA oral squamous cell carcinoma datasets, which was then
validated using gene expression omnibus (GEO) dataset GSE41613.

Results: Patients with lower risk scores had better prognoses, in both the overall
cohort and within the subgroups These patients also had “hot” immune
microenvironments and were more sensitive to immunotherapy.

Disscussion: Our findings offer a new model for classifying oral squamous cell
carcinoma and determining its prognosis and offer novel insights into oral
squamous cell carcinoma diagnosis and treatment.

KEYWORDS

OSCC, oral squamous cell carcinoma, lysine acetylation, prognostic model, TCGA, GEO

1 Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and
accounted for around 369,000 new in 2012. OSCC incidence has continued to grow, with two-
thirds of the cases occurring in developing countries. OSCC has a wide range of clinical
patterns (Ghantous and Abu Elnaaj, 2017), and the majority of the cases are associated with
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lifestyle habits like smoking, excessive alcohol consumption, and betel
nut chewing. According to the National Comprehensive Cancer
Network (NCCN) clinical practice guidelines in oncology, all
OSCC is primarily treated through surgery in combination with
radiotherapy and chemotherapy, and the use of targeted
treatments is recommended for advanced cases (stages III–IV)
(Warnakulasuriya, 2009). Following initial surgery and proper
adjuvant treatment, the pathologic nodal stage is the main
predictor of the malignant degree of OSCC patients (Zanoni et al.,
2019). However, OSCC recurrence is common after the first
R0 resection, resulting in a low survival rate (Warnakulasuriya,
2009), with an inadequate quality of life (Lin et al.,
2022).Moreover, survival rates decline with increasing time before
treatment initiation (Jensen et al., 2021). These factors emphasize the
need for early OSCC diagnosis as well as novel molecular targets for
treatment. For instance, although cetuximab, which targets the
epidermal growth factor receptor, was approved for OSCC
treatment in 2006 and anti-PD1 therapy has recently been used to
treat patients with metastatic disease following relapse or progression
during or after chemotherapy (Ferris et al., 2016), their efficacies have
not been significant. Thus, understanding the molecular changes that
underlie OSCC pathogenesis and the factors that contribute to OSCC
patient prognosis is an unmet medical need.

Cell transporter functional expression has been demonstrated to
be modulated by post-translational modification (PTM) via a variety
of molecular pathways. These changes are made by adding These
changes are made by adding specific chemical groups to certain
amino acid residues (Czuba et al., 2018). Acetylation is a common
PTM initiated by specific enzymes that transfer acetyl groups to the
amino side chain of lysine. Recent studies show that acetylation can
also occur non-enzymatically and is influenced by the availability of
acetyl-CoA (Narita et al., 2019). Although acetylation was previously
thought to be specific to histones, thousands of non-histone proteins
have been shown to contain lysine acetylation, including nuclear,
mitochondrial, and cytoplasmic proteins. Non-histone acetylation
regulates several cellular processes, including transcription, DNA
damage repair, and cell signaling. Lysine acetylation drives
tumorigenesis by actively modifying the expression and function
of oncogenic or tumor-suppressive factors (O’Garro et al., 2021; Hu
et al., 2022). The acetylation process can influence tumor formation
and progression by modulating immune activity and response in a
variety of ways. Several immune-related acetylation/deacetylation
modification targets are mentioned below (Ding et al., 2022). For
example, p300 can acetylates PD-L1 and inhibits its translocation
into the nucleus (Gao et al., 2020). And in non-small cell lung cancer
HDAC3 can be suppressed by the decreased COP1, which increases
PD-L1 expression (Wang H. et al., 2020).

Histone and non-histone acetylation, have double-edged roles in
tumor metastasis and metabolism (Hu et al., 2022). Four human
histone deacetylase inhibitors (HDACi) with the potential to trigger
tumor suppressor genes, have emerged as epigenome-targeting drugs
that can improve the chemotherapeutic and radiosensitivity of cancer
cells, and have received FDA approval for use in clinical settings (Ding
et al., 2022). DLUE1 is reported to be overexpressed in early OSCC
tumors, and its knockdown suppresses OSCC cell proliferation,
migration, and invasion, implying that DLEU1 drives the
expression of several genes during OSCC carcinogenesis (Hatanaka
et al., 2021). The expression of the deacetylase genes, HDAC6 and

HDAC9, is markedly elevated in OSCC (Sakuma et al., 2006; Rastogi
et al., 2016). Antitumor effects of novel HDACi in OSCC have also
been reported (Bai et al., 2011). For instance, HDACi target cancer
stem cells by inhibiting tumor growth and inducing cytotoxicity and
intracellular reactive oxygen species and are potential OSCC
treatments (Marques et al., 2020). Impairment of lysine acetylation
is thought to impair ribosome biogenesis and might contribute to
OSCC pathogenesis (Dong et al., 2022).

In this study, we used bioinformatics to analyze the expression of
33 lysine acetylation-related genes (LARGs) as well as their mutations
in OSCC tissues vs. normal tissues and then validated their expression
using RT-qPCR. Based on the expression of “HDAC3” and “SIRT5”,
OSCC patients were divided into two groups, and their correlation with
clinical characteristics examined. Univariate and LASSO regression
analyses were used to develop an OSCC prognostic model. The
efficacies of immunotherapy and chemotherapy, as well as the
OSCC immune landscape, were analyzed in various risk groups.

2 Materials and methods

2.1 Oral squamous cell carcinoma patient
datasets

RNA sequencing (RNA-seq) data on tissues from 323 OSCC
patients and 32 normal tissues, as well as associated clinical data,
were downloaded from TCGA. Gene microarray data and associated
clinical data for 97 tumor samples were obtained from dataset
GSE41613 from gene expression omnibus (GEO) (Supplementary
Table S1). The “limma” package was used for internal standards and
then applied to perform difference analysis.

2.2 Identification of differentially expressed
lysine acetylation-related genes (LARGs)

Thirty-three LARGs were retrieved from a previous review (Narita
et al., 2019) (Supplementary Table S2). The “limma” package was used
to identify differentially expressed LARGs with p < 0.05. Next, we
evaluated gene express variations in the 33 LARGs in each TCGA
OSCC sample to identify the LARGs associated withmutagenesis. Data
on gene mutations was also gathered from TCGA. The frequency of
different mutations was computed. Finally, the R package “maftools”
was used for visualization.Waterfall diagramswere used to visualize the
status of somatic mutation integration in OSCCs. Univariate analysis
was used to identify prognostic LARGs. Protein–protein interaction
(PPI) networks for the 30 connected LARGs were constructed on
STRING (https://cn.string-db.org/) (von Mering et al., 2005).

2.3 mRNA and protein level analyses of
OSCC samples

This study involved patients who underwent routine intraoral
examination, followed by oral mucosal biopsy and diagnosis of
squamous cell carcinoma of the oral cavity. Ten pairs of OSCC and
adjacent normal tissues were collected at Zhongnan Hospital.
Patients with a history of systemic illness or with other primary
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tumors were excluded from the analysis. OSCC samples and
matched adjacent noncancerous tissues were obtained before
preoperative radiotherapy or chemotherapy and immediately
frozen in liquid nitrogen, followed by storage at −80°C until
RNA extraction. Total RNA was extracted using Trizol reagent
(Servicebio, China). Ethical approval for the study (No. 2022095K)
was granted by Zhongnan Hospital of Wuhan University Medical
Ethics Committee. RT-qPCR was done on a BIO-RAD system using
a SYBR green dye qPCR mix (Servicebio, China). Primer
information is provided in Supplementary Table S3. The paired-
T test was used to determine the expression levels of the LARGs and
GAPDH. Human Protein Atlas (HPA) immunohistochemistry data
were used to identify the protein levels of two patterns, SIRT5 and
HDAC3, in paracancerous tissue and malignant tissues.

2.4 Consensus clustering analysis of the
LARGs

The “ConsensuClusterPlus” package was used to delimit distinct
lysine acetylation-related OSCC patterns (Seiler et al., 2010). Based on
different lysine acetylation-associated OSCC patterns, we examined
the clinicopathological features and prognosis of the patients. The
Kaplan–Meier (KM) analysis of the correlation between the lysine
acetylation-associated OSCC patterns was carried out by R packages
“survival” and “survminer” (Rich et al., 2010).

2.5 Identification of a LARGs prognostic
signature for OSCC

GSE41613 was used as the test cohort, whereas the TCGA
dataset was used as the training cohort. The LARGs-associated
signature was used to set up the prognostic model in the training
cohort. Next, univariate Cox regression analysis was used to identify
the prognostic differentially expressed genes (DEGs) between the
lysine acetylation-related patterns. LASSO regression analysis was
then used to identify prognostic DEGs (p < 0.05) using the “glmnet”
package (Simon et al., 2011). The risk score of the patients was
calculated by the formula as follows: Risk score � ∑n

i�1coefi*expi.
The median risk score was used to group the patients. Survival
differences between the two groups were comparatively analyzed
through KM survival analysis. Based on gene expression, principal
component analysis (PCA) was done with the “stats” package.
Moreover, t-distributed stochastic neighbor embedding (t-SNE)
was conducted to discuss the distribution of different groups via
the “Rtsne” package. The receiver operating characteristic (ROC)
curve analyses were carried out to estimate the prognostic power of
the gene signature by using the “survivalROC” package. The
prognostic relationship between risk score and age, gender, grade,
clinical stage, and immune score was analyzed. Additionally, we
explored the correlation between risk scores and cluster patterns.

2.6 Construction of the OSCC nomogram

We created a nomogram based on the risk scores and the clinical
data of the OSCC patients, including age, stage, grade, and genderto

expoit the predictive value of the eight-gene-based signature for
clinical application. To this end, the ‘rms’, ‘nomogramEx’, and
‘regplot’ R packages were used to construct the nomogram. Next,
ROC curve analysis was used to assess how well the nomogram
could predict OSCC prognosis (Pencina and D’Agostino, 2004).
Additionally, we used calibration curves to determine if the
projected survival outcome (one-, three-, and five-year survival)
was close to the actual outcome (Alba et al., 2017). The 45° line
shows the best nomogram-predicted survival.

2.7 Validation of grouping efficacy and
association analysis of immune cell
infiltration

The relationship between risk scores and immune cells
infiltration in OSCC samples was analyzed by the Pearson
correlation analysis using the GSVA package. Statistical analysis
was done using the ssGSEA algorithm (Hänzelmann et al., 2013).
Various immune indicators to study the relationship between factors
and immune phenotypes. We analyzed the association between risk
scores and immune cell infiltration, as well as the expression of
immune biomarkers, HLA family, chemokines, and chemokine
receptors. Immune checkpoint was examined via Pearson
correlation analysis using p = 0.05 as the cutoff threshold. The
immunophenotype scores (IPS) of the patients were used to predict
OSCC response to checkpoint blockade immunotherapy
(Charoentong et al., 2017).

2.8 Drug sensitivity analysis

To assess the therapeutic potential of chemotherapy drugs on
OSCC, the semi-inhibitory concentration (IC50) of common drugs
was determined using the “pRRophetic” package (Geeleher et al.,
2014). The sensitivity of the chemotherapeutic agents in different
patient groups was also predicted.

2.9 Statistical analysis

Statistics acquired from TCGA were merged and conducted on
R then processed and analyzed on R using the indicated packages.
Normally distributed continuous variables were expressed as
Mean ± standard deviation. Non-normally distributed continuous
variables were presented as medians (range). Categorical variables
were described as counts and percentages. Two-sided p < 0.05
indicated statistically significant differences.

3 Results

3.1 The landscape of lysine acetylation-
related genes in OSCC patients

The detailed flowchart of the study is shown in Supplementary
Figure S1. Using the TCGA dataset, we identified the expression
levels of 33 LARGs in OSCC samples, and normal paracancerous
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specimens and found that the 24 of the 33 LARGs (73%) were
expressed significantly different in OSCCs (Figure 1A).

Given the importance of gene mutations in carcinogenesis,
we investigated the somatic mutations of 33 LARGs in OSCC
samples and found that 122 of the 506 (24.11%) OSCC samples
we analyzed had genetic changes. Among the LARGs we studied,
EP300 was shown to have the highest mutation rate, followed by
CREBBP and HDAC9. (Figure 1B). EP300 and CREBBP are both
often mutated in squamous cell carcinoma and lymphomas
(Attar and Kurdistani, 2017). Most of the changes are
missense point mutations. HDAC9 interacts with a variety of
transcriptional repressors and oncogenes (Ning et al., 2020) and
may influence anticancer immune responses by limiting T-cell
infiltration into the tumor microenvironment (TME) (Yang
et al., 2021).

A PPI network revealed that 30 LARGs were closely
interconnected (Figure 1C), the other 3 genes were
eliminated because they do not interact with other lysine
acetylation-related genes. Univariate Cox regression analysis

revealed that high HDAC3 and SIRT5 expression was
associated with poor OSCC survival (Hazard ratio, HR: >1;
Figure 1D).

3.2 HDAC3 and SIRT5 are upregulated in
OSCC tissues when compared with normal
tissue

We next conducted studies based on the expression of
HDAC3 and SIRT5, and it appeared that there were
substantial disparities in their overall survival (Figures 2A,
D). Analysis of immunohistochemical data on HPA revealed
that OSCC tissues exhibited significantly higher SIRT5 and
HDAC3 staining when compared with normal tissues
(Figures 2B, E). Moreover, RT-qPCR analysis revealed that
SIRT5 and HDAC3 expression levels in cancer tissues were
significantly higher than in normal tissues (p < 0.05;
Figures 2C, F).

FIGURE 1
Landscape of (lysine acetylation-related genes) LARGs in OSCC (A)Molecular expression of LARGs in normal tissues compared with oral squamous
cell carcinomas. (B) The genetic alterations of LARGs inOSCC. (C) The interactions between the candidate genes were shown by the PPI network. (D) The
findings of the univariate Cox regression demonstrate the relationship between OS and gene expression.
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3.3 Tumor classification based on the
prognostic value of lysine acetylation
regulators

Consistent clustering was used to examine SIRT5 and
HDAC3 expression in a TCGA dataset of 323 OSCC cases. To
this end we grouped the OSCC patients into two clusters based on
cumulative distribution function (CDF) values (k = 2; Figure 3A, and
k = 3–9; Supplementary Figure S2). PCA analysis found that the two
clusters are clearly identifiable (Figure 3B).

This analysis also revealed that overall survival of cluster 1 was
worse than that of cluster 2 (p = 0.014; Figure 3C). Analysis of
whether the variability in survival was caused by differences in
infiltration by the 23 immune cells in the 2 clusters revealed that
immune cell infiltration differed significantly in 16 of 23 OSCCs
(Figure 3D). These findings suggest that in the context of reduced
expression of lysine acetylation-associated genes, OSCC patients
with immune cell infiltration had better prognosis.

Furthermore, except for stage, other clinical parameters,
including grade, gender, age, and TNM did not differ across

FIGURE 2
The expression level of “HDAC3” “SIRT5” in OSCC. (A,D) Kaplan–Meier survival analysis based on the expression of acetylation-related genes The
OSCC patient survival curve for those with high and low gene expression was depicted by the red curve and the blue curve. (B,E) The HPA
immunohistochemistry data were utilized to identify the protein levels of two genes in normal and malignant tissues. (C,F) HDAC3 and SIRT5 expression
levels in OSCC tissues and surrounding normal tissues are compared. RT-PCR was used to identify the alterations in the expression of 2 LARGs in
OSCC and its normal tissue. *if p < 0.05, ** if p < 0.01, and *** if p < 0.001.
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these two clusters In cluster 1, most genes are upregulated, while in
cluster 2, the genes are downregulated, as shown in the heat map
(Figure 3E).

3.4 Developing an independent prognostic
risk model based on LARGs clustering

We used “limma” package of R (4.1.1) to conduct, we discovered
323 DEGs between the two clusters (Supplementary Table S4), these
DEGs were then examined via univariate Cox regression analysis.
Twenty-six genes were finally proved that can be employed as
distinct prognostic indicators (Figure 4A). After filtration, LASSO
Cox regression analysis found NKX2-3, SAPCD2, SPINK7, LYNX1,
AKR1C3, SYT17, MASP1, and CTSG to be significantly associated
with overall survival (OS) (Figures 4B, C; adjusted p < 0.05).

The genes were used to calculate risk score based on the formula:

risk score � −0.207 pNKX2 − 3( ) + 0.045 p SAPCD2( )
+ −0.011 p SPINK7( ) + −0.054 p LYNX1( )
+ 0.014 pAKR1C3( ) + 0.185 p SYT17( )
+ −0.399 pMASP1( ) + −0.185 pCTSG( ).

Next, samples were divided into the high and low survival risk
groups based on the median risk score, as shown using KM survival
curves (p < 0.001). These analyses indicate that the multigene
signature had a significant prognostic value (Figure 4D) and that
the risk scores distinguished patients with high and low survival
rates (Figure 4F). The area under the curve (AUC) analysis at one,
three, and 5 years (AUC: 0.655, 0.707, and 0.707, respectively)
showed that the prognostic signature was highly accurate at
predicting OS in OSCC patients (Figure 4E). PCA analysis and
t-SNE analysis suggested that the OSCCs in distinct risk categories
were distributed in two directions (Figures 4G, H).

3.5 Validation of the prognostic value in the
subgroups

Next, we split the GEO dataset into two categories based on risk
score (Supplementary Figure S3). KM (p = 0.02; Supplementary
Figure S3A) and ROC curve analyses revealed that the low-risk
group had a higher overall survival rate, indicating that the model
was accurate (one-three-, and five-year AUC: 0.736, 0.645, and
0.661, respectively; Supplementary Figure S3B). There were fewer
deaths in the low-risk group, which exhibited lower expression levels

FIGURE 3
Consensus clustering is carried out based on the LARGs. (A) The consensus clustering was used to divide 323 OSCC patients into two groups (k = 2).
(B) PCA analysis showed a clear distinction between the cluster 1 and 2. (C) Survival curves for genes involved in RNAmethylation that are linked to overall
survival. Clusters 1 and 2 were shown to be substantially linked to survival (p = 0.014). (D) 23 immune cell types infiltration is significantly different in two
clusters. (E) The clinicopathologic characteristics between the two clusters are shown on a heatmap.
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of the risk genes (Supplementary Figures S3C, F). Finally, t-SNE
analysis and PCA revealed that the risk genes were very effective in
differentiating the two risk groups (Supplementary Figures S3D–E).

3.6 Subgroup survival analysis based on
clinical parameters

To determine the ability of various clinical parameters to
predict OSCC prognosis, we carried out a stratified analysis of
clinical parameters in the test cohort by creating multiple

subgroups for the patients in the TCGA dataset using various
clinical parameters. KM analysis of the correlation between age
(≤65 and >65 years), sex, grade (G1–G2 or G3–G4), stage (I–II or
III–IV), and survival indicated that except for G3–G4, high-risk
patients had a lower likelihood of survival than low-risk patients
(Supplementary Figures S4A–H). We also studied how the clinical
parameters and the risk scores correlated with one another. This
analysis revealed that high-risk scores and the AJCC stage, clusters,
and immune scores differ significantly from each other
(Supplementary Figures S5A–F). High-risk scores were mainly
observed in patients with lower immune scores when compared

FIGURE 4
Construction of the lysine acetylation-related prognostic signature in the training cohort. (A) An investigation of OS for each DEG on clusters 1 and
2 using univariate cox regression. (B) LASSO regression of DEGs inOSCC. (C)Cross validation in the LASSO regression. (D) TheOS of OSCC patients in the
high-risk group was considerably poorer than that of the low-risk group, according to K-M curves. (E) An evaluation of the prognostic signature for OS in
OSCC patients using ROC curves. (F,G)OSCC patients characteristics by high- and low-risk categories (H,I) To demonstrate how the samples of the
various risk groups associated with lysine acetylation were dispersed independently, PCA (H) and t-SNE (I) were used.
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with those with high immune scores. Advanced disease stage was
also associated with higher risk scores.

3.7 Development of a nomogram and model
efficiency prediction

Sankey plot analysis revealed that the patients were distributed
into two LARG clusters, two risk score clusters, and two future status
clusters (Figure 5A).

Next, we developed a nomogram to illustrate the connection
between these independent prognostic markers and survival
probabilities (Figure 5B). Clinicians might forecast a patient’s
prognosis based on their total points. Patients with higher total
points had lower survival. Additionally, calibration curves indicated
that the nomogram could accurately predict one-, three-, and five-year
OS (Figure 5C). A nomogram calibration curve was used to assess
consistency between predicted and observed OS outcomes, with red,
blue, and green lines indicating how the nomogram performed,
whereas the gray line at 45° indicates flawless prediction (Figure 5D).

3.8 Gene set enrichment analysis and
immune activity

The ESTIMATE algorithm was applied to generate TME scores.
This analysis showed that patients with high-risk scores had
significantly lower estimate score, immune score, and stromal
score (p < 0.001) than those patients with high-risk score (p <
0.001) (Figure 6A). Moreover, ssGSEA analysis of the differences in
multiple immune cells and signal pathways revealed that the high-
risk group had lower immune cell infiltration (p < 0.05; Figure 6B).
Moreover, these pathways were suppressed in patients with high-
risk scores, including APC co-inhabitation, CCR, immune
checkpoint, and cytolytic activity (p < 0.05; Figure 6C).
Chemokines mediate the leukocyte migration to various sites
during normal homeostasis and inflammation. Therefore, we
investigated the correlation between 19 chemokine receptors and
43 chemokines and risk categories (Figures 6D, F). This analysis
revealed that most chemokines, including inflammatory
chemokines like CCL2 and CXCL12, which promote the
proliferation of B progenitor cells in the bone marrow milieu

FIGURE 5
(A) Sankey plot shows quantities of patients flow from 2 clusters to the risk score distributions group than to final status. (B) Nomogram for OSCC
patient survival predictions at 1, 3, and 5 years (C) The ROC curves for 1−, 3−, and 5−year OS in OSCC patients. (D) Calibration curves of the nomogram
measured by Hosmer-Lemeshow test.
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where they are produced, were markedly lower in patients with high-
risk scores. Indicating that the differences between the
immunological microenvironment of the high and low-risk
groups were caused by the equivalent reduction in chemokine levels.

We also investigated the correlation between risk scores and
HLA complex genes (Figure 6E), including HLA-DRB5 and HLA-
DRB1, which are crucial for immune activity because of their
antigen-presenting function. The potential of checkpoint

FIGURE 6
Two-group TME evaluation and checkpoints analysis. (A) Relationship between ESTIMATE score and high and low risk groups (B) The aggregation
and expression of 16 immune cells were different in OSCC patients. (C) In high and low risk groups, 13 immunological functions expressed themselves
differently. (D) Comparisons between the risk scores and the quantity of chemokines expression. (E) Human Leukocyte Antigen (HLA) expression in the
high and low risk categories. (F) The abundance of chemokine receptors in different risk score groups. (G) Expression levels of clinically targetable
ICP were measured in two risk groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***, not significant ns).
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inhibitors to treat cancer has attracted significant interest. Therefore,
we deduced that the OSCC inflammatory condition may be
associated with a unique expression of immune checkpoint
(ICP). The expression levels of eight ICP genes,LAG3, TIGIT,
PDCD1, HAVCR2, CTLA4, SIGLEC15, PDCD1LG2, and
CD274 were calculated to determine the correlations between
immune checkpoints and risk score. This analysis found LAG3,
CTLA4, PDCD1, TIGIT, PDCD1LG2, and CD274 to be
downregulated in the high-risk group (Figure 6G), suggesting
that the low-risk group is sensitive to immunotherapy. To assess
the response of patients to immune checkpoint inhibitors, we
calculated the IPS scores of each sample and found that the IPS
scores(ips_ctla4_pos_pd1_pos) of low-risk groups were higher,
indicating that the patients in this group may be more sensitive
to the combined PD-1/CTLA4 blockade (Supplementary Figures
S6A–D).

3.9 Drug sensitivity analysis

Chemotherapy, targeted therapy, and immunotherapy may slow
tumor growth in OSCC patients and enhance patient prognosis. We
calculated the IC50 values of various chemotherapies in the test
cohort using the “pRRophetic” package on R. This analysis found
that paclitaxel, docetaxel, cisplatin, doxorubicin, methotrexate, and
several targeted treatment drugs are more effective in patients with
high-risk scores (Figures 7A–E). Paclitaxel primarily affects the M
phase of mitosis, and disrupts tubulin synthesis, thereby inhibiting

the replication of tumor cells. Docetaxel belongs to the same family
as paclitaxel but has a higher affinity for microtubule sites and
exhibits higher anticancer activity. Cisplatin is a platinum
compound and acts on the chemical structure of DNA.
Doxorubicin and methotrexate enter the nucleus, bind to DNA,
and inhibit nucleic acid synthesis and mitosis. In summary, these
findings suggest that risk scores can predict drug sensitivity.

4 Discussion

Because of its molecular heterogeneity, few treatments are
effective against terminal oral cancer. To improve OSCC
prognosis, novel biomarkers, and treatment targets are needed.
The emergence of high-throughput array technologies presents a
chance to investigate the mechanisms underlying OSCC occurrence
and progression. Lysine acetylation, a key regulatory mechanism of
gene expression, might be associated with OSCC pathophysiology
but it is unclear if acetylation-related genes influence OSCC or
whether they are associated with OSCC survival.

Here, we first assessed the expression levels of 33 LARGs in
OSCC vs. normal tissues and found that most of were differentially
expressed, with Sirtuin 5 (SIRT5) and Histone Deacetylase 3
(HDAC3) exhibiting the highest differential expression. Analysis
of the correlation between the expression of SIRT5 and HDAC3 and
overall survival revealed that both genes were linked to the prognosis
of OSCC patients. HPA and RT-qPCR analysis of whether they are
aberrantly expressed in OSCC showed that SIRT5 and HDAC3 were

FIGURE 7
Relationship between risk score and therapeutic sensitivity. (A–E) Association between risk score and chemotherapeutic sensitivity.
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significantly upregulated in tumor tissues when compared with
normal samples.

In OSCC, HDACs are thought to have excellent antitumor
potential. It is proposed that RNA splicing and HDACs might be
linked, with HDACs controlling acetylation and splicing through
interaction with ribonucleoprotein complexes and the spliceosomes
(Rahhal and Seto, 2019). Thus, we hypothesized that dysregulated
acetylation might influence OSCC development by controlling RNA
splicing. Lysine acetylation has been associated with the ribosome
pathway, especially with the loss of acetylation on RPS6 and RPS3,
whichmight have therapeutic target potential against OSCCs. (Dong
et al., 2022). SIRT5 has been implicated in various malignancies.
LDHA-K118su, a SIRT5 substrate markedly elevates invasion and
migration by prostate cancer cells (Kwon et al., 2022).
SIRT5 negatively regulates cancer cell proliferation in pancreatic
ductal adenocarcinoma patients and is related to better prognosis.
SIRT5 has also been associated with metabolic regulation and
changes in the tumor microenvironment (Sun et al., 2022) in
promoting hepatocarcinogenesis. SIRT5 deficiency can increase
immune cell activity, indicating that it influences immune cell
development (Wang K. et al., 2020).Our immune analyses
indicate that acetylation influences the OSCC TME composition.

Next, two clusters were generated based on ‘HDAC3’ and
‘SIRT5’. To further evaluate the prognostic value of these
acetylation-related regulatory factors, we used univariate and
LASSO regression analyses to construct a risk model using eight
genes and then validated its performance on an external dataset. We
show that in OSCC patients, risk score is a reliable predictor of OS.
Next, we developed a nomogram for clinical analysis of
individualized prognosis and risk based on a risk score, age and
stage. The calibration curve revealed a high fitness between the
actual and predicted OS rates. Taken together, these findings
indicate that the prognostic risk scoring model based on the
eight-gene signature is an effective indicator of OSCC prognosis.

Next, we further investigated the eight genes used to construct the
model. NK2 homeobox 3 (NKX2-3) has been reported as a prognostic
factor in head and neck squamous cell carcinoma (HNSCC) (Huang
L. et al., 2021; Liu et al., 2021). Suppressor APC domain containing
neuroblastoma (SAPCD2) (Zhang et al., 2022), has been reported to
regulate Yap/Taz, MAPK, and mTOR signaling in various cancers,
including colorectal (Luo et al., 2020) and prostate cancer (Sun et al.,
2021). Serine peptidase inhibitor Kazal type 7 (SPINK7) has also been
proposed as a prognostic factor also a molecular biomarker in
HNSCC (Pennacchiotti et al., 2021; Du et al., 2022). Ly6/
neurotoxin 1 (LYNX1) has been suggested as a prognostic factor
in ovarian serous cystadenocarcinoma (Liu et al., 2020) and
glioblastoma (Ren et al., 2022). A quantitative sequencing study
found that LYNX1 expression significantly increased the
recurrence of methylation groups in oropharyngeal tumors. Aldo-
keto reductase family 1 member C3 (AKR1C3) has been associated
with poor prognosis in patients with oropharyngeal cancer, especially
in HPV-positive patients (Peraldo-Neia et al., 2021). Synaptotagmin
17 (SYT17) was found to be differentially expressed in non-Hodgkin’s
lymphoma (Fucà et al., 2021). MBL associated serine protease 1
(MASP1) has also been proposed as a prognostic factor in HNSCC
and oral cancer (Belotti et al., 2021; Zhang and Wang, 2022).
Cathepsin G (CTSG) overexpression is associated with poor diffuse
large B-cell lymphoma survival (Carreras et al., 2021).

Numerous studies have found that the TME significantly
influences cancer incidence, development, and metastasis (Belli
et al., 2018; Laplane et al., 2019). Our analysis found that higher
immune/stromal scores, were associated with lower risk scores,
however, tumor purity had the opposite effect. In OSCC patients,
higher risk scores predict a worse prognosis, which demonstrated
that the higher the number of immune cells in OSCC, the more
difficult it is to identify cancer cells (Gandara et al., 2018). The low
infiltration level of antitumor immune cells indicates that immune
function was impaired in the high-risk group (Li et al., 2017).
Comparing the immune cell infiltration in high- and low-risk
groups revealed that the number of invading immune cells in the
high-risk group was less than in the low-risk group.

Intriguingly, we found that the proportion of Tregs was higher
in the low-risk group than in the high-risk group. Tregs have been
associated with subpar clinical outcomes and have been shown to
downregulate anti-tumor immunity (Wolf et al., 2005; Toker et al.,
2018). This might be explained by the need for Tregs in the TME to
control excessive acetylation-induced inflammation Additionally,
two key Treg subtypes identified in colon cancer have been shown to
have competing roles in controlling the TME (Saito et al., 2016). The
risk score was negatively associated with B cell infiltration. B cell
infiltration in OSCC has not been extensively studied and available
literature is inconsistent. B cell infiltration has been shown to
enhance immunological function (Ammirante et al., 2010) while
impairing T cell-dependent responses (Shalapour et al., 2015).
Therefore, the different Treg subtypes in OSCC should be
considered. Except for the APC co-stimulation pathway and
MHC class I, the activities of other immunological pathways
differed significantly between the two cohorts. These data suggest
that a decrease in antitumor immunity may cause the low survival
rates in high-risk OSCCs.

CCL2 is an important chemokine that is reported to promote the
proliferation and metastasis of osteosarcoma cells by activating NF-
κB signaling (Lazennec and Richmond, 2010; Chen et al., 2015). In
the category of biological processes, the inflammatory reaction had
the strongest correlation with risk scores. Inflammatory responses
are reported to be crucial for cancer development, growth,
malignant transformation, invasion, and metastasis (Tang et al.,
2018). By controlling therapeutic response and immunological
surveillance, inflammation also affects patient survival
(Grivennikov et al., 2010).

Recent advances in bioinformatics have led to the development
of powerful tools for identifying new cancer treatment targets,
including for OSCC, based on tumor immunotherapy and
microarray sequencing (Almangush et al., 2021; Huang G. G.
et al., 2021). Although anti-PD-1/PD-L1 immunotherapy has
been widely used to treat terminal OSCCs, only a limited
number of cases benefit from this therapy (Dong et al., 2021).
Hadler-Olsen et al. (Hadler-Olsen and Wirsing, 2019) discovered
that CD163+ M2 and CD57+ showed a positive correlation with the
outcome OSCC outcomes.

LAG3, TIGIT, PDCD1, CTLA4, PDCD1LG2, and
CD274 checkpoints exhibit significant differences between
patients with different risk scores. This may offer new
immunotherapy strategies for OSCC and raises the possibility
that patients in the high-risk category may benefit from ICP
inhibitor treatment than patients with low-risk scores. In
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conclusion, our data indicate that immunosuppression might
underlie poor prognosis in high-risk patients and that
acetylation may be important for OSCC immunotherapy.
However, this study has some limitations. First, the OSCC
samples used are from public databases. Secondly, although our
prognostic model has been confirmed in different datasets, the
study is retrospective. To validate the clinical utility of the
developed model, additional, well-designed studies are required.
To determine the pathways involved, the identified genes should
undergo experimental validation, either in cancer cells or mouse
models. Additionally, we did not perform our own sequencing, and
the follow-up data, as well as the sample size, were too small to
carry out a similar survival study. We anticipate that the
limitations highlighted above will define the scope and depth of
our future research.

Few studies have examined the acetylation mechanisms
underlying OSCC. Here, we identified two prognostic markers
associated with acetylation in OSCC, SIRT5 and HDAC3, which
are overexpressed in tumors, and found that their upregulation is
associated with poor OS. We conducted a basic study on the
prognostic value of these LARGs and built up some theoretical
evidences to support future researches. The prognostic value of
both genes warrants further validation using clinical data.
Importantly, the prognosis model based on univariate Cox and
LASSO regression analyses is closely associated with immune cell
infiltration.
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UroVysion™
fluorescence in situ

hybridization (FISH) possibly has a
high positive rate in carcinoma of
non-urothelial lineages

Chunjin Ke1, Xuguang Liu2, Jie Wan2, Zhiquan Hu1* and
Chunguang Yang1*
1Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and
Technology (HUST), Wuhan, China, 2Department of Pathology, Tongji Hospital of Tongji Medical College,
Huazhong University of Science and Technology (HUST), Wuhan, China

Background: Positive UroVysion™
fluorescence in situ hybridization (FISH) is

generally considered as urothelial carcinoma (UC). We clarify if UroVysion™

FISH can be positive in carcinoma of non-urothelial lineages (CNUL), and verify
the consistency of urine FISH and histological FISH in CNUL.

Methods: All CNUL subjects detected by urine FISH assay due to haematuria from
Tongji Hospital were screened. Meanwhile, 2 glandular cystitis and 2 urothelial
carcinoma were served as negative or positive control. Paraffin-embedded tissue
sections of all subjects were sent to the pathology department for histological
FISH detection.

Results: A total of 27 patients were included in this study, including 9 with
adenocarcinomas, 11 with squamous cell carcinomas, and 7 with other tumour
types. The overall positive rate in urine FISH was 64.00% (16/25) in patients with
CNUL, 77.78% (7/9) in those with adenocarcinoma and 54.55% (6/11) in those with
squamous carcinoma. There was a significant difference in the GLP p16 gene
deletion rate between UC and CNUL (100% vs. 8.00%, p= 0.017). Histological FISH
results showed that the histological results of 19 patients were consistent with
their urine FISH results, and only one patient with stageⅢa urachal carcinoma had
inconsistent histological FISH results (positive) and urine FISH (negative) results.

Conclusion: We demonstrated for the first time the application value of FISH in
CNUL on urine samples. Positive urine FISH tests indicate not only UC, but also
CNUL. UroVysion™ FISH possibly has a high positive rate in CNUL. CNUL and UC
have different genetic changes shown by FISH.

KEYWORDS

fluorescence in situ hybridization, chromosome, CNUL, squamous cell carcinoma,
adenocarcinoma

1 Introduction

Fluorescence in situ hybridization (FISH) detects chromosomal or genetic abnormalities
in cell and tissue samples by detecting fluorescence signals through fluorescence microscopy
after hybridization between the probe and the DNA of the sample through the
complementarity of DNA base pairs (Wiegant et al., 1991; Sokolova et al., 2000; Levsky
and Singer, 2003; National Library of Medicine, 2020). The U.S. Food and Drug

OPEN ACCESS

EDITED BY

Guohui Sun,
Beijing University of Technology, China

REVIEWED BY

António Machado,
Universidad San Francisco de Quito,
Ecuador
Jia Li,
University of North Carolina at Charlotte,
United States

*CORRESPONDENCE

Zhiquan Hu,
huzhiquan2000@163.com

Chunguang Yang,
cgyang-hust@hotmail.com

RECEIVED 30 June 2023
ACCEPTED 21 September 2023
PUBLISHED 05 October 2023

CITATION

Ke C, Liu X, Wan J, Hu Z and Yang C
(2023), UroVysion™

fluorescence in situ
hybridization (FISH) possibly has a high
positive rate in carcinoma of non-
urothelial lineages.
Front. Mol. Biosci. 10:1250442.
doi: 10.3389/fmolb.2023.1250442

COPYRIGHT

© 2023 Ke, Liu, Wan, Hu and Yang. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 05 October 2023
DOI 10.3389/fmolb.2023.1250442

101

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1250442/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1250442/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1250442/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1250442/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1250442/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1250442&domain=pdf&date_stamp=2023-10-05
mailto:huzhiquan2000@163.com
mailto:huzhiquan2000@163.com
mailto:cgyang-hust@hotmail.com
mailto:cgyang-hust@hotmail.com
https://doi.org/10.3389/fmolb.2023.1250442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1250442


TABLE 1 Basic clinical data of 27 patients.

No Age
(years)

Sex Diagnosis Urine
FISH
(+/−)

Abnormal cell ratio (%) Histological
FISH (+/−)

Genetic material
changes (+/−)

CSP3 CSP7 GLP
p16

CSP17 CSP3 CSP7 GLP
p16

CSP17

1 69 male Urothelial carcinoma + 47 47 45 51 + + + + +

2 64 female Urothelial carcinoma + 19 15 + - - + +

3 66 male Small cell carcinoma
of the bladder

+ 83 86 85 + + + - +

4 34 male Bladder
paraganglioma

+ 65 75

5 50 female Cystitis glandularis - - - - - -

6 53 male Cystitis glandularis - - - - - -

7 50 male Renal secondary
non-Hodgkin
lymphoma

+ 63 63 58

8 25 male Urachal
adenocarcinoma

+ 39 47 + + + - -

9 49 female Urachal
adenocarcinoma

- - - - - -

10 50 female Urachal
adenocarcinoma

- + - + - +

11 68 male Urachal
adenocarcinoma

+ 14 12

12 46 male Urachal
adenocarcinoma

+ 27 30 31 32

13 54 male Urachal
adenocarcinoma
with distant visceral
metastasis

+ 31 29

14 30 male Urachal
adenocarcinoma

+ 15 17 18

15 69 male Prostate cancer
invades the bladder

+ 33 35 31 + + + - +

16 72 male Prostate cancer
invades the bladder

+ 67 69 67 + + + - +

17 56 male Renal squamous cell
carcinoma
(oesophageal
squamous cell
carcinoma
metastasis)

+ 23 23 21 + + + - +

18 65 male Renal squamous cell
carcinoma

- - - - - -

19 58 male Renal squamous cell
carcinoma

- - - - - -

20 63 male Renal squamous cell
carcinoma (lung
squamous cell
carcinoma
metastases)

+ 37 35 41

21 51 male Renal squamous cell
carcinoma

- - - - - -

22 52 female + 17 17 31 + + + - +

(Continued on following page)
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TABLE 1 (Continued) Basic clinical data of 27 patients.

No Age
(years)

Sex Diagnosis Urine
FISH
(+/−)

Abnormal cell ratio (%) Histological
FISH (+/−)

Genetic material
changes (+/−)

CSP3 CSP7 GLP
p16

CSP17 CSP3 CSP7 GLP
p16

CSP17

Renal squamous cell
carcinoma

23 39 male Renal squamous cell
carcinoma

- - - - - -

24 77 male Renal squamous cell
carcinoma

- - - - - -

25 64 male Bladder squamous
cell carcinoma

+ 82 82 78 + + + - +

26 61 male Bladder squamous
cell carcinoma

+ 73 75 68 71 + + + + +

27 50 male Bladder squamous
cell carcinoma

+ 85 87 79 + + + - +

Note: CSP, chromosomal centromeric probe; GLP, gene locus-specific probe; “+”, a positive FISH assay; “-”, a negative FISH, assay.

TABLE 2 Changes in genetic material of different tumour types.

Diagnosis Chromosomal amplification/gene deletion P

3 # 7 # p16 17 #

Adenocarcinoma (n = 9) P1 > 0.05

Urachal adenocarcinoma (n = 7) 5/7 (71.42%) 5/7 (71.42%) 1/7 (14.29%) 2/7 (28.57%)

prostate cancer (n = 2) 2/2 (100%) 2/2 (100%) 0 2/2 (100%)

Total 7/9 (77.78%) 7/9 (77.78%) 1/9 (11.11%) 4/9 (44.44%)

Squamous cell carcinoma (n = 11)

Primary renal squamous cell carcinoma (n = 6) 1/6 (16.67%) 1/6 (16.67%) 0 1/6 (16.67%)

Primary bladder squamous cell carcinoma (n = 3) 3/3 (100%) 3/3 (100%) 1/3 (33.33%) 3/3 (100%)

Secondary renal squamous cell carcinoma (n = 2) 2/2 (100%) 2/2 (100%) 0 2/2 (100%)

Total 6/11 (54.55%) 6/11 (54.55%) 1/11 (9.09%) 6/11 (54.55%)

Metastatic tumour (n = 3)

Renal squamous cell carcinoma (oesophageal squamous cell carcinoma metastasis, n = 1) 1/1 (100%) 1/1 (100%) 0 1/1 (100%)

Renal squamous cell carcinoma (lung squamous cell carcinoma metastasis, n = 1) 1/1 (100%) 1/1 (100%) 0 1/1 (100%)

Renal secondary non-Hodgkin lymphoma (haematologic lymphoma metastasis, n = 1) 1/1 (100%) 1/1 (100%) 0 1/1 (100%)

Total 3/3 (100%) 3/3 (100%) 3/3 (100%)

Other types (n = 6)

Urothelial carcinoma (n = 2) 1/2 (50%) 1/2 (50%) 2/2 (100%) 2/2 (100%) P2 = 0.017

Small cell carcinoma of the bladder (n = 1) 1/1 (100%) 1/1 (100%) 0 1/1 (100%)

Bladder paraganglioma (n = 1) 1/1 (100%) 0 0 1/1 (100%)

Cystitis glandularis (n = 2) 0 0 0 0

Total 3/6 (50%) 2/6 (33.33%) 2/6 (33.33%) 4/6 (66.67%)

Note: P1: compared with adenocarcinoma, there was no statistical significance in the number amplification of chromosomes 3, 7 and 17 and GLP p16 gene deletion in squamous cell carcinoma

(p > 0.05); P2: GLP p16 gene deletion rate was different between non-urothelial carcinoma and urothelial carcinoma (p = 0.017).
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Administration approved UroVysion™ FISH probes (chromosomes
3, 7, and 17 combined with the 9p21 probe) in 2001 and 2005,
respectively, for urine detection in patients with suspected bladder
cancer and postoperative recurrence monitoring in patients with
bladder cancer (Halling et al., 2000). Worldwide, the incidence of
bladder cancer ranks 9th among all malignant tumours in the body
and 7th among male patients. Regarding histopathological
classification, more than 90% of cases are bladder urothelial
carcinoma (Jemal et al., 2010; Siegel et al., 2017). In recent years,
the incidence of bladder cancer in China has been increasing year by
year, with an average growth rate of 68.29% in the past 15 years, due
to changes in diet, increased work pressure, harsh environment and
other factors (Chen, 2015; Chen et al., 2016). Therefore, FISH
positive is usually considered to be urothelial carcinoma (UC).

A review of the national and international literature shows that there
are very few studies on the application of FISH in carcinoma of non-
urothelial lineages (CNUL). (Reid-Nicholson et al., 2009) performed
histological FISH detection on paraffin sections fromCNUL patients and
found that FISH positivity was common in primary and secondary
adenocarcinomas but rare in squamous cell carcinomas. (Kipp et al.,
2008) also performed histological FISH on paraffin sections and found
that chromosomal abnormalities detected in UC were common in rare
histological types of bladder cancer. (Yang et al., 2016) found that
preoperative urine FISH were positive in patients with bladder
paraganglioma, which showed polyploidy of chromosomes 3 and 17.
Urine FISHwas performed again after the operation and the result turned
negative. In our clinical practice, we successively found that urine FISH
showed positive manifestations in urachal carcinoma (Case 8-Case 14),

(Hu et al., 2020), renal secondary non-Hodgkin lymphoma (Case 7) and
renal squamous cell carcinoma (Case 17), (Hu et al., 2021), so we did a
comprehensive review of all the cases in our center since the FISH
technique was introduced.

In summary, it is clear that the positive presentation of urine FISH
in CNUL is not coincidental, however, none of the existing studies have
been cross-validated by histological FISHwith urine FISH, thus causing
a lack of studies to demonstrate the relationship between the two
specimen types. This study focuses on elucidating that FISH can also
show positive in urine or tissue specimens of CNUL, thus suggesting
that FISH-positive patients do not always have UC. The second is to
confirm the consistency of histological and urine FISH analysis results
to fill the gap of previous studies.

2 Methods

2.1 Research objects

With the approval of the Medical Ethics Committee of Tongji
Hospital affiliated with Tongji Medical College, Huazhong
University of Science and Technology (Approval No. TJ-
IRB20210521), we applied to the Department of Pathology to
query the information of patients with CNUL admitted to the
Department of Urology in the past 10 years, including all
squamous carcinomas, adenocarcinomas and other rare types of
tumours. Then, we retrospectively searched the FISH database at our
Institute of Urology for relevant FISH testing information for these

FIGURE 1
Genetic material changes in patients with distant metastases or highly malignant tumors. (A–E) correspond to case No. 7 (secondary non-Hodgkin
lymphoma of the kidney), case No. 13 (urachal carcinomawith distant visceral metastasis), case No. 17 (renal pelvis squamous cell carcinoma derived from
esophageal squamous cell carcinoma), case No. 20 (renal pelvis squamous cell carcinoma derived from lung squamous cell carcinomametastases), and
case No. 25 (primary bladder squamous cell carcinoma), respectively. Red represents CSP7 and GLP p16. Green represents CSP3 and CSP17. Note:
Case B cited a case in the previous published articles of our team (Hu et al., 2020). Case A and case C cited the cases from our previous published articles
of our team (Hu et al., 2021).
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patients. A total of 25 patients who met the requirements were
screened, and 2 patients with UC were selected as the control
group. Inclusion criteria were as follows: ① can obtain specific
clinical data through the electronic medical record system; ② have
histological specimens in our hospital and have been pathologically
diagnosed as CNUL; ③ have no urinary calculi, chemotherapy,
radiotherapy, etc.

2.2 Research methods

2.2.1 Detection method of urine FISH
The specific results of urine FISH in 27 patients were obtained

directly from the Institute of Urology of Tongji hospital.
Approximately 200 ml of urine was collected in the morning.
The volume of urine specimen should not be too small, otherwise
it will affect the number of cells in the specimen and cannot meet

the basic requirements of FISH detection technology. Urine
specimens should be kept free of contaminants such as
prostate fluid, semen, leukorrhea, menstrual blood, etc. After
the specimen is collected, it is necessary to send it for
examination as soon as possible to prevent the dissolution of
cells in the specimen, resulting in changes in the composition of
the specimen.

2.2.2 Detection method of histological FISH
Haematoxylin and eosin-stained slides (and

immunohistochemistry slides, if applicable) of the paraffin-
embedded tissue of the relevant patient were first requested from
the Department of Pathology, and then representative paraffin
blocks containing ≥ 80% tumour cells were selected for
histological FISH. The target areas for hybridization were
highlighted on each representative slide. All metastatic tumours
were confirmed by immunohistochemistry and/or review of the

FIGURE 2
Case No.15. Positive validation of histological FISH and urine FISH in adenocarcinoma. (A) is the histopathological image of prostate cancer.
Microscopy showed moderately and poorly differentiated with Gleason score 4 + 4 = 8(hematoxylin-eosin staining, ×200magnification). (B) is the urine
FISH result, showing the amplification of chromosomes 3, 7 and 17, and no GLP p16 gene deletion. (C) is histological FISH (×400 magnification), also
showing amplification of chromosomes 3, 7 and 17, without GLP p16 gene deletion (indicated by arrows). The mean fluorescence signals of
chromosome 3, 7, 17 and GLP p16 locus in each cell were 3.48, 3.94, 2.93 and 2.06, respectively. Red represents CSP7 and GLP p16. Green represents
CSP3 and CSP17.
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primary tumour. The FISH DNA probe kit (Bladder cancer cell
chromosome and gene abnormality detection box: China Food and
Drug Administration No. 3400251, 2009; Order number F01008-02)
was purchased from Beijing Jinpujia Medical Technology Co. Ltd.
The FISH DNA probe is labelled with tetramethylrhodamine and
fluorescein isothiocyanate and consists of two combinations: CSP3
(green)/CSP7 (red) and GLP p16 (red)/CSP17 (green). For
experimental procedures and result interpretation standards
(Supplementary Material), refer to the published articles by our
team (Hu et al., 2020) and the official website of the kit supplier
company (National Library of Medicine, 2020).

2.3 Statistical analysis

Data analysis was performed using IBM SPSS Statistics® version
23 (IBM Corp, Armonk, NY, USA) (Liang et al., 2019). Continuous

variables are expressed as the median ± interquartile spacing, and
count variables are described as frequencies, ratios and percentages.
Categorical variables were compared using the chi-square test and
Fisher’s exact test when data were limited. Differences with p <
0.05 were considered statistically significant.

3 Results

3.1 Urine FISH positive detection rate of
CNUL

A total of 27 patients were included in this study: 9 with
adenocarcinoma, 11 with squamous carcinoma, and 7 with other
types [2 with glandular cystitis, 2 with UC (control group), 1 with
small cell carcinoma of the bladder, 1 with renal secondary non-
Hodgkin’s lymphoma, and 1 with bladder paraganglioma].

FIGURE 3
Case No.25. Positive validation of histological FISH and urine FISH in squamous cell carcinoma. (A) is the histopathological image of a patient with
bladder squamous cell carcinoma, showing invasive squamous cell carcinoma under amicroscope (hematoxylin-eosin staining, ×200magnification); (B)
is the urine FISH result, showing the amplification of chromosomes 3, 7 and 17, and no GLP p16 gene deletion; (C) is histological FISH
(×400 magnification), also showing amplification of chromosomes 3, 7 and 17, without GLP p16 gene deletion (indicated by arrows). The mean
fluorescence signals of chromosome 3, 7, 17 andGLP p16 locus in each cell were 3.64, 4.19, 3.86 and 1.97, respectively. Red represents CSP7 andGLP p16.
Green represents CSP3 and CSP17.
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According to the pathological results of postoperative specimens
and related clinical data, adenocarcinoma was further divided into
7 cases of urachal adenocarcinoma and 2 cases of prostate acinar
carcinoma invading the bladder. Squamous cell carcinoma was
divided into primary and secondary squamous cell carcinoma.
The primary squamous cell carcinoma was divided into 6 cases
of renal pelvis squamous cell carcinoma and 3 cases of bladder
squamous cell carcinoma. Two secondary renal squamous cell
carcinoma cases were derived from oesophageal squamous cell
carcinoma and lung squamous cell carcinoma.

The above 27 patients were all subjected to urine FISH assay due
to haematuria or suspected UC and other factors, and the collected
urine samples all met the testing requirements. Of the 27 patients,
22 were males, and 5 were females, with a median age of 54 (50–65)
years. The overall positive rate in urine FISH was 64.00% (16/25) in
patients with CNUL. The positive rate of adenocarcinoma was

77.78% (7/9), including 5 cases of urachal carcinoma (71.43%, 5/
7) and 2 cases of prostate acinar carcinoma invading the bladder
(100%, 2/2). In squamous cell carcinoma, the positive rate was
54.55% (6/11), including 3 cases of primary pure bladder squamous
cell carcinoma (100%, 3/3), 1 case of primary renal pelvis squamous
cell carcinoma (16.67%, 1/6), and 2 cases of secondary renal
squamous cell carcinoma (derived from oesophageal squamous
cell carcinoma and lung squamous cell carcinoma).

For advanced or certain rare tumors, such as metastatic tumors
(2 cases of metastatic renal squamous carcinoma, 1 case of
metastatic non-Hodgkin’s lymphoma, and 1 case of urachal
carcinoma with distant visceral metastasis), prostate cancer
invading the bladder, and small cell carcinoma of the bladder,
urine FISH is prone to be positive. Therefore, the more
malignant and advanced the tumor is, the more likely it is to
result in positive urine FISH (Table 1).

FIGURE 4
Case No.1. Positive validation of histological and urine FISH in urothelial carcinoma. (A) is the histopathological image of a patient with urothelial
carcinoma. The microscope shows high-grade urothelial carcinoma of the bladder, invading the full thickness of the bladder wall (hematoxylin-eosin
staining, ×200 magnification); (B) is the urine FISH, showing the amplification of chromosomes 3, 7, 17 and the deletion of the GLP p16 locus; (C) is
histological FISH (×400magnification), also showing amplification of chromosomes 3, 7, 17 and deletion of the GLP p16 locus (indicated by arrows).
The mean fluorescence signals of chromosome 3, 7, 17 and GLP p16 locus in each cell were 3.59, 3.02, 2.87 and 0.63, respectively. Red represents
CSP7 and GLP p16. Green represents CSP3 and CSP17.
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3.2 Genetic material changes in CNUL
patients with positive urine FISH

Among the 25 patients included in the study, the rates of
chromosome 3, 7 and 17 amplifications and GLP p16 gene
deletion were 64.00% (16/25), 60.00% (15/25), 52.00% (13/25)
and 8.00% (2/25), respectively. In adenocarcinoma, the
amplification rates of chromosomes 3, 7, and 17 were 77.78% (7/
9), 77.78% (7/9), and 44.44% (4/9), respectively, while the GLP
p16 gene deletion rate was only 11.11% (1/9). In squamous cell
carcinoma, the amplification rate of chromosomes 3, 7 and 17 was
54.55% (6/11), while the deletion rate of the GLP p16 gene was only
9.09% (1/11). Therefore, the incidence of GLP p16 gene deletion is
very low in both adenocarcinoma and squamous cell carcinoma.
There was no statistically significant difference in the frequency of
chromosome 3, 7, 17 amplification and GLP p16 gene deletion in

squamous cell carcinoma compared with adenocarcinoma (p > 0.05)
(Table 2).

In addition, the proportion of cells with abnormal genetic
material in urine samples of patients with bladder squamous cell
carcinoma, renal secondary non-Hodgkin’s lymphoma and
bladder small cell carcinoma were all greater than 65%,
indicating that these tumour cells are more likely to shed
into the urine (Table 1). During our data collection, we also
found that for patients with advanced or distant metastases,
such as renal secondary non-Hodgkin’s lymphoma, urachal
carcinoma with visceral distant, metastatic renal squamous
carcinoma (derived from lung squamous carcinoma and
esophageal squamous carcinoma), and primary squamous
carcinoma of the bladder, their urine exfoliated cells had
more frequent chromosomal amplifications, often appearing
as 5-ploidy and 6-ploidy (Figure 1).

FIGURE 5
Case No.18. Negative validation of histological and urine FISH. (A) is the histopathological image of a patient with primary pure renal pelvis squamous
cell carcinoma. Microscopically, high-medium-differentiated squamous cell carcinoma invaded perirenal fat, and no atypical hyperplasia, carcinoma in
situ, or infiltrating carcinoma components of urinary tract epithelium were observed (hematoxylin-eosin staining, ×200 magnification); (B) is the urine
FISH result of case No. 18, which was negative; (C) is histological FISH (×400 magnification), which was also negative (indicated by the arrow). The
mean fluorescence signals of chromosome 3, 7, 17 and GLP p16 locus in each cell were 1.93, 2.05, 1.95 and 1.96, respectively. Red represents CSP7 and
GLP p16. Green represents CSP3 and CSP17.
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3.3 Mutual validation of histological and
urine FISH results

For this study, haematoxylin and eosin staining slides (as well as
immunohistochemical slides, if applicable) of paraffin-embedded
tissues of 20 patients (Paraffin sections of some patients are obsolete
or have too few tissue specimens to perform histological FISH) were
applied to the Pathology Department. Representative paraffin blocks
containing ≥80% tumour cells were then selected for histological
FISH detection, and the hybridized target area was highlighted on
each representative slide.

The 20 patients included 5 adenocarcinomas (3 urachal
adenocarcinomas, 2 prostate cancer invading the bladder),
10 squamous cell carcinomas (7 renal pelvis squamous cell
carcinomas, 3 bladder squamous cell carcinomas), 1 bladder small
cell carcinoma, 2 UC (1 bladder UC, 1 renal pelvis UC) and 2 glandular
cystitis. Sections were processed in strict accordance with the

instructions of the FISH kit, and in situ hybridization was
performed using fluorescent dye-labelled GLP p16 gene locus-
specific probes and CSP3/CSP7/CSP17 chromosomal centromeric
probes. Pathologists with 10 years of work experience read the films.

Histological FISH results showed that the histological results
were consistent with urine FISH results in 19 patients. Due to a
large number of mutually verified cases, only representative cases
are shown here (one case each of adenocarcinoma, squamous cell
carcinoma, and UC with positive verification and one case with
negative verification of squamous cell carcinoma). Positive
verification: The histological FISH of the adenocarcinoma
patient in case No. 15 also showed amplification of
chromosomes 3, 7 and 17 without the deletion of the GLP
p16 gene, which was consistent with his urine FISH
(Figure 2). The histological FISH of the squamous cell
carcinoma patient in case No. 25 showed amplification of
chromosomes 3, 7 and 17 and no GLP p16 gene deletion,

FIGURE 6
CaseNo.10. The histological FISH (positive) of a patient with stageⅢa urachal carcinoma showed amplification of chromosomes 7 and 17, whichwas
inconsistent with its urine FISH (negative). (A) is the histopathological image of a patient with urachal carcinoma, showing intestinal adenocarcinoma
under a microscope (hematoxylin-eosin staining, ×200magnification); (B) is negative for urine FISH results; (C) is histological FISH (×400 magnification),
showing amplification of chromosomes 7 and 17, no amplification of chromosome 3 and deletion of the GLP p16 gene (indicated by the arrow). The
mean fluorescence signals of chromosome 3, 7, 17 and GLP p16 locus in each cell were 2.11, 3.88, 3.74 and 2.03, respectively. Red represents CSP7 and
GLP p16. Green represents CSP3 and CSP17.
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which was consistent with the results of urine FISH (Figure 3).
Histological FISH of the patient with UC in case No. 1 showed
amplification of chromosomes 3, 7, and 17 and deletion of GLP
p16, which was consistent with the urine FISH (Figure 4).
Negative verification, such as case No. 10, indicates that
histology and cytology FISH is negative (Figure 5).

Only one patient with stage-Ⅲa urachal carcinoma had
histological FISH (positive) findings of chromosome 7 and
17 amplification, which was inconsistent with its urine FISH
(negative) results (Figure 6).

4 Discussion

Molecular cytogenetic research in recent years has focused on
identifying relevant changes in abnormal cellular DNA in urine
specimens, as they often precede the appearance of macroscopic and
microscopic lesions, allowing detection of subclinical disease. FISH is a
highly sensitive and specific molecular test for detecting urothelial
carcinoma (Halling et al., 2000). However, in clinical work, the
authors found that FISH also showed positive performance in urine
samples of various CNUL, which aroused research interest.

Although numerous studies have evaluated the performance of FISH
in typical UC, there is a significant lack of data from studies evaluating
FISH in CNUL. This study found that the positive rate of FISH in
adenocarcinoma was 77.78% (7/9), and there was no significant
difference compared with the sensitivity of 81% in urothelial
carcinoma (p > 0.05) (Caraway and Katz, 2010). Although the
positive rate in squamous carcinoma was 54.55% (6/11), it varied
widely, with 100% in both primary squamous carcinoma of the
bladder (3 cases) and metastatic renal squamous carcinoma (2 cases),
while the positive rate in primary simple renal pelvis squamous
carcinoma was only 16.67% (1/6), so it caused us to think about it.

The low positive rate of urine FISH in pure renal pelvis squamous
cell carcinoma may be due to insufficient shedding of tumor cells into
the urine, or the absence of related genetic material changes such as
chromosomes 3, 7, 17, and p16 genes, resulting in negative FISH. This
study also confirmed that histological FISH results in patients with
simple renal pelvis squamous carcinoma were consistent with urine
FISH, thus suggesting that alterations in the heritage material of urine
FISH-negative renal pelvic squamous cell carcinomamay notmatch the
probe combination used. Possible reasons for the high rate of urine
FISH positivity in bladder squamous cell carcinoma include the
following: First, the bladder is an organ for storing urine and
controlling urination. Bladder squamous cell carcinoma is a tumour
of the lower urinary tract, and tumour cells are easy to shed and collect.
Some studies (Gomella et al., 2017; Huang, 2020) have also shown that
the sensitivity of urine FISH assay in lower urinary tract tumours is
significantly higher than that of upper urinary tract tumours. Second, it
is difficult for some postoperative specimens to have only one
pathological type, which may or may not be accompanied by a
small urothelial carcinoma component. Therefore, we will doubt
whether the positive urine FISH assay is caused by UC or bladder
squamous cell carcinoma. This doubt can be explained by pathological
and histological FISH results. First, the pathological reports of 3 cases of
bladder squamous carcinoma included in this study suggested highly
differentiated squamous cell carcinoma, and no atypical hyperplasia,
carcinoma in situ or invasive carcinoma of urinary tract epithelium was

observed. In addition, the histological FISH test results of these 3 cases
were consistent with urine FISH assay, suggesting that there were
indeed genetic changes related to FISH positivity in bladder squamous
cell carcinoma.

In a large data from multiple clinical institutions in China
studied by zhou et al. (2019) suggested that UC patients with
chromosome 3, 7, and 17 amplification or GLP p16 gene deletion
accounted for 71.3% (2941/4125), 72.2% (2978/4125), 67.4% (2780/
4125), and 72.9% (3007/4125), respectively. The changes in the
genetic material in CNUL and UC patients are indeed different.
CNUL patients mainly had amplification of chromosomes 3, 7 and
17 (p > 0.05), while the deletion rate of the GLP p16 gene was
significantly lower than that of UC (8.0% vs. 72.9%, p < 0.001). There
are many genetic abnormalities in UC during its occurrence and
development. Partial or complete loss of chromosome 9 is one of the
most common genetic changes. This abnormality is closely related to
the early occurrence of bladder cancer because it contains important
tumour suppressor genes related to cell cycle regulation (Halling
et al., 2000; Sokolova et al., 2000; Zhang et al., 2004). Mutations in
chromosome 9p and fibroblast growth factor receptor 3 in normal
urotheliummay lead to urothelial hyperplasia or low-grade papillary
urothelial carcinoma, (Zhang et al., 2004) which may also explain
the difference in genetic material between CNUL and UC.

During the mutual verification of histological and urine FISH, we
found only one patient with stage Ⅲa urachal carcinoma whose
histological FISH (positive) was inconsistent with his urine FISH
assay (negative). This may be because the tumor cells were not shed
in sufficient quantity in the urine, resulting in a negative urine FISH. This
study can also rule out operational errors and interpretation errors and
verifies that the tumour cells shed in the urine originate from tumour
tissue rather than inflammatory proliferative reactions or other lesions.

The following is an analysis of why FISH is positive in urine and
tissue specimens of CNUL. The FISHDNA probe used in our hospital is
a combination of a centromere probe and a site-specific recognition
probe provided by Beijing Jinpujia Medical Technology Co., Ltd.,
consisting of two combinations, CSP3 (green)/CSP7 (red) and GLP
p16 (red)/CSP17 (green). If the tumor cells have chromosome 3, 7,
17 aberrations or (and)GLPp16 locus deletions and the diseased cells can
be shed in sufficient quantity into the urine, both urine FISH and
histological FISH are likely to be positive. Chromosomal aberrations
are a prominent feature of human malignancies. Most solid tumours
exhibit complex alterations of genetic material. In this study, positive
urine FISH assays were found in patients with metastatic tumours and
other rare and highly malignant tumours, which confirmed the findings
ofAshley et al. (2006) and Lopez-Beltran et al. (Lopez-Bel et al., 2008) that
patients with aggressive and highly malignant rare tumours had many
genetic abnormalities. Many studies (Offit, 1992; Atkin et al., 1995; Pycha
et al., 1999; Kasahara et al., 2002; Wu et al., 2006; Reid-Nicholson et al.,
2009; Schaefer et al., 2010; Collazo-et al., 2016; Haisley et al., 2017; Liu
et al., 2017; Reis et al., 2018) have also confirmed that adenocarcinoma
(prostate cancer, urachal carcinoma), squamous cell carcinoma (bladder
squamous cell carcinoma, oesophageal squamous cell carcinoma, lung
squamous cell carcinoma), non-Hodgkin’s lymphoma, small cell
carcinoma of the bladder, paraganglioma of the bladder, etc., may
have chromosome 3, 7, 17 aberrations or (and) deletion of the GLP
p16 gene locus. Therefore, FISH may be positive. For FISH-negative
patients, it is possible that the genetic material changes in the tumour do
not fully match the type of probe used.
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This study also has limitations, such as the small number of cases
collected and the lack of large multicentre samples to verify the
conclusions.

5 Conclusion

We demonstrated for the first time the application value of FISH
in CNUL on urine samples. Positive urine FISH tests indicate not
only UC, but also CNUL. UroVysion™ FISH possibly has a high
positive rate in CNUL. Urine FISH is more likely to be positive for
patients with high malignancy or distant metastasis. CNUL and UC
may have different genetic material changes. If a sufficient number
of tumor cells are shed into the urine, the results of histological and
urine FISH tests are consistent. Urologists should combine medical
history and imaging information when interpreting FISH results for
accurate diagnosis and treatment.
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Abnormal translate regulation is an important phenomenon in cancer initiation
and progression. Eukaryotic translation initiation factor 4A1 (eIF4A1) protein is an
ATP-dependent Ribonucleic Acid (RNA) helicase, which is essential for translation
and has bidirectional RNA unwinders function. In this review, we discuss the levels
of expression, regulatory mechanisms and protein functions of eIF4A1 in different
human tumors. eIF4A1 is often involved as a target of microRNAs or long non-
coding RNAs during the epithelial-mesenchymal transition, associating with the
proliferation and metastasis of tumor cells. eIF4A1 protein exhibits the promising
biomarker for rapid diagnosis of pre-cancer lesions, histological phenotypes,
clinical staging diagnosis and outcome prediction, which provides a novel
strategy for precise medical care and target therapy for patients with tumors at
the same time, relevant small molecule inhibitors have also been applied in clinical
practice, providing reliable theoretical support and clinical basis for the
development of this gene target.

KEYWORDS

eukaryotic translation initiation factor 4A1, human cancer, clinicopathologic features,
biomarkers, inhibitors

1 Introduction

According to the recent statistical analysis of global cancer types and cancer incidence in
various countries, cancer is one of the most important diseases affecting human beings,
causing serious physical damage and psychological stress to patients (BRAY et al., 2018).
Cancer is a disease that occurs in the context of a complex interplay of multiple factors.
Cancer occurs under the complex regulation of multiple factors, and the final manifestation
in vivo is the alteration of the expression of the relevant oncoproteins, which is strictly
controlled during the translation of messenger RNA (mRNA).
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mRNA translation dysregulation is one of the most important
factors in the predisposition of cancer (WALDRON et al., 2019).
mRNA translation is a complex process that includes an initiation
step, an extension step, and a termination step (DEVER and
GREEN, 2012). The rate-limiting step of most protein synthesis
occurs at the initiation stage, and its aberrant regulation greatly
contributes to translational reprogramming, which characterizes
cancer cells, such as abnormal proliferation and chemoresistance
(JACKSON et al., 2010). The translation initiation program in
cancer cells maintains their malignant capacity in tumor
progression and metastasis. Downregulation of translational
capacity, particularly through inhibition of translation initiation
will result in diminished tumor migration and invasiveness
(MANIER et al., 2017).

Eukaryotic Translation Initiation Factor (eIF) have multiple
functions in these processes: They can act as RNA chaperones,
ATP-dependent RNA helicases, as RNPases by mediating RNA-
protein association and dissociation or as co-activators and co-
repressors of translation (SCHUTZ et al., 2010). There is substantial
evidence that eIF is strongly associated with poor prognosis and
resistance to chemotherapy and targeted therapy in many cancers,
including leukemia (WOLFE et al., 2014).

Members of the eukaryotic translation initiation factor 4 A
family are required for the process of translation initiation, and
they are also prototypical of members of the dead-box (DEAD-box)
family. The DEAD-box family acts as a helicase that unwinds RNAs,
separating base paired RNA strands bound by hydrogen bonds from
one another and removing secondary structures in RNA, so that they
can be ligated by RNA enzymes, a change that is dependent on the
supply of energy from ATP. The eIF4A structural domain was the
first DEAD-box protein structure to be identified. Box protein
structure with RecA-like folding (binding sites for nucleotides)
and interactions between conserved motifs within the structural
domains (LINDER, 2006). The eIF4A family includes the following
isoforms: eIF4A1, eIF4A2, and eIF4A3 (XUE et al., 2021). Generally,
eIF4A1 and eIF4A2 are mainly located in the cytoplasm and are
more abundant in eIF4A1 relative to eIF4A2, while eIF4A3 is mainly
located in the nucleus (LU et al., 2014). eIF4A1 and eIF4A2 are
mainly involved in the initiation of mRNA translation, whereas
eIF4A3 proteins mainly play a role in RNA metabolism, including
mRNA localization, export, and coupling of mRNA’s splicing to
translation (MAZLOOMIAN et al., 2019).

Recent studies have shown that eIF4A1 as the ATP-dependent
RNA helicase has low activity. Its RNA unwinding activity is coupled
to a conformational cycle in which eIF4A alternates between an
open conformation with a wide cleft between its two RecA domains
(SUN et al., 2014), and a closed conformation in the presence of ATP
and RNA, in which the two RecA domains interact with each other
and with bound ATP and RNA. Formation of the closed state is
linked to duplex destabilization (ANDREOU and KLOSTERMEIER,
2014). Upon ATP hydrolysis and phosphate release, eIF4A assumes
an open conformation and disengages from the RNA. Binding of
free eIF4A to ATP or RNA is not ordered but is coupled
(PELLETIER and SONENBERG, 2019). The preferred substrate
for eIF4A1 is a single-stranded poly-purine RNA. RNA
fragments as short as 4 nucleotides can stimulate the ATPase
activity of free eIF4A, but fragments of 15–20 nucleotides are
optimal (PECK and HERSCHLAG, 1999) eIF4A1 binds to

PKP1 in the eIF4F cap-binding complex and is stimulated by
PKP1 to promote ATPase activity, thereby increasing the
translation rate of mRNAs (WOLF et al., 2010). eIF4A1 can also
be deubiquitinated by interacting with ubiquitin-specific peptidase
15 (USP15), which promotes the self-stabilization of eIF4A1,
thereby increasing the translation efficiency of mRNAs (ZHAO
et al., 2020). However, MA et al. (2019) found that inhibition of
PHGDH reduces its interaction with eIF4A1, decreases
eIF4A1 activity, and blocks the formation of the translation
initiation complex eIF4F, thereby preventing the translation of
the entire mRNA process.

The ATP-dependent RNA helicases eIF4A1 plays a crucial role
in various cancers in humans (WOLF et al., 2010) The expression
level of eIF4A1 varies in different types of malignant tumors (LIN
et al., 2018). With the understanding and deepening of the
regulatory mechanism of eIF4A1, we found that eIF4A1 can be
one of the potential points of action and biomarkers for cancer
diagnosis and therapy (HAN et al., 2022). In this paper, we will
discuss the regulatory mechanism and biological function of
eIF4A1 during mRNA translation. In addition, this review also
discusses the role of eIF4A1 in the process of tumor proliferation
and metastasis, and existing inhibitors, suggests the possibility of
using them as a potential point of action and biomarker for cancer
diagnosis, treatment and prognosis.

2 Regulatory mechanisms of eIF4A1

eIF4A1 is an important component of eIF4F, and the eIF4F
cap-binding complex consists of the eIF4A1 translation initiation
factor, eIF4G scaffolding protein, and eIF4E m7 G-binding
protein (JACKSON et al., 2010). Many eIFs are assembled
with small (40S) ribosomal subunits to form a 43S pre
initiation complex, which scans the first AUG codon on
mRNA and then binds to the large (60S) subunit to form an
active 80S ribosome on this initiation codon (IWASAKI et al.,
2019). Through the eIF4F complex, eIF4A1 is involved in two
main translation steps: loading mRNA onto the 43S pre-
initiation-complex and translocating it along the 5’UTR to the
translation initiation point (SCHMIDT et al., 2023). The loading
function requires only eIF4A1’s ATPase activity (WANG et al.,
2022). eIF4A1 relies on ATP binding to single stranded RNA
(AMBARU et al., 2022), unlocking the double stranded region in
RNA (WILCZYNSKA et al., 2019). In addition, eIF4A1 itself is a
weak helicase, and the dissociation efficiency achieved by
eIF4A1 is significantly improved by forming a complex of
eIF4A1 and cofactor proteins eIF4G, eIF4B, and eIF4H that
synergistically regulate the conformational cycle of eIF4A1
(GARCíA-GARCíA et al., 2015). The translation initiation
factors eIF4B and eIF4G jointly stimulate the weak intrinsic
RNA-dependent ATPase and ATP-dependent RNA helicase
activities of yeast and human eIF4A (OZES et al., 2011)
through modulation of the eIF4A conformational cycle. In the
presence of eIF4G, eIF4A alternates between a half open
conformation, stabilized by binding of eIF4G to both RecA
domains of eIF4A, and the closed state (HARMS et al., 2014).
eIF4B binds to eIF4A through its 7-repeats domain. Binding of
eIF4B to eIF4A further accelerates closing when eIF4G is present,
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and thus causes an additional shift of the conformational
equilibrium of eIF4A toward the closed state (JOYCE et al.,
2017). So its unwinds function is largely dependent on the
stimulation of its binding partner, whereas the binding of single-
stranded RNA can largely stimulate the activity of eIF4A (SHEN and
PELLETIER, 2020). eIF4B and eIF4H also stabilize partially
unwound substrates and/or prevent mRNA reannealing, activities
that further facilitate RNA restructuring during initiation.

As an important translation initiation factor, eIF4A1 loads all
mRNAs and binds to ribosomes. However, recent research results
indicate that RNA is also involved in influencing the function of
eIF4A1. For example, the catalytic activity of the complex eIF4A-
eIF4B-eIF4G can be increased by the length of single stranded
RNA (ANDREOU et al., 2019), However, the role of RNA in
regulating the function of eIF4A1 has not been thoroughly
studied.

Previous studies have demonstrated that translational
dysregulation is an important step in tumorigenesis and
progression that directly controls selective translation and
protein synthesis of cancer genes (WALDRON et al., 2019).
The eIF4F translation initiation complex, under the regulation
of the PI3K/Akt/mTOR signaling pathway, the mitogen-
activated protein kinase signaling pathway, and the cysteine-
dependent apoptosis pathway, serves as a key node for translation
initiation and controls the translation initiation phase of mRNAs
of many oncogenes (LIN et al., 2008; BLAGDEN and WILLIS,
2011). As an important component of eIF4F, eIF4A1 plays an
important role in the process of gastric carcinogenesis and
development and epithelial mesenchymal transition in gastric
cancer, and recent studies have shown that the expression of
eIF4A1 in cancers such as gastric cancer, colorectal cancer,
cervical cancer, breast cancer, and melanoma exhibits
abnormalities (LIANG et al., 2014; MODELSKA et al., 2015;
JOYCE et al., 2017; GAO et al., 2020; CHEN et al., 2021a;
SOYLEMEZ et al., 2021). Mutations in eIF4A1 lead to
translational repression (WILCZYNSKA et al., 2019). Free
eIF4A1 is regulated by Programmed Cell Death 4 (PDCD4),
which binds eIF4A, blocks formation of the closed
conformation. And the level of eIF4A1 itself is regulated by
mTOR and the carcinogen miR-21 (ASANGANI et al., 2008).

3 Expression of eIF4A1 in different
tumors

eIF4A1 is dysregulated and aberrantly expressed in many
different tumor tissues (LIN et al., 2018), although the exact role
of eIF4A1 in tumorigenesis and development is unclear, it may be
associated with abnormal RNA unwinds function and lead to
aberrant expression of proteins formed by aberrant RNA
translation (LOH et al., 2009).

3.1 Expression of eIF4A1 in gastric cancer

Gao et al. (2020) used Gene Expression Omnibus (GEO) to
detect the mRNA level of EIF4A1 expression in gastric cancer (GC)
tissues, and the data showed that eIF4A1 expression was

significantly upregulated in gastric cancer compared with that in
adjacent normal tissues. Furthermore, IHC results of GC patients
showed that eIF4A1 protein levels were generally elevated in GC
tissues compared with normal ones (56.5%, 108/191) (GAO et al.,
2020). Wei et al. also found that the protein levels of
eIF4A1 expression were significantly upregulated in 74 clinical
cancer samples and its control samples (58.1%, 58/74) (WEI
et al., 2019). Furthermore, overexpression of eIF4A1 was
significantly correlated with advanced tumor metastasis, epithelial
mesenchymal transition, poor tumor differentiation and poor
prognosis in GC patients (GAO et al., 2020).

3.2 Expression of eIF4A1 in colorectal cancer

Li et al. found that immunohistochemical staining in colorectal
cancer patients showed that eIF4A1 was highly expressed in 86%
(44/51) of primary colorectal cancer tissues (LI et al., 2017).
However, Zafer et al. found that eIF4A1 was highly expressed in
stage II colorectal cancer tissues and lowly expressed in stage I, III,
and IV colorectal cancer tissues, and that eIF4A1 was highly
expressed in the peripheral blood of patients with stage I, II, and
III colorectal cancer, but lowly expressed in patients with stage IV
colorectal cancer (SOYLEMEZ et al., 2021). Yang et al. reported that
eIF4A1 is recruited by Long noncoding RNA (LncRNA)
MAPKAPK5-AS1 to promote translation of MAPK-activated
protein kinase 5 in colorectal cancer cells (YANG et al., 2020).

3.3 Expression of eIF4A1 in cervical cancer

Liang et al. found that overexpression of eIF4A1 was detected in
83.9% of cervical cancer tissues and that overexpression of
eIF4A1 was associated with advanced tumor proliferation, lymph
node metastasis, squamous cell in patients with cervical cancer,
before and after brachytherapy by using immunohistochemistry in
35 cases of normal cervical tissues, 87 cases of cervical cancer tissues
without surgical treatment, and 50 pairs of cervical cancer tissues
histology, deep mesenchymal invasion, and poor prognosis were
significantly correlated (LIANG et al., 2014). They also found that
silencing eIF4A1 can increase the radiosensitivity of cervical cancer,
leading to delayed repair of radiation-induced DNA double strand
breaks (LIANG et al., 2014)

3.4 Expression of eIF4A1 in breast cancer

The study by Modelska et al. found that upregulation of
eIF4A1 expression in estrogen receptor-negative breast cancers
were associated with higher histological grades by
immunohistochemical testing of tissue microarrays from
approximately 4,000 patients and by post-statistical analysis of
the patients’ cancer grades (89.5%), and that eIF4A1 is involved
in dysregulation of the mRNA translation process through pro-
carcinogenic signaling, which contributes to breast cancer in the
generation of malignant phenotype, suggesting that eIF4A1 can be
used as a biomarker to predict the prognosis of breast cancer patients
(MODELSKA et al., 2015).

Frontiers in Molecular Biosciences frontiersin.org03

Huang et al. 10.3389/fmolb.2023.1289650

115

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1289650


3.5 Expression of eIF4A1 in melanoma

Eberle et al. found that eIF4A1 was consistently overexpressed in
melanoma cells and discovered that eIF4A1 aided melanocytoma
proliferation, whereas inhibition of endogenous eIF4A1 expression
suppressed the value-added migratory and invasive abilities of
melanocytomas (64.2%) (EBERLE et al., 2002).

3.6 Expression of eIF4A1 in other tumors

Zhao et al. reported that low levels of PDED4 and high levels of
eIF4A1 predicted poorer differentiation and higher recurrence rates
after surgery for oral squamous carcinomas, suggesting that these
proteins are significant independent risk factors for such
cancers(47.8%, 33/69) (ZHAO et al., 2019). Wang et al. found
that for prostate cancer cells, elevated mRNA levels of
eIF4A1 correlated with DNA hypomethylation levels on CpG-
rich eIF4A1 islands, eIF4A1 translation products were
epigenetically regulated through DNA methylation, and
eIF4A1 exerted its oncogenic effects through BRD2 signaling
(WANG et al., 2022). Similarly, Zhao et al. found that in Myc-
amplified G3-type medulloblastoma (G3-MB), eIF4A1 was highly
expressed and positively correlated with Myc expression, and that
inhibiting eIF4A1 expression could effectively inhibit Myc
expression at the translational level, and through this process,
promote apoptosis of G3-MB cells and inhibit G3-MG cell
proliferation to block the growth of tumor cells (ZHAO et al.,
2020). Recently, in a study on brain gliomas (KRASSNIG et al.,
2021) and endometrial cancer (LOMNYTSKA et al., 2012) and
human cytomegalovirus (QI et al., 2013), there were also showing
that eIF4A1 has significantly higher expression levels in different
tumors and functions as a tumor promoter.

4 Biological functions of eIF4A1 protein
in different tumors

About the biological functions of eIF4A1 protein, Wolfe et al.
reported that an eIF4A-dependent mechanism of translational
control that is encoded in the 5′-UTR of susceptible transcripts,
including many oncogenes and transcriptional regulators (for
example, Myc, Myb, Notch, Cdk6, Bcl2, and others). Thereby
accelerating the progression of Notch-driven T-cell acute
lymphoblastic leukemia (WOLFE et al., 2014). Similarly, Cailin
et al. found that eIF4A1 is generated by acting on the coding
region and 3′-UTR of mRNA to produce an effect on the
translational phase of melanoma cells (JOYCE et al., 2017). Li
et al. reported that eIF4A1 is a direct target of miR-133a, and
miR-133a inhibit colon cancer cells by inhibiting eIF4A1 expression
(LI et al., 2017). Similar to the role of miR-133a, miR-1284 can
directly inhibit the expression of EMT related genes c-Myc and
MMP12 by inhibiting eIF4A1 in gastric cancer (WEI et al., 2019).

Ritesh et al. found that eIF4A1 stimulation by Raf/MAPK/
extracellular signaling pathway-regulated kinase signaling
significantly promoted the expression of genes associated with
the cell cycle and accelerated tumor size in cutaneous squamous
cell carcinoma. Combined inhibition of the Raf/MAPK/extracellular

signaling-regulated kinase axis and eIF4A1 decreased the 5′-
capsule-dependent translational process and attenuated the
growth, metastasis, and invasiveness of cutaneous squamous cell
carcinoma cells (ZHAO et al., 2019; SRIVASTAVA et al., 2021).
Nishida et al. found that eIF4A1 promoted the proliferation of Heat
Shock Factor 1 (HSF1) in cells, thereby promoting the proliferation
of progenitor cells and leukemia-initiating cells and accelerating
leukemogenesis (NISHIDA et al., 2021).

Xu et al. found that eIF4A1 was also involved in the critical steps
of platelet healing. SiRNA-USP15 was shown to be involved in
platelet healing through promoting eIF4A1 de-ubiquitination
enhanced the functional properties of platelet cells to promote
wound healing (XU et al., 2021). Zhao et al. reported that in
pancreatic cancer cells, eIF4A1 elevated the expression of
E-cadherin and N-cadherin through the c-myc/miR-9 axis.
eIF4A1 and c-myc promoted epithelial mesenchymal
transformation and metastatic ability of pancreatic cancer cells,
while eIF4A1 alone upregulation reduced the inhibitory effect of
c-myc downregulation on epithelial mesenchymal transformation
and metastasis. The eIF4A1 inhibitor Rocaglamide (RocA) and the
c-Myc inhibitor Mycro3, alone or in combination, significantly
reduced the expression levels of markers of epithelial
mesenchymal transition in pancreatic cancer cells (ZHAO et al.,
2021).

Oblinger et al. reported that inhibition of eIF4A1 with the
eIF4A1 inhibitor, Cevistro, consistently reduced the expression
levels of several cell cycle proteins, Aurora A kinase, and the
mitogen-activating enzymes, AKT and ERKs in nerve sheath
tumors (OBLINGER et al., 2016). Cevastro treatment
significantly inhibited tumor proliferation in nerve sheath
tumors. Joyce et al. found that silencing of eIF4A1 in
WM858 cells significantly reduced melanoma proliferation and
invasion (JOYCE et al., 2017). (Figure 1)

5 eIF4A1 inhibitors as the promising
drugs in cancer treatment

Based on the above results, it can be concluded that the high
expression level of eIF4A1 significantly stimulates the malignant
phenotype (proliferation, invasion, migration, and epithelial
mesenchymal transition) of cancer cells. Therefore, the
upregulation of eIF4A1 seems to have an impact on transformed
cells through specific information, making eIF4A1 an attractive
target for therapeutic interventions. Several natural compounds
have been described as inhibiting cap-dependent translation by
specifically inhibiting eIF4A1 activity, including Hippuristanol
(CHIO et al., 2016), Pateamine A (NAINENI et al., 2021) and
Rocaglates (CHEN et al., 2021b). (Table 1)

Hippuristanol is a natural product originally isolated from the
Isis hippopotamus (CHAO et al., 2005), A type of bamboo coral that
cancels the RNA binding activity of eIF4A1 by locking the helicase in
a closed conformation (SUN et al., 2014). Hippuristanol has been
shown to interact with amino acids present within or adjacent to the
motif in the CTD of eIF4A1, This binding site is not conserved in
other DEAD box RNA helicases (HOWARD et al., 2020).

Recently, structural analysis of the Rocaglates: eIF4A1:
Polypurine RNA complex has shown that Rocaglates, as an
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eIF4A1 inhibitor, it interacts indispensable with eIF4A1 and two
adjacent RNA purine bases (CHU et al., 2019). Rocaglates are a class
of artemisinins extracted from plants containing cyclic penta [b]
benzofuran structures, and are one of the most effective and specific
eIF4A inhibitors known (NAINENI et al., 2020). Over 200 natural
and synthetic Rocaglates have been described since Rocaglamide A
was first isolated from Asian mahogany, the only genus known to
produce Rocaglates (GREGER, 2022). Structural analysis of the
eIF4A: Rocaglates: Polypurine RNA complex has revealed that
Rocaglates specifically bind in a cavity formed between human
eIF4A1 (at Phe163, Gln195, Asp198, and Ile199) and adjacent
purines (A and G) (IWASAKI et al., 2019).

Similar in function to the complex formed by Rocaglate
analogues, the complex formed by Patemine A with eIF4A1,
mRNA, and AMPPNP also has the function of inhibiting
eIF4A1, although the structures of these two complexes are
very different (NAINENI et al., 2021). In addition to
overlapping their binding positions on the eIF4A1 protein,
Rocaglates and Patemine A also interact directly with RNA.
RNA bases are aromatic rings with flat hydrophobic surfaces.
Adjacent bases stack with each other in the double helix of RNA
(and DNA), burying hydrophobic bases and providing favorable
interactions between π-electrons in their aromatic systems.
Stacking also contributes greatly to the conformation of single
stranded nucleic acids, and RNA binding proteins can interact
with RNA in a similar manner through the π-π stacking of amino

acid side chains and RNA bases. However, at the curvature of the
spine where the dead box protein binds, the base accumulation is
disrupted. These proteins completely rely on contact with the
sugar phosphate backbone to bind RNA, without interacting
with bases to compensate for lost stacking interactions. Bending
the bases on both sides forms a hydrophobic pocket that can be
occupied by PatemineA or Rocaglates, where the conjugated π-
system in these drugs interacts with RNA through stacking
(INGOLIA, 2021).

Although the interactions between Patemine A and Rocaglates
with RNA are similar, their internal structures are not entirely the
same. PatemineA has an extended linear π-conjugated system that
can interact well with all four bases. In contrast, the aromatic ring in
Rocaglate can only interact well with purines. These molecular
differences translate into differences in sequence selectivity.
Patemine A stabilizes protein drug RNA complexes that include
both pyrimidine and mixed purine pyrimidine RNA sequences,
although weaker than purine RNA, while Rocaglates only forms
such complexes with purine RNA (IWASAKI et al., 2016). This
selectivity extends to the cellular effects of these drugs. PatemineA
inhibits the translation of reporters resistant to Rocaglates, which
lack a purine sequence in their 50 leading sequences. The difference
between PatemineA derivatives and Rocaglates highlights the
potential of stacking interactions to provide sequence specificity
in nucleic acid binding; This specificity is more related to alkali
specific hydrogen bonding (NAINENI et al., 2021). The natural

FIGURE 1
The potential mechanism diagram of eIF4A1. eIF4A1 stimulation by Raf/MAPK/extracellular signaling pathway-regulated kinase signaling
significantly promoted cellular behavior such as proliferation, migration, invasion, and EMT of cancer cells through Snail, c-myc, MMPs, AKT and ERK
proteins. MiRNAs such as miR-1284 and miR-133a can inhibit the expression of eIF4A1 protein, and these behaviors occur.
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compound Elatol from the ocean also has similar effects to the above
two compounds (PETERS et al., 2018).

In addition to natural compounds, some small molecule
eIF4A1 inhibitors have also entered our field of vision. EFT226
(Zotatifin) is the first eIF4A inhibitor to enter human clinical
trials. This drug was first used in clinical trials of patients with
ER+ breast cancer, with an expansion cohort for patients with
Cyclin D1 alterations. (ERNST et al., 2020). It promotes the
binding of specific mRNA sequences with recognition motifs in
eIF4A and 5′-UTRs, and interferes with the assembly of eIF4F
complexes downstream of mTOR. Its sensitivity is related to
mTOR mediated eIF4A activation (THOMPSON et al., 2021).
EFT226 inhibits translation initiation by forming a ternary
complex with eIF4A and AGAGAG purine RNA oligonucleotides,
preventing eIF4A1 from releasing from the purine RNA motif
(ERNST et al., 2020). EFT226 treatment downregulates the protein
expression of key translation factors Myc and Bcl6, leading to selective
gene expression reprogramming, inhibiting cell proliferation,
inducing cell death, and thus producing therapeutic effects on
various cancer models (THOMPSON et al., 2021). Also, eIF4A
inhibitors repress the protein expression of Cyclin proteins
including Cyclin D1 and its binding partners CDK4/6. Similarly,

Kong et al. showed that Rocaglates can suppress Cyclin-induced
feedback to CDK4/6 inhibitors used in lung cancer (KONG et al.,
2019).

Furthermore, some effective ingredients in traditional Chinese
medicine have also been found to have inhibitory effects on eIF4A1.
Berberine is a cyclopentane [b] benzofuran compound found in cactus
plants, several of which are used in traditional Chinese medicine.
These traditional Chinese medicines are used to treat contusions,
coughs, diarrhea, fever, and inflammation (NEBIGIL et al., 2020).

6 Conclusion

eIF4A1 is frequently a target of various microRNAs (miRNAs)
or LncRNAs and plays a key role in tumor cell proliferation, invasion
andmetastasis (GINGOLD et al., 2014). Given the importance of the
translation process of mRNAs in cancer development, several small
molecules have been shown to have antitumor activity by acting on
or inhibiting eIF4A1 (STONELEY and WILLIS, 2015). Recent
studies have shown that the natural marine products cycloartenol
and cycloterpenol can inhibit eIF4A1 and offer promising prospects
for cancer therapy (PETERS et al., 2018). In addition, Equine uranol,

TABLE 1 Structure and action of different eIF4A1 inhibitors.

Name Structure Combination method and action Ref.

Hippuristanol Interact with amino acids present within or adjacent to the motif in the CTD
of eIF4A1 and cancels the RNA binding activity of eIF4A1 by locking the
helicase in a closed conformation.

(SUN et al., 2014;
HOWARD et al., 2020)

Rocaglamide Specifically bind in a cavity formed between human eIF4A1 (at Phe163,
Gln195, Asp198, and Ile199) and adjacent purines (A and G). Whenever
ATP-bound eIF4A binds to RNA and kinks it to induce unwinding, a
bimolecular cavity is formed between the eIF4A NTD and the bent single-
stranded RNA. When human eIF4A1 binds to consecutive purine residues,
the resultant bimolecular cavity can accommodate Rocaglate or Pateamine
A. The complex leading to translation repression.

INGOLIA (2021)

Pateamine A

Elatol N/A PETERS et al. (2018)

eFT226 It forming a ternary complex with eIF4A and AGAGAG purine RNA
oligonucleotides, preventing eIF4A1 from releasing from the purine RNA
motif.

ERNST et al. (2020)
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Cevistrol and Patamine A are all good inhibitors against eIF4A1
(OBLINGER et al., 2016). Rocagrelor has been shown to have potent
antitumor activity in vivo and in vitro by decreasing the cellular
translation rate through enhancing the mRNA binding capacity of
eIF4A1 and eIF4A2 (CHU et al., 2019). However, inhibitors of
eIF4A1 are still in the preclinical research stage, lacking appropriate
clinical trial data and clinical evaluation, and their ability to act as
antitumor agents still needs to be further explored. In this paper, we
review the differential expression and protein functional role of the
eIF4A1 in specific tumor types and the regulatory mechanisms, and
discuss the relationship between the eIF4A1 and the large number of
immune cell infiltration and tumor malignancy, which will provide
clues for the next step of research. Our findings confirm the protein
functional role and regulatory mechanism of eukaryotic translation
initiation factor 4A1 protein in human cancer. And we propose
eukaryotic translation initiation factor 4A1 as a target and
biomarker for cancer prognosis, diagnosis and treatment.

Currently, the eIF4A1 inhibitor space is still stagnant in the
preclinical stage, clearly defined compounds have complex
mechanisms and chemical structures. With the progress of
current experiments and the extensive application of artificial
intelligence in predicting protein spatial configurations and
related fields, it is believed that in the near future, more
eIF4A1 related inhibitors will enter clinical trials and applications.
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Background: Small molecule metabolites are potential biomarkers for ovarian

cancer. However, the causal relationship between small molecule metabolites

and ovarian cancer remains unclear.

Methods: Single nucleotide polymorphisms (SNPs) correlated with 53 distinct

small molecule metabolites were identified as instrumental variables (IVs) from

comprehensive genome-wide association studies. Aggregate data

encompassing 25,509 cases of ovarian cancer and 40,941 controls of

European descent were procured from the Ovarian Cancer Association

Consortium. To evaluate causative associations, four Mendelian randomization

techniques—including inverse-variance weighted, weighted median, maximum

likelihood, and MR-Egger regression—were employed.

Results: In total, 242 SNPs were delineated as IVs for the small molecule

metabolites under consideration. A significant association with the overarching

risk of ovarian cancer was observed for six distinct metabolites.

Hexadecenoylcarnitine and methioninesulfoxide were associated with a 32%

and 31% reduced risk, respectively. Fifteen metabolites were linked to subtype

ovarian cancers. For instance, both methionine sulfoxide and tetradecanoyl

carnitine exhibited an inverse association with the risk of clear cell and high-

grade serous ovarian cancers. Conversely, tryptophan demonstrated a 1.72-fold

elevated risk for endometrioid ovarian cancer.

Conclusion: This study identified several metabolites with putative causal effects

on ovarian cancer risk using Mendelian randomization analysis. The findings

provide insight into the etiological role of small molecule metabolites and

highlight potential early detection biomarkers for ovarian cancer. Subsequent

investigations are imperative to corroborate these findings and elucidate the

underlying pathophysiological mechanisms.

KEYWORDS

ovarian cancer, Mendelian randomization, single nucleotide polymorphisms, amino
acids, biomarkers
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1 Introduction

Cancer remains one of the most formidable adversaries in the

realm of global health, contributing significantly to the burden of

disease and mortality, with its impact felt acutely in developing

countries. Within this broader context, ovarian cancer (OC)

emerges as a predominant gynecological malignancy. Recent

statistics from 2020 have underscored this reality, revealing an

estimated 310,000 new cases of OC and a deeply concerning figure

of 210,000 deaths associated with the condition. The trajectory of

OC is particularly alarming, with projections suggesting that by the

year 2040, we may witness the global incidence of this cancer soar to

approximately 434,184 cases (1–4). The high mortality rate is

largely attributed to the asymptomatic nature and late diagnosis

of OC (5). In diseases with a significant burden, such as OC, the

underlying etiology and pathogenesis remain largely elusive.

Established risk factors for OC encompass age at menarche, age

at natural menopause, and age at diagnosis of endometriosis (6).

Elevated dietary consumption of fiber and soy has demonstrated

potential prophylactic benefits against OC (7, 8). Furthermore, a

deficiency in vitamin D levels has been associated with an

augmented risk of OC (9). Identification of novel biomarkers that

can detect OC at an early stage or predict susceptibility is urgently

needed to reduce disease burden.

Emerging evidence suggests that metabolic reprogramming is

implicated in ovarian tumorigenesis and progression (10).

Metabolomics profiling has revealed aberrant levels of various

small molecule metabolites, such as amino acids, biogenic amines,

acylcarnitines, and carbohydrates, in OC (10–13). These small

molecules are involved in multiple oncogenic signaling pathways

and may serve as diagnostic biomarkers or therapeutic targets.

Recent comprehensive genome-wide association studies (GWAS)

have delineated single nucleotide polymorphisms (SNPs) correlated

with metabolic phenotypes. These SNPs can be judiciously

employed as instrumental variables to infer putative causal

associations between specific metabolites and disease outcomes

(14–16). Conversely, a limited number of studies have delved into

the relationship between OC and the small molecular derivatives

of metabolism.

Mendelian randomization (MR) analysis employs genetic

variants as instrumental variables (IVs), enhancing the robustness

of causal inference and mitigating biases stemming from reverse

causation and confounding (17). This methodology has been

extensively employed to assess the putative causal role of alterable

exposures in carcinogenesis (18). However, to date, no investigation

has probed the potential causal implications of small molecular

metabolites on OC via Mendelian randomization. In this study, we

performed a two-sample MR analysis to evaluate putative causal
Abbreviations: OC, ovarian cancer; HGSOC, high-grade serous ovarian cancer;

LMPOC, low malignant potential ovarian cancer; IMOC, invasive mucinous

ovarian cancer; CCOC, clear cell ovarian cancer; EndoOC, endometrioid ovarian

cancer; GWAS, genome-wide association studies; SNPs, single nucleotide

polymorphisms; MR, Mendelian randomization; IVs, instrumental variables;

IVW, inverse-variance weighted; LD, linkage disequilibrium; CPT-1, carnitine

palmitoyltransferase-1.
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associations of genetically predicted small molecule metabolites

with OC risk. Findings from this study could uncover novel

etiological mechanisms and guide future development of

metabotype-based biomarkers for OC.
2 Materials and methods

2.1 Study design

In our study, we utilized SNPs identified through GWAS as

genetic instrumental variables (IVs), aiming to investigate the

plausible causal connection between small molecule metabolic

products and ovarian cancer. As presented in Figure 1, our two-

sample MR study was built upon three principal assumptions (19).

1) Relevance assumption: The IVs had a strong connection to the

exposure (19). 2) Independence assumption: There was no

correlation between the IVs and any variables that affected both

exposure and outcome (19). 3) Exclusion Restriction Assumption:

The IVs exclusively influenced the exposure, without introducing

any additional causal pathways that could impact the outcome (19).

All the summary data utilized in our study were openly accessible to

the general public (IEU OpenGWAS project). Additional data can

be found in the Supplementary Material (Supplementary Table 1).

As our research relied on publicly available GWAS data, no

additional ethical approval was necessary.
2.2 Data source and study samples of
ovarian cancer

This study considered a total of six frequently observed clinical

phenotypes of ovarian cancer, specifically: OC, high-grade serous

ovarian cancer (HGSOC), low malignant potential ovarian cancer

(LMPOC), invasive mucinous ovarian cancer (IMOC), clear cell

ovarian cancer (CCOC), and endometrioid ovarian cancer

(EndoOC). The findings presented in this study are based on a

genome-wide association studies conducted within the Ovarian

Cancer Association Consortium (OCAC) (20). This thorough

analysis was conducted using a dataset that encompassed 25,509

cases of ovarian cancer and 40,941 controls of European ancestry,

enabling an exploration of the associations between genetic factors

and ovarian cancer (21). The dataset encompasses 63 distinct

genotyping project/case-control sets (21). Genomic information

was acquired through direct genotyping utilizing an Illumina

Custom Infinium array, known as OncoArray, featuring around

530,000 SNPs (21). To enhance the dataset’s comprehensiveness,

imputation was executed utilizing the 1000 Genomes Project Phase

3 dataset as a reference (21). The cases encompassed the subsequent

invasive epithelial ovarian cancer types: HGSOC (n = 13,037),

LMPOC (n = 3,103), MOC (n = 1,417), CCOC (n = 1,366) and

EndoOC (n = 2,810) (21). The majority of individuals were

recruited from cancer genetics clinics, which also included some

related individuals (21). More specific information regarding the

cohorts, genotyping, quality control, and imputation can be viewed

in previous studies (21).
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2.3 Genetic instruments selection

The genetic components involving small molecule metabolic

products, which encompass Acylcarnitines, Amino acids, Biogenic

amines, and Hexose, were derived from a GWAS. This study

involved a collective cohort of 86,507 adults with European heritage

drawn from the Fenland cohort, with synergies established between the

EPIC-Norfolk and INTERVAL studies (14). We first selected IVs for

each small molecule products based on a strict cutoff of P <5×10-8.

Independent SNPs (r2 < 0.01, distance = 250 kb) were preserved after

calculating the linkage disequilibrium (LD) of related SNPs.

Furthermore, the robustness of the genetic instruments was

evaluated through F-statistics to mitigate potential biases from weak

instruments. The F-statistics were computed using the formula: F-

statistics = (Beta/Se) 2, with the mean serving as the comprehensive

measure and an F-statistic > 10 signified substantial statistical potency

(22, 23). Finally, a total of 242 SNPs associated with 53 small molecule

products of metabolism were remained as the instrument variables

(IVs). Detailed information of the IVs form small molecule products of

metabolism were summarized in Supplementary Table 2, respectively.
2.4 Statistical analyses

Four methods including the inverse-variance-weighting (IVW),

weighted median, maximum likelihood-based methods, and MR-

Egger regression. maximum likelihood-based methods were

performed to assess the causal association between small molecule

products of metabolism and OC. The IVW method operates under

the assumption of the validity of all instrumental variables,

amalgamating their effects to produce an overall weighted

outcome (24). Given the potential heterogeneity, the random

effect and fixed effect IVW were both calculated and regarded as

the main analyses (24). The weighted median estimator can
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generate resilient causal estimates, maintaining robustness even

when up to 50% of instrumental variables may be invalid (25).

Besides, under an assumption of a linear relationship between

exposure and outcome, the maximum likelihood-based method

offered normal bivariate distribution for the estimated causal

association (26). Finally, the MR Egger method introduces an

intercept term in the regression model to assess the directional

pleiotropy (27). A substantially non-zero intercept term in

statistical analysis signals the existence of pleiotropy and a breach

in the fundamental Mendelian randomization assumption (27).

We employed the Cochran’s Q test to evaluate the heterogeneity

among IVs (28). In case of notable heterogeneity being detected (P <

0.05), the random-effects model was employed; conversely, if

heterogeneity was not significant (P > 0.05), the fixed-effects

model was utilized (28). A leave-one-out analysis was conducted

to pinpoint influential SNPs in the causal estimations. A threshold

of statistical significance was set at P < 0.05 (two-sided). When the

quantity of SNPs is fewer than four, the analysis is confined to using

the IVW method. All analyses were performed using

“TwoSampleMR”, and “gg-plot2” packages in R software (version

3.6.3, R Foundation for Statistical Computing, Vienna, Austria).
3 Results

3.1 Causal estimates of genetically
predicted small molecule metabolic
products on overall ovarian cancer

As shown in Table 1 and Figure 2, we totally found six small

molecule metabolic products were associated with overall OC. In

brief, genetically predicted hexadecenoylcarnitine as well as

methioninesulfoxide dropped a 32% (OR, 0.68; 95% CI =0.51-

0.91, P = 0.010) and 31% (OR=0.69, 95% CI =0.48-1.00, P =
FIGURE 1

Flow chart of MR analysis and three assumptions in this study. GWAS, Genome-wide association study; MR, Mendelian randomization; SNP, single
nucleotide polymorphism.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1291033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chang et al. 10.3389/fonc.2023.1291033
TABLE 1 The main result of small molecule metabolites and ovarian cancer risk.

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

Overall
ovarian
cancer

Hexadecenoylcarnitine Wald ratio 1 0.68 0.51 0.91 0.010 / /

Wald ratio 1 0.69 0.48 1.00 0.048 / /

Overall
ovarian
cancer

Octadecandienylcarnitine

Inverse
variance
weighted
(fixed effects)

4 0.88 0.80 0.97 0.011 0.426

Maximum
likelihood

4 0.88 0.79 0.97 0.011

Simple
median

4 0.88 0.76 1.01 0.075

Weighted
median

4 0.86 0.77 0.96 0.007

MR Egger 4 0.84 0.64 1.11 0.341 0.766

Overall
ovarian
cancer

Octadecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.83 0.73 0.95 0.008 0.478 /

Maximum
likelihood

2 0.83 0.72 0.96 0.010

Overall
ovarian
cancer

Phenylalanine

Inverse
variance
weighted
(fixed effects)

4 1.29 1.03 1.62 0.028 0.894

Maximum
likelihood

4 1.29 1.03 1.63 0.029

Simple
median

4 1.32 1.00 1.74 0.050

Weighted
median

4 1.32 1.02 1.71 0.038

MR Egger 4 1.21 0.44 3.32 0.748 0.907

Overall
ovarian
cancer

Tetradecanoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.80 0.66 0.97 0.020 0.168 /

Maximum
likelihood

2 0.80 0.66 0.97 0.022

High grade
serous ovarian
cancer

Tetradecanoylcarnitine

Inverse
variance
weighted
(fixed effects)

3 0.81 0.66 0.99 0.041 0.696

Maximum
likelihood

3 0.81 0.66 0.99 0.042

Simple
median

3 0.80 0.62 1.03 0.089

Weighted
median

3 0.79 0.63 0.99 0.039

MR Egger 3 0.48 0.13 1.79 0.471 0.574

Low
malignant

Arginine
Inverse
variance

7 0.63 0.42 0.95 0.028 0.871

(Continued)
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TABLE 1 Continued

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

potential
ovarian
cancer

weighted
(fixed effects)

Maximum
likelihood

7 0.63 0.42 0.95 0.029

Simple
median

7 0.69 0.39 1.22 0.201

Weighted
median

7 0.57 0.34 0.93 0.025

MR Egger 7 0.53 0.27 1.04 0.124 0.537

Low
malignant
potential
ovarian
cancer

Dodecanoylcarnitine Wald ratio 1 0.12 0.02 0.74 0.022 / /

Low
malignant
potential
ovarian
cancer

Leucine

Inverse
variance
weighted
(fixed effects)

4 4.25 1.22 14.83 0.023 0.064

Maximum
likelihood

4 4.45 1.23 16.08 0.023

Simple
median

4 4.84 0.91 25.83 0.065

Weighted
median

4 4.35 0.82 23.06 0.084

MR Egger 4 0.19 0.00 99.92 0.659 0.416

Low
malignant
potential
ovarian
cancer

Octadecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.61 0.37 1.00 0.049 0.124 /

Maximum
likelihood

2 0.60 0.36 1.00 0.050

Low
malignant
potential
ovarian
cancer

Threonine

Inverse
variance
weighted
(fixed effects)

3 0.42 0.23 0.77 0.005 0.352

Maximum
likelihood

3 0.41 0.22 0.77 0.005

Simple
median

3 0.66 0.26 1.70 0.390

Weighted
median

3 0.44 0.22 0.86 0.017

MR Egger 3 0.07 0.00 1.01 0.301 0.406

Invasive
mucinous
ovarian
cancer

alpha-Aminoadipic acid

Inverse
variance
weighted
(fixed effects)

2 2.09 1.02 4.28 0.045 0.811 /

(Continued)
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TABLE 1 Continued

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

Maximum
likelihood

2 2.09 1.00 4.35 0.049

Invasive
mucinous
ovarian
cancer

Creatinine

Inverse
variance
weighted
(fixed effects)

12 0.45 0.24 0.84 0.012 0.666

Maximum
likelihood

12 0.45 0.24 0.84 0.013

Simple
median

12 0.41 0.18 0.95 0.038

Weighted
median

12 0.43 0.19 0.99 0.046

MR Egger 12 0.05 0.00 1.00 0.079 0.175

Invasive
mucinous
ovarian
cancer

Hexose Wald ratio 1 2.51 1.05 6.02 0.039 / /

Invasive
mucinous
ovarian
cancer

Methionine Wald ratio 1 0.23 0.06 0.89 0.033 / /

Invasive
mucinous
ovarian
cancer

Tetradecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.39 0.17 0.93 0.034 0.502

Maximum
likelihood

2 0.39 0.16 0.95 0.038

Clear cell
ovarian
cancer

Butyrylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.62 0.40 0.95 0.029 0.116 /

Maximum
likelihood

2 0.62 0.40 0.95 0.030

Clear cell
ovarian
cancer

Methioninesulfoxide Wald ratio 1 0.28 0.09 0.85 0.025 / /

Endometrioid
ovarian
cancer

Citrulline

Inverse
variance
weighted
(fixed effects)

4 1.65 1.17 2.34 0.005 0.259

Maximum
likelihood

4 1.66 1.17 2.38 0.005

Simple
median

4 1.64 1.08 2.49 0.021

Weighted
median

4 1.80 1.16 2.80 0.008

MR Egger 4 0.44 0.03 6.32 0.606 0.428

Endometrioid
ovarian
cancer

Tryptophan

Inverse
variance
weighted
(fixed effects)

2 1.72 1.12 2.64 0.013 0.698 /

Maximum
likelihood

2 1.72 1.11 2.66 0.015
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0.048) risk of overall OC by the Wald ratio method, respectively.

This decreased risk was also observed in the association between

octadecandienylcarnitine and overall OC, replicated by the

Maximum likelihood method (OR = 0.88, 95% CI = 0.79-0.97, P

=0.011 and weighted median approach (OR=0.86, 95% CI=0.77-

0.96, P=0.007). Estimates in size were similar for the association of

octadecenoylcarnitine and tetradecanoylcarnitine with overall OC

(Supplementary Table 3). The heterogeneity test and pleiotropy test

indicated that there no influence for the casual effect of

octadecandienyl carnitine on overall ovarian cancer (P>0.05).
3.2 Causal estimates of genetically
predicted small molecule metabolic
products on subtype ovarian cancers

The results of all small molecule metabolic products on subtype

ovarian cancers were presented in the Supplementary Tables 4–8.

Figure 2 presented the estimate from the MR analysis and suggested

that a total of 15 small molecule metabolic products were related to

the subtype ovarian cancers. Methionine sulfoxide was observed

that associated clear cell ovarian cancer with dramatically reduced

risk (OR=0.28, 95% CI=0.09-0.85, P=0.024). The similar causal

association between tetradecanoylcarnitine and high grade serous

ovarian cancer was detected. For endometrioid ovarian cancer,
Frontiers in Oncology 07
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IVW method suggested genetically predicted Tryptophan would

climb its 1.72-fold risk (95% CI=1.12-2.64, P =0.013). Five small

molecule metabolic products were found that related to low

malignant potential ovarian cancer and invasive mucinous

ovarian cancer, respectively. For example, genetically predicted

creatinine reduced the risk of invasive mucinous ovarian cancer,

with estimates of IVW at 0.45 (95% CI=0.24-0.84, P =0.012;

Figure 3). This causal relationship also was verified by Maximum

likelihood approach and simple median method, while it did not

attach a statistical significance in weighted median. Besides,

arginine had a negative effect (OR=0.63, 95% CI=0.42-0.95, P

=0.028; Figure 4) on low malignant potential ovarian cancer as

well as threonine (OR=0.42, 95% CI=0.23-0.77, P =0.004; Figure 5).

The pleiotropy test of Egger intercept suggested that there was no

pleiotropy (P>0.05).
4 Discussion

OC remains one of the foremost gynecological malignancies

with a significant global impact (5). Despite significant

advancements in elucidating its etiology, the insidious onset of

OC frequently results in advanced-stage diagnoses, underscoring

the paramount importance of early detection biomarkers (5). This

current study addresses this pressing clinical gap, harnessing the
FIGURE 2

The volcano plot for inverse-variance-weighted method in the association between molecule metabolic products and ovarian cancer.
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FIGURE 4

The inverse causal estimate between molecule metabolic products and the low malignant potential ovarian cancer (Increased arginine level may
decrease the 46.7% risk of low malignant potential ovarian cancer. P =0.004).
FIGURE 3

The negative effect of creatinine on the invasive mucinous ovarian cancer risk in the IVW analysis and it verified by Maximum likelihood approach
and simple median method (all P<0.05).
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capabilities of Mendelian randomization to discern putative causal

associations between small molecular metabolites and OC

susceptibility. Significantly, this represents the inaugural effort of

its nature to apply this methodology on comprehensive genetic

datasets to assess these correlations. Overall, our findings provide

novel insights into the complex metabolic underpinnings of OC.

In recent studies, several small-molecule metabolites have

emerged as potential biomarkers for the early detection, risk

stratification, and targeted prevention of OC (29).

In our comprehensivemetabolic analysis, we identified a total of six

metabolites significantly associated with the incidence of overall OC.

Decreased risks were observed in association with the following

metabolites: octadecandienylcarnitine, octadecenoylcarnitine,

hexadecenoylcarnitine, tetradecanoylcarnitine, and methionine

sulfoxide. Conversely, an elevated phenylalanine level was

significantly associated with an augmented risk of overall OC. For

HGSOC, tetradecanoylcarnitine was indicative of a reduced risk. In the

context of LMPOC, the metabolites arginine, octadecenoylcarnitine,

and threonine were inversely correlated with risk, while an increase in

leucine levels showed a heightened risk. Regarding IMOC, a

diminished risk was noted in conjunction with creatinine,

decenoylcarnitine, methionine, and tetradecenoylcarnitine.

Conversely, the levels of alpha-Aminoadipic acid and hexose were

positively correlated with increased risk. For CCOC, butyrylcarnitine

was a marker of reduced risk, whereas increased methioninesulfoxide

levels were linked to heightened risk. In EndoOC, citrulline and

tryptophan were indicative of a reduced risk. However, elevated

glycine levels were observed to increase the risk.
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Notably, an increase in genetically predicted levels of methionine

sulfoxide correlated with a 31% reduction in the risk of overall OC.

Methioninesulfoxide is generated via oxidation of methionine

residues in proteins and serves as a biomarker of oxidative damage

(30, 31). Accumulating evidence suggests that methioninesulfoxide

reductases act as antioxidant repair enzymes to revert oxidized

methionines and defend against oxidative stress (32). Our results

indicate that methioninesulfoxide may confer protection against OC

through antioxidant effects. Genetically elevated tryptophan levels

were associated with a 1.72-fold increased risk of endometrioid OC in

our analysis. Tryptophan is an essential amino acid and precursor for

bioactive molecules like serotonin and melatonin (33). Previous

studies have found that changes in tryptophan metabolism in

tumors are often accompanied by abnormal expression of

tryptophan-related enzyme genes. Among the observed alterations,

variations in the expression of genes associated with indoleamine 2,3-

dioxygenase and tryptophan 2,3-dioxygenase emerge as the most

prevalent (34). In the human body, tryptophan has three metabolic

pathways. Catabolism of tryptophan through the kynurenine

pathway produces immunosuppressive metabolites and has been

implicated in facilitating tumor immune evasion (35). We also

found that higher predicted arginine and threonine were associated

with 37% and 58% decreased risks of low malignant potential ovarian

cancer, respectively. Threonine serves several functions. One of its

primary roles is in the synthesis of mucin, a substance crucial for

maintaining intestinal integrity and function (36). Additionally,

threonine plays a significant part in immune function, contributing

to the body’s defense mechanisms (36). It is also involved in the
FIGURE 5

The inverse causal estimate between molecule metabolic products and the low malignant potential ovarian cancer. Threonine has a negative impact
on the low malignant potential ovarian cancer (OR=0.42, 95% CI=0.23-0.77, P =0.004).
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phosphorylation and glycosylation of proteins, processes that are

essential for protein function and stability (36). Lastly, threonine in

the synthesis of glycine, an amino acid that has numerous roles in the

body (36). Arginine is a semi-essential amino acid and substrate for

nitric oxide synthesis (37). Nitric oxide is a ubiquitous messenger

molecule with dichotomous pro- and anti-tumorigenic actions (38).

Further research should clarify the role of arginine metabolism inOC.

We found that higher genetically predicted levels of several

acylcarnitine species (tetradecanoylcarnitine, hexadecenoylcarnitine,

octadecenoylcarnitine, octadecadienyl carnitine) were associated with

decreased risks of OC. Acylcarnitines are generated via esterification

of fatty acids and shuttle lipids into the mitochondrial matrix for b-
oxidation (39). Reduced acylcarnitine levels imply impaired fatty acid

oxidation and mitochondrial dysfunction, which are implicated in

OC (40, 41). Additionally, an association was observed between

tetradecanoylcarnitine and a diminished risk of HGSOC. Carnitine

palmitoyltransferase-1 (CPT-1), positioned on the outer membrane

of mitochondria, principally catalyzes the conversion of long-chain

fatty acyl-CoA and carnitine to fatty acyl carnitine. This conversion

represents the preliminary rate-limiting phase in the mitochondrial

oxidation of fatty acids (42). CPT-1 downregulation induces a

glycolytic shift in cancer cells (43, 44). Targeting CPT-1 may thus

restrain HGSOC growth by blocking fatty acid oxidation.

Regarding IMOC, a diminished risk was noted in conjunction

with higher genetically predicted levels of creatinine,

decenoylcarnitine, methionine, and tetradecenoylcarnitine. This

suggests impairments in pathways related to these metabolites, such

as fatty acid oxidation, antioxidant defenses, and nitrogen

metabolism, may contribute to the development of this ovarian

cancer subtype (45). Creatinine is a breakdown product of creatine

phosphate in muscle and is usually produced at a fairly constant rate

by the body (46). The lower creatinine levels associated with higher

ovarian cancer risk may indicate impaired muscle metabolism or

greater catabolism in this patient population. This is also consistent

with previous studies (47). Decenoylcarnitine is a medium-chain fatty

acid derivative involved in transporting fatty acids into the

mitochondria for beta-oxidation. The reduced cancer risk with

higher decenoylcarnitine hints at a possible role of improved fatty

acid metabolism in protecting against ovarian carcinogenesis.

Methionine is an essential amino acid that serves as a precursor for

protein synthesis and other important biomolecules like cysteine and

taurine (48). The inverse association between methionine and IMOC

risk is consistent with its known functions in maintaining genomic

stability and redox homeostasis through DNA methylation and

antioxidant systems (49). Higher methionine levels may suppress

ovarian tumorigenesis through these mechanisms. In contrast,

elevated levels of alpha-aminoadipic acid and hexose were

associated with increased IMOC risk. Alpha-aminoadipic acid is an

intermediate in lysine degradation, while hexoses are simple sugars.

The positive correlations indicate dysregulated lysine catabolism and

carbohydrate metabolism could play pathogenic roles. Alpha-

aminoadipic acid is an intermediate in lysine metabolism and a

marker of oxidative stress that may accumulate with possible lysine

deficiency or dysfunction in this pathway (50). Hexose represents the

combined pool of six-carbon sugars including glucose and fructose

(51). The increased ovarian cancer risk with higher hexose levels may
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stem from greater availability of glycolytic intermediates to fuel rapid

tumor growth (52). This fits with existing evidence on the key role of

glycolytic metabolism in ovarian cancer progression (53).

For CCOC, elevated levels of butyrylcarnitine were associated

with a reduced risk. Butyrylcarnitine is involved in fatty acid

metabolism, and previous studies have found fatty acid oxidation

pathways to be downregulated in CCOC (42). The reduced

butyrylcarnitine levels observed here likely reflect impairments in

this metabolic pathway that may promote CCOC pathogenesis.

For EndoOC, lower citrulline and tryptophan levels were

indicative of a reduced risk. Citrulline is a key intermediate in the

urea cycle, while tryptophan is an essential amino acid. Past work

indicates both these metabolites are involved in maintaining immune

homeostasis (54). The decreased levels seen here imply EndoOC risk

may rise when immune regulation is disrupted. Meanwhile, elevated

glycine was tied to heightened EndoOC risk. Glycine serves as a

precursor for glutathione, a key antioxidant. The increased glycine

levels likely reflect a compensatory response to mitigate oxidative

damage that otherwise enables EndoOC pathogenesis (55).

This study has several strengths. We employed mendelian

randomization–a powerful genetic epidemiological tool. It utilizes

SNPs closely tied to the exposure, serving as IVs to uncover

potential causal links between the exposure and the outcome.

Genotypes are believed to be randomly distributed during

gametogenesis. Thus, using the IVs model addresses many

confounding challenges in observational research, especially when

biases arise from unmeasured confounders. Thanks to the inherent

randomness of genotypic distribution, MR helps counter potential

confounding and reverse causality. We drew from the most

extensive GWAS dataset on OC, enhancing our statistical validity.

This study presents several limitations. Primarily, the cohort was

confined to individuals of European descent, whichminimizes potential

bias from population stratification but may not adequately capture the

diversity of SNP redundancy, particularly given the unavailability of the

original dataset. Moreover, while our results suggest a potential causal

linkage between small molecular metabolites and OC, the clarity of data

presentation regarding the relationships between different metabolites

could be improved for the reader’s comprehension and comparative

analysis. Recognizing these issues, we assert the necessity for subsequent

investigations, including experimental validation in a broader array of

populations and in-depth exploration of the underlying biological

mechanisms. Such research will not only corroborate our findings

but also illuminate the complex metabolic interactions associated with

OC, offering substantial contributions to the oncological community’s

understanding of this disease.
5 Conclusion

In this MR analysis, we observed putatively causal associations

between certain small molecule metabolites and the risk of OC. Our

observations underscore the potential for metabolic profiling in risk

stratification, early diagnosis, and individualized preventive

strategies for OC. These findings not only enhance our etiological

understanding but also pave the way for subsequent investigations

into targeting anomalous metabolic pathways in OC.
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Background: Acute myeloid leukemia (AML) is a heterogeneous disorder with an
unpredictable prognosis. Ferroptosis, the iron-dependent cell death program,
could serve as an alternative for overcoming drug resistance. However, its effect
on AML remains largely unclear.

Methods: We collected RNA sequencing data and relevant clinical information of
AML patients from The Cancer Genome Atlas to construct a prognosis prediction
model. Risk score was calculated with eight prognosis-related ferroptosis genes
(PRFGs) discovered through univariate analysis and Least Absolute Shrinkage and
Selection Operator (LASSO) Cox regression. A nomogram was constructed by
incorporating LASSO risk score, age, and cytogenetic risk based on univariate/
multivariate Cox regression.

Results: Of the 33 AML PRFGs identified from the TCGA-derived dataset, 8 genes
were used to construct a gene signature to predict AML prognosis. Principal
component analysis and heatmap showed significant differences between the low
and high risk score groups. Next, LASSO risk score, age, and cytogenetic risk were
incorporated into the nomogram to predict the overall survival (OS) of AML
patients. According to survival analysis, patients with a low risk score had
markedly increased OS as compared to those with a high risk score. Based on
the results of GeneOntology and Kyoto Encyclopedia of Genes andGenomes, the
differences between the two risk groups showed a close relationship with
immune-related pathways and membrane transportation. The analysis of
tumor-infiltrating immune cells and immune checkpoints revealed that the
immunosuppressive tumor microenvironment possibly facilitated different
prognostic outcomes between the two groups. Gene expression analyses
showed that the mRNA expression levels of PARP1 and PARP3 (PARPs) were
closely related to the different clinical subgroups and the analyzed OS in AML
patients. Finally, the PARP inhibitor talazoparib and the ferroptosis inducer erastin
exerted a synergistic anti-proliferative effect on AML cells.

OPEN ACCESS

EDITED BY

Jianhua Wang,
Capital Institute of Pediatrics, China

REVIEWED BY

Snehal Dinkar Nirgude,
Children’s Hospital of Philadelphia,
United States
Dan Ma,
Affiliated Hospital of Guizhou Medical
University, China

*CORRESPONDENCE

Ruiming Ou,
ouruiming@126.com

Shuang Liu,
liush@gd2h.org.cn

†These authors have contributed equally
to this work

RECEIVED 22 August 2023
ACCEPTED 27 November 2023
PUBLISHED 11 December 2023

CITATION

Wu F, Xu G, Li G, Yin Z, Shen H, Ye K,
Zhu Y, Zhang Q, Ou R and Liu S (2023), A
prognostic model based on prognosis-
related ferroptosis genes for patients with
acute myeloid leukemia.
Front. Mol. Biosci. 10:1281141.
doi: 10.3389/fmolb.2023.1281141

COPYRIGHT

© 2023 Wu, Xu, Li, Yin, Shen, Ye, Zhu,
Zhang, Ou and Liu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 11 December 2023
DOI 10.3389/fmolb.2023.1281141

134

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1281141/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1281141/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1281141/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1281141/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1281141&domain=pdf&date_stamp=2023-12-11
mailto:ouruiming@126.com
mailto:ouruiming@126.com
mailto:liush@gd2h.org.cn
mailto:liush@gd2h.org.cn
https://doi.org/10.3389/fmolb.2023.1281141
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1281141


Conclusion: We constructed a nomogram by incorporating PRFGs, and the
constructed nomogram showed a good performance in AML patient
stratification and prognosis prediction. The combination of PARP inhibitors with
ferroptosis inducers could be a novel treatment strategy for treating AML patients.

KEYWORDS

AML, prognosis-related ferroptosis genes, nomogram, prognosis, PARP inhibitor

Introduction

Acute myeloid leukemia (AML) is a heterogeneous
hematologic tumor with the features of abnormal growth of
myeloblasts or pro-granulocytes without physical
differentiation. Over the past 10 years, tremendous progress
has been made in the development of approaches for treating
AML, such as hematopoietic stem cell transplantation; inhibitors
targeting MCL-1, IDH2, and NPM1/FLT3-ITD mutations,
epigenetic agents, antibody-based treatments, and cellular
therapies. Consequently, the survival of patients with AML
has significantly improved (Newell and Cook, 2021). Between
2017 and 2019, nine new drugs were approved by the FDA for
AML patients. Despite these advances, older patients with AML
show poor prognostic outcomes, with a long-term survival rate
of <15% (Short et al., 2018). Because AML is highly
heterogeneous, the treatment of this disease is challenging due
to varying clinical features, including abnormal genetic and
cytogenetic characteristics, and isolated factors such as
coexisting diseases and physical conditions (Dohner et al.,
2017). Hence, a prognosis prediction model that incorporates
these well-recognized factors is important to precisely stratify the
pretreatment risk and to implement clinical treatment decision-
making.

Ferroptosis is a specific cell death program triggered by iron-
dependent phospholipid peroxidation, and it is regulated by
different cellular metabolic pathways such as iron metabolism,
redox homeostasis, amino acid/lipid/sugar metabolism, and
mitochondrial activity (Stockwell et al., 2017; Jiang et al.,
2021). Recently, ferroptosis has received increasing attention,
and considerable progress has been achieved in developing drugs
targeting the regulatory mechanisms of ferroptosis in cancer cells
(Lei et al., 2022). Several studies have investigated the
involvement of ferroptosis in AML. Yu et al. (2015) showed
that the ferroptosis inducer erastin not only inhibits AML cell
growth but also enhances their sensitivity to chemotherapeutic
drugs. Du et al. (2019) revealed that dihydroartemisinin
specifically induced AML cells ferroptosis by modulating the
activation of the AMPK/mTOR/p70S6k autophagy pathway
activation. Yusuf et al. (2020) found that leukemic cells, rather
than healthy myeloid cells, were dependent on the aldehyde
dehydrogenase 3a2 enzyme for oxidizing long-chain aliphatic
aldehydes to prevent cellular oxidative injury and synthetic
lethality of ferroptosis inducers. Moreover, glutathione
peroxidase-4 (GPX4) (Liu et al., 2023), TP53 (Cui et al.,
2022), reactive oxygen species (ROS) metabolism (Du et al.,
2020), and glutathione (GSH) metabolism (Wei et al., 2020)
were found to be closely associated with the ferroptosis
process in AML cells and with prognostic outcomes in AML

patients. Additionally, numerous ferroptosis-related genes
(FRGs) have been discovered, but these genes have shown
inconsistent functions. Recently, the association of FRGs with
the prognostic outcome of AML patients has been investigated.
However, a prognosis prediction model incorporating the
prognosis-related FRGs together with the clinical
characteristics of AML patients is yet to be established. In the
present study, machine learning was used to assess data from
AML patients collected from public databases. We then
established a prognostic signature by incorporating prognosis-
related FRGs and used this signature to generate a prognosis
prediction model for AML patients.

Materials and methods

Cell lines

AML cell lines MOLM-13, U937 and KG-1a were acquired from
American Type Culture Collection (ATCC). Cells were cultured at
37°C and 5% CO2 in humidified incubator. Culture medium for
MOLM-13 and U937 consisted of RPMI-1640 with 10% v/v fetal
bovine serum and 1% v/v penicillin/streptomycin, while medium for
KG-1a was IMDM with 20% v/v fetal bovine serum and 1% v/v
penicillin/streptomycin.

Data collection

RNA sequencing data and the related clinical information of
AML patients were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/repository/).
Expression profiles and clinical information of AML patients
from two datasets (GSE71014 and GSE37642) were obtained
from the Gene Expression Omnibus (GEO) database (https://
www.genecards.org/).

PRFG screening

Prognosis-related genes (PRGs) of AML patients were analyzed
with “survival” package in R software (version 4.2.1). PRGs were
identified based on the following criteria: hazard ratio (95% CI) >
1.0 and p-value ≤ 0.05. The “limma” package was used to analyze
differentially expressed genes (DEGs). The threshold was set as
log2 fold change > 1 and false discovery rate < 0.05. FRGs were
collected based on FerrDB (http://www.zhounan.org/ferrdb/
current/). The intersection genes of PRGs, DEGs, and FRGs were
defined as PRFGs.
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Protein-protein interaction (PPI) network
construction

PPI network of PRFGs was constructed with STRING web tool
(https://string-db.org/) and visualized with Cytoscape (version 3.9.1). The
parameters were set as follows: network type: full STRING network,
meaning of network edges: confidence, active interaction sources:
experiments, text mining, databases, co-expression, neighborhood,
gene fusion, co-occurrence, minimum required interaction score = 0.4,
max number of interactors to show:Query proteins only. The node scores
of the PPI networkwere calculatedwith cytoHubbamodule of Cytoscape.
The top 10 nodes rank by node score were defined as hub genes.

Establishment and verification of the PFRG-
based prediction model for AML patients

The “glmnet” package in R software was used to establish a PRFG
signature by least absolute shrinkage and selection operator (LASSO)-
penalizedCox regression (Liu et al., 2018). The lowest partial likelihood of
deviance was used to determine the model penalty parameter (λ). The
regression coefficient (β) of the LASSOmodelwas linearly combinedwith
gene expression to determine the prognostic risk score. AML patients
were assigned to the high- and low-risk score groups according to the
threshold. Principal component analysis (PCA) was performed using the
“prcomp” function in R software according to the risk scores of the
identified genes. The effect of the prognostic PRFG-based signature on
prediction was analyzed through Kaplan–Meier survival analysis and
time-dependent receiver operating characteristic (ROC) curves.

Construction of the prognostic nomogram
for AML patients

Based on the univariate/multivariate Cox regression analysis of
the clinical features of AML patients, a nomogram was constructed
using the R packages “survival” and “rms.” Based on the median
nomogram risk scores, AML patients were assigned to the high or
low-risk score groups. The accuracy of the nomogram was evaluated
based on ROC curves and the concordance index (C-index).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses of DEGs between the low- and high-risk
score groups were conducted with “clusterProfiler” and “ggplot2”
packages in R software (Subramanian et al., 2005; Yu et al., 2012). p <
0.05 was considered the significance level for the enriched pathways.

Analysis of immune profiles

To analyze the immune status of each sample, we used Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) to calculate 22 tumor-infiltrating immune cell (TIIC)
proportions in AML patients (Newman et al., 2015; Becht et al.,

2016). We also used CIBERSORT to convert mRNA data to tumor-
infiltrating non-cancer cell proportions in the tumor
microenvironment with standard annotation files for organizing
gene expression profiles. The list of immune checkpoint molecules
was derived from (Fang et al., 2022). By querying the PubMed,
thirty-two molecules out of the forty-seven immune checkpoint list
that related to AML were further analyzed.

CCK-8 assay and treatment combination
analysis

Cell viability was determined by cell counting kit-8 (CCK-8) assay
(Beyotime Technology, China). After the cells culturing for 48 h, 20 µL
CCK-8 solution was added to each well, and the absorbance (OD) value
was measured at 450 nm. The concentrations of erastin used in this
study were set as around 40% inhibitory activity of AML cell lines. For
synergize assay, the concentrations of talazoparib were set as serial
concentration less than EC50 of AML cell lines. The combination effect
of talazoparib and erastin at indicated concentration, combination
index (CI), fraction affected (FA) levels were calculated by
CompuSyn software using Chou-Talalay method with constant-ratio
combinations. CI values less than 1, equal to 1, greater than 1 indicate
synergistic, additive, or antagonistic effects, respectively.

Cell migration assay

A total of 1 × 105 cells were resuspended with 200 μL serum-free
medium and seeded into the Transwell chamber (8 μm in diameter,
Corning, United States), then the chambers were insert into a well
with 500 μL culture medium containing corresponding
concentrations of drugs. The plate was placed for 72 h incubation
at 37°C. The migrated cells from the chambers were imaged with a
microscope and the number was calculated.

Statistical analysis

Continuous variables that exhibited a normal distribution were
presented as the mean ± standard deviation, and comparisons
between groups were examined using Student’s t-test.
Kaplan–Meier survival analysis was used to estimate overall
survival and Cox regression was used to compare survival
differences between patient groups. Survival analysis was carried
out with “survminer” and “survival” R packages. R software
(Version 4.2.1) and GraphPad Prism 9 were adopted for data
analysis. p-value < 0.05 stood for statistically significant.

Results

Discovery of PRFGs

We obtained 3436 DEGs and 1613 PRGs by comparing dead and
alive AML patients derived from the TCGA database. Heatmap
showed a total of 78 significant differential expressed FRGs in alive
and dead patients and they were further divided into up- and
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downregulated groups according to their log2 fold-change (Figures
1A, B). By intersecting DEGs, PRGs, and FRGs, we obtained
33 PRFGs (Figure 1B). We then constructed protein–protein
interaction (PPI) networks based on the STRING database to
analyze and predict protein interactions and protein functional
connectivity. Rank by node score of the PPI network, as shown
in Figure 1C, SCD, SREBF1, SRC, SREBF2, KEAP1, etc. were
identified as the hub genes.

Establishment and verification of the
prognostic gene signature

We incorporated the 33 PRFGs in LASSO Cox regression
(Figure 2A) and constructed the 8-gene signature according to the
optimum λ value (Figure 2B). These 8 genes included SOCS1,
PARP1, TGFB1, AGAPT3, PARP3, FH, ARF6, and CREB3. To clarify
the association of the selected genes with patient survival, univariate Cox

regression was performed (Figure 2C). According to the β-value of every
gene discovered based on LASSO Cox regression, the prognostic risk
score was calculated as follows: (0.0893* SOCS1 expression) + (0.0815 *
PARP1 expression) + (0.0014 * TGFB1 expression) + (0.00159 *
AGPAT3 expression) + (0.0065 * PARP3 expression) + (0.0217 * FH
expression) + (0.0067 * ARF6 expression) + (0.1914 *
CREB3 expression). Based on the median risk score, we assigned the
patients to the high-risk score group (n = 74) or the low-risk score group
(n = 56). Furthermore, based on the PCA results, patients in both
subgroups showed a discrete distribution (Figure 2D). The expression
levels of the selected genes also showed a significant difference between
both groups (Figure 2E; Supplementary Figure S3). Moreover,
Kaplan–Meier survival analysis indicated a significantly increased OS
in the low-risk score group as compared to that in the high-risk score
group (Figure 2F). Furthermore, the area under the ROC curve (AUC)
values for 1-, 2-, and 3-year OS were 0.867, 0.855, and 0.810, respectively,
which indicated good predictive performances of LASSO analysis
(Figures 2G–I).

FIGURE 1
Prognosis-related gene (PRG) analysis in AML patients. (A) Heatmap of the differential expressed PRGs in AML patients. (B) Venn plots showing
prognosis-related ferroptosis genes (PRFGs). (C) PPI network diagram of PRFGs.
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Next, GEO-derived data were analyzed for model validation. The
AMLpatients from theGEO cohort were classified into the high or low-
risk score group according to the risk score. A significant difference was
noted between both subgroups, with a markedly increased survival rate
in the low-risk score group compared to that in the high-risk score
group (p < 0.001) (Supplementary Figures S1A–F, S2A–F).

Risk score independently predicts the
prognosis of AML

To predict theOSofAMLpatients, the risk score and clinical features,
including age, gender, BM blast percentage, FLT3 mutation, and
cytogenetic risk were incorporated into the univariate/multivariate Cox
regression. The results revealed that the risk score independently predicted

patient survival. Furthermore, age, cytogenetic risk (intermediate), and
cytogenetic risk (poor) also independently predicted the prognosis of p ≤
0.05 (Figures 3A, B). All patients were then classified according to age,
cytogenetic risk (intermediate), and cytogenetic risk (poor). Based on the
Kaplan–Meier survival curves, the low-risk score group showed increased
survival as compared to the high-risk score group (Figures 3C–F).

Establishment and verification of the
prognosis prediction nomogram

A nomogram that can visually represent the prognosis prediction
model was constructed by incorporating age, cytogenetic risk, and the
risk score for illustrating patient survival (Figure 4A). The nomogram
showed that the Lasso risk score most significantly affected 1-, 2-, and

FIGURE 2
Discovery of prognosis-related ferroptosis genes (PRFGs) for establishing the prognosis prediction signature for AML patients derived from the
TCGA database. (A) LASSO Cox regression of the PRFGs. (B) LASSO coefficients of the PRFGs. (C) Univariate Cox regression confirmed the relationship
between PRFGs and the prognostic outcome for AML patients. (D) PCA plot showing AML cases based on the expression levels of the signature genes in
both risk score groups. (E) Heatmap showing the mRNA levels of the eight chosen PRFGs in the low-risk score and high-risk score groups. (F)
Kaplan–Meier survival curves suggest increased OS in the low-risk score group as compared to that in the high-risk score group. (G–I) ROC curves of the
LASSO model to predict 1-, 2- and 3-year OS of AML patients.
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3-year survival of AML patients, followed by cytogenetic risk and age.
ROC curves and C-index were then used to evaluate the
discrimination performance of the nomogram. The C-index value
for predicting 1-, 2-, and 3-year patient OS was 0.785 (0.762–0.808).
The area under the ROC curve (AUC) values for 1-, 2-, and 3-year OS
were 0.872, 0.891, and 0.863, respectively, which were superior to
those of the Lasso risk score model (Figure 4B). The model calibration

performance was analyzed with a calibration curve.We found that our
predicted results were consistent with the observed results
(Figure 4C). The patients were assigned to high- or low-risk score
groups in accordance with the median risk score value. Compared to
the high-risk AML patients, low-risk AML patients showed markedly
distinct dispersion direction with superior OS (p < 0.001)
(Figures 4D, E).

FIGURE 3
Independent prognostic factors of risk scores and clinical features. (A,B)Univariate/multivariate Cox regression confirmed that age, cytogenetic risk
(poor), and LASSO risk score could independently predict prognosis. (C–F) Kaplan–Meier survival curves suggested that OS was associated with age <
60 (C), age ≥ 60 (D), cytogenetic risk score (intermediate) (E), and cytogenetic risk score (poor) (F).
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Functional annotation

To elucidate the pathways related to the nomogram risk score,
KEGG pathway enrichment analysis was performed for DEGs in

both risk score groups. We observed that DEGs were mostly
associated with “neuroactive ligand-receptor interaction,”
“cytokine-cytokine receptor interaction,” “PI3K-Akt pathway,”
and “Phagosome” (Figure 5A). GO functional enrichment

FIGURE 4
A nomogram for predicting the prognosis of TCGA-derived AML patients. (A) A nomogram was constructed to predict 1-, 2-, and 3-year OS in AML
patients. (B) ROC curves for the nomogram for predicting 1-, 2-, and 3-year survival of AML patients. (C) Nomogram calibration curves showing survival
probabilities at 1-, 2-, and 3-year. (D) PCA plot for AML cases according to the mRNA levels of the signature genes in both risk groups. (E) Kaplan-Meier
survival curves suggest increased OS of patients in the low-risk score group as compared to that of patients in the high-risk score group.
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analyses showed that the biological process (BP) terms were mostly
“leukocyte migration,” “regionalization,” and “regulation of cell-cell
adhesion” (Figures 5B–D). The cellular component (CC) terms were
mainly “collagen-containing extracellular matrix,” “synaptic
membrane,” and “external side of plasma membrane” (Figures
5B–D). The molecular functions (MF) terms were “receptor
ligand activity,” “passive transmembrane transporter,” and
“channel activity” (Figures 5B–D).

Immune status of AML patients based on the
nomogram risk score groups

Because the enrichment analysis highlighted immune-related
terms like “cytokine-cytokine receptor interaction” (hsa04060) and
“leukocyte migration” (GO005090) (Figures 5A, B, D), we examined
the correlation between the nomogram and TIICs. The differences

of 22 types of TIICs in AML patients between the two risk score
groups were assessed by the CIBERSORT algorithm. Figure 6A
shows the similarities and differences in immune cell infiltration
between the AML subgroups. “T cells CD4+ memory resting,” “Mast
cell resting,” and “Monocyte” exhibited significant differences
between both risk score groups (Figure 6B). Immune checkpoint
molecules are the indicators for prognosis and serve as
immunotherapeutic targets for AML patients. The expression
levels of LAIR1, LAG3, CTLA4, CD200R1, CD276, KIR3DL1,
CD80, PDCD1, LGALS9, TNFSF14, PDCD1LG2, CD86, and
CD274 in high-risk patients were markedly increased as
compared to those in low-risk patients (Figure 6C). We further
evaluated the association between immune checkpoint molecules
and OS in AML patients. Higher expression levels of LAIR1, CD276,
LGALS9, PDCD1, PDCD1L2G, and TNFSF14 levels were correlated
with poor OS (Supplementary Figure S4). Taken together, these data
suggest that the poor prognostic outcome in the high-risk score

FIGURE 5
GO and KEGG analyses for DEGs in both risk score groups. (A) KEGG analysis of DEGs in both risk score groups. (B) GO annotation of DEGs in both
risk score groups. (C) Bubble plots of top 3 GO and KEGG enrichment terms in both risk score groups. (D)Chord diagram showing the related genes of the
GO term 0050900 (leukocyte migration) and the KEGG term hsa0460 (cytokine-receptor interaction).
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group may be partly associated with the tumor immune
microenvironment.

Correlation between the expression levels of
the risk-associated genes and
clinicopathological subgroups of AML
patients

PARPs are potential therapeutic targets for AML. However, the
correlation between PARPs expression levels and AML
clinicopathologic features, as well as the prognosis of patients with
specific clinical variables remained to be explored. PARP1 and
PARP3 were selected for further investigations as they showed
significantly higher expression levels in the high Lasso risk score
groups in all the analyzed datasets (Figure 2E; Supplementary Figures
S1B, S2B, S3). According to the subgroup classification, the
association between the clinicopathologic features of TCGA AML
patients and the expression level of PARPs was analyzed. As shown in
Figures 7A–F, the expression levels of PARP1 and PARP3 were
significantly associated with the clinicopathologic features of FAB
classification, cytogenetic risk, and OS event. Moreover, a higher

expression level of PARP1 or PARP3 also predicted poor prognosis in
the clinical subgroups of BM (bone marrow) blasts (%) > 20, PB
(peripheral blood) blasts (%) > 70, and WBC (white blood cell) count
(×109/L) ≤ 20 (Figures 7G–L).

The PARP1 inhibitor talazoparib shows a
synergistic effect with the ferroptosis
inducer erastin on AML cells

Antitumor drug combinations can effectively prevent resistance
and provide novel treatments. Previous studies have shown that the
PARP inhibitor shows a synergistic effect with ferroptosis inducers
on BRCA-proficient ovarian cancer. We tested whether this drug
synergy also affected the survival of AML cells. Consistent with the
results of previous studies, talazoparib inhibited the growth of AML
cells (Figures 8A–C). Furthermore, every combination index at
specific talazoparib and erastin doses was <1 for MOLM-13,
U937, and KG-1a cells (Figures 8D–F). Talazoparib also showed
a synergistic effect with erastin to inhibit AML cell migration
(Figures 8G–I; Supplementary Figure S5). These findings suggest
that the PARP1 inhibitor shows a synergistic effect with the

FIGURE 6
Immune profiles between the nomogram risk groups. (A)Heatmap showing immune cell expression between the risk score groups. (B)Comparison
of diverse immune cell subtypes of both risk score groups. (C) Expression levels of immune checkpoint molecules in both risk score groups. *p < 0.05;
**p < 0.01; ***p < 0.001; and ****p < 0.0001.
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ferroptosis inducer erastin for inhibiting the growth and migration
of AML cells.

Discussion

In the present study, to predict the survival of AML patients, a
prognosis predictionmodel was constructed based on the combination of
8 prognosis-related FRGs and clinical characteristics. The established
model exhibited favorable calibration and discrimination performance
for predicting patient survival. The association of the model with TIICs

and immune checkpoint molecules was also partially investigated. The
PARP inhibitor talazoparib showed a synergistic effect with the
ferroptosis inducer erastin to enhance anti-proliferation efficacy for
AML cells. AML has the highest occurrence frequency among acute
leukemias during adulthood. Presently, cytogeneticmarkers play a critical
role in stratifying the associated risk and treatment of AML patients.
Although several studies have been conducted to find appropriate
prognostic biomarkers, AML remains the disease with substantially
different prognostic outcomes. The 5-year OS rate of AML is <50%,
and the 2-year survival rate is only 20% among old people with AML
(Gregory et al., 2009; Riva et al., 2012). Ferroptosis is a novel cell death

FIGURE 7
Association of the expression of PARPs with different clinical features of AML. (A–C) Correlation between PARP1 expression and FAB classification (A),
cytogenetic risk (B), and OS event (C). (D–F) Correlation between PARP3 expression and FAB classification (D), cytogenetic risk (E), and OS event (F). (G–I)
Correlation between PARP1 expression level and BMblasts (20%) > 20% clinical subgroup, PB blasts (20%) > 70% clinical subgroup, andWBC count (× 109/L) ≤
20. (J–L)Correlation between PARP3 expression level and BM blasts (20%) > 20% clinical subgroup, PB blast (20%) > 70% clinical subgroup,WBC count
(× 109/L): ≤20. *p < 0.05; **p < 0.01; and ***p < 0.001. OS, overall survival; BM, bone marrow; WBC, white blood cell; PB, peripheral blood.
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program (Dixon et al., 2012), which is closely associated with AML (Yin
et al., 2022). Although some ferroptosis-related prediction models for
AML have been reported (Cui et al., 2022; JinghuaWang et al., 2022; Kai
Zhu et al., 2022; Yu et al., 2022), a model that incorporates well-
recognized factors is highly important to precisely stratify AML patients.

By analyzing DEGs in AML patients, 33 prognosis-related
ferroptosis DEGs were obtained based on 3436 DEGs in dead
and alive patients. We chose eight genes following LASSO Cox
regression and univariate analysis. Most of these genes were verified
or predicted to be closely associated with cancers. The increased
SOCS1 level in the bone marrow of AML patients was closely
associated with advanced age, mutations in FLT3-ITD, NPM1,
and DNMT3A, and SOCS1 overexpression in zebrafish mimic
leukemia phenotype (Hou et al., 2017). PARPs, including
PARP1 and PARP3, can mediate the early stage in DNA damage
response. The inhibition of these proteins shows varying degrees of
antitumor activity in AML, which mainly depend on the
rearrangement of the genes (Padella et al., 2022). TGFB1 induces

ALDH+ stem cell-like phenotype in AML cells and contributes to
leukemogenesis and chemotherapy resistance (Yuan et al., 2020).
ARF6 belongs to the small GTPase ADP-ribosylation factor (Arf)
family, and the upregulation and activation of ARF6 are markedly
associated with the migration and invasion of multiple cancers (Li
et al., 2017). CREB3 has been identified as an HDAC3-interacting
protein that enhances NF-κB activation and promotes the migration
of breast cancer cells (Kim et al., 2010).

The clinical features of AML patients are closely associated with
their prognostic outcomes. To optimize the model and improve its
survival prediction performance, we selected age and cytogenetic
risk based on univariate/multivariate Cox regression. Age and
cytogenetic risk are significantly associated with AML
performance status, multidrug resistance, and prognosis outcome
(Appelbaum et al., 2006; Dohner et al., 2017); hence, we
incorporated these two clinical features and a gene signature to
construct the nomogram. Additionally, the ROC curve and C-index
were used to evaluate the discrimination performance of the

FIGURE 8
Erastin synergistically sensitizes AML cells to talazoparib. (A–C) Cell viability in MOLM-13 (A), U937 (B), and KG-1a (C) cells exposed to talazoparib
and/or erastin treatment at specific doses. (D–F) Chou-Talalay plot showing the synergistic effects of specific treatments in MOLM-13 (D), U937 (E), and
KG-1a (F) cells. Purple/black/red/blue dots in the plot represent talazoparib combined with erastin at specific doses. CI values of <, = , and >1 represent
synergistic, additive, and antagonistic effects, respectively. (G–I) The synergistic effects of specific treatments in inhibiting MOLM-13 (G), U937 (H),
and KG-1a (I) cells migration. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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nomogram. The C-index for 1-year, 2-year, and 3-year OS of
TCGA-derived AML patients was 0.785 (0.762–0.808), while the
AUC values were 0.872, 0.891, and 0.863, respectively. These
findings suggest the favorable discrimination performance of the
model for survival prediction. Furthermore, according to the
calibration curve, the constructed nomogram demonstrated good
calibration. Based on the nomogram risk score, the patients were
assigned to the high-risk score group or the low-risk score
group. Functional annotation of the DEGs in both risk groups
revealed that the enriched functional terms mainly involved
leukocyte cell migration, T cell activation, and transmembrane
transportation. We postulated that this finding might be
correlated with the tumor-infiltrating cells in both subgroups.
Hence, the proportions of immune cell in both groups were
determined. CD4+ memory resting T cells and resting mast cells
showed an evidently higher proportion in the low-risk group, while
monocytes showed a higher abundance in the high-risk score
group. These findings suggest the association of the poor
prognostic outcome of AML patients with immune cell
infiltration. FRGs also possibly affect cancer cells through
immune cells. We compared the expression levels of the immune
checkpoint molecules such as LAIR1, LAG3, CTLA4, CD200R1,
CD276, KIR3DL, CD80, PDCD1, LGALS9, TNFSF14, PDCD1L2G,
CD86, and CD274 in high-risk and low-risk AML patients. AML
patients showing a higher expression level of LAIR1, CD276,
LGALS9, PDCD1, PDCD1L2G, and TNFSF14 experienced worse
prognosis; thus, indicating that targeting these immune checkpoints
may be beneficial for treating high-risk AML patients.

PARP1 and PARP3 belong to the Ploy (ADP-ribose) polymerase
superfamily and are associated with DNA damage response (DDR).
Based on our computational results, PARP1 and PARP3 were found
to be associate with certain clinicopathologic features and overall
survival of clinical subgroups. These data may facilitate the risk
grouping and treatment of AML patients. Moreover, inhibition of
PARPs is suggested to enhance the antitumor effect by regulating
ferroptosis. Hong et al. (2021) reported that PARP inhibitor olaparib
synergizes with erastin via repressing SLC7A11 in BRCA-proficient
ovarian cancer cells. The mechanism underlying this synergistic
effect is that the repression of SLC7A11 by olaparib may potently
enhance lipid peroxidation and ferroptosis. Another study
conducted by Tang et al. (2022) showed that PARPs inhibitor
olaparib enhances the arsenic trioxide induces ferroptosis by
suppressing the expression levels of stearoyl-CoA desaturase1
(SCD1) in platinum-resistant ovary cancer cells. It is, therefore,
rational to postulate that PARP1 inhibitors may show a synergistic
effect with ferroptosis inducers. Our preliminary results show that
the PARP1 inhibitor talazoparib exhibited a synergistic effect with
the ferroptosis inducer erastin in suppressing the growth and
migration of AML cells. To the best of our knowledge, the
combination of talazoparib and erastin in AML has not been
previously reported. Since PARPs inhibitors were reported to
enhance the oxidative stress of cancer cells (Giovannini et al.,
2019) and oxidative stress enhance the lipid peroxidative-
dependent ferroptosis (Lei et al., 2022), the synergistic effect of
talazoparib and erastin may be achieved by enhancing the
ferroptotic cell death pathway.

In conclusion, we constructed a new prognosis prediction model
involving 8 PFRGs and clinical characteristics. The model showed

favorable calibration and discrimination performance. Our study
also provided preliminary evidence that ferroptosis inducers
sensitize AML cells to PARP inhibitors, which may benefit AML
treatment.
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ROS1 rearrangement is found in 0.9%–2.6% of people with non-small-cell lung
cancers (NSCLCs). Tyrosine kinase inhibitors (TKIs) target ROS1 and can block
tumor growth and provide clinical benefits to patients. This review summarizes the
current knowledge on ROS1 rearrangements in NSCLCs, including the
mechanisms of ROS1 oncogenicity, epidemiology of ROS1-positive tumors,
methods for detecting rearrangements, molecular characteristics, therapeutic
agents, and mechanisms of drug resistance.

KEYWORDS

ROS1 rearrangement, fusion gene, tyrosine kinase inhibitor, drug resistance, non-
small-cell lung cancer

1 Introduction

Lung cancer remains the most fatal malignant tumor, with approximately 85% of cases
being non-small-cell lung cancer (NSCLC). Of those with NSCLC, about 25% carry positive-
driven gene changes that can benefit from the corresponding molecular-targeted therapy
(Siegel et al., 2022). Compared with epidermal growth factor receptor (EGFR) mutations and
anaplastic lymphoma kinase (ALK) rearrangements, the genetic proto-oncogene tyrosine-
protein kinase-1 (ROS1) is less prevalent in NSCLC, accounting for approximately 0.9%–
2.6% of cases (Bergethon et al., 2012; Cai et al., 2013). The results of prospective Phase I/II
clinical trials have confirmed the effectiveness of crizotinib in ROS1-positive NSCLC (Shaw
et al., 2019a), and in recent years, several targeted drugs, including entrectinib, ceritinib, and
lorlatinib, have also shown excellent antitumor activity (Shaw et al., 2017; Peters et al., 2020;
Dziadziuszko et al., 2021). This article provides an overview of the progress regarding
research on NSCLC with the ROS1 rearrangement.

2 ROS1 gene

The ROS1 gene was discovered in the 1980s in the products of bird myeloma virus RNA
UR2 (Balduzzi et al., 1981). The human ROS1 gene is located on chromosome 6q21
(Nagarajan et al., 1986), which belongs to the family insulin receptor genes of receptor
tyrosine kinases (RTKs), which encode intermembrane proteins consisting of 2,347 amino
acids, including hydrophobic extracellular domains, a transmembrane region, and
intracellular parts of the tyrosine kinase domain (Roskoski, 2017). Rikova et al. first
reported the role of the ROS1 oncogene in NSCLC in 2007 and identified two new
protein fusion transcription factors, SLC34A2 and CD74 (Rikova et al., 2007). With the
continuous improvement in modern sequencing technology, an increasing number of fusion
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species have been discovered, and their role as carcinogenic genes in
multiple cancers has been gradually confirmed (Dagogo-Jack et al.,
2019; Zhang et al., 2019).

ROS1 plays an important role in activating multiple signaling
pathways, including those involved in cell differentiation,
proliferation, growth, and survival (Figure 1). ROS1 rearrangement
causes disorders in enzyme-active proteins and the abnormal
activation of the associated signaling pathways by forming
phosphate thyroxine recruitment spots at the end of the ROS,
including tyrosine phosphatase tumor suppressor SHP1/SHP2,
pro-mitotic protein extracellular-signal-regulated kinase (ERK)-1/2,
insulin-receptor substrate (IRS)-1, phosphatidylinositol 3-kinase
(PI3K), protein kinase B (AKT), mitogen-activated protein kinases
(MAPKs), signal transducer and activator of transcription (STAT)-3,
and the VAV3-related signaling pathway (Huang et al., 2020).

3 Epidemiological and clinical features

Among the people with NSCLC in China, approximately
2.59% carry the ROS1 fusion gene, and approximately
17,000 new cases of ROS1-positive NSCLC are estimated to
occur annually in China. ROS1 rearrangements are more
common in young, female, and nonsmoking patients (Fu et al.,
2015; Zhu et al., 2015). The main pathological types are adhesive,
vesicular, or solid glandular cancers; a few are squamous-cell,
multicellular, or large-cell cancer (Park et al., 2019), more than

90% of which express thyroid transcription factor-1 (TTF-1),
mostly diagnosed as phase III–IV, high incidence of brain
transfusions (Drilon et al., 2021). Compared to other types of
NSCLC, ROS1-positive NSCLC has a significantly increased risk
of developing thromboembolic diseases (Shah et al., 2021;
Woodford et al., 2021; Zhu et al., 2021), but the underlying
mechanism remains unclear.

4 Molecular characteristics

4.1 Fusion partners

The most common fusion partners of the ROS1 gene include
CD74 (38%–54%), EZR (13%–24%), SDC4 (9%–13%), and SLC34A2
(5%–10%) (Cui et al., 2020; Huang et al., 2021a).With the continuous
improvement in DNA- and RNA-sequencing technology, new fusion
partners have been discovered, such as CCCKC6, TFG, SLMAP,
MYO5C, FIG, LIMA1, CLTC, GOPC, ZZCCHC8, CEP72, MLL3,
KDELR2, LRIG3, MSN, MPRIP, WNK1, SLC6A17, TMEM106B,
FAM135B, TPM3, and TDP52L1 (Li et al., 2018). People with
NSCLC with the CD74–ROS1 rearrangement have longer
progression-free survival (PFS) and overall survival (OS) than
those with other types of rearrangements (Li et al., 2018), but no
similar conclusions have been found in other studies (Cui et al., 2020).
Currently, the relationship between the fusion partners and prognosis
remains unclear.

FIGURE 1
The ROS1 signaling pathway.
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4.2 Co-occurring genetic mutations

Approximately 36% of people with NSCLC with ROS1
rearrangements have co-occurring genetic mutations. Those with
co-mutation have a worse prognosis than non-co-mutant patients
(PFS 8.5 months versus 15.5 months, p = 0.0213) (Zeng et al., 2018).
ROS1 rearrangement typically does not simultaneously occur with
mutations in other genes (such as EGFR, ALK, andKRAS). However,
in recent years, occasional cases of ROS1 rearrangements associated
with mutations in other driving genes have been reported (Zhu et al.,
2016; Uguen et al., 2017). Lambros et al. reported 15 cases of NSCLC
with an ROS1 mutation in conjunction with an EGFR mutation,
including 9 cases of 19 deletion, 5 cases of L858R mutation, and
1 case of 20 insertion. ROS1 rearrangement may be one of the
mechanisms of resistance to EGFR inhibitors, and the combination
of EGFR inhibitors with crizotinib may be an effective treatment
(Lambros et al., 2018). Crizotinib, as a tyrosine kinase inhibitor,
binds to the ATP-binding site of the ROS1 kinase domain, inhibiting
its enzymatic activity. By blocking ROS1 signaling, crizotinib
disrupts the intracellular pathways that drive cancer cell
proliferation and survival.

Co-mutations in both ROS1 and ALK are rare but occasionally
reported. Both mutations were found to be sensitive to crizotinib,
which may be a more suitable treatment option. Uguen et al. and
Song et al. respectively reported a lung adenocarcinoma patient with
concurrent ALK/ROS1 rearrangements confirmed by fluorescence
in situ hybridization (FISH) analyses, and both patients showed
response to crizotinib (Song et al., 2017; Uguen et al., 2017).

ROS1 and KRAS co-mutations are rare and can be primary or
successive. In a study involving six patients with the KRAS–ROS1
comutation, only one patient benefitted from crizotinib treatment,
while KRASG13D- or G12V-mutation carriers showed no response
(Lin et al., 2017).

ROS1–MET comutations are extremely rare. Tang et al. reported
one ROS-1–MET co-mutation in a series of 15 patients, however, no
treatment information was provided (Tang et al., 2018). Rihawi et al.
noted one case of NSCLC with a ROS1–MET co-mutation, andMET
inhibitor capmatinib treatment failed, followed by crizotinib
treatment, and a PFS of up to 11 months (Rihawi et al., 2018).
Zeng et al. reported a case of NSCLC with ROS1 rearrangement and
MET expansion, with disease progression occurring 1.5 months
after crizotinib treatment (Zeng et al., 2018). Therefore, the
combined use of highly selective MET inhibitors based on
crizotinib treatment is necessary for patients with this type of

comutation. Therefore, further clinical research and practice
are required.

Comutations in ROS1 and BRAF have been reported, but no
reports on combined treatment with an ROS1 inhibitor with BRAF
inhibitors have been published (Wiesweg et al., 2017). Furthermore,
it was reported that comutations with TP53may be associated with a
shorter survival time (Lindeman et al., 2018) (Table 1).

5 Methods of ROS1 detection

The detection of ROS1 is currently recommended in all patients
with non-squamous-cell cancer to determine the indication for the
selection of the corresponding targeted drug.

Fluorescence in situ hybridization (FISH) is the gold standard
for diagnosing ROS1 rearrangements. FISH uses a two-probe (3′ and
5′) separation design and can detect ≥50 tumor cells; the result is
considered positive when more than 15% of the cells show 3′- and
5′-probe separation or separate 3′ signals. The disadvantages of
FISH include its high cost, technical difficulty, and time
consumption. At present, probes that can detect both ROS1 and
ALK rearrangements have been put into clinical use as they have less
strict requirements for tumor samples (Ginestet et al., 2018; Zito
Marino et al., 2020).

The immunohistochemistry (IHC) technique is commonly used
to screen for ROS1 arrangements owing to its convenience, low cost,
and ease of operation; IHC has a sensitivity of approximately 90%–

100% and a specificity of approximately 70%–90%. False-positive
outcomes may occur in one-third of patients, especially in those with
adhesive or adenomatous EGFR-mutant glandular cancer (Wang
et al., 2020; Makarem et al., 2021). Therefore, positive or suspicious
IHC results require further confirmation by FISH, reverse -transcription
quantitative polymerase chain reaction (RT-qPCR), or next-generation
sequencing (NGS) (Hofman et al., 2019; Cheung et al., 2021; Fielder
et al., 2022).

Two situations should be noted: 1) IHC positivity and FISH
negativity, indicating the presence of another carcinogen-driven
mutation not included in FISH detection and requiring further
confirmation by RT-qPCR or NGS testing (Kim et al., 2021); 2) FISH
may result in false-negative results for some fusion partners, mainly
GOPC–ROS1 or EZR–ROS1. In the latter, the 5′-ROS1 gene is
usually lacking, and the corresponding FISH detection uses a
separate 3′ probe (Capizzi et al., 2019). In a recent study, the
authors detected a rare case of NSCLC with ROS1 fusion

TABLE 1 Summary of co-occurring genetic mutation of ROS1.

Co-occurring genetic mutation of ROS1 Effect

ROS1-EGFR ROS1 rearrangement may be one of the mechanisms of resistance to EGFR inhibitors; Combination of EGFR inhibitors
with crizotinib may be effective

ROS1-ALK Both mutations are sensitive to crizotinib, suggesting crizotinib as a potential treatment

ROS1-KRAS Limited response to crizotinib; Variable treatment outcomes

ROS1-MET Variable treatment outcomes; Combined use of highly selective MET inhibitors with crizotinib is necessary

ROS1-BRAF Limited information on treatment outcomes; No published reports on combined treatment with ROS1 and BRAF
inhibitors

ROS1-TP53 Associated with a shorter survival time
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(SQSTM1), ROS1mutation, and ROS1 expansion with positive IHC
expression using NGS technology (Huang et al., 2021b). Therefore,
if the results remain uncertain after both IHC and FISH testing, NGS
should be performed to confirm the presence of unusual
fusion genotypes.

With RT-qPCR, the unique primers detecting ROS1
rearrangements are used; the method has a sensitivity of up to
100% and a specificity of 85.1%. The disadvantage of the method is
its technical difficulty, requiring several steps, including RNA
extraction, complementary DNA synthesis, quantitative PCR, and
data analysis, which are currently more commonly applied in
laboratories: few clinical applications are lacking (Shan et al., 2015).

NGS can be used to theoretically identify all fusion partners,
including new variation types and other carcinogenic genetic
variations. The requirements for the samples are no strict, and
tumor tissues or blood plasma can be used as test samples. Recent
advances in NGS technology for detecting ROS1 rearrangements
involve both DNA and RNA approaches. DNA-based methods,
such as targeted sequencing, whole exome sequencing (WES), and
whole genome sequencing (WGS), target specific genomic regions or
the entire genome to identify structural alterations. RNA-based
techniques, including targeted RNA sequencing and RNA-Seq,
directly detect fusion transcripts, providing valuable information
on gene rearrangements. Hybrid approaches integrating DNA and
RNA analyses enhance sensitivity and specificity. Improved
bioinformatics tools and the use of single-molecule sequencing
technologies contribute to increased accuracy, while emerging
liquid biopsy methods offer less invasive options. Combining these
approaches allows for a comprehensive and precise assessment of
ROS1 rearrangements in lung cancer genomes (Clave et al., 2019).
NGS was used to detect many novel uncommon ROS1 fusions, most
of which were reported to be sensitive to matched targeted therapy,
similar to the canonical fusions. The clinical significance of some
genomic breakpoints remained unclear and could be explored further
via NGS technology (Li et al., 2022). The disadvantages are that the
cost is higher and the results cannot be quickly obtained (Mosele
et al., 2020).

6 Treatment of NSCLC with ROS1
rearrangement

The U.S. Food and Drug Administration (FDA) has approved
crizotinib and entrectinib as first-line treatments for patients with
unresectable NSCLC with ROS1 rearrangements. Other tyrosine
kinase inhibitors (TKIs), including ceritinib and lorlatinib, also
exhibit excellent antitumor activity.

6.1 Crizotinib

Crizotinib is a small molecule inhibitor with a complex
molecular structure. It contains various functional groups,
including pyrazole, pyridine, and piperidine rings. The three-
dimensional structure allows it to bind to the ATP-binding site
of the ROS1 kinase domain, inhibiting its activity. The Phase I
PROFILE 1001 study included 50 people with ROS1-positive
advanced NSCLC receiving crizotinib (250 mg twice daily). The

objective remission rate (ORR) was 72%; disease control rate (DCR)
was 90%; median duration of response (DOR) was 24.7 months; and
median PFS and OS were 19.3 months and 51.4 months,
respectively. The most common adverse events included visual
impairment (82%), diarrhea (44%), nausea (40%), edema (40%),
constipation (34%), vomiting (34%), elevated transaminase (22%),
fatigue (20%), and taste disturbance (18%). Most adverse reactions
were grade 1 to 24.

Compared with the PROFILE 1001 study, in the AcSé Phase I/II
study based on 37 patients, the effectiveness of crizotinib was
relatively poor, with an ORR of 47.2%, and median PFS and OS
of 5.5 and 17.2 months, respectively. The researchers presumed that
more patients with a higher performance status (PS) score of two
points (25% vs. 2%) were grouped in the AcSé study (Wu et al.,
2018). The results of the EUCROSS and METROS studies from
Europe were similar to those of the PROFILE 1001 study, with ORRs
of 70% and 65%, and median PFS values of 20 and 22.8 months,
respectively (Michels et al., 2019).

Although crizotinib showed excellent anti-tumor activity in the
treatment of ROS1-positive NSCLC, its blood–brain barrier
penetration rate was low, and brain metastases (47%) became the
main area of disease progression. In addition, approximately 36%
those with ROS1-positive NSCLCs also experienced brainmetastases
at the baseline level. Therefore, ROS1–TKIs that can better cross the
blood–brain barrier should be developed in the future.

6.2 Entrectinib

Entrectinib is a multitarget inhibitor of ROS1, ALK, and pan-
tropomyosin receptor kinase (TRK). Its molecular structure consists
of various cyclic and aromatic structures, including a
tetrahydropyrrolopyrazine ring. Entrectinib is designed to
penetrate the blood-brain barrier, making it effective against
central nervous system metastases. In in vitro experiments, its
anti-ROS1 activity was 40 times stronger than that of crizotinib
(Rolfo et al., 2015). The results of two Phase I/II studies showed
antitumor activity and good tolerance to entrectinib (Drilon et al.,
2017). The most common side effects included discomfort in taste
(41.4%), fatigue (27.9%), dizziness (25.4%), constipation (23.7%),
diarrhea (22.8%), nausea (20.8%), and weight gain (19.4%). The
results of the STARTRK-2 study confirmed the efficacy of
entrectinib in ROS1-positive NSCLC involving a total of
161 patients who had not previously received anti-ROS1
treatment. Of these, 34.8% people also experienced baseline brain
metastases. The ORR was 67.1%, PFS median was 15.7 months, and
1-year OS rate was 81%. For 24 patients at the baseline with
measurable brain metastases, the intracerebral ORR was 79.2%,
and intracerebral PFS was 12 months (Drilon et al., 2020).

6.3 Lorlatinib

Lorlatinib is a third-generation ROS1 inhibitor designed to
overcome resistance mutations that may develop during treatment
with earlier-generation inhibitors. It has a more intricate structure
compared to crizotinib, with multiple fused rings and functional
groups, increasing the permeability of the blood–brain barrier by
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reducing P-glucose-1-mediated exudation. Lorlatinib exhibits activity
against ROS1 as well as ALK. In a Phase I/II study, 61 people with
ROS1-positive NSCLC were included, including 21 patients treated
with primary TKIs and 40 patients previously treated with crizotinib.
The ORR of the primary TKI patients was 62%, their median PFS was
21 months, their intracerebral ORR was 64%, and intracerebral PFS
was not achieved. The ORR, median PFS, and intracerebral ORR of
the patients treated with crizotinib were 35%, 8.5 months, and 50%,
respectively. The most common adverse events included
hypocholesterolemia (65%), hypoglycemia (42%), peripheral edema
(39%), surrounding neuropathy (35%), cognitive changes (26%),
weight gain (16%), and mood disorders (16%). The incidences of
grade 3 and 4 adverse reactions were 43% and 6%, respectively (Shaw
et al., 2019b). Monitoring the plasma concentration of lorlatinib may
help control adverse events without altering the effectiveness of this
antitumor therapy (Chen et al., 2021). When resistance mutations,
such as ROS1K1991E or ROS1S1986F, appear after treatment with
crizotinib, lorlatinib may have a stronger effect; however, it has a
minor effect on the resistance mutation type ROS1G2032R.

6.4 Ceritinib

Ceritinib is an ALK inhibitor that exhibits antitumor activity
and intracerebral effects in those with ALK-positive NSCLC (Shaw
et al., 2017). The molecular structure of ceritinib includes various
aromatic rings and functional groups. In vitro experiments showed
that ceritinib has potential anti-ROS1 rearrangement activity. In a
Phase II study involving 32 patients with ROS1-positive NSCLC, the
ORR for ceritinib treatment was 62%, and the median PFS was
9.3 months. In the subgroup (n = 30) that was not treated with
crizotinib, the median PFS was 19.3 months, and its effectiveness
was comparable to that of other TKIs. The ORR in the brain
metastasis subgroup (n = 8) was 63%. Its tolerance was similar to
that of other TKIs, with an incidence of 37% of adverse events of
grade 3 or above (Drilon et al., 2016).

6.5 Cabozantinib

Cabozantinib is a small-molecule TKI and consists of a pyridine
ring with a fluorine atom and a 3-(morpholin-4-yl) propoxy group
attached to it, as well as a 3-aminopyridine-2-carboxamide group
and a 4-(6-(propan-2-yl) pyridin-3-yl) benzoic acid group (Maroto
et al., 2022). It targets ROS1, MET, VEGFR-2, RET, and AXL and
has a strong ability to penetrate the blood–brain barrier. The results
of preclinical studies and case reports have indicated that
cabozantinib is effective for treating patients with resistance to
other TKIs (crizotinib, entrectinib, and ceritinib) and resistance
mutations (such asD2033N orG2032R) (Sun et al., 2019). Therefore,
cabozantinib is clinically used as a treatment option after the
development of resistance to other TKIs.

6.6 Brigatinib

Brigatinib is a kinase inhibitor with a complex structure.
It contains pyrimidine, pyridine, and aniline moieties, among

others, arranged in a way that allows it to inhibit the activity of
certain tyrosine kinases, it is a multitarget inhibitor of ROS1 and
ALK and has antitumor activity against EGFR-mutant NSCLC.
Brigatinib exhibits antitumor activity against several drug-
resistant ROS1 mutations. In one study, researchers assessed
the efficacy and tolerance of brigatinib in eight patients with
ROS1-positive NSCLC, one of whom did not receive TKI
treatment, and seven of whom developed disease progression
after crizotinib treatment (Dudnik et al., 2020). The ORRs for
the total population and the crizotinib-treated subgroups were
37% and 29%, respectively. No Grade 3 or 4 adverse events were
observed. In one case report, the disease progressed after prior
treatment with several ROS1-TKIs, and brigatinib therapy
remained effective (Hegde et al., 2019). In vitro experiments
showed that Bugatti has strong anti-tumor activity against
NSCLC carrying the L2026M mutation but is ineffective
against the G2032R mutation (Camidge et al., 2018).

6.7 Repotrectinib

Repotrectinib (TPX-0005) is also a multitarget TKI that can
target ROS1, TRK, and ALK and effectively cross the blood–brain
barrier. It contains various functional groups, including cyclic
structures and heteroatoms like nitrogen and oxygen. The
specific arrangement of atoms in Repotrectinib allows it to
interact with the ATP-binding sites of these kinases, inhibiting
their activity and disrupting the signaling pathways that
contribute to cancer cell growth. In preclinical studies,
repotrectinib showed strong antitumor activity in NSCLC models
with ROS1-positive brain metastases, prior ROS1-TKI treatment,
and ROS1G2032R mutations (Yun et al., 2020). A Phase I/II clinical
trial (NCT03093116) to evaluate the safety and efficacy of
repotrectinib in ROS1-positive NSCLC is currently underway.

6.8 Taletrectinib

Taletrectinib (DS-6051B) is an inhibitor targeting ROS1 and
NTRK and shows antitumor activity against crizotinib-resistant
NSCLC, including in patients carrying the G2032R mutation. In
in vitro experiments, taletrectinib showed strong activity against
resistance mutations, such as G2032R, L1951R, S1986F, and
L2026M. Two Phase I clinical trials conducted in the
United States and Japan evaluated the effectiveness of
taletrectinib in patients with ROS1-positive NSCLC. The former
included 46 patients with an ORR of 33% in patients with crizotinib
resistance; the latter included 15 patients with ORRs of 58.3% and
66.7% in all patients and in patients with no prior crizotinib
treatment, respectively (Papadopoulos et al., 2020).

6.9 Ensartinib

Ensartinib is an ALK-TKI that demonstrated 10-times higher
anti-ALK activity than crizotinib in in vitro experiments. A Phase II
trial of ROS1-positive NSCLC (NCT03608007) showed a certain
therapeutic effectiveness, with an ORR of 27%, and intracerebral
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disease control was achieved in three out of four patients with brain
metastases (Ai et al., 2021).

6.10 Other treatments

Chemotherapy remains the recommended second-line
treatment after the failure of crizotinib treatment. The
combination of antivascular therapy with ROS1-TKIs is another
potentially effective treatment strategy. In in vitro experiments, the
combined use of vascular endothelial growth factor (VEGF) blockers
and ROS1-TKI increased antitumor activity (Watanabe et al., 2021).
In a clinical trial involving 14 patients, those with NSCLC that was
ALK-positive, ROS1-positive, or had MET expansion showed an
ORR was 58.3% with good tolerance; however, 3 patients
discontinued treatment due to hepatotoxicity or hemorrhage
(Saito et al., 2019).

The effectiveness of immunotherapy in ROS1-positive NSCLC
has not yet been fully elucidated. In in vitro experiments, ROS1 was
found to regulate the expression of programmed death protein
ligand-1 (PD-L1) by activating the MEK–ERK and
ROS1–SHP2 signaling pathways. Most ROS1-positive tumors do
not express PD-L1 and have a low tumor mutation burden (TMB)
(Choudhury et al., 2021). The results of small-sample studies have
shown that the ORR of people with ROS1-positive NSCLC receiving
mono-immunotherapy was 13%–17% (Mazieres et al., 2019), and
the ORR of immunotherapy combined with chemotherapy was 83%
(Guisier et al., 2020). Choudhury et al. (Choudhury et al., 2021)
found no noticeable differences in the expression levels of PD-L1
between patients who received effective and ineffective
immunotherapies. In patients with TKI resistance, combined
immunotherapy has a high clinical application value, but

potential toxic reactions to sequential immunotherapy with TKIs
must be monitored.

7 Resistance mechanisms of
ROS1 inhibitors

7.1 Resistance mechanisms of crizotinib

7.1.1 Structural domain mutations
ROS1 kinase structural domain mutation is the most common

resistance mechanism to crizotinib, accounting for approximately
40%–55% of the total. G2032R is the most common type of
mutation, occurring in the solvent area of the ATP binding site,
accounting for approximately 33%–41% of cases (Awad et al., 2013).
In in vitro studies, the ROS1G2032R mutation increased the expression
of TWIST1, promoting epithelial–mesenchymal transition (EMT),
cell migration, and resistance to ROS1-TKIs by modifying the
combination of location points and spatial blockages (Gou et al.,
2018). Currently, repotrectinib, topotrectinib, and cabozantinib
have shown improved anti-ROS1G2032R activity (Gou et al., 2018).

Other common mutations include D2033N (2.4%–6%), S1986Y/
F (2.4%–6%), L2026M (1%), L2155S (1%), L1951R (1%), and S1886
(1%) (Katayama et al., 2015) (Table 2). ROS1D2033N induces the
modification of ATP-binding pockets, resulting in the weakening of
the ability of tumor cells to bind to ROS1-TKIs. In in vitro
experiments, ROS1D2033N led to resistance to crizotinib,
entrectinib, and ceritinib, but remained sensitive to lorlatinib,
repotrectinib, and cabozantinib. ROS1S1986F results in resistance to
crizotinib, entrectinib, and ceritinib by changing the position of a
ring structure rich in glycine at the end of the C spiral (Facchinetti
et al., 2016).

TABLE 2 Common mutation types of crizotinib resistance and effective inhibitors.

Type of ROS1 fusion Mutation
site

Mechanisms Effective
TKI

CD74-ROS1 G2032R Altered spatial structure of ROS1 domain interferes with drug binding and leads to resistance to
ROS1 inhibitors

cabozantinib

repotrectinib

D2033N Alteration in the electrostatic force on the outer surface of the ATP-binding site and a rearrangement of
ATP-binding site

lorlatinib

cabozantinib

repotrectinib

L2026M Leucine to methionine substitution ceritinib

lorlatinib

cabozantinib

repotrectinib

SLC34A2-ROS1 L2155S Protein dysfunction lorlatinib

cabozantinib

repotrectinib

EZR-ROS1 S1986F/Y Increased kinase activity lorlatinib

cabozantinib

repotrectinib
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7.1.2 Activation of other signaling pathways
Crizotinib resistance may also be associated with the activation

of other signaling pathways downstream of ROS1. The activation of
these downstream signaling pathways can lead to the following: 1)
stimulation of the signaling pathway that resists ROS1-TKIs and 2)
the production of new mutations or expansions at the level of other
oncogenes. For example, SHP2 activation of the MAPK/MEK/ERK
pathway can lead to TKI resistance. In in vitro experiments, a
combination of SHP2 inhibitors and ROS1-TKI increased the
inhibition of tumor growth (Li et al., 2021). Additionally,
mutations or proliferation of ALK (Li et al., 2021), BRAF (Ren
et al., 2021), KRAS, and MET (Wang et al., 2021) can lead to
resistance to ROS1-TKIs.

7.1.3 Phenotype transformation
In a related case report, small-cell cancer transformation may

occur after the resistance to ROS1-TKIs (Yang et al., 2021).
According to these findings, this phenotype transformation may
be associated with the inactivation of the retinoblastoma 1 (RB1) and
TP53 genes (Fares et al., 2020; Lin et al., 2020).

7.2 Resistance mechanisms of lorlatinib

The mechanisms underlying the resistance to TKIs other than
crizotinib are not fully understood. Lin et al. analyzed 28 cases of
post-lorlatinib progressive tumor tissue samples and found
mutations in the kinase structural domain, especially G2032K
and L2086F mutations (Lin et al., 2021). The results of in vitro
experiments showed that the ROS1G2032K mutation conferred
resistance to crizotinib, entrectinib, and lorlatinib. For the
ROS1L2086F mutation, the related models showed that it was
equally resistant to crizotinib, entrectinib, and lorlatinib, whereas
cabozantinib may have a therapeutic effect (Mazieres et al., 2015).
Other resistance mechanisms to lorlatinib include MET expansion
(4%), KRASG12C mutation (4%), KRAS expansion (4), and NRAS
extension (4%) (Papadopoulos et al., 2020).

8 Conclusion

Targeted therapy is the foundation for the treatment of people
with unresectable NSCLC with ROS1 rearrangements. Crizotinib
and entrectinib are currently recommended as the standard first-line

therapeutic drugs. In future drug development, antitumor activity
and brain permeation are important indicators for measuring the
effectiveness of ROS1-TKIs. The new TKIs, entrectinib and
lorlatinib, have a higher rate of blood–brain barrier permeation
and are expected to provide increased control of brain metastases.
For the primary mutants of ROS1G2302R, repotrectinib and
taletrectinib also showed high clinical efficacy.

In cases of disease progression after crizotinib treatment, the
choice of secondary treatment should depend on the type of
progression and specific resistance mechanisms. In the case of
oligometastasis, topical treatment, represented by radiation or
surgery, should be quickly administered, especially in patients
with brain metastases. When multiorgan progression occurs, a
whole-body treatment scheme based on chemotherapy containing
platinum is still the current standard treatment. Targeted drugs may
be more suitable treatment options for patients who have undergone
genetic testing to clearly identify resistance mechanisms.
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Introduction: Squamous cell carcinoma antigen (SCCA) is one of the auxiliary

diagnostic indicators of lung squamous cell carcinoma, and an increase in serum

SCCA can predict the occurrence of lung squamous cell carcinoma. However,

whether SCCA is also elevated in pneumonia patients without malignancy is still

not clear. Therefore, we studied influencing factors of elevated serum SCCA in

patients with community-acquired pneumonia.

Methods: We retrospectively enrolled 309 patients who were admitted to the

Respiratory department with normal serum Carcinoembryonic antigen (CEA),

Neuron specific enolase (NSE), and Cytokeratin 19 fragment (CYFRA21-1) level

and were diagnosed with community-acquired pneumonia (CAP). The

patients’ serum SCCA level, body temperature, age, sex, white blood cell

(WBC) count, hypersensitive C-reactive protein (Hs-CRP) level, and serum

amyloid A (SAA) were recorded. Logistic regression models were used to

analyze the risk factors of SCCA elevation. The dose-response relationship

between temperature and risk of SCCA increase was analyzed using Restricted

cubic splines (RCS).

Results: Of the 309 patients, 143(46.3%) showed elevated SCCA levels. The

logistic regression analysis revealed a significant influence of age and body

temperature on elevated SCCA (P<0.05) levels. For every one-year increase in

age, the probability of elevated SCCA decreased by 3% [OR=0.97,95%

CI:0.95,0.99].For every 1°C increase in body temperature, the risk of

elevated SCCA increased by 2.75 times [OR=3.75,95%CI:2.55,5.49].The

patients were sorted into quartiles based on body temperature. Compared

with patients in the Q1 of body temperature group, patients in the Q3 group

were at 7.92 times higher risk [OR=7.92, 95%CI:3.27,19.16].and the risk of

elevated SCCA was increased by 22.85 times in the Q4 group [OR=23.85,95%

CI:8.38,67.89] after adjusting for age, gender, Hs-CRP, SAA, and WBC. RCS

analysis showed there was a linear relationship between temperature index

and risk of elevated SCCA.
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Conclusion: In summary, for CAP patients with normal CEA,NSE and

CYFRA21-1 level, age and body temperature are influencing factors of

SCCA elevation. Higher body temperature has a strong association with the

occurrence of SCCA elevation.
KEYWORDS

pneumonia, fever, SCCA, lung cancer, health education
Introduction

Lung cancer is one of the most common malignant tumors in

the world. As the early symptoms of lung cancer are not obvious,

most patients are diagnosed at an advanced stage, and the prognosis

is poor (1). Pneumonia is a common benign disease in the

respiratory department, and patients often have symptoms of

fever , cough, sputum, hemoptysis and other cl inical

manifestations. Pneumonia can be cured with active anti-infective

treatment. The early clinical symptoms of lung cancer patients are

similar to pneumonia and lack specificity. For hospitalized

pneumonia patients, in addition to anti-infective treatment, the

exclusion of lung cancer has become one of the most important

purposes of hospitalization for them.

SCCA is a tumor-specific antigen that was first discovered in the

1970s by Kato and Torigoe from cervical squamous cell carcinoma

tissues (2). It is widely found in the cytoplasm of squamous cell

carcinomas, such as the uterus, cervix, lung, head and neck,

especially in nonkeratinized cancer cells, in which the content of

SCCA is more abundant (3–6). SCCA exists in squamous epithelial

cells is involved in the differentiation of squamous epithelium and

tumor growth of tumor cells, and is often used in the diagnosis of

squamous epithelium-derived carcinoma (7). SCCA is a specific

marker of squamous cell carcinoma and is an independent

prognostic factor for cervical squamous cell carcinoma (1).

As one of the tumor markers, SCCA alone does not confirm the

tumor, but it can provide valuable information for the diagnosis and

prognosis assessment of various malignant tumors, such as in the

preconditioning evaluation of the tumor scope, evaluation of the

treatment response and prediction of prognosis (4). As a tumor

marker of various squamous cell cancers (esophageal cancer, lung
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cancer, head and neck cancer, anal canal cancer, cervical cancer,

etc.),SCCA is of great significance in reflecting tumor stage, tumor

size, interstitial infiltration, status of the lymphatic vascular space,

and status of lymph nodes (8). Therefore, SCCA is particularly

suitable for detecting squamous cell carcinoma (6, 7). Meanwhile,

its elevation is also a poor prognostic factor for squamous cell

carcinoma (4). Sun et al. (3) has shown that SCCA can initially

evaluate the radiotherapy effect of lung cancer patients and has a

certain predictive effect on prognosis. Yang et al. (1) has also

pointed out that SCCA is important for the assessment of

prognosis and survival assessment of lung cancer. An earlier

article pointed out (9) that a high serum SCCA level is an

independent poor prognostic factor in patients with peripheral

squamous cell carcinoma.

For the past few years, there have been an increasing number of

studies on SCCA in nonneoplastic diseases. In addition to tumors,

elevated serum SCCA levels have also been detected in chronic liver

disease, pulmonary infiltration with eosinophilia, renal

insufficiency, and chronic inflammatory skin diseases (such as

psoriasis, pemphigus, or eczema) (4, 8, 10–12). The serum SCCA

level of diabetic nephropathy patients is significantly higher than

that of normal proteinuria patients and healthy controls (10). A

study has shown that the SCCA level is closely related to patients

with varus papilloma, and SCCA may have the potential to be a

useful biomarker for patients with varus papilloma (5).More articles

have shown that SCCA is also elevated in some nonmalignant

pulmonary diseases (2, 5). For example, there has been a case report

showing that influenza B virus infection can lead to increased SCCA

(13). Many studies have shown that the SCCA level also increases in

bronchial asthma (13–15).

However, the elevation of SCCA in patients with pneumonia

has not been studied. In clinical work, we found that some patients

with pneumonia also had elevated serum SCCA, whereas other

tumor markers, such as CEA, NSE, and CYFRA21-1,were normal,

and a series of subsequent clinical examination could rule out the

diagnosis of lung cancer. Therefore, in this study, we selected some

patients whose CEA,NSE and CYFRA21-1 levels were normal and

who had lung cancer excluded. We detected their SCCA levels,

analyzed the relationship between SCCA concentration and body

temperature, age and inflammatory indicators. The aim of the

present study is to investigate the influencing factors of serum
frontiersin.org
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SCCA elevation in CAP patients with normal CEA,NSE and

CYFRA21-1. Identification of these factors, which are helpful to

improve the health education for CAP patients and reduce

unnecessary examinations, is highly warranted.
Methods

Study subjects and exclusion criteria

A total of 1,300 patients diagnosed with pneumonia after

admission to the Respiratory Department of the Second Affiliated

Hospital of Dalian Medical University from January 2019 to

December 2020 were considered for this study.

The patients included in the study were selected based on the

following exclusion criteria:
Fron
(1) age ≥80 years and ≤15 years old;

(2) bronchial asthma;

(3) acute/chronic bronchitis, interstitial pneumonia,

tuberculosis, bronchiectasis, and chronic obstructive

pulmonary disease;

(4) patients with lung cancer and undiagnosed lung nodules;

(5) other malignant tumors;

(6) CEA,NSE, and CYFR21-1 tests were not performed

during hospitalization;

(7) any of the serum CEA,NSE and CYFR21-1 test results

was abnormal;

(8) pregnancy.
The diagnostic criteria of pneumonia were based on the Chinese

Guidelines for Diagnosis and Treatment of Community-acquired

Pneumonia (2016 edition) (16): 1. community disease onset; 2.

showing the following related clinical manifestations of pneumonia:

(i) recent cough, expectoration, or existing respiratory disease

symptoms with or without purulent sputum/chest pain/dyspnea/

hemoptysis; (ii) fever; (iii) pulmonary consolidation signs and/or

wet rales; (iv) peripheral WBCs>10×109/L,OR<4×109/L with or

without a neutrophilic left shift; and 3. chest imaging revealing new

patchy infiltration, leaf/segment contrast, ground glass shadow, or

interstitial changes with or without pleural effusion. Patients showing

criteria 1 and 3 and any one of the 2 criteria were diagnosed with

pneumonia, except for those with pulmonary tuberculosis,

pulmonary tumor, noninfectious interstitial disease, pulmonary

edema, atelectasis, pulmonary embolism, pulmonary eosinophil

infiltration, and pulmonary vasculitis.

Ultimately, a total of 309 cases were enrolled, including 135

males and 174 females,143 with normal SCCA and 166 with

elevated SCCA. According to the statistical rule, the number of

cases with elevated SCCA was at least 10 times that of the included

variables in the regression analysis. A total of 9 independent

variables were included in this study, so the sample size

requirement for statistical analysis was met.
tiers in Oncology 03
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Measurement

For quantitative detection of serum SCCA, 3 mL of fasting

venous blood was drawn, and a chemiluminescence immunoassay

was performed using the MAGLUMI 2000 automatic

chemiluminescence instrument. The immunoassay was performed

with the reagents from the instrument’s supporting kit and operated

in strict accordance with the manufacturer’s instructions.

The serum SCCA reference interval was 0 ng/mL–2.5 ng/mL.

“SCCA elevation” refers to a serum SCCA level >2.5 ng/mL.

WBC count was measured by a Sysmex XN 9000 automatic

hematology analyzer using flow cytometry, and other inflammation

factors, such as Hs-CRP and SAA levels, were detected with a

chemiluminescence immunoassay.

In this study, body temperature was measured by a

thermometer reading, and “body temperature increase” refers to a

body temperature >37.2°C. “Wheezing” refers to the auscultation of

both lungs with rhonchi.
Statistical methods

Patients with pneumonia were divided into two groups

according to the SCCA detection value: the normal SCCA group

(SCCA ≤ 2.5 ng/mL) and the elevated SCCA group (SCCA>2.5 ng/

mL). The chi-square test was used to compare the differences

between the enumeration data of two groups,i.e., age, sex, body

temperature (normal/increased),and wheezing (yes/no). WBC, hs-

CRP,and SAA data showed abnormal distribution expressed as the

median M (P25,P75) and a comparison between the two groups was

performed with a rank sum test of two independent samples.

Patients with pneumonia were grouped into quartiles from small to

large according to SCCA levels. We used the chi-square test for

categorical variables (age, sex, fever) and a multigroup rank sum test

for group comparisons of continuous-type variables. Logistic regression

was used twice to analyze the risk factors for SCCA elevation. First, the

independent variables selected were all the observed indicators to

determine risk factors. Second, body temperature was divided into

quartiles, and risks of SCCA elevation for each quartile were evaluated

by setting the lowest quartiles of body temperature as the reference

group. Model 1 was adjusted for age and gender and BMI, and model 2

was further adjusted for Hs-CRP, SAA, and WBC. Restricted cubic

spline (RCS) analysis was applied to analyze the dose–response

relationship between the temperature and the risk of elevated SCCA.

Statistical analysis was performed using SPSS 26.0. P<0.05 was

considered significant. The RCS analysis was performed in R 4.0.3.
Results

Patient demographics

Ultimately, 309 CAP patients,135 males and 174 females, whose

serum CEA, NSE, and CYFRA21-1 levels were normal met our

enrolment criteria.
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For analysis, the patients were grouped based on the level of

serum SCCA and body temperature. The serum SCCA level was ≤2.5

ng/mL in 143 (46.28%) patients and >2.5 ng/mL in 166 (53.72%)

patients. Among the 309 patients,125 (40.45%) had a normal body

temperature, and 184 (59.55%) had a fever.
Comparison of basic conditions and
inflammatory indicators of pneumonia
patients in two groups

Patients in the elevated SCCA group were younger than those in

the normal SCCA group but had a higher probability of wheezing

and increased body temperature (P<0.05). Moreover, the

inflammation indices, such as Hs-CRP and SAA, were

significantly higher than those in the normal group (P<0.05)

(Table 1). There was no significant difference between sex and

WBC count in the two groups.
Comparison of patient characteristics
according to serum SCCA levels

The patient groups were ranked from small to large according

to SCCA levels. The top 25% of patients were in Group 1,the

patients in the top 25%–50% were Group 2,the patients in the top

50%–75% were in Group 3,and the patients in the top >75% were in

Group 4.

Our analysis showed statistically significant differences in age,

fever, Hs-CRP, and SAA levels among the different groups. Patients

in Group 4 had the highest serum SCCA level, while their age was

significantly lower. In contrast, the proportions of patients with

fever and the Hs-CRP, and SAA levels were significantly higher
Frontiers in Oncology 04
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than those in the other three groups (P<0.05) (Table 2). The trend

increased with the SCCA level. No significant difference was found

among the four groups between wheezing (P=0.075) and WBC

count (P=0.103).
Factors impacting elevated SCCA levels

Logistic regression was used for the first analysis of risk factors

for increased SCCA. The results showed that age and body

temperature were associated with elevated SCCA levels in all the

observed measures (P<0.05). Age was a protective factor against

SCCA elevation, while body temperature was a risk factor for SCCA

elevation. The probability of SCCA increasing decreased by 3% with

an age increase of one year. In contrast, the risk of SCCA increased

by 2.75 times with a temperature increase of 1°C (Table 3).
Effects of body temperature on serum
SCCA elevation

For the second step of regression analysis, body temperature

was divided into four groups as an independent variable for

analysis. The logistic regression results showed that the risk of

SCCA value elevation was 7.92 times higher in Q3 patients than that

in Q1 patients (P<0.05) and the risk of SCCA elevation in Q4

patients was 22.85 times higher than that in Q1 patients (P<0.05).

For every 1°C increase in body temperature, the risk of elevated

SCCA increased by 2.75 times[OR=3.75,95%CI:2.55,5.49]

(Table 4). The RCS analysis showed a linear relationship

between the temperature index and the risk of elevated SCCA

(Pnonlinear =0.7371, Figure 1).
TABLE 1 General Characteristics of participants.

Indices
Normal SCCA

(N=166)
Elevated SCCA

(N=143)
Z value P value

Age 60 (46,65) 50 (33,63) 3.96 <0.05

Gender N(%)

Male 65 (39.2%) 70 (49.0%) 2.99 0.083

Female 101 (60.8%) 73 (51.0%)

Wheezing N(%)

Yes 135 (81.3%) 130 (90.9%) 5.78 <0.05

No 31 (18.7%) 13 (9.1%)

Body temperature N(%)

Normal 107 (64.5%) 18 (12.6%) 85.81 <0.05

Increase 59 (35.5%) 125 (87.4%)

WBC (*10^9/L) 7.70 (6.09, 10.24) 7.83 (5.82, 9.44) 1.23 0.220

Hs-CRP (mg/L) 11.69 (2.03, 44.98) 33.70 (13.40, 74.55) 4.82 <0.05

SAA (mg/L) 31.46 (9.33, 177.10) 179.38 (47.95, 237.27) 4.97 <0.05
fro
Data are the mean number (percentage) or median (P25,P75).
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Discussion

SCCA is originally purified from cervical squamous cell

carcinoma (17, 18) and it is widely expressed in tongue, tonsil,

esophagus, cervix, vagina, trachea, skin and other normal tissues

(14, 17, 19). SCCA can be used as a diagnostic marker for cervical

cancer, lung cancer, esophageal cancer, head and neck cancer and

other squamous cell carcinomas (8, 14, 17, 18). Studies have shown

that the sensitivity of SCCA in the diagnosis of non-small cell lung

cancer (NSCLC) is 17%,and the specificity can reach 95%. The

sensitivity and specificity of diagnosis in lung squamous cell

carcinoma are 95% and 32% (20). Ando et al. measured seven

serum biomarkers in 312 NonSmall Cell Lung Cancer (NSCLC)

patients and found that SCCA had the highest positive rate at

55.4%,followed by CYFRA 21-1 (48.2%) (4). Clinically, SCCA is

often used in combination with CYFRA 21-1,CEA,and NSE to

screen for early stage of lung cancer. In recent years, a few studies

and case reports have found that SCCA levels are elevated in benign

lung diseases, such as asthma (8, 14, 15, 21), influenza virus

infection (13), respiratory syncytial virus infection (22),
Frontiers in Oncology 05
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tuberculosis (23), pulmonary sarcoidosis (23), pulmonary fibrosis

(24), critically ill patients with COVID-19 (25), eosinophilic

pulmonary infiltration (4, 26) and other diseases. The mechanism

of the serum SCCA increased in patients with allergic diseases has

been extensively studied (8, 27). For example, in atopic dermatitis

and bronchial asthma patients, increased SCCA is caused by IL-4

and IL-13, which are secreted by Th2 cells (15, 17, 28, 29). These

cytokines act on skin keratinocytes or bronchial epithelial cells (8),

inducing high expression of SCCA in airway epithelial cells and/

or keratinocytes.

The present study is a retrospectively clinical investigation of

the serum SCCA levels of 309 CAP patients with normal serum

CEA,CYFRA21-1 and NSE. The impact factors of SCCA elevation

was analyzed by grouping the patients into quartiles according to

SCCA and body temperature, respectively. To the best of our

knowledge, this study may be the first to report that body

temperature and age influence the elevation of serum SCCA in

patients with community-acquired pneumonia (CAP). The main

finding of the study was that age was a protective factor against

SCCA increase, while body temperature was a risk factor for SCCA

value elevation. There was a linear relationship between

temperature index and risk of elevated SCCA.

Why does body temperature elevation lead SCCA increase in

CAP patients? It is well known that fever, as an important host

defense mechanism, is accomplished by integrated physiological

and neural circuits (30). Transient receptor potential cation channel

subfamily M member 8 (TRPM8) is a kind of cold-sensing neuron

expressed in the nerve endings of sensory neurons and

keratinocytes in the epidermis of skin. Its activation induces a

series of cold defenses, such as brown adipose tissue thermogenesis,

shivering thermogenesis and skin vasoconstriction (31). As the

outermost barrier tissue of human body, skin is composed of

epidermis, dermis and subcutis (32). Meanwhile, as a major

immune organ, skin contains a large number of type 2 innate
TABLE 3 The risks factors of elevated SCCA levels by a logistic model.

Indices B value OR (95% CI) P value

Age -0.028 0.97 (0.95, 0.99) <0.05

Gender (male/female) -0.594 0.52 (0.29, 1.05) 0.071

Wheezing (Yes/No) -2.400 0.79 (0.31, 1.99) 0.613

Temperature (°C) 1.320 3.75 (2.55, 5.49) <0.05

WBC (*10^9/L) -0.088 0.92 (0.82, 1.02) 0.104

Hs-CRP (mg/L) -0.005 0.99 (0.99, 1.01) 0.368

SAA (mg/L) 0.001 1.00 (0.99, 1.00) 0.682
TABLE 2 Comparison of participants’ characteristics with the serum SCCA levels.

Indices

SCCA,ng/ml
Z

value
P valueQ1

(<33.00)
Q2

(33.00-50.00)
Q3

(50.00-63.00)
Q4

(>63.00)

Age 60 (48, 67) 60 (45, 65) 60 (45, 65) 50 (32, 64) 18.36 <0.001

Wheezing N(%)

Yes 64 (80%) 61 (81.3%) 60 (89.6%) 80 (92.0%) 6.89 0.075

Temperature (°C)
36.8

(36.7, 37.7)
36.8

(36.7, 38.0)
38.4

(37.4, 39.0)
38.9

(38.0, 39.3)
85.64 <0.05

Fever N (%)

Yes 24 (30.0%) 30 (40.0%) 51 (76.1%) 79 (90.8%) 83.82 <0.05

WBC(*10^9/L)
7.46

(5.85, 9.71)
8.31

(6.00, 11.29)
7.87

(6.52, 9.86)
7.52

(4.98, 8.98)
61.19 0.103

Hs-CRP (mg/L)
8.57

(1.56, 31.55)
15.64

(2.12, 55.07)
31.38

(8.81, 72.65)
34.50

(13.61, 74.58)
22.06 <0.05

SAA (mg/L)
29.29

(9.22, 163.03)
45.66

(9.07, 176.05)
160.00

(23.02, 222.31)
192.02

(79.47, 255.13)
26.98 <0.05
fro
Data are the mean number (percentage) or median (P25,P75).
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lymphoid cells (ILC2s) (32, 33). ILC2s in the dermal skin are

activated by signals from cold-sensing neurons (31), which

respond to the changes in ambient temperature to help regulate

thermal homeostasis in the skin. It has been reported that the

activation of TRPM8 can promote thermogenesis, and dermal

ILC2s are activated by stimulating TRPM8 (31). The study also

found that TRPM8 expressed in dermis was partially responsible for

the activation of skin-resident ILC2s,and TRPM8,which is

expressed in epidermal keratinocytes, may also be involved in

sensing ambient temperature to promote local ILC2s activation

(31). ILC2s express the transcription factors GATA 3 and RORa
during development which are capable of producing type 2

cytokines such as IL-4,IL-5,and IL-13 (31, 34). Stimulated by
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interleukin-4 (IL-4) or interleukin-13 (IL-13), keratinocytes can

secrete SCCA1 and SCCA2 (17, 21).

Thus, we speculate when a CAP patient had a fever, the skin

cold receptors could activate skin-resident ILC2s to secrete IL-4,IL-

5 and IL-13.Then,the cytokines trigger keratinocytes to

secrete SCCA.

Furthermore, does SCCA directly mediate the inflammatory

response to pneumonia? Studies showed that SCCA could also be

detected in the serum of patients with lung diseases such as

bronchitis and pneumonia (35). These findings raise the

possibility that SCCA may act as a marker for certain

inflammation. A paper also mentioned that the Clade B of serine

protease inhibitors family 3(SERPINB3)and the Clade B of serine
TABLE 4 The association of body temperatures with SCCA elevation by logistic regression analyses.

Indices

Model 1 Model 2

B
value

OR (95% CI)
P

value
B

value
OR (95% CI)

P
value

Body temperatures (continuous) 1.29 3.63 (2.69, 4.88) <0.05 1.32 3.75 (2.55, 5.49) <0.05

Quartiles of body temperatures

Q1 (≤36.7°C) – – – – – –

Q2 (36.8°C-37.9°C) -0.01 0.99 (0.43, 2.26) 0.98 0.38 1.46 (0.60, 3.56) 0.40

Q3 (38.0°C-38.8°C) 2.01 7.42 (3.55, 15.53) <0.05 2.07 7.92 (3.27, 19.16) <0.05

Q4 (38.9°C-42.0°C) 3.09 21.86 (9.22, 51.81) <0.05 3.17 23.85 (8.38,67.89) <0.05
front
Model 1: Adjusted for: age and gender.
Model 2: Adjusted for: age, gender, Hs-CRP, SAA, and WBC.
FIGURE 1

Dose-response relationship between temperature index and SCCA.
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protease inhibitors family 4 (SERPINB4), also known as squamous

cell carcinoma antigen-1 and -2(SCCA1/2). Elevated levels of these

inhibitors were detected during inflammation, which may indicate

that they are upregulated to help suppress the inflammatory

response. Similarly, their overexpression may indicate that they

can cause a pro-inflammatory response (36). In our study, the

inflammation indicators, such as Hs-CRP and SAA, were

significantly higher than those in the normal group

(P<0.05).However, in the Logistic regression analysis of risk

factors for increased SCCA, the P values of them did not reach

the statistical significance (P= 0.065).Therefore, we consider that

SCCAmight be involved in mediating the inflammatory response in

patients with pneumonia, but we have not conducted relevant

experiments and in-depth research analysis, and more studies are

needed to confirm this situation in the future.

Interestingly, this study also found that, unlike the effect body

temperature, increase of age was a protective factor for SCCA

elevation. It means that the risk of SCCA elevation decreases with

increase of age. We speculate that it might be related with skin

aging. The skin exerts its barrier function through a multilayered

structure comprised of three distinct anatomical compartments:

epidermis, dermis, and subcutis (32). Keratinocytes exist in the

epidermis (37) and ILC2s are distributed in the dermis (32, 33).

Considered both physiologic and inevitable, skin aging is a

degenerative phenomenon (38). Studies (39) have shown there is

a functional difference in the stratum corneum of young versus old

skin because recovery of aged skin from insults to this layer are

significantly slower than those seen in young skin, and permeability

to certain substances is altered. We suggested that the increased risk

of SCCA decreased associated with age may be due to the decline in

secretory function of skin cells with age increasing. That’s just our

conjecture, we need to expand the sample size and data sources,

reduce confounding bias, and conduct more in-depth studies.

There are some limitations in our study. First, 309 patients were

enrolled in this study, of which 143 were in the SCCA elevated

group. Although the sample size was small, the sample size met the

statistical requirements. It is undeniable that insufficient sample size

may introduce significant interference in the use of statistical

models with numerous covariates. Since this is a single-center

study, it is necessary to conduct multi-center studies in the future

to expand the sample size and make the conclusions more reliable.

Second, for CAP patients, we did not further group them by

pathogen to analyze whether they were associated with increased

SCCA. It is because the positive rate of pathogenic examination is

generally low, and the amount of pathogen examination performed

in our patients is small. This information cannot be obtained. Third,

we do not conduct the in-depth studies on SCCA whether or not

mediates inflammation. We can design more experiments in the

future to explain this question.

In summary, we find that for CAP patients with normal serum

CEA, NSE, and CYFRA21-1, body temperature and age are
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significantly correlated with increased SCCA. Increased body

temperature is a risk factor for SCCA elevation, while increasing

age is a protective factor for SCCA elevation. For CAP patients with

elevated SCCA, appropriate explanations can be done to reduce the

anxiety of patients and their families about lung cancer.
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