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Multiple dysfunctions take place 
in the B cell compartment during 
HIV-1 infection, comprising deple-
tion of resting memory B cells 
carrying serological memory to vac-
cines and previously met pathogens. 
In addition, population of B cells 
characterized by the expression of  
exhaustion markers are enlarged 
during HIV-1 infection. 

Antibodies with the capacity to 
neutralize a broad range of HIV-1  
isolates can be detected only in a 
minority of infected patients, after a 
year or more from acute infection. An 
open question is whether the inability 
of producing neutralizing HIV-1 
antibodies is somehow linked to the 
B cell immunopathology observed in 
patients. 

In this Research Topic, we invited 
scientists to summarize the current 
state of knowledge on regulation and 

development of B cells and antibody responses during HIV-1 infection; fifteen contributions 
were received comprising both reviews and original articles. The articles are related to B cell 
dysfunctions identified in HIV-1 infected individuals, production of different types of antibodies 
(neutralizing versus non neutralizing, and of different isotypes) in vivo during HIV-1 infection 
and the biological factors which may impact on this process, clinical potential and applications of 
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Neutralizing antibodies are needed to block HIV-1 infection of 
target cells. During HIV-1 infection B cells produce antibodies 
to several components of the virus. Only a small portion of these 
antibodies (in green) will neutralize HIV-1 (in green) by binding 
to the virus envelope spikes. An effective HIV-1 vaccine should  
induce neutralizing antibodies.
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anti-HIV antibodies and how to achieve neutralizing antibody responses to HIV-1 epitopes upon 
vaccination. 

The topic has gathered articles on front-line research undertaken in the field of B cells and 
antibodies in HIV-1 infection. It is our hope that the collection of articles presented in this 
book may be useful for new and experienced scholars in the field and add a piece to the complex 
puzzle of knowledge needed for the development of an HIV-1 vaccine. 
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Editorial on the Research Topic

HIV-Induced Damage of B Cells and Production of HIV Neutralizing Antibodies

Memory B cells and long-lived plasma cells are pivotal for maintenance of serological memories to 
vaccines and infections. Studies in HIV-1-infected children and adults have shown that blood resting 
memory (RM) cells are reduced in number during HIV-1 infection and that their decline correlates 
with reduction of antibody (Ab) titers against childhood vaccinations [reviewed in Ref. (1, 2)]. 
Initiation of antiretroviral therapy (ART) shortly after infection restored RM cells to physiological 
levels in HIV-1-infected children and adults (3, 4) although very few studies have been conducted on 
this specific topic. One additional interesting feature of HIV-1 immunopathology is that exhausted 
memory B cells are expanded in circulation during HIV-1 infection; these exhausted cells comprise 
activated memory B (AM) and tissue-like memory (TLM) B cells, the latter displaying phenotypic 
similarities with tonsillar B cells (5, 6). The mechanism driving B cell abnormalities during HIV-1 
infection remains poorly characterized. One possibility is that expression of inhibitory receptors on 
the surface of TLM B cells during HIV-1 infection, including the inhibitory receptor Fc receptor-
like-4 (FCRL4), may engage specific pathway leading to inhibition of B cell proliferation and Ab 
production. Reverting in vivo the damage which HIV-1 exerts on B cells could possibly result in 
the production of adequate and persistent levels of HIV-1 neutralizing antibodies (NAbs) able to 
neutralize a broad range of HIV-1 isolates.

During the course of natural HIV-1 infection, humoral immune responses take place to HIV-1 
epitopes resulting in specific Abs with non-neutralizing and neutralizing capacity. Only in a minority 
of infected individuals, Abs with the capacity to neutralize a broad range of HIV-1 isolates, called 
broad NAbs (bNAbs), can be detected after more than one year from primary infection. During 
the last decades a large number of potent HIV-1 bNAbs have been isolated from infected patients, 
which target the CD4 binding site, determinants within the V2 envelope (env) region, the V3 region 
or the gp120-gp41 interface region. These bNAbs have been tested in HIV-1 animal models, and 
phase I and II clinical studies have demonstrated safety in adults and children. Although some 
Fc-modifications are needed to increase the half-life of bNAbs, there is no doubt that they represent 
valuable tools in the contexts of HIV-1 prevention and treatment.

The clinical trials conducted with candidate HIV-1 vaccines targeting env showed that it is difficult 
to elicit high titers of HIV-1 bNAbs in humans. Accordingly, highly innovative approaches need to be 
applied to this field; integrated knowledge from vaccine design for other pathogens may accelerate 
the design of preventive or therapeutic HIV-1 vaccines with the property of inducing bNAbs.

In this research topic, we invited scientists to summarize the current state of knowledge on regula-
tion and development of B cells and Abs responses during HIV-1 infection; 15 contributions were 
received comprising both reviews and original articles. A short introduction of these contributions 
follows.
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Serological responses to vaccines and establishment of B cell 
memory is mediated through the interactions between Tfh cells 
and B cells in germinal centers (GCs). Pallikkuth et al. reviewed 
current knowledge on Tfh cells and B cells dysfunction in aging 
and HIV-1 infection. Chronic immune activation during HIV-1 
infection affects the expression of molecules important for the 
function of Tfh cells and other T  cell subsets including PD-1 
and ICOS; T cell exhaustion could also take place as a result of 
protracted expression of inhibitory receptors. The number and 
function of circulating Tfh cells declined during HIV-1 infection 
but ART treatment resulted in increased frequencies of Tfh cells; 
however, upon these conditions the frequencies of RM cells 
remained low.

The expression of FcRL4 and IL-6 is increased in B cells dur-
ing HIV-1 infection. Increased IL-6 expression leads to aberrant 
B cell differentiation and FcRL4 acts by dampening B cell receptor 
(BCR) signaling. Siewe et al. report that the expression of FcRL4 
in viremic HIV-1-infected patients identifies an IL-6 producing 
pro-inflammatory B cell subset. In viremic patients AM and TLM 
cells expressed the highest levels of FcRL4 and IL-6; in addition, 
AM cells, followed by TLM cells, comprised the highest frequency 
of FcRL4hiIL-6hi cells among B cell subpopulations. The authors 
present interesting mechanisms linking expression and signaling 
of FcLR4 with B  cell damage and expression of inflammatory 
cytokines.

It is recommended that children born HIV-1-infected receive 
ART from birth and further studies should be conducted to 
analyze whether the damage to RM B cells is prevented by early 
ART introduction. Cotugno et al. reported that the frequencies 
of B  cell subpopulations did not differ between controls and 
ART treated HIV-1-infected children who responded to treat-
ment. Gene expression arrays performed on isolated B  cells 
from selected HIV-1-infected patients revealed few differentially 
expressed genes in purified RM B cells when comparing controls 
and HIV-1-infected children. It is interesting however that 25 
genes were differentially expressed in RM cells at baseline prior to 
influenza vaccination in the RM cells of vaccine non-responders 
as compared to vaccine responders. Gene profiles were also 
derived for AM cells in HIV-1-infected children and controls 
providing novel findings in the field of B cell damage.

B cells are involved in bone biology in health and disease. In 
her review, Titanji discusses the contribution of two cytokines 
produced by B cells, OPG, and RANKL, to HIV-1-induced bone 
loss. The members of the OPG/RANKL pathway are produced 
by a large number of cells present in several tissues of three 
major organ systems: skeletal, vascular, and immune systems. 
A strong link between joint destruction in rheumatoid arthritis 
(RA) and pathogenic RANKL producing B cells was found when 
patients with RA were treated with anti-CD20 Ab Rituximab. 
This treatment eliminated B cells and reduced also RANKL levels 
in synovium. Increased longevity in HIV-1-infected individuals 
receiving ART has been associated with higher prevalence of 
non-AIDS end-organ comorbidities including osteoporosis and 
cardiovascular diseases. During HIV-1 infection, the subset of 
TLM B cells, expanded as result of inflammation, has been linked 
to increased RANKL production. Both in HIV-1 transgenic 
rats and in untreated HIV-1-infected individuals an increased 

RANKL/OPG ratio was described, suggesting a link between the 
OPG/RANKL pathway and skeletal damage in HIV-1 infection. 
The exciting possibility of RANKL blockade by already available 
medicines during HIV-1 infection is discussed to reduce the 
impact of osteoporosis in aging patients.

Approximately 90%, of new HIV-1 acquisitions take place 
through mucosal contact. Kulkarni et al. describe how loss of B cells 
and plasma cells during HIV-1 infection results in a declined pro-
duction of anti-HIV IgA responses at the mucosal sites. IgA present 
in mucosal secretions is produced at the mucosal site by plasma 
cells in the lamina propria and has a critical role for defense against 
pathogens. HIV-1 infection results in loss of integrity of mucosal 
barriers which are ultimately devoided of protective IgA and IgG; 
this scenario may contribute to superinfection with new HIV-1 
strains and possibly give rise to the generation of new circulating 
recombinant HIV-1 forms. Passive immunization with either IgA 
or IgG is a potent tool to protect macaques from SIV infection at 
the mucosal level. When combining passive immunization of IgA 
and IgG, 100% protection was achieved although the mechanism 
of interactions between these two classes of Abs has yet not been 
elucidated. Vaccine strategies aimed at the induction of mucosal 
antibody responses needs to be further developed as preventive 
and therapeutic tool for HIV-1 infection.

Several HIV-1 bNAbs, especially the ones directed to the 
CD4 binding site and the gp120-gp41 interface region, also 
demonstrate specificity for self-antigens. Borhis et al. studied the 
interaction of B-cell-activating factor (BAFF) with its receptors 
BAFF-R and TACI. BAFF is a pivotal cytokine for B cell develop-
ment, which, present at high levels during some autoimmune 
diseases, leads to increased rescue of self-reacting B cells. BAFF 
is also overproduced, in membrane-bound and soluble forms, 
during HIV-1 and SIV infections, where it may contribute to 
survival of immature transitional B  cells, a population of cells 
which is enlarged during these infections. Based on these find-
ings, the authors aim at understanding whether the interactions 
between BAFF and its receptors may be useful to enlarge pool of 
auto-reactive B cells producing bNAbs. These interesting findings 
point to the possibility that soluble TACI and BAFF-R may act 
as decoy receptors and that interactions between BAFF and its 
receptors may have a regulatory role in GC reaction acting on 
both B and Tfh cells.

Circulating biomarkers could be important to pin-point 
mechanisms which influence humoral immune responses and the 
development of HIV-1 bNAbs. Mabuka et al. examined whether 
dysfunctions taking place in B cell subpopulations during acute 
HIV-1 infection and the production of cytokines involved in 
B cell development (BAFF and CXCL13) can be linked to bNAbs 
development. Pathological changes in the composition of B cell 
subsets during acute HIV-1 infection were not predictive of 
the development of bNAbs. Interestingly, early high levels of 
CXCL13, but not BAFF, correlated with detectable bNAbs at 
1-year postinfection. This finding calls for further studies to 
elucidate how elevated levels of the chemoattractant CXCL13, 
important for homing of Tfh and B cells to the GCs, may imprint 
the production of bNAbs.

Further intervention strategies, in addition to ART, may be 
needed to put an end to mother to child transmission (MTCT) 
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of HIV-1. Douglas et al. reviewed the possibility that additional 
therapy opportunities for preventing HIV-1 MTCT may be pro-
vided by mapping the detailed specificity of protective maternal 
HIV-1 NAbs and characterizing the mechanisms through which 
maternal circulating viruses escape recognition from autologous 
NAbs. In the context of MTCT, vaccine strategies aimed at elimi-
nating HIV-1 infection in children may only need to elicit Ab 
responses able to neutralize the virus pool from the mother to 
which the newborn is exposed. As shown in some of the reviewed 
studies, passively acquired ADCC mediating Abs from the HIV-
1-infected mother may prolong survival in the infected infant; 
whether ADCC HIV-1 Abs need to be elicited by vaccines to pro-
tect children from HIV-1 MTCT should be further investigated.

Departing from the finding of naturally occurring Abs to the 
CC chemokine receptor 5 (CCR5) in healthy individuals and HIV-
1-infected patients, Venuti et al. review the mechanism mediated 
by these Abs and suggest the use of anti-CCR5 Abs in therapeutic 
and vaccination strategies to combat viral infections. It is unclear 
why auto-Abs to CCR5 are produced in absence of autoimmune 
diseases, but a role for CCR5-Abs in homeostatic control is envis-
aged. Interestingly, CCR5 auto-Abs modulate CCR5 expression 
through a long-lasting internalization of this receptor and thus, 
may block HIV-1 transmission through CCR5, one of the two 
major chemokine receptors used by HIV-1 in attachment and 
penetration of target cells. Indeed, several novel immunization 
approaches have been used to induce anti-CCR5 Abs.

Soldemo et al. compared the induction of NAbs in chronically 
HIV-1-infected and immunized subjects. The HIV-1 bNAbs iso-
lated from infected patients are generated through an extensive 
somatic hypermutation process as consequence of prolonged 
antigenic exposure upon chronic inflammation. Conventional 
immunization regimens of primates have so far failed to induce 
HIV-1 bNabs; the reasons for this failure is not known but the 
complex interplay between HIV-1 antigenic variability and B cell 
selection occurring in vivo may not be easy to mimic upon vac-
cination. Further studies in different animal models may define 
similarities and differences in germline antibody genes and 
expressed repertoires, thus paving the way to the design of effec-
tive HIV-1 vaccines.

The review by Molinos-Albert et  al. focuses on the oppor-
tunities and challenges of utilizing the conserved membrane 
proximal external region (MPER) region within the Env gp41 
protein to evoke bNAbs in HIV-1 immunization protocols. The 
MPER region, together with the gp41 fusion peptide, is involved 
in membrane destabilization. Structural and physical properties, 
including steric hindrance by gp120, do not render this region 
an easily accessible site to immunological responses. However, 
the isolation of some potent bNAbs against the MPER conserved 
region from HIV-1-infected subjects shows that, in  vivo, this 
region can be a target of bNAbs. The authors present novel 
biochemical and immunological strategies on how to render the 
MPER site more accessible to B cell responses.

Non-neutralizing inhibitory Abs (nNAbs) may play an 
important role in decreasing HIV-1 load and may be useful in the 
context of HIV-1 protection. Mayr et al. present challenges and 
opportunities associated with HIV-1 nNAbs. These nNAbs can 
bind and capture infectious virus and form immune complexes 

and aggregates with the virus. Their inhibitory function is medi-
ated through the binding of its Fc-domain to specific FcRs present 
at the surface of immune cells. Polymorphism of FcRs may pose a 
limitation to the development of HIV-1 vaccines aimed at induc-
ing nNAbs. An interesting picture is emerging depicting the role 
that Fc-mediated phagocytosis of immune complexes may have 
in inducing immune activation and promoting adaptive antiviral 
responses.

In the review by Hua et al. the authors present the different 
scenarios where bNAbs may be of clinical utility ranging from 
preventing viral infection, enhancing therapeutic potential in 
acute infection and chronic infection. The pharmacological 
modalities of bNAbs action are multiple and vary from the capac-
ity to enhance adaptive immune responses to potential reduction 
of virus reservoirs. There are however limitations to be dealt with 
before bNAbs can be introduced in clinical HIV-1 contexts; for 
example, selection of resistant viral populations, development 
of Ab responses directed to the administered bNAbs and risk of 
eliminating HIV-1 reservoirs in regeneration limited compart-
ments. In this review engineering and biological approaches are 
widely discussed to overcome limitations to the use of bNAbs.

Modification of the structure of the immunogen is a front-line 
research topic to increase its capacity to induce and stimulate 
bNAb responses. Soldemo et al. present in their article how cross-
linking of HIV-1 env trimers with glutaraldehyde (GLA) affects 
thermo-stability and exposure of nNAbs epitopes in  vitro and 
env-specific IgG Ab responses in  vivo. GLA fixation improved 
the stability of the env-trimers, however at the expense of a lower 
Ab response to the trimers upon repeated immunizations. Mice 
inoculated with GLA fixed trimers displayed a more Th2-skewed 
subclass profile as compared to animals inoculated with native 
trimers. Coadministration of adjuvants known to balance Th1/
Th2 responses were not able to redirect this Th2-skewed profile.

Forsell et  al. investigated a mechanism for epitope-specific 
regulation and maturation of B cell responses. The experimental 
set-up aimed at pin-pointing the profiles of GC B cell responses 
evoked by one injection with an env protein in a murine system 
and at understanding if injection with env-Abs could exert 
regulation of GC B cell responses in an epitope-specific manner. 
The results suggest that env-specific B  cell responses are nega-
tively regulated through epitope masking by high affinity Abs. 
Ab-mediated feedback to GC B cells may be effective only when 
GC B cells share the same specificity with an injected or circulat-
ing Ab. This proposed mechanism of Ab-mediated feedback, in 
addition to unraveling basic aspects of regulation of GC B cell 
responses, will be important in efforts aimed at developing effec-
tive HIV-1 vaccine.

It is our hope that the collection of articles presented in this 
research topic may be useful for new and experienced scholars 
in the field and add a piece to the complex puzzle of knowledge 
needed for the development of an HIV-1 vaccine.
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T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to  
antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, 
and somatic hypermutation to generate long-lived plasma cells and memory B  cells 
during an immune response. The quantity and quality of Tfh cells therefore must be 
tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on 
the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV 
infection resulting in impaired antibody responses to vaccines such as seasonal trivalent 
influenza vaccine, also seen in biologic aging. Although many of the HIV-associated 
defects improve with antiretroviral therapy (ART), excess immune activation and anti-
gen-specific B and T cell responses including Tfh function are still impaired in virologically 
controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience 
increased risk of age-associated pathologies. This review will discuss Tfh and B  cell 
dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging 
on Tfh–B cell interactions.

Keywords: T follicular helper cells and Hiv, T follicular helper cells and immunity, Hiv and aging, T follicular helper 
cells and influenza vaccine, T follicular helper cells in aging and Hiv

inTRODUCTiOn

Chronic infectious diseases, such as HIV infection, and the biological process of aging are known 
to impact humoral immune responses to vaccination and infection (1–5). The issue of aging dur-
ing HIV infection has gained importance due to the success of antiretroviral therapy (ART) that 
can lead to near normal life expectancy and is resulting in increasing the numbers of aging HIV-
infected people (3, 6, 7). Older HIV-uninfected individuals in the general population, especially 
those >80 years develop immune senescence, a term signifying immune defects affecting multiple 
cell types, characterized by quantitative reduction in hematopoietic stem cells, thymic involution 
with reduced naive cells and accumulation of effector and memory cell subsets with narrow TCR 
repertoires with low clonality, and reduced CD4:CD8 T cell ratio (8–11). Memory T cells tend to lose 
expression of CD28 and their antigen-specific responses are impaired (12). In addition, profound 
B cell alterations occur in biologic aging characterized by a reduction of the naive B cell pool and 
qualitative impairment of their function along with reduced vaccine induced immune responses 
(13–22). Concurrently, increased inflammation coined by the term inflamm-aging (21, 23) occurs 
with increased C-reactive protein (CRP), D-dimer, IL-6, and TNFα that correlate with occurance of 
age-associated diseases.

Immunologic changes similar to biologic aging have been described in HIV infection, including 
accelerated immune senescence and inflammation, with increased IL-6, CRP, and D-dimer (24–26) 
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despite virologic suppression with ART and have been attributed 
to persistent immune activation (25, 27–29). Cellular markers of 
immune senescence, including low CD4:CD8 ratio and higher 
frequencies of CD57 + CD28− CD4 and CD8 T cells are promi-
nent especially in those who initiate ART at lower CD4 counts. 
Based upon epigenetic changes, age of HIV inflected people is 
approximately 5 years greater (and more without viral suppres-
sion) than uninfected people (30, 31) of the same chronologic 
age. They manifest  increased risk for non-AIDS morbidity and 
mortality, including neurocognitive decline, cardiovascular dis-
ease, kidney disease, and cancer (32). Because of the associated 
immune deficiency in both biologic aging and HIV infection, and 
the aging of HIV-infected population, it is important to determine 
how the immune systems in HIV-infected and -uninfected differ 
and to delineate the underlying mechanisms which could lead to 
therapeutic interventions. This review will focus on cellular basis 
of vaccine responses in the context of T follicular helper (Tfh) 
cells and their interaction with B cells, how these cells are affected 
by HIV infection and finally discuss recent findings on the impact 
of aging in HIV-infected and -uninfected persons using response 
to influenza vaccine as a readout of immune competence.

Tfh Cells in Lymph node (Ln) and 
Periphery
T follicular helper cells are a specialized subset of CD4 T cells in 
lymphoid organs that express the transcription factor B cell CLL/
lymphoma 6 (Bcl-6), with high surface expression of programed 
death receptor 1 (PD-1) and CXC chemokine receptor 5 (CXCR5) 
[reviewed in Refs. (33–37)]. During an immune response Tfh cells 
provide critical signals to antigen-experienced B cells in germinal 
centers (GCs) to undergo proliferation, isotype switching, and 
somatic hypermutation (SHM) in order to generate long-lived 
plasma cells and memory B  cells through cellular interaction 
and cross-signaling for antibody production [reviewed in Refs. 
(37–39)]. Tfh cell differentiation requires dendritic cell (DC) 
priming of naive antigen-specific CD4 T  cells followed by the 
interaction with B cells resulting in upregulation of costimula-
tory molecules such as inducible costimulator (ICOS) and CD40 
ligand (CD40L) and secretion of cytokines IL-21 and IL-4 that 
play a critical role for the ensuing B cell response [reviewed in 
Refs. (33, 34, 39)].

Because of the difficulties in studying lymphoid tissue in 
humans, the field has increasingly relied on a circulating subset of 
memory CD4 T cells that partially resemble LN Tfh cells and have 
been designated as peripheral Tfh (pTfh) (40–47). The pTfh cells 
display a memory phenotype and are characterized by expression 
of CXCR5, the B cell follicle homing molecule, and by secretion of 
IL-21 during interactions with B cells (42, 48). Unlike LN Tfh cells,  
pTfh cells express only moderate levels of PD-1 and Bcl-6 but 
are similar in their ability to upregulate costimulatory molecules 
such as ICOS and CD40L upon antigen stimulation (42, 49–52). 
More recently, based on the surface expression of CXCR3, CCR6 
and CXCR4 Tfh cells have been further characterized as Th1 
(CXCR3 + CCR4 − CCR6−), Th2 (CXCR3 − CCR4 + CCR6−), 
and Th17 (CXCR3 − CCR4 − CCR6+) memory CD4 T helper 
subtypes (42, 53, 54), indicative of reveals the heterogeneous 

nature of pTfh cells with respect to phenotypic, functional and 
transcription factor profiles (42, 54). It is now widely considered 
that a balance of pTfh subsets is important for maintaining 
healthy immune function.

Tfh, B cells, and Hiv infection
T follicular helper cells are highly permissive to HIV becoming 
readily infected by follicular DC that transport infectious virions 
into lymphoid organs. Tfh cells are now considered as major 
reservoirs of transcriptionally silent integrated HIV genomes 
(55–58). In non-human primates, chronic infection with simian 
immunodeficiency virus (SIV) is associated with an expansion of 
Tfh cells within GC (59, 60), along with increase in numbers of 
B cells in LN, spleen, and gut tissues of rhesus macaques (60–63). 
Early initiation of ART can rapidly control the virus replication 
but not the early lymphoid activation, thereby increasing the risk 
of infection of Tfh and magnitude of viral reservoir (64). Contrary 
to the expansion of GC Tfh cells seen in chronic HIV/SIV infec-
tion (59, 60), we and others have reported a significant loss of 
circulating pTfh cells in chronic viremic HIV-infected subjects 
compared to HIV-uninfected persons (65, 66); 12 months of ART 
incorporating Raltegravir resulted in increased frequencies of 
pTfh cells (66). However, pTfh cells from HIV+ virologically sup-
pressed patients on ART exhibit functional impairment in their 
ability to provide adequate B  cell help in a number of systems 
(41, 67–69).

In chronic HIV infection, B cells exhibit immune dysfunction 
and altered B cell subset distribution, with a shift in resting mem-
ory (RM) B cells to an activated state with expression of activation 
markers such as CD71, CD80, and CD86 (70, 71). There is also 
an increase in inflammatory B cell subsets referred to as double 
negative (DN: CD27 −  IgD −  B  cells) and tissue-like memory 
B  cells (15, 72–75). ART-mediated viral suppression restores 
many of the B cell defects, especially when initiated during the 
acute phase of infection (76). However, reduced frequencies of 
RM B cells, elevated DN B cells, as well as chronic immune activa-
tion persist (31, 71, 77–79).

vaccine-induced Antibody Responses 
During Hiv infection
In healthy states, antibody responses to T-dependent antigens are 
generated in GCs within lymphoid tissue when antigen-primed 
B and T cells engage in interactions to promote B cell differen-
tiation, SHM, and class switch recombination to develop into 
memory B cells and plasma cells (80–83). Studies in humans and 
animal models indicate that HIV infection affects the GC reac-
tion, increases immune activation/exhaustion of lymphocytes, 
and results qualitative deficiency of Tfh and B cell function (57, 
59–61, 69). These defects altogether lead to increased susceptibil-
ity to vaccine-preventable diseases (84, 85). Studies focusing on 
pTfh cells have been informative for understanding the pheno-
typic complexity within the Tfh subset and for determining the 
relationship between Tfh and B cells in immunological outcomes 
[reviewed in Ref. (86)].

Influenza vaccine studies have provided a valuable model sys-
tem to analyze the immune system in vaccine induced antibody 
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TABLe 1 | Signature immunological changes in pTfh and B cells in vaccine 
responders (VRs) following influenza vaccine at TO (baseline), T1 (7 days), and T2 
(4 weeks).

Changes in pTfh cell compartment in vaccine responders
Antigen induced IL-21 gene expression at TO
Expansion of pTfh at T1, T2
Ag-stimulated intracellular IL-21 production in pTfh at T2
“Help” to autologous B cells for H1N1-specific IgG production and B cell 
differentiation in pTfh plus B cell cocultures at T2

B cell changes in vaccine responders
Increase in frequencies of plasmablasts at T1
Increase in spontaneous H1N1-specific ASC at T1
Increase in memory B cells and switch memory at T2
Upregulation of IL-21R on total B and memory B cells at T2
Increase in TACI expression on total B and memory B cells at T2
Downregulation of BAFT-R expression on total B and memory B cells at T2

PBMC culture sups/plasma findings in vaccine responders
Production of IL-21 and CXCL13 in H1N1-stimulated culture sups with increases 
in plasma IL-21
Increase in plasma BAFF and APRIL levels

pTfh, peripheral T follicular helper; PBMCs, peripheral blood mononuclear cells; Ab, 
antibody; BAPF-R, B cell activating factor receptor; APRIL, a proliferation inducing 
ligand; CXCL13, C-X-C motif chemokine ligand 13; ASCs, antibody secreting cells.
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responses (87). We initiated such studies in virally suppressed 
HIV+ adults on ART during the 2009/H1N1 pandemic influenza 
outbreak (43, 88, 89). Following monovalent H1N1 vaccination, 
vaccinees were classified as vaccine responders (VRs) if postvac-
cination hemagglutination inhibition (HAI) serum H1N1 Ab 
titer was 1:40 or more and exhibited a 4-fold increase, from 
baseline titer, and those who did not meet these criteria were 
classified as vaccine non-responders (VNRs). In study partici-
pants, administration of the vaccine resulted in VR status only 
in 50% HIV+, compared to all age matched healthy controls. In 
the HIV + VR and VNR, prevaccination CD4 and CD8 T cell 
counts, B cell frequencies, and plasma HIV RNA were similar, 
but phenotypic and qualitative immunological differences were 
identified. In VR, there was upregulation of IL-21R in B  cells 
that correlated with plasmablasts and memory B cell responses 
post-vaccination (89), together with an expansion of pTfh cells 
with secretion of IL-21 and CXCL-13 in H1N1-stimulated PBMC 
culture supernatants. In coculture experiments, pTfh supported 
HIN1-stimulated IgG production by autologous B  cells (43). 
More recent findings point to the ability to perform qualitative 
assessment of pTfh/CD4 T cells and B cells prior to immunization 
in previously vaccinated HIV+ children and young adults (90, 91). 
Examples of such assessments include (i) ex vivo stimulation with 
H1N1 resulting in induction of CXCR5 mRNA and protein in 
CD4 T cells and (ii) induction of IL21 gene in pTfh cells. These  
antigen-specific prevaccination measures strongly associated with 
H1N1-specific B  cell responses by ELISPOT at postvaccination 
(91). Interestingly, CD4 T  cells from VNR exhibit increased 
expression of IL2 and STAT5 genes, which are known to antago-
nize pTfh function (92). Our main findings of pTfh and B cells in 
relation to vaccine responses are summarized in Table 1. Other 
vaccine studies have shown associations between pTfh expansion 
and phenotype with vaccine response. Expansion of HIV-specific 

PD-1 + ICOS + pTfh correlated with vaccine-specific serum IgG 
after booster immunization in three different human HIV vac-
cine trials (93). Expression of ICOS, PD-1, CD38, and IL-21 in 
pTfh subsets have been useful for evaluating the influenza vaccine 
response in HIV-infected and -uninfected adults in other studies 
as well (50, 87, 93–95). Studies with Ebola vaccine (rVSV-ZEB 
OV) demonstrated that CXCR5 + PD-1 + pTfh correlated with 
expansion of plasmablasts (96). Taken together, these studies 
support the concept that both quality and quantity of pTfh cells 
are important determinants for the outcome of vaccine response 
in HIV infection.

Tfh Cells and B Cells in Hiv and Aging
Our group has been interested in the question of immune 
function of aging HIV+ individuals who are well controlled 
on ART, the extent to which it resembles biologic aging of 
HIV− individuals, and implications of aging with HIV infection. 
Earlier pilot studies in virologically suppressed postmenopausal 
women as representative of an aging population established the 
persistence of inflammation and gut microbial translocation and 
detrimental role of underlying immune activation on influenza 
vaccine responses that were associated with quantitative and 
qualitative deficiencies of pTfh cells (45, 97, 98). Our studies 
showed lower H1N1 influenza antibody titers in HIV-infected 
women compared to HIV-uninfected women at prevaccination. 
Following vaccination, magnitude of antibody responses and 
frequency of study participants achieving seroprotective titers 
were lower in HIV+ than in HIV− women. Frequencies of pTfh 
cells at postvaccination correlated with memory B cell function 
and H1N1 antibody titers. Antibody responses postvaccination 
were inversely correlated with inflammatory cytokine TNFα in 
plasma and with markers of cellular immune activation (CD38 
and HLA-DR) on CD4 T cells, including pTfh subset, indicating 
an adverse influence of baseline immune activation and inflam-
mation on vaccine induced antibody response in older age.

To examine the role of age and HIV infection further, we 
are engaged in a large ongoing study (99, 100) in virologically 
suppressed HIV+ and HIV− adults grouped by age as young 
(<40  years), middle aged (40–59  years), and old (≥60  years). 
Following seasonal trivalent influenza vaccine (TIV), magnitude 
of Ab titers against each vaccine strain were found to be lower in 
old age compared to others, regardless of HIV status. Baseline 
titers in seroprotective range were higher in HIV+ but the fre-
quency of VR was lower in HIV+ than HIV−. Interestingly the 
young HIV+ showed maximum variance from HIV− and more 
rapid decay in titer after peak at 28  days postvaccination. In 
statistical analysis somewhat surprisingly effect of age rather than 
HIV dominated the impaired immune response observed in old 
persons (age > 60 years), whereas HIV clearly had a strong effect 
on immunity at younger ages (99, 100).

We examined phenotypic characteristics of T and B cells in 
this group of participants prior to vaccination. T  cell pheno-
typic analysis revealed a core signature of aging comprised of 
decreasing naive T cells and a loss of CD38 expression on CD4 
and CD8 T cells. Frequencies of activated CD4 T cells (and not 
CD8 T cells) identified by coexpression of HLA-DR and CD38, 
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FigURe 1 | The effects of aging and HIV infection on T follicular helper 
(Tfh):B cell responses to influenza vaccination. Persistent inflammation and 
immune activation of CD4 T cells and B cells negatively influence the 
outcome of influenza vaccine response in antiretroviral therapy (ART)-treated 
HIV-infected virologically suppressed individuals through impairing the Tfh 
and B cell functions. HIV induced premature Immunosenescence further 
advanced immune dysfunction which is more evident in the young HIV+ 
individuals.
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as well as expression of PD-1, ICOS, and Ki-67 were higher in 
HIV+ participants compared to HIV− participants. Increases 
in activation markers previously associated with aging such 
as ICOS (87) were already evident in young HIV+ compared 
to young HIV−, indicative of HIV causing a state of premature 
immune senescence. Predictive modeling to determine the key 
T cell variables most closely associated with vaccine response 
revealed pTfh as an important biomarker. In HIV−, baseline 
pTfh frequency was positively associated with vaccine response, 
while in HIV+ expression of multiple activation markers on 
pTfh (including PD-1) was negatively associated with vaccine 
response (99).

Prevaccination status of B cells also revealed perturbations as 
evidenced by alteration in markers of activation, exhaustion and 
immune regulation and were more prevalent in young HIV+ than 
in young HIV− (100). HIV infection in younger adults exhibited 
similarities with biological aging resulting in alterations in 
B cell phenotypic and functional characteristics similar to those 
observed in older HIV− individuals but underlying mechanisms 
appear to be distinct from that associated with biological aging 
(100). For example, the interaction between T and B  cells 
through the PD-1:PD-L1 signaling pathway is involved only in 
HIV induced impairment of B cell function (101). These results 
provide the basis for immune correlates of premature aging in 
HIV+, even with prolonged ART-induced virological suppression 
(Figure 1). Additional mechanistic studies to understand the cel-
lular basis of immunological impairments in pTfh and B cells in 
aging and HIV infection are currently ongoing in our laboratory.

Other factors that could influence the influenza vaccine response 
in aging also need consideration. Data from literature suggest that 
vaccine-induced immune responses are considerably influenced 
by demographic variables such as age, sex, ethnicity, and race 
(102–105). Many studies indicate that aged females consistently 
have higher antibody responses and increased vaccine efficacy 
to influenza vaccines than males [reviewed in Refs. (106, 107)].  

Sex differences in HAI antibody titers to either the standard-dose 
or high-dose influenza vaccine are apparent, in which antibody 
responses are higher in older females than in males (108, 109). 
A role played by male hormone testosterone in lowering the 
immune response has been proposed (109, 110). There is grow-
ing interest in how latent cytomegalovirus (CMV) infections 
impact the outcome of vaccination [reviewed in Ref. (111)]. In 
young adults, CMV infection is associated with elevated anti-
body responses to influenza vaccines. In aged individuals, CMV 
seropositivity is associated with chronic inflammation and lower 
antibody responses to influenza vaccines (112, 113). However, 
lack of association between CMV status and influenza response in 
elderly population has also been reported (114). Thus the overall 
impact of CMV infection on influenza vaccine responsiveness 
remains controversial. A direct link between CMV seropositivity 
with increased risk of influenza illness in vaccinated older adults 
has not been reported in either HIV-infected or healthy individu-
als. Moreover, the influence of gender and CMV infection status 
on the cellular basis of immune impairment involving pTfh and 
B cell compartments are not been studied in aging and HIV infec-
tion. In aged mice, CD4+ and CD8+ T cells express several inhibi-
tory receptor molecules, including PD-1, LAG-3, CTLA-4, and 
KLRG1 (115, 116) that could interfere with the immune response 
to vaccination. Prolonged expression of inhibitory molecules is a 
well-known feature of T cell exhaustion in chronic viral infections 
and exhausted T cells have also been identified in different viral 
infections, such as HIV and hepatitis A and B virus in humans 
[reviewed in Refs. (117–120)]. However, further studies are war-
ranted to elucidate the significance of T cell exhaustion in HIV 
infection in the context of aging and its influence on vaccine 
induced immune response through regulation of pTfh and B cell 
function.

COnCLUSiOnS AnD FUTURe 
PeRSPeCTiveS

Development of a protective antibody response to vaccine or 
infection is important for the control or eradication of many 
pathogenic infections. Efficient Tfh–B  cell interactions are 
required for regulating B cell differentiation toward the develop-
ment of high affinity antibodies. Immune mechanisms underlying 
the regulation of Tfh–B cell interactions at the inductive sites of 
the immune response are an active area of immunology research. 
Several studies have highlighted the qualitative and quantitative 
impairment of Tfh compartment and their subsequent impact 
on humoral arm of immune response in treated HIV infection 
(43, 45, 67, 87, 94, 98). Since HIV-infected people are aging, 
research on the cumulative impact of premature and physiologi-
cal immune senescence on immune function in HIV infection is 
of great importance. Our work underscores the adverse effect of 
inflammation, a cardinal feature associated with biologic aging 
and chronic HIV infection, on immune response to vaccination 
and functional impairment of Tfh and B cells as a consequence of 
persistent immune activation.

Recent advances in the field of immune checkpoint inhibitor-
based immunotherapeutic approaches in cancer immunology 
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have highlighted the importance of cell to cell interactions on 
immune function. Many aspects of checkpoint molecule-based 
regulation of humoral immune response on Tfh and B cell inter-
actions at the GC are not known. Trials employing checkpoint 
inhibitors in HIV infection will need to ensure that improved 
Tfh–B  cell interactions not associated with autoimmunity. 
Immune checkpoints are negative regulators of T  cell activa-
tion, T cell proliferation and effector functions and inhibiting 
immune checkpoints could influence and disrupt the resting 
status of latently infected cells and reverse latency with increase 
in HIV replication within GC (121). Future studies are needed to 
explore combination approaches targeting immune checkpoint 
molecules and costimulatory signaling pathways during an 
immune response to understand the coregulation of immunity 
by these molecules in the GC reaction. The ultimate goal should 
be to establish strategies to improve the immune function at 
inductive sites. Interventions aimed at reducing chronic inflam-
mation and immune activation along with immunomodulatory 

approaches may improve response to vaccines in aging HIV+ 
individuals.
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In autoimmune diseases, toll-like receptor (TLR)-stimulated pro-inflammatory IL-6-
secreting B  cells exert pathogenic roles. Similarly, B  cell Fc receptor-like 4 (FcRL4) 
expression amplifies TLR stimulation, and in rheumatoid arthritis patients, FcRL4 
expression identifies a pro-inflammatory B cell subset. B cells from HIV-infected sub-
jects also express heightened levels of FcRL4 and secrete high levels of IL-6: a critical 
mediator of HIV disease progression. In this study, we sought to determine if FcRL4 
identifies a pro-inflammatory B cell subset in HIV-infected subjects and further elucidate 
the mechanisms underlying FcRL4 amplification of TLR stimulation. We determine that 
tissue-like memory B cells express the highest endogenous levels of FcRL4 positively 
correlating with IL-6 expression (p  =  0.0022, r  =  0.8667), but activated memory 
B  cells exhibit the highest frequency of FcRL4hiIL-6hi cells. FcRL4hi B  cells exhibit an 
activated TLR-signaling pathway identified by elevated phosphorylation levels of: pERK 
(p = 0.0373), p38 (p = 0.0337), p65 (p = 0.1097), and cJUN (p = 0.0239), concomitant 
with significantly elevated expression of the TLR-signaling modulator hematopoietic 
cell kinase (HcK, p  =  0.0414). Compared to FcRL4neg B  cells from healthy controls, 
TLR9-stimulated FcRL4pos B cells express significantly higher levels of lL-6 (p = 0.0179). 
Further, TLR9-stimulated B cells also upregulate the expression of FcRL4 (p = 0.0415) 
and HcK (p  =  0.0386). In B-cell lines, siRNA-mediated HcK knockdown downmod-
ulates TLR9-induced FcRL4-mediated activation quantified by CD23 upregulation 
(p = 0.0553). We present data suggesting that, in viremic HIV-infected individuals, FcRL4 
expression identifies unique IL-6 producing pro-inflammatory B-cell subsets. Further, 
TLR stimulation likely modulates FcRL4 expression and FcRL4 expression is associated 
with Hck, potentially enhancing the activation of TLR-signaling associated transcription 
factors. Pathogenic B-cells have been identified in other disease settings, and this study 
represents a novel report describing a pro-inflammatory B cell subset in HIV-infected 
patients.

Keywords: Fc receptor-like 4, pro-inflammatory cytokine, hiV, B cells, il-6, viremic
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TaBle 1 | HIV viremic cohort description.

Participant age (years) gender cD4 count 
(cells/μl)

Viral load (copies/
ml)

1 40 M 566 10,000
2 27 F 443 80,000
3 45 F 515 117,000
4 57 M 592 14,000
5 46 M 337 38,000
6 39 M 550 3,000
7 46 F 217 34,000
8 36 M 144 2,000
9 23 M 489 5,000
10 56 F 288 26,000

M, male; F, female.
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inTrODUcTiOn

The elevated serum level of the pro-inflammatory cytokine 
IL-6 is an indicator of chronic immune activation and a driver 
of HIV disease progression (1, 2). During HIV infection, IL-6 
overexpression drives B-cell proliferation, enhances secretion 
of antibodies, and leads to aberrant B cell terminal differentia-
tion (3, 4). Further, in vitro, IL-6 has been shown to drive HIV 
replication and, in HIV-infected individuals, the observed 
high levels of IL-6 are associated with increased mortality and 
morbidity (5, 6). Due to these factors, it is critical to determine 
the sources of IL-6 as well as the mechanisms underlying IL-6 
overexpression during HIV infection. HIV infection is character-
ized by heightened microbial translocation and the presence of 
microbial products encoding toll-like receptor ligands (TLR-L) 
(7–9). TLR-stimulated monocytes have been identified to be a 
significant contributor to the HIV-induced inflammatory state 
(10–12). However, published data also suggest that B cells from 
HIV-infected individuals express high levels of IL-6 possibly 
due to TLR-stimulation (3, 9, 13). Additionally, in autoimmune 
diseases, TLR-stimulated B-cells are critical mediators of inflam-
mation (14, 15). Further, data from a study in rheumatoid 
arthritis identified a pro-inflammatory B-cell subset expressing 
high levels of Fc receptor-like 4 (FcRL4) (16). FcRL4 acts as a 
molecular switch, dampening B  cell receptor (BCR) signaling 
while simultaneously enhancing TLR-signaling through associa-
tion of SHP-1 and SHP-2 with its cytoplasmic tail (17). Finally, 
B  cells from HIV-infected viremic subjects exhibit heightened 
FcRL4 expression associated with an “exhausted” phenotype, 
with impaired antibody expressing functions (18–20).

In this study, we investigated: (1) if in untreated HIV infection, 
FcRL4hi B-cells represent a pro-inflammatory B cell subset and 
(2) the mechanisms underlying FcRL4 expression and amplifi-
cation of TLR-signaling. Our data indicate that FcRL4hi B-cell 
subsets are high producers of IL-6, and TLR-signaling modulates 
FcRL4 expression. Finally, FcRL4 mediates amplification of TLR-
signaling likely by recruiting Src Kinase proteins.

MaTerials anD MeThODs

study Participants
All studies were performed after signed, informed written 
research consent by each study subject. The study was reviewed 
and approved by the Institutional Review Board of the Rush 
University Medical Center, and the University of Iowa City 
VAMC and University of Iowa. All work was performed in adher-
ence with appropriate laboratory safety protocols such as use of 
personal protective equipment. HIV-infected viremic (HIVVIR), 
naïve subjects had a median CD4 count of 466 cells/μl (range, 
144–566), and median viral load of 20,000  copies/ml (range, 
2,000–117,000) (Table 1).

cell lines
Ramos (a human Burkitt lymphoma cell line) FcRL4 stable 
transfectants were a generous gift from Dr. Susan Pierce (NIH) 
and previously described (17). The FcRL4.FFF mutant carries 

mutations (tyrosine to phenylalanine) in the cytoplasmic ITIM 
tail at positions 451, 463, and 493. The cells were maintained in 
RPMI medium supplemented with 10% FBS, Pen/Strep, 2mM 
l-glutamine, 10  mM HEPES, and 55  µM β-mercaptoethanol 
(Invitrogen).

antibodies
Cells were stained with the following antibodies: FcRL4-APC 
(Biolegend), IL-6-PE, CD23-PE-Cy7, CD19-PE-Texas Red, 
CD10-Pe-Cy5, CD21-V450, CD27-AF700, phospho-p38-PE, 
phospho-Erk-AF647, phospho-p65-PE, phospho-C-Jun-FITC, (BD 
Biosciences), Sheep anti-rabbit IgG-DyLight 488 (Biolegend), puri-
fied hematopoietic cell kinase (Hck), and phospho-Hck (Abcam).

isolation, Purification, and Tlr stimulation 
of PBMcs
PBMCs were isolated from whole blood using Ficoll (Lymphocyte® 
Cell Separation Media, Mediatech) gradient centrifugation. 
Cryopreserved PBMC from HIV-infected subjects were used 
in the immunophenotyping experiments. The cells were stained 
with FcRL4-APC and CD19-PE-Texas Red and CD19+FcRL4pos 
and CD19+FcRL4neg B  cells were FACS purified and cultured 
overnight in the presence of 10  µg/ml CpG-B ODN2006 
(TLR9L), 2 µg/ml PAM3CSK4 (TLR2L), or 2 µg/ml Imiquimod 
(InvivoGen). B cells (CD19+) from healthy controls were purified 
from PBMC using the B Cell Isolation Kit II (Miltenyi Biotec) 
and AUTOmacs (Miltenyi Biotec). After 4H, the cultures of 
CD19+ B  cells were supplemented with Brefeldin A (1:1,000, 
BD). After overnight incubation, the cells were surface stained 
(CD23-PE-Cy7, BD Biosciences), fixed/permeabilized (Fix/Perm 
Kit BD Biosciences), and stained for intracellular IL-6 (IL-6-PE, 
BD Biosciences). All samples were acquired on an LRSII (BD 
Biosciences) flow cytometer and the data analyzed using FlowJo 
software (Tree Star Inc.). Florescence parameters were normalized 
using Rainbow Calibration Particles (Spherotech) and antibody 
bound CompBead (BD Biosciences). Gating was determined by 
unstained controls.

inhibition assays
Chemical inhibition of Hck was achieved using PP2 (Millipore). 
Cells were incubated overnight with indicated concentrations of 
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the inhibitor, supplemented with TLR9-L, and further cultured 
overnight. Only events corresponding to living cells (determined 
by Live/Dead® Fixable Aqua staining, Life Technologies) were 
acquired on an LRSII (BD Biosciences) flow cytometer and the 
data analyzed using FlowJo software (Tree Star Inc.).

real-time rT-Pcr
RNA was extracted using the RNeasy Kit (QIAGEN) accord-
ing to the manufacturer’s instructions. The extracted RNA was 
measured by spectrophotometer and equimolar concentrations 
used for cDNA synthesis according to the manufacturer’s 
instructions (iScript cDNA syntesis Kit, Bio-Rad). The follow-
ing primers were used for the qPCR reaction: HcK-Forward 
5′-CGGATCCCACATCCACCATCA-3′, Reverse 5′-ACCACGA 
TGATGTCCTCAGAGC-3′, FcRL4-Forward 5′-TCAGCTGGG 
AGAAGAAGAGGAA-3′, Reverse 5′-GAGTTATCTGGGTGTT 
GTGTCTTTACC-3′, GAPDH-Forward 5′-CTTCAACGACCA 
CTTTGT-3′ and reverse 5′-TGGTCCAGGGGTCTTACT-3′. 
Real-time RT-PCR was performed using a Quantitect SYBR 
Green PCR kit (Qiagen) in a 7900HT Fast Real-Time PCR system 
(Applied Biosystems). Melting curve analysis was performed to 
ensure that the primers amplified the desired amplicon and that 
primer-dimers were absent. Fold change in mRNA expression 
was calculated by relative quantification using the comparative 
cycle threshold method. GAPDH expression was used as an 
endogenous control.

sirna-Mediated Knockdown
siRNA targeting HcK were purchased from Santa Cruz 
Biotechnology and Dharmacon, and cells were transfected using 
the Lipofectamine RNAiMax kit (Life Technologies) according to 
the manufacturer’s instructions. Knockdown was confirmed by 
qPCR 48H post-transfection.

statistical analysis
Results are expressed as mean  ±  SEM or as indicated. 
GraphPad Prism software, version 5.03 was used for all sta-
tistical analysis. The statistical significance p-value between 
group parameters was determined using either unpaired or 
paired Student’s t-test (with a confidence level of 95%). The 
statistical dependence between variables was calculated using 
the Spearman rank correlation analysis. p-Values of <0.05 
were considered statistically significant. Pair and multiple 
comparisons were done using the Wilcoxon-matched-pairs 
signed rank test.

resUlTs

Fcrl4hi B-cell subsets from hiV-infected 
Viremic subjects spontaneously express 
high levels of il-6
In rheumatoid arthritis patients, FcRL4 expression identifies a 
pro-inflammatory B-cell subset (16). Differential FcRL4 expres-
sion among B  cell subsets has been reported in HIV viremic 
(HIVVIR) subjects (18); however, the relationship between FcRL4 
expression and production of pro-inflammatory cytokines 

has not been fully elucidated. Our prior data indicate that 
B  cells from HIV-infected individuals express primarily IL-6 
and not TNF-α (9). We investigated if FcRL4 expression on 
B cell subsets from HIVVIR subjects associated with heightened 
endogenous levels of IL-6 expression. Tissue-like memory 
B  cells (TLM, CD19+CD20+CD10−CD21loCD27−) expressed 
the highest levels of FcRL4 among different B  cell subsets 
(Figures 1A,B), comparable to activated memory B cells (AM, 
CD19+CD20+CD10−CD21−CD27+), but significantly higher than 
naïve B cells (N, CD19+CD20+CD10−CD27−CD21+, p < 0.0001) and 
resting memory B cells (RM, CD19+CD20+CD10-CD21+CD27+, 
p < 0.0001). TLM B cells also expressed the highest endogenous 
levels of IL-6 (Figure 1B) compared to naïve (p = 0.01081) and 
RM B cells (p = 0.0204). Likewise, in AM B cells (Figure 1B); the 
level of IL-6 was much higher as compared to naïve (p = 0.0041) 
and RM B cells (p = 0.0241). Moreover, AM cells expressed the 
highest frequency of FcRL4+IL-6+ cells (Figure 1B): significantly 
higher than TLM (p = 0.005), N (p < 0.0001) and RM (p < 0.0001) 
B cells. Taken together, TLM and AM B cells express the highest 
levels of FcRL4 and IL-6 as well as the frequency of FcRL4+IL-6+ 
cells. Finally, in the TLM B cells, we observed a significant positive 
correlation between the FcRL4 and IL-6 expression (Figure 1C, 
p  =  0.0022, r  =  0.8667) as well as FcRL4 and HIV viral load 
(Figure 1C, p = 0.0390, r = 0.6727).

Fcrl4pos B cells from hiV-infected Viremic 
(hiVVir) subjects constitutively exhibit an 
activated Tlr-signaling cascade
HIV-infection is associated with an increase in serum concen-
tration of several TLR ligands (7–9), and B  cells from HIVVIR 
individuals exhibit enhanced FcRL4 expression (18). As FcRL4 
enhances B-cell responsiveness to TLR stimulation (17), we next 
investigated if, in HIVVIR subjects, constitutive FcRL4 expres-
sion is associated with an activated TLR-signaling pathway. 
We determined that FcRL4pos B cells of HIVVIR subjects exhibit 
a constitutively activated TLR-signaling pathway phenotype 
characterized by significantly elevated levels of phosphorylated 
ERK, p38, and c-JUN (Figures 2A,B, p =  0.0373, p =  0.0337, 
and p = 0.0239, respectively). Although the level of phosphoryl-
ated p65 was higher in FcRL4pos B  cells than FcRL4neg B  cells, 
the difference did not attain statistical significance (Figure 2B, 
p = 0.1097).

Fcrl4pos B cells from hiV-Uninfected 
subjects are highly responsive to Tlr 
stimulation
We previously demonstrated that TLR stimulated B  cells from 
healthy controls (HIVNEG) subjects upregulate expression of the 
pro-inflammatory cytokine IL-6 (9). We, therefore, examined 
if FcRL4 modulates the expression of IL-6 upon TLR stimula-
tion. We found that compared to FcRL4-negative (FcRL4neg) 
B cells, TLR stimulation of purified FcRL4pos B cells significantly 
upregulated IL-6 expression (Figure 3: TLR2, p = 0.0022, TLR7, 
p = 0.0286, TLR9, p = 0.0179).
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FigUre 1 | FcRL4hi blood B cell subsets from HIV viremic subjects express high endogenous levels of IL-6. In blood B cell subsets [(a), gating strategy] from HIV 
viremic subjects (n = 10), the endogenous levels of (c) FcRL4, IL-6, and FcRL4+IL-6+ [representative plots depicted in (B)] as well as (c) the relationship between 
FcRL4 expression and IL-6 (left) and viral load (right) on tissue-like memory B cells were determined; N, naïve; RM, resting memory; AM, activated memory; TLM, 
tissue-like memory. p-Values as determined by Mann–Whitney test are indicated, in (c) association was calculated using the spearman correlation.

21

Siewe et al. FcRL4 Identifies a Pro-inflammatory B-cell Subset

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1339

B cells exposed to Tlr-9 ligand 
Upregulate expression of Fcrl4 and hcK 
concomitantly
Elevated FcRL4 expression on blood B cells has been identified 
in malaria and HIV-infected viremic patients (18, 19), conditions 
associated with heightened serum levels of TLR ligands (7, 8, 
21). Additionally, it has been previously demonstrated that TLR 
stimulation modulates FcRL expression in mice (22). We deter-
mined that exposure of PBMC from HIVNEG subjects to TLR9 
stimulation led to a significant upregulation in FcRL4 expression 
(Figure 4A, p = 0.0415). We confirmed that while TLR stimula-
tion induces FcRL4 upregulation, the anti-FcRL4 flow cytometry 
antibody did not lead to FcRL4 upregulation. In human second-
ary lymphoid tissue, elevated FcRL4 expression is associated with 
heightened levels of the Src kinase family member HcK (23), 
which in macrophages, promotes TLR-induced expression of 
pro-inflammatory cytokines (24). We, therefore, investigated if 
in TLR-stimulated blood B cells, the observed FcRL4 upregula-
tion (Figure 4A) is associated with heightened HcK expression 

contributing to the amplification of the TLR-signaling. We deter-
mined that TLR9-stimulation of purified B  cells from HIVNEG 
resulted in the upregulation of HcK levels (Figure 4B, p = 0.0386) 
(gating Figure S2 in Supplementary Material). Finally, in HIVVIR 
subjects, FcRL4pos B cells, expressed significantly higher endog-
enous levels of total (Figure 4C, p = 0.0414) and phosphorylated 
HcK (Figure 4C, p = 0.0398).

hcK is required for Fcrl4-Mediated 
amplification of Tlr signaling
The effect of HcK on TLR-signaling in B  cells was further 
investigated using a B cell line stably expressing FcRL4 (FcRL4.
WT) and a loss-of-function FcRL4 mutant cell line, incapable 
of amplifying TLR-signaling (FcRL4.FFF) (17). We determined 
that after TLR stimulation, HcK upregulation was evident only in 
the FcRL4.WT cells (Figure 5A). HcK expression in FcRL4.WT 
transfectants was reduced using siRNA and confirmed by qPCR 
(Figure  5B, p  =  0.0079, compared to control). Finally, TLR9  
activation was quantified by change in CD23 expression, a 
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FigUre 2 | FcRL4pos B cells from HIV viremic subjects are Hckhi and exhibit activated TLR-signaling signature. In FcRL4pos, B cells from HIV viremic subjects (n = 10) 
(a) gating strategy for FcRL4, using flow cytometry, (B) the endogenous activation levels of MAPK pathway members Erk and p38 as well as activation of NF-κB 
(p65) and AP-1 (c-Jun) were determined: Representative overlays of FcRL4- and FcRL4+ populations shown. p-Values as determined by Mann–Whitney test are 
indicated.
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readout of TLR9 activity (17). HcK knockdown led to a reduc-
tion in CD23 expression (Figure 5B, p = 0.0553) following TLR9 
stimulation. To confirm these results, we chemically inhibited HcK 
using 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]
pyrimidine (PP2) as described elsewhere (25, 26). HcK chemical 
inhibition reduced TLR9-induced CD23 expression significantly 
in FcRL4.WT compared to FcRL4.FFF in a dose-dependent man-
ner (Figure S1 in Supplementary Material, 1 mM and 10 mM PP2, 
p = 0.0059 and p = 0.0052, respectively).

DiscUssiOn

In this study, we demonstrate that during viremic HIV 
infection, FcRL4hi TLM and AM blood B  cells express high 
endogenous levels of IL-6, strongly indicating that high FcRL4 
expression identifies pro-inflammatory B cells. We demonstrate 
that frequency of FcRL4+ B-cells correlates strongly with IL-6+ 
B-cell frequency in the TLM subset. However, AM B  cells 
exhibit the highest frequency of FcRL4+IL-6+ double-positive 
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FigUre 3 | FcRL4pos B cells from HIV-uninfected subjects are highly responsive to TLR stimulation. FcRL4hi and FcRL4lo B cells were enriched from primary B cells 
of HIVneg subjects, exposed to TLR2-Ligand (TLR-2 stimulated, 2 µg/ml, Pam3Csk4), TLR7L (TLR-7 stimulated 2 µg/ml, Imiquimod), or TLR9-ligand (TLR-9 
stimulated 10 µg/ml CpGODN2006). After overnight incubation, IL-6 expression was determined by intracellular cytokine staining. Representative plots are shown in 
the top panels, in lower panels, each dot represents a subject (n = 6, 4, 3 from left to right), p-values as determined by paired t-test are indicated.
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cells suggesting the possibility that divergent mechanisms 
drive IL-6 production in AM and TLM B  cells. This concept 
of divergent mechanisms is further supported by the distinct 
characteristics of these subsets, with TLM displaying elevated 
expression of inhibitory receptors and increased frequency 
of HIV-specific B  cells, while the AM subset show greater 
specificity for other pathogens (20). Taken together, our report 
identifies pro-inflammatory functions of FcRL4+ TLM B  cells 
in viremic HIV-infected subjects, corroborating findings, which 
identify FcRL4hi B cells as a marker of pro-inflammatory B cells 
in rheumatoid arthritis patients (16).

Though FcRL4 has previously been identified on exhausted 
B-cell subsets (20), weak proliferation following BCR stimula-
tion may be indicative of a shift in function rather than a general 
failure to respond. FcRL4 has been identified as a molecular 
switch, dampening BCR signaling while enhancing B-cell 
responsiveness to TLR-stimulation (17). HIV-infected viremic 
(HIVVIR) subjects exhibit elevated serum levels of TLR-ligands 
(7–9) concomitant with high expression of FcRL4 on B  cells 
(18, 20). It is, therefore, tempting to suggest that in HIVVIR 
subjects, TLM and AM B  cells are stimulated by TLR-ligands 
resulting in upregulated FcRL4 expression. This increases sen-
sitivity to TLR stimulation, leading to a positive feedback loop 
culminating in high expression of IL-6, inflammation, and HIV 
disease progression. Though we cannot exclude the possibility 
that FcRL4-expressing B  cells coincidently express IL-6, our 

data provide further evidence supporting a role for FcRL4 in 
mediating in  vivo TLR-signaling-dependent hyperstimulation 
during HIV infection. We also determined that ex vivo, FcRL4hi 
B cells from HIVVIR subjects exhibit a TLR-signaling signature, 
characterized by heightened activation of NF-κB and AP1 
pathways, transcription factors critical for the expression of 
pro-inflammatory genes (27–29).

While FcRL4 expression has been well documented in HIV, 
its function remains only partly elucidated. During HIV-1 
infection, FcRL4 is elevated on TLM of non-treated individuals, 
but expression is greatly reduced following treatment (30); this 
suggests a unique role for FcRL4 during HIV infection. Jelicic 
et al. report that HIV gp120 induces FcRL4 expression on B cells 
(31), suggesting another mechanism inducing FcRL4 expres-
sion, which enhances susceptibility to TLR stimulation in HIV 
infection. Previous studies also suggest that another FcRL family 
protein, FcRL3, is upregulated in response to TLR stimulation 
(32); however, a role for TLR stimulation in regulating FcRL4 
expression in HIV infection has not been explored. We provide 
data suggesting that TLR-signaling augments B-cell FcRL4 
expression, corroborating reports of TLR-regulation of FcRL3 
(32). Though we present data indicating B cells exposed to TLR9-
ligand CpG-ODN2006 upregulate FcRL4 expression, we also 
observed comparable effects when B cells are exposed to either 
TLR7 (Imiquimod) or TLR2 (Pam3Csk4) ligands (not shown). 
Sohn et  al. elegantly demonstrated that FcRL4 expression 
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FigUre 4 | TLR-stimulated B cells upregulate FcRL4 and hematopoietic cell kinase (Hck) expression. Purified B cells from HIVneg subjects were stimulated overnight 
with 10 µg/ml CpGODN 2006 and the expression of (a) FcRL4 and (B) Hck determined by flow-cytometry and RT-qPCR, respectively. Each dot represents a 
subject. (c) In FcRL4pos, B cells from HIV viremic subjects (n = 10, Figure 2a, gating strategy for FcRL4), the endogenous level of total HcK (left) and 
phosphorylated HcK (right) expression were determined. p-Values as determined by paired t-test are indicated.
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switches B-cell responsiveness from adaptive to innate stimulus 
(17); however, the underlying mechanism is still undefined. Our 
data present a potential mechanism underlying FcRL4-mediated 
amplification of TLR-signaling in B  cells. Ehrhardt et  al. (23) 
reported that human tissue FcRL4hi B cells concurrently express 
high levels of the Src-kinase family member HcK, and Smolinska 
et  al. (24) determined that Hck recruitment amplifies TLR4 
signaling in macrophages. Our data confirm these findings, as 
we show that TLR9-stimulated B  cells from HIVNEG subjects 
upregulate HcK and FcRL4hi B cells from HIVVIR subjects exhibit 
elevated endogenous levels of HcK. Further, HcK downmodula-
tion resulted in a reduction of TLR-signaling in FcRL4 B-cell 

transfectants. These data confirm recent reports by Liu et al. (33) 
and suggest that FcRL4 in human B cells likely recruits the Src-
kinase family member HcK, resulting in amplification of TLR-
signaling. However, further studies are needed to determine the 
precise association between FcRL4 and HcK. Our finding that 
TLR9-stimulation was impervious to HcK chemical inhibition 
in the FcRL4.FFF loss-of-function mutant suggests a role for the 
ITIM in HcK recruitment following TLR-signaling, as FcRL4 of 
this mutant is incapable of specific ITIM phosphorylation events.

B cells have been well established as a critical source of pro-
inflammatory IL-6 in autoimmune diseases (14), and some reports 
also suggest that during HIV infection B-cells express IL-6, thus 
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FigUre 5 | Hematopoietic cell kinase (HcK) is necessary for FcLR4-mediated amplification of TLR signaling. In FcRL4 transfectants, (a) HcK expression was 
determined after TLR9 stimulation by flow cytometry, n = 3. (B) Hck expression was determined by RT-qPCR post RNAi (left); siHCK and control RNAi treated cells 
were incubated overnight with TLR9-L and CD23 expression detected by flow-cytometry (right) shown as fold change. siScr = scrambled control; n = 4. p-Values 
as determined by paired t-test are indicated.
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likely exerting a pathogenic role (3, 9, 13). Our data present FcRL4 
as a marker identifying potential pro-inflammatory B cells during 
viremic HIV infection.

cOnclUsiOn

The data from this study indicate that in viremic HIV infected 
subjects, high expression of FcRL4 identifies pro-inflammatory 
B  cell subsets. In autoimmune conditions, B  cells have been 
established as critical IL-6 expressing cells (16). Our data 
demonstrate a pro-inflammatory function of FcRL4+ B  cells, 
a population of B  cells previously identified as exhausted, in 
viremic HIV infection. Finally, we present data elucidating 
the mechanisms of FcRL4-mediated amplification of TLR-
signaling in B cells. We provide data indicating that increased 
expression of FcRL4 coincides with upregulation of the Src 
kinase HcK, and HcK is necessary for FcRL4’s amplification of 
TLR signaling.

eThics sTaTeMenT

All studies were performed after signed informed written 
research consent by each study subject. The study was reviewed 
and approved by the Institutional Review Board of the Rush 
University Medical Center, and the University of Iowa City 
VAMC and University of Iowa.

aUThOr cOnTriBUTiOns

BS and AL conceived/designed study and wrote manuscript. BS 
and AN performed experiments. BS, AN, AL, HS, and JS analyzed 
data and edited manuscript.

acKnOWleDgMenTs

This work was supported in part by grants from the Department 
of Veterans Affairs, Veterans Health Administration, Office 
of Research and Development (Merit Review Grant JTS), the 
National Institutes of Health (RO1 AI-58740 to JS and National 
Institutes of Health—Developmental Center for AIDS Research 
P30 AI-082151-01 and P01 AI-076174-01A1). We wish to 
acknowledge Melissa Plesac for her help on this project.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://www.frontiersin.org/article/10.3389/fimmu.2017.01339/
full#supplementary-material.
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PP2. FcRL4.WT and FcRL4.FFF cells were treated with TLR9-L and HcK inhibitor. 
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FigUre s2 | Representative gating of HcK and phospho HcK.
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Perturbation of B cell gene 
expression Persists in hiV-infected 
children Despite effective 
antiretroviral Therapy and Predicts 
h1n1 response
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Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently 
similar clinical and immunological characteristics can vary in responsiveness to vac-
cinations. However, molecular mechanisms responsible for such impairment, as well 
as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain 
unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-
infected children (HIV) despite effective ART and phenotypic B cell immune reconsti-
tution, the aim of the current study was to investigate B cell gene expression of HIV 
compared to age-matched healthy controls (HCs) and to determine whether distinct 
gene expression patterns could predict the ability to respond to influenza vaccine. To do 
so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal num-
bers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear 
cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined 
by hemaglutination inhibition and memory B  cell ELISpot assays following trivalent- 
inactivated influenza vaccination (TIV) for all study participants. Although there were no 
differences in terms of cell frequencies of SPBS between HIV and HC, the groups were 
distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, 
characterized by higher expression of genes involved in the inflammatory response and 
immune activation was observed in activated memory B cells (CD27+CD21−) from HIV 
when compared to HC despite long-term viral control (>24  months). Further analy-
sis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 
25-gene signature in resting memory (RM) B cells (CD27+CD21+) was able to distinguish 
vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of 
responders showed a higher expression of gene sets involved in B cell adaptive immune 
responses (APRIL, BTK, BLIMP1) and BCR signaling (MTOR, FYN, CD86) when com-
pared to NR. Overall, these data suggest that a perturbation at a transcriptional level in 
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TaBle 1 | Characteristics of study population.

Baseline characteristics hiV nr hiV r hc

Age (years), mean (SEM) 15.16 (2.1) 13.72 (2.3) 14.3 (3.3)
n (female) 12 (7) 11 (5) 10 (5)
%CD4+ T cells, mean (SEM) 37.97 (4.9) 32.49 (6.0) 29.79 (6.2)
HIV RNA <50 cp/mL, n 11 10 N/A
IgG (mg/dL) (mean) 1,387.4 1,356 1,054.7
IgM (mg/dL) (mean) 135.1 118.9 106.8
IgA (mg/dL) (mean) 210.7 225.1 150
CDC (A/B/C) (1/2/3) (3/4/5) (3/4/5) (2/5/4) (4/3/4) N/A
Lymphocytes/mm3, mean (SEM) 2,494 (278.9) 3,109 (363.1) 3,063 (427.8)
WBC (103/μL), mean (SEM) 7.6 (1.5) 7.3 (0.7) 7.9 (0.5)
ART regimen (2 NRTI + PI/2 
NRTI + nNRTI/2 NRTI + ii)

(5/5/2) (5/4/2) N/A

CDC, Center for Disease Control classification of AIDS; WBC, white blood cells; ART, 
antiretroviral treatment; NRTI, nucleoside and nucleotide analog reverse transcriptase 
inhibitors; PI, protease inhibitors; nNRTI, non-nucleoside analog reverse transcriptase 
inhibitors; ii, integrase inhibitors.
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the B cell compartment persists despite stable virus control achieved through ART in 
HIV-infected children. Additionally, the present study demonstrates the potential utility 
of transcriptional evaluation of RM B cells before vaccination for identifying predictive 
correlates of vaccine responses in this population.

Keywords: vaccinomics, systems biology, B cells, pediatric hiV, transcriptomics, h1n1, B cell receptor, influenza 
vaccination

inTrODUcTiOn

HIV-infected patients have a lower ability to induce and maintain 
an effective response to routine vaccinations due to the depletion 
of central memory CD4 T cells, particularly T follicular helper 
cells, and perturbation of the B cell compartment with reduced 
resting memory (RM) B cells (1–4). Antiretroviral therapy (ART) 
can restore the quantitative loss of RM B cells in HIV-infected 
children (5, 6). However, a suboptimal antibody response against 
infection and vaccination may persist, suggesting a qualitative 
impairment of B  cells. Indeed, a sizeable proportion of HIV-
infected children require booster immunizations to provide 
adequate protection usually achieved by routine vaccinations in 
healthy children (7–9). Additionally, children with apparently 
similar clinical and immunological characteristics can vary in 
adequacy of responsiveness to infection and/or vaccination 
bringing into question host factors that are critical for mounting 
an immune response (10, 11). The molecular correlates governing 
effective and long lasting immune responses are still unknown 
(4, 12–14). In recent years, systems biology and vaccinomics 
approaches have attempted to dissect vaccine-induced responses 
in humans (15–19). For influenza, gene expression and robust-
ness of response have been found to differ upon vaccination with 
trivalent-inactivated influenza vaccination (TIV) as compared 
to live attenuated influenza vaccine (20). In addition, advanced 
“omics” and systems biology approaches have led to increased 
knowledge regarding molecular mechanisms underlying adap-
tive immune responses to different types of vaccines (21, 22). In 
most instances however, these data have been derived from RNA 
extracted from whole blood or from the heterogeneous pool of 
peripheral blood mononuclear cells (PBMCs) of healthy volun-
teers (18, 23), thereby limiting interpretation due to dilution of 
gene transcripts derived from individual cell subsets or single 
cells which may be crucial for adaptive immune responses. To 
mitigate this drawback, analysis of purified cell subsets of interest 
is preferred, especially in the context of diseases that alter the 
distribution of specific cell subsets such as HIV infection (24, 25).

In the present study, we have applied basic principles of 
vaccinomics and systems biology, with the aim to dissect gene 
expression differences evident before vaccine administration 

Abbreviations: ART, antiretroviral therapy; BCR, B cell receptor; TIV, trivalent-
inactivated influenza vaccination; LAIV, live attenuated influenza vaccination; 
PBMCs, peripheral blood mononuclear cells; RM, resting memory; AM, activated 
memory; DN, double negative; DEGs, differentially expressed genes; ANOVA, 
analysis of variance; HCs, healthy controls; HAI, hemagglutination inhibition; Ct, 
cycle threshold; Et, expression threshold; PCR, polymerase chain reaction; SPBS, 
sort-purified B cell subsets.

between HIV-infected children under ART with stable virus 
control and their age matched healthy peers. Our analysis of 
B cell gene expression among HIV-infected children differentially 
responding to H1N1 revealed biologically meaningful predictive 
signatures of response to vaccination.

MaTerials anD MeThODs

study subjects and Design
Twenty-three ART-treated HIV-1 vertically infected patients 
(HIV) and 10 healthy age-matched controls [healthy controls 
(HCs)] were enrolled at Bambino Gesù Children’s hospital. 
Participant characteristics are shown in Table 1. Written informed 
consent was obtained from all subjects or parents/guardians of 
all minors for participation in a prospective, open label influenza 
vaccine study (Figure S1A in Supplementary Material). Bambino 
Gesù Children’s hospital ethics committee approved the study. 
Participants were immunized with a single dose of Inactivated 
Influenza Vaccine Trivalent Types A and B (Split Virion) 
VAXIGRIP® (sanofi pasteur). The strains for the 2012–2013 season 
were A/California/7/2009 (H1N1) pdm09-like strain (abbreviated 
as H1N1), A/Victoria/361/2011 (H3N2)-like strain (abbreviated 
as H3N2), and B/Wisconsin/1/2010-like strain (abbreviated as B). 
Study design is outlined in Figure S1A in Supplementary Material. 
PBMCs, sera, and plasma were collected pre (T0) and 21  days 
postvaccination (T1) as previously described (26, 27). Among 
HIV, only patients with good adherence to ART and with history 
of long-term viral control (at least 24 months) were considered 
eligible for the study. No significant differences for ART type nor 
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FigUre 1 | B cell phenotype in HIV and age-matched healthy control (HC). Representative gates (a) and comparisons of B cell percentages (B,c). Two tailed 
Mann–Whitney was used for comparisons. CD20+ cells established the B cell population, and expression of IgD, CD27, CD21, and CD10 was used to define total 
naive (CD27−IgD+), class switched CD27+ memory B cells (CD27+IgD−), double-negative (DN; CD27−IgD−), resting memory (RM), tissue-like (TL), activated memory 
(AM), and naive. FSC, forward scatter; SSC, side scatter. Contingency plot in (c) represents frequency of AM and RM in HIV and HC.
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treatment duration were found between HIV Responders and 
HIV non-responders (NR, Table 1).

hemagglutination inhibition (hai) assay
The HAI assay was performed and analyzed as previously 
described (28) (http://www.gmp-compliance.org/guidemgr/files/ 
021496EN.PDF). The HAI antibody titers were expressed as the 
reciprocal of the highest serum dilution at which hemagglutina-
tion was prevented. Study participants were classified as vaccine 
responders (R) and vaccine NR according to the criteria estab-
lished by Food and Drug Administration Guidance for Industry 
(fda.gov). R were characterized by HAI titer to H1N1 at T1 of 
≥1:40 and ≥4-fold increase compared to baseline.

elispot
Peripheral blood mononuclear cells collected at T0 and T1 from 
HIV and HC were thawed and polyclonally activated in vitro in 
complete RPMI medium (Invitrogen) supplemented with 2.5 µg/
mL CpG type B (Hycult biotech), 20  ng/mL IL-4 (Peprotech), 
and 20 ng/mL IL-21 (ProSpec). Cells were harvested after 5 days 
of culture at 37°C. ELISpot 96-well filtration plates (Millipore) 

were coated with purified H1N1 inactivated virus particles and 
subsequently loaded with 2  ×  105  cells/well. Plates were then 
processed as previously described (2). Response to H1N1 Ag was 
determined using the criteria ≥ or <80 spots/106 PBMCs in R and 
NR, respectively.

cell sorting, rna extraction and Facs 
analysis
Cryopreserved PBMC from T0 and T1 were thawed, stained 
for the following previously titrated surface antibodies: CD10 
(PECy7), CD20 (PE), CD27 (APC), IgD (FITC), CD21 (PECy5), 
and sorted by FACSAriaII (BD Biosciences). Vivid (Pacific Blue) 
was used to determine viability of cells. The gating strategy to 
identify B  cell subsets, comprising total B  cells (live, singlets, 
CD20+), total naive (IgD+CD27−), double negative (DN) 
(IgD−CD27−), RM (IgD−CD27+CD21+), and activated memory 
(AM) (IgD−CD27+CD21−) that were gated on the IgD−CD27+ 
class switched memory are shown in Figure  1 and Figure S1B 
in Supplementary Material. IL-21 receptor on B  cells has been 
analyzed as previously described (11). The purity of sorted cell 
populations was >99%. Five hundred live cells per B cell subset 
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were sorted with the sorting strategy depicted in Figure S1B in 
Supplementary Material in tubes previously loaded with 9 μL of 
CellsDirect one-step polymerase chain reaction (PCR) buffer and 
pooled TaqMan gene expression assays (2× CellsDirect Reaction 
mix 5 μL, Superscript III + Taq polymerase 0.5 μL, 0.2× TaqMan 
primer pool 2.5  μL, Resuspension Buffer 1  μL). After sorting, 
samples were transferred to PCR tubes and reverse transcription 
and target-specific preamplification was performed on a C1000 
Thermal Cycler (BioRad) with the following scheme (50°C for 
20 min, 95°C for 2 min, 95°C for 15 s, 60°C for 4 min, last two 
steps repeated for 18 cycles). Resulting cDNA was stored at 
−20°C until further analysis.

Multiplexed rT-Pcr
Previously amplified samples were loaded on a Fluidigm 96.96 
standard chip following manufacturer’s instructions. All primers/ 
probes used for the gene mix are TaqMan gene expression assays 
(Table S1 in Supplementary Material) and have been qualified on 
Human PBMCs and lymphocyte subsets following the method 
previously described (29). Gene selection was made according 
to previous analysis on Microarray of HIV-infected children 
(data not shown), literature, online gene banks, and biological 
queries. The sorting experiments and BioMark experiments 
were randomized to include a mix of HC, HIV, R, and NR 
patient samples so as not to bias the data toward one group by 
batch effects. Analysis was performed using Fluidigm Real-Time 
PCR Analysis software and “Multiple Chip Run” analysis mode. 
Cycle threshold values (Ct) were corrected according to the 
number of cells sorted if less than 500 according to the following 
calculation: Y/X = 67.5/500 (where X = actual number of cells 
sorted and Y  =  cDNA equivalent loaded onto BioMark chip). 
The dilution factor (n) was then calculated as n  =  67.5/Y and 
log2(n) was subtracted from the Ct value to obtain Corrected 
Ct (cCt). Expression threshold (Et) values were calculated using 
the formula: Et = 40 − cCT, and Et was used for all downstream 
analysis. To verify consistency between individual BioMark 
runs, Et variance in B cells was calculated on the full set of genes. 
Housekeeping genes (GAPDH, CD74) included in our panel 
showed a low variation (<0.1 score) across all samples in both 
PBMCs and sorted B cell subsets (not shown).

enzyme-linked immunosorbent assay 
(elisa)
Plasma BAFF titers were measured as previously described (30). 
Briefly, plasma samples were diluted 1:1 and run in duplicate 
with 50 μL/well added to ELISA plates for human BAFF (R&D 
Systems).

Bioinformatics and statistical analysis
Data were analyzed using Fluidigm SingulaR (SingulaR analysis 
toolset 3.0) package loaded on R (software R 3.0.2 GUI 1.62). 
We performed outlier identification analysis following manu-
facturer’s instructions (Singular Analysis Toolset User Guide) 
on the whole dataset by cell subset and removed outliers from 
subsequent analysis. ANOVA was used to identify differentially 
expressed genes (DEGs), and interplay between cell subsets or 

patient groups was assessed through fold increase of the aver-
ages. Inter-individual differences and outliers were analyzed by 
SingulaR. The “mixOmics” package (Omics data integration 
project) for R was used as previously described (31). Pearson 
or Spearman correlation plots were generated with Prism 6.0 
(GraphPad) after performing kolmogorov-smirnov normality 
test to determine distribution of the data. Statistical differences 
between postvaccination (T1) and prevaccination (T0) gene 
expression were determined by Wilcoxon matched paired test, 
and volcano plot was generated in Prism 6.0.

resUlTs

Perturbed gene expression in Memory  
B cells Persists in hiV-infected children 
Despite effective arT and normal B cell 
Frequency
In order to characterize the B  cell compartment of vertically 
HIV-infected children under ART and stable viral control, we 
assessed frequencies of total B  cells and B  cell subsets by flow 
cytometry. No differences in frequencies were found between 
HIV-infected and HC groups (Figures 1B,C).

To evaluate the B  cell compartment at the transcriptional 
level, we performed multiplexed RT-PCR of a panel of 96 genes 
(Table S1 in Supplementary Material) by Fluidigm Biomark™ in 
purified B cells from prevaccination samples. Principal compo-
nent analysis (PCA) and hierarchical cluster analysis confirmed 
expected heterogeneity between memory subsets (AM and RM), 
and IgD+CD27− (total naive) and DN subsets in HC and HIV 
(Figures S2A and S3 in Supplementary Material). The greatest 
transcriptional variation was found between RM and the other 
three subsets in both HIV and HC participants, especially 
between RM and AM (77 DEGs in HIV and 23 DEGs in HC) 
marked by overall lower gene expression in RM (Figure S2B in 
Supplementary Material).

As shown in Figure S2B in Supplementary Material, all 23 
DEGs identified by the comparison of RM to AM transcripts in 
HC are also present in HIV-infected individuals. To better under-
stand the biological context of genes identified by differential 
expression analysis between RM and AM, we performed gene set 
enrichment analysis (GSEA) of preranked gene lists using pub-
lished blood transcription modules as gene sets (32). These genes 
are mainly involved in regulation of lymphocyte activation and 
leukocyte proliferation (CD28, PILRB, FOXO3, CD38, STAT5A, 
ABCB1, CD40L), suggesting common intrinsic gene expression 
patterns characterizing AM in both HIV and HC. However, 54 
additional DEGs were identified in the HIV-infected group when 
comparing gene transcripts present in RM and AM. These genes 
include additional immune activation and lymphocyte prolifera-
tion genes (CD86, CAV1, CAMK4, TNFSF13, BTLA, MTOR) as 
well as genes involved in the inflammatory response (CYBB, 
NOD2, MYD88, IL10, CCR2), type I Interferon signaling (IFIT2, 
MX1, STAT1) and response to virus (APOBEC3G, BST2, TRIM 5),  
all with significantly higher expression in AM compared to RM. 
Overall, the lower gene expression found in RM compared to 
AM may suggest that they are in a quiescent phase.
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FigUre 2 | HIV present higher expression of genes involved in immuneactivation and inflammation in activated memory (AM) B cells despite effective antiretroviral 
therapy (ART) and long-term viral suppression. Graphs in panels (a,B) show comparisons in gene expression between healthy control (HC) and HIV. (a) Spider plot 
shows number of differentially expressed genes (DEGs) for all the subsets and total peripheral blood mononuclear cells (PBMCs). Box plots in panel (B) show gene 
expression averages from DEGS resulting in AM between HIV and HC (gene ranking defined by fold change). In this figure, p-values resulting from ANOVA analysis 
are shown. Color-labeled genes are defined according gene set enrichment analysis (performed by genemania.org) as described in the legend.
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Next, we compared gene expression of each sorted B  cell 
subset between HIV and HC to evaluate persistent defects in 
HIV infection despite viral control. Our results show that AM 
B cells clearly contrasted with 28 DEGs between HIV and HC 
(Figure 2A). Indeed, in this specific subset, already shown to 
dominate the HIV specific immune response in chronically 
infected adults (24), the DEGs showed higher expression in HIV 
compared to HC. Interestingly, this was not the case in PBMC 
and other sorted B  cell subsets where few DEGs were identi-
fied in comparisons between HIV and HC: PBMC (5 DEGs), 
total B cells (0 DEGs), DN (2 DEGs), RM (2 DEGs), and total 
naive B cells (3 DEGs) (Figure 2A). GSEA analysis showed that 
genes expressed at higher levels in HIV compared to HC were 
mainly involved in inflammatory response and immune activa-
tion (NOD2, IL2RA, SOCS1, IKBKG, CD69, CYBB, MYD88) 
(Figure 2B; Figure S4 in Supplementary Material). Enrichment 
of NOD2 (fivefold) and IL2RA (fourfold) was found in AM 
from HIV compared to HC. NOD2 is mainly involved in signal 
transduction and activation of nuclear factor kappa-B during 
inflammatory responses, and the IL2RA is part of the IL-2 recep-
tor complex and is involved in activation and proliferation of the 
cell after an external stimulus. Other genes involved in response 
to HIV entry (APOBEC3G, TRIM5) and positive regulation of 

B  cell-mediated immunity (BTK, TNSF13) were also higher 
in AM of HIV compared to HC, suggesting that underlying 
activation in this cell subset persists despite effective ART and 
long-term viral control.

B cell gene expression Profiles in  
hiV-infected children with Differing 
response to h1n1 Vaccine antigen
To determine how phenotype and transcriptional data associated 
with the ability of enrolled participants to respond to TIV, we 
applied two selection criteria (serology and Elispot) for separating 
study participants into responders (R) and NR (Figure 3A–C). 
The HIV-infected group contained approximately equal numbers 
of participants identified as R and NR, while all participants in the 
HC group were characterized as R. In agreement with our previ-
ous report (4), we found higher frequencies of IgD−CD27− (DN) 
in NR compared to HC (Figure S5A in Supplementary Material). 
We also observed similar frequencies of class switched CD27+ 
memory B  cells (CD19+CD27+IgD−) among the groups (HC, 
NR, and R) (Figure S5A in Supplementary Material); however, 
AM were significantly higher in NR compared to both R and HC 
(Figure S5B in Supplementary Material).
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FigUre 3 | H1N1 response after trivalent inactivated influenza in HIV and perturbation of the memory compartment among non-responders. (a) The flow chart 
describes the criteria of selection used to define responders and non-responders to trivalent-inactivated influenza vaccination (TIV) among HIV-infected children.  
As a first criteria of selection, all patients were selected according to the fold increase of H1N1 hemagglutination inhibition (HAI) titer. Patients responding or not 
responding to the first selection criteria were further selected according to H1N1 ELISpot response. Selected healthy donors responded to the vaccination and met 
both criteria of selection. Representative ELISpot assay (B) and scatter dot plot (c) show ELISpot data for H1N1.
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At a transcriptional level, intersubset analysis comparing 
AM and RM revealed fewer DEGs in R than NR due to overall 
higher gene expression in the RM subset from R (Figure S6A in 
Supplementary Material). We further noted that although most 
of the DEGs in the total HIV group were present in the com-
parison between NR and HC (47 DEGs) (Figure S6A and Table 
S2 in Supplementary Material), only 20 additional DEGs were 
identified between HIV R and HC (AM vs. RM).

Next, we performed GSEA on DEGs within AM from com-
parisons between HIV-infected participants (both R and NR 
separately) and HC. This analysis showed enriched pathways in 
positive regulation of apoptotic process (FAS, BAX, PILRB), B cell 
activation, and Fc receptor signaling (BATF, FYN, PLCG1, CD27, 
CD28) in HIV (Figures S6B,C and Table S3 in Supplementary 
Material). Collectively, gene expression data from AM B  cells 
demonstrate that this subset, which has been shown to accu-
mulate in individuals with HIV infection (14, 33), displays a 
distinct transcription profile compared to HC independent of 
TIV response.

Distinct Prevaccination gene expression 
Patterns in rM from hiV-infected children 
responding to h1n1
Our analysis of RM identified 25 genes that were differentially 
expressed between NR and R in HIV participants prior to vac-
cination with TIV (Figure 4A). RM from NR exhibited overall 
lower gene expression compared to HC and R. DEGs from this 
analysis, which were expressed higher in R, are directly involved 
in regulation of the adaptive immune response through somatic 

recombination from the immunoglobulin superfamily domain 
[TNFSF13(APRIL), BTK], leukocyte activation and BCR signal-
ing pathways (MTOR, FYN, CD86). As shown in Figure  4B, 
genes involved in the JAK/STAT signaling cascade (STAT4, IL6R, 
IFNAR) and the closely related type I interferon response (IFNAR2, 
MX1) were higher in R. In addition, PRDM1 (BLIMP1), able to 
induce B cell differentiation into plasma cells after encountering 
Ag (34), was higher in RM of R compared to NR. Collectively, 
these results show that the RM B cell subset, crucial for potent and 
specific adaptive immune responses, exhibits a distinct prevac-
cination transcriptional profile in HIV-infected participants who 
will mount an effective response to H1N1.

The gene set found to be different between NR and R was 
further analyzed for differences between pre vaccination (T0) 
and post vaccination (T1) gene expression in RM. Paired analysis 
revealed that PRDM1 (BLIMP1) was significantly reduced at 
T1 when compared to T0 in HIV (p  =  0.0039, median differ-
ence  =  −7.52) (Figure S7A in Supplementary Material). This 
longitudinal reduction was strongly confirmed in R with all R 
showing a reduction of PRDM1 at T1 (p = 0.0001, median differ-
ence = −8.9), whereas significance was lost when only NR were 
taken into account (Figure S7B in Supplementary Material).

To further dissect the relationship of clinical (i.e., serological) 
markers of response to H1N1 and gene expression patterns, we 
performed pairwise correlation analysis using the two datasets. We 
confirmed the findings from differential gene expression analysis 
of prevaccination RM and found a positive correlation of BTK 
expression in RM at T0 and H1N1 seroconversion (HAI H1N1 
Titer T1/T0) (Figure 4C) and H1N1 ELIspot at T1 (Figure 4D). 
Additional genes actively involved in proliferation and lymphocyte 
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FigUre 4 | Prevaccination gene signatures in RM B cell subset discriminate HIV-infected R and non-responder (NR). (a) Spider plot shows number of differentially 
expressed genes (DEGs) for all the subsets and total peripheral blood mononuclear cells (PBMCs). (B) Heatmap shows gene expression in R and NR. Colored 
genes’ names refer to gene set enrichment analysis (GSEA) legend. In panels (c,D), correlation between gene expression in resting memory and H1N1-
seroconversion (c) and ELISpot at T1 (D) are shown. p and r values show results from correlation analyses (Pearson or Spearman tests for parametric and 
non-parametric data, respectively).
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activation correlated with vaccine response in terms of H1N1 
seroconversion (CD69, CD86) and H1N1 ELISpot at T1 (CD69). 
Interestingly, genes involved in inhibition of the apoptotic process 
(LIGHT, BCL2) showed positive correlations with H1N1 ELISpot 
at T1. Overall, these results demonstrate that the memory B cell 
compartment is highly impacted by HIV infection and suggest 
that an activated profile of specific genes in RM is required to 
maintain a normal adaptive response in HIV-infected patients.

We further asked whether gene expression analysis was cor-
related to measurements of plasma biomarkers or cell surface 
molecule expression encoded by the corresponding genes. To do 
so, we correlated gene expression data with plasma levels of BAFF 
(B cell activating factor) and with IL-21R+ B cell frequency, two 
molecules already shown to be involved in the immune response 

against H1N1 after vaccination (4, 30). Interestingly, TNFSF13B 
(BAFF) gene expression in RM was positively correlated with 
plasma BAFF levels at the time of vaccination (Figures S8A,C in 
Supplementary Material). Further, gene expression of IL21R in 
sorted RM was positively correlated with the expression of IL-21R 
as analyzed by flow cytometry (Figures S8B,D in Supplementary 
Material). These data show that transcriptional data may provide 
a functional correlate in specific molecules involved in the B cell 
memory response and maintenance over time.

DiscUssiOn

This study represents the first evaluation of gene expression pat-
terns in B  cell subsets, total B  cells and PBMCs in the field of 
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pediatric HIV infection and in the context of immune responses 
to H1N1 antigen post-TIV. In the field of vaccinomics, systems 
biology tools have lately generated exciting data revealing 
molecular mechanisms of immunity induced by vaccination and 
correlates of protection in order to predict the vaccine efficacy in 
healthy adults (35, 36). However, as recently shown, the influence 
of age on gene expression patterns should be taken into account 
when interpreting systems biology data (37). Additionally, gene 
signatures identified in healthy adults and in the heterogeneous 
pool of PBMCs (38, 39) are not directly applicable to pediatric 
studies (40), and most likely not even in patients affected by 
chronic conditions such as HIV infection (41). Therefore, we 
believe that gene expression patterns identified in specific cell 
subsets may be crucial to investigate the dynamic of vaccine res-
ponse in HIV-infected children.

In the present study, the analysis of gene expression from 
purified B  cell subsets showed that perturbations in memory 
B  cells persist in HIV-infected children despite stable and 
long-term virological control. Our results suggest that in these 
patients, the recovery achieved in overall B  cell frequencies 
is not accompanied by recovery of gene expression and B  cell 
function. We identified clear-cut differences in gene signatures 
between AM B cells of HIV-infected children and their healthy 
peers. B cell subsets between study groups were skewed in AM of 
HIV-infected children toward hyperexpression of genes involved 
in immune exhaustion/inflammation (CYBB, MYD88, NOD2, 
IL2RA) and apoptosis (SOCS1, RUNX3). The immune activation 
and exhaustion pattern, hereby confirmed at a transcriptional 
level in this particular subset of B cells, may play a key role in 
the “inflamm-aging” process which leaves ART-treated HIV-
infected patients vulnerable to increased risk of non-AIDS 
defining comorbidities such as malignancies and cardiovascular 
diseases (42, 43). Indeed, despite the advent of ART which has 
dramatically increased life expectancy, non-AIDS defining 
malignancies are still increasing in ART-treated and virologi-
cally controlled HIV-infected children (44–46). The AM B cell 
subset was previously described to be enriched in HIV (47), to be 
prone to functional “exhaustion,” and to dominate HIV-specific 
responses (24). Furthermore, it has been recently reported in 
adults that signs of chronic inflammation persist over time even 
when treatment is started during acute infection (48). It is still 
unknown whether antiretroviral regimens may differentially 
impact B cell gene transcriptional patterns. Although in the pre-
sent study, no differences in terms of ART regimen were found 
between the study groups (responders and not responders), these 
specific effects should be addressed in future investigations and 
in larger cohorts. Other differences between ART-treated HIV 
and uninfected children have emerged through comparison 
of B  cell subsets within participant groups (see Figure S2B in 
Supplementary Material). However, we believe that transcrip-
tional analysis of rare and still biologically ill-expanded cell 
subsets, such as DN and AM (47, 49), would benefit more from 
an unbiased whole transcriptome approach (e.g., RNA Seq) on 
sorted subsets and after in vitro or in vivo stimulation in order to 
provide more definitive results.

Despite this limitation, in line with our previous report (27) 
and together with findings reported herein, the perturbation of 

the AM subset may underlie mechanisms of premature aging of 
the immune system and impaired ability of HIV-infected patients 
to respond to vaccinations and to maintain a long-term immune 
response (50).

Although limited by the small sample size, gene expres-
sion data from RM B  cells, revealed a 25 gene signature that 
distinguished responders and NR to H1N1. Interestingly, 
these data were derived from samples collected before vaccina-
tion. This observation may suggest that in the context of HIV 
infection, RM B  cells, which provide secondary, potent and 
specific immune responses (51) need to present a specific gene 
expression pattern in order to provide an effective response to 
vaccination. Most of the genes involved in the signature are 
directly involved in the B cell receptor gene signaling cascade 
and in B cell development (APRIL, BTK, PI3K, MTOR, BST2), 
suggesting that a lower expression of these genes may contribute 
to a reduced Ab production upon Ag-recall responses. These 
results are in line with recent data suggesting that modules of 
genes related to B cell and plasmablasts may be crucial indica-
tors and biomarkers of vaccine induced immunogenicity and 
protection (21). Although our study was mainly focused on 
prevaccination signature of response in HIV-infected patients, 
we performed longitudinal analysis to investigate differences 
in gene expression of RM from samples collected at 21  days 
after vaccination (T1) compared to baseline (T0). Expression 
of PRDM1 (BLIMP1), a transcriptional repressor that drives 
terminal differentiation into plasma cells was found higher in 
RM of HIV responders at baseline and was significantly reduced 
at T1 when compared to T0 in HIV and particularly in R (Figure 
S7 in Supplementary Material). Reduction of PRDM1 may 
represent the resting phase of Ag specific B  cells after migra-
tion to the germinal centers, class switch recombination, and 
somatic hypermutation (34, 52). Another consideration is that 
earlier timepoints (24 h to 1 week) after immunization or after 
re-exposure to the Ag will need to be tested in order to confirm 
this hypothesis and define the genes’ activation programs which 
orchestrate memory B cell responses in HIV-infected children. 
Indeed in recent studies early changes of genes enriched in 
B cells, plasmablasts and immunoglobulins after administration 
of the RTS,S/AS01 malaria vaccine in healthy malaria-naive 
adults, were found to be related to vaccine Ab production and 
cell-related immunogenicity (19).

Our data on RM transcriptional signatures revealed that H1N1 
responders expressed higher JAK-STAT cascade genes (MX1, 
IFNAR, STAT4). These findings are consistent with previous 
reports showing that STAT genes are crucial in the differentiation 
of RM B cells induced by IL-21 (53). In this context and following 
a similar experimental approach as this, we recently reported that 
IL21 gene expression from prevaccination purified peripheral  
T follicular helper cells (pTfh) after in  vitro stimulation, is an 
indicator of vaccine response (54).

The present study identified predictive correlates of sero-
conversion following immunization using pair-wise correlation 
analysis between individual gene expression data and serological 
data. In RM, BTK, involved in B  cell development, and CD86, 
a lymphocyte activation gene, showed significant positive cor-
relations with H1N1 seroconversion after vaccination in HIV 
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supporting the hypothesis that gene signatures in purified RM 
B  cells at the time of immunization may predict the ability of 
HIV-infected children to respond to vaccinations. Taken together 
these findings suggest that specific gene signatures in cell subsets 
directly involved in Ab production and response to Ag (pTfh and 
RM B cells) are needed to provide an efficient immune response 
and are altered in HIV infection.

This experimental approach, based on a targeted gene selec-
tion (n = 96) rather than unbiased whole transcriptome sequenc-
ing, illustrates the benefits of analysis of purified cell subsets. The 
increased specificity resulting from this approach is important, 
considering the observed phenotypic alterations in immune cells 
from HIV-infected patients. We believe that these data provide a 
strong rationale to warrant future larger studies that can expand 
and validate these findings.
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FigUre s1 | Experimental design. Cartoon in panel (a) depicts design of the 
study. Peripheral blood mononuclear cells (PBMCs) were collected at the time of 
vaccination (T0) and 21 days after vaccination (T1). At both timepoints, 
hemagglutination inhibition assay (HIA), and H1N1 ELISpot were performed. 
Briefly, in panel (B) PBMCs stored in liquid nitrogen were thawed and stained for 
surface molecules and analyzed by flow cytometry (ARIA II cs). Equal number 
(500 cells) of cells from 5 subsets and total PBMCs from unstimulated samples 
were sorted as depicted in the sorting strategy into tubes previously coated with 
specific polymerase chain reaction (PCR) buffer. Data, collected through Fluidigm 
Real Time PCR analysis software was then analyzed through Fluidigm SingulaR 
(SingulaR analysis toolset 3.0) package, loaded on R (software R 3.0.2 GUI 
1.62). Data were later used for mixOmics on R (mixOmics package) and for gene 
set enrichment analysis (GSEA).

FigUre s2 | Gene expression patterns of memory B cell subsets rather than 
B cell frequencies differentiates virally controlled HIV-infected children from their 
healthy peers. (a) Principal component analysis (PCA) shows segregation 
among the four different B cell subsets in healthy controls (HC) and HIV.  
JMP©, SAS® has been used to produce the PCA. (B) Venn diagram shows 
differentially expressed genes (DEGs) found when gene expression of activated 
memory (AM) and resting memory (RM) are compared between HIV and HC. 
Only ANOVA analyses with a p value < 0.05 are shown. Genes marked with the 
asterisk show p values ≤ 0.01. All 23 DEGs found in HC were overlapping in 
HIV (light gray box). 54 additional DEGs were found in HIV only (dark gray box).

FigUre s3 | Differential inter subset analysis. Heatmap of intersubset analysis in 
healthy controls (HC) (a) HIV (B), R (c), and NR (D). Heatmap analyses were 
generated by singular analysis toolset after identification and removal of outliers.

FigUre s4 | Gene set enrichment analysis from differentially expressed genes 
resulting from activated memory in HIV vs. healthy controls (HC). Gene Set 
Enrichment Analysis in the graph was generated by genemania cytoscape app 
(genemania.org).

FigUre s5 | Scatter dot plot in panel (a) shows frequencies of total B cells (live, 
CD10−, CD20+); and among B cells: double negative (CD27−, IgD−), total naive 
(CD27−, IgD+), class switched CD27+ memory B cells (CD27+, IgD−), tissue like 
(CD27−, IgD−, CD21−). In panel (B) activated memory (CD27+, IgD−, CD21−) and 
resting memory (CD27+, IgD−, CD21+) (two tailed Mann–Whitney test for 
comparisons) are shown.

FigUre s6 | Activated memory (AM) vs. resting memory (RM) differentially 
expressed genes (DEGs) in healthy controls (HC), R and NR. Venn Diagram in panel 
(a) shows DEGs found when gene expression of AM and RM are compared 
between HIV R, HIV NR, and HC. Only ANOVA analysis with a p value < 0.05 are 
shown. (B,c) gene set enrichment analysis of DEGs derived from activated memory 
vs. resting memory of HIV NR vs. HC (B) and HIV R vs. HC (c) are shown.

FigUre s7 | Post vaccination (T1) PRDM1 (BLIMP1) gene expression is 
reduced in resting memory (RM) of HIV-infected children compared to baseline 
(T0). In panel (a), volcano plot shows differences in gene expression between  
T1 and T0 in selected genes from sorted RM. In panel (B) paired analysis in  
R (green) and NR (red) of PRDM1 are shown. P-Values and median differences 
derive from Wilcoxon paired t test performed by graphpad (prism 6.0).

FigUre s8 | IL21R and BAFF (TNFSF13B) gene expression in resting memory 
(RM) correlates with surface molecules and plasma levels. In panel (a) heatmap 
analysis shows r values resulting from pairwise Spearman correlations between 
the aforementioned observations. In panels (B–D), correlation dot plots of the 
afore mentioned analysis are shown. In the graph gene expression resulting from 
RM is shown.

TaBle s1 | The full list of genes, alias names and assay codes used for multiplexed 
principal component analysis are shown in the table.
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HIV infection leads to severe B cell dysfunction, which manifests as impaired humoral 
immune response to infection and vaccinations and is not completely reversed by 
otherwise effective antiretroviral therapy (ART). Despite its inability to correct HIV-
induced B cell dysfunction, ART has led to significantly increased lifespans in people 
living with HIV/AIDS. This has in turn led to escalating prevalence of non-AIDS com-
plications in aging HIV-infected individuals, including malignancies, cardiovascular 
disease, bone disease, and other end-organ damage. These complications, typically 
associated with aging, are a significant cause of morbidity and mortality and occur 
significantly earlier in HIV-infected individuals. Understanding the pathophysiology 
of these comorbidities and delineating clinical management strategies and potential 
cures is gaining in importance. Bone loss and osteoporosis, which lead to increase 
in fragility fracture prevalence, have in recent years emerged as important non-AIDS 
comorbidities in patients with chronic HIV infection. Interestingly, ART exacerbates 
bone loss, particularly within the first couple of years following initiation. The mech-
anisms underlying HIV-induced bone loss are multifactorial and complicated by the 
fact that HIV infection is linked to multiple risk factors for osteoporosis and fracture, 
but a very interesting role for B cells in HIV-induced bone loss has recently emerged. 
Although best known for their important antibody-producing capabilities, B  cells 
also produce two cytokines critical for bone metabolism: the key osteoclastogenic 
cytokine receptor activator of NF-κB ligand (RANKL) and its physiological inhibitor 
osteoprotegerin (OPG). Dysregulated B  cell production of OPG and RANKL was 
shown to be a major contributor to increased bone loss and fracture risk in animal 
models and HIV-infected humans. This review will summarize our current knowledge 
of the role of the OPG/RANK–RANKL pathway in B cells in health and disease, and 
the contribution of B cells to HIV-induced bone loss. Data from mouse studies indi-
cate that RANKL and OPG may also play a role in B cell function and the implications 
of these findings for human B cell biology, as well as therapeutic strategies targeting 
the OPG/RANK–RANKL pathway, will be discussed.
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FiGuRe 1 | B cells and the OPG/RANK-RANKL pathway at the intersection 
of the immune, skeletal, and vascular organ systems. B cells mediate 
biological processes in health and disease via the OPG/RANK–RANKL 
pathway in three major organ systems in humans: the immune, skeletal, and 
vascular systems. The extensive intertwining of the immune and skeletal 
systems has given rise to a whole new field of study called osteoimmunology; 
some major pathologies implicating B cells and the OPG/RANK–RANKL 
pathway are highlighted in red and include osteoporosis and periodontal 
disease in the skeletal system, cardiovascular disease (CVD) in the vascular 
system, and HIV/comorbidities (bone loss and CVD) in the immune system.
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iNTRODuCTiON

Rising incidences of bone loss in the form of low bone mineral 
density (BMD), osteopenia, and osteoporosis, and the resulting 
increased risk of fracture have over the past decade emerged 
as important non-AIDS comorbidities affecting HIV-infected 
individuals (1–6). Successful antiretroviral therapy (ART) over 
the past couple of decades has been instrumental in significantly 
extending the life expectancies of HIV-infected individuals 
to levels comparable to those of the general population (7). A 
significant proportion of people currently living with HIV in 
Europe and North America are over the age of 50 (8–10), and 
it is estimated that by 2030 as many as >70% of HIV-positive 
individuals will fall within this demographic. Similar to car-
diovascular, liver and chronic kidney disease, and other comor-
bidities, bone loss occurs earlier and at a higher prevalence in 
HIV-positive individuals than in the HIV negative population 
(1, 8, 11). This raises concerns of a potential impending epidemic 
of fragility fractures and other age-associated comorbidities in 
this population (8, 12).

The underlying mechanisms of HIV-associated bone loss 
are multifactorial, given that most of the traditional risk factors 
for bone loss including low body mass index (BMI), older age, 
tobacco use, metabolic diseases, alcohol, and substance abuse 
are more prevalent in the HIV-infected population (10, 13). 
HIV infection is now however clearly established as one of the 
independent risk factors for bone loss (11, 14, 15), driven by 
the prevalence of HIV-associated risk factors including chronic 
inflammation, co-infection with hepatitis B or C, and para-
doxically, ART (8, 10, 13). More recently, osteoimmunology has 
revealed the prominent role the immune system plays in bone 
metabolism (16) and consequently revealed that HIV-induced 
immune dysfunction is one of the most important contributors 
to bone loss.

Osteoimmunology, a term originally coined to describe 
studies involving the interface between the immune and skeletal 
systems (17), has been instrumental in our understanding of 
the numerous ways both organ systems are intertwined. It is 
now known that in various inflammatory pathological condi-
tions characterized by bone loss, including periodontal disease 
(PD) and rheumatoid arthritis (RA), both cellular and soluble 
immune effectors can contribute to bone loss (18, 19). T  cells 
are major contributors to bone loss in RA (20) and PD (21, 22) 
but their role in HIV-induced bone loss has not been elucidated. 
Emerging evidence now shows that B cells play an important role 
in bone biology in health and disease (23–25) and HIV-induced 
B cell dysfunction significantly contributes to HIV-induced bone 
loss (26).

Bone homeostasis, which is essential for maintaining skeletal 
integrity and strength, is regulated by a balance of bone forma-
tion by osteoblasts and resorption by osteoclasts and disruption 
of this balance results in bone disease (18, 27, 28). Osteoclasts 
are generated in a process known as osteoclastogenesis, which is 
driven by the key osteoclastogenic cytokine receptor activator of 
NF-κB ligand (RANKL). Osteoclasts originate from cells of the 
myeloid lineage, which in the presence of M-CSF and RANKL 
differentiate into receptor activator of NF-κB (RANK)-expressing 

pre-osteoclasts which proliferate and fuse to form giant multinu-
cleated osteoclasts capable of resorbing bone (15, 29).

Excessive osteoclast activity, as occurs in osteoporosis, results 
in loss of bone mass and increased susceptibility to fracture  
(12, 28). The effects of B and T  cells on bone are mediated by 
several key cytokine regulators of bone metabolism (11, 18), 
including the inflammatory cytokines tumor necrosis factor-α 
(TNF-α) and interferon-γ, which have been implicated in bone 
loss in RA, periodontitis, postmenopausal osteoporosis, and HIV 
(30). Most importantly, RANKL and OPG (18) play important 
roles in both organ systems and perfectly illustrate the intersec-
tion of bone biology and immunity. The OPG/RANK–RANKL 
pathway also mediates physiological processes in the vascular 
system, thus intersecting with the skeletal and immune system 
at this axis (Figure 1).

This review will summarize our current knowledge of the role 
of the OPG/RANK–RANKL pathway in B  cells in health and 
disease, and the contribution of B  cells to HIV-induced bone 
loss. Data from mouse studies indicate that RANKL and OPG 
may also play a role in B cell function and the implications of 
these findings for human B cell biology as well as therapeutic 
strategies targeting the OPG/RANK–RANKL pathway will be 
discussed.

THe OPG/RANK–RANKL PATHwAY  
AND B CeLLS iN HeALTH

B cells are inextricably linked to bone, from their development 
in the bone marrow to the homing of terminally differentiated 
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plasma cells back to the bone marrow (30, 31) and the bidirectional 
regulation of the skeletal system by B cells (23, 30, 32). Osteoblasts 
and bone marrow stromal cells regulate B lymphopoiesis through 
the production of IL-7, a critical cytokine for the differentiation 
of early-stage B cells in the bone marrow (33, 34). Another major 
interaction between the skeletal system and B  cells revolves 
around the OPG/RANK–RANKL pathway.

B Cells and Osteoprotegerin (OPG)
The identification and characterization of OPG as a humoral 
regulator of bone resorption 20 years ago (35, 36) represents a 
major turning point in our understanding of the physiology of 
bone homeostasis (37, 38). OPG, named for its ability to protect 
bone by inhibiting osteoclast differentiation and activity, is a 
tumor necrosis factor receptor (TNFR) superfamily member 
which lacks transmembrane-spanning sequences and is secreted 
as a soluble protein (35, 36). OPG is the natural circulating inhibi-
tor/decoy receptor of RANKL and can inhibit osteoclastogenesis 
by binding to RANKL, thus preventing bone resorption (35, 37). 
OPG mRNA is expressed by various tissues, including bone, 
brain, lung, heart, and kidney (35, 36). In the immune system, 
OPG is expressed in lymph nodes, B  cells, and dendritic cells 
(DCs) and ligation of CD40 upregulates its expression (39).

Osteoblasts and their precursors were previously considered 
to be the primary source of OPG in the bone marrow (40, 41) 
but B lineage cells are now known to account for over 60% of 
total bone marrow OPG production (25). B cell knockout (KO) 
mice were osteoporotic and deficient in bone marrow OPG, 
confirming the critical role of B cells in the preservation of bone 
homeostasis and attainment of peak bone mass (25).

Unlike its role in bone homeostasis, the role of OPG in 
B cell function is less well documented. OPG KO mice develop 
severe osteoporosis due to unchecked osteoclastogenesis and 
bone resorption (42, 43). Interestingly, OPG-deficient mice 
also accumulated transitional/immature B cells in their spleens, 
and generated impaired antibody (Ab) responses to a T  cell-
dependent (DNP-KLH) antigen (Ag) challenge, suggesting that 
OPG may regulate B cell maturation and development of efficient 
Ab responses (44).

B Cells and RANKL
The ligand for OPG is identical to a TNFR family member called 
TNF-related activation-induced cytokine or RANKL (37, 45). 
Human RANKL exists in two forms: a cellular, membrane-bound 
form and a soluble form, and both forms were shown to be 
biologically capable of promoting osteoclast formation (46, 47). 
RANKL is also expressed in a variety of tissues, including bone 
marrow and lymphoid tissues (36, 47, 48). RANKL is best known 
for its indispensable role in the complete differentiation of mature 
osteoclasts (36, 37, 47). Unlike OPG, resting B cells have not been 
conclusively shown to produce significant amounts of RANKL, 
but activated B cells are an important source (23), particularly in 
inflammatory disease states.

B Cells and RANK
The receptor for RANKL, RANK, was initially identified on DCs 
(48) and later discovered to be expressed on preosteoclastic cells 

(37, 46, 49, 50) and B cells (39, 51). The binding of RANKL to 
RANK stimulates osteoclastogenesis, resulting in bone-resorbing 
osteoclasts (47).

Lack of functional RANK in both humans and mice results 
in osteopetrosis due to the absence of osteoclasts (19, 49, 52). 
Mice deficient in RANK had defects in B cell development which 
resulted in reduced numbers of mature B cells in the periphery 
(49). Humans with mutations in RANK also had B cell defects 
including hypogammaglobulinemia and impaired Ag-specific Ab 
responses (52).

THe OPG/RANK–RANKL PATHwAY  
AND B CeLLS iN NON-Hiv DiSeASe

Osteoprotegerin, RANK, and RANKL are produced by a wide 
variety of cells and tissues in three major organ systems: the 
vascular, immune, and skeletal systems and are thus implicated 
in the pathogenesis of various diseases in these organs (15, 
38) (Figure  1). Although best known for its involvement in 
the pathogenesis of osteoporosis and other bone diseases such 
as Paget’s disease of bone (53–55) and PD (38, 56), the OPG/
RANK–RANKL pathway has also been implicated in other 
diseases including RA (14, 38, 57) and CVD (58–60).

Rheumatoid Arthritis
The bone and joint destruction that occurs in the autoimmune 
disorder RA results from increased RANKL-induced osteoclas-
tic bone resorption in the synovial joints (57, 61, 62). Several 
immune cells have been identified as the sources of RANKL in 
the arthritic synovium, including Th17 cells (63), macrophages, 
DCs (57), and activated B  cells (64). Targeted B  cell depletion 
therapy for RA using the anti-CD20 Ab rituximab suggests that 
B cells play a critical role in RA-associated joint damage (64–66). 
B cells were shown to contribute to RA pathogenesis through their 
Ag-presenting function, autoantibody production, and cytokine 
secretion (66, 67). A link between B cells and joint destruction in 
RA has been confirmed by studies demonstrating that Rituximab 
significantly reduces RANKL levels in the synovium (68, 69). 
This link has recently been confirmed by studies identifying 
pro-inflammatory B  cells as major sources of RANKL in RA  
(64, 66). These findings highlight the importance of Ab-independent 
(cytokine-producing) B cell functions in the pathogenesis of dis-
ease and make a case for the therapeutic potential of targeting the 
B cell OPG/RANK–RANKL pathway in RA and other diseases.

In contrast to RANKL, multiple studies have demonstrated 
that serum levels of OPG are elevated in RA, resulting in a 
decreased RANKL/OPG ratio (70, 71). Elevated OPG levels were 
independently associated with RA disease severity and CVD, and 
it has been suggested that OPG concentration could be used as a 
predictive marker for assessing RA-associated CVD risk (72, 73). 
Data on the role of B cell-produced OPG in the pathophysiology 
of RA are however lacking.

Cardiovascular Disease
A role for the OPG/RANK–RANKL pathway in the pathogenesis 
of vascular calcification and CVDs has been established for over 
a decade now. Both OPG and RANKL have been detected in 
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atherosclerotic plaques (74) and an increased RANKL/OPG ratio 
is associated with atherosclerosis (59). Transgenic expression of 
OPG in OPG KO mice prevented the development of arterial 
calcification but exogenous OPG administration did not reverse 
existing calcification, suggesting that similar to bone, OPG is a 
protective factor in the cardiovascular system (75, 76). Results in 
human studies however seem to conflict with the animal stud-
ies, with higher OPG levels consistently associated with CVD 
incidence (76, 77). The contribution of B cells to OPG/RANK–
RANKL-linked CVD has however not been clearly elucidated. 
Low-density lipoprotein (LDL) receptor KO mice (LDLR−/−) were 
B  cell deficient and developed atherosclerosis, suggesting that 
B  cells and/or antibodies are protective against atherosclerosis 
(78); it is conceivable that OPG produced by B cells mediates this 
protective effect.

Bone Diseases
Osteoporosis
Osteoporosis is characterized by loss of bone mass and mineral 
density resulting from an excess of bone resorption by osteo-
clasts relative to bone formation by osteoblasts (18, 27, 28). The 
role of the OPG/RANK–RANKL pathway in the pathogenesis 
of osteoporosis has been well documented and extensively 
reviewed (15, 37, 38, 62); the role of B cells is however still being 
elucidated.

Postmenopausal osteoporosis, the most common form of 
osteoporosis, arises from decreased estrogen levels (62) and was 
shown in both human patients and an animal model to be linked 
to increased RANKL expression by B cells (79). Mice subjected 
to ovariectomy, commonly used as an animal model of estrogen 
deficiency, have increased numbers of B  cells, suggesting that 
B cells may play a role in estrogen-deficiency osteoporosis (79–81). 
Data on the contribution of B cells to ovariectomy-induced bone 
loss is however conflicting. Some studies have demonstrated that 
ovariectomy-induced bone loss occurs independently of mature 
B cells (82) and others show that ovariectomy-induced bone loss 
is linked to RANKL expression on immature B cells (79). Given 
the fact that B cells are able to express RANKL at various stages 
in their differentiation, this raises the possibility that the contri-
bution of B lineage cells to estrogen-deficiency osteoporosis is 
dependent on the differentiation/maturation stage of the B cell. 
Beyond the differentiation stage however, the activation status of 
B cells seems to be a better indicator of their ability to produce 
bone-damaging RANKL (23). This is especially relevant in the 
context of inflammatory diseases like RA, PD, and HIV-induced 
bone loss.

Periodontal Disease
Periodontal diseases are inherited or acquired disorders affect-
ing the supporting structures of the teeth and affect as many as 
50–90% of the world’s population (83). The underlying microbial 
infections were traditionally the focus of majority of the research 
on the pathogenesis of PDs but in recent years the focus has 
shifted to the role of the host response/factors in pathogenesis 
(83, 84). Host immune/inflammatory responses are critical for 
pathogenesis and inflammation (84) and the term PD generally 

refers to inflammation-induced disorders, ranging from the 
mildest form (gingivitis) to the more invasive severe periodontitis 
(83). Unlike gingivitis which is completely reversible by effective 
regular oral hygiene, periodontitis extends deeper into the tissue 
and can result in the permanent loss of the supporting structures 
of the teeth and alveolar bone (83).

One of the microorganisms most commonly implicated in 
PD pathogenesis is Actinobacillus actinomycetemcomitans (Aa), 
which induces RANKL expression on a variety of cell types infil-
trating in PD lesions (84). While the RANKL levels in PD lesions 
are consistently elevated in most clinical studies, some studies 
found lower (22) or unchanged (24) OPG levels in lesions, which 
both resulted in higher RANKL/OPG ratios in periodontitis 
compared to healthy controls (22, 24, 84). Activated B and T cells 
were shown to be the primary source of RANKL in gingival tis-
sues from individuals with periodontitis (24, 85). B cell percent-
ages in chronic PD lesions were associated with disease severity, 
suggesting that B  cells promote PD (86) and interestingly, PD 
lesion-infiltrating B cells in humans were activated transitional 
CD5+ cells (86, 87). Using a rat model, it was also demonstrated 
that B cells contributed to osteoclast formation and periodontal 
bone loss by secreting RANKL following activation by Aa in a 
T cell-independent manner (85).

B CeLLS, THe OPG/RANK–RANKL 
PATHwAYS, AND Hiv-iNDuCeD BONe 
LOSS

With the availability of ever-improving treatment regimens, ART 
is enabling HIV-infected individuals to live longer than ever 
before, but life expectancies of patients remain lower than those 
of the general population (7, 12, 15, 16, 59). Over 33% of people 
currently living with HIV in Europe are >50 years of age and this 
percentage is expected to increase to >70% by 2030 (88); in the 
US, the same demographic is estimated to constitute up to 50% 
of the HIV-positive population (89). This increased longevity is 
however accompanied by earlier occurrence and higher preva-
lence of several non-AIDS end-organ comorbidities including 
cardiovascular and bone diseases (90–92), which in turn imposes 
significant disease burdens on the patients, healthcare systems, 
and society.

As discussed above, under inflammatory conditions, B  cells 
produce higher amounts of RANKL, leading to an increased 
RANKL/OPG ratio, which drives disease progression (26, 29)  
in inflammatory diseases such as RA. HIV infection is associ-
ated with persistent inflammation (93) and the success of 
B  cell-targeted/depleting therapies in reducing inflammation 
in autoimmune disorders such as RA suggest that B  cells may 
contribute to persistent inflammation (94, 95). Given the pivotal 
role this pathway plays in osteoclastogenesis and bone loss, its 
role in B cells and HIV is perfectly illustrated by its contribution 
to inflammation-driven HIV-induced bone loss.

A hallmark of chronic HIV infection is the altered distribu-
tion of subsets in the B cell compartment (93), notably the loss 
of resting memory B cells (26) and the expansion of exhausted/
tissue-like memory B  cells (26, 93, 96). Interestingly, OPG 
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expression was lowest in the HIV-expanded tissue-like memory 
B cell subset, which conversely showed higher RANKL expres-
sion (26) (Figure  2). This tissue-like memory B  cell subset 
was also previously shown to express the inhibitory receptor 
FcRL4 (96), which in RA defined a pro-inflammatory RANKL-
producing B cells subset (66). Taken together, this suggests that 
inflammation does drive B  cell subset RANKL expression in 
HIV infection.

Low BMD increases the risk of fragility fractures and is 
widely prevalent in HIV-infected individuals, with as many as 
67% presenting with osteopenia and ~15% with osteoporosis 
(91). Increased osteopenia and osteoporosis rates translate into 
significantly elevated fracture risk, and studies show that HIV-
infected individuals do indeed suffer more fragility fractures, at 
younger ages, than the general population (1). The ubiquitous 
presence of traditional risk factors for low BMD such as increased 
smoking and low BMI in most HIV-infected cohorts complicates 
efforts to understand and elucidate the mechanisms underlying 

HIV-induced bone loss (11, 26, 97). HIV infection in itself is now 
recognized as a risk factor for bone loss (97).

HIV transgenic rats almost perfectly mimic the clinical 
hallmarks of human HIV-induced bone disease, including pro-
found skeletal damage. Bone loss in this model was driven by 
increased B cell RANKL expression concurrent with decreased 
OPG expression, which in turn resulted in increased RANKL/
OPG ratio and thus osteoclastogenesis and bone loss (98). This 
mechanism of HIV-induced B  cell dysfunction-driven bone 
loss was later confirmed in a clinical study of untreated HIV-
infected individuals where it was demonstrated that increased 
B cell RANKL/OPG was indeed associated with increased bone 
resorption (26). This demonstrated for the first time that the 
OPG/RANK–RANKL pathway is indeed a key pathway utilized 
by B cells to effect skeletal damage in HIV infection. This dem-
onstrates clearly how HIV-induced B cell changes in the immune 
system translate directly into dysfunction and bone loss in the 
skeletal system (Figure 2).
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ReGuLATORY eFFeCTS OF THe OPG/
RANK–RANKL PATHwAY ON B CeLLS 
AND HuMORAL iMMuNe ReSPONSeS

Due to the expression of OPG, RANK, and RANKL on a wide 
variety of immune cell types, the pathway is thought to play an 
important role in immune cell biology. Despite the involvement 
of B cell-expressed OPG and RANKL in the normal function of 
the immune, skeletal, and vascular systems and in the pathogen-
esis of multiple diseases, the effect of these molecules on B cell 
physiology has not been extensively described.

Receptor-activator of NF-κB ligand plays an important role 
in the development of secondary lymphoid organs. RANK- and 
RANKL-deficient mice had poorly developed or completely 
lacked secondary lymphoid tissues including lymph nodes, 
Peyer’s patches, cryptopatches, and spleen (46, 49, 62).

The role of this pathway in B cell function has also been inves-
tigated in a few mouse studies. OPG-deficient mice accumulated 
transitional/immature B  cells in their spleens and generated 
impaired Ab responses to a T  cell-dependent (DNP-KLH) Ag 
challenge, suggesting that OPG may regulate B cell maturation 
and development of efficient Ab responses (44). Conversely, B cell 
development was impaired in RANKL-deficient mice, suggesting 
that OPG regulates B cell development.

In another study (99), OPG was used to treat mice induced to 
develop different types of cellular and humoral immune responses 
through: (1) infection with Mycobacterium bovis Bacillus 
Calmette and Guerin (BCG) followed by OPG-Fc treatment, (2) 
immunization with KLH in Freund’s adjuvant or by i.p. injection 
of a Pneumococcal Vaccine Polyvalent (Pneumovax®23, Merck) 
(3) immunization with Keyhole Limpet Hemocyanin (KLH) 
in vivo followed by OPG-Fc treatment, and (4) In a bid to induce 
contact hypersensitivity, mice were also sensitized with the hap-
ten oxazolone, followed by treatment with OPG-Fc. T and B cells 
were also exposed to OPG in vitro. OPG treatment did not affect 
cell-mediated responses including contact hypersensitivity but 
increased humoral immune responses to KLH and the pneumo-
coccal vaccine. In vitro, OPG modestly stimulated T cells but not 
the proliferation of B cells. These results demonstrated that OPG 
has modest regulatory effects on humoral immune responses to 
certain Ags. The potential impact of the OPG/RANK–RANKL on 
the generation of human humoral immune responses is not clear 
and definitely merits further study.

THeRAPeuTiC STRATeGieS TARGeTiNG 
THe OPG/RANK–RANKL PATHwAY

Although initially described in the context of bone disease, 
the OPG/RANK–RANKL pathway is now known to influence 
normal physiology and pathology in the immune, skeletal, and 
vascular systems. This opens up the potential for a lot of cross 
application of potential therapeutic strategies targeting this 
pathway.

One such strategy involves RANKL inhibition; E. coli-derived 
Fc-OPG showed great promise in phase I trials, causing rapid 
decline in bone turnover markers in postmenopausal women 
(100), also serving as a proof of concept that RANKL blockade 
could meaningfully impact bone turnover in humans (46). 
Perhaps the best known RANKL inhibitor in clinical use to date 
is denosumab, a fully human IgG2 Ab which binds RANKL with 
high affinity and unlike Fc-OPG does not bind to mouse and rat 
RANKL and TRAIL (46). In clinical use, denosumab effectively 
reduces fracture risk by reducing bone resorption and was shown 
to be superior to bisphosphonates in its ability to increase BMD in 
postmenopausal women (46). When used to treat cancer-induced 
bone disease, denosumab effectively reduced levels of bone 
turnover markers in patients with solid tumor (breast, prostate, 
and lung) metastases to bone and prolonged bone metastasis-
free survival and delayed the onset of first metastasis in certain 
prostate cancers (101). Denosumab was also well-tolerated and 
no significant changes in B cell numbers were noted (102, 103). 
The effect of denosumab on B cell function is not fully elucidated; 
in one study investigating its utility as a postmenopausal osteo-
porosis treatment (104), 2/412 women developed transient non-
neutralizing anti-denosumab antibodies, which did not adversely 
affect the skeleton but did appear to alter the effectiveness of the 
drug (104). Due to the wide pattern of expression of RANKL, 
including on lymphocytes, and in the vascular and skeletal 
systems, RANKL inhibition using denosumab could potentially 
increase susceptibility to infections and neoplasias (105), particu-
larly in immunocompromised patients. No significant alterations 
in inflammation and immunity have however been observed in 
preclinical and clinical studies of denosumab, although rare cases 
of severe skin infections of the lower extremities were reported 
(106). To date, no data are available on the use of denosumab in 
HIV infection and the effect of RANKL blockade on humoral 
immune responses in HIV-infected individuals remains to be 
elucidated.

CONCLuSiON

In summary, B  cells are intricately intertwined with the OPG/
RANK–RANKL pathway, plays important roles in the immune, 
skeletal, and vascular systems, and much remains to be discovered 
about the influence of this pathway on human humoral immune 
responses.
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With the goal to design effective HIV vaccines, intensive studies focused on broadly neu-
tralizing antibodies, which arise in a fraction of HIV-infected people. Apart from identifying 
new vulnerability sites in the viral envelope proteins, these studies have shown that a fraction 
of these antibodies are produced by self/poly-reactive B-cells. These findings prompted 
us to revisit the B-cell differentiation and selection process during HIV/SIV infection and to 
consider B-cells as active players possibly shaping the helper T-cell program within germi-
nal centers (GCs). In this context, we paid a particular attention to B-cell-activating factor 
(BAFF), a key cytokine in B-cell development and immune response that is overproduced 
during HIV/SIV infection. As it does in autoimmune diseases, BAFF excess might con-
tribute to the abnormal rescue of self-reactive B-cells at several checkpoints of the B-cell 
development and impair memory B-cell generation and functions. In this review, we first 
point out what is known about the functions of BAFF/a proliferation-inducing ligand and 
their receptors [B-cell maturation, transmembrane activator and CAML interactor (TACI), 
and BAFF-R], in physiological and pathophysiological settings, in mice and humans.  
In particular, we highlight recent results on the previously underappreciated regulatory 
functions of TACI and on the highly regulated production of soluble TACI and BAFF-R 
that act as decoy receptors. In light of recent data on BAFF, TACI, and BAFF-R, we 
then revisit the altered phenotypes and functions of B-cell subsets during the acute and 
chronic phase of HIV/SIV infection. Given the atypical phenotype and reduced functions of 
memory B-cells in HIV/SIV infection, we particularly discuss the GC reaction, a key check-
point where self-reactive B-cells are eliminated and pathogen-specific memory B-cells 
and plasmablasts/cells are generated in physiological settings. Through its capacity to 
differentially bind and process BAFF-R and TACI on GC B-cells and possibly on follicular 
helper T-cells, BAFF appears as a key regulator of the physiological GC reaction. Its local 
excess during HIV/SIV infection could play a key role in B-cell dysregulations.

Keywords: B-cell-activating factor, B-cells, dendritic cells, germinal center, Hiv, memory B-cells, follicular helper 
T-cells, Siv

iNTRODUCTiON

During pathogenic HIV/SIV infection, efficient antibody (Ab) protection hardly develops whereas 
immunoglobulin overproduction, germinal center (GC) hyperplasia (1), and increased recruitment 
of follicular helper T-cells (TFH) into GC occur concurrently from the acute phase of infection (2–6). 
In addition to several reports showing increased proportions of atypical memory B-cells in lymphoid 
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TABle 1 | Phenotype of B-cell subsets and expression of B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) receptors.

B-cell subset Phenotype BAFF/APRil receptor expression Reference

Mouse B1 cells CD19hiSIgMhiSIgDloCD43+CD1dintCD23−CD5+ (B1a) or CD5− (B1b) BAFF-R+TACI+ (45–48)
Early transitional B-cells (T1) CD19+IgMhiCD10+CD24hiCD38hiCD21lo BAFF-R−/loTACI+/− (25, 49, 51, 66–69)
Transitional type-2 B-cells (T2) CD19+SIgMhiSIgDloCD10+CD24hiCD38hiCD21+ BAFF-R+TACI+/−

Marginal zone B-cells CD19+CD20+IgMhiCD21hiSIgD+CD23−CD27+ BAFF-R+TACIhi (short > long isoform) (48, 54–56, 66, 70–75)
Naïve follicular B-cells CD19+CD20+SIgDhiSIgM+CD21+CD23+CD27−CD95− BAFF-RhiTACI−/lo (long isoform) (48, 52–55, 56, 70–74)
Germinal center (GC) B-cells 
centroblasts

CD19+CD20+CD27intBcl6+Ki67+Sig−CD95+CD10+CXCR4+ BAFF-RhiTACIlo (48, 52, 53, 56, 70, 71, 
74, 76, 77)

GC B-cells centrocytes CD19+CD20+CD95+CD10+CD38+CD83+SIgM/A/G+ BAFF-RhiTACI+ (78, 79)
Resting memory CD19+CD20+SIgD−SIgG/A+CD27+CD21+CD95+ BAFF-R+TACIhi (short > long isoform) (48, 69, 72, 73, 80)
Activated memory CD19+CD20hiSIgD−SIgG/A+CD27+CD21loCD95+ BAFF-RintTACI+BCMA+ (68, 81–83)
Tissue-like memory CD19+CD20hiSIgD−SIgG/A+CD27−CD21loCD95+ BAFF-RintTACI+BCMA+

Plasmablasts CD19+CD20loCD21loCD27hiCD38hiCD138lo BAFF-RloTACIloBCMA+ (64, 68, 81)
Plasma cells CD19loCD20−CD27hiCD38+CD138hi BAFF-RloTACIhiBCMAhi (55, 57, 58, 64)
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organs and transitional B-cells in blood (7), recent molecular 
investigations established that a fraction of broadly neutralizing 
Abs (bNAbs) are produced by self/poly-reactive B-cells (8). In 
addition to direct B-cell activation by viral envelope proteins, 
inflammation is thought to play a major role in shaping these 
changes in B-cell phenotype and in virus-specific Ab responses 
(9–12). B-cell-activating factor (BAFF)/a proliferation-inducing 
ligand (APRIL) are instrumental cytokines for B-cell ontogeny 
and humoral responses in physiological settings (13), while 
their overproduction is detrimental in numerous autoimmune 
disorders (14, 15). During HIV/SIV or plasmodium infection, 
increased BAFF levels occur concurrently with expansion of 
atypical memory B-cells and inefficient Ab response (16–19). 
Thus, BAFF was thought to exert detrimental actions on path-
ogen-specific B-cells, and its overexpression has been associated 
with HIV/SIV disease progression (20–22). However, BAFF 
excess favors the expansion of immature-transitional B-cells 
and promotes self-Abs in mice and in patients with autoimmune 
diseases (23–25). Through a similar pathway, BAFF might be 
beneficial in expanding the pool of HIV cross-reactive B-cells, 
a potential source of bNAbs. Therefore, the role of BAFF excess 
in generating HIV/SIV-specific memory B-cells and neutralizing 
Abs needs to be further clarified. In this review, we first sum-
marize what it is known about BAFF/APRIL and their receptors, 
with a special attention to transmembrane activator and CAML 
interactor (TACI), which might act as a key regulator of B-cell 
activation, BAFF-R shedding (26) and possibly self-reactivity.  
We then highlight data obtained in mice, humans, and macaques 
with the aim to better appreciate the role of BAFF and its recep-
tors, BAFF-R and TACI, in HIV/SIV progression and in the 
expansion of HIV/SIV cross-reactive B-cells.

BAFF/APRil AND THeiR ReCePTORS

The BAFF belonging to the tumor necrosis factor (TNF) super-
family (also called BLys) was first described as a key regulator 
of B-cell homeostasis and survival in mice and in humans (13). 
BAFF exerts its effects by binding to three different receptors: 
B-cell maturation (BCMA) (27, 28), TACI (29), and BAFF-R/
BR3 (BLys receptor 3) (30). A highly similar homolog of BAFF 
(called APRIL) (31) also binds TACI and BCMA but not BAFF-R 

(32). APRIL only exists as a soluble form cleaved intracellularly, 
whereas BAFF can be found in both membrane-bound and soluble 
forms. In myeloid cells, BAFF is expressed on the cell surface as a 
membrane-bound form (mBAFF) and can then be released as a 
soluble form after cleavage by furin protease (33–35). Neutrophils 
directly release BAFF and APRIL as soluble cytokines (36, 37), 
whereas plasmacytoid dendritic cells (pDC) are unable to cleave 
mBAFF into its soluble form (19, 38, 39).

Through different expression and affinity for BAFF and APRIL, 
BAFF-R, TACI, and BCMA finely tune B-cell ontogeny and 
immune responses with species specificity (30, 40–44). Functional 
BAFF-R and TACI are expressed in B1 cells (45), and aging 
APRIL-transgenic mice develop B1 lymphoma (46, 47), whereas 
BAFF- and BAFF-R-deficient mice have normal proportions of B1 
cells (48) (Table 1). This indicates that the TACI–APRIL pair likely 
plays a dominant role in murine B1 homeostasis. Absent from 
early transitional B-cells (T1, CD10+CD21lo), BAFF-R expression 
is acquired by transitional type-2 B-cells (T2, CD10+CD21+), and 
deficiency in BAFF-R inhibits B-cell ontogeny beyond the T1/T2  
transition (49). However, this blockade is not absolute, and small 
proportions of mature B-cells are still present in BAFF-R-deficient 
mice and, to a lesser extent, in BAFF-deficient mice that mount 
residual responses to T-dependent (TD) antigens (50, 51). 
Consistently, BAFF- or BAFF-R-deficient mice form rudimentary 
GC in response to TD antigens (52, 53). Absent from naïve and 
memory B-cells, BCMA is dispensable for the survival of mature 
B-cells, spleen architecture, and GC development. Response to 
TD or T-independent (TI) antigens and isotype class switching 
are normal in BCMA-deficient mice (54–56). However, BCMA 
is important for long-term plasma cell biology (55, 57, 58) and 
antigen presentation (59). Upon binding to BCMA, APRIL and, 
to a lesser extent, BAFF promotes the survival of long-lived 
plasma cells in bone marrow (55). BCMA therefore constitutes 
one privileged target for the selective killing of malignant plasma 
cells, such as multiple myeloma cells (60, 61). Consistent with 
the recent description of constitutive BCMA shedding from 
the membrane of plasma cells by a γ-secretase (62), high serum 
BCMA level correlates with disease status and constitutes a 
valuable biomarker in multiple myeloma (63). Moreover, TACI 
expression distinguishes TACIlo from TACIhi myeloma, the latter 
with a signature of plasma cells, which are more dependent on 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABle 2 | Consequences of deficiency in BAFF-R and transmembrane activator and CAML interactor (TACI) in genetically modified mice and common variable 
immunodeficiency (CVID) patients.

Receptor Phenotype Reference

BAFF-R KO mice and A/WySnJ mice Blockade of B-cell development at the T1/T2 transition
Small proportions of marginal zone (MZ) and follicular B-cells
Normal proportions of B1 cells
Rudimentary GC but rapid involution, residual TD response
Impaired class switching

(53, 76)

CVID patients with BAFF-R deficiency No BAFF-R membrane expression
Reduced numbers of mature B-cells, in particular MZ B-cells
Expansion of T2 B-cells in blood
Substantial numbers of naive and memory B-cells
Reduced levels of IgM and IgG but normal IgA levels

(77)

TACI KO mice Normal MZ and B1 cells
Impaired response to TI-2 Ags with low IgM/A levels
Normal IgG levels
Normal TD responses

(48)

B-cell lymphoproliferation and enlarged MZ B-cell pool
Overproduction of Ig in response to TD Ags
Lupus-like autoimmune manifestations in aged mice  
Increased production of self-reactive antibodies

(66, 84)

CVID patients with TACI deficiency No or reduced TACI membrane expression
Impaired NF-κB signaling
Impaired IgA and IgG class switching
Reduced response to TI-2 Ags
B-cell lymphoproliferations, splenomegaly
Increased frequency of autoimmune diseases
Lack of lupus-like symptoms

(56, 70, 71)

TACI KI C76R mice Normal membrane expression of TACI
Impaired NF-κB activation
Increased proportions of MZ and follicular B-cells
Splenomegaly

(74)
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bone marrow signals (64), likely osteoclast-derived BAFF/APRIL 
and IL6 (65). Accordingly, TACIhi myelomas are expected to be 
more responsive to BAFF-related immunotherapies. Based on 
these data in malignant cells, normal circulating plasmablasts are 
thought to be TACIlo in contrast to long-lived plasma cells present 
in bone marrow that would be TACIhi.

TACi: A MUlTiFACeTeD ReCePTOR FOR 
BAFF/APRil iN MiCe AND HUMANS

Conventional and Regulatory Functions  
of TACi in Mice
BAFF-R is expressed by most follicular B-cells whereas TACI is 
absent (or very low) from naïve B-cells but highly present on mar-
ginal zone (MZ) and class-switched memory B-cells (48, 72, 73).  
TACI-deficient mice fail to respond to type-2 TI antigens (TI-2) 
but retain normal TD response (Table 2). However, they have 
reduced serum IgM and IgA levels, but normal IgG levels (48). 
In vitro, Castigli et al. have established that the murine TACI–
APRIL pair is mandatory for IgA class switching and plays a 
dominant role over the BAFF-R–BAFF pair in IgG class switch-
ing (56). In another mouse model, TACI deficiency induces 
hyperplasia, enlarged MZ B-cell pool (66) and lupus-like auto-
immune manifestations in aged mice (84). In agreement with 
TACI controlling exacerbated B-cell activation, knock-in mouse 

carrying a C76R mutation that impairs TACI-induced NF-κB 
activation develops splenomegaly with increased proportions of 
MZ and follicular B-cells (74). So, murine TACI that positively 
controls response to TI-2 antigens and IgA class switching 
can also deliver inhibitory signals that dampen abnormal 
B-cell activation and expansion. In vitro, Figgett et al. recently 
demonstrated that BAFF binding to TACI selectively limits TI 
innate response of TLR4-activated MZ B-cells by promoting 
FAS/FASL-mediated apoptosis (75). This process is thought to 
prevent inappropriate TI B-cell responses such as the expansion 
of self-reactive B-cells, and therefore to safeguard peripheral 
immune tolerance. Thus, membrane TACI controls excessive 
expansion/response of various mouse B-cell subsets.

BAFF-R and TACi in Humans:  
lessons from Patients with Genetic 
immunodeficiency
Spontaneous mutations occurring in individuals or families offer 
the opportunity to compare the biological importance of key 
molecules between mice and humans (Table 2). Studies in two 
patients with common variable immunodeficiency (CVID) car-
rying a homozygous deletion in BAFF-R gene, that precludes its 
membrane expression, confirm the key role of BAFF-R in human 
B-cell development. However, the phenotype of these patients is 
less severely compromised than that of BAFF-R-deficient mice, 
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with significant numbers of circulating memory B-cells and 
normal IgA levels, despite B-cell lymphopenia and low levels of 
circulating IgM and IgG (77).

Similarly, the phenotype of CVID individuals with TACI 
deficiency differs from that of TACI-deficient mice (70, 71). 
These individuals combine Ab-deficiency syndrome, B-cell 
lymphoproliferation, and increased frequency of autoimmune 
manifestations without symptoms of lupus-like disease. Two 
homozygous mutations at positions C104R (the human equiva-
lent of murine C76R) and S144X impair class switching to IgA 
but also to IgG, unlike TACI-deficient mice (71). Whereas TACI 
was expressed on B-cells from all individuals with heterozygous 
mutations (including C104R), its signaling was impaired leading 
to abnormal Ig production in vitro (70). Consistent with data in 
TACI-deficient mice, individuals with TACI deficiency have a 
strongly reduced response to TI-2 antigens with recurrent infec-
tions and more frequently develop splenomegaly. Thus, human 
TACI is mandatory for response to TI-2 antigens and IgA/G 
class switching. Splenomegaly and autoimmune manifestations 
in these patients clearly indicate that TACI also acts as negative 
regulator of B-cell expansion/response in humans.

Moreover, two recent studies evidenced the release of soluble 
TACI and BAFF-R, acting as soluble decoy receptors. Surface 
TACI is constitutively cleaved by ADAM17 from human and 
murine B-cells, producing a homotrimer acting as a soluble 
decoy receptor for BAFF and, to a lesser extent, for APRIL. 
Subsequent cleavage of its remaining membrane-bound 
C-terminal domain by γ −  secretase prevents residual NF-κB 
activation (85). While ADAM17 cleaves BAFF-R from dark 
zone GC B-cells (centroblasts), BAFF-R cleavage by ADAM10, 
which depends on BAFF binding and TACI expression, occurs 
in memory and MZ B-cells as well as in light zone GC B-cells 
(centrocytes) (26). By amplifying BAFF-R cleavage from cen-
trocytes, BAFF excess might impair B-cell selection and high 
affinity Ab maturation. Taken together, these results highlight 
a previously unexpected role for TACI as a key modulator of 
BAFF-mediated responses.

A supplementary level of complexity was introduced by the 
identification of two isoforms of human TACI produced by 
alternative splicing of the unique encoding gene. One isoform 
with two extracellular ligand-binding domains resembles murine 
TACI whereas the second isoform, which contains only one 
binding domain, was referred to as TACI-short by authors (80). 
In vitro studies have established that TACI-short binds APRIL 
and BAFF with higher affinity than the other isoform and that 
its triggering by either ligand leads to a more potent activation 
of canonical NF-κB pathway (86) and plasma cell differentiation 
(80). Consistent with previous data (87), intense NF-κB activation 
downstream TACI-short correlates with enhanced recruitment of 
MyD88. In particular, messengers of both TACI isoforms were 
found in isolated resting memory (RM, CD21+CD27+) and MZ 
B-cells, with TACI-short mRNA being present in higher amounts 
(80). It is therefore possible that the response to BAFF/APRIL 
is finely modulated through binding to TACI trimers containing 
various ratio of each isoform. Mechanisms favoring preferential 
TACI-short expression in vivo remain to be identified but, in vitro, 
TLR9 ligands strongly upregulate it in CD27+ B-cells. To what 

extent each TACI isoform contributes to the biology of memory 
B-cells and long-lived plasma cells remains to be studied. Since 
survival of memory B-cells is less dependent on BAFF in  vivo 
than that of transitional and naïve B-cells, TACI-short expres-
sion might confer them an exceptional responsiveness to limited 
BAFF amounts. Whether TACI-short is released and whether it 
differently modulates BAFF-mediated BAFF-R cleavage on RM 
B-cells should be examined.

eviDeNCe FOR SOlUBle AND 
MeMBRANe BAFF OveReXPReSSiON 
DURiNG Hiv/Siv iNFeCTiON

Elevated circulating levels of BAFF and/or APRIL are associ-
ated with autoimmune diseases, chronic inflammation (14, 88), 
or occur after CD20 B-cell depleting therapy (89, 90). Because 
chronic inflammation and hypergammaglobulinemia are hall-
marks of chronic HIV-1 infection, serum BAFF levels were first 
measured in chronically HIV-infected individuals (91). In this 
pioneer report, authors observed increased BAFF levels in most 
individuals, correlating with levels of self-Abs only in individuals 
with more than 200 CD4 T-cells per microliters. In these indi-
viduals, classical monocytes (CD14hi) overexpressing mBAFF 
were identified as a major source of soluble BAFF. Extending 
these first results, Fontaine et al. have evidenced increased levels 
of serum BAFF in HIV-infected people, with a sustained increase 
from the acute phase of infection in rapid and normal progres-
sors (16). In these HIV-infected individuals, mBAFF expression 
was preferentially upregulated in blood myeloid dendritic cells 
(DC) (defined as HLA-DR+CD11c+) and their precursors (HLA-
DR+CD14+CD11c+) (16). In a cohort of untreated individuals 
with primary HIV infection, we found that circulating BAFF levels 
were consistently increased at diagnosis (20–45 days after infec-
tion) but rapidly decreased toward baseline levels by 2–3 months 
of infection (1 month of follow-up) (19). Whereas mBAFF was 
mainly present in intermediate monocytes (CD14+CD16+) of 
healthy individuals, its expression was preferentially enhanced 
in CD1c+ DC and non-classical (CD14loCD16hi) monocytes in 
individuals with primary HIV infection (19). A similar trend was 
observed in BDCA-3+ DC and intermediate monocytes but did 
not reach significance. In vitro, the virus itself can directly drive 
mBAFF expression and its subsequent release in monocytes as 
well as in monocytes-derived DC and macrophages. In vivo, type 
I and II IFN could also contribute to BAFF increase. This virus-
mediated effect is essentially independent on replication since it 
was observed with AT2-inactivated virus. Extending our results, 
Gomez et al. recently showed that HIV-1 does not induce BAFF 
expression in monocyte-derived macrophages displaying a M1 
phenotype (92). Unexpectedly, our findings showed that mBAFF 
was expressed by a majority of pDC in healthy individuals, an 
expression that strongly decreased in patients with primary HIV 
infection. However, this loss was not due to BAFF release since 
pDC are unable to cleave mBAFF (19, 38, 39). Preferential cog-
nate interactions of pDC with MZ and memory B-cells (93, 94) 
might relay on mBAFF binding to TACI-short, highly expressed 
by these B-cell subtypes (80).
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FiGURe 1 | Tissue expression of B-cell-activating factor (BAFF) in SIV-infected macaques. (A) Terminal ileum sections from control macaques (upper panel) and 
macaques infected for 14 days (lower panel) were stained with anti-CD20 (B-cells, left panels) or anti-BAFF (clone Buffy 2, middle and right panels) antibodies (Abs). 
Original magnification: 200× for CD20, 100× and 400× for Buffy 2. (B) Terminal ileum sections with clear villi present were stained with CD68 (macrophages), CD8 
(CD8+ and intraepithelial T-cells), and Buffy 2 (BAFF expression) Abs, respectively (original magnification 200×). Inserts from upper panels are shown in the lower 
panels (original magnification 400×). Reproduction authorized by SpringerNature.
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In acutely SIV-infected macaques, we consistently observed a 
transient increase in BAFF plasma levels by 2 weeks of infection. 
BAFF levels correlate with total IgG levels, plasma viral loads and 
inversely with CD4 T-cell counts (21). However, steady BAFF 
overexpression was observed in spleen and intestinal mucosa 
(duodenum and terminal ileum) until 1  month post-infection. 

This BAFF signal was more intense in the spleen MZ, follicular 
mantle zone and within GC (21) but was also present all along 
the ileum villi in macrophages and in intraepithelial cells, likely 
CD8+ (Figure 1). According to previous data in humans, these 
latter cells might correspond to BAFF-expressing type-3 innate-
lymphoid cells (ILC3) (95, 96). Retrospective measurement 
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FiGURe 2 | B-cell-activating factor (BAFF) levels in SIV-infected macaques 
upon antiretroviral therapy. Two groups of five macaques infected for 7 days 
by SIVmac 251 (50AID50) were treated or not (placebo) with antiretroviral 
therapy for 2 weeks and euthanized at day 21 post-infection (pi). Plasma 
BAFF concentration was determined using the BAFF Quantikine ELISA kit 
(R&D systems) in samples collected before infection and every 3 days pi.  
At each time point, mean value ± SEM is indicated for each group. At each 
time point, significant differences between treated and placebo groups were 
calculated by a Wilcoxon sign-ranked test (two-tailed, unpaired, and 
non-parametric t-test). The p values *(p < 0.05) and **(p < 0.01) were 
considered as significant.
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of blood BAFF levels in two groups of SIV-infected macaques 
treated or not by a 2-week antiretroviral therapy initiated at day 
7 post-infection (97) showed a significant reduction of BAFF 
levels in treated animals at days 12 and 15 (42 and 56% reduc-
tion, respectively) (Figure 2). In these animals, the plasma viral 
load was concurrently reduced by 103-fold and the proportions 
of memory B-cells increased in blood and spleen. Median value 
of plasma IgM returned to pre-infection level and SIV-specific 
Abs were no longer detectable after treatment (97). Thus, early 
initiation of antiretroviral therapy dampens BAFF increase 
but inhibits early virus-specific Ab production. In agreement 
with our data, Poudrier et al. recently showed a transient BAFF 
increase during the first week of SIV infection and a progressive 
return to baseline values after 2 months before re-increasing by 
3 months post-infection (early chronic infection) in progressor 
animals only. These authors established that granulocytes mas-
sively contribute to BAFF production during acute and chronic 
phases of infection (22). This observation fits well with increased 
proportions of activated neutrophils in the blood of chronically 
HIV-infected people (98, 99). Therefore, elevated BAFF levels 
might constitute a good predictor of disease progression at the 
early chronic phase (22). This conclusion is consistent with data 
of comparative transcriptomic analysis showing that upregula-
tion of TNFSF13B (encoding BAFF) messenger is associated with 
disease progression during pathogenic HIV/SIV infections (20).

In conclusion, non-classical monocytes and CD11c+ DC 
strongly contribute to elevated levels of soluble BAFF during 
HIV/SIV infection (16, 19, 91), but macrophages, granulocytes/
neutrophils, epithelial cells, and ILC3 can also contribute to its 
local production in spleen and mucosa (21, 22, 100). Membrane 
BAFF-expressing pDC, which preferentially migrate into the 

vaginal mucosa and into the large intestine during pathogenic 
SIV infection (101, 102), might support TI B-cell response 
through cognate interaction with infiltrating B-cells. Through 
its binding to cell-type specific receptors, the virus can directly 
induce membrane/soluble BAFF overexpression but also the 
release of type I and II IFN that are keys inducers of BAFF expres-
sion. In our studies, IL1β, IL6, and TNFα are unable to modulate 
membrane and/or soluble BAFF overexpression by myeloid cells 
or pDC (19).

Preventing progression toward the chronic phase of virus 
infection generally requires the rapid production of potent 
neutralizing Abs that is rarely observed during acute HIV/SIV 
infection. That prompted us to interrogate the pathways of Ab 
production and the development of plasmablasts/cells as well as 
the nature of virus responsive B-cells.

SelF-ReACTive B-CellS: THe lAST 
CHANCe FOR NeUTRAliZiNG Hiv Abs?

Whereas GC hyperplasia is one the first sign of ongoing B-cell 
response described in HIV-infected patients (1), the virus-
specific Ab production is delayed and globally inefficient in 
containing virus replication and in preventing the establishment 
of viral reservoirs (103). Even when present, most virus-specific 
Abs have limited and transient capacities to neutralize the 
virus. Whereas pioneers studies have evidenced that inactivated 
purified SIV or fixed SIV-infected cells can elicit protective 
virus-specific Abs during infection with autologous virus  
(104, 105), most candidate vaccines subsequently fail to clear 
HIV (8). Potent bNAbs are nevertheless produced by a minority 
of HIV-infected individuals, generally at low titers and only after 
years of infection. Analyses of bNAbs that target HIV-1 envelope 
trimer have considerably extended our knowledge on envelope 
epitopes susceptible to neutralization and therefore identified 
new targets for vaccine trials (106). The vulnerability sites include: 
the membrane-proximal external region (MPER) of gp41, the 
CD4-binding site of gp120, an exclusively glycan epitope on the 
outer domain of gp120, an extended region including residues 
from both gp120 and gp41 between the MPER and gp120 
protomers, a gp120 V2-glycan site at the apex of the envelope 
trimer and a gp120 V3-glycan site centered at Asn332 and the 
fusion peptide of HIV-1 (106, 107). Whereas passive infusion 
of bNAbs in humans has limited impact on HIV-1 viral loads 
and disease progression, two recently identified bNAbs directed 
against the CD4-binding site (VRC01 and 3BNC117) have 
significant antiviral effects (108–110). Unexpected results have 
shown that a subset of bNAbs concurrently recognizes nuclear 
or cytoplasmic human (self) antigens or proteins of commensal 
pathogens. These self/poly-reactive Abs preferentially recognize 
the CD4-binding site and the MPER region (111–114). Rare 
poly-reactive Abs recognizing the gp120-V3 loop have been 
also cloned from memory B-cells of HIV-infected patients  
(115, 116). bNAbs have a high degree of somatic mutation, dele-
tions and insertions and/or elongated highly hydrophobic heavy 
chain complementary-determining region 3 with development 
of breadth correlating with acquisition of self/poly-reactivity  
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(8, 107). Whereas these features predict negative selection, cur-
rent studies reveal that ancestors of B-cells producing bNAbs 
are frequently self-reactive (117). A clever study recently dem-
onstrated that breaching tolerance in mice favors the generation 
of cross-reactive HIV-1 self-Abs (114). Early non-neutralizing 
Abs directed against HIV-1 gp41 subunit are also poly-reactive 
(118, 119) and derive from commensal bacteria-specific 
memory B-cells generated in terminal ileum before infection. 
These B-cells acquire cross-reactivity with HIV gp41 upon 
T-cell driven affinity maturation, which involves GC reaction in 
constitutive follicles (Peyer patches or mesenteric lymph nodes) 
or in virus-induced isolated follicles (118, 120). Therefore, HIV 
might preferentially interact with self/poly-reactive B-cells in 
different tissues.

In physiological settings, self-reactive B-cells are eliminated 
at the following three major checkpoints: (i) in the bone mar-
row before the surface IgM-positive immature B-cell stage;  
(ii) in spleen MZ (or peri-follicular zone in humans) when 
new emigrants mature into follicular or MZ B-cells, and finally  
(iii) within GC during Ab affinity maturation (121). In bone 
marrow, 50–75% of early B-cells are self-reactive, most of which 
are eliminated by central tolerance mechanisms before they reach 
the periphery. Despite this elimination based on “tonic” BCR 
signaling, a substantial proportion of self/poly-reactive B-cells 
are still present in the blood of healthy individuals and more fre-
quent among immature and MZ B-cells than among naïve B-cells  
(122, 123). Given its capacity to support the survival of transi-
tional and MZ B-cells through BAFF-R, BAFF overproduction 
might abnormally rescue self-reactive B-cells as shown in 
murine models (124, 125) or in patients with systemic lupus 
erythematosus (126). If BAFF-R can directly deliver survival 
signal to transitional B-cells, BAFF-R signaling also interferes 
with BCR signaling in mice and might thus abnormally rescue 
early B-cells expressing self-reactive BCR (127–129). More 
recently, self-reactive transitional B-cells (T1 and T2) abnormally 
expressing TACI have been identified in BAFF transgenic mice as 
a consequence of BAFF excess. These TACIhi transitional B-cells 
co-express AID (activation-induced cytidine deaminase), an 
enzyme mandatory for somatic hypermutation and isotype class 
switching, and T-bet, a transcriptional factor associated with 
IFNγ production and IgG class switching. Accordingly, binding 
of these TACI+ transitional B-cells by self-antigens promotes 
AID-mediated hyper-somatic mutations that spontaneously 
produce self-reactive IgG, ex vivo (25). Although less numerous, 
TACI+ transitional B-cells are present in wild-type mice with 
physiological BAFF settings. Increased proportions of T1-like 
(CD10+CD21lo) B-cells related to disrupted homeostasis have 
been reported in lymphopenic HIV-infected people with more 
advanced disease (67–69). Unfortunately, neither circulating 
BAFF level nor proportions of self-reactive B-cells, potentially 
HIV cross-reactive, have been estimated at the time of these  
studies. Whereas TACI+ transitional B-cells might also contrib-
ute to hypermutated Ab production during HIV infection, only 
rare transitional B-cells were found to express T-bet in healthy 
and chronically HIV-infected individuals (130). However, this 
might occur in highly lymphopenic HIV-infected individuals 
with more advanced disease.

Marginal zone B-cells that express diverse IgVH genes more 
frequently used by self/poly-reactive Abs including by bNAbs 
directed against CD4bs (131), might be a “natural reservoir” 
for HIV cross-reactive B-cells. As mentioned earlier, human 
MZ B-cells highly express TACI, in particular TACI-short, and 
are in close contact with different BAFF/APRIL-producing cells 
such as macrophages, DC, neutrophils, or ILC3 in the splenic 
peri-follicular zone (132, 133). Thus MZ B-cells likely produce 
a first pool of virus-specific Abs. Indeed, we showed that the 
frequency of spleen MZ B-cells decreased soon after the peak of 
plasma viral load whereas plasmablasts/cells, mainly expressing 
IgG or IgM, were more numerous in the MZ 1  month post-
infection in SIV-infected macaques (97). Similarly, Fontaine 
et al. identified a circulating population with mixed features of 
transitional and MZ B-cells, thought to rapidly mature into MZ 
B-cells upon abnormal BAFF release by myeloid cells in viremic 
HIV-infected people (16). Together, these data suggest that HIV 
induces an early differentiation of MZ B-cells into plasmablasts/
cells followed by a transient lymphopenia, which tends to be 
compensated by accelerated repopulation of the MZ B-cell pool 
in patients with higher levels of replication and/or inflammation 
(including high BAFF levels). Studying the expansion of early 
self-reactive B-cells, potentially expressing T-bet, in concert 
with BAFF levels during pathogenic SIV/HIV infection might 
be valuable. Whether this repopulation favors expansion of 
HIV/SIV cross-reactive B-cells or their deletion remains to be 
studied.

BAFF, B-CellS, AND TFH iN GCs: FROM 
PHYSiOlOGiCAl SeTTiNGS TO Hiv/Siv 
iNFeCTiON

Memory B-cells and long-lived plasmablasts/cells are generated 
within the GC through a complex process including several cycles 
of somatic mutations/selection as elegantly described elsewhere 
(134, 135). Through somatic hypermutations of VH genes, an 
integrated process mandatory to Ab affinity maturation, the GC 
reaction constitutes an important stage where self-reactive B-cells 
are physiologically generated. Such self-reactive B-cells escaping 
peripheral tolerance and maturing into circulating memory IgG+ 
B-cells have been associated with autoimmunity (136) but might 
alternatively contribute to production of bNAbs (7). This directly 
questions the function of GC reaction with the generation of 
effectors B-cells (memory B-cells and long-lived plasmablasts/
cells) in the context of chronic inflammation, where BAFF (and 
APRIL) can be overproduced.

Residual development of GC and efficient affinity maturation 
of Abs in response to TD antigen occur in BAFF or BAFF-R-
deficient mice (50, 52, 53). However, GC more rapidly involute 
in these mice with reduced numbers of proliferating GC B-cells 
(centroblasts), impaired network of follicular dendritic cells 
(FDC) and reduced trapping of immune complexes (76). By 
contrast, BAFF overexpression in GC increases autoimmunity 
by reducing the competition between B-cell clones for T-cell 
help and survival signals, at least in mice (124, 137). Fibroblastic 
reticular cells throughout the body and FDC in GC are the main 
sources of BAFF in homeostatic settings (138) but also of CXCL13, 
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FiGURe 3 | Transmembrane activator and CAML interactor (TACI) as a key regulator of B-cell-activating factor (BAFF)-dependent BAFF-R cleavage in germinal 
center (GC). During a T-dependent response, follicular helper T-cells (TFH) produce BAFF that can bind either to BAFF-R or to TACI. When BAFF is locally released in 
excess, its binding to BAFF-R can induce the cleavage of BAFF-R in a TACI-dependent manner from the surface of centrocytes (a). Reduced BAFF-R signaling 
leads to decreased ICOSL expression on B-cells (b) and therefore dampens ICOS signal, mandatory for TFH maintaining and IL21 production. This might constitute a 
physiological regulatory mechanism, exacerbated when high amounts of antigens are maintained within GC. IL21 is a key cytokine for TFH that ensures their survival 
(c) and that of light zone GC B-cells (d). In addition, IL21 decreases TACI expression that might prevent early TACI-dependent BAFF-R cleavage (e). Such regulatory 
roles would imply that IL21 and BAFF are produced sequentially during the GC reaction with possible consequences on recycling and differentiation of GC B-cells.
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which attracts B-cells to build B-cell follicles (139). During a 
TD response, TFH constitute not only the major source of BAFF, 
mandatory for the B-cell survival and the selection of high affinity 
B-cell clones (79) but also of CXCL13 as shown in vaccinated mice 
and primates (140). Consistent with ongoing TD response in HIV-
infected patients, high blood CXCL13 levels have been reported 
with concomitant decrease of CXCR5 expression by circulating 
B-cells (141). Whether this decrease is due to B-cell activation 
or to an enhanced BAFF-mediated internalization of CXCR5, it 
likely perturbs the recruitment of B-cells into follicles. Given that 
BAFF enhances the CXCL13-mediated chemotactic response of 
CD27+ human B-cells, in vitro (142), it could potentiate the entry 
of recently antigen-activated B-cells (GC founders) or of memory 
B-cells into the follicle during a first or second exposure to antigen/
pathogen, respectively. Within GC, BAFF overproduction might 
either increase the CXCL13-mediated response of B-clones in 
the light zone or accelerate the internalization of CXCR5 in 
centrocytes (light zone B-cells), favoring their rapid return to the 
dark zone. In both case, the asymmetric recycling of B-cell clones 
between dark and light zones and the selection process would 
be impaired leading to an abnormal pattern of mutation/selec-
tion of B-cell clones required for affinity maturation (143, 144). 

Alternatively, BAFF excess in GC might enhance BAFF-mediated 
BAFF-R cleavage on TACI+ GC B-cells (centrocytes). Decreased 
BAFF-R expression might consequently abolish BAFF effect on 
the CXCL13 chemotactic response of centrocytes or decrease 
the survival of high-affinity B-cell clones (26). At which step 
HIV cross-reactive B-cells clones appear and why they are not 
eliminated as self-reactive B-cells in the context of high amount of 
viral antigens is far from being clear. Vulnerability sites frequently 
buried in the envelope structure or masked by glycans are probably 
weakly accessible. This might favor their ignorance during the GC 
selection process.

In addition to its action on GC B-cells, two independent 
studies implied TACI in TFH expansion (Figure 3). In the first 
study, Ou et al. showed that BAFF preferentially binds BAFF-R 
and upregulates ICOSL expression by GC B-cells in physiologi-
cal settings. When it is locally overproduced, BAFF also binds 
to TACI on GC B-cells leading to down modulation of BAFF-
R-mediated ICOSL expression and subsequently TFH expansion 
(78). According to recent data on BAFF-R processing (26), one 
hypothesis could be that BAFF excess leads to TACI-mediated 
BAFF-R cleavage, which reduces BAFF-R signaling and thus 
down-modulates ICOSL expression. In a second study, IL21 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


55

Borhis et al. BAFF—An Instrumental Cytokine in HIV/SIV Infection

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1338

produced by TFH, besides supporting the survival of both TFH 
and GC B-cells through IL21R, also diminishes TACI expres-
sion thus preventing premature loss of TFH (79). As TFH concur-
rently produce BAFF and IL21, a delicate balance is thought 
to control efficient GC reaction. The existence of two human 
TACI isoforms could further complicate our understanding of 
the role of BAFF and its receptors, BAFF-R and TACI, in GC 
reaction.

Impaired helper functions of TFH at the chronic phase of  
HIV/SIV infection (2, 6, 145) likely contribute to inefficient B-cell 
response to HIV/SIV. However, early functional TFH are present 
at elevated frequencies in nodal GC from the acute phase of 
HIV infection and their presence correlates with the breadth of 
bNAbs at the chronic phase (146). Thus, generation of bNAbs is 
dependent on the preservation of TFH functions, likely impaired 
in CXCR3+ TFH (147). As recently shown, human TFH express 
BAFF-R and release more IFNγ after culture with BAFF (148), 
thus BAFF excess might contribute to TFH1-expansion during 
HIV/SIV infection. Being produced by FDC and TFH in GC, 
BAFF likely exerts a physiological role on TFH, during response 
to TD natural or vaccine antigens. In conclusion, the overexpres-
sion of BAFF might impair GC reaction and even modulate TFH 
functions.

MeMORY B-CellS: THe weAK liNK  
iN Hiv/Siv iNFeCTiON

It is now well established that chronically HIV-infected patients 
have an impaired memory B-cell compartment with lower fre-
quency of HIV-specific and vaccine-specific memory B-cells as 
well as reduced anti-vaccine Abs (149–151). In addition to lower 
proportions of memory B-cells, viremic HIV-infected individu-
als also exhibited increased proportions of CD21lo mature B-cells 
(68, 81). This subset highly expressed BCMA and TACI but had 
decreased BAFF-R expression and BAFF binding. Based on this 
phenotype profile and on the concomitant increase in CD27, 
CD38, and CXCR3 expression, these CD21lo B-cells were first 
considered as circulating plasmablasts, prone to apoptosis and 
Ab production (67, 81) and expanded as a consequence of HIV-
induced hyperactivation. After the identification of a subset of 
CD20hiCD21lo tissue memory cells in human tonsils exhibiting 
signs of exhaustion (82), the classification of this CD21lo popula-
tion in HIV-infected patients has been revised. In addition to 
plasmablasts, the CD21lo B-cell subset comprised CD27+CD21lo 
and CD27loCD21lo cells often referred to as activated memory 
(ActM) and tissue-like memory (TLM) B-cells, respectively. These 
subsets differ from conventional RM B-cells by their expression of 
activation, inhibitory and/or apoptotic markers (69). In healthy 
donors, RM B-cells constitute the predominant fraction of blood 
memory B-cells with low percentages of CD21lo memory B-cells 
(152). By contrast, ActM and TLM are overrepresented in blood 
of chronically HIV-infected patients (153) and in rapidly pro-
gressing SIV-infected macaques (154). In contrast to influenza 
or tetanus-specific Abs enriched in RM B-cells, HIV-specific Abs 
are enriched in TLM B-cells in untreated individuals (155, 156).  
More recently, Muema et  al. reported increased proportions 
of ActM, TLM, and plasmablasts but decreased proportions 

of naïve B-cells in vertically HIV-infected children in a viral-
load-dependent manner (83). In agreement with other studies 
in children, lower IgG levels and proportions of switched 
memory B-cells against childhood vaccines were observed (150, 
157, 158). In these HIV-infected children, circulating BAFF 
levels were elevated whereas BAFF-R and TACI expression were 
respectively decreased and increased in most B-cell subsets. 
B-cell interaction with viral proteins that can induce BCR- or 
TLR-mediated B-cell activation (9, 10, 159) might also increase 
TACI expression, possibly stabilized at the membrane by BAFF 
binding as shown in mice (79). By contrast, decreased BAFF-R 
expression might be due to potent receptor internalization in 
the presence of high BAFF levels as suggested during malaria 
infection (17, 160) or to enhanced BAFF-mediated BAFF-R 
processing (26).

It is not clear whether increase in TACI expression has any 
influence on ActM or TLM functions or survival, in vivo. Survival 
of human and simian RM B-cells (BAFF-R+ TACIhi) is less 
dependent on BAFF than that of naïve and transitional B-cells 
in physiological settings (161, 162). Moreover, BAFF levels cor-
relate with proportions of MZ and RM B-cells, but not of CD21lo 
memory B-cells in HIV-infected children (83). By contrast, BAFF 
levels and proportions of CD21lo memory B-cells were concomi-
tantly increased in individuals infected by Plasmodium (17, 160), 
an infection setting where the frequencies of TLM-like B-cells are 
increased (18, 163).

Similar to TLR9 ligands that elicit responses in TLM-like 
B-cells of malaria-exposed people (18, 164), BAFF/APRIL 
as TACI ligands might deliver differentiation signals to these 
B-cells through TACI and its downstream TLR-like signaling 
pathways (87) Whereas overrepresentation of CD21lo memory 
B-cells is consistently associated with chronic inflammation, 
the mechanisms leading to this phenotype are largely unknown. 
Studies in mice and more recently in HIV-infected people show-
ing T-bet expression by CD21lo B-cells suggest simultaneous 
actions of pathogen-derived nucleic acids, through TLR9/7, and 
Th1-cytokines (IFNγ) (130, 165–167). According to high TACI 
expression in HIV-infected children, BAFF overexpression might 
directly or indirectly (for example, by upregulating IFNγ produc-
tion by NK or Th1-cells) contribute to the generation or survival 
of these CD21lo memory B-cells and thus Ab-mediated protection 
against HIV-1.

CONClUSiON

B-cell-activating factor and its receptors (BAFF-R, TACI, and 
BCMA) are key actors for the B-cell survival and the immune 
responses of mature B-cells. Whereas BAFF-R is more widely 
expressed throughout the B-cell differentiation, TACI now 
appears as a key regulator of various BAFF-mediated responses. 
Indeed TACI is spontaneously released upon activation and 
orchestrates the cleavage of BAFF-R-BAFF complexes. This might 
have a major impact on memory and MZ B-cells that are TACIhi. 
Perturbations of these regulatory mechanisms likely impair the 
GC reaction: GC B-cell selection/survival or recycling between 
dark and light zones as well as the generation of appropriate 
effector B-cells during TD responses. Soluble but also membrane 
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HIV infection not only destroys CD4+ T  cells but also inflicts serious damage to the 
B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle 
architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and 
irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial 
B cells and plasma cells are also affected, which results in loss of mucosal IgG and  
IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The 
ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. 
We postulate that compromised mucosal antibody defenses also facilitate superinfection 
of HIV-positive individuals with new HIV strains. This in turn sets the stage for the gener-
ation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment 
contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, 
we discuss proof-of-principle studies we have performed using passive mucosal immu-
nization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs) 
as IgG1, dimeric IgA1 (dIgA1), and dIgA2 isotypes, alone or in combination. Our data 
indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection 
against mucosal transmission of simian-human immunodeficiency virus. Our review also 
discusses the induction of mucosal antibody defenses by active vaccination and poten-
tial strategies to interrupt the vicious cycle of bacterial translocation, immune activation, 
and stimulation of HIV replication in individuals with damaged mucosal barriers.

Keywords: human immunodeficiency virus-induced igA, vaccine-induced anti-Hiv igA, systemic igA responses, 
mucosal igA responses, secretory igA, immune exclusion of Hiv, simian-human immunodeficiency virus, passive 
immunization with dimeric igA

OveRview: THe AiDS ePiDeMiC AND Hiv-iNDUCeD DAMAGe 
OF MUCOSAL B CeLLS

Since the beginning of the HIV/AIDS epidemic, more than 35 million people have died (http://
www.who.int/gho/hiv/en/); were it not for the introduction of combination antiretroviral therapy, 
the number of deaths would surpass those caused by the Black Plague in the fourteenth century and 
the Spanish Flu in 1918, making HIV the worst newly emerged pandemic in human history. An 
estimated 90% of all new HIV acquisitions occur through mucosal contact, including sexual and 
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perinatal transmission, in which mucosal fluids and tissues are the 
first points of contact for HIV. Despite this, inducing protective 
mucosal immune responses by candidate HIV/AIDS vaccines has 
not been a major focus for most experimental vaccine approaches. 
Almost all acute HIV acquisitions involve R5-tropic strains, even 
when the infected source person harbors predominately dual or 
X4-tropic HIV strains. As such, prevention of virus acquisition 
by active and/or passive immunization should focus on blocking 
mucosal transmission of R5 HIV.

B-cell dysregulation was noted at the very beginning of the 
HIV/AIDS epidemic, even before the viral etiology of this new 
syndrome was identified [reviewed in Ref. (1)]. Damage to the 
B-cell compartment was subsequently described as including 
lymphadenopathy, loss of normal B-cell follicle architecture in 
lymph nodes, polyclonal hypergammaglobulinemia, altered 
expression of homing receptors on the surface of B  cells and, 
therefore, increased turnover of such cells, increased apoptosis 
of B  cells due to activation-induced cell death, and eventually 
irreversible loss of memory B-cell responses with advancing HIV 
disease. The latter becomes evident by significant decreases in 
antiviral antibody titers (1–6).

IgA-producing B cells and plasma cells are not spared from 
the HIV or SIV-induced damage. Mestecky and colleagues (7, 8) 
described unusually low anti-HIV IgA responses when compared 
to IgG responses in mucosal fluids. In this review, we discuss the 
implications of such B-cell damage in infected individuals. We 
will contrast these findings with the potential role mucosal IgA 
can play in protecting uninfected hosts from invading HIV or 
related primate immunodeficiency viruses. Such protection could 
be provided by passively administering recombinant anti-HIV 
antibodies directly into mucosal compartments. Alternatively, 
vaccine strategies can be designed to induce protective anti-HIV 
mucosal antibody responses. Our review will summarize relevant 
data generated in non-human primate (NHP) models.

MUCOSAL ANTiBODY PRODUCTiON iN 
NORMAL HOSTS

In order to understand the dysfunction of the B-cell com-
partment in HIV infection, it is important to understand the 
processes involved in generating mucosal antibodies of different 
classes in healthy, uninfected hosts. Mucosal fluids contain IgM, 
IgG, and IgA in different forms, especially polymeric versions. 
These antibodies are produced by local plasma cells in the 
lamina propria. IgM-producing cells secrete multimeric IgM 
that contains the joining (J) chain and is generally pentameric. 
This IgM binds to the polymeric immunoglobulin receptor 
(pIgR) expressed on the basolateral surface of the epithelial cell 
barrier. The pIgR–IgM complexes are transported across the 
epithelial monolayer in transcytotic vesicles and released at the 
luminal side through a process involving proteolytic cleavage 
of pIgR. This results in release of the secretory component (SC) 
that remains associated with IgM, thus generating secretory IgM 
(Figure 1A, top).

IgG is produced in the bone marrow from where it enters the 
circulation and is distributed throughout the body tissues. IgG 

can also be generated locally by subepithelial plasma cells; its 
trans-epithelial transport occurs through the neonatal Fc recep-
tor (FcRn) (Figure 1A, middle). In contrast to pIgR, FcRn is not 
degraded upon release of its IgG cargo at the luminal side; this 
receptor can shuttle back and forth between the luminal and the 
basolateral aspects of the epithelial cells and carrying IgG-antigen 
immune complexes from the luminal side across the epithelium 
into the subepithelial space (Figure 1A, middle) (9).

Like the other immunoglobulin (Ig) classes, IgA destined for 
mucosal secretions is also produced locally by plasma cells in the 
lamina propria. B cells release dimeric IgA (dIgA), which consists 
of two IgA monomers linked at their Fc alpha ends by the J chain. 
Like IgM, dIgA molecules bind to pIgR at the basolateral aspect 
of epithelial cells and get transported in transcytotic vesicles to 
the luminal side, where pIgR undergoes cleavage into a remnant 
stump and SC, giving rise to secretory IgA (SIgA) (Figure 1A, 
bottom) (10) found in mucosal fluids. The relative ratios of 
mucosal IgM:IgG and IgM:IgA vary and depend on the active 
participation of CD4+ T-helper cells, which provide critical 
stimulatory signals to B cells to undergo Ig class switching.

In humans, IgA exists as closely related subclasses, IgA1 and 
IgA2, which differ predominantly in the hinge region. In IgA1, 
the latter contains 19 amino acids (aa) as well as several O-linked 
oligosaccharides. In contrast, the IgA2 hinge region is only 6 aa 
long and lacks glycosylation. Due to their open hinge region, 
IgA1 molecules have a T-like shape with a distance between 
Fab fragments of approximately 16  nm. Conversely, IgA2 is 
Y-shaped, and the distance between Fab regions measures only 
10  nm due to the shorter, stiffer hinge region. The structural 
differences between IgA1 and IgA2 molecules likely result in 
different biological activities. Of note, only humans and great 
apes have the IgA1 subclass with the remarkably open hinge. 
Rhesus macaques only encode the IgA2-like subclass [reviewed 
in Ref. (10)].

Among the three classes of mucosal antibodies, IgA in its 
various forms clearly stands out. The human body generates more 
IgA per day than all other classes of Igs combined (11), and since 
IgA ranks only second in the plasma concentration after IgG, it 
is obvious that the majority of IgA is destined to enter mucosal 
fluids that need to be replaced continuously. These facts imply a 
critical role for IgA function in the mucosal compartment.

MUCOSAL ANTiBODY PRODUCTiON  
iN Hiv/Siv-iNFeCTeD HOSTS

Skewing of Mucosal Antibody Production 
in Hiv/Siv infection
Severe depletion of CD4+ T  cells in the lamina propria and in 
epithelial tissues during acute SIV infection was first described by 
Smit-McBride and colleagues (12). This observation was followed 
by the recognition that the significant loss of the gut-associated 
lymphoid tissue (GALT) had serious consequences: loss of barrier 
integrity as demonstrated by increases in plasma concentration 
of lipopolysaccharide (13, 14). Mattapallil et al. (15) confirmed 
the loss of GALT CD4+ T cells and characterized the affected cell 
population as memory CD4+ T cells.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Generation of immunoglobulins (Igs) in naïve and HIV-infected hosts. (A) In a naïve host, multimeric IgM, IgG, and dimeric IgA (dIgA) are produced in the 
lamina propria by mature plasma cells. The latter are derived from B cells that have received help from CD4+ T cells for Ig class switching. IgM and dIgA interact with 
the polymeric immunoglobulin receptor (pIgR), which exports the Igs across the epithelial cells. pIgR is cleaved by proteolysis at the luminal side, resulting in the 
generation of secretory component (SC) that is retained by IgM and dIgA, giving rise to secretory IgM (SIgM) and IgA (SIgM and SIgA, respectively). IgG binds to the 
neonatal Fc receptor (FcRn) expressed by epithelial cells that transports IgG across to the luminal side. Unlike pIgR, FcRn does not undergo proteolytic cleavage at 
the luminal side and can shuttle back and forth. (B) During HIV infection, severe loss of CD4+ T cells occurs, resulting in impaired Ig class switching and B-cell 
dysfunction. As a consequence, IgG and SIgA are markedly decreased in the mucosal compartment. Lack of sufficient mucosal barrier defenses leads to loss of 
barrier integrity, microbial translocation, and immune activation.
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Among CD4+ T cells affected early and severely during HIV/
SIV infection is the T helper 17 (Th17) population, a favorite target 
of primate immunodeficiency viruses. Th17 cells tend to localize 
preferentially to the gastrointestinal tract where they express a 
number of genes found to be involved in the maintenance of 

epithelial cells, including interleukin-22 (IL-22) (16, 17). Favre 
et al. (18) made an important contribution toward understanding 
the consequences of severe losses in Th17  cells. These authors 
compared the acute stage of experimental infection with SIVagm 
in the setting of a pathogenic host–virus interaction in Asian 
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pig-tailed macaques with that in African green monkeys (AGMs), 
the natural SIVagm host where the infection remains non-
pathogenic. Only pig-tailed macaques but not AGMs suffered 
immune activation and severe, selective depletion of Th17 cells 
systemically and in mucosal tissues.

Loss of CD4+ T-helper cell function greatly reduces Ig class 
switching in subepithelial B cells, which results in a significant 
loss of IgG and SIgA in mucosal fluids (Figure 1B). The serious 
loss of IgG and dIgA production in the lamina propria leads to 
a strong skewing of the IgG:IgM and dIgA:IgM ratios, with the 
IgA content of mucosal fluids in HIV/SIV infection being most 
severely affected [reviewed in Ref. (19)]. This relative lack of 
mucosal IgA and IgG results in impaired immune exclusion of 
bacterial pathogens and makes the epithelial barrier vulnerable to 
breaches (Figure 1B, bottom). Indeed, during acute SIV as well 
as HIV infection, bacterial translocation occurs, which results in 
immune activation and further upregulation of virus replication, 
starting off a vicious cycle.

Bacterial Translocation: Adding Fuel to the 
Fire
Bacterial translocation has serious, deleterious consequences 
to the host. The most important one is triggering inflammatory 
responses, resulting in general immune activation. Macrophages, 
instead of phagocytosing bacteria or bacterial products that may 
have crossed the epithelial barrier in normal epithelial homeo-
stasis, now send out inflammatory signals that in turn create a 
more fertile ground for HIV/SIV to spread locally in mucosal 
tissues [reviewed in Ref. (17)]. Factors involved in this immune 
activation include tumor necrosis factor-α, which is released 
from macrophages, and interferon-α (IFN-α), which is produced 
by plasmacytoid dendritic cells and macrophages. Activated 
monocytes/macrophages produce soluble CD14 (sCD14) and 
soluble CD163 (sCD163). High plasma levels of sCD14 were 
found to be an independent poor prognostic sign for survival of 
HIV-infected individuals (20).

Mucosal dendritic cells (DCs) play an important role in the 
local immune activation following bacterial translocation. While 
DCs are key players in the adaptive immune defenses that benefit 
the host, these cells also contribute to local immune activation. 
They release inflammatory cytokines as well as type 1 interferons 
that damage the Th17 cell population while favoring T regulatory 
cells in intestinal tissues (18). In addition, DCs can trans-infect 
CD4+ T  cells. Such responses greatly intensify local mucosal 
virus replication [reviewed in Ref. (21)]. Ultimately, bacterial 
translocation and the ensuing immune activation lead to further 
damage of mucosal integrity through a vicious cycle of increased 
virus replication followed by increased loss of CD4 T-helper cell 
function, which ultimately leaves the mucosal barrier devoid of 
the protective IgA and IgG antibodies (Figure 1B).

Compromised Mucosal Antibody 
Production and Hiv Genetic Diversity 
worldwide
We hypothesize that loss of epithelial integrity, which leads to 
bacterial translocation, immune activation, and ultimately to 

increased numbers of activated HIV target cells, will have another 
serious consequence: superinfection with new strains of HIV. The 
compromised local mucosal environment will facilitate transmis-
sion of new HIV strains and support high levels of replication of 
the incoming strain. If the latter infects a cell already harboring 
the preexisting virus, the two HIV genomes will recombine 
to generate circulating recombinant forms (CRFs). This is a 
frequent event in the ongoing HIV pandemic as reflected by the 
ever increasing complexity of viral genomes with an increas-
ing fraction of CRFs. Inter and intra-clade recombinations are 
known to occur (https://www.hiv.lanl.gov/content/sequence/
HIV/CRFs/CRFs.html) (22–24). In the case of an individual with 
HIV infection, broad, anti-HIV cell-mediated immune responses 
encompassing multiple epitopes, which controlled the primary 
virus, have not prevented superinfection during structured treat-
ment interruption (25).

We propose that the loss of mucosal barrier function is one 
of the main drivers of the rapidly evolving genetic complexity 
of HIV during the ongoing pandemic (26). At the entire human 
population level, superinfection with unrelated HIV strains is 
problematic. The increasing multitude of genetically evermore 
divergent strains increases the level of difficulty to find protec-
tive HIV vaccines. Superinfection is also deleterious at the level 
of the superinfected individual, who will experience a second 
phase of acute viremia. Neutralizing antibodies against the new 
HIV strains will most likely not exist. If so, high viral loads will 
ensue and increase immune activation throughout the body. 
This in turn will increase the damage to the CD4+ T-helper 
cell population and accelerate disease progression. Given the 
increasing prevalence of CRFs, we hope that our hypothesis will 
stimulate research on a possible link between loss of mucosal 
barrier integrity and the prevalence of CRFs. We feel that very 
early onset of antiretroviral therapy may limit mucosal damage 
and thus lower the risks of superinfection, which would result 
in slowing the rate of CRF prevalence. As long as access to 
antiretroviral drugs remains limited in developing countries, 
the rates of superinfection may not decline. Finding ways to 
protect mucosal barriers in already infected individuals and 
thereby lowering the chances of HIV superinfection could be 
additional protective mechanisms for individuals with chronic 
HIV infection.

HARNeSSiNG MUCOSAL igA TO 
PROTeCT THe HOST

The potential role of IgA in providing protection to the host has 
been controversial. The RV144 phase III efficacy trial performed 
in Thailand showed a modest but significant lowering of the risks 
of HIV acquisition among the vaccinees of 31.2%, a result that 
gave impetus to analyze the immune responses responsible for 
this effect (27). Surprisingly, neither neutralizing antibodies nor 
cell-mediated immune responses were linked to the lowering 
of virus acquisition risks. Rather, serum IgG with antibody-
dependent cellular cytotoxicity (ADCC) activity targeting the 
V1V2 region was associated with beneficial outcome. The latter 
seemed to be counteracted by serum IgA responses targeting 
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HIV envelope. Mucosal samples were not available for analysis 
in this trial (28).

Passive immunization: A Tool to Show 
Cause and effect between Antibodies and 
Protection
To settle the issue whether anti-HIV Env IgA responses harm 
or help the host, passive immunization is the tool of choice. 
This avoids influences of any other immunological principles 
and restricts the experimental parameters to only the passively 
administered antibody. This approach is required to dissect the 
potentially protective roles of anti-HIV humoral responses in 
the systemic as well as in the mucosal compartments. To our 
knowledge, passive immunization with systemically adminis-
tered anti-HIV IgA has not been performed to assess prevention 
of simian-human immunodeficiency virus (SHIV) acquisition in 
NHP models. In contrast, we have used passive immunization with 
topically administered, monoclonal dIgAs to ask whether such 
monoclonal antibodies (mAbs) could prevent SHIV acquisition 
after mucosal challenge (29, 30). Of note, passive immunization 
is the best tool to give cause/effect information between a well-
characterized monoclonal antibody and the degree of protection, 
as no other immunological mechanisms are provided to account 
for the outcome of the study.

Passive immunization with mucosally administered, mono-
clonal dIgAs is depicted in Figure 2A. Any significant prevention 
of SHIV acquisition would have to occur in the mucosal lumen by 
trapping infectious virion in large complexes to prevent mucosal 
transcytosis; this process is called immune exclusion (10, 31). 
This information needs to be generated in order to assess the role 
of mucosal B cells and anti-HIV mucosal antibodies in prevent-
ing virus acquisition—key data for future vaccine design against 
a pathogen that is predominantly transmitted via mucosal routes.

Passive Mucosal immunization with 
Monoclonal digAs
Our group has performed passive mucosal immunization stud-
ies with monoclonal dIgAs to test their protective potential 
against intrarectal SHIV challenge. We generated dIgA1, dIgA2, 
and IgG1 versions of a neutralizing anti-HIV mAb, HGN194, 
which targets the conserved V3 loop crown of HIV gp120 (32). 
This mAb neutralized all tier 1 strains tested and selected tier 
2 strains in which the V3 loop crown was accessible. When 
given intravenously (i.v.) at full dose (50  mg/kg) 24  h prior to 
high-dose intrarectal challenge with a clade C SHIV (SHIV-C), 
this mAb provided 100% cross-clade protection to the rhesus 
macaques (33). Next, we sought to test whether administering 
the dIgA1, dIgA2, and IgG1 isoforms of HGN194 intrarectally 
would protect RMs against subsequent intrarectal SHIV-C chal-
lenge. All three isoforms neutralized the challenge virus equally 
well in tissue culture systems. However, the in vivo study yielded 
a surprising result: the dIgA1 isoform was significantly more 
potent in preventing intrarectal SHIV transmission compared 
to the dIgA2 form (p < 0.05) (29). In this first proof-of-concept 
study of passive mucosal immunization with recombinant dIgAs, 
better in vivo protection by dIgA1 compared to dIgA2 was linked 

to better virion capture in vitro and inhibition of transcytosis of 
cell-free virus in a transwell assay (29).

Protective Mechanisms of igA in the 
Mucosal Lumen and Barrier
IgA in mucosal fluids can mediate protection by direct neutrali-
zation, immune exclusion, or inhibition of transcytosis. In our 
passive immunization studies, we have shown that administering 
of neutralizing dIgA intrarectally prevented SHIV acquisition 
after intrarectal virus challenge (Figure 2A). The incoming SHIV 
could either be directly neutralized by dIgAs in the mucosal 
lumen. Alternatively, large immune complexes could be formed 
that trap the incoming virus and prevent it from traversing the 
epithelial barrier via transcytosis. Such a mechanism is termed 
immune exclusion.

IgA responses induced by vaccination can also block HIV/
SHIV infection (Figure 2B). The HIV-specific dIgAs produced 
by subepithelial plasma cells and transported across the epithelial 
layer into the lumen could mediate protection through immune 
exclusion or by inhibiting transcytosis. Another interesting 
mechanism of IgA-mediated protection is intracellular neutrali-
zation (Figure 2C). This occurs when a virion is taken up by an 
epithelial cell and enters the same transcytotic vesicle in which 
dIgA-pIgR cargo is being carried toward the lumen. Virus is 
bound by dIgA, forced to make a U-turn, and excreted back into 
the lumen. This phenomenon was described by Burns et al. (34) 
for the rotavirus murine model.

The interplay between Mucosal digAs and 
igGs
Mucosal fluids are known to contain not only IgA in the form of 
SIgA but also IgG. We sought to test whether the dIgA version 
would interfere with the protection provided by the IgG1 forms—
as had been implied by the systemic IgG and IgA antibodies in 
the RV144 trial. Since the hypothesis was that the IgA form would 
decrease the protective effect of the IgG, we deliberately selected 
the dIgA2 version of HGN194, which had given suboptimal pro-
tection of only 17% when used as a single agent. In contrast, the 
dIgA1 version had provided 83% protection. Instead of delivering 
the IgG mucosally, we decided to administer a suboptimal dose 
i.v. 24 h before intrarectal SHIV-C challenge to allow the antibody 
to distribute in tissues and enter mucosal fluids.

We enrolled three groups of RMs; one group was given only 
the i.v. IgG1form of HGN194 24 h before virus challenge, the sec-
ond group was given the same IgG treatment and an additional 
intrarectal passive immunization 30 min before virus challenge. 
The controls were left untreated. By itself, the low-dose i.v. IgG 
form gave no protection. The dIgA2 version by itself had given 
17% protection in the previous study (29). Surprisingly, the 
low-dose i.v. IgG1 combined with the intrarectally administered 
dIgA2 yielded 100% protection (30). This in vivo synergy cannot 
be explained by synergistic neutralization in vitro. Rather, we pos-
tulate that local interactions with mucins and epithelial barrier 
structures may underlie this remarkably potent protection. This 
unexpected result has since been replicated and again yielded 
100% protection (unpublished data).
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and different mechanisms of protection; (B) immune exclusion and inhibition of transcytosis. Plasma cells in the lamina propria produce virus-specific dIgA that 
interacts with the polymeric immunoglobulin receptor (pIgR; blue) on the basolateral surface of epithelial cells; pIgR transports dIgA across epithelial cells in 
transcytotic vesicles. Proteolytic cleavage of pIgR at the luminal side generates secretory component (SC) that is retained by dIgA molecules. The latter complexes 
are released as SIgA into the lumen. Virion invasion of epithelial cells is blocked by formation of large immune complexes between SIgA and SHIV leading to immune 
exclusion. (C) Intracellular neutralization. This phenomenon occurs when virions are taken up by epithelial cells and enter transcytotic vesicles, in which dIgA-pIgR 
cargo is being exported toward the lumen. Virions are bound by specific dIgA, and the entire virion-dIgA-pIgR complex is excreted. Essentially, the virion in the 
complex is forced into a U-turn. This figure has been adapted from the original review article “Are anti-HIV IgAs good guys or bad guys?” by Zhou and Ruprecht (10)  
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To summarize, passive immunization has revealed a potent 
protective mechanism at the level of the mucosal barrier that 
can yield 100% protection by combining mucosal IgG with 
dIgAs. It will be important to elucidate the mechanisms of this 
interaction in future studies. It needs to be emphasized also that 
passive immunization involves only the mAbs administered, 
in the absence of any other potentially confounding protective 
mechanisms by the host. These encouraging data provide strong 
impetus to focus on inducing protective IgG and IgA mucosal 
antibody responses by targeted active vaccination.

induction of Protective Mucosal Antibody 
Responses by Active immunization
To date, one vaccine strategy specifically was designed to focus 
on the induction of mucosal antibody responses: virosomes dis-
playing different fragments of HIV gp41. Virosomes are empty 
particles derived from influenza virus but devoid of any nucleic 
acid; as such, this vaccine carrier is noninfectious and has a very 
good safety profile in clinical studies targeting conditions other 
than HIV (35, 36). Two populations of virosomes were tested in 
NHP studies, namely virosome-P1, which displayed the extended 
P1 peptide mimicking the membrane proximal external region 
(MPER) of HIV gp41, in a second population of virosomes dis-
playing a truncated form of gp41 lacking the immunodominant 
mini loop. This second form of virosomes was termed virosome-
rgp41. When tested in Chinese-origin rhesus monkeys, 100% of 
the vaccinated animals were protected from persistent systemic 
infection when given the combination of the two virosomes 
by two intramuscular vaccinations followed by two intranasal 
boosts. This group of vaccinees showed no seroconversion to 
SIV Gag after multiple low-dose intravaginal challenges with 
an upfront heterologous R5 tier 2 SHIV, although some of the 
animals had low level blips of viremia initially (37). These authors 
performed an extensive analysis to determine the correlates of 
protection. None of the systemic antibody responses showed any 
link, including neutralizing antibody responses and systemic 
ADCC. In contrast, vaginal fluid IgA was linked to protection 
through inhibition of virus transcytosis in a transwell system and 
vaginal IgG showed neutralizing and ADCC activity. In other 
words, only mucosal IgA and IgG but not systemic IgA and IgG 
responses correlated with protection.

We have independently confirmed these data during the first 
half of the multiple low-dose vaginal challenges, where we noticed 
between 78 and 87% protection against the initial challenge virus 
dose. These repeat studies were conducted in Indian-origin 
rhesus monkeys. When comparing the virus challenge dose with 
the viral RNA copy numbers of the average HIV inoculum likely 
transferred from a HIV positive man to a female partner, the 
SHIV inoculum used in our study was 70,000 times higher. When 
we had to increase the SHIV challenge dose in the Indian-origin 
monkeys in a second part of the virus challenge phase as had 
been done in the earlier study (37), protection was lost. This virus 
challenge dose was greater than 100,000 times the average HIV 
inoculum passed from an infected man to a female partner. We 
interpret these findings as promising data that warrant optimizing 
vaccine strategies based upon this platform (unpublished data).

Are Highly exposed Persistently 
Seronegative (HePS) individuals Protected 
by Anti-Hiv Mucosal igA?
A few groups have reported an intriguing link between individuals 
who despite frequent sexual HIV exposures have remained unin-
fected—and IgA responses [reviewed in Ref. (10)]. HIV-specific 
IgA responses have been correlated with resistance to HIV acquisi-
tion in sex workers and in persistently uninfected sexual partners 
of HIV-positive individuals; the methods to isolate mucosal IgA 
were based upon jacalin resins that preferentially bind to the 
O-linked oligosaccharides in the wide hinge region of human IgA1 
[jacalin specifically binds to IgA1 hinge O-linked oligosaccharides 
(38–40) reviewed in Ref. (10)]. Epitope mapping revealed that 
mucosal IgAs targeted relatively conserved MPER epitopes HIV 
gp41 (41, 42). Mucosal IgAs isolated from HEPS subjects exhibited 
cross-clade neutralization (43). Other investigators noted that 
HIV-specific mucosal antibody responses were either not detect-
able or found in only a low fraction of HEPS in some cohorts 
(44–47). The disparate findings regarding mucosal IgA isolated 
from HEPS individual may stem from assay conditions, including 
the choice of protease inhibitors and the timing of their addition to 
mucosal fluids, the use of jacalin-based IgA isolation methods that 
yield predominantly IgA1 isotype antibodies, and assay sensitivity.

More recently, Hirbod et al. (48) described that neutralizing 
IgA1 in the foreskin of uncircumcised men was associated with 
lower risks of HIV acquisition. These authors performed blinded 
analyses on foreskin swabs collected in a randomized Ugandan 
trial of male circumcision for HIV prevention. The study’s goal 
was to assess correlates of HIV acquisition risks in foreskin 
using a case-control design. IgA was isolated by Jacalin column 
chromatography from swabs, a method that predominately yields 
IgA1 as mentioned above. The presence of IgA neutralizing 
capacity in foreskin samples was associated with an odds ratio 
(OR) of 0.31 for HIV acquisition in these uncircumcised men 
at initial enrollment and 0.21 at the last visit when cases were 
still seronegative. These data parallel those obtained in high-risk 
Kenyan sex workers, where the OR of HIV infection among study 
subjects with neutralizing IgA in cervical/vaginal secretions was 
0.31 (30). Together, data from both studies imply a protective 
effect of mucosal IgA against sexual HIV transmission.

The presence of neutralizing anti-HIV IgA in the cervico-
vaginal secretions of HEPS women in Kenya and Uganda enrolled 
in the Partners pre-exposure prophylaxis (PrEP) study was 
confirmed by Lund et al. HEPS women on oral PrEP had signifi-
cantly higher levels of neutralizing IgA antibodies as compared to 
placebo controls (49).

In summary, studies on HEPS subjects imply that mucosal 
anti-HIV IgA responses may be linked to prevention of persistent 
systemic HIV infection. Understanding the mechanism of pro-
tection among these populations will be important in designing 
effective vaccines.

CONCLUSiON

The goal of this review was to provide a juxtaposition between the 
potential of mucosal antibodies in normal hosts to protect against 
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immunodeficiency virus acquisition versus the severely dam-
aged status of mucosal antibody-producing cells in established 
HIV/SIV/SHIV infections. In uninfected hosts, IgA in mucosal 
fluids can prevent mucosal virus transmission through a process 
termed immune exclusion. This was demonstrated in the first 
proof-of-concept passive mucosal immunization studies involv-
ing recombinant monoclonal dIgAs. Thus far, active induction 
of protective mucosal IgA together with IgG has been achieved 
only in the vaccine study by Bomsel et al. (37) and by our group 
(unpublished data).

During the course of natural HIV/SIV/SHIV infection, the 
production of mucosal antigen-specific IgG and IgA is severely 
compromised, which leads to a skewing of the IgG:IgM and 
IgA:IgM ratios in mucosal fluids. It is likely that the low 
production of mucosal IgA and IgG compromises mucosal 
barrier integrity. This can lead to microbial translocation that 
is associated with severe immune activation, an additional 
mechanism that upregulates virus replication in mucosal 
tissues. Together, such damages inflicted on mucosal cells, 
tissues, and barrier function also weaken anti-HIV mucosal 
antibody responses. This may be a key risk factor in the fre-
quently observed superinfection of HIV-positive individuals, 

resulting in inter- or intra-clade recombination events and 
the generation of CRFs. Their ever increasing genetic diver-
sity may be an indirect indicator of loss of mucosal barrier 
protection due to the damage inflicted upon the mucosal 
B-cell compartment. Strategies aimed at improving humoral 
mucosal defenses and prevention of microbial translocation 
in HIV-infected individuals—perhaps by therapeutic vaccina-
tion—may improve the overall health status of individuals 
with chronic HIV infection.
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Jenniffer M. Mabuka1,2,3, Anne-Sophie Dugast3, Daniel M. Muema1,2,4, Tarylee Reddy5, 
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States, 10 Max Planck Institute for Infection Biology, Berlin, Germany

Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase) 
may contribute to the development of broadly cross-neutralizing antibodies. Here, we 
used pre-infection and acute-infection peripheral blood mononuclear cells and plasma 
samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig 
stages I–V of acute infection to study B cell subsets and B-cell associated cytokines 
(BAFF and CXCL13) kinetics for up to ~90  days post detection of plasma viremia. 
Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine lev-
els were measured by ELISA. We observed a rapid but transient increase in exhausted 
tissue-like memory, activated memory, and plasmablast B cells accompanied by decline 
in resting memory cells in untreated, but not treated women. B cell subset frequencies 
in untreated women positively correlated with viral loads but did not predict emergence 
of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. 
Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels 
did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels pre-
dicted the later emergence of detectable cross-neutralizing antibodies at 12  months 
post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with 
B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. 
However, plasma CXCL13 levels during hyperacute infection predicted the subsequent 
emergence of cross-neutralizing antibodies, providing a potential biomarker for the 
evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection 
studies to explore mechanisms underlying development of neutralizing antibodies.

Keywords: B-cell subsets, acute hiV, cXcl13, cross-neutralizing antibodies, BaFF

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01104&domain=pdf&date_stamp=2017-09-08
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01104
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:galter@mgh.harvard.edu
mailto:ndungu@ukzn.ac.za
https://doi.org/10.3389/fimmu.2017.01104
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01104/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01104/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01104/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01104/abstract
http://loop.frontiersin.org/people/453515
http://loop.frontiersin.org/people/163464


71

Mabuka et al. Acute HIV-1 and Cross-Neutralizing Antibodies

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1104

inTrODUcTiOn

The development of a successful vaccine for HIV-1 will likely 
require the elicitation of broadly neutralizing antibodies 
(bNAbs), i.e., antibodies that target fairly conserved epitopes 
on the HIV envelope spike and, therefore, neutralize the major-
ity of HIV isolates; however, to date, it is not fully understood 
how such responses can be induced through vaccination. In 
natural infection, bNAbs only appear after years of infection, 
developing in a small subset of individuals, although cross-
neutralizing antibodies with narrower breadth can be detected 
earlier and in higher numbers of people (1–8). Thus far, plasma 
viral load, CD4 count and inflammation have been described as 
predictors of neutralizing breadth but these would be irrelevant 
in the context of vaccine trials (1–3, 6, 9). A report investigat-
ing bNAb lineages from early infection showed that reverted 
germline versions bound early autologous envelopes, poten-
tially initiating key B cell selection processes and downstream 
antibody evolution pathways (10). This observation points to 
the potential influence of events occurring during hyperacute 
HIV-1 infection—before peak viremia—on development of 
cross-neutralizing antibodies, an area that remains unexplored 
to date.

In primary and chronic untreated HIV-1 infection (PHI and 
CHI), prior studies, largely cross-sectional in nature, have shown 
that B cell subset frequencies, defined by surface expression levels 
of CD21 and CD27, are disrupted (11, 12). Specifically, HIV-1 
infected individuals have increased frequencies of immature/
transitional B cells, increased tissue-like memory (TLM) B cells 
with signs of premature exhaustion and decreased frequencies 
of resting memory (RM) B cells (11–13). Although combination 
antiretroviral therapy (cART) initiated during chronic infection 
results in normalization of most B cell subsets, memory B cell 
defects persist and only show significant recovery if patients 
initiate treatment early in the course of infection (14–20). It 
remains unknown whether pre-infection B cell subset frequen-
cies and changes occurring during hyperacute HIV-1 infection 
(or immediately following encounter with antigen following 
vaccination) might be used to predict the emergence of early 
cross-neutralizing antibodies and thus help guide vaccine strate-
gies to drive this activity.

HIV-1 bNAbs generally have unusual features including high 
levels of somatic hypermutation in both complementarity-deter-
mining region (CDR) loops and framework regions, long heavy 
chain CDR 3 (CDRH3), and a propensity toward autoreactivity 
(21–24). Indeed, accumulating data now show that levels of the 
chemokine CXCL13, produced by T follicular helper cells (Tfh), 
play a key role in the quality of the germinal center (GC) reac-
tion and predict development of cross-neutralizing antibodies 
in HIV-infected patients (25–27). The B cell-associated cytokine 
B cell activating factor (BAFF) can also potentially influence the 
survival and class switching of unique autoreactive B cells likely 
to generate cross-neutralizing antibodies (28–30). Thus far, 
BAFF has been shown to augment development of cross-neu-
tralizing antibodies in animal models when used as an adjuvant 
or supplied exogenously (31, 32) although this was not true in a 
cohort of subtype B infected individuals (25). Whether the levels 

of these two key B cell associated cytokines during hyperacute 
HIV-1 infection can predict subsequent development of cross-
neutralizing antibodies later remains to be determined.

We sought to understand the dynamics of the B cell response, 
with respect to subset changes and B cell associated cytokines, 
prior to infection, and during hyperacute infection and how 
they might influence development of cross-neutralizing anti-
bodies. Additionally, the impact of cART initiated during the 
acute phase of infection on these factors was evaluated. We used 
pre- and post-HIV-1 subtype C infection samples from young 
women enrolled in a study termed Females Rising through 
Education, Support and Health (FRESH) in the KwaZulu-Natal 
province of South Africa (33). We measured the dynamics of 
B cell subsets, plasma levels of BAFF and CXCL13 before infec-
tion and longitudinally during hyperacute HIV-1 infection 
and determined their influence on the emergence of cross-
neutralizing antibodies at approximately 1  year postinfection 
(PI). Our data demonstrate that B cell defects reported in PHI 
and CHI emerge during hyperacute HIV-1 infection in women 
who do not initiate early treatment and are abrogated with 
immediate treatment, indicative of the influence of viral load on 
the observed changes. However, these dramatic B cell changes 
occurring in hyperacute infection did not predict the emergence 
of cross-neutralizing antibodies. In contrast, changes in BAFF 
and CXCL13 during hyperacute infection were not directly 
associated with viral loads. Importantly, we found higher levels 
of CXCL13 during hyperacute infection in individuals who 
subsequently developed detectable cross-neutralizing antibod-
ies within 1 year of infection compared to those who did not. 
Hence our data from subtype C hyperacute infection confirm 
the utility of CXCL13 levels early in infection as a biomarker 
for possible superior GC activity associated with emergence of 
cross-neutralization antibodies.

MaTerials anD MeThODs

study Population and Blood samples
Females Rising through Education, Support and Health is a 
longitudinal cohort study of 18- to 23-year-old HIV-1-negative 
women at high risk of HIV-1 infection established in the Umlazi 
Township of Durban, KwaZulu-Natal, South Africa. Cohort 
recruitment and follow-up details have been comprehensively 
described elsewhere (33–35). Briefly, blood samples were 
obtained at study entry and every 3  months thereafter from 
HIV-1-negative study participants. Study subjects attended 
twice-weekly sessions in which trained counselors offered a 
comprehensive life and job skills, empowerment and HIV-1 pre-
vention curriculum. During the twice-weekly visits, finger prick 
blood samples were taken for monitoring of plasma HIV-1 RNA, 
with results available within 24 h. Participants with a positive 
RNA test were contacted immediately, counseling was provided, 
and blood samples were collected. Subsequently, longitudinal 
PI venous blood samples were obtained at regular intervals 
through peak viremia and beyond. Peripheral blood mononu-
clear cells (PBMCs) were frozen from each venous blood draw 
for future analysis. Initially, participants identified with onset of 
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plasma viremia were closely monitored and referred for cART 
if meeting eligibility according to South African guidelines 
(36). Beginning July 2014, the study protocol was amended and 
participants with onset of HIV-1 plasma viremia were initiated 
on cART immediately using a standard 3-drug regimen of teno-
fovir disoproxil fumerate 300  mg, emtricitabine 200  mg, and 
efavirenz 600 mg (TDF/FTC/EFZ). From July 2015, participants 
with acute viremia received early treatment with TDF/FTC/EFZ 
plus raltegravir (RAL) 400 mg twice-daily, with RAL withdrawn 
two months after suppression of plasma viremia to undetectable 
levels.

B cell Phenotyping
Frozen PBMCs were thawed and allowed to rest for 2 h before 
being used for phenotypic analysis using a panel of fluorescently 
labeled monoclonal antibodies reactive with the following 
cell surface markers: BV711 conjugated antihuman CD3 
(BioLegend, San Diego, CA, USA), BV450 mouse antihuman 
CD21 (BioLegend, San Diego, CA, USA), Qdot 605 mouse 
antihuman CD19 (Life Technologies, Carlsbad, CA, USA), PE 
mouse antihuman CD27 (BD Biosciences, San Jose, CA, USA), 
Alexa Fluor 700 mouse antihuman CD38 (BD Biosciences, 
San Jose, CA, USA), and aqua viability dye (Life Technologies, 
Carlsbad, CA, USA). Rested PBMCs were stained with 200 µl 
of diluted viability dye and allowed to incubate in the dark for 
15 min at RT. Thereafter, cells were washed twice in phosphate-
buffered saline (PBS) and then 100 µl of the cocktail of antibod-
ies was added to 2 × 106 cells and incubated for 15 min at room 
temperature. Thereafter, tubes were washed with 3 ml PBS and 
centrifuged at 600 × g for 5 min. Supernatant was discarded and 
100 µl of 2% paraformaldehyde was added to each tube. Samples 
were then acquired on the LSRFortessa (Becton Dickinson, 
Franklin Lakes, NJ, USA) and data analyzed on FlowJo version 
9.8.3 (FlowJo LLC, Ashland, OR, USA).

Determination of Plasma BaFF and 
cXcl13 levels
BAFF and CXCL13 levels were determined by ELISA (R&D 
systems, Minneapolis, MN, USA) using the manufacturer’s 
protocol. Plasma samples were thawed slowly on ice, spun down 
and the clear supernatant used immediately for the assays.

neutralization assays
Neutralization activity was determined using a previously 
described standard TZM-bl cells based assay (NIH AIDS Research 
and Reference Reagent Program, Division of AIDS, NIAID, NIH) 
(37). This assay measures Tat-induced luciferase reporter gene 
expression after infection by HIV-1 Env-pseudotyped viruses 
with neutralization quantified by reduction in relative light 
units in TZM-bl cells in the presence of HIV-1-positive plasma. 
Samples were used at 1:50 dilution, and the ID50 was calculated 
as the reciprocal dilution at which 50% of the virus was inhibited.

Data analysis
Non-parametric Spearman’s rank tests were used to test for cor-
relations and a 2-tailed Mann–Whitney test was used to evaluate 

unpaired groups. Wilcoxon matched signed-rank test was used 
to evaluate paired samples. To assess the relationship between 
each B  cell subset and time, varying viral load, CD4 count, 
BAFF, and CXCL13 adjusted for days PI, linear mixed effects 
models with random (subject specific) intercepts were fitted to 
the B cell data. Due to the complex non-linear evolution of B cell 
subsets over time, an unstructured mean was considered. The 
variables of interest (CD4 counts, viral load, CXCL13, and BAFF 
levels) were treated as time dependent covariates in the model, 
separately. B cell subsets (the outcome) were log transformed. 
By comparison of Akaike information criterion and Bayesian 
information criterion, the most suitable model was that with a 
random intercept and residuals which follow an autoregressive 
(1) structure. p-Values less than 0.05 were considered signifi-
cant. Data analysis was performed in Graphpad Prism version 
6 (Graphpad Software, San Diego, CA, USA) and Stata version 
13.0 (Statacorp, College Station, TX, USA).

ethics statement
Study subjects provided written informed consent for participa-
tion in the study. Ethical approval was provided by the Biomedical 
Research Ethics Committee of the University of KwaZulu-Natal 
and the Institutional Review Board of Massachusetts General 
Hospital.

resUlTs

rapid but Transient changes in 
Frequencies of B cells and B-cell subsets 
in acute hiV-1 subtype c infection
Pre-infection samples were obtained from all participants in 
this study. Among the 12 untreated participants, the initial PI 
samples were obtained in Fiebig stage I for 11 participants and 
Fiebig stage III for one participant, providing us the opportunity 
to study very early changes in B-cell subsets and associated 
cytokines, and to determine how early events might influence the 
emergence of cross-neutralizing antibodies. Multiple samples 
were also obtained from participants prior to peak viremia, and 
during resolution of peak viremia to a viral load set-point. Ten 
early treated women were also studied, representing a subset of 
persons within our cohort who initiated standard first line treat-
ment (TDF/FTC/EFZ) within less than 3  days of HIV-1 RNA 
detection. Among them, the initial PI samples were obtained 
in Fiebig stage I for 8 participants and Fiebig stage V for two 
participants. If a participant did not have a sample at 3 months 
after HIV-1 RNA detection, an alternative sample at 2 months 
was used (Figures 1 and 2).

It has previously been reported that HIV-1 uninfected people 
have geography- and gender-dependent differences in lympho-
cyte counts (38–40). We, therefore, first established the baseline 
(pre-infection) frequency of B cells defined as the percentage of 
CD3−CD19+ cells of the total live peripheral blood lymphocyte 
population in the 12 untreated women. We found that on average 
these cells accounted for 7% of the peripheral blood lymphocytes 
at baseline (range 3.9–12.1%), which was lower than what has 
been observed in geographically different cohorts from Uganda 
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FigUre 1 | Dynamics of plasma viral loads and CD4 counts during hyperacute HIV-1 subtype C infection in absence of early antiretroviral treatment. Plasma HIV-1 
RNA levels (red) and absolute CD4 counts (blue) before HIV infection and following onset of detectable plasma viremia in 12 subjects with hyperacute HIV infection 
that were not initiated on early antiretroviral treatment. The arrows indicate time-points used for B cell analysis. DFOPV, days following onset of plasma viremia.
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(40). Following infection, three untreated individuals showed a 
transient increase in frequency of total B cells at days 7 and 14, 
although these populations decreased thereafter (Figure  3A). 
Overall, the median frequency of total circulating B  cells was 
significantly lower compared to baseline pre-infection levels 
at 30  days (p =  0.024) and 90  days (0.048) following onset of 
plasma viremia (DFOPV) (Figure  3A). These data suggest 
that HIV-1 subtype C infection in an African population alters 
B cell frequencies presumably through indirect killing or redis-
tribution of B cells, or through expansion of other lymphocyte 
populations, resulting in decreased proportions of B cells in the 
periphery over time.

The availability of pre-infection and hyperacute infection sam-
ples allowed us to determine baseline frequencies and subsequent 
kinetics of alterations in B cell subsets with the goal of defining 
early signatures associated with emergence of cross-neutralizing 
antibodies. Different clades of HIV-1 differ in pathogenicity and 
rates of disease progression. Thus, we hypothesized that the B cell 
kinetics in this clade C cohort might be unique if clade specific 
features, such as replicative capacity, are a determinant of B cell 
subset alterations (41–43).

We first determined the kinetics of the four previously described 
B cell subsets [activated memory (AM), RM, TLM, and naïve cells 

(11, 12)] defined by the expression of CD21 and CD27 on CD19+ 
mature B cells as shown in representative data (Figure 3B). There 
was a rapid decrease in the frequencies of RM cells (CD21+CD27+) 
noted at 7 DFOPV (medians; 26.55 and 16.5%, range 7–43.9 and 
1–21.5% for baseline and 7  DFOPV, respectively), concurrent 
with an increase in TLM cells (CD21−CD27−) (medians; 12.7 
and 27.85%, range 7.94–38.3 and 7.49–67.7% for baseline and 
7  DFOPV, respectively). The frequencies of RM cells remained 
significantly lower than baseline throughout the time-points 
tested thereafter in the first 3 months PI (p = 0.008, 0.001, 0.005, 
and 0.019 for 7, 14, 30, and 90 DFOPV, respectively) (Figure 3C). 
Compared to baseline, frequencies of TLM cells were significantly 
higher at 7 and 14 DFOPV (p = 0.039 and 0.0001, respectively). 
Thereafter, frequencies of TLM cells remained elevated in 
most individuals though not statistically significant through 
to 90 DFOPV (Figure 3D). Importantly, neither RM nor TLM 
frequencies were restored to baseline values by ~90 DFOPV. We 
observed a significant expansion of AM cells (CD21-CD27+) by 
14 DFOPV (p = 0.005) that persisted at 30 DFOPV (p = 0.010) 
when a peak was reached followed by contraction to near base-
line values in some of the individuals by 90 DFOPV (p = 0.083) 
(Figure 3E). No changes were observed in the frequency of naïve 
B cells (CD21+CD27-) following HIV-1 infection (Figure 3F).
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FigUre 2 | Dynamics of plasma viral loads and CD4 counts during hyperacute HIV-1 subtype C infection with early initiation of antiretroviral treatment. Plasma 
HIV-1 RNA levels (red) and absolute CD4 counts (blue) before HIV infection and following onset of detectable plasma viremia in eight subjects with hyperacute HIV 
infection that were initiated on early antiretroviral treatment. The arrows indicate time-points used for B cell analysis. DFOPV, days following onset of plasma viremia.
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Plasmablasts (PBs) represent immunoglobulin secreting 
terminally differentiated B cells, which are transiently enriched 
in blood during infection or vaccination (44–46). To define PB 
kinetics in HIV-1 infection, we assessed the frequencies of CD3−

CD19+CD27+CD38+++ cells before and upon HIV-1 infection. At 
pre-infection baseline, the median frequency of PBs was 1.26% 
(range 0.321–11.4%) of the total B cell population. Upon infection, 
there was a transient expansion of the PB population as shown in 
the representative example (Figure 3G) that peaked by ~14 days 
(medians 1.26 and 6.58%, range 0.321–11.4% and 0.532–28.6% 
for baseline and 14 DFOPV, respectively). Following HIV-1 infec-
tion, frequencies of the PB population remained significantly 
elevated at all time-points tested (p  =  0.016, 0.002, 0.002, and 
0.019 for 7, 14, 30, and 90  DFOPV, respectively) (Figure  3H). 
Thus, these data illustrate that untreated subtype C acute HIV-1 
infection is associated with rapid changes in frequencies of circu-
lating B cell subsets characterized by an increased frequency of 
AM, TLM, and PBs but a decrease in RM cells.

increase in Plasma BaFF and cXcl13 
levels in acute hiV-1 subtype c infection
Given the early increase in PBs and alterations in B cell subsets, and 
considering that acute HIV infection has previously been associ-
ated with a cytokine storm that may have profound long-term 
immunological consequences (47), we next sought to determine 
whether there were changes following HIV infection in soluble 
factors associated with B cell activation, survival, and maturation. 
Specifically, we investigated the levels and kinetics of BAFF, a 
cytokine important for B cell survival, and CXCL13, a chemokine 
responsible for B cell trafficking to GCs and potentially responsi-
ble for the expansion of PBs (26, 48). The median plasma level of 

BAFF at baseline was 795 pg/ml (range 536–1,121 pg/ml). These 
levels increased rapidly and significantly upon infection peaking 
by 7 DFOPV at a median of 1,817 pg/ml (range 1,457–4,119 pg/
ml, p = 0.0005) and remained significantly higher throughout the 
first 90 DFOPV (p = 0.005 for 14 DFOPV and p = 0.0005 for both 
30 and 90 DFOPV) (Figure 4A). The median plasma CXCL13 
level at baseline was 76 pg/ml (range 40–282 pg/ml). Similar to 
BAFF, CXCL13 levels were elevated upon infection although the 
increase was progressive with the highest median of 275 pg/ml 
(range 125–511 pg/ml) being registered 90 DFOPV (the last visit 
analyzed). Compared to baseline, the measurements remained 
significantly higher throughout the time-points analyzed in 
the first 90 DFOPV (p =  0.003, 0.0005, 0.0005, and 0.0039 for 
3, 14, 30, and 90 DFOPV, respectively) (Figure 4B). Thus, acute 
HIV-1 infection is associated with rapid and gradual increase in 
plasma levels of B cell-associated cytokines BAFF and CXCL13, 
respectively.

Viral loads Directly Drive changes in  
B cell subset Frequencies but not levels 
of Plasma BaFF and cXcl13
Viral loads and associated immune activation in chronic infec-
tion have been linked to changes in B cell subsets and develop-
ment of bNAbs during chronic infection (9, 49, 50). To determine 
whether viral replication was associated with the observed 
changes, we first assessed the relationship between contempo-
raneous viral loads, CD4+ T  cell counts and B  cell frequencies 
over time. We found a negative trend and significant relationship 
between PBs and CD4 counts at baseline (rho = −0.52, p = 0.080) 
and 7 DFOPV (rho = −0.82, p = 0.023), respectively (data not 
shown). Next, we used linear mixed effect models to investigate 
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FigUre 4 | Dynamics of plasma BAFF and CXCL13 levels following acute HIV-1 subtype C in absence of early antiretroviral treatment. Panels (a,B) show kinetics 
of BAFF and CXCL13 levels determined by ELISA using plasma samples obtained longitudinally from untreated patients within the first ~90 DFOPV and compared 
to matched baseline values. Horizontal lines represent median values and each color represents one patient. DFOPV, days following onset of plasma viremia. 
p-Values were calculated by Wilcoxon matched signed-rank test (**p < 0.005, ***p < 0.0001).

FigUre 3 | Frequency of B cells before and during acute HIV-1 subtype C infection in absence of early antiretroviral treatment. B cells were defined by the 
expression of CD19 on CD3− peripheral blood lymphocytes. B cell subsets were defined by the expression of CD27 and CD21 on CD3−CD19+ lymphocytes. 
Plasmablasts (PBs) were defined as CD27+CD38+++ cells on CD3−CD19+ peripheral lymphocytes. Subsets were analyzed on longitudinal AHI samples obtained 
in the first ~90 DFOPV and compared to matched baseline values. Panel (a) shows a summary of the frequency of B cells as a percentage of lymphocytes 
overtime. Panel (B) is representative data showing B cell subsets from baseline (before infection) to ~60 DFOPV, example from participant 127-033-0097-079. 
Panels (c–F) represent frequencies of B cell subsets; (c) resting memory, (D) tissue-like memory, (e) activated memory, and (F) naïve cells. (g) Representative 
data from participant 127-033-0108-093 shows kinetics of PBs from baseline to ~90 DFOPV. (h) A comparison between frequencies of PBs at baseline and 
longitudinal time-points up to ~90 DFOPV. Horizontal lines represent median values and each color represents one patient. DFOPV, days following onset of 
plasma viremia, and time-point “0” represents baseline (visit prior to infection). p-Values were calculated by Wilcoxon matched signed-rank test (*p < 0.05, 
**p < 0.005).
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TaBle 1 | Linear mixed effect models for the relationship between viral loads, CD4 counts, CXCL13, and BAFF over time and B cell subsets in absence of early 
antiretroviral treatment.

hiV-1 infected untreated

B cell subset activated memory resting memory Tissue-like memory Naive Plasmablasts

Viral Loads Coef (SE) 0.0604 (0.037) −2.5253 (0.5238) 0.1083 (0.0388) −0.3031 (1.2403) 0.1384 (0.0973)
p-Value 0.103 <0.0001 0.005 0.807 0.155 

CD4 counts Coef (SE) −0.0006 (0.0002) 0.0119 (0.0035) −0.0005 (0.0002) 0.0028 (0.0074) −0.0010 (0.0005)
p-Value 0.009 0.001 0.039 0.705 0.078

CXCL13 Coef (SE) 0.0008 (0.0006) −0.0160 (0.0106) 0.0007 (0.0007) 0.0026 (0.0188) 0.0010 (0.0013)
p-Value 0.207 0.13 0.309 0.889 0.424

BAFF Coef (SE) 0.0003 (0.0001) −0.0015 (0.0025) 0.00002 (0.0001) 0.0038 (0.0040) 0.0007 (0.0003)
p-Value 0.006 0.553 0.909 0.373 0.026

Significant p values are shown in bold.
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the overall relationship between the rapid changes in viral loads, 
CD4+ T cells and observed changes in B cell subset frequencies 
over time. Viral load was negatively associated with RM cell 
frequencies (p  <  0.0001), positively associated with TLM cells 
(p  =  0.005) but no significant associations with AM and PBs 
were observed (Table 1). In contrast, CD4+ T cell counts were 
positively associated with RM cells (p  =  0.001) and negatively 
associated with TLM cells (p = 0.039) and AM cells (p = 0.009) 
(Table 1). Further, we used a model of a similar form to determine 
the relationship between changing levels of BAFF, CXCL13, and 
markers of disease progression. Interestingly, there was no sig-
nificant relationship between viral loads and BAFF (p = 0.511) 
or CXCL13 (p = 0.940). Furthermore, no association was found 
between CD4 cell counts and BAFF plasma levels; however, we 
observed a negative association between CD4+ T cell counts and 
CXCL13 plasma levels (p < 0.0001) (data not shown). We also 
found that BAFF levels were significantly associated with high 
frequencies of AM (p = 0.006) and PBs (p = 0.026) cells (Table 1). 
In contrast there was no significant relationship between plasma 
levels of CXCL13 and any B cell subset frequencies (Table 1). Taken 
together, these data confirm the direct relationship between viral 
loads and B cell subset frequencies but not BAFF and CXCL13. 
We, therefore, show for the first time that accumulation of TLM 
cells, which has mostly been associated with chronic infection, 
manifests within days of infection and associates with viral loads. 
Furthermore, the observation of a positive correlation between 
BAFF levels and specific B  cell subsets (AM and PBs) during 
hyperacute HIV-1 infection may suggest a direct stimulation and/
or maintenance of these subsets by this cytokine.

early carT Blocked changes in B cell 
subset Frequencies and Plasma levels of 
BaFF while Diminishing changes in levels 
of Plasma cXcl13
Following our observation that changes in B cell subset frequen-
cies are influenced by viral load, we next determined whether 
in the absence of persistent antigenemia the levels of the differ-
ent B  cell subsets, as well as B  cell associated cytokines BAFF 
and CXCL13, would remain normal. Remarkably, there were 
no significant B  cell subset changes observed (representative 
data Figures  5A,B and summary Figures  5C–E) except for 

an increase in PBs at 7 DFOPV (p = 0.039) (Figure 5F) but at 
lower frequencies than what was observed in untreated women 
(Figure 3). Indeed, frequencies of AM cells at 30 and 90 DFOPV 
trended toward being lower than baseline (p = 0.109 and 0.078, 
respectively, data not shown).

Furthermore, we did not observe significant changes in 
median plasma BAFF levels up to 90  DFOPV (Figure  6A). 
However, CXCL13 levels trended toward being higher upon 
infection and were significantly higher at 90 DFOPV compared 
to baseline despite complete suppression of viral loads in most 
of the individuals (Figure 6B). The levels of BAFF and CXCL13 
were significantly different between the untreated and early 
treated individuals at all time-points tested except at baseline and 
7 DFOPV for CXCL13 (Figures 6C,D). Our data confirm that 
viremia drives the changes in B cell subset frequencies, an effect 
that is blocked by early treatment. Furthermore, although early 
cART largely abrogated the cytokine surge, there was no direct 
relationship between viral loads and the cytokines in untreated 
persons, suggesting that the early cytokine responses may be 
induced by infection-associated changes other than viremia.

emergence of cross-neutralizing 
antibodies within 1 Year of hiV-1 subtype 
c infection
Given the rapid changes in frequencies of B  cell subsets and 
increased levels of BAFF and CXCL13 observed during acute 
HIV-1 infection, we next determined whether the enrichment 
of a particular B cell subset or cytokine was associated with the 
emergence of cross-neutralizing antibodies, as an early predic-
tor of cross-neutralization activity. We first probed for presence 
of cross-neutralizing antibodies for the 12 antiretroviral-naïve 
individuals using plasma collected at ~1 year PI. Antibody cross-
neutralization activity was determined by standard TZM-bl 
assay against 12 viruses of different subtypes (C, B, and A) and 
tiers (1 and 2) (51) (Figure  7). As expected, we found that all 
individuals had detectable cross-neutralizing antibodies at 1 year 
PI against the tier 1 subtype C strain MW965 (100%) and most 
had activity against the tier 1 subtype B viruses MN.3 (92%) and 
SF162.LS (83%). One patient 127-33-0108-093 neutralized all 
three tier 1 viruses with the greatest potency at the time-point 
prior to initiation of cART (Figure 7). Among all subjects tested, 
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FigUre 5 | Early combination antiretroviral therapy (cART) blocks B cell subset changes. Peripheral blood mononuclear cells obtained longitudinally from eight 
individuals who initiated cART during Fiebig stage I–V were used to define B cell subsets and plasmablasts (PBs) by the expression of CD27, CD21, and 
CD27+CD38+++ cells on CD3−CD19+ peripheral lymphocytes, respectively. B cell frequencies from the first ~90 DFOPV were compared to matched baseline values. 
Panels (a,B) are representative data from participant 127-033-0629-453 showing kinetics of B cell subsets and PBs, respectively, from baseline (before infection) to 
90 DFOPV. Panels (c–F) represent frequencies of B cell subsets; (c) resting memory, (D) tissue-like memory, (e) activated memory, and (F) PB cells. Horizontal lines 
represent median values and each color represents one patient. DFOPV, days following onset of plasma viremia, and day “0” represents baseline (visit prior to 
infection).
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there was weak cross-neutralization activity detected against 4/9 
(44%) tier 2 viruses tested. Three patients (127-33-0048-036, 
127-33-0108-093, and 127-33-0450-318) had detectable but weak 
cross-neutralization activity against the tier 2 subtype B viruses 
tested. No activity was detected against tier 2 subtype A viruses 
at 1 year PI (Figure 7).

To enable us to perform further analyses, individuals were 
categorized into those that did or did not have detectable cross-
neutralization activity (regardless of the potency) against any of 
the tier 2 viruses (6). Using this stratification, five individuals 
were classified as having detectable cross-neutralization activity 
and seven as having no detectable cross-neutralization activity 
(Figure 7), and these strata were used in subsequent analysis.

Plasma levels of cXcl13 early in 
infection Predict emergence of  
cross-neutralizing antibodies 1 Year Pi
We next investigated whether events occurring early upon infec-
tion could predict the emergence of cross-neutralizing antibodies 

1 year PI. We found no differences between individuals with and 
without detectable cross-neutralization activity when compar-
ing viral load set-point (p = 0.268) and contemporaneous viral 
loads (p =  0.404). Contemporaneous CD4 counts also did not 
distinguish between the two groups (p = 0.458). Notably, among 
individuals with detectable cross-neutralizing antibodies at 1 year, 
3/5 (60%) qualified for and initiated cART due to low CD4 count 
within 2 years of infection compared to 2/7 (28%) of those who 
did not, though that relationship between emergence of cross-
neutralizing antibodies and deterioration in CD4 counts was also 
not statistically significant (p  =  0.558, Fisher’s exact test). One 
participant in the group with no detectable cross-neutralization 
was initiated on treatment outside of normal criteria due to 
pregnancy. To determine whether the expansion of a specific 
B  cell subset following hyperacute infection was predictive of 
the emergence of cross-neutralizing antibodies, we compared 
the peak frequency of AM, TLM, and PBs and nadir levels of 
RM cells in the individuals with and without cross-neutralization 
activity and found no apparent differences in this small group of 
12 individuals (data not shown).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 6 | Early combination antiretroviral therapy (cART) blocks or reduces changes in plasma levels of BAFF and CXCL13. Panels (a,B) show kinetics of BAFF 
and CXCL13 levels, respectively, determined by ELISA using plasma samples obtained longitudinally from 10 women who initiated cART during Fiebig stages I–V. 
Panels (c,D) show a comparison between kinetics of BAFF and CXCL13, respectively, between untreated and early treated women. Lines represent median values. 
DFOPV, days following onset of plasma viremia. p-Values for (a,B) were calculated by Wilcoxon matched signed-rank test and for (c,D) by Mann–Whitney test 
(**p < 0.005, ***p < 0.0001).
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Similarly, we sought to investigate whether plasma levels 
of CXCL13 and BAFF were associated with the emergence of 
cross-neutralizing antibodies. There was no significant differ-
ence between BAFF levels in the two groups at all time-points 
tested (data not shown). In contrast, plasma CXCL13 levels were 
significantly higher in those with detectable cross-neutralization 
activity at all early time-points tested (p = 0.012, 0.010, 0.030, and 
0.018 for 7, 14, 30, and 90 DFOPV, respectively) (Figures 8A–D). 
Hence, high levels of CXCL13 early in infection were associated 
with emergence of cross-neutralizing antibodies within 1 year PI.

DiscUssiOn

Development of an effective vaccine able to induce bNAbs remains 
a high priority for the HIV field but how these responses evolve in 
natural infection remains unclear. It has previously been reported 
that interactions between B cells and transmitted founder virus 
soon after infection likely shape the evolution of such antibod-
ies (10). Thus understanding factors that influence the humoral 
response to HIV-1 early in natural infection could open new 
insights into designing an effective vaccine. We took advantage 
of a unique cohort in which specimens were available prior to 

HIV-1 infection and longitudinally during the earliest phases of 
infection, and determined the relationship between frequencies 
of B cell subsets and key B cell activating cytokines (BAFF and 
CXCL13) on the emergence of cross-neutralizing antibodies 
1 year following infection. We show that in the absence of cART, 
the impact of HIV-1 infection is rapid and greatly impacts the 
frequencies of circulating RM, TLM, and PBs subsets, within 
7  DFOPV. These frequencies rebounded although never to the 
baseline values by ~90 DFOPV which coincides with early stages 
of viral load set-point. These subset changes were associated with 
viral load in the regression analyses, confirming that viremia 
drives them. Plasma levels of BAFF and CXCL13 were also 
elevated in untreated people but did not show association with 
viral loads within that group. While BAFF levels showed a steady 
decrease after a peak on day 7, the levels of CXCL13 continued 
to rise and remained high 90 DFOPV possibly due to effects of 
immune activation or ongoing viral replication within lymphoid 
tissues. Frequencies of B cell subsets and plasma levels of BAFF 
did not influence emergence of cross-neutralizing antibodies. 
However, individuals with high plasma levels of CXCL13 early 
in infection were more likely to have detectable but weak cross-
neutralizing antibodies at 1 year PI.
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FigUre 7 | Emergence of cross-neutralization activity in plasma obtained within 1 year of HIV-1 subtype C infection. The emergence of cross-neutralization activity 
in plasmas from 12 patients ~1 year post detection of plasma viremia was evaluated against viruses from different clades (C, B, and A) and tiers (1 and 2) as 
indicated at the top. The values shown are the reciprocal dilution of plasma at which 50% of the virus was neutralized (ID50). Cases where no cross-neutralization 
was detected were assigned an ID50 of <1:50. ID50s are color coded for clarity; ID50 < 1:50 (gray), 1:50 to 1:100 (blue), 1:101 to 1:200 (yellow), 1:201 to 1:1,000 
(orange), and >1:1,000 (red). Individuals with detectable cross-neutralization of tier 2 viruses (5/12) are grouped together. * indicates that plasma samples tested 
were obtained prior to 1 year of infection. MuLV was used as the negative control. Experiments were performed at least two independent times and the mean values 
are reported.
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CXCL13 has previously been documented to be a biomarker 
of the GC activity in mice, non-human primate models, vaccine 
recipients and HIV-1 infected people (25–27). In those studies, 
participants were infected with a range of subtypes but the sam-
ples tested were mainly from primary or chronic HIV-1 infection. 
We report a similar observation in our cohort of 12 young African 
women infected with HIV-1 subtype C and in hyperacute HIV-1 
infection. Importantly, pre-infection samples allowed longitudi-
nal tracking of changes following infection, clearly demonstrating 
that CXCL13 is induced following infection. Similar to previous 
reports, viral load did not have a direct influence on the CXCL13 
levels in the first 60 DFOPV. However, there was a trend toward 
a positive correlation by 90 DFOPV, which might be an indica-
tion of a shift toward chronic infection, a period during which 
CXCL13 levels and viral loads correlate positively in the absence 
of treatment (52–55). CXCL13 plays a crucial role in the organiza-
tion of B cell follicles of secondary lymphoid organs by recruiting 
B  cells and specific T  cell subsets through its receptor CXCR5 
(56, 57), thus its ability to predict emergence of cross-neutralizing 
antibodies is not surprising.

We report a dramatic decline in frequencies of circulating RM 
cells that might reflect the impact of GC destruction immediately 
upon establishment of HIV-1 infection (5). The mechanism by 
which HIV-1 results in depletion of RM cells is unclear but has 
significant implications for maintenance of humoral immunity. 
Future studies need to understand whether it is active virus rep-
lication that is responsible for RM changes or a particular viral 
protein, and if the latter, this would suggest potential caution in 
the inclusion of that protein in potential immunogens to avoid 
unintended detrimental immunological consequences. Of note, 

all the observed B cell subset changes were successfully blocked 
by cART initiated during Fiebig stage I-V except for an initial 
spike of PBs, a possible reflection of GC events where infected 
CD4 Tfh cells may continue to stimulate B cells within the follicles 
before death (58).

Despite viral loads being a good predictor of development of 
cross-neutralizing antibodies, which are precursors for bNAbs 
(6), only about 25% of individuals displaying high viral loads 
develop bNAbs suggesting a role for other factors. The rate of 
depletion of CD4 T cells has also been reported to predict the 
development of bNAbs (2). In our study, neither viral loads nor 
CD4 counts predicted the emergence of cross-neutralizing anti-
bodies at 1 year PI. However, the independent prediction by levels 
of CXCL13 suggests a complex multifactorial determination of 
the development of cross-neutralizing antibodies. Indeed, other 
factors, in addition to viral loads and CD4 counts, have been 
reported to predict the development of cross-neutralizing activity 
and could have influenced the associations that we observed here. 
For instance, early follicular helper T  cell responses, measured 
by the frequencies of CXCR5+ CD4 T cells and which we did not 
assess in this study, has been show to predict of the development 
of neutralization breadth (25, 59). In addition, the development 
of bNAbs has been associated with reduced control of autore-
activity (60). Importantly, the observations reported here could 
be limited due to the small numbers of patients available which 
might preclude our ability to detect associations. Furthermore, we 
probed for cross-neutralizing antibodies within 1 year of infec-
tion, which is very early in the development of cross-neutralizing 
antibodies, and certainly before the development of any bNAbs 
in any of the study participants. These limitations could have also 
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FigUre 8 | Plasma levels of CXCL13 are associated with emergence of antibody cross-neutralization activity. Panels (a–D) show the difference over time in plasma 
CXCL13 levels between individuals with detectable cross-neutralization activity (detectable cross-neutralization) and those without (no detectable cross-
neutralization). p-Values were calculated by Mann–Whitney test. DFOPV, days following onset of plasma viremia.
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reduced our ability to detect associations between B cell subsets 
and the emergence of cross-neutralizing antibodies.

In conclusion, acute HIV-1 subtype C infection is associated 
with rapid changes in B  cell subsets that do not predict the 
emergence of cross-neutralizing antibodies within the first year 
of infection. Instead, our data showing an association between 
CXCL13 levels in acute infection and emergence of cross-
neutralizing antibodies adds to growing evidence suggesting 
that plasma CXCL13 might be a surrogate for a functional GC 
compartment and serve as a biomarker to evaluate candidate 
vaccines for their ability to stimulate a rapid and robust GC 
reaction.
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Despite the wide availability of antiretroviral therapy (ART) prophylaxis during pregnancy, 
>150,000 infants become infected through mother-to-child transmission (MTCT) of 
HIV worldwide. It is likely that additional intervention strategies, such as a maternal 
HIV vaccine, will be required to eliminate pediatric HIV infections. A deeper under-
standing of the fine specificity and function of maternal HIV envelope (Env)-specific 
responses that provide partial protection against MTCT will be critical to inform the 
design of immunologic strategies to curb the pediatric HIV epidemic. Recent studies 
have underlined a role of maternal HIV Env-specific neutralizing and non-neutralizing 
responses in reducing risk of MTCT of HIV and in prolonging survival rates in HIV-
infected infants. However, critical gaps in our knowledge include (A) the specific role of 
maternal autologous-virus IgG-neutralizing responses in driving the selection of infant 
transmitted founder (T/F) viruses and (B) Env mechanisms of escape from maternal 
autologous virus-neutralizing antibodies (NAbs). A more refined understanding of the 
fine specificities of maternal autologous virus NAbs and ways that maternal circulating 
viruses escape from these antibodies will be crucial to inform maternal vaccination 
strategies that can block MTCT to help achieve an HIV-free generation.

Keywords: mother-to-child transmission, Hiv, vaccines, vertical Hiv transmission, neutralizing antibodies, non-
neutralizing antibodies, maternal vaccines

inTRODUCTiOn

According to the 2016 UNAIDS global report, >150,000 infants became infected with HIV-1 via 
mother-to-child transmission (MTCT) in 2015 (1). This is despite the great success in expanding 
the availability of antiretroviral therapy (ART) worldwide. Ongoing challenges for the elimina-
tion of pediatric HIV infection include the following: lack of universal HIV testing and treatment 
during pregnancy, late maternal presentation for clinical care, maternal HIV acquisition in late 
pregnancy, and lack of maternal adherence to ART therapy during breastfeeding (1, 2). Thus, it 
is likely that alternative strategies, such as a maternal or infant HIV vaccine, will be required to 
eliminate pediatric HIV infections.

Mother-to-child transmission of HIV can occur via three distinct routes: during pregnancy 
(antepartum), during labor and delivery (peripartum), and during breastfeeding (postpartum). 
Maternal ART has been highly successful in reducing MTCT of HIV to as low as 2% transmission 
risk; however, poor maternal adherence to ART therapy, ART-associated toxicity in infants, and 
limited ART availability in resource-limited areas remain outstanding challenges in preventing 
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MTCT of HIV (2). Interestingly, in the absence of maternal 
ART prophylaxis during pregnancy or at delivery, only 30–40% 
of HIV-infected mothers vertically transmit HIV to the infant, 
suggesting that maternal factors may provide partial protection 
against vertical transmission of HIV infection (2, 3). These 
factors could include maternal immune responses capable of 
mediating partial protection against MTCT of HIV. Efforts to 
develop immune-based strategies that can synergize with current 
ART prophylaxis to further reduce MTCT risk have focused on 
understanding the role of maternal HIV envelope (Env)-specific 
antibodies in mediating protection against HIV transmission. 
Interestingly, maternal IgG is transferred to fetus across the 
placenta throughout gestation and mediates protection against 
neonatal infections during the first few months of life (4–6). 
Given that maternal HIV Env-specific IgG responses are present 
at the time of infant infection, MTCT provides a unique setting 
to elucidate the role of maternal passively acquired Env-specific 
IgG in mediating protection against virus acquisition in infants. 
Understanding the determinants of how infant T/F viruses initi-
ate infection in the presence of maternal neutralizing and non-
neutralizing antibodies (NAbs) in the fetus could also shed light 
on mechanisms of virus superinfection in adults. Furthermore, 
defining viral escape mechanisms from autologous virus NAbs 
is not only relevant in the setting of MTCT but may also have 
important applications in our understanding of more general 
virus escape mechanisms from host immune responses.

THe ROLe OF MATeRnAL nAbs in MTCT

The role of maternal autologous virus NAbs in protecting the 
neonate against HIV transmission remains unclear. Although 
some studies reported higher levels of NAbs in serum among 
non-transmitting mothers (7–10), other studies have not 
confirmed this association (11–13). These contradictory results 
may be due to the small mother infant pair sample sizes, unclear 
timing of infant HIV-1 infection, disparate maternal and infant 
sample collection times, unknown route of vertical transmis-
sion, ART prophylaxis or treatment during pregnancy, delivery 
or postpartum, and lack of control for factors that impact 
MTCT, such as maternal plasma viral load and peripheral CD4+ 
T cell count (14, 15). Given the extensive genetic and antigenic 
diversity of HIV within a host, elucidating the fine specificity of 
maternal NAb responses against conserved vulnerable regions 
of the HIV Env may provide a better understanding of maternal 
immune correlates of protection against MTCT. The conserved 
vulnerable regions on the HIV Env include the following: the 
CD4 binding site, the variable loop regions 1 and 2 (V1V2), 
variable loop region 3 (V3), and the gp41 membrane-proximal 
external region (MPER) (16).

Our group recently identified maternal humoral correlates 
of protection against peripartum HIV transmission in a large 
cohort of n = 248 HIV-infected women from the Women and 
Infant Transmission Study (WITS), a historic North American 
observational cohort of HIV clade B virus-infected, ART naïve 
pregnant women (9). Importantly, this maternal humoral corre-
lates of protection analysis accounted for known maternal MTCT 
risk factors such as maternal plasma viral load, peripheral CD4+ 

T cell count, infant gestational age, and delivery mode, thereby 
isolating the role of maternal HIV Env-specific IgG responses 
in mediating partial protection against MTCT of HIV. In the 
WITS cohort, maternal V3-specific IgG binding responses, tier 
1 virus-neutralizing responses, and CD4 binding site-blocking 
responses all correlated and were independently predictive of 
reduced MTCT risk (9). Further analyses of the fine specificity 
and function of the potentially protective maternal V3-specific 
IgG responses revealed that both binding and neutralizing 
responses targeting the C-terminal region were associated with 
reduced MTCT risk (8). Thus, these findings provide proof of 
principle that maternal HIV Env-specific IgG responses target-
ing vulnerable epitopes on the HIV Env can afford partial pro-
tection against peripartum MTCT of clade B HIV. Furthermore, 
a separate study observed that Env-specific responses targeting 
MPER region in gp41 were associated with reduced MTCT risk 
(17), suggesting that multiple regions in HIV Env may be targets 
of potentially protective maternal humoral responses. However, 
the association of maternal humoral responses to defined 
vulnerable Env epitopes with reduced vertical virus transmis-
sion has not been consistently confirmed in other cohorts of 
HIV-infected women. For example, the association of maternal 
V3-specific IgG binding responses, tier 1 virus-neutralizing 
responses, and CD4 binding site-blocking responses were not 
predictive of reduced MTCT risk in HIV, clade C virus-infected 
women from the Breastfeeding and Nutrition (BAN) cohort 
(n = 88) (18). However, it should be noted that the majority of 
transmitting women included in the BAN humoral correlates 
of protection analysis transmitted in utero and in the setting of 
maternal ART treatment. Nevertheless, these findings suggest 
that maternal humoral correlates of protection against MTCT 
of HIV in ART naïve, clade B virus-infected women may not be 
applicable to other transmission modes (i.e., in utero transmis-
sion), other viral clades, and/or in the setting of maternal ART 
treatment. Further defining the fine specificity and function of 
potentially protective maternal humoral responses will provide 
immunologic benchmarks used to evaluate future maternal HIV 
vaccine modalities that may temporarily enhance virus blocking 
antibody responses during pregnancy. For example, in the mod-
erately protective RV144 vaccine efficacy trial, vaccine-elicited 
V1V2-specific IgG responses were associated with reduced HIV 
transmission risk, and thus the elicitation of V1V2-specific IgG 
responses is currently being used as an immune benchmark 
in ongoing vaccine efficacy studies (19, 20). Furthermore, 
given that the fetus is passively immunized with maternal IgG 
throughout pregnancy, a deeper understanding of the role of 
NAbs that are present in a host at the time of infection could 
help inform vaccine strategies.

TRAnSMiTTeD FOUnDeR (T/F) viRUSeS 
THAT inFeCT inFAnTS AnD THeiR 
SenSiTiviTY TO MATeRnAL AnTiBODieS

Similar to HIV infection in adults, HIV-infected infants become 
infected with one to a few HIV viruses, suggesting that a selec-
tive virus genetic bottleneck is involved in MTCT (Figure 1A) 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 1 | HIV virus escape from maternal neutralizing antibodies (NAbs) in the setting of mother-to-child transmission. (A) Neighbor joining phylogenetic tree and 
highlighter plot of the full HIV envelope (Env) gene (env) for one mother–infant pair, showing the transmission of one T/F virus from mother to infant. The red circles 
represent infant env amplicons, and the blue squares represent maternal env amplicons in the highlighter plot. Red ticks represent non-silent amino acid mutations, 
and green ticks represent silent amino acid mutations in the HIV Env region. Neighbor-joining tree was generated using MEGA7, and the highlighter plot was 
generated using the Los Alamos National Laboratory HIV tools: highlighter plot. (B) Maternal infectious and non-infectious virus quasispecies in the presence of a 
wide pool maternal autologous-virus NAbs may select for infectious neutralization-resistant viruses that infect the infant.
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(7, 11, 12, 14, 15). However, factors that drive this selective virus 
genetic bottleneck are not clear. Env-specific IgG responses can 
mediate immune pressure on autologous circulating viruses 
and therefore could contribute to the selection of infant T/F 
viruses (Figure  1B). While some studies have suggested that 
viruses transmitted from mother to infant may be resistant to 
neutralization by maternal antibodies (10, 21, 22), other studies 
have not confirmed these observations (13, 23). The reported 
increased resistance of infant T/F viruses to maternal NAbs 
may be explained by genetic differences compared to maternal 
non-transmitted viruses at key sites including Env glycan motifs. 
Furthermore, mutation of distal amino acid residues relative 
to Env neutralizing epitopes could also confer neutralization 
resistance to maternal autologous virus NAbs (24) (Figure 1B). 
A recent study in HIV, clade A virus-infected women examined 
the neutralization sensitivity of maternal autologous circulat-
ing viruses to paired plasma in 10 transmitting and 10 non-
transmitting women and found no association in autologous 
virus-neutralizing activity and transmission risk (23). This study 
also reported that transmitting and non-transmitting women 
had a similar proportion of neutralization-resistant viruses to 
paired maternal plasma, suggesting that maternal autologous 
NAbs may not be associated with infant protection. However, to 
date, no study has evaluated whether neutralization resistance to 
paired maternal plasma NAbs is a defining feature of infant T/F 
viruses compared to maternal non-transmitted variants. Given 
that maternal autologous virus NAbs will only need to block 
the viruses that initiate infection in the infant (i.e., infant T/F 
viruses), future studies should focus on defining the susceptibil-
ity of infant T/F viruses to paired maternal plasma NAbs and 
monoclonal NAbs with defined epitope specificities compared to 
non-transmitted maternal variants in a cohort with standardized 
sample collection and known transmission risk factors.

In contrast to adult HIV transmission in which an HIV 
vaccine will need to elicit broadly NAbs against difficult-to-
neutralize viruses from several clades, MTCT is a unique set-
ting in which vaccine-elicited antibody responses need to only 
block the maternal virus pool to which the infant is exposed to 
(Figure 1B). Therefore, vaccination strategies aimed at eliciting 
broadly NAbs against multiple viral clades may be distinct from 
immunization strategies aimed at the inducing autologous virus 
NAbs against a defined and limited pool of maternal viruses. 
As a maternal and/or infant HIV vaccine will most likely be 
necessary for eliminating pediatric HIV infections, identify-
ing the maternal NAbs that target specific vulnerable Env 
epitopes in selecting for neutralization-resistant viruses will be 
important to inform maternal vaccination strategies. Moody 
et al. recently demonstrated that in an HIV-infected individual, 
autologous-virus NAbs targeting the V3 loop and CD4 binding 
site neutralized a large proportion of autologous viruses isolated 
from plasma (25). Importantly, the autologous virus NAbs in 
this individual mediated the neutralization of heterologous 
easy-to-neutralize tier 1 virus isolates but failed to neutralize 
difficult-to-neutralize heterologous tier 2 virus isolates, suggest-
ing that these seemingly inconsequential weakly NAbs can drive 
the selection of predominant strains that repopulate the autolo-
gous virus pool in HIV-infected individuals. This observation 

underlines the role of maternal Env-specific NAbs in selecting 
for neutralization-resistant viruses circulating in the blood.  
In the setting of MTCT, these maternal plasma tier 1 virus NAbs 
could select for neutralizing resistant viruses in the maternal 
blood compartment, and these viruses may be transmitted to the 
infant. Thus, maternal V3 and CD4bs-specific NAbs may select 
for maternal autologous circulating viruses that are neutraliza-
tion resistant and may drive the selection of infant T/F viruses. 
Therefore, it will be important to define both the fine specificity 
and neutralizing function of maternal autologous virus NAbs.

THe ROLe OF MATeRnAL nOn-
neUTRALiZing HUMORAL ReSPOnSeS 
AnD MTCT RiSK

The role of maternal non-neutralizing humoral responses in 
mediating partial protection in the setting of MTCT of HIV 
also remains unclear. A study reported that in a small cohort 
of (n = 19) HIV clade A virus-infected Kenyan women, breast 
milk Env-specific IgG responses with antibody-dependent 
cellular cytotoxicity (ADCC) activity were associated with 
reduced MTCT risk (26). Interestingly, these ADCC-mediating 
IgG responses in breast milk were found to have limited neu-
tralizing activity, suggesting that maternal ADCC responses 
may be important in limiting postpartum transmission of HIV. 
However, it should be noted that these findings were from a 
small cohort of 9 transmitting and 10 non-transmitting HIV-
infected women and have not been validated in a larger cohort 
of clade A HIV-infected women. Pollara et  al. examined the 
role of maternal Env-specific IgG responses in breast milk 
and found no association of ADCC-mediating responses and 
decreased MTCT risk in a cohort of (n = 87) of HIV clade C 
infected breastfeeding Malawian women (27). The inability to 
validate the association of maternal ADCC-mediating breast 
milk Env-specific IgG responses and reduced MTCT risk may 
be due to distinct cohort sizes, potential virologic differences in 
clade A and clade C viruses, and differences in fine specificity 
and function in these distinct cohorts of HIV-infected women. 
Despite the seemingly contradictory findings of the role of 
breast milk Env-specific ADCC-mediating IgG responses and 
postpartum MTCT risk, maternal passively acquired ADCC-
mediating IgG responses have been associated with reduced 
infant mortality in HIV clade A, peripartum-infected infants, 
suggesting that maternal passively acquired ADCC responses 
may prolong infant survival in pediatric HIV-infected patients 
(28). Together, these studies highlight the potentially protective 
role of maternal ADCC-mediating Env-specific IgG responses 
and their importance in increasing infant survival rates in HIV-
infected pediatric patients.

THe TRAnSPLACenTAL TRAnSFeR OF 
MATeRnAL Hiv env-SPeCiFiC igg 
ReSPOnSeS AnD MTCT RiSK

In the setting of pregnancy, maternal IgG is passively transferred 
to the fetus throughout gestation, with the majority of the 
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transplacental transfer taking place in the third trimester (29). 
However, in the setting of maternal HIV infection, the trans-
placental transfer of maternal IgG to the fetus is poorly efficient 
(29–34). Despite the observed poor transplacental transfer of 
maternal IgG responses to the fetus in the setting of maternal HIV 
infection, maternal Env-specific IgG neutralizing responses may 
be efficiently transferred to the infant (35). However, the efficient 
transplacental transfer of maternal HIV Env-specific IgG neutral-
izing responses has not been found to be associated with decreased 
MTCT risk (35). As the role of maternal HIV Env-specific IgG 
in mediating infant protection against HIV infection remains 
unclear, it is not known if the poor transplacental transfer of 
potentially protective maternal Env-specific IgG responses leads 
to increased infant HIV transmission risk. However, some studies 
suggest that the transplacental transfer of maternal Env-specific 
IgG responses with antiviral functions may be important for 
infant protection (17). Passively acquired maternal IgG responses 
in HIV-exposed uninfected infants have been shown to mediate 
virus transcytosis inhibition in  vitro in clade C HIV-infected 
mothers and their infants (17). Furthermore, the fine specificity 
of passively acquired maternal Env-specific IgG responses was 
mapped to gp41 epitopes that encompass the MPER, a key site 
that is commonly targeted by broadly NAbs. Thus, the transpla-
cental transfer of maternal HIV Env-specific IgG responses with 
antiviral functions may be important for infant protection, as well 
as survival outcome upon infection (17, 28).

COnCLUSiOn

It is likely that additional immune-based strategies such as a 
safe and effective maternal and/or infant HIV-1 vaccine that 
can synergize with current prophylactic ART treatments will be 
required to eliminate pediatric HIV infections. Given the grow-
ing body of evidence on the role of maternal HIV Env-specific 
IgG responses and their association with reduced MTCT risk, 
more studies are needed to further refine the molecular details 

by which HIV viruses escape maternal NAbs. Larger and better 
controlled studies that investigate maternal NAbs with defined 
fine-epitope specificity and their role in preventing or reducing 
MTCT risk in the setting of ART may provide crucial informa-
tion for the design of an effective maternal and/or infant HIV-1 
vaccine to help achieve an HIV-free generation.
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The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory 
responses by mediation of chemotactic activity in leukocytes, although it is expressed 
on different cell types. It has been shown to act as co-receptor for the human and 
simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies 
(Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of 
immunoglobulins from healthy donors and from several cohorts of either HIV-exposed 
but uninfected subjects (ESN) or HIV-infected individuals who control disease progres-
sion (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of 
autoimmune disease is still unknown; however, the presence of these Abs specific for 
CCR5 or for other immune receptors and mediators probably is related to homeostasis 
maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus 
and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not 
bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization 
of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in 
either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones 
described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization 
allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and 
ERK1 proteins. The signalosome degradation and the subsequent de novo proteins syn-
thesis determine the CCR5 reappearance on the cell membrane with a very long-lasting 
kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and 
mode of action may represent a novel mode to fight viral infection in either vaccinal or 
therapeutic strategies.

Keywords: CC chemokine receptor 5, anti-CC chemokine receptor 5 antibodies, CC chemokine receptor 5 
signalosome, Hiv infection, Hiv protection, CC chemokine receptor 5-based vaccine, CC chemokine receptor 
5-based therapy

iNTRODUCTiON

The CC chemokine receptor 5 (CCR5) belongs to G protein-coupled receptors (GPCRs), which rep-
resent the largest known superfamily of signal transducers and play functional roles in the response 
to exposure to light and odor as well as in cellular response to different types of signaling molecules 
(1). They consist approximately 4% of coded human genome (2) and represent one of the most 
important and largest groups of targets for therapeutics (3). Among them, the chemokine receptors 
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are responsible for immune and inflammatory responses by 
mediation of chemotactic activity in leukocytes, even though they 
are expressed on a wide range of cell types, such as T and B cells, 
monocytes–macrophages, granulocytes, NK, DC, astrocytes, and 
neurons, and also on epithelium, endothelium, vascular smooth 
muscle, and fibroblasts (4–8).

CCR5 has also been implicated in hematopoiesis and it has 
been demonstrated that it act as co-receptor for the human and 
simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) either 
independently of, or together with, the receptor CD4 (9–12). In 
particular, binding of viral gp120 of HIV-1 to CD4 triggers a 
conformational change in gp120 itself, which permits its binding 
to CCR5 and finally the viral entry into the cells (13, 14).

CCR5 is undoubtedly the main HIV-1 and HIV-2 co-receptor, 
involved in virus entry and cell-to-cell spread (15); interestingly, 
these R5-tropic viruses (CCR5 dependent strains) are associated 
with the initial infection (16), while HIV strains using the CXCR4 
co-receptor are detected rarely in the early infection (11, 15, 17).

It is well known that chemokine receptor agonists, such as the 
β-chemokines RANTES (CCL5), MIP-1α (CCL3), and MIP-1β 
(CCL4), inhibit HIV infection of susceptible cells in vitro (18–21).

Interestingly, the number of CCR5 molecules expressed on 
cell surface is correlated with the levels of viral infection (13) and 
it has been described a variation of the level of CCR5 molecules 
among individuals (15), which is due to both environmental and 
genetic aspects. Indeed, it has been shown that high levels of CCR5, 
in some developing countries such as Africa, is environmentally 
driven and it has been hypothesized that it is due to parasitic 
infections (22). Whereas a CCR5-negative phenotype has been 
described in either some subjects, which are resistant to HIV 
infection (exposed to HIV but seronegative subjects, so called 
ESN) or in Caucasians and in other ethnic groups worldwide; 
the reduced or absent expression of CCR5 in these populations 
has been attributed to a genetic mutation, named Δ32, a deletion 
of 32 base-pair in CCR5 gene that produces a truncated form of 
the receptor, which is not expressed on the cell membrane (23). 
Several clinical studies underlined that homozygous mutation 
affecting the expression of CCR5 confers a total resistance against 
HIV infection (24–28); whereas heterozygotes for CCR5Δ32 are 
not associated with complete HIV protection (15) but progress 
slowly in the infection, most likely due to the reduction of 
CCR5 levels on the cell surface (29). CCR5Δ32 is spontaneous 
in 4–18% of Askenazi Jews and European people but it has not 
been found in Pacific and Asian indigenes (21, 24, 25, 28); this 
mutation occurs mostly like a heterozygous defect on CCR5 
gene (10–20%), with the highest frequencies in Nordic European 
countries, and only less than 1% is a homozygous mutation, as 
reported in several study population (24, 25, 30–33). In addition, 
it has been shown that the frequency of CCR5Δ32 genotype 
is higher also among ESN and HIV-infected individuals who 
control disease progression without treatment (so called LTNP) 
compared to HIV-1 treated seropositive subjects and people from 
the general population (34, 35). Of note, different levels of CCR5 
expression among different individuals do not affect immune 
functions (36), in fact its absence is not associated with medical 
dysfunction (37). Nevertheless the prevalence of homozygosity 
for CCR5Δ32 mutation, which results in the absence of CCR5 

expression, has been found increased in either West Nile infected 
subjects or in tick-borne encephalitis (38, 39) and reviewed in 
Venuti et al. (21).

More interestingly, anti-CCR5 natural Abs have been 
 discovered and they also showed HIV-blocking properties 
(40–43).

Overall, several numbers of strategies aimed to the prevention 
of CCR5 function in the HIV entry has been developed and tested.

MeCHANiSM OF GeNeRATiON OF  
ANTi-SeLF ANTiBODieS (Abs)

Natural Abs represent the first line of defense against pathogens; 
they are usually present in human serum as IgG3, IgM, and IgA 
and are generated in the absence of previous immune activation 
(44, 45).

The identification of B-1 cells (a subset of B cells), able to pro-
duce different self-reactive Abs, has demonstrated the capability 
of the immune system to interact with self-repertoire (45–47). It 
has been established that, in human, B cells are able to proliferate 
and to secrete Abs after exposure to lipopolysaccharide (LPS) 
from the Gram-negative bacteria membrane independent to the 
specific B-cell receptor (BCR) (48). Nevertheless, natural human 
Abs can also cross-react with microbial antigens, thus allowing 
host protection to pathogen independent of the previous micro-
bial invasion (44).

B-1 cells are detected in the pleural and peritoneal cavity and 
represent the first line of defense, but they are present in the spleen 
and bone marrow as well, in which they secrete a higher propor-
tion of circulating natural Abs (40, 45). The activation status of 
B-1 cells is BCR independent (49) and after their fast redistribu-
tion from the body cavities, B-1 cells are able to  differentiate and 
to secrete abundant amounts of IgM and/or IgA (50).

The partial differentiation of B-1 cells and their ability to 
respond rapidly are fundamental for the Abs production to 
elucidate host protection to pathogens infection via mucosal 
surfaces and blood. In fact, the production of natural IgM at a 
steady state by B-1 cells represents a relevant protection against 
pathogen  replication before the development of the antigen-
specific response (40, 44, 45, 51, 52).

Many functions have been proposed for natural Abs such 
as a first line role in host defense and also a regulative part in 
homeostasis maintenance (40, 45, 53, 54). In addition, B-1 cells 
produce IgM that stimulate B-2 cells to elicit IgG (45, 55, 56), but 
they can also lead to induce the IgA production in response to 
antigen stimulation especially in the serum or in the intestinal 
lamina propria (40, 57).

Since the Eighties, when the AIDS was first described, several 
signals of autoimmune dysfunction were reported in subjects 
infected with HIV, such as B cell altered pathway, with produc-
tion of high quantity of Abs and also of anti-cell Abs (58–60). 
These abnormalities, at the beginning, were related to HIV-vs-
host activity but other pieces of evidence suggested that some 
anti-cell Abs may be considered like a host-vs-HIV reactions. 
Actually, it was shown that some broadly neutralizing human 
Abs produced during the HIV infection were autoreactive (61). 
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The finding led to suppose that immunotolerance mechanisms 
represent a disadvantage for these types of Abs (62, 63). Notably, 
the studies regarding the follow-up of HIV patients treated with 
three broadly neutralizing Abs, established that only one of them 
exhibited a low level of in vivo autoreactivity, while autoimmune-
related adverse events were not detected in the study (64).

Many healthy donors displayed the presence of natural reac-
tive Abs specific for CCR5 in several pools of immunoglobulins 
(41). Interestingly, different types of HIV-blocking Abs have 
been isolated from several cohorts of either ESN or HIV-infected 
individuals (40). The reason of development of anti-CCR5 Abs 
in the absence of autoimmune disease is still unknown; however, 
the presence of these Abs specific for CCR5 or for other immune 
receptors and mediators probably is related to homeostasis 
maintenance (40). Virus-induced alterations of self antigens can 
provide an increase of either auto-immunogenic proteins and the 
corresponding auto-Abs. Host factors itself, or other concomitant 
or latent viral infections, could activate these perturbations in the 
host cells, leading to conformational changes in host receptors 
and to remodeling from a self protein to a non-self antigenic 
epitope, as reviewed by Lopalco (40).

CCR5 AND iTS ReLATeD Abs

CCR5 shows a classic structure composed of seven transmem-
brane domains with N-terminus and three extracellular loops 
(ECL1, 2, and 3), which have immunogenic properties. The two 
longer domains (N-terminus and ECL2) are recruited for HIV 
binding (65–67). Its preferential ligands are MIP-1α, MIP-1β, 
and RANTES and the binding of these molecules could interfere 
sterically with the viral envelope protein (Env) gp120 of HIV 
binding resulting in an inhibition of viral infection (15). An 
alternative model of protection is that ligand-induced chemokine 
receptor internalization eliminates the co-receptor from the cell 
surface (68); obviously, these two mechanisms are not mutually 
exclusive.

Anti-CCR5 natural Abs were found also in individuals with 
Δ32 mutation, sexual partners of subjects who were wild type 
for CCR5 gene, thus suggesting that CCR5 can be considered as 
an alloantigen (40, 42, 69, 70). Moreover, hemophilic patients 
subjected to continuous blood transfusions, ESN and LTNP show 
Abs to CCR5 directed specifically to the first external loop (ECL1) 
(21, 29, 41–43, 69, 71–75); these natural Abs have been identified 
in serum and also in other biological fluids, such as semen, cer-
vicovaginal secretion and saliva in subject with different genetic 
background (75).

The majority of anti-CCR5 Abs is directed to HIV binding 
site (N-terminus and ECL2) of the receptor. Conversely, Abs to 
ECL1–CCR5, which induce a long-lasting internalization of the 
receptor (29), are capable to block HIV infection in either CD4+ 
T lymphocytes or epithelial cells, this latter one through transcy-
tosis, which mimics mucosal transmission (76) and this mecha-
nism differs from that induced by all the other ligands directed to 
CCR5 (40). First of all, the natural Abs recognize ECL1 whereas 
CCR5 agonists specifically bind to the ECL2 of CCR5. Second 
and more important, the long-lasting internalization of CCR5 
with natural anti-CCR5 Abs seems to be a unique mechanism 

not demonstrated for other CCR5 modulating molecules so far. 
Indeed, by using monoclonal antibodies (mAbs) that recognize 
the N-terminus and the second loop of CCR5, it has been shown 
a differentially modulation of receptor activity; thus suggesting 
that each CCR5 extramembrane region can display different 
properties (65, 77, 78).

A clinical study, related to the presence and the activity of Abs 
to ECL1 in the sera of some LTNP, clearly demonstrated that the 
loss of these Abs observed during the follow-up of these subjects 
was significantly associated with the clinical progression of the 
disease (29). Moreover, in another studies, a total of 206 Asian 
and Caucasian ESN subjects have been tested for the presence of 
anti-CCR5 Abs directed to ECL1 and 9% resulted positive (43, 
75, 79), similar percentage (9.8%) have been found in different 
cohorts of HIV seropositive subjects (total subjects 336) (29, 
80), although only in LTNP anti-CCR5 Abs have been associated 
with resistance and showed anti HIV property in vitro (29, 81). 
Strikingly, anti-CCR5–ECL1 Abs resulted HIV protective only 
when they were directed to a conformational epitope within 
ECL1 loop (43, 75). A total of 325 healthy controls have even 
analyzed as well but none resulted positive for anti-CCR5 Abs, 
thus suggesting that these Abs could be elicited by low levels of 
viral antigenic stimulation; that could explain why these Abs 
have been found in ESN and LTNP people but not in subjects 
who were not exposed to HIV or progressed and developed 
AIDS. Another hypothesis could be that anti-CCR5 Abs are 
elicited during other antigenic stimulations (different from 
HIV), which induce alterations of self-repertoire, thus eliciting 
anti-self responses. Finally, the priming due to endogenous ret-
roviral proteins, which share homology with HIV env protein, 
could elicit in some HIV-exposed subjects a specific immune 
response.

Of note, these ECL1 specific Abs do not induce alteration in 
immune functions, as demonstrated by healthy subjects with 
anti-CCR5 Abs (45) or by elicited anti-CCR5 Abs in animal 
models such as mice and macaques (82–84) as further specified 
in the section of CCR5 immunization as vaccination strategy.

The ECL2 domain represents the binding site for both HIV 
and chemokines, so the Abs that recognize this site can prevent 
chemokine binding and/or signaling (66), although N-terminus is 
specific for viral binding only. For example, 2D7 is one of the most 
potent mAb directed to ECL2 that blocks HIV-1 entry into CD4 
T cells, but not the transcytosis carried out with epithelial cells 
(66, 76, 85). An anti-CCR5 mAb named PRO140 is a humanized 
mAb that targets a conformational epitope between N-terminus 
and ECL2 and it deeply blocks viral entry (86). Another fully 
human IgG4 mAb with a strong activity against various HIV-1 
isolates is CCR5mAb004 (87).

A recent study has demonstrated for the first time that the 
region designated as the membrane-proximal region (MPR), 
between the N-terminus and the ECL1, is important for HIV-1 
infections (16). In fact, the Abs directed to this epitope block the 
infection of R5-tropic HIV-1 without affecting X4-tropic strain; 
furthermore, the substitution of MPR with the equivalent region 
of CCR2b, CXCR4, or CCR3 significantly abrogates viral infec-
tion (16). Both these findings provide an argument against the 
possible use of a target therapy with CCR5-specific Abs.
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eNDOCYTOSiS AND DE NOVO 
SYNTHeSiS OF CCR5 wiTH NATURAL 
ANTi-CCR5 Abs

Ligands binding to CCR5 leads to conformational changes, 
which include desensitization and internalization (88). Two 
major mechanisms of rapid receptor regulation have been 
distinguished, specifically homologous (agonist-specific) and 
heterologous (agonist-nonspecific) desensitization, and both 
mechanisms are really important in fine tuning leukocyte 
responses (89, 90). Homologous desensitization requires phos-
phorylation of the receptor binding mediated by members of 
the GPCR kinases (GRK) family (91). This in turn leads to the 
association of β-arrestin1/2 with the receptor and to desensiti-
zation via uncoupling of the receptor and G protein (77, 92); 
in particular, β-arrestins bound physically with the receptors 
and initiate endocytosis through clathrin-coated vescicles and 
also act as scaffold proteins in crosstalk with other signaling 
pathways (93). Conversely, heterologous desensitization is tra-
ditionally defined as a state of cellular refractoriness to different 
agonists after receptor phosphorylation sites different from GRK 
mediated by second messenger-activated protein kinases, such 
as PKC (90).

CCR5 internalization can also induce a different second path-
way, which recruits caveolae and it is independent of clathrin-
coated pits. Caveolae are microdomains able to be internalized 
under precise conditions or in a controlled manner (13, 94).

It is well known that, after endocytosis, the GPCR proteins 
are also classified in receptors that are recycled, slowly or  rapidly, 
to the cell membrane after their resensitization and those that 
should be degraded (77, 95–97). CCR5 is usually recycled after 
desensitization (4): after stimulation with natural ligands, CCR5 
is internalized into the trans-Golgi network (TGN) via the endo-
some recycling compartment (ERC) (98) and, when the resensi-
tization process is complete, it can return to the cell surface (4, 
98). However, rare examples of post-endocytic sorting for GPCRs 
mediated by ligands have been reported (77, 99–101).

Bönsch and colleagues have recently shown that different 
ligands of the same GPGR are able to induce different phospho-
rylation pathways, which may be a relevant factor for the inter-
action with β-arrestins (77, 102). In addition, ligands trigger a 
characteristic short-term kinetics of CCR5 internalization, which 
transiently involves β-arrestins with consequent rapid recycling 
or degradation on the cell membrane; conversely, natural anti 
ECL1-CCR5 Abs induce a specific long-lasting kinetics of CCR5 
internalization (29) with the recruitment of an ERK1-mediated 
pathway (70, 77). Of note, a hitherto unrecognized mechanism 
of CCR5 modulation mediated by G-protein-dependent ERK1 
was comprehensively reported; in particular, natural anti-CCR5 
Abs led to activation of ERK1 which is localized predominantly 
in the cytosol and it interacts directly with the CCR5 protein, 
thus inducing the degradation of CCR5 with a consequent de 
novo synthesis (70); the re-expression of CCR5 on the cell surface 
needs several days (70). This finding is actually important for 
the design of suitable microbicide or therapeutic tool that could 
inhibit HIV infection for several days after application by using a 

specific molecule able to induce long-lasting internalization and 
degradation of CCR5.

Furthermore, it is largely reported that GPCRs, considering the 
stability of interaction with β-arrestins after agonist stimulation, 
can be functionally divided into two general classes: (i) “Class A” 
receptors, such as β2 adrenergic receptor (β2AR), develop tran-
sient complexes with β-arrestins transiently ubiquinated and with 
weak activation of ERK1/2; by contrast, (ii) “Class B” receptors, 
such as vasopressin V2 receptor (V2R), develop tight receptor–β-
arrestins complexes, regulated by its constant ubiquitination and 
a durable activation of ERK1/2 which is located mainly into the 
endosomes. Endosomes complexes containing activated GPCRs, 
activated and ubiquitinated β-arrestins and phosphorylated ERK 
are called “signalosome” (77, 102, 103). In fact, it is well under-
stood that the ubiquitination status of β-arrestin has a relevant 
role for its interaction with proteins responsible for endocytosis 
(e.g., clathrin) and for signaling (e.g., ERK1/2), and influences 
temporal and spatial dissociation of the complex (104–108). 
Overall, CCR5 is classified as a “Class A” receptor, but stimulation 
with anti-CCR5 Abs lead to the translation into a very long-lasting 
Class B type (77, 102, 106).

Very recently, it has been published the different ability of two 
RANTES analogous (5P14 and PSC) to induce the development 
of stable complexes between CCR5 and β-Arrestin1. Briefly, 
PSC-RANTES is able to induce a long-duration of recruitment of 
β-Arrestin1 to CCR5 compared to 5P14-RANTES, which elicits a 
temporary recruitment. Notably, the experiments have been car-
ried out and the results assessed at short time only (50 min) (1). 
Therefore, it is possible to determine the fate of the  internalized 
receptor by the aid of specific CCR5-ligands, suggesting that the 
stability of ligand-induced receptor–arrestin complexes has a 
crucial role in the sorting mechanism (1, 77).

In a very relevant way, these published data underline that the 
binding of natural Abs induces modifications in CCR5  signaling, 
which leads ligand-induced post-endocytic sorting in a very 
long-lasting Class B trafficking (77). Furthermore, in T  cell, 
anti-CCR5 Abs that recognize ECL1 are able to induce a CCR5-
negative phenotype, ERK1-mediated, by the strong support of 
β-arrestin2 (as shown in Figure 1); otherwise, it is possible that 
this mechanism could be specific for T cells only (77, 109).

iNDUCTiON OF ANTi-CCR5 Abs AS 
vACCiNATiON STRATeGY

Published data, obtained in mice and macaques, demonstrate 
the capability of either anti-CCR5 Abs to display HIV-blocking 
properties or vaccines against CCR5 to prevent the problem of 
virus variability and viral escape (82, 110–113). Accordingly, the 
development of Abs as functional inhibitors of CCR5 is the big 
goal that could be reached, since Abs can provide protection by 
causing very low toxicity (113). Several groups have investigated 
the possibility to use in vivo Abs specific to CCR5 (82, 83, 111, 
112, 114–116). Interestingly, when a long-term intranasal 
immunization was performed, it has elicited specific IgA and 
IgG in both mucosal secretions and sera of the immunized 
mice. Such systemic and mucosal Abs induce a CCR5-negative 
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FiGURe 1 | Natural anti-CCR5 antibodies (Abs) to ECL1 triggers a Class B CCR5 trafficking pathway in T cells. After stimulation with anti-CCR5 Abs, the CCR5 
receptor associates with G protein and G protein-coupled receptor kinases (GRKs) trigger receptor phosphorylation. β-arrestin1/2 can initiate desensitization (at 
150 min) with consequent internalization of CCR5 by clathrin-coated pits. In particular, activated CCR5 together with β-arrestin2 is accumulated into protein 
complexes and induces the activation and retention in the cytoplasm of MAP kinase ERK1. These events determine the formation of a CCR5 signalosome with 
β-arrestin2 and ERK1 into the cytosol, which remains stable from 150 min up to 48 h. The signalosome could be targeted for degradation with consequent de novo 
synthesis of the proteins complex (CCR5, β-arrestin2, and ERK1). As a consequence, CCR5 reappears on the cell surface with long-lasting kinetics (8 days).
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phenotype on both peripheral and mucosal cells, thus blocking 
HIV  replication in vitro (111). In accordance with this result, the 
use of ECL1–CCR5 peptide, chimeric-generated in the context of 
the capsid protein of Flock House Virus, elicits Abs able to induce 
CCR5 internalization and re-expression with a very slow kinetics 
which needs 4 weeks after immunization to be recovered (82). 
Furthermore, in a subsequent study, it has been published that 
the substitution of amino acids within ECL1 in position 95 and 
96 elicited Abs, which induced stronger long-lasting internaliza-
tion of CCR5, whereas amino acid substitutions in position 92, 
98 and 99 abrogated biological activity of such Abs (112), thus 
highlighting the importance of the epitope in driving different 
trafficking pathway. Moreover, in a recent study performed in 
mice, several aspects of anti-CCR5 immunization, including the 
use of all the extramembrane domains of CCR5 have been tested, 
to better understand the ideal schedule to reach long-lasting and 
strong immune responses. Interestingly, ECL1 and ECL2 showed 
stronger responses compared to the N-terminus; they achieved 
nearly complete CCR5 downregulation, and they blocked HIV 
infection (82). In addition, in this study was not observed any 
immune dysfunction in T  cell responses or histopathological 
alterations in organs and tissues in relation to the presence or 

the induction of Abs specific for CCR5. The possibility of long-
term toxicity and any functional impact of anti-CCR5 Abs needs 
additional studies; however, the findings showed in this latter 
study are supported by other published studies, where no adverse 
events were reported in CCR5-immunized macaques after 
3 years of follow-up (84). In addition, it has recently published 
that the prophylactic immunization of macaques with virus-like 
particle specific for two CCR5 regions is safe and immunogenic 
and is capable to reduce highly virus replication in a subset of 
the animals (83). On the other hand, Bogers and colleagues used 
an immunization approach to target both virus and CCR5 (three 
extracellular peptides of CCR5, an N-terminal HIV gp120 frag-
ment generated in transgenic plants and recombinant SIV p27) 
(117); this strategy of vaccination showed a significant block of 
the virus infection by eliciting good serum and vaginal quantity 
of Abs (117). More recently, Peabody et  al. demonstrated that 
the immunization with recombinant vectors, which enable the 
CCR5–ECL2 region to recreate its native conformation, over-
comes the issue of tolerance and induces the appropriate immune 
response (118).

Although several strategies aimed at inducing a CCR5-negative 
phenotype to prevent HIV-1 entry, the earlier immunization 
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studies in macaques observed little or no protection against SIV 
challenge (116, 118), probably due to poor selection of CCR5 
antigen or to the correct peptide sequence in the wrong confor-
mation. Indeed, it has previously demonstrated that immuniza-
tion with ECL1 domain, in a linear conformation, does not elicit 
serological Abs responses that bind to the native molecule (111) 
and, moreover, in macaques, the immunization with ECL2 in its 
native conformation induces immune responses with expected 
properties (84). Nevertheless, Chain and colleagues have recently 
defined a new linear epitope of CCR5 within the N-terminus 
domain recognized by two independently produced mAbs; in 
particular, they found that RoAb13 Ab is capable to bind to both 
linear peptide and native form of the epitope and the sulfation of 
tyrosines at CCR5 N-terminus enhanced its binding to the pep-
tide (119). RoAb13 has been previously reported to block HIV 
infection (120) but also blocks migration of monocytes after the 
chemokine binding to CCR5 or in the presence of inflammatory 
macrophage conditioned medium (119).

A significant challenge in the design of anti-CCR5 Abs is that 
they must be purely “blocking Abs” that either bind to the epitope 
in such a way to occlude the viral receptor or Abs binding results 
in receptor internalization. The most effective anti-pathogen Abs 
are able to engage host defense mechanisms, such as Complement 
or ADCC (Antibody-Dependent Cell-mediated Cytotoxicity), 
thus resulting protective against HIV infection (121) although 
these functions could result in inhibition of the effectiveness of 
immune responses. Moreover, as reported by Pastori et al., it is 
possible to elicit the production of murine serum anti-ECL1–
CCR5 Abs at levels 300-fold greater than those found in humans 
and that the quantity of murine CCR5-specific immunoglobulins 
reached 50% of total Igs (82). It is noteworthy that such HIV-1 
blocking Abs are present in serum and mucosal fluids from 
subjects with different genetic backgrounds (75), thus suggesting 
that it is possible to elicit these Abs in subjects coming from both 
developing as well as developed countries. In addition, an indi-
vidual who received a stem cell transplant from a CCR5-negative 
donor, for acute myeloid leukemia treatment, is believed to be the 
only patient to have been cured of HIV (119, 122).

ANTi-CCR5 Abs iN THe iMMUNe-
PROPHYLAXiS AGAiNST Hiv iNFeCTiON

The Abs can prevent viral infection by several mechanisms of 
action: (1) can directly block virus attachment to the cell by  leading 
the Abs to bind either virus or receptor and/or co-receptor on 
host cells; (2) can block fusion at cell surface at the post-binding/
pre-fusion state as well (87). For reducing the development of 
viral escape variant, it has been highly considered to target the 
conserved cellular receptors, such as CCR5, for treatment of 
HIV infection. In particular, as HIV needs the presence of one 
co-receptor in dependence of the strain (CCR5 and/or CXCR4) 
in association with the receptor CD4, mAbs against cellular 
proteins have been developed and are being tested in clinical 
trials. A humanized mAb directed to CD4, named ibalizumab, 
exert an antiviral property not inhibiting the binding of gp120 
but by a post-binding conformational effects, which prevents 
the interaction between CD4-gp120 and CXCR4 or CCR5 (123, 

124). Three clinical trials have been reported, which underlined 
its efficacy (87). For sure, one emerging therapy is based on the 
use of CCR5-specific Abs; in particular, CCR5mAb004 appears 
safe and effective in the reduction of viral load when tested in 
clinical trials (87). Interestingly, another study involving the 
mAb PRO140 showed virologic suppression without blocking 
the response of the receptor to chemokines; however, the highest 
tolerated dose of this mAb has not been determined, proposing 
a substantial margin of safety for PRO140 in dependence of the 
site of administration (87, 125). In all these clinical trials, the 
use of anti-CCR5 Abs did not induce any alterations in other 
lymphocyte functions, thus confirming their safety.

Of note, the use of Abs instead of chemokines or classical 
antiretroviral therapy could reduce the complication related to 
drugs resistance and also the unwanted interactions with redun-
dant CCR receptors. For example, ST6 is a Fab fragment obtained 
from a mAb specific for a unique sequence of N-terminus CCR5 
and it was engineered in a single-chain antibody (scFv) fused 
with an ER retention peptide; the usage of such scFv by intracel-
lular immunization was able to downregulate the receptor from 
cell membrane both in macaques and in human cells, whereas the 
expression of CXCR4 was not affected. Moreover, the modified 
cells were not infected with R5-HIV (126). In a subsequent study, 
it has been demonstrated that transformed primary T cells, with 
a CCR5 intrabody (an Ab that binds its receptor at intracellular 
level), were resistant to HIV infection (21). Finally, scFvs directed 
to CCR5 were utilized, as well, to lead viral pseudotyped lentiviral 
vectors to cells that express CCR5 (127).

Very recently emerged the evidence that combinations of 
HIV-blocking Abs will likely be more effective that single one as 
reviewed by Margolis (128). Alternatively, the bio-engineering, 
which generates Abs either with different specificities (129) or 
anchored to target cells (130), has given a proof of concept to 
generate more potent HIV-blocking Abs.

OTHeR STRATeGieS AiMeD AT 
BLOCKiNG Hiv iNFeCTiON THROUGH 
CCR5

Anti-CCR5 strategies include also the utilization of small 
molecule drugs, such as Maraviroc, which binds in the trans-
membrane regions of CCR5 and it is a functional antagonist 
that prevents CCR5 signaling from cell surface and even if it is 
currently in clinical trials (131), it has been approved for use in 
many jurisdictions.1 Nevertheless, there is low enthusiasm to 
utilize it as front-line therapy in HIV-infected patients (23), thus 
it is currently in use in HIV treatment-multiexperienced patients 
only (132). Moreover, HIV-1 escape mutants to Maraviroc have 
been described and reviewed by Harada and Yoshimura (133).

Since the discovery that natural ligands of CCR5 (RANTES, 
MIP-1α, and MIP-1β) show anti-HIV activity (1, 19, 86, 134, 135), 
a large numbers of modified analogs have been tested due to their 
short half-lives (<10 min) (134, 136) but no one has been tested in 
human clinical trial due to low antiviral activity in vivo. The most 

1 https://aidsinfo.nih.gov/guidelines/search/1/CELSENTRI/0.
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the either N-terminus or ECL2 and interfere with HIV entry process (F).
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promising described so far was PSC-RANTES that shows several 
non-natural, non-coded structures in the N-terminal region 
(137, 138). It displays an important inhibition of HIV entry, 
CCR5 dependent, in vitro (137) and also a full protection against 
R5-tropic SHIV infection in a macaque vaginal challenge model 
(139); although this high potency in vitro, it requires high concen-
tration to give protection in macaques (138, 139). Considering 
that it is capable to induce an intracellular sequestration of CCR5 
longer than RANTES, it could be helpful for topical HIV preven-
tion (140). Using a strategy based on phage display, Gaertner and 
collaborators obtained three different modified PSC-RANTES, 

which exhibit only natural amino acids: 6P4-RANTES, which 
prolongs the intracellular sequestration of CCR5; 5P12-RANTES 
has no detectable G protein signaling and does not bring about 
receptor sequestration; and 5P14-RANTES, which induces the 
internalization of CCR5 with no detectable G protein-linked 
signaling activity (138). Another relevant RANTES derivative 
is named AOP-RANTES and it was obtained by first generating 
an aldehyde-like group at the NH2-terminus of RANTES and 
then reacting with aminooxypentane; it is able to block R5-tropic 
strain infection on macrophages in  vitro (141). AOP-RANTES 
induces >90% downregulation of cell membrane expression of 
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CCR5 on monocytes/macrophages, lymphocytes and inhibits 
CCR5 recycling on cell surface whereas RANTES does not (142).

As HIV entry process requires expression of both CCR5 and 
CD4 on cell membrane, receptor- and co-receptor-mimetic pep-
tides (143, 144) have been proposed as an alternative strategy to 
block HIV entry but, as for chemokines, no one has been already 
tested in human clinical trial.

A summary of the immunologic approaches that use CCR5 as 
target to block HIV transmission/infection is showed in Figure 2.

Hematopoietic stem cell transplant using a CCR5Δ32 donor led 
to the only known cure of HIV-1 infection (122, 145) and T cells 
treated with engineered nucleases that introduce mutations at the 
CCR5 locus are resistant to HIV (146–150), accelerating ongoing 
efforts to develop gene editing- and cell-based therapeutic agents 
for HIV (15, 151, 152).

Another promising method of gene editing is the use of 
CRISPR/Cas9 system (Clustered Regularly interspaced palindro-
mic repeats sequences) to target human cells for the disruption 
of CCR5 gene, otherwise the off-targeting is still a major limit 
to be overcome (153–155). Furthermore, DNA binding proteins, 
for example, the transcription activator-like effectors (TALEs), 
which are vegetal proteins, have been used in vitro and showed 
effects similar to those obtained with engineered nuclease (156).

Zinc finger nucleases (ZFNs) are other common and versatile 
DNA binding proteins utilized in several cell types. In addition, 
CCR5–ZFN-modified autologous CD4+ T  lymphocytes have 
been used in a phase I clinical trial and this approach resulted 
safe (149).

To shutdown CCR5 expression, several RNA-based tech-
nologies have been used also with good results, such as RNA 
silencing (siRNA), antisense RNAs targeting different cellular 
and viral genes or ribozymes with catalytic activity (157–159); 
in particular, pseudotyped lentivirus and adenoviruses vectors 
have been used with good results for transducing siRNA-coding 
sequence into the cells. In the same way to that described for gene 
 editing, off-targeting activity and over-expression of antisense 
RNA could cause a toxic effect (160) and could activate innate 
immune response as well (161).

CONCLUSiON

The incidence of natural allo- or auto-responses in healthy peo-
ple, without symptoms or signals of autoimmune disease, and 
also the capability of eliciting and maintaining strong and long-
lasting HIV-blocking Abs in animal models, suggests that some 
autoimmune mechanisms could be positively utilized to give a 
better protection or a higher response to HIV in HIV-exposed 
individuals and in HIV-positive subjects. Allo- and auto-immune 
responses could allow a new key to analyze HIV tricks in immune 
escape and offer unexploited strategies to fight HIV with its own 
arms. CCR5 is the most important co-receptor in the early stages 
of infection, and half or more of all infected individuals move to 
AIDS harboring only CCR5 (R5)-tropic viruses. Epidemiology 
studies clearly established that CCR5 plays a crucial role in the 
transmission and pathogenesis of HIV in vivo.

As in CCR5-defective individuals were not found inflamma-
tory and immune alterations or disfunctions, CCR5 has been 

defined as a redundant molecule in humans (12, 141, 162, 163), 
and as the variability of HIV env, CCR5 has become a relevant 
target to generate drugs and immune modulatory molecules to 
block HIV transmission and subsequent infection.

Overall, these findings together with the data reported for 
in vivo (clinical trials) and in vitro (laboratory findings) studies 
support the view that CCR5 could represent an excellent target to 
fight HIV and a good alternative to classical antiviral approaches, 
although it should be taken into account the concomitant geo-
graphical location of CCR5Δ32 and other pathologies, such as 
West Nile infection or tick-borne encephalitis.

The development of a sterilizing vaccine capable to prevent 
HIV infection totally is the highest and the most expected effort, 
still far from being reached. Over the past 30  years, there has 
been a huge global effort to develop an effective prophylactic 
vaccine against HIV/AIDS. This is a significant challenge since 
no previously licensed vaccine in current use has been designed 
without the presence of a significant “convalescent population,” 
i.e., patients who have been patently infected and demonstrated 
subsequent clearance of the pathogen. Such a patient population 
usually supplies critical information for characterizing adaptive 
immunological responses associated with “protection.” One 
of the main reasons of failure in developing an effective AIDS 
vaccine could be the mainstream concept that the most relevant 
information derive from studying the immune responses in 
patients who have not cleared the virus. Thus, the design of a 
CCR5-based vaccine, which takes advantage of data generated 
in a small but significant clinical cohorts of individuals such as 
ESN or LTNP could represent an excellent target to generate new 
vaccination strategy, as these subjects represent a sort of vac-
cinated/cured subjects and this protective status can be induced 
and reproduced in all subject. It is relevant underline that natural 
anti-CCR5 Abs reproduce a protective status similar to that one 
observed for Δ32 mutation, although an approach based on 
CCR5 vaccine in individuals who can contract HIV infection 
may be a more possible and safe goal compared to gene therapy, 
taking into account the HIV epidemiology and the trouble of 
implementing CCR5 gene therapy in people living in developing 
countries.

Nowadays, there are many antiviral drugs used in therapy but 
the most related problem is the development of drug-resistant 
strain of virus that invalidates the positive effects obtained with 
the therapy utilized. Conversely, the possibility of using mono-
clonal Abs as therapy, with particular characteristics and mode of 
action, may represent a novel mode to fight viral infection disease. 
Overall, Abs show low toxicity together with high specificity and 
versatility.

It is well known that the first effective treatment of infectious 
disease was the “serum therapy” (administration of hyperim-
mune sera from immunized animals or human donors) and only 
after the discovery of antibiotic therapy in association with the 
development in vaccine design, this treatment was abandoned for 
mostly of infections (87, 164, 165).

The possibility of usage of Abs in clinical practice was 
opened from the opportunity of generate and manipulate Abs 
with different specific epitope recognition, such as the mAbs 
(87). In fact, in the last years, mAbs have begun a new class 
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of clinical drug utilized in inflammatory diseases, immunology, 
and oncology; only their development for infection treatment 
is going slowly.

Strategies aimed to prevent infection, such as usage of con-
doms, represent another effective line of defense to fight the 
HIV epidemic. However, social and ethnic “barriers” impede 
effective protection of many people. Therapeutic Abs to CCR5 
could offer an alternative for primary prevention of HIV and 
their availability would greatly empower women/men to protect 
themselves and their partners. Indeed, Abs formulated as a topi-
cal product could control the disease without affecting social and 
procreation aspects. In addition, proceeding directly at the HIV 
transmission level, the passive immunotherapy approach will 
help to prevent and reduce both further infection and disease 
incidence, respectively.

Other strategies involve ART (Anti Retroviral Therapy), which 
is a strong treatment program utilized to suppress HIV viral rep-
lication and the progression of HIV disease. The typical regimen 
combines three or more different drugs, such as nucleosidic or 
non-nucleosidic inhibitors of reverse transcriptase, protease, and 
integrase inhibitors. ART is the only current available treatment 
for HIV patients and it is being used in many developing coun-
tries with the help of WHO.2 Nevertheless, it has limitations in 
terms of high cost, intolerance, bad compliance, and insurgence 
of resistance (166, 167).

For this reason, a new strategy has emerged to identify 
blocking Abs against the HIV receptors or co-receptors, either 
as active-immunizations such as a vaccine or passive-immuni-
zations such as the use of CCR5-based immuno-prophylaxis.

2 WHO | Ten years in public health 2007-2017. WHO Available at: http://www.who.
int/publications/10-year-review/dg-letter/en/.

Interestingly, natural human Abs that recognize the ECL1 of 
the receptor induce a long-lasting internalization of CCR5 by 
triggering the recruitment of β-arrestin2; this event induces the 
accumulation of the two proteins (CCR5 and β-arrestin2) into the 
cytoplasm and leads to the activation of ERK1, which is retained 
into the cytosol as well. This stable CCR5 signalosome persists 
into the cells at least 48 h; after that, it may be targeted for degra-
dation with consequent de novo synthesis of the proteins complex 
and, consequently, CCR5 reappears on the cell membrane with 
long-lasting kinetics (8 days) (70, 77). This particular mechanism 
could be used for designing molecules that work synergistically 
for stable maintenance of the signalosome into the cells and for 
driving the complex to degradation; thus permits to reach a long-
lasting CCR5 disappearance from cell membrane which could 
inhibit HIV infection for a long time.

These findings may support the discovery of innovative thera-
peutic tools where CCR5 is an important player for microbial 
control and/or elimination (168) and as well as for the regulation 
T  cell function in autoimmune diseases, such as rheumatoid 
arthritis, type 1 diabetes, multiple sclerosis (169), and in tumori-
genesis (170, 171).
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Antibodies are central in vaccine-mediated protection. For HIV-1, a pathogen that  
displays extreme antigenic variability, B cell responses against conserved determinants 
of the envelope glycoproteins (Env) are likely required to achieve broadly protective 
vaccine-induced responses. To understand antibodies in chronic infection, where 
broad serum neutralizing activity is observed in a subset of individuals, monoclonal 
antibodies mediating this activity have been isolated. Studies of their maturation path-
ways reveal that years of co-evolution between the virus and the adaptive immune 
response are required for such responses to arise. Furthermore, they do so in subjects 
who display alterations of their B cell subsets caused by the chronic infection, condi-
tions that are distinctly different from those in healthy hosts. So far, broadly neutralizing 
antibody responses were not induced by vaccination in primates or small animals with 
natural B cell repertoires. An increased focus on the development vaccine-induced 
responses in healthy subjects is therefore needed to delineate how the immune sys-
tem recognizes different forms of HIV-1 Env and to optimize approaches to stimulate 
antibody responses against relevant neutralizing antibody epitopes. In this review, 
we describe aspects of Env-directed antibody responses that differ between chronic  
HIV-1 infection and subunit vaccination for an increased appreciation of these differ-
ences; and we highlight the need for an improved understanding of vaccine-induced 
B cell responses to complex glycoproteins such as Env, in healthy subjects.

Keywords: B cells, Hiv-1, neutralizing antibodies, vaccine, Hiv-1 infection

B CeLL SUBSeTS in nORMAL PHYSiOLOGY

The human adaptive immune system relies on several B-lymphocyte subsets with distinct roles. 
Circulating B  cells can be classified as antigen-inexperienced or antigen-experienced cells. 
Among the former are the immature, transitional B cells and the mature naive B cells. Human 
transitional B cells are divided into T1 (CD10+CD21loCD27-) and T2/3 (CD10+CD21hiCD27−) 
B cells, while the mature naive B cells are defined as CD10-CD20hiCD27− cells. Transitional B cells 
and mature naive B cells express germline-encoded immunoglobulin (Ig) genes of the IgD and/or 
IgM isotypes. In contrast, memory B cells, plasmablasts, and plasma cells are antigen-experienced 
cells that in most cases originate from germinal center reactions. Most antigen-experienced 
B cells have undergone somatic hypermutation (SHM) and class switch recombination to IgG, 
IgA, or IgE (1), but non-switched memory B cells also exist (2). Resting memory B cells persist 
by self-renewal, which proliferate and differentiate into plasma cells upon antigen re-exposure. 
To maintain the lineage following activation, some daughter cells remain as slowly dividing 
memory B cells, while others become terminally differentiated antibody-secreting cells (ASCs). 
Whether this is a stochastic process (3) or mediated by directed asymmetric cell division (4) 
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remains a question of debate. Peripheral ASCs, often referred to 
as plasmablasts, are short-lived and distinct from the long-lived 
plasma cells found in bone marrow (BM) or other anatomical 
niches that support their survival (5, 6).

During late-stage B cell development, immature/transitional 
B cells exit the BM to enter the circulation where they are sub-
jected to peripheral selection. This is at least in part regulated 
by B  cell-activating factor (BAFF), which is present in limited 
quantities, thereby setting a competitive threshold for B cell 
survival (7, 8). The surviving mature naive B  cells migrate to 
secondary lymphoid organs, i.e., the spleen, lymph nodes, and 
mucosa-associated lymphoid tissue. Upon antigen encounter, 
extrafollicular plasma cell responses resulting in the production 
of antibodies that have not undergone SHM may occur. However, 
most B cell responses against protein antigens are T cell depend-
ent and products of germinal center reactions. Here, antigen-
specific B cells undergo hypermutation of the encoded antibody 
sequences to diversify the antigen-specific repertoire and the 
resulting B cells interact closely with follicular dendritic cells and 
follicular helper T (Tfh) cells for selection of high affinity B cell 
clones. The signals that dictate B cell differentiation into memory 
B cells or plasma cells in the germinal center reaction are only 
beginning to be understood (9), including the important roles of 
Tfh cells (10–12). These processes are of high relevance for vac-
cine research as both memory B cells and plasma cells are needed 
for sustained humoral immunity.

B CeLL DYSFUnCTiOn in  
Hiv-1-inFeCTeD inDiviDUALS

During chronic HIV-1 infection, several imbalances in B cell 
subsets develop (Figure 1), affecting the capacity of chronically 
infected individuals to respond to vaccination and handle  
co-infections (13–17). Hypergammaglobulinemia and loss of B 
cell memory are hallmarks of these humoral immunity altera-
tions (18, 19). Dysregulation of B cells is apparent relatively early 
after HIV-1 infection and worsens during disease progression. 
Early introduction of antiretroviral therapy to dampen active 
viremia has positive effects on preserving B cell subsets (20). 
Dysregulated B cell subsets and functions are also observed 

in individuals repeatedly exposed to malaria (19). Thus,  
B cell alterations in both HIV-1- and malaria-infected subjects 
are likely consequences of prolonged inflammatory responses 
that occur under these conditions, rather than caused by direct 
pathogen–B  cell interactions. The specific B cell alterations 
described in chronically HIV-1-infected individuals include 
effects on both antigen-inexperienced cells and antigen-
experienced cells as discussed below.

Antigen-inexperienced Cells
HIV-1-infected individuals display increased frequencies of 
circulating immature transitional B  cells (21). As transitional 
B  cells display increased sensitivity to spontaneous apoptosis, 
this may lead to a decreased pool of mature naive B  cells  
(22, 23). Altered migratory capacity of immature transitional B cells 
was also observed, which could affect the distribution of these  
cells between blood and secondary lymphoid organs in HIV-1-
infected individuals (24). Furthermore, as mentioned earlier, 
peripheral B cell selection is regulated by BAFF, a B cell growth 
factor shown to be elevated in both chronic infection and auto-
immunity (25, 26). BAFF is regulated by type I interferons (27); 
thus, increased BAFF levels in HIV-1 infection may result from 
sustained type I interferon responses due to chronic viremia. A 
potential consequence of increased BAFF levels is that B cell selec-
tion thresholds are altered, which may promote survival of B cells 
that otherwise would be subject to negative selection such as poly-
reactive or auto-reactive clonotypes (28, 29). Whether the naive 
B cell repertoire in HIV-1-infected individuals more frequently 
display features associated with poly- or self-reactivity is not 
known but will be important to investigate, especially in relation 
to the generation of broadly neutralizing antibodies (bNAbs) (30).

Antigen-experienced Cells
HIV-1-infected individuals also display alterations of the memory 
B cell compartment. Activated human memory B cells, defined as 
CD20+/CD21lo/CD27+, and tissue-like memory B cells, defined 
as CD20+/CD21lo/CD27−, are increased during persistent HIV-1 
infection, whereas resting memory B  cells, defined as CD20+/
CD21hi/CD27+, are decreased in frequency (13, 31). Consequences 
of these B cell compartment alterations are observed already 
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early in infection in the form of poor maintenance of serological 
antibody responses to previous vaccination (i.e., measles, tetanus, 
and pneumococcus) (17), as well as impaired responses to new 
vaccinations (32). During the chronic phase of the infection, 
exhausted B cells also appear. Exhausted B cells are characterized 
by a decreased capacity to proliferate in response to stimulation 
(33). The exhausted memory B cell phenotype is reminiscent 
of that of exhausted T  cells with expression of molecules that 
negatively regulate antigen receptor signaling or homing to 
sites of inflammation (34, 35). Furthermore, HIV-1-infected 
individuals display increased frequencies of circulating CD20−/

lo/CD27hi/CD38hi plasmablasts (36) consistent with non-antigen-
specific differentiation of memory B  cells into ASCs resulting 
in hypergammaglobulinemia and decreased numbers of resting 
memory B cells. Thus, the immune system in chronically HIV-1-
infected individuals is different from that of healthy subjects in 
several ways, which likely affects the kinds of antibodies that are 
elicited. Below, we compare and contrast what is known about the 
induction of neutralizing antibody responses in chronic infection 
versus in immunization for an improved appreciation of these 
differences.

THe env TRiMeR AS A neUTRALiZinG 
AnTiBODY TARGeT

The envelope glycoproteins of HIV-1 (Env) are the only virus-
encoded antigens exposed on the external surface of the virus 
particle and thus the sole targets for neutralizing antibodies. 
The HIV-1 Env spike is composed of a trimer of dimers in a 
tightly packed infectious entry unit where the external glyco-
protein gp120 is non-covalently attached to the transmembrane 
protein gp41 (37, 38). The native HIV-1 Env trimer complex 
is meta-stable and readily acquires lower energy forms that 
are highly immunogenic [reviewed in Ref. (39)]. Antibodies 
elicited by these non-native forms of Env are non-neutralizing, 
or only capable of neutralizing sensitive (tier 1) viruses, which 
are distinctly different from circulating neutralization-resistant 
(tier 2) virus variants (38).

The functional Env spike is exceptionally well shielded 
from immune recognition by N-linked glycans that cover 
most of the Env protein surface (40). The sites for N-linked 
glycosylation in the primary Env amino acid sequence vary 
between different virus strains and between different time 
points of viral evolution of a given strain demonstrating the 
plasticity of Env. HIV-1 evolves constantly in response to host 
antibody responses in each chronically infected individual, and 
neutralization-sensitive viruses are readily eliminated in  vivo 
leaving only resistant variants in the circulating pool (41). An 
interesting recent study demonstrated that currently circulating 
HIV-1 variants are more neutralization resistant than variants 
isolated from the beginning of the epidemic, in part due to the 
acquisition of a denser Env glycan shield over time (42). The 
intrinsic neutralization resistance of HIV-1 is a major challenge 
for vaccine development where the goal is to induce antibodies 
capable of neutralizing a broad range of tier 2 isolates to curb 
HIV-1 transmissions worldwide.

neutralizing Antibodies elicited by Chronic 
infection
Env-specific antibodies generated during the first months of 
HIV-1 infection are non-neutralizing or strain-specific neu-
tralizing. Non-neutralizing antibodies are elicited by highly 
immunogenic non-functional forms of Env as mentioned 
earlier. Strain-specific antibodies neutralize the autologous 
virus that elicited them but not contemporary viruses that 
arose subsequently as a result of immune escape from the first 
wave of antibodies (41). About 2–4  years after the acute of 
infection, approximately 20% of infected individuals develop 
cross-neutralizing antibodies (Figure 2) and 1–2% of infected 
individuals develop bNAbs, which exhibit exceptionally potent 
neutralizing capacity against a large proportion of virus isolates 
(43, 44). Isolation and mapping of bNAbs at the monoclonal 
antibody level allows definition of their target epitopes, reveal-
ing sites of vulnerability on the virus that can be targeted by 
epitope-focused vaccine approaches (45–52).

Since chronic HIV-1 infection is characterized by an 
arms race between viral evolution and the adaptive immune 
response, new epitopes are continuously generated, sequentially 
driving the B cell repertoire toward the generation of bNAbs 
(53–55). The extensive antigenic variability in Env results mainly  
from the error-prone HIV-1 reverse transcriptase, which gen-
erates swarms of variants in each infectious cycle from which 
immune escape variants are selected. Despite the high antigenic 
variability of HIV-1 Env, some determinants are conserved as 
mutations in these elements compromise viral fitness. These 
regions are targets for bNAbs and include the primary receptor 
binding site, the CD4bs, certain variable region 2 (V2) deter-
minants in the trimer apex, the base of the V3 region, and the 
gp120–gp41 interface region [reviewed in Ref. (56)]. In the case 
of bNAbs targeting the V3 base, the surrounding N-glycans are 
often part of the epitope (57, 58). The glycan reactivity observed 
in many HIV-1-infected individuals (59) is intriguing since 
antibodies against N-linked glycans is essentially a response 
against self-structures, which is uncommon in healthy subjects. 
Thus, the development of such antibodies in chronic HIV-1 
infection may reflect a relaxation of peripheral check-points 
allowing potentially self-reactive B  cells to escape negative 
selection (60).

Several studies have shown that bNAbs possess a high degree 
of divergence from their corresponding germline antibody 
sequences, indicating extensive SHM of the antibody sequences 
(57, 58, 61). High SHM suggests that multiple rounds of affinity 
maturation and selection in germinal centers have occurred, 
which appears to be required to develop features associated with 
broad HIV-1 neutralization. High levels of SHM are not unique 
to bNAbs but are generally seen in HIV-1 infection (62), as well 
as in other chronic infections and some settings of autoimmunity 
(63). This suggests that extensive SHM is a consequence of pro-
longed antigen exposure and persistent inflammatory responses, 
processes that allow selection of B cells over long periods of time. 
However, it is likely that not all changes introduced by SHM are 
required for bNAb activity as shown for the bNAb VRC01, where 
a subset of the amino acid changes that differed between the 
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mature antibody and the assigned germline VH1-2*02 sequence 
were sufficient to confer bNAb activity (64).

The high degree of divergence of bNAb sequences from their 
germline Ig gene segments complicates the process of infer-
ring the unmutated recombined ancestor sequences for these 
antibodies. Studies of germline-reverted bNAb sequences have 
shown that they rarely bind Env suggesting that they possess 
very low initial affinities to the unmutated BCR (65). However, in 
most cases where this was studied, the Env present in the patient 
at the time of elicitation of the bNAb lineage was not known.  
An exception to this is the identification of antibody CH103, which 
binds the presumed transmitted/founder Env in its germline-
reverted form (55). The lack of Env binding to germline-reverted 
bNAbs may be explained by the fact that some human germline 
variable (V) alleles are missing in the current databases, which 
could affect the processes of germline reversion (66). In support 
of this, it is becoming increasingly clear that there are more 
human antibody V alleles than previously appreciated (67–70). 
An improved understanding of human antibody germline genes 
is therefore needed. We recently reported that next-generation 
sequencing (NGS) coupled with a new computational tool, 
IgDiscover, can accelerate the definition of germline-encoded Ig 
gene segments and allow higher-throughput studies (70).

HIV-1 bNAb sequences stand out not only because of high 
levels of divergence from their germline sequences in terms of 
single nucleotide differences but also because they frequently 
display insertions and deletions (indels) introduced during the 
process of SHM (71). Indels, which are rarely seen in antibod-
ies elicited in healthy subjects, generate further diversity in 

infection-induced Env-specific antibody repertoires, an area 
that is only beginning to be understood. The present increase 
in NGS-based antibody repertoire analysis provides highly 
valuable information about how the human B cell response 
evolves during chronic infections. Another characteristic 
feature of some classes of HIV-1 bNAbs, such as the apex-
targeting antibodies, is their exceptionally long heavy chain 
complementarity-determining region 3 sequences. B  cells 
encoding BCRs with such long HCDRs are rare in the naive B 
cell population but appear to be preferentially selected in Env-
specific responses, at least in a subset of individuals. This feature 
is likely required for the antibodies to penetrate the dense glycan 
shield and bind conserved determinants at the Env trimer apex 
(72, 73). Collectively, these genetic features demonstrate that 
HIV-1 antibodies are highly selected and bNAb specificities 
arise from extensive co-evolution processes between the virus 
and responding B cells.

neutralizing Antibodies elicited  
by Subunit env vaccination
The persistent B cell selection observed during chronic HIV-1 
infection is in stark contrast to the transient response that takes 
place following vaccination with non-replicating subunit vaccines. 
Highly mutated antibodies are not induced by current immuniza-
tion regimens but might be achievable by using heterologous Env 
immunogens administered in a sequential manner to promote 
responses to common determinants on HIV-1 Env. So far, bNAbs 
have not been elicited by immunization of primates with natural 
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immune repertoires. Given that bNAb development in infection 
depends on extensive B cell selection on a constantly changing 
pool of virus escape variants, it is not surprising that conventional 
immunization regimens do not induce bNAb specificities. It is 
also not known if certain precursor populations are lost dur-
ing peripheral B cell selection processes, which are known to 
be under tighter control in healthy vaccine recipients than in  
chronically infected HIV-1 individuals as mentioned earlier.

Immunization studies using early generation Env trimers 
provided valuable information about the B cell response elicited 
in both small animals and in primates. While tier 1-neutralizing  
antibody responses are readily induced, tier 2-neutralizing 
responses are mostly limited to autologous tier 2 responses 
(Figure  2) (74, 75). For a detailed understanding of epitope-
specific antibody responses induced by vaccination, methods 
for antibody specificity mapping and isolation of monoclonal 
antibodies are needed. Such methodologies are under con-
tinuous development to facilitate analyses of vaccine-induced 
responses at a higher level of resolution [reviewed in (76)]. 
Results from immunized non-human primates demonstrate that 
Env vaccine-induced responses consist of many different clono-
types, most of which appear to be modestly expanded (77–79). 
Highly polyclonal B cell responses are also observed in humans 
vaccinated with tetanus toxoid, another protein subunit-based 
vaccine, administered using a homologous prime-boost regimen  
(80, 81). It is perhaps not surprising that vaccine regimens based 
on homologous boosting result in polyclonal B cell responses 
with modest levels of SHM where each clonotype has reached an 
affinity ceiling to the invariant vaccine antigen (82), rather than 
being driven by a constantly changing antigen that repeatedly 
resets the affinity threshold for B cell selection, as is the case in 
HIV-1 infection.

Despite the many contrasts between chronic infection 
and vaccination, dissection of Env vaccine-induced antibody 
responses at the monoclonal level has also revealed similarities 
in terms of the targeted epitopes. For example, antibodies against 
non-neutralizing epitopes in gp41 as well as against tier 1-neu-
tralizing epitopes in variable region 3 (V3) are readily elicited 
in both settings suggesting that these specificities are abundant 
in the naive B cell repertoire in both humans and commonly 
used animal models as shown by monoclonal antibody isolation  
(78, 83, 84). Similarly, CD4bs-directed antibodies capable of 
neutralizing tier 1 viruses, exemplified by the non-broad neu-
tralizing antibody F105, are elicited both in infection (85) and 
in vaccination of non-human primates (86). The availability of 
protocols for efficient cloning of antibodies from non-human 
primates (86, 87) has facilitated such studies and are now widely 
used to dissect vaccine-induced responses in rhesus macaques. 
With the exception of one study (88), less is known about 

epitope-specific antibody responses in immunized rabbits where 
germline Ig genes so far are insufficiently characterized, cur-
rently hampering monoclonal antibody isolation in this model.

While early generation HIV-1 Env vaccine candidates were 
poor mimics of the functional Env spike, recent work has 
resulted in immunogens that better mimic the native viral spike. 
The definition of a native spike structure is that bNAbs epitopes 
are retained while non-neutralizing Ab epitopes are not. Soluble 
trimeric Env immunogens that meet these criteria include the 
BG505 SOSIP trimers and the Native Flexibly Linked (NFL trim-
ers) (89–91) for which high-resolution structures were obtained 
(92–94). Emerging in vivo evaluation of the immunogenicity of 
these trimers, when used in homologous prime-boost regimens, 
demonstrates that they elicit autologous tier 2-neutralizing 
antibody responses but limited neutralization breadth (95). The 
epitopes mediating strain-specific neutralization may be different 
for different HIV-1 strains, or in different host species, as exempli-
fied by the finding that antibodies against the V2 region mediate 
the autologous neutralizing activity induced by clade C 16055 
trimers in NHPs (95), while antibodies against the gp120-gp41 
interface mediate the autologous neutralizing activity induced 
by clade A BG505 trimers in rabbits (88). The role played by 
potential differences in host B cell repertoires in terms of the spe-
cificities induced by a given immunogen remains insufficiently 
understood but will be important to determine to better under-
stand predictability of different animal models for assessment of 
human vaccine candidates. In this respect, it was shown the same 
immunogen that elicits potent autologous neutralizing antibodies 
in rabbits fails to do so in mice (96). Further work is required to 
define similarities and differences in germline antibody genes and 
expressed repertoires between commonly used animal models, 
including small animals, NHPs, and humans.

In conclusion, while much has been learnt from studying 
the development of bNAbs in chronic HIV-1 infection, focused 
efforts are now needed to translate these findings to the setting of 
vaccination. Given the challenge of this goal, achieving this will 
require coordinated vaccine evaluation trials in both well-chosen 
animal models and in humans.
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B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit 
neutralizing activity. This was long considered a profound limitation for the enforce-
ment of humoral immune responses against HIV-1 infection, especially since these 
neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence 
shows that additional non-neutralizing Abs play a significant role in decreasing the viral 
load, leading to partial and sometimes even total protection. Mechanisms suspected 
to participate in protection are numerous. They involve the Fc domain of Abs as well as 
their Fab part, and consequently the induced Ab isotype will be determinant for their 
functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed 
on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular 
cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune 
activation have been proposed. However, as for nAbs, the non-neutralizing activities 
are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the 
Abs displaying these functional responses is required for the development of new 
vaccination strategies, which aim to selectively trigger the B cells able to induce the 
right functional Ab combinations both at the right place and at the right time. This 
review summarizes our current knowledge on non-neutralizing functional inhibitory Abs 
and discusses the potential benefit of inducing them via vaccination. We also provide 
new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV 
diseases.

Keywords: Hiv-1 infection, non-neutralizing antibodies, antibody functions, antibody-dependent cellular 
cytotoxicity, Fc-receptor-mediated inhibition

iNTRODUCTiON

A strong antibody (Ab) response is mounted following HIV infection but most Abs targeting 
the HIV have little neutralizing capacity. Upon humoral immune activation via infection, B cells 
undergo somatic hypermutations and isotype switching of the immunoglobulin gene in order to 
enhance the efficacy of the Ab response against the specific antigen (1). B cells can then differentiate 
into long-lived plasma cells (2). However, most of the B cells induced are directed against decoyed 
immune-dominant epitopes that have no or low antiviral function. The targeted epitopes are either 
useless for antiviral activity (directed against unfolded glycoprotein that are not present on infec-
tious viruses) or against epitopes able to efficiently and quickly mutate to escape from the immune 
response. Only 10–20% of infected individuals are able to mount a B-cell response leading to the 
production of broadly neutralizing Abs (bnAbs). These bnAbs represent, therefore, only a minor 
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amount of the humoral Ab response induced following HIV 
infection. They have specific characteristics: they are produced 
from B cells that undergo unusually long maturation steps with 
extraordinary levels of somatic mutations compared to germline 
and display long heavy chain complementarity-determining 
regions 3 to be able to bind masked epitopes. This allows the 
development of Abs that target specific antigens with high affin-
ity (2).

In addition to germline mutation, the consecutive immuno-
globulin class switching will change the Ab isotype (3). This Ab 
isotype switch is also determinant for its gain of function. The 
heavy chain constant region determining the Ab isotype will not 
only impact the neutralization capacity (via the Fab domain) but 
also play a crucial role on the Ab effector functions (via the Fc 
domain). In fact, the heavy chains define the Fc domain that will 
directly modulate the Fc-mediated inhibitory functions. These 
functions will greatly influence the further immune response. 
Interestingly, Fc-mediated inhibitory function was detected not 
only on neutralizing Abs (nAbs) but also on some specific Abs 
lacking neutralizing activity, therefore, called non-neutralizing 
inhibitory Abs (4) [reviewed in Ref. (5–11)].

In vivo, the Fc-mediated functions are now being addressed. 
It is well documented that the Fc-mediated effector functions 
contribute to Ab-mediated protection against HIV-1 for bnAbs 
(5–8, 12, 13). Two recent studies have tracked virus replication 
after early experimental mucosal infection and passive protective 
bnAb therapy (14, 15). Liu et  al. showed that, in animals pre-
treated with bnAb PGT121 1 day before challenge with high-dose 
mucosal SHIV, early viral foci are detected at the distal site of 
infection before complete virus clearance (14). These results 
showed that bnAbs are able to eliminate the infected cells if some 
virus escapes from the neutralization of infection. Moreover, 
Hessell et al. found that early short-term post-exposure treatment 
with a cocktail of bnAbs VRC07-523 and PGT121 in newborn 
macaques, 1  day after oral SHIVSF162P3 challenge can intercept 
replicating viral foci established by day 1 (15). This study dem-
onstrates that passive immunotherapy by Ab can eliminate viral 
foci and thereby prevent the establishment of viral reservoirs  
(14, 15). These two studies exploring early virus replication in 
the presence of nAbs clearly demonstrate that HIV escaping from 
neutralization can infect cells at a distal site of virus inoculation 
and be subsequently eliminated by bnAbs. They reveal that the 
complete lack of infection is not mandatory to obtain protection 
by nAbs. The discovery that nAbs can eliminate a few foci of 
infected cells is extremely useful for the vaccine field as this type 
of activity cannot be referred to as neutralization. The mechanism 
by which Abs ensure clearance of infected cells is not known but 
obviously these additional observations reinforce the potential 
role of Fc-mediated functions in the protective mechanisms of 
bnAbs. These results open a complete new area of research for 
the development of protective Ab responses. Additional experi-
ments are now required to define the mechanism of infected cell 
clearance. In particular, increased analysis of the Ab protection 
at very early time points following challenge will help to identify  
the multiple inhibitory functions displayed by bnAbs.

The role of Fc-mediated functions of Abs lacking the  
broadly neutralizing capacity in HIV protection is still a matter 

of debate. Importantly, specific Fc-mediated functions of non-
neutralizing Abs (non-nAbs) are the only correlates of protection 
against infection observed in the RV144 vaccine trial conducted 
in Thailand (16–19). Still, how non-nAbs have contributed to 
protection remains unclear. In the non-human macaque model, 
the non-nAbs have shown some trends of decreased viral load 
or decreased number of transmitted founder viruses (20, 21). 
The exact mechanisms leading to this lower infection rate is 
not known, but again indicated that non-nAbs may participate 
in protection. Active immunization with HIV-1 vaccine can-
didates suggests that weakly neutralizing or non-nAbs protect 
by using Fc-mediated effector functions, albeit with a much 
lower dynamic range as for passive immunization with bnAbs 
(22). New tools, such as knockout mice or Abs engineered to 
abrogate or enhance certain functions, were recently developed. 
These technologies recently paved way for the demonstration of 
the role of Fc-mediated functions (23). Treatment with a non-
nAb directed against the principal immunodominant domain 
of gp41 allowed for the selection of a recurring HIV mutation 
within the CD4 binding site in a totally Fc-dependent manner 
(23). These data are consistent with the hypothesis that a high 
titer polyclonal anti-envelope (env) non-nAb response may be 
sufficient to reach low levels of protection against HIV. Future 
directions need to more precisely characterize the functions and 
Ab characteristics needed to achieve such protection.

The identification of these additional non-neutralizing inhibi-
tory Abs opens a whole new area of research. Functions involving 
the Fc domain of Abs can occur simultaneously, sequentially, and 
can sometimes be conflicting with other Ab functions. They were 
shown to contribute to the overall protective effect of Abs and 
to an efficient humoral immune response (5, 8–10, 12, 13, 20, 
21, 23–25). This review will discuss the opportunity, difficulties, 
limitations, and parameters influencing these Fc-mediated Ab 
functions.

FUNCTiONAL ACTiviTieS OF Abs 
CAPTURiNG iNFeCTiOUS Hiv PARTiCLeS

HIV-specific Abs are directed against numerous epitopes of the 
HIV glycoprotein, but only few are accessible as a quaternary 
structure of the functional trimeric envelope. Among them, five 
hotspot epitopes were shown to be involved in HIV neutraliza-
tion (26, 27). Even so, Abs to additional epitopes were shown to 
bind to infectious viruses either by targeting additional epitopes 
on the trimeric env or non-functional env spikes expressed on 
HIV particles. These additional Abs, although not neutralizing, 
are able to bind and capture infectious virus, form immune com-
plexes and/or virus/Ab aggregates, therefore leading to additional 
inhibitory functions.

Hiv iNHiBiTiON BY AGGReGATiON

Formation of virus aggregates is a very basic mechanism of 
inhibition leading to the decrease of virus infectivity (28–32). 
The aggregates are formed by a network of Ab/virus interactions, 
where the virus is trapped. This leads to virus inactivation by 
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limiting the distribution and accessibility of available pathogens, 
decreasing their motility or disrupting their integrity. This 
mechanism applies to Abs binding to numerous epitopes exposed 
at the surface of the virus particle. Aggregation more likely occurs 
with polymeric IgA that are able to dimerize via their Fc domain 
and IgM displaying pentameric forms. Indeed, inhibition by 
aggregation was proposed for the exceptional protective effect 
observed with IgA1 (33). In this study, a correlation was observed 
between the binding capacity of the anti-HIV IgA1 subclass Abs 
and the protective effect on rectal experimental challenge (33). 
For IgG, aggregation occurs by the recognition of two distinct 
epitopes/virions entities. This activity, therefore, usually has a 
dome-shaped relationship to the Ab concentration, declining 
at higher occupancies when it becomes improbable that a free 
paratope of an Ab molecule already bound to one virion can find 
a free epitope on a second virion. In the female reproductive tract 
containing cervical mucus, HIV aggregates will be trapped more 
efficiently as free virus particles (34). Moreover, the immune 
complexes formed may be retained efficiently in the mucus by 
their binding to MUC16 via the Fc domain of IgG Abs (24). In 
addition to this mechanic inhibition of HIV by aggregate forma-
tion, more complex mechanisms involving a further binding of 
the Abs to the Fc-receptor (FcR) expressed on the surface may 
take place.

THe ROLe OF FcRs

Fc-mediated inhibitory activity is entirely dependent on the 
capacity of Abs to trigger FcRs. These FcRs have to interact with 
the Fc domain of the Abs to trigger the Fc-mediated functions. 
Based on their homology, three classes of FcγRs have been 
described (FcγRI, II, and III). The distinct family members, 
including FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb, 
are differentially expressed on the surface of immune cells, 
such as B  cells, dendritic cells (DCs), NK  cells, macrophages, 
neutrophils, eosinophils, and basophiles (35–39). They differ 
in their Ab affinities, favoring certain IgG subtypes depending 
on their amino acid sequences. This differential binding capac-
ity, depending on the Ab isotype and the FcR genotype and its 
expression on the cell modulates the Ab activities and their 
capacity to activate or inhibit FcR-expressing cells. Therefore, the 
different FcR polymorphisms of the host need to be taken into 
consideration when analyzing FcR-mediated functions of Abs.

Single-nucleotide polymorphisms (SNPs) have been described 
to occur in FcγRIIa, FcγRIIIa, and FcγRIIb at protein positions 
131, 158, and 232, respectively, while human FcγRI was not found 
to be polymorphic. Since these SNPs affect FcR expression and 
IgG isotype binding leading to distinct effector functions, they 
can influence HIV vaccine efficacy, infection risk, and disease 
progression. For example, specific polymorphisms at the FcγRIIa 
(change from H to R at position 131) and the FcγRIIIa (change 
from V to F at position 158) gene loci have been associated with 
an HIV vaccine benefit (40). Li et  al. described that subjects 
carrying a SNP in FcγRIIc (126C>T) were associated with a 
significant prevention of infection with an AE HIV-1 strain in  
the RV144 vaccine clinical trial (41). On the contrary, a small 
study that compared the FcγRIIa and FcγRIIIa genotype profiles  

of 73 patients that were able to control HIV with progressor 
patients did not find any difference in genotype frequency (42). 
The role of the different FcR polymorphisms and how it will 
impact on the overall HIV immune response is not known. 
Therefore, future research will need to assess in more details the 
role of FcR polymorphisms of the host on HIV infection and HIV 
vaccine development.

ANTiBODY-DePeNDeNT CeLLULAR 
PHAGOCYTOSiS (ADCP)

Antibody-dependent cellular phagocytosis, which relies on 
phagocytes to internalize and degrade Ab-opsonized pathogens, 
is a well-described immune process. Abs coated to pathogens 
via their Fab domain will bind with their Fc domain to the 
FcR expressed on monocytes, macrophages, and neutrophils to 
increase rapid elimination of the microorganisms. In the case 
of HIV, phagocytosis of immune complexes via the Fc domain 
of the nAbs was found to be associated with protective activity 
in the macaque model (43–45) and, recently, phagocytosis by 
macrophages or activated neutrophils was proposed to play a sig-
nificant role in human tissues, even though it is yet unknown how 
exactly this inhibition occurs (46). Interestingly, this activity was 
also described for non-nAbs able to form immune complexes. It 
was shown that for some HIV-specific Abs, the binding via the 
Fab domain, on the one hand, and the binding to an antigen-
presenting cell (APC) via the Fc domain, on the other hand, 
leads to efficient inhibition of HIV replication of the APCs (4). 
Phagocytosis by cell lines was shown using different HIV-specific 
Abs and gp120-coated beads (47) and when these cell lines were 
engineered to express different FcRs, the FcR-mediated inhibitory 
function of Abs was partially recovered. This type of activity relies 
on multiple Abs, able to form immune complexes and especially 
for Abs directed to the HIV gp41 epitope (33). Although HIV 
inhibition by phagocytosis of the immune complex could not 
be demonstrated using this FcR-expressing cell line, it was pro-
posed that immune complex binding of FcγRI provides a kinetic 
advantage for gp41 nAbs against partially cryptic epitopes (33). 
An alternative mechanism may be proposed based on the obser-
vation that virus co-localizes with Abs and FcRs at the surface of 
APCs for a prolonged period. In this case, HIV captured at the 
cell surface via FcRs is deviated from the infection process, which 
requires binding to receptor/co-receptor for fusion with the cell 
membrane.

iMMUNOLOGiCAL Ab FUNCTiON

Antigen-presenting cells are specialized cells devoted to phago-
cyte immune complexes via their FcRs. This phagocytic process 
is much more efficient than the direct phagocytosis of pathogen 
by endocytosis. This mechanism of Fc-mediated phagocytosis of 
immune complexes will lead to an optimized induction of the 
adaptive immune response by APCs. In this regard, Abs forming 
the immune complexes may directly participate in the induction 
of the adaptive immune responses required for prolonged protec-
tion. The contribution of Abs in the development of an adaptive 
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immune response was first described in the cancer field (48). Abs 
targeting tumor antigens were shown to interact with immune 
cells through Fc-dependent mechanisms to induce adaptive 
immune responses (49–51).

Increasing body of evidence suggests that this mechanism 
may also apply following HIV infection. Noteworthy, in vitro, the 
presence of HIV/Ab immune complexes induces the maturation 
of human DCs, supporting immune activation (52–54). The 
stimulation of the adaptive immune response was also observed 
following nAb therapy in infected macaques (45, 55). An increase 
of specific B-cell responses following passive nAb transfer in a 
non-human primate (NHP) model was described by Haigwoog’s 
team (56). The immune complexes were able to activate T-cell 
immunity (57). More recently, human clinical data described 
the elicitation of host humoral responses in viremic subjects 
after a single injection of the potent anti-HIV nAb 3BNC117 
(58). 3BNC117 immunotherapy was found to accelerate the 
level of neutralization breadth. Overall, these studies attribute an  
“immunogenic” role to Abs in that they may be able to induce 
primary and memory responses more efficiently than free viral 
particles or infected cells. Accordingly, Abs without neutralizing 
potency but able to form immune complexes may also lead to 
immune activation. Further investigations will be necessary to 
characterize the Abs involved in the implementation of an adap-
tive antiviral response, paving the way to new fields of applications.

FcR-MeDiATeD iNHiBiTiON OF  
CeLL-TO-CeLL Hiv-1 TRANSMiSSiON

Noteworthy, APCs have been described as “Trojan horses” that,  
in addition to their capacity to mount an efficient immune 
response, will also facilitate the spread of HIV by efficient 
HIV transmission and dissemination to the surrounding CD4 
T lymphocytes. Indeed, spread of HIV-1 infection through direct 
cell-to-cell HIV-1 transmission has been shown to be 100- to 
1,000-fold more efficient than infection by cell-free virus, making 
a large and efficient contribution to HIV propagation and dis-
semination through the body (10, 59–61). Therefore, preventing 
cell-to-cell transmission of HIV-1 by specific Abs is crucial for 
inhibiting HIV-1 propagation. However, most in vitro neutraliza-
tion assays and in  vivo nAb protection experiments have been 
performed by using cell-free virus.

Studies analyzing the inhibition of cell-to-cell HIV-1 trans-
mission by nAbs used diverse models of HIV-1 transmission, 
with different donor and target cells, various viral strains, and Ab 
and different readout for cell-to-cell transmission. Consequently, 
the results are divergent and controversial, some studied show-
ing decreased Ab potential when HIV is directly transmitted to 
a target cell compared to inhibition of cell-free virus (62–72), 
whereas other studies showing similar inhibitory potential for 
cell-free versus cell-to-cell transmission (52–54, 73). Noteworthy, 
in comparative studies where the experimental design is normal-
ized for the same replication capacity between cell-free or cell-
associated virus and where the same primary target cells were 
used, identical Ab inhibitory activities were observed (52–54, 74).  
Under these conditions, cell-to-cell HIV-1 transmission from 

DCs/macrophages to CD4 T  cells was inhibited to a similar 
extent as cell-free virus particles. Interestingly, similar results 
were described for antiviral compounds after normalization for 
virus replication and target cells (73, 75). These findings highlight 
the potential role of bnAb in protection from early HIV-1 trans-
mission and rapid dissemination at mucosal frontlines if locally 
present early after sexual transmission.

As HIV-1 Abs can bind FcRs, Abs may inhibit HIV-1 transmis-
sion via FcR-mediated inhibitory activity. It was shown that non-
neutralizing inhibitory Abs such as 246-D do not directly affect 
HIV-1 transmission from infected DCs to autologous CD4 T cells 
(54). Therefore, non-neutralizing inhibitory Abs were proposed 
to have no direct effect on HIV transmission. However, such Abs 
were shown to significantly reduce the percentage of infected 
DCs in DC-T  cell co-cultures (54). For these non-neutralizing 
inhibitory Abs, a strong association was found between the FcγR-
specific binding capacity, the inhibition of HIV-1 replication and 
the DC maturation. This suggests that the binding of these Abs 
to DCs triggers the maturation of these cells, resulting in lower 
levels of R5 virus replication (10, 54). Moreover, IgG-opsonized 
HIV-1 has been showed to impair provirus formation, p24 
production and to decrease the long-term transmission rate to 
autologous non-stimulated CD4 T  cells (76). These unconven-
tional mechanisms of HIV inhibition detected in DCs but not 
in CD4 T lymphocytes may explain the lower levels of infection 
in the co-culture in the presence of non-nAbs. Therefore, these 
Fc-mediated inhibitory activities of Abs in DCs may participate 
in the overall diminution of HIV replication in DC–T cell HIV-1 
transmission.

Altogether, the multiple Ab inhibitory activities should be 
taken into consideration for the study of the inhibition of cell-
to-cell HIV-1 transmission. A better understanding of this FcR-
mediated inhibition of HIV transmission is needed for future 
Ab-based therapeutics and protection strategies.

ANTiBODY-DePeNDeNT CeLLULAR 
CYTOTOXiCiTY (ADCC)

Antibody-dependent cellular cytotoxicity, a complex and potent 
Fc-mediated effector function, requires the linking of an HIV-
infected target cell to an immune effector cell via HIV-specific 
Abs. In this regard, Abs have to bind to HIV env, which is expressed 
on the surface of infected cells, via their Fab part and use their Fc 
domain to interact with FcRs expressed on the surface of effector 
cells, such as NK cells. This double interaction triggers the release 
of cytotoxic granules containing perforin and granzymes from 
the effector cells, leading to the death of the Ab-bound infected 
target cells.

Antibody-dependent cellular cytotoxicity as well as non-
neutralizing anti-V1/V2 Ab induction was shown to correlate 
with reduced HIV-1 infection risk in the human vaccine trial 
RV144 and in several NHPs studies (16, 18, 77–79). The data 
strongly suggest for ADCC to be a significant mechanism of 
protection against HIV-1 in  vivo (7, 10, 22, 80). Interestingly, 
non-neutralizing anti-V2 monoclonal Abs elicited in HIV-1-
infected patients recently showed strong cross-reactive ADCC 
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activity using different primary subtype B and C isolates as well 
as subtype B Transmitted/Founder viruses in  vitro (81). This 
study reinforces the potential role of V2-specific Abs. However, as 
ADCC is a complex and multilayered activity, questions remain 
about which ADCC assay best reflects the biology of protection 
and shows the best correlation with in vivo studies. In vitro assays 
are difficult to carry out and the variability obtained between 
different ADCC assays developed in the HIV field is alarmingly 
high, due to different assay formats and readouts circulating in 
the field.

As the HIV env is conformationally highly dynamic and as 
different epitopes are exposed during the different phases of 
infection because of structural rearrangements, the window of 
opportunity for Abs to bind to their specific epitope in order to 
mediate ADCC might only be a few hours, during the viral entry 
and budding phases (7, 8, 82). Furthermore, different env forms 
(such as intact env, non-trimeric env, gp41 stumps, env peptides 
presented by the MHC, and so on) are expressed on infected 
cells depending on the Nef and Vpu accessory proteins present 
in the chosen virus type (primary virus, pseudovirus, infectious 
molecular clone). Also, HIV was shown to prevent the accumu-
lation of env at the surface of target cells via a Vpu-mediated 
BST-2 antagonism (83). Noteworthy, the epitopes tackled by Abs 
with potential ADCC functions may differ from that involved in 
neutralization, opening the possibility of additional, enlarged, 
and distinct pattern of functional Abs. As a result, depending 
on the different env conformations, the recognition of specific 
epitopes will be influenced and have an impact on the ADCC 
results (84).

As ADCC relies on the capacity of the Ab to target infected 
cells, it could be proposed that by extension, Abs directed to 
all type of markers specifically expressed on infected cells may  
make the job. Therefore, targeting infected cells with Abs directed 
to FcRIIa, a marker recently identified on HIV cells reservoirs (85) 
or to specific markers of cell stress induced following infection  
(as NKG2D or MHC-E) may also participate in infected cell clear-
ance. Another factor influencing ADCC outcomes and, thus, HIV 
disease progression are the target cells that carry out the lysis, 
which are predominantly NK cells. Their maturation and activa-
tion status as well as their subset distribution can vary widely in 
different tissues and according to the individual. Therefore, the 
activation of the ADCC target cells may be envisaged to enhance 
ADCC efficiency. Also, different polymorphisms on FcγRIIIa, 
expressed on NK cells, can impact their activation and ADCC 
activity (86).

ANTiBODY-MeDiATeD COMPLeMeNT 
ACTivATiON

The complement system is an integral part of the innate immune 
system which has multiple effects, including opsonization, recruit-
ment of inflammatory cells, and cell lysis/virolysis. Complement 
activation can occur through three distinct pathways: classical, 
alternative, and lectin, and is vital for both innate and adaptive 
immune responses (87–91). Complement activation results 
in the generation of C3 and C5 convertase complexes, which 

cleave C3 and C5, respectively, to generate the anaphylatoxin 
components C3a and C5a as well as the opsonin C3b, membrane 
attack complexes initiator C5b and, finally, to perforate the viral 
surface causing disruption and, thus, complement-mediated lysis 
(87, 88, 91).

Antibody-mediated complement activation by HIV has been 
widely studied over the years. The initially published studies on 
complement and HIV were conflicting (92, 93). Some reports  
said that the virus did not bind human serum complement unless 
Ab to the virus was present. Others suggested that the virus acti-
vated and bound complement spontaneously, even in the absence 
of Ab. The current knowledge, however, concludes that HIV has 
developed a sophisticated defense that protects the virus by failing 
to bind complement proteins. Indeed, virions bind complement 
poorly (especially the gp120 that is refractory to complement 
binding) (94). Moreover, HIV incorporates the human cell mem-
brane complement down-regulatory molecules CD46, CD55, and 
CD59 during budding, thereby inhibiting complement-mediated 
damage to the virus. For this reason, the use of primary isolates 
produced by primary cells is absolutely mandatory for the study 
of complement-mediated effects. HIV also captures serum factor 
H to downregulate complement binding (95–97). On the other 
hand, HIV has evolved several mechanisms to exploit the comple-
ment system to facilitate the binding of HIV to target cells via CR2 
or CD21 proteins, therefore leading to the enhancement of viral 
infectivity and the formation of virus reservoirs at different stages 
(98–104). For example, complement-mediated enhancement of 
HIV-1 by autologous non-nAbs obtained during acute HIV-1 
infection was recently illustrated in in vitro studies (95, 98).

Interestingly, the role of complement activity of the Fc domain 
of nAb b12 evaluated in the non-human macaque challenge 
model revealed that a b12 Fc mutant defective for C1q binding 
and complement activation exhibited comparable activity to 
that of wild-type b12 (13). This indicates that complement is not 
required for optimal in vivo Ab protection against SHIV infec-
tion (13). Nonetheless, complement activation by V1V2-specific 
Abs was stronger and detected more frequently in RV144 with a 
reduced risk of HIV-1 infection than in two related trials, VAX003 
and VAX004, for which no significant protection was observed 
(105). These results suggest that a certain level of Ab-dependent 
complement activity may have contributed in part to a modest 
protection against the acquisition of HIV-1 infection in the phase 
III RV144 HIV-1 vaccine trial. Together, complement can mediate 
a variety of biological functions, the relative contribution of virus 
lysis and enhancement in the tissue and in the periphery may 
differ and needs to be further investigated. Additional studies will 
be needed to define the role of complement activation and regula-
tion in HIV infection and to unravel whether the beneficial or 
the detrimental effects of complement and Ab dominate in vivo. 
A possible balance of Ab-mediated immune responses, includ-
ing complement activation, may be the key for the induction of 
in vivo protection against HIV.

CONCLUSiON

The plethora of additional Ab functions listed below demon-
strates the extremely large potential of functional Abs. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


115

Mayr et al. Non-nAb-Mediated Protection against HIV-1

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1590

Therefore, there is no single mechanism or assay that has 
come to the front to predict vaccine efficacy. This is a major 
issue confronting researchers in the HIV field and it is also 
important for other cases of Ab-mediated protection against 
infectious diseases.

The Abs will be produced by B cell following an interplay of 
somatic hypermutations and isotype switching. The successive 
modifications leading to the maturation of the immune response 
is still poorly understand. Recently, the frequency of HIV-env-
specific memory B cells correlated positively with the neutrali-
zation breadth in HLA-B*57+ HIV elite controllers but not in 
HLA-B*57-elite controllers (ECs), suggesting a very specific 
induction or preservation of HIV-specific memory B cells in these 
patients (106). However, the factors allowing the establishment of 
this efficient humoral response is not known.

The long-lasting persistence of HIV following infection 
demonstrated that the sole repetitive contact with an antigen 
is not sufficient to mount a humoral response able to generate 
functional Abs. What are the additional component necessary to 
induce the rearrangement necessary to obtain B cells producing 
Abs with the Fab domain that recognize the right epitope and 
the Fc domain with the best functionality? Even more enigmatic, 
which immunization protocol can trigger such a response? The 

in-depth characterization of the different Ab functionality is the 
first step toward the understanding on how to trigger such an 
efficient B-cell response.
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Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) 
to prevent and treat HIV infection support the clinical utility and potential of bNAbs for 
prevention, postexposure prophylaxis, and treatment of acute and chronic infection. 
Observed and potential limitations of bNAbs from these recent studies include the 
selection of resistant viral populations, immunogenicity resulting in the development of 
antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regen-
eration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV 
Abs to address these challenges and further accomplish functional targets for anti-HIV 
Ab therapy at various stages of exposure/infection. Before exposure, bNAbs’ ability to 
serve as prophylaxis by neutralization may be improved by increasing serum half-life to 
necessitate less frequent administration, delivering genes for durable in vivo expression, 
and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute 
infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be 
enhanced by increasing the potency with which autologous adaptive immune responses 
are stimulated, clearing acutely infected cells, and preventing cell–cell transmission of 
virus. In the setting of chronic infection, bNAbs may better mediate viral remission or 
“cure” in combination with antiretroviral therapy and/or latency reversing agents, by 
targeting additional markers of tissue reservoirs or infected cell types, or by serving 
as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has 
never been closer, remaining studies to precisely define, model, and understand the 
complex roles and dynamics of HIV Abs and viral evolution in the context of the human 
immune system and anatomical compartmentalization will be critical to both optimize 
their clinical use in combination with existing agents and define further strategies with 
which to enhance their clinical safety and efficacy.

Keywords: Hiv antibodies, virus neutralization, passive immunotherapy, antibody prophylaxis, antibody 
engineering

iNTRODUCTiON

Antibody (Ab)-based therapies have a robust history of therapeutic utility in the setting of infectious 
diseases, first serving as serum therapy in the 1800s to treat diphtheria and most recently, as monoclonal 
antibody (mAb) preparations developed to combat emergent outbreaks such as Ebola. Endogenous 
antibodies raised within the context of HIV infection have similarly demonstrated antiviral activity 
(1), but typically arise too late in the natural history of infection to prevent disease progression 
(2). Within infected individuals, viral populations consistently outpace host immune responses in a 
coevolutionary race to gain functionally favorable mutations contributing to immune evasion or viral 
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FigURe 1 | Native Ab functions contributing to antiviral activity and their limitations in the natural course of infection. (A) For neutralization, Abs (red) bind viral envelope 
proteins to block interactions with cellular receptors. (B) For effector functions, Abs bound to both viruses and infected cells may engage innate effector cells (purple) to 
mediate ADCC or ADCP, or complement component C1q (green) to mediate CDC or interactions with complement receptors on innate effector cells for opsonization-
based phagocytosis. (C) To stimulate autologous antiviral immunity, Ab-bound infected cells may interact with dendritic cells to release type I interferons (blue stars) to 
stimulate NK cell activation and expression of antiviral proteins within infected cells. Alternatively, antigen presenting cells may phagocytose Ab-virus immune complexes 
and process viral antigens for presentation to T-cells to mediate cellular immune responses. Abbreviations: ADCC, Ab-dependent cellular cytotoxicity; ADCP, 
Ab-dependence cellular phagocytosis; CDC, complement dependent cytotoxicity; FcR, Fc receptor; MHC, major histocompatibility complex; TCR, T-cell receptor.
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neutralization/suppression, respectively. However, heterologous 
administration of particularly potent and broad antibodies prior 
to exposure or to acutely infected individuals has demonstrated 
therapeutic utility in humanized mice (3–7), macaques (8–13), 
and humans (14–19).

Several reviews have described the activity and potential of 
broadly neutralizing antibodies (bNAbs) for HIV prevention and 
therapy (20–27). Building upon a recent comprehensive review 
of engineering opportunities to extend the functional capacity 
and antiviral activity of bNAbs (28), this review incorporates 
findings from more recently published macaque and human 
bNAb clinical trials to explore both observed and potential 
challenges to successful bNAb implementation at various stages 
of exposure/disease to prevent infection, minimize viral spread, 
suppress viral growth, and eliminate viral populations.

Promise/Potential: bNAbs in Human 
Clinical and Macaque Preclinical Trials
The abundance of studies supporting the antiviral activity and 
potential of bNAbs to mediate protection from and control of 
HIV infection in animal models have renewed hope and interest 

in bNAbs for clinical use. Antibodies can exert antiviral activity 
through a combination of (1) virus neutralization, prevent-
ing initial infection, and viral spread, (2) Fc-mediated effector 
functions, contributing to the clearance of infected cells, and (3) 
enhancement of endogenous host antiviral immune responses 
(Figure 1). In the last 2 years alone, promising human clinical 
studies to investigate therapeutic benefit in postinfection settings 
(14–19) and additional preclinical studies to investigate protective 
efficacy in preexposure/infection settings (29, 30) have clarified 
the mechanisms of action and efficacy of bNAb administration.

Human clinical studies of VRC01 (14, 17, 31), 3BNC117 (15, 18,  
19, 32), and 10-1074 (16) have demonstrated the antiviral activity 
of bNAbs, offering therapeutic utility in both acute and chro-
nic infection settings. Beyond safety and tolerability, all three 
bNAbs reduced viral load (15–17) during administration and 
two, VRC01 and 3BNC117, successfully delayed viral rebound 
upon discontinuation of antiretroviral therapy (ART) (14, 18). 
Treatment dosing regimens remain to be optimized and may 
differ among Abs, dependent upon both the usual considerations  
of individual mAb pharmacokinetic and pharmacodynamic 
properties, but also each mAb’s HIV-specific pharmacodynamic 
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properties, such as the slope and completeness of neutralization  
(33), susceptibility to viral evasion, and propensity to mediate 
viral (or antigen) trafficking/processing/presentation. In addi-
tion, characteristics of individual subjects, such as viral load, 
diversity, and sensitivity to select bNAb(s) at time of treatment 
may be considered for more individualized regimens.

Concurrently with direct antiviral activity, treatment with 
3BNC117 stimulated and enhanced endogenous antiviral 
immune responses: in 14/15 viremic individuals treated with 
3BNC117, sera from week 24, well after serum levels of 3BNC117 
had dropped below detection limits, demonstrated increased 
breadth and/or potency against a pseudovirus panel as compared 
to week 0 (19). Interestingly, the increase in neutralization 
capacity of week 24 sera from ART-treated individuals receiving 
3BNC117 was less pronounced than in untreated individuals 
receiving 3BNC117, suggesting that viral replication and activity 
contributes to the development of heterologous neutralization 
(19). Previous studies have also demonstrated the enhancement 
(13, 34, 35) and importance (36) of autologous humoral and 
T-cell responses in response to bNAb therapy in macaque models 
of SHIV [reviewed in Ref. (37)].

The use of HIV Abs in preclinical animal models have similarly 
demonstrated the potential of mAbs to provide pre- or postexpo-
sure prophylaxis, similarly to the early use of immunoglobulins to 
protect against infection by RSV and Hepatitis A [reviewed in Ref. 
(38)]. Protection against SHIV acquisition has been demonstrated 
for multiple bNAbs (9–11, 39–41) with protection dependent 
upon SHIV strain, bNAb dosage, and bNAb serum concentrations 
at time of challenge. In models of high-dose SHIV challenge, treat-
ment with ≥5 mg/kg 3BNC117 or 10-1074 successfully blocked 
SHIV acquisition after a single intrarectal challenge of 1,000 times 
the 50% tissue culture infectious dose (TCID50), or approximately 
three times the half-maximal animal infectious dose (42). In a 
larger study (60 challenged animals vs. 4), the same group deter-
mined that serum titers of bNAbs as low as 1:100 were sufficient 
to prevent SHIV acquisition in ~50% of macaques receiving a 
single intrarectal challenge at 1,000 TCID50 (8). More recently, 
the same three bNAbs studied in human clinical trials, VRC01, 
3BNC117, and 10-1074, have been tested in preclinical macaque 
models of repeated low-dose SHIV exposure with impressive 
results (29). A single infusion of 3BNC117 successfully prevented 
virus acquisition in models of repeated low-dose intrarectal chal-
lenges for up to 23 weekly intrarectal challenges at 10 times the 
TCID50, whereas control animals acquired infection after two to 
six challenges. Across the three bNAbs evaluated, the length of 
protection correlated with Ab potency and half-life. Similarly, in 
humanized mouse models of HIV acquisition, passive transfer of 
the bNAb PGT126 demonstrated sterilizing protection against 
multiple vaginal HIV challenges (30).

Role of Non-Neutralizing Abs (nnAbs)
As opposed to neutralizing Abs which bind epitopes on func-
tional trimeric Env to prevent cell receptor engagement, nnAbs 
bind epitopes exposed in non-infective conformations adopted 
by the unstable Env antigen, such as open Envelope trimers, 
gp140 monomers, and dissociated gp41 stumps (due to instability 
or induced by binding to cell receptors). nnAb responses have 

demonstrated protection through Fc-mediated effector functions 
and by exerting additional selective pressure and evolutionary 
constraints upon remaining viruses in humanized mice (43, 44). 
In a recent study, Horwitz et  al. demonstrated the capacity of 
nnAbs to modulate the course of HIV infection in humanized 
mice via Fc-mediated effector functions in two nnAb cases: 
(1) using anti-HA Abs in humanized mice challenged with a 
newly developed recombinant indicator HIV strain containing 
an HA-tag-, (HIVivoHA) or HIVivoHA-infected cells and (2) 
using a patient-derived nnAb 246D (45) targeting a linear gp41 
epitope in humanized mice challenged with HIV-1YU2 virus or  
HIV-1YU2-infected cells (44). In both cases, passive transfer of 
nnAbs mediated modest protection from viral challenge, reduced 
viral load in established infection, cleared virus-infected cells, and 
exerted selective pressure for escape mutations that ultimately 
deleted or concealed the targeted epitope, all in an Fc-dependent 
manner that was diminished or absent in passive transfer of the 
same nnAbs modified with mutations that abrogated binding 
to activating Fc-receptors (44). Older studies in macaques have 
suggested that nnAbs may decrease the number of transmitted/
founder variants and the viral load in acute viremia, but ulti-
mately did not protect from infection (46–48). Thus while the 
efficacy of nAbs has been linked to Fc-dependent mechanisms 
(40) the sufficiency of these antibody activities to drive protection 
from infection among nnAbs has not been established in NHP. 
Similarly, the protective capacity of non-neutralizing HIV Abs 
in humans has been suggested by mother-to-child-transmission 
studies [reviewed in Ref. (49)] and by the association of V1/V2 
nnAbs with protection in the RV144 HIV-1 vaccine trial (50, 51), 
but remains to be demonstrated.

Therapeutic Applications and goals  
by Stage of infection
Based on the established roles of mAbs in various infectious dis-
eases, autologous Abs in the natural history of HIV infection, and 
HIV Abs in clinical and preclinical trials, anti-HIV mAbs find 
multiple indications for clinical use with therapeutic goals defined 
by the stage of HIV exposure and disease (Figure 2). Before viral 
establishment, mAbs could be used either prior to exposure to 
prevent viral acquisition or postexposure to prevent or limit 
viral establishment. After viral acquisition in chronic infection 
settings, therapeutic goals extend to include viral suppression to 
stabilize and prevent progression of disease, and viral eradication 
to cure patients entirely of infection. This review investigates the 
current limitations of and engineering strategies with which to 
improve the utility of bNAbs at each stage of infection/disease to 
(1) prevent infection, (2) limit viral establishment/spread, and (3) 
treat chronic infection via suppression of viral growth and reduc-
tion/elimination of viral reservoirs (summarized in Table 1).

eNHANCiNg PReeXPOSURe 
PROPHYLACTiC POTeNTiAL: 
PReveNTiNg viRAL iNFeCTiON

Development of durable protection against HIV has remained 
a challenge due to the great diversity of HIV species and their 
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FigURe 2 | Clinical goals for the use of anti-HIV Abs vary according to (A) mechanisms of viral exposure/infection at the time of administration, and (B) the viral 
events which therapeutic Abs seek to inhibit among indicated use prior to exposure (green), as postexposure prophylaxis or treatment of acute infection (yellow), 
and for treatment of chronic infection (red).
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adaptive capacity to evade immune-mediated pressure. Viral 
strains can be described by clade or subtype with viral diversity 
profiles varying by geographic location, or by neutralization 
sensitivity designated as very high (tier 1A), above-average (1B), 
moderate (2), or low (3) sensitivity to Ab-mediated neutraliza-
tion (pooled plasma samples from four to six clade-matched 
infected individuals) (52). Clade-matched viral variants are 
often more sensitive to neutralization by plasma/NAbs from 
individuals infected by the same clade (52). Thus, the profiling 
of viral variants endemic to geographical regions could inform 
the selection of NAbs offering the greatest breadth and potency 
of neutralization. Ab-based vaccines may function to protect 
from infection in two ways: (1) neutralization to prevent viral 
infection in the first place and (2) rapid clearance of virus or 
virus-infected cells, which will be expanded upon in Section 
“Enhancing Prophylactic and Therapeutic Potential in Acute 
Infection: Preventing Viral Reservoir Establishment/Spread.” To 
offer sterilizing immunity, Abs must offer durable protection with 
sufficient targeting to anatomic sites of exposure to neutralize 
viruses and prevent infection. To clear virus and virus-infected 
cells, Abs must be both readily available at therapeutic concen-
trations and broadly reactive to maintain efficacy against the 
diversity of viral strains to which an individual might be exposed. 
Thus, current and potential limitations to the prophylactic use of 

bNAbs include: (1) development of viral resistance, (2) require-
ment for strict regimen adherence, (3) anatomical distribution 
to sites of exposure, and (4) risk of Ab-dependent enhancement 
(ADE) of infection.

viral Resistance
The arsenal of bNAbs available today targets epitopes spanning 
a significant portion of the surface of the trimeric HIV Envelope 
gp140 protein including the V1/V2 loops at the trimer apex, V3 
loop glycans, CD4 binding site (CD4bs), gp120-g41 interface, 
and membrane-proximal external region (MPER) [reviewed in 
Ref. (53)]. Individual bNAbs vary in neutralization breadth and 
potency, with some CD4bs targeting bNAbs able to neutralize 
>90% of global circulating HIV-1 strains at low concentrations 
(54). However, resistance can develop to even the most potent 
of bNAbs and has indeed been observed in human clinical trials 
of all three bNAbs tested thus far (14–17). Even among bNAbs 
targeting the same epitope, different barriers to resistance devel-
opment may exist from individual to individual and may arise in 
part from preexisting bNAb-resistant viral strains. Engineering 
strategies to combat the development of viral resistance reviewed 
previously (28) include (1) structure-based modifications to 
increase the breadth, potency (both neutralization and effector 
function), and half-life of individual bNAbs, (2) combinations of 
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TABLe 1 | Summary table of strategies for the improvement of anti-HIV Ab therapy.

indication goal Mechanism Limitation improvement Strategies

Vaccine Block viral entry Neutralization Viral resistance ↑ Breadth and potency Structure-based modifications to ↑ 
binding
Broadly neutralizing antibody (bNAb) 
cocktails
Bispecific and trispecific bNAbs

Strict requirement for 
adherence to dosing 
schedule

↑ t1/2 FC engineering

Glycan “masking”
Carrier proteins, peptides, RBCs

Continuous Ab expression (adeno-
associated virus)

↓ Immunogenicity to ↓ anti-bNAb 
responses
Targeting multiple tissues for 
comprehensive protection
Enable evolution of delivered Abs:  
B Cell engineering

Anatomical distribution ↑ Targeting to sites of exposure Topical gel delivery
↑ Binding to mucosal transporters
Targeted gene delivery

Risk of Ab-dependent 
enhancement

↑ Breadth and potency See above

Maintain protective concentrations 
of Abs

Dosing schedule or gene delivery

Postexposure 
prophylaxis and 
acute infection

Prevent reservoir 
establishment

Stimulate autologous 
antiviral immunity

Insufficient protection 
after bNAb levels decay

↑ Viral processing and presentation Coadministration of virus/infected cells 
(immune complex)

Counter virus-mediated 
immunosuppression

Coadministration of immunostimulatory 
drugs/Abs targeting characterized 
mechanisms

Further restrict viral evolutionary space Identify Abs targeting “non-survivor” 
epitopes

Clear acutely 
infected cells

Ab-mediated Effector 
functions

Low potency? Fc engineering for FcR/complement 
binding

Protein/glycoengineering, subclass 
switching

Add toxic payload Immunotoxin, Ab-drug conjugate

Prevent cell–cell 
transmission

Unclear limited understanding of 
mechanism

Elucidate mechanism, especially role of Env conformational changes to define 
“neutralizing” epitopes for cell–cell transmission

Chronic 
infection

Suppress viral 
replication

All of the above 
(AOTA)

Resistance Combine with antiretroviral therapy (ART) to suppress replication and 
opportunities tot evolution

Target virat 
reservoirs

AOTA Tissue distribution 
or Abs and reservoir 
accessibility

Tissue-targeted delivery Ex: liposomal delivery to central  
nervous system (CNS)

Cover diverse populations in 
compartmentalized tissue

Combine w/additional Abs, ART, 
latency-reversing agents

Low Env expression in 
chronic infection

Target Env epitopes of chronic infection

Target non-viral surface markers All potential reservoir cells, including 
uninfected (e.g., CD52), or upregulated  
on infected cells (e.g., CD32a)

Reactivate reservoirs Add LRAs

Long-term 
clearance of 
reservoir cells

Autologous T-cell-
mediated response

Low cytotoxic 
T-lymphocyte (CTL) 
response due to 
immune suppression

bNAb-based chimeric antigen 
receptors (CARs)

↑ Clinical safety (↓ risk of CAR  
mediating infection, synthetic biology 
“switch” on/off/homing strategies)

CTL trafficking 
limitations

Investigate/improve bnAb access to CTL sanctuaries

Virol eradication AOTA Costs of eliminating 
reservoir cells in certain 
tissues (e.g., CNS)

Pair with gene editing strategics so infected cells may survive

Overlap of therapeutic goals for listed indications (see Figure 2) are not shown in this table. Goals which are targets for multiple indications are grouped under the indication for 
which they are the primary focus.
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Abs in cocktail therapies, (3) modifying bNAbs to become bispe-
cific, to carry toxic payloads, or to redirect cells in bNAb-based 
therapies, and (4) altering delivery strategies.

Since the previous review, three additional studies of newly 
isolated neutralizing Abs have further supported the importance 
of structural Ab-Env interactions to neutralization breadth and 
viral evasion. Demonstrating the importance of Ab binding 
modes to development of viral resistance, N6, a new bNAb target-
ing the CD4bs with a novel mode of recognition, does so with 
amino acid features similar to previously identified mutations 
to increase the potency of VRC01-class Abs, and demonstrated 
near-pan neutralization breadth of 98% of HIV isolates tested, 
including many isolates resistant to other CD4bs antibodies 
(55). Defining a new neutralizing epitope, the recently isolated/
characterized bNAb N123-VRC34.01 recognizes a unique 
trimer-specific, cleavage-dependent epitope at the N terminus 
of the gp41 fusion peptide (56). Finally, two recently isolated 
V2-specific Abs, PGDM1400, and CAP256-VRC26.25, demon-
strated unprecedented neutralization potency, protecting against 
high-dose SHIV challenge at serum Ab concentrations <0.75 μg/
mL for CAP256-VRC26.25-LS (57). In addition, these V2-specific 
bNAbs exhibited neutralization breadth complementary to that 
of V3-specific bNAb PGT121 against Clade C viruses, ultimately 
resulting in >90% coverage when used in combination (57).

Recent studies have investigated optimal strategies for  
combining bNAbs in cocktail therapies (3, 58–61), bispecific 
formats (62, 63), and novel tri-specific molecules (64). A com-
bination of only three bNAbs targeting different epitopes has 
been suggested to be sufficient to cover transmitted viral diversity 
and evolution based on a study conducted in humanized mice 
(58) and predictive in  silico models of neutralization breadth 
and potency (59). In an alternative form of combining epitope 
specificities, the most potent and broad bispecific Ab to date, 
10E8v2.0/iMab, demonstrated 100% neutralization breadth 
across a 118-member pseudotyped panel with mean inhibitory 
concentration of 0.002  µg/mL and prevented HIV acquisition 
in humanized mouse models of infection, demonstrating the 
synergistic potential of bispecific Abs targeting distinct epitopes 
(63). In another study, a novel bispecific Ab hinge engineering 
strategy employing the IgG3 hinge to increase Fab domain flex-
ibility for bivalent binding and to maintain IgG1-Fc function 
enhanced the in vivo therapeutic activity of bispecific bNAbs (62), 
emphasizing the synergistic avidity-enhancing effect of intratri-
meric, heterobivalent crosslinking of Fab arms to increase Ab 
potency (65). In another novel approach, trispecific Ab molecules 
containing bNAb specificities against the V1V2 loop trimer apex 
(PGDM1400), CD4bs (VRC01 and N6), and MPER (10E8v4) 
were found to mediate increased breadth and potency compared 
to individual parental bNAbs both in vitro and in SHIV challenge 
models (64). The authors speculated that the tri-specific bNAb 
may have decreased risk of viral resistance compared to cocktail 
strategies where differences in component bNAb half-lives may 
decrease selective pressure (64). However, whether these trim-
eric molecules engage multiple epitopes simultaneously and/or  
otherwise confer added benefit over a cocktail consisting of the 
same three bNAbs remains to be determined.

Beyond development of viral resistance within an individual 
to bNAb therapy, implications of widespread use of bNAbs as 
prevention may influence the composition and evolutionary 
dynamics of worldwide HIV strains. HIV drug resistance is 
increasingly observed due to poor patient adherence enabling 
the development of resistance, and subsequent transmission of 
newly developed drug-resistant strains (66). Similar potential 
for the development of bNAb-resistant “super-strains” of HIV 
exists, as bNAb-resistant strains often coexist or arise within 
individuals from whom bNAbs were isolated. Trade-offs between 
viral evasion and fitness costs incurred by some resistance muta-
tions (67–70) may mitigate these concerns. However, resistance 
mutations without fitness costs (70, 71) and the development 
of compensatory mutations to restore fitness have also been 
described (67), and antibodies vary with respect to sensitivity 
to evasion and ease of compensation. Combination strategies 
such as the cocktails or multispecific molecules described above 
may best prevent the development of “super-strains” of HIV by 
further restricting the viral evolutionary landscape. Thus, strate-
gies to optimize bNAb administration and pharmacokinetics to 
make treatment regimens manageable and supportive of strong 
treatment adherence will be critical to avoid the development of 
bNAb-resistance on a more global scale.

Alleviating Requirements for Regimen 
Adherence
Because viral rebound quickly occurs upon bNAb decay and 
renewed replication enables opportunities for viral evolution, 
protective bNAb dosing schedules must be strictly followed 
to prevent both viremia and viral resistance. Two methods to 
decrease the frequency of dosing are (1) increasing the serum 
half-life of bNAbs and (2) bNAb gene delivery for continuous 
in vivo expression.

Increasing Serum Half-Life of bNAbs
Interestingly, bNAb levels decayed more quickly in HIV(+) indi-
viduals as compared to controls in human clinical trials, potentially 
due to the formation of Ab-virus immune complexes in infected 
individuals that are more rapidly cleared from circulation. For 
bNAbs to offer prevention potential, and to avoid the development 
of resistance, serum half-life would need to be long enough to 
maintain protective concentrations at reasonable dosing schedules. 
Fc engineering strategies to increase the half-life of bNAbs have 
been described [reviewed in Ref. (28, 72)], including studies of the 
VRC01-LS variant which demonstrated a threefold longer serum 
half-life and increased translocation to mucosal tissues, ultimately 
leading to improved potency and protection against high-dose rectal 
challenge in non-human primates (29, 73, 74). VRC01-LS (M428L 
and N434S) (29, 74) has now advanced into Phase I clinical trials 
(NCT02797171, NCT02840474, NCT02599896, NCT02256631).

Continuous Protection via Gene Delivery:  
In Vivo Expression of bNAbs
In an indirect way to extend the lifetime of bNAb therapy, gene 
delivery has been increasingly explored to achieve durable Ab 
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concentrations, most prominently by adeno-associated virus 
(AAV) vectors [reviewed in Ref. (75)]. Historically, AAV delivery-
based gene therapy has demonstrated safety and efficacy in both 
macaques (76–79) and humans (80–85) for a variety of diseases, 
and has become the first clinically and government-approved 
gene therapy in Europe (86, 87). Within the realm of HIV, AAV-
delivered HIV-specific bNAbs and Ab-like molecules such as 
CD4-Ig have demonstrated sterilizing and durable protection 
against SIV/SHIV infection in macaques (73, 88–90) and HIV 
infection in humanized mice (4, 91), and are now undergoing 
Phase I human clinical trials to evaluate safety, deliverability, and 
potential efficacy in England (NCT01937455).

Current limitations to bNAb gene delivery include the devel-
opment of anti-bNAb responses and the virus independence of 
bNAb expression. First, several studies of AAV-delivered bNAbs 
to macaques have demonstrated the development of anti-bNAb 
responses (73, 88, 90, 92), despite “rhesus-ization” of bNAbs 
and addition of immunosuppressive therapy, potentially due to 
immune-stimulating effects of the AAV itself which can trig-
ger innate pattern recognition receptors and toll-like receptors 
or engage preexisting cellular (93) or humoral (94) immunity. 
Side-by-side comparisons of anti-bNAb responses in passively 
transferred bNAbs vs. AAV-delivered bNAb treatment have been 
proposed to delineate immunogenic contributions from AAV vs. 
Ab (75). Engineering strategies to decrease the immunogenicity 
of AAV capsids and coadministration of immunosuppressive 
agents (cyclosporine, T-cell inhibition, IVIG, corticosteroid) have 
been proposed and shown promise (75). However, immunosup-
pressive agents may also decrease bNAb Fc-mediated effector 
function and the development of autologous antiviral responses, 
placing the bulk of protection on neutralization. Thus, studies  
to determine the costs and benefits of adding immunosuppressive 
agents to AAV-delivery regimens are warranted.

Second, current AAV-delivery of bNAbs results in bNAb 
expression independent of viral trafficking, replication, and 
evolution, and therefore (1) may not be ideally distributed for 
prevention of infection/reservoir establishment and (2) cannot 
respond to changes in the viral population. Intramuscular deliv-
ery of vectored gene therapy to skeletal muscle is most extensively 
studied thanks to muscle tissue’s amenability to long-term gene 
expression, abundant vascular supply for quick transport to the 
systemic circulation, and ease of accessibility (95). However, 
vectored gene delivery to additional tissues including the liver, 
brain, spinal canal, skin, and eyes have been described (95). 
Targeted gene delivery to these tissues may be especially useful 
if protective Ab concentrations in these tissues are not possible 
from circulation alone.

However, such bNAb-expressing tissues are unable to respond 
to viral evolution, and may become less useful as viral popula-
tions develop resistance to the administered Ab. Thus, strategic 
delivery of bNAb genes to B-cells for integration at native 
BCR loci (gene targeting into the Igh locus) under the normal 
regulation of heavy-chain expression, Ab class-switching, and 
somatic mutation may offer the added benefit of coevolution 
with viral populations. A similar technology of in vivo bNAb-
as-BCR evolution has been used in HIV Env immunogen stud-
ies in transgenic knock-in mice containing B-cells expressing 

germline heavy chain variants of VRC01-class Abs (96–98), 
which were successfully activated/expanded and underwent 
somatic hypermutation in response to various Env immunogen 
regimens. Viral challenge of similarly generated knock-in mice 
containing genes for mature bNAbs as BCRs may demonstrate 
proof-of-concept for bNAb-based BCR engineering. Clinical 
translation of such a strategy could parallel chimeric antigen 
receptor (CAR) T-cell procedures, whereby B-cells could be 
extracted from a patient and engineered ex vivo to expressed 
bNAb-based BCRs prior to reinfusion. Investigations into 
efficient and targeted IgH knock-in would be critical to this 
approach and increased understanding of B-cell differentiation 
and subtypes, BCR editing, and tolerance checkpoints would 
be beneficial. Additionally, switchable gene expression may be 
desired to prevent unchecked expansion/growth. While this 
ability to coevolve may not ultimately provide any benefit, natu-
ral infection histories provide both reasons for optimism and 
pessimism. In favor of the optimistic possibilities, the ability of 
bnAbs to improve autologous antibody neutralization potency, 
and their ability to collaborate with other lineages for beneficial 
outcomes suggests that the ability to adapt over time could be 
advantageous.

Targeting Anatomical Sites of exposure
One probit analysis of bNAb-treated macaques suggested that a 
serum level of 100 times the bNAb IC50 affords 50% protection 
against intrarectal infection (41), a level that is estimated to be 
attainable by biannual passive Ab injections given the serum Ab 
levels and half-lives of VRC01 and 3BNC117 in human clinical 
trials (25). In an SHIV macaque study, IV infusion of 2 mg/kg 
PGT121 completely protected subjects from intravaginal chal-
lenge with 5 × 104 TCID50 SHIV-SF162P3, with no detectable 
viral RNA or DNA found in distal tissue sites by day 10 after 
challenge (99). However, concentrating Abs at the sites of viral 
exposure may allow even lower doses to be protective. Because 
viral exposure often occurs at mucous membranes including 
the rectal and vaginal tracts, the presence of bNAbs at mucosal 
sites to mediate immune exclusion may improve protection. 
Therapeutic administration and Ab engineering strategies to 
improve bNAb use for mucosal immunity were described previ-
ously (28) and included topical gel delivery, Fc engineering to 
enhance binding to FcRn and pIgR at mucosal sites, and design-
ing IgA and chimeric IgGA variants of bNAbs. In addition, some 
of the strategies described above such as targeted AAV-delivery 
of bNAb genes to specific tissue sites or BCR engineering to 
express class-switched IgA versions of bNAbs may be beneficial. 
Studies have found contrasting evidence for (100–103) and 
against (104) a role for bNAbs, formatted as various isotypes, 
in preventing transepithelial migration. The reason for this 
discrepancy is unknown but may be related to the utilization of 
older-generation or less potent bNAbs in the prior studies (2F5, 
2G12, 4E10), whereas the most recent studies investigate newer-
generation, more potent bNAbs. In that study of bNAbs targeting 
a wide range of epitopes, bNAbs did not block the transcytosis 
of either cell-free or cell-associated HIV-1 in vitro and instead 
relied upon neutralization to decrease the infectivity of transcy-
tosed viruses (105). Thus, increasing the local concentration and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


126

Hua and Ackerman Engineering Anti-HIV Antibodies: Clinical Translation

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1655

neutralization breadth and potency of bNAbs at mucosal sites 
may enhance protection against mucosal infection.

Potential Risks: ADe of infection
Thus far, ADE of HIV infection has only been observed in vitro 
and grouped into complement- (106–108), Fc Receptor (FcR)- 
(109–112), and conformationally mediated (113, 114) mechanisms 
which ultimately facilitate virus internalization or receptor-inde-
pendent virus-cell membrane fusion [reviewed in Ref. (115, 116)]. 
In addition, antibody-virus immune complexes could increase 
trafficking of infectious virions to lymph nodes, thereby amplify-
ing rates of viral infection and replication. While debate exists over 
whether ADE occurs in natural HIV infection, the presence of 
enhancing Abs have been correlated with disease progression in 
some studies of sera from HIV-infected individuals (117, 118) [but 
not others (119)] and suggested to explain increased rates of infec-
tion in individuals with relatively low Ab responses in vaccine trials 
(120) and correlations of particular FcR genotypes characterized by 
stronger Fc-binding affinities with higher infection risk (121, 122). 
Both nnAb and neutralizing Ab at subneutralizing concentrations 
can enhance infection in vitro (109), and epitope specificity does 
not necessarily determine an Ab’s potential for ADE (115). Thus, 
maintaining protective concentrations of bNAbs via repeated dos-
ing or continuous expression (AAV) may be especially critical to 
decrease the risk of ADE.

eNHANCiNg PROPHYLACTiC AND 
THeRAPeUTiC POTeNTiAL iN ACUTe 
iNFeCTiON: PReveNTiNg viRAL 
ReSeRvOiR eSTABLiSHMeNT/SPReAD

After exposure, bNAbs may be used as prophylaxis to prevent 
the establishment and spread of viral reservoirs [reviewed in 
Ref. (123, 124)]. Successful elicitation or administration of 
HIV-specific Abs in macaque models of acute SHIV challenge 
and infection have correlated with reduced acute viremia 
and limited reservoir seeding (46, 125, 126). The window for 
postexposure prophylaxis has been estimated to be as short as 
24 h to block infection by cell-free virus in macaque models 
of SHIV infection (127, 128) and within the first 9–10  days 
to limit viral reservoir seeding and spread (129). Resistance 
continues to be a major concern for all of the described bNAb 
indications in this review, but may be especially relevant in 
postexposure settings where autologous viral populations 
may be screened for preexisting resistance to bNAbs. Mucosal 
barriers and/or autologous immune responses often limit the 
diversity of transmitted/founder (T/F) strains; in one study, 
80% of individuals infected through heterosexual and 60% 
through homosexual contact were found to have a single 
founder virus strain (130). Thus, the low viral diversity present 
in acute postexposure settings render it a particularly useful 
time at which to screen viral populations to inform the choice 
of bNAb(s) therapy. Efforts to adequately sample viral diversity 
later during chronic infection become more difficult as latent 
reservoirs are established and thus viral sensitivity screening 
may be less useful at later time points.

In addition to the previously described goals to neutralize 
virus to prevent initial infection, postexposure prophylactic 
use of Abs additionally seeks to limit reservoir seeding 
and spread. Enhancing the ability of mAb therapies to (1) 
increase autologous immune responses and (2) target acutely 
infected cells represent two strategies by which to accomplish  
this goal.

increasing Protection by influencing the 
Autologous Adaptive immune Response
Both neutralizing Ab and nnAbs depend upon Fc-mediated effec-
tor functions for antiviral activity in vivo (131, 132). Through the 
Fc portion, elicitation of even nnAb responses offers therapeutic 
utility, demonstrating protective effects in both vaccination  
(121, 133) and passive transfer studies (44, 134, 135). Stimulation 
of autologous Ab responses, whether neutralizing or not, thus 
remains a promising means by which to generate durable effects 
from Ab therapy.

Broadly neutralizing antibody therapy has been associated 
with enhanced autologous antiviral immune responses in both 
human (19) and macaque (13, 34, 35) studies. Proposed mecha-
nisms for this observed effect include (1) facilitation of viral 
processing and presentation, (2) potential immune-stimulating 
effects in an otherwise suppressed adaptive immune background 
conferred by HIV infection, and (3) restriction of viral evolution-
ary space by both administered bNAbs and elicited autologous 
Abs. Efforts to increase autologous Ab responses may thus focus 
upon enhancing each of these mechanisms.

Enhancing Viral Processing and Presentation
Increasing the effector function capacity of anti-HIV Abs by 
Fc engineering to skew binding toward particular Fc receptors 
represents one mechanism by which to engage and stimulate 
endogenous immunity, and has been previously reviewed in 
Ref. (28, 72). Beyond engineering bNAb molecules, adjunctive 
coadministration of envelope, virus or infected cells with Abs in 
immune complexes can engage FcɣRs on antigen-presenting cells 
to facilitate antigen internalization and enhance APC activation 
and presentation, ultimately “boosting” endogenous antiviral 
immunity [reviewed in Ref. (136)]. Although one study found 
that opsonization of HIV-1 with polyclonal anti-HIV IgGs was 
associated with decreased dendritic cell activity (137), further 
investigations of Abs of varying neutralization potency formatted 
as different isotypes have been proposed to clarify the generaliz-
ability of that study (136). In another study, administration of 
HIV-1 gp120 Env and a CD4bs mAb resulted in enhanced neu-
tralization potency of elicited humoral responses in mice (138). 
Notably, Fab-mediated effects that resulted in greater presenta-
tion of particular epitopes in the Ab-bound immune complex 
were determined to be at least partially responsible for the 
increased neutralization potency of the elicited antibody response 
(139–141). Additional parameters to be investigated in the use of 
immune complexes to stimulate endogenous antiviral immunity 
include antigen format (soluble vs. virus vs. infected cell), Ab 
format (neutralization capacity, isotype, Fc variants), ideal ratios 
of Ab:Ag to form complexes, and routes of administration (136).
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Combatting Viral-Mediated Suppression of the 
Antiviral Immune Response during Acute HIV 
Infection
Acute HIV infection is characterized by early suppression of 
antiviral immune responses to support viral growth and spread. 
Mechanisms for this antiviral-specific immunosuppression include 
increased activation of the NLRX1 inflammasome (129, 142),  
which negatively regulates interferon-stimulated antiviral genes, 
and increased secretion of TGF-beta (129) that inhibits adaptive 
immune responses. In addition, viral interactions can induce 
early activation of regulatory T-cells (143, 144), and increase 
the expression of inhibitory T-cell markers PD-1 and CTLA-4  
(145, 146). The effect of these immunosuppressive mechanisms on 
Ab-mediated effector function remains to be determined (124), 
but likely decreases the efficiency with which Ab-mediated stimu-
lation of autologous immune responses arise. Combination with 
immunostimulatory drugs and antibodies targeting these specific 
mechanisms of immunosuppression may thereby increase the 
development of autologous antiviral immune responses, but may 
be a double-edged sword as there is a concomitantly increased 
risk of enhancing the development of anti-bNAb responses or the 
pool of CD4+ T-cells available for infection. In vivo studies of 
such approaches will be especially critical to determine the utility 
and/or feasibility of this approach.

Identifying Abs Targeting “Non-Survivor”  
Epitopes: Limiting Viral Evolution
Finally, autologous Ab responses may have antiviral effects by 
limiting the space for viral evolution through the targeting of 
“non-survivor” epitopes, regions in which resistance mutations 
incur survival costs or complete lethality [reviewed in Ref. (43)]. 
These epitopes can be distinct from epitopes recognized by bNAbs, 
against which resistance mutations commonly develop and are 
often contemporaneous with the presence of the bNAb in individu-
als from which they are isolated. Thus neutralizing epitopes identi-
fied thus far are largely “survivor” epitopes and a recent review has 
raised the concern of “survivor bias” in present studies of protective 
humoral responses (43). Potential non-survivor epitopes include 
functionally critical regions targeted by non-neutralizing epitopes 
that become exposed upon conformational changes including 
CD4-inducible epitopes (147) and gp41 epitopes like the fusion 
peptide (46, 56): passive transfer of nnAbs targeting these regions 
successfully decreased the number of transmitted/founder viruses 
from high-dose SHIV challenge in macaques (46).

Clearing Acutely infected Cells
Acutely infected cells must be cleared early to prevent the estab-
lishment of reservoirs. Toward this goal, Abs can engage innate 
effector cells through the Fc portion to stimulate Ab-dependent 
cellular cytotoxicity (ADCC), Ab-dependent cellular phagocy-
tosis (ADCP), or complement-dependent cytotoxicity (CDC). 
To further improve Abs’ capacity for cell-clearance, bNAbs may 
be engineered for enhanced Fc-mediated effector functions 
[described previously in Ref. (28, 72)] or modified through the 
conjugation of toxic payloads [reviewed in Ref. (148)].

Enhancing Ab Effector Function
Engineering strategies to augment Fc-mediated effector functions 
of HIV Abs were described in detail previously (28, 72), includ-
ing IgG subclass switching and protein/glycoengineering to bias 
Fc receptor/complement component binding profiles. Multiple 
Fc-engineered mAbs have now entered and/or demonstrated 
safety and efficacy in various phases of clinical trials as well 
[reviewed in Ref. (149)]. The results of these studies will inform 
the capacity of in vitro and animal models of Fc-engineered Ab 
function to predict effector function in humans. They may fur-
ther help to model the relationships between changes in Ab-Ag 
binding affinity, Fc-Fc receptor binding affinities, and clinically 
significant differences in effector functions in humans as has 
been described in animal models (150–152), and to determine 
whether there is an optimal Fc receptor binding affinity profile 
to elicit particular effector functions.

Immunotoxins
In acute infection, potent, transient cytotoxicity may be sufficient 
to inhibit reservoir establishment. Thus, conjugation of Abs with 
more toxic payloads such as bacterial exotoxins may be tolerable 
as a short-term solution to ensure rapid and complete cytotoxicity 
in place of or in addition to Fc-mediated effector functions to 
treat acute infection. In contrast, Ab-based immunotherapies that 
are more amenable to long-term use with more durable effects 
will be discussed in Section “Enhancing Therapeutic Potential for 
Chronic Infection” to treat chronic infection. In addition, viral 
Env has been suggested to be more highly expressed during early 
infection (153), making viral Env-targeting Abs potentially more 
useful as targeting agents during this period.

In one study, HIV-specific recombinant immunotoxin (RIT) 
employing Pseudomonas exotoxin A, 3B3-PE38, in combination 
with ART significantly decreased the number of HIV RNA-
producing cells compared to ART alone in BLT humanized 
mouse models of HIV infection (154), although a potential for 
toxin immunogenicity and viral resistance were cited as limita-
tions to chronic use of the immunotoxin. In a recent study testing 
a panel of HIV-specific mAbs as RITs, epitope specificity was 
found to correlate most with cytotoxicity against H9/NL4-2 cells 
(HIV Env expressing cell line), as compared to binding/neutrali-
zation potency (155). The most effective RIT employed mAbs 
targeting a non-neutralizing epitope in the gp41 loop region, 
which lies close to the plasma membrane and may thus allow the 
toxin to enter the cell more effectively (155, 156). Combination 
with soluble CD4 (sCD4) further increased the cytotoxicity of 
gp41 loop-targeting RITs, likely due to increased exposure of 
the gp41 epitope after sCD4 binding induced conformational 
changes in Env and increased internalization of Env-bound RITs 
in the presence of sCD4 (155, 157).

In vivo studies of another gp41-specific RIT employing a Ricin 
A chain (RAC) toxin, 7B2-RAC, also demonstrated efficacy in 
SHIV-infected macaques prior to the development of antidrug 
Abs after 2–3  weeks due to RIT immunogenicity (158). In the 
same study, to combat this observed immunogenicity, the authors 
PEGylated RITs prior to use in mouse models of HIV, which 
resulted in lower antidrug Ab levels in a subset of mice (158). 
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However, additional methods to decrease RIT immunogenicity 
[reviewed in Ref. (159)] may be required. In addition, cytotoxic 
payloads with decreased immunogenicity may be used instead 
of protein toxins to make antibody-drug conjugates (ADCs).  
In the SHIV macaque study of 7B2-RAC, ADCs employing 
existing small molecule cytotoxic drugs were also tested but were 
less efficacious than the RIT, likely because their drug toxicities 
were 1-log less potent than the RAC toxin (158). Thus, ADCs 
may become more competitive as more potent cytotoxic small 
molecule drugs are developed to rival recombinant toxins.

Preventing Cell–Cell Transmission
In addition to infection by free HIV, cells may become infected 
by horizontal transmission from other infected cells [reviewed 
in Ref. (160)]. The frequency with which cell–cell transmission 
occurs in  vivo is unknown, but infection by cell-associated 
virus has been demonstrated in Macaque models of infection 
by SHIV-infected splenocytes (161), and suggested by studies of 
mother-to-child transmission of HIV during pregnancy, labor, 
and delivery [reviewed in Ref. (162)] and by spatial segregation 
of viral sequences (163). In addition, cell–cell transmission of 
virus was found to be more efficient than infection by free virus 
in vitro (164) and could lead to multiple infections of a single 
cell (165). A recent study found that different bNAbs exhibited 
Ab- and viral strain-dependent capacities to inhibit cell–cell 
transmission: for non-CD4bs-epitope targeting Abs, mAbs 
with increased potency of free virus neutralization exhibited 
greater losses in neutralization activity of cell–cell transmis-
sion, suggesting that optimal binding characteristics for free 
virus neutralization differ from those for cell–cell transmission 
neutralization (166). In another recent macaque study, bNAb 
PGT121 administered at protective concentrations against cell-
free virus were only partially efficacious (3/6 macaques) at pro-
tecting from SHIV-infected splenocyte challenge (161). Studies 
to elucidate the mechanisms by which cell–cell transmission 
occurs and conformational differences in Env structure during 
transmission (167) would be beneficial to defining a strategy to 
improve this type of neutralization.

eNHANCiNg THeRAPeUTiC POTeNTiAL 
FOR CHRONiC iNFeCTiON

Current therapy for chronic infection aims to suppress viremia 
to prevent symptoms from virus-stimulated immune activation 
and to prevent the growth/spread of viral reservoirs to preserve 
CD4+ T-cells. Today, ART largely accomplishes these goals to 
maintain low viral loads by blocking viral replication, but its use 
is limited by long-term end-organ drug toxicities, a strict require-
ment for treatment regimen adherence, and the development of 
viral resistance (168). In addition, persistent low-level viremia 
can remain even under ART treatment (169–171), potentially 
from cells infected prior to therapy initiation or in tissues with 
poor drug penetration (172) or residual virus replication in 
latently infected cells (169, 173, 174). Thus, therapeutic alterna-
tives for chronic HIV infection that may lessen the burden or 
address limitations of ART are desired.

Encouraging results for the utility of bNAbs as treatment for 
chronic infection [reviewed in Ref. (26, 168)] from recent human 
clinical trials include effective suppression of circulating free 
virus in individuals harboring bNAb-sensitive strains (15, 17), 
delayed viral rebound after ART treatment interruption (14, 19) 
suggesting reduction of cell-associated virus or viral reservoir 
size (32), elicitation of host immune responses (19), and sup-
pression of HIV replication in reservoir cells (175). Most of these 
results were found in a subset of treated individuals, dependent 
upon the preexisting resistance of circulating/reservoir strains, 
and in all cases viremia rapidly rebounded upon bNAb decay or 
cessation. Thus, strategies to combat both preexisting and de novo 
development of viral resistance remain a target of Ab therapy  
for chronic infection.

Combination with ARTs
Given the relative success of existing ART in treating chronic HIV 
infection, the comparison between bNAb therapy vs. ART or the 
benefit of adding bNAb therapy to ART has garnered interest. 
The potential for bNAbs to enhance the effects of ART lies in the 
ability to address residual sources of viral replication and further 
limit the development of viral resistance. One study found that 
the combination of bNAbs with ART was no better than treatment 
with ART alone in macaque models of SHIV infection (126), 
likely due to the already low level of viral replication and in some 
cases undetectable viremia of subjects undergoing ART alone in 
the observed period. On the other hand, ART significantly limits, 
but may not completely prevent, viral evolution of both circulat-
ing and tissue reservoir populations (176, 177). Thus bNAbs may 
be especially useful in combination with ART, which removes 
the major limitation of evolving resistance. In addition, the tissue 
distribution of ART and bNAbs or bNAb-based therapies may 
complement each other, with bNAbs “cleaning up” after persistent 
viral replication from virus-infected cells in tissue compartments 
receiving subtherapeutic levels of ART, such as lymph node 
germinal centers which may be more readily accessible to Ab- or 
Ab-based bispecific molecules interacting with APCs or T-cells 
(168). On the other hand, ART-mediated suppression of viral rep-
lication decreases the expression of Env epitopes on the surface 
of infected cells, and may thereby require more potent bNAbs or 
Abs targeting non-Env markers of infection.

Targeting viral Reservoirs: Accessing 
Tissues and identifying Cell Targets
Distinguishing which tissues and cell types can support viral 
reactivation and/or contribute to AIDS progression is critical to 
defining the extent of viral eradication desired/needed and the 
development of strategies with which to target cellular reservoirs. 
For viral remission, accepting persistent viral latency in some 
reservoirs with low reactivation potential and/or high costs of 
cellular/tissue damage may be acceptable. Multiple studies have 
suggested that decreasing the size of the viral reservoir delays viral 
rebound after ART is stopped (178–180), with one modeling study 
suggesting that a four-log reduction of the simulated 3 × 105 mem-
ber reservoir size comparable to observed reservoirs of 105–107 
(181) could prevent viral rebound after ART altogether (182).
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Tissue Reservoirs: Distribution and Accessibility
Viral reservoirs may establish in multiple tissue sites (183) and 
cell types (184), making sufficient access to and efficacy in reser-
voir tissue sites and identification of target cells key components 
of combatting latent HIV infection. The primary site for viral 
replication occurs in central lymphoid tissues (18, 19), with 
lymph nodes, spleen, and GI tract lymphoid tissue harboring 
the largest numbers of HIV-infected cells (183). Unfortunately, 
these secondary lymphoid organs can act as pharmacologic 
sanctuaries limiting ART concentrations and viral suppres-
sion: lower concentrations of ART in lymph nodes (vs. blood) 
have been associated with persistent viral replication within 
lymph nodes (185). However, viral RNA/DNA has been found 
in nearly all tissues, including immune-privileged sites such as 
the central nervous system (CNS), testes, and placenta (183). 
Mixed evidence for compartmentalization, or differences in viral 
populations among different tissues and in circulation, exists  
(183) and may indicate a need for combination therapy with addi-
tional Abs, ART, or latency reversing agents (LRAs) with wider 
tissue penetration or more tissue-specific administration/target-
ing, such as liposomal delivery of drugs to the CNS [reviewed in 
Ref. (186)].

Reservoir Cell Types: Surface Markers of Infection
Within individual tissues, CD4+ T-cells comprise the majority 
of cell types harboring latent virus but viral DNA has been found 
in non-CD4+ T-cells [reviewed in Ref. (187)], including CD4−/
CD8− T-cells (188), macrophages [reviewed in Ref. (189)], 
monocytes, tissue macrophages (190), and follicular dendritic 
cells (191, 192). Identifying reservoir cells can be challenging due 
to their relative quiescence and transient expression of low levels 
of viral antigens. Expression of HIV Env may additionally be 
different in latent cells as compared to cells with active viral rep-
lication. Given the instability of trimeric Env, non-neutralizing 
epitopes accessible on monomeric gp140 or gp41 stumps have 
been suggested to be displayed on the surface of infected cells 
over time (193). Thus, epitope targets of therapeutic HIV mAbs 
for chronic infection may vary significantly from those for the 
acute postexposure setting, reflective of the differing goals of 
targeting latent cells vs. active virus.

One strategy to combat this challenge is to identify non- 
viral surface markers that are expressed, or preferably upregu-
lated, on infected cells. In an extreme example, CD52 expression 
on a wide breadth of immune cells capable of serving as reservoirs 
during HIV infection—nearly all T-cells, B-cells, and plasmacy-
toid dendritic cells—may be targeted by anti-CD52 Abs to deplete 
reservoir cells (194, 195), but uninfected immune cells may also 
be affected. Instead, Abs recognizing markers suggested to be 
upregulated by infection (196) may preferentially target reservoir 
cells and ameliorate some of the side effects expected from more 
general immune depletion strategies. In addition, these Abs may 
be used to guide the delivery of more toxic payloads in Ab-based 
therapies such as immunotoxins, bispecific T-cell engagers, or 
CARs in cellular therapy.

In another approach, LRAs may be used to re-activate cells 
and increase expression of viral antigens. However, the reacti-
vation of virus increases the production of viral particles and 

risk of increasing cellular infection rates, and therefore must be 
balanced with potent elimination therapy, including bNAbs, in 
“shock and kill” strategies to quickly and efficiently eliminate 
reactivated cells. Coadministration of bNAbs with three viral 
inducers in humanized mice reduced the proportion of mice 
with viral rebound after Ab levels decayed, whereas Abs alone or 
combinations of bNAbs with a single inducer failed to affect viral 
rebound rates (132). Thus, strategies to optimize the combina-
tions of Abs and inducers (25, 197) or to increase the potency 
or long-term effects (e.g., autologous immune responses) of Abs  
as elimination therapy may be necessary to maintain viral sup-
pression after the decay of therapeutic Ab.

Long-term Clearance of infected 
Reservoir Cells: Cellular Therapy
Natural Abs rely upon Fc-mediated effector function to clear 
infected cells. However, Ab-mediated effector functions may be 
less active or unavailable in infected tissue reservoirs with immu-
nosuppressed or immune-privileged microenvironments. Thus,  
an alternative strategy to increase the potency with which Abs 
may destroy infected cells focuses upon addressing the limita-
tions of T-cell-mediated responses. Effective cytotoxic T-cell 
responses have been associated with viral control in studies of 
relatively rare long-term non-progressors (198, 199) and HIV-
exposed seronegative individuals (200). Similarly, persistent 
viral suppression after Ab therapy in a subset of SHIV-infected 
macaques (3 out of 18) was associated with improved host virus-
specific cytotoxic T-lymphocyte (CTL) responses (13). Thus, 
anti-HIV Abs may be used to augment or complement cellular 
immune responses for long-term term viral control.

Engineering for Enhanced Cytotoxic  
Responses: CAR Cells
Rather than relying upon the natural development of host CTL 
responses, an alternative strategy employs HIV-specific Abs to 
re-direct T-cells toward HIV-infected cells. Promising bispecific 
T-cell engaging molecules (201, 202) and CAR T-cells (203, 204) 
have been previously reviewed (28) and are increasingly viable 
given the recent advent of the FDA’s first recommendation for 
clinical approval of a CAR T-cell therapy (Novartis CTL019). 
Strategies with which to enhance the cytotoxic activity of bispe-
cific T-cell engaging molecules and HIV-specific CAR T-cell 
approaches were described previously (28). This review thus 
focuses upon strategies with which to improve the clinical safety 
and efficacy of CAR therapies for HIV infection.

One concern is that HIV-binding CARs may render T-cells 
more susceptible to infection, especially CD4ζ-based CARs 
(205). Thus, strategies to protect anti-HIV CAR-modified cells 
include the cotransduction/expression of fusion inhibitors 
(206, 207), and knock-out/knock-down of CCR5 expression 
(208–211). A second concern is that the necessary expansion 
of engineered T-cells can lead to exhaustion and loss of activity 
(205), compounded by the fact that T-cells often already express 
inhibitory markers associated with exhaustion during chronic 
HIV infection (145, 146). To combat this predisposition for 
T-cell exhaustion, stem/progenitor cells may be modified with 
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CARs instead with the added benefits of the generation of more 
durable and potentially diversified cell types bearing the CAR, 
as well as the built-in thymic immune tolerance checkpoints 
through which T-cells developing from stem/progenitor cells 
must proceed (205). Hematopoietic stem/progenitor cells 
modified with a CD4ζ-CAR in humanized mouse models of 
HIV infection successfully differentiated and maintained CAR 
expression in multiple cell types, including T-cells and NK-cells, 
and reduced viral loads in treated animals (204).

More general concerns with the clinical use of cellular 
therapies as a class have been reviewed (212), and include the 
potential for cytokine storm from mass T-cell activation and 
cytotoxicity (213, 214), cellular transformation from genomic 
integration of viral vectors due to insertional mutagenesis (215), 
and autoreactivity (216). Strategies to mitigate these risks employ 
synthetic biology tools [reviewed in Ref. (217)] such as inducible 
suicide or “switch” strategies to induce apoptosis of CAR T-cells 
(218, 219), feedback-based “pause” switches (220), and prefer-
ential homing/activation based on “logic gate” requirements for 
engagement of multiple antigens (221–225).

Complementing Autologous T-Cell Responses: 
Access to T-Cell Sanctuaries
Cytotoxic T-lymphocyte trafficking patterns may limit their 
ability to access all viral reservoir sites (226). In one macaque 
study of SIV infection, the viral reservoir population of elite 
controllers was found to differ from that of progressors: elite 
controller macaques largely harbored virus in follicular helper 
T-cells (TFH) whereas progressor monkeys harbored virus 
across a wider breadth of T-cell subtypes (226), suggesting 
that protective CTL responses may not be able to access TFH 
reservoir cells. Thus the ability of bNAbs (or other anti-HIV 
Abs) to access and clear reservoir cells from CTL sanctuaries 
(such as TFHs in B-cell follicles) is of particular interest (25).

Potential for a True “Cure”: viral 
eradication vs. Reservoir eradication
A true HIV “cure” would entail the complete eradication of virus 
from an infected individual, including all latent reservoir cells. 
By this definition, an extremely potent form of “shock-and-kill” 
strategies would likely be necessary to expose and eliminate all 
reservoir cells using HIV mAbs. In addition, the tangled link 
between viral eradication and tissue reservoir cell eradication 
poses a potential cost to these types of immunotherapy, espe-
cially in cases such as CNS reservoirs, where cells have limited 
regeneration capacity but make vital functional contributions to 
quality of life (186). Thus, alternative gene-editing approaches to 
specifically excise integrated viral DNA from infected cells (227) 
may be needed in combination with mAb-based approaches to 
achieve such a “cure.”

In an alternative definition, a “cure” may be functionally 
described as undetectable levels of virus in the absence of addi-
tional therapy. Such a “functional cure” may be more feasible by the 
Ab-based strategies described above, with particular emphasis on 
the life-long delivery of immunotherapy (gene or cellular therapy) 

or the stimulation of sufficiently broad and potent autologous 
immune responses for life-long immune surveillance.

CONCLUSiON

Preclinical studies of bNAbs to prevent and treat SHIV infection in 
macaques and Phase I human clinical trials demonstrating reduc-
tion of viral load and even reservoir size support the clinical utility 
and potential of bNAbs for prevention, postexposure prophylaxis, 
and therapy of acute and chronic infection. Observed and potential 
limitations of bNAbs noted thus far in these recent studies include 
the selection of resistant viral populations, immunogenicity 
resulting in the development of antidrug (Ab) responses, and the 
potentially toxic elimination of reservoir cells in regeneration-
limited tissues. Opportunities to improve the utility of HIV Abs 
address these challenges and build upon each other as the timing/
stage of infection progresses. Before exposure, bNAbs’ ability to 
prevent infection by neutralization may be improved by increasing 
serum half-life to necessitate less frequent administration, deliver-
ing genes for durable in vivo expression, and targeting bNAbs to 
sites of exposure. After exposure and/or in the setting of acute 
infection, bNAb use to prevent/reduce viral reservoir establish-
ment and spread may be enhanced by increasing the potency with 
which autologous adaptive immune responses are stimulated, 
clearing acutely infected cells, and preventing cell–cell transmis-
sion of virus. In the setting of chronic infection, bNAbs may better 
mediate viral remission in combination with ARTs and/or LRAs, 
by targeting additional markers of tissue reservoirs or infected cell 
types, or by serving as targeting moieties in engineered cell therapy. 
Finally, various combinations of the described bNAb applications 
may play a role in the development of a true “cure” for HIV to 
eradicate HIV entirely, although the risk of eliminating certain 
reservoir tissue cells may encourage the use of alternative strategies 
to eliminate viral DNA from latent cells without eradicating the 
cells. In conclusion, bNAbs are potent and promising agents for 
HIV prevention and treatment at various stages of infection. Their 
sole use as therapy faces challenges of viral evasion, immunogenic-
ity, and reservoir latency, which can be combatted by employing 
various, often complementary strategies in combination with 
each other and/or existing ART regimens. While the clinical use 
of HIV Abs has never been closer, remaining studies to precisely 
define, model, and understand the complex roles and dynamics of 
HIV Abs and viral evolution in the context of the human immune 
system and anatomical compartmentalization will be critical to 
optimizing their clinical safety and efficacy.
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Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human 
immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated 
by the human immune system and their elicitation by vaccination will be a key point to 
protect against the wide range of viral diversity. The membrane proximal external region 
(MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in 
membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is 
considered as an attractive vaccine target. However, despite many attempts to design 
MPER-based immunogens, further study is still needed to understand its structural 
complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. 
These particular features compromise the development of MPER-specific neutralizing 
responses during natural infection and limit the number of bNAbs isolated against this 
region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles 
for immunogen development. Nevertheless, the analysis of MPER humoral responses 
elicited during natural infection as well as the MPER bNAbs isolated to date highlight 
that the human immune system is capable of generating MPER protective antibodies. 
Here, we discuss the recent advances describing the immunologic and biochemical 
features that make the MPER a unique HIV-1 vulnerability site, the different strategies 
to generate MPER-neutralizing antibodies in immunization protocols and point the 
importance of extending our knowledge toward new MPER epitopes by the isolation of 
novel monoclonal antibodies. This will be crucial for the redesign of immunogens able 
to skip non-neutralizing MPER determinants.

Keywords: human immunodeficiency virus type-1, broadly neutralizing antibodies, membrane proximal external 
region, B-cells, polyreactivity, membrane interaction, immunization, immunogens

iNTRODUCTiON

An Apparently easy vaccine Target
The human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) is the sole viral 
antigen exposed on the virion surface. Env is synthetized as a precursor gp160 glycoprotein that 
will yield after cleavage a mature complex constituted by the non-covalent association of three 
gp120 (surface) and three gp41 (transmembrane) subunits, resulting in a heavily glycosylated 
trimer of heterodimers (1–5). Env determines the process of HIV-1 entry into the target cell that 
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will lead to the fusion of the viral and host cell membranes (6). 
This process initiates with the high affinity interaction between 
gp120 and the CD4 molecule on the surface of target cells. This 
interaction promotes a series of conformational changes that 
transiently expose the gp120 coreceptor binding site allowing 
the gp120 attachment to the CCR5 or CXCR4 chemokine recep-
tors (7–9). Coreceptor ligation triggers structural rearrange-
ments in gp41 that permit the initiation of viral fusion. The 
gp41 fusion peptide (FP) inserts into the target cell membrane 
accounting for a short-life prehairpin fusion intermediate in 
which both cellular and viral membranes are connected by an 
extended conformation of gp41. Next, alpha-helical domains 
HR1 and HR2 of each gp41 monomer are folded back together 
to generate a 6-helix bundle conformation that brings both 
target cell and viral membranes closer to finally produce the 
membrane merge (10, 11). During this process both FP and the 
membrane proximal external region (MPER) play a crucial role 
in membrane destabilization (12).

Given its exposure on the virion surface and its role in viral 
infectivity, Env is the main target of HIV-1 protective humoral 
responses. The elicitation of Env broadly neutralizing antibodies 
(bNAbs), defined as those capable of neutralize the wide viral 
diversity, is one of the main goals for a successful HIV-1 vac-
cine (13). The notion that the human immune system is capable 
of producing HIV-1 bNAbs has been established by two pieces 
of evidence: (i) the identification of such immune responses 
in sera from HIV-1 infected individuals and (ii) the isolation 
of monoclonal bNAbs from these individuals (14, 15). These 
naturally induced bNAbs allowed the identification of conserved 
Env regions that helped researchers to delineate an HIV-1 Env 
vulnerability map. The study of bNAbs and the epitopes targeted 
by them are contributing enormously to our understanding  
of the HIV-1 humoral response as well as to the rational design  
of immunogen candidates (14, 16).

Whereas a big collection of bNAbs against gp120 Env subunit 
has been generated, a limited number has been also isolated 
against the less exposed gp41 subunit (17). Although neutral-
izing antibodies targeting the HR1 alpha-helical region have 
been described (18–20), the MPER is the major gp41 neutral-
izing determinant (21, 22). This highly conserved and unusual 
tryptophan-rich motif is located adjacent to the viral membrane, 
covering the last C-terminal residues of the gp41 ectodomain 
(aa 660–683, HXB2 numbering) and connects the extracellular 
portion of Env with the TM domain (23, 24). The importance 
of the MPER on Env functionality was highlighted by analysis 
of mutant viruses containing deletions, insertions or substitu-
tions within this region (24–26). Substitution of the five MPER 
conserved tryptophan residues dramatically compromised 
the incorporation of gp41 into virions and, thus, blocked viral 
entry (24). Moreover, simple deletion of the W666-I682 spanning 
sequence completely abolished syncytium formation (27). These 
observations indicated that the MPER plays a major role in 
the HIV-1 Env-mediated fusion and viral infectivity, which is 
consistent with the high level of sequence conservation (23). The 
functional implications in viral infectivity, the high level of con-
servation and the lack of N-linked glycosylated residues, together 
with the discovery of potent and/or bNAbs targeting linear 

MPER sequences (2F5, 4E10, 10E8), all able to protect against 
viral challenge in non-human primates (NHP) (28–30), points 
that the elicitation of MPER-specific neutralizing responses 
by immunogen candidates is highly desirable (21, 22, 31).  
In addition, the MPER has a role in HIV-1 CD4-independent 
viral transcytosis at the epithelial barrier (32), where the con-
served 662ELDKWA667 gp41 sequence interacts with galactosyl 
ceramide receptors (33). Secretory IgA from cervicovaginal 
secretions of HIV-1 infected individuals are capable of blocking 
viral transcytosis via 662ELDKWA667 sequence binding (34).

The MPER presents some immunological, physical, and 
structural, properties that impact directly on its immunogenic-
ity, explaining the lower MPER neutralizing response of HIV-1 
infected individuals comparing with other Env vulnerability 
regions (35, 36). Those include steric hindrance by gp120 and 
high hydrophobicity that makes the MPER to be partially embed-
ded within the viral membrane (37). Structurally, the information 
regarding the native conformation of the MPER within the Env 
trimer is still limited (5), adding the challenge of developing an 
immunogen against a structurally ambiguous epitope. Finally, 
MPER-specific bNAbs show reactivity against self-antigens and 
host tolerance mechanisms have been suggested to influence the 
elicitation of MPER neutralizing responses (38).

Here, we discuss the properties that make the MPER both a 
unique as well as a challenging HIV-1 vaccine target; we review 
the MPER immune response during natural infection, the 
particular features of MPER bNAbs isolated and the different 
attempts to generate MPER-specific neutralizing antibodies by 
immunization within the last years. Although the results reflect 
a generalized failure, new insights into our knowledge have  
been achieved. The fact that other Env vulnerability sites have 
followed a similar path supports the notion that the MPER is still 
an HIV-1 vaccine target worth exploring (31).

iSOLATiON OF MPeR NeUTRALiZiNG 
ANTiBODieS

The strongest evidence supporting that the human immune sys-
tem can develop a potent neutralizing MPER-specific response 
results from the isolation of monoclonal antibodies from HIV-
infected individuals. From the naturally induced 2F5, 4E10, 
10E8, z13, m66.6, and CH12 antibodies identified, three of them 
(2F5, 4E10, and 10E8) display a broadly neutralizing activity 
(28, 39–46). 2F5 and 4E10 are among the first HIV-1 bNAbs 
discovered. They were generated by electrofusion of peripheral 
blood mononuclear cells mixtures from different HIV-1 infected 
individuals (47). 2F5 targets the linear sequence 662ELDKWA667 
(39) within the N-terminal moiety of the MPER, where the 
central core 664DKW666 is essential for neutralization, as demon-
strated by alanine-scanning mutagenesis assays (48). 2F5 has a 
relatively high potency and was found to neutralize 57–67% of 
the viral isolates tested with an IC50 below 50 µg/mL (42, 49). 
However, HIV-1 subtype C viruses are usually 2F5-resistant 
due to a mutation in the central core epitope (DSW instead of 
DKW) (49–51). 4E10 targets the distal conserved tryptophan 
rich moiety located C-terminal to the 2F5 epitope which includes 
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the sequence 671NWFDIT676 and is extended toward C-terminal 
residues, where W672, F673, I675, T676, L679, and W680 have 
the most significant contacts with the antibody (43). Although 
presenting a moderate potency, 4E10 displays a remarkable 
breadth against 98–100% of the viral isolates, depending of the 
panel tested, with an IC50 below 50  µg/mL (49, 52). Further 
characterization of 2F5 and 4E10 antibodies has shown reduced 
potency of both antibodies, against transmitted-founder viruses 
(T/F IMC) or against replicating viruses obtained from primary 
lymphocytes when compared with pseudovirus obtained in 
293 T cells (53–56). Despite these potential limitations, both 2F5 
and 4E10 were shown to protect against viral challenge in NHP 
(28, 29) and their administration into human recipients showed 
no major clinical complications (57).

In order to delineate a complete map of HIV-1 neutralizing 
determinants, starting in 2009, a substantial effort has been 
made on the isolation of new bNAbs. The development of high-
throughput analysis of single memory B  cells and the use of 
fluorescently labeled Env-based protein probes to isolate antigen 
specific B cells (58–60) contributed enormously to the discovery 
of new HIV-1 neutralizing antibodies. In this context, the dis-
covery in 2012 of the monoclonal antibody 10E8 recovered the 
interest toward the MPER region as a major vaccine target (42). 
10E8 neutralized 98% of a panel of 181 pseudovirus with an IC50 
below 50 µg/mL, showing a mean IC50 for sensitive viruses of 
0.25 µg/mL, whereas mean IC50 values for 4E10 and 2F5 were  
1.3 and 1.92 µg/mL, respectively (42). Interestingly, 72% of the 
panel was neutralized by 10E8 with an IC50 below 1  µg/mL, 
comparing with 37 and 16% for 4E10 and 2F5, respectively (42). 
Therefore, 10E8 could neutralize with a far greater potency and 
breadth than previously discovered anti-MPER bNAbs 2F5 and 
4E10, and was comparable with some of the most potent HIV-1 
bNAbs like VRC01 or PG9/PG16 (15). Notably, 10E8 was also 
reported to protect against viral challenge in vivo (30).

Interestingly, 2F5, 4E10, and 10E8 antibodies are IgG3  
(42, 61); however, the role of this IgG subclass in the neutralizing 
properties of these antibodies, if any, remains elusive. Although 
IgG1 and IgG3 are the predominant antibodies elicited against 
viral antigens (62), both subclasses show important differ-
ences. IgG3 shows higher affinity for Fcγ receptors than IgG1, 
a shorter half-life and a long highly flexible hinge region which 
has been suggested to be crucial to facilitate the access of these 
antibodies to the MPER and mediate their neutralizing activity  
(63, 64). However, it is still unclear whether an IgG3 background 
is absolutely required, since anti-MPER neutralizing responses 
have been identified in the non-IgG3 fraction of some HIV-
infected individuals (65), and a change to IgG1 did not affect the 
neutralizing activity of 2F5 and 4E10 antibodies (61, 66). In this 
context, anti-MPER bNAbs could have been specifically gener-
ated from germline precursors preferentially undergoing IgG3 
class switching (67) and, in some cases, after affinity maturation 
and antigen selection by somatic hypermutation, switching to a 
more downstream IgG subclasses, such as IgG1, by sequential 
class switching recombination (68). Because IgG3 is one of the 
less represented IgG subclasses, with the shortest half-life in 
plasma and IgG3-dominant humoral responses are uncommon 
(63), elucidating whether this IgG subclass is required for the 

development of anti-MPER bNAbs, might be crucial to define 
immunization strategies aimed to generate effective long-lasting 
anti-MPER responses.

Independently of their origin, all these antibodies are the 
result of a long process of affinity maturation and are highly 
mutated with an unusually long and hydrophobic IgH comple-
mentary determining region 3 (CDR H3) (42, 69, 70). Notably, 
these antibodies share a common neutralization mechanism in 
which the interaction of the hydrophobic CDR H3 apex with 
the membrane seems to be essential (see next section) (71, 72). 
Accordingly, autoreactivity/polyreactivity are odd characteristics 
of 2F5 and 4E10 antibodies. Initially, 10E8 was reported to be 
non-polyreactive but subsequent studies suggested that 10E8 
needs to bind membrane lipids, especially cholesterol, to mediate 
neutralization (42, 73, 74).

Depending on the bound antibody, the MPER can acquire a 
particular conformation. Crystal structures of 2F5 in complex 
with an MPER peptide showed that the core motif DKW forms 
a type 1 β-turn structure (75). Contrary, the MPER in complex 
with 4E10 was found to form an α-helical conformation from 
D674 to K683 (70, 76). Recently, the crystal structure of 10E8 
bound to an scaffolded MPER construct revealed that the full 
epitope of 10E8 is composed of both MPER and lipids (74). 
Encouragingly, the frequency of 10E8-like antibodies in HIV-
infected individuals seemed to be superior to 2F5 or 4E10 
specificities in the cohort where 10E8 was isolated (42).

Very recently, a new lineage of distal MPER-specific bNAbs, 
designated as DH511, was isolated from memory B-cells and 
plasma of an HIV-infected donor (67). DH511 lineage presented 
long CDR H3 loops of 23 to 24 aminoacids, an VH and VL 
somatic mutation rate of 15–22 and 14–18%, respectively, and 
was derived from the same heavy chain germline gene family as 
10E8 (VH 3–15). Similarly to 2F5, 4E10, and 10E8, DH511 clonal 
lineage presented an IgG3 isotype. Interestingly, the most potent 
mAb of this clonal lineage, DH511.2, neutralized 206 out of 208 
pseudovirus of a geographically and genetically diverse panel 
with a median IC50 of 1 µg/mL, being slightly more broad but 
less potent than 10E8 (67).

LiPiD BiNDiNG AND THe CONCeRN  
OF POLYReACTiviTY

MPeR and Lipids
Biophysical models suggest that the MPER acquires an alpha- 
helical conformation partially embedded into the viral mem-
brane, constituted by two independent domains separated by a 
flexible hinge (37, 77). These two segments showed to present dif-
ferent membrane-interacting properties. The C-terminal domain 
remains embedded into the membrane, whereas the N-terminal 
domain is more exposed (37, 77–79). The high tryptophan 
content is likely responsible of the MPER potential to interact 
with and destabilize lipid membranes (80, 81). According to its 
amphiphilic characteristics, hydrophobic residues remain buried 
into the membrane whereas the most polar ones are solvent-
exposed (37). Of note, the MPER topology depends on the 
membrane context where it is presented (82, 83) and membrane 
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lipids such as cholesterol and sphingomyelin can modulate the 
capacity of the MPER to destabilize membranes (82, 83). MPER 
and cholesterol interactions are further supported by the exist-
ence of the sequence 679-LWYIK-683 located at the C-terminus 
which was identified as a cholesterol recognition amino acid 
consensus motif (84). This motif seems to play an important role 
during the incorporation of Env into the virion, stabilizing the 
trimer complex (22).

Neutralization Mechanisms and the 
importance of Membrane interaction
Antibody binding to a precise peptide sequence is necessary 
but not sufficient to achieve MPER-dependent antibody neu-
tralization. Accordingly, z13e1 or 13H11 antibodies overlap 
the sequences bound by 4E10 and 2F5 respectively with similar 
affinities but displaying a far low neutralization potency (44, 85). 
MPER bNAbs show an enrichment of their long CDR H3 loops 
in hydrophobic residues that seem to be important for their 
neutralization capability (48, 86, 87). Whereas some residues of 
the CDRs are important for binding to the peptidic epitope, the 
most hydrophobic loops interact directly with membrane lipids 
(71, 72, 87). SPR-based studies demonstrated that whereas anti-
MPER bNAbs bind to a peptide sequence following a Langmuir 
curve model, binding against peptide-membrane complexes fol-
low a two steps (encounter-docking) model. First, the antibody 
attaches to the lipid membrane through its long hydrophobic 
CDR H3 and concentrates within the proximity of the MPER 
epitope to subsequently bind to the prehairpin intermediate 
of gp41, once the conformational change takes place (71, 72). 
This mechanism facilitates the accessibility of the antibody to its 
epitope, overcoming the poor exposure of the MPER and takes 
advantage of its close proximity to the viral membrane. Of note, 
upon binding, 2F5 or 4E10 promote an MPER conformational 
change, due to the extraction of the membrane-embedded 
epitope (37, 77).

Interestingly, the 2F5 antibody was predicted to bind lipids via 
CDRL1 and CDRH3 (88) and lipid binding sites were recently 
determined for 4E10 and 10E8 by X-ray crystallography (74, 89). 
4E10 was shown to interact specifically with phosphatidic acid, 
phosphatidylglicerol and glycerol phosphate by using the CDR 
H1 and CDR H3 loops to bind polar head and hydrophobic tail 
groups respectively (89). In a second study, 10E8 lipid binding 
site was identified at the proximity of CDR L1 and CDR H3 loops 
(74). Therefore, the full epitope of MPER bNAbs is constituted 
by both peptide residues and membrane lipids. Notably, neu-
tralizing activity of an anti-MPER single-chain bivalent llama 
antibody induced by immunization was also dependent of the 
hydrophobic CDR H3 apex without being involved in peptide 
recognition (87). Membrane interaction, thus, seems to play a 
major role in the neutralization mechanism of MPER bNAbs  
(26, 37, 72, 73, 77, 86).

The widely described importance of the membrane in MPER 
structure and functionality of the specific bNAbs suggest a role 
of lipids as a natural scaffold shaping the MPER structure. In this 
regard it is likely that lipids participate in the selection of germline 
precursors of bNAbs, pointing their relevance for immunogen 

design. Therefore, the generation of neutralizing anti-MPER 
responses may require its presentation within a membrane 
environment to properly present neutralizing determinants and 
to implement lipid cross-reactivity. The role of membrane lipids 
over MPER immunogenicity is, thus, a relevant issue currently 
being evaluated in immunization studies.

Binding to Self-Antigens: A Major 
Roadblock for MPeR Neutralizing 
Antibodies?
Reactivity with self-antigens was suggested to explain the failure 
of generating MPER neutralizing antibodies by immuniza-
tion as well as their low frequencies during natural infection  
(38, 90, 91). Gp41 antibodies generated during acute infection are 
usually derived from polyreactive antibodies whose precursors 
cross-react with antigens from intestinal microbiota (92–94). In 
2005, polyspecific binding of 4E10 and 2F5 mAbs to cardiolipin 
and other anionic phospholipids was reported (90). Furthermore, 
conserved host antigens bound by 2F5, 4E10 and 10E8 have been 
also identified (95, 96). 2F5 binds to the enzyme kinureninase 
(KYNU), which contains the identical sequence (ELDKWA) 
of the 2F5 epitope, and is highly conserved between different 
mammal species. 4E10 binds to splicing factor-3b subunit-3 and 
type I inositol triphosphate (IP3R1) (95) and, although initially 
described as non-autoreactive, 10E8 recognize the FAM84A 
protein (96). Collectively, these findings suggested that immuno-
logical tolerance might be involved in HIV-1 evasion of immune 
responses since autoreactive B-cells that cross-react with MPER 
sequences might be impaired in the naive repertoire (91, 97).

This hypothesis was tested by monitoring B-cell development 
in knock-in (KI) mice models carrying the same V(D)J rearrange-
ments as mature bNAbs 2F5 and 4E10. These models showed a 
normal early B cell development but exhibited a blockade in the 
transition of pre-B to immature IgM+ B cells, which is defined by 
the first tolerance checkpoint (98–101). B-cell central tolerance 
takes place in the bone marrow (BM) and abrogates the develop-
ment of autoreactive B-cells by several mechanisms such as clonal 
deletion or receptor edition (102). After that, some autoreactive 
B-cells can still egress from BM as anergic cells, which show a 
hyporesponder status and a reduced lifespan. However, in special 
circumstances anergic B-cells can be activated and differenti-
ate to antibody-producing cells (103). In accordance with this, 
immunization of 2F5 KI mice with MPER peptide-liposome 
immunogens could rescue anergic B-cells to produce specific 
neutralizing antibodies (104, 105). More recently, a 2F5 germ-
line KI mouse model showed 2F5 precursors deletion while the 
remaining anergic B  cells could be also activated by germ-line 
mimicking immunogens (106). These outcomes indicated that 
the generation of 2F5 and 4E10 antibodies is likely controlled 
by immunological tolerance mechanisms and launched the 
hypothesis that HIV-1 host mimicry is an evolutionary strategy 
of pathogens and not particularly restricted to HIV-1 (95, 96). 
However, it is important to highlight that HIV-1 epitope mimicry 
does not impair the functionality of the host enzyme kynureni-
nase, bound by 2F5 (107), and infusion of 2F5 or 4E10 in human 
recipients showed no major clinical complications (57), supporting  
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TABLe 1 | Human studies detecting MPER-specific neutralizing responses.

Year published Number of 
participants

Main findings Reference

2006 96 One individual with 4E10-like neutralizing activity. No epitope competition (110)

2007 3 No MPER-specific neutralizing activity (112)

2007 14 4 individuals with MPER-specific neutralizing activity. 2 of them within the 6 months after  
seroconversion. No correlation with breadth

(111)

2009 156 3 individuals high MPER titer, associated with breadth. Distinct epitope from 4E10, 2F5, or z13 (65)

2009 70 MPER titer correlated with breadth. 4E10-like. Anti-cardiolipin antibodies correlated with breadth  
and MPER titer

(113)

2009 32 MPER-specific neutralization in 4 individuals (114)

2010 19 Modest MPER-specific neutralization in 6 individuals (35)

2011 308 4 out of 9 breadth neutralizers displayed MPER-specific neutralization (17–30% contribution) (116)

2011 40 7 individuals > 40% breadth. MPER cross-neutralizing antibodies (115)

2012 78 21 MPER-specific neutralizing activity. 8 out of 21 displayed 10E8 neutralization pattern (42)

2014 35 8 individuals showed ID50 > 400 against chimeric HIV-2/MPER viruses whereas 66% had  
detectable MPER titers in ELISA and flow cytometry

(117)

2015 177 19% of the cohort showed MPER-specific neutralizing titers (ID50 > 1,000) against chimeric  
HIV-2/MPER viruses

(118)

2016 439 One individual with potent MPER-specific neutralizing activity (36)
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the safety of eliciting MPER protective antibodies by vaccination 
(57, 107).

THe MPeR ReSPONSe DURiNG NATURAL 
iNFeCTiON AND BALANCe BeTweeN 
NeUTRALiZiNG AND NON-NeUTRALiZiNG 
ANTiBODieS

The whole gp41 is mostly occluded by gp120 within the native 
viral spike, being the MPER transiently exposed during the 
fusion process (25). In consequence, B-cells accessibility to gp41 
and native MPER may be compromised. Despite this, a strong 
antibody response is generated against the gp41 subunit in the 
course of HIV-1 infection probably due to gp120 shedding, non-
functional forms of Env or transient epitope exposure during 
viral entry (108). Interestingly, the anti-gp41 humoral response 
can be detected two weeks after HIV-1 acquisition (108). This 
response, typically non-neutralizing and highly cross-reactive  
to gut commensal bacteria (92–94), is mainly focused against 
more exposed regions of gp41 such as the immunodominant 
disulfide loop, different from the MPER (108, 109).

Whereas MPER antibodies can be easily detected by ELISA, 
the analysis of their contribution to neutralizing activity of 
human plasma samples was found to be challenging. With this 
purpose chimeric SIV or HIV-2 viruses engrafted with HIV-1 
MPER sequences or peptide-coated beads adsorption assays were 
developed (110–112). Accordingly, the presence of anti-MPER 
antibodies and the evaluation of their neutralizing capacity have 
been reported (35, 36, 65, 111, 113–116). The characterization 
of different cohorts in Europe, the United States, and South 
Africa indicated that MPER-specific neutralizing responses 
are less represented during natural infection comparing with 
other neutralizing specificities. For example, in a South African 
cohort of 156 HIV-1 infected individuals, only three showed 

higher titers of anti-MPER antibodies (65). Depletion of these 
antibodies resulted in loss of the neutralization breadth but 
the antibody specificities were found to be targeting a distinct 
epitope from those recognized by previously identified neutral-
izing epitopes (bound by 2F5 and 4E10 bNAbs), highlighting 
the existence of additional neutralizing specificities within the 
MPER (65). A recent study of the Protocol C cohort analyzed 
the neutralization profile of 439 plasma samples showing a 
far great less prevalence of MPER-specific antibodies when 
comparing with other specificities, mainly V3 N332-dependent 
glycan supersite (36). Remarkably, 27% of HIV-1 infected 
patients from an American cohort presented MPER-specific 
neutralizing activity (42). We previously showed that 66% 
of ART-naive chronically HIV-1 infected subjects presented 
MPER antibodies that were stable, at least for 1  year, and 
with an heterogeneous neutralizing capacity, highlighting the 
coexistence of neutralizing and non-neutralizing antibodies 
targeting the MPER (117). Moreover, anti-MPER antibodies 
correlate with the total anti-Env humoral response (117) and 
neutralization breadth (113, 118) and have been identified in 
HIV-infected individuals at different stages of the infection 
(119). Therefore, this landscape highlights that regardless of 
the cohort of study, anti-MPER antibodies (neutralizing and 
non-neutralizing) are present in HIV-1 infected subjects but 
their prevalence seems to be highly heterogeneous and prob-
ably strongly dependent on the methodology used (42, 65, 114, 
117–119). Thus, the optimization of the current methodology 
for the quantification of MPER antibodies is highly desirable 
in order to establish their real prevalence. Human studies 
characterizing the MPER-specific neutralizing response are 
summarized in Table 1.

The results obtained from these studies also point out that 
the MPER is sufficiently immunogenic to generate a humoral 
response and that no specific constraints limit antibody genera-
tion against this region. However, the relatively low prevalence 
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TABLe 2 | Selection of recent immunization studies to elicit MPER neutralizing antibodies.

immunogen Animal model Major findings Reference

Prime/boost gp140 oligomer/MPER-peptide liposome Guinea pig
Rhesus macaque

Binding to the prefusion intermediate and the  
DKW 2F5 core

(121)

Liposomes containing a trimeric gp41-based protein Llama Bivalent single chain neutralizing antibody dependent  
of hydrophobic CDRH3

(87)

Fusion intermediate conformation of gp41 convalently 
linked to liposomes

Guinea pig Gp41-specific antibodies binding to the gp41 fusion  
intermediate. Modest neutralization activity against  
5 tier-1 and 2 tier-2 pseudovirus

(122)

Liposomes containing an MPER peptide, molecular 
adjuvants and encapsulated T-helper epitopes

Balb/c mouse Superior antibody titers with MPER antigens anchored  
to liposomes comparing with oil-based emulsions

(123)

Proteoliposomes of diverse composition containing  
a gp41-based miniprotein

C57BL/6 mouse Superior antibody titers of proteoliposomes based on lipids 
overrepresented on the viral membrane. Immunodominance 
against a 2F5 overlapping epitope

(124)

Recombinant Norovirus P particles (NoV PP) engrafted 
with the 4E10/10E8 epitopes emulsified with Freund’s 
adjuvant

Guinea Pigs
Balb/c mouse

MPER-specific antibody titers and modest neutralization  
against SF162 isolate

(125)

MPER engrafted between the trimeric core structure  
and the trimeric domain of influenza A virus

Guinea pig Induction of low MPER-specific titers (126)

Bovine papilomavirus VLPs engrafted with the  
extended epitopes of 2F5 and 4E10, or the full MPER

Balb/c mouse Epitope-specific IgG and mucosal secretory IgA (127)

Engineered replication-competent reovirus vectors 
displaying the MPER sequence

Rabbit
Balb/c mouse

No elicitation of MPER antibodies (128)

Epitope-engrafted scaffold mimicking the 2F5-bound  
form of gp41

Guinea pigs
Balb/c mouse

Isolation of antibodies resembling the 2F5 structure-specific 
recognition of gp41

(129)

Tandem peptide containing four copies of the 10E8 
epitope with Freund’s Adjuvant

Rabbit Modest neutralizing antiboy titers against tier-1 and  
tier-2 strains

(130)

Live attenuated Salmonella presenting the 10E8  
epitope in the frimbriae

Balb/c mouse MPER-specific antibodies and stimulated B-cell differentiation (131)

Gp41 peptide grafted on virosomes Rhesus macaque Protection against SHIV challenge was correlated with  
the induction of vaginal gp41-specific IgA with transcytosis-
blocking properties

(132)
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of MPER-neutralizing responses identified to date indicates that 
some hurdles are involved in the generation of this type of antibod-
ies. The low accessibility of this region, which may compromise 
the affinity maturation process, as well as other mechanisms such 
as lipid cross-reactivity, might be determinant for the establish-
ment of a balance between neutralizing and non-neutralizing 
MPER antibodies. Therefore, this balance is a relevant issue with 
important implications for vaccine design, where immunogens 
exposing native MPER neutralizing determinants should be 
implemented.

eLiCiTiNG ANTi-MPeR ANTiBODieS  
BY iMMUNiZATiON

The particular features of the MPER described above, mainly low 
accessibility, close proximity to the membrane and subsequent 
hydrophobicity add additional hurdles for immunogen design 
against this vulnerability site. Moreover, the scarcity of MPER 
bNAbs isolated to date, comparing with other Env specificities 
does not contribute to enlarge our knowledge regarding the 
MPER complexity and the functional epitopes that should be 
targeted.

Initial approaches to induce 2F5 or 4E10-like antibodies 
attempted to introduce their corresponding binding sequences 
into chimeric viruses, fusion proteins or peptide-based vac-
cines (21). Although MPER-specific antibodies were elicited, 
neutralizing responses were not. Therefore, it became clear that 
additional variables beyond the recognition of specific peptidic 
sequences within the MPER should be considered. The com-
mon characteristics revealed later by MPER bNAbs, such as 
membrane cross-reactivity and binding to the gp41 prehairpin 
intermediate (72, 120), suggested that similar antibodies could 
be obtained by presenting MPER-based antigens in such precise 
conformational states in a membrane-like environment. In 
accordance, there are two major standpoints that are currently 
being addressed in MPER-based vaccinology: (i) what are the 
relevant structures that most likely mimic the native-bound 
form of MPER bNAbs and (ii) which is the role of membrane 
lipids over the MPER immunogenicity, including the precise 
lipid components and adjuvant systems. A summary of the 
most recent (since 2010) strategies followed in immunization 
protocols are listed in Table 2.

Conformational states bound by anti-MPER bNAbs have 
been approached (121, 122, 129, 133). The use of computational 
methods permitted the design of scaffolds consisting in unrelated 
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protein structures selected from database but able to accommo-
date the neutralizing 2F5 binding sequence in a conformation 
close to the peptide-bound crystal structure. Such scaffolds 
induced polyclonal responses mimicking a 2F5-like binding 
profile in immunized animals (129). Crystallographic analysis 
confirmed that monoclonal antibodies isolated from immunized 
animals mimicked the conformation of 2F5 in a flexible gp41 
peptide, high affinity to the same sequence and similar angle of 
epitope approach (129, 134). Same outcomes were obtained with 
scaffolds targeting the 4E10 (135) and z13e1 (136) binding motifs. 
In spite of such structural mimicry, neutralizing activity was not 
achieved, likely because additional features such as membrane 
binding were not addressed in the design of these scaffolds.

Due to the importance for neutralization and their implica-
tion in a substantial portion of the free energy of 2F5, 4E10, 
and 10E8 binding, lipid-containing immunogen are important 
platforms being explored (71, 87, 88). Given that the complete 
epitope of anti-MPER bNAbs includes membrane components 
(74, 89) and that lipid recognition by CDR H3 impacts into 
their functionality (69, 72, 73, 86, 87), their potential for contri-
buting to MPER-specific neutralizing responses by immuniza-
tion is worth exploring. In this regard, membrane-mimicking 
platforms including viral-like particles (VLP) (137, 138) or 
lipo somes (122–124) have been approached. It has been shown 
that membrane lipids can modulate the MPER structure likely 
by promoting a native-like conformation and demonstrated  
to improve immunogenicity (123, 124). In particular, we previ-
ously demonstrated that those lipids overrepresented in the 
viral membrane such as cholesterol and sphingomyelin have 
the potential to induce stronger antibody titers comparing 
with simple POPC lipids (124). Interestingly, MPER-specific 
antibodies from long-lived Bone marrow plasma cells from 
mice immunized with antigen-coupled liposomes have been 
also reported. Those antibodies showed that were shaped under 
selective pressure promoted by the MPER in the context of lipids 
and did not display any polyreactive feature (139).

Whereas the implementation of lipid-based platforms 
achieved MPER-specific antibodies, modest neutralizing titers 
have been reported by a few studies. For example, liposome-
peptide antigens in combination with MPLA molecular adju-
vant led to the isolation of two MPER-specific IgM antibodies 
showing lipid cross-reactivity but limited neutralizing capacity 
(140). The use of an HA/gp41 fusion protein in viral like particles 
induced modest 4E10-like neutralizating titers (141). One study 
by Dennison and colleagues obtained MPER-specific antibod-
ies in NHP which bound preferentially to the gp41 prehairpin 
fusion intermediate rather than a recombinant gp41 construct 
by using a gp140 oligomer prime boosted with liposomes 
exposing an MPER peptide regimen. Such preferential binding 
was thought to be primarily due to structural modifications 
induced by the liposomes where the antigen was presented 
(121). Furthermore, the response mapped specifically the 2F5 
DKW neutralizing core (121). In spite of these promising 
results, neutralizing activity was not achieved. Mimicking the 
gp41 prehairpin intermediate has been also approached by the 
design of a gp41 immunogen formulated in proteoliposomes. 

Immunization of guinea pigs showed modest neutralizing titers 
against tier 1 viruses, although the specificities responsible for 
such neutralization were not delineated (122). Finally, the role 
of non-neutralizing antibodies in protection has been shown 
in some studies. The presence of vaginal IgA with ADCC 
and transcytosis-bocking properties induced by gp41-grafted 
virosomes was associated with protection of NHP against SHIV 
challenge (132). Such vaccine platform was also evaluated in  
a Phase I clinical trial in healthy women. Vaginal secretions  
of vaccinated subjects were found to present transcytosis-
blocking properties in vitro (142).

ReMARK

In spite of the recent advances into the MPER physical and 
immunological properties, we still lack a full roadmap to gen-
erate a neutralizing response against this HIV-1 Env vulner-
ability site. The outcomes derived from MPER immunization 
studies clearly demonstrate that lipid cross-reactivity, binding 
to certain neutralizing epitopes or binding to gp41 native struc-
tures like the prehairpin intermediate are achievable. Although 
the implementation of these features will have a crucial role 
they will be likely insufficient to achieve the full properties of 
MPER-specific bNAbs in immunization protocols. In contrast, 
the selection of MPER non-neutralizing antibodies whose 
B-cell precursors may compete for the antigen presented can-
not be excluded. While the knowledge gained from other Env 
vulnerability regions has advanced from the higher number 
of bNAbs isolated, to date only the potent 10E8 as well as 2F5 
and 4E10 antibodies have been isolated. This fact highlights 
the need of the isolation of additional MPER bNAbs in order 
to bypass these gaps of our knowledge, improving immunogen 
design, while avoiding immunodominant non-neutralizing 
epitopes.
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Well-ordered soluble HIV-1 envelope glycoprotein (Env) spike mimetics such as 
Native Flexibly Linked (NFL) trimers display high homogeneity, desired antigenicity, 
and high in vitro stability compared to previous generation soluble HIV-1 Env trimers. 
Glutaraldehyde (GLA) cross-linking was shown to further increase the thermostability of 
clade C 16055 NFL trimers and enhance the induction of tier 2 autologous neutralizing 
antibodies in guinea pigs. Here, we investigated if GLA fixation affected other aspects 
of the Env-specific immune response by performing a comparative immunogenicity 
study in C57BL/6 mice with non-fixed and GLA-fixed 16055 NFL trimers administered 
in AbISCO-100 adjuvant. We detected lower Env-specific binding antibody titers and 
increased skewing toward Th2 responses in mice immunized with GLA-fixed trimers 
compared to mice immunized with unfixed trimers, as shown by a higher Env-specific 
IgG1:IgG2b antibody subclass ratio. These results suggest that the presence of GLA 
adducts on Env influences the quality of the induced antibody response.

Keywords: hiV-1 env, gluteraldehyde, cross-linking, immunogenicity, mice, vaccine responses, antibody isotypes

inTrODUcTiOn

Most licensed vaccines mediate protection through the induction of highly specific IgG serum 
antibodies. Consequently, a central goal for HIV-1 vaccine development is to induce antibody 
responses that are capable of neutralizing a broad range of circulating HIV-1 strains. Over the 
past decades, HIV-1 envelope glycoprotein (Env) immunogen design efforts have focused on the 
generation of recombinant, soluble trimeric Env variants consisting of the exterior glycoprotein, 
gp120, and the ectodomain of the transmembrane protein, gp41, such as the foldon trimers and 
the SOS trimers (1, 2). As is now appreciated, these early generation trimers were structurally 
heterogeneous and suboptimal antigenic mimics of the functional HIV-1 spike.

More recently, new generation trimers such as the BG505 SOSIP.664 trimers (3, 4) and various 
forms of the native flexibly linked (NFL) trimers (5) were designed. These soluble spikes display 
superior threefold symmetric order and improved antigenic profiles. The SOSIP trimers were the 
progenitors, containing an internal cysteine linkage between gp120 and gp41 and an isoleucine 
(I) to proline (P) change in gp41 (I559P) to disfavor the post-fusion conformation of HIV-1 Env 
(2). The NFL trimers were constructed by replacing the furin cleavage site that is naturally present 
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between the exterior glycoprotein gp120 and the transmembrane 
protein gp41 with a flexible linker composed of two repeats of 
four glycine and one serine residues (G4S)2. This modification 
renders these trimers cleavage- and furin-independent, forming 
a covalent linkage between gp120 and the ectodomain of gp41 
(5–7). Besides the I559P change, further developments of the 
NFL trimers included the introduction of a set of substitutions 
selected from the BG505 Env sequence, referred to as trimer-
derived (TD), which favor the production of trimers that display 
ordered symmetry and desired antigenic profiles and can be 
applied to diverse HIV-1 strains (6). Additional modifications 
of the NFL TD trimer design performed in the context of the 
Indian clade C isolate 16055 was the introduction of a cysteine 
bond between residues I201C and A433C to retain gp120 in the 
pre-CD4-bound conformation, resulting in the 16055 NFL TD 
CC trimers (6). A set of glycine substitutions in selected gp41 
coil-to-helix transition residues were also introduced to further 
stabilize the pre-fusion state (8).

In addition to efforts using targeted mutagenesis of Env to 
improve trimer stability, glutaraldehyde (GLA) cross-linking 
was shown to improve the thermostability of HIV-1 Env trim-
ers as well as the induction of neutralizing antibody responses  
(7, 9, 10). Depending on the specific Env construct used, nega-
tive or positive selection of the trimers may be required prior 
to fixation to enrich for conformers with desired antigenicity. 
While intramolecular protein cross-linking may provide a 
benefit in terms of increasing the durability of conformationally 
sensitive neutralizing antibody epitopes in  vivo, less is known 
about whether fixation affects other aspects of the Env-specific 
immune response. In this study, we addressed this issue by 
immunizing C57BL/6 mice with either fixed or unfixed 16055 
NFL TD CC trimers formulated in AbISCO-100 adjuvant. 
After the first boost, we observed an overall reduction in 
Env-specific serum-binding antibody titers in mice inoculated 
with fixed trimers compared to mice inoculated with unfixed 
trimers, which was primarily detected when coating was 
performed with unfixed trimers. However, this difference was 
modest when fixed trimers were used for coating and especially 
after an additional boost. We further detected a pronounced 
skewing toward Th2 responses with significantly altered Env- 
specific IgG1:IgG2b ratios in the sera of mice immunized with 
GLA-fixed trimers compared to mice immunized with unfixed 
trimers. A similar effect was detected for the IgG1:IgG2c ratios 
and a trend toward increased production of Th2 cytokines from 
stimulated CD4+ T cells was observed in mice immunized with 
fixed trimers. These results demonstrate that protein cross-
linking influences the induced antibody responses at several  
levels in vivo.

MaTerials anD MeThODs

animals, immunizations and reagents
Male C57BL/6 Bom mice were purchased from Taconic, Denmark. 
Mice were immunized subcutaneously with 10  µg of recombi-
nant 16055 NFL TD CC trimers together with 10 µg AbISCO-100 
adjuvant (Isconova/Novavax) or with adjuvant alone. The mice 

were 7–9  weeks of age at the start of the immunizations, and 
booster immunizations were performed at 4-week intervals. 
All mice were kept at the animal facility of the Department of 
Microbiology, Tumor and Cell Biology at Karolinska Institutet. 
All animal experiments were performed under approved condi-
tions and standard guidelines prior to the experimental start 
according to the regulations of the Committee for Animal Ethics 
(Stockholm, Sweden).

expression and Purification  
of soluble env Trimers
The 16055 trimers were produced as previously described 
(5, 6). Briefly, the trimers were expressed in 293F cells and 
were isolated by lectin-affinity chromatography using GNL 
(Galanthus nivalis lectin-agarose; Vector Labs), purified by 
size-exclusion chromatography (SEC) using Superdex™ 200 
columns (GE Healthcare Life Sciences) to isolate the pre-
dominant trimeric fractions and further purified by negative 
selection affinity chromatography using the non-neutralizing 
CD4bs-directed mAb, GE136 (11).

Trimer cross-linking and gel analysis
Cross-linking of the purified 16055 trimers was conducted as 
previously described (7). Briefly, 0.5 mg/ml of trimer was fixed 
with 5 mM GLA (ACROS Organics) at room temperature (RT) 
for 5 min and then the reaction was quenched by excess 50 mM 
glycine, pH 7.5. The fixed trimers were negatively selected by 
GE136 antibody affinity chromatography and re-isolated by 
Superdex™ 200 size-exclusion chromatography and then ana-
lyzed by SDS-PAGE under reducing and non-reducing condi-
tions and by Blue Native PAGE as described previously (7).

Differential scanning calorimetry  
(Dsc) and negative-stain electron 
Microscopy (eM)
The thermal melting (Tm) of the trimers was determined using 
a Microcal VP-Capillary DSC (Malvern). Briefly, trimers were 
diluted in PBS pH 7.4 to 0.25 mg/ml and scanned at a rate of 
1°C/min. Data collected were analyzed after buffer correction, 
normalization, and baseline subtraction using the VP-Capillary 
DSC Automated data analysis software. For EM analysis, the 
16055 NFL unfixed and fixed trimers were negatively stained 
on glow-discharged carbon-coated copper mesh grids (Electron 
Microscopy Sciences) for 2 min. Following blotting to remove 
excess sample, grids were transferred onto droplets of 2% 
phosphotungstic acid (pH 6.7) for 2  min. Following blotting 
and drying the grids were analyzed on a Philips CM100 elec-
tron microscope and imaged at selected magnifications with a 
Megaview III charge-coupled-device camera.

elisa for antigenic Profiling and 
Detection of serological antibody 
responses
To assess binding by selected bNAbs and non-neutralizing 
mAbs, the 16055 NFL CC TD trimers were captured by their 
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His-tag using a mouse anti-His antibody coated on the ELISA 
plate overnight (ON), followed by washing, blocking, and 
detection using anti-mouse IgG as described below. To detect 
Env-specific antibody responses in serum, 96-well high-
protein-binding MaxiSorp (Nunc) plates were pre-coated with 
1  µg/ml Galanthus nivalis lectin (Sigma) diluted in PBS and 
incubated ON at 4°C. Plates were then washed six times in wash-
ing buffer (PBS/0.05% Tween-20) followed by addition of 150 μl/
well blocking buffer (2% fat-free milk in PBS) and incubated for 
1  h at RT. After incubation, the blocking buffer was removed 
from the plates and 200 ng/well unfixed or fixed NFL Env trim-
ers were added and let to incubate at RT for 2  h. Plates were 
washed six times in washing buffer and were then incubated in  
blocking buffer for 1 h. After removing the blocking buffer, sera 
were added to the plates in threefold serial dilution starting at 
1:25 dilution in blocking buffer and incubated for 2 h at RT. After 
washing the plates six times in washing buffer, secondary antibody 
diluted in PBS was added to each well. For total, Env-specific IgG 
ELISA, the secondary antibody goat anti-mouse IgG-horse rad-
ish peroxidase (HRP) (Southern Biotech) was used in a dilution 
of 1:1,000. For subclass-specific Env serum anti body detection, 
goat anti-mouse IgG1-HRP (Southern Bio tech) (1:5,000), goat 
anti-mouse IgG2b-HRP (Southern Biotech) (1:5,000), goat anti-
mouse IgG2c-HRP (Southern Biotech) (1:5,000), or goat anti- 
mouse IgG3-HRP (Southern Biotech) (1:1,500) were added. 
Secondary antibodies were incubated at RT for 1 h and removed 
by washing six times in wash buffer. To develop plates, 100 μl/
well of TMB stabilized chromogen substrate (Invitrogen) was 
added and incubated for 10  min in dark at RT. The reaction  
was stopped by adding 1  M H2SO4. The optical density was 
measured at 450  nm using an Asys Expert 96 ELISA reader  
(Biochrom).

Preparation of single cell suspension
The mice were sacrificed by cervical dislocation and spleens were 
taken out for further analysis. Single cell suspension of spleno-
cytes was obtained by passing the dissociated spleen through 
a 70-µM nylon cell strainer. Hypotonic ammonium chloride 
solution was used to lyse the red blood cells. Splenocytes were 
then collected in complete RPMI 1640 medium (containing 5% 
FBS, 50 µM 2-mercaptoethanol, 2 mM l-glutamine, 100 U/ml 
penicillin, and 100 µM streptomycin), and cell numbers were cal-
culated using the automated cell counter Countess (Invitrogen) 
for further experiments.

cD4+ T cell Depletion
To deplete CD4+ T  cells, the protocol from EasySep negative 
selection kit was followed (Stemcell Technologies). Briefly, 
splenocytes were incubated with normal rat serum (Stemcell 
Technologies) and biotinylated rat anti-mouse CD4 antibody 
(clone: RM4-5; BD Pharmingen) for 10 min with mixing every 
third minute. EasySep Strepativin Rapid Sphere 50001 beads 
(Stemcell Technologies) were added to the cell mixture at a 
concentration of 75 µl/ml of cell suspension. CD4+ T cells were 
separated using an EasySep magnet (Stemcell Technologies) and 
the negative fraction was collected in a new tube and used for 
further experiments.

Flow cytometry
Total splenocytes and CD4-depleted cell fractions were stained 
on ice for 20  min with the following antibodies: CD3e-PE 
(145-2C11; eBioscience), CD8a-APC (53-6.7; BD Pharmingen), 
CD4-FITC (H129.19; BD Pharmingen), and B220-PerCP-Cy5.5 
(RA3-6B2; BD Pharmingen). The samples were run on a 
FACSCalibur cytometer (BD Bioscience), and data were ana-
lyzed with FlowJo software version 10 (TreeStar).

T cell elispot analysis
T  cell ELISpot analysis was performed to measure cytokine 
production after stimulation of total splenocytes. 96-well 
Multiscreen-IP filter plates (Millipore) were pre-treated with 
70% ethanol, washed three times in PBS followed by coating 
with 5 μg/well (50 µg/ml) of anti-mouse IFNγ (mAb: AN18), 
anti-mouse IL-2 (mAb: 1A12), or anti-mouse IL-4 (mAb: 
11B11), all from Mabtech AB. Plates were incubated ON at 4°C.  
Before addition of splenocytes, the plates were washed six times 
with PBS/0.05% Tween-20 and blocked in complete RPMI 
medium for 2  h at 37°C/5% CO2 in a humidified incubator. 
After incubation splenocytes, in triplicates, were added to the 
wells in three different concentrations (200,000, 100,000, or 
50,000 cells) in a final volume of 150 µl and stimulated with one 
of the following stimuli: ConA (2  µg/ml) (Sigma), unfixed or 
fixed NFL trimers (6.67 µg/ml), or left unstimulated in medium 
only. After 20  h stimulation at 37°C/5% CO2 in a humidified 
incubator, the cells were removed from the wells and the plates 
were washed six times with PBS/0.05% Tween-20. Then the fol-
lowing biotinylated secondary antibodies in a concentration of 
1 µg/ml (Mabtech AB) were added to the corresponding wells: 
anti-mouse IFNγ (mAb: R4-6A2), anti-mouse IL-2 (mAb: 
5H4), or anti-mouse IL-4 (BV06-24G2). After incubation at 
RT for 2 h, the plates were washed six times in PBS only and 
streptavidin-ALP (Mabtech AB) in a 1:1,000 dilution was added 
to wells and incubated at RT for 45  min. After washing with 
water, plates were developed with 100  μl/well of BCIP/NBT  
plus substrate (Mabtech AB) for 10 min at RT. To stop the reac-
tion, wells were emptied and washed extensively in water fol-
lowed by air-drying. The spots were counted in an ImmunoSpot 
analyzer (CTL Immunospot).

Flow cytometric Bead array (cBa) to 
Detect cytokines after In Vitro stimulation
Total splenocytes from mice immunized three times were 
stimulated in  vitro for detection of cytokine production. One 
million splenocytes were used for each stimulation in 48-well 
plates in a total volume of 500 µl. Each mouse was stimulated 
with either ConA (2  µg/ml) (Sigma), unfixed or fixed NFL 
trimers (6.67 µg/ml) or left unstimulated in medium only. The 
plates were incubated for 20  h at 37°C/5% CO2 in a humidi-
fied incubator. Plates were spun down, and supernatants were 
collected. To measure the secreted cytokine from each mouse 
and stimuli, the BD CBA Mouse Enhanced Sensitivity Master 
Buffer Kit (BD Bioscience) was used. IL-5, IL-10, and IL-13 
(BD Bioscience) were measured in all samples according to 
manufacturer’s instruction. Standards were prepared from Top 
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Standard by threefold dilutions down to 1:729. Each sample was 
diluted in two different dilutions, 1:2 and 1:20. Diluted samples 
were mixed and incubated with Capture Beads for 2 h in dark 
at 4°C. The samples were then washed in FACS Flow for 5 min 
at 300g. Supernatant was flicked off before Mouse Detection 
Reagent was added and incubated for 2 h in dark at 4°C. After 
an additional washing step, the Enhanced Sensitivity Detection 
Reagent was added. After 1  h incubation in dark at 4°C, the 
samples were washed and ran on FACSVerse (BD Bioscience). 
Standard curves were generated for each cytokine. The samples 
were then calculated based on the median fluorescence values.  
If the value was lower than the standard curve, those samples 
were considered as 0. Samples higher than the detection limit 
(based on standard curve) was excluded.

statistical analysis
GraphPad Prism software version 8 (San Diego, CA, USA) was 
used to analyze data by Student’s t-test. Significance was defined 
as *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.

resUlTs

In Vitro characterization of Unfixed  
and Fixed env Trimers
In this study, we used the well-ordered 16055 NFL TD CC Env 
trimers (Figure 1A) to investigate the effect of GLA fixation on 
Env-specific immune responses in C57BL/6 mice. Following 
the cross-linking procedure, the fixed trimers were isolated by 
negative selection and size-exclusion chromatography (SEC). 
Analysis of the purified GLA-fixed trimers by reducing SDS-
PAGE confirmed that cross-linking of the trimers had occurred, 
by a shift in the apparent molecular weight (MW) relative to the 
unfixed trimers. GLA cross-linking rendered the trimers resist-
ant to disulfide-directed reduction (Figure 1B, left). BN-PAGE 
analysis, under native conditions, revealed that both the unfixed 
and fixed trimers migrated with similar MWs (Figure 1B, right). 
Both sets of data indicated that the cross-linking had occurred 
between protomers within each trimer, but not across indi-
vidual trimers. These results were consistent with what we had 
reported previously by these types of analyses (7). To measure 
the thermal stability of the unfixed and fixed 16055 NFL TD CC 
Env trimers, we used DSC. The GLA-fixed Env trimers displayed 
a higher thermostability compared to the unfixed counterpart. 
The thermal denaturation midpoint temperature (Tm) differed 
nearly 10°C between the two proteins (Figure 1C, left), indicat-
ing that GLA cross-linking contributes to the overall stability of 
the protein. The increased Tm was accompanied by a broaden-
ing of the thermal transition profile, indicating some mole-
cular heterogeneity following the GLA cross-linking process.  
To confirm that the trimers remained as single particles follow-
ing cross-linking and negative selection, we performed nega-
tive-stain EM and observed no marked difference in trimers at 
this level of resolution comparing unfixed to fixed populations 
(Figure 1C, right). To confirm trimer concentrations and that 
selected epitopes were minimally affected following fixation, we 
performed ELISA using the bNAbs VRC01, PGT121, and 2G12. 

We observed that PGT121 recognition was not greatly affected, 
indicating that the protein concentrations were accurate, 
whereas there was some decrease in VRC01 and 2G12 recogni-
tion following GLA fixation. We included the non-neutralizing 
antibodies 19b and GE136 that poorly recognized the unfixed 
trimers, as expected, whereas recognition of the GLA-fixed 
trimers by these mAbs was completely eliminated (Figure 1D).

env-specific Binding antibody  
responses in Mice immunized  
with Unfixed or gla-Fixed Trimers
To evaluate the immunogenicity of the unfixed and GLA-fixed 
16055 NFL TD CC trimers C57BL/6 mice were immunized three 
times at 4-week intervals. Sampling was performed 2  weeks  
after the second immunization and 8 days after the third immu-
nization (Figure 2A). Serological responses were compared by 
first measuring the total Env-specific IgG binding titers after the 
immunizations. Following the second immunization, there was 
a clear difference in the total Env-specific IgG response between 
the two groups with higher responses detected in mice immu-
nized with unfixed 16055 NFL TD CC Env trimers compared 
to those immunized with fixed trimers as shown by titration 
curves of the individual mice (Figure S1A in Supplementary 
Material) and as group means (Figure 2B). While this differ-
ence was detectable using both unfixed and GLA-fixed trimers 
as the antigenic target in the ELISA assay, it was more apparent 
when the unfixed protein was used for coating. After the third 
immunization, only a modest difference remained between 
the groups when the unfixed protein was used for coating 
the ELISA plates (Figure 2B), and an even smaller difference 
was observed when the fixed protein was used for coating 
(Figure 2C). Control mice injected with adjuvant alone showed 
no Env-specific binding.

env-specific antibody subclass 
responses in Mice immunized  
with Unfixed or gla-Fixed Trimers
To investigate potential qualitative differences in the response 
elicited by the unfixed and GLA-fixed 16055 NFL TD CC Env 
trimers, we assessed the elicited serum IgG subclass response 
after three immunizations. We observed that mice immunized 
with fixed Env trimers generated a different subclass pattern 
compared to the mice immunized with unfixed trimers. Spec-
ifically, while the IgG1 responses were similar, mice immunized 
with fixed trimers displayed lower IgG2b, IgG2c, and IgG3 
titers compared to mice immunized with the unfixed trim-
ers, independently of whether unfixed protein (Figure  3A) 
or fixed protein (Figure  3B) was used as the binding target 
on the ELISA plate. This difference was not observed when 
sera collected after two immunizations were analyzed, likely 
because the IgG subclass responses were still very low at this 
time point (Figure S1B in Supplementary Material). We also 
compared the ratios between the subclasses at a serum dilution 
of 1:25 and observed differences between the groups, which 
were significant for both IgG1:IgG2b and IgG1:IgG2c ratios 
when unfixed protein was used for coating (Figure 3C, upper 
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FigUre 1 | Schematic illustration and in vitro characterization of the 16055 native flexibly linked (NFL) trimer-derived (TD) CC Env trimers. (a) Linear  
representation of the NFL TD CC Env trimer sequence with the flexible (G4S)2 peptide linker indicated between gp120 and gp41 (top) and cartoon of the unfixed 
and glutaraldehyde (GLA)-fixed Env trimers (bottom). (B) Left panel: SDS gel of unfixed trimers under non-reducing conditions and reducing conditions with 
molecular weight (MW) marker shown in between; middle panel: SDS gel of GLA-fixed under non-reducing conditions and reducing conditions with MW marker 
shown in between; right panel: blue native gel of unfixed and GLA-fixed trimers. (c) Left panel: differential scanning calorimetry curves comparing the in vitro 
stability of unfixed (dashed line) and GLA-fixed (solid line) 16055 NFL TD CC trimers; right panel: negative-stain electron microscopy (EM) images of unfixed  
and GLA-fixed 16055 NFL TD CC trimers. (D) ELISA comparing the antigenic profile using a set of Env-specific monoclonal antibodies of the unfixed (left)  
and GLA-fixed (right) 16055 NFL TD CC trimers.
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panel) and for the IgG1:IgG2b ratio when fixed protein was used 
for coating (Figure 3C, lower panel). These serological results 
suggested a Th2-shifted response following immunization with 

the GLA-fixed 16055 NFL TD CC Env trimers. Control mice 
injected with adjuvant alone showed no Env-specific IgG1, 
IgG2a, IgG2c, or IgG3.
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FigUre 2 | Immunization schedule and Env binding titers after inoculation with 16055 native flexibly linked (NFL) trimer-derived (TD) CC Env trimers. (a) C57BL/6 
mice (six per group) were immunized at 0, 4, and 8 weeks with 10 µg of unfixed or glutaraldehyde-fixed 16055 NFL TD CC Env trimers together with 10 µg 
AbISCO-100 adjuvant, or with adjuvant alone (n = 2). Serum was collected 14 days following the second immunization and serum and spleens were collected 
8 days following the third immunization. (B) Env-specific IgG binding titers were measured by ELISA after two or three immunizations using unfixed 16055 NFL TD 
CC Env trimers for coating: full titration curves (group means) are shown to the left and IC50 binding titers (individual animals) are shown for the post-3 serum to the 
right. (c) Env-specific IgG binding titers were measured by ELISA after two or three immunizations using fixed 16055 NFL TD CC Env trimers for coating: full titration 
curves are shown to the left (group means) and IC50 binding titers (individual animals) are shown for the post-3 serum to the right. Statistical significance (Student’s 
t-test) between post-3 IC50 titers in mice injected with unfixed or fixed trimers immunized mice was tested. Fivefold serial dilution was used for all samples starting 
at a 1:25 dilution.
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To determine if this difference was detected if additional 
boosts were performed, we performed an independent immuni-
zation experiment where mice were injected five sequential times 
with the unfixed or GLA-fixed 16055 NFL TD CC Env trimers in 
AbISCO-100. This experiment yielded very similar results with 

increased IgG1:IgG2b and IgG1:IgG2c ratios in mice immunized 
with GLA-fixed trimers compared to mice immunized with 
unfixed trimers. This difference was significant for the IgG1:IgG2b 
ratio using both unfixed and fixed protein for coating (Figure S2 
in Supplementary Material).
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FigUre 3 | Env-specific antibody subclass responses after three immunizations measured by ELISA. (a) ELISA curves (group means) for Env-specific IgG1, IgG2b, 
IgG2c, and IgG3 using plates coated with unfixed 16055 native flexibly linked (NFL) trimer-derived (TD) CC Env trimers. (B) ELISA curves (group means) for 
Env-specific IgG1, IgG2b, IgG2c, and IgG3 using plates coated with fixed 16055 NFL TD CC Env trimers. (c) The ratio of IgG1:IgG2b and IgG1:IgG2c were 
compared for unfixed protein coating (top) and glutaraldehyde-fixed protein coating (bottom). * and ** indicate statistical significance (Student’s t-test) between mice 
immunized with unfixed and fixed 16055 NFL TD CC Env trimers. Fivefold serial dilution was used for all samples starting at a 1:25 dilution.
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T cell responses elicited in Mice 
immunized with Unfixed or  
gla-Fixed Trimers
Having observed that unfixed and fixed 16055 NFL TD CC Env 
trimers induce qualitatively different IgG subclass responses, 
we next investigated whether the Env-specific T cells responses 
also differed between animals in each of the groups. We first 
used a cytokine ELISpot analysis of splenocytes harvested after 
the third immunization for this analysis. We evaluated if the 
response measured by our protein stimulation conditions (20 h 
at 37°C) resulted from CD4+ T  cells by comparing cytokine 
production in total splenocytes to the CD4+ T  cell-depleted 
splenocytes (Figure S3A in Supplementary Material). This 
experiment confirmed that both the IFNγ and IL-2 cytokine 
production measured in response to protein stimulation was 
CD4+ T cell-dependent as the CD4+ T cell-depleted samples 
did not secrete cytokine levels that exceeded those of the 
medium control (Figures S3B,C in Supplementary Material). 
We next applied this method to analyze spleens harvested from 

mice immunized three times with unfixed or GLA-fixed 16055 
NFL TD CC trimers and detected no significant differences in 
the number of IFNγ, IL-2, and IL-4 producing T  cells upon 
stimulation with NFL trimers (unfixed or fixed) (Figure  4A). 
We concluded that mice immunized with unfixed or GLA-fixed 
16055 NFL TD CC Env trimers had similar numbers of cytokine-
producing cells, indicating similar uptake and processing of the 
GLA-fixed and unfixed trimers by antigen-presenting cells for 
CD4+ T cell activation. To specifically investigate the presence 
of T cells producing Th2-associated cytokines, we employed a 
flow cytometry-based bead assay to detect low levels of cytokines 
potentially present in supernatants from in  vitro-stimulated 
T cells from mice immunized three times with unfixed or GLA-
fixed Env trimers. We detected varying levels of IL-5, IL-10, and 
IL-13 with several mice being under the limit of detection of the 
assay. However, the mice that did respond with detectable IL-5, 
IL-10, and IL-13 levels were almost exclusively found among 
the mice immunized with the GLA-fixed trimers, suggesting a 
potential connection to the antibody subclass response in these 
mice (Figure 4B).
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FigUre 4 | CD4+ T cell cytokine production after in vitro stimulation of splenocytes collected after three immunizations with unfixed or fixed 16055 native flexibly 
linked (NFL) trimer-derived (TD) CC Env trimers or adjuvant only. (a) IFNγ, IL-2, and IL-4 cytokine-producing cells (group means) were measured by ELISpot analysis 
after 20 h stimulation with unfixed or fixed Env trimers or with ConA (positive control) or medium (negative control). Each spot formed in the wells represents one 
cytokine-producing cell. The average number for cytokine-producing cells for each group was plotted for each stimulus. Statistical significance (Student’s t-test) 
between mice immunized with unfixed and fixed protein was tested. (B) Detection of IL-5, IL-10, and IL-13 in supernatants following 20 h in vitro stimulation with 
unfixed NFL TD CC trimers, glutaraldehyde-fixed NFL TD CC trimers, Con A (positive control), or medium (negative control) using a flow cytometry-based bead 
assay. The results were plotted as picograms per milliliter cytokine produced for each condition. The detection limit of cytokines was 0.273 pg/ml.

157

Soldemo et al. Effect of Cross-Linking on Antibody-Responses

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1654

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


158

Soldemo et al. Effect of Cross-Linking on Antibody-Responses

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1654

DiscUssiOn

Here, we performed a comparative study in mice to examine the 
magnitude and quality of the Env-specific immune responses 
induced by unfixed or GLA-fixed 16055 NFL TD CC trimers. 
We demonstrate that the GLA-fixed 16055 NFL TD CC trimers 
displayed increased thermostability in  vitro, reduced exposure 
of non-neutralizing antibody epitopes in vitro and lower in vivo 
Env-specific IgG antibody responses after two immunizations. 
However, following three immunizations the difference in Env-
specific IgG titers was modest and only detectable when unfixed 
trimers were used as the target antigen in the ELISA. The differ-
ence in magnitude of the response induced by the unfixed trimers 
compared to the fixed trimers may be because unfixed trimers 
are more prone to unfolding or dissociation in vivo, resulting in 
exposure of immunogenic but non-neutralizing protein deter-
minants. Thus, a reduced response may be a desired outcome 
if it means that less antibody responses to irrelevant epitopes. 
Induction of antibodies against non-desired, non-neutralizing 
epitopes may register by ELISA when unfixed trimers are used 
for coating but less so when the fixed protein is used. Thus, the 
use of both unfixed and fixed trimers as both immunogens and 
as binding targets in the ELISA plate provides useful information 
to deduce trends in the elicited antibody specificities in  vivo. 
Whether GLA fixation offers an advantage for the quality of 
neutralizing antibody responses induced by the 16055 NFL TD 
CC trimers was not addressed in the present study, as this was 
previously investigated in the guinea pig model (7), as well as 
in the rabbit model using other well-ordered Env trimer designs 
(9, 10). We have previously reported tier 1 neutralizing activity 
in immunized mice (12, 13). However, immunogens that readily 
elicits tier 2 neutralizing antibody titers in rabbits (9, 10, 14) fail 
to do so in mice (15, 16).

The most significant observation in this study was that the 
Env-specific IgG response measured in animals inoculated 
with GLA-fixed trimers displayed a more Th2-skewed subclass 
profile than the response elicited in mice inoculated with 
unfixed trimers. We demonstrated this outcome by measuring 
Env-specific IgG1, IgG2b, and IgG2c. In mice, IgG1 represents 
a Th2-skewed response, while IgG2b and IgG2c represent a 
Th1-skewed response. A previous study in Balb/c mice reported 
that Env delivered in the form of a DNA vaccine induced a 
more Th2-biased antibody subclass response profile than did 
a DNA-based influenza virus hemagglutinin-based vaccine, as 
detected by an increased IgG1:IgG2a ratio in mice immunized 
with Env (17). This suggested an intrinsic difference in the type 
of response induced by the two viral antigens. We previously 
examined antibody subclass profiles induced by purified HIV-1 
Env trimers formulated in the AbISCO-100 adjuvant in a head-
to-head comparison between Balb/c mice and C57BL/6 mice 
and found that balanced Th1/Th2 responses were induced in 
both strains, with potent Env-specific IgG1, IgG2a, and IgG2b 
responses detected in Balb/c mice and similarly potent IgG1, 
IgG2b, and IgG2c responses detected in C57BL/6 mice (13).  
In the current study, we detected potent IgG1, IgG2b, and IgG2c 
responses to the unfixed trimers but reduced IgG2b and IgG2c 
responses to the fixed trimers. This Th2 skewing of the antibody 

subclass responses was observed in all animals immunized with 
the GLA-fixed trimers, using either the unfixed or GLA-fixed 
Env trimers as the antigenic target coated on the ELISA plates 
and was observed in two independent experiments.

The unfixed and GLA-fixed trimers used here were formu-
lated with the AbISCO-100 adjuvant (also called Matrix-M).  
We and others have previously shown that this adjuvant induces 
a balanced Th1/Th2 response also for other protein antigens 
(18–20). Our results show that the presence of GLA adducts on 
the trimers influenced the induced immune response in a manner 
that was not over-ridden by the presence of the adjuvant. We have 
previously shown that the response induced by protein antigens in 
AbISCO-100 can be shifted toward a more Th1-driven response 
by co-administration of a TLR9 agonist (18). Thus, co-stimulation 
of TLR9 may be one way to balance the Th2 skewing caused by the 
GLA fixation. Another strategy to direct the Env-specific response 
away from a Th2-biased profile is to prime with a viral vector 
expressing Env prior to protein boosting, which we previously 
showed induced a more Th1-biased response (21). While the 
assessment of Th1/Th2 skewing by measurements of IgG subclasses 
may not be readily translatable to other species, our finding may 
be worthy of further investigation in other models using addi-
tional assays of T helper function as different vaccine platforms 
are under evaluation and prioritization. While formaldehyde 
treatment of proteins was shown to limit antigen processing by 
constraining presentation to T cells in one study (22), we did not 
detect any measurable differences in the magnitude of cytokine-
producing profiles of Env-specific CD4+ T cells in our study using 
unfixed or GLA-fixed protein for in vitro stimulation when IFNγ, 
IL-2, and IL-4 cytokine responses were measured by ELISPOT 
analysis. When a more sensitive flow cytometry-based bead assay 
was used to detect additional Th2 cytokines, we observed that the 
highest IL-5, IL-10, and IL-13 responders were found in the group 
of mice immunized with the GLA-fixed trimers. This result was 
non-significant since a majority of the mice were below the level of 
detection. Nevertheless, it indicated a trend toward an increased 
Th2 response after immunization with fixed trimers, which may 
be related to the skewed antibody subclass response.

Chemical fixation of viruses and antigens is used in some 
commercial vaccines, for example, to inactivate infection by 
replication-competent whole virus particles. This was successfully 
done for the polio vaccine but it was less successful for a candidate 
respiratory syncytial virus (RSV) vaccine (23). In the case of the 
clinically tested RSV vaccine, formaldehyde was used for fixation. 
This vaccine worsened clinical symptoms in children exposed to 
natural RSV infection, triggering its removal from commercial 
development (24). The negative outcome was associated with a 
shift in the responses from a Th1 to a Th2 profile, as well as lower 
levels of neutralizing antibodies (24–26), effects that were sug-
gested to be related to the carbonyl groups on the vaccine antigens 
(27). These studies, as well as those presented here, indicate the 
need for an improved understanding of how modifications to 
protein-based vaccines influence the induced response at multi-
ple levels. For example, protein adducts such as aldehyde groups 
may interact with scavenger receptors such as CD36 (28), which 
are expressed by both B cells and professional antigen-presenting 
cells. Whether such potential effects influence antigen-specific 
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immune responses to HIV-1 Env or other viral proteins is not 
known, but may be elucidated by future investigations.
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FigUre s1 | Total Env-specific IgG and subclass-specific responses 
measured by ELISA. (a) ELISA curves for Env-specific IgG for individual mice 
(post-2 and post-3) using unfixed 16055 native flexibly linked (NFL)  
trimer-derived (TD) CC Env trimers (left) or fixed 16055 NFL TD CC Env trimers 
(right) as the target antigen. (B) ELISA curves (group means) for Env-specific 
IgG1, IgG2b, IgG2c, and IgG3 from post-2 sera using fixed 16055 NFL TD CC 
Env trimers as the target antigen. Fivefold serial dilution was used for all 
samples starting at a 1:25 dilution.

FigUre s2 | Env-specific antibody subclass responses after five 
immunizations measured by ELISA. (a) ELISA curves (group means) for 
Env-specific IgG1, IgG2b, and IgG2c using unfixed 16055 native flexibly  
linked (NFL) trimer-derived (TD) CC Env trimers as target antigen. (B) ELISA 
curves (group means) for Env-specific IgG1, IgG2b, and IgG2c using fixed 
16055 NFL TD CC Env trimers as target antigen. (c) Ratios of IgG1:IgG2b 
and IgG1:IgG2c calculated using either unfixed and glutaraldehyde-fixed 
protein coated on the ELISA plates. The serum samples were added to the 
plates in fivefold serial dilutions starting at 1:50. * and ** indicate statistical 
significance (Student’s t-test) between mice immunized with unfixed and  
fixed 16055 NFL TD CC Env trimers.

FigUre s3 | CD4+ T cell depletion of splenocytes. (a) Assessment of the purity 
after CD4+ T cell depletion. The FACS plots show the changes in CD4, CD8, 
and B220 cell populations before and after CD4 depletion. IFNγ (B) and IL-2 
(c) cytokine-producing cells were measured by ELISpot 20 h after stimulation 
with unfixed 16055 NFL TD CC trimers or with Con A (positive control) or 
medium (negative control) of splenocytes with or without CD4+ T cell depletion.
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The regulation of germinal center (GC) B cell responses to single epitopes is well inves-
tigated. How monoclonal B cells are regulated within the polyclonal B cell response to 
protein antigens is less so. Here, we investigate the primary GC B cell response after 
injection of mice with HIV-1 envelope glycoproteins. We demonstrate that single GCs 
are seeded by a diverse number of B cell clones shortly after a single immunization and 
that the presence of Env-specific antibodies can inhibit the development of early GC 
B cells. Importantly, the suppression was dependent on the GC B cells and the infused 
antibodies to target the same subunit of the injected HIV-1 envelope glycoproteins. An 
affinity-dependent antibody feedback has previously been shown to regulate GC B cell 
development. Here, we propose that this antibody-based feedback acts on GC B cells 
only if they target the same or overlapping epitopes. This study provides important basic 
information of GC B  cell regulation, and for future vaccine designs with aim to elicit 
neutralizing antibodies against HIV-1.

Keywords: epitope-specific antibodies, regulation of germinal centers, hiV-1, envelope glycoproteins, epitope-
specific B cells

inTrODUcTiOn

There is abundant evidence that some HIV-1-infected patients develop broadly neutralizing anti-
bodies (bNabs) at the chronic stage of the infection (1, 2). This demonstrates that the human immune 
system is, under certain circumstances, capable to produce antibodies that may be useful if they 
could be re-elicited by vaccination. Being the only virally derived component on the outside of 
the virion, it is not surprising that known bNabs target the HIV-1 envelope glycoproteins (Env) 
(3). It has been postulated that humoral immune responses to immunodominant regions of Env 
may suppress responses to less immunogenic regions, and that this could explain why bNabs are 
infrequently elicited during infection and has, to date, not been elicited by vaccination. Clearly, a 
better understanding of the regulatory processes for epitope-specific regulation and maturation of 
B cell responses is of great importance for the development of improved vaccine strategies.

Immunization with recombinant proteins in adjuvant generates T-dependent humoral 
immune responses that are characterized by the formation of germinal centers (GCs). In GCs, 
antigen-specific B cells undergo affinity maturation and differentiation into memory B cells and 
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Ab-secreting plasma cells [reviewed in Ref. (4)]. The resulting 
polyclonal Ab response comprises a number of different anti-
bodies that each target a distinct epitope surface on the injected 
protein antigen (5). In the GC, B cell clones that target the same 
epitope on model antigens are competitively regulated and 
there is a bias for survival of high-affinity clones (6–8). It was 
demonstrated that B  cell clones with a high-affinity BCR are 
better at presenting antigenic peptides to Tfh than are B cells 
with low affinity, and therefore gain a competitive advantage (9), 
and the importance of robust Tfh responses for the generation 
of neutralizing antibodies against HIV-1 has been extensively 
discussed elsewhere (10). However, even within single GCs 
a wide range of intra- and inter-clonal affinity maturation of 
B  cells occur (11, 12). It is therefore possible that regulatory 
mechanisms exist to allow for clonal expansion and matura-
tion of B cells with different epitope specificity after challenge 
with physiologically relevant multi-epitope proteins, such as 
HIV-1 Env. By dampening the ability of B cells to recognize the 
immunodominant V3-region on Env, we have previously shown 
that antibody and plasma cell responses to distinctly different 
epitope regions were independently regulated after repeated 
immunizations with recombinant soluble HIV-1 Env in mice 
(13). Similar results were subsequently found when instead 
immunosilencing the trimerization domain of Env (14). These 
findings were not unique to Env, as similar observations had 
previously been described for a number of therapeutic proteins, 
including Pseudomonas exotoxin A [reviewed in Ref. (15)]. 
Immunodominance may therefore be driven by a mechanism 
that is largely independent of inter-clonal competition and 
additional regulatory mechanisms might play a significant role 
for the regulation of B cell clones with distinct BCR specificities 
within the polyclonal response after immunization.

For decades, it has been known that IgG can feedback regu-
late the humoral immune response, and that this is dependent 
on the nature of the antigen and subclass [reviewed in Ref. (16)]. 
It was demonstrated that IgM could mediate inhibition of GC 
B cell responses by direct binding to antigen, thereby occluding 
it from recognition by antigen-specific BCRs on B  cells (17). 
Since IgM is readily elicited early during the development of 
T cell-dependent GC B cell responses, it is unlikely to provide 
a strong inhibitory effect on GC B  cells under physiological 
conditions. However, an antibody-mediated feedback mecha-
nism that is dependent on the binding specificity of IgG could 
potentially explain our results where independent expansion 
of epitope-specific plasma cell responses to HIV-1 Env was 
observed (13).

A single injection with Env in adjuvant was not sufficient to 
induce potent Env-specific IgG-secreting plasma cells in mice, 
rabbits, and non-human primates (13, 18, 19). If antigen-specific 
GC B cells had been developed at the same time point, this would 
allow us to investigate how Env-specific GC B  cell responses 
develop without the interference of endogenously produced 
antigen-specific antibodies. According to this rationale, we set 
out to define the characteristics of the GC B cell response after 
one injection of Balb/C mice with Env, and then to address if an 
antibody-mediated feedback had potential to regulate GC B cell 
responses in an epitope-specific manner.

MaTerials anD MeThODs

recombinant Proteins
The design and cloning of trimeric soluble recombinant envelope 
glycoproteins Env and monomeric gp120 for injection, and tri-
meric Env, gp120, and gp120ΔV3 for site-specific biotinylation 
has been previously described (20, 21). All recombinant proteins 
were produced by using the FreeStyle™ 293 Expression system 
(Invitrogen) and purified by sequential lectin and his-tag affinity 
chromatograph (22). Site-specific biotinylation was performed 
by treating AviTagged recombinant Env and gp120 with biotin-
protein ligase (GeneCopoeia, Rockville, MD, USA) (20).

immunizations
For injections, 10 μg of Env or gp120 was emulsified in Imject™ 
Alum adjuvant (Thermo Fischer Scientific) and 7- to 10-week-
old BALB/c mice were injected via the intraperitoneal route. To 
generate immune serum to Env or gp120, groups of six mice 
were injected with recombinant Env or gp120 in Imject™ Alum 
adjuvant two times at a 2-week interval, and serum was collected 
2 weeks after the last injection. Serum from mice injected with 
Adjuvant alone was used as control. Mice were kept at the animal 
facility at Department of Microbiology, Tumor and Cell Biology, 
Karolinska Institutet or at the Umeå Center for Comparative 
Biology, Umeå University, Sweden.

immunohistochemistry and laser 
Microdissection
For immunohistochemistry and laser capture microdissection of 
GC structures, 8  μm sections of OCT embedded spleens were 
fixed on super frost plus glass slides (Thermo Scientific) or on PPS 
membrane slides (MicroDissect GmbH), and fixed using ice-cold 
acetone. For subsequent laser microdissection, we chose the mid 
section of a three consecutive 8 μm sections that all demonstrated 
a GC structure of same shape and relative location in the spleen. 
To inhibit non-specific binding, sections were treated with 5% 
goat serum (Dako) and subsequently treated with Avidin/Biotin 
blocking kit. Slides were then stained with FITC-conjugated anti-
IgD (BD Pharmingen) and biotinylated peanut agglutinin (PNA) 
followed by Alexa555-conjugated streptavidin (Thermo Fisher 
Scientific). Confocal microscopy was performed on the glass 
slides with a DM IRBE system (Leica). Laser microdissection 
was performed on PPS membrane slides in a LMD7000 system 
(Leica). Single GC structures were defined as PNA+, IgD− areas 
inside splenic follicles (IgD+, PNA−) in the center section of 
each spleen, and collected in RLT buffer for subsequent mRNA 
extraction.

Flow cytometry and cell sorting
Single-cell suspension of splenocytes was achieved by passing 
spleen through a 70-µm nylon mesh. RBCs were subsequently 
lysed with hypotonic ammonium chloride solution for 1 min, and 
the remaining cells were washed and resuspended in complete 
RPMI 1640 medium (Sigma) containing 5% FBS, 50 µM 2-ME, 
2  mM l-glutamine, 100  U/ml penicillin, and 100  µM strepto-
mycin. Where applicable, splenocytes were enumerated by flow 
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cytometry using AccuCheck Counting Beads (Life Technologies). 
The amount of live cells in samples was determined by using 
a Live/Dead aqua viability kit (Thermo Fischer Scientific). 
Antibodies used for stainings were FITC-conjugated anti-GL7 
antigen, PerCP.Cy5.5-conjugated anti-IgD, PE-conjugated anti-
CD95, and Pacific Blue-conjugated anti-B220 (all BioLegend). To 
determine antigen specificity, cells were incubated with 10 μg/ml 
biotinylated Env trimers, gp120 trimers, or gp120ΔV3 trimers 
and subsequently with APC-conjugated streptavidin. Data were 
collected on a BD LSRFortessa™ X20, and cell sorting was per-
formed on a BD Facs Jazz™ (All BD Biosciences). Analysis of 
flow cytometric data was performed using FlowJo (FlowJo, LLC).

B cell receptor Fragment analysis
The B-cell repertoire was assessed by spectratyping of VDJ 
regions of heavy chain families 1, 2, 3, 5, 6, and 7. Briefly, mRNA 
from tissues was extracted with an RNAeasy kit (Invitrogen), and 
corresponding cDNA was then generated using iScript (BioRad), 
according to the manufacturer’s instructions. Previously pub-
lished primers for amplification of the VDJ region (with focus on 
the uniqueness of the CDR3) of the variable region heavy chain 
(Vh) families 1 and 2 of mice were used to amplify the target regions 
[Vh1 forward: TCCAGCACAGCCTACATGCAGCTC; Vh2 for-
ward: CAGGTGCAGCTGAAGGAGTCAGG; and Jrev (common 
primer in the JH-region): CTTACCTGAGGAGACGGTGA]  
(23, 24). The amplifications were performed in a total volume 
of 20 µL, using 2× GoTaq (Promega), 2 µL (1 µM final) of each 
primer, and 2 µL of cDNA. After 1 min at 95°C, amplification was 
performed for 40 cycles as follows: 30 s at 95°C, 30 s at 55°C, and 
1 min 30 s at 72°C, and ended with a step of 10 min at 72°C. To 
label the amplified fragments, 5 µL of each P CR product was mixed 
with 0.5 µM 6-fluorescein amidite (FAM)-labeled Jrev-primer and 
5 µL GoTaq and subjected to 10 runoff cycles as follows: 2 min 
at 95°C, 2 min at 55°C, and 20 min at 72°C, and ended with a 
10-min step at 72°C. FAM-labeled products were then processed 
on an ABI3130 Genetic analyzer (Applied Biosystems). Data were 
analyzed using PeakScanner v1.0 software (Applied Biosystems). 
Each peak in the resulting histogram represents one or many 
B cell clones with identical nucleotide length of the VDJ region of 
a certain Vh family. For an approximation of a distinct number of 
clones present in a single GC, a stringent cutoff of 1,000 response 
units (RUs) was applied to select for dominant clones. The relative 
dominance of the single fragment with the highest RU value in a 
GC was calculated with respect to the sum of RUs of all detected 
fragments in the same (%dominance = RUdominant fragment × 100/Σ 
RUall fragments).

enzyme-linked immunosorbent assay
High-protein-binding MaxiSorp plates (Nunc) were coated 
with 100 or 200  ng/well of recombinant Env or gp120 at 4°C 
overnight. The coated plates were blocked with 2% fat-free milk 
in PBS. After washing (PBS, 0.05% Tween-20), serum was added 
at different concentrations. The wells were then incubated with 
HRP-conjugated anti-mouse IgG or IgM (Southern Biotech). 
After washing, a colorimetric HPA substrate containing 
3,3′,5,5′-tetramethylbenzidine (Invitrogen) was added. Adding 
one volume of 1  M H2SO4 stopped the enzymatic reaction, 

and OD was read at 450 or 450–620 nm. All incubations were 
performed at room temperature for 1 h, unless otherwise stated.

statistical analysis
Statistical analysis was performed using GraphPad Prism V5.04 
(GraphPad Software). Data sets were first analyzed with the 
D’Agostino and Pearson omnibus normality test. Sets conform-
ing to normal distribution were then analyzed further using 
ANOVA or non-paired two-tailed Student’s t-test to determine 
the significance of observed differences. Data sets not exhibit-
ing normal distribution were analyzed using a non-parametric 
ANOVA, Mann–Whitney U test, or the Wilcoxon matched-pairs 
signed-rank test.

ethics statement
All animal experiments were pre-approved and performed in 
accordance with the Swedish Animal Welfare Act under pro-
tocols Dnr 234/12-dnr 11/13 (approved by Stockholms Norra 
djurförsöksetiska nämnd, Sweden) and Dnr A 59-15 (approved 
by Umeå försöksdjursetiska nämnd, Sweden).

resUlTs

gc B cell responses after immunization 
with hiV-1 env
To determine if potent GC B cell responses occur after a single 
injection with Env, we devised an injection regimen to character-
ize the development of GC B cells after immunization with Env in 
Imject Alum™ adjuvant. By immunofluorescence microscopy, we 
found that distinct GC formation (PNA+IgD−) could be detected 
on day 6 by histology (Figure 1A). The numbers of splenic GCs had 
significantly increased on day 11, but were reduced in numbers 
again by day 21 after the immunization. To quantify our findings, 
we assessed the frequency of splenic GC B cells (B220+IgD−CD
95+GL7+) by flow cytometry at the same time points. Consistent 
with our histological results, we found that the overall frequency 
of GC B cells had reached detectable levels at day 6, that a major 
expansion had occurred between days 7 and 11 (Figure 1B). We 
could also quantify the overall reduction of GC B cells between 
days 11 and 21 after immunization Collectively, these data verify 
that GC B cell responses develop after a single injection of mice 
with Env in adjuvant.

clonal expansion and contraction of  
B cells in gcs after immunization with 
hiV-1 env in Mice
It has been previously shown that the number of dominant B cell 
clones in a single GC could vary after immunization with other 
recombinant proteins (11, 25–27). If a monoclonal B cell popula-
tion seeds separate GCs after immunization with Env, this could 
explain the lack of competition between the responses to differ-
ent epitopes within the antigen. To address this, we isolated single 
GCs (IgD−PNA+) by laser capture microdissection and approxi-
mated the relative clonality of these at different time points after 
immunization. This was done by assessing the number of VDJ 
regions of heavy chain (Vh) with variable nucleotide lengths 
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FigUre 2 | Fragment analysis for the presence of B cell clones of the Vh1 or 
Vh2 families. (a) Splenocytes from uninjected mice (N = 3) were assessed for 
the number of Vh1 (left panel) or Vh2 (mid panel) fragments of different 
nucleotide length that could be amplified. The distribution of the fragments 
with respect to their frequency was assessed for adherence to a Gaussian 
distribution (right panel). (B) Fragment analysis of the Vh1 family in single 
germinal centers (GCs) after isolation by laser capture microdissection. 
Shown are representative histograms of the Vh1 distribution in polyclonal 
GCs (left panel) and relatively monoclonal GCs (mid panel), 11 days after 
injection with Env. Enumeration of how many distinct Vh1 fragments that 
could be found in each of the isolated single GCs on day 6 (N = 3), day 11 
(N = 14), and day 21 (N = 7) was performed (right panel). (c) The relative 
dominance of the VDJ fragment with the highest frequency among all 
detected Vh1-family VDJ fragments is shown. (D) Shown is an enumeration 
of how many distinct Vh2 fragments that could be found in each of the 
isolated single GCs at different time-points. (e) GC B cells 
(B220+IgD−GL7+CD95+, red) and non-GC B (B220+IgD−GL7−CD95−, blue) 
cells were sorted and assessed for the frequency and number of amplified 
Vh2-family VDJ fragments. The r2-value indicates the adherence to a 
Gaussian distribution of different fragments with respect to their relative 
frequency.

FigUre 1 | Germinal center (GC) B cell development after a single injection 
of mice with Env. (a) The presence of GC structures was assessed by 
immunofluorescence microscopy as distinct PNA+/IgD− areas (red) within 
follicles (PNA−/IgD+, green) in spleen sections of mice (representative image, 
left panel). The number of GCs in spleen sections from individual mice was 
enumerated at the indicated time points (right panel). (B) Flow cytometric 
quantification for the frequency of GC B cells (B220+IgD−GL7+CD95+) of total 
splenocytes is shown at the indicated time points. N(adjuvant, d4) = 4 animals; 
N(d6, d11, d21) = 5 animals.
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that could be amplified from spleen sections from mice shown 
in Figure  1. We focused on the Vh1 family that cover a large 
part of the total Vh-repertoire of mice, and on the Vh2-family 
that cover a limited part of the Vh-repertoire (28). To validate 
the method, we first amplified Vh1 and Vh2 VDJ regions from a 
sectioned spleen. As expected, we could amplify a large number 
of Vh1 and Vh2 VDJ fragments from the polyclonal population 
of B cells in the spleen section, and the frequency of amplified 
fragments were closely adhering to a Gaussian distribution with 
respect to fragment length (Figure  2A). Focusing on the Vh1 
family, we could amplify a large number of VDJ fragments from 
single GCs at days 6 and 21 after injection with Env, whereas 
a significant number of GCs contained a relatively few Vh-1 
fragments at day 11 (Figure 2B). This suggested that significant 
clonal selection had occurred between days 6 and 11, but that 
the GC B  cell population had then diversified with respect to 
fragment lengths between days 11 and 21 after the immuniza-
tion. To quantify this, we investigated the relative dominance 
of the most abundant Vh1 VDJ fragment among all amplified 
Vh1 VDJ fragments from single GCs over time. Consistent with 
polyclonal GC B cell populations, the dominance of a single VDJ 
fragment in separate GCs was on average 16.5% (range: 16–17%) 
or 18% (range: 12–31%) of all VDJ fragments on days 6 or 21 
after injection (Figure 2C). By contrast, the average dominance 
of a single VDJ was 36% (range: 18–61%) on day 11 after the 
injection. This supports that GCs at peak response have reduced 

B cell clonality, but that fully monoclonal GCs were rare. Instead, 
GCs at peak response display variable degrees of clonal domi-
nance. A similar variation of clonal dominance in single GCs was 
previously shown after injection of mice with chicken gamma 
globulin, Bacillus anthracis protective antigen and influenza 
hemagglutinin (11, 12).

Detection of clones from the Vh2-family in single GCs was 
rare at all time-points and when detected, comprised up to five 
fragments (Figure  2D). By contrast, a large number of clones 
of the Vh2-family could be detected after flow cytometric sort-
ing of GC B cells 11 days after immunization of mice with Env 
(Figure  2E). The conflicting data are likely explained by the 
presence of a cross-section of all responding GC B cell clones 
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FigUre 3 | Detection of antigen and subunit-specific germinal center (GC) 
B cell responses after a single injection of mice with Env. (a) The frequency of 
GC B cells (B220+IgD−GL7+CD95+) 11 days after injection which were able to 
bind biotinylated Env, gp120, or gp120ΔV3 was assessed by flow cytometry 
after addition of APC-conjugated streptavidin. Staining of cells with 
APC-conjugated streptavidin (SA) in the absence of Env was used verify the 
specificity of the binding. (B) The frequency of Env-specific GC B cells of total 
GC B on days 6, 11, and 21 after injection of mice with Env is shown.  
(c) The frequency of GC B cells (B220+IgD−GL7+CD95+) that could bind to 
the gp120 subunit of Env was assessed in a similar manner (left panel). By 
subtraction of the gp120-specific GC B cells from the total Env-specific GC 
B cells, we could also determine the proportion of gp41-specific GC B cells 
that had been induced at the same time points (right panel). N = 4–5 animals 
per group.
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after the flow cytometric sorting, whereas the laser capture 
microdissection allowed for analysis of GC B cell clones from 
single GCs. A Gaussian distribution analysis of the sorted cells 
revealed that non-GC Vh2 B cell clones were normally distrib-
uted with respect to their BCR length (r2 = 0.97). By contrast, 
the distribution of Vh2-related GC B cells was slightly skewed 
(r2 = 0.78). Even though seeding and recruitment of Vh2-family 
B cells to single GCs was low in comparison to Vh1 clones, biased 
selection of GC B cell clones had occurred, if assessed on a global 
level.

Development of antigen and epitope-
specific gc B cell responses after 
immunization of Mice with hiV-1 envelope 
glycoproteins
A requirement for an investigation to understand if antibodies 
can mediate a feedback to regulate epitope-specific GC B cells was 
that we could also measure GC B cell responses to two distinctly 
different regions of Env. Here, we took advantage of a probe-based 
system that we had previously used to enumerate subunit-specific 
plasma cell responses after repeated immunizations with Env 
(20). To test this system, we first assessed the capacity of splenic 
GC B cells to bind to Env, the gp120 subunit, or to a gp120 subunit 
that lack the variable region 3 (gp120ΔV3) 11 days after injection 
with Env. We found that an average of 45% of GC B cells was spe-
cific for Env, and that approximately 50% of those could bind to 
both gp120 and the gp120ΔV3 probes (Figure 3A). Importantly, 
we had previously shown that repeated injection of Env into 
mice did produce significant B cell responses to the non-exposed 
inside of Env trimers (20). Therefore, the Env-specific response 
was evenly distributed between epitopes that span the gp120 or 
the gp41 subunits, whereas no significant response had developed 
against the variable region 3 at this time point.

Next, we assessed changes in frequency of Env-binding GC 
B cells over time by flow cytometry. We injected mice with Env 
and found that GC B cells had reached sufficient numbers and 
affinity for Env to be detectable in our analysis after 11  days 
(Figure  3B). This suggested that significant proliferation, 
antigen-specific affinity maturation, and selection of GC B cells 
had occurred during the second week after the injection. The 
frequency of B cells that could bind to the Env-based probe was 
not significantly changed between days 11 (median: 41%) and 21 
(median: 50%).

Subtracting gp120-specific responses for the total Env-specific 
response allowed us to determine the specific response to the 
gp41 subunit of Env. As expected, gp120 and gp41 subunit-
specific responses developed with the same kinetics as the total 
Env-specific response and required between 7 and 11  days to 
develop sufficient affinity for detection (Figure 3C). No further 
increase in the frequency of gp120- or gp41-binding GC B cells 
had occurred between days 11 and 21 after a single immuniza-
tion of mice with Env. Collectively, gp120-specific GC B  cells 
accounted for a median of 51% (day 11) and 58% (day 21) of total 
Env-specific GC B  cells. Consistently, gp41-specific GC B  cells 
accounted for the remaining 49% (day 11) and 42% (day 21) of 
total Env-specific GC B cells.

regulation of subunit-specific gc B cell 
responses to the hiV-1 envelope 
glycoproteins
To study feedback regulation, we generated serum by repeated 
injections of mice with soluble Env or with gp120, that either 
contained antibodies to both the gp120 and gp41 subunits  
(Env injection) or only to the gp120 subunit (gp120 injection). 
We subsequently normalized the harvested serum so that both 
had a similar binding capacity to Env with regard to IgG and 
IgM (Figure 4A). Respective serum was then further diluted 2× 
in PBS and 200 μl was infused into mice that had been immu-
nized with Env 4 days earlier (Figure 4B). We chose this time 
point to allow for similar initiation of the GC response toward 
Env in all groups prior to the serum infusion (29), and that it 
was just before GC B cells could be detected by flow cytometry 
(Figure 1A). Moreover, it would allow for similar trafficking and 
retention of Env to the network of follicular dendritic cells in GC 
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FigUre 4 | After repeated injections with either Env or the subunit gp120, 
serum was harvested from mice and assessed for binding to Env. (a) Shown 
is IgG or IgM in serum pre-normalized for Env binding, as assessed by 
ELISA. (B) Mice (N = 5–6/group) were injected with Env and anti-Env or 
anti-gp120 serum was infused at the indicated time point. The mice were 
terminated on days 11–13 after start of the experiment. Control mice 
(N = 4–5/group) did not receive a serum infusion. (c) Assessment of 
Env-specific IgG by ELISA in serum from respective groups 13 days after 
injection with Env. (D) Detection of gp120 and gp41-specific germinal center 
(GC) B cells in groups of mice that had received Env-specific or gp120-
specific serum, or no serum on day 4 after the Env injection. Shown is the 
accumulated data from two separate experiments.
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for the first 4 days after immunization (30, 31). Since the injected 
serum levels was below those that can be induced by repeated Env 
injections into BALB/c mice, the potential regulatory function 
of antibodies on GC B  cell responses likely mimic that of the 
endogenous high-affinity anti-Env antibody response after it has 
been generated.

Two weeks after immunization of mice with Env, we could 
detect low-levels of circulating Env-specific IgG after one injec-
tion (Figure 4C). This represented the background levels of the 
endogenous response at a time point when Env-specific GC 
B  cells had developed. In both the serum-infused groups, we 
found distinct levels of circulating Env-binding IgG. Since these 
levels were significantly higher than that of the endogenous 
response, this demonstrated that specific IgG from the serum 
infusion had remained in circulation for more than a week. This is 
consistent with a half-life of murine IgG of approximately 8 days 
(32). We did not detect significant antigen-specific IgM in any of 
immunized animals at this time-point.

To understand if the development of subunit-specific GC 
B cells had been influenced by the serum injection, we deter-
mined the absolute number of splenic gp120- and gp41-specific 
GC B cells that had been induced in respective groups of mice. 
Here, we found that a distinct inhibition of gp120-specific 
GC B cells had occurred in both of the serum-infused groups 
(Figure  4D). This verified that the infused Env-specific and 

gp120-specific serum had similar capacity to suppress gp120-
specific GC B  cell responses. By contrast, inhibition of gp41-
specific GC B  cells had only occurred in the groups of mice 
that had received Env-specific serum. This suggested that gp41-
specific GC B cell responses had been negatively regulated in 
the presence of high-affinity Env-specific antibodies that target 
the gp41 subunit, but not by antibodies that targeted the gp120 
subunit.

Collectively, these data suggest that high-affinity antibodies  
at the level of a normal immune response can provide a nega-
tive feedback to repress the development of specific GC B  cell 
responses, but that this only occurs if the antibodies and the GC 
B cells target the same or overlapping epitopes on Env.

DiscUssiOn

Here, we performed a characterization of GC B  cell responses 
to Env after a single immunization in mice, and subsequently 
addressed if antibodies have potential to regulate the develop-
ment of GC B  cells through an epitope-specific feedback 
mechanism. Our data suggest that single GCs are seeded by a 
polyclonal B cell population within a week after immunization 
with Env. To note, only two mice of six had developed distinct 
GCs at this time point. While we could not definitively rule out 
contamination from naïve B cells at this early time point, prior to 
clonal outgrowth, our data are consistent with the diverse early 
GC response after immunization of mice with chicken gamma-
globulin, as has previously been shown (11). During the second 
week after immunization, varying degrees of clonal dominance 
is established in single GCs (Figure  2C). This coincides with 
peak frequency of total GC B cells in spleens of injected animals, 
and the detection of Env-specific GC B  cells. To minimize the 
influence of non-cognate B  cells that transport antigen to fol-
licular dendritic cells or residual background from follicular 
B cells that did not participate in the GC reaction (33–35), we 
also made a qualitative approximation of clones in single GCs 
(Figures 2B,D). In this setting, we found that 9 of 14 single GCs 
contained between 1 and 4 distinct Vh1 fragments, where 3  
GCs had potential to be fully monoclonal within the Vh1-family 
VDJ fragment length. During the third and fourth week after 
immunization, clonal dominance in single GCs had returned to 
levels that were indistinguishable from day 6. It was previously 
shown that tens to hundreds of individual B cell clones participate 
in the initial GC reaction (11). By the spectratyping approach 
used here, it was not possible to directly enumerate individual 
B  cell clones but it was sufficient to approximate the relative 
clonality of single GCs at separate time points after injection of 
mice with Env.

After a single injection of mice with Env, we could demon-
strate that up to 50% of the GC B cell response was focused on 
the gp41 subunit of Env. Consistent with these findings, gp41-
specific plasma cells represent up of 50% of all Env-specific B cells 
after a booster injection (20). This suggests that GC B cells that 
develop in mice after a single injection of Env may differentiate 
into plasma cells after a subsequent booster injection. In line with 
this, the absence of V3-specific GC B  cell development after a 
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single injection with Env could therefore explain the absence of 
V3-specific plasma cells after a booster injection, as previously 
shown (13, 20).

Importantly, we proceeded to generate evidence that 
antibodies can feedback regulate the development of epitope-
specific B cells. By injection of high-affinity polyclonal serum 
in mice at a time point where the endogenous GC response 
had been initiated, but prior to detection of Env-specific GC 
B  cells, we found that preexisting antibodies to the gp120 
subunit could repress gp120-specific but not gp41-specific 
GC B cells (Figure 4D). By contrast, infusion of Env-specific 
serum could repress both gp120 and gp41-specific GC B cell 
responses. Since V3-specific GC B  cells had not developed 
after a single injection of mice with Env, we could not assess if 
also V3-specific GC B cell responses could be suppressed by a 
similar mechanism. Interestingly, infusion of Env in complex 
with a V3-specific Fab was recently shown to specifically sup-
press endogenous V3-directed antibody responses in Guinea 
pigs (36). This suggests that the development of V3-specific GC 
B cells may also be regulated by a similar antibody feedback-
mediated mechanism as we here describe for gp41-specific GC 
B cells.

Since T  cells are rapidly primed within the first days after 
antigenic challenge (37, 38), it is unlikely that priming of Tfh 
cells was affected by the day 4 serum injection. Moreover, pres-
entation of antigenic peptides on MHC class II cannot directly 
explain a regulatory feedback mechanism that is dependent 
on the binding specificity of GC B cells. Similarly, a regulatory 
feedback mechanism that is dependent on the binding specific-
ity of soluble antibodies is difficult to explain by engagement 
of the constant Fc-region of the infused IgG to the inhibitory 
Fc-gamma receptor IIb (39). In fact, a recent study demon-
strated that antibody feedback of epitope-specific GCs during 
experimental antigen challenge act independently of Fc-gamma 
receptor engagement (40).

We therefore propose Env-specific B cell responses to HIV-1 
Env are feedback regulated by epitope masking of antigen by high-
affinity antibodies, and that this leads to a subsequent inability 
of low-affinity B  cell clones with similar specificity to acquire 
stimulation via their BCR. In GCs, the antibody-mediated occlu-
sion may occur on antigen that has been deposited on the FDC 
network, as was previously proposed by infusion of IgM (17). In 
our study, we investigated how early low-affinity GC B cells were 
affected by infusion of high-affinity IgG.

Clearly, additional research is required to fully understand 
how the epitope-specific GC B  cell response is regulated dur-
ing the gradual affinity increase and subsequent termination 
or differentiation of GC B cells during an endogenous immune 
response after vaccination with HIV-1 Env, but also if and how an 
antibody-based feedback can regulate the fate of memory B cells 
after re-challenge, as recently discussed (40–43).

Collectively, we provide data that strongly suggest that 
the development of GC B  cells to a biologically relevant 
antigen is directly regulated by the presence of physiological 
levels of circulating antibodies. An affinity-dependent and  

antibody-mediated feedback to regulate affinity maturation of 
GC B cells has been suggested (17). We propose that this feed-
back acts on GC B cells only if they share the same or overlap-
ping specificity as the circulating antibodies. Undoubtedly, the 
future development of well-defined mouse-derived monoclonal 
will allow for a more detailed investigation with regards to the 
biochemical and molecular properties of the inhibitory function  
of antibodies that target overlapping, partially overlapping, and 
non-overlapping epitopes of Env. Such data would be invaluable 
for the future designs of novel antigens for vaccination against 
HIV-1.

Importantly, the data presented here suggest that non-
neutralizing or strain-specific neutralizing determinants on 
vaccine antigens have potential to suppress the development of 
bNab only if they share an overlapping binding site with these on 
Env. Our study therefore validates previous and on-going efforts 
to develop Env-based vaccine antigens with reduced exposure of 
non-neutralizing epitopes to the immune system (44–46), and 
we propose that it is crucial to focus these efforts on areas of Env 
where non-neutralizing epitopes overlap with broadly neutral-
izing epitopes.
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