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It has been shown that emotionally positive facial expressions are recognized
substantially faster than emotionally negative facial expressions, the positive
classification advantage (PCA). In this experiment we explored the involvement of
configural computations while processing positive and negative faces in an expression
categorization task using artificial faces. Analyzing the reaction times (RTs), we found
that happy faces were categorized more quickly than sad faces (PCA) and this effect
disappeared for inverted faces. Event-related potentials (ERPs) data showed that the
face-sensitive N170 component was larger for sad than for happy faces only at upright
condition and that face inversion significantly enhanced N170 amplitudes only for happy
faces. Moreover, the happy faces elicited shorter N170 latency than did the sad faces,
whereas for inverted condition the N170 latency did not differ between happy and sad
faces. Finally, the significant positive correlation between the RTs and the latency of the
N170 was not found for N170 amplitudes. Because the configural computation was
task-irrelevant in the present study, these behavioral and ERP data indicated that one of
the sources of PCA is the configural analysis applied by default while categorizing facial
emotions.

Keywords: face classification, expression, face inversion, N170

INTRODUCTION

Facial expressions reflect a person’s emotional state, current motives and intentions. It is therefore
important for adaptive purposes that the cognitive system can rapidly extract accurate information
from the observed expressions. It has been shown that emotionally positive facial expressions are
recognized substantially faster than negative facial expressions, the positive classification advantage
(PCA). This effect was conspicuous for happiness recognition faster than sadness (e.g., Crews and
Harrison, 1994; Leppänen and Hietanen, 2004; Liu et al., 2013), anger (e.g., Billings et al., 1993),
disgust (e.g., Stalans and Wedding, 1985) and emotional neutrality (e.g., Hugdahl et al., 1993; Liu
et al., 2013).

Several perceptual strategies are used by humans while processing faces: local and configural
processing (e.g., Maurer et al., 2002). Local information mostly refers to distinct circumscribed
characteristics of the face, such as the mouth or the nose. General spatial relations of the face (e.g.,
the eyes are above the nose) are usually described as configural information or first-order relations,
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whereas second-order relations refer to specific spatial relations
(e.g., distance between eyes and nose) and possess a higher
discriminative value (Leder and Carbon, 2006). Evidence
has accumulated that the configural analysis underlying face
recognition also applies to facial-emotion recognition, being
dependent upon facial features and spatial arrays (e.g., McKelvie,
1995; Calder et al., 2000). For example, McKelvie (1995) assessed
the effect of face inversion on the recognition of facial expressions
of emotion and found that inversion impaired the recognition of
sad, fearful, angry and disgusted, but not of happy expressions.

Face classification is based on visual information that is
similar to all ‘‘facial action patterns’’ irrespective of the faces
that are making them and the expression classification processes
of faces include the extraction of attributes of expressions
(Ganel and Goshen-Gottstein, 2002). Although the PCA has
been proposed in previous studies, it is less clear whether
configural processing is also required in the classification of
facial expressions of emotion. The present research was designed
to address this issue by recording the N170 of event-related
potentials (ERPs) while the participants categorized the upright
and inverted face stimuli according to their expressions.

The N170 component at occipito-temporal electrodes, a
negative ERP occurring between 140 ms and 180 ms after
stimulus onset, is the earliest component associated with face
perceptual processing and is reliably larger to faces than other
stimulus categories (Bentin et al., 1996). Based on data showing
that the N170 is not sensitive to the face identity (Bentin and
Deouell, 2000; Eimer, 2000; Anaki et al., 2007), larger (and
delayed) for face components (particularly eyes) than full faces
(Bentin et al., 1996; Itier et al., 2006), larger (and delayed) for
inverted faces (Bentin et al., 1996; Rossion and Gauthier, 2002)
and equally large for scrambled and normally configured faces
(Zion-Golumbic and Bentin, 2007), it was suggested that the
N170 is closely relevant to the detection of global face structures
as well as other information of faces. Importantly, several studies
found that the N170 component was entirely unaffected by any
of the basic emotional expressions (e.g., Eimer and Holmes,
2002; Ashley et al., 2003; Eimer et al., 2003), implicating that
expression processing of faces occurs at post-perceptual stage.
Recently, however, growing evidence suggests that the N170 can
be modulated by facial emotion, e.g., happy faces elicit smaller
amplitude than other emotions (e.g., Caharel et al., 2005).
One recent study investigated the time course of the PCA
by recording ERPs and found that, compared with sad faces,
happy faces elicited a smaller N170 (Liu et al., 2013). However,
in Liu et al. (2013) study the face inversion effect was not
investigated.

The goal of the current study was to map the effect of
face inversion on the early stage of face classification by
expression. In the present study, we adopted schematic face
stimuli like previous studies (e.g., Leppänen and Hietanen,
2004; Liu et al., 2013). Several studies using schematic facial
expressions, emoticons or smileys have shown the comparable
emotional effect elicited by photographic facial expressions
(Boucsein et al., 2001; Eger et al., 2003; Babiloni et al., 2010).
Schematic faces may be ideal experimental stimuli because
they allowed us to fully control the low-level physical features,

to exclude additional information related to facial identity,
such as gender, race, etc., and to minimize the confounding
effects of general arousal rather than valence per se. As the
specific index of configural processing, face inversion disrupts
the global configural information, resulting in the decrease of
recognition accuracy, the increase of reaction time (RT) and
the enlargement or delay of N170 component. If the PCA
phenomenon relies more on high-level configural information,
it is expected attenuated PCA in face inversion condition.

MATERIALS AND METHODS

Participants
Thirty-six young healthy individuals participated in our study
(16 female, aged 20–25 years, mean age: 22.6 years). All
participants were right-handed and had normal or corrected-to-
normal visual acuity andwere free of a neurological or psychiatric
history. They received payments for their participation and gave
their written informed consent before the experiment. This study
was approved by the Ethical Committee of Wuhan General
Hospital in accordance with the ethical principles of Declaration
of Helsinki.

Stimuli
To avoid the low-level processing of facial features as well
as boredom by the excessive repetition of one single model,
each emotional category consisted of 20 different schematic
face models by manipulating the distance among facial features
and by manipulating the shape of the facial features (Figure 1;
Liu et al., 2013). All stimuli were presented at the center of
a video monitor and viewed from a distance of 100 cm at a
visual angle of approximately 7.27 × 6.06◦. The experiment
consisted of four blocks of 120 trials each (480 trials in total with
80 trials × 3 expressions × 2 orientations).

Procedure
Following the electrode application, the participants were
seated in a dimly lit and sound-attenuated cabin. They were
instructed to classify each face by the expression it represented
and to respond to sad or happy faces (ignoring neutral
faces) by pressing correspondingly labeled buttons on the
keyboard with the left index finger (‘‘Z’’ key) or right index

FIGURE 1 | Examples stimuli of facial expression.
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finger (‘‘/’’ key), respectively. Speed and accuracy were equally
emphasized. All 480 stimuli were randomly presented in a
mixed design, with four blocks of 120 stimuli each, with
a short break in between, and the labels of the response
buttons (happy–sad/sad–happy) were counterbalanced across
the participants. Each face was presented for 300 ms with an
intertrial interval ranging randomly between 600 ms and 800 ms,
starting after response. The participants completed one practice
sequence of 30 stimuli (five from each type, equally representing
the three facial expressions). These stimuli were not used in the
main experiment.

EEG Recording
EEG was recorded continuously by Neuro-Cap with a set of
32 Ag/AgCl electrodes placed according to the 10/20 system. In
order to monitor eye movements and blinks, EOG was recorded
via electrodes placed on the bilateral external canthi and the left
infraorbital and supraorbital areas. Both EEG and EOG signals
were sampled at 500 Hz, with a 0.1–100 Hz band pass using a
NeuroLabr digital amplifiers system. During recording, we used
the tip of the nose as reference and a common average reference
was calculated off-line. Electrode impedances were kept below
5 kΩ.

We corrected EOG artifacts off-line using a correlation
method proposed by Semlitsch et al. (1986) and supplied as part
of the EEGLab software. The EEG was segmented in epochs
of 1000 ms beginning 200 ms prior to stimulus onset and
averaged separately for each condition (happy and sad faces for
upright and inverted conditions, respectively). Segments with an
incorrect response or contaminated with peak-to-peak deflection
exceeding ±100 µV were excluded from averaging. After this
procedure, averaged ERPs included at least 65 trials for each
of face conditions. The averaged ERP waveforms were low-pass
filtered at 30 Hz (24 dB/octave).

Data Analysis
RTs (from the stimulus onset) and accuracy rates were recorded
and analyzed using a two-way analysis of variance (ANOVA)
with Expression (happy, sad) and Orientation (upright, inverted)
as within-subject factors.

Based on previous studies (e.g., Bentin et al., 1996) and
limited by the 32-sites montage (see montage in Figure 2),
the peak amplitudes and latencies of the N170 were measured
automatically between 120 ms and 200 ms at P7, P8, TP7,
TP8, O1 and O2 sites. These measures were analyzed using
a four-way ANOVA with Expression (happy, sad), Orientation
(upright, inverted), Hemisphere (left, right) and Site (P7/8,
TP7/8, O1/2) as within-subject factors. Degrees of freedom were
corrected whenever necessary using the Greenhouse–Geisser
epsilon correction factor.

RESULTS

Performance
A 2 (Expression) × 2 (Orientation) repeated-measures ANOVA
was conducted for the percentage of correct responses. Neither

the main effect of Expression (93.5% and 93.0% for happy
and sad faces, respectively; F < 1) nor the main effect of
Orientation (93.3% and 93.2% for upright and inverted faces,
respectively; F < 1) was significant. The two-way interaction was
not significant (F < 1).

For each participant, incorrect responses or responses with
RTs more than ± 2 SDs from the mean in each condition
were excluded for RT analysis. On average, 8.7% of responses
were removed (Table 1). The RTs were analyzed using the
same statistical model as that for percentages of correct
responses. There was a significant main effect of Expression,
F(1,35) = 7.49, p < 0.01, partial η2 = 0.176, showing that
happy face categorization was faster (598 ms) than classifying
sad faces (615 ms). The main effect of Orientation was also
significant, F(1,35) = 146.6, p< 0.001, partial η2 = 0.807, showing
that upright faces was classified more quickly (584 ms) than
classifying inverted faces (629 ms). Importantly, we found the
significant two-way interaction of Expression ∗ Orientation,
F(1,35) = 9.45, p < 0.01, partial η2 = 0.414. Further analysis for
the interaction reflected that, although the inversion effects were
similar (p = 0.259) between sad and happy conditions (573 ms
and 623 ms for upright and inverted happy faces, respectively;
p< 0.001; 594 ms and 635 ms for upright and inverted sad faces,
respectively; p < 0.001), quickly happy face classification vs. sad
faces was exhibited for upright (21ms, p< 0.005) not for inverted
condition (12ms, p = 0.135). In addition, we conducted a Pearson
correlation analysis between PCA and the RTs and found that
there was an overall significant positive correlation between the
RT to negative face stimuli and the size of the PCA, r = 0.52,
p < 0.01 (two tailed), but not between the RT to positive face
stimuli and the PCA, r = 0.10, p> 0.05.

N170 Component
Grand average ERP waveforms are presented in Figure 2. The
effects of the Expression, Orientation, Hemisphere and Site were
analyzed by ANOVA using a mixed model design as described in
the ‘‘Materials and Methods’’ Section.

ANOVA of N170 latencies revealed a significant main effect
of Orientation, F(1,35) = 38.0, p < 0.001, partial η2 = 0.521,
with a delayed N170 latency for inverted (172 ms) than upright
(166 ms) conditions. The main effects of Expression was not
significant, F(1,35) = 1.41, p = 0.24, partial η2 = 0.039, but
qualified by the two-way interaction of Expression ∗ Orientation,
F(1,35) = 9.65, p < 0.01; partial η2 = 0.216. Further analysis for
this two-way interaction showed that for upright condition the
happy face elicited shorter N170 latency (164 ms) than did the
sad faces (168 ms; p < 0.02), whereas for inverted condition the
N170 latency did not differ between happy (173 ms) and sad

TABLE 1 | The reaction times (RTs) and the amplitudes and latencies of
N170 component (across occipital-temporal electrode sites) for upright
and inverted face conditions, respectively.

Upright faces Inverted faces

Happy Sad Happy Sad

RTs 565 ms 605 ms 615 ms 638 ms
N170 amplitude −6.4 uV −7.2 uV −7.8 uV −7.8 uV
N170 latency 164 ms 168 ms 173 ms 172 ms

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 February 2017 | Volume 11 | Article 217

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Song et al. Positive Classifiction Advantage and Configural Processing

FIGURE 2 | The N170 for facial expression in upright and inverted orientations.

faces (172 ms; p = 0.20) and that the inversion effect was more
conspicuous for happy (inverted minus upright: 8 ms) than sad
(4 ms; p < 0.05) faces. There were no other significant effects
(Fs< 1).

For N170 amplitude analysis, the main effect of
Orientation was significant, F(1,35) = 13.36, p < 0.01, partial
η2 = 0.330, showing that overall, face inversion enhanced the
N170 amplitudes (−6.8 µV and −7.8 µV for upright and
inverted conditions, respectively). The main effect of Expression
was not significant, F(1,35) = 3.37, p = 0.075, partial η2 = 0.088,
but the two-way interaction of Expression ×Orientation was
significant, F(1,35) = 5.35, p < 0.05, partial η2 = 0.135. Further

analysis for this interaction revealed that the effect of Expression
was evident for upright condition (−6.4 µV and −7.2 µV for
happy and sad faces, respectively; p < 0.02) not for inverted
condition (−7.8 µV and −7.8 µV for happy and sad faces,
respectively; p = 0.91) and that the effect of Orientation was
evident for happy (p < 0.01) not for sad faces (p = 0.08). The
main effect of Hemisphere was also significant, F(1,35) = 8.23,
p < 0.03, partial η2 = 0.517, showing the right hemisphere
dominance of the N170 amplitude (−6.5 µV and −8.2 µV for
left and right hemisphere, respectively). The main effect of Site
was also significant, F(2,70) = 69.23, p < 0.001, partial η2 = 0.589,
revealing that the N170 was larger at more occipital-temporal

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 February 2017 | Volume 11 | Article 218

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Song et al. Positive Classifiction Advantage and Configural Processing

sites (−9.7 µV, −7.8 µV and −5.3 µV for P7/8, O1/2 and
TP7/8, respectively). No other effects reached significant level
(ps> 0.1).

In addition to the ANOVAs, we calculated the Person
correlations between the RTs and the amplitude and latency of
the N170 for upright face condition (i.e., PCA was evident).
While the RTs did not correlate with the amplitude of N170
(ps> 0.10), a significant positive correlation between the RTs and
the latency of the N170 was found (r = 0.47, p < 0.05; that is, the
longer the RT the longer the N170 latency).

DISCUSSION

In this experiment we explored the involvement of configural
computations while processing positive and negative faces in an
expression categorization task. The performance data showed
that the classification of happy faces was faster than the
classification of sad faces (PCA). Importantly, however, the PCA
on the classification speed disappeared for inverted faces. The
N170 analysis showed that the N170 was larger for sad than for
happy faces only at upright condition and that face inversion
significantly enhanced N170 amplitudes only for happy faces.
Interestingly, the happy face elicited shorter N170 latency than
did the sad faces, whereas for inverted condition the N170 latency
did not differ between happy and sad faces. The significant
positive correlation between the RTs and the latency of the
N170 was also found for N170 amplitudes. Because the configural
processing was task-irrelevant in this study, these behavioral and
ERP data implicated that the configural analysis is one of the
sources of PCA, which is applied by default while categorizing
facial emotions.

Several studies have shown the RT advantage for the
recognition of happy faces, but none have answered the
question whether or not this effect is caused by some high-level
configural computations making happy faces visually more
distinctive. The present study addressed this question by using
upright/inverted schematic happy and sad faces, which were
physically comparable but still had the intended emotional
value. A widely accepted effect of face inversion refers to
the fact that the recognition is severely impaired for inverted
relative to upright faces. Actually, the inverted faces impair
the structural feature of faces and thus influence configural
processing (e.g., Searcy and Bartlett, 1996). Along with this view,
the possibly existing difference in configural coding of happy
and sad faces is one of sources of the faster categorization of
happy faces. Supporting this hypothesis, although face inversion
significantly slowed down responses and the inversion effect
of RTs is similar between happy and sad faces, the absolute
inversion effect of RTs is indeed slightly larger for happy
(50 ms) than sad (40 ms) faces, in line with the influence
of manipulating configurations larger on happy than sad face
identification (e.g., Leppänen and Hietanen, 2004). Supporting
this view, Bombari et al. (2013) confirmed that configural
processing plays amore prominent role in expression recognition
than featural processing, but their relative contribution varies
depending on the emotion.There was also evidence that positive
and neutral emotions differ to a greater extent than negative

and neutral emotions because the configuration of facial features
may change more significantly from neutral to happy expression
than from neutral to negative emotions (Leppänen andHietanen,
2004). Moreover, Srinivasan and Gupta (2011) examined the
effect of global and local processing on the recognition of sad
and happy faces and found that narrowing attention to local
processing facilitated the recognition of sad faces, while broad
scope of attention facilitated the recognition of happy faces. It
should be noteworthy that the above previous study focused
on expression recognition, while the present study directly
explored the role of configural processing for face classification
by expressions.

In the present task, the N170 component was sensitive
to emotional expression, as manifested by larger amplitudes
to sad than to happy faces. These data support previous
findings for early processing of emotional expression (e.g.,
Caharel et al., 2005; Liu et al., 2013) and suggest that negative
emotions engender a more intense emotional reaction than
do positive ones. Moreover, converging evidence showed that
valence category reflects initial selective attention capture
by salient image content (appetitive, threatening) and that
unpleasant stimuli can produce stronger emotional effects than
can pleasant stimuli—that is, a phenomenon of negativity bias
(e.g., Crawford and Cacioppo, 2002). The present findings
of enhanced N170 for sad faces is in line with the above
view, further indicating that the negativity bias can occur at
the early stage of face perception. The present patterns of
N170 effects were also consistent with previous findings that
valence of affective pictures appeared to influence relatively
early (100–250 ms) components of ERPs (for a review, see
Olofsson et al., 2008), indicating that affective processing can
be described as an automatic feature of perception (e.g., Fox,
1991; Öhman and Soares, 1998). In addition, we found the
right-hemisphere dominance of N170 amplitudes, regardless
of happy or sad faces. Actually, the well-established right-
hemisphere lateralization of the N170 amplitude has been
shown in previous studies and this asymmetry is known
specifically for faces (e.g., Bentin et al., 1996; Rossion,
2014). Recently, using ERP source-localization techniques Itier
et al. (2007) estimated the location of the neural generator
of the N170 and found that its neural generators may
be located in the fusiform gyrus (FFA), superior temporal
sulcus (STS), or both (Itier and Taylor, 2004). However,
it should be noted that these techniques are fraught with
potential sources of error, and there is disagreement on the
validity of inferences drawn from such findings. Therefore,
the neutral generators of N170 component await further
investigation.

In line with the previous study that the N170 is delayed
and enhanced for inverted faces (e.g., Bentin et al., 1996), the
present study showed that face inversion enhanced and delayed
N170, regardless of facial expressions. However, we found that
the inversion effect of N170 was more conspicuous for happy
than sad faces. Apparently, this larger N170 inversion effect for
happy faces than sad faces further provided electrophysiological
evidence for the above hypothesis that the configuration
computation was more conspicuous for happy than sad face
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classification. However, the N170 amplitudes did not correlate
with RTs and consequently, the modulation of facial expression
onN170 amplitudes did not account for the PCA. In contrast, the
happy face elicited shorter N170 latency than did the sad faces,
whereas for inverted condition the N170 latency did not differ
between happy and sad faces. Importantly, we found a significant
positive correlation between the RTs and the latency of the N170.
To this end, the present fact of N170 latency implicated that
the PCA could be based on high-level configural processing at
the early stage of face processing reflected by the face-sensitive
N170.

Before concluding, we should reiterate two procedural
decisions that constrain the interpretation of the present
findings. First, all the faces used in this study were schematic
unfamiliar faces to the participants. Using unfamiliar faces we
hoped to isolate initial stages of face categorization reducing
putative effects of face individuation and identification, processes
that might have been tainted by memory factors. Therefore,
whether the facial familiarity can modulate the PCA awaits
further investigation. Second, in the present study we used
schematic faces instead of real faces. Although schematic faces
allow us to fully control the low-level physical features, to
exclude additional information related to facial identity and to
minimize the confounding effects of general arousal rather than
valence per se, these schematic face pictures are less complex, in
particular with respect to the configural components. However,
the happiness advantage with schematic facial expressions was
consistent with the findings of real faces (e.g., Leppänen and
Hietanen, 2004; Liu et al., 2013). Since the happy and sad
expressions in the present study equally deviated from neutral

faces, it is difficult to attribute the observed advantage of happy
faces over sad faces to low-level physical differences between
happy and sad faces. In addition, the schematic-face inversion
significantly modulated the RTs as well as the N170 component,
in line with the face inversion effect of real faces (e.g., Bentin et al.,
1996). Hence, the present data further indicate that schematic
emotional faces may be ideal experimental stimuli.

In sum, this experiment explored the configural computations
while processing positive and negative faces in an expression
categorization task. The PCA on the classification speed was
evident for upright condition and disappeared for inverted faces.
The N170 was larger and delayed for sad faces than happy faces
and did not differ for inverted condition. The significant positive
correlation between the RTs and the latency of the N170 was
also found not for N170 amplitudes. These behavioral and ERP
data implicated that the configural analysis could be one of the
sources of PCA, which is applied by default while categorizing
facial emotions.
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Constructing a robust emotion-aware analytical framework using non-invasively

recorded electroencephalogram (EEG) signals has gained intensive attentions nowadays.

However, as deploying a laboratory-oriented proof-of-concept study toward real-world

applications, researchers are now facing an ecological challenge that the EEG patterns

recorded in real life substantially change across days (i.e., day-to-day variability), arguably

making the pre-defined predictive model vulnerable to the given EEG signals of a

separate day. The present work addressed how to mitigate the inter-day EEG variability of

emotional responses with an attempt to facilitate cross-day emotion classification, which

was less concerned in the literature. This study proposed a robust principal component

analysis (RPCA)-based signal filtering strategy and validated its neurophysiological validity

and machine-learning practicability on a binary emotion classification task (happiness

vs. sadness) using a five-day EEG dataset of 12 subjects when participated in a

music-listening task. The empirical results showed that the RPCA-decomposed sparse

signals (RPCA-S) enabled filtering off the background EEG activity that contributed more

to the inter-day variability, and predominately captured the EEG oscillations of emotional

responses that behaved relatively consistent along days. Through applying a realistic

add-day-in classification validation scheme, the RPCA-S progressively exploited more

informative features (from 12.67 ± 5.99 to 20.83 ± 7.18) and improved the cross-day

binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40%) as

trained the EEG signals from one to four recording days and tested against one unseen

subsequent day. The original EEG features (prior to RPCA processing) neither achieved

the cross-day classification (the accuracy was around chance level) nor replicated the

encouraging improvement due to the inter-day EEG variability. This result demonstrated

the effectiveness of the proposed method and may shed some light on developing a

realistic emotion-classification analytical framework alleviating day-to-day variability.

Keywords: inter-day EEG variability, emotion classification, affective brain-computer interface, EEG oscillation,

robust principal component analysis
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INTRODUCTION

Implicit emotional reactions behave as a non-verbal
psychophysiological communication channel alternative to
explicit manners of body gestures, written text, and speech,
enriching the interaction in people. Through characterizing
such emotional information by leveraging multidisciplinary
knowledge and the ever-growing affective computing technology,
a conventional human-computer interaction (HCI) scenario
can then be augmented with an emotion-aware ability, which
facilitates a realistic humanoid closed-loop feedback. Emotion
recognition has attracted intensive attention nowadays. Two
facets may drive its intensive interest. On one hand, it enables a
wide spectrum of intriguing emotion-oriented applications such
as, machine intelligence (Chen et al., 2017), receptionist robots
(Pinheiro et al., 2017), content recommendation devices (Lee and
Shin, 2013), tutoring systems (Muñoz et al., 2010), and music
therapy (Ian et al., 2016). On the other hand, recent explosive
innovations in wearable sensing technology considerably bring
laboratory-demonstrated emotion-aware research closer to our
daily life, necessitating a robust and accurate emotion-aware
analytical framework.

Existing affective computing research has demonstrated the
capacity of assessing implicit emotions by internal changes in
physiological signals that are originated from autonomic and
central nervous systems (Picard et al., 2001; Kim and Andre,
2008; Chanel et al., 2009; Lin et al., 2010). Among them,
electroencephalogram (EEG) is a non-invasive-recording of the
electrical activity of the brain. The EEG signals presumably
encompass the fundamental yet critical information underlying
emotion dynamics, since the limbic system located in the
brain plays a key role in emotion regulation (Hariri et al.,
2000). There has been promising interdisciplinary analytical
frameworks proposed to leverage advanced signal processing,
machine learning, and data mining techniques with the attempt
to exploit the EEG correlates of emotional responses as well as to
later develop an emotion-aware model for emotion recognition
(Chanel et al., 2009; Frantzidis et al., 2010; Lin et al., 2010;
Petrantonakis and Hadjileontiadis, 2010; Koelstra et al., 2012;
Soleymani et al., 2012; Jenke et al., 2014; Gupta et al., 2016;
Hu et al., 2017). This area has become an emerging track in
the affective brain-computer interface (ABCI), namely EEG-
based emotion recognition (Mühl et al., 2014). The successful
demonstrations would not only demonstrate the feasibility of
emotional computing from EEG signals, but also pose new
directions for practical ABCI applications in real life.

A practical issue for exploiting the EEG correlates of implicit
emotional responses is about howmany EEG samples are needed
from an individual to reliably model the emotional responses.
The issue has also been recognized as a plausible factor affecting
the classification accuracy while training a machine-learning

classifier upon the given data. The previous study results may

support the argument in part. The works that involved a short-

duration (around 1–15 s per trial) emotion elicitation scenario,
e.g., image viewing and emotion imagery (Chanel et al., 2009;
Frantzidis et al., 2010; Petrantonakis and Hadjileontiadis, 2010),
typically led to better results than those involved a long-duration

manner (around 30–120 s per trial), e.g., music listening and
video watching (Koelstra et al., 2012; Soleymani et al., 2012;
Gupta et al., 2016). In practice, an emotion experiment with EEG
recordings faces a trade-off between acquiring more data trials
and preventing the human subjects from being bored and drowsy
to elicitation materials. In most cases, fewer than a few dozen
of trials per targeted emotional class can be collected in a 2∼3-
h experiment session for an individual, including the time for
instruction briefing and EEG headset capping. The collected EEG
trials are thus rare and likely pose a challenge for translating
the EEG spatio-spectral oscillations into implicit emotional
responses and for utilizing the EEG-emotion relationship to train
a realistic subject-specific emotion-classification model.

A straightforward remedy for the aforementioned challenge
in a single-day session is to perform a multiple-session EEG
recording on separate days. Nevertheless, this raises another
issue concerning the substantial inter-day variability in the EEG
signals, which has been empirically demonstrated in studies
(Christensen et al., 2012; Lin et al., 2015; Das et al., 2016; Yin
and Zhang, 2017). That is, EEG features recorded on different
days were found distinctively distributed. The data clusters of
the same classes across days happened to behave more diversely
than the clusters of different classes within a single day (Lin
et al., 2015). This finding was in line with the outcomes using
peripheral bio-signals (Picard et al., 2001). The class clusters
were even dramatically changed by reversal among different days
(Christensen et al., 2012). As such, the day-to-day variability
inevitably hindered a machine-learning classifier from leveraging
an effective set of between-class decision boundaries that can
work consistently to the data recorded across days. It might
happen that naively aggregating the EEG samples from all of
the available recording days degrades rather than upgrades the
classification accuracy (Christensen et al., 2012; Lin et al., 2015).
Few attempts have been made to alleviate the inter-day variability
by either using different normalization schemes or seeking a
set of relatively day-robust features in other EEG topics, e.g.,
cognitive load, mental workload, and biometrics (Christensen
et al., 2012; Das et al., 2016; Yin and Zhang, 2017). Till now,
most of previous analytical works (Chanel et al., 2009; Frantzidis
et al., 2010; Lin et al., 2010; Petrantonakis and Hadjileontiadis,
2010; Koelstra et al., 2012; Soleymani et al., 2012; Jenke et al.,
2014; Gupta et al., 2016; Hu et al., 2017) endeavored to
optimizing a predicative emotion-aware model based on a non-
ecological single-day dataset only. However, for an ecological
ABCI scenario, the EEG signals may vary over time, leading
to the alternation of the emotion-related EEG oscillations, and
thereby making a model trained by the EEG signals of a separate
day(s) vulnerable. Relatively fewer efforts have been contributed
to thoroughly explore and tackle the impact of the inter-day EEG
variability associated with emotional responses, which is believed
to be one of critical factors hindering the success of real-life
applications.

To address the issue mentioned above, this work proposed
a signal-filtering strategy based on a core methodology called
robust principal component analysis (RPCA) and incorporated
it into a machine-learning framework. Its capability was
demonstrated in terms of cross-day emotion-classification results
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and corresponding neurophysiological meanings through a 5-
day EEG dataset of 12 subjects. RPCA behaves as a matrix
factorization method and enables parsing the input data matrix
into a low-rank matrix and a sparse matrix. The low-rank matrix
represents relatively regular activity or patterns in the original
input matrix, whereas the sparse matrix accounts for deviant
events. RPCA has been applied to improve the tracking of
sparse moving targets of interest in video surveillance (Guyon
et al., 2012; Bouwmans and Zahzah, 2014) and recently applied
to affective computing to better capture the EEG correlates of
neurocognitive lapses (Wei et al., 2016) as well as emotional
responses (Jao et al., 2015). It is worth noting that this work was
an extension from our proof-of-concept study (Jao et al., 2015)
with considerable improvement in two aspects. First, this work
provided neurophysiological evidence to exclusively elucidate
the meanings underlying RPCA decomposition in emotion
data. Second, a simulated online BCI validation procedure,
i.e., training the data from available days and testing on
the data from an unseen day, was employed to assess the
cross-day classification performance regarding the accuracy and
the number of informative features exploited. The successful
demonstration can shed some light on developing a realistic
emotion-classification analytical framework accounting for the
EEG discrepancy in separate days.

MATERIALS AND METHODS

EEG Dataset
This work assessed the practicability of RPCA framework and
its underlying neurophysiological meanings in alleviating the
inter-day EEG variability on a 5-day dataset of 12 subjects when
they performed a music-listening task (Lin et al., 2015). The
details regarding the music excerpts and experiment setup can
be found in Lin et al. (2015). Briefly, a 14-channel Emotiv EEG
headset, with a default bandwidth of 0.16–43 Hz and a sampling
rate of 128 Hz, was employed to measure the EEG signals. The
subjects participated in the same music listening experiment on
5 different days within one and half weeks (with an average
interval of 7 ± 1.13 days). On each day, they underwent a
three-session protocol composed of the same 24∼37-s music
excerpts to induce two target emotions, happiness and sadness,
in which 12 excerpts for each category were selected with a
consensus label (Eerola and Vuoskoski, 2011). Each session had
four blocks; each of them contained both happy and sad trials
in random order. Figure 1 illustrates the procedures of a two-
trial block. Each trial began with a 15-s eye-closed rest period,
followed by a music excerpt. A beep sound alerted the subjects
to proceed to an emotion-assessment task (assigned either one
of target emotions or neutral based on whey they experienced).
The experiment was self-paced and allowed the subject to press
a button proceeding to the next trial, enabling a moderate rest
if necessary. Such an experiment protocol collected 24 pairs of
∼37-s EEG trials (plus a 15-s eye-closed baseline) and emotion
labels from an individual in each of the 5 recording days. Note
that the trials reported as neutral responses were excluded from
further analysis.

FIGURE 1 | The experiment protocol of a two-trial block. Each trial begins

with a 15-s baseline (B), followed by a ∼37-s music excerpt, and ended with

an emotion-tagging task (R). A beep sound was delivered to alert subjects for

the rating task. The protocol was self-paced and proceeded to next trial after

the subject pressed the button.

EEG Feature Extraction
The raw EEG signals were first submitted to a 1-Hz high-pass
finite impulse response filter to remove possible DC drifts. The
short time Fourier transform was then adopted to estimate the
spectral power of the filtered EEG signals using a 1-s Hamming
window with a 50% overlap, yielding a number of the samples
depended on the time lapse of the given trial (∼37-s). The
averaged band power over the stereotypical frequency bands of
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30
Hz), and gamma (31–43 Hz) was calculated prior to feature
extraction. Note that Emotiv headset’s specification limited the
gamma frequency band up to 43 Hz.

Given the five time series of spectral bands, this study adopted
a feature-extraction method called MESH (Lin et al., 2014) to
correlate EEG spectral oscillations with emotional responses.
The MESH method not only includes the spectral oscillation
over individual electrodes but also assesses bi-directional power
asymmetry over left-right symmetric electrodes (i.e., laterality)
and fronto-posterior electrodes (i.e., caudality). As such, the 12
channels (excluding T7 and T8 from the 14-ch Emotiv montage)
corresponded to six left-right electrode pairs (i.e., AF3–AF4, F7–
F8, F3–F4, FC5–FC6, P7–P8, and O1–O2, the montage refers to
Figure 2B) and four fronto-posterior pairs (i.e., AF3–O1, F7–P7,
AF4–O2, and F8–P8), resulting in a feature dimension of 110 (22
electrode attributes × five frequency bands). Each feature time
series was normalized to the range of 0 and 1 using the min-max
normalization scheme.

Robust Principal Component Analysis
(RPCA)
Unlike classical principal component analysis (PCA) that
transforms signals into a set of mutually orthogonal variables for
dimensionality reduction, RPCA is amatrix factorizationmethod
that decomposes an input matrix X ǫ Rm×n (m: number of
features, n: number of samples) into two superimposed matrices,
a low-rank matrix L and a sparse matrix S (Candès et al., 2011).
The L accounts for the relatively regular profiles of input signals,
whereas the S models its deviant events. The RPCA can be
mathematically described as the convex optimization problem
(Candès et al., 2011) presented below:

min L,S ‖ L ‖∗ + λ ‖ S ‖1 s.t. X = L+ S , (1)

where ‖ L ‖∗ denotes the nuclear norm of the matrix L,
i.e., the sum of the singular value of L, ‖ S‖1 =

∑
ij |Sij|
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represents l -1 norm of S, and λ is a tuning parameter balancing
the weights of the two terms; we set λ to 1/

√
max (m, n)

according to Candès et al. (2011). RPCA has been successfully
applied tomany signal processing and computer vision problems,
such as, video processing (Bouwmans and Zahzah, 2014), face
recognition (Chen et al., 2012), and music information retrieval
(Yang, 2012) as well as a recent demonstration on affective
computing using EEG signals (Wei et al., 2016). For example,
in the case of video surveillance, RPCA decomposed the still
background scene in L and encompassed the sparse moving
objects in S. It thus facilitated the detection of moving objects
of interest by eliminating the interference from the background.
It is worth noting that the robust PCA algorithm proposed by
Torre and Black (2003) and the RPCA algorithm (Candès et al.,
2011) adopted in this work, though share similar names, are
radically different in their mathematical meanings. The former
is for data dimension reduction, whereas the latter is for matrix
decomposition that enables to parse inputs signals into low-rank
and sparse matrices.

In a music-listening study, it is reasonable to assume
that EEG oscillations associated with emotional responses are
considered as deviant and sparse activity concurrent with
intrinsic background EEG activity. Such background EEG
activity tends to be relatively regular within days yet more
and less diverse across days. The non-stationary background
activity may thus submerge the sparse emotion-related EEG
oscillations of interest and inevitably hinder the robustness of a
cross-day emotion classification framework. With this in mind,
this study hypothesized that the more the emotion-irrelevant
EEG perturbations can be alleviated in each day, the more the
elicited emotion-related EEG oscillations can be revealed. To
test the posed hypothesis, this study adopted RPCA to parse the
MESH matrix (i.e., 110 features × n samples, where n depends
on the number of samples given a trial) into low-rank L and
sparse Smatrices. The resultant L presumably described relatively
regular background EEG activity, while the resultant S oppositely
captured sparse emotion-related dynamics.

EEG Feature Selection and Classification
After applying RPCA framework to the spectral time series,
the processed samples were averaged within each trial for
feature selection and classification. A straightforward method
of F-score feature selection was adopted to elaborate the MESH
feature space (either with or without RPCA pre-processing)
to exploit an optimal subset of informative features prior to
training the classifier. The F-score value refers to the ratio
of between-class vs. within-class variance formed by the
data distribution of a feature. It has been shown that the
features with high F-score values can better discriminate
class distributions (Lin et al., 2010; Jenke et al., 2014). Most
importantly, as the calculated F-score value was compared
to the statistical F-distribution, the corresponding statistical
p-value of each feature (p < 0.05) can be derived to elucidate
the neurophysiological meanings of RPCA-decomposed
low-rank and sparse matrices. In this proof-of-concept
study, a simple Gaussian Naïve Bayes (GNB) classifier was
employed to model the EEG data distributions along two

emotion categories (i.e., happiness vs. sadness). The cross-day
classification accuracy referred to how many trials were correctly
classified.

Validation of RPCA Framework
This study attempted not only to test the effectiveness of the
RPCA framework in alleviating the day-to-day variability in
emotion-related EEG dynamics but also endeavored to unveil
its underlying neurophysiological evidence. Three cross-day
analytical scenarios were conceived and performed accordingly,
including emotion classification, emotion-class distribution, and
emotion-related spatio-spectral features.

First, a realistic add-day-in (ADI) validation framework was
adopted to assess cross-day emotion classification accuracy.
The ADI scheme iteratively included the data from one more
recording day to train a classifier and test its performance against
the data from one unseen recording day. That is, the information
of EEG signals to be tested were entirely disjointed from the data
used for training the model, which complied with a real-life BCI
validation framework. Given a five-day EEG dataset per subject
in this study, the cross-day classification accuracy can be obtained
for four training day scenarios, including (1) Day 1 vs. Day 2, (2)
Days 1–2 vs. Day 3, (3) Days 1–3 vs. Day 4, and (4) Days 1–4
vs. Day 5. The procedures of each ADI framework are detailed as
follows.

1) Train and optimize a GNB classifier
This step first concatenated data from D available training
day(s) (D= 1–4). The concatenated data were then submitted
to F-score feature selection to rank MESH features. To
prevent the plausible bias caused by class imbalance, the
GNB model was trained and optimized given 100 repetitive
outcomes with random samples equally selected (according to
the minimal class) from binary classes. Each randomization
performed a five-fold cross-validation and an add-feature-in
scheme, i.e., iteratively adding one more feature with high F-
score at a time. The optimal MESH feature subspace leading
to a maximal training accuracy could be selected.

2) Test the GNB classifier
The data from an unseen recording day were treated as test
samples, and its initial MESH feature space was trimmed to
fit the subspace optimized in the training phase. The trained
GNB model was then tested on the trimmed data.

The ADI validation framework was applied to the EEG signals
leveraged without and with RPCA processing for comparison.

Second, this study additionally visualized the emotion class
distributions across days following the ADI manner. In this
way, the variability in EEG signals between classes across days
can be explored. We adopted the linear discriminative analysis
(LDA) to reduce the original feature dimensionality (110) to a
2-D discriminative yet comprehensible feature space composed
of the first two LDA components. Note that the LDA was
simply involved in data visualization rather than in classification
task. Furthermore, this study superimposed a decision boundary
over the class clusters of the training data artificially. The
boundary laid perpendicular to the vector of the means of
the clusters and intercepted at their center. The multiple-day
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FIGURE 2 | The single-day emotion-related topographic feature maps with and without RPCA preprocessing. (A) illustrates the informative maps of a representative

subject derived separately by four analytical manners, including EEG signals in eye-closed resting baseline, EEG signals in music listening (Original), RPCA-processed

sparse matrix (RPCA-S) in music listening, and RPCA-processed low-rank matrix (RPCA-L) in music listening. The importance of the features was normalized from 0

to 1 and color-coded from dark blue to brighter yellow, accordingly. The brighter yellow reflected the feature more informative with respect to dark blue (no correlation).

(B) Refers to the electrode montage. (C) The Euclidean distance for topographic outcomes between RPCA-S/RPCA-L/Original vs. eye-closed resting baseline

summarized from 12 subjects. The longer distance indicated most informative EEG dynamics captured by the analytical manner with a reasonable assumption that

the resting baseline was associated with a minimal correlation with emotional responses. ** Refers to a statistical significance with p < 0.01 using a two-sided

Wilcoxon signed rank test.

class distributions plus the conceptualized decision boundaries
intended to demonstrate two facts: how the inter-day variability
shaped the distributions of training and testing data, and to which
extent this variability behaved in EEG signals with and without
RPCA preprocessing.

Last, this study mapped the emotion-related EEG features
that corresponded to high F-score values with statistical
significance (p < 0.05) onto topography. The topographic
mapping was done by using EEGLAB toolbox (Delorme and
Makeig, 2004). Through comparing the topographic outcomes
between a pre-stimulus baseline, i.e., eye-closed resting state,
and a music-listening period, we could somehow elucidate the
neurophysiological meanings underlying the RPCA-decomposed
low-rank and sparse matrices. The low-rank matrix supposedly
contained mostly background EEG dynamics, so that it barely
had spectral characteristics about emotional responses. Thus,
the maps of low-rank matrix exploited in music listening
were presumably similar to those from the resting state.
Furthermore, the ADI classification was also replicated on the
eye-closed baseline. The baseline-music listening comparison
can directly assess the validity of RPCA processing and F-
score feature selection for cross-day emotion classification with
more neurophysiological sense (i.e., EEG signals without and

with music elicitation). Note that for such analysis each of
the pre-stimulus baseline trials was artificially assigned with an
emotion label equal to the one rated right after the subsequent
music-listening trial. In addition, for group analysis, this study
vectorized each topographic outcome and objectively quantified
their similarity using the Euclidean distance measurement. A
longer distance referred to two distinct feature maps being
compared.

RESULTS

Single-Day Topographic Feature Maps
Underlying RPCA Matrices
Figure 2 presents the single-day emotion-relevant EEG spatio-
spectral features explored in music-listening vs. eye-closed
resting scenarios. The comparative outcomes were obtained
for four data matrices separately, including EEG signals in
eye-closed resting baseline, EEG signals in music listening
(Original), RPCA-processed sparse matrix (RPCA-S) in music
listening, and RPCA-processed low-rank matrix (RPCA-L) in
music listening. Figure 2A color-coded the importance (i.e., the
F-score values) of the band-power features onto topography
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(c.f. the electrode montage in Figure 2B) from a representative
subject. All topographic values of four analytical outcomes were
normalized concurrently to the range of 0 and 1 within each day
so that the extent of each feature importance of all topographic
outcomes could be compared across days. The brighter yellow
indicates more informative features, compared to dark blue (no
correlation). As can be seen in the topographic feature maps,
the RPCA-S generally exhibited more emotion-related spectral
features in each band and on each day, compared to its original
input, i.e., Original. In contrast, the RPCA-L simply led to
minor yet fewer informative features (with lighter yellow) on
certain days. The benchmark scenario of eye-closed resting barely
accompanied features. Most of the resting topographies were
annotated with dark blue, similar to the outcomes of RPCA-L.
Note that both the RPCA-L and RPCA-S of the resting baseline
got analogous outcomes irrelevant to emotional responses (but
not shown here).

Figure 2C further quantified to which extent the emotion-
related topographic maps with/without RPCA (i.e., RPCA-S,
RPCA-L, and Original in music listening) were deviant from
those of the benchmark (i.e., the eye-closed baseline) from the
entire group of 12 subjects. To this end, the Euclidean distance
measurement was adopted to calculate the distance between the-
vectorized topographic maps within each day. A longer distance
value indicated the analytical matrix of interest being most
informative under a reasonable assumption that the eye-closed
resting state accounted for the minimal information regarding
emotional responses. As can be seen, RPCA-S differed most from
the eye-closed baseline than both the Original and RPCA-L did (p
< 0.01). Due to the shortest distance, the RPCA-L’s feature maps
were the most similar to the baseline, followed by the Original.

Cross-Day Emotion Class Distributions
with and Without RPCA Processing
Figure 3 illustrates the class distributions of the EEG signals
projected to a 2D LDA feature space from a representative
subject. The row of subplots from the bottom to the
top represents the distributions of the original EEG signals
(Original), its RPCA’s low-rank matrix (RPCA-L), and its RPCA’s
sparse matrix (RPCA-S). The subplots along columns show the
outcome with the ADI manner. As can be seen, the inter-day
variability in Original did negatively shape the class distributions
of the training data based on the relationship between the class
centroids and distributions as the EEG signals were taken into
account from more recording days. In the case of Day 1 vs.
Day 2 in Original, the decision boundary (gray line) for Day 1
seemed to work for Day 2 because the two class centroids of
the two days lined aside moderately. Nevertheless, the separable
class centroids became misleading as considering the training
data from one more recording day, i.e., Days 1–2 vs. Day 3, and
even confusing by adding more days for the condition, i.e., Days
1–3 vs. Day 4, as referenced to their decision boundaries. While
involving four recording days for training (Days 1–4 vs. Day 5),
there was a smaller between-class margin than that of the initial
outcome (Day 1 vs. Day 2). Next, after leveraging the EEG signals
with RPCA processing, the inter-day variability tended to be
mitigated to a certain extent. In the RPCA-S, the interplay of the
class centroids of the training and testing days remained relatively
stable to all ADI conditions, i.e., invulnerable to the number
of recording days involved. Importantly, the decision boundary
got improved marginally yet progressively when considering the
data from more days as training dataset. On the contrary, the
RPCA-L resembled the Original, but exhibited larger covariance

FIGURE 3 | The 2D projection of the cross-day class distributions of the EEG signals by LDA for a representative subject in ADI manner. The rows of subplots indicate

the outcomes leveraged with or without RPCA processing (RPCA-S, sparse matrix; RPCA-L, low-rank matrix; Original, original signals). Triangles and circles are the

centers of the happiness and sadness clusters, respectively, whereas the dotted and solid ellipses reflect their covariance values. The annotations in red and in blue

referred to training and test days, respectively. The gray lines conceptualize the decision boundaries of the training data distributions.
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FIGURE 4 | The cross-day emotion-classification performance in ADI manner. The performance included (A) the classification accuracy and (B) the explored number

of informative features using with and without RPCA framework (RPCA-S, sparse matrix; RPCA-L, low-rank matrix; Original, original signals). The classification task

during music listening was replicated in eye-closed resting period regarded as benchmark. Note that for the classification purpose, a resting period artificially used the

same emotion label as its subsequent music-listening trial. * and ** Refer to a statistical significance p < 0.05 and p < 0.01, respectively, using a two-sided Wilcoxon

signed rank test.

in class distributions. The above results evidently demonstrated
the negative impact of the potential inter-day variability to a
predictive emotion model, but the RPCA framework was capable
of alleviating it to some extent.

Cross-Day Emotion Classification with and
Without RPCA Processing
Figure 4 shows the cross-day emotion-classification performance
with and without using the RPCA framework in the ADI
manner. The classification performance includes the number
of informative features and the binary classification accuracy
explored during music listening vs. eye-closed resting. There
were two main findings in the comparative results. First, the
RPCA framework improved the cross-day classification accuracy.
For the music-listening classification accuracy (right panel in
Figure 4A), the RPCA-decomposed sparse matrix (RPCA-S, red
box) improved the classification accuracy monotonically as more
data were added from additional recording days (Day 1 vs. Day
2: 58.31 ± 12.33%, Days 1–2 vs. Day 3: 61.53 ± 8.62%, Days
1–3 vs. Day 4: 59.65 ± 8.00%, and Days 1–4 vs. Day 5: 64.03
± 8.40%). Such improvement was up to around 6% (p = 0.09
using a two-sided Wilcoxon signed rank test) in the case of
four training days. In contrast, the RPCA-decomposed low-rank
matrix (RPCA-L, blue box) and the original EEG signals without
RPCA preprocessing (Original, black box) did not replicate
such improvement along ADI conditions. Their accuracies were
apparently worse than those of RPAC-S. There was a statistically
significant difference between RPCA-L and RPCA-S for Days
1–3 vs. Day 4 (p < 0.05) and between RPCA-L/Original and
RPCA-S for Days 1–4 vs. Day 5 (p < 0.01), respectively. Opposed
to the above music-listening outcomes, the benchmark of eye-
closed resting (left panel in Figure 4A) neither exhibited distinct
differences with and without RPCA preprocessing within each

ADI condition nor led to a tendency in classification accuracy
along ADI conditions.

Second, the RPCA-S framework advanced the exploitation
of informative features related to emotional responses. For the
music-listening scenario (c.f. right panel of Figure 4B), the
number of feature explored in RPCA-S was found to augment
steadily as pooling EEG signals from one to four recording days
(Day 1 vs. Day 2: 12.67 ± 5.99, Days 1–2 vs. Day 3: 14.17 ± 8.43,
Days 1–3 vs. Day 4: 16.75 ± 5.74, and Days 1–4 vs. Day 5: 20.83
± 7.18). The maximal increment was up to around 8 features for
the ADI condition of four training days (p= 0.06). Unlike RPCA-
S, both RPCA-L and Original exhibited features independent of
the ADI conditions and typically yielded fewer features. Both of
them were found significantly worse than RPCA-S for Days 1–4
vs. 5 (p < 0.05). For the eye-closed resting scenario, the number
of features in RPCA-S tended to be comparable to those of RPCA-
L and Original in each ADI condition and be independent to ADI
conditions.

In sum, the RPCA-S led to progressive improvements in
classification performance in terms of the number of informative
features and the cross-day classification accuracy as long as the
EEG signals leveraged from more recording days. This only
worked for the music-listening scenario.

DISCUSSION

The present work studied how the inter-day EEG variability
of emotional responses can be mitigated to facilitate cross-day
emotion classification task, which was largely overlooked in the
literature. This study extended our early proof-of-concept work
(Jao et al., 2015) to validate the capability of the proposed RPCA-
based signal filtering framework from the neurophysiological and
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realistic BCI perspectives through a five-day EEG dataset of 12
subjects. We first validated that the RPCA-decomposed sparse
signals returned representative EEG features reflecting emotional
responses that were relatively consistent across days. We further
demonstrated that such sparse signals helped a machine-learning
framework to exploit more informative features and lead to
a progressive improvement on cross-day emotion-classification
accuracy as EEG signals were engaged from multiple-day
sessions. In contrast, neither its accompaniment low-rank signals
nor the raw EEG features (i.e., without RPCA preprocessing)
could replicate the above cross-day classification outcomes.
The following sections discussed the RPCA findings upon the
neurophysiological validity and machine-learning practicability.

Neurophysiological Validity Underlying
RPCA in Emotion Data
The present work aimed to exploit the underlying
neurophysiological meanings associated with the two
decomposed low-rank and sparse matrices using RPCA.
By the mathematical definition of RPCA, the low-rank and
sparse matrices account for the regular and sparse activities
of the given streaming signals, respectively. The question
herein was about what information the low-rank and sparse
matrices actually account for in the EEG signals collected
in an emotion-elicitation paradigm. There were three facets
empirically indicating that the EEG oscillations captured
in the sparse matrix were profitably linked to the implicit
emotional responses. First, emotional responses elicited by music
listening were considered as sparse activity. The induced EEG
oscillations thus behaved as deviant activity to the concurrent
intrinsic background activity, which presumably conformed
to the mathematical role of the sparse matrix. As referred to
the RPCA applications in other domains, the sparse matrix
was also found to isolate sparse signal dynamics, such as,
foreground moving objects in a video stream (Bouwmans and
Zahzah, 2014), incoherent occlusion and disguise in a face
image (Chen et al., 2012), neurocognitive lapses in driving
(Wei et al., 2016), and a singing voice from music (Yang,
2012).

Second, the resultant music-baseline comparative outcomes
of informative topographic feature maps (c.f., Figure 2) led
to direct evidence. With respect to the sparse matrix, the
low-rank matrix reciprocally dealt with regular activity in the
given signals. Based on the-results of this study, the low-
rank matrix was found to reveal less informative features as
compared to the sparse matrix and its original input (without
RPCA processing), yet tended to be marginally similar to
the control benchmark of the eye-closed baseline scenario
(Figures 2A,C). This thus implied that the low-rank matrix
relatively summarized intrinsic background EEG activity with
a minimal relationship with emotional responses, like the
eye-closed resting. However, one may argue a few features
remained in the analytical scenarios of the eye-closed baseline
and the RPCA-L from the illustrated individual. This may
be attributed to the fact that most of the eye-closed baseline
periods were interleaved with music excerpts (c.f., Figure 1).

The lingering emotion effects (Eryilmaz et al., 2011) might
occur in our study. That is, the transit emotional responses
induced in a regular music excerpt may remain and modulate
the brain activity in subsequent resting state. In addition,
as RPCA essentially involves a convex optimization problem
(Candès et al., 2011), it may not lead to a perfect matrix-
factorization decomposition. Some sparse activity may thus
leak into the low-rank matrix (Han et al., 2017), contributing
some minor information. Most critically, unlike the low-rank
matrix, enormous emotion-relevant features emerged in the
sparse matrix, which behaved most distinctly to the eye-closed
condition.

Third, the music-baseline comparative cross-day classification
performance in accuracy and the number of informative
features (c.f., Figure 4) presented another conclusive
evidence. The eye-closed resting periods barely provided
discriminative information to conduct a binary emotion-
classification task (i.e., around chance level) regardless of
which analytical strategy (especially for the sparse matrix)
was used and how much EEG-recording days were leveraged.
Instead, the sparse matrix only worked valid for the EEG
signals recorded in the music-listening period. Given
more training days, the progressively increased number of
informative features and the cross-day emotion-classification
accuracy evidently inferred the discriminative yet
emotional information exclusively captured by the sparse
matrix.

Impact of the Inter-Day EEG Variability
Through the assessment to a five-day EEG dataset, the original
EEG distributions (without RPCA processing) between training
and test data across days (c.f., Figure 3) were found to
be quite different. The binary clusters from an unseen day
happened to be misleading or even reversal with the pre-
learned class clusters, which exactly replicated the outcomes
in Picard et al. (2001) and Christensen et al. (2012). Because
of such the inconsistent class distributions, a classifier trained
on one day may perform poorly on the test data collected
from the same subject on another day. The resultant cross-day
classification performance (c.f., Figure 4) reflected the negative
impact of the inherent inter-day EEG variability, where involving
more cross-day training sessions helped neither for exploring
more robust informative features nor for optimizing the
discriminative decision boundaries to yield a better classification
accuracy. This implied that performing a multiple-day EEG
collection and analysis barely worked without an efficient
way to deal with day-to-day variability. It is worth noting
that the aforementioned phenomenon may not emerge if
an offline validation was adopted. For example, some works
(Christensen et al., 2012; Liu et al., 2016) computed the
cross-day classification accuracy by averaging the classification
outcomes of all possible combinations of training and test
days. Without a constraint on time ordering (e.g., allowing
using Days 4, 5 to predict Day 1), the chance for including
a day(s) having feature distributions compatible to those of
a test day(s) likely increases (Lin et al., 2015). The plausible
discrepancy of feature distributions on separate days and the
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corresponding degradation in cross-day classification accuracy
might thus be overlooked. Furthermore, such an offline manner
is unlikely the case for an ecological, real-life scenario, i.e.,
we may not use the data of a later day(s) to predict the
emotional responses on a prior day(s). In contrast, the ADI
scheme adopted by the present work considers time ordering and
facilitates more realistic assessment of the impact of inter-day
EEG variability.

The RPCA-based signal-filtering framework was proposed
in the present work for the above purpose. Following the
demonstrated neurophysiological evidence underlying the RPCA
(see detailed discussions in the last subsection), the RPCA-
decomposed low-rank matrix predominantly accounted for
the background EEG activity that seemed to contribute more
to the concerned inter-day EEG variability. That is, the
RPCA-L and Original (before RPCA processing) compared
favorably in cluster distributions along the ADI manner
(c.f., Figure 3). Our exploratory results were in line with
the previous outcome in motor imagery study (Shenoy
et al., 2006), in which different background EEG activity
was reported to shift the data in the feature space. After
mitigating the background EEG perturbations (c.f., Figure 4),
the phenomenon gave a direct support to the outcome of
the improved cross-day classification accuracy in the RPCA-
decomposed sparse matrix (i.e., RPCA-S). The extent of the
improvement in accuracy when given more training days
was attributed to the fact that the RPCA-S elaborated the
class clusters gently yet progressively. Accordingly, the class
distributions and the cross-day classification performance
empirically demonstrated the posed hypothesis that the more
the intrinsic EEG perturbations can be alleviated in each day,
the more the elicited emotion-related EEG oscillations can be
revealed.

This work has a limitation in elucidating plausible causes
contributing the background EEG perturbations in the analyzed
dataset. Some studies (Shenoy et al., 2006; Ahn et al., 2016)
mentioned that the mental states of the subjects, such as, mental
fatigue, attention level, engagement to the task, and sleep quality,
may alter EEG patterns. This thereby suggested that future
emotion study may include a comprehensive behavioral and
mental questionnaire along with emotional labels, facilitating a
systematic assessment of realistic EEG oscillations of emotional
responses.

Comparison to Previous Works
This work performed a binary emotion-classification task
dedicated to an ecologically cross-day EEG dataset (five days).
The realistic ADI validation manner was adopted to obtain
the cross-day emotion-classification performance, which can
straightforwardly infer the practicality of the proposed RPCA
framework toward real-life applications. The study results
showed that the optimal binary classification accuracy (using
the sparse matrix, RPCA-S, c.f., Figure 4) was improved steadily
from 58.31 ± 12.33% to 64.03 ± 8.40% as leveraging more
EEG signals from one to four recording days for training.
Nevertheless, most of previously related works (Koelstra et al.,
2012; Koelstra and Patras, 2013; Lin et al., 2014; Gupta

et al., 2016), in which a binary task was also conducted on
limited data trials (using a long-duration elicitation materials),
performed the analysis on a single-day dataset only, so that
the impact of the inter-day EEG variability was not considered.
As such, this study cannot make a direct comparison to the
previous works, but instead we summarized their reported
within-day binary classification accuracies for reference as
follows: 55.4∼62.0% for different emotion categories (referred
to their Table 7 in Koelstra et al., 2012), 63.5∼71.5% for
different categories and features (Koelstra and Patras, 2013
referred to their EEG results in Table 3), 67∼76% for different
categories and features (referred to their Figure 2 in Lin
et al., 2014), and 58∼69% for different categories and features
(referred to their in Table 5 Gupta et al., 2016). It was
expected that the within-day accuracies that were not negatively
affected by the inter-day variability outperformed the cross-day
outcomes. The resultant cross-day accuracies of 58.31∼64.03%
using different training days in the present study seemed
justifiable.

CONCLUSION

This study proposed a robust principal component analysis
(RPCA)-based signal-filtering strategy and incorporated it into
a machine-learning framework to improve cross-day EEG-
based emotion-classification performance. Through applying
a realistic add-day-in validation manner to a five-day EEG
dataset of 12 subjects, this study first validated that the RPCA-
decomposed sparse signals predominately captured the EEG
oscillations of emotional responses that were relatively consistent
across days, and suppressed the day-fluctuated background
EEG perturbations in its accompaniment low-rank signals.
By leveraging EEG signals from all four recording days for
training and tested for the last unseen day, the maximal
improvement in the number of informative features and
the cross-day classification accuracy appeared up to ∼8 and
∼6%, respectively. The original EEG features (prior to RPCA
processing) neither achieved the cross-day classification task
(i.e., the accuracy was around chance level) nor replicated
the encouraging improvement due to the inter-day EEG
variability.
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Recent research on the crossmodal integration of visual and auditory perception

suggests that evaluations of emotional information in one sensory modality may tend

toward the emotional value generated in another sensory modality. This implies that

the emotions elicited by musical stimuli can influence the perception of emotional

stimuli presented in other sensory modalities, through a top-down process. The aim

of this work was to investigate how crossmodal perceptual processing influences

emotional face recognition and how potential modulation of this processing induced

by music could be influenced by the subject’s musical competence. We investigated

how emotional face recognition processing could be modulated by listening to music

and how this modulation varies according to the subjective emotional salience of the

music and the listener’s musical competence. The sample consisted of 24 participants:

12 professional musicians and 12 university students (non-musicians). Participants

performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin,

or Mozart. The target stimuli were emotionally neutral facial expressions. We examined

the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction

time to target recognition and musical emotional judgment). A linear mixed-effects model

and a decision-tree learning technique were applied to N170 amplitudes and latencies.

The main findings of the study were that musicians’ behavioral responses and N170 is

more affected by the emotional value of music administered in the emotional go/no-go

task and this bias is also apparent in responses to the non-target emotional face. This

suggests that emotional information, coming from multiple sensory channels, activates

a crossmodal integration process that depends upon the stimuli emotional salience and

the listener’s appraisal.

Keywords: music cognition, face recognition, N170 ERP, emotional salience, crossmodal integration, emotional

biases, musical appraisal

INTRODUCTION

The wide discussion of recent research on the interaction between music and emotion addresses
various issues, mainly those relating to comparisons between emotional processing and sensory
experience, and the definition of music a process of “sense making” that involves and influences
aspects of perception and cognition, as posited in a joint model of embodied mind (Reybrouck,
2005; Reybrouck and Brattico, 2015; Schiavio et al., 2016). Pioneering research on the crossmodal
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integration of visual and auditory perception suggests that
evaluations of emotional information in one sensory modality
may tend toward the emotional value generated in another
(de Gelder and Vroomen, 2000; Logeswaran and Bhattacharya,
2009; Balconi and Carrera, 2011). Ad example, a realistic model
able to explain emotional recognition process and crossmodal
integration is the model of Balconi (Balconi and Carrera, 2011).
This model is based on an experiment of a face recognition
task interfaced, in crossmodal condition, with prosody, and
analyzed through P2 ERP. The model highlights how an early
ERP component (i.e., P2) can be considered a cognitive marker
in multisensory processing. Thus, the emotion produced by
musical stimulation, as could be prosody in the previous model,
may influence the stimuli perception of stimuli, presented in
other sensory modalities, through a top-down process (Sekuler
et al., 1997; Jolij and Meurs, 2011; Wong and Gauthier,
2012). Different musical genres can also modulate arousal
and others psychophysiological parameters eliciting different
emotions (Schellenberg, 2005; Caldwell and Riby, 2007; Sammler
et al., 2007; Fritz et al., 2009; Ladinig and Schellenberg, 2012;
Schellenberg and Mankarious, 2012; Kawakami et al., 2014;
Bhatti et al., 2016). For example, Baumgartner and colleagues
investigated the psychophysiological effect of the interaction
between emotional visual images, music, and a crossmodal
presentation (music and images; Baumgartner et al., 2006).
More intensely perceived emotions emerged in the crossmodal
condition, and this was accompanied by predominant alpha band
activity in EEG.

It has been proposed that music primes emotional
responses to information in the visual domain (Logeswaran

TABLE 1 | Independent-samples t-tests of VAS results.

Musician Emotion t df Two-tailed

significance

Mean VAS score

Musicians Non-musicians

Albeniz Pleasant 2.138 22 0.044 9.09 7.23

Mozart Happy 3.537 22 0.002 8.91 6.85

Chopin Pleasant 2.690 22 0.013 9.27 7.46

Chopin Sad 6.546 22 0.000 8.64 4.31

T-tests are conducted with respect to the Group variable (Non-Musicians vs. Musicians)
over different emotional levels (Pleasant, Happy, Sad) and different Music (Albeniz, Chopin,
Mozart). Note that T-value are computed with the t-statistics corrected for paired groups,
df indicates the degree of freedom of the test, whereas p-values are computed considered
alpha = 0.05

TABLE 2 | Mean of the behavioral reaction times (in millisecond) in response to

neutral faces during the emo go/no-go task.

Group Reaction time

Albeniz Chopin Mozart

Musicians 744.75 721.31 662.15

Non-Musicians 564.29 587.42 570.57

Mean of reaction time in musicians is slower than in non-musicians group.

TABLE 3 | Results of linear mixed-effects model: fixed effects for group and music

on N170 amplitude.

ROI B (SE) t

L-Ant Baseline −1.423 (0.231) −6.144

Group

Non-Musicians vs.

Musicians

−0.175 (0.279) −0.628

Music

Albeniz vs. Chopin 0.209 (0.137) 1.523

Albeniz vs. Mozart 0.019 (0.141) 0.134

Group × music

Non-Musicians ×
Albeniz vs. Musicians ×
Chopin

−0.456 (0.212) −2.152*

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.070 (0.212) 0.331

R-Ant Baseline −1.431 (0.208) −6.868

Group

Non-Musicians vs.

Musicians

−0.419 (0.214) −2.11*

Music

Albeniz vs. Chopin 0.299 (0.114) 2.701**

Albeniz vs. Mozart 0.003 (0.110) 0.282

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

−0.360 (0.168) −2.133*

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.541 (0.171) 3.161**

L-Post Baseline −2.245 (0.365) −6.137

Group

Non-Musicians vs.

Musicians

−0.687 (0.285) −2.412*

Music

Albeniz vs. Chopin 0.123 (0.106) 1.155

Albeniz vs. Mozart 0.024 (0.110) 0.225

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

0.514 (0.328) 1.568

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.857 (0.330) 2.596**

R-Post Baseline −2.245 (0.379) −5.920

Group

Non-Musicians vs.

Musicians

−1.187 (0.550) −2.157*

Music

Albeniz vs. Chopin −0.105 (0.211) 0.617

Albeniz vs. Mozart −0.392 (0.225) −1.741

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

0.286 (0.339) 0.845

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.827 (0.341) 2.422*

Participants and EEG channels were treated as random effects; degrees of freedom of the
model were calculated with the Satterthwaite approximation. L-Ant: left-anterior; R-Ant:
right-anterior; L-Post: left-posterior; R-Post: right-posterior.
*p < 0.05; **p < 0.01.
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and Bhattacharya, 2009). Logeswaran and Bhattacharya
demonstrated that musical priming (positive or negative)
can modulate perceptions of emotional faces. In their study,
participants were asked to rate the emotional salience of
the faces, and the results demonstrated the existence of a
crossmodal priming effect. Happy faces were rated as happier
when they were presented after a happy piece of music
and vice versa. The priming effect of music is evident with
neutral targets. Analysis of Event-Related Potential (ERP)
components showed that the N1 response to neutral faces
increases when stimulus presentation is preceded by happy
music than when it was preceded by sad music. Previous studies
have observed an increased N1 component in the auditory
cortex during simultaneous presentation of an emotionally
congruent face (i.e., face–voice pairs; Pourtois et al., 2002).
The N1 component was distributed over the frontal regions,
suggesting the involvement of top–down psychophysiological
mechanisms (Zanto et al., 2011; Gilbert and Li, 2013). Moreover,
the perception of music is affected by the listener’s emotional
and cognitive state (Kawakami et al., 2013, 2014). Many studies
have highlighted differences between the cognitive processing
and cortical responses of musicians and non-musicians (Pantev
et al., 1998; Brattico et al., 2010; Müller et al., 2010; Pallesen
et al., 2010; Herholz and Zatorre, 2012; Proverbio et al.,
2013).

Recent studies suggest that musical stimulation may interact
with fatigue and motor activity, thereby affecting the motivation
of individuals who are under intense physical stress (Bigliassi
et al., 2016a,b). Music can modulate perception and cognition

via a complex interaction between the perceptual and emotional
characteristics of a musical stimulus and the physical (i.e., sex
differences; Miles et al., 2016), psychophysiological, (Gosselin
et al., 2007) and cognitive characteristics of the listener. Because
of this interaction, the emotion invoked by music can result
in biased responses (Chen et al., 2008). The aim of our study
was to investigate how cross-modal perception—in this instance
processing of emotional faces whilst performing a task that
involves listening to music—varies with the subjective emotional
salience of the music and with musical competence. This effect
can be seen at cognitive and behavioral level, in decisions and
appraisals, (Ellsworth and Scherer, 2003) and at motor level
(in motor reaction time; Brattico et al., 2013). In fact, the
motor and perceptual systems can be subject to early, top-
down modulation induced by crossmodal stimulation, which
can induce emotional bias, reflected at the behavioral level
and in cortical responses (i.e., electrophysiological level). We
also evaluated whether this bias could be modulated by the
participant’s appraisal of the musical stimulus (Brattico and
Jacobsen, 2009) choosing an electrophysiological investigation
of N170 ERP component. N170 ERP component is the most
sensible ERP component able to be modulated in the Face
Recognition Tasks (Eimer, 2000, 2011; Heisz et al., 2006; Kolassa
et al., 2009; Ibanez et al., 2012; Leleu et al., 2015; Almeida
et al., 2016). In particular, N170 is strictly linked to automatic
processes (Heisz et al., 2006), instead of P2, that is a demonstrated
cognitive marker in crossmodal cognition (Balconi and Carrera,
2011; Peretz, 2012). Still, in the condition in which music is
perceived as a cognitive expertise, the emotional salience of the

FIGURE 1 | N170 amplitudes in non-musicians and musicians in R-ANT ROI (Right Anterior Region of Interest).
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stimulus observed (i.e., face expression), may be affected by
emotional bias, and this effect can be early observable through
N170 modulations.

MATERIALS AND METHODS

Participants
Twenty-four participants were recruited in University and
in Musical Conservatory, and were selected according to
their musical skills. Twelve musicians, graduates in a Musical
Conservatory, (5 men and 7 women; mean age = 29.8 years;
SD ± 7.2) were compared to a group of 12 non-musicians,
University students (graduated of the three-year degree and
attending the specialist degree) without educational musical
training (7 men and 5 women; mean age = 26.9 years; SD
± 4.5). The instruments played by the group of musicians
included piano, guitar, trumpet, and trombone; onemusician was
a singer. All participants were right-handed, had normal hearing,
and normal or corrected-to-normal vision. Participants provided
written, informed consent to participation in accordance with the
Helsinki Declaration. Participants did not receive any financial
compensation. The local ethics committee (ASL Lecce, Apulia
Region, Italy) approved the study.

Materials
Participants performed an emotional go/no-go task (emo go/no-
go), presented using E-Prime 2.0 (Richard and Charbonneau,
2009), during the EEG recordings.

FIGURE 2 | Matching ERP of Grand average elicited by the emo go/no-go

face recognition task in non-musicians in (black line) and musician (red line) in

right anterior, right posterior, left anterior, and left posterior regions. The

Graphic of ROIs Regions has been performed through the channels pooling

processing.

The emotional go/no-go task (Schulz et al., 2007; Waters and
Valvoi, 2009; Yerys et al., 2013) is a variant of the cognitive go/no-
go task (Gomez et al., 2007) in which emotional information,
measured through a decision-making process, is accompanied by
a motor response. Generally, during an emo go/no-go task, the
participant has to press the spacebar of a keyboard in response
to an emotional face (neutral, angry, fearful, or happy). The
choice of the face emotional expression depends on the task and
on the process being investigated. The emo go/no-go task is a
paradigm often used in ERP studies investigating a mismatch
in response to stimulus salience (Jodo and Kayama, 1992; Smith
et al., 2013; Moreno et al., 2014; Invitto et al., 2016). The N170
ERP component is the most sensitive in face recognition tasks
(Eimer, 2000, 2011; Heisz et al., 2006; Blau et al., 2007). In this
study, the computerized behavioral task required participants
to press the spacebar when they identified a neutral face; EEG
data were recorded whilst they were performing the task. Facial
expressions were extracted from the NimStim Set of Facial
Expressions (http://www.macbrain.org/resources.htm).

The NimStim Set is a collection of 672 images of the faces of
70 professional actors displaying various emotional expressions.
The actors are of varying ethnicity and are represented in the
same proportions by women and men. The collection consists
of images of eight emotional facial expressions: fear, happiness,
sadness, anger, surprise, disgust, neutral, and calm. In this
experiment, we presented a sample of 64 images of fearful, happy
and neutral faces, the expression categories were matched for sex
and ethnicity.

In each condition the go-no-go task was accompanied by one
of the following pieces from the classical piano repertoire:

FIGURE 3 | Grand average of the ERP components elicited by the emo

go/no-go face recognition task in non-musicians in the Albeniz (black line),

Chopin (red line), and Mozart condition (blue line) in right anterior, right

posterior, left anterior, and left posterior regions.
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• Chopin: Nocturne Op. 9 n. 1 and Nocturne Op. 9 n. 2.
• Mozart: Sonata in D major, K.V. 311.
• Albeniz: In Iberia, Rondeña.

Musical stimuli were delivered via two earphones, with a

Windows 7 reproduction intensity of 60% (−6.4 dB), Conexant

Smart Audio HD, Roland Sound Canvas, with a sampling rate

of 48,000 Hz and 24-bit depth (system information: professional
quality).

Each condition began with the listening of a musical

piece, selected from the pieces above, whilst participants were

performing the emo go/no-go task, looking at the emotional face

displayed on the screen.
Participants rated the sadness and happiness each piece

of music invoked using visual analog scales (VASs). The
scales were administered immediately after each condition.

The VASs consisted of a ten-centimeter line with the

poles labeled 0 (absence of pleasure, sadness or happiness)

and 10 (highest possible degree of pleasure, sadness, or
happiness).

Each condition lasted approximately 500 s. Images of neutral

(target), fearful and happy (non-target) faces were presented

in pseudo-random order. Both target and non-target images

were presented for 1,500 ms and the interstimulus interval was
1,500ms.

Participants were instructed to sit so that there was a gap

of about 75 cm between the front edge of the chair and the

base of the computer screen. They had to listen to the pieces of

classical music and respond to the presentation of neutral face on

the screen by pressing the spacebar of the computer keyboard.

At the end of each condition participants rated the emotions
the accompanying music had elicited using the VASs described
above.

FIGURE 5 | Grand average of the ERP components elicited by the emo

go/no-go face recognition task in non-musicians in the Albeniz (black line),

Chopin (red line), and Mozart conditions (blue line) in right anterior, right

posterior, left anterior, and left posterior regions.

FIGURE 4 | N170 amplitudes in non-musicians and musicians in L-POST ROI (Left Posterior Region of Interest).
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N170 ERP Recording
EEGs were recorded from 64 active channels, mounted in
an electrode cap according to the International 10–20-system.
Signals were recorded through Brain Vision actiCHamp (Brain
Products GmbH); the recording software was Brain Vision

Recorder and the analysis software was Brain Vision Analyzer
(Brain Products GmbH). Electrode impedance was kept below

15 k�. The EEG was amplified (band pass 0.1–40Hz, 24 dB),
with a sampling rate of 1000Hz. Electrodes were referenced
online to the FpZ. One electrode placed at the outer canthus of

the right eye and used to monitor horizontal eye movements.
Vertical eye movements and blinks were monitored by electrodes
above and below the left eye. Trials contaminated by eye

movements, amplifier conditioning, or other artifacts were
rejected. The signal was filtered offline (0.01–50Hz, 24 dB), and

the threshold for artifact rejection was set at > |125|µV. The

ocular rejection was performed through independent component
analysis (ICA). The ERP epochs included a 100-ms pre-stimulus
baseline period and a 500-ms post-stimulus segment. Separate
averages were calculated for each facial expression (neutral,
happy, and fearful) in each music condition (Albeniz, Mozart,
and Chopin). The onset of ERP N170 peaks was estimated
from grand average waveforms, according to the ERP latency
definition (Heisz et al., 2006; De Vos et al., 2012; Smith
et al., 2013). Peaks were automatically detected for all channels,
using the global maxima in interval method (Giroldini et al.,
2016).

DATA ANALYSIS AND RESULTS

To investigate the role of the experimental manipulation
on behavioral and psychophysiological data, we combined a
linear mixed modeling with a decision-tree learning approach.
Statistical analyses on linear mixed-models were performed with
lme4, car, and lmertest packages supplied in the R environment
whereas the decision-tree model was built by means of a tailor-
made algorithm (Menolascina et al., 2007).

Behavioral Data
Independent-samples t-tests were used to analyze data from the
three VASs for each condition (see Table 1).

A repeated measures ANOVA was performed to analyze
behavioral Reaction Time to neuter faces in the Emo Go/No-
Go paradigm. The analysis considered Music (Albeniz, Chopin,
Mozart) as within factor (3 Levels) and Group (2 Levels) as
between factor. The model showed significant results in Group (F
= 57.055, df= 1, p= 0.01), results just over the limits of statistical
significance inMusic condition (F= 2.947, df= 2, p= 0.053) and
an interaction Music condition × Group (F = 3.012, df = 2, p =
0.049). The results showed a trend in higher response times in the
musicians group, with a slower reaction time in Chopin session
(Table 2).

Psychophysiological Data
The latency and amplitude of the N170 component were analyzed
using separate linear mixed-effects models (LMMs) lme4 package

FIGURE 6 | N170 amplitudes in non-musicians and musicians in R-POST ROI (Right Posterior Region of Interest). N170 amplitudes in non-musicians and musicians

in R-POST ROI (Right Posterior).
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(Bates et al., 2015) supplied as part of the R package (Bates
et al., 2013, 2014). In both models, Group (musicians; non-
musicians) and Music (Albeniz; Mozart; Chopin) were defined
as fixed factors and participant and channel were coded as
random effects. The interaction between Group and Music was
also examined in the models. Sixty-one EEG electrodes were
clustered into four main regions (ROIs): left anterior (L-Ant),
right anterior (R-Ant), left posterior (L-Post) and right posterior
(R-Post). Left and right were defined according to the standard
international 10–20 system whereas anterior and posterior were
defined according to the following rule: ANT (F, Fp, FC, FT, C, T,
AF) and POST (TP, CP, P, PO, O; Frömer et al., 2012; Bornkessel-
Schlesewsky and Schlesewsky, 2013) and as according the recent
suggestions about the reduction of data dimensions (Luck and
Gaspelin, 2017). To investigate potential regional differences,
separate LMM analyses were run for reach ROI. In all these
models, the Face variable was kept fixed at the Neutral emotional
level (i.e., Target variable in the behavioral task, as described
in the Materials section). To identify graphically the Regions
of interest (ROIs), were processes through Analyzer a Pooling
Elaboration with the creation of 4 New areas: Right Anterior
(R-Ant), Right Posterior (R-Post), Left Anterior (L-Ant) and Left
Posterior (L-Post).

FIGURE 7 | Topographies of N170 amplitude elicited by neutral facial

expressions in non-musicians.

N170 Amplitude
Table 3 shows the results of LMMs for N170 amplitude. In the
L-Ant region there was no effect of Group or Music, although
there was an interaction (B=−2.152, t896 =−2.152, p= 0.03). In
the R-Ant region there were main effects of Group (B = −0.419,
t32 = −2.11, p = 0.04; Figure 1) and Music (B = 0.299, t906
= 2.69, p = 0.007), reflecting ampler N170 in the musicians
group and in the Chopin condition (Figure 2). There was also
an interaction between Group and Music: musicians, in Chopin
condition, revealed an increased amplitude (B = −0.360, t910 =
−2.13, p = 0.03) and a decreased amplitude elicited in Mozart
condition (B = 0.541, t913 = 3.16, p = 0.001; Figure 3). In
the L-Post region there was an effect of Group (Figures 2, 4),
reflecting increased N170 amplitude in musicians (B = −1.276,
t26 = −6.13, p = 0.002). There was also a Group × Music
interaction reflecting an increase in N170 amplitude in non-
musicians during the Mozart condition (B = 0.857, t537 = 2.59,
p = 0.009; Figure 5). In the R-Post region there was an effect of
Group (Figure 6): N170 amplitude was greater in the musicians
(B = −1.187, t25 = −2.16, p = 0.04; Figure 5), and Group ×
Music interaction: non-musicians showed an increase in N170
amplitude in the Mozart condition (B = 0.827, t552 = 2.42, p
= 0.01). Respect these results, more negative components are

FIGURE 8 | Topographies of N170 amplitude elicited by neutral facial

expressions in musicians.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 August 2017 | Volume 11 | Article 14429

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Invitto et al. N170, Music and Crossmodal Bias

visible through a Mapping imaging reconstruction in musicians
vs. non-musicians (Figures 7, 8).

N170 Latency
Table 4 shows the results of LMMs for N170 latency. There were
no effects of Group or Music in the L-Ant region. In R-Ant
latencies (Figure 9) were shorter in the Chopin condition (B
= −15.800, t919 = −4.25, p < 0.001), the opposite effect was
found in L-Post (Figure 10), with slower latencies in the Chopin
condition (B = −8.743, t730 = −2.16, p = 0.03). Finally, in
the R-Post (Figure 11) region latencies were shorter in both the
Chopin (B=−15.285, t741 =−4.88, p< 0.001) andMozart (B=
−15.543, t743 =−4.81, p < 0.001) conditions.

Assessing the Gender Effect
In order to evaluate whether the bias could be related to a gender
effect, we proceed by comparing the fixed-effects structure of
the previous linear-mixed models by adding and excluding the
factor gender from the models. The results were evaluated in
terms ofmodel fit by using an information theory based approach
(McElreath, 2016). To do so, for each ROI we considered two
models: M0 (Simple model: excluding Gender variable) and
M1 (Complex Model: including the Gender variable) and we
fit the model via maximum likelihood. The BIC information
criterion was then computed on the log-likelihood of the models
along with the Vuong’s statistic (Vuong, 1989; Merkle et al.,
2016). Finally, asymptotic confidence intervals (CIs) on the
BIC differences of the models (1BIC) were also computed. All
the computations involved were performed by means of the
nonnest2 package in the R environment.

Table 5 shows results for the model comparisons considering
Amplitude and Latency of N170. As for the previous analyses
(see Tables 2, 3), four models were considered with respect
to the four ROIs previously defined. Overall, the Vuong’s test
did not allow to reject the null hypothesis of indistinguishable
between models with and without the Gender Variable. The
model, in all ROI, showed very similar BICs. This strongly
suggests that the evidence of the models is the same. Indeed, the
95% confidence intervals of 1BIC overlapped the zero, implying
that the models are enough close and M1s cannot be preferred
over M0s. These results would suggest that including the gender
variable in the models (M1s) did not improve their evidence
with regards to the previous models (M0s). In this case, adding
Gender Effect, don’t significantly change the evidence of the
model, when compared to the sample data. Therefore, using
Occam’s razor, we resorted to considering the simplest models in
terms of parameters, according to the principle of simplifying the
variables in an experiment (Srinagesh, 2006; Luck and Gaspelin,
2017).

Decision-Tree Modeling: Target and Non-target

Stimuli
To validate that the emotional bias, generated by combined
stimuli, is correlated with the class of participant (musicians/non-
musicians), we processed the input data calculating, for each
participant, the relative variation between the music conditions
considering each EEG channel.

TABLE 4 | Results of linear mixed-effects model: fixed effects for group and music

on N170 latency.

ROI B (SE) t

L-Ant Baseline 166.283 (34.783) −0.609

Group

Non-Musicians vs.

Musicians

9.178 (6.968) 1.317

Music

Albeniz vs. Chopin −6.022 (3.935) −1.531

Albeniz vs. Mozart 1.214 (4.057) 0.299

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

4.147 (5.958) 0.696

Non-Musicians × Albeniz

vs. Musicians × Mozart

4.111 (6.039) 0.681

R-Ant Baseline 172.94 (4.38) 39.486

Group

Non-Musicians vs.

Musicians

8.612 (6.320) 1.363

Music

Albeniz vs. Chopin −15.80 (3.715) −4.253***

Albeniz vs. Mozart −4.655 (3.829) −1.216

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

9.990 (5.624) 1.776

Non-Musicians × Albeniz

vs. Musicians × Mozart

−4.621 (5.701) −0.811

L-Post Baseline 101.215 (7.47) 21.569

Group

Non-Musicians vs.

Musicians

16.991 (10.931) 1.554

Music

Albeniz vs. Chopin −8.743 (4.041) −2.163*

Albeniz vs. Mozart −2.552 (4.174) −0.611

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

14.881 (6.126) 2.430*

Non-Musicians × Albeniz

vs. Musicians × Mozart

9.282 (6.214) 1.493

R-Post Baseline 169.701 (7.599) 22.332

Group

Non-Musicians vs.

Musicians

21.699 (11.314) 1.918

Music

Albeniz vs. Chopin −15.285 (3.216) −4.889***

Albeniz vs. Mozart −15.543 (3.229) −4.813***

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

15.226 (4.739) 3.213**

Non-Musicians × Albeniz

vs. Musicians × Mozart

14.184 (4.808) 2.950**

Participants and EEG channels were treated as random effects; degrees of freedom of the
model were calculated with the Satterthwaite approximation. L-Ant: left-anterior; R-Ant:
right-anterior; L-Post: left-posterior; R-Post: right-posterior.
*p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9 | N170 Latency in non-musicians and musicians in R-ANT ROI (Right Anterior Region of Interest).

FIGURE 10 | N170 Latency in non-musicians and musicians in L-POST ROI (Left Posterior Region of Interest).
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FIGURE 11 | N170 Latency in non-musicians and musicians in R-POST ROI (Right Posterior Region of Interest).

TABLE 5 | Comparison respect to gender effect.

Gender effect

Model BIC M0 BIC M1 Vuong’s statistic 95% CIs 1BIC

N170

Amplitude

L-ANT 3432.45 3448.54 0.026 (p = 0.994) [−35.38, 3.20]

R-ANT 3160.68 3157.28 0.053 (p = 0.3) [−24.47, 31.26]

L-POST 2323.46 2345.85 0.026 (p = 0.998) [−37.30, −7.47]

R-POST 2460.68 2461.10 0.048 (p = 0.997) [−21.13, 20.30]

N170

Latency

L-ANT 9825.47 9826.65 0.042 (p = 0.5) [−26.18, 23.83]

R-ANT 9703.89 9719.64 0.017 (p = 0.6) [−31.77, 0.27]

L-POST 7927.17 7929.67 0.05 (p = 0.5) [−26.69, 21.71]

R-POST 7696.23 7675.25 0.09 (p = 0.6) [−11.63, 53.0]

In the Table, M0 indicates the model without the gender variable whereas M1 the
model where the gender variable was instead added. The Vuong’s statistic considers the
difference of two models in terms of log-likelihood. The statistic evaluates the hypothesis
that the models M0 and M1 are indistinguishable with regards to the sample data.
∆BIC indicates the difference (M0-M1) in terms of their BIC values whereas 95% CIs
are computed with the asymptotic formula.

To do this, we used the following equation (Equation 1):

1xij =
∣
∣
∣
∣
xk − xa

xa

∣
∣
∣
∣ (1)

where i ∈ 1, . . . , 24 was the participant, j ∈ 1, . . . , 61 was the
EEG channel, a= Albeniz; k= Chopin or Mozart.

TABLE 6 | Mean performances of the predictive models – N170 amplitude.

Face Dataset Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart 32.75 0.28 0.38 0.31

Albeniz vs. Chopin 62.00 0.52 0.73 0.72

Happy Albeniz vs. Mozart 66.88 0.60 0.74 0.67

Albeniz vs. Chopin 37.00 0.33 0.41 0.37

Neuter Albeniz vs. Mozart 63.50 0.68 0.60 0.64

Albeniz vs. Chopin 49.88 0.54 0.46 0.50

These models highlight that in happy faces ERP amplitude is modulated as in neuter faces
(in Albeniz vs. Mozart predictive model).

TABLE 7 | Mean performances of the predictive models – N170 latency.

Face Dataset Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart 64.50 0.61 0.68 0.70

Albeniz vs. Chopin 41.88 0.36 0.48 0.41

Happy Albeniz vs. Mozart 51.88 0.47 0.57 0.53

Albeniz vs. Chopin 75.88 0.70 0.81 0.76

Neuter Albeniz vs. Mozart 42.88 0.41 0.45 0.41

Albeniz vs. Chopin 65.5 0.46 0.85 0.66

These models highlight that in happy faces ERP latencies are modulated as in neuter faces
(in Albeniz vs Chopin predictive model)
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The output data was further processed to evaluate which
EEG channels showed the best discrimination capability for
the classification between the two groups. A predictive model
was implemented using a tree-building algorithm (Menolascina
et al., 2007), by generating prediction rules from partially pruned
decision trees that were built using C4.5 Quinlan’s heuristics
(Quinlan, 1993), whose main goal consists in the minimization
of the tree levels and nodes number, thereby maximizing data
generalization. This technique uses an information theoretical
procedure to select, at each choice point in the tree, the attribute
that would maximize the information gained from splitting the
data.

Predictive Model Results
The predictive model was trained and tested 200 times
considering different random combinations of training and test
sets, obtained from the input dataset considering a splitting
percentage of 81.82%. The results are expressed as mean values,
considering 200 iterations, of Accuracy, Sensitivity, Specificity
and Area Under the Curve (AUC) and are reported inTables 6, 7.

We tried to improve the performance of the previous
predictive model by reducing the number of the considered EEG
channels using a correlation-based filter that selects the most

TABLE 8 | Mean performances of the FCBF-filtered predictive models – N170

amplitude.

Face Dataset EEG

channels

Accuracy

%

Sensitivity Specificity AUC

Fear Albeniz vs. Mozart – – – – –

Albeniz vs. Chopin P3–CPz 71.65 0.70 0.74 0.77

Happy Albeniz vs. Mozart T8–F4 69.27 0.64 0.74 0.72

Albeniz vs. Chopin – – – – –

Neuter Albeniz vs. Mozart CP1 79.13 0.69 0.8925 0.81

Albeniz vs. Chopin FCz–CPz 66.38 0.73 0.60 0.67

In this amplitude dataset, we can see electrodes more sensible to predictive model. In
Fear face, EEG channels are P3 and CPz, In Happy face T8 and F4 and in Neuter Face
CP, FCz, and CPz.

highly correlated features. A fast correlation-based filter (FCBF)
algorithm (Yu and Liu, 2003) was adopted.

The same procedure discussed in the previous section was
applied considering the obtained subset of EEG channels, and a
new predictive model was implemented and evaluated.

The performance of the new predictive model is reported in
Tables 8, 9.

DISCUSSION

Our aim was to investigate modulation of emotional face
recognition by cross-modal perception, treated as a function
of background music. Synesthesia and crossmodal perception
can have a strong modulatory effect on cortical processing,
conditioning or facilitating perception and interpretation of
the administered stimulus. We analyzed how musicians’
recognition of facial expressions was affected by music-induced
emotions. These data allow us to suggest that the presence
of emotional information from another sensory channel (i.e.,
auditory information from background music) activates cross-
modal integration of information and that this process can
be modulated by the perception of the musical stimulus. This
salience, for emotional face, could be explicable in terms adaptive:
identifymore early stage emotions is a skill that, developmentally,
can be crucial for the survival and, proximal and contingent,
is an indispensable social competence (Niu et al., 2012). So,
in a condition where the participants are more “emotionally
involved,” the neuter face, that is ambiguous for a defined
emotional recognition and that is more difficult to recognize,
can be more affected by emotion music induced. This justifies
the fact that the musicians evaluated music as more pleasant
and emotional (happy and sad) than non-musicians, and this
judgment on emotional engagement is in agreement with their
musical appraisal and competence. This emotional involvement
leads to a delay in reaction times. These results imply that the
motor and perceptual systems can be modulated, in a top-down
process, by music-induced emotions. The electrophysiological
data revealed increased N170 amplitudes in musicians in all
conditions. The background music had less impact in non-
musicians, then can produce less bias in the task. Instead, an
earlier onset of the global processing of the stimulus indicates that

TABLE 9 | Mean performances of the FCBF-filtered predictive models – N170 latency.

Face Dataset EEG channels Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart Fp1–AF7 79.75 0.84 0.76 0.80

Albeniz vs. Chopin F8 65.50 0.45 0.86 0.66

Happy Albeniz vs. Mozart CP5 61.13 0.94 0.45 0.69

Albeniz vs. Chopin CP1–C5–CPz–AF4 82.00 0.78 0.87 0.82

Neuter Albeniz vs. Mozart – – – – –

Albeniz vs. Chopin FC1–O2–F4–AF7–FT7–FT8–AF8 70.63 0.49 0.92 0.71

In this latency dataset we can see electrodes more sensible to predictive model. In Fear face, EEG channels are Fp1, AF7 and F8; in Happy face CP5, CPP1, C5, CPz, and AF4 and in
Neuter Face FC1, O2, F4, AF7, FT7, FT8, and AF8.
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music interacts with the interpretation of salience, producing a
behavioral delay and an increased cortical arousal in musicians.
This result suggests that perception of facial expressions can vary
according to perceptions of a concurrent auditory stimulus and
an individual’s musical background.

The decreased ERP amplitude, faster reaction times and
lower VAS scores in the non-musicians group, suggests that
non-musicians found the background music less engaging and
emotionally arousing. Hence their top-down processes (less
modulated by musical listening), doesn’t bias the face perception.
The relative changes in arousal, during the face recognition
process, are driven by the subjective emotional reaction and top-
down processing. The evidence of this concept was obtained
from the comparison of responses to the neutral face (Target)
whilst listening to music by Albeniz (pleasant), Mozart (happy)
and Chopin (judged, at the same time, both sad and pleasant).
We also assessed whether, within our model, there was a gender
effect (Miles et al., 2016), but, in our study, gender analysis did
not improve evidence with regards to the simpler model. In this
case, adding gender effect, don’t significantly change the evidence
of the model, when compared to the sample data. We chose
to keep the simpler model, even in accordance with the latest
methodological ERP guidelines (Luck, 2005; Luck and Gaspelin,
2017). Probably in a future study, increasing the number of the
sample, so that we can analyze the gender effect within the model,
we could implement the complex model.

In view of these results, to investigate other possible bias
variable-related, we sought to determine whether the bias
effect could be present not only on neutral faces, as literature
highlight. According to this hypothesis, we tested, using the
predictive model, the N170 components for the other face
emotional expressions showed during the task (happy and
fear).

The predictive model allowed us to determine the most
significant decision-tree features; in fact, the classification
performances obtained using the trained predictive model were

high, regardless of training and test sets. In this case, we find

modulation of the response even in happy faces, but not in
fear faces. This could also be explained by theories on emotions
where the stimulus that produces fear is the least susceptible to
alterations because it is the one most immediately and easily
perceived (Vuilleumier et al., 2001; Phelps and LeDoux, 2005;
Almeida et al., 2016).

Emotional salience allows the recognition and discrimination
of neutral expressions. Our data indicate that the simultaneous
presence of emotional information from multiple sensory
channels activates a process of crossmodal integration that
could be facilitated by music. Further research using different
neuroscientific and behavioral techniques and paradigms is
needed to improve our understanding of emotional crossmodal
integration.
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Purpose: Driving fatigue has become one of the important causes of road accidents,

there are many researches to analyze driver fatigue. EEG is becoming increasingly useful

in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an

effective method for automatic detection of EEG signals is crucial needed.

Method: In order to evaluate the complex, unstable, and non-linear characteristics

of EEG signals, four feature sets were computed from EEG signals, in which fuzzy

entropy (FE), sample entropy (SE), approximate Entropy (AE), spectral entropy (PE), and

combined entropies (FE + SE + AE + PE) were included. All these feature sets were

used as the input vectors of AdaBoost classifier, a boosting method which is fast and

highly accurate. To assess our method, several experiments including parameter setting

and classifier comparison were conducted on 28 subjects. For comparison, Decision

Trees (DT), Support Vector Machine (SVM) and Naive Bayes (NB) classifiers are used.

Results: The proposed method (combination of FE and AdaBoost) yields superior

performance than other schemes. Using FE feature extractor, AdaBoost achieves

improved area (AUC) under the receiver operating curve of 0.994, error rate (ERR) of

0.024, Precision of 0.969, Recall of 0.984, F1 score of 0.976, and Matthews correlation

coefficient (MCC) of 0.952, compared to SVM (ERR at 0.035, Precision of 0.957, Recall

of 0.974, F1 score of 0.966, and MCC of 0.930 with AUC of 0.990), DT (ERR at 0.142,

Precision of 0.857, Recall of 0.859, F1 score of 0.966, and MCC of 0.716 with AUC of

0.916) and NB (ERR at 0.405, Precision of 0.646, Recall of 0.434, F1 score of 0.519,

and MCC of 0.203 with AUC of 0.606). It shows that the FE feature set and combined

feature set outperform other feature sets. AdaBoost seems to have better robustness

against changes of ratio of test samples for all samples and number of subjects, which

might therefore aid in the real-time detection of driver fatigue through the classification

of EEG signals.

Conclusion: By using combination of FE features and AdaBoost classifier to detect

EEG-based driver fatigue, this paper ensured confidence in exploring the inherent

physiological mechanisms and wearable application.

Keywords: driver fatigue, electroencephalogram (EEG), adaboost, fuzzy entropy, receiver operating

characteristic (ROC)
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INTRODUCTION

Electroencephalogram (EEG) is a very important monitoring
technique to reflect the instantaneous state of the brain.
Various computational ways based on EEG signals have been
successfully used to assist the diagnosis of seizure (Amal Feltane
et al., 2013), stroke, Alzheimer’s, schizophrenia (Boostani et al.,
2009), epilepsy (Guo et al., 2010), depression, Attention Deficit
Hyperactivity Disorder, and even fatigue. Driver fatigue is very
important factor to traffic safety and automated detection is
necessary urgently (Lal and Craig, 2001). Many EEG-based
studies have been performed to analyze and detect driving fatigue
(Kar et al., 2010; Mu et al., 2017a; Yin et al., 2017).

Correa et al. got 83.6% accuracy using a Neural Network
classifier (Correa et al., 2014). Mousa Kadhim et al. yielded
the highest accuracy of 85% using Discrete Wavelet Transforms
method (Mousa Kadhim et al., 2013). Li et al. achieved the highest
accuracy of 91.5% based on 12 types of energy parameters (Li
et al., 2012). Fu et al. reached a highest accuracy of 92.5% based
on Hidden Markov Model (HMM; Fu et al., 2016). Zhao et al.
hit a higher accuracy (98.7%) based on a KPCA-SVM classifier
(Zhao et al., 2010). Recently, entropy has been broadly applied
in the analysis of EEG signals, considering the fact that EEG is a
complex, unstable, and non-linear signal (Acharya et al., 2012; Hu
et al., 2015; Mu et al., 2016). A diverse varied collection of these
methods has been proposed in the last few decades, including
spectral entropy (PE), permutation entropy, distribution entropy,
fuzzy entropy (FE), Renyi entropy, approximate entropy (AE),
sample entropy (SE), and some others. Specially, in the field of
EEG processing, four of the most widely used and successful
entropy estimators are FE (Chen et al., 2009), SE (Richman and
Moorman, 2000), AE (Pincus, 1991), and PE (Reyes-Sanchez
et al., 2016). AE has demonstrated its capability to detect
complexity changes. SE is a similar statistic, which has not yet
been used as extensively as AE. AE and SE are very successful
entropy features, but they also have their weaknesses. AE is biased
because it includes self-matching in the count, while SE needs to
avoid the log(0) problem. They are also very sensitive to input
parameters. More recently, FE has been proposed to alleviate
these problems. FE is based on a continuous function to compute
the dissimilarity between two zero-mean subsequences, so it is
more stable in noise and parameter initialization.

Liu et al. got 84% accuracy with the combination of kernel
principal component analysis and HMM utilizing AE and
Kolmogorov complexity to detect the fatigue state (Liu et al.,
2010). Mu et al. yielded accuracy of 85% with FE and Support
Vector Machine (SVM) classifier (Mu et al., 2017a). Xiong et al.
proposed a feature combination of AE and SE with SVM classifier
to test driving fatigue, and achieved the best accuracy of 91.3%
(Xiong et al., 2016). Khushaba et al. exploited a feature extraction
by using fuzzy mutual-information method and achieved 92.8%
(Khushaba et al., 2011). Hu hit highest accuracy of 96.6% with FE
and Random Forest classifier (Hu, 2017).

Abbreviations: FE, Fuzzy entropy; SE, Sample entropy; AE, Approximate entropy;

PE, Spectral entropy; EEG, Electroencephalogram; AUC, Areas under ROC curves;

SVM, Support Vector Machine; DT, Decision Tree; NB, Naive Bayes; AdaBoost,

Adaptive Boosting; ERR, Error rate.

From the literature review, it has been observed that few
studies have been conducted for using ensemble classifier based
on EEG to study driver fatigue detection. Keeping this in mind,
the prime motivation of this work is to develop an automated
detection system for driver fatigue based on ensemble classifier.
The scheme employs four types of entropy for feature extraction
and AdaBoost (Freund and Schapire, 1997; Hastie et al., 2009)
for classification of EEG signals into normal and fatigue.
Several experiments on 28 subjects indicate that the proposed
scheme earns better detection performance and robustness in
comparison to other existing schemes.

The rest of this article is described as below. In Materials and
Methods, data acquisition, feature extraction, and classification
are illustrated. The results are discussed in Section Results
presents the evaluation of the method with the obtained results,
followed by a general discussion about classifier accuracy in
Section Discussion.

MATERIALS AND METHODS

Subjects
Twenty-eight university students (14 male, 19–24 years)
participated in this experiment, which all had a current driver’s
license. Before the experiment, they practiced driving for several
minutes to familiarize themselves with the process and purpose of
the experiment. The experiment was approved by the Academic
Ethics Committee of the Jiangxi University of Technology
according to the standards of the Declaration of Helsinki.
Written informed consent was obtained from each subject.

Experiment
In the static driving simulator (ZY-31D, ZhongYu CO., LTD,
China), the driver’s fatigue simulation test was performed on each
subject, as shown in Figure 1. The driving environment selected
for this work was a highway with low traffic density so as to
induce monotonous driving, which easily leads to driver fatigue
state.

Data Recording
Similar to former experiments (Chai et al., 2017; Hu, 2017; Mu
et al., 2017b), when the driving procedure started 20 min, the
last 5-min EEG recordings were marked as normal state. When

FIGURE 1 | Snapshot of the experimental setup.
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the continuous driving procedure lasted 60–120 min until the
questionnaire results (Lee’s subjective fatigue scale and Borg’s CR-
10 scale; Borg, 1990; Lee et al., 1991), participants’ responses
and electrooculogram (EOG) signals show the subject was in
driving fatigue state, the last 5-min recorded EEG recordings
were marked as fatigue state. EOG signals were used to determine
fatigue state using the blink rate and eye closure such as, the small
and slow blinks.

All channel data were referenced to two reference electrodes
A1 and A2, and digitized at 1 kHz from a 32-channel electrode
cap (including 2 reference electrodes) based on the international
10–20 system.

After the acquisition of EEG signals, the main procedures
of data preprocessing was implemented by Scan 4.3 software
of Neuroscan (Compumedics, Australia). The original signals
were first filtered and a 0.15–45 Hz band-pass filter was used.
Then 5-min EEG signals from 30 channels were sectioned into
1-s epochs, resulting in 300 epochs. With the 28 subjects and
30 channels, a total of 504,000 units were randomly formed for
dataset (each state having 252,000 units).

Feature Extraction
The EEG is assumed to be a non-stationary time series and
most feature extraction methods are only applicable to stationary
signal. To deal with this problem, the EEG time series were
divided into several short windows and its statistics is assumed to
be approximately stationary within each window. The following
feature extraction methods are applied to each 1-s windowed
signal. EEG signals are segmented without overlap, finally feature
sets are extracted from all channels in each 1 s window.

The ability to distinguish between normal state and fatigue
state depends mainly on the quality of the input vectors of the
classifier. In order to capture EEG features, four feature sets are
computed, including FE, SE, AE, and PE. In this section, the
computational methods of these feature sets in EEG recordings
are described in detail.

Spectral Entropy (PE)
PE is evaluated using the normalized Shannon entropy
(Kannathal et al., 2005), which quantifies the spectral complexity
of the time series. The power level of the frequency component is
indicated by Yi and yi is normalized as:

yi =
Yi

∑
Yi

(1)

The PE of the time series is calculated using the following
equation:

PE =
∑

iyi log(
1

yi
) (2)

Approximate Entropy (AE)
AE, as proposed by Pincus (1991), is a statistically quantified non-
linear dynamic parameter that measures the complexity of a time
series. The procedure for the AE-based algorithm is described as
follows:

(1) Considering a time series t(i), a set of m-dimensional vectors
are obtained according to the sequence order of t(i):

Tm
i = [t(i), t(i+ 1), . . . , t(i+m− 1)]; i≤L−m+ 1 (3)

d[Tm
i ,T

m
j ]is the distance between two vectors Tm

i andTm
j ,

defined as the maximum difference values between the
corresponding elements of two vectors:

d[Tm
i ,T

m
j ] = max{|t(i+ k)− t(j+ k)|},

(
i, j = 1 ∼ L−m

k∈(0,m−1)

+ 1, i 6= j
)

(4)

(2) Define Si is the number of vectors Tj that are similar toTi,
subject to the criterion of similarity d[Tm

i ,T
m
j ] ≤ s

Smi (s) =
1

L−m+ 1
Si (5)

(3) Define the function γm(s) as:

γm (s) =
1

L−m+ 1

L−m+1∑

i= 1

ln Smi (s) (6)

(4) Set m = m + 1, and repeat steps (3) to (6) to obtain Sm+1
i (s)

andγm+1(s), then:

γm+1 (s) =
1

L−m

L−m∑

i= 1

ln Sm+1
i (s) (7)

(5) The AE can be expressed as:

AE = γm (s) − γm+1 (s) (8)

Sample Entropy (SE)
SE’s algorithm is similar to that of AE (Yentes et al., 2013),
which is a new measure of time series complexity proposed by
Richman andMoorman (2000). The step (1) can be defined in the
same way as the AE-based algorithm; other steps in the SE-based
algorithm are described as follows:

(1) Define Ai is the number of vectors Tj that are similar to Ti

subject to the criterion of similarity d[Tm
i ,T

m
j ] ≤ s

Am
i (s) =

1

L−m− 1
Ai (9)

(2) Define the function γm(s) as:

γm(s) =
1

L−m

L−m∑

i= 1

Am
i (s) (10)

(3) Setm=m+ 1, and repeat above steps to obtainAm+1
i (s) and

γm+1(s), then

γm+1(s) =
1

L−m− 1

L−m−1∑

i=1

Am+1
i (s) (11)

(4) The SE can be expressed as:

SE = log(γm (s) /γm+1 (s)) (12)
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Fuzzy Entropy (FE)
To deal with some of the issues with SE, Xiang et al. proposed
the use of fuzzy membership function in computing the vector
similarity to replace the binary function in SE algorithm (Xiang
et al., 2015), so that the entropy value is continuous and smooth.
The procedure for the FE-based algorithm is described in detail
as follows:

(1) Set a L-point sample sequence: {v(i) : 1 ≤ i ≤ L};
(2) The phase-space reconstruction is performed on v(i)

according to the sequence order. The reconstructed vector
can be written as:

Tm
i = {v(i), v(i+ 1), ..., v(i+m− 1)} − v0(i) (13)

where i = 1, 2, ..., L − m + 1, and v0(i) is the average value
described as the following equation:

υ0 (i) =
1

m

m−1∑

j= 0

υ(i+ j) (14)

(3) dmij , the distance between two vectors Tm
i andTm

j , is

defined as the maximum difference values between the
corresponding elements of two vectors:

dmij = d
[
Tm
i ,T

m
j

]
= maxk∈(0,m−1)

{
|υ

(
i+ k

)
− υ0 (i)

−(υ
(
j+ k

)
− υ0

(
j
)
)|
}

(i,j = 1∼ L−m, i 6= j) (15)

(4) According to the fuzzy membership function σ (dmij , n, s), the

similarity degree Dm
ij between two vectors Tm

i and Tm
j is

defined as:

Dm
ij = σ (dmij , n, s) = exp(−(dmij )

n
/s) (16)

where the fuzzy membership function σ (dmij , n, s) is an

exponential function, while n and s are the gradient and
width of the exponential function, respectively.

(5) Define the functionγm(n, s):

γm(n, s) =
1

L−m

L−m∑

i= 1

1

L−m− 1

L−m∑

j= 1,j 6=1

Dm
ij ] (17)

(6) Repeat the steps from (1) to (4) in the same manner. Define
the function:

γm+1(n, s) =
1

L−m

L−m∑

i= 1

1

L−m− 1

L−m∑

j= 1,j 6=1

Dm+1
ij ] (18)

(7) The FE can be expressed as:

FE (m, s, n) = lnγm (n, s) − lnγm+1(n, s) (19)

In these four entropies,m and s are the dimensions of phase space
and similarity tolerance, respectively. In the present study,m= 2,
n= 4 while s= 0.2 ∗ SD, where SD denotes the standard deviation
of the time series.

For optimizing the detection quality, the feature sets were
normalized for each subject and each channel by scaling between
−1 and 1.

Classification
To avoid over-fitting problem, the datasets were separated into
train sets and test sets in the following pattern. In the train phase,
10-fold cross validation applied on the features such that 10%
feature vectors are dedicated as test set and other 90% feature
vectors are considered as the train set. In the next iteration,
another 10% feature vectors consider as test set and the rest
for the train set, till all of feature vectors involved one time in
the test process. The final result was obtained by averaging the
results of corresponding turns. By this evaluation scheme, the
dependencies of the train and test sets were eliminated.

Since there is no uniform classification method suitable for
all subjects and all applications, usually it may be useful to test
multiple methods (Zhang et al., 2017). In this work, three types
of base classifiers namely Decision Trees (DT), Support Vector
Machine (SVM), and Naive Bayes (NB) were used. DT is a non-
parametric supervised learning method used for classification.
DT establishes several binary decision functions on the features.
DT1 and DT9 represent DT with the maximum depth of the
tree being 1 and 9 in this work, respectively. In the case of
non-linear classification, kernels, such as, radial basis functions
(RBF), are used to map the data into a higher dimensional feature
space in which a linear separating hyper-plane could be found.
Naive Bayes method is based on applying Bayes’ theorem with
the “naive” assumption. The likelihood in NB of the features is
assumed to be Gaussian. In this study, grid parameter search was
used to achieve better results.

AdaBoost is an eminent ensemble learning based classification
model (Amal Feltane et al., 2013; Yang et al., 2016), which
was first proposed by Freund and Schapire (1997). AdaBoost
produces the final output by weighting the decisions of all
these weak classifiers using majority vote method. The AdaBoost
algorithm is described as follow:

Algorithm AdaBoost
Definition train dataset (X, Y)= {(x1,y1), (x2,y2), (x3,y3), . . . . . . ,
(xN ,yN)}, yi ε {-1, 1}

iterator: M;

Initialize each weight W1, i = 1
N , i= 1, 2, . . . . . . , N,

Linear combination function of basic classifiers f0 (x) = 0
for m= 1 to M do

train a base learner: Dm(x)

calculate error rate: em =
∑N

i=1Wm,iI(Dm (xi) − yi)

αm = 1
2 ln(

1−em
em

)

update weight: Wm+1, i = Wm, i

Zm
exp

(
−αmyiDm (xi)

)
,

normalization factor Zm =
∑N

i=1Wm,i exp
(
−αmyiDm (xi)

)

fm (x) = fm−1 (x) + lr ∗ αmDm(x)
end for

Output sign
(
fM (x)

)
= sign(

∑M
m=1 αmDm(x))

In this work, the DT9 was used as base classifiers.

Performance Evaluation
To provide an easier-to-understand method to assess the
classification quality, the results of classification and the
performance of classifiers are expressed in terms of Error rate,
Precision, Recall, F1 score, MCC, and AUC which are defined as
follows:
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FIGURE 2 | ERR for AdaBoost based on different feature sets.

Error rate (ERR) calculates the total number of EEG segments
which are incorrectly classified

ERR =
(FP + FN)

(FP + TN + FP + FN)

The precision intuitively reflects the ability of the classifier to
determine the whole sample—which the positive is identified as
positive and the negative is identified as negative.

Precision =
TP

TP + FP

The recall intuitively reflects the proportion of positive samples
that are correctly identified.

Recall =
TP

TP + FN

The F1 score can be interpreted as a weighted average of precision
and recall, where an F1 score reaches the optimum value at 1 and
the worst score at 0.

F1 =
2 ∗ (Precision ∗ Recall)

(Precision + Recall)

The Matthews correlation coefficient (MCC) is used in machine
learning as a measure of the quality of two-class classifications.
The MCC is in essence a correlation coefficient value between -1
and+1.

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Where
TP (True Positive)= correctly identified normal segments
TN (True Negative)= correctly identified fatigue segments
FN (False Negative)= incorrectly identified normal segments
FP (False Positive)= incorrectly identified fatigue segments

AUC illustrates the performance of a binary classifier system
as its discrimination threshold is varied. It is created by drawing
true positive rates from positive (true positive rate) and false
positive rates (false positive rates) in a variety of threshold
settings.

Statistical Analysis
In order to investigate differences of average accuracy among
various classifiers and feature sets, the paired sample t-test was
used to evaluate effectiveness on each comparison. The results
are averages over 10 independently turns of combination of train
set and test set in each experiment.

RESULTS

In order to verify the validity, effectiveness, and robust of
proposed method, some experiments were performed on 28
subjects.

Comparison with Different Feature Sets
and Different Classifiers
As shown in Figure 2. FE feature set performs slightly better
than the combined entropy (FE + SE + AE + PE) feature set
(0.020 against 0.029). A paired t-test across the 10 independent
comparisons indicates a significant difference with p-value
around 0.003. It can be seen that the FE feature set performs
about 0.098 and 0.075 better than the SE and AE feature set
at ERR index, respectively. A paired t-test over 10 independent
comparisons shows a significant difference with p-value lower
than 0.001. AE feature set performs slightly better than SE feature
set. It can also show that the PE feature set performs worst with
the lowest ERR being about 0.337.

The results of 10 independently rounds are used to drawmean
ROC curves. Different feature sets or classifiers were compared
by analyzing their ROC curves and areas under ROC curves
(AUC). In Figures 3A–E, their performance in ROC curves
produced was compared by different classifiers on combined
entropy feature set, FE feature set, SE feature set, AE feature set
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FIGURE 3 | ROC curves for different feature sets and different classifiers.

(A–E) Represents combined feature set, FE feature set, SE feature set, AE

feature set and PE feature set, respectively.

and PE feature set, respectively. It shows that the FE feature set
and combined feature set outperform other feature sets, which
similar to Figure 2. For example, the best ERR of FE feature set
and combined feature set are both 0.025, while the best ERR of
SE, AE, and PE are 0.115, 0.116, and 0.374, respectively. The
best AUC of FE feature set and combined feature set is are 0.993
and 0.994, respectively while the best ERR of SE, AE, and PE
are 0.961, 0.960, and 0.729, respectively. Consequently, adding
more featuresmakes nothing changes for driver fatigue detection.
Therefore, the FE feature set is selected for the next experiments.

As shown in Figure 4, it illustrate that AdaBoost outperform
other classifiers. For instance, the best ERR and AUC is 0.025
and 0.994 for AdaBoost based on FE feature set, while the
best ERR and AUC is 0.036 and 0.990 for SVM based on FE
feature set. The p-value is 0.0062 between AdaBoost and SVM.
AdaBoost classifier is significantly better than other classifiers.
The p-values are 0.0032 and 0.0001, by paired t-test between DT9
and AdaBoost, and between NB and AdaBoost, respectively. It’s
conjectured that AdaBoostmodels work best because theymay be
more robust than other models such as, DT and NBwhen dealing
with scalar data sets that are not too larger.

To evaluate the effectiveness of AdaBoost in the classification
of EEG signals, the classification indexes including ERR,
Precision, Recall, F1, score and MCC of the four classifiers were
compared based on FE feature set. As shown in Figure 4 and
Table 1, the overall performance of AdaBoost is the best of the
four classifiers in terms of ERR, Precision, Recall, MCC, and F1
score. The ERR of AdaBoost can reach 0.024 ± 0.002, which is
almost 0.011 lower than SVM (0.035 ± 0.005). The ERR of DT1,
DT9, and NB is 0.0369 ± 0.014, 0.0142 ± 0.008, and 0.405 ±
0.012, respectively.

Parameter Setting
The main parameters to be adjusted in AdaBoost method
are parameter max_depth of base classifier DT and lr. Best
performance of AdaBoost model can be yielded through carefully
choosing the optimal combination of these parameters. The
parametermax_depth is the most important one in the DT, which
controls the maximum depth of the tree. Figure 5A shows the
error rates under differentmax_depth and fixed iteration (=500)
based on FE feature set. It is showed that the average error rate
attains the minimal point 0.022 ± 0.004 when max_depth equals
to about 8. From Figure 5B, it can be seen that the average
error rate starts to even out at 0.022 ± 0.003 when the value of
lr smaller than about 1.5. According to these results, the final
AdaBoost classifier in next experiments is set with the parameters
max_depth= 9 (DT9) and lr = 1.0.

Comparison with Different Size of Test
Samples
The ratio of train samples for test samples is important for the
performance of classifier. To determine the robustness of the
classifier against size of test sample or train size, the ratio of test
samples for all samples is set varying from 0.03 to 0.97. The ERR
of AdaBoost against different ratio is shown in Figure 6.

It is observed that the average error rate begins to stabilize
at about 0.03 when the ratio being about 0.5. When the ratio
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FIGURE 4 | Performance of different classifiers based on FE feature set.

TABLE 1 | p-value between AdaBoost and other classifiers with paired t-test.

Classifiers

Index
ERR Precision Recall F1 score MCC

SVM 1.05e-5 4.81e-4 5.60e-4 1.31e-4 8.92e-5

DT1 2.12e-7 4.82e-7 4.10e-7 4.46e-7 4.41e-7

DT9 2.07e-7 1.32e-6 9.46e-7 6.61e-7 6.10e-7

NB 2.06e-7 5.33e-7 3.98e-7 4.27e-7 3.97e-7

becomes larger, the ERR also becomes larger, but when ratio
reaches close to 1.0, the ERR is close to 10% and becomes
worse, possibly because of the lack of training samples. On
the contrary, when the ratio becomes smaller, ERR is stable at
around 0.02, which indicating that ratio is more appropriate in
the 0.1.

P-value between AdaBoost and SVM, between AdaBoost and
DT9, are 3e-8 and 4e-16, respectively. Compared to SVM andDT,
AdaBoost seems to have better robustness against changes of ratio
of test samples for all samples.

Comparison with Different Number of
Subjects
The number of subjects is also an important parameter in the
driving fatigue detection system. More subjects can provide
more information that may improve or reduce detection
performance. Generally speaking, when average performance is
poor, any subject with higher accuracy can improve the overall
performance, and vice versa. Sometimes, the classifier model that
is suitable for small samples may lose performance when large
samples are used. However, when more subjects are involved,
the system costs, including hardware and computation time,
will also increase. Therefore, a tradeoff between the system
performance and system cost should be based on the specificity
of the application.

To answer the question of how many subjects are needed
to train for a satisfactory detection system, system performance

was evaluated with respect to the number of subjects. For each
number n (from 2 to 28), a random combination (n out of
28 subjects) was repeated 20 times for calculating classification
accuracy using 10-fold cross validation. Three classifiers
approaches were calculated for comparison. Furthermore, for
each condition (n from 2 to 28), the paired T-test was
used as a post-hoc test to evaluate if the performance of
AdaBoost was significantly better than that of other two
classifiers.

The ERR of AdaBoost against different number of subjects is
shown in Figure 7. It can be seen that, for AdaBoost classifier,
when the number of subjects is <13, ERR is <0.01, when the
number of subjects continue to increase, ERR also increases, and
is stable at about 0.02. ERR is not increasing monotonically with
the number of subjects but tending to reach equilibrium.

P-values between AdaBoost and SVM, between AdaBoost
and DT9, are 4.665e-8 and 1.409e-8, respectively. Compared to
SVM and DT, AdaBoost seems to have better robustness against
changes of number of subjects.

DISCUSSION

As see in Table 2, it is found that the classification performance
of proposed method was better than that in the others research
using entropy feature sets. Although, based on the existing EEG
data, the optimal performance of detection of driving fatigue by
using AdaBoost-based method showed well application on the
real-time detection of driving fatigue.

Among the state-of-art classifier schemes, four representive
algorithms, DT, NB, SVM, and AdaBoost were experimented for
classification tasks of some data sets. These classifiers have been
shown very effective in many pattern recognition applications.
These classifiers are applied on the extracted features and
their results are shown in Figures 3, 4 in which AdaBoost
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FIGURE 5 | AdaBoost method parameter tuning results based on FE feature set and DT base classifier. (A)The error rates for different max_depth with lr = 1.0.

(B) The error rates with default max_depth (value = 9) for different lr.

FIGURE 6 | Performance evaluation with respect to the ratio of test samples for all samples.

FIGURE 7 | Performance evaluation in terms of number of subjects.

TABLE 2 | Studies regarding driver fatigue detection using entropy feature sets.

Research group Feature method Highest accuracy (%)

Liu et al., 2010 AE and others 84

Mu et al., 2017a FE 85

Xiong et al., 2016 AE and SE 91.3

Khushaba et al., 2011 FE 92.8

Hu, 2017 FE 96.6

This paper FE 97.5

showed a better results in comparison with the three other
classifiers.

Also to evaluate robustness of the classifiers, different
combinations of train set and test sets were employed and the
classification results were brought in Figures 6, 7. A repeated
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progressive method with various sample sizes was applied to find
out if there is any relationship between data set size and the
performance. It can be seen that AdaBoost is also more robust
than the three other classifiers.

The experiment confirmed that, in comparison with the
AE, PE, and SE, the FE had a better consistency and
better discrimination ability. The results also showed that
the differences between the normal state and the fatigue
state were relative larger from the FE from the AE, SE, or
the PE, confirming that the FE had a better performance
in distinguishing fatigue state. The result achieved in this
study ensured confidence in probing the theoretical reason
for the different discrimination ability and, hence, leads to
new ideas for exploring the inherent physiological mechanisms
when using the entropy methods. This indicated that the
FE could be an effective method for the driver fatigue
detection.

However, there are several limitations in this study.
First, it is worth noting that the parameter settings for
the SE, AE, and PE method are the local similarity and
parameters may not be the optimal solution. Second, the
number of subject is relatively small. Although according
to the existing literature in the Introduction section, the 28
subjects are not too small, but the number still needs to be
increased. Third, only three commonly used classifiers and
the four feature sets were compared in this study. Last, the
different impacts of different channels haven’t been took into
account.

CONCLUSION

In this paper, a method to develop an ensemble classifier for
recognizing fatigue was proposed. A new EEG feature vector
based on FE, SE, AE, and PE was used as input into four different
classifiers: DT, NB, SVM, and AdaBoost. It was concluded that
the combination of these feature sets or FE feature set with
the AdaBoost provided the best performance on EEG dataset.
The proposed method had very high accuracy classifying driver
fatigue events. Further, it was showed how the method for
detecting fatigue segments was robust.

AUTHOR CONTRIBUTIONS

JH conceived and designed the experiments; JH analyzed the data
and wrote the paper.

ACKNOWLEDGMENTS

This work was supported by Project of Department of Science
and Technology, Jiangxi Province (No 20151BBE50079), Project
of Department of Education, Jiangxi Province (No GJJ151146
and No GJJ161143) and Patent transformation Project of
Intellectual Property Office of Jiangxi Province [The application
and popularization of the digital method to distinguish the
direction of rotation photoelectric encoder in identification].
Thanks P. Wang, J. L. Min and Z. D. Mu for collecting and
preprocessing EEG data.

REFERENCES

Acharya, U. R., Molinari, F., Sree, S. V., Chattopadhyay, S., Ng, K. H., and Suri, J. S.

(2012). Automated diagnosis of epileptic EEG using entropies. Biomed. Signal

Process. Control 7, 401–408. doi: 10.1016/j.bspc.2011.07.007

Amal Feltane, G., Boudreaux-Bartels, F., and Besio, W. (2013). Automatic seizure

detection in rats using laplacian EEG and verification with human seizure

signals. Ann. Biomed. Eng. 41, 645–654. doi: 10.1007/s10439-012-0675-4

Boostani, R., Sadatnezhad, K., and Sabeti, M. (2009). An efficient classifier to

diagnose of schizophrenia based on the EEG signals. Expert Syst. Appl. 36,

6492–6499. doi: 10.1016/j.eswa.2008.07.037

Borg, G. (1990). Psychophysical scaling with applications in physical work

and the perception of exertion. Scand. J. Work Environ. Health. 16, 55–58.

doi: 10.5271/sjweh.1815

Chai, R., Ling, S. H., San, P. P., Naik, G. R., Nguyen, T. N., Tran, Y., et al.

(2017). Improving EEG-based driver fatigue classification using sparse-deep

belief networks. Front. Neurosci. 11:103. doi: 10.3389/fnins.2017.00103

Chen, W., Zhuang, J., Yu, W., and Wang, Z. (2009). Measuring complexity

using fuzzyen, apen, and sampen. Med. Eng. Phys. 31, 61–68. doi: 10.1016/

j.medengphy.2008.04.005

Correa, A. G., Orosco, L., and Laciar, E. (2014). Automatic detection of drowsiness

in EEG records based on multimodal analysis. Med. Eng. Phys. 36, 244–249.

doi: 10.1016/j.medengphy.2013.07.011

Freund, F., and Schapire, R. (1997). A decision-theoretic generalization of on-line

learning algorithms and an application to boosting. J. Comput. Syst. Sci. 55,

119–139. doi: 10.1006/jcss.1997.1504

Fu, R. R., Wang, H., and Zhao, W. B. (2016). Dynamic driver fatigue detection

using hidden Markov model in real driving condition. Expert Syst. Appl. 63,

397–411. doi: 10.1016/j.eswa.2016.06.042

Guo, L., Rivero, D., and Pazos, A. (2010). Epileptic seizure detection

using multiwavelet transform based approximate entropy and

artificial neural networks. J. Neurosci. Methods 193, 156–163.

doi: 10.1016/j.jneumeth.2010.08.030

Hastie, T., Rosset, S., Zhu, J., and Zou, H. (2009). Multi-class AdaBoost. Stat. Interf.

2, 349–360. doi: 10.4310/sii.2009.v2.n3.a8

Hu, J. F. (2017). Comparison of different features and classifiers for driver fatigue

detection based on a single EEG channel. Comput. Math. Methods Med. 2017:9.

doi: 10.1155/2017/5109530

Hu, J. F., Mu, Z. D., and Wang, P. (2015). Multi-feature authentication system

based on event evoked electroencephalogram. J. Med. Imaging Health Inform.

5, 862–870. doi: 10.1166/jmihi.2015.1471

Kannathal, N., Choo, M. L., Acharya, U. R., and Sadasivan, P. (2005). Entropies for

detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194.

doi: 10.1016/j.cmpb.2005.06.012

Kar, S., Bhagat, M., and Routray, A. (2010). EEG signal analysis for the assessment

and quantification of driver’s fatigue. Transp. Res. F Traffic Psychol. Behav. 13,

297–306. doi: 10.1016/j.trf.2010.06.006

Khushaba, R. N., Kodagoda, S., Lal, S., and Dissanayake, G. (2011).

Driver drowsiness classification using fuzzy wavelet-packet-based

feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58, 121–131.

doi: 10.1109/TBME.2010.2077291

Lal, S. K., and Craig, A. (2001). A critical review of the psychophysiology of driver

fatigue. Biol. Psychol. 55, 173–194. doi: 10.1016/S0301-0511(00)00085-5

Lee, K. A., Hicks, G., and Nino-Murcia, G. (1991). Validity and

reliability of a scale to assess fatigue. Psychiatry Res. 36, 291–298.

doi: 10.1016/0165-1781(91)90027-M

Li, W., He, Q. C., Fan, X. M., and Fei, Z. M. (2012). Evaluation of

driver fatigue on two channels of EEG data. Neurosci. Lett. 506, 235–239.

doi: 10.1016/j.neulet.2011.11.014

Liu, J. P., Zhang, C., and Zheng, C. X. (2010). EEG-based estimation of mental

fatigue by using KPCA–HMM and complexity parameters. Biomed. Signal

Process. Control 5, 124–130. doi: 10.1016/j.bspc.2010.01.001

Frontiers in Computational Neuroscience | www.frontiersin.org 9 August 2017 | Volume 11 | Article 7245

https://doi.org/10.1016/j.bspc.2011.07.007
https://doi.org/10.1007/s10439-012-0675-4
https://doi.org/10.1016/j.eswa.2008.07.037
https://doi.org/10.5271/sjweh.1815
https://doi.org/10.3389/fnins.2017.00103
https://doi.org/10.1016/j.medengphy.2008.04.005
https://doi.org/10.1016/j.medengphy.2013.07.011
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.jneumeth.2010.08.030
https://doi.org/10.4310/sii.2009.v2.n3.a8
https://doi.org/10.1155/2017/5109530
https://doi.org/10.1166/jmihi.2015.1471
https://doi.org/10.1016/j.cmpb.2005.06.012
https://doi.org/10.1016/j.trf.2010.06.006
https://doi.org/10.1109/TBME.2010.2077291
https://doi.org/10.1016/S0301-0511(00)00085-5
https://doi.org/10.1016/0165-1781(91)90027-M
https://doi.org/10.1016/j.neulet.2011.11.014
https://doi.org/10.1016/j.bspc.2010.01.001
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hu Detection of Fatigue Based on AdaBoost

Mousa Kadhim, W., Murugappan, M., and Ahmmad, B. (2013). Wavelet packet

transform based driver distraction level classification using EEG. Mathem.

Probl. Eng. 3, 841–860. doi: 10.1155/2013/297587

Mu, Z. D., Hu, J. F., and Min, J. L. (2016). EEG-based person authentication

using a fuzzy entropy-related approach with two electrodes. Entropy 18:432.

doi: 10.3390/e18120432

Mu, Z., Hu, J., and Yin, J. (2017a). Driving fatigue detecting based on

EEG signals of forehead area. Int. J. Pattern Recognit. Artif. Intell. 31:12.

doi: 10.1142/S0218001417500112

Mu, Z., Hu, J., and Min, J. (2017b). Driver fatigue detection system using

electroencephalography signals based on combined entropy features. Appl. Sci.

7:150. doi: 10.3390/app7020150

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.

Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.

6.2297

Reyes-Sanchez, E., Alba, A., Mendez, M. O., Milioli, G., and Parrino, L. (2016).

Spectral entropy analysis of the respiratory signal and its relationship with

the cyclic alternating pattern during sleep. Int. J. Mod. Phys. C 27:10.

doi: 10.1142/S0129183116501400

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using

approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.

278, H2039–H2049.

Xiang, J., Li, C., Li, H., Cao, R., Wang, B., Han, X., et al. (2015). The detection

of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods 243,

18–25. doi: 10.1016/j.jneumeth.2015.01.015

Xiong, Y., Gao, J., Yang, Y., Yu, X., and Huang, W. (2016). Classifying driving

fatigue based on combined entropy measure using EEG signals. Int. J. Control

Autom. 9, 329–338. doi: 10.14257/ijca.2016.9.3.30

Yang, T., Chen, W. T., and Cao, G. T. (2016). Automated classification of neonatal

amplitude-integrated EEG based on gradient boosting method. Biomed. Signal

Process. Control. 28, 50–57. doi: 10.1016/j.bspc.2016.04.004

Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., and Stergiou,

N. (2013). The appropriate use of approximate entropy and sample entropy

with short data sets. Ann. Biomed. Eng. 41, 349–365. doi: 10.1007/s10439-012-

0668-3

Yin, J. H., Hu, J. F., and Mu, Z. D. (2017). Developing and evaluating a mobile

driver fatigue detection network based on electroencephalograph signals.

Healthcare Technol. Lett. 4, 34–38. doi: 10.1049/htl.2016.0053

Zhang, C. S., Liu, C. C., Zhang, X. L., and Almpanidis, G. (2017).

An up-to-date comparison of state-of-the-art classification

algorithms. Expert Syst. Appl. 82, 128–150. doi: 10.1016/j.eswa.2017.

04.003

Zhao, C., Zheng, C., Zhao, M., and Liu, J. (2010). Physiological assessment of

driving mental fatigue using wavelet packet energy and random forests. Am.

J. Biomed. Sci. 2, 262–274. doi: 10.5099/aj100300262

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hu. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2017 | Volume 11 | Article 7246

https://doi.org/10.1155/2013/297587
https://doi.org/10.3390/e18120432
https://doi.org/10.1142/S0218001417500112
https://doi.org/10.3390/app7020150
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1142/S0129183116501400
https://doi.org/10.1016/j.jneumeth.2015.01.015
https://doi.org/10.14257/ijca.2016.9.3.30
https://doi.org/10.1016/j.bspc.2016.04.004
https://doi.org/10.1007/s10439-012-0668-3
https://doi.org/10.1049/htl.2016.0053
https://doi.org/10.1016/j.eswa.2017.04.003
https://doi.org/10.5099/aj100300262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


ORIGINAL RESEARCH
published: 04 September 2017

doi: 10.3389/fnbeh.2017.00166

Theta Oscillations Related to
Orientation Recognition in
Unattended Condition: A vMMN
Study
Tianyi Yan 1*, Yuan Feng 1, Tiantian Liu 1, Luyao Wang 2, Nan Mu 1, Xiaonan Dong 1,
Zichuan Liu 3, Tianran Qin 4, Xiaoying Tang 1 and Lun Zhao 5,6

1School of Life Science, Beijing Institute of Technology, Beijing, China, 2Intelligent Robotics Institute, School of Mechatronical
Engineering, Beijing Institute of Technology, Beijing, China, 3Saddle River Day School, Saddle River, NJ, United States,
4Beijing Royal School, Beijing, China, 5School of Education, Beijing Normal University Zhuhai, Zhuhai, China, 6School of
Psychological Research, Beijing Yiran Sunny Technology Co., Ltd., Beijing, China

Edited by:
Daniela Iacoviello,

Sapienza Università di Roma, Italy

Reviewed by:
Wenhai Zhang,

Yancheng Institute of Technology,
China

Thomas Fenzl,
University of Innsbruck, Austria

*Correspondence:
Tianyi Yan

yantianyi@bit.edu.cn

Received: 18 October 2016
Accepted: 21 August 2017

Published: 04 September 2017

Citation:
Yan T, Feng Y, Liu T, Wang L, Mu N,

Dong X, Liu Z, Qin T, Tang X and
Zhao L (2017) Theta Oscillations

Related to Orientation Recognition in
Unattended Condition:

A vMMN Study.
Front. Behav. Neurosci. 11:166.
doi: 10.3389/fnbeh.2017.00166

Orientation is one of the important elements of objects that can influence visual
processing. In this study, we examined whether changes in orientation could be
detected automatically under unattended condition. Visual mismatch negativity (vMMN)
was used to analyze this processing. In addition, we investigated the underlying
neural oscillatory activity. Non-phase-locked spectral power was used to explore
the specific frequency related to unexpected changes in orientation. The experiment
consisted of standard (0◦ arrows) and deviant (90◦/270◦ arrows) stimuli. Compared
with standard stimuli, deviant stimuli elicited a larger N170 component (negative
wave approximately 170 ms after the stimuli started) and a smaller P2 component
(positive wave approximately 200 ms after the stimuli started). Furthermore, vMMN was
obtained by subtracting the event-related potential (ERP) waveforms in response to
standard stimuli from those elicited in response to deviant stimuli. According to the
time–frequency analysis, deviant stimuli elicited enhanced band power compared with
standard stimuli in the delta and theta bands. Compared with previous studies, we
concluded that theta activity plays an important role in the generation of the vMMN
induced by changes in orientation.

Keywords: visual mismatch negativity (vMMN), wavelet analysis, event-related brain potentials (ERPs),
time–frequency analysis, theta oscillation

INTRODUCTION

Object characteristics affect visual processing. In addition to color, shape and size, orientation
is one important element. Furthermore, detecting orientation changes can be vital to survival,
especially under unattended condition. This process can be studied using a component of event-
related potential (ERP) called mismatch negativity (MMN).

MMN is a reliable indicator of change-detection processing (Näätänen et al., 2007; Fuentemilla
et al., 2008). Visual MMN (vMMN) can be elicited by visual oddball tasks (20% deviant stimuli
are inserted randomly in a sequence of 80% standard stimuli). Researchers found that the
lateral N1b subcomponent (120–200 ms) and P2 component (200–300 ms) were related to
vMMN (Czigler et al., 2006; Hietanen et al., 2008). However, the components varied for different
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electrode sites and tasks (Shtyrov et al., 2013), especially in
orientation oddball tasks (Takács et al., 2013). In addition, the
N170 component is very common in orientation oddball tasks
related to vMMN (Takács et al., 2013).

Recent studies have provided fairly convincing evidence that
vMMN can be elicited by changes in many kinds of object
characteristics (Stefanics et al., 2014). Czigler et al. (2002) used
red-black and green-black checkerboards to elicit vMMN in
220–260 ms. Kimura et al. (2006) also found vMMN within
200 ms using different colors. Facial expression MMN could be
obtained approximately 100–400 ms using neutral, happy and
sad faces (Zhao and Li, 2006). In addition, Amenedo et al. (2007)
investigated the vMMN that exists for motion-direction tasks.
For studies of orientation, many researchers used bars as stimuli
with different deviations from cardinal directions (vertical and
horizontal; Astikainen et al., 2008; Kimura et al., 2009). The
results showed that unattended changes in orientation could
induce vMMN. Furthermore, changes from cardinal orientations
could induce larger vMMN than oblique angles.

Most studies of vMMN were based on ERPs. Many
studies have shown that neural oscillations are related to
ERP results (Makeig et al., 2002; Fuentemilla et al., 2008).
The amplitude of electrophysiological responses can be
examined as a function of frequency to understand their
oscillatory characteristics as a function of time. Stothart and
Kazanina (2013) found that vMMN was associated with an
early increase in theta power (75–175 ms post-stimulus)
and that during the 450–600 ms post-stimulus interval,
deviant stimuli elicited a stronger reduction in non-phase-
locked alpha power than did standard stimuli, reflecting an
attentional shift following the detection of change. These
findings indicated that different oscillatory frequencies were
involved in the vMMN. However, the specific frequency
related to the vMMN induced by changes in orientation is still
unknown.

To sum up, humans are capable of automatically detecting
deviant stimuli. In this study, we hypothesized that changes
in orientation could induce vMMN. We focused on the
cardinal orientations and sought to investigate the role of
neural oscillations in the vMMN response. To this end, a
simple arrow symbol was used in this experiment; specifically,
upright arrows (0◦) served as standard stimuli, and arrows with
rotations of 90◦/270◦ served as deviant stimuli. We analyzed
them based on ERP and electroencephalogram (EEG) oscillatory
characteristics. Time-frequency analysis was used to explore
the specific frequency related to the automatic detection of
directional changes.

MATERIALS AND METHODS

Subjects
Fifteen students attending the Beijing Institute of Technology in
China (six females; age range = 20–23 years old) participated in
this experiment. All participants were right-handed, had normal
or corrected-to-normal vision, and were free of neurological or
psychiatric disorders. This study was reviewed and approved by

FIGURE 1 | Experimental stimuli and ROIs. Standard stimuli (80%) are upright
arrows, deviant stimuli (20%) are arrows with orientations of 90◦/270◦; sites
with yellow background are ROIs.

the School of Life Science Ethics Committee, Beijing Institute
of Technology. Written informed consent was obtained from
each participant after the nature of the study had been
explained.

Stimuli and Procedure
As shown in Figure 1, the arrows were presented from a viewing
distance of 70 cm at a visual angle of 3.68◦ × 3.42◦ for 100 ms;
they appeared on both sides of a cross that appeared at the
center of the screen separated by an inter-stimulus interval
(offset-to-onset) of 500 ms. The standards and the deviants
were made symmetrical in terms of position about the target
area to minimize the effect caused by the tendency to fix
gaze away from the central square. Ten standard stimuli were
presented at the start of the sequence, and at least two standard
stimuli (0◦ orientation 80% probability) were presented between
consecutive deviant stimuli (90◦ and 270◦ orientation, 10%
probability for each). Three blocks of 300 trials (60 deviant and
240 standard stimuli) each were conducted, with the order of
blocks counterbalanced across participants. The serial order of
the stimuli was pseudo-random with one restriction: at least two
standards had to occur between deviants.

The black cross at the center of screen, which was displayed
throughout the stimulus blocks, unpredictably became bigger or
smaller (mean frequency: 15/min; 22/block). To eliminate the
potential effect peripheral stimuli might have on the outcome,
participants were asked to respond as quickly and accurately as
possible by pressing the left or the right button when the size
of the cross changed. The response hands were counterbalanced
across subjects.

EEG Recording
EEG data were continuously recorded (bandpass 1–100 Hz,
sampling rate 1000 Hz) using as NeuroLabr Digital Amplifier1

and an electrode cap with 64 Ag/AgCl electrodes mounted
according to the extended international 10-20 system and
referenced to the tip of the nose. Vertical electro-oculography

1www.brainstarbj.com
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FIGURE 2 | Event-related potential (ERP) waveforms of standard and deviant stimuli. Eights sites were chosen as examples; the ninth panel shows the locations of
the sites, which were chosen based on previous study.

(VEOG) and horizontal electro-oculography (HEOG) were
recorded with two pairs of electrodes; one pair was placed above
and below the right eye, and the other was placed 10mm from the
lateral canthi. Electrode impedance was maintained below 5 k�
throughout the experiment.

ERP Analysis
Independent component analysis using Matlab R2013a
(MathWorks, Inc., Natick, MA, USA) with the open-source
toolbox EEGLAB (Swartz Center for Computational
Neuroscience, La Jolla, CA, USA)2 was effectively used for

2http://sccn.ucsd.edu/eeglab/

EOG noise removal in the EEG. Traditionally, a digital low-pass
filter at 30 Hz is applied to obtain a clean signal separated
into 900-ms epochs, including a 300-ms pre-stimulus baseline
time-locked to the subsequent onset of stimuli. Due to the bursts
of EMG activity and amplifier clipping, affected trials were
excluded from averaging. Additionally, trials contaminated by
responses to changes in the fixation cross were also excluded.
A total of 126 ± 15.8 and 565 ± 28.6 trials with deviant
and standard stimuli, respectively, were included in the
analysis. Based on analysis of the present N170 component
(negative wave approximately 170 ms after the stimuli starts),
P2 component (positive wave approximately 200 ms after
the stimuli starts), and MMN distributions, the statistical
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FIGURE 3 | (A) Mismatch negativity (MMN) waveforms obtained by subtracting the ERPs in response to standard stimuli from those in response to deviant stimuli.
Six sites were chosen as examples. (B) The topographical distribution of MMN, with time windows of 0–300 ms, 301–600 ms and 601–900 ms.

analysis was restricted to posterior regions (P4, PO4, P6,
PO6, P8, PO8, P10 and O2 over the right hemisphere and
the homolog sites over the left; Amenedo et al., 2007; Kimura
et al., 2009). The peak amplitudes and latencies between
120 ms and 200 ms and between 200 ms and 300 ms for
N170 and P2, respectively, were measured automatically.
These measures were analyzed using a repeated-measures
analysis of variance (ANOVA) with stimulus type (deviant,
standard), hemisphere (left, right) and site (P3/4, PO3/4,
P5/6, PO5/6, P7/8, PO7/8, P9/10 and O1/2) as within-subject
factors.

The MMN waveforms were obtained by subtracting the
ERPs in response to standard stimuli from those in response to
deviant stimuli. Based on the grand average MMN waveforms
(see Figure 2) for each subject, the peak of the MMN
components was defined as the most negative peak between
100 ms and 300 ms (based on N170 and P2 component) after
stimulus onset. Subsequent visual scrutiny ensured that the
most negative values represented real peaks rather than end
points of an epoch. The measurements of MMN amplitudes

and latencies were subjected to a repeated-measures ANOVA
with hemisphere (left, right) and site (P3/4, PO3/4, P5/6, PO5/6,
P7/8, PO7/8, P9/10 and O1/2) as within-subject factors. For
factors with more than two levels, the degrees of freedom
were corrected using the Greenhouse–Geisser procedure (for
simplicity, the uncorrected degrees of freedom are presented).
Post hoc comparisons were performed with the Bonferroni
procedure.

Time–Frequency Analysis
For assessing non-stimulus phase-locked activity, we subtracted
the participant’s average response in the time-frequency domain
from each individual trial, and then averaged the trials. Thus,
we only created averages of the non-phase-locked spectral power
(Stothart and Kazanina, 2013). Epochs were sorted according
to stimulus condition to create a plot of time–frequency
representations (TFRs). Total frequency band responses were
analyzed via a Morlet wavelet using the Matlab wavelet toolbox
(MathWorks). Morlet parameter c was set to 3 for low frequency
analysis, and the final power was µV2. The TFRs of the delta
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FIGURE 4 | The left panel shows the spectral powers of different frequencies of standard and deviant stimuli. Four sites were chosen as examples. The right panel
shows the topographical distribution of different frequencies for standard and deviant stimuli, with a time window of 100–300 ms.

band power of each participant were calculated; these ranged
from 1 Hz to 4 Hz in a time window between −300 ms pre-
and 600 ms post-stimulus onset, whereas the theta band ranged
from 4 Hz to 7 Hz, the alpha band from 8 Hz to 13 Hz and
the beta band from 15 Hz to 30 Hz. Inverse Fourier transforms
were subsequently performed. We calculated the synchrony
among the medial, right and left electrodes and subtracted the
frequency-specific baseline (−300 to 0ms pre-stimulus).Wavelet
activity was individually returned by wavelet decomposition for
each trial.

Statistical Analysis
For all frequencies, a repeated-measures ANOVAwith frequency
band (delta, theta, alpha, beta), stimulus type (deviant, standard)
and hemisphere (left, right) was used to examine the overall
effects. For each EEG frequency band, the measurements were
analyzed using a repeated-measures ANOVA treating stimulus
type (deviant, standard), hemisphere (left, right) and site (P3/4,
PO3/4, P5/6, PO5/6, P7/8, PO7/8, P9/10 and O1/2) as within-
subject factors. For factors with more than two levels, the
degrees of freedomwere corrected using the Greenhouse–Geisser

procedure (for simplicity, the uncorrected degrees of freedom
are presented). Post hoc comparisons were performed with the
Bonferroni procedure.

RESULTS

Behavioral Data
In this study, the degree of participant attention would influence
our results. So the cross that became bigger or smaller was
regarded as the target cross. Subjects were asked to respond to
them. Thus the response accuracy was evaluated to determine the
degree of participant attention. The results showed that accuracy
was more than 93.5%, which means our ERP and EEG data were
recorded under unattended condition.

ERP Data
In order to get a clear vMMN response, we used ERP
analysis. As shown in Figure 2, the standard stimuli elicited
N170 and subsequent P2 components at the posterior sites.
Compared with standard stimuli, the deviant stimuli elicited
larger N170 and smaller P2 components, representing a clear
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FIGURE 5 | The spectral power and topographical distribution of differences in theta band activity. The difference refers to the spectral power in response to deviant
stimuli minus that in response to standard stimuli.

vMMN response that had a more negative deflection from
100–300 ms.

In terms of N170 amplitudes, there was a significant main
effect of stimulus type (F(1,14) = 50.30, p< 0.001, partial η = 0.81),
and deviant stimuli elicited a larger N170 component (−7.7 µV)
than did standard stimuli (−3.2 µV). The main effect of site
was also significant (F(3,42) = 5.83, p < 0.05, partial η = 0.29),
revealing a partial lateral distribution of N170 amplitudes. The
ANOVA of N170 peak latencies showed that deviant stimuli
were associated with longer N170 latencies (169 ms) compared
with standard stimuli (164 ms; F(1,14) = 15.60, p < 0.01, partial
η = 0.56). No other main effects or interactions were significant
(p> 0.1).

A similar ANOVA analysis was conducted for the
P2 component. We found a significant main effect of stimulus
type (F(1,14) = 17.40, p < 0.01, partial η = 0.59), indicating that
deviant stimuli elicited a smaller P2 component (2.0 µV) than
did standard stimuli (3.80 µV). With regard to P2 peak latencies,
the ANOVA revealed a significant main effect of stimulus type
(F(1,14) = 10.77, p < 0.05, partial η = 0.47), indicating that
deviant stimuli were associated with longer P2 latency (258 ms)
compared with standard stimuli (236 ms). No other main

effects or interactions were significant for the P2 component
(p> 0.1).

Figure 3 shows the vMMN waveforms and topographical
distribution of vMMN. A one-way ANOVA showed that site had
a significant effect on vMMN peak amplitudes (F(3,42) = 2.996,
p< 0.05) but not on latencies (p> 0.1).

Time–Frequency Analysis
From the view of frequency domain, we could better know
about vMMN. Figure 4 shows the spectral activity of deviant
and standard stimuli. The oscillation power occurred primarily
between 100 ms and 300 ms, which is similar to the time window
of the vMMN.

The spectral power revealed a clear difference in the frequency
band, with maximum theta (14.49 µV2) and minimum beta
(1.99 µV2, F(3,42) = 26.55, p < 0.001, partial η = 0.92). Deviant
stimuli were more powerful (8.57 µV2) than standard ones
(6.13 µV2, F(1,14) = 7.06, p = 0.03, partial η = 0.44), but no
significant differences with regard to hemisphere or site were
observed.

In terms of the delta band, only the main effect of stimulus
type was significant (F(1,14) = 76.91, p < 0.001, partial η = 0.90),
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as a greater increase in delta spectral power was observed in
response to deviant (5.40 µV2) than to standard (3.14 µV2)
stimuli.

With respect to the theta band (Figure 5), the ANOVA
revealed a main effect of stimulus type (F(1,14) = 5.85, p = 0.04,
partial η = 0.40), as a greater increase in theta spectral power was
observed in response to deviant (17.57 µV2) than to standard
(11.41 µV2) stimuli.

The same type of ANOVA analysis revealed no significant
differences in the alpha and beta bands. However, the alpha
band reflected a greater increase in power in response to deviant
(9.46 µV2) than to standard (7.84 µV2) stimuli, whereas the
beta band reflected the opposite pattern (2.14 µV2 in response
to standard and 1.85 µV2 in response to deviant stimuli).

DISCUSSION

The aim of this study is to explore the vMMN related to
the automatic detection of directional changes. We focused on
the cardinal orientations, and the arrow symbol was used as
the stimuli in this study. The EEG data were divided based on
four oscillatory frequencies: delta, theta, alpha and beta. For
each frequency band, the non-phase-locked spectral power was
calculated independently. The results confirmed that changes in
orientation under unattended condition could induce vMMN. In
addition, our results further indicated that deviant stimuli could
induce stronger spectral power in delta and theta bands.

In line with previous studies, deviant stimuli elicited larger
N170 and smaller P2 components compared with standard
stimuli. Based on the differences, we found that the participants
could notice the orientation changes (0◦ and 90◦/270◦) easily.
However, whether they could notice the arrow change (90◦/270◦)
is not clear. Recently, researchers used arrow stimuli to find early
attention direction negativity effects 220–260 ms after the arrow
stimulus onset (Hietanen et al., 2008). Compared with our ERP
results, we can infer that participants did not notice the arrow
(we did not find an early attention direction negativity effect).
Participants only noticed the orientation changes.

MMN is usually obtained through ERP analysis when an
unexpected event occurs. It is analyzed by subtracting the
ERP waveforms in response to standard stimuli from those in
response to deviant stimuli. vMMN could be induced by changes
in many kinds of object characteristics. Our study agrees with
previous studies that showed that changes in orientation can
induce vMMN (Kimura et al., 2009; Stefanics et al., 2014).

The time–frequency analysis showed that deviant stimuli
elicited enhanced band power compared with standard stimuli;
this was the case for the delta and theta bands, which may
be attributable to the lower probability and novelty of deviant
stimuli and which may have been influenced by principles of
perception (Parmentier et al., 2011a,b). Replicating one recent
report on auditory MMN (aMMN) response (Stothart and
Kazanina, 2013), we also found that deviant stimuli induced an
increase in theta power before 25–300 ms post-stimulus onset.
These data indicate that theta activity appears to play a role in
the generation of the vMMN response (Stothart and Kazanina,
2013). Thus, both aMMN and vMMN are related to theta bands.

We can infer that MMN is more associated with theta response.
The present study found the greatest theta activity (i.e., enhanced
theta oscillation) in response to deviant vs. standard stimuli,
indicating that theta activity may play an important role in
cognitive processes involving automatic change detection.

Although we also observed increased delta power in response
to deviant vs. standard stimuli, we did not consider it correlated
with MMN because delta oscillations constitute one of the
major operating rhythms of the P300 component (Başar et al.,
2001), which has historically been viewed as an important
ERP component elicited by infrequent target stimuli in the
auditory oddball paradigm (Öniz and Başar, 2009). However,
this component was less evident in vMMN, and the P300 may
be the main difference between aMMN and vMMN, but this
possibility requires further investigation. Additionally, delta
oscillations contribute to making a decision and detecting a
signal (Başar et al., 2001). Therefore, delta response did not
correlate with MMN. In some studies of MMN, researchers
found changed post-auditory stimulus alpha/beta power using
an oddball paradigm (Hsiao et al., 2009; Öniz and Başar, 2009;
Stothart and Kazanina, 2013; Başar et al., 2015). However, in
this study, we did not find a correlation between vMMN and
alpha/beta bands. This difference may be caused by the different
tasks.

In summary, to investigate the EEG oscillatory characteristics
of vMMN, we analyzed ERP and EEG data elicited by
standard (0◦ arrows) and deviant (90◦/270◦ arrows) stimuli.
Compared with standard stimuli, deviant stimuli elicited
larger negative N170 and smaller P2. In addition, changes in
orientation could induce vMMN as expected. According to the
time–frequency analysis, deviant stimuli elicited enhanced band
power compared with standard stimuli in delta and theta bands.
Furthermore, theta activity played an important role in the
generation of the vMMN induced by changes in orientation.
Examination of both ERPs and EEG oscillation provides a
more complete picture of the event-related changes in vMMN
responses.

However, the present study has some limitations. For
instance, the sample was small, although the present method of
statistical analysis is reliable. It is necessary to further investigate
the present results in a clinical evaluation of cognitive function
using a larger sample size.
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Cooperation and competition, as two common and opposite examples of interpersonal

dynamics, are thought to be reflected by different cognitive, neural, and behavioral

patterns. According to the conventional approach, they have been explored by

measuring subjects’ reactions during individual performance or turn-based interactions

in artificial settings, that don’t allow on-line, ecological enactment of real-life social

exchange. Considering the importance of these factors, and accounting for the

complexity of such phenomena, the hyperscanning approach emerged as amulti-subject

paradigm since it allows the simultaneous recording of the brain activity from multiple

participants interacting. In this view, the present paper aimed at reviewing the most

significant work about cooperation and competition by EEG hyperscanning technique,

which proved to be a promising tool in capturing the sudden course of social interactions.

In detail, the review will consider and group different experimental tasks that have been

developed so far: (1) paradigms that used rhythm, music and motor synchronization;

(2) card tasks taken from the Game Theory; (3) computerized tasks; and (4) possible

real-life applications. Finally, although highlighting the potential contribution of such

approach, some important limitations about these paradigms will be elucidated, with

a specific focus on the emotional domain.

Keywords: EEG, emotions, hyperscanning, cooperation, competition, social interaction, synchronization

HYPERSCANNING AS A TOOL TO ASSESS SOCIAL DYNAMICS

Cooperation and competition are two common and opposite models of interpersonal exchange
(Decety et al., 2004). In fact, according to the interaction type, individuals could facilitate, but
also obstruct, others’ goal achievement. Nonetheless, the two modalities share some important
features. First, from an evolutionary point of view, they are both recognized as human behavioral
patterns devoted to survival, although in different ways. Second, they both require some cognitive
capacities such asmonitoring andmentalizing abilities, to attribute independent mental states, such
as thoughts, beliefs, and desires, to others (Flavell, 1999). This allows anticipating and predicting
others’ intentions and adjusting one’s own action accordingly (Decety and Sommerville, 2003). For
these reasons, many previous studies focused on these two models as a good example of social
and emotional sharing. For example, Decety et al. (2004) asked subjects to participate in couples
to a computer game in a functional Magnetic Resonance Imaging (fMRI) scan and compared
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their neural responses during cooperation and competition.
Results highlighted the presence of common networks related
to executive functions, as well as a more specific recruitment of
different brain areas according to the different mental framework
engaged. Also, Liu et al. (2015), by using functional near infra-
red spectroscopy (fNIRS), found a differential activation of the
right inferior frontal gyrus during cooperation and competition
in a turn-taking game. Moreover, Cui et al. (2015) explored the
role of these two context in modulating empathy for pain by
using event-related potentials (ERP). Finally, Balconi and Pagani
(2014, 2015) experimentally manipulated the perceived efficacy
during a competitive task to investigate social hierarchies and
ranking. However, it has been suggested that the study of social
cognition could be reductive and partial by using single-subject
or turn-taking paradigm (Schilbach, 2010).

Recent scientific evidence studied these forms of synchronous
interactions by considering brain-to-brain coupling. In fact, it has
been shown that observing the actions, emotions or feelings of
other people can trigger corresponding cortical representations
(Hasson et al., 2012), a mechanism defined as vicarious activation
(Keysers and Gazzola, 2009). It appears clear that similar
processes cannot be captured by conventional experimental
approach on individual brains. In the attempt to move a step
forward, the hyperscanning paradigm emerged in contrast to
previous research approach to allow the simultaneous recording
of the neural activation from two, but also multiple, participants
interacting jointly (Montague, 2002). This technique permitted
to discover typical patterns of inter-brain synchronization during
social and emotional exchange thus providing data that can’t be
obtained by recording single brain activities alone (Babiloni and
Astolfi, 2012).

Previous work conducted with imaging techniques such as
fMRI allowed identifying the brain areas that are involved
during emotional sharing. Nonetheless, fMRI can provide
only partial support to this ambitious aim in that it lacks
temporal resolution. Also, it is unable to provide a real-
time ecological environment in that participants have to lie
motionless in a noisy and often emotionally daunting scanner
while the verbal communication is discouraged (Cui et al., 2012).
Conversely, EEG hyperscanning studies provide higher temporal
resolution that permits capturing real-time events. Prior findings
showed inter-brain phase coherence across different frequencies,
including delta, theta, alpha, beta, and gamma, that can be
attributed to a series of different processes, from perception, to
cognition, and especially emotion (Balconi et al., 2015). Among
the most used techniques are correlation or coherence-based
analyses (King-Casas et al., 2005; Funane et al., 2011; Cui et al.,
2012), which move from the assumption that the modifications
in the activity of certain cerebral regions in subjects can share the
same generator/generative source.

Thus, the aim of the present review is to collect and
describe existing research on cooperative/competitive dynamics
conducted with a hyperscanning approach as a promising
paradigm for social neuroscience. Previous reviews already
explored the potentiality of such paradigm to social interactions
(Dumas et al., 2011; Liu and Pelowski, 2014; Koike et al., 2015),
but none of them explicitly focused on these two opposite

scenarios, which could provide some precious findings for every-
day social life, from work environment, to prosocial behaviors,
from collective performance, to affiliation and dyadic bonds. EEG
will be valued as a promising technique to capture the sudden and
unpredictable modification related to social interactions.

In the next section, the most important evidence in the field
will be reviewed and grouped according to the different materials
and experimental tasks.

EEG HYPERSCANNING TECHNIQUE: THE
CASE OF COOPERATION AND
COMPETITION

The selection criteria included: use of EEG technique; use of
hyperscanning paradigm with real-time interactions; explicit
use of cooperative and/or competitive paradigms. According
to the different materials and experimental paradigms used
to reproduce the social dynamics, available evidence has been
grouped in four different categories: paradigms that used rhythm,
music, and motor synchronization (section Rhythm, Music,
and Motor Synchronization); paradigms based on card tasks
taken from the Game Theory (section Evidence from the
Game Theory); paradigms based on computerized tasks (section
Computer-Based Paradigms); and possible real-life applications
(section Real-Life Applications).

Rhythm, Music, and Motor Synchronization
Some previous studies used rhythmic synchronization to assess
the capacity to cooperate each other. Lindenberger et al.
(2009) found that, when playing a short melody together,
dyads of guitarists showed increased phase synchronized
theta and delta oscillations. The authors suggested that
coordinated behaviors are characterized by inter-brain oscillatory
coherence. Also, since the reported rhythms were all in
lower frequency range, it is possible that the similarities in
sensorimotor feedback could have enhanced between-brain
synchronization.

To disambiguate this issue the same team (Sänger et al.,
2012) later used a similar but advanced paradigm with a more
complex piece of music such that the two members of the
couple would have different roles, a leader, and a follower.
The paradigm reduced similarities in movement, proprioception,
and perception. Results extended previous data and attributed
between-brain phase coherence to musical coordination periods.
Also, since the effects were larger at frontal and central sites, it
was proposed that the on-line representation of one’s own and
others’ actions and their combination into a joint, coupledmodel,
may help supporting interpersonal action coordination (IAC).

A recent finger-tapping experiment replicated this
asymmetrical pattern in leader-follower dynamics (Konvalinka
et al., 2014): it was demonstrated that it is possible to differentiate
roles on the basis of the modulation of frontal alpha-suppression,
being this latter prominent in leaders than followers. It has been
hypothesized that leaders probably allocated more resources to
self-processing to monitor their own rhythm, while followers
should monitor the output of their partner.
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Analogously, another study by Yun et al. (2012) used a
leader-follower task to demonstrate the presence of implicit
motor synchronization when interacting with another human.
Seated face to face, a leader had to perform hand movements
and another player had to imitate them at their best. Finally,
both participants were asked to freeze. The behavioral results
highlighted that the two mates implicitly synchronized their
movements, mainly during the final phase that followed
imitation. EEG results showed higher phase synchronization
following the imitation phase within theta and beta frequency
bands over the inferior frontal gyrus, anterior cingulate,
parahippocampal gyrus, and post-central gyrus. Such results were
considered as an improved coupling between the two cognitive
representations.

Similarly, Dumas et al. (2010) used a video feedback system
and asked subjects to imitate the other’s hands movement.
The researchers found higher inter-brain phase synchronization
within mu, beta, and gamma range in the right centro-parietal
areas of the two brains during behavioral synchrony.

Finally, a work by Kawasaki et al. (2013) explored the
presence of inter-brain correlation during speech rhythm
synchronization. Results showed that speech rhythms were
more easily synchronized in the joint condition with respect
to the individual condition where subjects performed the
same task within a computerized session. Moreover, increased
synchronized theta/alpha amplitudes were found in the same
temporal and lateral-parietal regions known to be associated
with social cognition, such as comprehending others’ intentions,
affects, and actions (Adolphs, 1999) (Figure 1).

Thementioned studies are relevant to neuropsychophysiology
since they show how neural synchronization can emerge and
be studied with simple matched behaviors involving motor and
rhythmic coordination. Moreover, it has been shown that EEG
technique can recognize the different roles assumed within the
couple. In fact, the cognitive and behavioral states related to the
joint task can modulate rhythm synchronization.

Evidence from the Game Theory
A series of studies conducted by Astolfi et al. (2009,
2010, 2011b,c) used the Prisoner’s Dilemma paradigm: a
cooperation/competition task that requires to decide whether
to cooperate or defect. The game requires two players (or

FIGURE 1 | Topographic maps showing the p values of the theta/alpha

amplitudes during human–human (left) and human–machine (center)

conditions, as well as their difference (right). Taken and modified from

Kawasaki et al. (2013).

groups) and two alternative choices: cooperate or defect. When
both players decide to cooperate, they both gain small wins
(cooperation condition). If only one player cooperates and the
other retracts, the cooperator obtains a big loss and the defector
a big win. If both players betray, they have small losses (defeat
condition). The aim of the game is to gain the highest score.
Through this sharp paradigm the research group obtained
some important results: first, the defeat conditions elicited the
higher cortical activity in the theta and alpha frequency band.
This choice, in fact, can be related to major penalty and risky
conditions when compared to cooperation. Also, this effect was
mostly present over the frontal regions, in accordance with the
decisional request (Astolfi et al., 2009, 2010).

A successive study with the same paradigm (Astolfi et al.,
2011c) integrated such data with functional connectivity analyses
and found that the pattern of inter-brain connectivity in the
cooperation condition is denser than in the defect one. In
fact, as an individualist act, the defect choice could produce a
lower synchronization between brains. On the other hand, a
cooperative act could elicit weaker brain activity, but a denser
synchronization between the two brains.

Research coming from the Game Theory tradition is relevant
in that provides a standardized tool to directly compare
cooperation and competition, but also different studies each
other. Thus, it was possible to differentiate the two conditions,
associating cooperation with increased neural connectivity
between the two brains resonating each other.

Computer-Based Paradigms
A series of hyperscanning studies used computer-based paradigm
to assess cooperation and competition in experimental settings.
For example, Astolfi et al. (2014) asked participants to lift a
rolling ball up to a particular target region placed at the top of
the screen with a virtual bar. There was a joint condition, where
both subjects played together on the same task, a solo condition,
where both subjects were asked to complete the task individually,
and a PC condition which was identical to the joint one, but
subjects were told that they were playing against a computer.
The comparison between joint and PC, as well as between joint
and solo condition, revealed significant differences in terms of
inter-brain functional causal relations.

In another study by Sinha et al. (2016) the authors investigated
the effect of cooperative and competitive interactions with
a game similar to table tennis. The aim is to defeat the
competitor by striking a ball back and forth using a vertical
bar (competition condition) or to act as a team to defeat a
computer program (cooperative condition). Results showed that
the cooperative condition was characterized by significantly
higher synchronization as compared to competition.

Another computer-based task was proposed by Balconi and
Vanutelli (2016) within a competitive scenario where participants
coupled in dyads had to perform better than their opponent
in a sustained-attention task. During the game they were
continuously informed about their performance and, halfway
through the task, they received a general feedback reinforcing the
results obtained so far and the instruction for the second part
of the game. The analyses showed a systematic response within
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the prefrontal regions (PFC) during competition. This effect was
mainly present after receiving a positive feedback assessing a
good performance and a winning situation. Also, considering
the enhanced PFC responsiveness, a specific lateralized pattern
was found in favor of the left hemisphere, compatible
with positive emotions, and approach-related motivations.
Accordingly, winners’ behavioral performance was improved in
terms of reduced reaction times (RTs).

With respect to card games, computer-based hyperscanning
studies offer more controlled, even if less ecological, paradigms
to study cooperation and competition. Also, they allow varying
the experimental conditions according to specific research aims.
In particular, it is possible to manipulate the cognitive scenarios
to induce different and correspondent neural synchronization
as in the last example (Balconi and Vanutelli, 2016) where
the affective state could modulate both neural activation and
performance.

Real-Life Applications
Finally, some promising real-life applications through
hyperscanning methods are reviewed: a first contribution
refers to flight simulations in couples of pilots and co-pilots
(Astolfi et al., 2011a, 2012; Toppi et al., 2016). Results showed
increased coherence in the alpha band over the parietal sites
during the most demanding phases of the simulation, which
can be attributed to higher cognitive load, as well as in the theta
band over the frontal sites, which is compatible with increased
resources engaged for information processing (Klimesch, 1999).
Hyperconnectivity patterns linking frontal and parietal areas of
the two participants emerged during the phases involving a close
interaction between the two pilots, that is takeoff and landing.
In particular, the strongest connections were located over the

frontal sites, and were directed from the co-pilot toward the pilot
(Figure 2).

Finally, an innovative application was proposed by Balconi
et al. (Venturella et al., 2017) within a neuromanagement
approach: the authors proposed a pilot study on the brain
dynamics occurring during a role-played employees’ evaluation
in couples of manager-collaborator. Preliminary results showed
greater delta and theta response to positive and constructive
inter-subjective exchange, as well as to the conversational
moments while sharing the company mission and aims.

Such examples are particularly relevant in that they can
be used to get neuroscience closer to real-life situations and
to improve specific work environment where the performance
depends on good cooperative/competitive dynamics. In fact, it
has been demonstrated that specific phases or topics during
dyadic work simulation can be identified by specific neural
markers which can be indicative of higher or lower cognitive
demand, emotional involvement and interactive skills.

Methodological and Statistical Caveats
However, how were these results obtained? Being a very
complex and innovative paradigm, a few methodological
and statistical considerations about hyperscanning should be
discussed. First, hyperscanning conventionally means both the
experimental paradigm including the simultaneous registration
of multiple brain activities, and/or the specific connectivity
analyses performed on resulting multiple data. In this second
case, the most used techniques are based on correlation or
coherence analyses (King-Casas et al., 2005; Funane et al.,
2011; Cui et al., 2012). Since the computation is made on
time series, the paradigm should include a high number of
frames for each experimental condition. This issue can be solved

FIGURE 2 | Significant connectivity elicited in the alpha (top) and theta (bottom) frequencies during takeoff (left), cruise (center), and landing (right) of one

exemplificative couple composed by the first officer (left) and the captain (right). Taken and modified from Toppi et al. (2016).
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by (a) using EEG or other techniques which can provide a
high sampling rate: the higher, the better; (b) reducing the
experimental factors. For example, the number of brain regions
could be simplified by creating regions of interests (ROI), or
performing specific computations such as principal component
analysis (PCA). Finally, since couples are the cases for statistics
instead of single subjects, the number of participants should be
improved. Anyway, to solve these criticalities, before performing
the experiment a power analysis would be recommended.

EMOTIONS IN HYPESCANNING STUDIES:
THE BIG ABSENTEE

As already discussed in previous sections, EEG-based
hyperscanning technique provides a valid and innovative
tool for exploring coupled responses and obtaining real-time
results in highly-ecological paradigms. Nonetheless, it seems
that most experimental paradigms did not explicitly taken into
account the affective component (Acquadro et al., 2016) in terms
of emotional contagion, sharing, and social exchange. Moreover,
the pioneeristic nature of these studies often led to adopt an
explorative approach and, accordingly, to vague and sparse
findings.

However, previous research on both animals and humans has
suggested that the psychophysiological connection between two
individuals is an intrinsic element of affective bonding (Coan
et al., 2006; McAssey et al., 2013). In fact, when we interact
with someone else, our brains and bodies can no longer be
considered independent, but must be viewed as part of a new
environment with the other person, in which we become coupled
through a continuous and mutual adaptation (Konvalinka and
Roepstorff, 2012). Besides neural synchronization, such dynamic
and interactive process has been also shown to result in
an alignment of behavior (Konvalinka et al., 2010), posture
(Shockley et al., 2003), autonomic systems such as respiration

(McFarland, 2000; Giuliano et al., 2015) and cardiac rhythms
(Konvalinka et al., 2011; Müller and Lindenberger, 2011).

For these reasons, it should be important that hyperscanning
paradigms would also consider the affective components related
to cooperative and competitive scenarios, and, possibly, to
combine other autonomic or behavioral measures (Niedenthal,
2007; Keysers et al., 2010).

From a clinical point of view such results are particularly
relevant. In fact, such inter-personal couplings generate social
bonds that could facilitate or obstruct future successful exchange.
For example, higher synchronization in heart rate variability is
associated with the length of romantic relationship (Anderson
et al., 2003). On the contrary, few developmental studies found
that mother–child synchrony decreases in particular conditions
(Feldman, 2007).

Thus, the adoption of clear theoretical approach and specific
research questions about the role of emotions in modifying
neural and bodily synchronization would help designing
hyperscanning protocols with different emotional conditions or
clinical groups to be compared. Accordingly, the methods could
be refined by including some subjective factors such as the
motivation in participating to the task, the effective involvement
in the role or the experimental condition, but also all those
psychological variables which could differentiate subjects or
couples by their personality, affective style, dominance, and so
on. To conclude, the need for experimental situations leading
to emotional engagement is still urgent in a way to enhance
the understanding of emotions within social interactions, and
improve the ecological validity of cooperative and competitive
settings.
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Insensitivity to Fearful Emotion for
Early ERP Components in High
Autistic Tendency Is Associated with
Lower Magnocellular Efficiency
Adelaide Burt*, Laila Hugrass, Tash Frith-Belvedere and David Crewther

Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology,
Melbourne, VIC, Australia

Low spatial frequency (LSF) visual information is extracted rapidly from fearful
faces, suggesting magnocellular involvement. Autistic phenotypes demonstrate altered
magnocellular processing, which we propose contributes to a decreased P100 evoked
response to LSF fearful faces. Here, we investigated whether rapid processing of fearful
facial expressions differs for groups of neurotypical adults with low and high scores
on the Autistic Spectrum Quotient (AQ). We created hybrid face stimuli with low and
high spatial frequency filtered, fearful, and neutral expressions. Fearful faces produced
higher amplitude P100 responses than neutral faces in the low AQ group, particularly
when the hybrid face contained a LSF fearful expression. By contrast, there was no
effect of fearful expression on P100 amplitude in the high AQ group. Consistent with
evidence linking magnocellular differences with autistic personality traits, our non-linear
VEP results showed that the high AQ group had higher amplitude K2.1 responses than
the low AQ group, which is indicative of less efficient magnocellular recovery. Our results
suggest that magnocellular LSF processing of a human face may be the initial visual
cue used to rapidly and automatically detect fear, but that this cue functions atypically
in those with high autistic tendency.

Keywords: spatial frequency, event related potentials, P100, autistic tendency, fearful face perception,
magnocellular inefficiency

INTRODUCTION

Autism spectrum disorder (ASD) is a broad group of disorders, characterized by impairments
in communication and social awareness, and by repetitive stereotyped behaviors (American
Psychiatric Association, 2013). In addition to these well-known impairments, there are some
differences in perceptual functioning, particularly in the visual domain (Dakin and Frith, 2005;
Kellerman et al., 2005; Pellicano et al., 2005; Dale and Salt, 2008; McCleery et al., 2009; Simmons
et al., 2009). These perceptual differences extend to the neurotypical population (Almeida et al.,
2010; Sutherland and Crewther, 2010; Jackson et al., 2013) for individuals with high scores on the
Autism Spectrum Quotient (AQ) personality scale (Baron-Cohen et al., 2001). This suggests that
the underlying physiology of ASD may be distributed throughout a broader autistic phenotype,
which contributes to visual differences in these individuals (Bailey et al., 1995; Braddick et al., 2003).

Detection of potentially threatening stimuli, such as fearful or angry faces involves a distributed
network of cortical and subcortical regions (LeDoux, 1998; Johnson, 2005; Kragel et al., 2016).
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Several researchers have proposed that rapid processing of threat
occurs via a direct, subcortical route from the pulvinar and
superior colliculus to the amygdala (LeDoux, 1998; Morris et al.,
1998a; Öhman, 2005). Direct evidence of a subcortical (retino-
collicular-pulvinar) route to the amygdala has come from animal
studies (LeDoux, 1998), whereas functional evidence in humans
has been inferred based on evidence of emotional face processing
in cortically blind participants (Morris et al., 2001), unconscious
processing of emotional stimuli (Morris et al., 1998a), and
magnetoencephalographic (MEG) responses to fearful stimuli in
the amygdala and subcortical structures (Streit et al., 2003). Clear
anatomical evidence from in vivo DTI tractography conducted
in humans demonstrates connections between the amygdala
and superior colliculus (Rafal et al., 2015); and amygdala and
pulvinar (Tamietto et al., 2012). In support of this model,
connectivity analyses have shown that fearful stimuli engage a
distributed network of brain sites including the bilateral fusiform
gyrus, dorsal/anterior precuneus, amygdala, hippocampus, and
parahippocampal regions (Kragel and LaBar, 2015).

In order to compare cortical and subcortical routes for
affective information processing, several researchers have taken
advantage of the tuning properties of cells in the subcortical
structures (Vuilleumier et al., 2003; Öhman, 2005; Vlamings
et al., 2009). Cells in the input layers of the superior colliculus
receive input from the magnocellular pathway (Schiller et al.,
1979). Magnocellular neurons have relatively large receptive
fields and respond preferentially to low spatial frequency
(LSF) input, compared with parvocellular neurons which have
smaller receptive fields and respond preferentially to high
spatial frequency (HSF) input (Livingstone and Hubel, 1988).
Processing of coarse information contained in the LPFs precedes
processing of more detailed information contained in the
HSFs, with magnocellular input reaching V1 25–31 ms earlier
than parvocellular input (Klistorner et al., 1997; Bullier, 2001;
Bar et al., 2006; Sutherland and Crewther, 2010; Crewther
et al., 2016). This temporal precedence has been termed the
‘magnocellular advantage’ (Laycock et al., 2007).

In support of a magnocellular route for fearful face processing,
Vuilleumier et al. (2003) found enhanced BOLD responses in
the superior colliculus and amygdala structures for LSF, but not
HSF, fearful expressions. However, the amygdala also receives
input from the anterior inferotemporal cortex (Aggleton, 1993),
so it is not ‘blind’ to HSF fearful face representations. In fact, the
amygdala is likely to have numerous connections with subcortical
and cortical structures, which process and integrate both LSF and
HSF, to form a ‘whole’ fearful face percept. Evidence for multiple
pathways comes from connectivity analyses demonstrating that
fearful stimuli engage a distributed network of brain sites
including the bilateral fusiform gyrus, dorsal/anterior precuneus,
amygdala, hippocampus, and parahippocampal regions (Kragel
and LaBar, 2015). In addition, evidence for multiple pathways
is presented by one fMRI study demonstrating that during
unconscious processing using binocular rivalry and backward
masking, when visual input must be processed via a subcortical
route, the amygdala has limited capacity to differentiate
between facial emotions (Morris et al., 1998b; Williams et al.,
2004).

Sets of hybrid face stimuli have been used in numerous
studies in order to investigate the relative contributions of
LSF and HSF information to various aspects of emotional face
processing, while controlling the natural variation of spatial
frequencies within the images (Pourtois et al., 2005; Laeng et al.,
2010, 2013; Prete et al., 2014, 2015a,b,c, 2016). LSF information
generally includes coarse, global visual features whereas HSF
information includes finer, more detailed features (De Valois and
De Valois, 1988). Hybrid face stimuli are created from different
combinations of the LSF and HSF filtered components of neutral
and emotional faces. By equating the luminance and contrast of
LSF and HSF within one image, only the change in emotional
expression of the face remains (Pourtois et al., 2005). Hybrid
faces have been used to assess conscious report of fearful face
perception, where HSF fearful and neutral expressions are more
rapidly discriminated than LSF expressions (Stein et al., 2014).
However, behavioral report does not necessarily reflect the rapid,
neural processing that occurs prior to conscious perception of a
fearful face, which can be investigated with electroencephalogram
(EEG). For consistency, throughout this paper we will refer to
hybrids created from LSF and HSF, fearful (F) and neutral (N)
face stimuli as follows: FLSF–FHSF, FLSF–NHSF, NLSF–FHSF, and
NLSF–NHSF.

To elucidate the time course of rapid fear perception,
electrophysiological studies have primarily focused on the P100
and N170 waveforms. The visual P100 is a fast response, typically
evoked between 90 and 140 ms, that is maximal over lateral–
occipital–parietal sites, and appears to originate from striate and
extrastriate neural generators (Clark and Hillyard, 1996; Mangun
et al., 1997; Allison et al., 1999). Cueing studies suggest the
P100 amplitude is an index of the attentional gain mechanisms
that suppress responses to irrelevant stimuli (Hillyard and
Anllo-Vento, 1998). In addition, the P100 is sensitive to affect,
with greater amplitude responses to fearful face presentation,
compared to other emotions including neutral, happy, angry,
sad, disgust, and surprise faces (Pizzagalli et al., 1999; Batty
and Taylor, 2003; Pourtois et al., 2004; Magnée et al., 2008;
Feng et al., 2009; Forscher and Li, 2012; Meaux et al., 2013;
Smith et al., 2013; Zhang et al., 2013). The N170 is negative
peak that occurs approximately 170 ms post-stimulus, originating
from a network of face/object processing regions including the
fusiform gyrus, superior temporal sulcus and inferior, middle and
superior temporal gyri (Henson et al., 2003). N170 amplitude is
sensitive to configural processing of faces, as evidenced by higher
amplitude response to upright over inverted faces (Bentin et al.,
1996). Affective input also modulates these early waveforms,
with greater amplitude P100 and N170 responses to fearful
or angry expressions (Batty and Taylor, 2003; Pegna et al.,
2008).

Several studies have investigated whether fearful face
modulation of visual ERPs relies on LSF (i.e., magnocellular)
input. The P100 amplitude is enhanced for FLSF–NHSF hybrid
faces compared to NLSF–NHSF hybrid faces in the right
hemisphere, but not for NLSF–FHSF hybrids (Pourtois et al.,
2005); however, this effect is only observed when the images
have been equated for luminance and contrast (Vlamings et al.,
2009). In addition, Vlamings et al. (2009) found shorter P100
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latency for FLSF–NHSF compared to NLSF–FHSF hybrids, which
trended toward significance in the fearful expression condition.
Findings regarding the effects of emotion and spatial frequency
on the N170 amplitude have been mixed. Some studies reported
no effect of emotion on the N170 response (Holmes et al., 2005;
Pourtois et al., 2005), however, Vlamings et al. (2009) reported
N170 enhancement for FLSF–NHSF but not NLSF–FHSF faces,
regardless of whether the stimuli were equated for luminance
and contrast.

Early electrophysiological responses to fearful faces vary
across the autistic spectrum, indicating there are individual
differences in the neural pathways that produce these responses.
In autistic individuals, the P100 tends to be delayed, reduced
in amplitude and less lateralized than in neurotypical groups
(Bailey et al., 2005; Wong et al., 2008; McCleery et al., 2009;
Luo et al., 2010; Batty et al., 2011; Fujita et al., 2013; Tye et al.,
2013; Wagner et al., 2013; Key and Corbett, 2014; Bonnard-
Couton et al., 2015; Lassalle and Itier, 2015; Anzures et al., 2016).
In an investigation of face processing in the broader autistic
phenotype, Stavropoulos et al. (2016) found that P100 and N170
latencies tended to be slower and decreased for people with
high AQ scores, compared to people with low AQ scores. They
found that non-consciously perceived emotional faces elicited
enhanced neural responses regardless of AQ score, yet they did
not use hybrid faces so it is unclear whether the two groups
utilized LSF information in the same way. De Jong et al. (2008)
investigated the effects of gaze cueing on ERPs and found that
for neurotypical observers, gaze cueing had a stronger effect
on ERPs for LSF filtered faces; whereas for autistic observers,
cueing effects were stronger for HSF filtered faces. These findings
indicate that the P100 and N170 responses to fearful emotional
faces may be particularly affected in individuals with high autistic
tendency. Therefore, we aimed to compare the effects of LSF and
HSF fearful expressions on ERP responses for high and low AQ
groups.

Several visual studies provide evidence for magnocellular/
dorsal stream abnormalities in ASD (Pellicano et al., 2005; Milne
et al., 2006; McCleery et al., 2009) and in the broader autistic
phenotype (Almeida et al., 2010; Sutherland and Crewther, 2010;
Jackson et al., 2013; Thompson et al., 2015; Stavropoulos et al.,
2016). Other studies have indicated that the relationship between
magnocellular function and ASD is more complicated (Bertone
et al., 2003; Del Viva et al., 2006). The current view is that ASD
involves complex interactions between multiple visual pathways,
rather than a specific magnocellular/dorsal stream impairment
(Simmons et al., 2009; Thye et al., 2017). Despite the nature
of magnocellular impairment remaining unresolved, there are
differences in the rapid output of magnocellular neurons to
V1 in high autistic tendency (Sutherland and Crewther, 2010;
Jackson et al., 2013). Moreover, as discussed above, magnocellular
neurons have a preference for LSF input, resulting in rapid
V1 activation. Neural efficiency of magnocellular neurons can
be studied through Weiner kernel analysis of multifocal visual
evoked potentials (mfVEP) (Sutherland and Crewther, 2010;
Jackson et al., 2013). The first slice of the second order, non-linear
VEP kernel (K2.1) measures non-linearity in neural recovery
(referenced one video frame back). Studies of the contrast

response function indicate that the N60 K2.1 waveform, and
early components (with the same latency) of the K2.2 waveform
(second slice- referenced two frames back) are of magnocellular
origin (Baseler and Sutter, 1997). Higher amplitudes of these
waveforms indicate a greater degree of inefficiency in neural
recovery by magnocellular neurons. The amplitude of the N60
negativity in the first slice of the second order kernel (K2.1) is
elevated in high AQ observers, indicative of poor magnocellular
recovery rate (Jackson et al., 2013). Hence, Jackson et al.’s
(2013) findings are consistent with the lack of efficiency of the
magnocellular pathway in ASD.

Based on prior research by Vlamings et al. (2009) we
hypothesized that the low AQ group would exhibit significantly
higher amplitude and shorter latency P100 and N170 responses to
FHSF–FLSF hybrids compared to NHSF–NLSF hybrids, and to FLSF–
NHSF compared to FHSF–NLSF hybrids. Based on the findings by
Stavropoulos et al. (2016), it was hypothesized that the P100 and
N170 would be lower for the high AQ group than for the low AQ
group. Furthermore, we predicted that FLSF–NHSF expressions
would have a greater influence on response amplitudes in the low
AQ group than in the high AQ group. We aimed to use non-
linear VEP to assess magnocellular recovery, as indexed by the
amplitude of the K2.1 waveform. It was hypothesized, the K2.1
response amplitude would be higher in the high AQ group, which
is indicative of inefficient recovery rate of neurons within the
magnocellular system.

MATERIALS AND METHODS

Participants
Participants were recruited through advertising and social media
to complete an online AQ survey (Baron-Cohen et al., 2001).
Thirty-seven participants with normal or corrected to normal
vision completed the hybrid face EEG study conducted at
Swinburne University of Technology, Melbourne, Australia. Two
participants were excluded from the analysis because of very
high movement artifact (one recording was actually discontinued
for this reason), and a further two participants were excluded
because their scores were in the mid-range of AQ (which we only
established after recording). The final sample included 16 low AQ
participants (3 male; 13 female; M = 24.19 years, SD= 5.41) and
17 high AQ participants (11 male; 6 female; M = 25.29 years,
SD = 5.72). MfVEP data collection commenced after we had
already began collecting data for the facial emotion study; hence
only 12 low AQ and 12 high AQ participants completed the
mfVEP recordings. For the behavioral data, two participants were
excluded due to corrupted data files and a further participant
was excluded due to misunderstanding task instructions, leaving
a sample of 31 participants (17 high AQ and 14 low AQ).
All participants gave informed consent in accordance with the
Declaration of Helsinki, and the Swinburne Human Research
Ethics Committee approved the study.

Autistic Quotient Online Survey
The AQ (Baron-Cohen et al., 2001) is a 50-item measure of
autistic trait levels across the normal adult population. Low

Frontiers in Human Neuroscience | www.frontiersin.org 3 October 2017 | Volume 11 | Article 49563

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00495 October 10, 2017 Time: 15:45 # 4

Burt et al. LSF, Fear, Autistic, P100, Magnocellular

and high group cut-offs for the EEG study were based on the
population mean (M = 17, SD = 6) for the AQ groups (Ruzich
et al., 2015). The low AQ group (n = 16) had a mean AQ score
of 6.88 (SD = 3.22) and the high AQ (n = 17) group had a mean
AQ score of 29.00 (SD= 5.95).

Hybrid Face Stimuli
Fourteen images of neutral and fearful faces were selected from
the NimStim Face Set (Tottenham et al., 2009). The images
were transformed to gray-scale and cropped with a smoothed
edge to remove external features (e.g., hair, neck) using Adobe
Photoshop. The fearful faces were altered to have a 30% increase
in pupil size, to reproduce a physiologically accurate fearful
response (Demos et al., 2008).

Face stimuli were spatial frequency filtered (Gaussian blur,
low-pass filter preserving spatial frequencies <2 cpd and high
pass filter preserving spatial frequencies >1.9 cpd, based on the
point of 1 octave attenuation) using Photoshop (Adobe Systems
Inc., San Jose, CA, United States), similar to prior investigations
(Schyns and Oliva, 1999; Vlamings et al., 2009). The high-
and low-pass filter characteristics are illustrated in Figure 1.
The LSF and HSF images were matched for mean luminance
(57 cd/m2) and RMS contrast in Matlab (The Mathworks, Natick,
MA, United States), before they were fused to create hybrid
face stimuli. Four sets of F (fearful) and N (neutral) hybrid
stimuli were created for each of the seven identities: FLSF–
FHSF, FLSF–NHSF, NLSF–FHSF, and NLSF–NHSF. Example hybrid
stimuli are presented in Figure 2. A phase-scrambled neutral face
(luminance and RMS contrast matched) was presented during
the baseline period. The tasks were created and presented using
VPixx software (version 3.15, VPixx Technologies, Montreal,
QC, Canada), and displayed on a 27 cm × 48 cm LCD
monitor with linearized output, at a viewing distance of 70 cm.
Face images were centrally displayed in a 20 × 19.5 degree
(500 × 700 pixels) mid-gray frame (47 cd/m2) on a gray
background (65 cd/m2).

FIGURE 1 | High-pass and low-pass filters: spatial frequency (cpd) vs.
attenuation (%) of signal.

FIGURE 2 | Hybrid face stimuli were created by recombining the LSF and
HSF components of fearful (F) and neutral (N) faces into hybrids as:
(a) FLSF–FHSF (b) NLSF–NHSF (c) FLSF–NHSF, and (d) NLSF–FHSF.

Multifocal VEP
A 9-patch dartboard stimulus was programmed in VPixx, with
a 4-degree central patch and two outer rings of four patches.
Each patch fluctuated between two gray levels (70% Michelson
contrast). The luminance for each patch was updated every video
frame (60 Hz), following a pseudorandom binary m-sequence
(m = 14). The m-sequences for each patch were maximally
offset, so we could record independent responses. For the
purpose of this paper, only the central patch was analyzed.
The m-sequences were broken into four approximately 1-min
recording segments. Participants were instructed to blink and rest
in between recordings, and to maintain careful fixation during the
recordings.

Procedure
Prior to the task, participants were shown example hybrid
stimuli. Although participants were not explicitly informed
about the different hybrid face conditions, they were told
that some faces might appear distorted, due to different
spatial frequency content. During the experiment, a behavioral
task was used to confirm participants were attending to the
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emotional content of the hybrid faces. Participants were verbally
instructed that a hybrid face image would appear on screen
for 500 ms, and after the image disappeared, they were to
make 2AFC RESPONSEPixx button box decision between
neutral and fearful expressions, where red button = neutral
and green button = fear. Participants were instructed that
this was not a timed response test, but that they should
respond as accurately as possible, and guess when they were
unsure of the facial expression. Participants were instructed
to respond with their preferred hand, however, handedness
was not measured. Following response selection, a phase-
scrambled face was presented during a 1.8 s inter-stimulus
interval.

To prevent fatigue, the recording was split into two blocks
of 100 trials, so in total there were 50 trials for each of
the four hybrid face conditions. Stimulus presentations were
randomized, with set constraints on the number of trials for each
hybrid condition. Trials with more than one button response
were identified and removed from the analyses. For the second
experiment, participants were instructed to passively view the
multifocal dartboard stimulus. The m-sequences were broken
into four approximately 1-min recording segments. Participants
were instructed to blink and rest in between recordings, and to
maintain careful fixation during the recordings.

EEG Recordings and Analyses
Electroencephalogram was recorded from parietal and occipital
sites (Oz, O1, O2, P3, P4, P5, P6, P7, P8, PO1, PO2, PO3, PO4,
PO5, PO6, PO7, PO8) using a 32 channel Quickcap recording cap
(Neuroscan, Compumedics). The data were band-pass filtered
from 0.1 to 200 Hz, and sampled at 1 KHz. The ground electrode
was positioned at AFz and linked mastoid electrodes served as
a reference. Eye blinks were monitored with EOG electrodes,
attached to the sub and supra orbital regions of the right eye.

Data analysis was performed with Brainstorm (Tadel et al.,
2011), which is documented and freely available for download
online under the GNU general public license1. Data were band-
pass filtered (1–30 Hz) and signal space projection was applied
to reduce eye-blink artifact. Segments of data containing low-
frequency artifact were excluded from the analysis. For the facial
emotion experiment, we extracted ERP epochs from −200 ms
pre to 450 ms post-stimulus presentation. Baseline corrections
were made for each epoch, by subtracting the mean amplitude
present during the 200 ms period before stimulus presentation
(i.e., −200 to 0 ms). Any epochs containing high amplitude
noise (>75 µV) were excluded from the analysis. Separate ERP
averages were computed for the low and high AQ groups, for
each hybrid face condition: FLSF–FHSF (Low AQ: 730 epochs,
High AQ: 820 epochs), NLSF–NHSF (Low AQ: 744 epochs, High
AQ: 817 epochs), FLSF–NHSF (Low AQ: 728 epochs, High AQ:
813 epochs) and NLSF–FHSF (Low AQ: 744 epochs, High AQ:
819 epochs).

Consistent with previous research (Vlamings et al., 2009,
2010) visual inspection revealed P100 amplitudes were the
greatest at electrodes P8, PO8, PO7, P7, O1, O2 and Oz,

1http://neuroimage.usc.edu/brainstorm

and N170 amplitudes were the greatest at P8, PO8, PO7, P7.
To improve signal to noise ratio, the mean cluster responses
were extracted. To reduce high frequency noise in these pre-
processed waveforms, an additional 10 Hz low-pass filter was
applied, prior to extracting the waveforms for the statistical
amplitude and latency comparisons (Vlamings et al., 2010).
The additional low-pass filter did not distort the P100 and
N170 traces, indeed similar patterns of results were obtained
regardless of whether this filter was applied. However, this step
enabled more robust estimation of peak latencies at the individual
level.

P100 and N170 amplitudes and latencies were detected using
LabVIEW (National Instruments). P100 was detected as the
maximum amplitude within the 90–150 ms time window, and
N170 was detected as the minimum amplitude within the 160–
240 ms time window. Peak amplitudes can be affected by noise,
and emotion effects are not limited to the peaks, so we used the
area under the P100 and N170 waveforms (60 ms window) as a
measure of amplitude in the statistical comparisons (Vlamings
et al., 2010). Due to individual differences in peak latencies,
60 ms time windows for P100 and N170 area measurements
were centered separately on their peak latencies for each
participant.

For the non-linear VEP analyses, custom Matlab/Brainstorm
scripts were written to extract K1, K2.1 and K2.2 kernels for the
central patch of the dartboard stimulus. The first order kernel
(K1) is the difference in response when the patch was light (S1)
or dark (S2) throughout the m-sequence, i.e., 0.5∗(S1 − S2). As
described in previous papers (Klistorner et al., 1997; Jackson et al.,
2013), the first slice of the second order kernel (K2.1) compares
consecutive frames when a transition did and did not occur, i.e.,
K2.1 = 0.25∗(S11 + S22 − S12 − S21). The second slice of the
second order kernel (K2.2) is similar, but compares frames with
an interleaving frame of either polarity. In other words, K2.1
measures neural recovery over one frame (16.67 ms on a 60 Hz
monitor) and K2.2 measures neural recovery over two frames
(33.33 ms).

RESULTS

Grand mean ERP topographies and waveforms for the low
and high AQ groups are presented in Figure 3. The P100
topographies for the low and high AQ groups (Figures 3A,C,
respectively) show there was a bilateral, occipital positivity
at 115 ms latency for each of the hybrid face conditions.
The N170 topographies for the low and high AQ groups
(Figures 3D,G, respectively) show there was a right lateralized
negativity, with strongest activations at electrode sites P8 and
PO8, for each of the hybrid face conditions. Means and standard
deviations for the low and high AQ groups are presented in
Figure 4, with comparisons for P100 amplitude and latency,
N170 amplitude and latency, and behavioral performance. As
explained in the analyses section, we defined ERP amplitude as
the area under the waveform (peak or trough latency ± 30 ms);
however, it should be noted that we observed a similar
pattern of results when we compared the waveform areas
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FIGURE 3 | Grand average ERP results from the low and high AQ groups. P100 results for the low AQ group (n = 16) are presented as (A) topographies and (B)
grand mean cluster waveforms (P8, PO8, PO7, P7, O1, O2, and Oz, cluster function = mean). Likewise, P100 results for the high AQ group (n = 17) are presented
as (C) topographies and (D) grand mean cluster waveforms. N170 results for the low AQ group are presented as (E) topographies and (F) grand mean cluster
waveforms (P8, PO8, PO7, P7, cluster function = mean). Likewise, N170 results for the high AQ group are presented as (G) topographies and (H) grand mean
cluster waveforms. Results for the different hybrid face conditions are presented in different colors: FLSF–FHSF (red), NLSF–NHSF (green), FLSF–NHSF (blue), and
NLSF–FHSF (orange). The top halves of the topography traces are occluded because we only recorded from a posterior set of electrodes (see Materials and Methods).

or the peak voltages across hybrid face conditions and AQ
groups.

Behavioral Performance
The emotion identification data (i.e., the percentage of trials
in which fearful expression was reported) are presented in
Figure 4E. A mixed factorial design 2 (AQ group) by 4 (hybrid
face condition) ANOVA (with Greenhouse–Geisser corrections
for unequal variance) was performed on emotion identification.
There was a significant main effect of hybrid face condition
on fear identification [F(2.23,64.55) = 435.79, p < 0.001, η2

p
= 0.94]. There was no significant interaction between the

effects of hybrid face condition and AQ group on the fear
identification [F(2.23,64.55) = 0.31, p = 0.758]; nor was there
a main effect of AQ group [F(1,29) = 0.82, p = 0.372]. This
shows that both AQ groups performed similarly. As one would
expect, planned comparisons showed that FLSF–FHSF hybrids
were identified as ‘fearful’ significantly more often than NLSF–
NHSF [F(1,29) = 2423.73, p < 0.001, η2

p = 0.99], FLSF–NHSF

[F(1,29) = 486.39, p < 0.001, η2
p = 0.94], and NLSF–FHSF

hybrids [F(1,29) = 29.45, p < 0.001, η2
p = 0.50]. However,

it was interesting that observers reported fearful expression
substantially more often in the NLSF–FHSF condition than in
the FLSF–NHSF condition [F(1,29) = 341.05, p < 0.001, η2

p
= 0.92]. This indicates that HSF information plays a more

important role in conscious identification of facial emotion than
LSF information. Please note that response latencies (Figure 4F)
were not similarly analyzed because interpretation of the data
could be confused by the stipulation that participants should wait
until the stimulus disappeared before responding.

P100 Amplitude
A mixed factorial design 2 (AQ group) by 4 (hybrid face
condition) ANOVA was performed on P100 amplitude (area),
with means displayed in Figure 4A. The analysis revealed a
significant difference in mean P100 amplitude across the four
hybrid face conditions, [F(3,93) = 3.86, p = 0.012, η2

p = 0.11].
Across hybrid conditions, the P100 amplitude was lower in the
high AQ group than in the low AQ group, and this difference was
approaching significance [F(1,31)= 4.08, p= 0.052, η2

p = 0.17],
as can be seen in Figure 4A. The interaction between AQ
group and hybrid face condition was significant, [F(3,93)= 3.02,
p= 0.034, η2

p = 0.09].
As the effect of the hybrid face conditions on P100 amplitude

area was different for the two AQ groups, separate ANOVAs
were performed for each group. For the low AQ group,
there was a significant effect of the hybrid face conditions
on the mean P100 amplitude, [F(3,45) = 3.83, p = 0.016,
η2

p = 0.20]. Analytical contrasts revealed that, as predicted,
mean P100 amplitude was significantly greater for FLSF–FHSF
hybrids compared to NLSF–NHSF hybrids, [F(1,15) = 10.75,
p = 0.005, η2

p = 0.42]. Interestingly, while P100 amplitude
was significantly lower with NLSF–FHSF than FLSF–FHSF faces
[F(1,15) = 5.36, p = 0.035, η2

p = 0.26], P100 amplitudes were
not significantly different for FLSF–FHSF and FLSF–NHSF faces
[F(1,15)= 0.43, p= 0.523]. This suggests that the effect of fearful
emotion on P100 amplitude is mostly due to the LSF fearful
input. Contrary to our hypothesis on hybrid face differences,
the low AQ group produced no significant amplitude area mean
difference between FLSF−NHSF and NLSF−FHSF [F(1,15) = 2.87,
p= 0.111].
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FIGURE 4 | Mean ERP and behavioral responses for the low (n = 16) and high (n = 17) AQ groups to the different hybrid face sets: FLSF–FHSF (red), NLSF–NHSF

(green), FLSF–NHSF (blue), and NLSF–FHSF (orange). The error bars on all panels represent ±1 SE. P100 amplitudes and latencies are displayed in (A) and (B). N170
amplitudes and latencies are displayed in (C) and (D). Behavioral results for the percentage of trials in which fear was identified, and the associated reactions times
are presented in (E) and (F), respectively.

The ANOVA for the high AQ group revealed that, as
hypothesized, there was no significant mean difference in
P100 amplitude area across the four hybrid face conditions
[F(3,48) = 0.85, p = 0.473]. This suggests an overall lack of fear
affect or spatial frequency modulation of the early P100 ERP
component in high autistic tendency.

P100 Latency
A mixed factorial design 2 (AQ group) by 4 (hybrid face
condition) ANOVA was performed on P100 latency, with the
means and standard errors displayed in Figure 4B. Greenhouse–
Geisser corrections were applied when Mauchly’s Test of

Sphericity was violated. There was a significant difference in
mean P100 latency across the four hybrid face conditions for
the whole sample [F(2.32,71.86) = 6.05, p = 0.002, η2

p = 0.16].
Planned contrasts revealed a faster P100 latency for FLSF–FHSF
compared to NLSF–FHSF [F(1,31) = 12.94, p = 0.002 η2

p = 0.29]
and FLSF–NHSF [F(1,31) = 18.52, p < 0.001, η2

p = 0.37] hybrids,
respectively. The mean P100 latency for fearful hybrids FLSF–
FHSF was faster than for NLSF–NHSF hybrids, however, this
comparison did not reach significance [F(1,31)= 3.23, p= 0.082,
η2

p = 0.09] The hybrid face by AQ group interaction was not
significant [F(2.32,71.86) = 0.99, p = 0.388]. This indicates that
facial emotion affected P100 latency in similar ways for the two
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groups. The between-groups ANOVA was also not significant
[F(1,31) = 0.448, p = 0.508]. In summary, the effect of hybrid
faces on P100 latency was similar for the low and high AQ group,
with the whole sample producing significantly quicker latency to
fear displayed at both LSF and HSF.

N170 Amplitude
A mixed factorial design 2 (AQ group) by 4 (hybrid face
condition) ANOVA (with Greenhouse–Geisser correction)
was performed on N170 amplitude area, with means displayed
in Figure 4C. There was no significant difference in mean
N170 amplitude across the four hybrid face conditions
[F(2.17,67.37) = 0.13, p = 0.898]. While there was no significant
interaction [F(2.17,67.37) = 0.77, p = 0.479]; there was a
significant effect of AQ group on mean N170 amplitude
[F(1,31) = 4.23, p = 0.048, η2

p = 0.12]. As illustrated in
Figure 4C, across conditions, mean N170 amplitudes tended to
be lower in the high AQ group.

N170 Latency
A mixed factorial design 2 (AQ group) by 4 (hybrid face
condition) ANOVA (with Greenhouse–Geisser correction) was
performed on N170 latency, with means displayed in Figure 4D.
The analysis revealed a significant difference in mean N170
latency, across the four hybrid face conditions in the whole
sample [F(2.33,72.29) = 6.28, p = 0.002, η2

p = 0.17]. Planned
contrasts of the whole sample revealed a significantly faster
N170 latency in response to fearful hybrids compared with
NLSF–NHSF [F(1,31) = 12.19, p = 0.001, η2

p = 0.28], NLSF–
FHSF [F(1,31) = 11.18, p = 0.002, η2

p = 0.27] and FLSF–NHSF

hybrids [F(1,31) = 15.89, p < 0.001, η2
p = 0.34]. No significant

interaction was observed [F(2.33,72.29) = 0.36, p = 0.733, η2
p

= 0.01]. The between-groups ANOVA was also not significant
[F(1,31) = 0.303, p = 0.586]. In summary, the effects of facial
emotion on N170 latency were similar for the low and high AQ
groups, with more rapid latency responses to hybrids with both
LSF and HSF fear.

Multifocal VEP
The grand average K1, K2.1, and K2.2 Wiener kernel responses
to the central multifocal patch for the low and high AQ groups
are illustrated in Figure 5. For each participant, we selected the
electrode with the highest amplitude response (Oz, O1, O2, or
POz). The majority of participants showed maximal VEPs at
Oz (Low AQ: Oz n = 9, POz n = 1 O1 n = 2, High AQ: Oz
n = 7, POz n = 4, O2 n = 1). Independent samples t-tests
were performed on kernel responses from the low and high AQ
groups. For K1, the P70 peak was slightly higher in the high
AQ group, but this difference was not statistically significant
(p > 0.05). For K2.1, the amplitude of the N60 was significantly
greater in the high AQ group [t(22)= 2.09, p < 0.05], a negativity
at approximately 180 ms was also lower in the high AQ group
[t(22) = 2.29, p < 0.05]. The early component of the K2.2
[which reflects magnocellular processing (Jackson et al., 2013)]
was significantly higher in amplitude for the high AQ group

FIGURE 5 | Grand averages from the low (n = 12) and high (n = 12) AQ
groups for (A) K1, (B) K2.1, and (C) K2.2 VEP kernels. The shading
represents ±1 SE, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

[t(22) = 2.26, p < 0.05], yet there were no significant between-
group differences in the parvocellularly driven N95 or P150
waveforms. These larger amplitude second-order non-linearities
in the high AQ group are consistent with previous findings
(Jackson et al., 2013), which suggests less efficient neural recovery
within the magnocellular pathway for observers with high AQ.

DISCUSSION

Here, we conducted two investigations in groups with low and
high autistic tendency recruited from within the neurotypical
population. Firstly, we asked whether fearful expression affects
the P100 and N170 ERP responses in the same way for low and
high AQ groups. As expected, fearful expression modulated P100
amplitude in the low AQ group, but not in the high AQ group.
In the low AQ group, P100 amplitudes were significantly greater
for FLSF–FHSF faces than for NLSF–NHSF faces. Interestingly,
while P100 amplitude was significantly greater with FLSF–FHSF
than NLSF–FHSF faces, it was not significantly different with
FLSF–FHSF and FLSF–NHSF faces. This suggests that the effect
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of fearful expression on producing greater P100 amplitude is
mostly via fearful expression being carried by LSF. By contrast,
in the high AQ group there was an overall reduction in P100
and N170 amplitude and there was no effect of fearful expression
on ERP amplitudes. P100 and N170 latencies were faster for the
FLSF–FHSF hybrids than for the other conditions, but there were
no significant latency differences between the two groups. We
used Wiener kernel analysis of the visual evoked potential to
investigate whether differences between the low and high AQ
groups could reflect differences in magnocellular processing. The
K2.1 non-linear VEP response amplitude was higher in the high
versus low AQ group, which suggests inefficient neural recovery
within the magnocellular stream (Sutherland and Crewther,
2010; Jackson et al., 2013).

We demonstrated that for people with low levels of autistic
personality traits, fearful emotion tends to affect the P100
amplitude but not the N170 amplitude. Differences in the effects
of our hybrid emotional stimuli on the P100 and N170 can be
interpreted in terms of what we know about these early potentials.
The literature suggests that P100 amplitude modulation reflects
both rapid orienting to salient information (Hillyard and Anllo-
Vento, 1998) and rapid identification of threat-related input,
such as fearful facial expression (Batty and Taylor, 2003; Pourtois
et al., 2004; Magnée et al., 2008; Feng et al., 2009; Luo et al.,
2010; Forscher and Li, 2012; Meaux et al., 2013; Zhang et al.,
2013). Consistent with this literature, our findings suggest that
differences in facial emotion can be processed as early as the
P100, but only in groups with low levels of autistic tendency. The
N170 amplitude is sensitive to configural processing of faces, yet
there are mixed findings as to whether it is influenced by facial
emotion (Holmes et al., 2005; Pourtois et al., 2005). Vlamings
et al. (2009) found increased N170 amplitude responses to fearful
hybrids compared to neutral hybrids, yet in our experiment,
these differences were not observed for either AQ group. On the
contrary, we did observe some latency differences for the whole
sample, with faster N170 responses for FLSF–FHSF hybrids than
for the other hybrid conditions. The slower N170 responses for
the hybrids with mixed expressions (i.e., FLSF–NHSF and NLSF–
FHSF) might reflect disruptions in configural processing of these
stimuli (Bentin et al., 1996).

Consistent with Stavropoulos et al. (2016), the P100 and N170
amplitudes were lower in the high AQ group than in the low AQ
group, yet contrary to their findings, we did not observe any clear
P100 or N170 latency differences between the two AQ groups.
There are several differences between our experiments that may
explain these differences in results. First of all, we used hybrid
face stimuli, whereas they used unaltered (i.e., broadband spatial
frequency) face stimuli. Secondly, they observed the greatest
between-groups differences when the stimuli were presented
non-consciously (16 ms presentation time), whereas our stimuli
were presented for 500 ms. Finally, their high AQ sample had very
low amplitude/high noise ERP results. This may imply that their
high AQ sample had greater face processing impairments than
our high AQ sample. Given that we recorded clear P100 and N170
responses from both groups, we were able to make meaningful
comparisons for the effects of facial emotion on ERP responses in
the low and high AQ neurotypical groups.

Differences in the effects of facial emotion on P100 responses
for the low and high AQ groups may reflect underlying
differences in magnocellular function. In the low AQ group,
P100 amplitudes were greater for FLSF–FHSF than NLSF–FHSF
faces, yet there was no difference in P100 amplitude for FLSF–
FHSF and FLSF–NHSF faces. This is consistent with evidence
from Vlamings et al. (2009) that LSF input contributes to rapid
detection of fearful expression. Recent studies have demonstrated
magnocellular projections from the pulvinar to the orbitofrontal
cortex, which allow for rapid feedback to bias visual processing
toward behaviorally relevant stimuli (Bar et al., 2006; Kveraga
et al., 2007). Given the spatial frequency preferences of the
magnocellular and parvocellular pathways (Livingstone and
Hubel, 1988), our results are consistent with evidence that the
effects of fearful expression on early visual processing are likely
to be carried by the magnocellular pathway. The K2.1 non-linear
VEP response amplitude was higher in the high AQ group, which
suggests inefficient neural recovery within the magnocellular
stream (Sutherland and Crewther, 2010; Jackson et al., 2013).

In addition, fearful expression did not tend to affect P100
amplitudes in the high AQ group in any hybrid condition,
compared to the low AQ group, which demonstrated sensitivity
to hybrid conditions. This suggests that even within the
neurotypical population, very early processing of fear-related
input varies for individuals with different levels of autistic
personality traits. While the exact nature of magnocellular
impairment in high autistic tendency individuals remains
unresolved (Simmons et al., 2009; Thye et al., 2017); the
differences in early ERP responses to fearful faces that we
observed for low and high AQ groups could reflect a
magnocellular difference in processing LSF facial emotion.

Our results for the non-linear VEP analysis are consistent with
magnocellular differences between the low and high AQ groups.
Previous investigations of the contrast-response functions for
non-linear VEP components (Klistorner et al., 1997; Jackson
et al., 2013) indicate that the K2.1 and early components of the
K2.2 waveform are of magnocellular origin, whereas the later
K2.2 components are of parvocellular origin. Our results are
consistent with previous findings that magnocellularly driven
VEP non-linearities tend to be greater in groups with high
AQ, but parvocellularly driven VEP non-linearities tend to be
similar for both groups (Jackson et al., 2013). This implies that
the magnocellular pathway recovers less efficiently from rapid
stimulation in individuals with high AQ than in individuals
with low AQ. Our results suggest that magnocellular projections,
which would normally enable rapid detection of threatening
stimuli, are less efficient within the broader autistic phenotype.
This may contribute to explaining why the high AQ group
produced reduced P100 ERP responses to all hybrid face
conditions.

The results of our behavioral task are seemingly at odds
with our ERP results. Both high and low AQ groups performed
similarly in detecting fearful expression in the FLSF–FHSF,
FLSF–NHSF, NLSF–FHSF, and NLSF–NHSF hybrid faces. More
interestingly, our results indicated that both AQ groups relied
upon HSF information to recognize fearful expressions. This
HSF preference, however, was elicited in a task that required a
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500 ms wait time before response. The conscious detection and
report of fearful expression within a hybrid face, as described
in prior studies of conscious perception, has demonstrated
reliance on HSF facial information (Williams et al., 2004).
However, these behavioral measures are not sensitive to very
early visual processing stages that precede conscious awareness.
We demonstrated differences in ERP responses to fearful and
neutral face stimuli as early as 100 ms post-presentation in the
low AQ group, but not in the high AQ group. Our non-linear
VEP experiment found no significant between-group differences
in the parvocellularly driven K2.2 N95 or P150 waveforms,
which suggests the differences in the fearful face P100 are
magnocellularly driven.

CONCLUSION

In conclusion, for observers with low AQ, we found that
fearful expression enhances rapid electrophysiological responses
to faces. Our results suggest that this enhancement is likely to
occur via rapidly processed, magnocellular input. For observers
with high AQ, we did not find any difference in ERP responses
to fearful and neutral faces. Consistent with previous studies

(Jackson et al., 2013), our high AQ group showed abnormal
temporal processing in the magnocellular pathway. These
results support the notion that autism involves differences
in processing of LSF information. Our results suggest that
magnocellular projections, which would normally enable rapid
detection of threatening stimuli, are not utilized efficiently for
those with higher autistic tendency. Hence, visual processing
differences may underlie some of the socio-cognitive aspects of
autism.
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The present mini-review was aimed at exploring the frontal EEG asymmetry of mood.

With respect to emotion, interpreted as a discrete affective process, mood is more

controllable, more nebulous, and more related to mind/cognition; in addition, causes

are less well-defined than those eliciting emotion. Therefore, firstly, the rational for the

distinction between emotion and mood was provided. Then, the main frontal EEG

asymmetry models were presented, such as the motivational approach/withdrawal,

valence/arousal, capability, and inhibition asymmetric models. Afterward, the frontal EEG

asymmetry of mood was investigated following three research lines, that is considering

studies involving different mood induction procedures, dispositional mood (positive and

negative affect), and mood alterations in both healthy and clinical populations. In general,

results were found to be contradictory, no model is unequivocally supported regardless

the research line considered. Different methodological issues were raised, such as: the

composition of samples used across studies, in particular, gender and age were found

to be critical variables that should be better addressed in future studies; the importance

of third variables that might mediate the relationship between frontal EEG asymmetries

and mood, for example bodily states and hormonal responses; the role of cognition,

namely the interplay between mood and executive functions. In light of these issues,

future research directions were proposed. Amongst others, the need to explore the neural

connectivity that underpins EEG asymmetries, and the need to include both positive and

negative mood conditions in the experimental designs have been highlighted.

Keywords: emotion, disposition, frontal asymmetry, mood induction, individual differences, depression, gender,

pre-frontal cortex

In these last decades, the cognitive neuroscience of emotion has enormously increased, aiming
at improving the understanding of the biological basis of emotional processing in both healthy
and clinical populations. A variety of approaches have been used so far, including functional
Magnetic Resonance Imaging (fMRI). However, given the high temporal resolution of the
electroencephalography (EEG), the change of EEG signals has been extensively used to detect real-
time emotional processes that arise following a series of external/internal stimuli or events. One
of the most prolific research lines has focused on the investigation of frontal EEG asymmetries of
emotion and affect-related phenomena (e.g., mood). In this vein, moving from the rational that
emotion and mood are distinct affective processes, the present mini-review was aimed at clarifying
the EEG frontal asymmetry of mood. At the aim a selection of those EEG studies focused on
mood induction, dispositional mood (e.g., positive and negative affect) and mood alterations in
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both healthy and clinical populations (e.g., depression and
anxiety) were reviewed. Of course, the goal was not to
systematically review all studies on the mood frontal asymmetry,
but rather provide examples for themost important research lines
in order to get insights about the current status of the research,
in order to detect possible methodological- or theoretical-related
issues and to draw possible future scenarios.

DIFFERENCES BETWEEN EMOTION AND
MOOD

Emotion and mood are two distinct affective processes for
different reasons. Beedie et al. (2005) revealed that eight
themes were cited by both non-academics and academics
(scientific literature). Excluding duration (emotion was evaluated
both shorter and longer than mood) and function (intrinsic
property to both processes), at least six reliable criteria
were identified: causes, consequences, intentionality, intensity,
physiology, and awareness of the cause. On the one hand,
emotion involves specific causes, consequences on behavior,
direction at something, high intensity, physical chemical
response (e.g., adrenaline/fear), identification of the cause. On
the other hand, mood is characterized by no specific causes,
consequences on cognition, no specific direction at something,
low intensity, psychological response and hormonal influences,
no identification of the cause. In addition, emotion cannot
be controlled (Ekman and Davidson, 1994), whereas mood
can be controlled (Parkinson et al., 1996) and experimentally
manipulated via different induction procedures, for example
using music (e.g., Thompson et al., 2001; Palmiero et al., 2015,
2016). Emotion is mostly showed by facial expressions (Ekman,
1994), is clearly defined (Parkinson et al., 1996), whereas mood
is hidden to others or expressed via body postures (Parkinson
et al., 1996), and is more nebulous (Vallerand and Blanchard,
2000). Emotion is related to the heart and feeling, mood to the
mind and thinking (Beedie et al., 2005). In addition, according
to Scherer (2005) emotion is also characterized by response
synchronization, that would play a key role on the preparation
of the organism in order to face the emotional situation
that has arisen by a specific cause; on the contrary, response
synchronization is not important for mood because the organism
must not prepare appropriate responses to unidentifiable eliciting
causes.

EEG FRONTAL ASYMMETRY OF
EMOTION: THE BASIC MODELS

The pioneristic frontal EEG asymmetry model (Davidson, 1983,
1993) supports the view that the activity of brain systems both
moderates motivational trait tendencies to approach/withdraw
novel emotional stimuli and mediate approach/withdrawal
motivational tendencies underlying emotion. According to this
model, an increase of the left prefrontal activity, either as a trait
or as a state, is associated to approach-related emotions (e.g.,
positive), whereas an increase of the right prefrontal activity is
associated to withdrawal-related emotions (e.g., negative).

According to the valence-arousal model (e.g., Heller,
1990, 1993; Berntson et al., 2011) the valence of emotions
would be more important than the motivational tendencies:
positive emotions are specifically associated with more left
than right hemispheric activity, whereas negative emotions
are associated with more right than left hemispheric
activity.

In general, these two models diverge conceptually but
overlap in terms of empirical predictions (Spielberg et al.,
2008), that is, positive emotions are linked to approach-related
motivation, whereas negative emotions to withdrawal-related
motivation. With a few exceptions (e.g., Mller et al., 1999;
Elgavish et al., 2003), the most of studies confirmed these
asymmetry models (for review see Davidson et al., 2000; Coan
and Allen, 2004). However, results collected with anger, which
involves a negative valence but also an approach tendency
(e.g., Berkowitz, 1999), raised doubt on the assumptions of the
asymmetry models. Indeed, different studies demonstrated that
anger yielded an increase of left rather than of right frontal
EEG activity (e.g., Harmon-Jones, 2004a; Hewig et al., 2004;
Gable and Poole, 2014; for a review see Harmon-Jones, 2004b).
Collectively, these results show that EEG frontal asymmetry
reflects the direction of the motivation rather than the valence
of emotion.

More recently, Coan et al. (2006) proposed the capability
model, which basically posits that, besides affective dispositions
under resting condition, the situational variable plays a key
role on the frontal EEG asymmetry. In other words, frontal
EEG activity would rely on specific emotional contexts and
individuals’ capacity to respond emotionally (approaching vs.
withdrawal responses) or to inhibit responses to the situation that
has contributed to elicit emotions.

Yet, moving from the evidence that inhibitory processes
are very important for emotional asymmetries (Jackson et al.,
2003; Davidson, 2004; Coan et al., 2006), Grimshaw and
Carmel (2014) proposed the asymmetric inhibition model, by
which asymmetries can be interpreted in terms of executive
control: mechanisms in left frontal cortex would inhibit negative
distractors, whereas mechanisms in right frontal cortex would
inhibit positive distractors. Different studies supported these
predictions. For example, difficulty in releasing attention from
negative stimuli was found to rely on low left frontal activity, as
occurs in depression and anxious arousal (e.g., Cisler and Koster,
2010), whereas difficulty in inhibiting positive distractions was
found to rely on low right frontal activity, as occurs in
poor self-regulation and addiction (e.g., Goldstein and Volkow,
2011).

FRONTAL EEG ASYMMETRY OF MOOD

Three research lines were followed, that is studies exploring
the relationships between frontal EEG asymmetries and: (1)
mood states induced by different experimental procedures (e.g.,
film clips, music, faces); (2) dispositional mood (positive and
negative affect); (3) mood alterations in both healthy and clinical
populations (see Table 1 for details).
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TABLE 1 | List of studies for each research line.

MOOD INDUCTION

Study Method Subjects Main result

Tucker et al., 1981 Textbook descriptions of euphoria and depression 10 (6 females); Students Depression: ↑RFA

Tomarken et al., 1990 Positive and negative film clips

Subjective emotional responses to film clips

32 females

17–41 years

NA: ↑RFA

Wheeler et al., 1993 As in Tomarken et al. (1990), but baseline EEG recorded

twice 3 weeks apart; subjects with stable patterns of

asymmetry

26 females

17–21 years

NA: ↑RFA; PA: ↑LFA

Gotlib et al., 1998: Study 2 Sad mood induced using negative music

Non-verbal fluency task for control condition

59 females divided in: high

vulnerable ↓LFA; low vulnerable

↑LFA

No relationship between EEG asymmetry,

mood, cognitive functioning

Gale et al., 2001 Pictures of sad and happy faces

Eysenck Personality Inventory

Subjective emotional response to faces

30 females

18–36 years

Negative mood: ↑LFA
Extraversion: ↑RFA for PA;

Neuroticism: ↑left/right ratios and ↓RFA

Dennis and Solomon, 2010 Emotion regulation: self-reported change in negative

mood induced using fearful, sad, neutral film clips;

attention interference in a task with mood congruent

emotional distractors

66 (40 females)

18–59 years

↑FA during mood inductions vs. baseline:

more emotion regulation

No significant asymmetry

Kop et al., 2011 Recall of happy and anger incidents 20/30 (55% females) Mean age

25 years

Positive mood: RFA

Rodriguez et al., 2015 Sadness induced while participants virtually navigated

through a park by music, Velten self-statements,

pictures, movies

24 (12 females)

19–36 years

9 controls; 9 reappraisal; 9

expressive/suppression

Sadness: ↑RFA only in controls

Warden-Smith et al., 2017 Light-pleasant smell to optimize positive

psychophysiological benefit

24 for stage 1

64 for stage 2

NFA (difference between

Alpha-wave activity in the right

and left frontal hemispheres)

and PFA groups.

Negative group (NFA): ↓RFA and ↑LFA
No significant effect on the positive group

DISPOSITIONAL MOOD

Study Mood Measures Subjects Main Results

Tomarken et al., 1992a Baseline EEG on two occasions 3 weeks apart; PANAS 90 females

17–21 years

LFA: ↑PA, ↓NA compared with RFA

Tomarken et al., 1992b As in Tomarken et al. (1992a) 85 females

17–21 years

As in Tomarken et al. (1992a)

Jacobs and Snyder, 1996 PANAS; BDI 40 males

18–53 years

↑LFA: ↓NA and ↓BDI

Sutton and Davidson, 1997 Baseline EEG on two occasions 6 weeks apart

PANAS first session; BIS/BAS scales second session

46 (23 females)

18–22 years

No relationship between Pre-Frontal EEG

asymmetry and PA or NA

Hagemann et al., 1999 Transient Mood assessed on a 0-9 scale;

PANAS

Eysenck Personality Questionnaire

36 (24 females)

Mean age 24.7

Subjects with ↑NA: ↑LTA (but not LFA)

than in subjects with ↓NA. No relation

between asymmetry and PA

Hall and Petruzzello, 1999 PASE; STAI-Y2; PANAS; GDS; SWLS 41 (26 females)

Mean age 68.7

LFA predicted PA

High-active group: FA predicted affective

valence and SWL

Low active group: FA predicted NA

Mikolajczak et al., 2010 Trait Emotional Intelligence Questionnaire 31 (25 females)

Mean age 22.4

No relationship between EEG FA and

well-being subscale

MOOD ALTERATIONS

Study Method Subjects Main Results

Schaffer et al., 1983 BDI 15 (10 females) ↑RFA: ↑BDI

(Continued)
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TABLE 1 | Continued

Study Method Subjects Main Results

Henriques and Davidson,

1990

BDI; Hamilton Rating Scale for Depression 14 (6 previously depressed)

Mean age previously depressed

37.4

Mean age controls 34.7

↓LFA in previously depressed subjects

relative to controls; no difference between

groups on self-reported emotional state

Henriques and Davidson,

1991

BDI; Hamilton Rating Scale for Depression 28 (18 females)

15 currently depressed: 33–57

years

13 controls: 40–61 years

↓LFA in currently depressed subjects

relative to controls; no correlation between

FA and state ratings of emotion at the time

of the baseline recording and depression

Allen et al., 1993 Pre-post bright light treatment 8 females (4 with Seasonal

Affective Disorder)

↓LFA in Seasonal Affective Disorder

relative to Control

Tomarken and Davidson,

1994

MC; STAI; BDI 90 females Repressors ↑LFA than non-repressors

No asymmetry difference between

high-anxiety and low-anxiety,

high-depression and low-depression

groups

Gotlib et al., 1998: Study 1 Inventory to Diagnose Depression (IDD); Lifetime version

of the IDD; 2 modules of the DSMIII-R: Major Depressive

Disorder and Dysthymic Disorder

77 females

30 never depressed; 31

previously depressed; 16

currently depressed

↓LFA in currently depressed and

previously depressed subjects compared

to never depressed subjects

Reid et al., 1998 Study 1: BDI

Study 2: DSM-III-R

Study 1: 36 females (17

depressed)

Mean age 18.53

Study 2: 27 females (13

depressed)

Mean age 27.54

No frontal asymmetry between depressed

and non-depressed subjects in both

studies

Papousek and Schulter,

2002

Study 1: Anxious tension anchored 17-point bipolar

rating scale; Negative mood assessed by an adjective

checklist

Study 2: separate scales for state depression and state

anxiety

Study 1: 56 (30 female): 18–36

years

Study 2: 128 (68 female): 18–31

years

Anxiety, tension, and depression decrease

when frontopolar activation asymmetry

shifted to the right hemisphere

Mathersul et al., 2008 Depression Anxiety Stress Scales (DASS-21) 428 (214 females)

18–60 years

↑RFA associated to anxious arousal

↑LFA associated to anxious apprehension

and to non-depression

Symmetrical frontal activity associated to

depression and comorbidity

↑, Increased; ↓, Decreased; LFA, Left Frontal Activation; RFA, Right Frontal Activation; LTA, Left Temporal Activation; NFA, Negative Frontal Asymmetry; PFA, Positive Frontal Asymmetry;
PANAS, Positive and Negative Affect Schedule; NA, Negative Affect; PA, Positive Affect; EEG, Electroencephalography; BIS, Behavioral Inhibition System; BAS, Behavioral Activation
system; PASE, Physical Activity Scale for Elderly; STAY-Y2, State-Trait Anxiety Inventory (Trait); GDS, Geriatric Depression Scale; MC, Marlowe-Crowne Social Desirability Scale; SWLS,
Satisfaction with Life Scale.

EEG FRONTAL ASYMMETRY AND
INDUCTION OF MOOD STATE

In one of the first studies, Tucker et al. (1981) revealed that
the induced euphoria mood state generated symmetry, whereas
the induced depression mood state was associated with greater
activation of the right frontal lobe. Tomarken et al. (1990) also
found that subjects’ asymmetry predicted the level of negative
affect in response to the negative film clips, which was related
to greater activation in the right hemisphere. Using data from
those subjects with stable patterns of asymmetry across 3-weeks
period, Wheeler et al. (1993) replicated Tomarken et al. (1990)
results, and also found greater left frontal activation associated
with reports of more intense positive affect in response to the
positive films. Rodriguez et al. (2015) also found significant
activations in different right frontal regions due to the induction
of negative mood in the control group but not in cognitive

reappraisal and expressive suppression groups. Collectively,
these results suggest that hypoactivation of the left frontal
region is an individual predisposition that underlies elevated
responsivity to negative stimuli, increasing the risk for mood
disorders, especially depression. However, Gale et al. (2001)
revealed greater activation of the left frontal hemisphere with
negative mood, whereas participants’ personality (and gender of
the face viewed) mediated the direction of the differentiation
between positive and negative mood in the right hemisphere.
Indeed, extraverts showed greater right hemisphere activation
for positive affect, whereas, neurotics showed increased left/right
ratios and less activated right hemisphere. Kop et al. (2011)
also found increased right frontal activation during induced
positive mood induction, which was associated with a decrease in
low frequency/high frequency ratio of the heart rate variability.
Interestingly, Warden-Smith et al. (2017) showed that a positive
mood induction yielded a decrease of right frontal asymmetry
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and an increase of left frontal asymmetry in negative alpha fontal
group, as if a change in alphawave activity in the direction
of positive affect occurred in people susceptible to negative
affect. Yet, Gotlib et al. (1998) found in the study 2 that
frontal EEG asymmetry was unrelated to mood reactivity and
cognitive functioning. Dennis and Solomon (2010) also found
that induced fear and anger were not related to greater right
frontal asymmetry, but rather to bilateral activity.

EEG FRONTAL ASYMMETRY AND
DISPOSITIONAL MOOD

In one large research project (e.g., Tomarken et al., 1992a,b),
females with stable greater right frontal activation across two
different sessions reported increased Negative Affect (NA),
whereas females with stable left frontal activation reported
increased Positive Affect (PA). However, Jacobs and Snyder
(1996) only revealed that left lateral-frontal activation yielded
lower score of NA in men, whereas Hall and Petruzzello (1999)
showed that left frontal activation predicted PA in older adults
of both sexes. In addition, other studies failed to observe
significant relationships between the affective dimensions and
frontal asymmetry in a sample of both sexes (e.g., Sutton and
Davidson, 1997; Hagemann et al., 1999). More recently, also
Mikolajczak et al. (2010) found that frontal EEG asymmetries
were not related to the factor of wellbeing, which is a
trait pertaining to dispositional mood. In addition, in the
attempt to support more specifically the assumption of an
asymmetry/personality relationship, Hagemann et al. (1999)
found that while extraversion correlated with positive affect
scores, neither extraversion nor neuroticism correlated with any
of the EEG measures.

EEG FRONTAL ASYMMETRY AND MOOD
ALTERATIONS

Comparing high vs. low scorers on the Beck Depression
Inventory (BDI) on measures of resting EEG activation
asymmetry, Schaffer et al. (1983) revealed that depressed subjects
yielded greater right frontal activation than non-depressed
subjects. In this direction, less left frontal activation was found
in a sample of six euthymic individuals with a past history
of depressive episodes relative to healthy subjects (Henriques
and Davidson, 1990), in currently depressed (Henriques and
Davidson, 1991; Gotlib et al., 1998) and previously depressed
subjects (Gotlib et al., 1998), as well as in dysphoric patients
with bipolar seasonal affective disorder relative to non-depressed
controls, both before and after successful phototherapy (Allen
et al., 1993). These results support the view that hypoactivation
of the left frontal region represents a marker for mood disorders.
However, once again contradictory results have been collected
across years. For example, subjects classified as repressors showed
relative left anterior cortical activation than non-repressors
(Tomarken and Davidson, 1994), no asymmetry differences
were not found between high-depression and low-depression
groups using both Beck Depression Inventory scores (Tomarken

and Davidson, 1994; Reid et al., 1998) and subjects diagnosed
with DSM-III-R depression relative to controls (Reid et al.,
1998). In addition, no difference was found between high-
anxiety and low-anxiety groups (Tomarken and Davidson,
1994). Interestingly, negative spontaneous mood (e.g., anxiety,
tension, depression) was found to decrease across two different
sessions when frontopolar activation asymmetry spontaneously
shifted to the right hemisphere (Papousek and Schulter, 2002).
More recently, Mathersul et al. (2008) found that anxious
arousal subjects showed higher right frontal asymmetry, anxious
apprehension and non-depression subjects showed higher left
frontal asymmetry, whereas symmetry was found for depression
and comorbid subjects.

CONCLUSIONS

From the studies reviewed on the EEG correlates of mood
it appears that, regardless the research line considered,
there are contrasting results that cannot be unequivocally
interpreted according to one frontal asymmetry model rather
than to another. The motivational approach/withdrawal and
valence/arousal models appear to be the most supported
ones (Tucker et al., 1981; Schaffer et al., 1983; Henriques and
Davidson, 1990, 1991; Tomarken et al., 1990, 1992a,b; Allen et al.,
1993;Wheeler et al., 1993; Gotlib et al., 1998—Study 1; Mathersul
et al., 2008; Rodriguez et al., 2015; Warden-Smith et al., 2017).
However, it is difficult to disentangle the contributions of specific
studies to the two models given that the models overlap in
terms of empirical predictions (Spielberg et al., 2008). The
most of these studies might be also explained in light of the
inhibition model of asymmetric differences, given that they
revealed right frontal asymmetry or hypoactivation of the left
hemisphere for negative mood, as if positive or approach-related
distractors would be inhibited when there is a predisposition
that supports elevated responsivity to negative stimuli. In
addition, the capability model might also explain the most of
results (e.g., Dennis and Solomon, 2010), as individual dynamic
differences that are challenged by arousing situations, such as
those relying on mood induction procedures. Nevertheless,
the extent to which this model is appropriate to explain results
when the situational variable is absent (e.g., dispositional mood)
is unclear. Finally, some studies found results that do not fit
with the models discussed (e.g., Papousek and Schulter, 2002;
Kop et al., 2011), whereas other studies found frontal EEG
asymmetry unrelated to mood (Tomarken and Davidson,
1994; Sutton and Davidson, 1997; Gotlib et al., 1998—Study
2; Reid et al., 1998; Hagemann et al., 1999; Mikolajczak et al.,
2010).

These contradictory results depend on different reasons.
Following Hagemann et al. (1998), firstly results vary according
to methodological variables, such as different measurement
procedures of asymmetry and affective variables. Secondly, it
also appears that sample should be better composed. Indeed,
different studies reviewed used only females (e.g., Tomarken
et al., 1990; Wheeler et al., 1993; Gotlib et al., 1998; Reid et al.,
1998; Gale et al., 2001), or much more females than males (e.g.,

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 November 2017 | Volume 11 | Article 22477

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Palmiero and Piccardi EGG of Emotion and Mood

Dennis and Solomon, 2010; Mikolajczak et al., 2010); one study
enrolled only males (Jacobs and Snyder, 1996), and one study
reported no information about gender (Warden-Smith et al.,
2017). Only recently studies have increased the interest in gender-
related brain mechanisms and cerebral lateralization subserving
emotional processing (e.g., Gasbarri et al., 2006, 2007; Arnone
et al., 2011). In particular, unpleasant stimuli (negatively valenced
IAPS pictures) were found to elicit higher P300 amplitude and
shorter P300 latency at left frontal site than pleasant and neutral
stimuli in women than in men, while a stronger P300 component
was elicited in the right hemisphere in men compared to women
(e.g., Gasbarri et al., 2007; Arnone et al., 2011). In addition,
participants’ age might also be another confounding factor
because different wide age ranges are reported across studies,
even including over 50 (e.g., Jacobs and Snyder, 1996; Dennis
and Solomon, 2010) or 60-year people (e.g., Hall and Petruzzello,
1999; Mathersul et al., 2008).

Thirdly, the relationships between frontal asymmetries and
mood are also mediated by third variables that have been rarely
considered beyond personality (e.g., Gotlib et al., 1998), emotion
regulation-capabilities (e.g., Dennis and Solomon, 2010). For
example, Hall and Petruzzello (1999) found that in older adults
the relationships between frontal brain activity and dispositional
affect is influenced by physical activity. This leads to suppose
that althoughmood is generally associated to mind and thoughts,
bodily states might also play a key role. Indeed, mood (and of
course emotion—e.g., Neal and Chartrand, 2011; Palmiero and
Borsellino, 2014) has been described as an embodied experience
(e.g., Veenstra et al., 2016). At our knowledge, only Kop et al.
(2011) included the measure of the heart rate variability in the
study of EEG correlates of mood.

Therefore, the interplay between cognition and emotion
should also be considered when studying the EEG asymmetries
of mood. Cognition and emotion interact in prefrontal cortex.
In particular, according to Grimshaw and Carmel (2014),
the left dorsolateral prefrontal cortex (dlPFC) should inhibit
negative distractors, whereas the right dlPFC should inhibit
positive distractors. Consistent with this prediction, Compton
et al. (2003) revealed the presentation of negative words in an

emotional Stroop task yielded increased activation in the left
dlPFC. Yet, different studies revealed that failures to recruit
the left dlPFC during negative distractions are due to mood
alterations, which yield higher activation of the right dlPFC (e.g.,
Engels et al., 2010). In this vein, it appears that frontal EEG
asymmetries of mood must be also considering the underlying
neural network organization.

In light of these issues, inferences drawn from data previously
discussed are potentially limited by the scarce research examining
EEG correlates of mood using standard procedures and samples,
as well as the interplay with third variables and cognition. Then,
frontal EEG asymmetries of mood might be better understood
considering the extent to which parietal, temporal, and occipital
asymmetries are also investigated. Indeed, Hagemann et al.
(1999) showed significant greater relative left activation in the
temporal lobe (but not in frontal lobe) in participants of both
sexes with high negative affect than in participants with low
negative affect. This means that also the neural connectivity
between different brain areas should be investigated using more
sophisticated neuroimaging approaches. Yet, given that the
majority of studies used only negative stimuli, it is important
that future research includes in the paradigm both positive and
negative mood conditions, unless it is impossible to determine
the extent to which hemispheric differences are related to
valence.

In conclusion, pursuing more systematically the investigation
of EEG asymmetries of mood adopting a wider perspective seems
to be mandatory in order to achieve more consistent and reliable
outcomes.
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The ability to anticipate the population-wide response of a target audience to a new
movie or TV series, before its release, is critical to the film industry. Equally important
is the ability to understand the underlying factors that drive or characterize viewer’s
decision to watch a movie. Traditional approaches (which involve pilot test-screenings,
questionnaires, and focus groups) have reached a plateau in their ability to predict
the population-wide responses to new movies. In this study, we develop a novel
computational approach for extracting neurophysiological electroencephalography
(EEG) and eye-gaze based metrics to predict the population-wide behavior of
movie goers. We further, explore the connection of the derived metrics to the
underlying cognitive processes that might drive moviegoers’ decision to watch a
movie. Towards that, we recorded neural activity—through the use of EEG—and
eye-gaze activity from a group of naive individuals while watching movie trailers of
pre-selected movies for which the population-wide preference is captured by the
movie’s market performance (i.e., box-office ticket sales in the US). Our findings
show that the neural based metrics, derived using the proposed methodology, carry
predictive information about the broader audience decisions to watch a movie,
above and beyond traditional methods. In particular, neural metrics are shown
to predict up to 72% of the variance of the films’ performance at their premiere
and up to 67% of the variance at following weekends; which corresponds to a
23-fold increase in prediction accuracy compared to current neurophysiological or
traditional methods. We discuss our findings in the context of existing literature
and hypothesize on the possible connection of the derived neurophysiological
metrics to cognitive states of focused attention, the encoding of long-term memory,
and the synchronization of different components of the brain’s rewards network.
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Beyond the practical implication in predicting and understanding the behavior of
moviegoers, the proposed approach can facilitate the use of video stimuli in
neuroscience research; such as the study of individual differences in attention-deficit
disorders, and the study of desensitization to media violence.

Keywords: EEG, eye-tracking, neuro-cinematics, neuro-marketing, film test screening, pilot test screening

INTRODUCTION

Anticipating the behavior of large audiences to video stimuli,
such as movies, movie trailers and TV series, is critical for the
film industry. Movie trailers serve as a primary marketing tool to
promote a movie, and often capture the core characteristic of the
movie and motivate its storyline. Thus, evaluating the responses
of moviegoers to movie trailers can provide a convenient means
of predicting an audience response to the actual movie and hence
to anticipate its potential commercial success, before its release.
Traditionally, film testing relies on measurements of consumers’
stated preferences, obtained via questionnaires, and focus groups
conducted during a test screening of the movie or the movie
trailer (Eastman and Ferguson, 2012). However, with more than
75% of new movie releases earning a net loss during their run
in theaters (Boksem and Smidts, 2015), there is a need for new
methods for predicting moviegoer’s behavior.

Recently, there has been a growing interest in using neural
and biometric measures to identify metrics that predict the
performance and effectiveness of video stimuli. These methods
have been employed in a diverse set of applications, including
investigating cross-culture (Vecchiato et al., 2014a) and gender
(Vecchiato et al., 2014b) differences during the observation of
video advertisements, analyzing movies to inform cognitive film
theory (Smith, 2013), measuring engagement levels during video
viewing (Dmochowski et al., 2012), predicting viewership of TV
series (Dmochowski et al., 2014), predicting video advertising
appreciation potential (Christoforou et al., 2015), and studying
affective processing in individuals with high callous-unemotional
traits (Fanti et al., 2016), among others. As movie trailers are
a type of video stimuli, neuroscience metrics obtained while
people are observing movie trailers might provide an alternative
framework for predicting the overall performance of a film.

A testing framework based on neuroscience metrics can
have several advantages over traditional methods. First, the
noise variance of neuroscience metrics is thought to be
smaller1 than data obtained through traditional measures
(Boksem and Smidts, 2015). Thus, these metrics could
provide more accurate insights with smaller sample sizes,
making them potentially cheaper, faster to implement, and
likely to provide more accurate predictions. Second, it is
thought that neuroscience measurements have the potential to
provide additional information that is not obtainable through
conventional methods (i.e., questionnaires and focus groups).
The rationale of this assertion relies on the assumptions that

1Even though the underlying measurements (i.e., raw EEG) tend to be noisy,
the extracted metric/features’ noise across participants are expected to be
relatively small.

people cannot fully articulate their preferences when asked
to express them explicitly and that consumers’ brain contains
hidden information about their actual preferences. Also,
stated preferences can be thought of as being the result of the
underlying subconscious response of the brain ‘‘contaminated’’
by conscious cognitive control processes and individual
biases. In this context, neuronal measures might be thought
of as providing the direct, raw and unfiltered impression of
viewers to video stimuli. Thus, neural measures might obtain
information that better reflects viewers’ responses to stimuli,
uncontaminated by personal biases. Finally, neuroscience
measures may provide second-by-second responses to video
stimuli, yielding information processing details that are not
available through conventional methods. With these potential
advantages in mind, this study proposes a novel approach
for extracting meaningful neurophysiology and eye-gaze
based metrics to predict the population-wide behavior of
moviegoers.

To date, the most common methods used to
measure preferences through neural activity have been
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI). For example, neural activity in
response to advertisements, measured in the ventromedial
Prefrontal Cortex (vmPFC) via fMRI, has been shown to be
predictive of the population-wide success of commercials
(Berns and Moore, 2012; Falk et al., 2012). Moreover, some
methods have been proposed to extract informative metrics
from neuronal activity captured in EEGmeasures. Such methods
typically rely on obtaining spatial or temporal projections of
the raw or pre-processed EEG measures to isolate neuronal
activity relevant to a task (Dyrholm et al., 2007; Christoforou
et al., 2008, 2013). Resulting metrics have been used in different
applications such as Brain-computer interfaces (Blankertz et al.,
2008), Robotic-telepresence (Christoforou et al., 2010) and
maximization of throughput in performance tasks (Parra et al.,
2008). In the context of video stimuli evaluation, EEG-based
neuronal activity has been used to characterize the effects of
video advertising on consumers. For example, Vecchiato et al.
(2011) investigated the changes of EEG frontal asymmetry
in the alpha and theta bands, during the observation of
pleasant and unpleasant videos. Their analysis showed that
an asymmetrical increase in the alpha and theta bands was
negatively correlated with the degree of pleasances perceived
by the participant. Similarly, Kong et al. (2012) proposed
metrics which rely on the overall power in the theta band in
EEG signals, as an index of memorization, and as an index of
attention. In subsequent work, Kong et al. (2012) proposed
the impression index, which combines both the memorization
and attention indices. The authors suggested that the aggregate
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index tracks variations in cerebral activity, measured while
subjects are observing video advertisements, could help judge
whether scenes in the video advertising are impressive or
not.

Recent efforts aim to identify measures of neuronal activity
that carry predictive information regarding the performance
of video stimuli. For example, Dmochowski et al. (2014)
proposed the use of inter-subject correlation (ISC) to extract EEG
components that are maximally correlated across participants
during video viewing. The extracted ISC components are then
used to define a metric that carries predictive information about
viewership size and tweet frequency rates during a television
broadcast. The same parameter calculated during observation of
video advertisements could provide predictive information about
the post-air preference rating of each advertisement. In another
study, Boksem and Smidts (2015) investigated whether neural
measures carry predictive information about the commercial
success of movies, above and beyond information obtained
through traditional, stated preference measures. In particular,
they explored the overall power of high-frequency components
(in beta and gamma bands) of EEG measurements obtained
during the observation of a movie trailer as predictors of
the box-office success of the film. Their results indicated that
overall beta activity in EEG could provide predictive information
about individual preferences, while overall gamma activity
could carry predictive information about the population-wide
success of the movie. The authors recognized that in both
instances the predictive power of the neuronal measures was
small (explained variance <2%), despite being statistically
significant.

Various metrics which rely on eye-tracking measurements
during video viewing have also been proposed as indicators
of video content performance. Typically, these metrics rely
on calculating a measure of consistency of eye-movements
across different observers. Suggested metrics include: clustering-
based methods (Goldstein et al., 2007), which measures the
percentage of fixations falling within a cluster; string editing
methods (Clauss et al., 2004), where gaze paths are encoded
in string representation; attentional synchrony (Smith and
Mital, 2013) and information theoretic metrics (Rajashekar
et al., 2004); and other methods such as Dorr et al. (2010).
A fundamental problem with such methods is that there is
no direct (known) mapping between the eye-position and
its perceptual consequences, and more importantly, none of
these metrics has been shown to carry predictive information
of the population-wide audience preferences (Dorr et al.,
2010). More recently, Christoforou et al. (2015) proposed
the eye-gaze divergence index; a metric that relies on the
dispersion of eye-gaze points during video viewing across
participants, and that has been shown to carry predictive
information on the likability of narrative videos, in particular,
video commercials.

In this study, we introduce a new approach for extracting
neural-based and eye-gaze-based metrics to predict the
population-wide behavior of moviegoers on new movie
releases; as captured by the movie’s ticket sales. We evaluate the
predictive power of the derived metrics and discuss, based on

existing literature, their potential connection to the underlying
cognitive processes that might drive moviegoers’ decision to
watch a movie.

MATERIALS AND METHODS

Experimental Paradigm
We record neural activity—through the use of EEG—and
eye-gaze activity from a group of naive individuals while
watching movie trailers of pre-selected movies for which the
population-wide preference is captured by the film’s market
performance (i.e., box-office ticket sales in the US).

Participants
A total of 27 participants (16 female, 11 male) were recruited
for the study. All participants were recruited in Cyprus, were
fluent in English and had self-reported normal or corrected-to-
normal vision. The minimum, median and maximum ages of the
participants were 19, 22 and 24, respectively. Participants were
compensated for their participation in the study.

Video Stimuli
A database of 15 movie trailers, split into two stimuli sets,
were used in this study. Movies were selected using a search
of the boxofficemojo.com website. Specifically, we searched for
movies in the action, adventure or thriller genre that premiered
during the second or third quarter of 2014. The search focused
only on the top 100 movies of each quarter, as ranked by
their box office results. Movies that were released in less than
1000 theaters or had total revenue less than $10 million were
excluded from the search results. This selection was made to
ensure that only movies of reasonable quality and market reach
were included in the final dataset. Movies that met the genre
and inclusion criteria were ordered based on their box-office
performance. To ensure maximum variability in commercial
success, in the final database we included movies that came from
both the highest and the lowest rankings of the resulting list.
Official English trailers for the selected films were used in the
study.

Data Collection Procedure
Data were collected in two different sessions to keep the duration
of the experiment short and to minimize participant fatigue.
Each of the sessions involved the presentation of a distinct set
of movie trailers. Participants were randomly assigned to one
of the sessions. Movie trailers were split into two stimuli sets;
set A included eight of the fifteen trailers, and set B included
the remaining seven. During the first session, 14 participants
were exposed to movie trailers of set A, while in the second
session 13 participants were presented with the movie trailers
of set B.

At the onset of the testing, participants were seated in a
comfortable chair and briefed on the objectives of the study.
Participants were told that they would watch a set of movie
trailers and that after each trailer they would have to answer
a short questionnaire indicating the preferences about each
trailer. Moreover, they were told that we would be collecting
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EEG and eye-tracking measures while watching those trailers. A
quick preparation and calibration procedure (explained below),
before the presentation of the movie trailers (7 or 8 trailers
depending on the session) followed next. At the end of each
trailer, an on-screen questionnaire was presented asking the
participants to report the following: (a) the degree to which
they liked the movie trailer; (b) whether they intended to watch
the movie promoted by the movie trailer; and (c) whether
they would share the movie trailers video on their Facebook
account. After having watched all of the movie trailers once,
the participants were shown the same trailers for the second
time. The order of the movie trailers was randomized across
participants, but the order was preserved for each participant
in both presentations. The open source software OpenSesame
(Mathôt et al., 2012) was used to present the trailers. The
trailers were shown at a frame rate of 23 Hz and an aspect
ratio of 4:3, with sound (through on monitor speakers). Screen
resolution was set to 1024 × 758 for all movie trailers. The
present study is carried out in accordance with the ethical
standards and the study procedures were approved by the Cyprus
Bioethics Committee, and a consent form was obtained from
all participants prior to the experiment in accordance with the
Declaration of Helsinki.

Behavioral Measures
Participants reported their preferences about the movie by
completing an on-screen questionnaire, immediately after
watching each trailer. Participants expressed their preferences
for the film twice (once after the first viewing of the movie
trailer and once after the second viewing). The questionnaire
was composed of three questions. For the first question,
participants indicated their liking of the film on a scale of
1–10 using a sequence of radio-buttons. For the second and
third questions, the participants indicated their willingness-
to-watch the film, and their willingness-to-refer the movie
(i.e., to share the video on their Facebook account), by
selecting either a yes or a no check box on the screen.
Three behavioral metrics were constructed based on participants
stated preferences. The likeability metric (LM) is defined as
the average liking score across all participants and viewings
of each movie-trailer. The willingness-to-watch metric (WTW)
and the willingness-to-refer metric (WTR) were calculated as
the fraction of yes-responses, across participants and viewings,
to the willingness-to-watch and willingness-to-refer questions,
respectively.

The reported liking scores of participants ranged between
0 and 9 (M = 4.6, SD = 2.4). There were no significant differences
in reported liking scores between the first and second viewing for
either collection sessions (first session: F(1,179) = 0.02, p> 0.87 or
second session F(1,221) = 0.01, p > 0.93). Thus, the likability
metric was calculated using the average participant responses
from the two viewings.

Eye-Tracking Measures and Pre-Processing
During the experiment, eye-gaze data were collected at a
sampling rate of 60 Hz and spatial accuracy below 0.5◦. The
eye-tracking unit was placed in front of the participant and

below the stimulus presentation monitor, with the camera-to-
eye-distance at about 60 cm. A 9-point calibration was executed
before the experiment to ensure a correct mapping of the gaze
data points and screen coordinates. Also, event markers were
sent to the eye-gaze stream to allow synchronization of video
frames and gaze data. The recorded eye-gaze-data stream was
epoched between −2000 ms before each video start time and
2000 ms after the video finish time and then re-referenced to
the video’s starting time. The Attentional-asynchrony metric
(see ‘‘Statistical Analysis of the Prediction Metrics and Key
Performance Indicators’’ section for details) was then calculated
as a function of the epoched eye-gaze stream of all participants
and viewings. The data analysis was performed using a custom
Matlab code (Mathworks Inc., Natick, MA, USA; MATLAB,
2010).

EEG Measures and Pre-Processing
EEG data were collected using a BioSemi Active-two system
(BioSemi, Amsterdam, Netherlands) at a sampling rate of
512 Hz. Participants were fitted with a standard 32-electrode
cap following the international 10/20 system. The preparation
procedure took about 10 min, during which time all electrodes
were placed, and the DC offset of all sensors was kept below
20 µV. EEG data were collected for the entire duration of the
experiment.

All EEG data preprocessing was performed offline using
custom Matlab code (Mathworks Inc., Natick, MA, USA,
MATLAB, 2010). As part of the preprocessing, the data were
first downsampled to 256 Hz, and a software-based 1.5 Hz
high-pass filter was employed on the continuous EEG signal, to
remove DC drifts. Subsequently, 50 Hz and 100 Hz notch filters
were applied to minimize the power-line noise interference, and
all channels were then re-referenced to the average channel.
The continuous EEG data was then epoched between 2000 ms
prior the movie trailer’s start time and 2000 ms after its finish
time and the baseline amplitude (i.e., from −2000 ms to 0 ms
of the movie trailers onset) was removed from each epoch.
Meta-data reflecting the exact timings of each epoch relative to
the video-trailer timing were kept throughout the preprocessing
procedure.

Following the preprocessing of the temporal signal, each
epoch was transformed into the spectro-temporal domain by
convolving the EEG signal of each epoch with a complex
morlet kernel. The spectrotemporal coefficients were estimated
for every half Hz between 1–80 Hz and resulted in a
temporal resolution of 8 Hz. The instantaneous power of each
spectrotemporal coefficient was calculated as the product of that
coefficient with its complex conjugate. Thus, the EEG response
of each participant on each movie-trailer was represented as
the collection on instantaneous power measures at different
channels, time and frequency combination. In our study, we
considered the instantaneous power for the subset of frequency’s
that corresponded to the beta and gamma bands. Specifically,
we segmented the data into the following frequency bands
14–8 Hz, 16–18 Hz and 18–20 Hz for the beta band, and
40–48 Hz, 52–60 Hz, 52–70 Hz and 60–70 Hz for the gamma
band.
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Attentional-Asynchrony and
Cognitive-Congruency Metrics
Eye-Gaze Measurements and the
Attentional-Asynchrony Metric
The calculation of Attentional-asynchrony metric was based
on the Eye-Gaze Divergence Index introduced by Christoforou
et al. (2015), which was shown to carry predictive information
on the likability of narrative videos. Similar to the Eye-Gaze
Divergence Index (Christoforou et al., 2015), Attentional-
asynchrony was calculated as the proportion of the movie-
trailer on which the visual attention of a group of viewer’s
diverged. To quantify this proportion, the eye-gaze stream
for each movie-trailer was first segmented into small
overlapping windows, obtained in a time-resolved fashion
by employing a sliding window with 250 ms duration and
a shift of the window occurring every 50 ms (80% overlap
between successive windows). Each window was subsequently
classified as being either divergent or non-divergent; however,
for the calculation of Attentional-asynchrony, a different
classification criterion was used. Specifically, for each window,
the set of pairwise Euclidian distances between all eye-gaze
points of all participant was calculated, and a window was
classified as being divergent if a fraction (in our study 30%)
of the pair wise distances fell within a 90% confidence
interval of the null-distribution. The null-distribution over
pairwise distances was estimated by randomizing the order
of windows, participants, and viewings for each movie
trailer. Finally, the Attentional-asynchrony metric was
calculated as the fraction of windows identified as being
divergent.

EEG Measurements and Cognitive-Congruency
Metric
Similarly, we used the epoched EEG measurement collected
for each movie-trailer from all participants to define an
aggregate metric of Cognitive-congruency. The objective of

Cognitive-congruency metric was to identify and quantify
coherence in the modulation patterns of instantaneous powers
within the selected frequency bands. The rationale was that
the presence of neuronal activity that was congruent across
participants was an indication of the ability of the movie trailer to
guide the viewer’s cognitive response consistently. We calculated
the Cognitive-congruency of each movie trailer for different
frequency bands (14–18 Hz, 16–18 Hz and 18–20 Hz covering
the beta band and 40–48 Hz, 52–60 Hz, 52–70 Hz and 60–70 Hz
covering the gamma band). This selection was motivated by
recent results (Boksem and Smidts, 2015) that suggest the overall
power in the beta and gamma bands might carry predictive
information about the performance of movie trailers.

To calculate the Cognitive-congruency, we first identified
a multivariate spatial component that maximizes the
correlation of the instantaneous power of EEG measures
between the first and second viewing of the movie-trailer
across all participants. Specifically, we estimated a spatial
component (projection) w ∈ RD such that wTR(1,2)w/N(w)
is maximized, where w is a weight vector, D corresponds to
the number of EEG channels recorded, 1

|S|.T
∑

s∈S X(1,s)X
T
(2,s)

is the subject-aggregated covariance matrix of instantaneous
powers, X(i,s) ∈ RD×T corresponds to the epoched EEG trails
(capturing instantaneous power in a particular frequency
band) of the sth participant during the ith viewing of a movie-
trailer, and N(w) = wT(R(1,1) + R(2,2))w is a normalizing
factor. The optimal w then refers to the solution to the
generalized eigenvalue problem λ(R(1,1) + R(2,2))w = R(1,2)w
(Dmochowski et al., 2012). The Cognitive-congruency then
corresponded to the eigenvalue which corresponded to the
optimal projection vector w. Moreover, with the optimal w,
we could recover its corresponding ‘‘forwards model’’
(Parra et al., 2008), which could be used to visualize the
topographic distribution of maximally correlated EEG activity.
All calculations for cognitive-congruency were implemented
using custom Matlab code (Mathworks Inc.; MATLAB,
2010).

TABLE 1 | Sales Performance key performance indicator (KPI) of each movie on Movie’s Premiere, and on subsequent weekends.

WKNDj : Jth weekends after movie’s premiere

Movie Premiere WKND1 WKND2 WKND3 WKND4 WKND5 WKND6 WKND7 WKND8

1 1.0975 0.4563 0.2372 0.1373 0.0866 0.0691 0.0489 0.0386 0.0184
2 0.3857 0.1907 0.1028 0.0717 0.0465 0.0342 0.0232 0.0180 0.0102
3 0.6737 0.2872 0.1867 0.0468 0.0086 0.0020 0.0006 0.0021 0.0007
4 0.5548 0.2478 0.1477 0.1012 0.1005 0.0609 0.0477 0.0308 0.0222
5 0.6207 0.3409 0.1764 0.0979 0.0505 0.0324 0.0166 0.0084 0.0051
6 0.5246 0.2282 0.1338 0.0953 0.0521 0.0388 0.0212 0.0116 0.0062
7 0.1034 0.0433 0.0159 0.0059 0.0013 0.0009 0.0007 0.0004 0.0003
8 0.3399 0.1318 0.0587 0.0181 0.0056 0.0007 0.0028 0.0020 0.0011
9 0.4271 0.2133 0.0986 0.0511 0.0255 0.0117 0.0063 0.0051 0.0031
10 0.2980 0.1101 0.0575 0.0213 0.0085 0.0064 0.0028 0.0021 0.0028
11 0.3469 0.1578 0.0761 0.0510 0.0293 0.0181 0.0066 0.0029 0.0045
12 0.3006 0.1514 0.0885 0.0589 0.0372 0.0137 0.0045 0.0018 0.0022
13 0.3938 0.1772 0.0577 0.0167 0.0086 0.0029 0.0013 0.0008 0.0026
14 0.2704 0.1203 0.0640 0.0274 0.0103 0.0045 0.0026 0.0015 0.0018
15 0.5529 0.1628 0.0758 0.0491 0.0308 0.0166 0.0095 0.0051 0.0036

Key performance indicators (KPI) of each movie in the dataset used in the study. The ith row shows the sales performance KPI (revenue/budget) of the ith movie on the
movie’s premiere weekend (column “Premiere”), and on the eight following weekends (columns WKND1,.. WKND8).
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Statistical Analysis of the Prediction
Metrics and Key Performance Indicators
To evaluate the ability of Cognitive-congruency and Attentional-
asynchrony to predict the commercial success of films, we used
linear regression to model the relationship between these two
metrics and a measure of box-office performance. We analyzed
the relationship of between commercial success and each metric
individually, and then we estimated a multiple regression model
using both metrics.

Key Performance Indicators of Commercial Success
The commercial success of movies is typically measured
regarding box-office sales. The film industry has long used
a comprehensive system for measuring the post-air success
of a movie; these measurements are collectively known as
box-office performance and include the number of tickets
sold and the total sales revenue from tickets on a daily,
weekly and monthly basis. These metrics are of particular
importance to the film industry as they provide a concrete
framework for measuring changes in the overall success of the
films.

In the present study, we used a key performance indicator
(KPI) based on box-office measurements. This KPI is
comprised of the movie’s recorded revenues during the
opening weekend, divided by the total budget of the film
to account for variability of marketing capacity and reach
of different movies. Moreover, we used the same KPI
for movie revenues for the first eight weekends after the
movies’ release. All relevant data were obtained from the
website boxofficemojo.com. Table 1 shows the titles of the
movies used in the study along with their corresponding KPI
score.

Statistical Models
In the first model, Attentional-asynchrony served as the
independent variable and KPI during the premiere weekend of
the movie served as the dependent variable. We explored the
Attentional-asynchrony metric calculated on data from the first
viewing and second viewing separately. Moreover, we examined

the samemodel where the depended variable corresponded to the
KPI of the movie during the first nine weekends.

In the second model, the Cognitive-congruency metric
served as the independent variable and the sales performance
KPI during the premiere weekend of the movie was the
dependent variable. We explored the Cognitive-congruency
metric calculated on beta and gamma frequency bands (see
section on Cognitive-congruency); a separate univariate
model was fitted for each of the selected instantiations of
the Cognitive-congruency. As with Attentional-asynchrony,
we also estimated a model where the depended variable
corresponded to the sales performance KPIs of the
movie during the first nine weekends. We report the
explained variance of the model and regression statistics
corrected for multiple comparisons using false discovery
rate.

Finally, we considered a bivariate model where both
Attentional-asynchrony and Cognitive-congruency served as
independent variables and used the same dependent variable
as in the univariate model. In the bivariate model, we only
considered the Attentional-asynchrony from the first viewing
of the trailer and Cognitive-congruency in the gamma band
(60–70 Hz).

RESULTS

Behavioral Results
Using the LM as an independent variable and the KPI during
the premiere weekend as the dependent variable, the regression
model showed that the LM was not a significant predictor
of sales performance, F(1,12) = 0.39, R2 = 0.02, p > 0.54).
Similarly, in regression models where the WTW and WTR
metric are the dependent variables, neither metric was a
significant predictor of the sales performance KPI during
the premiere weekend, WTW: F(1,12) = 1.76, R2 = 0.11,
p > 0.20, WTR: F(1,12) = 1.75, R2 = 0.11, p > 0.20. Finally,
correlation analysis showed a strong correlation among the
three behavioral metrics, LM-WTW: r = 0.87, p < 0.001, LM-
WTR: r = 0.67, p < 0.01, WTW-WTR: r = 0.79, p < 0.001.

TABLE 2 | R2 scores of each of the the seven models when predicting sales performance KPI on each movie’s premiere and on subsequent weekends.

WKNDj : Jth weekends after movie’s premiere

Model Premiere WKND1 WKND2 WKND3 WKND4 WKND5 WKND6 WKND7 WKND8

Att-Asy-1 0.49∗ (0.14) 0.54∗∗ (0.11) 0.60∗∗ (0.10) 0.53∗∗ (0.15) 0.55∗∗ (0.25) 0.56∗∗ (0.25) 0.62∗∗ (0.25) 0.66∗∗ (0.22) 0.55∗∗ (0.25)
Att-Asy-2 0.44∗ (0.16) 0.43∗ (0.16) 0.51∗ (0.15) 0.30 (0.17) 0.25 (0.21) 0.29 (0.24) 0.34 (0.24) 0.37 (0.21) 0.27 (0.20)
Cogn-40-48 0.67∗ (0.09) 0.45∗ (0.13) 0.49∗ (0.15) 0.38 (0.18) 0.25 (0.16) 0.29 (0.17) 0.29 (0.16) 0.27 (0.16) 0.16 (0.13)
Cogn-52-60 0.52∗ (0.18) 0.31 (0.17) 0.34 (0.19) 0.34 (0.17) 0.28 (0.17) 0.30 (0.17) 0.31 (0.17) 0.28 (0.17) 0.18 (0.16)
Cogn-60-70 0.67∗∗ (0.11) 0.54∗ (0.14) 0.54∗ (0.15) 0.43 (0.17) 0.33 (0.18) 0.32 (0.19) 0.34 (0.18) 0.31 (0.18) 0.21 (0.17)
Cogn-52-70 0.72∗∗ (0.07) 0.55∗ (0.17) 0.54∗ (0.19) 0.49∗ (0.17) 0.40 (0.19) 0.35 (0.19) 0.36 (0.18) 0.34 (0.17) 0.24 (0.18)
Att+Cogn 0.73∗∗ (0.07) 0.63∗∗ (0.10) 0.66∗∗ (0.09) 0.59∗ (0.15) 0.57∗ (0.24) 0.57∗ (0.24) 0.63∗∗ (0.23) 0.66∗∗ (0.19) 0.56∗ (0.23)

The modulation of the R2 score for the seven prediction models. Single-starred R2 scores are significant at 0.05 threshold level, while doubled-starred R2 scores are
significant at 0.01 threshold level. The significance is reported after correcting for multiple comparisons (using false-recovery-rate method). Within the parenthesis, below
each R2 score, is the SE of R2 calculated using the bootstrap method. The model abbreviations are as follows: Att-Asy-1: Attentional-asynchrony metric during the first
viewing is used as the independent variable; Att-Asy-2: Attentional-asynchrony metric during the first viewing is used as the independent variable; Cogn-X-Y: Cognitive-
congruency metric calculated in the frequency range between X Hz and Y Hz is used as the predictor variable; Att+Cogn: the combined predictor model where both the
Cognitive-congruency metric calculated on the frequency range 52–70 Hz and the Attentional-asynchrony metric (calculated on measurements from the first viewing) are
used as predictor variables.
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FIGURE 1 | Shows the modulation of the R2 score for the Att-Asy-1, Att-Asy-2 models (top panel) and Cogn-40-48, Cogn-52-60, Cogn-60-70, Cogn-52-70 models
(bottom panel) for the nine dependent variables (i.e., sales performance key performance indicator (KPI) on the movie premiere and the eight following weekends).
The model abbreviations are as follows: Att-Asy-1: Attentional asynchrony metric during the first viewing is used as the independent variable; Cogn-52-70:
Cognitive-congruency metric calculated in the frequency range between 52 Hz and 70 Hz is used as the predictor variable; Att+Cogn: The combined predictor
model where both the Cognitive-congruency metric calculated on the frequency range 52–70 Hz and the Attentional-asynchrony metric (calculated on
measurements from the first viewing) are used as predictor variables. The numerical values of R2 and Standard Error (SE) scores calculated using the bootstrap
method are shown in Table 1.

In all analyses, regression results are reported on data from
14 out of the 15 videos movie trailers. Trailer with vid:1 was
removed as an outlier because its KPI score was four standard
deviation above the mean KPI scores of the rest of the
movies.

Correlational Analysis Results
We first investigate the correlation between the sales
performance KPI during the movie’s premiere and the
proposed metrics. Correlation analysis showed a strong negative
correlation between the attentional-asynchrony metrics and the
sales performance KPI (Asy-viewing-1: r = −0.70, p < 0.01;
Asy-viewing-2: r = −0.67, p < 0.01). The analysis also showed
a strong positive correlation between the KPI and cognitive-
congruency metrics, calculated on each of the four gamma band
(r = 0.82–0.85, p < 0.001). A moderate negative correlation was
observed between the KPI and the cognitive-congruency metric
calculated on the beta range (16–18 Hz). However, it failed to
reach significance (r = −0.45, p > 0.09). No correlation was
established between the other two beta-band metrics.

Attentional-Asynchrony Prediction Model
Results
To investigate the capacity of Attentional-asynchrony metric
to predict the sales performance KPI during the movie’s

premiere, we employed two univariate regression models. In
the first model, we considered the Attentional-asynchrony
metric calculated on the first viewing of each movie trailer
as the predictor, while in the second model we used
Attentional-asynchrony calculated on data from the second
viewing of the movie trailer. In both models, Attentional-
asynchrony was regressed onto the sales performance KPI
for the film’s premiere weekend. The results showed that
Attentional-asynchrony was a significant predictor of sales
performance KPI at the movie’s premiere. Specifically,
Attentional-asynchrony calculated on eye-gaze data from
the first viewing of the movie trailer predicted 49% of the
model variance, R2 = 0.49, F(1,12) = 11.53, p < 0.01, R2-
adjusted = 0.44, SE = 0.14, Standard Error (SE) on R2 computer
using bootstrap, while the corresponding metric calculated on
eye-gaze data from the second viewing of the trailer predicted
44% of the variance, R2 = 0.44, F(1,12) = 9.72, p < 0.01,
R2-adjusted = 0.40, SE = 0.16. The attentional-asynchrony
metrics for the two viewings were strongly correlated (r = 0.91,
p< 0.001).

Subsequently, we investigated whether the capacity of
Attentional-asynchrony (calculated on the first- and second-
viewing independently) to predict the sales performance KPI
during the movie premiere propagates to the sales performance
KPIs of subsequent weeks. Table 2 shows the results of the
mass-univariate regression where the Attentional-asynchrony
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FIGURE 2 | Shows scatter plots of actual vs. predicted sales performance KPI on the premiere of the movie for three different prediction models. The model
abbreviations are as follows: Att-Asy-1: Attentional-asynchrony metric during the first viewing is used as the independent variable; Cogn-52-70:
Cognitive-congruency metric calculated in the frequency range between 52 Hz and 70 Hz is used as the predictor variable; Att+Cogn: The combined predictor
model where both the Cognitive-congruency metric (estimated on the frequency range 52–70 Hz) and the Attentional-asynchrony metric (calculated on
measurements from the first viewing) are used as predictor variables.

FIGURE 3 | Shows the R2 score obtained by each of the seven models when predicting the sales performance (KPI) on a movie’s premiere. The error bars show the
SE of R2 scores calculated using the bootstrap method.

acts as a predictor of the sales performance KPI of the movie for
each one of the first 9 weeks.

Cognitive-Congruency Prediction Model
Results
First, we report results on the ability of the Cognitive-congruency
EEGmetric, calculated on gamma and beta bands, to predict sales

performance KPI during the movie premiere. The univariate
regression analysis shows that Cognitive-congruency calculated
on each of the four gamma-band ranges significantly predicted
the sales performance KPI during the premiere weekend.
Specifically, Cognitive-congruency calculated in the gamma
range 40–48 Hz was shown to predict 67% of the model variance,
R2 = 0.67, F(1,12) = 24.81, p < 0.001, R2-adjusted = 0.65,
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FIGURE 4 | Shows the modulation of the R2 score for the Att-Asy-1, Cogn-52-70 and Att+Cogn models and the nine dependent variables (i.e., sales performance
KPI on the movie premiere and the eight following weekends). The model abbreviations are as follows: Att-Asy-1: Attentional-asynchrony metric during the first
viewing is used as the independent variable; Cogn-52-70: Cognitive-congruency metric calculated in the frequency range between 52 Hz and 70 Hz is used as the
predictor variable; Att+Cogn: The combined predictor model where both the Cognitive-congruency metric calculated on the frequency range 52–70 Hz and the
Attentional-asynchrony metric (calculated on measurements from the first viewing) are used as predictor variables.

FIGURE 5 | The average forward model of the spatial components used in calculating Cognitive-congruency scores.

SE = 0.09), while the corresponding metric calculated on the
52–60 Hz range predicted 52% of the variance, R2 = 0.52,
F(1,12) = 13.20, p < 0.01, R2-adjusted = 0.48, SE = 0.18)
and on the 60–70 Hz range predicted 67% of the variance,
R2 = 0.67, F(1,12) = 25.17, p < 0.001, R2-adjusted = 0.65,
SE = 0.11). Moreover, regression analysis on Cognitive-
congruency calculated in the broader gamma range (52–70 Hz)
was found to explain 72% of the variance, R2 = 0.72,
F(1,12) = 31.45, p < 0.001, R2-adjusted = 0.70, SE = 0.07).
On the other hand, Cognitive-congruency calculated on each
of the two beta-band (14–16 Hz and 16–18 Hz) failed to
predict the sales performance KPI during the movie premiere

R2 = 0.01, F(1,12) = 0.13, ns; R2 = 0.21, F(1,12) = 3.28, ns,
respectively).

Subsequently, we investigated if the capacity of Cognitive-
congruency (calculated on the four gamma-band ranges) to
predict the sales performance KPI during the premiere weekend
also applies to subsequent weeks. Table 2 shows the results of the
univariate regressions where the Cognitive-congruency acts as a
predictor of the sales performance KPI of the movie for each of
the first 9 weeks. The analysis showed that, indeed, Cognitive-
congruency in the gamma-band continued to carry significant
predictive power on sales performance KPI of the movie for up to
4 weeks, although the level of variance explained decrease every
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week. Figure 1 plots theR2 of explained variance under themodel
where Cognitive-congruency (for each of the four gamma-band
ranges) served as a predictor, as a function of the nine subsequent
weeks.

Combined Eye-Tracking and EEG
Prediction Model
Lastly, we consider the model where both Cognitive-congruency
(calculated on the gamma band) and Attentional-asynchrony
(computed on the first viewing of each movie trailer) serve
as predictor variables of sales performance KPI for the film
premiere weekend and subsequent weeks. The analysis shows
that the combined model predicts 73% of the variance,
R2 = 0.7370, F(2,11) = 15.51, p < 0.001, R2-adjusted = 0.69,
SE = 0.07, in sales performance KPI during the opening weekend.
Subsequently, we investigated if the capacity of the combined
model to predict the sales performance KPI during subsequent
weeks. Table 2 shows the results of the regressions for the
combined model for each one of the first 9 week. Figure 2
shows scattered plots of actual vs. predicted sales performance
KPI on the movies premiere for three different prediction
models. Figure 3 compares the of R2 score obtained by each
of the seven models when predicting the sales performance
(KPI) on a movie’s premiere. Figure 4 illustrates the modulation
in explained variance across the 9 weeks for the Attentional-
asynchrony model, the Cognitive-congruency model and the
combined model, respectively. The forward model of the
Cognitive-congruency model is illustrated in Figure 5.

DISCUSSION

In this study, we proposed a novel computational approach
for extracting neurophysiological and eye-gaze based metrics
to predict the population-wide behavior of movie goers.
In particular, we derived two metrics, termed ‘‘Attentional-
asynchrony’’—calculated on eye-gaze data- and ‘‘Cognitive-
congruency’’—estimated on EEG data—and, evaluated the
degree to which these metrics carry predictive information
about the broader audience decisions to watch a movie.
Towards that, we recorded neural activity—through the use of
EEG—and eye-gaze activity from a group of naive individuals
while watching movie trailers of pre-selected movies for
which the population-wide preference is captured by the
movie’s market performance (i.e., box-office ticket sales in
the US). In this section, we discuss our key findings and the
connection of the derived metrics to the underlying cognitive
processes that might drive moviegoers’ decision to watch a
movie.

A significant finding of this study is that neuroscience
metrics obtained while people are observing movie trailers
provides an alternative framework for predicting the overall
performance of a film. Indeed, the results demonstrate that the
proposed neuroscience-based metrics of Attentional-asynchrony
and Cognitive-congruency can predict the commercial success
of a given movie and explain a significant percentage of sales
variability in box-office sales.

Specifically, when relating the Attentional-asynchrony metric
to the commercial success of the films, we found that the metric
carries significant predictive power. These results highlight the
capacity of a movie trailer to guide viewers’ visual attention
consistently as an important factor in predicting the success of a
film. Moreover, because movie trailers are composed (primarily)
of scenes from the actual movie, they act as indicators of
the capacity of the movie itself to guide viewers’ attention in
a consistent way. Further, the Attentional-asynchrony metric
calculated on eye-gaze data obtained either during the first
viewing or the second viewing exhibit equal predictive power
and are highly correlated. This finding provides evidence for the
robustness and consistency in the calculation of the metrics.

Intuitively, attentional-asynchrony quantifies the difficulty of
a video stimuli to guide viewer’s visual attention consistently
for the duration of the video. fMRI research corroborates the
close link between eye-gaze and attention (Eckstein et al., 2017).
Moreover, eye-gaze asynchrony measures have been associated
with biological process relating to the allocation of attention
(Christoforou et al., 2015). In this context, our finding might
suggest that movie-trailers that are likely to influence the general
population to decide to watch the film, are able to engage viewer’s
visual in a consistent visual path, throughout the movie-trailer
narrative.

We also tested the Cognitive-congruency metric,
calculated on beta and gamma bands, as a predictor of the
sales performance. Traditionally, researchers have related
gamma-band activity to states of enhanced arousal and focused
attention (Engel et al., 2001). Gamma-band synchronization
between brain areas could reflect top-down control of attention
modulated by the relevance of stimulus representation
(Rodriguez et al., 1999). Moreover, gamma-band power was
found to be enhanced during tasks involving object recognition
(Rodriguez et al., 1999) and emotional evaluation tasks (Müller
et al., 2000); both processes are most likely engaged during
the viewing of movie clips (Boksem and Smidts, 2015). In this
context, the proposed Cognitive-congruency metric—calculated
on the gamma band—can be thought of as reflecting the capacity
of the movie trailer to attract and maintain a viewer’s attention,
and to engage an audience’s emotions. Thus, our finding
suggests that the ability of the movie trailer to engage viewers,
as quantified by the Cognitive-congruency metric, affects the
likelihood that the general population will decide to watch the
film, once exposed to movie-trailer.

Gamma activity is also strongly related to activation of the
medial PFC (Mantini et al., 2007), an area in the brain which
fMRI studies have found to be related to population-wide
preferences and choices (Berns and Moore, 2012; Falk et al.,
2012). Also, Howard et al. (2003) have reported that power
in the gamma band is related to committing viewed materials
to memory. Indeed, the medial PFC is strongly connected
to the hippocampus (a brain area critically involved in
memory formation) while gamma synchronization between
the hippocampus and other brain regions are correlated
with successful encoding of long-term memory (Fell et al.,
2001). In this context, our findings suggest that gamma-
modulation captured by the Cognitive-congruency metric
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reflects the capacity of the movie trailer to both capture
and maintain viewer’s attention over time, and its ability to
assist in memorability of the viewed materials. In turn, these
characteristics of the movie trailer affect the likelihood that
people will go and see the film.

When comparing the Cognitive-congruency metric
(calculated on beta band power) to the population-wide
commercial success of the movie, we found that the metric
carried no predictive power. Previous research has linked medial
frontal beta activity to reward processing including reward
anticipation, rewards delivery, rewards evaluation and choice.
Moreover, high-frequency oscillation (beta and gamma bands)
are thought of being well suited to synchronize the different
components of the reward network, as they allow for the
communication and integration of information across distant
brain areas. In fact, Boksem and Smidts (2015) have reported
that medial frontal beta during viewing of a movie trailer relates
to the individual’s preferences about the film. However, they
note that beta activity carries no predictive information about
the population-wide success of the film. Taken together, these
findings might suggest that short-term rewards, revealed by
higher beta activity, might reflect the immediate (short-term)
evaluation of the movie. However, the effect of the rewards is
temporary and does not affect the likelihood of viewers to go and
watch the film.

Putting all the above together, the findings suggest thatmovie-
trailers are more successful in influencing viewer’s to watch
a movie when they capture and retain viewer’s attention and
potentially engage viewer’s emotion; as attentional-asynchrony
and cognitive-congruency metrics measure those. The most
successful movie-trailers though, also trigger the long-term
memory encoding process in the brain, as the gamma-band
cognitive-congruency metrics capture that, and thus facilitate
memorization of the film’s narrative. On the other hand, movie-
trailers that engage the reward system of viewer’s brain, as
captured by the beta-band cognitive-congruency metric, do not
necessarily translate to increase in the likelihood of viewers to go
and watch the film.

Finally, we explored a combined model where both
Attentional-asynchrony and Cognitive-congruency metrics are
used as predictors of population-wide success of the movies. The
findings suggest that the two predictors provide complementary
predictive information and likely capture different factors
affecting the population’s decision to see a movie. The
combined model explained significantly higher variability in
sales performance of the movie for the first three weekends after
the film’s premiere, while it explained at least as much variability
as either of the individual models on the remaining weekend
sales. Interestingly, by inspecting the modulation of explained
variance under the different models (i.e., Att-Asy-1 and Cogn-
52-70) across consecutive weekend sales performance, we found
that Cognitive-congruency was a significantly stronger predictor
of sales performance during the movie opening weekend. In
turn, Attentional-asynchrony was a more reliable predictor of
the sales performance on the weekends after the premiere. These
findings provide additional evidence on the complementarity
of predictive information from the two metrics. On the one

hand, these results suggest that Cognitive-congruency, and
thus the capacity of the trailer to both capture and maintain
viewer’s attention over time, functions as a robust metric
for the decision made by frequent moviegoers about the
quality of a movie. Our results also suggest that this applies
in particular during the movie’s opening weekend when the
movie is usually attended by regular movie–goers and fans
of the film. On the other hand, the decisions of infrequent
or casual moviegoers, which are likely to attend the film in
following weekends after the movie’s opening weekend, are
better characterized by Attentional-asynchrony metric. From
a practical point of view, given that the opening weekend
accounts for 30%–50% of the total sales within the first nine
weekends of a movie’s release, the power of the Cognitive-
congruency metric to predict sales during the film’s opening
weekend remains particularly important from a financial point
of view.

Finally, the results showed a high correlation between the
three behavioral measures of likeability,WTWandWTRmetrics.
However, none of the traditional behavioral measures were found
to be significant predictors of population-wide commercial
success of the movies. That the stated preference-based measures
did not predict commercial success could be attributed to the
sample size of the present study. Indeed, our findings are
consistent with the work of Boksem and Smidts (2015), in which
behavioral measures obtained on a small sample size (comparable
to the current study) fail to predict broad population preferences.
Current industry practices that rely on traditional behavioral
measures require much larger sample sizes (>400 respondents)
than the sample size used in this study. Our result could be
seen as evidence of the reasonable variability that exists among
stated preference measures. In contrast, the neuronal based
metrics proposed in this article were found to extract predictive
information of commercial success on different movies from a
small sample size, suggesting that neural based metrics better
reflect more accurate measures of the effect of a movie trailer on
viewers.

Like previous research in neuromarketing research, the
present study exhibits the limitations of correlational studies.
For example, in the present study, we recorded participants’
likeness of a movie, but we did not use this data to screen
participants or movies. Our approach was based on the
assumption that most of what we think we know is what
we have been conditioned to know (Das, 2016). Nevertheless,
future studies should control for the possible effects of movie
likeness. Also, a future direction of the work in this area is to
implement a broad range of criteria for movie selection that
relate to the production technique of the movies (e.g., loudness,
montage, sound effects), apart from those used in the present
study. Another future research direction would be to study
the relationship of the proposed metrics to pertinent factors
of a movie’s sales performance, such as film familiarity, the
popularity of the actors and cultural familiarity (Hennig-
Thurau et al., 2007). Factoring into the equation such features
will help to examine further not only the direction but also
the causality of the relations identified in this and other
studies.

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2017 | Volume 11 | Article 7291

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Christoforou et al. Your Brain on the Movies

In summary, in this article, we propose a new computational
approach for extracting a neural-based and an eye-gaze-based
metrics and investigated their capacity to provide valuable and
significant insights in predicting the population-wide behavior of
movie goers. The first metric termed ‘‘Attentional-asynchrony’’
relies on eye-gaze data while the second metric termed
‘‘Cognitive-congruency’’ is estimated on selected frequency
bands from the raw-EEG data. We provide evidence that such
metrics provide significant and valuable insights in predicting
sales performance of the movie during premiere as well
as subsequent weekends, thus anticipating the commercial
success of each film. Moreover, we discuss, in the context
of existing literature, the possible relations of the derived
neural metrics to cognitive states of enhanced arousal and
focused attention, the encoding of long-term memory and
the synchronization of different areas of the brain’s rewards
network. The proposed approach can be employed to pre-test
a movie-trailer and anticipate the commercial success of
the movie or TV series, thereby helping to inform the
marketing strategy of the film before its release. Moreover, the
proposed neurophysiological and eye-gaze based metrics could
be used as markers in cinematics studies to help investigate
the impact of movie features and filming techniques (scene

transition/animations/special effect) to moviegoers’ behavior.
Finally, beyond the practical implication in predicting and
understanding the behavior of moviegoers, the proposed
approach can facilitate the use of video stimuli in neuroscience
research; such as the study of individual differences in attention-
deficit disorders, and the study of desensitization to media
violence.
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The quantity of music content is rapidly increasing and automated affective tagging

of music video clips can enable the development of intelligent retrieval, music

recommendation, automatic playlist generators, and music browsing interfaces tuned

to the users’ current desires, preferences, or affective states. To achieve this goal, the

field of affective computing has emerged, in particular the development of so-called

affective brain-computer interfaces, which measure the user’s affective state directly from

measured brain waves using non-invasive tools, such as electroencephalography (EEG).

Typically, conventional features extracted from the EEG signal have been used, such as

frequency subband powers and/or inter-hemispheric power asymmetry indices. More

recently, the coupling between EEG and peripheral physiological signals, such as the

galvanic skin response (GSR), have also been proposed. Here, we show the importance

of EEG amplitude modulations and propose several new features that measure the

amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and

non-linear connections between multiple electrode pairs. When tested on a publicly

available dataset of music video clips tagged with subjective affective ratings, support

vector classifiers trained on the proposed features were shown to outperform those

trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for

arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed

features with EEG-GSR coupling features showed to be particularly useful for arousal

(feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings

show the importance of the proposed features to characterize human affective states

during music clip watching.

Keywords: emotion classification, affective computing, multimedia content, electroencephalography,

physiological signals, signal processing, pattern classification

1. INTRODUCTION

With the rise of music and video-on-demand, as well as personalized recommendation systems,
the need for accurate and reliable automated video tagging has emerged. In particular, user-centric
affective tagging has stood out, corresponding to the formation of user emotional tags elicited while
watching video clips (Kierkels et al., 2009; Shan et al., 2009; Koelstra and Patras, 2013). Emotions

94

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00115&domain=pdf&date_stamp=2018-01-10
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:falk@emt.inrs.ca
https://doi.org/10.3389/fncom.2017.00115
https://www.frontiersin.org/articles/10.3389/fncom.2017.00115/full
http://loop.frontiersin.org/people/457647/overview
http://loop.frontiersin.org/people/115132/overview


Clerico et al. EEG Modulation Analysis for Affective Music-Tagging

are usually conceived as physiological and physical responses,
as part of natural communication between humans, and able
to influence our intelligence, shape our thoughts and govern
our interpersonal relationships (Marg, 1995; Loewenstein and
Lerner, 2003; De Martino et al., 2006). Typically, machines
were not required to have “emotion sensing” skills, but instead
relied solely on interactivity. Recent findings from neuroscience,
psychology and cognitive science, however, have modified this
mentality and have pushed for such emotion sensing skills to be
incorporated into machines. Such capability can allow machines
to learn, in real-time, the user’s preferences and emotions and
adapt accordingly, thus taking the first steps toward the basic
component of intelligence in human-human interaction (Preece
et al., 1994).

Incorporating emotions into machines constitutes the
burgeoning field of affective computing, which has as main
purpose reduce the distance between the end-user and the
machine by designing instruments that are able to accurately
address human needs (Picard, 2000). To this end, the area of
affective brain-computer interfaces (aBCIs) has recently emerged
(Mühl et al., 2014). While BCIs have been mostly used to date
for communication and rehabilitation applications (e.g., Li et al.,
2006; Leeb et al., 2012; Sorensen and Kjaer, 2013), aBCIs (also
known as passive BCIs) aim at measuring implicit information
from the users, such as their moods and emotional states
elicited by varying stimuli. Representative applications include
neurogaming (Bos et al., 2010), neuromarketing (Lee et al.,
2007), and “attention monitors” (Moore Jackson and Mappus,
2010), to name a few. As in Koelstra and Patras (2013), this
paper concerns the measurement of emotions elicited on users
by different music video clips, i.e., for automated multimedia
tagging.

Within aBCIs, electroencephalography (EEG) has remained
a popular modality due to its non-invasiveness, high temporal
resolution (in the order of milliseconds), portability, and
reasonable cost (Jenke et al., 2014). Typically, spectral features
such as subband spectral powers have been used to measure
emotional states elicited from music videos, pictures, and/or
movie clips (e.g., Kierkels et al., 2009; Koelstra et al., 2012), as
well as mental workload and stress (e.g., Heger et al., 2010; Kothe
and Makeig, 2011). Moreover, an inter-hemispheric asymmetry
in spectral power has been reported in the affective state literature
(Davidson and Tomarken, 1989; Jenke et al., 2014), particularly in
frontal brain regions (Coan and Allen, 2004).

Recent studies, however, have suggested that alternate
EEG feature representations may exist that convey more
discriminatory information over traditional spectral power
and asymmetry indices (Jenke et al., 2014; Gupta and Falk,
2015). More specifically, statistical relations among temporal
dynamics in different frequency bands (so-called “cross-
frequency coupling”) have been observed in several brain
regions and are thought to reflect neural communication
and information encoding to support different perceptual and
cognitive processes (Cohen, 2008) and emotional states (Schutter
and Knyazev, 2012). Typically, cross-frequency coupling can be
measured in three ways, namely, phase-phase, phase-amplitude
and amplitude-amplitude coupling. While the former two have

been widely studied and shown to be related to perception
and memory (e.g., theta-gamma coupling Canolty et al., 2006),
the latter has received lower attention. A few studies have
shown amplitude-amplitude coupling effects on personality
and motivation (Schutter and Knyazev, 2012) and recently,
the authors proposed an inter-hemispheric cross-frequency
amplitude coupling metric that correlated with affective states
(Clerico et al., 2015). Notwithstanding, existing coupling metrics
typically overlook temporal dynamics and are based on inter-
hemispheric synchrony, thus overlook synchronization of other
brain regions.

Moreover, in addition to EEG correlates, affective state
information has been widely obtained from physiological signals
measured from the peripheral autonomic nervous system
(PANS) (Nasoz et al., 2003; Lisetti and Nasoz, 2004; Wu
and Parsons, 2011), particularly the galvanic skin response
(GSR), a measure of the amount of sweat (conductivity)
in the skin (Picard and Healey, 1997; Bersak et al., 2001).
More recently, the interaction between the PANS and central
nervous systems (CNS) was measured via a phase-amplitude
coupling (PAC) between GSR and EEG signals and promising
emotion recognition results were found for highly arousing
videos (Kroupi et al., 2014). As emphasized in Canolty et al.
(2012), however, different ways of computing PAC may lead to
complementary information. As such, in this paper we explore
different PAC computation methods to gauge the advantages of
one method over another.

In this paper, we build on the work of Clerico et al. (2015) and
investigate the development of alternate features based on EEG
amplitude modulation analysis for automated affective tagging
of music video clips. In particular, we propose a number of
innovations, namely: (1) extended the inter-hemispheric cross-
frequency coupling measures of EEG amplitude modulations
analysis to all possible electrode pairs, thus exploring connections
beyond left-right pairs, (2) explored the use of a coherence
based coupling metric, as opposed to mutual information, to
explore linear relationships between inter-electrode coupling,
(3) explored a total amplitude modulation energy measure
to capture temporal dynamics, (4) proposed a normalization
scheme based on normalization of the proposed features relative
to a baseline period, thus facilitating cross-subject classification
(as opposed to per-subject classification in Clerico et al., 2015),
and (5) explored different ways of computing PAC between EEG
and GSR in order to gauge the benefits of one computation
method over another. Furthermore, we show the benefits of
the proposed features relative to existing spectral power-based
ones, and explore their complementarity via decision- and
feature-level fusion. Experimental results show the proposed
features outperforming conventional ones in recognizing arousal,
valence, and dominance emotional primitives, as well as a “liking”
subjective parameter.

The remainder of this paper is organized as follows: Section 2
provides the methodology used, including a description of the
proposed and baseline features, as well as classification and fusion
strategies used. Sections 3 and 4 describe the experimental results
and discusses the findings, respectively. Lastly, section 5 presents
the conclusions.
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2. MATERIALS AND METHODS

In this section, the database, the proposed and benchmark feature
sets, as well as the feature selection, classifier and classifier fusion
schemes used are described.

2.1. Affective Music Clip Audio-Visual
Database
In this paper, the publicly-available DEAP (Dataset for Emotion
Analysis using EEG and Physiological signals) database was
used (Koelstra et al., 2012). Thirty-two healthy subjects (gender-
balanced, average age of 26.9 years) were recruited to watch
40 video music clips while their neurophysiological signals
were recorded. The forty videos were carefully selected from
a larger set (roughly 200 videos), corresponding to the ones
eliciting the 10 highest ratings within each of the four quadrants
of the valence-arousal plane (Russell, 1980). Participants were
asked to rate their perceived valence, arousal, and dominance
emotional primitives, as well as other subjective ratings such as
liking and familiarity for each of the 40 music clips. The three
emotional primitives were scored using the 9-point continuous
self-assessment manikin scale (Bradley and Lang, 1994). The
liking scale was introduced to determine the user’s taste, and not
their feelings, about the music clip; as such, 9-point scale with
thumbs down/up symbols was adopted. Lastly, the familiarity
rating was scored using a 5-point scale. For the purpose of this
paper, the familiarity rating was not used.

Several neurophysiological signals were recorded during
music clip watching, namely 32-channel EEG (Biosemi Active II,
with 10–20 international electrode placement), skin temperature,
GSR, respiration, and blood volume pulse. The raw signals were
recorded at a 512 Hz sample rate and down sampled offline to
128 Hz. The EEG signals were further bandpass filtered from
4 to 45 Hz, pre-processed using principal component analysis
to remove ocular artifacts, averaged to a common reference
and made publicly available. The interested reader is referred to
Koelstra et al. (2012) for more details about the database.

2.2. Feature Extraction
2.2.1. Spectral Features
Spectrum subband power features are the most traditional
measures used in biomedical signal processing (Sörnmo and
Laguna, 2005). Within the affective state recognition literature,
spectral power in the theta (4–8Hz), alpha (8–12Hz), beta (12–30
Hz), and gamma (30–45 Hz) subbands are typically used (Jenke
et al., 2014) across different brain regions (Schutter et al., 2001;
Balconi and Lucchiari, 2008). In particular, alpha and gamma
band inter-hemispheric asymmetry indices have been shown to
be correlated with emotional ratings, particularly in frontal brain
regions (Müller et al., 1999; Mantini et al., 2007; Arndt et al.,
2013). Given their widespread usage and the fact that they were
also used in Koelstra et al. (2012) for affect recognition from
the DEAP database, spectral features (“SF”) are used here as a
benchmark to gauge the benefits of the proposed features. A total
of 128 spectral power features (32 electrodes × 4 subbands) and
56 asymmetry indices (14 inter-hemispheric pairs× 4 subbands)
were computed from the following electrode pairs: Fp1-Fp2,

AF3-AF4, F7-F8, F3-F4, FC5-FC6, FC1-FC2, T7-T8, C3-C4,
CP5-CP6, CP1-CP2, P7-P8, P3-P4, PO3-PO4, and O1-O2 (see
Figure 1 for electrode labels and locations). Overall, a total of 184
“SF” features are used as benchmark.

2.2.2. Amplitude Modulation Features
Cross-frequency amplitude-amplitude coupling in the EEG has
been explored in the past as a measure of anxiety and motivation
(e.g., Schutter and Knyazev, 2012), but has been under-explored
within the affective state recognition community. Recently, beta-
theta amplitude-amplitude coupling differences were observed
between healthy elderly controls and age-matched Alzheimer’s
disease patients; such findings were linked to lack of interest
and motivation within the patient population (Falk et al., 2012).
To explore the benefits of cross-frequency amplitude-amplitude
modulations for affective state recognition research, the authors
recently showed that non-linear coupling patterns within inter-
hemispheric electrode pairs was a reliable indicator of several
affective dimensions, but particularly for the valence emotional
primitive (Clerico et al., 2015). In this paper, we extend this
work by extracting a number of other amplitude modulation
features (“AMF”) and show their advantages for affective state
recognition.

More specifically, three new amplitude-amplitude coupling
feature sets are extracted, namely the amplitude modulation
energy (AME), amplitude modulation interaction (AMI), and
the amplitude modulation coherence (AMC), as depicted by
Figure 1. In order to compute these three feature sets, first the
full-band EEG signal sk for channel “k” (see left side of the figure)
is decomposed into the four typical subbands (theta, alpha, beta
and gamma) using zero-phase digital bandpass filters. Here, the
time-domain index “n” is omitted for brevity, but without loss
of generality. For the sake of notation, the decomposed time-
domain signal is referred to as sk(i), i = 1, . . . , 4. The temporal
envelope is then extracted from each of the four subband time
series using the Hilbert transform (Le Van Quyen et al., 2001).
Figure 2 illustrates the extracted EEG subband time series in
gray and their respective Hilbert amplitude envelopes in black.
Here, the temporal envelopes ei(n) of each subband time series
were computed as the magnitude of the complex analytic signal
ζ (n) = sk(i)

2 + jH
{
sk(i)

}
, i.e.,

ei(i) =
√

sk(i)2 +H
{
sk(i)

}2
, (1)

where,H {·} corresponds to the Hilbert transform.
In order to measure cross-frequency amplitude-amplitude

coupling, a second decomposition of the EEG amplitude
envelopes is performed utilizing the same four subbands. To
distinguish between modulation and frequency subbands, the
former are referred to as m-θ (4–8 Hz), m-α (8–12 Hz), m-β
(12–30 Hz) and m-γ (30–45 Hz). For notation, the amplitude-
amplitude coupling pattern is termed sk(i, j), i, j = 1, . . . , 4, where
“i” indexes spectral subbands and “j” the modulation spectral
subbands. By using theHilbert transform to extract the amplitude
envelope, the types of cross-frequency interactions are limited by
Bedrosian’s theorem, which states that the envelope signals can
only contain frequencies (i.e., modulated frequencies) up to the
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FIGURE 1 | Signal processing steps used to compute the EEG amplitude modulation feature sets.

FIGURE 2 | Amplitude envelope extraction from each EEG subband time

series signal (gray) and their respective Hilbert amplitude envelopes (black).

maximum frequency of its original signal (Boashash, 1991; Smith
et al., 2002). As such, only the ten cross-frequency patterns shown
in Figure 1 are possible (per electrode), namely: θ_m-θ , α_m-θ ,
α_m-α, β_m-θ , β_m-α, β_m-β , γ _m-θ , γ _m-α, γ _m-β , and
γ _m-γ . From these patterns, the three feature sets are computed,
as detailed below:

2.2.2.1. Amplitude modulation energy (AME)
From the ten possible sk(i, j) patterns per electrode, two
energy measures are computed. The first measures the ratio
of energy in a given frequency–modulation-frequency pair
(ξk(i, j)) over the total energy across all possible subbands

pair (i.e.,
∑4

i=1

∑4
j=1 ξk(i, j)), thus resulting in 320 features (32

electrodes × 10 cross-frequency coupling patterns; see possible
combinations in Figure 1). The second measures the logarithm
of the ratio of modulation energy during the 60-s music clip to
the modulation energy during a 3-s baseline resting period, i.e.,

10 log
(
ξk(i, j)

video/ξk(i, j)
baseline

)
, thus resulting in an additional

320 features, for a total of 640 AMEk(i, j) features, k =
1, . . . , 32; i, j = 1, . . . , 4.

2.2.2.2. Amplitude modulation interaction (AMI)
In order to incorporate inter-electrode amplitude modulation
(non-linear) synchrony, the amplitude modulation interaction
(AMI) features from Clerico et al. (2015) are also computed.
Unlike the work described in Clerico et al. (2015), where
interactions were only computed per symmetric inter-
hemispheric pairs, here we measure interactions across
all possible 496 electrode pair combinations (i.e., 2-by-2
combinations over all possible 32 channels) for each of the
ten cross-frequency coupling patterns, thus resulting in 4960
features. The normalized mutual information (MI) is used to
measure the interaction:

AMIk,l =
H(sk)+H(sl)−H(sk, sl)

√
H(sk)H(sl)

, (2)

where the H(· ) operator represents marginal entropy and
H(· ,×) the joint entropy, and sk corresponds to sk(i, j) with the
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frequency and modulation frequency indices omitted for brevity.
Entropy was calculated using the histogram method with 50
discrete bins for each variable. Mutual information has been used
widely in affective recognition research (e.g., Cohen et al., 2003;
Khushaba et al., 2012; Hamm et al., 2014). Additionally a second
measurement of logarithmic ratio between the 60-s clip and the
3-s baseline has been obtained, thus totalling 9920 AMI features.

2.2.2.3. Amplitude modulation coherence (AMC)
While the AMI features capture non-linear interactions between
inter-electrode amplitude-amplitude coupling patterns, the
Pearson correlation coefficient between the patterns can also be
used to quantify the coherence, or linear interactions between
the patterns. Spectral coherence measures have been widely used
in EEG research and were recently shown to also be useful
for affective state research (e.g., Kar et al., 2014; Xielifuguli
et al., 2014). Hence, we explore the concept of amplitude
modulation coherence, or AMC as a new feature for affective state
recognition. The AMC features are computed as:

AMCk,l =
∑N

n=1(sk(n)− s̄k)(sl(n)− s̄l)
√∑N

n=1(sk(n)− s̄k)2
∑N

n=1(sl(n)− s̄l)2
, (3)

where sk(n) indicates the n-th sample of the sk(i, j) time-series
(again, the frequency and modulation frequency indices were
omitted for brevity), and s̄k is the average over all samples of
such time series. As previously, a total of 9920 AMC features are
computed, including the logarithmic ratio with the 3-s baseline.

2.2.3. PANS-CNS Phase-Amplitude Coupling (PAC)
Electrophysiological signals reflect dynamical systems that
interact with each other at different frequencies. Phase-
Amplitude coupling represents one type of interaction and
typically refers to modulation of the amplitude of high-
frequency oscillators by the phase of low-frequency ones
(Samiee et al.). Typically, such phase-amplitude coupling
measures are computed from EEG signals alone (Schutter and
Knyazev, 2012), but the concept of electrodermal activity phase
coupled to EEG amplitude was recently introduced as a correlate
of emotion, particularly for high arousing, very pleasant and very
unpleasant stimuli (Kroupi et al., 2013, 2014). Here, we test three
different GSR-phase and EEG-amplitude coupling measures. For
the sake of notation, assume u(n) is the rapid transient response
called skin conductance response (SCR) with a narrowband of
0.5–1Hz (Kroupi et al., 2014), of the time-domain GSR signal.
Using the Hilbert transform (Gabor, 1946), we can extract the
signal’s instantaneous phase φu (n) as in Kroupi et al. (2014):

φu (n) = arctan
(
H{u(n)}
u (n)

)
. (4)

For the amplitude envelope of the EEG signal (A(sk(n))), a shape-
preserving piecewise cubic interpolation method of neighboring
values is used, as in Kroupi et al. (2014). Given the GSR signal
and phase, as well as the EEG amplitude envelope signals, the
following coupling measures were computed.

2.2.3.1. Envelope-to-signal coupling (ESC)
The simplest coupling feature can be calculated via the Pearson
correlation coefficient between the EEG amplitude envelope
signal A(sk(n)) and the raw GSR signal u(n). The ESC feature can
be computed using equation (3) with A(sk(n)) and u(n) in lieu of
sk(i, j) and sl(i, j), respectively (Arnulfo et al., 2015). ESC has been
shown to be particularly useful with noisy data (Onslow et al.,
2011). A total of 32 ESC features were computed.

2.2.3.2. Cross-frequency coherence (CFC)
Cross-frequency coherence evaluates the magnitude square
coherence between the filtered (0-1 Hz) GSR signal u(n) and
the filtered (4–45 Hz) envelope of the EEG signal A(sk(n)), as in
Onslow et al. (2011). The CFC feature is computed as:

CFCk(f ) =
|PAu(f )|2

PAA(f )Puu(f )
, (5)

where |PAu(f )|2 is the cross power spectral density of the EEG
amplitude A(sk(n)) and GSR signal u(n) at frequency f , and
PAA

(
f
)
and Puu

(
f
)
are the spectral power densities of the

two signals, respectively. The CFC feature ranges from 0 (no
spectral coherence) to 1 (perfect spectral coherence) and has been
used previously to quantify linear EEG synchrony in different
frequency bands and its relationship with emotions (Daly et al.,
2014). A total of 1344 CFC features were computed.

2.2.3.3. Modulation index (ModI)
PANS-CNS coupling measure tested is the so-called modulation
index (ModI), which was recently shown to accurately
characterize coupling intensity (Tort et al., 2010), particularly
for emotion recognition (Kroupi et al., 2014). For calculation
of the ModI feature, a composite times series is constructed as
[φu (n) ,A(sk(n))]. The phases are then binned and the mean
of A(sk(n)) over each phase bin is calculated and denoted by
〈As〉φu (m), where m indexes phase bin; 18 bins were used in
this experiment. Further, the mean amplitude distribution P(m)
is normalized by the sum over all bins, i.e.,:

P(m) =
〈As〉φu (m)

∑18
m=1 〈As〉φu (m)

. (6)

The normalized amplitude “distribution” P(m) has similar
properties as a probability density function. In fact, in the
scenario in which no phase-amplitude coupling exists, P(n)
assumes a uniform distribution. Having this said, the ModI
feature measures the deviation of P(m) from a uniform
distribution. This is achieved by means of a Kullback-Liebler
(KL) divergence measure (Kullback and Leibler, 1951) between
P(m) and a uniform distribution Q(m), given by:

DKL (P,Q) =
18∑

m=1

U (m) log

[
P (m)

Q (m)

]

, (7)

The KL divergence DKL (P,Q) is always greater than zero, and
equal to zero only when the two distributions are the same.
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Finally, the ModI feature is defined as the ratio between the KL
divergence and the log of the number of phase bins, i.e.,:

ModI =
DKL (P,Q)

log (M)
. (8)

where M = 18 is used in our experiments. A total of 32 ModI
features were computed.

2.3. Feature Selection and Affective State
Recognition
In this section, a description of the feature selection, classifiers,
and classifier fusion strategies are discussed.

2.3.1. Feature Selection
Asmentioned above, a large number of proposed and benchmark
features were extracted. More specifically, a total of 184
SF, 20480 AMF, and 1408 PAC features were extracted. For
classification purposes, these numbers are large and may lead to
classifier overfitting. In such instances, feature ranking and/or
feature selection algorithms are typically used. Recently, several
feature selection algorithms were compared on an emotion
recognition task (Jenke et al., 2014). The minimum redundancy
maximum relevance (mRMR) algorithm (Peng et al., 2005)
showed improved performance when paired with a support
vector machine classifier (Wang et al., 2011). The mRMR
is a mutual information based algorithm that optimizes two
criteria simultaneously: the maximum-relevance criterion (i.e.,
maximizes the average mutual information between each feature
and the target vector) and the minimum-redundancy criterion
(i.e., minimizes the average mutual information between two
chosen features). The algorithm finds near-optimal features
using forward selection with the chosen features maximizing the
combined max-min criteria.

Moreover, in an allied domain, multi-stage feature selection
comprised of analysis of variance (ANOVA) between the features
and target labels as a pre-screening, followed by mRMR, was
shown to lead to improved results for SVM-based classifiers
(Dastgheib et al., 2016). This multi-stage feature selection
procedure is explored herein and during pre-screening, only
features that attained p-values smaller than 0.1 were kept. Here,
two tests are explored. With one, all top selected features for
each feature class are used for classifier training. Given the
different number of available features for each feature class,
the input dimensionality of the attained classifiers will differ.
For a more fair comparison, the second assumes that classifiers
are trained on the same number of features for each feature
class. To this end, the number of features used corresponds to
the number of benchmark SF features that pass the ANOVA
test.

In the available dataset, neurophysiological signals were
recorded from 32 subjects while each watched a total of 40 music
clips. Here, 25% of the available data (i.e., data from 10 music
clips per subject, roughly half from the high and half from the low
classes) was set aside for feature ranking. The remaining 75% was
used for classifier training and testing in a leave-one-sample-out

(LOSO) cross-validation scheme, as described next. This hold-
out scheme assures a more stringent setup, as feature selection
and model training are not performed on the same data subset,
which could lead to overly optimistic results. From the feature
selection set, it was found that 35, 23, 19, and 21 SF features
passed the ANOVA test for arousal, valence, dominance, and
liking dimensions, respectively.

2.3.2. Classification
During pilot phase, support vector machine (SVM), relevance
vector machine (RVM) and random forest classifiers were
explored. Overall, SVMs resulted in improved performance.
Indeed, they have been widely used in bioengineering and in
affective state recognition (e.g., Wang et al., 2011). Given their
widespread use, a description of the support vector machine
approach is not included here and the interested reader is referred
to Schölkopf and Smola (2002) and references therein for more
details. Here, SVM classifiers are trained on four different binary
classification problems, i.e., detecting low/high valence, low/high
arousal, low/high dominance and low/high liking.

With the DEAP database, subjective ratings followed a 9-
point scale. Typically, values greater or equal to 5 are assumed to
correspond to high activation levels or low, otherwise. However,
it is not guaranteed that all users objectively utilize the same scale
for grading. In fact, by using a threshold of 5, a 60/40 ratio of
high/low levels was obtained across all participants. In order to
take into account individual biases during rating, here we utilize
an individualized threshold corresponding to the value in which
an almost balanced high/low ratio was achieved per participant.
Figure 3 depicts the threshold found for each participant for
arousal and valence. As can be seen, on average a threshold of
5 was most often selected, though in a few cases, much higher or
much lower values were found, thus exemplifying the need for
such an individualized approach.

As mentioned previously, 75% of the available dataset was
used for classifier training/testing using a leave-one-sample-out
(LOSO) cross-validation scheme. For our experiments, a radial
basis function (RBF) kernel was used and implemented with the
Scikit-learn library in Python (Pedregosa et al., 2011). Since we
are interested in gauging the benefits of the proposed features,
and not of the classification schemes, we use the default SVM
parameters throughout our experiments (i.e., λ = 1 and γRBF =
0.01). As such, it is expected that improved performance should
be achieved once classifier optimization is performed, as in
Gupta et al. (2016). Such analysis, however, is left for future
study.

2.3.3. Fusion
In an attempt to improve classification performance, two fusion
strategies are explored, namely, feature fusion and decision-level
fusion. In feature fusion, we explore the combination of the three
feature sets (SF, PAC, and AMF) and utilize the top selected
features. With classifier decision-level fusion, on the other hand,
the decisions of the three SVM classifiers trained on the top SF,
PAC, and AMF sets were fused using a simple majority voting
scheme with equal weights.
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FIGURE 3 | Individualized threshold such that approximately 50/50 ratio was achieved for high/low class for valence and arousal dimensions.

2.4. Figure of Merit
Balanced accuracy (BACC) is used as a figure of merit and
corresponds to the arithmetic mean of the classifier sensitivity
and specificity, namely:

BACC =
SENS+ SPEC

2
, (9)

where

SENS =
TP

P
; SPEC =

TN

N
, (10)

and P = TP + FN and N = FP + TN, TP and FP correspond
to true and false positives, respectively and TN and FN to
true and false negatives, respectively. Balanced accuracy takes
into account any remaining class unbalances and provides more
accurate results than the conventional accuracy metric. To test
the significance of the attained performances, an independent
one-sample t-test against a random voting classifier was used
(p < 0.05), as suggested in Koelstra et al. (2012).

3. RESULTS

Tables 1–4 show the top-selected features for the arousal, valence,
dominance, and liking dimensions, respectively, following multi-
stage feature selection and using the same number of features
across sets. Feature names listed in the tables should be self
explanatory. The “ratio” features correspond to the log-ratio ones
between the video and baseline periods (see section 2.2.2). In the
SF category, the “AI” features correspond to the asymmetry index
between the indicated channels.

Table 5, in turn, reports the balanced accuracy results
achieved with the individual features sets and the same
dimensionality, as well as with the feature- and decision-
level fusion strategies. All obtained results were significantly
higher (p < 0.05) than those achieved with a random voting
classifier (Koelstra et al., 2012). The column labeled “%” indicates
the relative improvement in balanced accuracy, in percentage,
relative to the SF baseline set. As can be seen, all proposed
AMF features outperform the benchmark, by as much as 4.4,

5.6, 5.6, and 1.9% for valence, arousal, dominance, and liking,
respectively. The PAC features also show advantages over the
benchmark, particularly for the valence dimension, in which
a 9.7% gain was observed. Feature fusion, in turn, showed to
be useful mostly for arousal prediction, whereas decision-level
fusion was useful for the liking dimension.

Moreover, for classifiers of varying dimensionality, maximum
balanced accuracy values of 0.625 (AMI), 0.652 (AME), 0.659
(AMC) could be achieved for valence, dominance, liking,
respectively, thus representing gains over the benchmark set of
8.1, 20.3, and 6.5%. For PAC features, gains could be seen only
for the dominance dimension where a balanced accuracy of 0.592
could be seen, representing a gain over SF of 9.2%.

4. DISCUSSION

4.1. Feature Ranking
From Tables 1–4, it can be seen that with the exception of
arousal, the number of SF features that passed the pre-screening
test was roughly 20. For valence, roughly half those features
corresponded to asymmetry index features, and across most
emotional primitives, α, β and θ frequency bands showed to
be the most relevant. These findings corroborate those widely
reported in the literature (e.g., Davidson et al., 1979; Hagemann
et al., 1999; Coan and Allen, 2004; Davidson, 2004).

Previous work on PAC, in turn, showed the coupling between
EEG and GSR (computed via the ModI feature) to be relevant
in emotion classification, particularly for arousal and valence
(Kroupi et al., 2014). Interestingly, the CFCmethod of computing
PANS-CNS phase-amplitude coupling was most often selected;
for arousal 97% of the top features corresponded to CFC-type
features. ModI features, in fact, were never selected as being a
top candidate. PAC features showed to be particularly useful for
valence estimation where 80% of the top features emanated from
central brain regions (C3, CP1, FC1) and the attained balanced
accuracy outperformed all other tested features. Such findings
suggest that alternate PAC representations should be explored,
especially within the scope of valence estimation.
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TABLE 1 | Selected top-35 features for the arousal dimension.

Ranking Arousal

AMI AMC AME PAC SF

1 γ _m-γ _FC5_CP2 α_m-α_T8_CP6 ratio_γ _m-γ _Fz cfc_FC1_7_Hz AI_β_FC1_FC2

2 β_m-α_FC5_CP5 θ_m-θ_Fp1_Pz β_m-α_F7 cfc_CP5_7_Hz AI_θ_FC1_FC2

3 γ _m-γ _FC5_Cz γ _m-γ _FC5_FC1 ratio_γ _m-β_Pz cfc_O1_19_Hz γ _Fp1

4 γ _m-γ _FC5_AF4 γ _m-θ_CP5_F8 θ_m-θ_O1 cfc_FC5_15_Hz θ_O2

5 γ _m-γ _AF4_CP2 θ_m-θ_C3_O2 ratio_β_m-θ_CP5 cfc_FC1_44_Hz α_O2

6 β_m-α_CP5_Pz α_m-α_P7_C4 β_m-β_O2 cfc_O1_20_Hz α_F7

7 γ _m-γ _FC5_PO4 α_m-θ_F7_T7 ratio_α_m-θ_O2 cfc_O1_27_Hz θ_CP6

8 γ _m-α_PO3_F8 γ _m-γ _P7_F8 γ _m-β_F7 cfc_O1_28_Hz α_Pz

9 γ _m-γ _FC5_C4 β_m-θ_C4_P4 ratio_α_m-α_T8 cfc_FC5_16_Hz AI_β_AF3_AF4

10 γ _m-β_FC5_PO4 θ_m-θ_FC6_Cz ratio_β_m-β_FC2 cfc_FC1_39_Hz β_FC5

11 β_m-θ_FC2_P8 α_m-θ_T8_CP6 θ_m-θ_FC5 cfc_FC1_43_Hz θ_AF4

12 γ _m-γ _FC5_Fp2 θ_m-θ_Fp1_P7 ratio_α_m-θ_Cz cfc_FC1_42_Hz θ_P4

13 γ _m-γ _FC5_Fz γ _m-θ_P7_F8 ratio_β_m-θ_Pz cfc_O1_18_Hz AI_β_P7_P8

14 γ _m-γ _AF4_Cz α_m-α_FC2_P8 α_m-α_Cz cfc_O1_26_Hz θ_F8

15 β_m-β_AF3_CP5 α_m-θ_P7_C4 ratio_α_m-α_O2 cfc_P8_5_Hz AI_β_FC5_FC6

16 β_m-β_FC5_CP5 β_m-α_C4_P4 ratio_α_m-θ_Fz cfc_FC1_37_Hz β_Fp2

17 α_m-α_FC1_T8 θ_m-θ_C3_O1 ratio_α_m-α_Cz cfc_O1_29_Hz θ_FC6

18 α_m-α_Oz_CP2 θ_m-θ_P3_P8 γ _m-α_F7 cfc_O1_23_Hz θ_T8

19 γ _m-γ _FC5_FC6 α_m-θ_Fp1_Cz α_m-θ_O2 cfc_O1_22_Hz α_Fz

20 β_m-β_PO3_P8 γ _m-α_T7_FC2 ratio_β_m-θ_P3 cfc_FC1_8_Hz α_PO3

21 γ _m-β_AF4_PO4 γ _m-β_FC5_FC1 α_m-θ_T8 cfc_FC5_18_Hz γ _F4

22 γ _m-β_FC5_Fz β_m-θ_T7_T8 ratio_γ _m-γ _Oz cfc_FC1_35_Hz AI_θ_O1_O2

23 β_m-α_AF3_Pz γ _m-α_FC5_FC1 θ_m-θ_P7 cfc_Fz_19_Hz θ_P8

24 γ _m-γ _AF4_PO4 β_m-θ_Cz_PO4 ratio_γ _m-θ_CP1 esc_C4 AI_β_Fp1_Fp2

25 γ _m-β_FC5_Fp2 θ_m-θ_O1_CP6 α_m-θ_CP6 cfc_CP1_5_Hz β_F3

26 γ _m-γ _Fp2_AF4 γ _m-γ _CP5_F8 α_m-α_T8 cfc_O1_25_Hz β_FC1

27 α_m-θ_PO3_CP2 γ _m-γ _T7_FC2 β_m-α_C3 cfc_FC1_41_Hz γ _P3

28 γ _m-γ _FC5_P3 β_m-β_F3_PO3 ratio_γ _m-γ _Pz cfc_FC1_40_Hz β_Fp1

29 γ _m-γ _FC5_FC1 γ _m-β_T7_FC2 ratio_γ _m-θ_Pz cfc_FC1_38_Hz α_PO4

30 β_m-β_AF3_O2 β_m-β_C4_P4 ratio_α_m-α_Fz cfc_O1_30_Hz θ_Fp2

31 α_m-θ_FC1_T8 α_m-θ_FC2_P8 ratio_γ _m-θ_P3 cfc_FC5_20_Hz α_F4

32 α_m-θ_F3_Oz γ _m-β_CP5_F8 α_m-θ_Cz cfc_FC5_19_Hz α_P7

33 γ _m-β_FC5_FC6 γ _m-β_P7_F8 ratio_θ_m-θ_O2 cfc_O1_21_Hz AI_β_F7_F8

34 γ _m-γ _F3_Fp2 α_m-α_F7_T7 β_m-β_F7 cfc_FC5_17_Hz β_AF3

35 γ _m-γ _FC1_AF4 α_m-α_Fp1_Cz ratio_α_m-θ_AF4 cfc_O1_24_Hz θ_CP2

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index
between the indicated channels.

Regarding the proposed AMF features, for arousal estimation,
γ and β bands showed to be particularly useful, corresponding
to roughly 86% of the top AMI features and 50% of the
AMC and AME features. These findings are inline with results
from Jenke et al. (2014). For valence, α interactions showed
to be particularly useful, appearing in roughly 70% of the
top AMI features. In particular α_m-θ interactions stood out,
thus corroborating previous findings (Kensinger, 2004) which
related these bands to states of internalized attention and
positive emotional experience (Aftanas and Golocheikine, 2001).
Such alpha/theta cross-frequency synchronization has also been
previously related to memory usage (Chik, 2013). To corroborate

this hypothesis, the correlation between the proposed features
derived from the α_m-θ patterns and the subjective “familiarity”
ratings reported by the participants was computed. The majority
of the features showed to be significantly correlated (≥ 0.35, p <

0.05) with the familiarity rating, thus suggesting memory may
have indeed played an effect on the elicited affective states.

Moreover, it was previously demonstrated that the power in
the γ and β bands were also able to discriminate between liking
and disliking judgements (Hadjidimitriou and Hadjileontiadis,
2012). By analyzing their amplitude modulation cross-frequency
coupling via the proposed features, improved results were
observed, thus showing the importance of EEG amplitude

Frontiers in Computational Neuroscience | www.frontiersin.org 8 January 2018 | Volume 11 | Article 115101

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Clerico et al. EEG Modulation Analysis for Affective Music-Tagging

TABLE 2 | Selected top-23 features for the valence dimension.

Ranking Valence

AMI AMC AME PAC SF

1 α_m-α_O1_CP2 θ_m-θ_T7_F8 β_m-θ_PO4 cfc_T8_5_Hz AI_α_PO3_PO4

2 α_m-α_O1_Oz β_m-β_AF3_F4 ratio_γ _m-α_PO3 cfc_C3_26_Hz α_P7

3 α_m-θ_F7_Pz γ _m-γ _CP1_P7 ratio_β_m-β_Fp1 cfc_CP1_25_Hz γ _Fz

4 α_m-α_F3_O1 γ _m-θ_AF3_Oz ratio_α_m-θ_Oz cfc_CP1_28_Hz α_P3

5 α_m-α_O1_Fp2 β_m-α_F7_P8 ratio_γ _m-β_PO3 cfc_O2_15_Hz AI_α_P3_P4

6 α_m-α_O1_O2 γ _m-β_F3_Oz β_m-θ_Pz cfc_C3_25_Hz AI_γ _O1_O2

7 α_m-α_T7_O1 γ _m-γ _AF3_P7 ratio_γ _m-β_Fp1 cfc_C3_24_Hz θ_Fz

8 β_m-β_CP6_CP2 γ _m-θ_AF3_P7 ratio_β_m-α_Fp1 esc_F3 α_PO3

9 α_m-θ_O1_CP2 γ _m-α_F3_Oz γ _m-β_PO4 cfc_O2_14_Hz AI_α_P7_P8

10 β_m-β_F4_CP2 θ_m-θ_Pz_PO4 ratio_β_m-θ_P8 cfc_FC1_42_Hz θ_O1

11 β_m-θ_AF3_Oz α_m-α_Fp1_Pz β_m-β_P3 cfc_FC1_43_Hz β_PO3

12 α_m-α_O1_PO4 θ_m-θ_F4_FC2 ratio_α_m-α_CP2 cfc_C3_27_Hz AI_α_F7_F8

13 β_m-β_F4_F8 γ _m-γ _F3_Oz γ _m-γ _PO4 cfc_CP1_23_Hz AI_γ _C3_C4

14 γ _m-β_F7_Cz γ _m-θ_F3_Oz β_m-θ_T8 cfc_C3_23_Hz AI_γ _FC1_FC2

15 α_m-θ_O1_O2 β_m-α_AF3_F4 β_m-α_P3 cfc_CP1_30_Hz AI_β_PO3_PO4

16 α_m-θ_O1_Cz γ _m-θ_Oz_O2 β_m-α_PO4 cfc_CP1_24_Hz AI_β_FC5_FC6

17 α_m-α_CP1_PO4 β_m-α_F4_P8 β_m-β_T7 esc_F4 AI_α_O1_O2

18 γ _m-θ_F3_O1 γ _m-α_CP1_P7 β_m-θ_T7 cfc_FC1_45_Hz AI_β_F7_F8

19 γ _m-β_P8_O2 γ _m-β_CP1_P7 ratio_β_m-α_PO3 cfc_CP1_26_Hz AI_θ_AF3_AF4

20 α_m-θ_O1_Fz β_m-β_CP5_T8 γ _m-θ_PO4 cfc_CP1_29_Hz α_Fz

21 α_m-θ_F7_AF4 β_m-β_F7_P8 ratio_β_m-β_PO3 cfc_CP1_27_Hz AI_β_P3_P4

22 α_m-α_O1_Cz γ _m-β_AF3_P7 ratio_θ_m-θ_CP2 cfc_FC1_44_Hz β_P3

23 α_m-θ_O1_Oz θ_m-θ_O1_Cz ratio_γ _m-α_Fp1 esc_AF3 θ_AF3

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index
between the indicated channels.

modulation coupling for affective state recognition. In fact, for
the liking dimension 100% of the AMC features came from
these two bands and this feature set resulted in the greatest
improvement over the benchmark set (i.e., 1.9% increase).
Moreover, β and α interactions were shown useful for dominance
prediction in Liu and Sourina (2012). Here, 63% of the AMI
features corresponded to those bands with several β_m-α
features appearing at the top. Interestingly, for the AMC features,
all top 19 features corresponded to β band interactions, with
several coming from parietal regions, thus corroborating findings
in Liu and Sourina (2012).

From the Tables, it can also be seen that the proposed
normalization scheme over the baseline period was shown
to be extremely important for the AME features, which
unlike AMI and AMC, are energy-based features and not
connectivity ones. For arousal, roughly 57% of the features
corresponded to normalized features. For valence and liking
they roughly corresponded to half of the top feature set.
Normalization is important in order to remove participant-
specific variability. Interestingly, only for the dominance
dimension were normalized features seldom selected (20%) and
it was for this emotional primitive that the AME features showed
to be most useful. When analyzing the high/low threshold
used per subject, it was observed that for the dominance
dimension, the standard deviation of the optimal threshold

across participants was lower at 0.65. For comparison purposes,
the standard deviation for arousal (shown in Figure 3) was of
0.71. As such, since there was lower inter-subject variability for
the dominance dimension, normalization was not as important.
Overall, for the entire AMF set, channels that involved the frontal
region provided several relevant features, thus confirming the
importance of the frontal region for affective state recognition
(Mikutta et al., 2012).

4.2. Classification and Feature Fusion
As shown in Table 5, all tested features and feature combinations
resulted in balanced accuracy results significantly greater
than chance. When all classifiers relied on the same input
dimensionality and default parameters, the superiority of
the proposed amplitude modulation features could be seen,
particularly for the arousal, dominance and liking dimensions.
In the case of equal dimensionality, fusion of AMF features did
not result in any improvements over the individual amplitude
modulation features, both for feature- and decision-level fusion.
Notwithstanding, some improvement was seen when more
features were explored. PAC features, in turn, were shown
to be particularly useful for valence estimation. When PAC
features were fused with benchmark and proposed AMF features,
(i) feature-level fusion was shown to be particularly useful for
arousal estimation, achieving results significantly better than
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TABLE 3 | Selected top-19 features for the dominance dimension.

Ranking Dominance

AMI AMC AME PAC SF

1 θ_m-θ_CP1_T8 β_m-θ_P7_F8 γ _m-β_P7 esc_AF3 θ_FC2

2 α_m-α_P3_Oz β_m-α_CP1_F8 β_m-β_P3 cfc_FC2_11_Hz γ _F3

3 α_m-θ_AF3_T7 β_m-θ_T7_F8 α_m-α_Pz cfc_FC2_8_Hz α_PO3

4 γ _m-α_F7_CP6 β_m-α_CP5_AF4 γ _m-α_P7 cfc_CP6_7_Hz θ_C3

5 θ_m-θ_P3_P8 β_m-β_CP1_Fz γ _m-θ_PO4 cfc_CP6_8_Hz θ_Pz

6 θ_m-θ_FC2_P8 β_m-α_P7_FC6 α_m-θ_Pz cfc_F3_6_Hz γ _P7

7 β_m-α_CP1_Pz β_m-θ_PO3_P4 ratio_γ _m-β_P8 cfc_FC2_7_Hz θ_FC6

8 α_m-α_F3_Fz β_m-α_CP1_Fz ratio_β_m-θ_P8 cfc_FC5_5_Hz θ_P4

9 β_m-θ_P3_F4 β_m-θ_F8_P4 ratio_γ _m-γ _P8 cfc_F4_12_Hz β_F3

10 β_m-α_CP1_P3 β_m-β_CP1_F8 θ_m-θ_Pz cfc_FC2_9_Hz α_P7

11 β_m-α_P3_Pz β_m-α_PO3_PO4 γ _m-γ _PO4 cfc_FC5_11_Hz β_C4

12 β_m-θ_P3_PO4 β_m-α_P7_F8 ratio_γ _m-γ _PO4 cfc_CP1_42_Hz AI_β_CP5_CP6

13 α_m-α_AF3_Fz β_m-β_CP5_Pz β_m-α_F7 cfc_CP6_9_Hz θ_PO3

14 β_m-β_FC5_Pz β_m-α_CP5_Pz γ _m-β_F7 cfc_P4_6_Hz α_Pz

15 α_m-α_AF3_T7 β_m-β_CP5_AF4 γ _m-β_P3 cfc_F4_14_Hz θ_P3

16 γ _m-α_F7_CP2 β_m-β_P7_F8 γ _m-γ _F7 cfc_AF4_5_Hz θ_Fp2

17 θ_m-θ_CP1_CP2 β_m-β_PO3_PO4 γ _m-θ_Cz cfc_F4_13_Hz AI_β_PO3_PO4

18 θ_m-θ_T8_P8 β_m-θ_CP1_F8 β_m-β_Cz cfc_FC2_12_Hz θ_O1

19 β_m-β_FC5_P3 β_m-θ_CP1_Fz β_m-β_F7 cfc_FC2_10_Hz AI_γ _F7_F8

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index
between the indicated channels.

TABLE 4 | Selected top-21 features for the liking dimension.

Ranking Liking

AMI AMC AME PAC SF

1 β_m-θ_AF4_CP6 γ _m-α_Pz_AF4 ratio_β_m-θ_FC6 cfc_P7_30_Hz α_P3

2 β_m-α_PO3_P8 β_m-β_O1_T8 γ _m-β_P7 cfc_FC1_7_Hz θ_C3

3 α_m-α_O1_Oz β_m-β_Pz_FC2 ratio_γ _m-γ _P8 cfc_P7_29_Hz β_P3

4 γ _m-γ _Fp1_T7 γ _m-β_Pz_AF4 γ _m-θ_P3 cfc_PO4_42_Hz β_T8

5 α_m-α_Oz_FC2 β_m-β_CP5_AF4 α_m-α_AF4 esc_T8 β_O1

6 θ_m-θ_Fp1_AF4 γ _m-γ _Pz_AF4 ratio_γ _m-α_P8 cfc_P7_32_Hz θ_P4

7 θ_m-θ_C3_P8 β_m-θ_FC1_O1 ratio_γ _m-θ_F3 cfc_P7_31_Hz α_F8

8 θ_m-θ_CP5_AF4 γ _m-θ_Pz_AF4 α_m-α_CP1 cfc_PO4_39_Hz β_PO3

9 β_m-θ_P3_AF4 γ _m-γ _AF3_Oz ratio_β_m-θ_P8 cfc_PO4_45_Hz AI_β_FC5_FC6

10 β_m-θ_F7_AF4 γ _m-β_CP1_AF4 γ _m-θ_F3 esc_F3 β_AF3

11 θ_m-θ_P7_AF4 β_m-α_O1_T8 ratio_β_m-β_C3 cfc_PO4_44_Hz θ_CP1

12 β_m-β_PO3_P8 γ _m-α_Fp1_T7 ratio_β_m-α_C3 cfc_Fp1_8_Hz α_CP5

13 θ_m-θ_PO3_Cz β_m-α_CP5_P4 ratio_β_m-α_F3 cfc_P7_26_Hz β_F3

14 β_m-θ_F3_AF4 γ _m-θ_CP1_AF4 ratio_α_m-θ_Fp1 esc_CP1 AI_α_P7_P8

15 θ_m-θ_CP1_AF4 γ _m-β_AF3_Oz ratio_γ _m-γ _FC6 cfc_PO4_41_Hz AI_β_F7_F8

16 α_m-θ_Oz_FC2 β_m-θ_FC5_PO3 ratio_β_m-α_Fp2 cfc_PO4_43_Hz AI_β_PO3_PO4

17 α_m-θ_P7_P8 γ _m-γ _CP1_AF4 ratio_γ _m-β_P8 cfc_P7_27_Hz θ_FC6

18 β_m-β_PO3_P4 γ _m-α_AF3_Oz β_m-θ_P7 esc_P8 β_FC5

19 θ_m-θ_Pz_CP6 β_m-θ_F3_P8 ratio_θ_m-θ_P7 cfc_FC1_8_Hz AI_θ_F7_F8

20 θ_m-θ_Pz_AF4 β_m-β_F3_P8 ratio_β_m-β_F3 cfc_FC6_10_Hz θ_F4

21 β_m-θ_AF4_T8 γ _m-α_CP1_AF4 β_m-β_T7 cfc_P7_28_Hz θ_Fz

Feature names listed should be self explanatory. The “ratio” features correspond to the log-ratio ones between the video and baseline periods; “AI” corresponds to the asymmetry index
between the indicated channels.
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TABLE 5 | Performance comparison of SVM classifiers for different feature sets and fusion strategies.

Feature class Fusion type Valence % Arousal % Dominance % Liking %

AMI – 0.604 4.4 0.583 5.6 0.564 4.1 0.626 1.1

AMC – 0.594 2.7 0.563 1.9 0.569 5.0 0.630 1.9

AME – 0.600 3.6 0.563 1.9 0.573 5.6 0.627 1.3

AMF Feature-level 0.594 2.7 0.583 5.6 0.566 4.4 0.624 0.9

PAC – 0.634 9.7 0.568 3.0 0.559 3.2 0.629 1.7

SF – 0.578 – 0.552 – 0.542 – 0.619 –

AMF + SF + PAC Feature-level 0.594 2.7 0.598 8.4 0.567 4.6 0.624 0.9

AMI + AMC + AME Decision-level 0.594 2.8 0.563 1.9 0.567 4.6 0.625 1.0

AMF + PAC + SF Decision-level 0.594 2.7 0.563 1.9 0.563 3.7 0.633 2.2

All reported results were significantly higher than chance achieved with a random voting classifier (p < 0.05). Column labeled “%” indicates relative improvement, in percentage, over
the SF baseline set.

the benchmark (p ≤ 0.05), and (ii) decision-level fusion was
shown to be useful for liking prediction. Once varying input
dimensionality was explored, the advantages of the proposed
features over the benchmark became more evident, with gains as
high as 8 and 20% being observed for the valence and dominance
dimensions, respectively. Such results were significantly better
than the benchmark (p ≤ 0.05).

4.3. Study Limitations
This study has relied on the publicly available pre-processed
DEAP database, which utilized a common average reference.
Such referencing scheme could have introduced an artificial
correspondence between nearby channels, thus potentially
biasing the amplitude modulation and connectivity measures
(Dezhong, 2001; Dezhong et al., 2005). By utilizing the multi-
stage feature selection strategy, such biases were reduced,
as feature redundancy was minimized and relevance was
maximized. Moreover, from the relevant connections reported
in the Tables, it can be seen that the majority of relevant
connections are from electrodes that are sufficiently far apart,
thus overcoming potential smearing contamination issues due
to referencing. Moreover, as with many other machine learning
problems, differences in data partitioning may lead to different
top-selected features and, consequently, to varying performance
results. This is particularly true for smaller datasets such as the
one used herein. To test the sensitivity of data partitioning on
feature selection, we randomly partitioned the 25% subset twice
and explored the top selected features in each partition. For
the AME features, for example, and the valence dimension, it
was found that 13 of the top 23 features coincided for the two
partitions. While this number is not very high, it is encouraging
and future work should explore the use of boosting strategies
and/or alternate data partitioning schemes to improve this.

5. CONCLUSIONS

In this work, experimental results with the publicly available
DEAP database showed the EEG amplitude modulation

based feature sets such as amplitude-amplitude cross-
frequency modulation coupling features, as well as linear
and nonlinear connection between multiple electrode pairs
outperformed benchmark measures based on spectral power by
as much as maximum 20% for dominance. Moreover, phase-
amplitude coupling of EEG and GSR signals outperformed
the benchmark by over 9% and when fused with the proposed
amplitude modulation features, further gains in arousal
and liking prediction were observed. Such findings suggest
the importance of the proposed features for affective state
recognition and signal the importance of EEG amplitude
modulation for affective tagging of music video clips and
content.
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The present study aimed to explore the modulation of frequency bands (alpha,
beta, theta) underlying the positive facial expressions classification advantage within
different post-stimulus time intervals (100–200 ms, 200–300 ms, 300–400 ms). For
this purpose, we recorded electroencephalogram (EEG) activity during an emotion
discrimination task for happy, sad and neutral faces. The correlation between the
non-phase-locked power of frequency bands and reaction times (RTs) was assessed.
The results revealed that beta played a major role in positive classification advantage
(PCA) within the 100–200 and 300–400 ms intervals, whereas theta was important
within the 200–300 ms interval. We propose that the beta band modulated the neutral
and emotional face classification process, and that the theta band modulated for happy
and sad face classification.

Keywords: positive classification, reaction times, brain oscillation, correlation, time intervals

INTRODUCTION

Facial expressions play an important role in social life. The information is valuable for interpreting
how others feel and their behavioral tendencies. Ekman (1994) classified emotional facial
expressions to six basic categories (happiness, sadness, anger, disgust, fear and surprise). So far,
methods such as single cell recordings, functional brain imaging and event-related potentials
(ERPs) have been used to investigate brain activity involving perception, emotion, behavior, etc.
Thus, studies have shown the probable neural network of emotionally salient stimuli (Eimer and
Holmes, 2007). As shown by previous studies, brain activities related to emotional events, including
those in the higher order sensory cortex, amygdala, orbitofrontal cortex and ventral striatum, share
complex interconnected structural network. However, much more research needed to understand
the brain mechanisms underlying emotion.

The recognition speed of facial expressions of emotion is very easy to obtain. Abundant data
from research has revealed that the recognition speed of happy faces is faster than sad faces (Crews
and Harrison, 1994; Leppänen and Hietanen, 2004; Calvo and Beltrán, 2013; Liu et al., 2013),
angry faces (Billings et al., 1993; Hugdahl et al., 1993; Calvo and Beltrán, 2013), disgusted faces
(Stalans and Wedding, 1985) and neutral faces (Hugdahl et al., 1993; Leppänen and Hietanen, 2004;
Calvo and Beltrán, 2013; Liu et al., 2013). However, behavioral experiments can only use simple
measures such as performance accuracy and reaction times (RTs). In addition, the RTs of multiple
expressions classification tasks are usually 1 s or above (e.g., Calder et al., 2000; Palermo and
Coltheart, 2004; Calvo and Lundqvist, 2008), which, in terms of advance chronometry, are very large
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time scales. For exploring more precise time processes, previous
studies have explored the neural mechanism of facial expression
classification using ERPs (e.g., Eimer and Holmes, 2007; Lynn
and Salisbury, 2008). Some ERP research has revealed the
phenomenon of positive classification advantage (PCA), which
means that positive facial emotional expressions are recognized
faster than negative ones (Leppänen and Hietanen, 2004). PCA
is strongly linked to late perceptual processing, the differences
between fearful and happy faces were shown over occipital
regions as early as 80 ms post-stimuli, and those between happy
and sad faces between 90 ms and 110 ms. Thus, our research
focuses on this time course of PCA processing.

Many previous studies have revealed that ERP components
are strongly linked to the categorization of facial emotion
expression. Studies have shown that PCA is related to late
components (Liu et al., 2013). However, information on the time
course of facial emotion categorization has not been revealed.
Brain oscillations, which could better track the activities of
neurons, could be an efficient way to explore the time course
of facial emotional categorizations. Oscillation activities could
provide key physiologically information of brain dynamics.
Furthermore, we can use neurofeedback to train different
oscillation activities. Thus, we can discriminate between positive
stimuli more quickly. Thus, the electroencephalogram (EEG)
dynamics of face perception and facial expression have recently
been analyzed through oscillation dynamics.

Event-related theta oscillations (4–7 Hz) have been reported
to play an important role in cognitive processes such as
memory, attention and cognition (Klimesch et al., 1997;
Kahana et al., 2001; Khader et al., 2010; Sauseng et al.,
2010). Balconi and Lucchiari (2006) reported enhanced frontal
theta synchronization to emotional facial expressions as
compared, with neutral expressions. Additionally, higher theta
synchronization to fearful facial expressions than neutral
expressions was observed. Similarly, Knyazev et al. (2009)
reported that theta synchronization was higher in response to
emotional faces (angry and happy faces) than neutral faces
(Knyazev et al., 2009).

Alpha oscillations (8–15 Hz), which are pronounced due
to their asymmetric effect, have been studied for many years
(Davidson, 2003, 2004; Coan and Allen, 2004; Herrmann et al.,
2004). Despite these obvious features on emotional processing,
Güntekin and Basar (2007) found that in comparison with happy
expressions, angry expressions elicited higher alpha responses at
T5, P3 and O2 electrodes. Additionally, in an MEG experiment
by Onoda et al., they found that event-related alpha power in
the occipital region is higher in negative conditions than in other
conditions (neutral and positive; Onoda et al., 2007). However,
Balconi and Mazza (2009) reported that compared with neutral
stimuli, positive and negative emotions trigger decreased alpha
power responses. Furthermore, they also found that alpha
oscillation was associated with an increase in left hemisphere
activity (Balconi and Mazza, 2010). Thus, the modulation of
alpha oscillations on emotional processes is still not clear.

Beta oscillations (16–30 Hz) have been thought to have a
strong link with sensorimotor functions and could be reduced by
voluntary movements and motor imagery (Neuper et al., 2009;

Engel and Fries, 2010). Some researchers have reported enhanced
beta activities in response to affective stimuli compared
with neutral stimuli (Woodruff et al., 2011). Güntekin and
Başar (2010) also reported higher beta activity in response
to negative images than positive images in frontal, central
and parietal electrodes upon presentation of IAPS images
(Güntekin and Başar, 2010). In addition, Schutter et al.
(2001) conducted a spontaneous EEG study and found a
significant relationship in response to angry facial stimuli
between asymmetry in parietal beta power and the attentional
response (Schutter et al., 2001). Güntekin and Basar (2007)
also reported increased beta power in response to angry
facial stimuli compared with happy stimuli at F3 and Cz
(Güntekin and Basar, 2007). However, Zhang et al. (2013) found
greater beta oscillation activity for positive facial expressions
than for negative expressions. Emotion processing mechanisms
are rather complicated to reveal; thus, more studies are
needed to complete our knowledge on these related brain
structures.

As mentioned above, the results on the brain oscillations
produced upon the processing of emotional faces have been
controversial. Thus, in the present study, we will trace the time
course of PCA based on brain oscillations. Our goal is to find
the modulation of PCA on frequency bands within different
time intervals. In prior research, Liu et al. (2013) found the
N170 (150–170 ms) component, posterior N2 (250–290 ms)
component and P3 (350–450 ms) component using schematic
face stimuli (Liu et al., 2013). Moreover, they found that
neutral faces elicited a shorter N170 latency compared with
happy and sad faces. Meanwhile, they found that happy faces
elicited more negative N2 activity compared with neutral and
sad faces. Additionally, happy and neutral faces elicited higher
P3 amplitudes and shorter P3 latencies compared with sad faces.
Based on these results, we assumed that when a subject makes
a decision, he/she first classifies the neutral face (time window
1: 100–200 ms) and then discriminates between happy and sad
expressions (time window 2: 200–300 ms and time window 3:
100–200 ms). Thus, the time course of PCA is time window
2 and 3. We will mainly focus on these two time windows.

To test our hypothesis, we used schematic face stimuli based
on Liu et al. (2013). Schematic faces allow us to control physical
features as carefully as possible, to minimize influence from
additional information related to facial identity (e.g., gender,
race) and to exclude the confounding effects of general arousal
as well as valence, per se (Boucsein et al., 2001; Eger et al.,
2003; Krombholz et al., 2007; Babiloni et al., 2010). Moreover,
Sagiv and Bentin (2001) have proved that even schematic
faces (only made from simple line fragments) could trigger
face-sensitive N170, and that this effect was not attributable
to an artifact arising from facilitated recognition of a single
feature (Sagiv and Bentin, 2001; Leppänen and Hietanen, 2004).
In addition, schematic face stimuli are reported to be able to
provide emotional stimuli; significant increase of fMRI signal
can be found in the amygdala, hippocampus and prefrontal
cortex in response to emotional vs. neutral schematic faces
(Wright et al., 2002), indicating the feasibility for applying the
schematic faces to study PCA.
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MATERIALS AND METHODS

Subjects
This study was carried out in accordance with the
recommendations of ‘‘School of Life Science Ethics Committee,
Beijing Institute of Technology’’ with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the ‘‘School of Life Science Ethics Committee,
Beijing Institute of Technology’’. Eighteen young healthy
individuals participated in our study (10 females; 20–25 years
of age; mean: 22.6 years). All participants were right-handed,
had normal or corrected-to-normal visual acuity and were free
of a neurological or psychiatric history. They received payments
for their participation and gave their written informed consent
before the experiment (Liu et al., 2013); however, the study only
examined PCA in the classic time-amplitude domain and no
time-frequency analyses have been previously reported.

Stimuli and Procedure
To avoid the low-level processing of facial features, as well as
boredom by the excessive repetition of one single model, each
facial expression category consisted of 18 different schematic
face models by manipulating the distance among facial features
and by manipulating the shape of the facial features, particularly
the mouths. Figure 1 illustrates examples of schematic face
expressions we used as stimuli. All stimuli were presented at the

center of a cathode ray tube video monitor and were viewed
from a distance of 100 cm at a visual angle of approximately
7.27◦

× 6.06◦.
Following electrode application, the participants were

seated in a dimly lit and sound-attenuated cabin. They
were instructed to classify each face by the expression it
represented (happy, neutral, or sad) and to respond by
pressing correspondingly labeled buttons on the keyboard
with the left index finger (Z key), right index finger (N key),
or right middle finger (M key). Speed and accuracy were
equally emphasized (Liu et al., 2013). All of the 324 stimuli
(3 facial expressions × 108 faces) were randomly presented
in a mixed design, with three blocks, each of which possess
108 stimuli and a short break in between. To offset the
difference between the fingers, the labels of the response buttons
(happy–neutral–sad/sad–happy–neutral/neutral–sad–happy)
counterbalanced across the participants. Each face was presented
for 300 ms with an inter-trial interval ranging randomly between
600 ms and 800 ms, starting after response.

The participants completed one practice sequence of
18 stimuli (six from each type, equally representing the three
facial expressions). These stimuli were not used in the main
experiment, which lasted approximately 15 min.

EEG Recording
An EEG was recorded continuously using an electrode cap
with 64 sintered Ag/AgCI electrodes mounted according to the

FIGURE 1 | Example stimuli of schematic facial expressions.
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extended international 10–20 system and referenced to the tip
of the nose. An electrooculogram (EOG) was recorded via two
pairs of additional electrodes, with one placed above and below
the left eye and the other placed to the external canthi of both
eyes. The EEG and EOG were amplified and digitized by the
NeuroLab Amplifier (Yiran Sunny Technology Co. Ltd., Beijing,
China) with a bandpass of 0.05–100 Hz and a sampling rate of
500 Hz. Electrode impedance was kept below 5 kΩ throughout
the experiment.

Data Analysis
Data analysis was performed using MATLAB R2013a
(Mathworks Inc., Natick, MA, USA) with the open source
toolboxes EEGLAB (Swartz Center for Computational
Neuroscience, La Jolla, CA, USA)1. The artifacts (e.g., eye
artifacts, muscle artifacts and electrocardiographic activity) of
all channels were removed by independent component analysis
(ICA). After the artifact correction of EEF data, epochs (600 ms
pre- to 900 ms post-stimulus onset) were sorted according
to stimulus condition to create a plot of time-frequency
representations (TFRs). Total frequency band responses were
analyzed via a Morlet wavelet using the MATLAB wavelet
toolbox (MathWorks). Morlet c was set to 7, and the final power
was µV2. The TFRs of the theta band power of each participant
were calculated; these ranged from 4 Hz to 7 Hz, whereas the
alpha band ranged from 8 Hz to 15 Hz, and the beta band from
16 Hz to 30 Hz. We calculated the synchrony among the medial,
right, and left electrodes and subtracted the frequency-specific
baseline (−300 to 0 ms pre-stimulus). Wavelet activity was
individually returned by wavelet decomposition for each trail.
Changes in the amplitude of activity were measured every
100 ms from 100 ms to 400 ms post-stimuli (e.g., 100–200 ms
post-stimuli, 200–300 ms post-stimuli, 300–400 ms post-stimuli
. . .) to cover a whole cycle of the high frequencies.

Accuracy rates and RTs (from the stimulus onset) were
recorded and analyzed using a one-way ANOVA design, with
expression (happy, neutral and sad) as the within- subjects
factor. Based on previous studies, for each EEG frequency band
the measurements were analyzed using a repeated-measures
ANOVA treating facial expressions (happy, neutral and sad),
hemisphere (left, right), and site (P7/8, PO7/8, P9/10) as within-
subject factors. For factors with more than two levels, the
degrees of freedom were corrected using the Greenhouse-Geisser
procedure (for simplicity, the uncorrected degrees of freedom
are presented). Post hoc comparisons were performed with the
Bonferroni procedure.

RESULTS

Performance
A one-way ANOVA analysis was conducted for the percentage of
correct responses. The main effect of expression was significant,
F(2,34) = 7.95, p = 0.003, partial η2 = 0.319. Post hoc comparisons
showed that neutral faces were identified more correctly (97.4%)

1http://sccn.ucsd.edu/eeglab/

than either happy faces (93.7%, p = 0.002) or sad faces (94.2%,
p = 0.007), with no differences between the latter conditions
(p > 0.9). For each participant, incorrect responses or responses
with RTs more than ±2 SDs from the mean in each condition
were excluded for RT analysis. On average, 8.7% of the responses
were removed. The RTs were analyzed by using the same
statistical model as that for percentages of correct responses.
There was a significant main effect of expression, F(2,34) = 95.2,
p < 0.001, partial η2 = 0.849, showing that neutral face
categorization was faster (551 ms) than happy face categorization
(602 ms, p < 0.001), which was quicker than classifying sad
faces (656 ms, p < 0.001). To investigate the possible source
of the PCA, a Pearson correlation analysis was conducted. This
comparison showed that there was an overall significant positive
correlation between the RT to negative face stimuli and the size
of the PCA, r = 0.66, p < 0.005 (two tailed), but not between the
RTs to positive face stimuli and the PCA, r = 0.17, p> 0.05.

Time-Frequency Analysis
For each time window and each frequency, a repeated-measures
ANOVA with facial expression (happy, neutral and sad), and
hemisphere (left, right) was used to examine the overall effects
for different oscillation (theta, alpha, beta), respectively. We
conducted four ANOVAs, one for each time interval. Based on
previous research, we conducted a repeated-measures ANOVA
with within-subject factors as facial expression (happy, neutral
and sad), hemisphere (left, right) and site (P7/8, PO7/8 and
P9/10), and different frequency bands, were used at lateral
posterior sites (left, P7, PO7 and P9; right, P8, PO8 and P10).
For all the ANOVAs, the degrees of freedom were Greenhouse-
Geisser corrected where appropriate. Figure 2 shows the spectral
power for happy, sad and neutral expressions on P9, P10, PO7,
PO8, P7, P8, respectively.

Oscillation Activities
In the 100–200 ms time window, the main effects for expressions
on theta band revealed that sad faces (2.757 µV2) elicited
lower power than happy (3.126 µV2, p < 0.01) and neutral
faces (3.148 µV2, p < 0.02), with no difference between latter
two conditions, and that the power elicited by sad expressions
was lower than happy (p < 0.01) and neutral expressions
(p < 0.001) on alpha band (F(2,34) = 11.294, p < 0.001, partial
η2 = 0.399) and beta band (F(2,34) = 14.699, p < 0.001, partial
η2 = 0.464) with no difference between the latter two conditions.
The main effect of hemisphere was also significant on theta
(F(1,17) = 10.643, p < 0.01, partial η2 = 0.385) and beta band
(F(1,17) = 8.056, p < 0.02, partial η2 = 0.322), revealing a right
hemisphere dominance (3.634 µV2 and 2.587 µV2 for left and
right hemisphere, respectively) on the theta band, while power at
left occipital sites (1.029 µV2) were larger than at right occipital
sites (0.97 µV2) on beta band. Figure 3 shows the power for
happy, sad and neutral expressions on difference time windows
and different frequencies. There was no significant two-way
interaction between factors (expression, hemisphere, site) on
difference time windows and different frequencies (please refer
to Supplementary Table S1).
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FIGURE 2 | Spectral power for happy, sad and neutral expressions on different sites (P9, P10, PO7, PO8, P7 and P8).

FIGURE 3 | Left: spectral power for happy, sad and neutral expressions on time window 1 (100–20 ms post-stimuli), time window 2 (200–300 ms post-stimuli) and
time window 3 (300–400 ms post-stimuli), respectively; Right: power topography for happy, sad and neutral expressions on theta, alpha and beta band and time
window 1 (100–200 ms post-stimuli), time window 2 (200–300 ms post-stimuli) and time window 3 (300–400 ms post–stimuli), respectively.

For the time window from 200 ms to 300 ms, theta
band showed a significant difference in facial expressions
(F(2,34) = 37.96, P < 0.001, partial η2 = 0.691), revealing a higher
power for happy faces (3.102 µV2) than neutral faces (2.86 µV2,
p < 0.05) and sad faces (2.231 µV2, p < 0.01). The effect of
hemisphere for theta band also showed a significant difference
(F(1,17) = 8.473, P< 0.01, partial η2 = 0.322), with the hemisphere
being more prominent (2.965 µV2) than the left (2.497 µV2).
Alpha oscillations also showed a significant difference in facial

expressions (F(2,34) = 9.681, P < 0.001, partial η2 = 0.363),
revealing that sad faces elicited lower activity (1.171 µV2) than
the happy (1.509 µV2, p < 0.01) and neutral faces (1.458 µV2,
p < 0.01), but that there were no differences between the latter
two types of faces (p = 0.948). There was a significant main effect
of expression on beta band (F(2,34) = 14.324, P < 0.001, partial
η2 = 0.457), showing less sad activity (0.876 µV2) than neutral
activity (0.999 µV2, p < 0.001) and happy activity (0.965 µV2,
p < 0.01), and no difference between the latter two conditions.
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FIGURE 4 | Scatter distribution of power of different frequencies and reaction time (RTs) during time window 1 (100–200 ms post-stimuli), time window 2
(200–300 ms post stimuli) and time window 3 (300–400 ms post-stimuli), respectively.

Hemisphere also showed a significant difference in beta band
(F(1,17) = 5.977, P < 0.05, partial η2 = 0.26), revealing a higher
power at the left hemisphere (0.987 µV2) than that at the right
(0.907 µV2).

The time window from 300 ms to 400 ms showed significant
main differences in facial expression for theta (F(2,34) = 49.263,
p < 0.001, partial η2 = 0.743), alpha (F(2,34) = 20.695, p < 0.001,
partial η2 = 0.495), beta (F(2,34) = 48.283, p < 0.001, partial
η2 = 0.74), revealing that neutral and happy expressions elicited
higher power than sad expressions (p < 0.001), while there
was no difference between neutral and happy expressions. A
significant main effect of hemisphere also found on alpha
(F(1,17) = 7.936, p < 0.02, partial η2 = 0.318) and beta band
(F(1,17) = 15.907, p < 0.001, partial η2 = 0.483), showing a left
hemisphere dominance (1.204 µV2 and 1.064 µV2 for the left
and right hemisphere on alpha band, 0.911 µV2 and 0.817 µV2

on beta band, respectively) on both alpha and beta bands.

Pearson Correlations
In addition to the ANOVAs, because we want to explore how
the oscillation activities reflect modulations of the stimulus
evaluation and decision processes, Pearson correlations between
the RTs and power of all frequency bands (theta, alpha and
beta, respectively) were conducted. Figure 4 shows scatterplot
diagrams and linear fitting of the scatter-plots.

The Pearson correlations between RTs and the power
of frequency bands showed significant negative correlations
between RTs and beta power during the time window of
100–200 ms (r = −0.378, p < 0.02) and 300–400 ms (r = 0.336,
p < 0.03); that is, the longer the RTs, the lower the beta power
within time window 1 and 3. Interestingly, power on theta band
was also negatively linked to RTs, but the time window was
200–300 ms (r = −0.301, p < 0.05). Furthermore, there were
no significant correlations between the RTs and power of other
oscillation bands (i.e., alpha) modulated by facial expressions
(ps> 0.06).

DISCUSSION

Below is a summary of the results of the present research.
Through facial expression classification experiments, we will
discuss the phenomenon of happy face classification advantage
using oscillation characteristics as well as time course. In
line with previous studies, we found that face expression
classification is quicker for happy expressions than for sad
expressions (e.g., Crews and Harrison, 1994; Leppänen and
Hietanen, 2004), and faster for neutral faces than happy faces.
Moreover, happy faces elicited a higher spectral power than
sad face. In accordance with other studies (Balconi and Mazza,
2009), the results showed a left hemisphere dominance, revealing
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the lateralization effect of positive expression classification.
Although facial expressions elicited different activity on theta,
alpha and beta frequencies, only beta and theta showed
significant negative correlation with RT. Moreover, beta was
strongly correlated with PCA in time window 1 and 3, whereas
theta was correlated with time window 2. Additionally, the
greater spectral power was linked to a shorter RT in all the three
time windows and three frequency bands. Thus, quick responses
require more brain activity, which was not obvious in the alpha
bands.

In the present task, the theta oscillations showed that happy
faces elicit higher power than sad faces, but the power elicited
by neutral faces was higher than emotional faces (happy and sad
faces). Previous studies with IAPS affective pictures as stimuli
showed that emotional stimuli always elicited higher power than
neutral stimuli (Balconi and Lucchiari, 2006; Zhang et al., 2013),
which is in contrast with our results, but the stimuli in these
experiments are not facial expressions. Studies using emotional
video clips showed that power elicited by positive stimuli is
higher than that by negative stimuli in the post-occipital area
(Aftanas et al., 1998), which is similar to our results. Moreover,
previous study using real emotional expressions suggested that
happy expressions has faster results and higher accuracy than
neutral expressions in discriminating tasks (Dasilva et al., 2016),
which indicated the PCA.

As previously shown, alpha power showed an increase with
positive stimuli in comparison with neutral stimuli after 100 ms
post-stimuli, and although this difference is not significant,
it is in line with previous studies that emotional stimuli
elicits higher power than neutral stimuli. However, we found
that in comparison with happy and neutral stimuli, power
elicited by sad stimuli was the lowest. Interestingly, a study by
Baumgartner et al. (2006) found that, when presenting IAPS
pictures of fear, happiness and sadness, there were no differences
in alpha power, but decreased alpha power was found when
stimuli were emotional pictures accompanied with emotional
music. For studies that found that negative stimuli elicits
higher alpha responses, because negative stimuli in these studies
were always angry pictures or affective pictures, the decreased
alpha oscillations may be attributed to the facial classification
mechanisms; however, whether real facial expressions would
have same results as schematic facial expressions requires further
study.

Previous studies on application of IAPS images found
that negative images elicit greater beta responses compared
with positive images in frontal, central and parietal electrodes
(Güntekin and Başar, 2010); however, the stimuli they used
were not facial expression pictures but affective pictures. A
study by Zhang et al. (2013) with Chinese affective pictures as
stimuli indicated that adolescents at the age of 12 exhibit more
beta event-related synchronization (ERS) for positive vs. neutral
stimuli. Other studies also verified that higher beta responses
elicited both positive and negative stimuli than neutral stimuli
(Miskovic and Schmidt, 2010; Cohen et al., 2013).

The ERP results have shown components (i.e., P1, N1,
N170, P2, N2, P3) that have a strong relationship with facial
emotion classification tasks. First, enhanced N170 (a negative

ERP component during 140–180 ms post-stimuli at occipito-
temporal electrodes), which is thought to be an indicator of
inverted-face recognition, shows significant differences to fearful
faces than neural faces at 160 ms post-stimuli (Holmes et al.,
2005). Compared with time window 1, we concluded that
face categorization was pre-attended during this time window.
For posterior N2, a negativity peaking between 200 ms and
300 ms may be modulated by factors influencing visual stimuli
categorization such as mutual information level, determined by
gross similarity between the fragment and image in an image
patch (Harel et al., 2007). In addition, as a generic name for
relatively late positive component with a distribution at centro-
parietal or centro-frontal midline area, P3 is considered in
conjunction with facial emotion categorization (Polich, 2007). It
has shown higher amplitudes and shorter latencies in response
to both happy and neutral stimuli than sad stimuli, while RT
displayed a significant correlation with amplitude and latency of
the P3. During time windows 2 and 3, which are linked to the
N2 and P3 components, emotion categorization is completed.
Thus, the time-division can help us to better analyze the process
of emotion categorization.

Though there were significant differences in theta, alpha and
beta oscillations for different emotional stimuli (happy, neutral
and sad), only theta and beta band significantly were correlated
with RTs. However, the correlation between beta oscillation
and RTs was as early as 100 ms after stimuli onset. That is,
beta oscillation may modulate the categorization of neutral
faces. In our results, the beta band had a major impact upon
face discrimination. Also, the categorization occurred as early
as 100 ms after stimulus onset, which has important effects
for our social life. Furthermore, researchers have revealed that
beta oscillation contributed to classification of known faces and
unknown faces within 100–200 ms (Ozgören et al., 2005). Based
on these results, we propose that in time window 1, subjects
can discriminate between neutral and emotional faces, and that
beta band is related to the process. This suggests that neutral
face may be classified the fastest; and is modulated by beta
band.

As for time windows 2 and 3, previous studies revealed that
theta power was related to the P3 component (see a review Polich,
2007) and that P3 was related to PCA (Liu et al., 2013). That
is, theta (time window 2) and beta (time window 3) oscillations
modulate the PCA. These results are consistent with other
research that focused on negative stimuli (Cohen et al., 2013).
This research demonstrated that the theta band contributed to
early emotion selection (200–300 ms) and that the beta band was
a late response (400–600 ms). Thus, our hypothesis was verified,
meaning that the theta band and beta band had a major impact
on PCA.

In conclusion, our research used schematic emotional faces
and focused on the time course of the recognition advantage
of happy faces. The results demonstrate that the categorization
process was mainly associated with beta oscillations from the
beginning, while theta oscillations participated during the later
period. Thus, we could detect PCA as early as 200 ms post-stimuli
through theta oscillations, earlier than the other findings on time
domain (usually 300 ms). Moreover, we can train theta bands
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in time window 2 and beta bands in time window 3, so that
people can discriminate happy faces more quickly. This may have
good implications for depressed patients. Therefore, advanced
research on facial emotional processing is clearly needed.
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Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has

always been difficult due to the poor generalizability of features across subjects.

Thus, systematically exploring the ability of different EEG features to identify emotional

information across subjects is crucial. Prior related work has explored this question

based only on one or two kinds of features, and different findings and conclusions

have been presented. In this work, we aim at a more comprehensive investigation

on this question with a wider range of feature types, including 18 kinds of linear and

non-linear EEG features. The effectiveness of these features was examined on two

publicly accessible datasets, namely, the dataset for emotion analysis using physiological

signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support

vector machine (SVM) approach and the “leave-one-subject-out” verification strategy

to evaluate recognition performance. Using automatic feature selection methods, the

highest mean recognition accuracy of 59.06% (AUC= 0.605) on the DEAP dataset and of

83.33% (AUC= 0.904) on the SEED dataset were reached. Furthermore, using manually

operated feature selection on the SEED dataset, we explored the importance of different

EEG features in cross-subject emotion recognition from multiple perspectives, including

different channels, brain regions, rhythms, and feature types. For example, we found that

the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition

accuracy compared to the other features. Through a pilot correlation analysis, we further

examined the highly correlated features, for a better understanding of the implications

hidden in those features that allow for differentiating cross-subject emotions. Various

remarkable observations have beenmade. The results of this paper validate the possibility

of exploring robust EEG features in cross-subject emotion recognition.

Keywords: EEG, emotion recognition, feature engineering, DEAP dataset, SEED dataset

1. INTRODUCTION

Emotion recognition as an emerging research direction has attracted increasing attention from
different fields and is promising for many application domains. For example, in human-computer
interaction (HCI), recognized user emotion can be utilized as a kind of feedback to provide better
content to enhance the user experiences in e-learning, computer games, and information retrieval
(Mao and Li, 2009; Chanel et al., 2011; Moshfeghi, 2012). Moreover, psychologists have verified
the important roles that emotion plays in human health. Difficulties in the regulation of negative
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emotions may cause various mood disorders, such as stress
and depression (Gross and Muñoz, 1995), which may influence
people’s health (O’Leary, 1990). Hence, emotion recognition
techniques also contribute to developing e-services for mental
health monitoring. In particular, cross-subject emotion
recognition (i.e., depression prediction based on a person’s
physiological data, with a classifier learnt from the training data
from a group of patients who have been diagnosed as depression
or not) has been considered an important task for its generality
and wider applicability, compared with the intra-subject emotion
recognition.

Electroencephalogram (EEG)measurements reflect the neural
oscillations of the central nervous system (CNS) and are
directly related to various higher-level cognitive processes (Ward,
2003), including emotion (Coan and Allen, 2004). EEG-based
emotion recognition has shown a greater potential compared
with the facial expression- and speech-based approaches, as the
internal neural fluctuations cannot be deliberately concealed
or controlled. However, a main issue confronted in this
research area is how to improve the cross-subject recognition
performance. The performances of current recognition systems
are largely limited by the poor generalizability of the EEG features
in reflecting emotional information across subjects. For example,
Kim (2007) studied the bimodal data fusion method and utilized
LDA to classify emotions. Using this method, the best obtained
recognition accuracy on all three subjects’ data was 55%, which
was far lower than the best result of 92% obtained on a single
subject’s data. Zhu et al. (2015) adopted differential entropy as the
emotion-related feature and the linear SVM as the classifier. The
authors verified the recognition performance on intra-subject
and cross-subject experimental settings respectively. The average
recognition accuracy was 64.82% for cross-subject recognition
tasks, whichwas also far lower than the results of 90.97% obtained
in the intra-subject settings.

In the literature, there has been some related work that
attempted to tackle this problem and to identify robust EEG
features in cross-subject emotion recognition. For example, Li
and Lu (2009) examined the recognition performance using
ERD/ERS features extracted from different frequency bands
and found that 43.5–94.5 Hz, the higher gamma band, was
the optimal frequency band related to happiness and sadness.
Lin et al. (2010) extracted DASM features and summarized
the top 30 subject-independent features by measuring the ratio
of between- and within-class variance, and found that the
frontal and parietal electrode pairs were the most informative
on emotional states. However, no significant difference between
different frequency bands was observed in this work. Soleymani
et al. (2012) performed cross-subject emotion recognition tasks
on EEG and eye gaze data. The power spectral density (PSD)
for EEGs was extracted. The most discriminative features for
arousal were in the alpha band of the occipital electrodes, while
those for valence were in the beta and gamma bands of the
temporal electrodes. Kortelainen and Seppänen (2013) extracted
the PSD from different frequency bands, and the best cross-
subject classification rate for valence and arousal was obtained
on the feature subset in the 1–32 Hz band. Zheng et al. (2016)
focused on finding stable neural EEG patterns across subjects and

sessions for emotion recognition. The authors found that EEGs in
lateral temporal areas were activated more for positive emotions
than negative emotions in the beta and gamma bands and that
subject-independent EEG features stemmed mostly from those
brain areas and frequency bands.

In the aforementioned existing work, however, only few
kinds of features were examined and why those robust features
contribute to cross-subject emotion recognition was not studied.
Hence, in this work, we aim at a more comprehensive and
systematic exploration of a wider range of EEG features.
Specifically, we extracted nine kinds of time-frequency domain
features and nine kinds of dynamical system features from
EEG measurements. Through automatic feature selection, e.g.,
recursive feature elimination (RFE), we verified the effectiveness
and performance upper bounds of those features in cross-
subject emotion recognition. Furthermore, through manual
selection of features from different aspects, e.g., different EEG
channels, we studied the importance of different aspects in cross-
subject emotion recognition. We further conducted a correlation
analysis to better understand the implications of those features
for differentiating cross-subject emotions. The support vector
machine (SVM), a state of the art classifier, was used in all the
experiments.

2. MATERIALS AND METHODS

The procedure of the proposed methodology is illustrated in
Figure 1. We adopted a “leave-one-subject-out” verification
strategy. Each time we left one subject’s data out as the test set
and adopted the other subjects’ data as the training set. The
feature selection was conducted on the training set, and then, the
performance was evaluated on the test set. This procedure was
iterated until each subject’s data had been tested. This strategy
can eliminate the risk of “overfitting.”

2.1. Experimental Data
We conducted our analysis using two publicly accessible datasets,
namely, DEAP (dataset for emotion analysis using physiological
signals) (Koelstra et al., 2012) and SEED (SJTU emotion EEG
dataset) (Zheng et al., 2016). DEAP includes 32-channel EEG
data collected from 32 subjects (17 male, 27.2 ± 4.4 years). The
subjects’ emotions were induced through one-minute-longmusic
video clips. After each stimulus, the subjects rated their emotional
experience on a two-dimensional emotional scale proposed by
Russell (1980). The two dimensions are arousal (ranging from
relaxed to aroused) and valence (ranging from unpleasant to
pleasant). The higher a specific rating is, the more intense the
emotion is in a specific dimension. The SEED dataset contains
62-channel EEG data collected from 15 subjects (7 male, 23.27±
2.37 years), and each subject participated in the experiment three
times. The subjects’ emotions are induced through 15 film clips,
and each film clip lasts for approximately 4 min. Three classes
of emotions (positive, neutral, negative) are evaluated, and each
class has five corresponding film clips. In this study, we utilized
only the trials of positive and negative emotions to evaluate the
features’ ability to differentiate between these two emotions. For
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FIGURE 1 | The feature engineering-based method and the procedure for

verifying the performance of cross-subject emotion recognition.

consistency with the DEAP dataset, we used the one-minute-long
data extracted from the middle part of each trial in SEED.

2.2. Data Preprocessing
2.2.1. EEG Preprocessing
As a kind of neurophysiological signal, EEG data are high
dimensional and contain redundant and noisy information. In
this work, after data acquisition, the raw data was firstly pre-
processed, such as by removing the electrooculogram (EOG) and
electromyogram (EMG) artifacts and downsampling the raw data
to reduce the computational overhead in feature extraction. Two
additional preprocessing procedures were needed before feature
extraction, namely, rhythm extraction and data normalization.
The multi-channel EEG is typically regarded as a reflection of
brain rhythms. We first filtered out the four target rhythms,
namely, the theta rhythm (4–7 Hz), alpha rhythm (8–15 Hz),

FIGURE 2 | (A) The data normalization method for one subject’s multi-channel

signals. (B) The sliding window-based feature extraction method for one EEG

signal (taking one 12-s signal as an example). The mean of the calculated

values in all sliding windows was adopted as the feature.

beta rhythm (16–31 Hz), and gamma rhythm (>32 Hz). We
attempted to investigate the importance of these different
rhythms in reflecting subjects’ emotions. We excluded the delta
rhythm (<4 Hz), as this rhythm is traditionally regarded as
being correlated only with sleep. The four target rhythms
were extracted through a custom finite impulse response (FIR)
bandpass filter with a Hanning window. Secondly, we conducted
data normalization as shown in Figure 2A. The extracted rhythm
data for each subject were normalized channel by channel across
all the trials. This procedure helped to remove subject bias and
to generate more comparable features between subjects while
allowing the variability of different channels to be preserved.

2.2.2. Label Preprocessing
For DEAP, we divided the subject trials into two classes according
to their corresponding ratings on the valence dimension. A rating
higher than 5 indicated a positive class, whereas a rating lower
than 5 indicated a negative class. Hence, for valence, the two
classes were high valence (positive) and low valence (negative).
For SEED, the trials have already been categorized into three
emotional classes (positive, neutral, negative); hence, we do not
need to perform label preprocessing. For consistency, we studied
only the positive and negative samples in SEED. The emotion
recognition capability was evaluated using binary classification
tasks.

2.3. Feature Extraction
In this work, we explored the robustness of a wider range of EEG
features in cross-subject emotion recognition. Specifically, we
extracted nine kinds of time-frequency domain features and nine
kinds of dynamical system features from EEG measurements,
as listed in Table 1. Extracting features based on some domain
knowledge can provide a concise representation of the original
data and materials. In this work, after preprocessing the data,
we calculated the features for each of the four rhythms with a
4-s sliding window and a 2-s overlap, and then, the mean of the
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TABLE 1 | This table lists the two main categories of EEG features that we

extracted.

Feature type Extracted features

Time-frequency

domain features

1. Peak-Peak Mean. 2. Mean Square Value. 3. Variance.

4. Hjorth Parameter: Activity. 5. Hjorth Parameter: Mobility.

6. Hjorth Parameter: Complexity.

7. Maximum Power Spectral Frequency.

8. Maximum Power Spectral Density. 9. Power Sum.

Non-linear dynamical

system features

10. Approximate Entropy. 11. C0 Complexity.

12. Correlation Dimension. 13. Kolmogorov Entropy.

14. Lyapunov Exponent. 15. Permutation Entropy.

16. Singular Entropy. 17. Shannon Entropy.

18. Spectral Entropy.

The features were extracted for four rhythms. For the DEAP dataset, the total number of

features extracted for one trial is 2304. For the SEED dataset, the total number of features

extracted for one trial is 4464.

feature values extracted from those sliding windows was adopted
as the trial’s feature. The sliding window-based feature extraction
methods are illustrated in Figure 2B. For DEAP, the number of
features extracted for one trial is: ((9 + 9) × 32) × 4 = 2304.
For SEED, the number of features extracted for one trial is:
((9 + 9) × 62) × 4 = 4464. All features were normalized before
further analysis.

The details and reasons for selecting these candidate features
are elaborated below:

2.3.1. Time-Frequency Domain Features
Nine kinds of features in the time and frequency domains of each
signal were considered. The peak-to-peak mean is the arithmetic
mean of the vertical length from the very top to the very bottom
of the time series. Themean squared value is the arithmetic mean
of the squares of the time series. Variance measures the degree
of dispersion of the time series. After transforming the time
series into the frequency domain through Fourier transform,
we calculated the sum of the power spectral, and we further
extracted the maximum power spectral density along with its
corresponding frequency value. Three Hjorth parameters that
can reflect characteristics of activity, mobility, and complexity
were also extracted according to the work by Hjorth (1970): the
activity parameter reflects the information of the signal power,
the mobility parameter is an estimation of the mean frequency,
and the complexity reflects the bandwidth and the change in
frequency. The Hjorth parameters are considered suitable for
analyzing non-stationary EEG signals.

2.3.2. Non-linear Dynamical System Features
We also extracted nine kinds of features that can reflect the
characteristics of non-linear dynamical systems. Researchers
have found that human brain manifests many characteristics
specifically belonging to non-linear and chaotic dynamical
systems; thus, the EEG signal is inherently complex, non-linear,
non-stationary, and random in nature (Stam, 2005; Sanei and
Chambers, 2013). Approximate entropy (ApEn) is a non-linear
measure of the regularity of a signal; the more regular a signal is,
the smaller the ApEn will be (Pincus et al., 1991). C0 Complexity

is adopted to measure the amount of the stochastic components,
which assumes that a signal consists of a regular part and a
stochastic part (Lu et al., 2008).Correlation dimension determines
the number of dimensions (independent variables) that can
describe the dynamics of the system and reflects the complexity
of the process and the distribution of system states in the phase
space (Khalili andMoradi, 2009). The Lyapunov exponent is used
to measure the aperiodic dynamics of a chaotic system. This
feature can capture the separation and evolution of the system’s
initial states in the phase space. The positive Lyapunov exponent
indicates the chaos in the system (Übeyli, 2010). The Kolmogorov
entropy is also a metric of the degree of chaos and measures the
rate at which information is produced by the system as well as
the rate at which information is lost by the system (Aftanas et al.,
1997). Note that ApEn is closely related to Komolgorov entropy.
The calculation of Komolgorov entropy is greatly influenced by
the noise and dimensionality of the data. The complexity of
neural activity can also be measured using the symbolic dynamic
theory, in which a time series can be mapped to a symbolic
sequence, from which the permutation entropy (PE) can be
derived. The largest value of PE is 1, which indicates that the
time series is completely random, while the smallest value of PE
is 0, which indicates that the time series is completely regular (Li
et al., 2007). Singular spectrum entropy is calculated by a singular
value decomposition (SVD) of the trajectory, which is obtained
by reconstructing the one-dimensional time series into a multi-
dimensional phase space. This feature reflects the uncertainty
and complexity of the energy distribution and is an indicator
of event-related desynchronization (ERD) and event-related
synchronization (ERS) (Zhang et al., 2009). Shannon entropy is
a classical quantification of uncertainty and is frequently used to
measure the degree of chaos in the EEG signal. Power spectral
entropy is based on the Shannon entropy and measures the
spectral complexity of the system. After the Fourier transform
is performed, the signal is transformed into a power spectrum,
and the information entropy of the power spectrum is called the
power spectral entropy (Zhang et al., 2008).

2.4. Automatic Feature Selection
In this work, we first try to determine the upper bound of
the performance of the proposed features. Hence, we choose to
utilize some automatic feature selection techniques. Five different
automatic feature selection methods were used to extract the
most informative EEG features from the whole candidate set.
Specifically, the whole features are re-ranked according to a pre-
defined ranking criteria, e.g., based on the degree of correlation
between the feature and the target class or based on the value
of the feature weight, and then, the features above a pre-defined
threshold are selected (Huang et al., 2006; Maldonado and
Weber, 2008).

Two typical automatic feature selection techniques are the
filter-based strategy and the wrapper-based strategy (Guyon
and Elisseeff, 2003). The former is independent of any pattern
recognition algorithm and filters out a specific number of
features according to some statistical properties of the features.
The classical filter-based strategy includes the chi-squared (χ2),
mutual information, and F-test methods. The wrapper-based
strategy, on the other hand, cooperates with a specific pattern
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recognition algorithm. A widely adopted wrapper-based strategy
is the recursive feature elimination (RFE) method. We also
considered a more efficient L1-norm penalty-based feature
selection method, which has been widely used in recent years.

The details of these feature selection methods are elaborated
as follows:

2.4.1. Chi-Squared-Based Feature Selection (χ2)
The Chi-squared test is a classical statistical hypothesis test
method for testing the independence of two variables or to
investigate whether the distribution of one variable differs from
that of another. This work is concerned with the former,
formulated as below:

χ2 =
r∑

i=1

c∑

j=1

(Oi,j − Ei,j)
2

Ei,j
, (1)

where r and c are the number of categories in the two random
variables, Oi,j is the number of observations of type i, j, and the
Ei,j is the expected frequency of type i, j. In our work, a higher
χ2 value indicates a higher correlation between a feature variable
and the target classes.

2.4.2. Mutual Information-Based Feature Selection

(MI)
The mutual information metric is derived from probability
theory and information theory. Thismetric is adopted tomeasure
the mutual dependence (shared information) between the feature
variables and the target classes. It is closely linked to the concept
of entropy, which defines how much information is contained in
a variable. Mutual information can be expressed as follows:

I(X;Y) = H(X)+H(Y)−H(X,Y)

=
∑

x

P(x) log
1

P(x)
+

∑

y

P(y) log
1

P(y)

−
∑

x,y

P(x, y) log
1

P(x, y)

=
∑

x,y

P(x, y) log
p(x, y)

P(x)p(y)
,

(2)

where H(X) and H(Y) are the marginal entropy of X and Y
respectively, and H(X,Y) is the joint entropy of X and Y .

2.4.3. ANOVA F-Value-Based Feature Selection (AF)
F-test is a representative version of the analysis of variance
(ANOVA). It is typically used to test whether the means
of multiple populations are significantly different. In feature
selection, ANOVA can measure the “F-ratio” of the between-
class variance (as in Equation 4) over within-class variance
(as in Equation 5). The “F-ratio” indicates the degree of class
separation, as formulated in Equation (3). The higher a feature
variable’s F-ratio is, the better this feature is in differentiating
different classes.

Fratio =
σ 2
between

σ 2
within

(3)

where the between-class variance and within-class variance are:

σ 2
between =

∑J
j=1(xj − x)2Nj

J − 1
(4)

and

σ 2
within =

(
∑J

j=1
∑Nj

i=1(xi,j − x)2)− (
∑J

j=1(xj − x)2Nj)

N − J
, (5)

respectively. J is the number of classes, Nj is the number of
measurements in the jth class, xj is the mean of the jth class, x is
the overall mean, and xi,j is the ith measurement of the jth class.

2.4.4. Recursive Feature Elimination (RFE)
As first introduced in Guyon et al. (2002) for gene selection,
RFE is a wrapper-based method that judges the importance of
features using an external machine learning algorithm. It adopts
a sequential backward elimination strategy. First, the algorithm
is trained on the initial whole set of features and assigns weight
to each of the features. Then, a pre-defined number of features
with the lowest-ranking absolute weights are pruned from the
current feature set. This procedure recursively repeats for several
steps until the desired number of selected features is reached.
The pseudo code of the RFE is illustrated below in Algorithm 1.
In this work, we used SVM with a linear kernel as the ranking
method, in which the RFE utilized ‖w‖ as the ranking criteria for
the importance of the features.

Algorithm 1: Pseudo Code for Recursive Feature
Elimination (RFE) Algorithm

Input:

Training set: T

Feature set: F = {f1, f2, ..., fp}
Ranking method:M(T, F)

Desired feature number: q

Number of feature to eliminate in each step: k

Output:

Final ranking feature set: R = {fr1, fr2, ..., frp}
Final selected feature set: F = {f1, f2, ..., fq}

1 Initialization;

2 Steps: S = (p-q)/k;

3 for i = 1→ S do

4 Rank set F according toM(T, F);

5 Lk ←− Last ranked k features in F;

6 R[p− i∗k+ 1 : p− (i− 1)∗k]←− Lk;

7 F←− F − Lk;

8 end

2.4.5. L1-Norm Penalty-Based Feature Selection (L1)
This method introduces a L1-norm regularization term into the
objective function to induce the sparsity by shrinking the weights
toward zero. Regularization is usually adopted in case that the
size of the training set is smaller relative to the dimensionality of
the features. This process favorites small parameters of the model
to prevent overfitting (Ng, 2004). It is natural in feature selection
settings for features with weights of zero to be eliminated from
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the candidate set. Some researchers have indicated that the L1-
norm-based method is better than the L2-norm-based method,
especially when there are redundant noise features (Zhu et al.,
2004). In this work, we adopted an SVMwith an L1-norm penalty
to select the important features. The formulation of the objective
function is as follows:

min
ω0 ,ω

n∑

i=1
[1− yi(ω0 +

q∑

j=1
ωjxi,j)]+ C‖ω‖1 (6)

‖ω‖1 is the L1-norm term, in which the ω represents the model
weights. The parameter “C” controls the trade-off between the
loss and penalty.

2.5. Manually Operated Feature Selection
The upper bound of the performance of the proposed features
can be verified using the previous automatic feature selection
methods. We chose to further evaluate the performance and
the importance of the features from different aspects, including
different electrodes, locations, rhythms, and feature types. Haufe
et al. (2014) indicated that the interpretation of the parameters
in backward methods (multivariate classifiers) may lead to the
wrong conclusions in neuroimaging data modeling. Hence,
in this work, we did not conduct analyses based on the
selected features or the corresponding feature weights of the
automatic feature selection methods. However, we adopted a
simple “searchlight” approach in which we manually selected
features from different aspects and evaluated the performances
independently.

The performances of automatic and manually operated
feature selection were verified by applying a linear SVM. The
codes for the data preprocessing, feature extraction, and cross-
subject verification processes with different feature selection
methods, as well as the extracted features, can be accessed
at the following web page: https://github.com/muzixiang/EEG_
Emotion_Feature_Engineering.

3. RESULTS

3.1. Overall Evaluation
We first determined the upper bound of the performance of
the proposed features using all of the mentioned automatic
feature selection methods. In the experiment, considering the
computational overhead of different methods as well as the
adequacy of the experiments, we employed different settings for
different methods. For filter- and RFE-based methods, we set
the step size for the number of selected features to 10. Hence,
the number of steps for DEAP and SEED are 230 and 446,
respectively. For the L1-norm penalty-based method, we set 100
different values for penalty parameter “C” ranging from 0.01
to 1 with a step size of 0.01. We adopted a “leave-one-subject-
out” verification strategy, and the performance was evaluated
by the mean recognition accuracy metric. Figures 3A–C, 4A–C
illustrate the performance of the automatic feature selection
methods with different settings on the DEAP and SEED dataset,
respectively.

For DEAP, when no feature selection method was utilized,
the recognition performance was 0.5531 (std:0.0839). The best
result of 0.5906 (std: 0.0868) was obtained with the L1-norm
penalty-based method when the value of “C” is 0.08. For SEED,
when no feature selection method was utilized, the recognition
performance was 0.7844 (std:0.1119). The best result of 0.8333
(std: 0.1016) was obtained with the RFE-based method when
the number of selected features is 130. Table 2 shows the
p-values calculated through one-way ANOVA test between the
method with best performance and other methods. For a better
comparison between those methods, as shown in Figures 3D,
4D, we also produced ROC curves. Different feature selection
methods were compared by analyzing their ROC curves and the
Areas under the ROC curves (AUC). The results showed that
the L1-norm penalty-basedmethod outperformed othermethods
on both DEAP (AUC = 0.605) and SEED (AUC = 0.904).
Moreover, the L1-norm penalty-based method incurred a lower
computational cost than the other methods. Hence, considering
both effectiveness and efficiency, the L1-norm penalty-based
feature selection method is recommended to verify the upper
bound of the recognition performance when a large amount of
features are provided.

The results demonstrate the effectiveness of our proposed
EEG features in cross-subject emotion recognition, especially on
the SEED dataset. The performance on DEAP is significantly
inferior to that on SEED. This is possibly due to the relatively low
quality of the data and the emotional ratings of trials in the DEAP
dataset. Hence, we chose to conduct further evaluation only on
the SEED dataset.

3.2. Evaluation From Different Perspectives
We also explored the importance of different EEG features in
cross-subject recognition from multiple perspectives, including
different channels, brain regions, rhythms, and feature types.

Figure 5A illustrates the performance of each individual
channel. We ranked the performance of these channels and
labeled the top one-sixth of the channels on the diagram of
the 10–20 international system of electrode placement. The
channels on the bilateral temporal regions achieved higher mean
accuracies for cross-subject emotion recognition. As shown
in Figure 5B, we also evaluated the performance of different
regions, including the left-right anterior regions, left-right
posterior regions, left-right hemispheres, and anterior-posterior
hemispheres. The partition of the regions is illustrated in the
figure, and the channels in the cross regions were eliminated
when evaluating the performance of the sub-regions. We
found that the left anterior region achieved better performance
compared to the right anterior region, left posterior region,
and the right posterior region, especially when the information
in the beta band was utilized. The left hemisphere performed
better than the right hemisphere in each band except for the
gamma band. Furthermore, the information from the anterior
hemisphere enhanced recognition performance in each band
more than that from the posterior hemisphere.

Validating the performance of different EEG rhythms was also
of interest to us. As we can see in Figure 5C, the individual beta
rhythm achieved the best performance, and the higher-frequency
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FIGURE 3 | Mean cross-subject recognition performance with different methods and settings on DEAP. (A) The filter-based methods. (B) The RFE-based method. (C)

The L1-based method. (D) The ROC curves of different methods with their best settings.

beta rhythm and gamma rhythm bands performed better than the
lower-frequency theta rhythm and alpha rhythm bands. When
the data on all four rhythms were concatenated, the performance
was greatly promoted.

The main research objective of this paper is to verify the
effectiveness of the proposed features. Thus, we also evaluated the
performances of each kind of feature. As shown in Figure 5D,
the information on linear features No. 5 (Hjorth parameter:
mobility), No. 6 (Hjorth parameter: complexity), and No. 7
(maximum power spectral frequency) in the beta rhythm led to
the best mean recognition accuracy. Only the non-linear features
No. 12 (correlation dimension), No. 13 (Kolmogorov entropy),
and No. 17 (Shannon entropy) can lead to a mean accuracy over
60%. Figure 5E presents the performance comparison between
the linear and non-linear features in different frequency bands.
The results show that using linear features outperformed the
use of non-linear features in each frequency band when linear
SVM and random forest (RF) classifiers were applied. Hence,
considering the high computational overhead of extracting the
non-linear features, solely adopting linear features seems an
effective choice for constructing a real-time emotion recognition
system. Nevertheless, we should also clarify that the values of the
non-linear features calculated in this work may be not optimal.
The performance of the non-linear features are influenced by
many factors, e.g., the parameter settings and the data volume

limitations for the search space. The optimal values of those
non-linear features are worth further exploration.

3.3. Correlation Analysis
As we can see in Figure 5D, the performances of some feature
type (e.g., features No. 2, No. 3, No. 4, and No. 9) are seemingly
identical. This result likely indicates that some features can be
highly correlated in identifying a certain emotion class. Hence,
for examining those highly correlated features, we calculated
the Pearson correlation coefficients for those 18 different feature
types. For example, as presented in Figure 6, the linear features
No. 2, No. 3, No. 4, and No. 9 are absolutely positively correlated
in each rhythm, which explains why the performances of these
features are approximately identical. Linear features No. 1 and
No. 8 are highly positively correlated with all other linear features
except for the Hjorth parameters. For the Hjorth parameters,
feature No. 5 is highly positively correlated with feature No. 7
in each rhythm, and is highly negatively correlated with feature
No. 6 in the beta rhythm. For the non-linear features, we can see
that feature No. 12 is highly and positively correlated with feature
No. 13 andNo. 17 in the higher-frequency bands, and that feature
No. 16 is highly and negatively correlated with feature No. 18 in
each rhythm.

Moreover, through analyzing the correlation of the channels
based on those features, we attempted to investigate the
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FIGURE 4 | Mean cross-subject recognition performance with different methods and settings on the SEED dataset. (A) The filter-based methods. (B) The RFE-based

method. (C) The L1-based method. (D) The ROC curves of different methods with their best settings.

TABLE 2 | The performance upper bound of the proposed features using different

automatic feature selection methods.

DEAP χ
2 MI AF RFE

Step No.: 56 Step No.: 29 Step No.: 22 Step No.: 181

Mean: 0.5773 Mean: 0.5617 Mean: 0.5789 Mean: 0.5594

St.Dev.: 0.0841 St.Dev.: 0.0914 St.Dev.: 0.1004 St.Dev.: 0.0818

L1

Step No.: 8
p = 0.5364 p = 0.1992 p = 0.6192 p = 0.1432

Mean: 0.5906

St.Dev.: 0.0868

SEED χ
2 MI AF L1

Step No.: 20 Step No.: 2 Step No.: 2 Step No.: 13

Mean: 0.8244 Mean: 0.8133 Mean: 0.8111 Mean: 0.8289

St.Dev.: 0.1151 St.Dev.: 0.1227 St.Dev.: 0.1389 St.Dev.: 0.0899

RFE

Step No.: 12
p = 0.8242 p = 0.6305 p = 0.4895 p = 0.8999

Mean: 0.8333

St.Dev.: 0.1016

Meanwhile, the p-values calculated through one-way ANOVA between the method with

best performance and other methods are also exhibited. The highest mean recognition

accuracy is shown in bold type.

underlying mechanisms of those features that allow for
differentiating cross-subject emotions. Specifically, for each
subject and for each specific feature, we constructed correlation

matrices of the 62 channels for subjects’ negative trials and
positive trials. After all of the correlation matrices had been
constructed, we averaged the correlation matrices in the negative
group and positive group. The mean correlation matrices for
specific features are presented in Figure 7. We also conducted
statistical analyses to compare the differences in channel
correlations between the negative group and the positive group.
The t test results are illustrated in Figure 8. The results in both
Figures 7, 8 indicate that for almost every feature, the mean
correlations in the negative group are higher than those in the
positive group.

The connection network of the 62 channels is represented in
the form of a binary matrix, which was constructed based on
the obtained correlation matrices. We first needed to determine
the threshold of the correlation coefficients, based on which the
connection between two channels could be established. To be
more specific, the value in the binary matrix was set to 1 when the
corresponding value in the correlation matrix was greater than
the threshold. Otherwise, the value in the binary matrix was set
to 0. The value of 1 in the binary matrix indicates that there is a
connection between the two corresponding nodes. Based on the
obtained binary matrix, the connection network of the channel
nodes was constructed.

For measuring the coherence of different channel locations
in different emotional states, we calculated the clustering
coefficients of each node in the connection network. The
clustering coefficient was a reflection of the degree of aggregation
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FIGURE 5 | The cross-subject recognition performance based on features from different channels (A), different regions (B), different rhythms (C), different features

(D), and different feature types (E).

of different channel locations. The thresholds at which the
global clustering coefficients were significantly different between
the positive group and negative group are illustrated in
Table 3. As mentioned above in Figure 5D, feature No. 5
(Hjorth parameter: mobility) in beta rhythm achieved the best
recognition performance. Thus, in this paper, we use this feature
as an example to illustrate the topographic plot of the clustering

coefficients of the groups with negative and positive emotions. As
shown in Figure 9A, at each threshold, the clustering coefficients
in the left anterior regions of the negative groups are consistently
higher than those of the positive groups. This dynamic may
account for the results obtained in Figure 5B indicating that
the left anterior regions yields the best recognition performance
when beta rhythm information is utilized. Nevertheless, different
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FIGURE 6 | The Pearson correlation between 18 different features (linear features: f1, f2, f3, f4, f5, f6, f7, f8, f9; non-linear features: f10, f11, f12, f13, f14, f15, f16,

f17, f18) in theta rhythm (A), alpha rhythm (B), beta rhythm (C), and gamma rhythm (D), respectively.

features and thresholds could have different topographic plots
in which the clustering coefficients may be quite different from
those of feature No. 5 in the beta rhythm. For example, in
addition to feature No. 5 in beta rhythm, feature No. 6 in
beta rhythm also led to a high performance. We have also
presented the clustering coefficients in Figure 9B. However, the
topographic plot was different from that in Figure 9A, and the
left anterior region was no longer significantly different between
the two groups. Hence, the important locations for emotion
recognition cannot be determined simply by analyzing only one
or two features.

As described above, we should point out that such correlation
analysis may not be adequate to fully interpret the mechanism
of the features. Moreover, for example, as shown in Figure 8,
the feature No. 1 in the gamma rhythm cannot significantly

differentiate the correlation coefficients of the two groups.
However, as shown in Figure 5D, this feature can still
lead to a better performance than most of the non-linear
features.

4. DISCUSSIONS

In this work, we verified the effectiveness of 18 kinds of
EEG features in cross-subject emotion recognition, including
9 kinds of time-frequency domain features and 9 kinds of
dynamical system features. We adopted a “leave-one-subject-
out” method to verify the performance of the proposed features.
After automatic feature selection, the highest mean recognition
accuracies of 59.06% (AUC = 0.605) on the DEAP dataset and
83.33% (AUC = 0.904) on the SEED dataset were reached.
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FIGURE 7 | The constructed correlation matrices of the negative emotion group and the positive emotion group when the 18 different features in different rhythms are

adopted.

The performance on DEAP was not as good as that on SEED,
which could be due to the low quality of the data in the
emotional ratings of the trials. The noise in the emotional
ratings degraded the ability of the model to differentiate
between different classes. Through drawing the ROC curves,
we found that the L1-norm penalty-based feature selection
method exhibited robust performance on both two datasets.
Considering its lower computational overhead, this method is the

best strategy to adopt when analyzing large numbers of candidate
features.

We also evaluated the cross-subject recognition performance
from different perspectives, including different EEG channels,
different regions, different rhythms, different features, and
different feature types. We chose to conduct analyses on the
SEED dataset because of its better performance. Specifically,
through evaluation over individual channels, we found that
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FIGURE 8 | The comparison of the mean global correlation between the groups of negative emotion and positive emotion when the 18 different features in theta

rhythm (A), alpha rhythm (B), beta rhythm (C), and gamma rhythm (D) are adopted. (***p<0.001, **p<0.01, *p<0.05)

the channels with the best performances were mainly located
in the bilateral temporal regions, which was consistent with
the finding in Soleymani et al. (2012), Zheng et al. (2016).
We partitioned the channels into different groups according
to the different regions and evaluated the performances of the
different groups.We found that the left anterior region achieved a
better performance compared to the other sub-regions, especially
when the information in the beta band was utilized. The left
hemisphere performed better than the right hemisphere except
for in the gamma band. Furthermore, the anterior hemisphere
exhibited an improved recognition performance compared to
the posterior hemisphere, especially when data from all rhythms
were utilized. The relationship between emotion recognition
and frontal regions was illustrated in the studies of Schmidt
and Trainor (2001), Lin et al. (2010). Schmidt and Trainor
(2001) found the relatively higher left frontal EEG activity under
exposure to happy musical excerpts and relatively higher right
frontal EEG activity under exposure to sad musical excerpts, and
the overall frontal EEG activity could distinguish the intensity
of the emotions. Lin et al. (2010) found that the frontal and
parietal electrode pairs were the most informative on emotional
states.

The evaluation of different rhythms indicated that the
information in higher-frequency bands contributed more to
cross-subject emotion recognition compared to lower-frequency
bands. The effectiveness of the beta and gamma rhythms
in promoting emotion recognition was also presented in

Lin et al. (2010), Soleymani et al. (2012), Zheng et al.
(2016). Moreover, some neuroscience studies have found that
emotion-related neural information mainly resides in higher-
frequency bands (Müller et al., 1999; Kortelainen et al.,
2015). By evaluating the performances of individual features,
we found that linear features No. 5 (Hjorth parameter:
mobility), No. 6 (Hjorth parameter: complexity), and No.
7 (maximum power spectral frequency) in the beta rhythm
led to the best mean recognition accuracy. However, the
Hjorth parameters have not been widely adopted in EEG-
based emotion recognition. We also found that the combination
of the linear features greatly outperformed the combination
of non-linear features in each frequency band. Considering
the high computational overhead in extracting the non-linear
features, adopting linear features in designing real-time emotion
recognition systems is recommended. Nevertheless, the non-
linear features calculated here may be not the optimal ones,
given that emotional information is very likely processed in a
non-linear way. The optimal values of the non-linear features
for reflecting emotional processes are certainly worth further
exploration.

For a better understanding of the mechanisms of those
features that allow for differentiating between emotions, we
further conducted a correlation analysis for 62 channels for
each feature. We calculated and constructed correlation matrices
using different features. We found that for nearly every feature,
the negative group has a higher mean correlation coefficient
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TABLE 3 | The threshold scope that can significantly differentiate the clustering coefficients in groups of positive emotion and negative emotion (p < 0.05).

Rhythm Feature Threshold scope Feature Threshold scope

Theta No.1 0.34∼0.65, 0.92∼0.99 No.10 0.01∼0.36, 0.62∼0.63, 0.69∼0.71, 0.89∼0.92

Theta No.2 0.01∼0.66, 0.92∼0.99 No.11 0.14∼0.47, 0.71∼0.74, 0.84∼0.87, 0.97∼0.98

Theta No.3 0.01∼0.66, 0.92∼0.99 No.12 0.01∼0.35, 0.59∼0.62, 0.77∼0.78, 0.94∼0.96

Theta No.4 0.01∼0.66, 0.92∼0.99 No.13 0.01∼0.20, 0.49∼0.50

Theta No.5 0.01∼0.39 No.14 0.21∼0.31

Theta No.6 0.01∼0.24 No.15 0.07∼0.32, 0.40∼0.49, 0.70∼0.72, 0.95∼0.96

Theta No.7 0.01∼0.15 No.16 0.01∼0.34, 0.54∼0.58

Theta No.8 0.01∼0.65, 0.93∼0.99 No.17 0.01∼0.42

Theta No.9 0.01∼0.66, 0.93∼0.99 No.18 0.49∼0.50, 0.90∼0.98

Alpha No.1 0.01∼0.58, 0.66∼0.95 No.10 0.01∼0.08, 0.53∼0.56, 0.67∼0.72, 0.96∼0.99

Alpha No.2 0.01∼0.27, 0.49∼0.60, 0.75∼0.91 No.11 0.01∼0.32, 0.64∼0.76, 0.95∼0.99

Alpha No.3 0.01∼0.41, 0.56∼0.66, 0.83∼0.95 No.12 0.01∼0.08, 0.23∼0.32, 0.67∼0.76, 0.95∼0.99

Alpha No.4 0.01∼0.40, 0.47∼0.59, 0.90∼0.93 No.13 0.01∼0.05, 0.28∼0.32, 0.67∼0.78, 0.95∼0.99

Alpha No.5 0.01∼0.29, 0.50∼0.52 No.14 0.01∼0.25

Alpha No.6 0.01∼0.25, 0.48∼0.73 No.15 0.01∼0.17, 0.24∼0.28, 0.38∼0.40, 0.89∼0.92

Alpha No.7 0.01∼0.35, 0.46∼0.48, 0.95∼0.97 No.16 0.01∼0.14, 0.36∼0.39

Alpha No.8 0.01∼0.36, 0.49∼0.70, 0.79∼0.99 No.17 0.01∼0.05, 0.64∼0.66, 0.90∼0.99

Alpha No.9 0.01∼0.35, 0.82∼0.85, 0.95∼0.98 No.18 0.01∼0.06, 0.65∼0.78, 0.95∼0.99

Beta No.1 0.01∼0.44, 0.53∼0.58, 0.90∼0.92 No.10 0.01∼0.13, 0.68∼0.69

Beta No.2 0.01∼0.47 No.11 0.01∼0.32, 0.42∼0.43, 0.46∼0.54, 0.67∼0.80

Beta No.3 0.01∼0.49, 0.85∼0.86 No.12 0.01∼0.26, 0.91∼0.98

Beta No.4 0.01∼0.49, 0.53∼0.56, 0.85∼0.86 No.13 0.01∼0.34, 0.48∼0.54, 0.87∼0.92

Beta No.5 0.01∼0.16, 0.20∼0.23, 0.48∼0.61 No.14 0.01∼0.26, 0.38∼0.43, 0.62∼0.74, 0.81∼0.87

Beta No.6 0.01∼0.41, 0.55∼0.64, 0.85∼0.91 No.15 0.01∼0.21

Beta No.7 0.01∼0.31, 0.67∼0.71, 0.91∼0.99 No.16 0.01∼0.21, 0.57∼0.62, 0.81∼0.83, 0.86∼0.88

Beta No.8 0.01∼0.40, 0.86∼0.89, 0.96∼0.99 No.17 0.01∼0.12, 0.67∼0.69, 0.86∼0.88, 0.95∼0.99

Beta No.9 0.01∼0.47 No.18 0.01∼0.29, 0.39∼0.46, 0.74∼0.88

Gamma No.1 0.14∼0.27, 0.66∼0.70, 0.76∼0.81 No.10 0.15∼0.33, 0.40∼0.64, 0.83∼0.88

Gamma No.2 0.01∼0.33, 0.85∼0.98 No.11 0.17∼0.22, 0.28∼0.29

Gamma No.3 0.01∼0.17, 0.50∼0.51 No.12 0.26∼0.49

Gamma No.4 0.01∼0.47, 0.97∼0.98 No.13 0.23∼0.54

Gamma No.5 0.01∼0.31, 0.73∼0.98 No.14 0.01∼0.35, 0.97∼0.99

Gamma No.6 0.01∼0.30, 0.80∼0.99 No.15 0.01∼0.22, 0.42∼0.47, 0.72∼0.74, 0.83∼0.88

Gamma No.7 0.01∼0.35, 0.93∼0.99 No.16 0.01∼0.05, 0.81∼0.84

Gamma No.8 0.48∼0.61, 0.98∼0.99 No.17 0.01∼0.49, 0.97∼0.99

Gamma No.9 0.01∼0.32, 0.90∼0.91, 0.95∼0.99 No.18 0.01∼0.17, 0.21∼0.32, 0.40∼0.42

than the positive group. Based on the constructed correlation
matrices, we further calculated the clustering coefficients at
different thresholds. We listed the thresholds at which the
clustering coefficients were significantly different between the
two groups, and we presented the clustering coefficients in
detail with a topographic plot for features No. 5 and No. 6
in the beta rhythm. The preliminary analysis implied that the
features’ ability to reflect the channel correlation may contribute
to the recognition of emotions. Nevertheless, considering the
differences in the clustering coefficients of the different features,
we should note that the correlation analysis is not sufficient to
fully explain the mechanism of those features or to determine

the important locations. Additional analyses from different
perspectives using different approaches are still needed in future
work.

In the future, we should also further study the oscillatory
and temporal process of emotion perception based on these
features and verify the effectiveness of the proposed features
on other datasets. In addition to correlation analysis, we
need an in-depth study of the mechanisms of the features
that allow for differentiating between positive and negative
emotions. Another potential line of research is to further
verify the ability of those features to identify emotion-
related mental disorders, e.g., depression, as well as the
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FIGURE 9 | (A,B) The topographic plot of the clustering coefficient of the groups of negative emotion and positive emotion when feature No. 5 (Hjorth parameter:

mobility) and feature No. 6 (Hjorth parameter: complexity) in beta rhythm were utilized. Conditions with different thresholds (T) are illustrated.

effectiveness of those features in studying other cognitive
processes.
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Many studies have proved that color represents a variety of emotionally meaningful
information. Researchers have proposed that context information endows colors
with different associated meanings, and elicits corresponding behavior. Others have
contended that the color red intensifies the stimulus’ existing valence or motivation
tendency in the early processing step. The present study attempts to incorporate these
two effects of the color red to explore their differences in a dot probe task, using
event-related potential (ERP). Our ERP results indicate that the color red intensifies the
initial attention to emotion-congruent conditions, as indicated by the P1 component.
However, the colors red and green lead to sustained attention to the expression of
anger and happiness, respectively, but not fear, as shown by the late positive complex
component (all results are available at: https://osf.io/k3b8c/). This study found the
different processing stages of the effect of the color red during attentional processing in
a discrete emotional context, using ERPs, and may refine the Color-in-Context theory.

Keywords: red-angry, green-happy, attention bias, Color-in-Context theory, ERPs

INTRODUCTION

As a basic dimension of human perception, color is ubiquitous in our surroundings, and plays a
fundamental role in human perception and experience of the world (Valdez and Mehrabian, 1994;
Müller et al., 2006; Bramão et al., 2011). Researchers have observed that the same color can convey
inconsistent meanings under different conditions. For instance, the color red is not only associated
with negative meanings but also linked to positive meanings in both natural and human societies.
Specifically, in natural environments, the color red often plays an important role in warning the
body of potential hazard from insects, birds, or reptiles (Stevens and Ruxton, 2012). On the other
hand, the same color could also be an indication of ripe fruits which attract animals to consume
them for living. In our daily life, the color red is often used to indicate dangerous situations which,
if not avoided, will result in injury. Meanwhile, it is also a symbol of luck, festivities, and other
positive themes in some cultures, such as in Chinese culture. The fact that the same color may
convey contrary meanings in different situations is of scientific interest to investigators who wish
to study its impact on the individual’s psychological functioning.

Since the color red is associated with both negative and positive meanings, scholars have
proposed the Color-in-Context theory, which states that the context in which the color red is
perceived, influences people’s interpretation of its associated meaning, and subsequently alters their
behaviors accordingly (Elliot and Maier, 2012, 2014; Elliot, 2015). The Color-in-Context theory
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hypothesizes that colors convey different meanings depending
on the context (Elliot and Maier, 2012). Some studies
have found that the color red, associated with danger and
generally negative meanings in an achievement context, activates
withdrawal responses, and influences cognition, emotion, and
behavior (Moller et al., 2009; Kuhbandner and Pekrun, 2013;
Pravossoudovitch et al., 2014; Shi et al., 2015). In contrast
to achievement contexts, studies indicate that, in romantic
contexts, the color red is associated with sexual attractiveness,
and activates approach motivation, and impacts mating behavior
in heterosexual individuals (Elliot and Niesta, 2008). However,
recently, researchers have failed to replicate this attractive effect
(Peperkoorn et al., 2016). In addition to being associated with
danger or sexual desirability in different contexts, the color
red is also an inherent feature of angry expressions in an
emotional context. When angry, the faces of humans and other
primates often turn red (Drummond, 1997; Changizi et al., 2006).
The color red, in contrast to blue and gray, thus, facilitates
the identification of angry, but not fearful, expressions which
suggests a more specific association between the color red and
anger (Young et al., 2013).

In addition to highlighting the important role of context
information in color effect, researchers have recently suggested
that attention may be involved in the context-dependency of
the associations of the color red (Buechner et al., 2014, 2015;
Buechner and Maier, 2016). An attentional-bias theory has been
proposed, which hypothesizes that the color red could led to an
automatic attentional bias toward stimuli that existing attentional
priority caused by motivation tendency, making the target more
prominent than others. Buechner et al. (2014) proposed that the
color red intensifies the stimuli’s existing valence or motivation
tendency and impact on human behaviors in early processing
steps. In a modified dot probe task, the reaction times show that
the color red intensifies the perceiver’s attentional engagement
to angry and happy, but not neutral, expressions, in contrast to
blue. Using a dot probe task with pictures of emotional scenes
from International Affective Picture System (IAPS), studies of
ERP components [early directing attention negativity (EDAN)
and anterior directing attention negativity (ADAN)] have also
revealed that the color red captures initial and later attention
in both positive and negative conditions, but not in a neutral
condition (Kuniecki et al., 2015). This result is consistent with
Buechner’s proposal that the color red intensifies the stimuli’s
existing motivation tendency (emotion effect). However, it is only
involved in the valence of the stimuli, and does not influence
more specific associations (e.g., anger) in attentional processing.

Taken together, previous studies have shown that the color
red intensifies the stimulus’ existing valence or motivation
information in early processing steps. Context-specific effects
may then emerge and influence human behavior (Buechner
et al., 2014, 2015). It is important to investigate the relationship
between attentional bias and context-specific information during
visual processing in the presence of the color red, as it is useful
to refine the theory of the influence of color on psychological
functioning.

In this study, we attempted to integrate the two effects of the
color red, and investigate its differential effects on attentional

processing using ERPs, as it is an excellent tool to study the time
course of mental processes. We hypothesized that the existing
emotional attention aspects of red stimuli captures the perceiver’s
attentional resources in an early processing stage, while context
information regarding discrete emotional association sustains
the individual’s attention to corresponding red targets in the
late processing stage. A modified dot probe task, whose original
version is often used to measure the attentional bias of emotional
stimuli, has been used in this study, although we changed
the target colors to red and green. Angry, fearful, and happy
expressions were used as cues to create an emotional context. We
selected the color green as a control color, as this condition has
been used successfully in several previous studies (Elliot et al.,
2007; Maier et al., 2009). Indeed, some researchers contend that
green is a pleasant hue, and enhances the recognition of happy
expressions. In fact, even in a cycling task, the color green makes
individuals feel happy (Valdez and Mehrabian, 1994; Akers et al.,
2012; Gil and Le Bigot, 2014). In previous studies, it has been
shown that the P1 component of ERP is a good marker for
capturing initial attention in the dot probe task (Brosch et al.,
2008; Liu et al., 2013). The participants may also direct their
attention to relevant stimuli and perform elaborate processing,
as evidenced by a large late positive complex (LPC) in ERP
(Jaworska et al., 2012; Gable and Adams, 2013; Zhang et al., 2014;
Yi et al., 2015; Zhu et al., 2015). Therefore, we predicted that the
color red may capture the initial attention to attended stimuli for
all emotions (anger, fear, and happiness), as it leads to larger P1
responses. However, in the late processing stage, only angry facial
expressions sustained the perceiver’s attention to the red stimuli,
as evidenced by a larger LPC.

MATERIALS AND METHODS

Participants
We did not run a power analysis to estimate our sample size
before the study. And we decided the sample size based on
our previous study (Liu et al., 2013; Zhang et al., 2014; Zhu
et al., 2015). Seventy-two undergraduates were recruited from
Chongqing University of arts and sciences in exchange for
payment. They were randomly assigned: behavioral experiment
(n = 31, 20 females, mean = 22, SD = 1.67) and ERP experiment
(n = 41, 30 females, mean = 21.5, SD = 1.96). All participants
were reported right-handed and having normal or corrected-to-
normal vision without any color deficiencies. All subjects were
provided informed written consent prior to the study. The study
was approved by Chongqing University of Arts and Sciences
Human Research Institutional Review Board in accordance with
the Declaration of Helsinki (1991).

Stimuli
Sixty faces (10 angry, 10 happy, 10 fear, and 30 neutral faces)
were chosen from the Chinese Facial Affective Picture System
(Gong et al., 2011) depicting the emotion of people in black and
white photograph, with an equal number of face pictures of males
and females. We also assessed the valence and arousal on a 9-
point scale with a sample of 45 Chinese subjects. We analyzed
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the average score of all stimuli in our experiments which are
reported in Table 1. The statistical results showed that angry and
fearful faces were not significantly different in emotional valence
[F(3,44) = 203.09, p < 0.001, η2 = 0.93, 95% CI (0.88, 0.95); anger
vs. fear: p = 0.91], while their valences were significantly different
from happy faces (ps < 0.001) and neutral faces (ps < 0.001).
The average arousal score between angry, fearful, and happy faces
was not significantly different from each other [F(3,44) = 53.54,
p < 0.001, η2 = 0.79, 95% CI (0.64, 0.84); anger vs. fear vs.
happiness: ps > 0.10], while they were significantly different from
neutral faces (ps < 0.01). In addition, each facial expression
had also been assessing the recognition rates and had been used
successfully in previous studies.

Stimuli (260 pixels × 300 pixels) were presented on a liquid
crystal display monitor (17-inch) at a viewing distance of 100 cm.
The viewing angle was 3.9◦

× 4.5◦, and the screen resolution was
72 pixels per inch.

Procedure
The experiment is within subject design and consisted of one
practice block of 12 trials, followed by one experimental block of
960 trials. The participants had a rest period of 1 min every 160
trials. All trials were randomized. An example of the stimuli and
the trial design of the experiment is illustrated in Figure 1. There
were three factors in our experiment, including emotion (anger,
fear, happy), congruency (congruent, incongruent), and color
(red and green). A fixation cross appeared in the center of the
screen for 300 to 600 ms, and was followed by a cue that consisted
of two faces. There was an emotional (angry, fear, or happy)

TABLE 1 | Average ratings (mean ± SD) for valence and arousal of stimuli.

Arousal Valence

Anger 6.34 ± 1.20 2.82 ± 0.44

Fear 6.23 ± 1.68 2.81 ± 0.44

Happiness 5.97 ± 0.98 5.74 ± 0.89

Neutral 3.63 ± 0.54 4.12 ± 0.70

45 participants assessed the valence and arousal of sixty faces (10 angry, 10 happy,
10 fear, and 30 neutral faces) on a 9-point scale, and we analyzed the average
scores of all stimuli per condition in our experiments.

and a neutral face on the left or right side of the screen. After a
short interval (100 ms to 300 ms), a target appeared at either the
same position as the emotional face (congruent) or at a different
position (incongruent) for 150 ms. Congruent and incongruent
trials appeared in random order with equal probability (50%
each). To match the lightness we used the BabelColor Translator
and Analyzer (CT&A) to transform the parameters of target
colors from Adobe RGB (1998) color space (red = 255, green = 0,
blue = 0; red = 0, green = 181, blue = 0) into CIE LCh color
space (red: L = 61.4, C = 117, h = 40.0; green: L = 61.2, C = 128,
h = 147). After the appearance of the target, the participants had
to assess the position of the target as quickly and as accurately as
possible. If the triangle was presented on the left, targets had to
press “F” on the computer keyboard using their left index fingers.
Otherwise, they were to press “J” using their right index fingers.
The target was one of four types of triangle (red upper, red lower,
green upper, and green lower). The participants were instructed
to respond to only two types of triangles (red and green upper,
or red and green lower, counterbalanced across subjects), but
to ignore its color. Before the next trial started, the participants
had a maximum of 1,000 ms to respond. Importantly, we used
different percentages of response trials in our behavioral tasks (go
trials, 50%; no-go trials, 50%) and electroencephalogram (EEG)
studies (go trials, 10%; no-go trials, 90%) in order to study spatial
orientation in the EEG task (Brosch et al., 2008; Liu et al., 2013).
In addition, since we analyzed no-go, not go, trials in our ERP
analysis, the ERPs (P1, LPC) may not be related to the behavioral
response. The behavioral experiment is only for repeating the
similar results of the previous study. Our main interests are
focused on the ERPs results since we want to clarify the different
stage of the color red and its effect on attentional processing.

EEG Recording and Analysis
Brain electrical activity was recorded at 64 scalp sites using tin
electrodes mounted in an elastic cap with a sampling frequency
of 500 Hz (Brain Products, Munich, Germany), according to the
international 10–20 System. FCz was used as the reference, and
ground electrode was on the medial frontal aspect. The horizontal
EOG was recorded from the right orbital rim. All electrode
impedance was <5 k�. The EEG and EOG were amplified using
a 0.01–100 Hz bandpass.

FIGURE 1 | Schematic representation of experimental procedure. Each trial contained a cue (an angry/fear/happy face in one side of the screen and a neutral face in
the other side) and a target stimulus (a red/green triangle that might be upper or lower). Congruent (the emotional face and the target appeared at the same position)
and incongruent (the emotional face and the target appeared at different positions) trials were appeared in random order with equal probability (50% each).
Participants were required to judge the target position by pressing “f” (left) or “j” (right), and they were instructed to respond only one kind of triangle (the upper or the
lower, counterbalanced across subjects) but ignore its color. Importantly, we used a different percent of responding trials in our EEG (go trials, 10%, no-go trials,
90%) and behavioral tasks (go trials, 50%, no-go trials, 50%) to study the spatial orienting in EEG task.
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EEG data were analyzed using BrainVision Analyzer
(2.1) software (BrainProducts GmbH). Data were off-line
mathematically re-referenced to the left and right mastoids,
and filtered with band pass filter 0.1–30 Hz (24 dB). Filtered
data were segmented beginning 100 ms prior to the onset of
the target stimulus array and lasting for 950 ms. An ocular
artifact reduction procedure (Semlitsch et al., 1986) based on
right eye HEOG activity was used to remove blink artifacts.
Baseline correction was performed using 100 ms prestimulus
interval. EEG epochs in which the signal exceeded ± 100 µV
were excluded. Artifact-free epochs were averaged separately
for each electrode, condition, and individual. The average ERPs
of the 41 subjects were computed based on no-go trials (80 ∗

90% = 72 trials precondition).
We analyzed the amplitudes of occipital P1 and LPC

components across different set of electrodes in line with grand-
mean ERP topographies and previous literatures (Yi et al., 2015),
the mean amplitude of P1 was calculated at the electrode sites
of PO3, PO4, PO7 and PO8 (time window = 100–150 ms).
The mean amplitude of LPC was calculated at electrode sites
C3, C4, Cz, CP3, CP4, CPz (time window = 340–460 ms). For
each component, a four-way repeated-measures ANOVA was
performed with the following variables as within-subject factors:
“Color” (Red target vs. Green target), “Congruency” (Congruent
vs. Incongruent), “Emotion” (Anger vs. Fear vs. Happy), and
“Hemisphere” (P1: Left hemisphere vs. Right hemisphere; LPC:
Left hemisphere vs. Medal region vs. Right hemisphere). P value
was corrected using the Greenhouse–Geisser method.

RESULTS

Means and standard error (mean ± SE) of behavioral data at
four experimental conditions are reported in Table 2, and more
details are reported in Table 3 with means and standard deviation
(mean ± SD). Means and standard errors (mean ± SE) of
electrophysiological data at different experimental conditions are
reported in Table 4.

Behavioral Results
We only analyzed the reaction time in both EEG and behavioral
experiment because there was a ceiling effect in accuracy as the
task is too simple. In the behavioral experiment, the main effect
of “Color” [F(1,30) = 5.34, p = 0.03, η2 = 0.15, 95% CI (0,0.37)]
was significant. Participants performed slower in red triangle
(371 ± 15 ms) than green triangle (361 ± 15 ms). However,
the main effects of “Emotion” and “Congruency” [Fs < 0.45,

TABLE 2 | Reaction time (mean ± SE) at four experimental conditions of
Behavioral experiment (N = 31) and ERP experiment (N = 41).

Behavioral experiment ERP experiment

Congruent-Red (ms) 375 ± 16 308 ± 11

Congruent-Green (ms) 357 ± 15 292 ± 11

Incongruent-Red (ms) 366 ± 14 308 ± 10

Incongruent-Green (ms) 364 ± 15 295 ± 11 TA
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ps > 0.63] were not significant. There was a significant interaction
between “Congruency” and “Color” [F(1,30) = 5.02, p = 0.03,
η2 = 0.14, 95% CI(0, 0.36)]. Simple effects analysis demonstrated
that the reaction time of “Congruency” was significantly
influenced by “Color”. Participants performed slower to red
triangle than green triangle in congruent condition (375 ± 16 ms
vs. 357 ± 15 ms, t(30) = 3.77, p < 0.001, d = 0.68, 95% CI (0.28,
1.06)); however, there was no difference between red triangle
and green triangle in incongruent condition (366 ± 14 ms vs.
365 ± 15 ms, t(30) = 0.26, p = 0.80). And there were no
other significant interactions among “Color”, “Emotion” and
“Congruency” [Fs < 1.82, ps > 0.18].

In the EEG experiment, the main effect of “Color”
[F(1,40) = 31.89, p < 0.001, η2 = 0.44, 95% CI(0.21, 0.60)]
was significant. Participants performed slower to red triangle
(308 ± 10 ms) than green triangle (293 ± 11 ms). While the main
effect of “Emotion” and “Congruency” [Fs < 1.24, ps > 0.30],
as well as all their interactions [Fs < 0.85, ps > 0.43] were not
significant.

P1 Component
P1 amplitude (Figure 2) showed a significant main effect of
“Color” [F(1,40) = 17.25, p < 0.001, η2 = 0.30, 95 % CI (0.08,
0.49)]. Red triangle (0.76 ± 0.28 µV) elicited significantly larger
P1 amplitude than green triangle (0.44 ± 0.27 µV). While the
main effects of “Emotion”, “Congruency” and “Hemisphere”
were not significant [Fs < 1.77, ps > 0.19].

In addition, there was a significant interaction between the
effects “Congruency” and “Color” [F(1,40) = 7.15, p = 0.011,
η2 = 0.15, 95% CI (0.01, 0.35)]. Simple effects analysis
indicated that the effect of “Color” significantly influenced the
amplitudes of “Congruency”. Simple effects analysis showed that
congruent condition elicited significantly larger P1 amplitude
than incongruent condition [0.87 ± 0.28 µV vs. 0.65 ± 0.28 µV,
t(40) = 3.01, p < 0.01, d = 0.47, 95% CI (0.15, 0.79)] in the
red condition. While there was no difference between congruent
condition and incongruent condition (0.44 ± 0.27 µV vs.
0.45 ± 0.27 µV, t(40) = −0.15 p = 0.88) in the green condition.

LPC Component
LPC amplitude (Figure 3) showed significant main effects of
“Emotion” [F(2,40) = 4.19, p = 0.02, η2 = 0.17, 95% CI (0, 0.35)]
and “Hemisphere” [F(2,40) = 24.89, p < 0.001, η2 = 0.55, 95% CI
(0.31, 0.68)]. Post hoc pairwise comparisons showed that anger
faces elicited significantly larger LPC amplitude than happy faces
(7.44 ± 0.61 µV vs. 7.02 ± 0.59 µV, p = 0.01), while there was no
difference between fearful faces and happy faces (7.17 ± 0.59 µV
vs. 7.02 ± 0.59 µV, p = 0.24) or between fearful faces and angry
faces (7.17 ± 0.59 µV vs. 7.44 ± 0.61 µV, p = 0.09). In addition,
LPC amplitude was significantly larger in the mid-line region
(8.27 ± 0.67 µV) than in the left hemisphere (6.65 ± 0.58 µV,
p < 0.001) and right hemisphere (6.72 ± 0.58 µV, p < 0.001),
while there was no difference between left hemisphere and
right hemisphere (p = 0.80). The main effects of “Color” and
“Congruency” were not significant [Fs < 0.36, ps > 0.55].

There was a significant interaction between the effects
“Emotion” and “Color” [F(1, 40) = 9.35, p < 0.001, η2 = 0.19,
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FIGURE 2 | Group-level average ERP waveforms and scalp topographies for the interaction between the effects “Congruency” and “Color” of P1. ERP waveforms of
P1 component (recorded at electrodes PO3, PO4, PO7, PO8) are shown for Congruent-Red target (red lines), Incongruent-Red target (dark red lines),
Congruent-Green target (green lines), and Incongruent-Green target (dark green lines). Left panel: ERP waveforms and scalp topographies of P1 component
generated by Congruent-Red and Incongruent-Red conditions. Right panel: ERP waveforms and scalp topographies of P1 component generated by
Congruent-Green and Incongruent- Green conditions.

95% CI (0.02, 0.38)]. Simple effects analysis showed that red
triangle elicited significantly larger LPC amplitude than green
triangle in angry condition [7.80 ± 0.66 µV vs. 7.09 ± 0.58 µV,
t(40) = 3.23, p = 0.002, d = 0.51, 95% CI (0.18, 0.83)], while red
triangle elicited significantly smaller than green triangle in happy
condition [6.81 ± 0.56 µV vs. 7.24 ± 0.58 µV, t(40) = −2.27,
p = 0.029, d = −0.35, 95% CI (−0.67, −0.04)], and there was
no difference between red triangle and green triangle in fear
condition (7.15 ± 0.64 µV vs. 7.20 ± 0.56 µV, t(40) = −0.23,
p = 0.82). In addition, there was a significant interaction of
“Emotion,” “Color,” and “Hemisphere” [F(1,40) = 6.01, p < 0.001,
η2 = 0.13, 95% CI(0,0.32)]. Simple effects analysis showed that red
triangle under angry condition elicited significantly larger LPC
amplitude than green triangle under angry condition in the left
hemisphere [7.30 ± 0.62 µV vs. 6.46 ± 0.54 µV, t(40) = 3.92,
p < 0.001, d = 0.61, 95% CI (0.27, 0.94)] and mid-line region
[8.88 ± 0.76 µV vs. 8.06 ± 0.68 µV, t(40) = 3.32, p = 0.02,

d = 0.52, 95% CI(0.19, 0.84)], and red triangle under angry
condition elicited marginally larger than green triangle under
angry condition in the right hemisphere [7.21 ± 0.66 µV vs.
6.76 ± 0.59 µV, t(40) = 1.96, p = 0.06, d = 0.31, 95% CI
(−0.01, 0.62)]. There was no difference between red triangle and
green triangle under fearful condition in the left hemisphere
(6.59 ± 0.59 µV vs. 6.62 ± 0.54 µV, t(40) = −0.18, p = 0.86), mid-
line region (8.19 ± 0.74 µV vs. 6.46 ± 0.54 µV, t(40) = −0.81,
p = 0.42), or right hemisphere (6.69 ± 0.62 µV vs. 6.60 ± 0.57 µV,
t(40) = 0.46, p = 0.65). Green triangle under happy condition
elicited significantly larger LPC amplitude than red triangle under
happy condition in the left hemisphere [6.65 ± 0.54 µV vs.
6.26 ± 0.53 µV, t(40) = −2.08, p = 0.044, d = −0.33, 95%
CI (−0.64, −0.01)] and mid-line region [8.36 ± 0.66 µV vs.
7.80 ± 0.65 µV, t(40) = −2.52, p = 0.016, d = −0.39, 95% CI
(−0.71, −0.07)], while there was no difference between green
triangle and red triangle under happy condition in the right
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FIGURE 3 | Group-level average ERP waveforms and scalp topographies for Anger, Fear, and Happiness conditions. ERP waveforms of LPC component are shown
for red target (red lines) and green target (green lines), and average LPC waveforms recorded at electrodes C3, C4, Cz, CP3, CP4, CPz. Left panel: ERP waveforms
and scalp topographies of LPC component generated by anger faces. Mid-line panel: ERP waveforms and scalp topographies of LPC component generated by fear
faces. Right panel: ERP waveforms and scalp topographies of LPC component generated by happy faces.

hemisphere (6.70 ± 0.59 µV vs. 6.37 ± 0.55 µV, t(40) = −1.76,
p = 0.09).

DISCUSSION

In this study, we used behavioral measures and ERPs to assess the
relationship between context information and attentional bias to
the color red during visual processing. In a discrete emotional
context, our behavioral results indicated that the reaction time
for the color red was longer than that for color green. Moreover,
the reaction time for the color red in the congruent condition was
longer than that for the color green. The ERP results indicate that
the color red captures initial attention in the congruent condition
while the valence is ignored, as shown by the P1 component. We
also found that the colors red and green led to sustained attention
to angry and happy faces in the late processing stage in congruent
and incongruent conditions, respectively, as determined using
the LPC component. In addition, we reported the eta-squared,
not partial eta-squared, and Cohen’s d values and their 95%
confidence interval in the current study. The eta-squared values
range from 0.13 to 0.55 and the absolute d values range from
0.33 to 0.68 among the statistically significant results, which
implies a moderate strength of association, representing effective
experimental control, among experiment factors, reaction time,
and ERPs (Pierce et al., 2004). Additionally, the effect size used
in this study was similar to that used in previous related studies
which indicated that the color red is a factor that influences

an individual’s psychological functioning (Buechner et al., 2014;
Kuniecki et al., 2015).

It is noteworthy that both in the behavioral and
electroencephalography (EEG) experiments conducted
previously, there were no main effects of congruency and the
interaction of emotion and congruency. Indeed, a considerable
number of previous studies have demonstrated that the dot probe
task has poor internal and test-retest reliability for measuring
the attentional bias to a threatening stimulus, based on reaction
times evaluated in non-clinical populations, and have proposed
that ERP would be a good indicator for performance in this
task (Schmukle, 2005; Bar-Haim et al., 2007; Kappenman et al.,
2014). However, we found a significant interaction between
color and congruency. The difference in the result may be due
to modification of the task, which may take into account the
fact that the color red intensifies existing emotional attention
priority. In addition, the reaction time for the color red was
longer than that for the color green in both behavioral and ERP
experiments. This may be because the color red captures the
attention resources and interrupts the participants’ task-related
attention, resulting in a longer reaction time for red stimuli.

We used ERPs to investigate whether there is a difference
between attentional bias and emotional context information
during the visual processing of the color red. First, using facial
expressions as cues, we found that the color red leads to a larger
P1 component than green. This result suggests that red may
capture the early attention as it belongs to the long-wave colors
and is associated with higher arousal. In fact, previous studies
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have found that even a simple red target circle elicits earlier
latencies in the N2pc component than green targets (Fortier-
Gauthier et al., 2013). In addition, a study has found that the
color red increases blood pressure, skin electric potential, EEG
alpha waves, and other physiological indicators (Ali, 1972; Jacobs
and Hustmyer, 1974). Our results are in line with those of the
aforementioned studies. Therefore, we propose that the color
red captures initial attention, as indicated by the P1 amplitude
in the dot probe task. Second, the interaction effect between
color and congruency is significant. The color red, but not
green, captured initial attention in the congruent condition
with fearful, happy, and angry expressions, as shown by the
P1 amplitude. The color red intensifies the attention during
congruent conditions. This suggests that the attentional bias
of the color red is influenced by the current tendency of the
subjects. Indeed, behavioral studies have indicated that the color
red intensifies attention to the stimuli that existing motivation
tendency (Buechner et al., 2014, 2015). In our experiment,
congruent conditional targets were considered the stimuli that
existing attentional priority because emotional cues captured
attention prior to the target presentation. Thus, red targets only
intensify the emotional effect. Therefore, the red target modulates
the P1 component, which takes into account the attentional
bias toward red stimuli that is related to existing attentional
priority.

The color red modulated the LPC, in addition to the P1
component, in response to angry, but not fearful and happy,
facial expressions. Previous behavioral studies have found an
association between the color red and anger conceptualization
or experience in a discrete emotional context (Elliot and Aarts,
2011; Young et al., 2013). Our data suggest that differences in the
amplitude of LPC between the red and green angry expression
conditions may reflect the association between the color red and
anger. The color red, thus, leads to higher arousal and attention
priority, as shown by the LPC in the angry expression condition.
It is noteworthy that there is no relationship between fearful
expression and red based on the LPC amplitude. As mentioned
above, the color red is often used to indicate dangerous situations.
Elliot et al. (2007) has proposed that this association between the
color red and danger often appears in the context of achievement,
and undermines individuals’ performances in intellectual tasks.
However, in emotional contexts, the color red not only facilitates
the processing of angry expressions, but also enhances the
processing of the concept of anger, although it does not facilitate
the expression or conceptualization of fear (Fetterman et al.,
2011; Young et al., 2013). Our results are consistent with the

aforementioned findings, and rule out the idea that the color red
has a generally negative emotional association. Thus, we provide
additional evidence for a link between anger and the color red in a
discrete emotional context. In addition to the association between
the color red and anger, as shown by the LPC in our experiments,
we found that, in the happy expression condition, the color green
captured later attention, and led to a larger LPC than the color
red. This result suggests that the green target, followed by the
happy expression, sustains the perceiver’s attention, and reflects
an association between the color green and happiness. In fact,
previous studies also indicate that the color green is a pleasant
hue in different tasks (Valdez and Mehrabian, 1994; Gil and Le
Bigot, 2014). In general, LPC modulates red and green targets in
the angry and happy expression conditions, respectively, which
reflects the context-specific effects of colors on discrete emotions.

Taken together, the reaction time and P1 amplitude results
indicate an attentional bias to the red target, which is congruent
with emotional (anger, fear, and happiness) cues. The LPC
amplitude reflects the emotional context-specific effects of
color. In a discrete emotional context, individuals focused their
attention unconsciously on the red and green targets, which
followed the angry and happy expression cues, respectively. In
our study, the context was represented by discrete emotional
facial expressions. Our results suggest that the color red captures
the initial attention in any motivational context (approach or
withdrawal), and sustains the attention to the color if associated
with a corresponding emotion. Our results may reconcile the
difference between attentional bias and the context-specific
effects of the color red, and highlight the need for investigators
to study the mechanisms underlying the effect of the color red.
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