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Pretreatment lymphocyte-to-
monocyte ratio as a prognostic
factor and influence on dose-
effect in fractionated stereotactic
radiotherapy for oligometastatic
brain metastases in non-small
cell lung cancer patients

Tian Chen1†, Mengqiu Tang1†, Yang Zhou2, Zhepei Wang3,
Shiwei Li4, Hongcai Wang4, Yangfang Lu1, Jinguo Wang1

and Weiyu Shen5*

1Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo University,
Ningbo, China, 2Department of Ningbo Institute of Innovation for Combined Medicine and
Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China, 3Department
of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China,
4Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University,
Ningbo, China, 5Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo
University, Ningbo, China
Background: Studies on the prognostic factors for patients with brain oligo-

metastasis treated with fractionated stereotactic radiotherapy (FSRT) usually

focus on the size of metastatic tumor and radiation dose. Some inflammatory

indicators have predictive value in non-small cell lung cancer (NSCLC) with brain

metastasis receiving stereotactic radiotherapy. However, the prognostic value of

inflammatory indicators in NSCLC patients with brain oligo-metastasis treated

with FSRT, and their effect on radiotherapy dose is unknown.

Methods: A total of 95 advanced NSCLC patients with brain oligo-metastasis

who had undergone FSRT treatment at Ningbo Medical Center Lihuili Hospital

between January 2015 and April 2022 were enrolled into the study. Neutrophil to

lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), lymphocyte to

monocyte ratio (LMR), tumor diameter and biologically effective dose (BED10)

were analyzed using Chi-square test. Univariate and multivariate Cox regressions

were used to identify predictors of survival.

Results: Tumor diameter (< 2 cm), BED10 (≥ 48Gy) and LMR (≥ 4) were found to

be independently associated with good intracranial local control survival (i-LCS)

through multivariate analysis. The median i-LCS was longer in patients with 2

independent risk factors (tumor diameter ≥ 2 and LMR < 4) administered with

BED10 > 53.6Gy compared with patients administered with BED10 ≤ 53.6Gy (20.7

months vs 12.0 months, P = 0.042). LMR ≥ 4 (P = 0.019) and positivity for driver

gene mutations (P = 0.011) were independently associated with better overall

survival (OS).
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Conclusions: LMR is an independent prognostic factor of i-LCS and OS in

NSCLC patients with brain oligo-metastasis treated with FSRT. Patients with

tumor diameter ≥ 2 and LMR < 4 should be treated with BED10 greater than

53.6Gy.
KEYWORDS

lymphocyte to monocyte ratio (LMR), biologically effective dose (BED), brain oligo-
metastasis, fractionated stereotactic radiotherapy (FSRT), intracranial local control
survival (i-LCS)
Background

Brain metastases are the most common intracranial tumors in

adult accounting for about 20-40 percent (1). Lung cancer is the

most common primary malignant tumor that results in the brain

metastases, with non-small cell lung cancer (NSCLC) accounting

for more than 60 percent of the lung tumors (1, 2). The prognoses of

patients with brain metastases arising from NSCLC varies greatly

with the median survival time ranging from 6.9 to 46.8 months (3).

Several high-technique models, such as diagnosis-specific graded

prognostic assessment (DS-GPA), Graded Prognostic Assessment

for Lung Cancer Using Molecular Markers (Lung-molGPA), score

index for radiosurgery (SIR), and basic score for brain metastases

(BSBM), are used to evaluate the prognosis of NSCLC patients (3–

6), but the techniques are ineffective in evaluating the prognosis of

NSCLC patients with brain oligo-metastasis treated with

fractionated stereotactic radiotherapy (FSRT). FSRT has a higher

local control rate and fewer side effects than stereotactic

radiosurgery (SRS) therapy and has thus been widely used in the

clinic. Compared with SRS therapy, FSRT showed a different

biological effectiveness. For example, hypoxic tumor cells may

survive after SRS, but FSRT, which is based on the principle of

reoxidation, has better control rate in tumor (7), suggesting that the

SIR model might not apply to the FSRT patients. There is need to

identify prognostic factors for NSCLC patients with brain oligo-

metastasis receiving FSRT therapy. Current studies on prognostic

factors for oligo-metastasis patients treated with FSRT focus on the

size of metastatic tumor and radiation dose. However, there is still

no standard evaluation method for tumor size, radiation dose and

fractionation scheme, with different studies suggesting different

radiotherapy biologically effective dose (BED) (8–10). Therefore,

there is need to develop and enhance predictive indexes indicating

the efficacy and survival of NSCLC patients with brain oligo-

metastasis receiving FSRT.

Since the discovery of the relationship between inflammation

and cancer in 1863 by R Virchow (11), inflammatory indicators

such as neutrophil-lymphocyte ratio (NLR), platelet to lymphocyte

ratio (PLR), lymphocyte to monocyte ratio (LMR), regulatory T

cells and peripheral memory CD4+ T cell, have been used in
025
predicting efficacy and survival in different kinds of cancer (12–

16). Inflammatory indicators have also been associated with

prognosis of surgery, chemotherapy, targeted therapy,

immunotherapy (17–20), and curative effect of radiotherapy (21,

22). In our previous study, we demonstrated that NLR, PLR and

LMR constitute a simple and effective prediction index, in locally

advanced esophageal cancer treated with surgery, and radiotherapy

and in NSCLC treated with anti-vascular targeted therapy (23, 24).

Several studies have also demonstrated the predictive value of some

inflammatory indicators in NSCLC patients with brain metastasis

receiving SRS therapy (25, 26). Although FSRT is similar to

radiosurgery, the predictive value of inflammatory indicators in

NSCLC patients with brain oligo-metastasis treated with FSRT and

their effect on radiotherapy dose is unknown.

This study is a retrospective analysis of the association between

inflammatory indicators (NLR, PLR and LMR) and the local control

rate and survival of NSCLC patients with brain oligo-metastasis

treated with FSRT, and their effect on radiotherapy dose.
Materials and methods

Patient selection

This was a retrospective study involving NSCLC patients with

oligometastatic brain metastases who had been treated with FSRT at

Ningbo Medical Center Lihuili Hospital between January 2015 and

January 2022. The inclusion criteria was as follows: (i) pathological

findings of metastatic or recurrent NSCLC; (ii) 3 or less brain

metastases; (iii) FSRT used to treat brain metastases; (iv) availability

of results for routine blood tests carried out two weeks prior to

treatment. The exclusion criteria was as follows: (i) co-administration

of FSRT and targeted drugs (osimertnib, almonertinib, furmonertinib,

alectinib) during the stable disease stage; (ii) assessable focus was

treated with FSRT previously; (iii) lack of relevant hematological data

within 2 weeks prior to FSRT treatment; (iv) in an acute infection state

when obtaining blood inflammation indicators; (v) absence of efficacy

evaluation and follow-up information. In the end, 95 patients were

enrolled into the study.
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Fractionated stereotactic radiotherapy
technique

The FSRT treatment plan was based on the preference of the

attending physician because the tumors were located near or within

a critical structure. The head was first immobilized with an

aquaplast, and then a computed tomography (CT) scan with

intravenous contrast was acquired to plan radiotherapy. Fusing

magnetic resonance (MR) T1-weighted imaging with CT images

within two weeks of treatment planning. In CT and MR images, the

gross tumor volume (GTV) was defined as the contrast medium-

enhancing tumor, the clinical target volume (CTV) represented the

GTV, while the planning target volume (PTV) was considered as

CTV plus a 2-4mmmargin. A single split dose of FSRT was set from

3.5-7Gy. Approximately 90% of the maximum dose was applied to

the peripheral area, and 95% of the PTV was covered by the

peripheral dose. Radiation therapy was administered 5 times a

week. We evaluated the dose response of various FSRT

fractionation schedules according to a biologically effective dose

using an alpha/beta ratio of 10 (BED10) as a measure of the

biological effectiveness of the treatment.
Analysis of laboratory parameters

The following hematology indexes were evaluated up to 2 weeks

prior to FSRT: neutrophil count (× 109/L), platelet count (× 109/L),

lymphocyte count (× 109/L) and monocytes count (× 109/L). NLR

was defined as the neutrophil count divided by the lymphocyte

count. Similarly, PLR was the ratio of the platelet count to the

lymphocyte count, LMR was the ratio of the lymphocyte count to

the monocytes count. The cutoff values were defined as 5, 180 and 4

for NLR, PLR, and LMR, respectively (25, 27–29). For tumor

diameter, the cut off value was 2cm (median tumor diameter),

and for BED 10, the cut off value was 48 Gy.
Outcome evaluation and statistics

Taking brain enhanced MR re-examination after FSRT in 1-2

months, subsequently checking per 2-3 months, checking enhanced

MR immediately at the appearance of intracranial hypertension or

neuropsychiatric symptoms. Intracranial local control (i-LC) was

defined as no significant increase in the size tumor lesion treated

with FSRT on follow-up MR. Intracranial local control survival (i-

LCS) was the primary end point of assessment. It was defined as the

time from the start of radiation therapy to the time enlargement of

the tumor treated with FSRT was observed. Overall survival (OS)

was calculated from the date of initiation of FSRT to the time of

death from any reason or last time of follow up. OS was the

secondary end point of assessment.

The statistical analyses were performed using a social science

statistical software package, version 26.0 (SPSS Inc., Chicago, IL,

US). Chi-squared tests were used to analyze categorical variables. A

Kaplan-Meier survival curve was plotted and compared with a log-

rank-test curve. Factors for survival were identified using univariate
Frontiers in Oncology 036
and multivariate Cox regression analyses. Statistical significance

was deemed to be a P-value < 0.05.
Results

Patient characteristics and curative effect

The median age of the study participants was 63 years (range

from 37 to 79 years).Adenocarcinoma was the most common type

of cancer (n = 79, 83.2%), with 13 patients having squamous cell

carcinomas, 2 patients having poorly differentiated carcinoma, and

1 patient having large cell carcinoma. Only 11 patients had

karnofsky performance status (KPS) scores less than 80, while the

rest had scores greater than or equal to 80. The maximum diameter

of intracranial metastases ranged from 0.6 to 6.4cm, with a median

diameter of 2.0cm. A total of 38 patients (40.0%) had confirmed

EGFR mutations, 3 patients (5.1%) had ALK rearrangement and

one patient had MET-14 jumping mutation. Most of the patients

had no history of brain radiotherapy (n = 84, 88.4%). The median

BED10 was 53.6Gy (range from 37.5 to 85.1 Gy) and the number of

splits was 5-18. The detailed information of patient characteristics

and baseline data are shown in Table 1.

The follow-up time ranged from 3.0 to 37.7 months, with a

median of 20.6 months. The local control rates at 6 and 12 months

were 82.9% and 66.5%, respectively. The median i-LCS and OS were

15.8 months and 19.4 months, respectively. (Figure S1A, B).
Factors associated with intracranial local
control survival and their effect on
radiotherapy dose

Univariate analyses found that tumor diameter, BED10, PLR

and LMR were significant risk factors for i-LCS. Other factors

including age, gender, number of brain metastases and presence of

extracranial metastasis at diagnosis were not associated with i-LCS

in univariate analyses (Table 2). Median i-LCS was significantly

shorter in patients with tumor diameter ≥ 2 cm, compared to

patients with smaller tumors (13.7 months vs. 31.5 months, HR:

2.595, 95% CI: 1.417-4.750, P = 0.002) (Figure 1A). Median i-LCS

was significantly longer in patients with BED10 ≥ 48Gy, compared

to patients with less BED10 (17.0 months vs 5.5 months, HR: 0.241,

95% CI: 0.124-0.468, P = 0.001) (Figure 1B). Median i-LCS was

significantly longer among patients with PLR ≥ 180, compared to

patients with lower values (10.7 months vs 16.5 months, HR: 2.023,

95% CI: 1.116-3.669, P = 0.020) (Figure 1C). Median i-LCS was

significantly longer in patients with LMR ≥ 4, compared to patients

with lower values (not reached vs 14.0 months, HR: 0.306, 95% CI:

0.147-0.636, P = 0.001) (Figure 1D). The results of multivariate

analysis demonstrated that tumor diameter (< 2 cm), BED10 (≥

48Gy) and LMR (≥ 4) were independently associated with good i-

LCS (Table 3).

We then evaluated the effect of the independent prognostic

factors on radiotherapy among the patients with BED10 ≥ 48Gy. In

total, 49 patients had BED10 ≥ 48Gy, with the median BED10 being
frontiersin.org
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53.6Gy. Surprisingly, in patients with 2 independent risk factors

(tumor diameter ≥ 2 and LMR < 4), the i-LCS was longer in patients

with BED10 greater than 53.6Gy, compared to patients with BED10

less than 53.6Gy (20.7 months vs 12.0 months, HR: 0.290, 95% CI:

0.082-1.030, P = 0.042) (Figure 2A). There was no significant

difference in i-LCS among patients with different BED10 values

and with only 1 independent risk factor (P = 0.101, Figure 2B)
Factors associated with overall survival

Results of univariate analysis revealed that driver gene

mutations, PLR< 180 and LMR ≥ 4 were associated with better

OS, but not BED10 (Table 2). Patients positive for driver gene

mutations had longer median OS than patients negative for driver

gene mutations or with unknown mutations (30.0 months vs 15.0

months, HR: 0.417, 95% CI: 0.226-0.769, P = 0.005) (Figure 3A).

The median OS of patients with PLR <180 was significantly shorter

compared to patients with higher values (14.8 months vs 20.5

months, HR: 1.856, 95% CI: 1.024-3.366, P = 0.042) (Figure 3B).

The median OS of patients with LMR ≥ 4 was significantly longer

compared to patients with lower values (32.4 months vs 16.8

months, HR: 0.408, 95% CI: 0.197-0.843, P = 0.015) (Figure 3C).
TABLE 1 Basic characteristics of non-small cell lung cancer patients
with oligometastatic brain metastases.

Characteristics Patients (%)

Age (years)

Median 63 years

Range 37-79

< 65 55 (57.9%)

≥ 65 40 (42.1%)

Gender

Male 45 (47.4%)

Female 50 (52.6%)

Karnofsky performance status (%)

≥ 80 84 (88.4%)

< 80 11 (11.6%)

Histologic subtype

Adenocarcinoma 79 (83.2%)

Squamous cell carcinoma 13 (13.7%)

Other 3 (3.1%)

Driver gene mutation

Positive 42 (44.2%)

Negative or unknown 53 (55.8%)

Number of brain metastases

1 71 (74.7%)

2-3 24 (25.3%)

Localization of brain metastases

Supratentorial 81 (85.3%)

Infratentorial 14 (14.7%)

CNS treatment before FSRT

None 84 (88.4%)

WBRT 4 (4.2%)

FSRT not in this location of metastases 7 (7.4%)

Extracranial metastases

Yes 74 (77.9%)

No 21 (22.1%)

Maximum diameter of brain metastases (cm)

Median 2.0

Range 0.6-6.4

>2 44 (46.3%)

≥2 51 (53.7%)

BED10 of FSRT (Gy)

Median 53.6

(Continued)
TABLE 1 Continued

Characteristics Patients (%)

Range 37.5-85.1

>48 16 (16.8%)

48-53.6 50 (52.6%)

<53.6 29 (30.6%)

NLR

Median 2.75

Range 0.78-9.25

>5 70 (73.7%)

≥5 25 (26.3%)

PLR

Median 152.00

Range 52.38-698.00

>180 65 (68.4%)

≥180 30 (31.6%)

LMR

Median 2.57

Range 0.83-16.00

>4 67 (70.5%)

≥4 28 (29.5%)
FSRT fractionated stereotactic radiotherapy, WBRT whole brain radiation therapy, BED10
biologically effective dose (a/b = 10), NLR neutrophil to lymphocyte ratio, PLR platelet
lymphocyte ratio, LMR lymphocyte to monocyte ratio.
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TABLE 2 Univariate analysis of factors associated with intracranial local control survival and overall survival.

Prognostic factors Intracranial local control survival Overall survival

HR 95% CI P-value HR 95% CI P-value

Age (years)

< 65 1 1

≥ 65 0.948 0.536-1.677 0.855 0.891 0.497-1.596 0.698

Gender

Female 1 1

Male 0.981 0.558-1.724 0.946 1.185 0.673-2.086 0.557

KPS (%)

< 80 1 1

≥ 80 0.689 0.321-1.477 0.339 1.260 0.498-3.188 0.626

Histologic subtype

Adenocarcinoma 1 1

Others 1.627 0.785-3.370 0.191 1.811 0.920-3.564 0.086

Driver gene mutation

Negative or unknown 1 1

Positive 0.675 0.384-1.188 0.173 0.417 0.226-0.769 0.005

Number of brain metastases

1 1 1

2-3 0.851 0.457-1.584 0.611 0.887 0.475-1.657 0.707

Localization of brain metastases

Supratentorial 1 1

Infratentorial 1.127 0.501-2.535 0.773 0.447 0.138-1.447 0.179

CNS treatment before FSRT

None 1 1

RT 0.636 0.251-1.611 0.340 0.457 0.141-1.478 0.191

Extracranial metastases

No 1 1

Yes 0.876 0.464-1.654 0.683 1.073 0.544-2.117 0.840

Maximum diameter of brain metastases (cm)

< 2 1 1

≥ 2 2.595 1.417-4.750 0.002 1.265 0.719-2.225 0.414

BED10 of FSRT (Gy)

< 48 1 1

≥ 48 0.241 0.124-0.468 0.001 0.903 0.421-1.937 0.793

NLR

< 5 1 1

≥ 5 1.104 0.592-2.056 0.756 1.261 0.678-2.343 0.464

PLR

(Continued)
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Multivariate analysis demonstrated that LMR ≥ 4 and presence of

driver gene mutations were independently associated with better

OS (Table 3).
Discussion

To our knowledge, this is the first study to evaluate the

predictive value of inflammatory indicators in NSCLC patients

with brain oligo-metastasis treated with FSRT. Our results

showed that, in addition to tumor diameter and BED 10, LMR

(an inflammatory indicator), was also an independent prognostic

factor for i-LCS. Tumor diameter and BED10 had previously been

identified as prognostic factors for i-LCS (9, 30, 31), but our study is

the first to identify LMR value as an independent prognostic factor.

Anna Cho et al. (25) reported that NLR, PLR and LMR were

independent prognostic factors of overall survival in NSCLC

patients with brain metastases after Gamma Knife Radiosurgery.

However, Aijie Li et al. (32) proposed that LMR was the only

independent prognostic factor of overall survival in NSCLC patients

with brain metastases. The differences in these finding could be due

to differences in the study population. The participants in our study

were all NSCLC patients with oligometastatic brain metastases who

had undergone FSRT treatment. We found that LMR as the only

inflammatory indicator that acted as an independent prognostic

factor of overall survival, although PLR was identified as prognostic

factor during univariate analysis but was negative in multivariable

analysis. Therefore LMR ≥ 4 is an excellent independent prognostic

factor for i-LCS and overall survival in NSCLC patients with

oligometastatic brain metastases treated with FSRT. We also

found that positivity for driver gene mutations was an

independent prognostic indicator of overall survival, which was

consistent with the findings of Aijie Li et al. (32). The reason why

driver gene mutations were independent prognostic indicators of

overall survival but not i-LCS may be attributed to the overall poor

extracranial control rate in patients negative for driver gene

mutations, which leads to the death from extracranial lesions.

It is generally acknowledged that the cut-off value of LMR is 4 (25,

26), which was confirmed in our study. There is no consensus on the

cut-off value of tumor diameter. Some articles indicate that the cut-off

value of tumor diameter is 1cm in brain metastases receiving
Frontiers in Oncology 069
radiosurgery (33), and 2cm or 3cm in brain metastases receiving

FSRT (34, 35). The i-LCS was significantly better in patients with

lower cut-off value. Our results showed the cut-off value was 2cm

demarcated by the median value. The median i-LCS was just 13.7

months in patients with tumors above 2cm but was as long as 31.5

months in patients with tumors below 2 treated with FSRT. The

effective radiation dose for clinical application is still controversial. It is

generally agreed that the radiation dose cut-off value for SRS treatment

in brain metastases is 18Gy, with local control deteriorating

significantly in patients receiving the dose below 18Gy (36). The use

of BED is determining the curative effect of SRS is debatable (37), but is

usually applied in determining the curative effect of FSRT treatment.

Several divide-up radiotherapy plans have been suggested (8–10). One

review summarized and compared the curative effect of different BED

values, and concluded that BED12 values greater than 40Gy (which

equals to BED10 greater than 48Gy) achieved a higher local control rate

(38). Another study showed the 1 year local control rate was 100% for

BED10 greater than 48Gy but was only 33% for BED10 less that 48Gy

in treating postoperative metastasis tumor bed using FSRT (39). Thus it

is generally believed the cut-off value of BED10 is 48Gy. In our study,

we found that the median i-LCS of patients who received BED10

greater than 48Gy was significantly longer than for patient who

received less BED10 (17.0 months vs 5.5 months). Results from

multivariate analysis indicated the BED10 was an independent

prognostic factor of i-LCS. Samuel R et al. (34) assessed if

enhancement of BED value improved i-LCS, and found that

enhancing BED10 value did not improve i-LCS in patients with a

tumor diameter of more than 3cm. However, we found that

administration of BED 10 greater than 53.6Gy improved the i-LCS

of patients with two independent risk factors (tumor diameter ≥ 2 and

LMR < 4), but had no benefit in the patients with 1 or no independent

risk factor. The difference in findings may be because the study by

Samuel R et al. enrolled patients with only 1 independent risk factor

(tumor diameter ≥3cm) and did not screen the patients for obstinate

resistance to radiotherapy. Unlike their results, this study analyzed the

LMR value below 4 as the other independent risk factor. Thus got

benefit by improving BED value in patients simultaneously possessed

two independent risk factors (tumor diameter ≥ 2 and LMR < 4)

equivalent to possessing obstinate resistance to radiotherapy.

Neutrophils inhibit immune functions and induce resistance to

chemoradiotherapy by secreting cytokines and chemokines (13, 40,
TABLE 2 Continued

Prognostic factors Intracranial local control survival Overall survival

HR 95% CI P-value HR 95% CI P-value

< 180 1 1

≥ 180 2.023 1.116-3.669 0.020 1.856 1.024-3.366 0.042

LMR

< 4 1 1

≥ 4 0.306 0.147-0.636 0.001 0.408 0.197-0.843 0.015
HR hazard ratio, CI confidence interval, KPS karnofsky performance status, CNS central nervous system, FSRT fractionated stereotactic radiotherapy, RT radiotherapy, BED10 biologically
effective dose (a/b = 10), NLR neutrophil to lymphocyte ratio, PLR platelet to lymphocyte ratio, LMR lymphocyte to monocyte ratio
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41). Platelets are a critical source of cytokines, such as transforming

growth factor-b, platelet-derived growth factor, and vascular

endothelial growth factor (VEGF), which induce angiogenesis and

cell invasion (42, 43). Moreover, lymphocytes can produce several

cytokines, including IFN-g and perforin, to prevent tumor

development and induce apoptosis in cancer cells (36).

Monocytes are innate immune cells that play important roles in

tumor progression, invasion and metastasis and can be grouped

into macrophages and myeloid-derived suppressor cells (44, 45).

These findings from literature suggest that NLR, PLR and LMR

have potential roles as prognostic factors in tumor development and
A

B

D

C

FIGURE 1

Association of tumor diameter (≥ 2cm versus < 2cm) ((A) P = 0.002),
BED10 (≥ 48Gy versus < 48Gy) ((B) P = 0.001), PLR (≥ 180 versus <
180) ((C) P = 0.020) and LMR (≥ 4 versus < 4) ((D) P = 0.001) with
intracranial local control survival.
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treatment. In our study, we found that LMR but not NLR was a

prognostic factor in the NSCLC patients with oligometastatic brain

metastases receiving FSRT treatment. The difference between the

two factors could be due to the effect of glucocorticoids.

Glucocorticoids are usually administered to reduce the

intracranial pressure before radiation therapy once the diagnosis

of brain metastasis has been confirmed. The use of glucocorticoids

can affect neutrophil counts which affects NLR value resulting in a
Frontiers in Oncology 0811
negative result. It is also possible that NLR has no prognostic value

in patients receiving FSRT treatment.

There are some limitations in our study. First, this was a

retrospective study involving a small sample from a single center,

which may have caused analytical bias. Second, the lack of follow-up

data for different treatments before and after the radiotherapy may

have influenced the analysis. Third, adverse reactions such as acute

cerebral edema and radionecrosis are difficult to detect and were not
A

B

FIGURE 2

Association of BED10 (> 53.6Gy versus ≤ 53.6Gy) with intracranial local control survival in patients with 2 independent risk factors (tumor diameter ≥
2 and LMR < 4) ((A) P = 0.042) and in patients with only 1 independent risk factor ((B) P = 0.101).
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reported during follow-up, thus adverse reactions analysis could not

be carried out. Fourthly, selection bias may have been present

despite the strict inclusion criteria, and thus the findings need to be

validated in future prospective studies. Fifth, a part of patients from

our study had been pronounced dead because of the extracranial

lesions before the intracranial lesions, and this point was linked to

the end of intracranial follow-up which resulted in attrition bias.

Therefore, there is need for multi-center prospective randomized
Frontiers in Oncology 0912
clinical trials with large sample size to validate the prognostic value

of LMR in NSCLC patients with oligometastatic brain metastases

treated with FSRT and its effect on radiotherapy dose.
Conclusions

LMR is a prognostic factor for i-LCS and OS in NSCLC patients

with oligometastatic brain metastases treated with FSRT. The basic

dose for BED10 was greater that 48Gy, but should be increased

to greater than 53.6Gy in patients with tumor diameter ≥ 2 and

LMR < 4.
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FIGURE 3

Association of driver gene mutation (A, P = 0.005), PLR (B, P =
0.042) and LMR (C, P = 0.015) with overall survival.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1216852
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1216852
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Oncology 1013
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1216852/

full#supplementary-material
SUPPLEMENTARY FIGURE 1

Curves of intracranial local control survival (A) and overall survival (B).
References
1. Patchell RA. The management of brain metastases. Cancer Treat Rev (2003) 29
(6):533–40. doi: 10.1016/s0305-7372(03)00105-1

2. Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, et al. Pan-Asian
adapted clinical practice guidelines for the management of patients with metastatic
non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS,
SSO and TOS. Ann Oncol (2019) 30(2):171–210. doi: 10.1093/annonc/mdy554

3. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating
survival in patients with lung cancer and brain metastases: an update of the graded
prognostic assessment for lung cancer using molecular markers (Lung-molGPA).
JAMA Oncol (2017) 3(6):827–31. doi: 10.1001/jamaoncol.2016.3834

4. Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, et al. Summary
report on the graded prognostic assessment: an accurate and facile diagnosis-specific
tool to estimate survival for patients with brain metastases. J Clin Oncol (2012) 30
(4):419–25. doi: 10.1200/JCO.2011.38.0527

5. Lorenzoni J, Devriendt D, Massager N, David P, Ruıź S, Vanderlinden B, et al.
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Low radiotherapy dose is
suitable for brain metastases in
SCLC compared with high dose
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Sciences and Peking Union Medical College, Shenzhen, China, 4Department of Anesthesia, Tianjin
Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key
Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer,
Tianjin, China, 5Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital,
Tianjin, China
Objective: This study was designed to evaluate the suitable radiotherapy dose in

SCLC patients with BM.

Methods: A retrospective analysis was performed among 121 patients on the

prognosis of BM of SCLC who were admitted to our hospital from 2013 to 2023.

They all received first line chemotherapy. 80 patients of them received TRT after

chemotherapy. The Chi square method was used to compare the categorical

data. Univariate survival analysis was estimated by Kaplan Meier method and the

logrank was used to compare survival curves between groups. A multivariate

prognostic analysis was made by the Cox proportional hazard model. The iOS

and iLC of two groups of low dose and high dose were analyzed after propensity

score matching (PSM).

Results: In all the patients, the median follow-up time was 18.6 months (range

6.30~85.7), the 2-year iOS and iLC rates were 15.4% and 70.3%, respectively, and

cerebral necrosis occurred in 2 patients. In univariate analysis related to iOS,

extracranial disease control (p=0.023), higher DS-GPA (≥2) (p=0.016),

immunotherapy (p=0.049), low-dose(p=0.030), and WBRT+SIB (p=0.009)

were significantly associated with an increase in survival rate. After PSM, the 2-

year iOS of low dose (n=49) was significantly higher than that of high dose (n=49)

(P=0.025), while the 2-year iLC was not significantly improved (P=0.267). In DS-

GPA < 2 subgroup, the iOS of low dose group was significantly higher than that of

high dose group (p=0.019). In the DS-GPA ≥ 2 subgroup, the 2-year iLC of the

low dose group was significantly inferior than that of the high dose group

(p=0.044).
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Conclusions: The iLC was improved along with increasing radiotherapy dose,

but high dose had inferior iOS compared to low dose, while there were

not significantly improving iLC when radiotherapy BED >56Gy. But in patients

with DS-GPA≥2 subgroup, high dose brought better iLC benefits.
KEYWORDS

carcinoma, brain metastases, small cell lung cancer, radiotherapy, prognosis
Introduction

Lung cancer is the second most common cancer worldwide. It is

the most common cancer in men and the second most common

cancer in women. There were more than 2.2 million new cases of

lung cancer in 2020 (1). Small cell lung cancer (SCLC) is a high-

grade neuroendocrine tumor characterized by rapid growth, early

metastatic spread, and initial responsiveness to therapy. It

represents about 15% of all lung cancers. Approximately 18% of

the patients were found to have BM at the time of diagnosis. In

approximately 33% of the cases, these BM did not cause symptoms.

More than 50% will develop BM within 2 years (2). BM were found

to have a negative effect on survival in patients with SCLC. The

median survival time after BM was 8.7 months and 3-year OS rate

was 15.0%, the median survival time of patients without BM was

20.1 months and 3-year OS was 33.4% (P=0.014) (3, 4). Patients

with BM were subsequently treated with palliative therapy. The

standard treatment for SCLC BM is still WBRT, with an overall

effective rate (ORR) of approximately 50% -80% (5). Magnetic

resonance imaging (MRI) is a more sensitive technique to detect

BM, In the MRI era, the estimated prevalence of BM increased by

14% (6). Patients with asymptomatic BM by MRI were more

detected, and had a better prognosis (7). In our previous clinical

studies, we have found that WBRT combined with radiation boost

can improve the overall survival (OS) of SCLC patients with BM (8).

However, the suitable radiotherapy dose of BM and efficacy are not

very clear. This article analyzes the efficacy and safety of low dose or

high dose in SCLC patients with BM retrospectively, in order to

optimize WBRT+ suitable radiation boost dose for SCLC patients

with BM.
Materials and methods

Inclusion criteria

We retrospectively analyzed the clinical characteristics of SCLC

BM patients who received brain radiation therapy from 2013 to

2023. All patients received treatment from Tianjin Cancer Institute

and Hospital. This study was approved by the ethics committee of

Tianjin Medical University Cancer Hospital. This research on

patient services in our hospital was an analysis of patients’

medical data, which did not involve human experiments or
0216
compensation. The Tianjin Medical University Cancer Hospital

approved the study data collection from the hospital information

system. It is typically diagnosed in small biopsies or cytology

specimens, demonstrating neuroendocrine features of SCLC (9).

All clinical data of patients are from outpatient or inpatient clinical

records. The patient underwent standardized physical

examinations, including CT scans of the neck, chest, and

abdomen, brain MRI, as well as ECT or PET/CT. ES-SCLC was

defined in this study depending on the staging system of the

Veterans Administration Lung Study Group, (VALG).
Initial treatment strategy

All patients underwent chemotherapy and/or combined

concurrent radiotherapy/sequential TRT. Chemotherapy

strategies: The etoposide(100 mg from days 1 to 5) with either

cisplatin (30 mg/m from days 1 to 3) or carboplatin (500 mg for day

1) (platinum–etoposide) as the first-line chemotherapy regimen.

The median chemotherapy cycles are 6 (range 2-6). TRT strategies:

The tumor and metastatic lymph nodes were defined as the

GTV. The CTV encompassed the tumor bed after chemotherapy,

and the draining area of metastatic lymph nodes before

chemotherapy, which was expanded from the GTV by a 5 mm

uniform margin. The PTV was evenly extended 0.5 to 1cm uniform

margin on the basis of CTV. The prescription dose was 50-63Gy in

25-30 fractions, 1.8-2.1 Gy per fraction at one fraction per day. All

patients were treated WBRT with radiation boost by IMRT or SRS.

The WBRT plus a radiation boost strategy: WBRT was performed

with 6 MV photon beams using opposed lateral fields (90° and 270°)

with a total dose of 30 Gy (3 Gy per fraction administered in 10

fractions at one fraction per day). The SRS was administered using a

Cyberknife (Accuracy, Sunnyvale,California, USA) or X-knife after

the WBRT in 56 patients. The GTV encompassed contrast-

enhancing tumor on MRI and were reviewed by the radiation

oncologist and the neurosurgeon based on the tumor volume,

tumor location, and neurological symptoms. The PTV was

defined as the 1 to 2 mm margin to the GTV. The administered

radiation dose was 8.5-19 Gy in 1-3fractions with 6.3-18.0 Gy per

fraction and one fraction per day(BED=10.3-29.9Gy). The IMRT

simultaneous integrated boost WBRT (WBRT-SIB) was

administered in 65 patients. The GTV was contoured based on

the tumor from contrast-enhanced MRI scans. The PTV of brain
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metastases (PTVbm) was defined as the 3mm margin to the GTV

with the dose of 35-50 Gy in 10 fractions with 3.5-5 Gy per fraction

and one fraction per day. In general, we treated BMs less than

10 mm in maximum diameter with a prescription of 50 Gy

(BED=75Gy); BMs larger than 10 mm but smaller than 30 mm

with 40 Gy(BED=56Gy); and BMs larger than 30mm and less than

40 mm with 35Gy(BED=47.25Gy). The prescription of dose

fractionation was consistent with previous clinical trials (10, 11).

The PTV was expanded from the contour of the brain by the 3mm

uniform margin with the dose of 30 Gy in 10 fractions with 3 Gy per

fraction and one fraction per day.
Efficacy evaluation, follow-up and
side effects

Acute toxicity reactions are classified according to CTCAE

version 5.0, and late toxicity is classified according to RTOG

standards. Evaluate the efficacy of solid tumors according to

RECIST 1.1. Repeat the baseline assessment every two cycles and

every 6-8 weeks after treatment interruption until the disease

progresses. Intracranial overall survival (iOS)is defined as the

period from the start of BM diagnosis by imaging (MRI or

enhanced CT) until the event occurs or the last follow-up.

Intracranial local control survival (iLC) is defined as the time

from the start of BM diagnosis by imaging (MRI or enhanced

CT) until the first event of intracranial local failure.
Statistical analysis

All survival analyses were conducted using the Kaplan Meier

method. Compare survival curves between different groups using

logarithmic rank test and use c2 test and compare classified data. Cox

proportional hazard regression model was used for Multivariate

analysis of survival rate. Two groups of patients were subjected in a

1:1 ratio by PSM to analyze and control the confounding variables,

including diagnosis-specific Graded Prognostic Assessment (DS-

GPA) score, number of intracranial metastases, maximum diameter

of metastases, and progression of extracranial diseases. In this study,

the p-values were all one-way tests, and there was a statistically

significant difference between groups when p<0.05. All analyses were

conducted using SPSS software version 25.0.
Result

Clinical features

The patient characteristics of 121 patients were shown in Table 1.

The majority of patients are male (n=100, 82.6%). The median age is

61 years (range 18-83 years). Most patients have severe smoking

(smoking index ≥ 400, n=90,74.4%). Most patients have a superior

Karnofsky performance status (KPS) score (KPS score ≥ 80, n=107,

88.4). The most common metastatic organs are as follows: 40 cases
Frontiers in Oncology 0317
TABLE 1 Distribution of the 121 patients’ treatment and clinical
characteristics.

Characteristic Number Ratio
(%)

Age (yrs)

<65 yrs 86 71.1

≥65 yrs 35 28.9

Gender

male 100 82.6

female 21 17.4

Smoke index

≥400 90 74.4

<400 31 25.6

Family history of tumors

No 97 80.2

Yes 24 19.8

Weight loss

>5% 96 79.3

≤5% 25 20.7

KPS

≥80 107 88.4

<80 14 11.6

Thoracic radiation therapy dose

<50Gy 12 9.9

≥50Gy 68 56.2

Stage

LS-SCLC 67 55.4

ES-SCLC 54 44.6

Number of BMs

1 51 42.1

2-3 62 51.2

>3 8 6.6

Maximum diameter of the largest tumor(cm)

≤ 2.0 76 62.8

> 2.0 45 37.2

Interval from diagnosis of SCLC to BMs (mths)

≤ 10 63 52.1

> 10 58 47.9

Extracranial disease control status

Yes 40 33.1

No 81 66.9

(Continued)
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(33.1%) had bone metastasis; 21 cases (17.4%) had distant lymph

node metastasis; 20 cases (16.5%) had lung metastasis; 15 cases

(12.4%) had pleural metastasis; 14 cases (11.6%) had adrenal

metastasis; Liver metastasis occurred in 12 cases (10.0%). Most

patients received more than 4 cycles of chemotherapy (n=115,

95.0%). 86 patients (71.1%) responded to chemotherapy. Only 14

patients received immunotherapy (immune checkpoint inhibitors,

ICIs), and 5 patients received treatment with arotinib.
Survival and side effects

The median follow-up time was 18.6 months (ranging from 6.30

to 85.7months) with 2 patients lost to follow-up. The 2-year

incidence of iOS and iLC was 15.4% and 70.3%, respectively

(Figure 1). 92 patients died of disease progression, 1 patient died

of radiation pneumonia, and 2 patients developed radiation brain

necrosis. A few of patients have experienced treatment related toxic

side effects, mainly including nausea, vomiting, dizziness, headache,

leukopenia, radiation brain necrosis, etc. (The side effects of the low

dose group and the high dose group are shown in Table 2).

Assess the predictive significance of patient and disease

characteristics for iOS. Due to the small number (only 5) patients

who were treated with arotinib, this factor is not suitable for

analysis. In univariate analysis related to iOS, extracranial disease

control (p=0.023), higher DS-GPA (≥2) (p=0.016), immunotherapy

(p=0.049), low dose (p=0.030), and WBRT+SIB (p=0.009) were

significantly associated with an increase in survival rate (Table 3).

Age, gender, weight loss, smoking history, TRT dosage, and the

time interval for BM after diagnosis were not significantly observed
Frontiers in Oncology 0418
in staging and the number of brain metastases (all factors p>0.05).

Multivariate covariates analysis of factors related to iOS were

further analyzed with p<0.05 in univariate Cox regression model

analysis. The extracranial progress control (p=0.049) and higher

DS-GPA (≥2) (p=0.014) can significantly improve iOS by

multivariate analysis (Table 3). However, there was no significant

difference in immunotherapy, BM radiotherapy strategy and

radiotherapy dose (p>0.05 for all factors).
Comparison of survival between the low
dose group and the low dose group

This study divided 121 patients into two groups according to

BM radiotherapy, with 65 receiving low dose treatment and 56

receiving high dose. As shown in Table 4, compared to the low dose

group, the high dose group had more patients with more weight

loss >5%(9.2%vs33.9%, p=0.001), a smaller maximum diameter of

BMs (53.8%vs73.2%, p=0.022), longer interval from diagnosis of

SCLC to BMs (36.9% vs69.6%, p=0.000)and SRS (1.5%vs96.4%,

p=0.000), which resulted in an imbalance between the two groups,

and there was no significant difference in other baseline

characteristics between the two treatment groups. Because the

difference between SIB and SRS was too significant, and the

majority of the low dose group had SIB and the majority of high

dose group had SBRT, so the brain radiotherapy strategy factor was

excluded. After a 1:1 PSM analysis, the baseline characteristics of

the two groups of patients were well balanced (Table 5). The low

dose group (n=49) was significantly superior than that of the high

dose group (n=49) about the 2-year iOS (47.1% vs 30.7%, P=0.025),

while there was no increasing significantly about the 2-year iLC in

high dose(65.3% vs 91.9%, P=0.267) (Figure 2).

Further analysis was conducted on the prognosis of the low and

high dose groups in different DS-GPA scores. It was found that in the

GPA<2 subgroup, the 2-year iOS in the low dose group was

significantly superior than that in the high dose group (65.3% and

25.0%, respectively, at, p=0.019), while in the DS-GPA ≥ 2 subgroup,

there was no significant difference between the low dose group and

high dose group (31.6% and 28.8%, respectively, p=0.502); in the DS-

GPA<2 subgroup, there was no significant difference between the low

dose group and high dose group in the 2-year iLC (100% and 100%,

respectively). In the DS-GPA ≥ 2 subgroup, the 2-year iLC of the low

dose group was significantly inferior than that of the high dose group

(52.2% and 91.7%, respectively, p=0.044) (Figure 3).
Discussion

In this study, we conducted a further study about radiotherapy

dose in SCLC patients with BMs. Our previous studies have

confirmed that WBRT with additional radiation boost is more

effective than the WBRT alone group in prolonging the survival

of SCLC patients with BMs (12). On this basis, we further

investigate the different radiotherapy dose in brain metastases:

low dose and high dose, which have effects on iOS, iLC, and

radiotherapy side effects. The results showed that there was no
TABLE 1 Continued

Characteristic Number Ratio
(%)

(Diagnosis-specific Graded Prognostic
Assessment) DS-GPA

<2 31 25.6

≥2 90 74.4

Immunotherapy (ICI)

Yes 14 11.6

No 107 88.4

Targeted therapy (anti-angiogenic therapy)

Yes 5 4.1

No 116 95.9

Brain radiotherapy

WBRT+SIB 66 54.5

WBRT+SBRT 55 45.5

Radiotherapy dose (BED)

low-dose (BED ≤ 56Gy) 65 48.1

high-dose (BED>56Gy) 56 51.9
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TABLE 2 Adverse reactions of 98 patients of SCLC with BMs in t in two treatment groups after PSM matching.

Adverse reactions Low dose (49) High dose (49) P value

1 or 2 (%) 3 (%) 1 or 2 (%) 3 (%)

Weakness 8 3 8 2 0.550

Headache 15 10 19 9 0.379

Dizziness 12 8 10 8 0.520

Nausea 20 7 19 7 0.483

Vomit 4 0 3 0

Fever 1 0 0 0

Leukopenia 20 5 18 5 0.581

Thrombocytopenia 2 0 2 1

(Continued)
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FIGURE 1

The iOS and iLC in 121 SCLC BM patients.
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TABLE 2 Continued

Adverse reactions Low dose (49) High dose (49) P value

1 or 2 (%) 3 (%) 1 or 2 (%) 3 (%)

Radiation dermatitis 2 0 2 0 0.167

Disorders of consciousness 0 0 0 0

Radiation brain necrosis 1 0 0 1 0.500
F
rontiers in Oncology
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TABLE 3 121 patients’ clinical and treatment characteristics and survival-related factors on iOS in univariate and multivariate analysis.

Characteristic

univariate analysis multivariate analysis

HR 95% CI P
value

HR 95% CI P
value

Age (<65 yrs v.s.≥65 yrs) 0.580 0.361 0.933 0.055

Gender(male v.s.female) 0.951 .526 1.721 0.869

Smoke index (≥400v.s. <400) 0.872 0.536 1.419 0.582

Family history of tumors (no v.s.yes) 1.310 0.786 2.182 0.301

Weight loss (>5%v.s.≤5%) 0.939 0.542 1.628 0.824

Karnofsky scoring (≥80v.s. <80) 0.807 0.427 1.526 0.510

Thoracic radiation therapy dose (≥50Gyv.s.<50Gy) 0.919 0.450 1.875 0.816

Stage [LS (limited stage) vs. ES (extensive stage)] 1.301 0.851 1.990 0.224

Number of BMs (1v.s.2-3v.s.>3) 1.159 0.802 1.675 0.432

Maximum diameter of the largest tumor (cm) (≤ 2.0v.s.> 2.0) 0.976 0.636 1.498 0.912

Interval from diagnosis of SCLC to BMs (mths) (≤ 9v.s> 9) 0.878 0.576 1.338 0.545

Extracranial disease control status (yes v.s. no) 1.723 1.077 2.756 0.023 1.628 1.001 2.648 0.049

Diagnosis-specific Graded Prognostic Assessment (DS-GPA) (<2 v.s.≥2) 0.522 0.307 0.886 0.016 0.508 0.296 0.873 0.014

Immunotherapy (no v.s.yes ) 0.444 0.193 1.020 0.049 0.492 0.206 1.175 0.110

brain metastasis (BM) Radiotherapy [whole brain radiotherapy (WBRT)+simultaneous
integrated boost (SIB) v.s.WBRT+stereotactic radiosurgery (SRS)]

0.563 0.367 0.863 0.009 0.268 0.035 2.075 0.207

Radiotherapy dose (low-dose v.s.high dose) 1.607 1.048 2.465 0.030 0.438 0.056 3.407 0.430
tie
TABLE 4 Distribution of the 121 patients’ treatment and clinical characteristics in two treatment groups.

Characteristic Low dose (n=65) (%) High dose (n=56)(%) P value

Age (<65 yrs) 67.7% 75.0% 0.377

Gender(male) 84.6% 80.4% 0.537

Smoke index≥400 83.1% 74.5% 0.189

Family history of tumors (yes) 24.6% 14.3% 0.116

Weight loss >5%(yes) 9.2% 33.9% 0.001

Karnofsky scoring≥80 86.2% 91.1% 0.399

Thoracic radiation therapy dose ≥50Gy 79.2% 87.5% 0.263

Stage [limited stagesmall cell lung cancer (LS-SCLC)] 50.8% 60.7% 0.181

Number of brain metastasis (BMs) 0.306

1 44.6% 39.3%

(Continued)
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significant difference in the side effects of different radiotherapy

dose (Table 2). After PSM matching, the 2-year iOS of the low dose

group was significantly superior than that of the high dose group.

Further analysis revealed that in the DS-GPA<2 subgroup, the iOS

in the low dose group was significantly superior than that in the

high dose group; In subgroups of DS-GPA ≥ 2, the iLC in the high

dose group was significantly superior than that in the low

dose group.

More than 50% of SCLC patients may have BMs during the disease

developing, and the prognosis is poor after the occurrence of BM. The

treatment of BM in SCLC patients is different from other solid tumors

because SCLC is a very aggressive, poorly differentiated, and high-grade

neuroendocrine carcinoma (13). Even in patients with stage I-III SCLC

who received surgical resection, the cumulative incidence of brain

metastases was as high as 30% (14). According to the time of BMs to

initial diagnosis, clinical manifestations of BMs (synchronous and

asynchronous BM), BM treatment plans are different. In addition,
Frontiers in Oncology 0721
the radiotherapy strategy also considers the patient’s extracranial

disease control status. Considering the high frequency of intracranial

recurrence, SRS or surgical treatment SRS for limited BM from SCLC is

not a standard of care. However, more evidence suggests that SBRT

alone is feasible for treating BM in SCLC patients. However, in a large

multicenter analysis, it was found that compared to SRS alone, WBRT

improved TTP (HR 0.38, p<0.001), but did not significantly improve

OS (median OS, 6.5 [SRS] vs 5.2 months [WBRT], p=0.003) (15).

Several clinical studies have reported the role of WBRT plus

boost radiotherapy in the treatment of BM. Andrews et al (16)

recruited 331 patients with 1-3 BMs, and found that WBRT

combined with SRS significantly improved the 1-year local

control of intracranial metastasis (82% vs 71%, p=0.013)

compared with WBRT alone. In addition, compared to WBRT

alone, WBRT+SRS improved the survival of patients with single

BM, with a median OS of 4.9 months and 6.5 months, respectively

(p=0.039) (15). The recent report showed that WBRT+SRS
TABLE 4 Continued

Characteristic Low dose (n=65) (%) High dose (n=56)(%) P value

2-3 46.2% 57.1%

>3 9.2% 3.6%

Diagnosis-specific Graded Prognostic Assessment (DS-GPA) (<2) 32.3% 17.9% 0.053

Maximum diameter of the largest tumor(≤2.0cm) 53.8% 73.2% 0.022

Interval from diagnosis of SCLC to BMs (>10 mths) 36.9% 69.6% 0.000

Extracranial disease control status (yes) 61.5% 73.2% 0.173

whole brain radiotherapy (WBRT)+stereotactic radiosurgery (SRS) 1.5% 96.4% 0.000
fron
TABLE 5 Distribution of the 98 patient treatment and clinical characteristics in two treatment groups after PSM matching.

Characteristic low dose(%) high dose(%) P value

Age (<65 yrs) 71.4% 79.6% 0.241

Gender(male) 87.8% 77.6% 0.143

Smoke index≥400 80.0% 70.8% 0.217

Family history of tumors (yes) 24.5% 12.2% 0.096

Weight loss >5%(no) 18.4% 28.6% 0.170

KPS≥80 83.7% 91.8% 0.187

TRT dose ≥50Gy 77.3% 85.4% 0.302

Stage (LS-SCLC) 51.0% 67.3% 0.075

Number of BMs 0.206

1 49.0% 40.8%

2-3 42.9% 57.1%

>3 8.2% 2.0%

GPA (<2) 30.6% 16.3% 0.176

Maximum diameter of the largest tumor(≤2.0cm) 59.2% 71.4% 0.144

Interval from diagnosis of SCLC to BMs (≤10 mths) 51.0% 65.3% 0.110

Extracranial disease control status (yes) 77.6% 83.7% 0.305
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significantly improved the OS in the DS-GPA 2.5-4.0 subgroup,

with median OS of 16.7 months and 10.6 months, respectively

(p=0.04) (15, 17, 18).

In previous studies, some prognostic factors such as KPS, age,

extracranial disease control status, and number of BM were identified

in SCLC patients with BM. In this study, by univariate and multivariate

analysis, extracranial disease control, and the higher DS-GPA were

significantly related to the superior of OS. In addition, although the

number of immunotherapy cases is relatively small, OS is still

significantly affected by immunotherapy in univariate analysis.

With the promotion of SCLC comprehensive treatment and the

application of immunotherapy, the OS of SCLC patients has

significantly improved, reaching over 12 months. Therefore, the

radiotherapy strategies for BM need further study. A meta-analysis

showed that for patients with BM receiving SRS, when the BED was

40, 50, and 60Gy, 1-year iLC were 73%, 78%, and 84%, respectively,
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and 2-year iLC were 62%, 69%, and 81%, respectively (19). The iLC

was improved along with increasing radiotherapy dose. A multi-

center retrospective study reported that BED dose >50.7Gy was

associated with improved OS in patients with BM (23.3 months vs.

8.2 months, p < 0.01) (20). Another retrospective study suggested that

the BED >47.4Gy brain radiotherapy can improve OS and iPFS (21).

This study mainly compared the impact on prognosis with different

radiotherapy dose, and the results showed that high dose had inferior

iOS compared to low dose, while there were not significantly

improving in iLC when BED >56Gy. This may be related to the

low GPA score, large BM, multiple BM in the high group (22–24).

However, there was no significant difference in clinical characteristic

distribution after PSM in this study, indicating that low dose had a

survival advantage for BM patients. Based on the classification of DS-

GPA, we further analyzed the prognosis of different DS-GPA scores

in the low and high dose groups. We found that in the GPA<2
FIGURE 2

The iOS and iLC in 96 SCLC BM patients in low dose and high dose after PSM matching.
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subgroup, the iOS in the low dose group was significantly superior

than that in the high dose group; in subgroups with GPA ≥ 2, the iLC

in the high dose group was significantly superior than that in the low

dose group. This inconsistent phenomenon suggested that the role of

chemotherapy and immunity may be more important for SCLC

patients with BM in the GPA<2 subgroup.

This study has the following limitations. Firstly, this study is a

retrospective analysis, and the distribution of clinical features is not very

uniform. Secondly, this is a small sample retrospective study with choice

bias, which should be verified by further prospective cohort study.

Conclusions

To our knowledge, this is the first retrospective study to evaluate

WBRT with different radiotherapy boost approaches (SIB and SRS)

in SCLC patients with BM. Our study found that the iLC was

improved along with increasing radiotherapy dose, but high dose

had inferior iOS compared to low dose, while there were not

significantly improving iLC when BED >56Gy. In patients with

GPA≥2 subgroup, high dose brought better iLC benefits. This

surprising result suggested that the iLC was not improved iOS

along with increasing radiotherapy dose when the radiotherapy

dose reached to a certain extent, which needed further observed.
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Choice of radiotherapy modality
for the combined treatment of
non-small cell lung cancer with
brain metastases: whole-brain
radiation therapy with
simultaneous integrated boost or
stereotactic radiosurgery

Xiaotao Dong, Kunlun Wang, Hui Yang, Yan Li, Yanqi Hou,
Jiali Chang and Ling Yuan*

Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou,
Henan, China
Purpose: To compare Whole-brain radiation therapy with simultaneous integrated

boost (WBRT+SIB) to stereotactic radiosurgery (SRS)for non-small cell lung cancer

(NSCLC)with brain metastases (BMs)in terms of overall survival (OS), intracranial

progression-free-survival(iPFS), toxicity and objective response rate (ORR)

Methods: A retrospective review was performed in our hospital of 90 patients

diagnosed with NSCLC- BM who received either SRS (n = 48) or WBRT+SIB (n =

42) from January 2016 to January 2022. 76 (84.44%) patients received systemic

drug therapy after radiotherapy, including chemotherapy(n=53), targeted

therapy(n=40), immunotherapy(n=23), and anti-vascular drug therapy(n=45).

OS and iPFS were estimated by the Kaplan-Meier method and compared using

the log-rank test. Univariate and Multivariate analysis of the prognostic factors

was performed using the Cox proportional hazard regression model.

Results: The WBRT+SIB cohort had a longer median iPFS (20.0 versus (VS) 12.0

months, P = 0.0069) and a similar median OS (32.0 vs 28.0 months, P = 0.195)

than the SRS cohort. Intracranial objective response rates in WBRT +SIB and SRS

cohorts were 76.19% and 70.09%, respectively (P = 0.566). Disease control rates

were 88.09% and 83.33%, respectively (P = 0.521). Multivariate analysis showed

that WBRT+SIB is the only factor affecting iPFS(hazard ratio (HR):0.597 {95%

confidence interval(CI):0.370-0.966}, P=0.035). Sex, Liver metastasis and Lymph

node metastasis are risk factors for NSCLC-BM.

Conclusion: In the context of systemic drug therapy, WBRT+SIB may have better

intracranial local control than SRS in NSCLC-BM patients.

KEYWORDS

brain metastasis, simultaneous integrated boost, stereotactic radiosurgery, non-small
cell lung cancer, combined therapy, radiotherapy
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1 Introduction

Among the most common cancers, lung cancer ranks first in

cancer-associated death worldwide. More than 80% of lung cancer

patients are non-small cell lung cancer (NSCLC). Brain metastases

(BMs) from NSCLC represent an unmet need of increasing

relevance as their incidence is rising considerably. Early use of

magnetic resonance imaging/positron emission tomography-

computed tomography (MRI/PET-CT) and improvements in

therapies for systemic disease and ageing populations are

contributing factors to this increasing incidence. The treatment of

NSCLC-BM patients was always the hotspot of study.

Neurosurgical resection is usually reserved for patients with good

performance status, low-burden oligometastatic disease, and

controlled extracranial/primary disease. Radiotherapy and drug

therapy remain the primary treatment for many BM patients (1).

The conventional view is that anti-tumor drugs are subject to the

central nervous system (CNS) barrier (blood-brain barrier/blood-

tumor barrier). However, Several studies have shown that novel

drugs, such as three generations-targeted drugs and immune

checkpoint inhibitors (ICIs), can achieve effective therapeutic

concentrations in the CNS (2, 3). In addition, Radiation has

synergistic effects with the drugs mentioned above (4–9).

However, the local control (LC) rate is still unsatisfactory when

treated with Whole- Brain Radiation Therapy/Stereotactic

radiosurgery (WBRT/SRS) alone. WBRT with Simultaneous

Integrated Boost (SIB) can enhance the intracranial control more

than WBRT (10, 11), and SIB has the biological advantage of dose

fractionation. One of the critical unanswered questions in the BM

therapy field is the choice of radiotherapy mode under the principle

of drug combined with radiation. It is unclear whether WBRT + SIB

can improve efficacy and reduce toxicity compared with SRS. This

study aimed to research the efficacy of these two conventional

radiotherapy modalities WBRT+SIB and SRS, and investigate the

prognostic factors, providing a reference for establishing the best

strategy for treating NSCLC-BM.
2 Materials and methods

The clinical data of NSCLC-BM patients who underwent

radiotherapy in the Affiliated Cancer Hospital of Zhengzhou

University from January 2016 to January 2022 were retrospectively

analyzed. This study was approved by the ethics committees of the

Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer

Hospital, Zhengzhou, China. Due to the retrospective nature of the

study and because no patient specimens were used, the requirement for

informed consent was waived by the ethics committees. The inclusion

criteria were as follows:(1) all included patients were confirmed by

pathological diagnosis with primary lung cancer. (2) brain metastases

were confirmed by CT scan orMRI. (3) radiotherapy, includingWBRT

+SIB or SRS and (4) clinical data integrity. The exclusion criteria were

as follows: (1) received BM resection (2) small cell lung cancer (3)

meningeal metastases. Finally, 90 patients were enrolled in this study.

We collected baseline characteristics about the patients, including age,
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gender, BM numbers and the longest diameter, clinicopathological

type,BMI, Distant metastatic status other than the brain(Liver,Bone,

Lymph node and Contralateral lung), Common geriatric diseases such

as hypertension and Glycuresis, Karnofsky performance status (KPS),

radiotherapy modality, extracranial metastasis status, and post-

radiotherapy treatment including chemotherapy, targeted therapy,

immunotherapy, and anti-angiogenic drugs therapy. Besides,

radiotherapy dose, start and end time of radiotherapy, date of

intracranial progression and date of death, and radiotherapy-related

toxicity were also collected.
2.1 Radiotherapy strategy

Radiotherapy was administered using WBRT+SIB or SRS.

Patients were placed in the supine position. The head was

immobilized with a thermoplastic mask; Enhanced CT was

performed to localize the scan from the cranial vault to the

cricoid cartilage with a layer thickness of 2 mm. The localization

images were transmitted to the ECLIPSE planning system and fused

with brain MRI images. Outline the target area on the ECLIPSE

system. The gross tumor volume (GTV) was the metastases visible

on the image, the clinical target volume (CTV) was the whole brain,

GTV and CTV were exenterated 2 mm as the planning gross tumor

volume (P-GTV) and clinical gross tumor volume(P-CTV). Besides,

Outline the relevant organs at risk (e.g., optic nerve, optic cross, eye,

crystal, brainstem, hippocampus, etc.) Radiotherapy schedule:

IMRT 6MV-Xray P-CTV: 30Gy/3Gy/10f, P-GTV: 45Gy/4.5Gy/

10f. 5 treatments per week (Mon-Fri). The prescribed dose of SRS

varies according to the longest BM diameter (16-24Gy).
2.2 Follow-up

Data was obtained from inpatient medical records, and follow-

up data was obtained by contacting patients by phone, home visits,

or questionnaires. A complete inpatient medical record was

available for each patient. Clinical efficacy and adverse effects

were evaluated, and the final results were based on the data from

the last follow-up visit.
2.3 Endpoint

The primary endpoint was Overall Survival (OS) and

Intracranial Progression-free Survival(iPFS), while the secondary

endpoint was the objective intracranial response. Objective

response rate (ORR) = the number of (CR+PR) cases/total cases

× 100%, and disease control rate (DCR) = the number of (CR+PR

+SD) cases/total cases × 100%. iPFS was the time from radiotherapy

to intracranial progression or patient death. OS was defined as the

time from the start of radiotherapy to death or the last follow-up

(2023.01.01). Progression was defined as >20% increase in BM

diameter or new BM on imaging brain CT/MRI according to

RECIST 1.1 criteria. Imaging evaluation of brain CT/MRI was
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performed monthly until the third month and reviewed every three

months afterwards.
2.4 Statistical analysis

R studio (version 4.2.3) and SPSS Statistics software, version

26.0 (IBM Corporation, Armonk, NY, United States), were used for

the analysis in this study. The cardinality test was used to compare

the two groups’ differences in categorical variables, objective

response rates, and toxicity. Kaplan-Meier method was used to

analyze the iPFS and OS of the two groups and plot survival curves,

and the log-rank test was used for different assessments. Univariate

and Multivariate analyses used COX proportional risk regression

models to estimate prognosis-related independent factors. After

univariate analysis, clinical factors with P < 0.20 were included in

the Multivariate Cox proportional risk regression model for

analysis, reporting hazard ratio (HR) and 95% confidence interval

(CI). All tests were performed bilaterally. P < 0.05 was considered

statistically significant.
3 Results

3.1 Baseline characteristics

This study included 2963 patients with NSCLC-BM who were

treated at the Affiliated Cancer Hospital of Zhengzhou University

from January 2016 to January 2022, of whom 145 received WBRT,

32 received WBRT+SRS, 30 underwent neurosurgery, and 7

patients had missing data. Only 90 patients (42 underwent

WBRT+SIB and 48 underwent SRS) were included in the study

(Figure 1). The mean age of the total population was 60.1 years old

(range 32-77 years),62 patients (68.89%) were ≤65 years old, 55
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patients (61.11%) were male, 75 patients (83.33%) were

adenocarcinoma and 40 cases had gene mutation (31 were EGFR

+,7 were ALK+, and 2 were ROS1+), 73(81.11%) patients with KPS

≥70. The proportion of patients with single BM was significantly

higher in the SRS group than in the WBRT+SIB group (16.67% vs

56.25%, P < 0.05). 76 patients (84.44%) received drug therapy after

radiotherapy, of which 55 patients (61.11%%) received

chemotherapy, 40 patients (44.44%) received targeted therapy, 23

patients (25.56%) received immunotherapy, and 45 patients (50.0%)

received anti-angiogenic drugs. Other distant metastatic organs

other than brain metastases, 35(38.9%) patients had liver

metastases, 34(37.8%) had distant lymph node metastases, 27

(30.0%) had contralateral lung metastases, and 27(30.0%) had

bone metastases. All baseline patient characteristics are shown

in Table 1.
3.2 Prognostic information

The median follow-up time was 38.0 months (range 2.0-80.0

months). The median iPFS of enrolled patients was 15.0 months

(95% CI: 10.2-19.7 months) median OS was 29.0 months (95% CI:

24.3-33.7 months) (Figure 2). As of the last follow-up, there were 31

and 45 cases of intracranial progression or death in the WBRT+SIB

and SRS groups, respectively.
3.3 Subgroup analysis

Except for the number of BMs (P < 0.001), there were no

significant differences in other baseline characteristics between the

two cohorts. Overall mortality was 54.7% in the WBRT+SIB cohort

and 62.5% in the SRS cohort. Median iPFS was significantly longer

in the WBRT+SIB cohort than in the SRS cohort (20.0 vs. 12.0
FIGURE 1

The flowchart of the database filtering process.
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TABLE 1 Patients characteristics.

WBRT+SIB(N=42) SRS(N=48) Pvalue

Median age and range 59(32-77) 62(42-76)

Age

≤65 34(80.95%) 28(58.33%) 0.084

>65 8 (19.05%) 20(41.67%)

Sex 0.773

Male 17(40.48%) 18(37.50%)

Female 25(59.52%) 30(62.50%)

BMI 0.756

≤23.9 36(85.71%) 40(83.3%)

>23.9 6(14.29%) 8(16.7%)

Number of BM P<0.005

1 7 (16.67%) 27(56.25%)

>1 35(83.33%) 21(43.75%)

Diameter of the largest BM 0.245

≤3cm 34(80.95%) 43(89.58%)

>3cm 8 (19.05%) 5 (10.42%)

Histological status 0.257

Squamous cell 5(11.90%) 10(20.83%)

Adenocarcinoma 37(88.10%) 38(79.17%)

Surgery before RT 0.488

No 30(71.43%) 31(64.58%)

Yes 12(28.57%) 17(35.42%)

KPS 0.297

<70 6(14.29%) 11(22.92%)

≥70 36(85.71%) 37(77.08%)

Hypertension 0.215

No 19(45.24%) 28(58.33%)

Yes 23(55.76%) 20(41.67%)

Glycuresis 0.027

No 29(69.04%) 22(45.83%)

Yes 13(30.96%) 26(54.17%)

Liver metastasis 0.563

No 27(64.29%) 28(58.33%)

Yes 15(35.71%) 20(41.67%)

Lymph metastasis 0.706

No 27(64.29%) 29(60.42%)

Yes 15(35.71%) 19(39.58%)

(Continued)
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months,P= 0.0069, Figure 3), and median OS was also longer in the

WBRT+SIB cohort (32.0 vs. 28.0 months P = 0.19, Figure 3),

though, the difference in OS was not statistically significant.
3.4 Univariate/multivariate analysis

In univariate analysis, radiotherapy modality (P = 0.010) had

the predictive value for iPFS. Histological status, Liver

metastasis, Lymph node metastasis, BMI and Hypertension

had the predictive value for OS. Factors which P ≤ 0.2 in

univariate analysis were included in multifactorial analysis,

Cox regression model analysis showed that the only

independent prognostic factor for iPFS was Treatment group

(Table 2). Sex, Liver metastasis and Lymph node metastasis are

risk factors for NSCLC-BM (Table 3).
3.5 Intracranial objective response rate

The WBRT+SIB and SRS groups had similar objective

intracranial remission rates (objective response rate (ORR):

76.19% vs. 70.09%, P = 0.566) (disease control rate (DCR):

88.09% vs. 83.33%, P = 0.521) The brain CT/MRI at the third

month after radiotherapy showed 2 cases of complete response

(CR), 30 cases of partial response (PR), 5 cases of stable disease

(SD), and 5 cases of progressive disease (PD) in the WBRT+SIB
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group and 1 case of CR, 33 cases of PR, 6 cases of SD, and 8 cases of

PD in the SRS group (Table 4).
3.6 Toxicity

Post-radiotherapy-related toxicity according to the RTOG

standard mainly included Nausea and vomiting, Leukopenia,

Thrombocytopenia and CNS symptoms (including speech

impairment, impaired consciousness, drowsiness, etc.) Acute

radiation injury and late radiation injury as well as injury grading

are shown in (Table 5).
4 Discussion

This single-center retrospective study aimed to compare the

effects of two radiotherapy modalities, WBRT+SIB and SRS, for the

treatment of NSCLC-BM, with the primary study endpoints of iPFS

and OS. The study results showed that compared to SRS, iPFS was

significantly improved in the WBRT+SIB group (20.0 vs. 12.0

months, P = 0.0069). The difference in OS was not statistically

significant (32.0 vs. 28.0 months, P = 0.19); patients with

adenocarcinoma only tended to benefit in OS and iPFS compared

to squamous cell carcinoma, but not statistically significant. The

two groups had no significant difference in the current objective

intracranial remission rate (76.19% vs. 70.09%, P = 0.566).
TABLE 1 Continued

WBRT+SIB(N=42) SRS(N=48) Pvalue

Contralateral lung metastasis 0.782

No 30(71.42%) 33(68.75%)

Yes 12(28.58%) 15(31.25%)

Bone metastasis 0.461

No 31(73.81%) 32(66.67%)

Yes 11(26.19%) 16(33.33%)

Chemotherapy after RT 0.753

No 18(42.86%) 19(39.58%)

Yes 24(57.14%) 29(60.42%)

Target therapy after RT 0.571

No 22(52.38%) 28(58.33%)

Yes 20(47.62%) 20(41.67%)

Immunotherapy after RT 0.722

No 32(76.19%) 35(72.92%)

Yes 10(23.81%) 13(27.08%)

Anti-angiogenic drug therapy after RT 0.673

No 20(52.38%) 25(60.42%)

Yes 22(47.62%) 23(39.58%)
WBRT+SIB, Whole- Brain Radiation Therapy with Simultaneous Integrated Boost; SRS, Stereotactic Radiosurgery; BM, brain metastasis; RT, Radiotherapy; BMI, Body mass index.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1220047
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2023.1220047
Current studies suggest that OS in patients with BMs under

systemic therapy no longer appears to be limited by the control of

intracranial lesions but instead had a more significant relationship

with systemic disease progression (12). Our results also support the

above view. In addition, we found relevant factors affecting OS of

NSCLC-BM, including lymph node metastasis, bone metastasis,

and hypertension.
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The choice of radiotherapy modality when treating different

kinds of BM patients is an issue that requires careful consideration.

Yamamoto et al. (13) found that after SRS treatment, patients in the

BM number 2-4 and 5-10 groups had the same OS. No difference in

OS was found between BM number ≥10 and 2-9 groups (14). More

and more evidence showed that SRS should no longer be limited to

the number of BM.WBRT tends to withdraw from themainstream of
FIGURE 2

Intracranial progression-free-survival and overall survival in all patients.
FIGURE 3

Comparison of intracranial progression-free-survival and overall survival in treatment cohort.
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TABLE 2 Survival-related factors on iPFS in univariate/multivariate analysis.

○Multivariate analysis

Upper Pvalue HR Lower Upper

1.760

0.863

2.436

1.122

1.702

1.870

1.748

1.622

2.000

1.903

1.508

2.407

1.980

1.040

1.976

1.333

1.238

1.965

0.023

0.579

0.554

0.231

0.246

0.564

1.154

0.824

1.352

0.720

0.345

0.695

0.434

0.826

0.414

0.922

1.915

1.564

2.214

1.254
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◆Univariate analysis

Pvalue HR Lower

0.679

0.010

0.075

0.112

0.738

0.520

0.673

0.874

0.499

0.440

0.631

0.070

0.324

0.070

0.493

0.280

0.301

0.316

1.104

0.544

1.528

0.610

0.897

1.167

1.104

1.037

1.195

1.199

0.875

1.524

1.257

0.627

1.193

0.703

0.788

1.257

0.692

0.342

0.959

0.331

0.472

0.729

0.697

0.663

0.714

0.756

0.508

0.966

0.798

0.378

0.720

0.371

0.501

0.804

WBRT+SIB, Whole- Brain Radiation Therapy with Simultaneous Integrated Boost; SRS, Stereotactic Radiosurgery; BM, brain metastasis; RT, Radiotherapy; KPS, Karnofsky; BMI, Bod
Significance in bold was P < 0.2 in univariate analysis. In multivariate analysis, significance in bold is P< 0.05.
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TABLE 3 Survival-related factors on OS in univariate/multivariate analysis.

te analysis ○Multivariate analysis

Lower Upper Pvalue HR Lower Upper

0.973

0.403
0.967

0.208

0.444

0.450

0.443

0.478

0.337

0.457

0.424

1.768

1.019

0.282
0.942

1.015

0.291

0.783

3.187

1.214
2.913

0.811

2.207

1.473

1.331

1.418

1.347

1.410

1.549

5.328

3.029

1.078
3.044

3.786

0.894

2.342

0.020

0.059

0.001

0.015

0.912
0.134

0.921

0.088

2.138

0.496

2.924

2.080

0.960
1.670

1.039

0.580

1.129

0.240

1.535

1.156

0.464
0.853

0.488

0.310

4.052

1.026

5.568

3.745

1.985
3.267

2.212

1.085

; KPS, Karnofsky; BMI, Body mass index.
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◆Univaria

Pvalue HR

0.062

0.204
0.066

0.010

0.980

0.496

0.347

0.484

0.264

0.445

0.524

<0.001

0.043

0.082
0.078

0.045

0.019

0.278

1.761

0.700
1.678

0.411

0.990

0.814

0.768

0.823

0.673

0.803

0.810

3.084

1.757

0.552
1.693

1.961

0.510

1.354

WBRT+SIB, Whole- Brain Radiation Therapy with Simultaneous Integrated Boost; SRS, Stereotactic Radiosurgery; BM, brain metastasis; RT, Radiotherapy
Significance in bold was P < 0.2 in univariate analysis. In multivariate analysis, significance in bold is P< 0.05.
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BM radiotherapy. What is more, WBRT is associated with poor

cognitive function and decreased quality of survival. Theoretically,

Radiation alters CNS barrier permeability in a time-dose-dependent

manner (15–18). WBRT has a stronger ability to open up drug

delivery barriers in the CNS than SRS, so it, combined with drugs, is

more effective in treatment. Considering the long-term radiotherapy

toxicity associated with WBRT, studies on Hippocampal Avoidance-

Whole Brain Radiotherapy with simultaneous integrated boost(HA-

WBRT+SIB)are increasing (19). Due to the highly economical and

technical barriers of SRS/HA-WBRT+SIB, it i urgent to promote

research on WBRT+SIB as a cost-effective approach.

The studies by Rodrigues et al. (20) and Du et al. (21) only

included patients who received chemotherapy after radiotherapy
TABLE 5 Comparison of adverse events in treatment cohort.

Grade
WBRT+SIB
(n=42) SRS(n=48)

Acute radiation injury

Nausea/vomiting

0 19 27

1 14 11

2 7 9

3 2 1

4 0 0

Leukopenia

0 27 32

1 10 7

2 5 8

3 0 1

4 0 0

Thrombocytopenia

0 34 39

1 7 7

2 1 2

3 0 0

4 0 0

CNS symptoms

0 33 37

1 6 7

2 2 4

3 1 0

4 0 0

Late radiation injury CNS symptoms

0 22 35

1 12 10

2 5 2

3 2 1

4 1 0

5 0 0
WBRT+SIB, Whole- Brain Radiation Therapy with Simultaneous Integrated Boost; SRS, Stereotactic Radiosurgery; CNS, central nervous system.
TABLE 4 Overall response.

WBRT+SIB SRS Pvalue

ORR 32(76.19%) 34(70.09%) 0.566

DCR 37(88.09%) 40(83.33%) 0.521

CR 2 (4.76%) 1 (2.08%)

PR 30(71.43%) 33(68.75%)

SD 5 (11.90%) 6 (12.50%)

PD 5 (11.90%) 8 (16.67%)
WBRT+SIB, Whole- Brain Radiation Therapy with Simultaneous Integrated Boost; SRS,
Stereotactic Radiosurgery; ORR, objective response rate; DCR, disease control rate; CR,
complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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and did not count patients treated with targeted drugs and ICIs. To

be more clinically relevant, 84.44% of the included patients in our

study were treated with scientific systemic drug therapy, including

chemotherapy, targeted therapy, immunotherapy, anti-angiogenic

drugs therapy, and supportive therapy after radiotherapy. Small cell

lung cancer was also not included in this study. All these made the

included patients have longer iPFS and OS (Figure 2). In general,

the use of targeted drugs and ICIs is associated with a better

prognosis. Although not indicated in the figure, we found that

whether the patients received ICIs or targeted therapy iPFS (ICIs

compared cohort: p = 0.49 Targeted therapy compared cohort: p =

0.84) and OS (ICIs compared cohort: p = 0.25 Targeted therapy

cohort: p = 0.48) were not statistically different (Supplementary

Figures 1–4). 78% of patients who did not receive targeted therapy

received other drugs. In ICIs compared cohort, this rate was 94%.

Other drugs may have obscured the survival benefit of single

targeted drugs or ICIs therapy. We may conclude that WBRT

+SIB is preferable to SRS under the standard treatment mode of

radiotherapy plus drugs for NSCLC-BM patients. Regarding

radiotherapy-related toxicity, a prospective study by Zhong et al.

(22) demonstrated the safety and efficacy of WBRT+SIB, which was

similar to the results of the radiotherapy-related toxicity assessment

in this study, i.e., no significant difference was seen between WBRT

+SIB and SRS in recent radiotherapy-related toxicity.

A study from the SEER database of lung cancer by Hao (23)

et al. showed that distant liver/bone/lymph node metastases,

higher T and N stages were risk factors for NSCLC-BM. Our

study only found that Sex, Liver metastasis and Lymph node

metastasis were independent prognostic factors for NSCLC-BM.

Considering that the participants in our study all received brain

radiotherapy, this may account for the difference between our

conclusion and Hao et al. Further studies are needed to confirm

our conclusions.

This study has several limitations; First, as a retrospective study,

we were biased and enrolled a small number of patients. Then, our

study lacked drug side effects (e.g.,immune-related adverse events,

Bleeding risk, skin reactions, etc.) and did not document the long-

term cognitive function and quality of life changes in patients after

treatment. Moreover, most patients received multiple drug

combinations after radiotherapy, which may have masked the

effect of single drug classes on survival.

In conclusion, the results of this study suggest that

Radiotherapy modality is a crucial and independent prognostic

factor in patients with NSCLC-BM, and WBRT+SIB seems to be

associated with a more favorable prognosis compared to SRS.

Presently, the treatment of drugs such as mannitol and hormone

to reduce the toxicity of radiotherapy is more and more

standardized, and the probability of short-term toxicity is less and

less. Although not described in detail in this study, we must

consider the question of long-term cognitive function and quality

of life decline associated with WBRT. Although there is no

difference in OS between WBRT+SIB and SRS, as we all know.

Compare to WBRT+SIB,Whether the advantages of repeatability

and security of SRS can offset the disadvantages of economy and

technology still, need to be considered comprehensively. In the

future, we should focus on finding a balance in treating BM by
Frontiers in Oncology 1034
making trade-offs between intracranial control, management of

systemic progression, and neurocognitive decline in patients.

However, prospective, large-sample randomized controlled trials

are needed to validate our results.
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SUPPLEMENTARY FIGURE 1

Comparison of intracranial progression-free-survival in ICIs compared
cohort. ICIs, immune checkpoint inhibitors.

SUPPLEMENTARY FIGURE 2

Comparison of intracranial progression-free-survival in targeted therapy

compared cohort.

SUPPLEMENTARY FIGURE 3

Comparison of overall survival in ICIs compared cohort. ICIs, immune

checkpoint inhibitors.

SUPPLEMENTARY FIGURE 4

Comparison of overall survival in targeted therapy compared cohort.
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1Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China, 2School
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University, Xi'an, Shaanxi, China, 3Department of Pediatrics, Affiliated Hospital of Hebei University,
Baoding, Hebei, China, 4Department of Radiotherapy, The Fourth Hospital of Hebei Medical
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Objectives: The purpose of this study is to evaluate the potential of the flattening

filter free (FFF) mode of a linear accelerator for patients with hippocampal

avoidance whole-brain radiotherapy (HA-WBRT) by comparison with flattened

beams (FF) technique in the application of volumetric modulated arc therapy

(VMAT) and intensity modulated radiation therapy (IMRT) using dosimetric and

radiobiological indexes based on the volume of hippocampus and target.

Methods: 2 VMAT- and 2 IMRT- plans were optimized in Eclipse planning system

with 2 different delivery modes (6 MV standard vs. 6 MV FFF) for each of 25

patients. Dose distributions of the target and organs at risk (OARs), normal tissue

complication probability (NTCP) of the hippocampus, monitor units, treatment

time and quality assurance results were evaluated to compare the normal and

FFF beam characteristics by Wilcoxon matched-pair signed-rank test with a

significance level of 0.05.

Results: VMAT-FFF provided the significantly best homogeneity and conformity

of the target, delivered the lowest dose to hippocampus and the other OARs, and

led to the lowest NTCP of the hippocampus among all modalities, which has the

potential to alleviate neurocognitive decline after WBRT. IMRT-FFF reduced the

dose to the lens with similar dose distributions of the target compared with

IMRT-FF, whereas the lower dose to the hippocampus was achieved using the

conventional beams. The monitor units were obviously increased by 19.2% for

VMAT and 33.8% for IMRT, when FFF beams w ere used. The removal of flattening

filter for IMRT resulted in a 26% reduction in treatment time, but VMAT had the

similar treatment time for the two modes owing to the limitation of gantry

rotation speed. Gamma analysis showed an excellent agreement for all plans at

3%/2 mm, and no statistical differences were found between FF and FFF.
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Conclusion: In conclusion, this study suggests that FFF mode is feasible and

advantageous in HA-WBRT and VMAT-FFF is the optimal solution in terms of dose

distribution of the target, OARs sparing, NTCP of the hippocampus and delivery

efficiency compared to the other three techniques. Additionally, the advantages of the

FFF technique for VMAT aremore prominent in cases with small hippocampal volumes.
KEYWORDS

flattening filter free, hippocampal avoidance, whole-brain radiation therapy, volumetric
modulated arc therapy, intensity modulated radiation therapy, normal tissue
complication probability
1 Introduction

Brain metastases represent an important clinical problem,

accounting for approximately 25–45% of cancer patients, which

cause significant morbidity and mortality, and management focuses

on improving survival and optimizing quality of life. Whole-brain

radiation therapy (WBRT) is usually the primary treatment option for

patients with brain metastases, controlling macroscopic and

microscopic tumor deposits within the affected area. However, it is

reported that WBRT can cause long-term serious and irreversible toxic

effects, including neurocognitive deterioration, leukoencephalopathy,

cerebellar dysfunction and dementia, potentially compromising

patients’ quality of life (1–3). In the last few decades, it has already

been proven that hippocampus is crucial to memory function (4).

Furthermore, recent studies have indicated that the neurocognitive

decline (short and long-term memory loss and cognitive impairment)

is strongly associated with radiation-induced injury to the neural stem

cells in the subgranular zone of the hippocampi (5, 6).

With innovative techniques for planning and delivering WBRT,

such as volumetric modulated arc therapy (VMAT) and helical

tomotherapy, allowing a better sparing of organs at risk (OARs), it

is possible to selectively spare sensitive brain regions, such as the

hippocampus, while maintaining uniform dose delivery to the

remaining brain. Hence, hippocampal avoidance (HA) during

whole brain radiotherapy (HA-WBRT) has become an emerging

strategy that is expected to mitigate the neurocognitive side effects

by reducing the dose to the hippocampus. Recently, results of the

phase II Radiation Therapy Oncology Group (RTOG) 0933 study

showed evidence of improvements in neurocognitive outcomes

compared to conventional WBRT for patients with multiple brain

metastases (7). Nevertheless, the studies employing HA-WBRT

generally exclude the region within 5 mm of the hippocampus,

which may pose the risk of diminishing the clinical benefit of

WBRT if the metastases are located in the spared region. Ghia et al.

reported that the incidence of metastases within 5 mm of the

hippocampus was very low (3.3%), which shows that the risks of

HA-WBRT may be overestimated (8).

Intensity modulated radiation therapy (IMRT) has been used as

a practical delivery method for HA-WBRT based on RTOG 0933

guidelines, whereas VMAT technique, which is based on

simultaneous optimization of multi-leaf collimator (MLC) shapes,
0237
dose rate, and gantry rotation speed to achieve the desired dose

distribution, have shown superior dosimetric performance and

shorter treatment time compared with conventional IMRT (9–

11). Despite these efforts, recent survey results indicated relatively

low rates of utilization of HA-WBRT, which may result from the

complexity of the treatment planning process owing to the

anatomical shape and location of the hippocampus, the lack of

dosimetry and physics support, and the suitability of patients.

To further improve the delivery efficiency, flattening-filter-free

(FFF) technique has become increasingly popular due to its higher

dose rates. As a result, the treatment delivery time can be reduced

greatly, which is essential in improving patient comfort and limiting

uncertainty of delivered dose related to intra-fraction motion (12).

Hence, the FFF technique is particularly appealing for delivering

stereotactic radiotherapy and has demonstrated great advantages

due to significantly reducing treatment time without compromising

the target coverage and organs at risk sparing (13–16).

Furthermore, the removal of flattening filter is shown to have

lower out-of-field dose on account of the diminution of head

scatter and residual electron contamination in comparison to

flattening-filtered (FF) mode (17). Patients may benefit from

reduced exposure of healthy tissue to scattered doses outside the

X-ray field. Dosimetric benefits of FFF also include less penumbra

and MLC leakage (18). Therefore, FFF beams may offer a better

solution in sparing the hippocampus and other OARs for HA-

WBRT, in the hope of improving neurocognitive function

impairment. With the advent of clinical FFF-linac, the planning

studies of FFF mode have been carried out in various common

cancer sites, such as prostate (19), hypopharynx (20), and breast

(21). However, to the best of our knowledge, no investigation has

been previously implemented for the dosimetric and radiobiological

comparison of HA-WBRT using VMAT and IMRT with and

without flattening filter.

The aim of this present study is to provide the first systematic

clinical information on the application of the FFF irradiation mode

in whole brain radiation therapy with hippocampal avoidance and

evaluate whether the FFF mode is feasible and advantageous with

respect to plan quality, delivery time and normal tissue

complication probability (NTCP) for impaired neurocognitive

function as compared to the flattening filter irradiation mode in

VMAT and IMRT. Furthermore, considering the special anatomical
frontiersin.org
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location of the hippocampus, as well as the correlation between the

performance of the FFF technique and the target volume, the

impacts of hippocampal and target volumes on the differences

between FFF beams and FF beams are also discussed.
2 Materials and methods

2.1 CT simulation and
treatment preparation

With approval from our institutional review board, a total of 25

patients, who were diagnosed with brain metastases and underwent

whole-brain radiation therapy with hippocampal avoidance at the

Affiliated Hospital of Hebei University, were included and

replanned in this retrospective study. The median age of the

patients was 63 years (range: 37-76). Non-contrast computed

tomography (CT) images for planning were obtained for all

patients positioned supine and immobilized by means of a

thermoplastic body mask using a large aperture 16 rows spiral CT

of GE Medical System with 2.5 mm slice thickness. The DICOM

images were then electronically sent to the Eclipse treatment

planning system (Varian Medical Systems, Palo Alto, CA).

A gadolinium-enhanced, T1-weighted, three-dimensional

spoiled gradient echo axial Magnetic Resonance Imaging (MRI)

was acquired using a 1.5-T magnetic resonance scanner (Siemens

AG, Munich, Germany) with 1.5 mm slice thickness for each

patient. CT and MRI were rigidly co-registered by using an

Eclipse mutual information algorithm. The hippocampus was

manually contoured by an experienced radiation oncologist using

the RTOG 0933 atlas as reference. According to the volume of the

hippocampi (range: 1.12 cm3 - 4.59 cm3), the patients were divided

into three groups for subsequent volume-based analysis, as Group 1

(1 cm3< hippocampi ≤ 2 cm3), Group 2 (2 cm3< hippocampi ≤ 3

cm3), Group 3 (3 cm3< hippocampi ≤ 4.59 cm3). The hippocampal

avoidance zone (HAZ) was created using a 5-mm volumetric

expansion of the hippocampi to account for necessary dose fall-

off between the hippocampi and the target. The following volumes

of interest were also delineated: clinical target volume (CTV, CTV

was defined as the whole brain parenchyma), lens, optic nerve and

optic chiasm. The planning target volume (PTV) was constructed

by expanding the CTV by 3 mm in all directions. The planning

target volume with hippocampal avoidance (PTV-HA) used for

dose optimization was generated by subtracting the HAZ from

PTV. For the other grouping method, all patients were stratified in

three groups according to the volume of PTV-HA (range: 1098.3

cm3 - 2056.8 cm3): Group 4 (1000 cm3< PTV-HA ≤ 1568.2 cm3),

Group 5 (1568.2 cm3< PTV-HA ≤ 1867.9 cm3), Group 6 (1867.9

cm3< PTV-HA ≤ 2056.8 cm3).
2.2 Linear accelerator

The treatment planning was implemented using Varian Trilogy

linear accelerator (Varian Medical Systems, Palo Alto, CA, USA),

which has the flattened as well as unflattened beams and is equipped
Frontiers in Oncology 0338
with 120 Millennium multi-leaf collimator leaves. The leaf width is

5 mm in the central 20-cm part of the field and 10 mm in the outer

2×10 cm. Removing the flattening filter from the beam path

increases the dose rate up to 1400 MU/min for 6 MV but

decreases the beam quality index (TPR20/10: 6 MV 0.669, 6 MV

(FFF) 0.629).
2.3 Treatment planning setup

Four different plans were optimized for each patient based on

Eclipse treatment planning system using intensity-modulated

radiotherapy and volumetric modulated arc therapy with 6 MV

photon beams with flattening filter or without, in the following

referred to as IMRT-FF, IMRT-FFF, VMAT-FF and VMAT-FFF

plans. The maximum dose rate was adopted to leave the highest

degree of freedom in the optimization process, which was 600 MU/

min for FF beams, and 1400 MU/min for FFF beams. For IMRT, the

dose rate is always maintained at the maximum during dose

delivery. However, due to mechanical motion speed restrictions,

the maximum dose rate will not be applied throughout the VMAT

process. The total dose prescribed was 30 Gy delivered in 10

fractions to the PTV-HA for all the studied cases. The IMRT

plans were realized by sliding window dynamic delivery method

and consisted of seven equispaced beams with gantry angles of 204°,

256°, 308°, 0°, 52°, 104° and 156°. The collimator was angled to 0° in

IMRT plans. To reduce treatment time and the possibility of

operating errors, the couch angles of all fields were set to 0°

instead of the noncoplanar beam arrangement recommended by

RTOG. The VMAT plans were generated using RapidArc technique

with two coplanar arcs as clockwise arc 181°–179° and anti-

clockwise arc 179°–181°. Gantry spacing between two control

points was 4°. In addition, to reduce the MLC tongue-and-groove

leaves’ leakage, the collimator angle was set to 30 degrees for the first

clockwise arc and the collimator of the second anti-clockwise arc

was 330 degrees (22). For all plans, the isocenter was located

centrally in the PTV-HA based on beam’s eye view graphic. All

plans utilized the Photon Optimizer (Version 13.6.23, Varian, Palo

Alto, CA, USA) to optimize the intensity map for IMRT and

determine the optimal combination of beam weight and shape for

VMAT. The constraints for target and OARs were matched to

RTOG 0933 planning requirements (see Table 1 for the RTOG

criteria). Identical dose volume objectives and weights were used for

optimization of four plans for each patient to make the results
TABLE 1 Dosimetric compliance criteria for hippocampal sparing in
RTOG 0933.

Parameter Dose constraints

PTV-HA D2% ≤ 37.5 Gy (D2% ≤ 40 Gy is allowed)
D98% ≥ 25 Gy and V30 ≥ 90%

Hippocampus D100% ≤ 9 Gy (D100% ≤ 10 Gy is allowed)
Dmax ≤ 16 Gy (Dmax ≤ 17 Gy is allowed)

Optic chiasm Dmax ≤ 37.5 Gy

Optic nerves Dmax ≤ 37.5 Gy
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comparable. The Analytical Anisotropic Algorithm (AAA) along

with a grid resolution of 2.5 mm and heterogeneous corrections

were adopted to arrive at dose calculations.
2.4 Plan comparison

Quantitative evaluation of the plans was performed by analysis

of the dose-volume histograms (DVHs) extracted from the

planning system with respect to target coverage, dose

homogeneity and conformity, and OAR sparing. For the purpose

of comparison, all plans were normalized to meet the same

objectives with the 95% of the PTV-HA volume surrounded by

the 100% isodose line. The dose distribution of the target was

evaluated in terms of mean dose, D2% and D98% (dose received by

2% and 98% of target volume), conformity index (CI), prescription

isodose/target volume (PITV) ratio, and homogeneity index (HI).

CI was calculated using the equation:

CI = V2
t,ref =(Vt · Vref ) (1)

according to Paddick (23). Here Vt,ref represented the volume

receiving a dose equal to or greater than the reference dose in the

target volume, Vt stood for the target volume, and Vref was the total

volume covered by a dose equal to or greater than the reference

dose. The reference dose was the 95% of the prescription dose in

this study. CI ranged from 0 to 1, and the higher the CI, the better

the conformity of the target volume. For comparison and reference

purposes, dose conformity was also quantified using PITV, defined

as the prescription isodose volume divided by the target volume.

Since target coverage was maintained at 95% in this study, the

smaller PITV indicated better conformity and less radiation

exposure to normal tissue. HI was defined as follows:

HI = (D2% − D98%)=Dprescription (2)

where Dprescription meant the prescription dose. The ideal value

of HI was 0, which indicated a sharp dose fall between the neck

region and tail region of the PTV-HA dose-volume histogram, with

increasing values for the metric indicative of declining homogeneity

throughout the volume.

Concerning the hippocampus, we considered the maximum,

mean, and quintile (D20% to D100%) doses to assess hippocampal

sparing. The maximum doses of the lens, optic chiasm, and optic

nerve were also reported. Moreover, an additional structure called

non-tumor tissue (NT) consisting of body minus PTV was created.

The integral dose (24) for non-tumor tissue was calculated

according to the following formula as a measure of low dose in

the periphery: Integral dose = Mean dose (Gy) × Volume (cm3).

Furthermore, the number of monitor units (MUs) required per

fraction dose for the four techniques was also compared.
2.5 Quality assurance

Dose verifications were performed using the ArcCheck

Phantom (Sun Nuclear Corporation, Melbourne, USA) to ensure
Frontiers in Oncology 0439
the deliverability of each treatment plan. It is a cylindrical water-

equivalent phantom for patient specific quality assurance (QA) with

a three-dimensional array of 1386 diode detectors. The measured

doses at the detectors plane were compared with the predicted dose

distribution previously calculated in Eclipse planning system.

Evaluation was based on gamma analysis by SNC patient software

with criteria of 3% maximum dose difference and 2 mm distance to

agreement as recommended by the AAPM TG 218 (25). A global

normalization for the absolute dose was performed. The agreement

between the measured dose distribution and calculated dose

distribution was considered acceptable if the gamma indexes of at

least 95% of the pixels with a dose value of ≥ 10% of the maximum

dose were smaller than 1. The treatment delivery time was

documented from first beam on to last beam off when the QA

plan was delivered. The mean dose rates of VMAT in both delivery

modes were also calculated. In addition, the measured data of all

QA plans were collected by delivering at the machine in one session

to minimize the impact of machine output rate on QA results.
2.6 Radiobiological indices

Biologically equivalent dose in 2-Gy fractions (EQD2) to 40% of

the bilateral hippocampi was computed using a hippocampal a/b
value of 2 (26). The NTCP for neurocognitive function impairment

of the hippocampus was assessed for all plans according to the

model proposed by Gondi et al. (26). The model was based on the

Lyman model and its formula was expressed as follows:

NTCP =
1
ffiffiffiffiffiffi

2p
p ∫t−∞ exp ( − u2=2)du (3)

where,

t =
EQD2(D40%) − TD50

mTD50
(4)

EQD2(D40%) was EQD2 received by 40% of bilateral

hippocampal volume, TD50 was the EQD2(D40%) value

corresponding to a 50% probability of neurocognitive decline, and

m represented the slope of the dose-response curve. Moreover,

TD50 and m were estimated to be 14.88 Gy and 0.54 by Gondi

et al. (26).
2.7 Statistical evaluation

All data were reported as mean and standard deviation. The

Wilcoxon matched-pair signed-rank test, a non-parametric test,

implemented in SPSS software version 22 (SPSS, IBM Corp,

Armonk, NY), was used for statistical analysis, and the difference

was considered statistically significant when p< 0.05.
3 Results

Details about DVH parameters averaged over all patients with

regard to target coverage and OAR sparing are summarized in
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Table 2 for the comparison of the two irradiation modes FF and

FFF. As to four kinds of plans for a representative patient, the

spatial isodose distributions with display of an axial, sagittal and

coronal plane at the level of hippocampus are presented in Figures 1

and 2, and the DVHs involving the PTV-HA, hippocampus and

lens are showed in Figure 3.
3.1 Target coverage

It could be seen in Table 2 that the D2%, D98%, Dmean, HI, CI,

and PITV were improved significantly for the VMAT planning

techniques if flattening filter free beams were used, and the
Frontiers in Oncology 0540
corresponding p values were all less than 0.001. On the contrary,

the dose volume parameters of IMRT-FF plans were either slightly

better or not significantly different compared to IMRT-FFF plans. It

was worth noting that the removal of flattening filter had a greater

impact on VMAT plans than IMRT. In addition, VMAT plans were

remarkably superior compared to IMRT plans.
3.2 OARs sparing

The maximum and minimum doses of hippocampus for

VMAT-FFF were 15.14 ± 0.50 Gy and 9.37 ± 0.39 Gy, which

were significantly lower than the corresponding values of VMAT-
TABLE 2 Comparison of dose distributions of PTV-HA and OARs for VMAT and IMRT with the two irradiation modes FFF and FF.

Variable VMAT-FFF VMAT-FF pa IMRT-FFF IMRT-FF pb

PTV-HA

D2% 33.24 ± 0.44 33.66 ± 0.52 <0.001 34.62 ± 0.57 34.57 ± 0.57 0.001

D98% 27.11 ± 0.39 26.81 ± 0.40 <0.001 27.30 ± 0.29 27.31 ± 0.31 0.074

Dmean 31.74 ± 0.29 32.11 ± 0.38 <0.001 32.64 ± 0.36 32.54 ± 0.36 <0.001

HI 0.19 ± 0.02 0.21 ± 0.02 <0.001 0.22 ± 0.02 0.22 ± 0.02 0.016

CI 0.87 ± 0.02 0.85 ± 0.02 <0.001 0.83 ± 0.02 0.83 ± 0.02 0.326

PITV 1.04 ± 0.02 1.07 ± 0.02 <0.001 1.10 ± 0.02 1.10 ± 0.02 0.459

Hippocampus

D20% 12.07 ± 0.58 12.93 ± 0.73 <0.001 14.38 ± 0.38 14.09 ± 0.38 <0.001

D40% 11.46 ± 0.57 12.28 ± 0.72 <0.001 13.89 ± 0.35 13.61 ± 0.35 <0.001

D60% 10.96 ± 0.54 11.73 ± 0.68 <0.001 13.50 ± 0.35 13.23 ± 0.34 <0.001

D80% 10.45 ± 0.50 11.16 ± 0.64 <0.001 13.09 ± 0.37 12.83 ± 0.34 <0.001

D100% 9.37 ± 0.39 9.98 ± 0.56 <0.001 12.00 ± 0.39 11.87 ± 0.33 0.01

Dmean 11.28 ± 0.51 12.07 ± 0.65 <0.001 13.75 ± 0.34 13.48 ± 0.34 <0.001

Dmax 15.14 ± 0.50 16.15 ± 0.58 <0.001 17.51 ± 1.07 17.18 ± 1.03 <0.001

Lens L

Dmax 6.91 ± 0.62 8.02 ± 0.73 <0.001 7.80 ± 0.64 8.43 ± 0.74 <0.001

Lens R

Dmax 6.95 ± 0.56 8.02 ± 0.71 <0.001 8.02 ± 0.94 8.49 ± 0.95 <0.001

Optic chiasm

Dmax 33.79 ± 0.68 34.19 ± 0.64 0.009 35.37 ± 0.55 35.24 ± 0.59 0.011

Optic nerve L

Dmax 31.47 ± 5.94 33.22 ± 1.11 0.002 32.79 ± 2.57 32.88 ± 2.54 0.019

Optic nerve R

Dmax 32.70 ± 1.14 33.28 ± 1.08 0.001 33.19 ± 2.41 33.30 ± 2.28 0.162

NT

Integral dose 31.55 ± 3.97 32.42 ± 4.02 <0.001 32.04 ± 4.25 32.46 ± 4.42 <0.001
The results of Wilcoxon matched-pair signed-rank test are also listed.
Dose values are given in Gy. Integral dose is given in Gy*cm3*103. a p value denotes the results ofWilcoxon test between VMAT-FFF and VMAT-FF plans. b p value means the results of Wilcoxon
test between IMRT-FFF and IMRT-FF plans.
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FF, and the improvement of dose sparing for all the evaluation

indicators involving the hippocampus in the VMAT-FFF was

statistically significant compared with VMAT-FF. Dose

constraints to hippocampus were reached for VMAT with or

without the use of the FF, while the cumulative averages of Dmax

and D100% for hippocampus were 17.51 ± 1.07 Gy and 12.00 ± 0.39

Gy, 17.18 ± 1.03 Gy and 11.87 ± 0.33 Gy for IMRT-FFF and IMRT-

FF, respectively, which did not meet the requirements for

hippocampal sparing according to RTOG 0933 guidelines. For

IMRT, the FF mode showed better results for hippocampus

compared to the FFF, while the difference between the treatment

modes wa s g ene r a l l y on l y abou t 2% even though

statistically significant.

In addition to hippocampal sparing, the FFF technique also

obviously reduced the doses to other OARs such as lens, optic

chiasma, and optic nerve compared to FF mode with respect to

VMAT (all p< 0.05). The maximum doses to left and right lenses in

the VMAT-FFF plans on average were 6.91 ± 0.62 Gy and 6.95 ±

0.56 Gy, which were 13.8% and 13.3% lower than the corresponding

values of VMAT-FF. A similar result can be found in the IMRT

plans for lens. Concerning optic chiasma and optic nerve, Dmax was

rather close between FF and FFF for IMRT. As for non-tumor

tissue, FFF beams showed lower integral dose for both VMAT and

IMRT compared with conventional beams.

In a word, the VMAT plans using FFF beams improved the

homogeneity and conformity of the target and reduced OARs doses
Frontiers in Oncology 0641
significantly keeping target coverage at the same level in

comparison with the other three planning techniques.
3.3 NTCP for neurocognitive
function impairment

Table 3 shows the computed NTCP for neurocognitive function

impairment for the FFF and FF plans. The NTCP of VMAT-FFF

plans was significantly lower than that of VMAT-FF plans. The

opposite result was seen for IMRT technique, however the

difference between FFF and FF plans was small.
3.4 Plan verification and efficiency

The monitor units, treatment time and passing rate of g for each
treatment modality, and the mean dose rates of VMAT plans are

listed in Table 4. Meanwhile, Table 4 also shows the results of the

Wilcoxon statistical test for between VMAT-FFF and VMAT-FF as

well as between IMRT-FFF and IMRT-FF. The number of monitor

units employed was dramatically reduced by 81.5% for VMAT-FFF

compared with IMRT-FFF and 79.2% for VMAT-FF compared

with IMRT-FF. Furthermore, FFF plans required more MUs than

FF plans, with an increase of 19.2% for VMAT and 33.8% for IMRT.

The mean treatment time was reduced by 26% for IMRT in FFF
FIGURE 1

The comparison of spatial isodose distributions of VMAT-FFF (A–C) versus VMAT-FF (D–F) for a sample patient. Red contour represents the PTV-HA
and brown contour represents the hippocampus.
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mode as compared to FF, but was almost the same in both

irradiation modes in case of VMAT. Besides, VMAT took less

treatment time than IMRT technique. As shown in Table 4, VMAT-

FFF provided a higher mean dose rate than VMAT-FF, but both

types of VMAT plans were well below their respective maximum

dose rates. The analyzed data indicated that all 100 plans were

clinically deliverable and passed the gamma evaluation. The gamma

indices did not show any notable distinctions between FFF and FF

for both VMAT and IMRT.
3.5 A volume-based analysis

The research results above showed that VMAT achieved

significantly better plan quality than IMRT. There was little

difference between FF and FFF plans for IMRT. Thus, the

volume-based analysis was performed only for the VMAT

technique. All values for PTV-HA (HI and CI), the hippocampus

(D100%, Dmean, Dmax and NTCP), Lens L (Dmax) and Lens R (Dmax)

in the three volume-dependent groups are provided in Table 5 for

grouping according to hippocampal volume and Table 6 for

grouping according to PTV-HA volume. The FF/FFF ratio was

computed for all the parameters described above in the matched

plans (e.g., HIVMAT-FF/HIVMAT-FFF). Then, the FF/FFF fraction for
Frontiers in Oncology 0742
each group is plotted as a function of the corresponding volume, as

shown in Figure 4 for grouping according to hippocampal volume

and Figure 5 for grouping according to PTV-HA volume. In

addition, the integral dose of NT is also considered for grouping

based on PTV-HA volume. There is no significant trend in other

dosimetric parameters with hippocampal and PTV-HA volumes,

and the results are not shown.

There was a tendency for the conformity and homogeneity of

PTV-HA to worsen and then improve with the increase in

hippocampal volume. The homogeneity remained stable with

increasing PTV-HA volume, while the conformity became better.

The differences between FF and FFF for PTV-HA were larger in

Group 1 and Group 6. With the increase in hippocampal volume,

the D100%, Dmean and NTCP of hippocampus gradually decreased,

while Dmax gradually increased. All indices of the hippocampus

showed little change among different PTV-HA volumes. The

biggest difference between the two delivery modes was observed

in Group 1 for all the evaluation parameters of the hippocampus

when grouping was determined by hippocampal volume. However,

the fluctuations of the FF/FFF values for hippocampus were not

noticeable with changes in target volume. The lens had the lowest

Dmax in cases with small hippocampal and target volumes. The

benefit of FFF was slightly greater for small hippocampal and target

volumes in terms of the left lens. However, the advantage of FFF was
FIGURE 2

Spatial dose distributions in axial, coronal, sagittal views for one representative patient with avoidance of hippocampus during whole brain
radiotherapy using IMRT-FFF (A–C) and IMRT-FF (D–F) techniques. PTV-HA and hippocampus are drawn in red and brown, respectively.
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greatest for medium hippocampal and target volumes in terms of

the right lens. With the increase in target volume, the integral dose

of NT also significantly increased, but the range of variation in the

FF/FFF ratio was small.
4 Discussion

The flattening filter free delivery mode of a linear accelerator is

not a new idea in radiation therapy but it has only recently become a

reality for clinical routine. In this study, we presented the first

evaluation of the potential of the flattening filter free mode in

intensity modulated radiation therapy and volumetric modulated

arc therapy for patients with hippocampal avoidance whole brain

radiotherapy. In terms of target homogeneity and conformity, and
Frontiers in Oncology 0843
OAR sparing, the VMAT-FFF has shown superior quality

compared to the VMAT-FF, which can potentially reduce

radiation induced inflammation in the hippocampus and its

associated neurologic functional sequelae. For IMRT in this

article, FFF beams led to similar plan quality compared to FF.

IMRT-FFF had a lower dose to the lens while IMRT-FF achieved

better hippocampal protection. Obviously, FFF mode is feasible and

beneficial in whole brain radiotherapy with hippocampal avoidance,

especially for VMAT. A planning study of right sided breast cancer

indicated that VMAT-FFF achieved better target coverage and

homogeneity than VMAT-FF with similar doses to the OARs

while IMRT-FF showed better results regarding some parameters

of OARs without compromising target coverage and homogeneity

compared to IMRT-FFF (27). For gastric cancers (28) and patients

with in-field recurrence of vertebral metastases (29), FFF plans
FIGURE 3

Normalized dose-volume histograms for a sample hippocampal-sparing WBRT patient. Comparisons of FFF versus FF for VMAT and IMRT are
displayed in (A, B), respectively. The lines with squares represent FFF plans, and the lines with triangles stand for FF plans. The optic chiasm and optic
nerve are not shown for the sake of clarity.
TABLE 3 Comparison of EQD2(D40%) and NTCP for four types of plans.

Parameters VMAT-FFF VMAT-FF pa IMRT-FFF IMRT-FF pb

EQD2(D40%) 9.02 ± 0.61 9.92 ± 0.8 <0.001 11.78 ± 0.41 11.44 ± 0.41 <0.001

NTCP 0.23 ± 0.02 0.27 ± 0.03 <0.001 0.35 ± 0.02 0.34 ± 0.02 <0.001
Dose values are given in Gy. a p value denotes the results of Wilcoxon test between VMAT-FFF and VMAT-FF plans. b p value means the results of Wilcoxon test between IMRT-FFF and IMRT-
FF plans.
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significantly reduced the dose to the normal tissue, while

maintaining target coverage, conformity and homogeneity

comparable to FF plans for both IMRT and VMAT. However,

differences in plan quality were insignificant between the two

irradiation modes for carcinoma of the hypopharynx/larynx (20).

It was worth mentioning that, for large and complex targets, such as

advanced nasopharyngeal carcinoma (30), VMAT-FFF showed

poorer conformity and homogeneity of the target compared to

VMAT with traditional flattened beam, and VMAT-FF was more
Frontiers in Oncology 0944
likely to result in a lower dose for most OARs. Based on previous

researches, it can be concluded that it is not possible to generalize

the results of planning studies for a specific combination of

equipment and tumor site, and different targets must be

investigated individually.

Mounting evidence imputes neurocognitive deficits in learning

and memory after conventional WBRT to radiation induced

inflammatory to the neural stem cell compartment in the

hippocampus. Hence, the avoidance of hippocampus in the
TABLE 4 Comparison of monitor units, treatment time, mean dose rate and the results of gamma analysis for four types of plans.

Variable VMAT-FFF VMAT-FF pa IMRT-FFF IMRT-FF pb

Monitor units 844 ± 35 708 ± 35 <0.001 4561 ± 263 3409 ± 197 <0.001

Treatment time (min) 3.10 ± 0.02 3.12 ± 0.02 0.56 6.90 ± 0.33 9.32 ± 0.46 <0.001

Mean dose rate (MU/min) 337.6 ± 14.1 283.0 ± 13.9 <0.001 - - -

Passing rate of g 99.7 ± 0.4 99.8 ± 0.3 0.67 97.9 ± 0.7 97.6 ± 1.1 0.48
a p value denotes the results of Wilcoxon test between VMAT-FFF and VMAT-FF plans. b p value means the results of Wilcoxon test between IMRT-FFF and IMRT-FF plans.
TABLE 5 Summary of the results for parameters of PTV-HA, hippocampus and lens in three groups according to the hippocampal volume.

Parameters Group 1 Group 2 Group 3

PTV-HA HI VMAT-FFF 0.19 ± 0.02 0.20 ± 0.02 0.19 ± 0.03

VMAT-FF 0.21 ± 0.02 0.22 ± 0.02 0.21 ± 0.03

p 0.018 0.008 0.008

CI VMAT-FFF 0.87 ± 0.02 0.86 ± 0.02 0.87 ± 0.01

VMAT-FF 0.85 ± 0.03 0.84 ± 0.02 0.85 ± 0.02

p 0.018 0.008 0.008

Hippocampus D100% VMAT-FFF 9.71 ± 0.39 9.34 ± 0.22 9.13 ± 0.36

VMAT-FF 10.46 ± 0.60 9.95 ± 0.45 9.62 ± 0.33

p 0.018 0.008 0.008

Dmean VMAT-FFF 11.70 ± 0.45 11.31 ± 0.44 10.93 ± 0.38

VMAT-FF 12.63 ± 0.59 12.06 ± 0.62 11.64 ± 0.38

p 0.018 0.008 0.008

Dmax VMAT-FFF 14.83 ± 0.57 15.13 ± 0.49 15.40 ± 0.34

VMAT-FF 15.91 ± 0.57 16.09 ± 0.69 16.39 ± 0.43

p 0.018 0.008 0.008

NTCP VMAT-FFF 0.25 ± 0.02 0.23 ± 0.02 0.22 ± 0.02

VMAT-FF 0.30 ± 0.03 0.27 ± 0.03 0.25 ± 0.02

p 0.017 0.007 0.007

Lens L Dmax VMAT-FFF 6.60 ± 0.79 6.96 ± 0.42 7.10 ± 0.60

VMAT-FF 7.85 ± 0.96 8.02 ± 0.51 8.14 ± 0.79

p 0.018 0.008 0.008

Lens R Dmax VMAT-FFF 6.71 ± 0.70 6.96 ± 0.40 7.11 ± 0.56

VMAT-FF 7.69 ± 0.83 8.13 ± 0.41 8.16 ± 0.83

p 0.018 0.008 0.008
Dose values are given in Gy. p value denotes the results of Wilcoxon test between VMAT-FFF and VMAT-FF plans.
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course of WBRT treatments has been proposed to achieve

prospective neurocognitive benefits, and continued researches

have been placed on this area. Using helical tomotherapy and

linear accelerator-based IMRT technique, Gondi et al. have

reported their preliminary experience and have presented

excellent results with hippocampal-sparing whole-brain

radiotherapy for patients with brain metastases (31). The

hippocampus was spared by helical tomotherapy, which was

administered at a median dose of 5.5 Gy and a maximum dose of

12.8 Gy. The hippocampus was spared by noncoplanar IMRT based

on linac, resulting in a median dose of 7.8 Gy and a maximum dose

of 15.3 Gy. It has previously been reported that the mean and

maximum doses to hippocampus respectively were 11.2 ± 0.3 Gy,

and 15.6 ± 0.4 Gy with 90.5% of the target volume surrounded by
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the prescription dose isoline, exhibited by intensity-modulated arc

therapy approach for whole brain radiotherapy patients with

sparing hippocampus (32). Volumetric modulated arc therapy

plans with two full coplanar arcs generated by Auto-Planning

engine offered 91.5% coverage for target and 16 Gy of the

maximum dose to the hippocampus (33). For VMAT-FFF in this

study, the maximum dose in the hippocampus was 15.14 ± 0.50 Gy,

when the plans were established at 95% of the volume of PTV-HA

to achieve 100% of the prescribed dose. Therefore, compared with

previously published researches utilizing VMAT technique, the

VMAT plans using FFF beams can attain comparable or lower

dose to hippocampus with better target coverage.

Keeping the mean hippocampus dose below 12 Gy out of 30 Gy

in 10 fractions prescription is recommended to improve
TABLE 6 Summary of the results for parameters of PTV-HA, hippocampus, lens and NT in three groups according to the PTV-HA volume.

Parameters Group 4 Group 5 Group 6

PTV-HA HI VMAT-FFF 0.19 ± 0.02 0.19 ± 0.01 0.19 ± 0.03

VMAT-FF 0.21 ± 0.02 0.21 ± 0.02 0.21 ± 0.03

P 0.008 0.012 0.012

CI VMAT-FFF 0.85 ± 0.01 0.87 ± 0.01 0.88 ± 0.01

VMAT-FF 0.83 ± 0.01 0.85 ± 0.01 0.87 ± 0.01

p 0.008 0.012 0.012

Hippocampus D100% VMAT-FFF 9.28 ± 0.22 9.35 ± 0.58 9.47 ± 0.33

VMAT-FF 9.99 ± 0.52 9.91 ± 0.67 10.02 ± 0.55

p 0.008 0.012 0.012

Dmean VMAT-FFF 11.20 ± 0.39 11.21 ± 0.74 11.45 ± 0.34

VMAT-FF 12.00 ± 0.61 11.99 ± 0.83 12.22 ± 0.55

p 0.008 0.012 0.012

Dmax VMAT-FFF 15.10 ± 0.56 15.32 ± 0.40 15.02 ± 0.54

VMAT-FF 16.04 ± 0.72 16.38 ± 0.45 16.05 ± 0.54

p 0.008 0.012 0.012

NTCP VMAT-FFF 0.23 ± 0.02 0.23 ± 0.03 0.24 ± 0.02

VMAT-FF 0.27 ± 0.03 0.27 ± 0.04 0.28 ± 0.03

p 0.007 0.011 0.011

Lens L Dmax VMAT-FFF 6.60 ± 0.61 7.32 ± 0.21 6.84 ± 0.72

VMAT-FF 7.72 ± 0.72 8.48 ± 0.43 7.89 ± 0.82

P 0.008 0.012 0.012

Lens R Dmax VMAT-FFF 6.74 ± 0.57 7.25 ± 0.32 6.87 ± 0.64

VMAT-FF 7.70 ± 0.65 8.51 ± 0.42 7.88 ± 0.80

p 0.008 0.012 0.012

NT Integral dose VMAT-FFF 29.84 ± 3.04 32.50 ± 4.73 32.52 ± 3.88

VMAT-FF 30.65 ± 2.89 33.49 ± 4.88 33.34 ± 3.97

p 0.008 0.012 0.012
Dose values are given in Gy. p value denotes the results of Wilcoxon test between VMAT-FFF and VMAT-FF plans.
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neurocognitive function (34). The treatment plan created by

VMAT-FF was very close to the recommended value. The

hippocampus Dmean of VMAT-FFF plans was 11.28 ± 0.51 Gy,

which was lower than the protocol requirement of 12 Gy.

Nevertheless, neither IMRT-FFF nor IMRT-FF could satisfy

the criteria.

Although some differences in the plan comparisons were

statistically significant, the clinical relevance of these differences

remains unclear. To address this issue to some extent, NTCP, an

indication of the severity of damage to normal tissues, was

calculated. The results of this study showed that VMAT-FFF had

the lowest NTCP for impaired neurocognitive function, which was

agreed well with the better sparing of hippocampus. It’s worth

noting that the slight differences, such as the maximum doses to

optic nerve and optic chiasm, may not be clinically significant.

Hence, the practical benefits of using FFF beams have yet to be

verified by clinical results.

Hippocampal volume had a large effect on the planning

parameters, as shown in Table 5. For example, the treatment

planning with the small hippocampal volume resulted in the

better dose distribution of target and lower Dmax values of

hippocampus and lens. Therefore, accurate delineation of the

hippocampus is necessary in order to achieve neuroprotective

benefits. However, the hippocampus delineated varies greatly due

to the differences in experience of radiation oncologist, quality of

MRI, and the criteria for contouring of the hippocampus in different

cancer centers. For instance, the volume of hippocampi was 2.68 ±

1.05 cm3 in this study, whereas the value was 3.30 cm3 described by

Gondi et al. (31). Certainly, with the availability of the hippocampal

atlas and continuing instruction, the delineation of hippocampus

will become more accurate and uniform with time.
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For VMAT, FFF beams achieved significantly better plan

quality than FF beams over the entire range of hippocampal and

target volumes. With the decrease in hippocampal volume, there

will be an increase in the absolute difference between FFF and FF

beams for the parameters of PTV-HA and the hippocampus. This

finding can serve as a reference for selecting patients when utilizing

the FFF technique for HA-WBRT. Nevertheless, the difference

between FF and FFF seems to be insensitive to changes in

target volume.

The analysis of the technical delivery parameters revealed that

the number of MUs was higher for FFF compared to FF regardless

of IMRT or VMAT, which was in line with these studies of

advanced esophageal cancer (35) and prostate cancer (19). This

effect is conceptually expected because the intensity of FFF beam

decreases with the off-axis distance, which is evident in open beam

dose profiles for larger fields (≥ 10 × 10 cm2). Consequently, at the

periphery of the larger target, additional MUs are required to gain a

uniform dose distribution on account of the unflattened profile of

the FFF beam. In addition, FFF plans generally have more

modulation owing to the capability for higher MUs and the

inherent beam profile shape itself. Furthermore, the higher

amount of MUs and dose rate of FFF plan have raised concerns

about radiation protection. In fact, the removal of FF gives rise to a

significant decrease in neutron fluence and dose equivalent within

the treatment room (36). The photon dose at the maze door in FFF

mode is always lower than the dose measured in FF mode,

regardless of the presence or absence of a water phantom and the

size of the field opening (37). The required thickness of primary

barriers is reduced by 8% when unflattened beams are used (38).

Hence, existing shielding is usually adequate and surplus if instead

of the standard flattened photon beams unflattened ones are used,
FIGURE 4

Ratio of FF and FFF plans for parameters of PTV-HA, hippocampus and lens plotted against hippocampal volume. All patients were stratified into
three groups according to the hippocampal volume.
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which can reduce occupational exposure for staff, assuming a

constant permitted dose per week. Although, an increased

number of MUs with FFF was observed for IMRT, the treatment

time was cut by 2.42 minutes because of the higher dose rate,

improving patient stability and treatment accuracy. The time

advantage of using FFF beams increases with increasing dose per

fraction, which makes FFF beams especially attractive for

stereotactic radiotherapy (39). However, compared to VMAT-FF,

the use of the higher mean dose rate of VMAT-FFF did not translate

into a time advantage due to the limited speed of the gantry rotation

(4.8 degrees per second on the Trilogy). There was no statistical

difference for the passing rate of g between the FF and FFF, which

was in accord with these studies of left-sided breast cancer (40) and

prostate cancer (19). Moreover, the VMAT plans demonstrated

better consistency between the calculated dose distributions and the

measured dose distributions than the IMRT technique, which might

be because IMRT had more MUs and more complex modulation.

In this study, FFF plans tended to show a significant reduction

in dose to healthy tissue compared with standard FF plans in view of

the integral dose of non-tumor tissue, which may lead to reducing

the risk of long-term radiation-induced complications (41). Reason

for this may be that the main source of photon scatter in the
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treatment head is eliminated by removing the flattening filter,

leading to a reduction in the out-of-field dose. Linac head leakage

was reduced by 52% by using 6MV FFF beam for IMRT prostate

treatment demonstrated by Kragl et al. (17). Simultaneously, many

studies have shown that the unflattened mode delivers a much

lower peripheral dose (17, 42). Besides, on account of the

elimination of beam hardening components from the flattening

filter, the spectrum of the unflattened 6 MV beam is usually softer

(43). According to Vassiliev et al., 6 MV FFF beam has a depth dose

distribution that is comparable to that of conventional 4–5 MV

beam (44). As a result, the dose to the skin may be slightly higher

(45). The results of this study indicate for WBRT with hippocampal

avoidance that the reduced head scattering and residual electron

contamination are predominant in patient dose reduction and

beam softening does not cause excessive phantom scattering, at

short-to-medium distances from the field edges.

This study still has several limitations. For example, the number

of patients is small, and this study is based on dosimetry and

radiobiology rather than clinical outcomes. Hence, the practical

benefits of the FFF plans need to be confirmed by long-term

follow-up and a larger number of cases before the FFF mode is

widely employed for HA-WBRT, which is the subject of further study.
FIGURE 5

Ratio of FF and FFF plans for parameters of PTV-HA, hippocampus, lens and NT plotted against PTV-HA volume. All patients were stratified into
three groups according to the PTV-HA volume.
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Besides, due to the lack of measuring equipment in our institution,

the integral dose was used to compare the out-of-field doses between

FF and FFF beams in this paper. However, the peripheral doses are

difficult to calculate correctly with the TPS, and the determination of

peripheral doses by measurements of thermoluminescent dosimeters

is more recommended (46, 47). In addition, several novel approaches

have been proposed for HA-WBRT and have shown promising

dosimetric advantages (48, 49). The combination of these methods

and FFF techniques is expected to improve treatment plans, which

also requires further investigation. Despite these limitations, our

study will contribute to understanding the differences between the

unflattened and flattened beams in whole-brain radiotherapy with

hippocampal avoidance.
5 Conclusions

This study is the first to present evidence of the possible benefits

of using FFF beams in HA-WBRT in terms of dosimetry and

radiobiology, which is important to provide a new idea for

improving the efficacy and neurocognitive side effects of HA-

WBRT. VMAT with FFF beams achieved superior homogeneity

and conformity of the target, better sparing of OARs, and lower

NTCP of hippocampus with the similar treatment time compared

to flat beams. The improvement resulting from the FFF technique in

VMAT increased as the volume of the hippocampus decreased.

IMRT-FFF provided comparable plan quality to IMRT-FF with the

significantly reduced delivery time. Hence, FFF had a greater

dosimetric effect on VMAT than IMRT. In addition, FFF beams

showed a lower out-of-field dose, which may lead to reducing

secondary cancer risk. FFF plans necessitated a significant

increase in monitor units per fraction dose for both IMRT and

VMAT, which was associated with the unflattened profile of FFF

beams. The gamma scores of all plans were up to standard and no

significant differences were detected between FF and FFF. Besides,

VMAT showed considerable advantages over IMRT in terms of the

plan quality, monitor units, treatment time and gamma indices. To

sum up, VMAT-FFF offers the greatest dosimetric and

radiobiological superiority, as well as the shortest treatment time

compared to other techniques, so it may be considered the

preferable therapeutic schedule for HA-WBRT.
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narrative and critical review
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Background: The landscape of brain metastases radiotherapy is evolving, with a

shift away from whole-brain radiotherapy (WBRT) toward targeted stereotactic

approaches aimed at preserving neurocognitive functions and maintaining

overall quality of life. For patients with multiple metastases, especially in cases

where targeted radiotherapy is no longer feasible due to widespread

dissemination, the concept of hippocampal sparing radiotherapy (HA_WBRT)

gains prominence.

Methods: In this narrative review we explore the role of the hippocampi in

memory formation and the implications of their postradiotherapy lateral damage.

We also consider the potential advantages of selectively sparing one

hippocampus during whole-brain radiotherapy (WBRT). Additionally, by

systematic evaluation of relevant papers published on PubMed database over

last 20 years, we provide a comprehensive overview of the various changes that

can occur in the left or right hippocampus as a consequence of radiotherapy.

Results: While it is important to note that various neurocognitive functions are

interconnected throughout the brain, we can discern certain specialized roles of

the hippocampi. The left hippocampus appears to play a predominant role in

verbal memory, whereas the right hippocampus is associated more with

visuospatial memory. Additionally, the anterior part of the hippocampus is

more involved in episodic memory and emotional processing, while the

posterior part is primarily responsible for spatial memory and pattern

separation. Notably, a substantial body of evidence demonstrates a significant

correlation between post-radiotherapy changes in the left hippocampus and

subsequent cognitive decline in patients.

Conclusion: In the context of individualized palliative radiotherapy, sparing the

unilateral (specifically, the left, which is dominant in most individuals)

hippocampus could expand the repertoire of strategies available for adapted
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WBRT in cases involving multiple brain metastases where stereotactic

radiotherapy is not a viable option. Prospective ongoing studies assessing

various memory-sparing radiotherapy techniques will define new standard of

radiotherapy care of patients with multiple brain metastases.
KEYWORDS

whole brain radiotherapy, hippocampus, uni lateral , brain metastases,
neurocognitive function
1 Introduction

Brain metastases (BM) are the most common intracranial

tumors in adults, accounting for more than half of all brain

tumors. The incidence of BM is steadily increasing, primarily due

to advances in comprehensive cancer care, better control of

extracranial disease through improved systemic therapy, and

enhanced detection of small metastases using more easily

accessible magnetic resonance imaging. It is estimated that BM

occur in up to 30 percent of adult patients with solid malignancies

(1). Consequently, the prevalence and incidence of BM are

continuously rising, making BM a significant social and health

problem. Until recently, due to limited therapeutic options, BM

were typically treated in a standardized manner, with whole-brain

radiotherapy (WBRT) being the primary treatment for decades.

Current treatments for BM include surgery, stereotactic

radiosurgery (SRS), WBRT, chemotherapy, and modern targeted

therapy (2).

Although the role of WBRT in patients with brain metastases

has evolved in recent years, and its usage has decreased, WBRT

remains a crucial tool in the standard treatment for the majority of

patients with multiple BM (3). While radiotherapy has made

significant advancements in general, WBRT itself has not seen

substantial changes in recent decades. It has long been recognized

that WBRT can lead to serious, irreversible side effects on the

central nervous system. Neurocognitive dysfunction has become an

increasingly relevant concern in patients with BM who receive

WBRT. Preserving a good quality of life (QoL) for as long as

possible and minimizing potential iatrogenic side effects of

treatment are currently top priorities, not only in palliative

medicine (4).

Although cognitive impairment in patients with BM is likely

influenced by multiple factors, post-radiation changes in the

hippocampus are considered one of the primary factors affecting

neurocognitive function (NCF), particularly memory, and

ultimately overall QoL (5–7). This article presents multiple

clinical and preclinical data on radiation-induced damage to

neural progenitor cells located in the subgranular zone of the

hippocampus and its impact on radiation-induced neurocognitive

decline, specifically in terms of short-term memory formation and
0252
recall (8). Additionally, by systematic evaluation of relevant papers

published on PubMed database over last 20 years, we provide a

comprehensive overview of the various changes that can occur in

the left or right hippocampus as a consequence of radiotherapy with

consideration of the potential benefits of sparing unilateral

hippocampus during WBRT in patients with multiple brain

metastases (presented in section 4.2 and 4.3 after necessary

gradual description of relevant implicatons).
2 Hippocampus – basic overview

Due to bilateral brain symmetry, the hippocampus is situated in

each cerebral hemisphere. It can be simplified that if there is

unilateral damage to the hippocampus, with the structure in the

other hemisphere remaining intact, memory functions of the brain

can generally remain almost normal (9). Conversely, severe damage

to both hippocampi in both hemispheres can lead to significant

difficulties in forming new memories. Nevertheless, clinical

observations and numerous studies demonstrate that damage to

different regions of the hippocampus can result in specific memory

disorders. For instance, verbal memory retention is most likely

associated with the anterior part of the left hippocampus, while the

right hippocampus plays a more prominent role in executive

functions and regulation during verbal memory retrieval. The

posterior part of the left hippocampus could then be linked to

verbal memory capacity (10). The findings of our previous research

are consistent with these observations, as discussed in further details

(11, 12).

The hippocampus does not appear to have a uniform structure

along its longitudinal axis. There is evidence of differences in both

structure and function. The anterior part of the hippocampus is

preferentially connected to the amygdala and orbitofrontal cortex

and is believed to be mainly involved in episodic memory and the

mediation of anxiety-related behaviors. In contrast, the posterior

part of the hippocampus is preferentially connected to the

retrosplenial and posterior parietal cortex and is thought to be

especially engaged in memory and spatial navigation (13). Other

parts of the brain (amygdala, fornix, etc.) are involved in the

neurocognitive function in the complex brain organization.
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In addition to the functional distinctions between the anterior

and posterior hippocampus, there is substantial evidence regarding

the lateralization of hippocampal functioning, highlighting that the

roles of the right and left hippocampus are not identical. This

knowledge is derived from findings in patients with unilateral

hippocampal lesions, including those with conditions such as

schizophrenia and mild cognitive impairment, as well as

individuals who have undergone unilateral hippocampal resection

as a treatment for epilepsy. In broad terms, it can be asserted that

spatial memory is primarily associated with the right hippocampus,

while episodic memory is linked to the left hippocampus.

Furthermore, gender differences in hippocampal lateralization

during spatial tasks have been observed, with greater activation on

the left in females and on the right in males. This discrepancy is

likely attributed to the fact that females tend to rely more on verbal

strategies, whereas males exhibit a preference for nonverbal spatial

strategies (14). Additionally, several other studies discussed below

have described varying clinical significance in the postradiotherapy

changes between the left and right hippocampus.

It has been shown that radiation-induced microstructural

changes in the brain, which can subsequently lead to cognitive

impairment, occur soon after radiation exposure. These alterations

may occur without obvious radiographic manifestations and may be

detectable, for example, by diffusion tensor imaging (DTI) as white

matter changes. Further information about radiation damages can

be provided by MR perfusion a diffusion-weighted imaging (DWI).

MR spectroscopy (MRS) is able to evaluate radiation-induced brain

injury by assessing the metabolic concentrations at the molecular

levels (15, 16).
3 Laterality in hippocampal function

Much of the information on this topic has been gleaned from

non-oncology patients or healthy volunteers. Patients with BM

possess unique characteristics; their cognitive and neurological

functions may be influenced by the oncology disease itself,

typically resulting in a poor prognosis and short life expectancy.

The primary treatment goal is to enhance or sustain the quality of

life. The view of this issue from the point of view of radiation

oncology must be somewhat different from, for example, epilepsy

surgery. In neurobiology, it is understood that explicit memory is

primarily housed in the brain’s temporal lobes, specifically within

the hippocampus, as well as in the amygdala and neocortex.

While both episodic and spatial memory rely on the hippocampus,

distinctions in these functions suggest partial separation and distinct

structural neural foundations, as well as varying connections with other

brain regions. Notably, the anterior and posterior hippocampus exhibit

differences in structure and connectivity within the brain. Some studies

suggest that the posterior hippocampus plays a greater role in spatial

memory, whereas the anterior hippocampus is primarily associated

with episodic memory (17, 18).

In addition to the functional differences between the anterior

and posterior hippocampi, numerous examples support the

presence of lateralization in hippocampal functions, meaning that

the left and right hippocampus serve distinct functions. Much of
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this evidence is derived from studies involving patients with

unilateral hippocampal lesions and unilateral hippocampal

resections. Research on patients who have undergone resection of

the left hippocampus for the treatment of epilepsy suggests

impairment verbal memory tasks, specifically affecting learning

and retention of story content, word recognition, recall, and

verbal associative memory (19–21). In contrast, resections of the

right hippocampus and parahippocampal cortex lead to deficits in

visuospatial tasks (22). This aligns with findings of lateralized

hippocampal activation in functional neuroimaging studies.

Lateralization of hippocampal function is also evident in spatial

memory, depending on whether verbalizable stimuli or abstract

nonverbal stimuli are employed. This suggests possible differences

in different cognitive strategies. These results provide support for

the concept of functional lateralization within specific aspects of

spatial memory (23).

Consequently, it can be inferred that the previous hypothesis of

strictly lateralized organization of brain functions, with verbal

memory components residing exclusively in the left hemisphere

and spatial memory components solely in the right hemisphere,

may not be so pronounced (24). Thus, with the advancement of

cognitive neuroscience, the idea of strict structural specificity is now

being questioned (25).Thus, the specific neurocognitive functions

attributed to the left and right hippocampus are not as clear-cut as a

following Figure 1 might suggest. While there are some general

trends in terms of lateralization of functions in the brain, the

hippocampus is a complex structure, and many functions involve

both sides working together. Additionally, individual differences, as

gender aspects, can play a significant role.

Conversely, the recovery and compensation of memory

functions represent a demonstration of a particular functional

plasticity within the brain (26). For instance, memory deficits

typically associated with the contralateral temporal lobe function

in patients with unilateral hippocampal sclerosis may show

improvement after surgery (27). However, in patients with brain

tumors, who are further burdened by oncological treatments,

including radiation injury, it is not possible to assume the same

ability for compensation.

From a radiotherapy perspective, the feasibility of sparing both

hippocampi, only the right hippocampus, or only the left hippocampus

is often influenced by the presence or proximity of individual BM

within the hippocampus. The consideration of which functions are

associated with each hippocampus is secondary in this context.

Conversely, the discussed differences in lateralization are a significant

factor to consider when contemplating unilateral hippocampal

investigation in WBRT as discussed below. In this scenario, one of

the hippocampi remains covered by full dose of radiation while only

the other is protected. This experimental approach may offer greater

sparing possibilities when focusing on a single hippocampus, along

with improved rest of the brain irradiation (28).
3.1 Radiotherapy and hippocampus

The side effects of radiotherapy on the brain are highly specific

to the tissues and structures involved. This specificity arises from
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the combined impact of radiation on brain vasculature, neuroglial

cells, and their precursors, including stem cells. Radiation-induced

inflammatory effects and the disruption of the blood-brain barrier

also play a role (29).

The radiation-induced inflammatory response leads to an

increased activation of microglia, which release cytokines like

tumor necrosis factor-alpha and interleukin-1 beta. Radiation is

particularly cytotoxic to proliferating neuroglial progenitor cells,

disrupting both gliogenesis and neurogenesis and resulting in a

reduction in the number of newly formed neurons. One region in

the brain known for its neurogenic potential is the hippocampus,

specifically the subgranular zone of the hippocampal gyrus

dentatus, housing a niche of neural stem cells crucial for memory

formation. In our previous work, we hypothesized that the loss of

neuronal cells in the hippocampal region that occurs after

irradiation can be measured by changes in N-acetylaspartate

(NAA) concentration using MRS. Our results showed that after

whole brain radiotherapy (WBRT), there was a decrease in NAA

concentration in both hippocampi, and these changes were

associated with a decline in cognitive function as assessed by a

battery of neurocognitive tests focused on memory, including the

Auditory Verbal Learning Test and the Short Test of Visual-Spatial

Memory-Revised. We observed a moderate positive correlation

between the decrease in NAA concentration in the left

hippocampus and some subtests related to verbal memory (12). A

radiation technique employing intensity-modulated RT (IMRT) to

administer a therapeutic dose to the entire brain region while

sparing the bilateral hippocampi is known as hippocampal

avoidance whole brain radiotherapy (HA-WBRT) (30–33).

In a pivotal phase II trial (RTOG 0933), HA-WBRT in BM

patients was linked to the preservation of tested cognitive function

and reported quality of life compared to historical controls (31).

Subsequently, the results of a randomized phase III study (NRG

CC001, published in 2020) comparing HA-WBRT plus memantine,

the N-methyl-D-aspartate (NMDA) receptor antagonist, to WBRT

plus memantine in 518 BM patients demonstrated a significantly
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lower risk of cognitive failure (adjusted hazard ratio, 0.74; P = .02)

with hippocampal sparing, while there was no difference in

intracranial progression or overall survival. HA-WBRT in

combination with memantine can now be considered a new

standard of care for the treatment of multiple brain metastases (34).

However, the planning process for HA-WBRT is significantly

more labor-intensive compared to traditional WBRT. The key

challenge lies in accurately defining the target volume and

identifying critical structures and organs at risk (OAR), such as

the hippocampus and hippocampal-avoiding zones (33). To address

this, a consensus-based atlas for contouring in Neuro-Oncology can

help reduce inter- and intra-observer delineation variability (35).

Recently, an MRI-based OAR autosegmentation atlases are

developed as well. Autosegmentation allows for high-quality

contouring in a limited time frame. The accuracy of hippocampal

contouring in the HA-WBRT technique is enhanced through

automatic hippocampal segmentation using multitasking

learning (36).

Other areas that may be relatively sensitive to radiation include

periventricular regions (such as the subventricular zone) and white

matter tracts containing oligodendrocyte precursor cells. These

areas are relevant to brain neuroplasticity, which pertains to the

brain’s ability to establish or modify connections with other brain

regions. Neuroplasticity is an essential property, particularly for

brain injury recovery, among other functions.

The importance of preserving intact white matter integrity in

maintaining cognitive function has also been highlighted in a

secondary analysis of the RTOG 0933 trial. In their study, Bovi

et al. established a correlation between neurocognitive decline and

the pretreatment volume of MRI-determined white matter injury.

They found a positive correlation (r = 0.54, P <.05) between a larger

volume of pretreatment white matter injury and declines in

recognition, as assessed by the Hopkins Verbal Learning Test-

Revised (37).

A recently published prospective longitudinal trial assessed

associations between changes in amygdala morphometry and
FIGURE 1

Summary of simplified division of different neurocognitive domains according to hippocampal location and laterality.
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functional outcomes in patients with primary brain tumors

receiving radiation therapy. Radiation dependent atrophy in

bilateral amygdalae was associated with poorer memory, mood,

and emotional well-being.

Advanced radiotherapeutic techniques such as volumetric

modulated arc therapy (VMAT) enable the simultaneous sparing

of other limbic brain structures involved in cognitive function for

patients undergoing WBRT. While hippocampal sparing is already

common practice in many cancer centers, the feasibility of

extending this approach has, thus far, only been tested at the

planning study level. The process of preparing a radiation plan is

more time-consuming, and the homogeneity of radiation with

respect to PTV (Planning Target Volume) dose coverage may be

lower. Implementing an extended sparing approach for certain

brain regions carries the risk of potentially impacting oncologic

outcomes, including intracranial control and subsequent overall

survival. Therefore, prospective studies are deemed necessary (38).

On the other hand, as advancements in stereotactic

radiotherapy delivery continue, one might argue that preserving

various other parts of the brain is safe, even in cases with multiple

brain metastases (e.g., more than 15 lesions), especially when

regular brain MR imaging follow-ups are conducted (38). The left

and right hippocampus, left and right amygdala, fornix, and corpus

callosum are crucial neurocognitive structures, and it is reasonable

to assume that sparing all of them is essential to maximize the

preservation of neurocognitive function. Indeed, in the NRG CC001

study, approximately 50% of patients treated with HA-WBRT and

memantine experienced neurocognitive decline (34). It is

conceivable that sparing more than just the hippocampi is

necessary, as is being explored in the concept of Memory

Avoidance WBRT, currently under evaluation in an ongoing

phase II clinical trial (39). The Memory Avoidance region

encompasses the left and right hippocampus, left and right

amygdala, fornix, and corpus callosum, with constraints set at

D100% ≤ 9 Gy and D0.03 cm3 ≤ 16 Gy in standard prescription

of 30Gy in 10 fractions. In a dosimetry study involving ten enrolled

patients (none of whom had brain metastases within the memory

sparing region), only two of them failed to meet the constraints for

achieving near-maximal dose sparing, as priority was given to target

coverage and homogeneity of target irradiation. Utilizing modern

LINAC-based volumetric modulated arc therapy, it is indeed

possible to create a homogeneous treatment plan while preserving

all critical neurocognitive function-related structures (40). For the

further development of this intriguing and innovative technique of

Memory Sparing-WBRT, the evaluation of post-treatment

neurocognitive function and the assessment of the risk of local

failure will be crucial.
3.2 Laterality of hippocampal changes
after RT

Designing appropriate strategies to reduce radiation dose to the

hippocampus would be enhanced if suitable imaging methods could

be discovered to detect hippocampal damage in vivo in patients with

brain tumors after cranial irradiation. Magnetic resonance imaging
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is a widely utilized neuroimaging method and is also employed in

cognitive neuroscience. It can be utilized to assess regional

morphology and physiology, including pathological issues, in the

entire brain or in its individual components.

An example would be hippocampal volume measured by

structural MRI. The utility of this method has been clinically

validated, as seen in conditions such as Alzheimer’s disease,

temporal lobe epilepsy, and traumatic brain injury (40, 41).

However, this technique has not yet been successfully employed

as a biomarker for radiation-induced hippocampal volume loss

(42). There is a notable correlation between the reduction in

hippocampal volume and the administered radiation dose to the

hippocampus. Nevertheless, at the lowest doses, the hippocampi

appear to exhibit an adaptive increase in volume, suggesting a

potential neuroplasticity effect. Consequently, it may be advisable to

shield at least one hippocampus by administering the lowest feasible

dose to preserve cognitive functions (43).

Recently, a systematic review was published, and a behavioral

meta-analysis was conducted on the association between cognitive

outcomes and multimodal MRI imaging in childhood

medulloblastoma (MB) survivors. As summarized in the article,

several studies have explored the link between hippocampal volume

changes following radiotherapy and memory function (44). One

study reported that smaller hippocampal volumes were associated

with poorer verbal associative memory (45), while another study

found a correlation between right hippocampal volume and

learning, attention, and memory (42). In one of the included

studies, significantly lower ADC (Apparent Diffusion Coefficient)

levels were observed in the hippocampi of MB patients compared to

the control group. This study highlights impaired hippocampal

microstructure, which may lead to decreased memory performance

in patients treated for MB.

The association between hippocampal volume and memory

functions was also validated in the opposite direction, as

demonstrated by a positive correlation between grey matter

volume in the posterior hippocampus of London taxi drivers and

their spatial memory, along with their navigational abilities (46).

Other studies show different changes occurring in the left and

right hippocampus after irradiation as discussed below (Table 1).

PubMed database was used on 20 July 2023 to extract scientific

articles describing different postradiotherapy changes in the leff,

versus right hippocampus (Figure 2). Out of 108 identified articles,

total of 18 studies was further evaluated (Table 1).

In patients whose left hippocampus received a mean dose of

30.7 Gy and 31 Gy, respectively, a statistically significant decrease in

mean total performance quotient score of >10% was observed at 3

and 5 years after fractionated RT (benign, low-grade juvenile

tumors), but no significant correlation was found with the doses

received by the right hippocampus (51).

Higher doses to the left hippocampus can lead to significant

impairment of verbal learning and memory; high doses to the left

hippocampus and other structures on the left side of the brain (left

temporal lobe, left frontal lobe, etc.) can result in impairment of

verbal fluency, executive functions, and working memory speed as

shown in a cross-sectional study of 78 primary brain tumor patients

after radiotherapy (50).
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TABLE 1 Summary of studies reporting different post-radiotherapy changes in left vs. right hippocampal region.

Author,
year

Diagnosis Number
of
patients

observation Laterality
of
greater
changes

Yang,
2022 (47)

Glioblastoma 133 Mean left hippocampus dose was significantly associated with post-radiotherapy decline in MMSE
scores (p = 0.005), while the right hippocampus not.

L

van der
Weide,
2022 (48)

Low
grade gliomas

17 The subgroup with left-sided tumors performed significantly lower on verbal tests. In the
subgroup with right-sided tumors, RT dose in the left cerebrum was related to lower verbal
memory performance

L

Qiu,
2021 (49)

Nasopharyngeal
carcinoma

146 RT-associated progressive radial diffusivity reduction in the left cingulate angular bundle
correlated with progressive cognitive impairment post-RT

L

Haldbo-
Classen,
2020 (50)

Primary
brain tumors

78 High RT dose to the left hippocampus associated with impaired verbal learning and memory (p =
0.04). RT dose to the left hippocampus, left temporal lobe, left frontal lobe and total frontal lobe
associated with verbal fluency impairment (p < 0.05) and doses to the thalamus and the left
frontal lobe with impaired executive functioning

L

Goda,
2020 (51)

Benign or low-
grade
brain tumors

48 A mean dose of ≤30 Gy to the left hippocampus as a dose constraint for preserving intelligence
quotient is suggested

L

Tringale,
2019 (52)

Primary
brain tumors

27 Higher mean dose to the left temporal pole white matter was significantly associated with
decreased fractional anisotropy.

L

Shi,
2018 (53)

Nasopharyngeal
carcinoma

56 Compared to pre-treatment group, cortical volumes of gray matter were significantly smaller in
the left hippocampus, the right pulvinar and the right middle temporal gyrus

L

Raghubar,
2018 (54)

Pediatric
brain tumor

26 Word Pair delayed recall was significantly associated with whole brain and right hippocampus
mean dose, Integral biological effective dose, and Generalized equivalent uniform dose; and left
hippocampus Generalized equivalent uniform dose

L/R

Zureick,
2018 (55)

Pediatric
brain tumor

70 A higher left hippocampal V20GyE (percentage of the volume of a particular anatomical region
receiving at least a 20 gray equivalent) was correlated with a score decline in all 4 measures.

L

Kim,
2018 (56)

Primary
brain tumors

26 The mean dose of the left hippocampus and bilateral hippocampi were significantly higher in
patients showing deterioration of the Seoul Verbal Learning Test for total recall and Recognition
than in those without deterioration.

L

Pospisil,
2017 (12)

Brain metastases 35 Moderate positive correlation was observed between left hippocampal N-acetyl aspartat
concentration decrease and Auditory Verbal Learning Test_total recall decline as well as with
delayed recall decline. No correlation between right hippocampus h-tNAA and memory decline
(AVLT) was observed.

L

Simo,
2016 (57)

Brain metastases
from small cell
lung cancer

22 decrease in gray matter over time in the right subcortical regions, bilateral insular cortex, and
superior temporal gyrus plus in the right parahippocampal gyrus and hippocampus

R

Bodensohn,
2016 (58)

High
grade gliomas

44 In the ‘verbal memory test’ lower percentile ranks were achieved in left-sided tumors compared to
right-sided tumors. a correlation was detected between decreased figural recognition and the
radiation dose to the left hippocampus

L

Tsai,
2015 (59)

Brain metastases 40 dosimetric parameters specific to left sided hippocampus exerted an influence on immediate recall
of verbal predicting patients’ neurocognitive decline after receiving HS-WBRT

L

Farjam,
2015 (60)

Low-grade
glioma or
benign tumor

27 vascular dose response in the left hippocampus of females correlated significantly with changes in
memory function at 6 and 18-months post radiotherapy

L

Greenberger,
2014 (61)

Pediatric
patients with
low-
grade gliomas

32 subgroup analysis indicated some significant decline in neurocognitive outcomes for young
children (<7 years) and those with significant dose to the left temporal lobe/hippocampus

L

Peiffer,
2013 (62)

Primary
brain tumor

57 Regions of adult neurogenesis primarily predicted cognition at %v40 (percent of region of interest
receiving 40 Gy) except for the right hippocampus which predicted at %v10

R

Redmond,
2013 (63)

Pediatric
primary brain
tumors
and controls

74 significant relationship between reduced performance on verbal learning and increasing dose to
the cerebrum and reduced performance on visual perception and increasing dose to the left
temporal lobe

L

F
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In a prospective study, Zureick et al. explored the correlation

between cognitive function and the dose received by the

hippocampus in pediatric patients after proton irradiation. The

results revealed a significant decrease in scores for delayed verbal

memory and a borderline decrease for immediate verbal memory.

However, no significant change was observed in scores for

immediate and delayed visual memory. Furthermore, they

identified a correlation between higher V20GyE (volume receiving

20 GyE or equivalent) on the left hippocampus and a decline in

memory scores. Based on these findings, it is advisable to consider

investigating the left hippocampus in pediatric brain tumor patients

during proton/photon radiation therapy (55).

In other study, 40 cancer patients underwent HA-WBRT, and

their neurocognitive functions were assessed before and four

months after treatment. The results indicated stable

hippocampus-dependent memory but significant associations

between certain radiation doses to the hippocampus and verbal

memory preservation. Specifically, lower radiation doses to the left

hippocampus were linked to preserved immediate verbal

memory (59).

In another study, eighty patients aged at least 6 years but less

than 21 years with low-grade glioma were treated with RT to 54 Gy.

On multivariate regression, after accounting for hydrocephalus,

decline in short-delay recall was associated with the volume of right

or left hippocampus receiving 40 Gy (V40 Gy) (64). This is an

example of studies, where no difference between left and right

postradiotherapy changes is presented.
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3.3 Concept of unilateral
hippocampal sparing

There is sufficient evidence supporting the crucial role of the

hippocampus in both episodic and spatial memory functions.

Numerous reports have documented that bilateral damage to this

structure leads to severe memory impairments, often resulting in

severe amnesia (9). Notably, the randomized NRG-CC001 trial

demonstrated a reduced incidence of memory impairment when

both hippocampi were spared during WBRT.

Whether the hippocampus sustains damage or protection

during radiotherapy, such changes typically affect both

hippocampi. Maintaining the integrity of both hippocampi is

considered essential for normal cognitive function. However, the

precise involvement of the dominant and non-dominant

hemispheres’ hippocampi in specific neurocognitive functions

remains incompletely understood. From a radiobiological

perspective, the hippocampus cannot be viewed as a solely serial

or parallel organ. In cases where there is evidence of metastatic

involvement in one hippocampus, it is advisable to consider at least

a unilateral or partial sparing of the hippocampal region possibly

even just the amygdala region (65–67). This approach represents a

compromise, aiming to preserve neurocognitive functions partially

while achieving more uniform irradiation of the brain region. Such

an approach could significantly expand the indications for

hippocampal avoidance whole-brain radiation therapy (HA

WBRT), even for patients with unilateral hippocampal metastasis

involvement or metastases in close proximity to the hippocampi.

In cases where patients have multiple brain metastases,

particularly when these are unfortunately situated within

memory-related structures (as previously discussed regarding

Memory Sparing WBRT), it may be advisable to consider sparing

at least one hippocampal region. To be more specific, given the

higher frequency of post-radiotherapy changes in the left

hippocampus, a strategy involving the sparing of the dominant

left hippocampus during WBRT could be considered as an

alternative approach in the palliative radiotherapy of multiple BM.
3.4 Clinical implications and
future directions

In our previous in-silico virtual planning study involving 10

patients, we developed radiation therapy treatment plans that

incorporated unilateral left hippocampal sparing. Our aim was

twofold: first, to maintain the same dosimetry for the left

hippocampus as typically achieved in both hippocampal-avoiding

WBRT to demonstrate improvements in brain target coverage, and

second, to achieve the same left hippocampal dosimetry as usual but

with only unilateral left hippocampal sparing to illustrate the

potential for further reducing radiation dose to the spared left

hippocampus (28).

With the implementation of unilateral left hippocampal

sparing, we were able to achieve a significant reduction in brain

radiotherapy homogeneity index. This approach also led to a

decrease in near-maximal dose (D2%) to the brain and an
FIGURE 2

Flowchart summarizing the selection of studies describing different
postradiotherapy changes in left vs. right hippocampal region. The
search terms ,,hippocamp*”, ,,radioth*”, irrad*, left and right were
used to search papers published during last 20 years (since 2003). In
total, 108 articles was received using he search terms ,,
(“hippocamp*”[All Fields]) AND ((radioth*) OR (irrad*)) AND ((left) OR
(right))” with limitation for english written papers. Abstracts were
reviewed and articles describing the other than brain cancer, case
report, animal studies, virtual, in silico studies, studies with no
specification of left vs. right changes were excluded.
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increase in the near-minimal dose (D98%), thereby improving

overall brain radiation dosage. Alternatively, by maintaining

similar brain coverage, we could significantly reduce the radiation

doses deposited in the left (spared) hippocampus (28).

Figure 3 illustrates the case of 47-year old women with

melanoma, who developed multifocal brain metastases presented

supra- and infratentorially. One metastasis was presented in the

close proximity to the right hippocampus. Unilateral left

hippocampal sparing WBRT was performed with dose

prescription to planning target volume 30Gy in 10 fractions. Dose

within left hippocampus was reduced to D0.03Gy = 18.64Gy and to

D100% = 9.65Gy.

The concept of partial hippocampal sparing in whole-brain

radiation therapy (WBRT) has also been proposed by McKay et al.

(66) and Sapienza et al. (65). Their work supports the idea of

unilateral hippocampal sparing as a compromise approach.

Additionally, their research suggests the potential for expanding

the indications of hippocampal avoidance WBRT to include

patients with unilateral metastatic involvement in the hippocampus.

The only currently ongoing and recruiting trial that focuses on

unilateral hippocampal sparing during radiotherapy is

NCT04801342, titled “Neurocognitive Outcome of Bilateral or

Unilateral Hippocampal Avoidance WBRT With Memantine for

Brain Metastases”. This phase 2 trial, conducted by researchers

from National Taiwan University Hospital, involves enrolling

patients with brain metastases located outside a 5-mm margin

around either hippocampus (68). Patients are then randomized

into two groups: the experimental arm, which receives unilateral

hippocampal sparing WBRT plus memantine, and the active

comparator arm, which undergoes bilateral hippocampal sparing

WBRT plus memantine. In both cases, the prescribed dose is 10

fractions of 3.0 Gy each. The primary outcome of this study is the

assessment of the decline in the Hopkins Verbal Learning Test-

Revised (HVLT-R) memory score, which includes the sum of total
Frontiers in Oncology 0858
recall and recognition index, measured from baseline to 6 months

after the initiation of radiotherapy.
4 Conclusion

In summary, the human hippocampus plays a critical role in

both intact episodic memory and spatial memory. Previous research

indicates that there are notable structural and functional

distinctions between the anterior and posterior regions of the

hippocampus, reflecting differences in their connectivity to other

brain regions. The posterior hippocampus is closely connected to

the posterior parahippocampal cortex, which is involved in spatial

function. This connectivity suggests that the posterior hippocampus

is primarily responsible for spatial memory.

Conversely, the anterior hippocampus is associated with the

perirhinal cortex, anterior temporal cortex, and amygdala, implying

its involvement in episodic memory processes. It is worth noting

that the activation pattern for episodic memory tasks is somewhat

less distinct and tends to be more distributed in the left anterior

hippocampus. However, the lateralization of activation may depend

on the extent to which the task allows for the use of verbal strategies.

In essence, spatial tasks predominantly engage the right

posterior hippocampus, while the engagement of the left anterior

hippocampus is more prominent in episodic memory tasks,

although this can vary based on the specific demands of the task,

particularly in terms of verbal processing.

Differences in functional distribution along the longitudinal axis

of the hippocampus, as well as lateral differences, could potentially

account for sex differences in memory function. These distinctions

might then manifest as variations in behavior between genders.

However, the underlying neural mechanisms responsible for these

sex differences remain largely unexplored. Gaining insight into the

neural basis of sex differences in memory functions would not only
FIGURE 3

T1-weighted contrast enhancing MR examination with one metastasis located close to the right hippocampus (A). Unilateral hippocampal sparing
radiotherapy technique (B) was employed in the palliative RT.
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contribute to our theoretical understanding of hippocampal

function but also hold potential clinical significance. Notably,

gender disparities in spatial memory performance are evident in

variations in hippocampal activation patterns. Functional MRI

studies have revealed greater right-sided activation in the

posterior hippocampus among males. Furthermore, gender

differences in the impact of unilateral hippocampal resection as a

treatment for epilepsy have been observed, indicating that men and

women may respond differently in terms of memory effects to

this procedure.

Many patients with multiple BM are not suitable candidates for

stereotactic radiotherapy, often due to the limited availability of

advanced radiotherapy facilities and systems. Given that post-

radiotherapy changes in the left hippocampus are more frequently

associated with post-radiotherapy neurocognitive decline, the

concept of unilateral left (dominant) hippocampal sparing has

been proposed.

In addition to ongoing prospective clinical phase II trial

(NCT04801342), it will be essential to routinely document specific

doses administered to the left and right hippocampus. This

documentation will help in comparing pre- and post-radiotherapy

neurocognitive function. Determining the dominant hemisphere is

crutial as well. Meanwhile, on an individual patient basis, unilateral

(left, dominant) hippocampal sparing could expand the range of

modifications available for whole-brain radiation therapy in multiple

brain metastases unamenable for stereotactic radiotherapy.
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Predicting voxel-level dose
distributions of single-isocenter
volumetric modulated arc
therapy treatment plan for
multiple brain metastases
Peng Huang †, Jiawen Shang †, Zhihui Hu, Zhiqiang Liu*

and Hui Yan*

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Purpose: Brain metastasis is a common, life-threatening neurological problem

for patients with cancer. Single-isocenter volumetric modulated arc therapy

(VMAT) has been popularly used due to its highly conformal dose and short

treatment time. Accurate prediction of its dose distribution can provide a general

standard for evaluating the quality of treatment plan. In this study, a deep learning

model is applied to the dose prediction of a single-isocenter VMAT treatment

plan for radiotherapy of multiple brain metastases.

Method: A U-net with residual networks (U-ResNet) is employed for the task of

dose prediction. The deep learning model is first trained from a database

consisting of hundreds of historical treatment plans. The 3D dose distribution

is then predicted with the input of the CT image and contours of regions of

interest (ROIs). A total of 150 single-isocenter VMAT plans for multiple brain

metastases are used for training and testing. The model performance is

evaluated based on mean absolute error (MAE) and mean absolute

differences of multiple dosimetric indexes (DIs), including (Dmax and Dmean)

for OARs, (D98, D95, D50, and D2) for PTVs, homogeneity index, and conformity

index. The similarity between the predicted and clinically approved plan dose

distribution is also evaluated.

Result: For 20 tested patients, the largest and smallest MAEs are 3.3% ± 3.6% and

1.3% ± 1.5%, respectively. ThemeanMAE for the 20 tested patients is 2.2% ± 0.7%.

Themean absolute differences ofD98,D95,D50, and D2 for PTV60, PTV52, PTV50,

and PTV40 are less than 2.5%, 3.0%, 2.0%, and 3.0%, respectively. The prediction

accuracy of OARs for Dmax and Dmean is within 3.2% and 1.2%, respectively. The

average DSC ranges from 0.86 to 1 for all tested patients.
frontiersin.org0162

https://www.frontiersin.org/articles/10.3389/fonc.2024.1339126/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339126/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339126/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339126/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339126/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1339126&domain=pdf&date_stamp=2024-02-14
mailto:zhiqiang.liu@cicams.ac.cn
mailto:hui.yan@cicams.ac.cn
https://doi.org/10.3389/fonc.2024.1339126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1339126
https://www.frontiersin.org/journals/oncology


Huang et al. 10.3389/fonc.2024.1339126

Frontiers in Oncology
Conclusion: U-ResNet is viable to produce accurate dose distribution that is

comparable to those of the clinically approved treatment plans. The predicted

results can be used to improve current treatment planning design, plan quality,

efficiency, etc.
KEYWORDS

multiple brain metastases, volumetric modulated arc therapy, radiotherapy, deep
learning, dose prediction
1 Introduction

Brain metastasis is the cancer that occurs when cancer cells

from their original sites spread to the brain. The typical tumor sites

causing brain metastasis are the lung, breast, colon, and kidney.

Brain metastases could be single or multiple tumor sites in the brain

(1, 2). The brain metastases could cause pressure on the brain. Also,

the function of the surrounding brain tissue could be changed by

the tumor. The symptoms of brain metastases include memory loss,

seizures, headaches, etc. (3). The traditional treatment methods for

brain metastases are surgery, whole-brain radiotherapy (WBRT),

three-dimensional conformal radiation therapy (3D-CRT), hypo-

fractionated stereotactic radiotherapy (SRT), and single-fraction

stereotactic radiosurgery (SRS) (4–7).

WBRT and 3D-CRT have been traditionally used for the

treatment of multiple brain metastases. However, WBRT can

cause cognitive dysfunction or dementia, while 3D-CRT takes a

long time to treat multiple brain metastases (8–10). In SRS/SRT, a

higher accuracy of patient positioning is required. Recently, the

developments of image-guided radiotherapy (IGRT) and

volumetric modulated arc therapy (VMAT) techniques have

provided precise target localization and quick dose delivery for

patients under radiotherapy. The introduction of VMAT not only

takes a short time in treatment delivery but also shows a highly

conformal dose comparable to conventional SRS/SRT (11, 12). The

treatment of brain metastases using VMAT has been accepted as a

routine treatment modality in recent years (13, 14).

Compared to multiple-isocenter VMAT, single-isocenter

VMAT is popular due to its quick and accurate beam delivery

for the treatment of multiple brain metastases (15–17). However,

to achieve an ideal dose distribution, a set of suitable plan

optimization parameters (dose constraints and their weighting

factors) is needed prior to the optimization of the treatment plan.

Also, planners have to adjust these parameters manually during

plan optimization, which usually takes several hours. To address

this issue, knowledge-based planning (KBP) was proposed (18,

19) in the last decade. They implemented plan automation

through optimization algorithms or templates from previously

treated patients. These methods can partially reduce the effort

involved in parameter fine-tuning but still require human

involvement (20). Recently, the research interest in KBP has
0263
transitioned from classic machine learning methods to modern

deep learning methods (21–25). Unlike classic machine learning

methods, modern deep learning methods can directly learn

features from the original data and predict 3D doses with

high precision.

The recent development of the dose prediction model is mostly

based on the U-Net structure, which consists of an encoder and

decoder with skip connections. 2D U-Net was first applied to

prostate IMRT plans by Nguyen et al. (21). After that, many

efforts were made. Residual learning was introduced to the dose

prediction model by several researchers (22–25), while dense

connectivity was used to enhance feature representation capability

by other researchers in their models (26–28). In addition, other

types of networks, such as Resnet (27, 29, 30) and GAN (31–33), are

also used for dose prediction. So far, the deep U-net-like

architecture and its variants with various types of residual or

dense blocks become the mainstream structure for dose

prediction (34–38).

With the successful applications of deep learning models in

predicting dose distribution for many primary tumor sites such as

the lung (25, 26), head-and-neck (23, 28, 33, 34), and prostate (21,

35), it is interesting to investigate this application for brain

metastasis. In the study, a deep U-net architecture (30),

previously successfully applied to predict dose distribution for

head-and-neck cancer patients, is used as the base model in

predicting the dose distribution of the VMAT plan for brain

metastasis. The rest of this paper is organized as follows: In

Methods, the patient data, prediction model, and experimental

settings are introduced in detail. In Results, the prediction

accuracy of the deep learning model is evaluated by comparing it

with the dose distribution of the clinically approved plans. Finally,

the advantages and disadvantages of the prediction model are

discussed, and future work is prospected in the Discussions.
2 Methods

2.1 Patient data

The dataset consists of 150 single-isocenter VMAT treatment

plans designed for multiple brain metastases patients treated in our
frontiersin.org
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institute during 2019–2022. All patient plans are made by medical

physicists and approved by radiation oncologists for clinical

treatment. The number of tumors in each patient is varied from

one to four. PTVs include PTV60 for 31 patients, PTV52 for 41

patients, PTV50 for 34 patients, and PTV40 for 44 patients. Primary

OARs include body, brain stem, spinal cord, left lens, right lens, left

optic nerve, right optic nerve, and optic chiasm.

The 150 patient plans are randomly divided into three sets: 100

for training sets, 30 for validation sets, and 20 for testing sets. These

VMAT plans are designed with two arcs and delivered with 6 MV

beam energy. The input images are all rescaled to 256 × 256 × 21

matrixes (7 for CT images, 7 for contour image, and 7 channels for

target prescriptions), and the output image is 256 × 256 × 1

matrixes (dose distributions on each slice). This study was

conducted in accordance with the Declaration of Helsinki (as

revised in 2013). This study was approved by the ethics

committee of the National Cancer Center/Cancer Hospital,

Chinese Academy of Medical Sciences, and Peking Union

Medical College. The committee waived the written informed

consent because this is a retrospective study.
2.2 Prediction model

The U-net with residual network (U-ResNet) model

incorporating residual convolutional and de-convolutional blocks

is shown in Figure 1. It consists of contracting and expansive paths.

The contracting path follows convolutional layers and stacked

building blocks of Identity-Block and Conv-Block to extract

multiscale patient-specific features, doubling the number of

feature maps at each step. The expansive path at each step

consists of a de-convolutional block that halves the number of

feature maps and concatenation with the corresponding feature
Frontiers in Oncology 0364
map from the contracting path. The network ends with one de-

convolution with 1 × 1 filters replacing 3 × 3 filters.

In the training and validation process, the training samples are

augmented by randomly flipping, rotating, scaling, or shifting. The

model is trained from scratch with the layer kernel weights initialized

using Xavier uniform initialization. Adam optimizer (39) with a batch

size of 4 is used for optimization. The initial learning rate (LR) is 1e

−4, and the LR is reduced to 20% of its original value if the validation

loss does not improve after 10 epochs. The training process is also

stopped if the validation loss does not improve after 20 epochs. The

model with the best performance on the validation samples is

obtained for testing. The proposed network is implemented in

Keras with TensorFlow as the backend on a workstation equipped

with two NVIDIA GeForce 2080 Ti GPUs. The training process for a

single model takes around 20 h. The prediction process for one case

takes less than 1 s.
2.3 Model evaluation

The mean absolute error (MAE) is used to evaluate the accuracy

of the predicted 3D dose distribution. It is the average error over all

voxels of the body and is defined as Equation 1:

MAEk =
1
Nk
oNk

i=1 DP − DTj j � 100% (1)

Where Nk is the number of total voxels belonging to the kth

structure. DP and DT are the predicted and ground-truth (or

calculated) doses of the ith voxel. The voxel doses were

normalized by the value of the prescription dose. Several

traditional dosimetry indexes (DIs) (Dmax, Dmean for OARs and

D98, D95, D50, and D2 for PTVs), conformity index (CI), and

homogeneity index (HI) are also evaluated.
FIGURE 1

Schematic diagram of the deep U-net architecture.
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CI formula is defined as Equation 2:

CI =
VT ,ref

VT
� VT ,ref

Vref
(2)

VT ,ref is the volume of the target volume at which the received

dose is equal to or greater than the reference dose; VT is the volume

of the target volume; Vref is the volume at which the received dose is

equal to or greater than the reference dose. The closer the value of

CI is to 1, the better the target is covered. HI formula is defined as

Equation 3:

HI =
D2 − D98

D50
(3)

where Dn represents the minimum radiation dose received by

n% of the volume of the radiation area. The closer the value of HI to

0, the better the uniformity of the target dose. In addition, the

absolute differences in DI between predicted and clinically approved

plans are evaluated as follows: |dDI| = |DIclinical − DIPredicted|.

The dice similarity coefficient (DSC) between dose distributions

is also evaluated and defined as Equation 4:

DSC(A, B) =
2 A∩Bj j
Aj j+ Bj j (4)

where A represents the clinical isodose volume and B denotes

the predicted isodose volume.
3 Results

Dose difference

The MAE plot for all 20 tested patients is shown in Figure 2.

The largest and smallest MAEs are 3.3% ± 3.6% and 1.3% ± 1.5%

within the patient’s body, respectively. The largest and smallest

MAEs are 5.2% ± 4.0% and 2.1% ± 1.7% within the targets,

respectively. The average MAE is 2.2% ± 0.7% (relative to the

prescription of PTV) within the body, and the average MAE is 3.6%

± 1.0% within targets.
Frontiers in Oncology 0465
Dosimetric index

For PTVs with multiple prescription doses, the dosimetric

indexes are shown in Table 1. On average, the absolute

differences of D98, D95, D50, and D2 for PTV60, PTV52, PTV50,

and PTV40 are less than 2.5%, 3.0%, 2.0%, and 3.0%, respectively.

There are no significant differences between predicted and clinically

approved plan doses for PTVs. There are no significant differences

from the predicted results for HI and CI. Regarding OARs, the

dosimetric indexes of Dmax and Dmean are shown in Table 2. The

prediction accuracy for Dmax and Dmean is between 3.2% and 1.2%.

Six OARs for Dmax and eight for Dmean were predicted within 2%.

There is no significant difference between clinical and predicted

results. For certain patients, the Dmax and Dmean of OARs are close

to 0, as they are far from PTV. This causes a large standard

deviation of dosimetric results for these OARs. In general, the

dosimetric indexes predicted by the model well match those from

the clinically approved plans.

The examples of two patients’ DVHs are presented in Figure 3.

The clinical and predicted DVHs are shown in solid and dashed

lines, respectively. Case 1 has two prescription doses (5,250 cGY

and 6,000 cGy) and more OARs, while case 2 has one prescription

dose (4,800 cGy) and three OARs. For OARs, the maximal dose

discrepancy is presented in the higher dose region of the brain stem

in both cases. For PTV, the maximal dose discrepancy is presented

in the higher dose region of PTV5250 in case 1 and the lower dose

region of PTV4800 in case 2.
Volumes similarity

The dice similarity coefficients between predicted and clinically

approved plan doses for the different isodose volumes are

calculated. As shown in Figure 4, the DSC versus isodose volumes

for 20 tested patients are presented. The black curve denotes the

averaged DSC curve, which usually ranges from 0 to 1, with 1

standing for ideal match. The averaged DSC for the different

isodose volumes ranges from 0.86 to 1.

Corresponding to the cases shown in Figure 3, their clinical and

predicted dose maps in 2D slices are presented in Figure 5. In the

first and second columns, the clinical and predicted dose maps in

axial view are displayed with a color wash pattern. The different

images between the first and second columns are presented in the

third column. For case 1, the predicted doses are higher than the

clinical doses in two small regions on the left and right sides of PTV.

For case 2, the predicted doses are less than the clinical doses on the

left-bottom sides of PTV. Overall, the predicted and clinical doses

are highly consistent.
4 Discussions

In this study, an advanced deep learning model is applied to

predict 3D dose distribution based on our clinical dataset. As far as

we know, there is no deep learning model used in predicting the

dose of VMAT plans for multiple brain metastases. Using 150 brain
FIGURE 2

Mean absolute errors within the body for 20 tested patients.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1339126
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1339126
TABLE 2 Statistics of dosimetric metrics for OARs in 20 tested patients.

Dmax (Gy) Dmean (Gy)

OARs and body Clinically
approved

Model
predicted

|dDI| (%) p-value Clinically
approved

Model
predicted

|dDI| (%) p-value

Brain stem 4.7 ± 4.8 4.2 ± 4.9 2.8 ± 2.1 0.247 1.1 ± 1.1 1.1 ± 1.6 0.9 ± 1.0 0.990

Spinal cord 0.7 ± 1.7 0.7 ± 1.6 0.6 ± 1.3 0.961 0.1 ± 0.2 0.0 ± 0.1 0.1 ± 0.2 0.113

Center lens 0.6 ± 0.8 0.8 ± 1.0 0.7 ± 0.7 0.076 0.4 ± 0.7 0.6 ± 0.9 0.6 ± 0.5 0.219

Right lens 0.8 ± 0.9 0.7 ± 0.8 0.6 ± 0.6 0.450 0.5 ± 0.7 0.4 ± 0.5 0.6 ± 0.5 0.248

Center optic nerve 1.7 ± 3.0 1.4 ± 2.5 0.9 ± 0.9 0.161 1.1 ± 2.1 1.0 ± 1.9 0.7 ± 0.6 0.302

Right optic nerve 1.3 ± 1.5 1.1 ± 1.6 1.2 ± 1.1 0.233 0.7 ± 1.0 0.6 ± 1.1 0.8 ± 0.8 0.508

Optic chiasm 3.7 ± 4.5 3.8 ± 6.0 1.8 ± 3.2 0.857 1.3 ± 2.0 1.2 ± 2.0 1.2 ± 1.4 0.789

Body 60.2 ± 7.3 59.4 ± 7.5 3.2 ± 2.5 0.137 1.6 ± 1.1 1.6 ± 1.0 0.3 ± 0.2 0.705
F
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TABLE 1 Statistics of dosimetric indexes for PTVs of 20 tested patients.

PTVs Dosimetric
indexes

Clinically
approved

Model predicted |dDI| p-value

PTV60 D98 (Gy) 60.1 ± 1.0 58.9 ± 1.5 2.1% ± 2.1% 0.054

D95 (Gy) 60.7 ± 0.8 59.5 ± 1.2 2.2% ± 1.9% 0.063

D50 (Gy) 62.8 ± 1.2 62.4 ± 1.0 1.9% ± 2.0% 0.541

D2 (Gy) 65.0 ± 2.3 64.9 ± 1.5 2.5% ± 1.4% 0.947

HI 0.1 ± 0.0 0.1 ± 0.0 0.0% ± 0.0 0.336

CI 1.0 ± 0.0 1.0 ± 0.0 0.0% ± 0.0 0.282

PTV52 D98 (Gy) 50.7 ± 0.7 49.4 ± 1.8 3.0% ± 1.2% 0.142

D95 (Gy) 52.2 ± 0.1 51.3 ± 0.9 1.8% ± 1.5% 0.116

D50 (Gy) 57.1 ± 0.8 56.1 ± 0.7 2.1% ± 1.4% 0.104

D2 (Gy) 60.5 ± 2.1 59.7 ± 1.6 2.0% ± 1.9% 0.271

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.657

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.087

PTV50 D98 (Gy) 49.0 ± 0.6 48.2 ± 0.4 1.4% ± 2.0% 0.489

D95 (Gy) 50.3 ± 0.4 49.3 ± 0.3 2.0% ± 1.4% 0.295

D50 (Gy) 55.5 ± 0.5 54.7 ± 0.2 1.5% ± 0.7% 0.208

D2 (Gy) 59.4 ± 0.8 59.4 ± 0.6 0.2% ± 0.2% 0.627

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.391

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.353

PTV40 D98 (Gy) 38.3 ± 0.6 37.9 ± 0.4 1.0% ± 1.2% 0.207

D95 (Gy) 40.0 ± 0.1 39.4 ± 0.8 1.6% ± 1.6% 0.225

D50 (Gy) 43.3 ± 1.1 43.6 ± 0.3 2.6% ± 1.6% 0.741

D2 (Gy) 45.9 ± 1.6 46.5 ± 0.4 3.0% ± 1.1% 0.400

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.453

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.350
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metastases from VMAT plans, the U-ResNet model exhibits

accurate dose distribution and high efficiency. As shown in

Table 1, the mean prediction errors range from 1.9% to 2.5%,

1.8% to 3.0%, 0.2% to 2.0%, and 1.0% to 3.0% for PTV60, PTV52,

PTV50, and PTV40, respectively. For the absolute value of the PTV

dose, the mean value of the predicted plan doses is slightly less than

that of the clinically approved plan doses. This may be due to the

inclusion of various target prescriptions in a single model, where the

varying combinations of prescriptions may impact the prediction

accuracy of the target dose. The limited number of samples and

larger variation of tumor sites may be another reason. There is no

significant difference in dosimetric indexes between clinically

approved and predicted plan doses. Although the results

demonstrate that the prediction accuracy is acceptable for clinical

use, there is still a certain room for improvement.

Although U-ResNet succeeded in dose prediction, as reported

by many researchers, there is still a lot of room for improvement.

The receptive field would be enlarged increasingly by the stacked
Frontiers in Oncology 0667
multiple convolution layers in the decoder. However, the network’s

capability to catch features in multiscale resolution could be limited.

The predicted voxel dose is affected not only by the neighboring

voxels but also by the spatial distribution between PTVs and OARs.

Thus, to extract multiscale features from the image simultaneously,

the introduction of pyramid blocks is needed. We will test the

model with the modules in a serial or parallel manner in the future,

which could further improve the performance of the

prediction model.

There are several challenges to this study. First, it is difficult to

collect hundreds of VMAT plans with similar locations and shapes

of tumor mass for model learning. In the case of multiple brain

metastases, the number of tumor masses and their locations could

vary considerably among patients. The limited number of samples

and larger variation of tumor sites and shapes will make it hard to

learn a solid pattern for a learning model. A more effective model or

strategy is needed in dealing with such situations for multiple brain

metastases. Second, the introduction of U-ResNet increases the
FIGURE 4

Similarity between clinical and predicted isodose distributions for 20 tested patients.
FIGURE 3

The comparison of the clinical and predicted DVHs for two cases.
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complexity and time of model training. As tested, the time on model

training is about 20 h on a workstation equipped with two NVIDIA

GeForce 2080Ti GPUs. In the future, we plan to further fine-tune

the basic 3D model and build a more memory-efficient mechanism

for higher performance.
5 Conclusions

In this work, we evaluated a deep-learning model for 3D voxel-

by-voxel dose prediction. It is capable of producing accurate dose

distribution of VMAT plans for multiple brain metastases. As an

improvement over the single U-Net or ResNet, it is a powerful

model that can automatically correlate ROI voxel with dose voxel to

achieve high-precise 3D dose prediction. The predicted results can

be used to improve current treatment planning design, plan quality,

and efficiency.
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FIGURE 5

The comparison of the clinical and predicted dose maps for two cases.
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Brain metastases (BMs) are the most prevalent intracranial malignant tumors in

adults and are the leading cause of mortality attributed to malignant brain

diseases. Radiotherapy (RT) plays a critical role in the treatment of BMs, with

local RT techniques such as stereotactic radiosurgery (SRS)/stereotactic body

radiotherapy (SBRT) showing remarkable therapeutic effectiveness. The precise

determination of gross tumor target volume (GTV) is crucial for ensuring the

effectiveness of SRS/SBRT. Multimodal imaging techniques such as CT, MRI, and

PET are extensively used for the diagnosis of BMs and GTV determination. With

the development of functional imaging and artificial intelligence (AI) technology,

there are more innovative ways to determine GTV for BMs, which significantly

improve the accuracy and efficiency of the determination. This article provides

an overview of the progress in GTV determination for RT in BMs.
KEYWORDS

brain metastases, MRI, GTV, delineation, artificial intelligence
1 Introduction

Brain metastases (BMs) are the most frequent intracranial malignant tumors in adults;

among patients with malignant tumors, the incidence rate of BMs in adults is 10%–30%,

and that in children is 6%–10% (1). The leading tumor type resulting in BMs is lung cancer,

accounting for approximately 20%, followed by melanoma, breast cancer, etc. (1). Notably,

the incidence of BMs surpasses that of primary brain tumors, making them the primary

cause of mortality from malignant brain diseases (2).

The treatment methods for BMs include whole-brain radiotherapy (WBRT),

stereotactic radiosurgery (SRS)/stereotactic body radiotherapy (SBRT), surgery, and

systemic therapy (3). In recent years, an increasing amount of clinical evidence supports

the application of local RT techniques such as SRS/SBRT in BMs (4). Accurate

determination of the gross tumor target volume (GTV) is crucial for ensuring the
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efficacy of SRS/SBRT. With the development of advanced imaging

technology and information science and technology, the use of

multimodal imaging technology and artificial intelligence (AI) to

improve the accuracy of GTV determination in BMs has become a

popular research direction.
2 RT for BMs

Radiotherapy (RT) serves as the primary treatment method for

BMs. Objective studies have shown that patients with symptomatic

BMs typically have a median overall survival (OS) of just 1 month

without treatment. However, treatment with glucocorticosteroids

alone, such as dexamethasone, can extend the median OS to 2

months (5). Lagerwaard et al. (6) reported that patients who

received different doses of WBRT experienced an extended

median OS of 3–6 months and a 1-year survival rate of 10%.

WBRT is the standard treatment for multiple BMs (7).

However, WBRT often results in delayed adverse events including

leukoencephalopathy, associated cognitive dysfunction, cerebral

atrophy, and radionecrosis. Cognitive dysfunction is reported in

approximately 10%–20% of patients undergoing WBRT (8). To

avoid radiation damage to normal brain tissue, local RT methods

such as SRS/SBRT have been developed. Multiple international

clinical trials support SRS as the preferred treatment for BM

patients with one to four metastases (9–12). The JLGK0901 (4)

study revealed that patients with five to 10 BMs achieved

comparable treatment results with patients with two to four BMs

by receiving SRS treatment; the median OS all reached 10.8 months.

Therefore, SRS could be considered an alternative treatment for

multiple BMs instead of WBRT.

SRS/SBRT requires precise GTV determination and accurate

dose delivery, which are directly related to the therapeutic efficacy

and prognosis. The small size of BMs and their unclear

enhancement affect lesion detection and visibility of tumor

boundaries, which are the key challenges that need to be

addressed in GTV determination for BMs.
Frontiers in Oncology 0271
3 Advances in GTV determination of
BMs based on multimodal imaging

3.1 Computed tomography-based GTV
determination in BMs

3.1.1 Single-energy CT-based determination
Computed tomography (CT) simulation images serve as the

primary foundation for GTV determination in BMs. CT offers high

spatial resolution, minimal distortion, and sensitivity to features

such as bleeding, calcification, and structural changes in the

surrounding skull of BMs. The linear relationship between the CT

value and tissue electron density is the basis for dose calculations in

RT planning (12) (Figure 1).

However, single-energy CT (SECT) is susceptible to bone

artifacts, peri-tumor edematous areas, and fibrosis, limiting its use

in GTV determination in BMs. Emerging CT technologies provide a

reliable means to improve the precision of GTV determination.

3.1.2 Dual-energy computed tomography-
based determination

Dual-energy computed tomography (DECT) improves the

signal-noise ratio (SNR) and contrast-noise ratio (CNR) of

intracranial abnormal metal deposits, iodine contrast, normal

brain tissue, and abnormal lesions, resulting in superior image

quality (13). DECT reduces the beam hardening artifacts caused by

the skull through a special reconstruction algorithm, improving the

image quality of posterior fossa tumors and improving BM

imaging (14).

DECT shows greater image enhancement at low tube voltages

(15). Karino et al. (16) analyzed energy spectral images of virtual

monochromatic images (VMI) with energy levels ranging from 40

to 140 KeV in increments of 1 keV gradient and found that a VMI

of 63 KeV significantly improved the overall image quality and BM

boundary display. Kraft et al. (17) further compared the differences

between 63 keV reconstructed VMI and 120 kV CT in BM imaging

and confirmed that the image quality of VMI was significantly
FIGURE 1

CT imaging manifestations of BMs. [(A) CT scan without contrast; (B) CT contrast scan in arterial phase; (C) CT contrast scan in vein phase].
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better than that of conventional CT, which could improve the

reliability and accuracy of GTV determination in BMs.
3.2 Multisequence MR-based GTV
determination in BMs

Compared with CT, magnetic resonance (MR) provides high

soft tissue resolution, clear differentiation between tumors and

tissue edema, and avoids radiation injury. MR is thus

indispensable for diagnosing, planning treatment, and

posttreatment monitoring of brain tumors (18).

Contrast-enhanced MRI (CE-MRI) with gadolinium (Gd)-

based contrast serves as the gold standard for identifying BMs

(19). However, the contrast of the enhanced region of BMs in CE-

MRI is affected by various factors, including the characteristics of

the blood–brain barrier (BBB), magnetic field strength,

concentration of Gd-based contrast agent (GBCA), relaxivity

properties, time elapsed since injection, and the MR imaging

technique (20). Derks et al. (12) found that 3T MR was more

sensitive than 1.5 T MR in the diagnosis of small-volume BMs with

diameters < 5 mm.

Cheng et al. (21) found that 7T MR improved visualization of

small structures and subtle brain tumor lesions compared to 3T

MR, which had significant potential for the diagnosis, treatment,

and monitoring of BMs. However, the increase in magnetic field

strength also leads to greater magnetization artifacts, which affects

the GTV determination of BMs.
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CE-T1WI and T2/Fluid-attenuated inversion recovery (FLAIR)

are the most commonly used sequences in MR simulations of

BMs (22).

3.2.1 CE-T1WI-based determination
There are differences in the imaging of BMs on T1WI with different

imaging bases. A comparative analysis of the detection rates of BMs

using enhanced spin-echo (SE) and gradient-echo (GRE) sequences by

Suh et al. (23) revealed that, with a layer thickness of 1 mm, 3D SE

images had a 20.6% higher detection rate than 3D GRE images.

Additionally, for lesions with diameters less than 5 mm, 3D SE images

exhibited a 30.1% higher detection rate than 3D GRE images. For the

detection of BMs, especially lesions less than 5 mm in size, 3D SE-

enhanced images with a 1-mm-layer slice thickness are more suitable.

Whether delayed enhancement MRI can improve the detection

rate of BMs has been controversial (Figure 2). Cohen et al. (24)

concluded that the detection rate of BMs by delayed CE-MRI is

related to lesion volume. For larger BMs, delayed CE-MRI is not

more advantageous than immediate postcontrast-enhanced

imaging; however, for lesions with diameters ≤ 5 mm, delayed

CE-MRI improves the detection rate of lesions and increases the

display of tumor boundaries, especially when the delay time is more

than 10 min (25–28).

Chen et al. (29) investigated the effect of CE-MRI with different

delay times on the generation of small-volume BMs, and the results

showed that compared with 10 min after contrast agent injection,

the metastatic volumes at 1, 3, and 5 min decreased by 31.6%,

18.5%, and 10.1%, respectively, and the metastatic volumes at 18
FIGURE 2

The effect of time-delayed contrast-enhanced T1WI on the visualization of BMs. [(A–F) The BM manifest on contrast-enhanced T1WI at 1, 3, 5, 10,
18, and 20 min after Gd-DTPA injection].
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and 20 min increased by only 8% and 10%, respectively. Therefore,

CE-MRI with a delay time of more than 10 min should be a routine

modality for the detection and border display of small-volume BMs.

Several studies have demonstrated that high-dose Gd-based

contrast agents (GBCA) improve the demonstration of BMs, and

the use of triple-dose contrast agents increases the detection of BMs

< 5 mm by 65.6%; however, it also increases the risk of patient

complications and the cost of the examination (26, 30–33).

3.2.2 T2/FLAIR-based determination
Unlike CE-T1WI, T2/FLAIR uses a low concentration of GBCA

to enhance the lesion, and the contrast agent required to enhance

the lesion is only one-fourth of that required for CE-T1WI (34, 35).

Several studies have demonstrated that CE-T2/FLAIR is superior in

detecting leptomeningeal metastases, small-volume lesions, and

lesions located in superficial areas of the brain (36, 37) (Figure 3).

There were differences in the detection rate and enhancement

degree of BMs between CE-T2/FLAIR and CE-T1WI. Jin et al. (38)

suggested that this was related to the vascular permeability and

microvascular density around the lesions of BMs. In lesions with

higher density or greater damage to the BBB, the venous leakage of

the contrast medium increased, resulting in a large accumulation of

GBCA in the extracellular space. The enhancement effect of T2

reduced the degree of enhancement of the lesions and even led to

negative enhancement. Thus, the degree of CE-T2/FLAIR

enhancement was negatively associated with vascular permeability

and demonstrated superior enhancement in BMs with low vascular

permeability. CE-T2/FLAIR is an effective supplement to CE-T1WI,

and the combined application of the two improves the detection

and determination accuracy of BMs (39).
3.3 PET-based GTV determination of BMs

Positron emission tomography (PET) is a noninvasive imaging

technique used to assess the biological function and metabolism of
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tumors. 18F fluorodeoxyglucose (18F-FDG) is the most widely used

PET tracer, but normal brain tissue also shows high glucose uptake,

which affects the GTV determination of BMs (40). Compared to 18F-

FDG, the uptake of radiolabeled amino acids is lower, allowing them

to cross the intact BBB, revealing BMs beyond CE MRI, and

providing new insights for delineating biological targets in BMs (41).
3.3.1 PET/CT
PET/CT is used to obtain information on tumor biology and

metabolism, which is valuable for determining biological GTVs.

However, it has limitations in detecting BMs, especially for small-

volume BMs. Factors such as lower FDG uptake by small BMs and the

lower spatial resolution of PET/CT affect image quality, while the high

uptake of inflammatory tissue reduces diagnostic specificity (42). In a

study of more than 900 patients with BMs from lung cancer, Li et al.

(43) found that CE-MRI had a higher sensitivity than FDG PET/CT

for diagnosing BMs in patients (77% vs. 21%).

PET/CT is primarily used to detect extracranial lesions and is

not highly sensitive for BMs, especially those with small volumes.

Therefore, PET/CT is often complemented by the combination of

enhanced MRI or CT (Figure 4).
3.3.2 PET/MR
PET/MRI has the advantage of simultaneously capturing both

structural and functional aspects of tumors, which enhances RT

planning and the assessment of treatment response (44). By

combining high-resolution soft tissue PET with MRI, PET/MR

provides a reliable basis for precise GTV determination in BMs.

Singnurkar et al. (45) compared the clinical performance of

FDG PET/MR with FDG PET/CT in tumor imaging. FDG PET/MR

was found to be similar to FDG PET/CT in detecting local lymph

nodes and distant metastases but superior in assessing the local

extent of tumors. Similarly, another study by Sekine et al. (46)

demonstrated a 6.7% improvement in PET/MR imaging compared

to PET/CT for occult tumors, including brain tumors.
FIGURE 3

The display differences of BMs among T1WI, T1WI+C, and T2/FLAIR. [(A) T1WI without contrast; (B) CE-T1WI; (C) CE-T2/FLAIR].
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3.4 CT/MRI fusion

CT provides crucial anatomical information and electron

density data for RT planning and dose calculation, but it lacks

sufficient soft tissue contrast, making it unreliable to determine

GTV only based on CT alone (47). MRI provides high soft tissue

resolution, enabling differentiation between active tumors and

edematous tissue. The fusion of CT and MRI images combines

the advantages of both modalities. However, differences in the

underlying principles of CT and MRI imaging modalities, poor

reproducibility of body fixation, poor accuracy of patient

positioning, interlayer differences in layer thicknesses of images

from different modalities, and tumor regression due to treatment all

contribute to the poor quality of CT/MRI fusion images, which

affects the visualization of the BMs and the accuracy of the

GTV determination.
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Few controlled studies of the volume and dosimetric effects of

CT/MRI fusion in BMs’ GTVs have been reported. However, in

general, CT/MRI fusion can improve the determination accuracy of

GTV in BMs, allowing for personalized treatment options, organ

preservation, or functional avoidance. Moreover, it facilitates

intensification and dose escalation strategies (Figure 5).
4 The future direction of GTV
determination in BMs

4.1 AI-based detection of BMs and
automatic segmentation of GTVs

AI is trained and validated on large datasets to provide

automated tools to assist physicians in accurately and quickly
FIGURE 4

PET/CT manifestations of BMs. [(A) CT without contrast; (B) PET; (C) PET/CT].
FIGURE 5

The boundary determination of BMs applying CT/MRI fusion. [(A) CE-T1WI images; (B) Enhanced CT images; (C) CT/MRI fusion].
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detecting BMs in large-scale medical imaging datasets. Manually

determining BMs’ GTVs is time-consuming and challenging, and

autosegmentation significantly enhances efficiency and precision.

Deep learning models, such as convolutional neural networks

(CNN), have shown promis ing results in BM image

segmentation. Since 2018, AI-based contouring has evolved from

classical machine learning (cML) to deep learning (DL). Cho et al.

(48) conducted a systematic review of the literature on BM

detection based on machine learning. The detection rates of BMs

in the cML and DL groups were 88.7% and 90.1%, respectively. The

DL group had a lower false-positive rate per patient than the cML

group (10 vs. 135), indicating a clear advantage for DL. Deep

learning models are adaptable and resilient in handling complex

lesion shapes and indistinct boundaries through substantial labeled

image data assimilation.

CNN-based AI has gained widespread acceptance for the

screening and identification of BMs. Grovik et al. (49) conducted

a study evaluating a CNN deep learning method for the automatic

detection and segmentation of BMs using multisequence MRI. The

results showed an average sensitivity of 83% for detecting BMs,

indicating remarkable accuracy. However, the network’s ability to

detect BMs was related to lesion size. It was shown that by using the

optimal probability threshold (average sensitivity = 83%), the

network showed an average false-positive rate of 8.3 (no size

limit) and 3.4 (10 mm3 size limit) lesions per case, with the

highest sensitivity and lowest numbers of false positives in

patients with few metastases.

Zhou et al. (50) developed a DL single-shot detector (SSD)

algorithm based on CE T1WI to detect BMs. For the test group, the

sensitivity of the baseline SSD was 81%; the sensitivity was 98% for

metastases ≥ 6 mm in diameter. The combined algorithm of feature

fusion (FF) and SSD developed by Amemiya et al. (51) revealed that the

FF and baseline SSDs showed an overall sensitivity of 86.0% and 83.8%

and a positive predictive value (PPV) of 46.8% and 45.2%, respectively.

Thus, FF SSD significantly improved the small lesion detection without

reducing the overall PPV. Li et al. (52) introduced a two-stage deep

learning model designed for automatic BM detection and

segmentation, achieving a detection sensitivity rate of 91%.

With more data availability and technological advancements,

AI is expected to become a crucial tool for diagnosing and treating

BMs. However, there are still challenges in brain tumor imaging

research related to AI technology. Modeling requires large datasets

from multiple centers. However, subjectivity can be introduced

during the preprocessing stage when physicians manually segment

the images. This necessitates high requirements for consistency in

image data quality. Therefore, most AI models for BMs are still in

the research stage, and their clinical application requires

thorough validation.
4.2 Functional MRI in GTV determination
of BMs

With the development of functional imaging, biology-guided

RT has gradually become part of clinical practice. Biologic target

volumes refer to regions within the target volume with varying
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radiosensitivities, determined by various tumor biological factors,

including hypoxia, blood supply, proliferation, apoptosis, cell cycle

regulation, infiltration, and metastatic properties. Tumor hypoxia is

common in RT due to abnormalities in the tumor vasculature.

Hypoxic cells are highly resistant to RT, resulting in a relative lack

of local tumor doses. Therefore, identifying and quantifying tumor

hypoxia is crucial for improving the effectiveness of RT.

Functional MRI, including dynamic contrast-enhanced MRI

(DCE-MRI) and dynamic susceptibility contrast-perfusion-

weighted imaging (DSC-PWI), can identify, quantify, and

spatially map areas of hypoxia before treatment and track

hypoxia changes during radiation (53, 54). It can help improve

the radiation dose to the hypoxic RT-resistance area through dose

engraving and protect the organ at risk (OAR), and it should be

incorporated into the practice of radiotherapy in BMs (55, 56).

Functional MR imaging techniques, such as PWI, diffusion-

weighted imaging (DWI), and magnetic resonance spectroscopy,

provide clinical insight into tumor metabolism, pathophysiology,

and microcirculatory status, and they are increasingly used for GTV

determination in BMs.

4.2.1 PWI
PWI can be categorized into two main types: those that use Gd

contrast agents and those that do not. DSC and DCE, both based on

Gd injections, efficiently evaluate vascular infiltration and

neovascularization in the enhanced regions of BMs. DSC

quantifies tumor vascular supply and is the most frequently

employed PWI technique for brain tumor evaluation (57).

Arterial spin labeling (ASL) is a noninvasive method for

examining blood flow changes in BMs without the use of

paramagnetic contrast agents and without being influenced by the

BBB. This imaging technique uses hydrogen protons present in

arterial blood as endogenous tracers to provide accurate results.

Soni et al. (58) conducted a quantitative comparison of perfusion

values acquired through ASL and DSC in brain tumors,

demonstrating a favorable degree of agreement. As a result, ASL,

as a noninvasive test, exhibits greater potential for broad utilization.

Hou et al. (54) used MR-3D-ASL to map cerebral blood flow to

determine the high-perfused GTV (GTVH) versus the low-perfused

GTV (GTVL). Their findings revealed an uneven distribution of

perfusion within BMs and variations in intratumoral and

intertumoral perfusion between tumors with and without

necrosis. Dose escalation to low-perfusion areas with RT

resistance should be performed by reducing the dose boost

volume so that the dose to the target area is targeted and

distributed according to blood perfusion. Hou et al. (59) further

designed three RT plans based on CBF measurements. When

compared to the conventional plan, the dose painting plan

exhibited that the D2%, D98% (doses to 2% and 98% volume of the

PTV), and the mean dose increased by 20.50%, 19.32%, and 19.60%

in the low-perfusion region, respectively. Therefore, 3D-ASL-

guided dose painting effectively increases the radiation dose to the

low-perfusion subregion without increasing the dose to the OAR,

and subregion identification and segmentation based on the

differences in blood perfusion in the GTV are of great clinical

significance (Figure 6).
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4.2.2 DWI
Conventional MRI sequences have limitations in distinguishing

between infiltrating tumors and vasogenic edema. Apparent

diffusion coefficient (ADC) values can measure the extent to

which water molecules are restricted in healthy brain tissue and

central nervous system lesions. On high b-valued DWI, BMs appear

as high-intensity signals with low ADC values, which can

distinguish tumor and edema.

A study conducted by Zhong et al. (60) identified differences in

the ADC values between patients with and without BMs. An ADC

value of 0.837 × 10−3 mm/s was found to be critical for

distinguishing BMs from nonbrain metastases, yielding a
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sensitivity of 83.7% and a specificity of 69.2%, resulting in a high

BM detection rate. However, DWI has low resolution and is prone

to magnetization artifacts, and its clinical application in BMs is still

mainly qualitative. The study of GTV determination of BMs based

on DWI is still under investigation.
5 Conclusion and prospects

Accurate target determination is the primary premise for

ensuring the efficacy of local RT for BMs. How to improve the

accuracy of GTV determination is one of the key issues in
FIGURE 6

The cerebral blood volume variation of BMs before and after radiotherapy. [(A, C, E) T1WI+C images; (B, D, F) 3D-ASL cerebral blood volume
images; (A, B) before radiotherapy; (C, D) 4 weeks after radiotherapy; (E, F) 1 year after radiotherapy].
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improving the efficacy of SRS/SBRT. With the progression of

functional imaging technology and AI, methods such as MRI and

PET provide more comprehensive data analysis concerning tumor

size, infiltration depth, internal microenvironment, and chemical

composition within BMs, which provides a feasible method for

further improving the detection of BMs and the precision of GTV

determination and provides a broad perspective for the clinical

application of individualized RT.
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Comparative analysis of plan
quality and delivery efficiency:
ZAP-X vs. CyberKnife for brain
metastases treatment
Ying Niu, Abdul Rashid, Jui-min Lee, Michael Carrasquilla,
Dylan R. Conroy, Brian T. Collins, Andrew Satinsky,
Keith R. Unger and Dalong Pang*

Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
Purpose/Objectives: ZAP-X, a novel and dedicated radiosurgery (SRS) system,

has recently emerged, while CyberKnife has solidified its position as a versatile

solution for SRS and stereotactic body radiation therapy over the past two

decades. This study aims to compare the dosimetric performance and delivery

efficiency of ZAP-X and CyberKnife in treating brain metastases of varying target

sizes, employing circular collimation.

Methods and materials: Twenty-three patients, encompassing a total of 47 brain

metastases, were included in the creation of comparative plans of ZAP-X and

CyberKnife for analysis. The comparative plans were generated to achieve

identical prescription doses for the targets, while adhering to the same dose

constraints for organs at risk (OAR). The prescription isodose percentage was

optimized within the range of 97–100% for each plan to ensure effective target-

volume coverage. To assess plan quality, indices such as conformity, homogeneity,

and gradient (CI, HI, and GI) were computed, along with the reporting of total brain

volumes receiving 12Gy and 10Gy. Estimated treatment time and monitor units

(MUs) were compared between the two modalities in evaluating delivery efficiency.

Results:Overall, CyberKnife achieved better CI and HI, while ZAP-X exhibited better

GI and a smaller irradiated volume for the normal brain. The superiority of

CyberKnife’s plan conformity was more pronounced for target size less than 1 cc

and greater than 10 cc. Conversely, the advantage of ZAP-X’s plan dose gradient was

more notable for target sizes under 10 cc. The homogeneity of ZAP-X plans,

employing multiple isocenters, displayed a strong correlation with the target’s

shape and the planner’s experience in placing isocenters. Generally, the estimated

treatment time was similar between the two modalities, and the delivery efficiency

was significantly impacted by the chosen collimation sizes for both modalities.

Conclusion: This study demonstrates that, within the range of target sizes within

the patient cohort, plans generated by ZAP-X and CyberKnife exhibit comparable

plan quality and delivery efficiency. At present, with the current platform of the

two modalities, CyberKnife outperforms ZAP-X in terms of conformity and

homogeneity, while ZAP-X tends to produce plans with a more rapid dose falloff.
KEYWORDS

stereotactic radiosurgery, brain metastases, CyberKnife, ZAP-X, plan quality,
delivery efficiency
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1 Introduction

Brain metastases are the most prevalent cancerous lesions in the

brain, with an estimated incidence rate of 20–40% among cancer

patients (1–3). Radiotherapy serves as a viable treatment option for

metastatic brain tumors, either as a primary solution or in

combination with systemic chemotherapy. Historically, whole brain

radiotherapy (WBRT) was the standard approach for patients with or

without surgery. However, due to concerns regarding toxicity, WBRT

is now commonly deferred (4, 5). As a focal technique that minimizes

damage to surrounding healthy tissues, stereotactic radiosurgery

(SRS) has emerged as a preferred management option for brain

metastases of patients (6). Numerous studies have highlighted the

advantages of using SRS or adding SRS to WBRT for brain

metastases, such as improved local control, comparable survival

rates, and reduced cognitive deterioration (7–9). Consequently,

there has been a steady increase in the percentage of patients

receiving SRS treatment (10, 11).

The advantages of SRS treatment stem from the dosimetric

characteristics of its plans, specifically the steep dose gradient and

high dose conformity, which enable dose intensification beyond the

capabilities of conventional treatments (12–14). SRS is offered as a

treatment solution by various radiation modalities, including

cobalt-60 based systems like the Gamma Knife (15, 16), as well as

systems with specially equipped linear accelerators (Linacs), such as

the Varian Edge (Varian, Palo Alto, CA, USA) (17), Brainlab

Novalis (Brainlab, Munich, Germany) (18), CyberKnife (Accuray

Inc. Sunnyvale, California) (19) and the more recently developed

ZAP-X (ZAP Surgical, San Carlos, CA) (20).

CyberKnife, a robotic radiosurgery system, was introduced

commercially in the late 1990’s. Its standout advantage lies in its

ability to deliver non-coplanar radiation fields with ease and real-

time tumor tracking. Initially developed for treating intracranial

lesions, CyberKnife has expanded to treat lesions throughout the

body, benefiting thousands of patients worldwide (21). The system

features a compact 6-MV X-band Linac and a versatile robotic arm

equipped with six joints, allowing for both rotational and

translational movement of the radiation source (22). The

radiation source follows a predetermined path that connects

multiple beam entry locations (i.e., nodes) on a virtual spherical

surface. This unique configuration allows for radiation crossfire

from nodes distributed across solid angles exceeding 2p steradians.

Furthermore, the radiation beams can be precisely directed to non-

isocentric directions from each node. CyberKnife possesses a source

axial distance (SAD) ranging from 65 to 80 cm, with a dose rate of

up to 1000 monitor unit per minute (MU/min). It offers a selection

of fixed conical cones and variable circular collimators (i.e., IRIS™)

with 12 different collimation diameters from 5 to 60 mm. The IRIS

collimator is made of two banks of six tungsten segments, each

creating a hexagonal aperture to produce a 12-sided field shape to

approximate a circle (23). Notably, a recent addition to the system

includes Multileaf collimator (MLC) technology (24). Frameless

intracranial treatment is facilitated by the system’s imaging
Frontiers in Oncology 0280
guidance, which employs a pair of orthogonal room-mounted kV

generators and panels. This imaging guidance provides

reconstructed 3D coordinates of the patient’s skull for precise

initial setup and real-time tracking during treatment delivery. To

enhance precision, a customized mesh face mask is prepared during

simulation phase and is subsequently utilized for treatment. Prior to

treatment initiation, any deviation in the initial setup is corrected

through the controlled movement of robotic couch. Throughout the

delivery of treatment, the real-time patient movement is

compensated by the movement of robotic arm (25).

ZAP-X is a cutting-edge platform that emerged in the market

just a few years ago. Rather than other SRS systems that require a

shielded radiation vault, ZAP-X’s standout feature is its self-

contained, self-shielded design (26–28). Its primary focus is on

the precise treatment of intracranial lesions without compromising

versatility. ZAP-X incorporates a 2.7-MV S-band Linac, which is

mounted on a gyroscope-like gantry with independent dual rotating

axes, centered around a unique common isocenter. Notably, it offers

delivery of non-coplanar radiation beams through moving the

radiation source on a virtual spherical surface, covering

approximately 2p steradians of solid angles. Additionally, ZAP-X

features a compact 45 cm SAD and a dose rate of up to 1500 MU/

min. It provides circular collimation with eight different diameters,

ranging from 4 to 25 mm. The collimator size can be changed

automatically during treatment through a novel tungsten wheel

collimator (29). For imaging guidance, ZAP-X employs a gantry-

mounted kV imaging system, allowing the capturing of images from

specified angles to achieve precise initial skull alignment. This

system also facilitates continuous image acquisition at

predetermined intervals, ensuring seamless rotation of gantry

during treatment delivery. Skull offsets are calculated by aligning

the captured images with real-time generated Digitally

Reconstructed Radiographs (DRRs). Based on these calculated

offsets, the isocenter position is accurately corrected in patient’s

head using a patient couch equipped with translational movement

capabilities. In line with Cyberknife, ZAP-X also utilizes a

customized mesh face mask to support patient immobilization.

Both ZAP-X and CyberKnife utilize compact Linac designs and

offer non-coplanar radiation delivery with a large range of beam

geometry in terms of solid angle, which is crucial for achieving

desired optimized plans in intracranial SRS. However, there are

notable differences between the two systems. ZAP-X employs an

isocentric technique with couch movement, allowing for the

delivery of multiple isocenters within a single treatment. In

contrast, CykerKnife delivers non-isocentric beams without

requiring couch movement during treatment delivery. Both

systems employ circular collimation, offering similar collimating

sizes for lesions with small and intermediate volumes. However,

CyberKnife offers larger collimator sizes to accommodate lesions

with large volumes. It is worth mentioning that ZAP-X, with its

shorter SAD and lower beam energy, exhibits characteristics that

align more closely with Gamma Knife. A study conducted by Georg

et al. focused on the peripheral dose fall-off of ZAP-X using various
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detectors, and the results indicate that the beam characteristics of

ZAP-X are more like those of Gamma Knife (30). The differences in

machine characteristics between ZAP-X and CyberKnife may

potentially impact their plan parameters, which motivates further

investigation into the dosimetric comparison between these two

modalities. Romanelli et al. conducted a preliminary dosimetric

comparison of trigeminal neuralgia plans between ZAP-X and

CyberKnife. They found that the two modalities yielded

comparable plans for such functional treatment, and also

highlighted the potential clinical value of ZAP-X in low dose

region (31). Several studies have investigated the dosimetric

characteristic of CyberKnife compared with other techniques,

such as Gamma Knife and volumetric modulated arc therapy

(VMAT) (32–35). However, to the best of our knowledge, no

systematic study has been published comparing the dosimetric

performance and delivery efficiency of ZAP-X and CyberKnife for

brain metastases with varying target sizes. Therefore, our objective

is to perform such a comparison, capitalizing on our extensive

experience of CyberKnife SRS and more recent implementation of

ZAP-X SRS since 2020.

2 Materials and methods

2.1 Patient cohort

In this study, a cohort of 23 patients who underwent treatment

between 2018 and 2021 were selected. Among these patients, 12

received CyberKnife treatment and 11 patients received ZAP-X

treatment. The cohort comprised a total of 47 lesions, which were

treated using 28 individual treatment plans. Each plan targeted 1 to

6 metastases. Notably, the anatomical locations of the lesions were

well distributed within the cohort, as evidenced by Table 1.

Additionally, Table 2 provides an overview of the plan

distribution concerning the number of lesions and the volume

size of targets. The majority of plans (i.e., 89.3%) targeted 1 or 2

lesions. The plan distribution in terms of the sizes of the targeted

lesions displayed a well-balanced representation. To facilitate

comparison, an alternative ZAP-X/CyberKnife plan was generated

for each original CyberKnife/ZAP-X treatment plan, ensuring

attainment of the same clinical goal. The median prescription

dose across the 28 plans was 24 Gy (i.e., range, 15–30 Gy),

administered over 1 to 5 fractions.

2.2 Imaging and target delineation

The planning CT series was obtained with a slice thickness of no

more than 1 mm. To aid in contouring, T1-weighted MRI images

with or without contrast in 1 mm thickness were fused with the

planning CT. Experienced radiation oncologists delineated the

gross tumor volume (GTV) as well as the organs at risk (OARs).

The target volume for all patients in the study was defined as the

planning target volume (PTV), which incorporated setup margins.

In this study, PTV was created from GTV using margins of 0 or 1

mm for all selected patients. The prescription dose for all patients
Frontiers in Oncology 0381
was designated to the PTV. Normal brain tissue was defined as the

entire brain excluding the PTV.
2.3 Treatment planning

ZAP-X planning was performed using the dedicated ZAP-X

treatment planning system (referred to as “ZAP-X TPS”). The ZAP-

X TPS incorporates a sphere packing scheme with inverse planning

(36) and supports both manual and automatic isocenter placement.

Considering the compact design of ZAP-X, a simulation is

conducted for each determined isocenter position from sphere

packing to establish a safety zone for gantry movement, ensuring

collision-free delivery based on a conservative patient model with

appropriate size and margins. Subsequently, all available beam

angles for all isocenter positions are determined, forming a pool

for inverse planning. In the inverse planning process, the weights of

the beams in the pool are optimized using linear and quadratic

programing, based on the planner’s defined constraints. For each

isocenter, the optimized beams with non-zero MUs are connected
TABLE 1 Summary of tumor locations (47 lesions).

n n (%)

Frontal
Left 4 8.5%

Right 7 14.9%

Temporal
Left 4 8.5%

Right 3 6.4%

Parieto-occipital
Left 6 12.8%

Right 10 21.3%

Cerebellar
Left 5 10.6%

Right 6 12.8%

Vermis 2 4.3%
TABLE 2 Statistics summary of 28 treatment Plans.

No.
of Plans % of Plans

No. of Lesions
per plan

1 18 64.3%

2 7 25.0%

4 -6 3 10.7%

Total volume
of plan

<1 cc 9 32.1%

[1 cc, 3 cc) 7 25.0%

[3 cc, 10 cc) 7 25.0%

>10 cc 5 17.9%

Fraction No. of
plan prescription

1 12 42.9%

3 13 46.4%

5 3 10.7%
frontiersin.org

https://doi.org/10.3389/fonc.2024.1333642
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Niu et al. 10.3389/fonc.2024.1333642
to form a delivery path using the traveling salesman algorithm,

minimizing delivery time while avoiding collision. In cases where

the target is small and regular in shape, the isocenters are typically

placed at the center of targets with suitable collimator sizes. For

larger or irregularly shaped targets, multiple isocenters are

employed, with each isocenter covering the target partially. These

multiple isocenters are typically positioned near the boundary of the

target to minimize the overlaps between shots within target,

resulting in a desired plan uniformity.

Treatment planning for CyberKnife was performed using the

Accuray Precision 2.0 treatment planning system (referred to as

“CyberKnife TPS”) on the CyberKnife VSI platform. In this study,

all plans were generated using the variable IRIS™ collimator for the

range of tumor size in this study. The CyberKnife TPS offers both

short and full paths with different numbers of nodes, and for this

study, the full path with a larger number of nodes was utilized. The

VOLO optimizer, operating under the inverse planning scheme,

was employed (37). The CyberKnife TPS allows for manual or

automatic selection of initial collimator sizes for optimization. The

choice of collimator sizes depends on the target sizes and the

planner’s preference for conformity and homogeneity. Planners

can choose to activate multiple collimator sizes to maximize dose-

profile sculpting capabilities or select a minimal number of

collimator sizes to streamline computational efficiency without

compromising plan quality. Within the CyberKnife TPS, the

“target boundary distance” option allows targeting of beams at a

specific distance from the delineated target boundary. This

parameter can be adjusted by the planner to emphasize either

homogeneity or conformity. In this study, a target boundary

distance within 5 mm outward was commonly employed.

ZAP-X and CyberKnife treatment planning systems share

several design features. One notable feature is the ability to create

multiple hollow contour sets, known as “shells”, which provide

control over plan conformity and dose falloff. Planner can adjust the

objectives and penalties assigned to these shells to fine-tune plan

quality in inverse planning. In this study, the CyberKnife planer

typically generated three sets of shells to manage spillages at

different dose levels (e.g., 3 mm, 10 mm, and 20 mm from target

boundary for high, middle, and low dose regions, respectively). The

sizes of these shells were adjustable based on the planer’s preference.

In contrast, the ZAP-X TPS offers predetermined shell sizes to

planers, including 0 mm, 1 mm, 5 mm, and 10 mm from the target

boundary. Another shared feature is that both systems support the

ray-tracing algorithm in dose calculation for tissue heterogeneity,

although CyberKnife TPS offers the additional option of Monte

Carlo dose calculation. For this study, we employed the ray-tracing

algorithm for dose calculation in both treatment planning systems.

In this study, the primary objective for both ZAP-X and

CyberKnife plans was to achieve target-volume coverage between

97–100% while determining the prescribed isodose percentage

(PIP) relative to the maximum dose. Additionally, stringent

adherence to the dose constraints specified in the AAPM TG101

guidelines was maintained for all OARs (38). Special emphasis was

placed on minimizing the extent of low dose regions to prevent any

30% isodose regions from extending beyond the immediate

target vicinity.
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2.4 Comparison metrics

Dose conformity of each plan was assessed using the Radiation

Therapy Oncology Group (RTOG) conformity index (CI) and the

modified Paddick conformity index (nCI) defined as follows:

CI =
VRx

VT
(1)

nCI =
VT � VRx

(VT , Rx)
2 (2)

Herein, VT is the planning target volume, VRx is the total

volume covered by prescription dose, and VT , Rx is the partial

volume of target covered by prescription dose.

Dose homogeneity was assessed for each target, with the

homogeneity index (HI) defined by the equation,

HI =
Dmax

DRx
(3)

where Dmax is the maximum dose to the target and DRx is the

prescription dose.

The dose fall-off was assessed for each plan using the

prescription isodose volume, i.e., Vx%Rx , which represents the

volume receiving at least x% of prescription dose. Two commonly

used gradient indices (GI) are calculated as follows:

GI50% =
V50%RX

V100%Rx
(4)

GI25% =
V25%RX

V100%Rx
(5)

In addition, two more surrogates were also calculated as follows,

R50% =
V50%RX

VT
(6)

R25% =
V25%RX

VT
(7)

The R50% and R25% indices are useful for evaluating dose fall-

off performance while accounting for differences in conformity.

These indices express the ratios of absolute irradiated volumes to

the target volume, which allows for a more accurate assessment of

dose fall-off without the influence of variations in conformity.

V12 and V10, which are the volumes of normal brain tissue

receiving at least 12 Gy and 10 Gy, were reported for plan

comparison as predictors of brain necrosis for single-fraction

treatments (39).

The delivery efficiency was evaluated with estimated treatment

time of each fraction from TPS and MU coefficient defined as the

following,

C _MU =
MU=Fx
Rx � VT

(8)

The estimated treatment time was calculated as the dry run time

plus estimated patient setup and imaging time interval. For
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CyberKnife, the patient initial setup time was set as 5 minutes in

TPS, and the imaging time interval is 1 minute. For ZAP-X, the

patient initial setup time is also 5 minutes, and there is no imaging

time interval needed because ZAP-X imaging tracking does not

interrupt treatment delivery.

To assess the difference of indices and parameters between the

ZAP-X and CyberKnife plans, the two tailed t-test was performed,

and a P value less than 0.05 was considered to indicate

statistical significance.
3 Results

Table 3 provides a summary of the comparison for conformity,

homogeneity, dose falloff and delivery efficiency of all plans and

targets between ZAP-X and CyberKnife. The results indicate that

the CyberKnife system demonstrated statistically significant better

CI and nCI (see Equations (1) and (2)) compared to ZAP-X(p

values shown in Table 3). However, there is no significant difference

in target-volume coverage between the two modalities. On average,

CyberKnife plans exhibited statistically significant smaller HI (see

Equation (3)), while the ZAP-X plans showed a lower minimum

dose, higher mean dose and higher maximum dose, indicating

greater dose heterogeneity within the targets. Conversely, the ZAP-

X plans demonstrated better dose falloff, as indicated by the GI50%,

GI25%, R50% and R25% indices (see Equations (4–7)), which

reflect the benefits in the medium and low dose regions.

Additionally, the ZAP-X plans achieved significantly smaller
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irradiated volume of normal brain tissues, as evidenced by the

V12 and V10 parameters, while the mean dose to whole brain

remained comparable between the two modalities. In terms of

delivery efficiency, there was no significant difference in the

estimated treatment time between modalities, although ZAP-X

plans generally required fewer MUs compared to CyberKnife plans.

The comparison of plan conformity was further refined based

on target sizes. Figure 1 illustrates the graphical comparison of CI

for plans generated by ZAP-X and CyberKnife across various target

size ranges. The overall findings indicate that CyberKnife plans

exhibit superior conformity compared to ZAP-X plans. Particularly,

for very small tumors (< 1 cc), CyberKnife achieved significantly

smaller CI values than ZAP-X. Among the 9 plans evaluated, the

mean CI values for ZAP-X and CyberKnife were 1.53 and 1.38,

respectively. However, the difference in CI was less pronounced for

intermediate-sized tumors. Among the 14 plans with medium-sized

targets (between 1 cc and 10 cc), the mean CI values for ZAP-X and

CyberKnife were 1.38 and 1.31, respectively. Conversely, for large

tumors (> 10 cc), the disparity in CI became more significant.

Among the 5 plans assessed, the mean CI values for ZAP-X and

CyberKnife were 1.34 and 1.19, respectively.

Figure 2 presents a detailed comparison of isodose volumes at

various percentage levels, ranging from 100% to 10%, with small

increments. The analysis included 23 plans with target volumes less

than 10 cc, with a median volume size of 1.70 cc, ranging from 0.15

cc to 8.67 cc. Across three target size ranges demonstrated in

Figure 2, CyberKnife consistently outperformed ZAP-X in terms

of V100%, demonstrating superior conformity. For targets smaller
TABLE 3 Comparison of dosimetry indices and parameters for plan quality and delivery efficiency.

Cyberknife ZAP-X
p Value

Median (range) Median (range)

Conformity

CI 1.28 (1.10–1.76) 1.41 (1.19 - 1.86) <0.001

nCI 1.30 (1.10–1.76) 1.41 (1.20 - 1.88) <0.001

Coverage(%) 99.87 (97.22 -100) 99.64 (98.46–100) 0.90

Homogeneity

HI 1.19 (1.07 - 1.27) 1.39 (1.13 - 2.00) < 0.0001

Dmin (%DRx)* 1.00 (0.92 -1.11) 0.95 (0.81 - 1.01) < 0.0001

Dmean (%DRx) 1.11 (1.04 - 1.15) 1.23 (1.09 - 1.44) < 0.0001

Dose falloff

GI50% 5.27 (3.39 - 8.98) 3.14 (2.70 - 3.81) < 0.0001

GI25% 16.53 (8.17 - 31.02) 11.72 (7.76 - 18.64) < 0.0001

R50% 6.86 (3.95 - 12.85) 4.53 (3.57 - 5.48) < 0.0001

R25% 20.04 (10.18 - 41.70) 16.49 (10.90 - 25.20) < 0.001

Normal brain
V12 (cc) ** 4.34 (1.23 – 20.84) 1.84 (0.51 – 13.64) < 0.01

V10 (cc) 6.05 (1.73 – 29.46) 2.69 (0.71 – 21.17) < 0.01

Whole brain Dmean (cGy) 116 (28 - 484) 111 (24- 445) 0.93

Delivery efficiency
C_MU(MU/(cGy∙cc))*** 2.75 (0.26 - 9.68) 1.84 (0.31–6.81) < 0.001

Tx Time/Fx (mins) 28 (17–51) 26 (16–65) 0.99
* The minimum and mean doses of target are presented as percentages of the prescription dose.
** The V12 and V10 of Normal brain tissue were calculated and compared for 12 plans with single fraction, all other parameters were compared for 28 plans.
*** The coefficient C_MU is defined in Equation (8).
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than 1 cc, ZAP-X exhibited better dose fall-off from V90% to V10%

compared to CyberKnife. For targets larger than 1 cc but less than

10 cc, ZAP-X showed statistically significant superiority over

CyberKnife from V90% to V40%. However, no noticeable

differences were observed between the two modalities in the low-

dose range (V25% to V10%) for targets between 1 cc and 10 cc.

Analyzing the 14 plans with target volumes between 1 cc and 10 cc,

the mean R25% values for ZAP-X and CyberKnife were 17.1 and

20.6, respectively, with a p-value of 0.096. Additionally, there were

five plans with a target-volume range larger than 10 cc, not depicted

in Figure 2, with a median volume size of 21.96 cc, ranging from

14.44 cc to 25.83 cc. Comparing the dose falloff performance

between ZAP-X and CyberKnife for these five plans, the mean

R50% values were 4.55 and 4.38, respectively, with a p-value of 0.66.

The mean R25% values for the two modalities were 14.6 and 13.1,

respectively, with a p-value of 0.33. These findings indicate that

there are no observable differences in both the medium and low-

dose regions between the two modalities for targets larger than

10 cc.

Figure 3 displays a comparison of the HI results for all lesions

treated with CyberKnife and ZAP-X. The results are presented as

histograms, representing the percentage of targets within each HI

range. In the CyberKnife plans, all targets achieved an HI value of

less than 1.3. Conversely, the ZAP-X plans exhibited a broader

distribution of HI values, with 83% of targets having an HI less than

1.6, and 64% of targets with an HI less than 1.5. Notably, the HI

distributions differed between the ZAP-X targets treated with a

single isocenter and those treated with multiple isocenters. Among

all ZAP-X targets, 55.3% were covered by a single isocenter, with a

median HI value of 1.31, and 92.3% of these targets achieved an HI

less than 1.5. For the remaining 44.7% of targets treated with

multiple isocenters, 71.4% of them exhibited an HI greater than 1.5.
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In Figure 4, a comparative analysis of dose distributions for a

small target in the skull base is presented. The optimized beam

orientations of the two modalities are influenced by the target’s

location, resulting in distinct dosimetric characteristics. The cut

views of 2D dose distribution reveal that ZAP-X benefits from its

posterior beams, which offer the shortest radiological paths to the

target. On the other hand, CyberKnife relies on its lateral and

superior beams. The ZAP-X plan utilized a single 12.5 mm

collimator size isocenter, resulting in 99.3% target-volume

coverage, a CI of 1.40, a HI of 1.45, and a GI50% of 2.81. In

contrast, the CyberKnife plan employed collimation sizes of 10 and

12.5 mm, achieving 100% target-volume coverage, a CI of 1.48, an

HI of 1.23, and a GI50% of 5.56. Additional plan parameters related

to delivery efficiency can be found in Table 4 under plan ID 5.

Figure 5 presents a postoperative case with a large target

volume. For ZAP-X, a total of 12 isocenters were used with

collimation sizes ranging from 15 to 25 mm. The strategic

placement of most isocenters near the boundary of the target

volume aimed to achieve optimal plan uniformity. The resulting

ZAP-X plan demonstrated excellent performance with 99.7%

target-volume coverage, a CI of 1.19, a HI of 1.52, and a GI50%

of 3.02. In comparison, the CyberKnife plan achieved 98.7% target-

volume coverage, a CI of 1.14, an HI of 1.22, and a GI50% of 3.95.

Further details on delivery efficiency and other plan parameters can

be found in Table 4 under plan ID 16.

Table 4 provides a comparison of plan parameters for all plans

targeting a single lesion within the cohort. The plans are listed in

ascending order based on the sizes of the target volumes. Strong

correlations were observed between the MU numbers of the plans

with the target volume sizes, also, with the selected collimator sizes.

In this study, most selected collimator sizes for both modalities were

10 mm or larger, with none smaller than 7.5 mm. CyberKnife plans

consistently employed a minimum collimator size of 10 mm across

all cases. Additionally, for target sizes less than 3 cc, a single

collimator size of 10 mm was frequently utilized for CyberKnife

plans. Conversely, the chosen minimal collimator size for ZAP-X

plans varied based on the specific target size and shape. For very

small lesions (plans with IDs 1 to 5 in Table 4), both modalities

employed similar collimator size ranges. ZAP-X exhibited a slight

improvement in delivery efficiency, requiring 15.8% fewer MUs and

2.4 minutes less in estimated delivery time, on average, compared to

CyberKnife. However, these differences did not reach statistical

significance (p=0.27 and 0.08, respectively). For lesions with

intermediate sizes up to 3 cc (plans with IDs 6 to 11 in Table 4),

CyberKnife plans utilized smaller maximal collimator sizes

compared to ZAP-X. For these cases, ZAP-X demonstrated

notable delivery efficiency, necessitating 44.3% fewer MUs and 8.2

minutes less in estimated delivery time, with statistically significant

differences observed (p=0.007/0.002). In the cases of target sizes

exceeding 3 cc (plans with IDs 12 to 18 in Table 4), the largest 25

mm collimator size of ZAP-X is frequently selected, while the

maximum collimator size for CyberKnife plans reached up to 30

mm. ZAP-X exhibited a 12.6% reduction in MUs without statistical

significance (p=0.40), but a statistically significant average increase

of 6 minutes in estimated delivery time (p=0.02) compared

to CyberKnife.
FIGURE 1

The results of the modified Paddick conformity index were
compared using box plots, which were divided into four separate
target size ranges.
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4 Discussions

This study presents a systematic comparison of treatment plans

between ZAP-X and CyberKnife. The findings indicate that both

modalities can generate treatment plans with acceptable plan

quality, as shown in Table 1. In general (without considering the

impact of target size), CyberKnife outperforms ZAP-X in terms of

plan conformity and homogeneity, whereas ZAP-X demonstrates

superior performance in dose gradient. The treatment delivery

efficiency is comparable between the two modalities. Furthermore,
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the study reveals a correlation between dosimetry performance and

delivery in relation to the target size, as illustrated in Figures 1, 2,

Table 4. Specifically, for small target sizes (<1 cc), CyberKnife

exhibits significant advantages in plan conformity, while ZAP-X

excels in dose gradient. However, for larger target sizes, the

respective advantages become less apparent.

CyberKnife employs non-isocentric beam delivery, utilizing

gantry pivoting with a robotic arm to enhance flexibility. This

unique feature enables the generation of highly conformal and

uniform treatment plans, as evidenced by Figures 1, 3, particularly
FIGURE 2

Isodose volumes were displayed as box plots comparing two modalities, i.e., V100%, V90%, V80%, V60%, V50%, V40%, V25%, V20% and V10% are
the volumes enclosed by 100%, 90%, 80%, 60%, 50%, 40%, 25%, 20% and 10% of isodose surfaces normalized with prescription dose. The results
were divided into three separate target size bins, i.e.,<1cc, 1–3cc and 3–10cc.
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for cases involving irregular or large volumes, as illustrated in

Figure 5. The CyberKnife TPS supports the creation of plans with

strategically directed non-isocentric beams near the target’s

boundary. This approach ensures that the prescribed isodose line

conforms to the target volume’s surface curvature, while

minimizing beam overlap within the target, thereby enhancing

plan homogeneity (40), as demonstrated in Figures 5B, C.

In contrast, ZAP-X utilizes an isocentric technique that lacks

the gantry pivoting flexibility seen in CyberKnife. Instead, it relies

on sphere packing, similar to Gamma Knife, to address complex

cases, taking advantages of its beam geometry with large solid

angles. Notably, ZAP-X exhibits greater capability than Gamma

Knife in manipulating shot shape by delivering optimized sparsely

distributed beams to an isocenter. In cases involving multiple

isocenters, once the isocenters with appropriate collimator sizes

are positioned, all candidate beams associated with the isocenters

are simultaneously optimized. The planning process typically

involves iterative adjustments, such as manual fine-tuning of

isocenter positions and collimator sizes combined with inverse

planning guided by updated dose constraints. While the planner

can steer the optimizer by adjusting the dose constraints, the

determination of isocenter positions and collimator sizes is crucial

for achieving the desired plan quality in many situations.

Generally, if multiple isocenters are placed more peripherally on

the target, the resulting plan tends to exhibit improved

homogeneity, as demonstrated in Figure 5B. However, due to the

overlap of neighboring shots, hotspots may be unavoidable, as

depicted in Figure 5C. Planners prioritize target coverage and

conformity while allowing for compromises in plan homogeneity,

which explains for the variation in HI values of ZAP-X plans with

multiple isocenters, ranging from 1.1 to 2.0, as depicted in Figure 3.

In Figure 3, we also present an interesting finding regarding the

comparison of HI-value distributions between ZAP-X plans of
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single isocenter and plans with multiple isocenters. It is observed

that plans utilizing a single isocenter have yielded better HI values

compared to plans with multiple isocenters. The median HI value of

the single isocenter plans is close to that of CyberKnife. As depicted

in Figure 4, in this study, a commonly employed strategy in ZAP-X

planning is to use a single isocenter with a collimator size that

closely matches the target diameter. This approach often leads to

achieving an acceptable CI, particularly when dealing with regular

target shapes. In the plans with a single isocenter, the HI value is

determined by the prescribed isodose line based on desired target

coverage and plan conformity, which is influenced by the flatness,

shape and dose falloff of shot with optimized beams.

Although ZAP-X and CyberKnife both possess large number of

spatial nodes covering solid angles for radiation crossfire exceeding

2p, their respective available scopes of beam orientations differ

significantly, i.e., the scope of beam orientation of ZAP-X are quite

similar to Gamma Knife, whereas CyberKnife possesses the scope

covering entire anterior hemisphere, however, posterior beams are

restricted in access due to the limited conch height. As depicted in

Figure 4, these difference in beam orientations may lead to different

characteristics in dosimetry, and such difference may be influenced

by the anatomical location of target.

Although ZAP-X and CyberKnife both utilize a large number of

spatial nodes to cover solid angles exceeding 2p steradians for

radiation crossfire, they differ in terms of their available scopes of

beam orientations. ZAP-X exhibits a beam orientation scope similar

to that of Gamma Knife, while CyberKnife has a scope nearly

covering the entire anterior hemisphere. However, CyberKnife’s

access to posterior beams is limited due to the restricted couch

height. This difference in beam orientations can result in discernible

differences in dosimetric characteristics as depicted in Figure 4, and

ultimately lead to variations in plan quality, particularly when

considering the specific anatomical location of the target.

Tables 1, 4 provide evidence that, overall, ZAP-X demonstrates

superior delivery efficiency in terms of MU numbers compared to

CyberKnife within the studied cohort. It is important to consider

that several factors can influence the MU numbers of plans using

different modalities. For example, as indicated in Table 5, ZAP-X

has a higher output per MU than CyberKnife at the same collimator

size, while CyberKnife beams possess better penetrability, evidenced

by the comparison of TPRs. However, as summarized in Table 4,

the key determinant affecting the MU numbers among plans is

often the selection of different collimation size ranges during plan

creation. For plans with intermediate target sizes (i.e., plans with ID

6–11 in Table 4), CyberKnife planners, drawing from their

experience, typically avoid selecting collimators larger than 10

mm. Conversely, for larger target volumes, CyberKnife benefits

from the availability of larger collimator sizes that are not available

on ZAP-X. On average, across the entire cohort, no significant

difference in estimated treatment time is observed between the two

systems, as the movement time of the gantry dominates the total

delivery time for both modalities. Consequently, small variations in

MU numbers are unlikely to result in discernable differences in

delivery time.

It is important to note that this study focuses solely on the

systems with circular collimation and does not include the MLC
FIGURE 3

The comparison of HI was performed using differential histogram.
The range of HI value is from 1.0 to 2.0 with bins of 0.1 for all 47
lesions. For each of bin of ZAP-X histogram, the targets covered by
single and multiple isocenters were differentiated by different colors.
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version of CyberKnife. Additionally, it should be emphasized that

the dosimetric characteristics highlighted in this study do not

directly reflect the machine characteristics of the two systems, but

rather the differences in dosimetric performance between the two

modalities within the specific clinical implementation. These

differences are influenced by machine characteristics, preferred

clinical goals, and the current treatment planning capacities. The

planning strategy employed in our study for both ZAP-X and

CyberKnife prioritized target coverage, conformity and sparing of

OARs. For plan homogeneity, a prescription isodose percentage

(PIP) higher than 75% was desirable for CyberKnife plans, while

PIP was maximized for ZAP-X without compromising conformity.
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Efforts were also made to balance dose falloff, treatment time, and

other factors. Under the context of such clinical implementation,

the extent of advantages of CyberKnife/ZAP-X plans in terms of

plan homogeneity/dose falloff may be determined by the PIP chosen

for planning and should not be concluded as a machine

characteristic. Lee et al. (41) suggested that choosing a lower PIP

can improve the dose falloff of CyberKnife plans while maintaining

the desired plan conformity. As widely recognized in the

radiosurgery community, the Gamma-knife employs a lower

prescription isodose percentage, typically set at 50%, compared to

the CyberKnife, which often uses 75% or higher. This is due to the

machine characteristics and sphere packing technique of the
FIGURE 4

Visual comparison of beam orientation and multiplanar dose distributions between ZAP-X and CyberKnife for a representative case with small target
volume (i.e., 0.84 cc). The 100% isodose line was normalized to prescribed dose.
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Gamma-knife. In this study, it was demonstrated that ZAP-X, in

some situations, can produce plans that approach the homogeneity

achieved by CyberKnife, unlike the Gamma-knife.

The CyberKnife treatment planning system has undergone

significant evolution and improvement over the last twenty years,

transitioning from the initial forward planning scheme with

isocentric sphere packing technique to the current, more

sophisticated inverse planning scheme with non-isocentric

technique. On the other hand, ZAP-X utilizes sphere packing to

achieve conformal coverage of the target, and the dependence on

planner experience remains a limitation of the current planning

capacities for ZAP-X. The introduction of a more sophisticated

optimization algorithm that allows for automatic placement of

isocenters with proper collimator sizes based on the shape and

size of the target is likely to further enhance plan quality.

The potential for enhancing plan quality with ZAP-X extends

beyond algorithmic advancements alone. While intuitively

increasing the number of isocenters in ZAP-X plans could

potentially improve plan quality, practical limitations must be

considered. Currently, skull position verification using kV

imaging is required for each isocenter, which can significantly
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increase delivery time when more isocenters are added. In this

study, the goal was to strike a balance between plan quality and

treatment time by minimizing the number of isocenters in ZAP-X

plans. However, it is anticipated that advancements in machine

characteristics, such as increased gantry speed, improved imaging

processes for skull alignment between isocenters, and the ability to

dynamically adjust collimation during each isocenter delivery, have

the potential to enhance delivery efficiency (42). These

improvements, along with sophisticated planning schemes, hold

the promise of achieving improved conformity and homogeneity in

ZAP-X plans, bringing them closer to the levels achieved

by CyberKnife.

In addition to machine characteristics that affect delivery

behavior, the beam characteristics of different modalities can also

have an impact on plan quality. As aforementioned, ZAP-X

differentiates itself from CyberKnife with its lower beam energy,

which is similar to Gamma Knife. Additionally, when considering a

single beam, ZAP-X has a short SAD, which theoretically results in

larger beam divergence and a sharper beam penumbra. These

unique features have the potential to influence dosimetric

performance, particularly in terms of dose falloff and peripheral
TABLE 4 Comparison of beam parameters and delivery efficiency of ZAP-X/Cyberknife for 18 plans with a single target.

Plan ID Target Vol.(cc) ZAP-X ISO No.

ZAP-X/Cyberknife*

Collimator Size Range(mm)** Beam No.***

Tx
Time
(mins)

C_MU
(MU/(cGy∙cc))

1 0.15 1 (7.5,7.5)/(10,10) 36/42(39) 18/19 20/18

2 0.42 1 (10,10)/(10,10) 35/90(40) 19/24 6.7/8.0

3 0.47 1 (10,10)/(10,10) 32/97(49) 16/20 6.8/9.1

4 0.48 1 (12.5,12.5)/(10,10) 33/32(24) 16/19 3.5/8.2

5 0.84 1 (12.5,12.5)/(10,12.5) 36/51(32) 18/17 3.6/5.8

6 0.89 5 (10,15)/(10,10) 51/114(39) 18/23 3.3/7.2

7 0.92 1 (15,15)/(10,10) 48/82(31) 16/27 2.7/5.5

8 1.1 3 (10,12.5)/(7.5,10) 70/100(49) 23/27 4.3/6.1

9 1.13 2 (10,12.5)/(10,10) 48/129(37) 21/28 2.7/4.0

10 2.76 1 (20,20)/(10,10) 33/200(57) 16/28 0.7/1.7

11 2.9 3 (10,25)/(10,10) 52/104(20) 22/31 1.5/2.6

12 4.86 4 (12.5,25)/(10,20) 34/104(45) 20/23 0.47/0.93

13 8.41 5 (15,25)/(10,20) 92/190(59) 32/26 0.60/0.69

14 8.67 10 (12.5,25)/(10,25) 100/114(46) 35/25 0.81/0.69

15 14.44 10 (15,25)/(10,20) 114/190(48) 36/34 0.43/0.60

16 21.96 12 (15,25)/(10,30) 197/192(66) 43/31 0.33/0.27

17 22.94 12 (20,25)/(10,30) 122/185(44) 40/32 0.31/0.33

18 25.83 9 (15,20)/(10,30) 190/180(46) 38/31 0.34/0.26
*All parameters are listed with the order ZAP-X/Cyberknife. ** The range is presented as the value of (min, max) *** The node number of each Cyberknife plan is in parenthesis.
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dose. Further studies are needed to thoroughly investigate the

dosimetric impact of these specific beam characteristics on

plan quality.

This study has limitations regarding the inclusion of cases

involving multiple lesions planned in a single treatment plan. As

depicted in Table 2, only three plans were generated for treating

more than three lesions simultaneously. It is crucial to acknowledge
Frontiers in Oncology 1189
that CyberKnife provides IRIS collimator sizes up to 60 mm, which

holds the potential for improved delivery efficiency and plan quality

in cases with multiple lesions. Further research is warranted to

comprehensively compare the performance of these two modalities

in treating multiple lesions within a single plan.
5 Conclusions

Our study demonstrates that both ZAP-X and CyberKnife with

circular collimation are capable of generating plans with equivalent

dosimetric outcomes for patients with brain metastases of various

sizes. Both modalities effectively achieve adequate dose coverage for

the PTVs. While CyberKnife plans generally exhibit greater

conformity and homogeneity, ZAP-X plans demonstrate a faster

dose falloff. In terms of delivery efficiency, ZAP-X outperforms

CyberKnife in terms of MU numbers, whereas the estimated

delivery times of both systems are comparable. It is important to

consider that the planning strategy employed for CyberKnife in this

study was specific to a particular clinical implementation, utilizing a

high PIP. Additionally, it is worth acknowledging that ZAP-X

represents the first generation of the SRS platform, and its current

planning and delivery scheme may have inherent limitations.

However, as the technology continues to evolve and improve, it is
B

C

A

FIGURE 5

(A) 3D visualization of the isocenter positions in the ZAP-X plan for a representative postoperative case with large PTV (i.e., 21.96 cc). (B) A coronal
cut view which demonstrates the difference in dose distribution between ZAP-X and Cyberknife. The yellow cross-hairs indicate the isocenter
positions of ZAP-X plan projected at the view. (C) Comparison of 1D dose profiles between modalities along the pink dash line in (B). The 100%
isodose line was normalized to prescribed dose.
TABLE 5 Comparison of output and TPR@5cm for each collimator size
using in planning.

Collimator Size(mm)

ZAP/Cyberknife*

Output (cGy/MU) TPR@5 cm %

30 NA/0.98 NA/89.6

25 1.00/0.97 79.0/88.1

20 0.99/0.96 78.1/87.3

15 0.98/0.94 77.1/86.1

12.5 0.97/0.92 76.5/85.6

10 0.95/0.89 75.8/84.4

7.5 0.92/0.80 75.3/83.3
*Parameters are listed with the order ZAP-X/Cyberknife; outputs of IRISTM collimation are
listed for Cyberknife; machine output of Cyberknife was calibrated with 60 mm fixed cone.
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anticipated that ZAP-X will unlock its full potential and deliver even

better dosimetric performance.
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access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 August 2024

DOI 10.3389/fonc.2024.1333245
Single versus multiple fraction
stereotactic radiosurgery for
medium-sized brain metastases
(4-14 cc in volume): reducing
or fractionating the
radiosurgery dose?
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Binaya Kumar Shrestha1, Philippe Schucht4, Arsany Hakim3‡

and Ekin Ermiş1‡

1Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern,
Bern, Switzerland, 2University Institute of Diagnostic and Interventional Neuroradiology, Inselspital,
University Hospital and University of Bern, Bern, Switzerland, 3Department of Radiation Oncology,
Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye, 4Department of Neurosurgery, Inselspital,
Bern University Hospital, University of Bern, Bern, Switzerland
Background and purpose: Stereotactic radiosurgery (SRS) of brain metastases

(BM) and resection cavities is a widely used and effective treatment modality.

Based on target lesion size and anatomical location, single fraction SRS (SF-SRS)

or multiple fraction SRS (MF-SRS) are applied. Current clinical recommendations

conditionally recommend either reduced dose SF-SRS or MF-SRS for medium-

sized BM (2–2.9 cm in diameter). Despite excellent local control rates, SRS carries

the risk of radionecrosis (RN). The purpose of this study was to assess the 12-

months local control (LC) rate and 12-months RN rate of this specific

patient population.

Materials and methods: This single-center retrospective study included 54

patients with medium-sized intact BM (n=28) or resection cavities (n=30)

treated with either SF-SRS or MF-SRS. Follow-up MRI was used to determine

LC and RN using a modification of the “Brain Tumor Reporting and Data System”

(BT-RADS) scoring system.

Results: The 12-month LC rate following treatment of intact BM was 66.7% for

SF-SRS and 60.0% for MF-SRS (p=1.000). For resection cavities, the 12-month LC

rate was 92.9%% after SF-SRS and 46.2% after MF-SRS (p=0.013). For intact BM,

RN rate was 17.6% for SF-SRS and 20.0% for MF-SRS (p=1.000). For resection

cavities, RN rate was 28.6% for SF-SRS and 20.0% for MF-SRS (p=1.000).
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Conclusion: Patients with intact BM showed no statistically significant

differences in 12-months LC and RN rate following SF-SRS or MF-SRS. In

patients with resection cavities the 12-months LC rate was significantly better

following SF-SRS, with no increase in the RNFS.
KEYWORDS

brain metastases, stereotactic radiosurgery, multiple fraction SRS, single fraction SRS,
radionecrosis, MRI, response assessment, recurrence
Introduction

Brain metastases (BM) commonly occur in solid cancers and

are a significant cause of morbidity and mortality (1, 2). Due to the

increasing incidence of BM over the past few decades, the true

prevalence may be underestimated (3). This increase can be

attributed to the growing number of cancer survivors as well as

improved identification of BM through the use of modern imaging

modalities (3, 4).

Historically, whole brain radiation therapy (WBRT) was the

backbone in the treatment of BM (5). Toxicity, especially neuro-

cognitive decline after WBRT, prompted investigations of more

focal therapies to spare normal brain tissue. Randomized trials

showed the safety and efficacy of local radiotherapy, known as

stereotactic radiosurgery (SRS) (6–9). With the growing evidence

for its usefulness over the past decade, SRS alone has become the

standard of care for patients with a good performance status and a

limited number of newly diagnosed BM (10).

Despite the excellent local control (LC), especially in small BM

treated with single fraction SRS (SF-SRS), physicians must consider

the risk of radionecrosis (RN) (11). For large BM (>3 cm in diameter),

the benefit of SRS in terms of LC must be weighed against the risk of

RN. The Radiation Therapy Oncology Group (RTOG) conducted the

phase 1 90-05 trial to estimate the maximum tolerated dose for SF-

SRS in previously irradiated patients (12). The authors proposed

reducing the radiosurgical dose depending on tumor size and

recommended 18 Gy for tumors with diameters of 2–3 cm. In the

meantime multi-fraction radiosurgery (MF-SRS) regimes have been

introduced (13–15). MF-SRS has been widely utilized as an

alternative to reduce the risk of RN. The latest clinical practice

guideline from the American Society for Radiation Oncology

(ASTRO) recommends that lesions >3 to 4 cm in diameter should

be treated withMF-SRS whereas, for small lesions (< 2 cm), SF-SRS is

preferred (16). For patients with medium-sized BM (2.0–2.9 cm in

diameter) the guideline made no clear recommendation and SF-SRS

or MF-SRS is conditionally recommended.

The primary aim of this single-center, retrospective study was to

investigate the incidence of local failure (LF) and RN after SF-SRS

(1×18 Gy) and MF-SRS (3×8 Gy, 5×6 Gy) in patients with intact

BM and resection cavities with target volumes ranging from 4 cm3

(2 cm in diameter) to 14 cm3 (3 cm in diameter).
0293
Materials and methods

Eligibility

This retrospective study was approved by the local ethics

committee (Cantonal Ethics Committee Bern, Switzerland, KEK

BE 2023-00223). To be eligible, patients had to be treated with SRS

between 08/2014 and 01/2022, aged ≥ 18 years, and have

histologically confirmed systemic malignancy, with intact BM or

resection cavities measuring between 4 cm3 (2 cm in diameter) and

14 cm3 (3 cm in diameter). Adequate magnetic resonance imaging

(MRI) follow-up was also a prerequisite (including at least pre- and

post-contrast T1, T2 and diffusion-weighted imaging [DWI]).
Treatment and dosimetric parameters

A commercial stereotactic mask fixation device was used to

immobilize patients in the supine position. Post-contrast enhanced

T1- and T2-weighted MRI (1 mm thick) and computed tomography

(CT) images (0.75 mm thick) were acquired. CT and MRI scans were

registered in the treatment planning system (Accuracy, Precision

Treatment Planning) for target volume and normal tissue

delineation. Using the post-contrast enhanced T1 sequence and T2

sequence, the gross tumor volume (GTV) for intact metastases was

manually delineated. The planning tumor volumes (PTVs) for intact

BM were generated by a zero-margin expansion of the GTV. The

postoperative rim of enhancement at the edge of the resection cavity

and the resection cavity itself were included in the GTV of the resected

BM. For resection cavities, the GTV was expanded with a 2 mm

margin to the PTV. Surgical tracts and the attached dura was included

into the PTV. For patients who received SF-SRS, 1×18 Gy was

prescribed. MF-SRS was performed with either 24 Gy in 3 fractions

or 30 Gy in 5 fractions. Biologically effective dose (BED) with an a/b
of 12 Gy corresponded to 45 Gy for SF-SRS and 40 Gy (3×8 Gy) to 45

Gy (5×6Gy) forMF-SRS. None of the patients had received previous a

WBRT and only 9 had undergone previous SRS targeting a different

lesion. Treatment plans were generated using Multiplan treatment

planning software version 5.3 or Precision version 1.3 (Accuray.

Sunnyvale, CA). The Cyberknife Robotic Radiosurgery System

(Accuray, Sunnyvale, CA) was used to deliver the radiation.
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To evaluate the risk of RN rates, healthy brain tissue receiving

10 Gy for single-fraction (V10 Gy), 20 Gy for three fractions (V20

Gy) and 30 Gy for five fractions (V30 Gy) were retrospectively

generated, using a structure of brain minus PTV. These parameters

were not employed during the optimization of the initial treatment

plan. Furthermore, a dose gradient index (GI), which quantifies the

dose falloff, was retrospectively calculated by using the formula: the

volume corresponding to half of the prescription isodose divided by

the prescription isodose volume (17). The GI threshold of “3” was

used to objectively measure the plan quality (17).
Follow-up data and radiologic measures

Data were collected during routine clinical procedures

(diagnosis, treatment, and follow-up [FU]) and were available via

the clinical information system and picture archiving and

communication system (PACS) of the Inselspital, Bern University

Hospital. All patients had undergone serial MRI every 3–6 months.

Our institution’s standardized MRI protocol was followed for

imaging acquisition. Images were obtained either on a 1.5T

(Magnetom Aera or Avanto, Siemens Healthineers, Erlangen,

Germany) or a 3T MR scanner (Magnetom Vida or Skyra,

Siemens Healthineers, Erlangen, Germany). However, external
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MRI exams were also considered for evaluation if the inclusion

criteria were fulfilled. The standard brain tumor MRI protocol in

our institution included pre- and post-contrast sequences. Pre-

contrast sequences include sagittal T1w Sampling Perfection with

Application optimized Contrasts using different flip angle Evolution

(SPACE), axial fluid-attenuated inversion recovery (FLAIR) and

axial DWI. Post-contrast sequences (after intravenous injection of

0.1 mmol/kg gadolinium-based agent) included axial susceptibility

weighted imaging (SWI), axial T2w, and sagittal fat-saturated T1

SPACE and coronal fat-saturated FLAIR. DWI was acquired at b

values of 0 and 1000 with an automatically calculated apparent

diffusion coefficient (ADC) map.

Single ratings of the images were performed by two board-certified

neuroradiologists at baseline and during FU (Supplementary Table 1).

Baseline imaging was the last MRI before SRS. All lesions were scored

using the Brain Tumor Reporting and Data System (BT-RADS) (18).

To adapt this classification system for the evaluation of BM, the

changes based on T2/FLAIR images without enhancement, which are

usually used to evaluate non-enhancing gliomas, were not considered

as a marker for progression or response. As the primary endpoint was

LF, lesions outside the radiation field were separately evaluated. T1/T2

mismatch (19) and central diffusion restriction (20) were taken into

consideration to help in differencing between tumor recurrence and

radiation necrosis (Figures 1, 2).
FIGURE 1

Follow-up example showing progression: axial T2w (upper row) and post-contrast axial T1w (lower row) in a 78-year-old man with metastatic
melanoma. Baseline images (A, D) show right frontal metastasis, mostly solid with small peripheral cystic changes. Three months after stereotactic
radiotherapy (B, E) a reduction of the contrast enhancement and the overall diameter was seen with a T1/T2 mismatch, scored as BT-RADS 1. Six
months later (C, F) there was an increase in the contrast enhancement, representing an increase in the solid part of the lesion with a T1/T2
matching, scored as BT-RADS 3c.
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The following were evaluated: change in diameter of the

enhancing lesion, new enhancing lesion outside the radiation

field, and mass effect. LF or RN was defined depending on the

score, (Supplementary Table 1). Lesions classified as 3b showed

simultaneous signs of LF and RN and could not always be

categorized as one or the other. If local salvage treatment was

applied to a lesion previously scored as 3b, we defined this as an

event in terms of LF without RN. If no local salvage treatment was

applied and further MRI FU was performed, this lesion was defined

as intermediate 3b with signs of LF and RN.
Endpoints

The primary endpoint was defined as 12-months LC rate after

SRS (defined as time between date of last SRS and suspected LF

detected by MRI). Secondary endpoints were RN rate WBRT-free

survival (WBRT-FS) and overall survival (OS).
Statistical analysis

Categorical variables were presented numerically (as a

percentage). Continuous variables were reported as median

(range). Patient survival was calculated from the time of BM

diagnosis and obtained using Kaplan-Meier analysis. For 12-
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month LC, patients who failed within 12 months and patients

who did not fail for at least 12 months were analyzed. Chi-square

test or Fisher exact test, where appropriate, were used to compare

categorical variables between groups. A p-value of less than 0.05 was

deemed statistically significant. Statistical analyses were performed

using IBM SPSS Statistics for Windows, version 26 (IBM Corp.,

Armonk, N.Y., USA).
Results

Patient characteristics and treatment

We included 54 patients with 58 BM. Two-thirds of the patients

were men, and the median age was 63 years (range 37–89 years).

NSCLC (50%) and melanoma (21%) were the most common

primary cancers, followed by breast cancer (9%). SRS was

performed on 28 intact BM and 30 resection cavities. SF-SRS was

administered to 22 of the patients with intact BM, and 6 received

MF-SRS. Of the patients with resection cavities, 16 received SF-SRS

and 14 MF-SRS. The majority of patients (72.4%) received some

form of systemic treatment before, concomitant or after SRS.

Among those who had undergone systemic treatment, the most

common modal i t ies were chemotherapy (47.4%) and

immunotherapy (39.5%). Details of the patient characteristics and

treatments are provided in Table 1.
FIGURE 2

Follow up example showing radionecrosis: Diffusion-weighted MRI sequences (upper row) and post-contrast T1w (lower row) in a 69-year-old man
with metastatic non-small cell lung cancer. Baseline imaging (A, C) shows left parietal metastasis, mostly solid. Three months after stereotactic
radiotherapy (B, D) there was an increase in the overall diameter of the lesion with ring enhancement and central diffusion restriction as seen on the
fused image (E) (post-contrast T1 superimposed on DWI, see arrow). The increase in diameter was attributed to the radionecrosis and scored as BT-
RADS 3a.
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TABLE 1 Patient characteristics and treatment .

All
(n=58)

Range
or %

Intact BM (n=28) Resection cavity (n=30)

SF-SRS
(n=22; 79%)

MF-SRS
(n=6; 21%)

SF-SRS
(n=16; 53%)

MF-SRS
(n=14; 47%)

Age Median (range) 63 37–89 63 50–78 58 52–89 62 52–77 66 37–82

Sex Male 38 65.5 15 68% 3 50% 10 63% 10 71%

Female 20 34.5 7 32% 3 50% 6 38% 4 29%

KPS ≥90 43 75.4 19 86% 3 50% 13 81% 8 57%

<90 14 24.6 2 9% 3 50% 3 19% 6 43%

Primary cancer NSCLC 29 50.0 9 41% 2 33% 13 81% 5 36%

Melanoma 12 20.7 3 14% 1 17% 2 13% 6 43%

Breast cancer 5 8.6 1 5% 2 33% 1 6% 1 7%

Colorectal cancer 4 6.9 2 9% 0 0% 0 0% 2 14%

Renal cell cancer 3 5.2 3 14% 0 0% 0 0% 0 0%

Other 5 8.6 4 18% 1 17% 0 0% 0 0%

Status of
primary cancer

Controlled 24 41.4 10 45% 3 50% 7 44% 4 29%

Uncontrolled 13 22.4 5 23% 1 17% 1 6% 6 43%

Newly diagnosed 21 36.2 7 32% 2 33% 8 50% 4 29%

BM number Single 28 48.3 7 32% 2 33% 9 56% 10 71%

Multiple 30 51.7 15 68% 4 67% 7 44% 4 29%

Systemic treatment Before SRS 24 41,4 12 55% 3 50% 3 19% 6 43%

After SRS 16 27,6 4 18% 2 33% 9 56% 1 7%

Concomitant 2 3,4 0 0% 0 0% 0 0% 2 14%

No 16 27,6 6 27% 1 17% 4 25% 5 36%

Medical therapy Chemotherapy 18 31,0 7 32% 0 0% 8 50% 3 21%

Targeted therapy 5 8,6 5 23% 0 0% 0 0% 0 0%

Iṁmunotherapy 15 25,9 3 14% 3 50% 3 19% 6 43%

Hormontherapy 3 5,2 0 0% 2 33% 1 6% 0 0%

No 16 27,6 6 27% 1 17% 4 25% 5 36%

missing 1 1,7 1 5% 0 0% 0 0% 0 0%

SF-SRS 1×18
Gy (BED=50,4)

38 65.5 22 100% 0 0% 16 100% 0 0%

MF-SRS 3×8
Gy (BED=43,2)

8 13.8 0 0% 2 33% 0 0% 6 43%

5×6
Gy (BED=48)

12 20.7 0 0% 4 67% 0 0% 8 57%

Prescribed
isodose line

Median (range) 76.5 54.8–81.0 61.50 54,8-80,0 66.00 60,0-75,9 79.5 60,0-80,0 78.7 59,0-81,0

Conformity index Median (range) 1.18 1.05–1.81 1.18 1.07–1.81 1.20 1.11–1.37 1.12 1.05–1.32 1.14 1.07–1.22

Heterogeneity index Median (range) 1.29 1.14–1.82 1.50 1.14–1.82 1.51 1.32–1.67 1.26 1.25–1.67 1.26 1.23–1.69

PTV in cc
(mean, range)

Median (range) 7.2 4.1–13.1 5.77 4.06–9.53 8.70 4.84–13.05 7.81 5.01–9.40 9.66 5.99–12.64
F
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KPS, Karnofsky Performance Scale; NSCLC, non-small cell lung cancer; BM, brain metastases; SRS, stereotactic radiosurgery; SF-SRS, single fraction stereotactic radiosurgery; MF-SRS, multiple
fraction stereotactic radiosurgery.
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Local control intact BM

After a median FU of 21 months, LF occurred in 9 (32.1%)

patients. The 12-month LC rate was 65.2%. There was no significant

difference between the two fractionation schemes, with a 12-month

LC rate of 66.7% for SF-SRS and 60% for MF-SRS (p=1.000)

(Table 2). A higher LC rate was observed in patients with NSCLC

compared to those with other primary tumors (100% vs. 42.9%,

p=0.007) (Supplementary Table 2). Furthermore, the LC rate of

patients with synchronous BM was higher than that of patients

with metachronous BM (100% vs. 46.7%, p=0.019). The 12-month

LC rate was found to be unaffected by the administered systemic

treatment (SF-SRS p=1.000; MF-SRS not applicable) (Supplementary

Table 3). Furthermore, no significant difference was found according

to the type of systemic treatment (SF-SRS p=0.213, MF-SRS p=0.100)

(Supplementary Table 3). In addition, patients with severe BM

symptoms exhibited a significantly lower 12-month LC rate than

those with mild or no symptoms (0% vs 85.7% vs 75.0%; p=0.014). A

higher prescribed isodose line (IDL) (cutoff IDL >60%) demonstrated

a statistically higher 12-month LC rate (p=0.023).

Local control resection cavities

LF occurred in 9 patients after a median FU of 18 months. The

12-month LC rate was 70.4%. The 12-month LC rate was

significantly higher in patients undergoing SF-SRS (92.9%) than

those treated with MF-SRS (46.2%) (p=0.013) (Table 2). No

significant difference was found in the administration of systemic

treatment (SF-SRS p=0.286; MF-SRS p=0.592) or the type of

systemic treatment (SF-SRS p=0.500; MF-SRS p=0.476)

(Supplementary Table 4). No other factors were associated with

significant differences in 12-month LC.
Radionecrosis

At 6 and 12 months, the RN rates for patients with intact BM

were 11.1% and 18.2%, respectively, and 3.4% and 25% for patients

with resection cavities. For intact BM, 12-months RN rate was
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17.6% for SF-SRS and 20.0% for MF-SRS (p=1.000). For resection

cavities, 12-months RN rate was 28.6% for SF-SRS and 20.0% for

MF-SRS (p=1.000) (Table 2). No difference was found for the 12-

month RN rate between SF-SRS and MF-SRS in either group. The

treatment planning for intact BM with HI <1.65 (0.0% vs 40%,

p=0.029) and IDL >60% (0.0% vs 40.0%, p=0.029) was associated

with lower 12-months RN rate. (Supplementary Table 2). The

results demonstrated no statistically significant difference in 12-

month RN rates between a GI of <3 vs >3 (20% vs 25%, p=1.000).

Upon further analyses, the 12-month RN rate was examined for

V10 Gy, V20 Gy and V30 Gy in relation to the number of fractions.

There was no statistical difference in RN rates for brain minus PTV

volume receiving 10 Gy, 20 Gy and 30 Gy for one, three and five

fractions with a threshold volume of ≥10cc (21.4% vs 22.2%,

p=1.000) (Supplementary Table 5).
Whole brain radiotherapy free survival

Salvage WBRT rates 6 and 12 months after SRS were 3.7% and

9.5% for patients with intact BM, and 23.3% and 27.6% for those

with a resected cavity, respectively (Table 2). There was no

relationship between fractionation and WBRT in either group

(Supplementary Figure 1).
Overall survival

OS rates after 6 and 12 months were 96.4% and 71.4% in the

patients with intact BM, and 96.7% and 80.0% in those with a

resection cavity, respectively. There were no statistically significant

differences between fractionation and OS in either group

(Supplementary Figure 2).
Discussion

The results of this single-center retrospective study showed no

significant difference between SF-SRS and MF-SRS regarding the
TABLE 2 Overview of results at 12-month follow-up after treatment of intact brain metastases and resection cavities according to
fractionation scheme.

Intact BM (n=28) p Cavity (n=30) p

SF-SRS (n=22) MF-SRS (n=6) SF-SRS (n=16) MF-SRS (n=14)

OS 68.2% 83.3% 0.416 87.5% 71.4% 0.845

LC rate 66.7% 60.0% 1.000 92.9% 46.2% 0.013

DBFFS 68.2% 60.0% 0.563 56.3% 64.3% 0.984

DBF rates 36.8% 40.0% 1.000 43.8% 38.5% 0.774

WBRT-FS 90.2% 100% 0.354 68.8% 78.6% 0.578

WBRT rates 12.5% 0% 1.000 31.3% 23.1% 0.697

RN rates 17.6% 20.0% 1.000 28.6% 20.0% 1.000
BM, brain metastases, OS, overall survival, LC, local control, DBFFS, distant brain failure-free survival, DBF, distant brain failure, WBRT-FS, whole brain radiotherapy free survival, WBRT,
whole brain radiotherapy, RN, radionecrosis.
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12-months LC and 12-months RN in patients with medium-sized

intact BM. In patients with resection cavities, however, those who

underwent SF-SRS showed a significantly better 12-months LC rate,

with no difference in 12-months RN rate. The prescribed dose for

SF-SRS is based on the landmark RTOG 90-05 trial, which provides

a recommendation for unresected brain metastasis based on the

lesion size (12). Following the single-dose regimen of RTOG 90-05,

Vogelbaum et al. performed a retrospective study to determine the

LC for different intact BM sizes (21). Their results showed a

significant benefit in terms of LC of SRS performed with 24 Gy

(for BM ≤ 20mm) compared to 18 Gy (for BM 21–30 mm) and 15

Gy (for BM 31–40 mm) (p = 0.0005). LC rates at 1 year in the 24 Gy,

18 Gy and 15 Gy groups were 85%, 49% and 45%, respectively. The

authors concluded that LC was proportional to the prescribed dose.

The worse LC in patients with larger BM led to the investigation of

MF-SRS. Few retrospective studies have evaluated different dose

and fractionation regimes in patients with intact brain metastasis.

Minniti et al. retrospectively analyzed 289 patients with 343 BM >2

cm in diameter (13). Depending on the size, patients with SF-SRS

received either 18 Gy (2–3 cm) or 15–16 Gy (>3 cm). For MF-SRS, 3

× 9 Gy were used, and 53% of the lesions were <3 cm. When

compared to BM treated with SF-SRS, lesions treated with MF-SRS

showed a significantly higher 1-year LC (91% vs 77%, p=0.01).

Additionally, following the administration of MF-SRS, the 1-year

incidence of RN was significantly lower (18% vs 9%, p=0.01). These

results were confirmed by Chon et al. (22) who analyzed SF-SRS

and MF-SRS in patients with BM of 2.5 to 3 cm in diameter. MF-

SRS was administered with a median cumulative dose of 35 Gy over

5 fractions, whereas SF-SRS was administered with a median dose of

20 Gy. Both the RN rate after 14 months of FU (29.9% vs 5.3%,

p=0.001) and the 1-year LC rate (66.6% vs 92.4%, p=0.028) were

significantly better in the MF-SRS-treated group. A meta-analysis

comparing SF-SRS and MF-SRS for the definitive and postoperative

treatment of BM was published by Lehrer et al. (23). BM were

divided into 2 groups based on size (group A: 4–14 cm3 or 2–3 cm

in diameter; group B: >14 cm3 or >3 cm in diameter). For patients

with intact BM in group A, the results demonstrated no difference

in 1-year LC between SF-SRS and MF-SRS (77.1% vs 92.9%,

p=0.18). However, the incidence of RN in this group was

considerably reduced following MF-SRS (23.1% vs 7.3%,

p=0.003). Furthermore, in patients with resection cavities, the

authors found no significant difference in the 1-year LC (only

group B was assessed, 62.4% vs 85.7%, p=0.13) between SF-SRS

and MF-SRS. The rates of RN were comparable, with no statistically

significant difference (7.3% vs 7.5%; p=0.85). A small single-center

retrospective study by Donovan et al. (24) looked at RN after SF-

SRS (1×24 Gy) and MF-SRS (3×7 Gy). They included 22 patients

with 62 BM and a median lesion volume of 0.67ml. There was no

difference in the RN rate related to either the maximum dose (OR

1.0, 95% CI: 0.9–1.1), the fractionation scheme (OR 1.0, 95% CI:

0.3–3.6) or a prior WBRT (OR 0.4, 95% CI: 0.2–1.2). However,

larger target volumes were associated with an increased risk of RN

(OR 3.1, 95% CI: 1.0–9.6).

The dose applied to the 10 cc of healthy brain tissue is a valuable

marker for RN. For single-fraction SRS brain volumes receiving 10

Gy and for three and five fraction SRT brain volumes receiving
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20Gy and 30 Gy, respectively, have been shown to be predictive for

symptomatic necrosis (25–27). In our study, we could not

demonstrate any difference in12-month RN rates for the volume

cutoff of 10cc with different fractionation schemes.

Our study revealed no difference in OS between SF-SRS and

MF-SRS although our results for LFFS and RNFS contradicted those

of the earlier studies. A recently published retrospective study by

Ostdiek-Wille et al. (28) with a large number of patients, however,

supports our results. In their examination of 6961 patients from the

National Cancer Database, the median survival times did not differ

significantly (10.9 months following SF-SRS and 11.3 months

following MF-SRS [p=0.31]).

To our knowledge, no study has so far compared SF-SRS and

MF-SRS for treatment of medium-sized resection cavities. We

might anticipate an association between radiation dosage and LC

for various fractionation schemes, according to a few data from

retrospective studies (29–31). However, a recently published

summary recommended SF-SRS of higher than 16 Gy or MF-SRS

3 × 8 Gy or > 27.5 Gy in 5 fractions to improve local cavity

control (32).

Despite the benefit in terms of LC after postoperative SRS

compared to surgery alone, the rate of leptomeningeal disease

(LMD) is high and causes significant morbidity without an

effective treatment opportunity (33). It is hypothesized that tumor

seeding during surgical resection leads to leptomeningeal tumor

spread. A few retrospective studies evaluated the efficiency of

preoperative SRS in BM (34, 35). Recently, a meta-analysis by

Dharnipragada et al. compared pre- and postoperative SRS in BM

(36). Both groups were balanced with no significant difference in

tumor size distribution. The results demonstrated a significant

difference in the rates of local recurrence after one year, with 11%

in the preoperative SRS group and 17.5% in the postoperative SRS

group (p=0.014). Additionally, the rate of LMD was significantly

lower in patients treated with preoperative SRS, with 4.4% vs. 12.3%

(p=0.019). No difference was found in terms of RN and OS. Despite

these promising results, the optimal fractionation remains

undefined. Currently, randomized prospective trials investigating

the role of preoperative SRS (37, 38). The results are awaited and

could potentially have a significant impact on clinical practice.

The benefits of MF-SRS for treatment of medium-sized intact

BM were not supported by the findings of our single-center

retrospective study but our study had several limitations. First,

due to our inclusion criteria, only a small patient group could be

included in this retrospective analysis. Second, the recommendation

for prescription of MF-SRS for larger BM has changed in recent

years. Data collected in the past revealed a connection between BED

and LC. According to Wiggenraad et al. (39), BED12 for SRS in

intact BM should be at least 40 Gy. Remick et al. (14) also showed

an improvement in LC with a BED10 ≥ 50 Gy. As stated by Minniti

et al. (13) the current recommended scheme for MF-SRS in BM is

27 Gy in 3 fractions. In our investigation, either 30 Gy in 5 fractions

(BED12 = 45 Gy) or 24 Gy in 3 fractions (BED12 = 40 Gy) was used

in MF-SRS. The lower BED might be less effective and could lead to

a lower LFFS. Third, our groups were not well-balanced, and the

treated target volumes in the SF-SRS group were smaller than those

in the MF-SRS group. Fourth, it is difficult to compare studies since
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there is no definition of a medium-sized BM. Most studies assessed

the BM size based on the diameter on axial MRI slices. Additionally,

target volumes were substantially larger when an extra GTV to PTV

margin was applied. In our opinion, only perfectly spherical lesions

would be appropriate for this 2D assessment. We therefore used a

3D measurement to determine the BM size in accordance with the

GTV. In contrast, no margin was provided to expand the GTV to

the PTV in intact BM. For future research, a consistent definition of

“medium-sized” BM is needed. Furthermore, the differentiation of

LF and RN is challenging. Without a histological confirmation, the

MRI-based findings could be misleading. According to our

modification of the BT-RADS scoring system, lesions that scored

3b simultaneously showed characteristics of LF and RN. Therefore,

the incidence of LC and RN in our analysis could have been

overestimated. Additionally, there is a known limitation of using

only conventional imaging in the differentiation between tumor and

necrosis. The inclusion of advanced imaging could potentially be

beneficial to distinguish RN from LF but was not feasible in

our study.

Overall, there is so far no evidence from prospective trials

evaluating SF- and MF-SRS in patients with medium-sized

intact BM and resection cavities. Currently, two prospective trials

are recruiting patients to answer this question (NCT051

60818, NCT03697343).
Conclusion

Our results showed no difference in LC or RN following

treatment with SF-SRS and MF-SRS for intact BM. In patients

with resection cavities, SF-SRS resulted in significantly better LC,

without increasing RNFS.
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